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Foundations of Machine 
Learning-Based Clinical Prediction 
Modeling: Part I—Introduction 
and General Principles

Julius M. Kernbach and Victor E. Staartjes

2.1	 �Introduction

Although there are many applications of machine learning 
(ML) in clinical neuroscience, including but not limited to 
applications in neuroimaging and natural language process-
ing, classical predictive analytics still form the majority of 
the body of evidence that has been published on the topic.

When reviewing or working on research involving 
ML-based predictive analytics—which is becoming 
increasingly common—it is important to do so with a 
strong methodological basis. Especially considering the 
“democratization” of ML methods through libraries and the 
increasing computing power, as well as the exponentially 
increasing influx of ML publications in the clinical neuro-
sciences, methodological rigor has become a major issue. 
This chapter and in fact the entire five-part series (cite 
Chaps. 3–6) is intended to convey that basic conceptual and 
programming knowledge to tackle ML tasks with some 
basic prerequisite R knowledge, with a particular focus on 
predictive analytics.

At this point, it is important to stress that the concepts and 
methods presented herein are intended as an entry-level 
guide to ML for clinical outcome prediction, presenting one 
of many valid approaches to clinical prediction modeling, 

and thus does not encompass all the details and intricacies of 
the field. Further reading is recommended, including but not 
limited to Max Kuhn’s “Applied Predictive Modeling” [1] 
and Ewout W. Steyerberg’s “Clinical Prediction Models” [2].

This first part focuses on defining the terms ML and AI in 
the context of predictive analytics, and clearly describing 
their applications in clinical medicine. In addition, some of 
the basic concepts of machine intelligence are discussed and 
explained. Part II goes into detail about common problems 
when developing clinical prediction models: What overfit-
ting is and how to avoid it to arrive at generalizable models, 
how to select which input features are to be included in the 
final model (feature selection) or how to simplify highly 
dimensional data (feature reduction). We also discuss how 
data splits and resampling methods like cross-validation and 
the bootstrap can be applied to validate models before clini-
cal use. Part III touches on several topics including how to 
prepare your data correctly (standardization, one-hot encod-
ing) and evaluate models in terms of discrimination and cali-
bration, and points out some recalibration methods. Some 
other points of significance and caveats that the reader may 
encounter while developing a clinical prediction model are 
discussed: sample size, class imbalance, missing data and 
how to impute it, extrapolation, as well as how to choose a 
cutoff for binary classification. Parts IV and V present a 
practical approach to classification and regression problems, 
respectively. They contain detailed instructions along with a 
downloadable code for the R statistical programming lan-
guage, as well as a simulated database of Glioblastoma 
patients that allows the reader to code in parallel to the expla-
nations. This section is intended as a scaffold upon which 
readers can build their own clinical prediction models, and 
that can easily be modified. Furthermore, we will not in 
detail explain the workings of specific ML algorithms such 
as generalized linear models, support vector machines, neu-
ral networks, or stochastic gradient boosting. While it is cer-
tainly important to have a basic understanding of the specific 
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algorithms one applies, these details can be looked up online 
[3] and detailed explanations of these algorithms would go 
beyond the scope of this guide. The goal is instead to convey 
the basic concepts of ML-based predictive modeling, and 
how to practically implement these.

2.2	 �Machine Learning: Definitions

As a field of study, ML in medicine is positioned between 
statistical learning and advanced computer science, and typi-
cally evolves around learning problems, which can be con-
ceptually defined as optimizing a performance measure on a 
given task by learning through training experience on prior 
data. A ML algorithm inductively learns to automatically 
extract patterns from data to generate insights [4, 5] without 
being explicitly programmed. This makes ML an attractive 
option to predict even complex phenomena without pre-
specifying an a priori theoretical model. ML can be used to 
leverage the full granularity of the data richness enclosed in 
the Big Data trend. Both the complexity and dimensionality 
of modern medical data sets are constantly increasing and 
nowadays comprise many variables per observation, much 
so that we speak of “wide data” with generally more vari-
ables (in ML lingo called features) than observations (sam-
ples) [6, 7]. This has given rise to the so-called omics sciences 
including radiomics and genomics [8–10]. The sheer com-
plexity and volume of data ranging from hundreds to thou-
sands of variables at times exceeds human comprehension, 
but combined with increased computational power enables 
the full potential of ML [3, 11].

With the exponential demand of AI and ML in modern 
medicine, a lot of confusion was introduced regarding the 
separation of these two terms. AI and ML are frequently used 
interchangeably. We define ML as subset of AI—to quote 
Tom Mitchell—ML “is the study of computer algorithms 
that allow computer programs to automatically improve 
through experience” [12], involving the concept of “learn-
ing” discussed earlier. In contrast, AI is philosophically 
much vaster, and can be defined as an ambition to enable 
computer programs to behave in a human-like nature. That 
is, showing a certain human-like intelligence. In ML, we 
learn and optimize an algorithm from data for maximum per-
formance on a certain learning task. In AI, we try to emulate 
natural intelligence, to not only learn but also apply the 
gained knowledge to make elaborate decisions and solve 
complex problems. In a way, ML can thus be considered a 
technique towards realizing (narrow) AI.  Ethical consider-
ations on the “AI doctor” are far-reaching [13, 14], while the 
concept of a clinician aided by ML-based tools is well 
accepted.

The most widely used ML methods are either supervised 
or unsupervised learning methods, with the exceptions of 

semi-supervised methods and reinforcement learning [6, 15]. 
In supervised learning, a set of input variables are used as 
training set, e.g. different meaningful variables such as age, 
gender, tumor grading, or functional neurological status to 
predict a known target variable (“label”), e.g. overall sur-
vival. The ML method can then learn the pattern linking 
input features to target variable, and based on that enable the 
prediction of new data points—hence, generalize patterns 
beyond the present data. We can train a ML model for sur-
vival prediction based on a retrospective cohort of brain 
tumor patients, since we know the individual length of sur-
vival for each patient of the cohort. Therefore, the target vari-
able is labeled, and the machine learning-paradigm 
supervised. Again, the actually chosen methods can vary: 
Common models include support vector machines (SVMs), 
as example of a parametric approach, or the k-nearest neigh-
bor (KNN) algorithm as a non-parametric method [16]. On 
the other hand, in unsupervised learning, we generally deal 
with unlabeled data with the assumption of the structural 
coherence. This can be leveraged in clustering, which is a 
subset of unsupervised learning encompassing many differ-
ent methods, e.g. hierarchical clustering or k-means cluster-
ing [4, 17]. The observed data is partitioned into clusters 
based on a measure of similarity regarding the structural 
architecture of the data. Similarly, dimensionality reduction 
methods—including principal component analysis (PCA) or 
autoencoders—can be applied to derive a low-dimensional 
representation explicitly from the present data [4, 18].

A multitude of diverse ML algorithms exist, and some-
times choosing the “right” algorithm for a given application 
can be quite confusing. Moreover, based on the so-called no 
free lunch theorem [19] no single statistical algorithm or 
model can generally be considered superior for all circum-
stances. Nevertheless, ML algorithms can vary greatly based 
on the (a) representation of the candidate algorithm, (b) the 
selected performance metric, and (c) the applied optimiza-
tion strategy [4, 5, 20]. Representation refers to the learner’s 
hypothesis space of how they formally deal with the problem 
at hand. This includes but is not limited to instance-based 
learners, such as KNN, which instead of performing explicit 
generalization compares new observations with similar 
instances observed during training [21]. Other representation 
spaces include hyperplane-based models, such as logistic 
regression or naïve Bayes, as well as rule-based learners, 
decision trees or complex neural networks, all of which are 
frequently leveraged in various ML problems across the neu-
rosurgical literature [22, 23]. The evaluated performance 
metrics can vary greatly, too. Performance evaluation and 
reporting play a pivotal role in predictive analytics (c.f. cite 
Chap. 4). Lastly, the applied ML algorithm is optimized by a 
so-called objective function such as greedy search or uncon-
strained continuous optimization options, including different 
choices of gradient descent [24, 25]. Gradient descent repre-
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sents the most common optimization strategy for neural net-
works and can take different forms, e.g. batch- (“vanilla”), 
stochastic- or mini-batch gradient descent [25]. We delve 
deeper into optimization to illustrate how it is used in 
learning.

2.3	 �Optimization: The Central Dogma 
of Learning Techniques

At the heart of nearly all ML and statistical modeling tech-
niques used in data science lies the concept of optimization. 
Even though optimization is the backbone of algorithms 
ranging from linear and logistic regression to neural net-
works, it is not often stressed in the non-academic data sci-
ence space. Optimization describes the process of iteratively 
adjusting parameters to improve performance. Every optimi-
zation problem can be decomposed into three basic elements: 
First, every algorithm has parameters (sometimes called 
weights) that govern how the values of the input variables 
lead to a prediction. In linear and logistic regression, for 
example, these parameters include the coefficients that are 
multiplied with the input variable values, as well as the inter-
cept. Second, there may be realistic constraints within which 
the parameters, or their combinations, must fall. While sim-
ple models such as linear and logistic regression often do not 
have such constraints, other ML algorithms such as support 
vector machines or k-means clustering do. Lastly and impor-
tantly, the optimization process is steered by evaluating a so-
called objective function that assesses how well the current 
iteration of the algorithm is performing. Commonly, these 
objective functions are error (also called loss) functions, 
describing the deviation of the predicted values from the true 
values that are to be predicted. Thus, these error functions 
must be minimized. Sometimes, you may choose to use indi-
cators of performance, such as accuracy, which conversely 
need to be maximized throughout the optimization process.

The optimization process starts by randomly initializing 
all model parameters—that is, assigning some initial value 
for each parameter. Then, predictions are made on the train-
ing data, and the error is calculated. Subsequently, the 
parameters are adjusted in a certain direction, and the error 
function is evaluated again. If the error increases, it is likely 
that the direction of adjustment of the parameters was awry 
and thus led to a higher error on the training data. In that 
case, the parameter values are adjusted in different direc-
tions, and the error function is evaluated again. Should the 
error decrease, the parameter values will be further modified 
in these specific directions, until a minimum of the error 
function is reached. The goal of the optimization process is 
to reach the global minimum of the error function, that is, the 
lowest error that can be achieved through the combination of 
parameter values within their constraints. However, the opti-

mization algorithm must avoid getting stuck at local minima 
of the error function (see Fig. 2.1).

The way in which the parameters are adjusted after each 
iteration is governed by an optimization algorithm, and 
approaches can differ greatly. For example, linear regression 
usually uses the ordinary least square (OLS) optimization 
method. In OLS, the parameters are estimated by solving an 
equation for the minimum of the sum of the square errors. 
On the other hand, stochastic gradient descent—which is a 
common optimization method for many ML algorithms—
iteratively adjusts parameters as described above and as 
illustrated in Fig.  2.1. In stochastic gradient descent, the 
amount by which the parameters are changed after each iter-
ation (also called epoch) is controlled by the calculated 
derivative (i.e. the slope or gradient) for each parameter with 
respect to the error function, and the learning rate. In many 
models, the learning rate is an important hyperparameter to 
set, as it controls how much parameters change in each 
iteration.

On the one hand, small learning rates can take many itera-
tions to converge and make getting stuck at a local minimum 
more likely—on the other hand, a large learning rate can 
overshoot the global minimum. As a detailed discussion of 
the mathematical nature behind different algorithms remains 
beyond the scope of this introductory series, we refer to pop-
ular standard literature such as “Elements of Statistical 
Learning” by Hastie and Tibshirani [4], “Deep Learning” by 
Goodfellow et  al. [26], and “Optimization for Machine 
Learning” by Sra et al. [27].

Fig. 2.1  Illustration of an optimization problem. In the x and z dimen-
sion, two parameters can take different values. In the y dimension, the 
error is displayed for different values of these two parameters. The goal 
of the optimization algorithm is to reach the global minimum (A) of the 
error through adjusting the parameter values, without getting stuck at a 
local minimum (B). In this example, three models are initialized with 
different parameter values. Two of the models converge at the global 
minimum (A), while one model gets stuck at a local minimum (B). 
Illustration by Jacopo Bertolotti. (This illustration has been made avail-
able under the Creative Commons CC0 1.0 Universal Public Domain 
Dedication)
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2.4	 �Explanatory Modeling Versus 
Predictive Modeling

The “booming” of applied ML has generated a methodologi-
cal shift from classical statistics (experimental setting, 
hypothesis testing, group comparison, inference) to data-
driven statistical learning (empirical setting, algorithmic 
modeling comprising ML, AI, pattern recognition) [28]. 
Unfortunately, the two statistical cultures have developed 
separately over the past decades [29] leading to incongruent 
evolved terminology and misunderstandings in the absence 
of an agreed-upon technical theorem (Table  2.1). This 
already becomes evident in the basic terminology describing 
model inputs and outputs: predictors or independent vari-
ables refer to model inputs in classical statistics, while fea-
tures are the commonly used term in ML; outputs, known as 
dependent variable or response, are often labeled target vari-
able or label in ML instead [30]. The duality of language has 
led to misconceptions regarding the fundamental difference 
between inference and prediction, as the term prediction has 
frequently been used incompatibly as in-sample correlation 
instead of out-of-sample generalization [31, 32]. The varia-
tion of one variable with a subsequent correlated variable 
later in time, such as the outcome, in the same group (in-

sample correlation) does not imply prediction, and failure to 
account for this distinction can lead to false clinical decision-
making [33, 34]. Strong associations between variables and 
outcome in a clinical study remain averaged estimates of the 
evaluated patient cohort, which does not necessarily enable 
predictions in unseen new patients. To shield clinicians from 
making wrong interpretations, we clarify the difference 
between explanatory modeling and predictive modeling, and 
highlight the potential of ML for strong predictive models.

Knowledge generation in clinical research has nearly 
exclusively been dominated by classical statistics with the 
focus on explanatory modeling (EM) [32]. In carefully 
designed experiments or clinical studies, a constructed theo-
retical model, e.g. a regression model, is applied to data in 
order to test for causal hypotheses. Based on theory, a model 
is chosen a priori, combining a fixed number of experimental 
variables, which are under the control of the investigator. 
Explicit model assumptions such as the Gaussian distribu-
tion assumption are made, and the model, which is believed 
to represent the true data generating process, is evaluated for 
the entire present data sample based on hypothesis and sig-
nificance testing (“inference”). In such association-based 
modeling, a set of independent variables (X) are assumed to 
behave according to a certain mechanism (“theory”) and ulti-
mately cause an effect measured by the dependent variable 
(Y). Indeed, the role of theory in explanatory modeling is 
strong and is always reflected in the applied model, with the 
aim to obtain the most accurate representation of the under-
lying theory (technically speaking, classical statistics seeks 
to minimize bias). Whether theory holds true and the effect 
actually exists is then confirmed in the data, hence the overall 
analytical goal is inference.

Machine learning-based predictive modeling (PM) is 
defined as the process of applying a statistical model or data 
mining algorithm to data for the purpose of predicting future 
observations. In a heuristic approach, ML or PM is applied to 
empirical data as opposed to experimentally controlled data.

As the name implies, the primary focus lays on optimiz-
ing the prediction of a target variable (Y) for new observa-
tions given their set of features (X). As opposed to explanatory 
modeling, PM is forward looking [32] with the intention of 
predicting new observations, and hence generalization 
beyond the present data is the fundamental goal of the analy-
sis. In contrast to EM, PM seeks to minimize both variance 
and bias [35, 36], occasionally sacrificing the theoretical 
interpretability for enhanced predictive power. Any underly-
ing method can constitute a predictive model ranging from 
parametric and rigid models to highly flexible non-parametric 
and complex models. With a minimum of a priori specifica-
tions, a model is then heuristically derived from the data [37, 
38]. The true data generating process lays in the data, and is 
inductively learned and approximated by ML models.

Table 2.1  A comparison of central concepts in classical/inferential 
statistics versus in statistical/machine learning

Classical/inferential statistics Statistical/machine learning
Explanatory modeling Predictive modeling
An a priori chosen theoretical 
model is applied to data in 
order to test for causal 
hypotheses.

The process of applying a 
statistical model or data mining 
algorithm to data for the purpose 
of predicting new or future 
observations.

Focus on in-sample estimates Focus on out-of-sample 
estimates

Goal: to confirm the existence 
of an effect in the entire data 
sample. Often using 
significance testing.

Goal: Use the best performing 
model to make new prediction 
for single new observations. 
Often using resampling 
techniques.

Focus on model 
interpretability

Focus on model performance

The model is chosen a priori, 
while models with intrinsic 
means of interpretability are 
preferred, e.g. a GLM, often 
parametric with a few fixed 
parameters.

Different models are applied and 
the best performing one is 
selected. Models tend to be more 
flexible and expressive, often 
non-parametric with many 
parameters adapting to the 
present data.

Experimental data Empirical data
Long data (n samples > p 
variables)

Wide data (n samples ≪ p 
variables)

Independent variables Features
Dependent variable Target variable
Learn deductively by model 
testing

Learn a model from data 
inductively
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2.5	 �Workflow for Predictive Modeling

In clinical predictive analytics, generalization is our ulti-
mate goal. To answer different research objectives, we 
develop, test, and evaluate different models for the purpose 
of clinical application (for an overview see https://topepo.
github.io/caret/available-models.html). Many research 
objectives in PM can be framed either as the prediction of a 
continuous endpoint (regression) such as progression-free 
survival measured in months or alternatively as the predic-
tion of a binary endpoint (classification), e.g. survival after 
12 months as a dichotomized binary. Most continuous vari-
ables can easily be reduced and dichotomized into binary 
variables, but as a result data granularity is lost. Both regres-
sion and classification share a common analytical workflow 
with difference in regard to model evaluation and reporting 
(c.f. cite Chap. 5 Classification problems and cite Chap. 6 
Regression problems for a detailed discussion). An adapt-
able pipeline for both regression and classification problems 
is demonstrated in Parts IV and V.  Both sections contain 
detailed instructions along with a simulated dataset of 
10,000 patients with glioblastoma and the code based on the 
statistical programming language R, which is available as 
open-source software.

For a general overview, a four-step approach to PM is pro-
posed (Fig. 2.2): First and most important (1) all data needs 
to be pre-processed. ML is often thought of as letting data do 
the heavy lifting, which in part is correct, however, the raw 

data is often not suited to learning well in its current form. A 
lot of work needs to be allocated to preparing the input data 
including data cleaning and pre-processing (imputation, 
scaling, normalization, encoding) as well as feature engi-
neering and selection. This is followed by using (2) resam-
pling techniques such as k-fold cross-validation (c.f. cite 
Chap. 3 generalization and overfitting) to train different 
models and perform hyperparameter tuning. In a third step 
(3), the different models are compared and evaluated for gen-
eralizability based on a chosen out-of-sample performance 
measure in an independent testing set. The best performing 
model is ultimately selected, the model’s out-of-sample cali-
bration assessed (c.f. cite Chap. 4 Evaluation and points of 
significance), and, in a fourth step (4) the model is externally 
validated—or at least prospectively internally validated—to 
ensure clinical usage is safe and generalizable across loca-
tions, different populations and end users (c.f. cite Chap. 3 
Generalization and overfitting). The European Union (EU) 
and the Food and Drug Administration (FDA) have both set 
standards for classifying machine learning and other soft-
ware for use in healthcare, upon which the extensiveness of 
validation that is required before approved introduction into 
clinical practice is based. For example, to receive the CE 
mark for a clinical decision support (CDS) algorithm—
depending on classification—the EU requires compliance 
with ISO 13485 standards, as well as a clinical evaluation 
report (CER) that includes a literature review and clinical 
testing (validation) [39].

Fig. 2.2  A four-step predictive modeling workflow. (1) Data prepara-
tion includes cleaning and featurization of the given raw data. Data pre-
processing combines cleaning and outlier detection, missing data 
imputation, the use of standardization methods, and correct feature 
encoding. The pre-processed data is further formed into features—man-
ually in a process called feature engineering or automatically deduced 
by a process called feature extraction. In the training process (2) resam-
pling techniques such as k-fold cross-validation are used to train and 

tune different models. Most predictive features are identified in a fea-
ture selection process. (3) Models are compared and evaluated for gen-
eralizability in an independent testing set. The best performing model is 
selected, and out-of-sample discrimination and calibration are assessed. 
(4) The generalizing model is prospectively internally and externally 
validated to ensure safe clinical usage across locations and users
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2.6	 �Conclusion

We appear to be at the beginning of an accelerated trend 
towards data-driven decision-making in biomedicine enabled 
by a transformative technology—machine learning [5]. Given 
the ever-growing and highly complex “big data” biomedical 
datasets and increases in computational power, machine 
learning approaches prove to be highly successful analytical 
strategies towards a patient-tailored approach regarding diag-
nosis, treatment choice, and outcome prediction. Going for-
ward, we expect that training neuroscientists and clinicians in 
the concepts of machine learning will undoubtably be a cor-
ner stone for the advancement of individualized medicine in 
the realm of precision medicine. With the series “Machine 
learning-based clinical prediction modeling,” we aim to pro-
vide both a conceptual and practical guideline for predictive 
analytics in the clinical routine to strengthen every clinician’s 
competence in modern machine learning techniques.
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