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12.1  Introduction

On a day-to-day basis, one after another, we make uncon-
scious classifications around the things we perceive. From 
colors to personalities, we classify observations into groups. 
A recent hypothesis in neuroscience suggests that brains 
spontaneously learn statistical structure of images by extract-
ing their properties such as geometry or illumination [1]. 
Clustering analysis is the branch of statistics that formally 
deals with this task, learning from patterns, and its formal 
development is relatively new in statistics compared to other 
branches.

Statistical learning can be broadly defined as supervised, 
unsupervised, or a combination of the previous two. While 
supervised learning aims at mapping inputs to pre-specified 
outputs, unsupervised learning aims at grouping objects so 
that elements in each group are more similar to each other 
than those in other groups. The advantage of this approach is 
that it does not require any assumptions regarding the under-
lying joint distribution of patterns, also unsupervised learn-
ing also does not require labelling, which is usually time- and 
cost-sensitive or entirely impossible for large, unstructured 
datasets.

There are a lot of types of clustering. However, the main 
thing that they share in common is the fact that they try to 
explain variance in the data with discrete partitions. Cluster 

analysis made its first public appearance in human anthro-
pology by Driver and Kroeber in 1932 in their quantitative 
expression of cultural relationships [2]. They used a simple 
trait-count model of the populations of Polynesia, Plains Sun 
Dance, America Northwest Coast, and Peru to cluster them. 
Much has happened since, and the number of applications of 
such a simple principle is almost infinite. Marketing [3], 
genetics [4], politics [5], physics [6], ecology [7], and many 
more fields benefit from it. Most digital companies use it to 
segment their market and customer base according to their 
online preferences and behaviors.

How can we cluster? There are a lot of approaches to clus-
ter observations, namely: connectivity-based clustering or 
hierarchical clustering, centroid-based clustering, and 
density- based clustering. We will go through each approach, 
with applications, review dimensionality reduction and two 
examples of papers that we find meaningful. The 
Supplementary Content 12.1 presents the R code to replicate 
our results and create your own, while following these 
examples.

12.2  Connectivity-Based Clustering

Connectivity-based clustering is based on the idea of build-
ing a hierarchy of similar elements within a sample. It can be 
performed in two ways, bottom-up or agglomerative and top- 
down or divisive. The former begins with each observation 
being its own cluster and later pairing them recursively, the 
later starts with one cluster containing all observations and 
recursively splitting them into smaller clusters until each 
observation forms its own group. The results of clustering 
are usually presented in dendrograms, tree-shaped objects 
that represent the hierarchy of the clustering product.

To illustrate the basic functionality, let us begin with a toy 
example of hierarchical clustering with two dimensions or 
features of a population. We have a sample of 1000 individu-
als who were subject to two visual perception tasks, one of 
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movement perception and another one of color perception. 
The scatterplot of the performance in both tasks is presented 
in Fig. 12.1.

Each dot presents an observation of our study, the x axis 
presents the score of the movement perception task and the 
y-axis presents the score of the color perception one. We 
want to create groups that are homogeneous within them-
selves and heterogenous across. The first step to clustering is 
to create a distance or dissimilarity matrix. This matrix con-
tains the relative distance of each observation with respect to 
all other observations in the set. There are a lot of ways to 
create a distance matrix. The most widely used is the 
Euclidean distance (Eq. 12.1):

 
d p q p q

i

n

i i,( ) = -( )
=
å

1

2

 
(12.1)

where the distance between observations p and q is equal to 
the square root of the squared sum of differences in position 
of p and q for n dimensions. In our case, since we have 1000 
observations, each Euclidean distance for participant i, with 
respect to participant j, takes form in the following way 
(Eq. 12.2):
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where mps is the movement perception score and cps is the 
color perception score. Figure  12.2 presents the matrix of 
distances as measured by different metrics.

The upper left panel of the figure presents the Euclidean 
distance, the upper right panel presents the maximum dis-

tance, the lower left the Manhattan distance, and the lower 
right panel presents the Canberra distance. It can be noted 
that irrespective of the distance measure, the overall struc-
ture of the matrix is fairly similar. Once the matrix has been 
constructed, two approaches are possible, the above- 
mentioned agglomerative (also called Agnes) and divisive 
(also called Diana) functions. In general terms, agglomera-
tive methods are mainly used to find small clusters and divi-
sive methods larger clusters. Let us use the Euclidean 
distance matrix from Fig. 12.2 to build a dendrogram for the 
bottom-up approach and split it into four clusters.

Figure 12.3 represents the resulting dendrogram. The 
x-axis presents each observation, while the y-axis connec-
tions present the pairs of observations and groups of observa-
tions. In the figure, the number of clusters is predefined to be 
4. However, how can one determine the “natural” or optimal 
number of clusters in the sample? In our sample there are 
between 2 and 999 potential clusters. The hierarchy of the 
model aids us in distinguishing which subgroups stem from 
other bigger clusters recursively.

There are three main methods in determining the number 
of clusters: the elbow method [8], average silhouette method 
[9], and the gap statistic method [10].

The elbow method basically computes the resulting intra- 
cluster variation (also known as wss) for each of the potential 
cluster groupings. The location of the bend or “knee,” mean-
ing the inflexion point is usually chosen as the indicator of 
the appropriate number of clusters. The silhouette method 
computes a silhouette value that considers how close each 
observation is to its own cluster compared to the others and 
the value ranges from −1 to 1, with higher values indicating 
better clustering for each iteration on the number of clusters. 
The gap statistic method is similar to the silhouette method; 
however, it compares the resulting difference in intra-cluster 
variation from each clustering distribution with a random 
Monte Carlo simulated sample. Figure  12.4 presents the 
results on the optimal number of clustering by each of the 
described methods.

Independently, each method points toward two underly-
ing clusters. We rebuild the previous dendrogram and plot 
clustered scatterplot of cognition performance groups 
(Fig. 12.5).

What are the advantages and disadvantages of hierarchi-
cal clustering?

Advantages:
• The clustering model has an imposed structural hierarchy, 

which tends to be more interpretable than other outputs.
• Its construction process is independent of the number of 

clusters, thus conserving some information that can be of 
value for the researcher.

• Their simplicity and transparency foster interpretation 
and reproducibility in external settings.

Fig. 12.1 Scatterplot of cognition performance
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Disadvantages:
• Given its static recursive approach, once a data point has 

been placed within a cluster, the model does not test for 
other potential combinations.

• It is more computationally demanding than other cluster-
ing algorithms.

• Its sensitivity to outliers requires caution in the pre- 
processing stage.

• Its results also depend on the metric used to compute the 
distance or dissimilarity matrix.

12.3  Centroid-Based Clustering

Instead of computing distance across observations and then 
recursively imposing a hierarchy over them, centroid-based 
clustering aims to partition observations into k groups in 
such a way that the sum of distances from points to the cen-
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troid of their respective clusters is minimized. A valid anal-
ogy would be to split a lot of identical pies into k pieces, not 
in even parts necessarily, and select the splitting pattern that 
is more satisfying. The history of this type of clustering 
started in the late 50s, with Hugo Steinhaus first in 1956 [11] 
and Stuart Lloyd in 1957 [12] as a technique for representing 
analog signals in a digital way. However, the algorithm was 
further refined by James MacQueen in 1967 [13] and the cur-
rently most used one was published in 1979 by Hartigan and 
Wong [14].

The algorithm has two steps, assignment, and update, pre-
ceded by an initialization method. The initialization can be 
done in two ways. Randomly choosing k (the same amount of 

desired clusters) observations and using them as the initial 
means or randomly assigning a cluster to each observation and 
using that cluster mean as the centroid. Then, with either 
method the assignment step follows. Each observation is 
assigned to the cluster that is nearer, measured with the 
Euclidean distance to the centroid as described in Eq. (12.1). 
Then, the update step follows by simply computing the 
 centroid or mean again for the observations assigned to it. The 
process is repeated until the observations classified to each 
cluster do not change. Note that this process does not need to 
converge necessarily, and the general recommendation is to 
initialize the algorithm with several random starts, which 
sometimes prevents the algorithm from not converging.

Fig. 12.4 Optimal number of clusters by method

Fig. 12.5 Optimized Agnes Dendrogram Clustering built with Euclidean distances and scatterplot by cluster
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Using the same dataset since the beginning of the chapter 
we perform a k-means clustering with the Hartigan–Wong 
algorithm, 5 random starts, and from 2 to 7 clusters. 
Figure 12.6 presents the results of the clustering.

To determine the optimal number of clusters, the same 
methods described before apply: the elbow method, the sil-
houette and the Gap method. Again, as with the hierarchical 
clustering approach the optimal amount is revealed to be two 
by all accounts. The results of both algorithms are strikingly 
similar. Figure 12.7 presents the results of the optimization 
process.

What are the advantages and disadvantages of centroid- 
based clustering?

Advantages:
• Simpler algorithm to implement.
• Computationally efficient.
• It has been shown to produce results with high external 

validity.
• Adapts and recognizes well clusters with distinct func-

tional forms and relative sizes.

Disadvantages:
• It does not identify clusters with non-convex shapes.
• It has difficulties identifying clusters of different size.
• It is not completely suited to clustering exercises of high 

dimensionality, due to Euclidean distance causing the 
algorithm to converge almost immediately.

12.4  Density-Based Clustering

Compared to the previous two methods of clustering, density- 
based clustering does not impose a hierarchy or partitions the 
space. It rather choses clusters based on the defined areas 
higher statistical density than the rest. Different from before, 

all observations are not assigned a cluster, points outside the 
optimized clusters are considered to be noise.

The most used clustering method based on this principle 
is the density-based spatial clustering of applications with 
noise (DBSCAN) (Fig. 12.8). Developed in 1996 by Ester, 
Kriegel, Sander, and Xu, and it is a non-parametric algorithm 
[15]. The intuition of the algorithm is straightforward. The 
model uses what is called minPts, a threshold on the number 
of neighboring points, within a radius e. Points with more 
neighboring points than the threshold are considered as a 
core point, analogous to a centroid. The objective of the 
algorithm is then to find separated areas of high-density vs. 
areas of low density.

In abstract terms, the DBSCAN algorithm has three steps. 
Find the points within the e radius of every point, and iden-
tify core points with a number of observations above the 
threshold minPts. Then, the connected core points are 
merged, and finally points are assigned either to clusters or to 
noise.

What are the advantages and disadvantages of density- 
based clustering?

Advantages:
• It does not require a pre-specified or optimized number of 

clusters.
• It does recognize non-convex clusters, and even strange 

shapes such as circles within circles.
• Because density has a noise component, the method is 

robust with respect to eliminating outliers.
• It only requires two parameters which are independent of 

the order or functional forms of the underlying data- 
generating process.

Disadvantages:
• It does not cluster well data with different densities, 

meaning that if there are two clusters in the dataset, but 

Fig. 12.6 k-means clustering partitions, from 2 to 7 clusters
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one is highly dense and the other is not, density-based 
models will have difficulty recognizing them.

• Given some combinations of both parameters in the algo-
rithm, irrelevant tiny clusters might appear.

• It requires the most user supervision of all the algorithms, 
as the results are highly unstable based on different com-
binations of parameters.

12.5  Dimensionality Reduction

Until now, all of our examples have been based on two 
dimensions, x- and y-axis values. However, in real-life sce-
narios, it is unlikely that setting investigated has only two. 

Most problems in clinical science appear within incredibly 
complex causal networks. Patients, their diseases, and reali-
ties are highly dimensional. We have highlighted that cluster-
ing algorithms tend to fail when the number of dimensions 
increases because distance-based metrics tend to be mean-
ingless at high values. The response to this phenomena: to 
reduce dimensions of your data.

Dimension reduction is the task that transforms high 
dimensions of data to low dimensions while conserving the 
most important relations and features of the original. There is 
an almost infinity of ways to achieve such a purpose, from 
principal component analysis to uniform manifold approxi-
mation and projection algorithms. Let us demonstrate this 
with another toy example.

Fig. 12.7 Optimal number of clusters by method
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We have now performed six additional cognitive tasks on 
our imaginary sample, resulting in eight variables. However, 
we want to describe the sample with as little complexity as 
possible, let us say three components maximum. The first 
step is to compute the principal components of the dataset. To 
do so, the covariance matrix of the data has to be estimated, 
and the eigenvalues and eigenvectors are factored in to diago-
nalize the elements that form the variance of each respective 
dimensions. The proportion of explained variance that each 

eigenvector reflects is calculated by dividing the eigenvalue 
by the addition of each eigenvector. In our case, the first com-
ponent explains 36% of the data variance, the second 20%, 
and the third around 12%. This means that by using the first 
three components we are resembling 68% of the original 
dataset, with of 3 out 8 dimensions, or 37.5% of the original 
data. Figure 12.9 shows the graphical presentation.

We cut the dimensions to three, and now we apply again 
the optimized hierarchical clustering algorithm of the 

c
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Fig. 12.8 DBSCAN clustering results with varying parameters. Notes: (a) e = 0.25, minPts = 40, (b) e = 0.25, minPts = 30, (c) e = 0.25, 
minPts = 20, (d) e = 0.15, minPts = 10, (e) e = 0.30, minPts = 30, (f) e = 0.35, minPts = 30
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beginning of this chapter resulting in three clusters pre-
sented in Fig. 12.10.

12.6  Applications

 Adult Spinal Deformity

We previously published one paper, in 2019 [16], using the 
methods described in this chapter. We did it in the adult spi-
nal deformity (ASD) field. ASD, also known as scoliosis of 
the adult, is a highly heterogeneous and debilitating condi-
tion. Its defining feature is a physical deformation of the 
spine mainly measured in key angles of its shape. Up to that 
point, the available classifications of the disease were mainly 
based in X-ray measurements of the Spine, the Schwab [17] 
and Lenke [18] classifications. And, while it is true that the 
spine is a complex structure that entails a lot of features, to 

us, ignoring non-spine specific patient parameters seemed 
like an incomplete model of the disease process.

Using a combined data query from both the European 
Spine Study Group (ESSG) and the International Spine 
Study Group (ISSG) we set up to simply describe and char-
acterize the potential latent patient clusters. Adding simple 
quality of life and demographic metrics, we performed a 
hierarchical clustering modelling to group similar patients 
from dissimilar ones. We found an optimal of three types of 
patients, we called them, young coronal patients, old first- 
timers, and old-revisions. The main descriptive characteris-
tics of the groups were: young coronal patients typified by 
much younger patients with a coronal spinal deformity and 
little sagittal malalignment. Old first-timers were patients 
mostly in their late 50s or early 60s with a more severe defor-
mity mostly related to the lumbar spine and with no previous 
spinal surgery. Finally, old revision patients were the oldest 
and the ones with the most severe malalignment, especially 
in the sagittal plane and who had undergone prior spinal 
surgery.

However, to us the task seemed incomplete, and on top of 
a patient-specific clustering exercise we also applied it to 
surgical techniques. The surgical treatment of scoliosis 
involves a wide variety of different techniques. The termina-
tion levels of fusions and placement of nerve decompres-
sions and vertebral releases and osteotomies result in 
significant treatment heterogeneity. When we clustered the 
range of surgical treatments, we found four types of surger-
ies to be the main clusters.

Finally, by superimposing both the patient and surgery 
classification, we obtained a descriptive grid of patient and 
surgery heterogeneity. By doing so, we were able to look at 
what happened 2 years after surgery when patients within a 
same cluster where operated on by different surgical clusters. 
What we obtained was not only a descriptive result in terms 
of clusters, but also a simple prognostic model associating 
types of patients and surgeries to outcomes. We observed 
that, for instance, young coronal patients were the ones with 
the lowest functional and quality of life improvement, on 
average, while those young coronal patients receiving more 
aggressive surgeries were also experiencing higher levels of 
post-surgical complications. This allowed us to identify sim-
ple areas of improvement in terms of patient and surgical 
selection with a cost-benefit that might not justify more 
aggressive surgeries.

 Sepsis

One of our favorite examples of a successful application of 
k-means clustering is an article by Seymour and coauthors 
published in 2019 in JAMA [19]. They developed and vali-
dated clinical phenotypes for sepsis and model the potential 

Fig. 12.9 Variance explained by each dimension

Fig. 12.10 Optimized hierarchical clusters of the simplified dataset
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benefit and harm of treatments with data from an external 
randomized controlled trial.

Sepsis is highly heterogeneous condition defined by an 
unregulated immune response to an infection that leads to 
acute organ failure. Given the multidimensional array of 
clinical symptoms and biological features, the authors used a 
variety of variables that ranged from demographic, vital 
signs, markers of inflammation, to markers of organ dys-
function. Out of more than 50 potential candidate variables a 
total of 29 were selected and observations were clustered 
according to the consensus k-means clustering method. A 
total of four phenotypes, alpha, beta, gamma, and omega 
were found to be optimal using diverse measures of optimi-
zation. When looking at the outcomes at any time during 
hospitalization they found startling differences. The first 
phenotype, alpha, had only a 2% in-hospital mortality with 
only 25% of patients admitted to the ICU, while the last clus-
ter or phenotype had a 32% in-hospital mortality and 85% 
ICU admissions rates. Compared to the standard classifica-
tion of sepsis, the proposed “phenotypic” classification was 
fairly constant across the other scheme, highlighting that the 
human-proposed classification did not capture relevant 
variance.

The authors then, go a step further, analogous to the 
above-mentioned cost/benefit grid. They used external RCT 
data to estimate differential treatment effects across pheno-
types. First, they assign the observations of three RCTs 
(ACCESS, PROWESS, and ProCESS) to each of their 
derived clusters. After, they vary the proportion of patients 
from each cluster in each trial to simulate scenarios and their 
causal effects. They find that out of the three interventions 
used in the RCTs, according to which phenotype they are 
applied, the effects varied remarkably: from total benefit to 
an extremely high likelihood of harm.

 Common Pitfalls and Proposed Solutions

The three most common pitfalls in clustering research relate 
to (a) the use of high-dimensional data, (b) the lack of com-
parison of results across clustering methods, and (c) deter-
mining whether the results are meaningful. Geometry 
behaves irregularly in high-dimensional settings, hence mea-
sures of distance are rendered non-useful. Sparsity and the 
identification of relevant variables in the problem tend to be 
hidden under large numbers of irrelevant ones. We recom-
mend to thoroughly inspect data in the pre-implementation 
stage and to make sure that each included feature has a 
potential meaningful implication. As we have discussed in 
this chapter, different methods can produce different results, 
hence judging one clustering configuration without compar-
ing it to potential others can render the external validity of 
the results null. We recommend applying, at least, three dif-

ferent optimized algorithms to assess the robustness of the 
results. The determination of the usefulness of the results is 
perhaps the most crucial part, and where we researchers tend 
to use follow-up data or third-party linked results. It is 
imperative to pair any good clustering exercise with expert 
knowledge on the underlying data-generating process.

12.7  Conclusions

Any clustering task involves investigator-related choices, 
and many of them are critical to the validity of results, 
both internally and externally. In the present chapter we 
have introduced, with examples, a few of the most relevant 
unsupervised learning techniques for the practicing clini-
cal neuroscience researcher. We have not extensively cov-
ered all potential algorithms or methods, as that would 
require a series of books in itself, but we have provided a 
few visual examples and applications that we hope suc-
cessfully aid other researchers in the use of these tools. 
Moreover, the full capacities of data will only be achieved 
if everyone learns to pair the right research question with 
the appropriate tools. Clustering methods are the most 
important tool for data discovery and description, and its 
integration with both predictive and causal objectives is 
crucial to maximize its potential, as alone, it still is a 
descriptive method.

Our experience reveals that the advantages of using for-
mal unsupervised learning algorithms are superior to stan-
dard supervised classification methods for the description of 
phenotypes or clusters. Not only that, but given their poten-
tial for heterogeneous treatment effects, they will be a cor-
nerstone for trial design by selecting populations with 
expected effect sizes well below or above the mean.

In short, clustering is perhaps, more than other machine 
learning techniques, the most underused and underappreci-
ated, and should be strongly considered in questioning scien-
tific paradigms regarding classification of features.

For further reading we recommend the books by Trevor 
Hastie, Robert Tibshirani & Jerome Friedman. “The ele-
ments of statistical learning: data mining, inference, and 
prediction” Springer Science & Business Media, 2009, and 
M.  Emre Celebi & Kemal Aydin. “Unsupervise learning 
algorithms” Berlin: Springer International Publishing, 
2016. 
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