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1.1  Preface

The question is not whether intelligent machines can have any 
emotions, but whether machines can be intelligent without any 
emotions — Marvin Minsky [1]

Advances in both statistical modeling techniques as well 
as in computing power over the last few decades have 
enabled the rapid rise of the field of data science, including 
artificial intelligence (AI) and machine learning (ML) [2]. 
While AI can be defined as a goal—the goal to emulate 
human, “wide” intelligence with the ability to solve a range 
of different complex tasks with one brain or algorithm—ML 
deals with learning problems by inductively and iteratively 
learning from experience (in the form of data) without being 
explicitly programmed, as a form of “narrow” AI (focused 
on just one specific task). Along with the broader applica-
tion of epidemiological principles and larger sample sizes 
(“big data”), this has led to broad adoption of statistical pre-
diction modeling in clinical practice and research. Clinical 
prediction models integrate a range of input variables to pre-
dict a specific outcome in the future and can aid in evidence-
based decision-making and improved patient counseling 
[3–6].

Even in the field of clinical neuroscience—including neu-
rosurgery, neurology, and neuroradiology—ML has been 
increasingly applied over the years, as evidenced by the 
sharp rise in publications on machine learning in clinical 
neuroscience indexed in PubMed/MEDLINE since the 2000s 
(Fig. 1.1). While the history of ML applications to the field 
of neurosurgery is rather compressed into the past two 
decades, some early efforts have been made as early as the 
late 1980s. Disregarding other uses of AI and ML—such as 

advanced histopathological or radiological diagnostics—and 
focusing on predictive analytics, in 1989 Mathew et al. [7] 
published a report in which they applied a fuzzy logic classi-
fier to 150 patients, and were able to predict whether disc 
prolapse or bony nerve entrapment were present based on 
clinical findings. In 1998, Grigsby et al. [8] were able to pre-
dict seizure freedom after anterior temporal lobectomy using 
neural networks based on EEG and MRI features, using data 
from 87 patients. Similarly, in 1999, Arle et al. [9] applied 
neural networks to 80 patients to predict seizures after epi-
lepsy surgery. Soon, and especially since 2010, a multitude 
of publications followed, applying ML to clinical outcome 
prediction in all subspecialties of the neurosurgical field 
[10–11]. The desire to model reality to better understand it 
and in this way predict its future behavior has always been a 
goal of scientific thought, and “machine learning,” if not just 
for the evocative power of the term, may appear under this 
aspect at first sight as a resolutive tool. However, if on one 
hand there cannot be any doubt that predicting the future will 
always remain a chimera, on the other hand it is true that 
machine learning tools can improve our possibilities to ana-
lyze and thus understand reality. But while clinical predic-
tion modeling has certainly been by far the most common 
application of ML in clinical neuroscience, other applica-
tions such as, e.g. in image recognition [12, 13], natural lan-
guage processing [14], radiomic feature extraction [15, 16], 
EEG classification [17], and continuous data monitoring [18] 
should not be disregarded and probably constitute the most 
interesting fields of application.

Today, ML and other statistical learning techniques have 
become so easily accessible to anyone with a computer and 
internet access, that it has become of paramount importance 
to ensure correct methodology. Moreover, there has been a 
major “hype” around the terms ML and AI in recent years. 
Because of their present-day low threshold accessibility, 
these techniques can easily be misused and misinterpreted, 
without intent to do so. For example, it is still common to see 
highly complex and “data-hungry” algorithms such as deep 
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neural networks applied to very small datasets, to see overtly 
overfitted or imbalanced models, or models trained for pre-
diction that are then used to “identify risk factors” (predic-
tion vs. explanation/inference). Especially in clinical practice 
and in the medico-legal arena, it is vital that clinical predic-
tion models intended to be implemented into clinical  practice 
are developed with methodological rigor, and that they are 
well-validated and generalizable.

Some efforts such as, e.g. the EQUATOR Network’s 
“Transparent reporting of a multivariable prediction model 
for individual prognosis or diagnosis” (TRIPOD) statement 
[19] have led to improved methodological quality and stan-
dardized reporting throughout the last 5 years [20]. Still, it is 
a fact that ML is often poorly understood, and that the meth-
odology has to be well-appreciated to prevent publishing 
flawed models—standardized reporting is valuable, but not 
enough. Open-source ML libraries like Keras [21] and Caret 
[22] have truly democratized ML.  While this fact—com-
bined with the steadily increasing availability of large 
amounts of structured and unstructured data in the “big data” 
era—has certainly provided leverage to the whole field of 
ML, putting so much analytical power into anyone’s hands 
without clear methodological foundations can be risky.

The immense technological progress during the past cen-
tury has certainly sparked reflection on the responsibilities of 
humanity regarding limitations, safe use, fair distribution, 
and consequences of these advances.

Progress can be risky. As a matter of fact, ML tools are 
increasingly being used to aid in decision-making in several 
domains of human society. The lack of profound understand-
ing of the capabilities and, most importantly, of the limita-
tions of ML may lead to the erroneous assumption that ML 
may overtake, and not just aid, the decision-making capacity 
of the human mind. Needless to say, this attitude can have 
serious practical and most importantly ethical consequences. 
Today’s greater power of humanity in controlling nature 
means that we must also realize their limitations and poten-
tial dangers, and to consequently limit our applications of 
those technologies to avoid potential disaster—this has 
become the most popular topic of modern philosophy on 
artificial intelligence [23].

Today, every scientific study is subject to ethical review 
and approval, but potential long-term sequelae of ML studies 
are seldomly considered. ML in medicine has great poten-
tial, but both doctors applying these technologies in clinical 
practice as well as those researchers developing tools based 
on these technologies must be acutely aware of their limita-
tions and their ramifications. Further unsolved ethical issues 
regarding the use of ML and AI in clinical medicine pertain 
to protecting data integrity, ensuring justice in the distribu-
tion of ML-based resources, and maintaining accountabil-
ity—Could algorithms learn to assign values and become 
independent moral agents? While some progress has been 
made in protecting data integrity, such as the use of federated 

Fig. 1.1 Development of publication counts on machine learning in neurosurgery over the years. Counts were arrived at by searching “(neurosur-
gery OR neurology OR neuroradiology) AND (machine learning OR artificial intelligence)” on PubMed/MEDLINE
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learning, developments in other ethical issues remain less 
predictable [24].

Therefore, ML and AI must remain tools adjunctive to 
our own mind, tools that we should be able to master, con-
trol, and apply to our advantage—and that should not take 
over our minds. For example, it is inconceivable and even 
potentially dangerous to fully rely on predictions made by a 
ML algorithm in clinical practice, currently. The future can-
not be easily predicted by machines, or by anyone for that 
matter—And even if near-perfect predictions were theoreti-
cally possible, our intuition would tell us that the mere 
knowledge of what is very likely going to happen in the 
future may lead us to change events, not dissimilar to 
Heisenberg’s uncertainty principle. While our mind can 
recognize, abstract, and deal with the many uncertainties in 
clinical practice, algorithms cannot. Among many others, 
concepts such as Turing’s Test [25] underline the impor-
tance of appreciating the limits of ML and AI: They are no 
alchemy, no magic. They do not make the impossible pos-
sible. They merely serve to assist and improve our perfor-
mance on certain very specific tasks.

For these reasons, we embarked on a journey to compile a 
textbook for clinicians that demystifies the terms “machine 
learning” and “artificial intelligence” by illustrating their 
methodological foundations, as well as some specific appli-
cations throughout the different fields of clinical neurosci-
ence, and its limitations. Of note, this book has been inspired 
and conceived by the group of machine learning specialists 
that also contributed to the 1st Zurich Machine Intelligence 
in Clinical Neuroscience Symposium that took place on 
January 21st 2021 with presentations on their respective 
book chapters which we encourage readers to consider 
watching (the recorded contributions are available on: www.
micnlab.com/symposium2021).

The book is structured in five major parts:

 1. The first part deals with the methodological foundations of 
clinical prediction modeling as the most common clinical 
application of ML [4]. The basic workflow for developing 
and validating a clinical prediction model is discussed in 
detail in a five-part series, which is followed by spotlights 
on certain topics of relevance ranging from feature selec-
tion, dimensionality reduction techniques as well as 
Bayesian, deep learning, and clustering techniques, to how 
to deploy, update, and interpret clinical prediction models.

 2. Part II consists of a brief tour de force through the domain 
of ML in neuroimaging and its foundational methods. 
First, the different applications and algorithms are laid 
out in detail, which is then followed by specific work-
flows including radiomic feature extraction, segmenta-
tion, and brain imaging classification.

 3. The next part provides a glimpse into the world of natural 
language processing (NLP) and time series analysis 
(TSA), going through the algorithms used for such analy-
ses, as well as workflows for both domains.

 4. The fourth part of this book handles the various ethical 
implications of applying ML in clinical practice—From 
general ethical considerations on AI, to ways in which 
ML can assist doctors in daily practice and the limitations 
of predictive analytics. In addition, a brief history of ML 
in neurosurgery is provided, too.

 5. The fifth and final part is targeted to demonstrating an 
overview over the various clinical applications that have 
already been implemented in clinical neuroscience, cov-
ering neuroimaging, neurosurgery, neurology, and 
ophthalmology.

Our hope is that this book may inspire and instruct a gen-
eration of physician-scientists to continue to grow and 
develop the seeds that have been planted for machine intel-
ligence in clinical neuroscience, and to discover the limits of 
the clinical applications therein.
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2.1  Introduction

Although there are many applications of machine learning 
(ML) in clinical neuroscience, including but not limited to 
applications in neuroimaging and natural language process-
ing, classical predictive analytics still form the majority of 
the body of evidence that has been published on the topic.

When reviewing or working on research involving 
ML-based predictive analytics—which is becoming 
increasingly common—it is important to do so with a 
strong methodological basis. Especially considering the 
“democratization” of ML methods through libraries and the 
increasing computing power, as well as the exponentially 
increasing influx of ML publications in the clinical neuro-
sciences, methodological rigor has become a major issue. 
This chapter and in fact the entire five-part series (cite 
Chaps. 3–6) is intended to convey that basic conceptual and 
programming knowledge to tackle ML tasks with some 
basic prerequisite R knowledge, with a particular focus on 
predictive analytics.

At this point, it is important to stress that the concepts and 
methods presented herein are intended as an entry-level 
guide to ML for clinical outcome prediction, presenting one 
of many valid approaches to clinical prediction modeling, 

and thus does not encompass all the details and intricacies of 
the field. Further reading is recommended, including but not 
limited to Max Kuhn’s “Applied Predictive Modeling” [1] 
and Ewout W. Steyerberg’s “Clinical Prediction Models” [2].

This first part focuses on defining the terms ML and AI in 
the context of predictive analytics, and clearly describing 
their applications in clinical medicine. In addition, some of 
the basic concepts of machine intelligence are discussed and 
explained. Part II goes into detail about common problems 
when developing clinical prediction models: What overfit-
ting is and how to avoid it to arrive at generalizable models, 
how to select which input features are to be included in the 
final model (feature selection) or how to simplify highly 
dimensional data (feature reduction). We also discuss how 
data splits and resampling methods like cross-validation and 
the bootstrap can be applied to validate models before clini-
cal use. Part III touches on several topics including how to 
prepare your data correctly (standardization, one-hot encod-
ing) and evaluate models in terms of discrimination and cali-
bration, and points out some recalibration methods. Some 
other points of significance and caveats that the reader may 
encounter while developing a clinical prediction model are 
discussed: sample size, class imbalance, missing data and 
how to impute it, extrapolation, as well as how to choose a 
cutoff for binary classification. Parts IV and V present a 
practical approach to classification and regression problems, 
respectively. They contain detailed instructions along with a 
downloadable code for the R statistical programming lan-
guage, as well as a simulated database of Glioblastoma 
patients that allows the reader to code in parallel to the expla-
nations. This section is intended as a scaffold upon which 
readers can build their own clinical prediction models, and 
that can easily be modified. Furthermore, we will not in 
detail explain the workings of specific ML algorithms such 
as generalized linear models, support vector machines, neu-
ral networks, or stochastic gradient boosting. While it is cer-
tainly important to have a basic understanding of the specific 
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algorithms one applies, these details can be looked up online 
[3] and detailed explanations of these algorithms would go 
beyond the scope of this guide. The goal is instead to convey 
the basic concepts of ML-based predictive modeling, and 
how to practically implement these.

2.2  Machine Learning: Definitions

As a field of study, ML in medicine is positioned between 
statistical learning and advanced computer science, and typi-
cally evolves around learning problems, which can be con-
ceptually defined as optimizing a performance measure on a 
given task by learning through training experience on prior 
data. A ML algorithm inductively learns to automatically 
extract patterns from data to generate insights [4, 5] without 
being explicitly programmed. This makes ML an attractive 
option to predict even complex phenomena without pre- 
specifying an a priori theoretical model. ML can be used to 
leverage the full granularity of the data richness enclosed in 
the Big Data trend. Both the complexity and dimensionality 
of modern medical data sets are constantly increasing and 
nowadays comprise many variables per observation, much 
so that we speak of “wide data” with generally more vari-
ables (in ML lingo called features) than observations (sam-
ples) [6, 7]. This has given rise to the so-called omics sciences 
including radiomics and genomics [8–10]. The sheer com-
plexity and volume of data ranging from hundreds to thou-
sands of variables at times exceeds human comprehension, 
but combined with increased computational power enables 
the full potential of ML [3, 11].

With the exponential demand of AI and ML in modern 
medicine, a lot of confusion was introduced regarding the 
separation of these two terms. AI and ML are frequently used 
interchangeably. We define ML as subset of AI—to quote 
Tom Mitchell—ML “is the study of computer algorithms 
that allow computer programs to automatically improve 
through experience” [12], involving the concept of “learn-
ing” discussed earlier. In contrast, AI is philosophically 
much vaster, and can be defined as an ambition to enable 
computer programs to behave in a human-like nature. That 
is, showing a certain human-like intelligence. In ML, we 
learn and optimize an algorithm from data for maximum per-
formance on a certain learning task. In AI, we try to emulate 
natural intelligence, to not only learn but also apply the 
gained knowledge to make elaborate decisions and solve 
complex problems. In a way, ML can thus be considered a 
technique towards realizing (narrow) AI.  Ethical consider-
ations on the “AI doctor” are far-reaching [13, 14], while the 
concept of a clinician aided by ML-based tools is well 
accepted.

The most widely used ML methods are either supervised 
or unsupervised learning methods, with the exceptions of 

semi-supervised methods and reinforcement learning [6, 15]. 
In supervised learning, a set of input variables are used as 
training set, e.g. different meaningful variables such as age, 
gender, tumor grading, or functional neurological status to 
predict a known target variable (“label”), e.g. overall sur-
vival. The ML method can then learn the pattern linking 
input features to target variable, and based on that enable the 
prediction of new data points—hence, generalize patterns 
beyond the present data. We can train a ML model for sur-
vival prediction based on a retrospective cohort of brain 
tumor patients, since we know the individual length of sur-
vival for each patient of the cohort. Therefore, the target vari-
able is labeled, and the machine learning-paradigm 
supervised. Again, the actually chosen methods can vary: 
Common models include support vector machines (SVMs), 
as example of a parametric approach, or the k-nearest neigh-
bor (KNN) algorithm as a non-parametric method [16]. On 
the other hand, in unsupervised learning, we generally deal 
with unlabeled data with the assumption of the structural 
coherence. This can be leveraged in clustering, which is a 
subset of unsupervised learning encompassing many differ-
ent methods, e.g. hierarchical clustering or k-means cluster-
ing [4, 17]. The observed data is partitioned into clusters 
based on a measure of similarity regarding the structural 
architecture of the data. Similarly, dimensionality reduction 
methods—including principal component analysis (PCA) or 
autoencoders—can be applied to derive a low-dimensional 
representation explicitly from the present data [4, 18].

A multitude of diverse ML algorithms exist, and some-
times choosing the “right” algorithm for a given application 
can be quite confusing. Moreover, based on the so-called no 
free lunch theorem [19] no single statistical algorithm or 
model can generally be considered superior for all circum-
stances. Nevertheless, ML algorithms can vary greatly based 
on the (a) representation of the candidate algorithm, (b) the 
selected performance metric, and (c) the applied optimiza-
tion strategy [4, 5, 20]. Representation refers to the learner’s 
hypothesis space of how they formally deal with the problem 
at hand. This includes but is not limited to instance-based 
learners, such as KNN, which instead of performing explicit 
generalization compares new observations with similar 
instances observed during training [21]. Other representation 
spaces include hyperplane-based models, such as logistic 
regression or naïve Bayes, as well as rule-based learners, 
decision trees or complex neural networks, all of which are 
frequently leveraged in various ML problems across the neu-
rosurgical literature [22, 23]. The evaluated performance 
metrics can vary greatly, too. Performance evaluation and 
reporting play a pivotal role in predictive analytics (c.f. cite 
Chap. 4). Lastly, the applied ML algorithm is optimized by a 
so-called objective function such as greedy search or uncon-
strained continuous optimization options, including different 
choices of gradient descent [24, 25]. Gradient descent repre-
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sents the most common optimization strategy for neural net-
works and can take different forms, e.g. batch- (“vanilla”), 
stochastic- or mini-batch gradient descent [25]. We delve 
deeper into optimization to illustrate how it is used in 
learning.

2.3  Optimization: The Central Dogma 
of Learning Techniques

At the heart of nearly all ML and statistical modeling tech-
niques used in data science lies the concept of optimization. 
Even though optimization is the backbone of algorithms 
ranging from linear and logistic regression to neural net-
works, it is not often stressed in the non-academic data sci-
ence space. Optimization describes the process of iteratively 
adjusting parameters to improve performance. Every optimi-
zation problem can be decomposed into three basic elements: 
First, every algorithm has parameters (sometimes called 
weights) that govern how the values of the input variables 
lead to a prediction. In linear and logistic regression, for 
example, these parameters include the coefficients that are 
multiplied with the input variable values, as well as the inter-
cept. Second, there may be realistic constraints within which 
the parameters, or their combinations, must fall. While sim-
ple models such as linear and logistic regression often do not 
have such constraints, other ML algorithms such as support 
vector machines or k-means clustering do. Lastly and impor-
tantly, the optimization process is steered by evaluating a so- 
called objective function that assesses how well the current 
iteration of the algorithm is performing. Commonly, these 
objective functions are error (also called loss) functions, 
describing the deviation of the predicted values from the true 
values that are to be predicted. Thus, these error functions 
must be minimized. Sometimes, you may choose to use indi-
cators of performance, such as accuracy, which conversely 
need to be maximized throughout the optimization process.

The optimization process starts by randomly initializing 
all model parameters—that is, assigning some initial value 
for each parameter. Then, predictions are made on the train-
ing data, and the error is calculated. Subsequently, the 
parameters are adjusted in a certain direction, and the error 
function is evaluated again. If the error increases, it is likely 
that the direction of adjustment of the parameters was awry 
and thus led to a higher error on the training data. In that 
case, the parameter values are adjusted in different direc-
tions, and the error function is evaluated again. Should the 
error decrease, the parameter values will be further modified 
in these specific directions, until a minimum of the error 
function is reached. The goal of the optimization process is 
to reach the global minimum of the error function, that is, the 
lowest error that can be achieved through the combination of 
parameter values within their constraints. However, the opti-

mization algorithm must avoid getting stuck at local minima 
of the error function (see Fig. 2.1).

The way in which the parameters are adjusted after each 
iteration is governed by an optimization algorithm, and 
approaches can differ greatly. For example, linear regression 
usually uses the ordinary least square (OLS) optimization 
method. In OLS, the parameters are estimated by solving an 
equation for the minimum of the sum of the square errors. 
On the other hand, stochastic gradient descent—which is a 
common optimization method for many ML algorithms—
iteratively adjusts parameters as described above and as 
illustrated in Fig.  2.1. In stochastic gradient descent, the 
amount by which the parameters are changed after each iter-
ation (also called epoch) is controlled by the calculated 
derivative (i.e. the slope or gradient) for each parameter with 
respect to the error function, and the learning rate. In many 
models, the learning rate is an important hyperparameter to 
set, as it controls how much parameters change in each 
iteration.

On the one hand, small learning rates can take many itera-
tions to converge and make getting stuck at a local minimum 
more likely—on the other hand, a large learning rate can 
overshoot the global minimum. As a detailed discussion of 
the mathematical nature behind different algorithms remains 
beyond the scope of this introductory series, we refer to pop-
ular standard literature such as “Elements of Statistical 
Learning” by Hastie and Tibshirani [4], “Deep Learning” by 
Goodfellow et  al. [26], and “Optimization for Machine 
Learning” by Sra et al. [27].

Fig. 2.1 Illustration of an optimization problem. In the x and z dimen-
sion, two parameters can take different values. In the y dimension, the 
error is displayed for different values of these two parameters. The goal 
of the optimization algorithm is to reach the global minimum (A) of the 
error through adjusting the parameter values, without getting stuck at a 
local minimum (B). In this example, three models are initialized with 
different parameter values. Two of the models converge at the global 
minimum (A), while one model gets stuck at a local minimum (B). 
Illustration by Jacopo Bertolotti. (This illustration has been made avail-
able under the Creative Commons CC0 1.0 Universal Public Domain 
Dedication)
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2.4  Explanatory Modeling Versus 
Predictive Modeling

The “booming” of applied ML has generated a methodologi-
cal shift from classical statistics (experimental setting, 
hypothesis testing, group comparison, inference) to data- 
driven statistical learning (empirical setting, algorithmic 
modeling comprising ML, AI, pattern recognition) [28]. 
Unfortunately, the two statistical cultures have developed 
separately over the past decades [29] leading to incongruent 
evolved terminology and misunderstandings in the absence 
of an agreed-upon technical theorem (Table  2.1). This 
already becomes evident in the basic terminology describing 
model inputs and outputs: predictors or independent vari-
ables refer to model inputs in classical statistics, while fea-
tures are the commonly used term in ML; outputs, known as 
dependent variable or response, are often labeled target vari-
able or label in ML instead [30]. The duality of language has 
led to misconceptions regarding the fundamental difference 
between inference and prediction, as the term prediction has 
frequently been used incompatibly as in-sample correlation 
instead of out-of-sample generalization [31, 32]. The varia-
tion of one variable with a subsequent correlated variable 
later in time, such as the outcome, in the same group (in- 

sample correlation) does not imply prediction, and failure to 
account for this distinction can lead to false clinical decision- 
making [33, 34]. Strong associations between variables and 
outcome in a clinical study remain averaged estimates of the 
evaluated patient cohort, which does not necessarily enable 
predictions in unseen new patients. To shield clinicians from 
making wrong interpretations, we clarify the difference 
between explanatory modeling and predictive modeling, and 
highlight the potential of ML for strong predictive models.

Knowledge generation in clinical research has nearly 
exclusively been dominated by classical statistics with the 
focus on explanatory modeling (EM) [32]. In carefully 
designed experiments or clinical studies, a constructed theo-
retical model, e.g. a regression model, is applied to data in 
order to test for causal hypotheses. Based on theory, a model 
is chosen a priori, combining a fixed number of experimental 
variables, which are under the control of the investigator. 
Explicit model assumptions such as the Gaussian distribu-
tion assumption are made, and the model, which is believed 
to represent the true data generating process, is evaluated for 
the entire present data sample based on hypothesis and sig-
nificance testing (“inference”). In such association-based 
modeling, a set of independent variables (X) are assumed to 
behave according to a certain mechanism (“theory”) and ulti-
mately cause an effect measured by the dependent variable 
(Y). Indeed, the role of theory in explanatory modeling is 
strong and is always reflected in the applied model, with the 
aim to obtain the most accurate representation of the under-
lying theory (technically speaking, classical statistics seeks 
to minimize bias). Whether theory holds true and the effect 
actually exists is then confirmed in the data, hence the overall 
analytical goal is inference.

Machine learning-based predictive modeling (PM) is 
defined as the process of applying a statistical model or data 
mining algorithm to data for the purpose of predicting future 
observations. In a heuristic approach, ML or PM is applied to 
empirical data as opposed to experimentally controlled data.

As the name implies, the primary focus lays on optimiz-
ing the prediction of a target variable (Y) for new observa-
tions given their set of features (X). As opposed to explanatory 
modeling, PM is forward looking [32] with the intention of 
predicting new observations, and hence generalization 
beyond the present data is the fundamental goal of the analy-
sis. In contrast to EM, PM seeks to minimize both variance 
and bias [35, 36], occasionally sacrificing the theoretical 
interpretability for enhanced predictive power. Any underly-
ing method can constitute a predictive model ranging from 
parametric and rigid models to highly flexible non- parametric 
and complex models. With a minimum of a priori specifica-
tions, a model is then heuristically derived from the data [37, 
38]. The true data generating process lays in the data, and is 
inductively learned and approximated by ML models.

Table 2.1 A comparison of central concepts in classical/inferential 
statistics versus in statistical/machine learning

Classical/inferential statistics Statistical/machine learning
Explanatory modeling Predictive modeling
An a priori chosen theoretical 
model is applied to data in 
order to test for causal 
hypotheses.

The process of applying a 
statistical model or data mining 
algorithm to data for the purpose 
of predicting new or future 
observations.

Focus on in-sample estimates Focus on out-of-sample 
estimates

Goal: to confirm the existence 
of an effect in the entire data 
sample. Often using 
significance testing.

Goal: Use the best performing 
model to make new prediction 
for single new observations. 
Often using resampling 
techniques.

Focus on model 
interpretability

Focus on model performance

The model is chosen a priori, 
while models with intrinsic 
means of interpretability are 
preferred, e.g. a GLM, often 
parametric with a few fixed 
parameters.

Different models are applied and 
the best performing one is 
selected. Models tend to be more 
flexible and expressive, often 
non-parametric with many 
parameters adapting to the 
present data.

Experimental data Empirical data
Long data (n samples > p 
variables)

Wide data (n samples ≪ p 
variables)

Independent variables Features
Dependent variable Target variable
Learn deductively by model 
testing

Learn a model from data 
inductively

J. M. Kernbach and V. E. Staartjes
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2.5  Workflow for Predictive Modeling

In clinical predictive analytics, generalization is our ulti-
mate goal. To answer different research objectives, we 
develop, test, and evaluate different models for the purpose 
of clinical application (for an overview see https://topepo.
github.io/caret/available- models.html). Many research 
objectives in PM can be framed either as the prediction of a 
continuous endpoint (regression) such as progression-free 
survival measured in months or alternatively as the predic-
tion of a binary endpoint (classification), e.g. survival after 
12 months as a dichotomized binary. Most continuous vari-
ables can easily be reduced and dichotomized into binary 
variables, but as a result data granularity is lost. Both regres-
sion and classification share a common analytical workflow 
with difference in regard to model evaluation and reporting 
(c.f. cite Chap. 5 Classification problems and cite Chap. 6 
Regression problems for a detailed discussion). An adapt-
able pipeline for both regression and classification problems 
is demonstrated in Parts IV and V.  Both sections contain 
detailed instructions along with a simulated dataset of 
10,000 patients with glioblastoma and the code based on the 
statistical programming language R, which is available as 
open-source software.

For a general overview, a four-step approach to PM is pro-
posed (Fig. 2.2): First and most important (1) all data needs 
to be pre-processed. ML is often thought of as letting data do 
the heavy lifting, which in part is correct, however, the raw 

data is often not suited to learning well in its current form. A 
lot of work needs to be allocated to preparing the input data 
including data cleaning and pre-processing (imputation, 
scaling, normalization, encoding) as well as feature engi-
neering and selection. This is followed by using (2) resam-
pling techniques such as k-fold cross-validation (c.f. cite 
Chap. 3 generalization and overfitting) to train different 
models and perform hyperparameter tuning. In a third step 
(3), the different models are compared and evaluated for gen-
eralizability based on a chosen out-of-sample performance 
measure in an independent testing set. The best performing 
model is ultimately selected, the model’s out-of-sample cali-
bration assessed (c.f. cite Chap. 4 Evaluation and points of 
significance), and, in a fourth step (4) the model is externally 
validated—or at least prospectively internally validated—to 
ensure clinical usage is safe and generalizable across loca-
tions, different populations and end users (c.f. cite Chap. 3 
Generalization and overfitting). The European Union (EU) 
and the Food and Drug Administration (FDA) have both set 
standards for classifying machine learning and other soft-
ware for use in healthcare, upon which the extensiveness of 
validation that is required before approved introduction into 
clinical practice is based. For example, to receive the CE 
mark for a clinical decision support (CDS) algorithm—
depending on classification—the EU requires compliance 
with ISO 13485 standards, as well as a clinical evaluation 
report (CER) that includes a literature review and clinical 
testing (validation) [39].

Fig. 2.2 A four-step predictive modeling workflow. (1) Data prepara-
tion includes cleaning and featurization of the given raw data. Data pre- 
processing combines cleaning and outlier detection, missing data 
imputation, the use of standardization methods, and correct feature 
encoding. The pre-processed data is further formed into features—man-
ually in a process called feature engineering or automatically deduced 
by a process called feature extraction. In the training process (2) resam-
pling techniques such as k-fold cross-validation are used to train and 

tune different models. Most predictive features are identified in a fea-
ture selection process. (3) Models are compared and evaluated for gen-
eralizability in an independent testing set. The best performing model is 
selected, and out-of-sample discrimination and calibration are assessed. 
(4) The generalizing model is prospectively internally and externally 
validated to ensure safe clinical usage across locations and users
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2.6  Conclusion

We appear to be at the beginning of an accelerated trend 
towards data-driven decision-making in biomedicine enabled 
by a transformative technology—machine learning [5]. Given 
the ever-growing and highly complex “big data” biomedical 
datasets and increases in computational power, machine 
learning approaches prove to be highly successful analytical 
strategies towards a patient-tailored approach regarding diag-
nosis, treatment choice, and outcome prediction. Going for-
ward, we expect that training neuroscientists and clinicians in 
the concepts of machine learning will undoubtably be a cor-
ner stone for the advancement of individualized medicine in 
the realm of precision medicine. With the series “Machine 
learning-based clinical prediction modeling,” we aim to pro-
vide both a conceptual and practical guideline for predictive 
analytics in the clinical routine to strengthen every clinician’s 
competence in modern machine learning techniques.
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and Overfitting
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3.1  Introduction

In the first part of this review series, we have discussed gen-
eral and important concepts of machine learning (ML) and 
presented a four-step workflow for machine learning-based 
predictive pipelines. However, many regularly faced chal-
lenges, which are well-known within the ML community, are 
less established in the clinical community. One common 
source of trouble is overfitting. It is a common pitfall in pre-
dictive modeling, whereby the model not only fits the true 
underlying relationship of the data but also fits the individual 
biological or procedural noise associated with each observa-
tion. Dealing with overfitting remains challenging in both 
regression and classification problems. Erroneous pipelines 
or ill-suited applied models may lead to drastically inflated 
model performance, and ultimately cause unreliable and 
potentially harmful clinical conclusions. We discuss and 
illustrate different strategies to address overfitting in our 
analyses including resampling methods, regularization and 
penalization of model complexity [1]. In addition, we dis-
cuss feature selection and feature reduction. In this section, 
we review overfitting as potential danger in predictive ana-
lytic strategies with the goal of providing useful recommen-

dations for clinicians to avoid flawed methodologies and 
conclusions (Table 3.1).

3.2  Overfitting

Overfitting occurs when a given model adjusts too closely to 
the training data, and subsequently demonstrates poor per-
formance on the testing data (Fig. 3.1). While the model’s 
goodness of fit to the present data sample seems impressive, 
the model will be unable to make accurate predictions on 
new observations. This scenario represents a major pitfall in 
ML. At first, the performance within the training data seems 
excellent, but when the model’s performance is evaluated on 
the hold-out data (“out-of-sample error”) it generalizes 
poorly. There are various causes of overfitting, some of 
which are intuitive and easily mitigated. Conceptually, the 
easiest way to overfit is simply by memorizing observations 
[2–4].

We simply remember all data patterns, important patterns 
as well as unimportant ones. For our training data, we will 
get an exceptional model fit, and minimal training error by 
recalling the known observations from memory—implying 
the illusion of success. However, once we test the model’s 
performance on independent test data, we will observe pre-
dictive performance that is no better than random. By over- 
training on the present data, we end up with a too close fit to 
the training observations. This fit only partially reflects the 
underlying true data-generating process, but also includes 
random noise specific to the training data. This can either be 
sample-specific noise, both procedural as well as biological, 
but also the hallucination of unimportant patterns [5]. 
Appling the overfitted model to new observations will out 
itself as an out-of-sample performance that is massively 
worse than the training performance. In this way, the amount 
of overfitting can be defined as the difference among dis-
criminatory training and testing performance—while it is 
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normal that out-of-sample performance is equal to or ever so 
slightly worse than training performance for any adequately 
fitted model, a massive difference suggests relevant overfit-
ting. This is one reason why in-sample model performance 
should never be reported as evidence for predictive perfor-
mance. Instead model training and selection should always 
be performed on a separate train set, and only in the final step 
should the final model be evaluated on an independent test 
set to judge true out-of-sample performance.

 The Bias-Variance Trade-Off

In ML we opt to make accurate and generalizable predic-
tions. When the test error is significantly higher than the 
training error, we can diagnose overfitting. To understand 
what is going on we can decompose the predictive error into 

Table 3.1 Concept summaries

Concept Explanation
Noise Noise is unexplained and random variation 

inherent to the data (biological noise) or 
introduced by variables of no interest 
(procedural noise, including measurement 
errors, site variation).

Overfitting Over-learning of random patterns associated 
with noise or memorization in the training data. 
Overfitting leads to a drastically decreased 
ability to generalize to new observations.

Bias Bias quantifies the error term introduced by 
approximating highly complicated real-life 
problems by a much simpler statistical model. 
Models with high bias tend to underfit.

Variance Variance refers to learning random structure 
irresponsible of the underlying true signal. 
Models with high variance tend to overfit.

Data Leakage/
Contamination

Or the concept of “looking at data twice”. 
Overfitting is introduced when observations 
used for testing also re-occur in the training 
process. The model then “remembers” instead 
of learning the underlying association.

Model Selection Iterative process using resampling such as 
k-fold cross-validation to fit different models in 
the training set.

Model 
Assessment

Evaluation of a model’s out-of-sample 
performance. This should be conducted on a 
test set of data that was set aside and not used 
in training or model selection. The use of 
multiple measures of performance (AUC, F1, 
etc.) is recommended.

Resampling Resampling methods fit a model multiple times 
on different subsets of the training data. 
Popular methods are k-fold cross-validation and 
the bootstrap.

k-Fold 
Cross-Validation

Data is divided in k equally sized folds/sets. 
Iteratively, k − 1 data is used for training and 
evaluated on the remaining unseen fold. Each 
fold is used for testing once.

LOOCV LOOCV (leave-one-out cross-validation) is a 
variation of cross-validation. Each observation 
is left out once, the model is trained on the 
remaining data, and then evaluated on the 
held-out observation.

Bootstrap The bootstrap allows to estimate the uncertainty 
associated with any given model. Typically, in 
1000–10,000 iterations bootstrapped samples 
are repetitively drawn with replacement from 
the original data, the predictive model is 
iteratively fit and evaluated.

Hyperparameter 
Tuning

Hyperparameters define how a statistical model 
learns and need to be specified before training. 
They are model specific and might include 
regularization parameters penalizing model’s 
complexity (ridge, lasso), number of trees and 
their depth (random forest), and many more. 
Hyperparameters can be tuned, that is, 
iteratively improved to find the model that 
performs best given the complexity of the 
available data.

Fig. 3.1 Conceptual visualization of the bias-variance trade-off. A pre-
dictive model with high bias and low variance (A), consistently approx-
imates the underlying data-generating process with a much simpler 
model (here a hyperplane), and hence result in an underfit solution. (B) 
A U-shaped decision boundary represents the optimal solution in this 
scenario, here, both bias and variance are low, resulting in the lowest 
test error. (C) Applying an overly flexible model results in overfitting. 
Data quirks and random non-predictive structures that are unrelated to 
the underlying signal are learned
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its essential parts bias and variance [6, 7]. Their competing 
nature, commonly known under the term bias-variance 
trade-off, is very important and notoriously famous in the 
machine learning community. Despite its fame and impor-
tance, the concept is less prominent within the clinical com-
munity. Bias quantifies the error term introduced by 
approximating highly complicated real-life problems by a 
much simpler statistical model, that is underfitting the com-
plexity of the data-generating process. In other words, a 
model with high bias tends to consistently learn the wrong 
response. That by itself does not necessarily need to be a 
problem, as simple models were often found to perform 
very well sometimes even better than more sophisticated 
ones [8]. However, for maximal predictive compacity we 
need to find the perfect balance between bias and variance. 
The term variance refers to learning random structure irre-
sponsible of the underlying true signal. That is, models with 
high variance can hallucinate patterns that are not given by 
the reality of the data. Figure 3.1 illustrates this in a classifi-
cation problem. A linear model (Fig. 3.1a, high bias and low 
variance) applied to class data, in which the frontier between 
the two classes is not a hyperplane, is unable to induce the 
underlying true boundary. It will consistently learn the 
wrong response, that is a hyperplane, despite the more com-
plex true decision boundary and result into “underfitting” 
the true data-generating process. On the other extreme, an 
excessively flexible model with high variance and low bias 
(Fig. 3.1c) will learn random non-predictive structure that is 
unrelated to the underlying signal. Given minimally differ-
ent observations, the overly flexible model fit could drasti-
cally change in an instance. The latter complex model would 
adapt well to all training observations but would ultimately 
fail to generalize and predict new observations in an inde-
pendent test set. Neither the extremely flexible nor the insuf-
ficiently flexible model is capable of generalizing to new 
observations.

 Combatting Overfitting: Resampling

We could potentially collect more data for an independent 
cohort to test our model, but this would be highly time- 
consuming and expensive. In rich data situations, we can 
alternatively split our sample into a data set for training and 
a second set for testing (or hold-out set) to evaluate the mod-
el’s performance in new data (i.e., the model’s out-of-sample 
performance) more honestly. We would typically use a ran-
dom 80%/20% split for training and testing (while remain-
ing class balance within the training set, see Chap. 4). 
Because we often lack a sufficiently large cohort of patients 
to simply evaluate generalization performance using data 

splits, we need to use a less data-hungry but equally efficient 
alternatives. The gold standard and popular approach in 
machine learning to address overfitting is to evaluate the 
model’s generalization ability via resampling methods [9]. 
Some of these resampling methods—particularly the boot-
strap—have already long been used in inferential statistical 
analysis to generate measures of variance [10]. Resampling 
methods are an indispensable tool in today’s modern data 
science and include various forms of cross-validation [3, 
11]. All forms have a common ground: they involve splitting 
the available data iteratively into a non-overlapping train and 
test set. Our statistical model is then refitted and tested for 
each subset of the train and test data to obtain an estimate of 
generalization performance. Most modern resampling meth-
ods have been derived from the jackknife—a resampling 
technique developed by Maurice Quenouille in 1949 [12]. 
The simplest modern variation of cross-validation—also 
based on the jackknife—is known as leave-one-out cross- 
validation (LOOCV). In LOOCV, the data (n) is iteratively 
divided into two unequal subsets with the train set of n − 1 
observations and the test set containing the remaining one 
observation. The model is refitted and evaluated on the 
excluded held-out observation. The procedure is then 
repeated n times and the test error is then averaged over all 
iterations. A more popular alternative to LOOCV and gener-
ally considered the gold standard is k-fold cross-validation 
(Fig. 3.2). The k-fold approach randomly divides the avail-
able data into a k amount of non-overlapping groups, or 
folds, of approximately equal size. Empirically, k  =  5 or 
k = 10 are preferred and commonly used [13]. Each fold is 
selected as test set once, and the model is fitted on the 
remaining k − 1 folds. The average over all fold-wise perfor-
mances estimates the generalizability of a given statistical 
model. Within this procedure, importantly, no observation is 
selected for both training and testing. This is essential, 
because, as discussed earlier, predicting an observation that 
was already learned during training equals memorization, 
which in turn leads to overfitted conclusions.

Cross-validation is routinely used in both model selection 
and model assessment. Yet another extremely powerful and 
popular resampling strategy is the bootstrap [14, 15], which 
allows for the estimation of the accuracy’s uncertainty appli-
cable to nearly any statistical method. Here, we obtain new 
bootstrapped sets of data by repeatedly sampling observa-
tions from the original data set with replacement, which 
means any observation can occur more than once in the boot-
strapped data sample. Thus, when applying the bootstrap, we 
repeatedly randomly select n patients from an n-sized train-
ing dataset, and model performance is evaluated after every 
iteration. This process is repeated many times—usually with 
25–1000 repetitions.

3 Foundations of Machine Learning-Based Clinical Prediction Modeling: Part II—Generalization and Overfitting
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 Considerations on Algorithm Complexity

To avoid over- or underfitting, an appropriate level of model 
complexity is required [11, 16]. Modulating complexity can 
be achieved by adding a regularization term, which can be 
used with any type of predictive model. In that instance, the 
regularization term is added to favor less-complex models 
with less room to overfit. As complexity is intrinsically 
related to the number and magnitude of parameters, we can 
add a regularization or penalty term to control the magnitude 
of the model parameters, or even constrain the number of 
parameters used. There are many different penalties specific 
to selected models. In a regression setting, we could add 
either a L1 penalty (LASSO, least absolute shrinkage and 
selection operator), which selectively removes variables 
form the model, a L2 penalty (Ridge or Tikhonov regulariza-
tion), which shrinks the magnitude of parameters but never 
fully removes them from the model or an elastic net (combi-
nation of L1 and L2) [13, 17, 18]. For neural networks, drop-
out is a very efficient regularization method [19]. Finding the 
right balance based on regularization, that is, to define how 
complex a model can be, is controlled by the model’s hyper-
parameters (L1 or L2 penalty term in regression, and many 

more). Restraining model complexity by adding a regular-
ization term is an example of a model hyperparameter. 
Typically, hyperparameters are tuned, which means that the 
optimal level is evaluated during model training. Again, it is 
important to respect the distinction of train and test data. As 
a simple guideline, we recommend to automate all necessary 
pre-processing steps including hyperparameter tuning within 
the chosen resampling approach to ensure none of the above 
are performed on the complete data set before cross- 
validation [20]. Otherwise, this would result in circularity 
and inflate the overall predictive performance [21].

 Data Leakage

Whenever resampling techniques are applied, the investiga-
tor has to ensure that data leakage or data contamination is 
not accidently introduced. From the standpoint of ML, data 
contamination—part of the test data leaking into the model- 
fitting procedure—can have severe consequences, and lead 
to drastically inflated predictive performance. Therefore, 
caution needs to be allocated to the clean isolation of train 
and test data. As a general rule-of-thumb, no feature 

Fig. 3.2 k-fold cross-validation with an independent hold-out set. The 
complete dataset is portioned into training data (~80%) and testing data 
(~20%) before any resampling is applied. Within the training set, k-fold 
cross-validation is used to randomly divide the available data into k = 5 
equally sized folds. Iteratively, k − 1 folds are used to train a chosen 
model, and the fold-wise performance (Ek) is evaluated on the remain-
ing unseen validation fold. These fold-wise performances are averaged, 

and together, the out-of-sample performance is estimated as ETrain. 
When different models are trained, the best performing one is selected 
and tuned (model selection, hyperparameter tuning) and evaluated on 
the independent hold-out set (or “test set”). The resulting performance 
ETest is reported and estimates the predictive performance beyond the 
present data
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selection or dimensionality reduction method that involves 
the outcome measure should be performed on the complete 
data set before cross-validation or splitting. This would 
open doors for procedural bias, and raise concerns regarding 
model validity. Additionally, nested cross-validation should 
be used in model selection and hyperparameter tuning. The 
nestedness adds an additional internal cross-validation loop 
to guarantee clean distinction between the “test data” for 
model selection and tuning and ultimately the “test data” 
used for model performance assessment.

Usually the data splits are then named “train”—“test”—
“(external) validation,” however, different nomenclatures are 
frequently used.

While resampling techniques can mitigate overfitting, 
they can also lead to manual overfitting when too many 
hyperparameter choices are made in the process [22]. 
Another consideration to keep in mind is that whenever a 
random data split is selected, it is with the assumption that 
each split is representative of the full data set. This can 
become problematic in two cases: (1) When data is depen-
dent, data leakage occurs when train and test data share non- 
independent observations, such as the inclusion of both the 
index and revision surgery of patients. Both observations 
are systematically similar, induce overfitting and ultimately 
undermine the validity of the resulting model performance. 
(2) When data is not identically distributed: this is a serious 
problem in small sample scenarios, where splits are drawn 
out of a highly variable set of observations. Depending on 
which of the patients end up in the train or test data, the 
model performance can greatly fluctuate, and can be an 
overly optimistic estimate of predictive performance. 
Generally, less inflated predictive performance can be 
observed as the sample size increases [23]. As studies based 
on small sample sizes can generate highly variable esti-
mates, conclusions may often be exaggerated or even 
invalid. Hence, predictive modeling should be restricted or 
used with caution when only small amounts of data are 
available. Considerations regarding sample size are dis-
cussed in Part III.

3.3  Importance of External Validation 
in Clinical Prediction Modeling

External validation of clinical prediction models represents 
an important part in their development and rollout [24, 25]. 
In order to generalize, the input data, i.e. the training sample, 
needs to be representative. However, without external vali-
dation, the site bias or center bias, which includes variations 
in treatment protocols, surgical techniques, level of experi-
ence between departments and clinical users, as well as the 
so-called sampling/selection bias, which refers to systemati-
cally different data collection in regard to the patient cohort, 

cannot be detected. For these reasons, an empirical assess-
ment of model performance on an unrelated, “external” data-
set is required before an application can publicly be released. 
Erroneous or biased predictions can have severe sequelae for 
patients and clinicians alike, if misjudgments are made based 
upon such predictions. As a gold standard, external valida-
tion enables unbiased testing of model performance in a new 
cohort with different demographics. If a clinical prediction 
model shows comparable discrimination and calibration per-
formance at external validation, generalizability may be con-
firmed. Then, it may be safe to release the model into the 
clinical decision-making progress. As an alternative to exter-
nal validation—certainly the gold standard to ensure gener-
alizability of a clinical prediction model—one might consider 
prospective internal validation (i.e. validation on a totally 
new sample of patients who are, however, derived from the 
same center with the same demographics, surgeons, and 
treatment protocols as the originally developed model). 
While prospective internal validation will also identify any 
overfitting that might be present, and will enable safe use of 
the prediction model at that specific center, this method does 
not allow ruling out center bias, i.e. does not ensure the safe 
use of the model in other populations.

3.4  Feature Reduction and Selection

In overtly complex and high-dimensional data with too many 
parameters, we find ourselves in an over-parameterized analyti-
cal setting. However, due to ‘the curse of dimensionality’—a 
term famously coined by Richard Bellmann in 1961—general-
ization becomes increasingly more difficult in high dimensions. 
The approach to avoid “the curse” has been to find lower repre-
sentation of the given feature space [26]. If there were too many 
features or variables present, feature reduction or feature selec-
tion methods can be applied. In feature reduction, methods are 
applied to simplify the complexity of the given high-dimen-
sional data while retaining important and innate patterns of the 
data. Principal component analysis (PCA) is a popular illustra-
tion [27]. As an unsupervised ML method PCA is conceptually 
similar to clustering, and learns from data without any reference 
or a priori knowledge of the predicted outcome. Analytically, 
PCA reduces high-dimensional data by projecting them onto 
the so-called principal components, which represent summaries 
of the data in fewer dimensions. PCA can hence be used as a 
strong statistical tool to reduce the main axis of variance within 
a given feature space. Feature selection refers to a similar proce-
dure, which is also applied to initially too large feature spaces to 
reduce the number of input features. The key in feature selection 
is not to summarize data into lower dimensions as in feature 
reduction, but to actually reduce the number of included fea-
tures to end up with only the “most useful” ones—and eliminate 
all non-informative ones. Naturally, if certain domain knowl-
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edge is present, vast sets of features can be constructed to a 
better set of informative features. For instance, in brain imaging, 
voxels of an MRI scan can either be considered individually or 
can be summarized into functionally or anatomically homoge-
nous areas—a concept of topographical segregation that dates 
back to Brodmann [28, 29]. The problem of feature selection is 
well- known in the ML community and has generated a vast 
body of literature early on [30, 31]. A common pruning tech-
nique to select features that together maximize, e.g. classifica-
tion performance is recursive feature elimination (RFE) [32, 
33]. In RFE, a given classifier or regressor is iteratively trained, 
and a ranking criterion for all features is estimated. The feature 
with the smallest respective ranking criterion is then eliminated. 
Introduced by Guyon and colleagues [32], RFE was initially 
used to extract small subsets of highly discriminant genes in 
DNA arrays and build reliable cancer classifiers. As an instance 
of backward elimination—that is, we start with the complete set 
of variables and progressively eliminate the least informative 
features—RFE can be used both in classification and regression 
settings with any given learner, but remains computationally 
greedy (“brute force”), as many different, e.g. classifiers on fea-
ture subsets of decreasing size are revisited. As an important 
consideration, RFE selects subsets of variables based on an opti-
mal subset ranking criterion. Consequently, a group of features 
combined may lead to optimal predictive performance, while 
the individual features included do not necessarily have to be the 
most important. Embedded in the process of model training, 
variable selection procedures such as RFE can improve perfor-
mance by selecting subsets of variables that together maximize 
predictive power. Importantly, resampling methods should be 
applied when using RFE to factor in the variability caused by 
feature selection when calculating performance.

3.5  Conclusion

Overfitting is a multifactorial problem, and there are just as 
many possible approaches to reduce its negative impact. 
We encourage the use of resampling methods such as cross- 
validation in every predictive modeling pipeline. While 
there are various options to choose from, we recommend 
the usage of k-fold cross-validation or the bootstrap. Nested 
loops may be used for hyperparameter tuning and model 
selection. While the use of resampling does not solve over-
fitting, it helps to gain a more representative understanding 
of the predictive performance, especially of out-of-sample 
error. Feature reduction and selection methods, such as 
PCA and RFE are introduced for handling high-dimen-
sional data. A potential pitfall along the way is data con-
tamination, which occurs when data leaks from the 
resampled test to train set and hence leads to overconfident 
model performance. We encourage the use of standardized 

pipelines (see Chaps. 5 and 6 here for examples), which 
include feature engineering, hyperparameter tuning and 
model selection within one loop to minimize the risk of 
unintentionally leaking test data. Finally, we recommend 
including a regularization term as hyperparameter and to 
restrict extensive model complexity, which will avoid over-
fitted predictive performance.
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Foundations of Machine 
Learning- Based Clinical Prediction 
Modeling: Part III—Model Evaluation 
and Other Points of Significance

Victor E. Staartjes and Julius M. Kernbach

4.1  Introduction

Once a dataset has been adequately prepared and a training 
structure (e.g. with a resampling method such as k-fold cross 
validation, see Chap. 3) has been set up, a model is ready to 
be trained. Already during training and the subsequent model 
tuning and selection, metrics to evaluate model performance 
become of central importance, as the hyperparameters and 
parameters of the models are tuned according to one or mul-
tiple of these performance metrics. In addition, after a final 
model has been selected based on these metrics, internal or 
external validation should be carried out to assess whether 
the same performance metrics can be achieved as during 
training. This section walks the reader through some of the 
common performance metrics to evaluate the discrimination 
and calibration of clinical prediction models based on 
machine learning (ML). We focus on clinical prediction 
models for continuous and binary endpoints, as these are by 
far the most common clinical applications of ML in neuro-
surgery. Multiclass classification—thus, the prediction of a 
categorical endpoint with more than two levels—may require 
other performance metrics.

Second, when developing a new clinical prediction model, 
there are several caveats and other points of significance that 
the readers should be aware of. These include what sample 

size is necessary for a robust model, how to pre-process data 
correctly, how to handle missing data and class imbalance, 
how to choose a cutoff for binary classification, and why 
extrapolation is problematic. In the second part of this sec-
tion, these topics are sequentially discussed.

4.2  Evaluation of Classification Models

 The Importance of Discrimination 
and Calibration

The performance of classification models can roughly be 
judged along two dimensions: Model discrimination and 
calibration [1]. The term discrimination denotes the ability 
of a prediction model to correctly classify whether a certain 
patient is going to or is not going to experience a certain 
outcome. Thus, discrimination described the accuracy of a 
binary prediction—yes or no. Calibration, however, 
describes the degree to which a model’s predicted probabili-
ties (ranging from 0% to 100%) correspond to the actually 
observed incidence of the binary endpoint (true posterior). 
Many publications do not report calibration metrics, although 
these are of central importance, as a well-calibrated pre-
dicted probability (e.g. your predicted probability of experi-
encing a complication is 18%) is often much more valuable 
to clinicians—and patients!—than a binary prediction (e.g. 
you are likely not going to experience a complication) [1].

There are other factors that should be considered when 
selecting models, such as complexity and interpretability of 
the algorithm, how well a model calibrates out-of-the-box, as 
well as e.g. the computing power necessary [2]. For instance, 
choosing an overly complex algorithm for relatively simple 
data (i.e. a deep neural network for tabulated medical data) 
will vastly increase the likelihood of overfitting with only 
negligible benefits in performance. Similarly, even though 
discrimination performance may be ever so slightly better 
with a more complex model such as a neural network, this 
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comes at the cost of reduced interpretability (“black box” 
models) [3]. The term “black box” model denotes a model 
for which we may know the input variables are fed into it and 
the predicted outcome, although there is no information on 
the inner workings of the model, i.e. why a certain prediction 
was made for an individual patient and which variables were 
most impactful. This is often the case for highly complex 
models such as deep neural networks or gradient boosting 
machines. For these models, usually only a broad “variable 
importance” metric that described a ranking of the input 
variables in order of importance can be calculated and should 
in fact be reported. However, how exactly the model inte-
grated these inputs and arrived at the prediction cannot be 
comprehended in highly complex models [3]. In contrast, 
simpler ML algorithms, such as generalized linear models 
(GLMs) or generalized additive models (GAMs), which 
often suffice for clinical prediction modeling, provide inter-
pretability in the form of odds ratios or partial dependence 
metrics, respectively. Lastly, highly complex models often 
exhibit poorer calibration out-of-the-box [2].

Consequently, the single final model to be internally or 
externally validated, published, and readied for clinical use 
should not only be chosen based on resampled training per-
formance [4]. Instead, the complexity of the dataset (i.e. 
tabulated patient data versus a set of DICOM images) should 
be taken into account. Whenever suitable, highly interpreta-
ble models such as generalized linear models or generalized 
additive models should be used. Overly complex models 
such as deep neural networks should generally be avoided 
for basic clinical prediction modeling.

 Model Discrimination

For a comprehensive assessment of model discrimination, 
the following data are necessary for each patient in the sam-
ple: A true outcome (also called “label” or “true posterior”), 
the predicted probabilities produced by the model, and the 
classification result based on that predicted probability (pre-
dicted outcome). To compare the predicted outcomes and the 
true outcomes, a confusion matrix (Table 4.1) can be gener-
ated. Nearly all discrimination metrics can then be derived 
from the confusion matrix.

 Area Under the Curve (AUC)
The only common discrimination metric that cannot be 
derived directly from the confusion matrix is the area under 
the receiver operating characteristic curve (AUROC, com-

monly abbreviated to AUC or ROC, also called c-statistic). 
For AUC, the predicted probabilities are instead contrasted 
with the true outcomes. The curve (Fig. 4.1) shows the per-
formance of a classification model at all binary classification 
cutoffs, plotting the true positive rate (Sensitivity) against the 
false positive rate (1—Specificity). Lowering the binary 
classification cutoff classifies more patients as positive, thus 
increasing both false positives and true positives. It follows 
that AUC is the only common discrimination metric that is 
uniquely not contingent upon the chosen binary classifica-
tion cutoff. The binary classification cutoff at the top left 
point of the curve, known as the “closest-to-(0,1)-criterion,” 
can even be used to derive an optimal binary classification 
cutoff, which is explained in more detail further on [5]. 
Models are often trained and selected for AUC, as AUC can 
give a relatively broad view of a model’s discriminative abil-
ity. An AUC value of 1.0 indicates perfect discrimination, 
while an AUC of 0.5 indicates a discriminative performance 
not superior to random prediction. Usually, a model is con-
sidered to perform well if an AUC of 0.7 or 0.8 is achieved. 
An AUC above 0.9 indicated excellent performance.

 Accuracy

 
Accuracy

TP TN
=

+
+P N  

Based on the confusion matrix, a model’s accuracy equals 
the total proportion of patients who were correctly classified 
as either positive or negative cases. While accuracy can give 

Table 4.1 A confusion matrix

Negative label Positive label
Predicted Negative 800 (True Negative) 174 (False Negative)
Predicted Positive 157 (False Positive) 869 (True Positive)
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Fig. 4.1 Area under the receiver operating characteristic curve (AUC) 
plot demonstrating an AUC of 0.922. The plot also indicated that, 
according to the “closest-to-(0,1)-criterion”, 0.496 is the optimal binary 
classification cutoff that balances sensitivity and specificity perfectly
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a broad overview of model performance, it is important to 
also consider sensitivity and specificity, as accuracy can be 
easily skewed by several factors including class imbalance (a 
caveat discussed in detail later on). An accuracy of 100% is 
optimal, while an accuracy of 50% indicates a performance 
that is equal to random predictions. The confusion matrix in 
Table 4.1 gives an accuracy of 83.5%.

 Sensitivity and Specificity

 
Sensitivity

TP
=

P  

 
Specificity

TN
=

N  

Sensitivity denotes the proportion of patients who are 
positive cases and who were indeed correctly predicted to be 
positive. Conversely, specificity measures the proportion of 
patients who are negative cases, and who were correctly pre-
dicted to be negative. Thus, a prediction model with high 
sensitivity generates only few false negatives, and the model 
can be used to “rule-out” patients if the prediction is nega-
tive. A model with high specificity, however, can be used to 
“rule-in” patients if positive, because it produces only few 
false positives. In data science, sensitivity is sometimes 
called “recall.” The confusion matrix in Table  4.1 gives a 
sensitivity of 83.3% and a specificity of 83.6%.

 Positive Predictive Value (PPV) and Negative 
Predictive Value (NPV)

 
PPV

TP

TP FP
=

+  

 
NPV
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TN FN
=

+  

PPV is defined as the proportion of positively predicted 
patients who are indeed true positive cases. Conversely, NPV 
is defined as the proportion of negatively predicted patients 
who turn out to be true negatives. PPV and NPV are often 
said to be more easily clinically interpretably in the context 
of clinical prediction modeling than sensitivity and specific-
ity, as they relate more directly to the prediction itself: For a 
model with a high PPV, a positive prediction is very likely to 
be correct, and for a model with a high NPV, a negative pre-
diction is very likely to be a true negative. In data science, 
PPV is sometimes called “precision.” The confusion matrix 
in Table 4.1 gives a PPV of 84.7% and a NPV of 82.1%.

 F1 Score

 
F

PPV Sensitivity

PPV Sensitivity
1 2= ×

×
+  

The F1 score is a composite metric popular in the ML 
community, which is mathematically defined as the har-
monic mean of PPV and sensitivity. Higher values represent 
better performance, with a maximum of 1.0. The F1 score is 
also commonly used to train and select models during train-
ing. The confusion matrix in Table 4.1 gives a F1 score of 
0.840.

 Model Calibration

 Calibration Intercept and Slope
As stated above, calibration describes the degree to which a 
model’s predicted probabilities (ranging from 0% to 100%) 
correspond to the actually observed incidence of the binary 
endpoint (true posterior). Especially for clinically applied 
models, a well-calibrated predicted probability (e.g. your 
predicted probability of experiencing a complication is 18%) 
is often much more valuable to clinicians and patients alike 
than a binary prediction (e.g. you are likely not going to 
experience a complication) [1]. A quick overview of a mod-
el’s calibration can be gained from generating a calibration 
plot (Fig.  4.2), which we recommend to include for every 
published clinical prediction model. In a calibration plot, the 
patients of a certain cohort are stratified into g equally-sized 
groups ranked according to their predicted probabilities. If 
you have a large cohort available, opt for g = 10; if you have 
only few patients you may opt for g = 5 to smooth the cali-
bration curve to a certain degree. On the y axis, for each of 
the g groups, the observed proportion of positive cases is 

Fig. 4.2 Calibration plot comparing the predicted probabilities—
divided into ten bins—of a binary classification model to the true 
observed outcome proportions. The diagonal line represents the ideal 
calibration curve. A smoother has been fit over the ten bins. This model 
achieved an excellent calibration intercept of 0.04, with a slope of 0.96
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plotted, while the mean predicted probability for each group 
is plotted on the x-axis. A model with perfect calibration will 
have a calibration curve closely resembling a diagonal line. 
A poorly calibrated model will deviate in some way from the 
ideal diagonal line, or simply show an erratic form. From the 
predicted probabilities and the true posteriors, the two major 
calibration metrics can be derived: Calibration intercept and 
slope [6].

The calibration intercept, also called “calibration-in-the- 
large,” is a measure of overall calibration—A perfectly cali-
brated model has an intercept of 0.00. A model with a 
calibration intercept much larger than 0 generally puts out 
too high predicted probabilities—and thus overestimates the 
likelihood of a positive outcome. Likewise, a model with a 
negative intercept systematically underestimates probabili-
ties. The model depicted in Fig.  4.1 sports an intercept of 
0.04.

The calibration slope quantifies the increase of true risk 
compared to predicted risk. A perfectly calibrated model has 
an intercept of 1.00. If a model has a calibration slope that is 
much larger than 1, the increase of the predicted probabilities 
on the calibration curve is too steep, and vice versa.

 Brier Score
The Brier score [7] measures overall calibration and is 
defined as the average squared difference between predicted 
probabilities and true outcomes. It takes on values between 0 
and 1, with lower values indicating better calibration. As a 
proper scoring rule, the Brier score simultaneously captures 
calibration itself as well as sharpness: A property that mea-
sures how much variation there is in the true probability 
across predictions. When assessing the performance of dif-
ferent binary classification models, the Brier score is mainly 
used to compare model performances, and—being mainly a 
relative measure—the actual value of the score is only of 
limited value. As a caveat, the Brier score only inaccurately 
measures calibration for rare outcomes.

 Other Calibration Metrics
Various other calibration metrics have been developed, of 
which the following three are more commonly used. First, 
the expected/observed ratio, or E/O-ratio, describes the over-
all calibration of a prediction model, and is defined as the 
ratio of expected positive (predicted positive) cases and 
observed positive (true positive) cases [8]. A value of 1 is 
optimal. Second, the Estimated Calibration Index (ECI) [9] 
is a measure of overall calibration, and is defined as the aver-
age squared difference of the predicted probabilities with 
their grouped estimated observed probabilities. It can range 
between 0 and 100, with lower values representing better 
overall calibration. Lastly, the Hosmer-Lemeshow goodness- 

of- fit test can be applied to assess calibration, and is based on 
dividing the sample up according to g groups of predicted 
probabilities, with g = 10 being a common value [10]. The 
test then compares the distribution to a chi-square distribu-
tion. A p > 0.2 is usually seen as an indication of a good fit, 
i.e. fair calibration.

 Recalibration Techniques
Should you have arrived at a robustly validated model with 
high performance in discrimination but poor calibration, 
there are several methods available to recalibrate the model 
to fit a population with a knowingly different incidence of 
the endpoint, or to even out a consistent deformation of the 
calibration curve [1]. These scenarios are explained in some 
more detail below. Also, if a study reports development of a 
model as well as external validation of that model in a differ-
ent population for which the model is recalibrated, both the 
recalibrated as well as the uncalibrated performance of the 
model in the external validation cohort have to be reported, 
as the uncalibrated performance is the only representative 
and unbiased measure of generalizability available. In the 
first case, a model may have been developed in a certain 
country in which the incidence of a certain outcome is 10%. 
If other authors want to apply the same exact model in a dif-
ferent country with a known incidence of this outcome that is 
higher at e.g. 20%, the model will systematically underesti-
mate predicted probabilities—and thus have a negative inter-
cept, while maintaining a calibration slope of around 1.0. To 
adjust for the difference in outcome incidence, the intercept 
of the model can be updated to recalibrate the model [11]. In 
the second case, calibration curves may consistently show a 
sigmoid or other reproducible deviation from the ideal diag-
onal calibration curve. Two commonly applied methods to 
improve the calibration of the predicted probabilities are 
logistic regression and isotonic regression. Logistic regres-
sion can be used to train a wrapper model that learns to even 
out the deviation. This technique is called logistic recalibra-
tion of Platt scaling [12]. Second, isotonic regression can be 
applied to recalibrate the model [12]. Isotonic (also called 
monotonic) regression is a nonparametric technique that for 
fitting a free-form line (such as a calibration plot) to a series 
of reference values (such as a perfect diagonal line), under 
the constraints that the fitted line has to be monotonically 
increasing and must lie as close to the reference values as 
feasible [12].

It is important to stress here that we recommend recali-
bration only in these two cases listed above: On the other 
hand, if the calibration curve is erratic or a deformation of 
the calibration curve (e.g. sigmoid deformation) is not con-
sistent among resamples or validation cohorts, we do not rec-
ommend recalibration.
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4.3  Evaluation of Regression Models

For regression problems, performance can only be evaluated 
by comparing the predicted value and the true value directly. 
There are three major performance metrics that are used to 
evaluate the performance of regressors: First, root mean 
square error (RMSE), defined as the standard deviation of 
the differences between the predicted and true values (resid-
uals), explains the distribution of the residuals around the 
perfect predictions. A perfect RMSE would be 0.00, with 
lower values indicating better performance. Similarly, mean 
absolute error (MAE) measures the difference among the 
predicted and the true values directly. Thus, a MAE of 0.00 
would indicate no error at all, with deviations from 0 indicat-
ing overall over- or underestimation of values. Lastly, the R2 
value, defined as the square of the of the correlation coeffi-
cient among predicted and true values, discloses what pro-
portion of the variation in the outcome is explained by the 
model. Consequently, a R2 value of 1.0 would indicate per-
fect explanatory power, and 0.00 would indicate zero explan-
atory power of the model. For regression models, a 
quantile–quantile plot can optionally be included to illustrate 
the relationship among predicted and true values over the 
entire dataset (see Chap. 6).

4.4  Points of Significance

 Choosing a Cutoff for Binary Classification

For binary classifiers which produce predicted probabilities, 
a cutoff (or threshold) has to be set to transform the predicted 
probabilities—ranging from 0.00 to 1.00—to a binary clas-
sification (i.e. yes/no or positive/negative or 1/0). While it 
might be tempting and often adequate to simply always use a 
cutoff of 0.50 for binary classification, in many cases differ-
ent cutoffs will produce more accurate results in general, and 
the cutoff should also be chosen depending on the intended 
application of a given model.

One quantitative method to calculate a cutoff for binary 
classification that optimizes both sensitivity and specificity 
is the AUC-based “closest-to-(0,1)-criterion” or Youden’s 
index [5]. Using packages in R such as pROC [13], this can 
be done easily. This technique will lead to the most balanced 
estimation of a binary classification cutoff, and can be cho-
sen on a model with generally high performance measures 
that is aimed at achieving maximum classification accuracy 
overall. However, in many cases, models are clinically 
intended to rule-in or rule-out critical events. In these cases, 
the binary classification cutoff may be adjusted to achieve 
high specificity or sensitivity, respectively. For example, a 
rule-in model requires a high specificity, whereas sensitivity 
is of secondary importance. In other words, if a model with 

high specificity (>90%) makes a positive prediction, this 
rules in true case positivity, while a negative prediction will 
have rather little value. To increase specificity, the cutoff for 
binary classification can be adjusted upwards (e.g. to 75%). 
This can be seen as a “higher burden of proof” for a positive 
case. Inversely, a rule-out model will require high sensitivity 
and a negative result to rule-out an event, in which case the 
cutoff for binary classification can be adjust downwards. 
Whether a clinical prediction model is laid out as a neutral 
model (cutoff 0.50 or calculated using the “closest-to-(0,1)-
criterion”), rule-in model (cutoff adjusted upwards), or rule-
 in model (cutoff adjusted downwards) will depend on the 
clinical question.

Again, it is important to stress at this point that the selec-
tion of a cutoff for binary classification must occur using 
exclusively training data. Based on the (resampled) training 
performance, a cutoff should be chosen using one of the 
methods described above. Only one final, fully trained model 
and its determined cutoff should then be tested on the inter-
nal or external validation data, which will confirm the gener-
alizability of both the model parameters and the cutoff that 
was chosen. If the cutoff is post-hoc adjusted based on the 
internal or external validation data, which are intended to 
provide an assessment of likely “real-world” performance, 
this evaluation of generalizability becomes rather meaning-
less and generalizability cannot be assessed in an unbiased 
way. Lastly, the threshold for binary classification should be 
reported when publishing a clinical prediction model.

 Sample Size

While even the largest cohort with millions of patients is not 
guaranteed to result in a robust clinical prediction model if 
no relevant input variables are included (“garbage in, gar-
bage out”—do not expect to predict the future from age, gen-
der, and body mass index), the relationship among predictive 
performance and sample size is certainly directly propor-
tional, especially for some data-hungry ML algorithms. To 
ensure generalizability of the clinical prediction model, the 
sample size should be both representative enough of the 
patient population, and should take the complexity of the 
algorithm into account. For instance, a deep neural net-
work—as an example of a highly complex model—will 
often require thousands of patients to converge, while a 
logistic regression model may achieve stable results with 
only a few hundreds of patients. In addition, the number of 
input variables plays a role. Roughly, it can be said that a 
bare minimum of ten positive cases are required per included 
input variable to model the relationships. Often, erratic 
behavior of the models and high variance in performance 
among splits is observed when sample sizes are smaller than 
calculated with this rule of thumb. Of central importance is 
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also the proportion of patients who experience the outcome. 
For very rare events, a much larger total sample size is con-
sequentially needed. For instance, a prediction based on ten 
input features for an outcome occurring in only 10% of cases 
would require at least 1000 patients including at least 100 
who experienced the outcome, according to the above rule of 
thumb. In general and from personal experience, we do not 
recommend developing ML models on cohorts with less than 
100 positive cases and reasonably more cases in total, regard-
less of the rarity of the outcome. Also, one might consider 
the available literature on risk factors for the outcome of 
interest: If epidemiological studies find only weak associa-
tions with the outcome, it is likely that one will require more 
patients to arrive at a model with good predictive perfor-
mance, as opposed to an outcome which has several highly 
associated risk factors, which may be easier to predict. 
Larger sample sizes also allow for more generous evaluation 
through a larger amount of patient data dedicated to training 
or validation, and usually results in better calibration mea-
sures. Lastly, some more nuanced and protocolized methods 
to arrive at a sample size have been published, such the Riley 
et al. expert’s consensus on deriving a minimum sample size 
for generating clinical prediction models, which can also be 
consulted [14, 15].

 Standardization

In clinical predictive modeling, the overall goal is to get the 
best discriminative performance from your ML algorithm, 
and some small steps to optimize your data before training 
may help to increase performance. In general, ML algo-
rithms benefit from standardization of data, as they may per-
form more poorly if individual features to not appear more or 
less like normally distributed, e.g. representing Gaussian 
data with a mean value of 0 and a variance of 1. While most 
algorithms handle other distributions with ease, some (e.g. 
support vector machines with a radial basis function) assume 
centered and scaled data. If one input feature is orders of 
magnitude larger than all others, this feature may predomi-
nantly influence predictions and may decrease the algo-
rithm’s ability to learn from the other input data. In data 
science, centering and scaling are common methods of stan-
dardizing your data. To center continuous variables, means 
are subtracted from each value to arrive at a mean of 0. 
Scaling occurs through dividing all variables through their 
standard deviation, after which you end up with z scores (the 
number of standard deviations a value is distanced from the 
mean). As an alternative to this standardization approach, 
data can also be normalized. This means that data are res-
caled between their minimum and maximum (also called 
Min-Max Scaling) to take on values from 0 to 1, which is 
particularly useful when data do not approximately follow a 

Gaussian distribution, in which case standardization based 
on standard deviations could lead to skewed results. 
Sometimes it can also be advantageous to transform i.e. log-
arithmically distributed variables. These steps are well- 
integrated into R through the caret package (see Chaps. 5 and 
6) [16]. There are many other methods to pre-process data, 
which are also partially discussed in Part II and below. At 
this point, it is important to stress that all pre-processing 
steps should take place after data splitting into training and 
testing sets, as data leakage can occur (see Chap. 3).

 One-Hot Encoding

In many cases, dealing with categorical data as opposed to 
continuous data is challenging in data science. Especially 
when categorical variables are not ordinal, handling them 
similarly to continuous data can lead to wrong assumptions 
as to relationships among variables. In addition, some algo-
rithms cannot work with categorical data directly and require 
numerical inputs instead, often rather due to their specific 
implementation in statistical programming languages like R 
and not due to hard mathematical limitations of the algo-
rithm itself. Take the variable “Histology,” with the levels 
“Glioblastoma,” “Low-grade Glioma,” “Meningioma,” and 
“Ependymoma” as an example of a non-ordinal feature. In 
the “Histology” variable, the encoding of the four levels in 
numerical form as “1” to “4” (simple integer encoding) 
would yield catastrophic results, as the four levels would be 
interpreted as a continuous variable and the level encoded as 
“4” is not necessarily graded higher as the level encoded as 
“1.” This may lead to poorer performance and unanticipated 
results. In addition, any explanatory power, such as derived 
from measures of variables importance, will no longer be 
correct and would lead to clinical misinterpretation.

Instead, categorical variables with more than two levels 
should be one-hot encoded. This means that the original vari-
able is removed, and that for each unique level of this cate-
gorical variable, a new dichotomous variable is created with 
the values “0” and “1.” Thus, for the above “Histology” 
example, four new dichotomous variables will be created, 
namely “Glioblastoma [0,1],” “Low-grade Glioma [0,1],” 
and so forth. One-hot encoding ensures that the influence of 
each individual level of a categorical variable on the depen-
dent variable can be accurately represented.

 Missing Data and Imputation

There are also other considerations in pre-processing other 
than centering and scaling, including the handling of missing 
data. In ideal circumstances, we would prefer to only work 
with complete datasets, but we are mostly faced with various 
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amount of missing values. To deal with missing values is a 
science on its own, which has generated a vast body of litera-
ture [17, 18] and analytical strategies, broadly classified in 
either deletion (“complete case analysis”) or imputation. In 
cases, in which values are missing at random (MAR) or com-
pletely at random (MCAR), it is safe to discard single obser-
vations with missing values or even complete feature 
columns when, e.g. more than >50% of the column’s obser-
vations are unaccounted for. When values are systematically 
missing instead, dropping features or observations subse-
quently introduces bias. In this case, imputation might yield 
better results. Strategies can range from simple approaches 
such as mean, mode, or median imputation, which, however, 
defeat the purpose of imputation for clinical prediction mod-
eling since they do not factor in correlations between vari-
ables and do not work well with categorical variables, to 
more complex algorithmic imputation techniques. Any 
applied imputation method should however be used with 
care, and its necessity should be carefully considered espe-
cially when the fraction of missing data is substantial. The 
best approach will always be to keep missing data at a 
minimum.

There are also situations when imputing missing data may 
not be strictly necessary. First, some implementations of cer-
tain algorithms—for example, the popular XGBoost [19] 
implementation of boosted decision trees—can handle miss-
ing data natively by treating empty fields as a unique value. 
However, the majority of algorithms will simply throw out 
any patients with missing data or impute automatically. An 
additional point to consider is that, while some algorithms 
may be theoretically able to handle missing data natively, 
there is no reason that they should be made to do so. One of 
the cases in which imputing data is not strictly necessary is 
when an abundance of data is available with only few fields 
missing, or when data is missing for only a certain few 
patients—in which case it may be more convenient to simply 
delete the missing observations. Deleting larger amounts of 
data—as stated above—is not recommended because it may 
introduce systematic bias. More importantly, when data is 
clearly missing not at random (MNAR), imputation and 
deletion both will lead to inaccurate results, and the missing-
ness must be explicitly modeled [20]. MNAR occurs when 
missingness depends on specific values of the data, e.g. when 
there is a systematic bias such as when certain populations 
are much less likely to return for follow-up visits due to geo-
graphical distance, or when obese patients are much less 
likely to report their weight. In cases with data that is MNAR, 
simple imputation will not yield correct results.

However, in the majority of cases it is advisable to co- 
train an imputer with the actual clinical prediction model, 
even if there is no missing data in the training set. This will 
allow for easy handling of missing data that the model may 
come across in the future, e.g. in an external validation set. 

Again, it is important to stress that as with all pre-processing 
steps, the co-trained imputer should only ever be trained on 
the training dataset of the prediction model—and should 
never see the validation data. Otherwise, data leakage may 
occur (see Chap. 3). Several simple packages for imputation 
exist in R, including algorithmic imputation using the k-near-
est neighbor (kNN) algorithm [21]. In this approach, the 
missing datapoint is imputed by the average of k-nearest 
neighboring datapoints based on a chosen distance metric. In 
addition, single imputation can be achieved by simple regres-
sion models and predictive mean matching (PMM) [22]. 
This approach works for both continuous and categorical 
variables, as a regressor predicts the missing value from the 
other available patient data, and then subsequently imputes 
the most closely matching value from the other patients 
without missing values. The advantage here is avoidance of 
imputation of extreme or unrealistic values, especially for 
categorical variables. This approach can also be extended to 
the state of the art of multiple imputation through multivari-
ate imputation based on chained equations (MICE) [23], 
which is harder to implement but depicts the uncertainty of 
the missing values more accurately.

While imputation can be achieved using many different 
algorithms including the methods described, we selected the 
nonparametric kNN method for internal consistency in both 
regression and classification (see Chaps. 5 and 6) in our prac-
tical examples, and because there is some evidence that 
kNN-based imputation may outperform some other imputa-
tion methods [24]. In addition, kNN imputers are highly 
computationally efficient.

 Class Imbalance

Class imbalance is evident when one class—the minority 
class (i.e. patients who experienced a rare complication)—is 
much rarer than the majority class (i.e. patients who did not 
experience this rare complication) [25]. In clinical neurosci-
ences, class imbalance is a common caveat, and many pub-
lished models do not adjust for it. Because ML models 
extract features better and are most robust if all classes are 
approximately equally distributed, it is important to know 
how to diagnose and counteract class imbalance. If a consid-
erable amount of class imbalance is present, ML models will 
often become “lazy” in learning how to discriminate between 
classes and instead choose to simply vote for the majority 
class. This bias provides synthetically high AUC, accuracy, 
and specificity. However, sensitivity will be near zero, mak-
ing the model unemployable. This “accuracy paradox” 
denotes the situation when synthetically high accuracy only 
reflects the underlying class distribution in unbalanced data. 
For instance, if sensitivity and specificity are not reported, 
class imbalance can still be spotted if the model accuracy is 
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virtually identical to the incidence of the majority class. In 
general, if class imbalance is present, care should be taken to 
weight classes or to under- or oversample using data science 
techniques. Accuracy and AUC alone do not always give a 
full representation of an ML model’s performance. This is 
why reporting a minimum of sensitivity and specificity is 
crucial [25].

As an example, one might want to predict complications 
from a cohort containing 90% of patients without compli-
cations. By largely voting for the majority class (no com-
plication), the model would achieve an accuracy and 
specificity of around 90% and very low sensitivity without 
actually learning from the data. This can be countered by 
adjusting class weights within the model, by undersam-
pling and thus removing observations from the majority 
class or by oversampling the minority class [26]. 
Specifically, the synthetic minority oversampling technique 
(SMOTE) has been validated, shows robust performance, 
and is easy to employ [27]. SMOTE simulates new obser-
vations for the minority class by using k-means clustering, 
thus generating “synthetic” patients that have realistic char-
acteristics derived from similar patients already present in 
the dataset. However, conventional upsampling—the sim-
ple copying of randomly selected patients of the minority 
class until class balance is achieved—often works similarly 
well. When training models, the method of handling class 
imbalance (i.e. none, conventional upsampling, or SMOTE) 
may be regarded as a hyperparameter.

 Extrapolation

The vast majority of ML models are only capable of interpo-
lating data—thus, making predictions on cases similar to the 
ones available in the training data—and are incapable of 
extrapolating—making predictions on situations that are rel-
evantly different. This can be seen similarly to trying to 
apply the results of a randomized controlled drug trial to 
patients who were excluded from the study. For example, a 
model that predicts neurological impairment after brain 
tumor surgery that has been trained and externally validated 
on a large cohort of patients from 30 to 90  years of age 
should not be expected to make accurate predictions for 
pediatric brain tumor patients. Although the goal when 
developing algorithms is generalization to slightly other 
demographics, most algorithms learn to fit the training data 
as closely as possible locally, regardless of potential other 
situations not included in the training dataset (see Chap. 3). 
Thus, caution must be taken when making predictions out-
side the bounds of the type of patients included in the train-

ing data. Some algorithms are considered as being more 
prone to extrapolation errors, such as GAMs based on locally 
estimated scatterplot smoothing (LOESS) due to their reli-
ance on local regression. In conclusion, trained models 
should not be clinically expected to extrapolate to patients 
with vastly differing characteristics.

4.5  Conclusion

Various metrics are available to evaluate the performance of 
clinical prediction models. A suggested minimum set of per-
formance metrics includes AUC, accuracy, sensitivity, speci-
ficity, PPV, and NPV along with calibration slope and 
intercept for classification models, or RMSE, MAE, and R2 
for regression models. These performance metrics can be 
supplemented by a calibration plot or a quantile–quantile 
plot, respectively. Furthermore, there are some common 
caveats when developing clinical prediction models that 
readers should be aware of: Sample sizes must be sufficiently 
large to allow for adequate extraction of generalizable inter-
actions among input variables and outcome and to allow for 
suitable model training and validation. Class imbalance has 
to be recognized and adjusted for. Missing data has to be 
reported and, if necessary, imputed using the state-of-the-art 
methods. Trained models should not be clinically expected 
to extrapolate to patients with vastly differing characteristics. 
Finally, in binary classification problems, the cutoff to trans-
form the predicted probabilities into a dichotomous outcome 
should be reported and set according to the goal of the clini-
cal prediction model.
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Foundations of Machine 
Learning- Based Clinical Prediction 
Modeling: Part IV—A Practical 
Approach to Binary Classification 
Problems

Victor E. Staartjes and Julius M. Kernbach

5.1  Introduction

Predictive analytics are currently by far the most common 
application of machine learning in neurosurgery [1–4], 
although the potential of machine learning techniques for 
other applications such as natural language processing, 
medical image classification, radiomic feature extraction, 
and many more should definitely not be understated [5–
13]. The topic of predictive analytics also uniquely lends 
itself to introducing machine learning methods due to its 
relative ease of implementation. Thus, we chose to specifi-
cally focus on predictive analytics as the most popular 
application of machine learning in neurosurgery. This sec-
tion of the series is intended to demonstrate the program-
ming methods required to train and validate a simple, 
machine learning- based clinical prediction model for any 
binary endpoint. Prediction of continuous endpoints 
(regression) will be covered in Part V of this series (see 
Chap. 6).

We focus on the statistical programming language R 
[14], as it is freely available and widely regarded as the 
state of the art in biostatistical programming. Other pro-
gramming languages such as Python are certainly equally 
suited to the kind of programming introduced here. While 
we elucidate all necessary aspects of the required code, a 
basic understanding of R is thus required. Basic R courses 
are offered at many universities around the world, as well 
as through numerous media online and in print. We highly 
recommend that users first make themselves familiar with 
the programming language before studying this section. 
Python is another programming language often used in 
machine learning. The same general principles and pipeline 
discussed here can be applied in Python to arrive at a pre-
diction model.

At this point we again want to stress that this section is 
not intended to represent a single perfect method that will 
apply to every binary endpoint, and to every data situation. 
Instead, this section represents one possible, generalizable 
methodology, that incorporates most of the important 
aspects of machine learning and clinical prediction 
modeling.

To illustrate the methods applied, we supply a simulated 
database of 10,000 glioblastoma patients who underwent 
microsurgery, and predict the occurrence of 12-month sur-
vival. Table 5.1 provides an overview over the glioblastoma 
database. We walk the reader through each step, including 
import, checking, splitting, imputation, and pre-processing 
of the data, as well as variable selection, model selection and 
training, and lastly correct evaluation of discrimination and 
calibration. Proper visualization and reporting of machine 
learning-based clinical prediction models for binary end-
points are also discussed.

The centerpiece of this section is the provided R code 
(Supplement 5.1), which is intended to be used in  combination 
with the provided glioblastoma database (Supplement 5.2). 
When executed correctly and in parallel with this section’s 
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contents, the code will output the same results as those 
achieved by the authors, which allows for immediate feed-
back. The R code itself is numbered in parallel to this sec-
tion, and also contains abundant explanations which enable a 
greater understanding of the functions and concepts that are 

necessary to succeed in generating a robust model. Finally, 
the code is intended as a scaffold upon which readers can 
build their own clinical prediction models for binary classifi-
cation, and can easily be modified to do so for any dataset 
with a binary outcome.

5.2  Setup and Pre-processing Data

 R Setup and Package Installation

Installing the most recent version of R (available at https://
cran.r- project.org/) as well as the RStudio graphic user 
interface (GUI) (available at https://rstudio.com/products/
rstudio/download/) is recommended [14]. A core strength 
of the R programming language is its wide adoption, and 
thus the availability of thousands of high-end, freely down-
loadable software packages that facilitate everything from 
model training to plotting graphs. Running the “pacman” 
[15] codes in section 1.1 will automatically ensure that all 
packages necessary for execution of this code are installed 
and loaded into the internal memory. You will require an 
internet connection to download these packages. If you 
have a clean R installation and have no installed any of the 
packages yet, it might take multiple minutes to download 
and install all necessary data. The script also gives you the 
option to update your R installation, should you desire to 
do so.

 Importing Data

Generally, it is easiest to prepare your spreadsheet in the 
following way for machine learning: First, ensure that all 
data fields are in numerical form. That is, both continuous 
and categorical variables are reported as numbers. We rec-
ommend formatting binary (dichotomous) categorical vari-
ables (i.e. male gender) as 0 and 1, and categorical variables 
with multiple levels (i.e. tumor type [Astrocytoma, 
Glioblastoma, Oligodendroglioma, etc.]) as 1, 2, 3, and so 
forth, instead of as strings (text). Second, we recommend 
always placing your endpoint of interest in the last column 
of your spreadsheet. The Glioblastoma dataset that is pro-
vided is already correctly formatted. To import the data 
from the Glioblastoma database in Microsoft Excel 
(Supplement 5.2), run the code in section 1.2. For R to find 
the Glioblastoma database on your computer, you can 
either store the .xlsx file in the same folder as the R script 
or you have to manually enter the path to the .xlsx file, as 
demonstrated in Fig. 5.1. You could also use RStudio’s GUI 
to import the dataset.

Table 5.1 Structure of the simulated glioblastoma dataset. The num-
ber of included patients is 10,000. Values are provided as means and 
standard deviations or as numbers and percentages

Variable name Description Value
Survival Overall survival from 

diagnosis in months
12.1 ± 3.1

TwelveMonths Patients who survived 
12 months or more from 
diagnosis

5184 (51.8%)

IDH IDH mutation present 4136 (41.4%)
MGMT MGMT promoter 

methylated
5622 (56.2%)

TERTp TERTp mutation present 5108 (51.1%)
Male Male gender 4866 (48.7%)
Midline Extension of the tumor 

into the midline
2601 (26.0%)

Comorbidity Presence of any systemic 
comorbidity such as 
diabetes, coronary heart 
disease, chronic 
obstructive pulmonary 
disease, etc.

5135 (51.4%)

Epilepsy Occurrence of an epileptic 
seizure

3311 (33.1%)

PriorSurgery Presence of prior cranial 
surgery

5283 (52.8%)

Married Positive marriage status 5475 (54.8%)
ActiveWorker Patient is actively working, 

i.e. not retired, student, out 
of work, etc.

5459 (54.6%)

Chemotherapy Patients who received 
chemotherapy for 
glioblastoma

4081 (40.8%)

HigherEducation Patients who received 
some form of higher 
education

4209 (42.1%)

Caseload Yearly glioblastoma 
microsurgery caseload at 
the treating center

165.0 ± 38.7

Age Patient age at diagnosis in 
years

66.0 ± 6.2

RadiotherapyDose Total radiotherapy 
absorbed dose in Gray

24.8 ± 6.7

KPS Karnofsky Performance 
Scale

70.5 ± 8.0

Income Net yearly household 
income in US dollars

268,052 ± 62,867

Height Patient body height in cm 174.6 ± 6.7
BMI Deviation of body mass 

index from 25; in kg/m2

0.02 ± 1.0

Size Maximum tumor diameter 
in cm

2.98 ± 0.55
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 Check the Imported Data

Run “str(df)” to get an overview of the imported data’s struc-
ture. We see that all 22 variables are correctly imported, but 
that they are all currently handled by R as numerical (“num”) 
variables, whereas some of them are categorical and should 
thus be handled in R as “factor” variables. An overview of 
the variables in the Glioblastoma database is provided in 
Table 5.1.

 Reformat Categorical Variables

To reformat all categorical variables to “factor” variables in 
R, allocate them to the “cols” object. Subsequently, we apply 
the “factor” function to all columns of the database using the 
“lapply” function. Lastly, the binary endpoint of interest 
(“TwelveMonths”) should be internally labeled as “yes” and 
“no,” again using the “factor” function. Lastly, “str(df)” is 
used again to confirm the correct reformatting.

 Remove Unnecessary Columns

Your imported data may contain extra columns with vari-
ables that are irrelevant to the current classification problem, 
such as patient numbers, names, or other endpoints. The lat-
ter is the case in the Glioblastoma database: The 21st column 
contains the variable “Survival,” which is a continuous form 
of our binary endpoint of interest “TwelveMonths.” Leaving 
this redundant variable in would lead to data leakage—the 
model could simply take the continuous “Survival” variable 
and extrapolate our endpoint “TwelveMonths” from it, with-
out actually learning any features. Columns can be removed 
from a R dataframe by specifying the column number to be 
removed. “Survival” is situated in the 21st column of the 
database, and can thus be removed by applying the function 
“df <- df[,-21].”

 Enable Multicore Processing

If you are working on a machine with multiple central pro-
cessing unit (CPU) cores, you can enable parallel computing 

for some functions in R. Using the code in section 1.6, create 
a computational cluster by entering the number of cores you 
want to invest into model development [16]. The default is 
set to 4, which is nowadays a common number of CPU cores.

 Partition the Data for Training and Testing

Figure 5.2 illustrates the procedure. To randomly split the 
data into 80% for training an 20% for testing (internal valida-
tion), we first set a random seed, such as “set.seed(123),” 
although you could choose any number. Setting seeds initial-
izes random functions in a constant way, and thus enables 
reproducibility. Subsequently, we randomly sample 80% of 
patients and allocate them to the training set (“train”), and do 
the same for the test set (“test”). Then, the rows of the two 
newly partitioned sets are shuffled, and the two sets are 
checked for an approximately equal distribution of the binary 
endpoint using the “prop.table()” function. Both sets contain 
around 52% of patients who survived for at least 12 months.

 Impute Missing Data

The glioblastoma database contains no missing data, as the 
function “VIM::kNN” [17] will let you know. However, 
should you encounter missing data, this code block should 
automatically impute missing data using a k-nearest neigh-
bor (KNN) algorithm [18]. It is important only to impute 
missing data within the training set, and to leave the test set 
alone. This is to prevent data leakage. Also, imputation can 
be achieved using many different algorithms. We elected to 
use a KNN imputer for reasons of consistency—during 
model training, a separate KNN imputer will be co-trained 
with the prediction model to impute any future missing data.

 Variable Selection Using Recursive Feature 
Elimination

Recursive Feature Elimination (RFE) is just one of various 
methods for variable selection (see Chap. 7 for further expla-
nation). In this example, we apply RFE (Fig. 5.3) due to its 
relative simplicity, generalizability, and reproducibility. 

Fig. 5.1 Code section 1.2: You can either import the Glioblastoma 
database by keeping its .xlsx file in the same folder as the R script (A). 
Alternatively, you may have to find the path (e.g. “C:/Desktop/database.

xlsx”) to the .xlsx file and enter it as a string, i.e. between quotes (B). 
Lastly, you could also use the graphic user interface of RStudio to 
import the file
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Because random functions are involved, seeds need to be set. 
A naïve Bayes classifier is selected, and bootstrap resam-
pling with 25 repetitions is used to ensure generalizability of 
the results. Suing the “sizes” argument in the “rfe” function 
[19], the number of combined variables that are to be assessed 
can be limited. As we have 20 independent variables, we 
choose to limit the search for the optimal number and com-
bination of variables to between 10 and 20. The “rfe()” func-
tion is executed, which may take some minutes. Using 
“plot()”, the results of the RFE procedure can be illustrated 
(Fig. 5.4), and it is clear that a combination of 13 variables 
led to the highest performance. The selected variables are 
stored in “predictors(RFE).” These 13 selected variables, 
plus the endpoint “TwelveMonths” are stored in “keepvars,” 
and the training set is subsequently reduced to 14 columns.

 Get a Final Overview of the Data

Before diving directly into model training, it is advisable to 
look over the training and test set using the “summary()” 
function to assess the correctness of the independent vari-
ables and the endpoint.

5.3  Model Training

 Setting Up the Training Structure

Now that the data are prepared, training of the different mod-
els can be initiated. In this example, we elected to train five 
different algorithms to predict binary 12-month survival: 
Logistic regression [20] (generalized linear models, GLM), 
random forests [21] (RF), stochastic gradient boosting 
machines [22] (GBM), generalized additive models [23] 
(GAM), and naïve Bayes classifiers [24] (NB). A brief over-
view of the five different models is provided in Table 5.2. We 
specifically refrained from using more complex models, 
such as neural networks, due to their inherently decreased 
interpretability and because they are more prone to  overfitting 
on the relatively simple, clinical data used in this example 
[25]. All five models are trained sequentially and in a similar 
way using a universal wrapper that executes training, the 
“caret” package [19]. Hyperparameters—if available—are 
tuned automatically. To prevent overfitting, bootstrap resam-
pling with 25 repetitions is chosen in this example (Fig. 5.5) 
[26]. However, fivefold cross validation could also easily be 
implemented (see Chap. 6). To adjust for any potential class 

Fig. 5.2 Code section 1.7: This section illustrates how to partition a database into training and test (internal validation) sets

Fig. 5.3 Code Sect. 1.9: This section illustrates the recursive feature elimination (RFE) procedure. A naïve Bayes classifier is chosen, along with 
bootstrap resampling with 25 repetitions
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imbalance (see Chap. 4), random upsampling is implemented 
by choosing “sampling = “up””, although synthetic minority 
oversampling (SMOTE) could also be used (sam-
pling = “smote”) [27, 28]. The current Glioblastoma dataset 
is, however, without class imbalance, as short-term and lon-
ger-term survivors are approximately equally common.

 Model Training

The procedure (Fig.  5.5) is equivalent for all five models 
(Sections 2.2.1–2.2.5). First, a seed is set to initialize the ran-
dom number generator in a reproducible way. Subsequently, 
the algorithm to be used is specified in the “method” argu-
ment—the first model to be trained is a logistic GLM, so 

“method  =  “glm”” is chosen. The “tuneLength” argument 
depends on the complexity and of the hyperparameters: 
GLM has no hyperparameters, so a low value is specified. 
We specify that the parameters and hyperparameters are to 
be optimized according to area under the curve (AUC, met-
ric  =  “ROC”), and that a KNN imputer is co-trained for 
future missing data (preProcess = “knnImpute”). The inputs 
are automatically centered and scaled by the “caret” pack-
age. After running the fully specified “caret::train” function, 
it may take some minutes for all resamples to finish training. 
The red “STOP” dot at the top right of the RStudio console 
will be present for as long as the model is training. 
Subsequently, a confusion matrix (conf) is generated, along 
with some other metrics that allow evaluation of the model’s 
discrimination. Now, calibration is assessed and a calibration 
plot is generated using the “val.prob()” function [29]. Finally, 
the model specifications and resampled training performance 
are printed, and the model can be saved using the “save()” 
function for potential further use.

After completion of training the GLM (Section 2.2.1), the 
same procedure is repeated for the RF (Section 2.2.2), GBM 
(Section 2.2.3), GAM (Section 2.2.4), and NB (Section 
2.2.5) models.

5.4  Model Evaluation and Selection

 Model Training Evaluation

As soon as all five models have been trained, their perfor-
mance on the training data can be compared. The final 
model should be selected based upon training data only. 
Criteria for clinical prediction model selection may include 
discrimination and calibration on the training set, as well as 
the degree of interpretability of the algorithm. Section 3.1 
compiles the results of all five models, and allows their 
comparison in terms of discrimination (AUC, accuracy, 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), F1 score) and calibration 

Fig. 5.4 Results of the recursive feature elimination (RFE) variable 
election procedure. It was determined that using 13 variables explained 
the highest amount of variance, as seen in the superior accuracy that 
was achieved with this number and combination of variables

Table 5.2 Overview of the five models that were employed

Model
caret::train() 
input Package Suitability Hyperparameters

Generalized 
Linear Model

glm stats Classification, 
Regression

None

Random Forest rf randomForest Classification, 
Regression

mtry (number of variables at each tree node)

Stochastic 
Gradient 
Boosting

gbm gbm Classification n.trees (number of trees), interaction.depth (maximum nodes per 
tree), shrinkage (learning rate), n.minobsinnode (minimum number of 
patients per terminal node)

Generalized 
Additive Model

gamLoess gam Classification, 
Regression

span (smoothing span width), degree (degree of polynomial)

Naïve Bayes 
Classifier

nb klaR Classification fL (Laplace correction factor), usekernel (normal or kernel density 
estimate), adjust
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(intercept and slope) metrics [30]. The code in this section 
will also open a new plot viewer window using “dev.new()”, 
that allows graphical comparison of the five models. If you 
have executed all parts of the script correctly up to this 
point, you will be presented with a plot that is identical to 
Fig.  5.6. In this plot, we see that—while all models per-
formed admirably—the GLM and GAM had the highest 
discrimination metrics. Models perform well if these dis-
crimination measures approach 1. In addition, while all 
absolute values of intercept were very low, not all models 
had excellent calibration slopes. A perfectly calibrated 
model has an intercept of 0.0 and a slope of 1.0. Only the 
GLM and GAM had virtually perfect slopes. As both algo-
rithms are highly interpretable, the GLM and the GAM 
both would make fine options for a final model. In this 
example, we elected to carry on with the GAM.

 Select the Final Model

The fully trained GAM model was previously stored as 
“gamfit,” and its resampled training evaluation as “GAM” in 
section 2.2.4. Now, as the GAM model is selected as the final 
model, it is renamed “finalmodel,” and its training evaluation 
is renamed “finalmodelstats.” You can choose any other 
model by replacing these two terms with the corresponding 
objects from section 2.2.

 Internal Validation on the Test Set

For the first time since partitioning the original Glioblastoma 
database, the 20% of patients allocated to the test set are now 
used to internally validate the final model. First, a prediction 
is made on the test set using “finalmodel” and the “predict()” 

Fig. 5.5 Code sections 2.1 and 2.2: First, the training structure is 
established: Bootstrap resampling with 25 repetitions is used. As a stan-
dard, random upsampling is applied to adjust for class imbalance if 
present. Subsequently, a logistic regression model (generalized linear 
model, GLM) is trained. All predictor variables are provided to the 

model, and it is automatically tuned for AUC.  A k-nearest neighbor 
imputer is co- trained to impute any potential missing data in future pre-
dictions. Subsequently, discrimination and calibration are assessed, and 
the final model information and resampled training performance are 
printed
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function. Of note, during prediction with the GAM on the 
test set, you will encounter warning messages indicating that 
extrapolation took place. These warning messages are not to 
be considered as errors, but as informative warnings indicat-
ing that some patients in the test set had characteristics that 
were outside of the bounds encountered by the GAM during 
training. GAMs rely on local regression, which makes 
extrapolation to extreme input values problematic. This is 
discussed in some more detail in Part III.

The predicted probabilities for the entire test set are then 
contrasted with the actual class labels from the endpoint 
(test$TwelveMonths) to arrive at an AUC value [31]. 
Subsequently, the predicted probabilities are converted into 
binary predictions using “factor(ifelse(prob$yes > 0.50, 
“yes”, “no”)).” Thus, predicted probabilities over 0.50 are 
counted as positive predictions (yes), and vice versa. This 
cutoff for binary classification can be changed to different 
values, changing sensitivity and specificity of the clinical 
prediction model. However, the decision to do so must be 
based solely on the training data, and thus already be taken 
before evaluation of the test set—otherwise, a clean assess-
ment of out-of-sample error through internal validation is not 
possible anymore. This is discussed in some more detail in 
Part III. However, in most cases and especially with well- 
calibrated models, a standard cutoff of 0.50 is appropriate.

Subsequently, discrimination and calibration are calcu-
lated in the same way as previously. Using “print(Final),” the 
internal validation metrics can be viewed. Performance that 

is on par with or slightly worse than the training performance 
usually indicates a robust, generalizable model. Performance 
that is relevantly worse than the training performance indi-
cates overfitting during training. These problems are dis-
cussed in detail in Part II. The final model can be saved, and 
will be available as “FINALMODEL.Rdata” in the same 
folder as the R script. Using the “load()” function, models 
can be imported back into R at a later date.

If you end up with the same performance metrics for the 
final GAM as in Table  5.3, you have executed all steps 
correctly.

Fig. 5.6 Graphical comparison of discrimination (left) and calibration (right) metrics (Code section 3.1). The GLM and GAM both exhibited the 
highest discrimination measures, with very low absolute intercept values and almost perfect slopes approaching 1

Table 5.3 Performance metrics of the binary classification model 
(generalized additive model; GAM) for 12-month glioblastoma sur-
vival. The difference in performance among training and testing is 
minimal, demonstrating a lack of overfitting at internal validation

Metric

Cohort
Training Internal validation
(n = 8000) (n = 2000)

Discrimination
AUC 0.926 0.922
Accuracy 0.839 0.847
Sensitivity 0.839 0.848
Specificity 0.839 0.846
PPV 0.849 0.848
NPV 0.830 0.826
F1 score 0.844 0.843
Calibration
Intercept 0.074 0.039
Slope 1.004 0.961
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5.5  Reporting and Visualization

When generating clinical prediction models and publish-
ing their results, there is a minimum set of information that 
ought to be provided to the reader. First, the training meth-
ods and exact algorithm type should be reported, if possible 
along with the code that was used for training. Second, the 
characteristics of the cohort that was used for training should 
be provided, such as in Table  5.1. If multiple cohorts are 
combined or used for external validation, the patient charac-
teristics should be reported in separate. Discrimination and 
calibration must be reported. There are countless metrics to 
describe calibration and discrimination of prediction mod-
els. The bare minimum that should be reported for a binary 
prediction model probably consists of AUC, accuracy, sen-
sitivity, specificity, PPV, and NPV, along with calibration 
intercept and slope. The F1 score can also be provided. A 
calibration plot should also be provided for binary prediction 
models. Lastly, whenever feasible, an attempt at interpreting 
the model should be made. For example, logistic regression 
(GLM) models produce odds ratios, and GAMs can produce 
partial dependence values. However, there are also universal 
methods to generate variable importance measures that can 
apply to most binary prediction models, usually based on 
AUC, which we present below. To simplify reporting, this 
final section helps compile all these data required for publi-
cation of clinical prediction models. For further information 
on reporting standards, consult the transparent reporting of 
a multivariable prediction model for individual prognosis or 
diagnosis (TRIPOD) checklist [32].

 Compiling Training Performance

The resampled training performance in terms of dis-
crimination and calibration can be printed using 
“print(finalmodelstats).” The metrics that are produced 
include AUC, accuracy, sensitivity (recall), specific-
ity, PPV (precision), NPV, F1 score, intercept, and slope. 
Subsequently, a calibration plot is generated for the training 
set using the “val.prob()” function.

 Compiling Internal Validation Performance

Similarly, the performance on the test set (internal valida-
tion) can be recapitulated, and a calibration plot produced 
(analogous to Fig. 5.7).

 Assessing Variable Importance

By using “varImp(finalmodel),” a universal method for 
estimation of variable importance based on AUC is exe-
cuted, and results in a list of values ranging from 0 to 100, 
with 100 indicating the variable that contributed most 
strongly to the predictions, and vice versa. Finally, 
“plot(imp)” generates a variable importance plot that can 
also be included in publication of clinical prediction mod-
els (see Chap. 6).

5.6  Conclusion

This section presents one possible and standardized way of 
developing clinical prediction models for binary endpoints. 
Proper visualization and reporting of machine learning- 
based clinical prediction models for binary endpoints are 
also discussed. We provide the full, structured code, as well 
as the complete Glioblastoma survival database for the read-
ers to download and execute in parallel to this section. The 
methods presented can and are in fact intended to be extended 
by the readers to new datasets, new endpoints, and new 
algorithms.

Disclosures

Fig. 5.7 Calibration plot for the final GAM, demonstrating its calibra-
tion on the test set (internal validation). The calibration curve closely 
approximates the diagonal line, indicating excellent calibration
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Foundations of Machine 
Learning- Based Clinical Prediction 
Modeling: Part V—A Practical Approach 
to Regression Problems

Victor E. Staartjes and Julius M. Kernbach

6.1  Introduction

In the neurosurgical literature, applications of machine learn-
ing for clinical prediction modeling are by far the most com-
mon [1–4]. The topic of predictive analytics also uniquely 
lends itself to introducing machine learning methods due to 
its relative ease of implementation. Still, we chose to specifi-
cally focus on predictive analytics as the most popular appli-
cation of machine learning in neurosurgery. Nonetheless, the 
great potential of machine learning methods in fields other 
than prediction modeling, such as, e.g. natural language pro-
cessing, medical image classification, radiomic feature 
extraction, and many more must not go unmentioned [5–13]. 
In clinical predictive analytics, those models concerned with 
prediction of continuous endpoints (e.g. survival in months) 
as opposed to binary endpoints (e.g. occurrence of a compli-
cation) are coined regressors. Regression problems, in con-
trast to classification problems, require different methodology, 
different algorithms, and different evaluation and reporting 
strategies.

Whereas Part IV laid out the details of generating binary 
prediction models, this chapter of the series is intended to 
demonstrate the programming methods required to train and 
validate a simple, machine learning-based clinical prediction 
model for any continuous endpoint. Many concepts and parts 
of the code have already been discussed in more detail in Part 
IV, and this part will focus on the differences to predicting 
binary endpoints. For a better understanding of the methods 
presented herein, Part IV should thus be studied first.

We focus on the statistical programming language R [14], 
as it is freely available and widely regarded as the state of the 
art in biostatistical programming. While we elucidate all nec-
essary aspects of the required code, a basic understanding of 
R is thus required. Basic R courses are offered at many uni-
versities around the world, as well as through numerous 
media online and in print. We highly recommend that users 
first make themselves familiar with the programming lan-
guage before studying this section.

At this point we again want to stress that this section is not 
intended to represent a single perfect method that will apply 
to every continuous endpoint, and to every data situation. 
Instead, this section represents one possible, generalizable 
methodology, that incorporates most of the important aspects 
of machine learning and clinical prediction modeling.

To illustrate the methods applied, we supply a simulated 
database of 10,000 glioblastoma patients who underwent 
microsurgery, and predict the occurrence of 12-month sur-
vival. Table 6.1 provides an overview over the glioblastoma 
database. We walk the reader through each step, including 
import, checking, splitting, imputation, and pre-processing 
of the data, as well as variable selection, model selection and 
training, and lastly correct evaluation of the regression 
model. Proper reporting is also discussed.

The centerpiece of this section is the provided R code 
(Supplement 6.1), which is intended to be used in combina-
tion with the provided glioblastoma database containing 
10,000 simulated patients (Supplement 6.2). When exe-

V. E. Staartjes (*) 
Machine Intelligence in Clinical Neuroscience (MICN) 
Laboratory, Department of Neurosurgery, Clinical Neuroscience 
Center, University Hospital Zurich, University of Zurich,  
Zurich, Switzerland
e-mail: victoregon.staartjes@usz.ch; https://micnlab.com/ 

J. M. Kernbach 
Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), 
Department of Neurosurgery, RWTH Aachen University Hospital, 
Aachen, Germany

Supplementary Information The online version contains supplementary 
material available at (https://doi.org/10.1007/978- 3- 030- 85292- 4_6).

6

J.  M. Kernbach and V.  E. Staartjes have contributed equally to this 
series, and share first authorship.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85292-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-85292-4_6#DOI
mailto:victoregon.staartjes@usz.ch
https://doi.org/10.1007/978-3-030-85292-4_6#DOI


44

cuted correctly and in parallel with this section’s contents, 
the code will output the same results as those achieved by 
the authors, which allows for immediate feedback. The R 
code itself is numbered in parallel to this section, and also 
contains abundant explanations which enable a greater 
understanding of the functions and concepts that are neces-
sary to succeed in generating a robust model. Finally, the 
code is intended as a scaffold upon which readers can build 
their own clinical prediction models for regression, and can 
easily be modified to do so for any dataset with a continu-
ous outcome.

6.2  Setup and Pre-processing Data

Sections 1.1–1.3 are identical to those required for classifica-
tion problems, and are thus covered in Part IV [15]. Thus, we 
kindly ask the reader to consult Part IV for further clarifica-
tion on R setup, package loading, importing data, and check-
ing the formatting of the imported data.

 Reformat Categorical Variables

To reformat all categorical variables to “factor” variables in 
R, allocate them to the “cols” object. Subsequently, we apply 
the “factor” function to all columns of the database using the 
“lapply” function. Lastly, “str(df)” is used again to confirm 
the correct reformatting.

 Remove Unnecessary Columns

Your imported data may contain extra columns with vari-
ables that are irrelevant to the current regression problem, 
such as patient numbers, names, or other endpoints. The lat-
ter is the case in the Glioblastoma database: The 22nd col-
umn contains the variable “TwelveMonths,” which is a 
binary form of our continuous endpoint of interest “Survival.” 
Leaving this redundant variable in would lead to data leak-
age—the model could simply take the binary “TwelveMonths” 
variable and extrapolate some parts of our endpoint 
“Survival” from it, without actually learning any features. 
Columns can be removed from a R dataframe by specifying 

Table 6.1 Structure of the simulated glioblastoma dataset. The number of included patients is 10,000. Values are provided as means and standard 
deviations or as numbers and percentages

Variable name Description Value
Survival Overall survival from diagnosis in months 12.1 ± 3.1
TwelveMonths Patients who survived 12 months or more from 

diagnosis
5184 (51.8%)

IDH IDH mutation present 4136 (41.4%)
MGMT MGMT promoter methylated 5622 (56.2%)
TERTp TERTp mutation present 5108 (51.1%)
Male Male gender 4866 (48.7%)
Midline Extension of the tumor into the midline 2601 (26.0%)
Comorbidity Presence of any systemic comorbidity such as 

diabetes, coronary heart disease, chronic 
obstructive pulmonary disease, etc.

5135 (51.4%)

Epilepsy Occurrence of an epileptic seizure 3311 (33.1%)
PriorSurgery Presence of prior cranial surgery 5283 (52.8%)
Married Positive marriage status 5475 (54.8%)
ActiveWorker Patient is actively working, i.e. not retired, student, 

out of work, etc.
5459 (54.6%)

Chemotherapy Patients who received chemotherapy for 
glioblastoma

4081 (40.8%)

HigherEducation Patients who received some form of higher 
education

4209 (42.1%)

Caseload Yearly glioblastoma microsurgery caseload at the 
treating center

165.0 ± 38.7

Age Patient age at diagnosis in years 66.0 ± 6.2
RadiotherapyDose Total radiotherapy absorbed dose in Gray 24.8 ± 6.7
KPS Karnofsky Performance Scale 70.5 ± 8.0
Income Net yearly household income in US dollars 268,052 ± 62,867
Height Patient body height in cm 174.6 ± 6.7
BMI Deviation of body mass index from 25; in kg/m2 0.02 ± 1.0
Size Maximum tumor diameter in cm 2.98 ± 0.55
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the column number to be removed. “TwelveMonths” is situ-
ated in the 22nd column of the database, and can thus be 
removed by applying the function “df <- df[,-22].”

 Enable Multicore Processing

If you are working on a machine with multiple central pro-
cessing unit (CPU) cores, you can enable parallel computing 
for some functions in R. Using the code in section 1.6, create 
a computational cluster by entering the number of cores (= 
number of separate R instances) you want to invest into 
model development [16]. The default is set to 4, a common 
number of CPU cores in 2021.

 Partition the Data for Training and Testing

Figure 6.1 illustrates the procedure. To randomly split the 
data into 80% for training an 20% for testing (internal valida-
tion), we first set a random seed, such as “set.seed(123),” 
although you could choose any number. Setting seeds initial-
izes random functions in a constant way, and thus enables 
reproducibility. Subsequently, we randomly sample 80% of 
patients and allocate them to the training set (“train”), and do 
the same for the test set (“test”). Then, the rows of the two 
newly partitioned sets are shuffled, and the two sets are 
checked for an approximately equal distribution of the con-
tinuous endpoint using “hist(train$Survival).” The histo-
grams show a very similar distribution, both with mean 
survival of around 12 months.

 Impute Missing Data

The glioblastoma database contains no missing data, as the 
function “VIM::kNN” [17] will let you know. However, 
should you encounter missing data, this code block should 
automatically impute missing data using a k-nearest neigh-

bor (KNN) algorithm [18]. It is important only to impute 
missing data within the training set, and to leave the test set 
alone. This is to prevent data leakage. Also, imputation can 
be achieved using many different algorithms. We elected to 
use a KNN imputer for reasons of consistency—during 
model training, a separate KNN imputer will be co-trained 
with the prediction model to impute any future missing data.

 Variable Selection using Recursive Feature 
Elimination

Recursive Feature Elimination (RFE) is just one of various 
methods for variable selection (see Chap. 7 for further expla-
nation). In this example, we apply RFE (Fig. 6.2) due to its 
relative simplicity, generalizability, and reproducibility. 
Because random functions are involved, seeds need to be set. 
A linear model is selected as the regressor, and bootstrap 
resampling with 25 repetitions is used to ensure generaliz-
ability of the results. Using the “sizes” argument in the “rfe” 
function [19], the number of combined variables that are to 
be assessed can be limited. As we have 20 independent vari-
ables, we choose to limit the search for the optimal number 
and combination of variables to between 10 and 20. The 
“rfe()” function is executed, which may take some minutes. 
Using “plot()”, the results of the RFE procedure can be illus-
trated (Fig. 6.3), and it is clear that a combination of 16 vari-
ables led to the highest performance. The selected variables 
are stored in “predictors(RFE).” These 16 selected variables, 
plus the endpoint “Survival” are stored in “keepvars,” and 
the training set is subsequently reduced to 17 columns.

 Get a Final Overview of the Data

Before diving directly into model training, it is advisable to 
look over the training and test set using the “summary()” 
function to assess the correctness of the independent vari-
ables and the endpoint.

Fig. 6.1 Code section 1.7: This section illustrates how to partition a database into training and test (internal validation) sets
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6.3  Model Training

 Setting Up the Training Structure

Now that the data are prepared, training of the different mod-
els can be initiated. In this example, we elected to train five 
different algorithms to predict continuous survival in months: 
Linear regression using a generalized linear model (GLM), 
random forests [20] (RF), generalized additive models [21] 
(GAM), Least Absolute Shrinkage and Selection Operator 
(Lasso) regression [22], and ridge regression [22]. A brief 

overview of the five different models is provided in Table 6.2. 
We specifically refrained from using more complex models, 
such as neural network regressors, due to their inherently 
decreased interpretability and because they are more prone 
to overfitting on the relatively simple, clinical data used in 
this example [23]. All five models are trained sequentially 
and in a similar way using a universal wrapper that executes 
training, the “caret” package [19]. Hyperparameters—if 
available—are tuned automatically. To prevent overfitting, 
fivefold cross validation was chosen as resampling technique 
in this example (Fig. 6.4) [24]. However, bootstrap resam-
pling with 25 repetitions could also easily be implemented 
(see Chap. 5).

 Model Training

The procedure (Fig. 6.4) is equivalent for all five regressors 
(Sections 2.2.1–2.2.5). First, a seed is set to initialize the ran-
dom number generator in a reproducible way. Subsequently, 
the algorithm to be used is specified in the “method” argu-
ment—the first model to be trained is a linear GLM, so 
“method  =  “glm”” is chosen. The “tuneLength” argument 
depends on the complexity and of the hyperparameters: 
GLM has no hyperparameters, so a low value is specified. 
We specify that the parameters and hyperparameters are to 
be optimized according to root mean square error (RMSE, 
metric = “RMSE”), and that a KNN imputer is co-trained for 
future missing data (preProcess = “knnImpute”). The inputs 
are automatically centered and scaled by the “caret” pack-
age. After running the fully specified “caret::train” function, 
it may take some minutes for all resamples to finish training. 
The red “STOP” dot at the top right of the RStudio console 
will be present for as long as the model is training. 
Subsequently, the resampled performance metrics RMSE, 
mean average error (MAE), and R2 are calculated. Finally, 

Fig. 6.2 Code section 1.9: This section illustrates the recursive feature elimination (RFE) procedure. A generalized linear model (GLM) is chosen 
as the regressor, along with bootstrap resampling with 25 repetitions

Fig. 6.3 Results of the recursive feature elimination (RFE) variable 
election procedure. It was determined that using 16 variables explained 
the highest amount of variance, as seen in the low RMSE that was 
achieved with this number and combination of variables
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the model specifications and resampled training performance 
are printed, and the model can be saved using the “save()” 
function for potential further use.

After completion of training the GLM (Section 2.2.1), the 
same procedure is repeated for the GAM (Section 2.2.2), 
Lasso regressor (Section 2.2.3), ridge regressor (Section 
2.2.4), and RF (Section 2.2.5) models.

6.4  Model Evaluation and Selection

 Model Training Evaluation

As soon as all five models have been trained, their perfor-
mance on the training data can be compared. The final 
model should be selected based upon training data only. 
Criteria for clinical prediction model selection may 
include discrimination and calibration on the training set, 
as well as the degree of interpretability of the algorithm. 
Section 3.1 compiles the results of all five models, and 
allows their comparison in terms of RMSE, MAE, and R2. 

The code in this section will also open a new plot viewer 
window using “dev.new()”, that allows graphical compar-
ison of the five models. If you have executed all parts of 
the script correctly up to this point, you will be presented 
with a plot that is identical to Fig. 6.5. In this plot, we see 
that—while all models performed admirably—the GLM 
(linear model), GAM, and ridge regressor had the lowest 
error values (RMSE and MAE). Models perform well if 
these error values approach 0. In addition, all models 
except for the RF had very high R2 values, indicating high 
correlation of predicted with actual survival values. The 
R2 value, taken together with quantile–quantile plots that 
will be demonstrated further on, can serve a role similar to 
calibration measures in binary classification models—
namely, as an indication of how well the predicted values 
correspond to the actual values over the spectrum of sur-
vival lengths [25]. As all of the best-performing algo-
rithms are highly interpretable, the GLM, GAM, and ridge 
regressor would all make fine options for a final model. In 
this example, we elected to carry on with the ridge 
regressor.

Table 6.2 Overview of the five models that were employed

Model caret::train() input Package Suitability Hyperparameters
Generalized Linear Model glm stats Classification, Regression None
Random Forest rf randomForest Classification, Regression mtry (number of variables at 

each tree node)
Least Absolute Shrinkage and 
Selection Operator (Lasso)

lasso elasticnet Regression fraction (sum of absolute values 
of the regression coefficients)

Ridge Regression ridge elasticnet Regression lambda (shrinkage factor)
Generalized Additive Model gamLoess gam Classification, Regression span (smoothing span width), 

degree (degree of polynomial)

Fig. 6.4 Code sections 2.1 and 2.2: First, the training structure is 
established: fivefold cross validation is used. Subsequently, a linear 
regression model (generalized linear model, GLM) is trained. All pre-
dictor variables are provided to the model, and it is automatically tuned 

for root mean square error (RMSE). A k-nearest neighbor imputer is 
co- trained to impute any potential missing data in future predictions. 
Subsequently, performance is assessed, and the final model information 
and resampled training performance are printed
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 Select the Final Model

The fully trained ridge regressor was previously stored as 
“ridgefit,” and its resampled training evaluation as “RIDGE” 
in section 2.2.4. Now, as the ridge regressor model is selected 
as the final model, it is renamed “finalmodel,” and its train-
ing evaluation is renamed “finalmodelstats.” You can choose 
any other model by replacing these two terms with the cor-
responding objects from section 2.2.

 Internal Validation on the Test Set

For the first time since partitioning the original Glioblastoma 
database, the 20% of patients allocated to the test set are now 
used to internally validate the final model. First, a prediction 
is made on the test set using “finalmodel” and the “predict()” 
function. The predicted survival values for the entire test set 
are then contrasted with the actual survival values from the 
endpoint (test$Survival) to arrive at error values. Using 
“print(Final),” the internal validation metrics can be viewed. 
Performance that is on par with or slightly worse than the 
training performance usually indicates a robust, generaliz-
able model. Performance that is relevantly worse than the 
training performance indicates overfitting during training. 

These problems are discussed in detail in Part II. The final 
model can be saved, and will be available as “FINALMODEL.
Rdata” in the same folder as the R script. Using the “load()” 
function, models can be imported back into R at a later date.

If you end up with the same performance metrics for the 
final ridge regressor as in Table 6.3, you have executed all 
steps correctly.

6.5  Reporting and Visualization

When generating clinical prediction models and publish-
ing their results, there is a minimum set of information that 
ought to be provided to the reader. First, the training meth-

Fig. 6.5 Graphical comparison of root mean square error (RMSE) and 
mean average error (MAE) to the left, and R2 to the right (Code section 
3.1). The linear model, the LASSO model, and the ridge regressor all 

exhibited similarly low error values (RMSE and MAE), and all three 
achieved high R2 values

Table 6.3 Performance metrics of the final regression model (ridge 
regression) for glioblastoma survival in months. The difference in per-
formance among training and testing is minimal, demonstrating a lack 
of overfitting at internal validation

Metric

Cohort
Training Internal validation
(n = 8000) (n = 2000)

Root mean square error (RMSE) 1.504 1.515
Mean absolute error (MAE) 1.191 1.211
R2 0.763 0.759
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ods and exact algorithm type should be reported, if possi-
ble along with the code that was used for training. Second, 
the characteristics of the cohort that was used for training 
should be provided, such as in Table  6.1. If multiple 
cohorts are combined or used for external validation, the 
patient characteristics should be reported in separate. For 
regression models, a minimum of RMSE, MAE, and R2 
should be reported for both training and testing perfor-
mance. There are countless other metrics to describe 
regression performance of clinical prediction models. 
Lastly, whenever feasible, an attempt at interpreting the 
model should be made. For example, logistic regression 
(GLM) models produce odds ratios, and GAMs can pro-
duce partial dependence values. However, there are also 
universal methods to generate variable importance mea-
sures that can apply to most regression models, which we 
present below. To simplify reporting, this final section 
helps compile all these data required for publication of 
clinical prediction models. For further information on 
reporting standards, consult the transparent reporting of a 
multivariable prediction model for individual prognosis or 
diagnosis (TRIPOD) checklist [26].

 Compiling Training Performance

The resampled training performance can be printed using 
“print(finalmodelstats).” The metrics that are produced 
include RMSE, MAE, and R2. Subsequently, a quantile–
quantile (Q-Q) plot is generated for the training set using the 
“qqplot()” function. A quantile–quantile plot plots quantiles 
of predicted values against quantiles of true survival values, 
and can thus be used to judge how a regressor performs over 
the wide span of survival values (short-term and long-term 
survivors).

 Compiling Internal Validation Performance

Similarly, the performance on the test set (internal valida-
tion) can be recapitulated, and a quantile–quantile plot pro-
duced (analogous to Fig. 6.6).

 Assessing Variable Importance

By using “varImp(finalmodel),” a universal method for esti-
mation of variable importance based on AUC is executed, 
and results in a list of values ranging from 0 to 100, with 100 
indicating the variable that contributed most strongly to the 
predictions, and vice versa. Finally, “plot(imp)” generates a 
variable importance plot that can also be included in publica-
tion of clinical prediction models (See Fig. 6.7).

Fig. 6.6 Quantile-Quantile plot for the final ridge regressor, demon-
strating the relationship between predicted survival values and actual 
survival in months on the test set (internal validation). The curve can be 
interpreted similarly to a calibration curve seen for binary classification 
models. The curve closely approximates a diagonal line, indicating 
excellent performance for both short-term and long-term survivors
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Fig. 6.7 Variable importance of the final model based on a nonpara-
metric, model-independent method. The importance metrics are scaled 
from 0 to 100
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6.6  Conclusion

This section presents one possible and standardized way of 
developing clinical prediction models for regression prob-
lems such as patient survival. Proper visualization and 
reporting of machine learning-based clinical prediction mod-
els for continuous endpoints are also discussed. We provide 
the full, structured code, as well as the complete Glioblastoma 
survival database for the readers to download and execute in 
parallel to this section. The methods presented can and are in 
fact intended to be extended by the readers to new datasets, 
new endpoints, and new algorithms.
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Foundations of Feature Selection 
in Clinical Prediction Modeling

Victor E. Staartjes, Julius M. Kernbach, Vittorio Stumpo, 
Christiaan H. B. van Niftrik, Carlo Serra, and Luca Regli

7.1  Introduction

Most readers are familiar with the concept of “Occam’s 
Razor” or termed Lex Parsimoniae (Law of Parsimony), 
arguing that the explanation with the minimum amount of 
assumptions is often the most reliable choice [1]. This con-
cept transfers relatively well to machine learning (ML)—and 
especially to clinical prediction modeling, where the goal is 
also to explain the variance of a given dependent variable 
(clinical endpoint in the future) based on assumptions in the 
form of input variables (features) collected in the present, 
which are assumed to have certain more or less “generaliz-
able” relationships.

Increasingly often, within the era of “big data,” clinical 
researchers are faced with “wide” datasets (i.e., containing a 
large number of different features in relation to the amount of 
observations) for clinical prediction modeling [2]. Due to the 
increasing availability of data, over-parametrization has become 
ubiquitous to continually improve performance. However, this 

also increases the risk of overfitting, and less complex models 
are often desired in real-world applications [3]. Besides, many 
of the features may only marginally improve predictive per-
formance, anyway.

There are numerous approaches to select features to arrive 
at a feature set for a clinical prediction model: First, one 
could simply include all features—This can certainly be an 
option when the number of features is small relative to the 
number of observations (“long” data). However, in most 
cases, at least some of the features will not, or only to an 
insignificant extent, contribute to the explaining variance of 
the clinical endpoint. A more elegant avenue is to base the 
choice of included features based on prior domain knowl-
edge (biological plausibility): Which factors are known to be 
associated with a given clinical endpoint? While this 
approach is certainly more parsimonious and thoughtful than 
only including all variables, selecting features purely based 
on prior domain knowledge is limited by the extent of prior 
research and the analyst’s domain knowledge. Various com-
plex interactions among variables may also not be consid-
ered. Lastly, remember that prediction is not equal to 
inference—The parameters of an inferential model may dif-
fer from a prediction model based on the same data.

For these reasons, methods for feature selection using 
some sort of objective algorithm have been developed. In 
this chapter, we aim to walk the reader through the founda-
tions of feature selection and demonstrate some of the most 
popular methods.

7.2  Foundations of Feature Selection

The goals of feature selection can also go beyond simplify-
ing models to facilitate input in a clinical setting or to reduce 
overfitting by reducing variance. Reduction of the feature 
space can also ameliorate model interpretation and, therefore, 
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is one of the cornerstones in the quest for truly explainable 
ML [4]. In addition, feature selection will yield shorter train-
ing times through less complex models and consequently 
faster computing in the pipeline.

Apart from parsimony, another interesting aspect is that 
feature selection can even increase model performance. 
Because most algorithms estimate parameters for each term 
of the model, non-informative or redundant features can add 
uncertainty to the predictions and reduce overall perfor-
mance. Thus, the main goal of feature selection is the removal 
of non-informative or redundant features [5].

The “curse of dimensionality”—a concept coined by 
Richard Bellman in 1957 [6]—refers to the fact that, with 
increasing numbers of features, the possible configurations 
of feature interactions can grow exponentially. In turn, one 
single observation can cover less of all possible configura-
tions. This translates to a clinical dataset with, e.g., a number 
of features that could even be higher than the number of 
observations, leading potentially to sparsity of the dataset—
if some values of some features are only seldomly encoun-
tered in the dataset. In ML specifically, the Hughes 
phenomenon [7] implies that—as long as the number of 
observations is stable—a classifier or regressor’s expected 
predictive performance will first increase with an increasing 
number of features (dimensions). Still, beyond a certain 
number of features, performance will start deteriorating. Of 
course, feature selection also helps in tackling the curse of 
dimensionality.

When starting with feature selection, the motto “garbage 
in, garbage out” must be remembered: Features that are 
known to correlate with the endpoint poorly, that are unreli-
able in their capturing (e.g., features with very poor interrater 
reliability), extremely sparse features, and features such as 
patient ID or names should already be filtered from a dataset 
in the first place.

Another seemingly minor but critical point is that feature 
selection should always only be based on the training datas-
et’s observations. The relationships between variables will 
vary at least slightly among different subsets of the studied 
patient population (e.g., consider different variable impor-
tance and other parameters learned during different bootstrap 
resamples, demonstrating expected heterogeneity in how 
features interact when certain patient subgroups are in- or 
excluded). This means that—as a form of data leakage—per-
forming feature selection with a mix of train and test obser-
vations may lead to an overestimation of real-world 
out-of-sample performance.

When considering feature selection methods, a funda-
mental classification can consist of supervised selection 
methods (in which the endpoint is considered) and unsuper-
vised selection methods (in which the endpoint is ignored). 
Feature selection techniques can be further classified in the 
following way:

• Supervised Feature Selection Methods
 – Statistical Filtering

Significance testing
Correlation

 – Algorithmic Wrappers
Feature importance-based
Purposeful Variable Selection
Recursive Feature Elimination (RFE)

 – Intrinsic Methods
Tree- and rule-based models
Lasso (least absolute shrinkage and selection 
operator) regression

• Unsupervised Feature Selection Methods
Correlation

Which method is best for clinical prediction modeling? 
The short answer is: There is no universally superior method 
for feature selection. Therefore, like many options that one 
encounters in practical ML, one must understand the avail-
able techniques and their indications and limitations and 
carefully choose the method that works best for a specific 
problem using systematic empirical experimentation. In a 
certain sense, choosing a feature selection method can be 
seen as a hyperparameter that the human operator needs to 
determine.

Lastly, remember that dimensionality reduction, covered 
in a separate chapter (see Chap. 8), is a concept related to 
feature selection and should also be considered for high- 
dimensional datasets. Dimensionality reduction aims to sim-
plify the dataset by expressing a large amount of the variance 
in just a few newly generated features.

In this chapter, we will elucidate each method briefly, 
focusing on feature selection methods in clinical prediction 
modeling, and provide examples in R for the most salient 
methods. Code examples are added in the supplementary 
material, and examples are based on simulated Glioblastoma 
survival data from the MICN and NAILA laboratories 
(Supplementary Content 7.1).

7.3  Statistical Filtering Methods

In statistical filtering methods, features are selected based on 
their direct (univariable) relationship with the endpoint, and 
some form of numerical cut-off is set to decide whether any 
feature ought to be included or not. Methods for statistical 
filtering are based on the type of available data. Continuous 
and categorical data—both endpoint and features—require 
different approaches, which will be covered in the following 
section.

In general, the advantage of statistical filtering methods is 
that they are easy and quick to implement and that they can 
provide more clarity than other more complex methods do. 
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However, they have significant drawbacks that have led to 
the clinical prediction modeling community moving on 
towards more integrative feature selection methods. Most 
importantly, these methods fail to consider the relationship 
among features and only focus on the univariable  relationship 
among a certain feature and the endpoint. That way, interac-
tions among features are missed. Some features may not cor-
relate very strongly with the endpoint. However, they may 
still represent significant confounders (i.e., they influence 
other features in the dataset) and indirectly contribute to gen-
eralizability and predictive performance. Furthermore, 
redundant features are almost always included.

 Correlation and Significance Testing

If both the features and the endpoint are continuous, corre-
lation methods such as Pearson’s product-moment correla-
tion (parametric) or Spearman’s rank correlation 
(nonparametric) can be applied, depending on the distribu-
tion of the data, for which histograms may be considered. If 
the endpoint is categorical, then univariable logistic regres-
sion (binary endpoint) or the ANOVA correlation coefficient 
(categorical endpoint with more than two levels) can be 
applied if features are continuous, and contingency table 
analysis such as Pearson’s χ2 test can be used if features are 
categorical.

The second step is then to determine a cut-off for the cho-
sen test, above or below, which features are included or not 
included in model training. Often, p values (statistical sig-
nificance) are used as a cut-off: Commonly, features with 
p  <  0.05 will be included in the model. However, this 
approach is fundamentally flawed since p values are strictly 
dependent on sample size and do not necessarily represent 
the strength of an association. Furthermore, if p values are 
used, a generous cut-off such as 0.25 should be preferred 
over 0.05 or other lower cut-offs, since this would allow cer-
tain confounding variables to be included, too.

7.4  Algorithmic Wrapper Methods

 Feature Importance-Based

Some approaches for feature selection based on feature 
importance have been developed (REF?). While some mod-
els intrinsically generate feature importance information, 
such as regression coefficients in generalized linear models 
and partial dependence in generalized additive models 
(GAMs). Still, generalizable methods that can be applied to 
virtually any model have also been developed—for example, 
based on differences in performance (e.g., area under the 
curve, AUC) calculated by leaving out each of the included 

features one-by-one [5]. Using these measures of feature 
importance, features can be ranked.

Feature selection can then be based on, e.g., removing all 
variables under a certain variable importance threshold or by a 
stepwise reduction of the variable with the lowest variable 
importance, which is further explained below. Another option 
is to add multiple random features to the feature set and evalu-
ating feature importance against these features. If any feature 
ranks below these random features, it may be removable. An 
extension of this concept is Boruta [8]—A feature selection 
algorithm commonly applied to tree-based methods. Boruta 
creates “shadow features” for each feature (i.e., it copies all 
values of a particular feature but shuffles them among obser-
vations so that they are randomly distributed) and running a set 
number of multiple training iterations while after each set 
number of iterations, the feature importance is calculated and 
the features that rank lower than their shadow feature are 
removed until certain stopping conditions are met. Boruta can 
be implemented in R using the Boruta package [8].

 Purposeful Variable Selection Algorithm

Several methods for stepwise inclusion and exclusion of fea-
tures have been developed explicitly for generalized linear 
models (GLMs). Because univariable filtering based on uni-
variable linear or logistic regression—much akin to the fil-
tering methods described above—has become unfavorable 
due to the mentioned drawbacks, stepwise methods have 
been developed to allow for multivariable model selection. 
First, forward stepwise regression—in which features are 
added one-by-one to an empty model, and those who lead to 
a statistically significant improvement are retained until the 
model does not statistically significantly improve any fur-
ther—and backward stepwise regression—in which all fea-
tures are initially added to the model, and the model is 
reduced by deletion of each variable according to signifi-
cance criteria—have been developed. However, both 
approaches are based on significance testing. Slightly more 
elegant methods based on the Akaike information criterion 
(AIC) have also been implemented, which may be more suit-
able in non-normally distributed data and can be generalized 
widely to other models [9].

However, all of these approaches fail to consider interac-
tions between features directly. The idea of the Purposeful 
Variable Selection method, developed by Hosmer and 
Lemeshow [10, 11], aims to directly assess confounding by 
looking at change-in-estimate criteria, in addition to pure 
performance measures or statistical significance. The algo-
rithm has become relatively popular, particularly for logistic 
regression but also for linear regression.

The authors of the Purposeful Variable Selection 
algorithm (Bursac et  al. [10]) describe the process in this 
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way: “The purposeful selection process begins by a univari-
ate analysis of each variable. Any variable having a signifi-
cant univariate test at some arbitrary level is selected as a 
candidate for the multivariate analysis. We base this on the 
Wald test from logistic regression and p-value cut-off point 
of 0.25. More traditional levels such as 0.05 can fail in iden-
tifying variables known to be important. In the iterative pro-
cess of variable selection, covariates are removed from the 
model if they are non-significant and not a confounder. 
Significance is evaluated at the 0.1 alpha level and con-
founding as a change in any remaining parameter estimate 
greater than, say, 15% or 20% as compared to the full 
model. A change in a parameter estimate above the speci-
fied level indicates that the excluded variable was important 
in the sense of providing a needed adjustment for one or 
more of the variables remaining in the model. At the end of 
this iterative process of deleting, refitting, and verifying, the 
model contains significant covariates and confounders. At 
this point any variable not selected for the original multi-
variate model is added back one at a time, with significant 
covariates and confounders retained earlier. This step can 
be helpful in identifying variables that, by themselves, are 
not significantly related to the outcome but make an impor-
tant contribution in the presence of other variables. Any that 
are significant at the 0.1 or 0.15 level are put in the model, 

and the model is iteratively reduced as before but only for 
the variables that were additionally added. At the end of this 
final step, the analyst is left with the preliminary main effects 
model.” [10].

Figure 7.1 demonstrates a code example, which is also 
provided in Supplementary Content 7.2 and can be tested 
alongside this text on the provided Glioblastoma data 
(Supplementary Content 7.1) [13].

Briefly, univariable logistic regression for all features is 
carried out in Step 1. To evaluate Step 1, run View() and have 
a look at the generated p values: Each feature with a p ≤ 0.25 
should be included in the next step.

In Step 2, a multivariable model is fitted. The importance 
of each feature is assessed to reduce the model to a more 
parsimonious model with only significant predictors. As 
“predictors,” include all features that passed Step 1. The 
argument “keep_in_mod” can be used to mark specific, clini-
cally relevant variables that ought to be included regardless 
of their significance—These will then stay in the model. To 
evaluate Step 2, run the View() function and inspect the gen-
erated p values. This step will choose significant predictors, 
usually according to a 0.15 or 0.10 level, and create a reduced 
feature space.

In Step 3, it is assessed whether features removed in the 
previous steps represent confounders. In “predictors,” 

Fig. 7.1 Code snippet demonstrating the Purposeful Variable Selection method using the “purposeful” package in R [12]
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include all features that survived Step 2. In “potential_con-
founders,” include all features removed in Steps 1 and 2. To 
evaluate Step 3, have a look at the View() function and spe-
cifically the percentage change in estimates: If any change in 
estimate is larger than 15% or 20%, include this confounding 
feature in the final model.

 Recursive Feature Elimination

Purposeful Variable Selection is a powerful method but is 
limited to GLMs and still based mainly on statistical signifi-
cance. In contrast, Recursive Feature Elimination (RFE) is a 
wrapper method that can be applied to most models, is inde-
pendent of the data type, and empirically selects the most 
informative features. In some sense, it is a “brute force” 
approach for trying out combinations of features in clinical 
prediction modeling. This is also termed a “greedy” approach 
in ML linguistics and can be computationally expensive. 
Nonetheless, RFE is likely the most popular feature selection 
method in ML. RFE was first introduced in 2002 by Guyon 
et al. [14]. It works with the following intuition: First, a clas-
sifier with all features is trained more solito on the training 
set. Second, a ranking criterion is calculated for each feature, 
based on an estimation of the effect of removing one feature 
at a time on an objective function, such as AUC. Lastly, the 
feature with the smallest ranking criterion is removed [14] 
(Supplementary Content 7.3).

In this way, RFE starts with all features included and iter-
atively reduces the model in what is essentially a backwards 
stepwise selection procedure based on a feature importance 
criterion, as described above. Thus, RFE recursively consid-
ers smaller and smaller subsets of features. When the opti-
mum subset of features has been identified according to a 
certain performance measure (performance profile, see 
Fig. 7.2), a full model can be developed on the training data 
using the identified features.

The human operator needs to set only a few hyperparam-
eters, necessarily: The size or size range of the feature sub-
sets that are tried out, whether re-ranking should be carried 
out, and what model is to be used.

The size of the subsets that are tried out can vary between 
1 and the total number of features. In general, if data sets are 
not overly large and computational power is provided, we 
advise studying all feature subset sizes. However, when deal-
ing with large datasets that already require long training 
times with RFE, one can also consider limiting the number 
of features to be selected, e.g., empirically between 5 and 10.

Re-ranking can, in some cases, provide a performance 
benefit. In essence, when re-ranking is enabled, all feature 
importance rankings are recalculated at every step, leading to 

a more accurate estimation of feature importance at each 
step. This is computationally expensive. While in some 
cases, mainly when highly collinear features are present, re- 
ranking can provide some performance benefit, it has also 
been shown that—for random forest—a decrease in perfor-
mance can also result from re-ranking features [5, 15].

Lastly, many models can, in theory, be used for 
RFE. However, random forest [16] is the most popular model 
for feature selection using RFE in regression and classifica-
tion problems. First, random forest—through its ensemble 
nature—usually does not exclude any features outright. 
Second, random forest has an intrinsic method for measuring 
feature importance [16].

Figure 7.3 demonstrates code in R, demonstrating RFE 
implemented using Caret [17] (Supplementary Content 7.3). 
Since random functions are used, a seed is first set. The rfeCon-
trol() function is set with the following arguments: To imple-
ment a random forest, functions = rfFuncs is chosen. We also 
specify that repeated cross-validation with two repeats as well 
as re-ranking are to be carried out. The rfe() function requires 
an indication of which columns represent features and which 
column represents the endpoint and a decision on the feature 
subset sizes that should be evaluated. Running the rfe() func-
tion may take some time. The results can then be printed, and 
the performance over the various subsets can be plotted. Finally, 
the object predictors(RFE) contains all selected features and 
can be used to train a full clinical prediction model.

Fig. 7.2 Performance profile using recursive feature elimination: 
Accuracy is calculated for each optimum subset of features. Apparently, 
in this example, including all 20 features leads to the best performance
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7.5  Intrinsic Methods

 Tree- and Rule-Based Methods

Various tree-based and rule-based models are intrinsically 
able to exclude less important features during training. The 
intuition here is that during the optimization of decision 
trees, the optimal features are selected to split the data based 
on certain performance metrics. If non-informative features 
exist in the dataset, they simply will not be included in the 
final model. This also translates to random forest as an exten-
sion of decision trees such as C5.0 [16, 18]. As rule-based 
systems are commonly derived from decision trees to gain 
the ability to write specific rules, the same applies to rule- 
based systems, too.

However, there is some evidence that, at least in some 
instances, relying only on the intrinsic ability of, e.g., deci-
sion trees to select features may be harmful to predictive per-
formance, compared to employing other feature selection 
methods [19].

C5.0 and random forest can be implemented easily in 
Caret for R by choosing method = “C5.0” or method = “rf” 
in the train() function, respectively [16–18].

 Lasso

The least absolute shrinkage and selection operator (Lasso) 
is a regression method useful for tackling regression prob-
lems (continuous endpoint) that performs feature selection 
and regularization intrinsically and is commonly used with 
linear regression models, although it can also be adapted to 
GLMs. Lasso regression is also called L1 regularization. 
The idea of the Lasso is similar to ridge regression (L2 
regularization), where the sum of the squares of all regres-
sion coefficients are shrunk to a value that is below a fixed 
threshold to reduce overfitting—however, in ridge regres-
sion, the regression coefficients cannot become zero, effec-
tively excluding these features. The Lasso forces the sum of 
the absolute values of all regression coefficients to be lower 
than a fixed threshold, which in turn will force certain 

regression coefficients to take on a value of zero, which 
results in feature selection. The elastic net was later intro-
duced as a further extension of Lasso and is more robust 
when there are large amounts of highly correlated features 
that may still all be important and should thus not necessar-
ily be excluded from the model [20].

Lasso regression can be implemented easily in Caret for 
R by choosing method  =  “lasso” in the train() function 
[17, 20].

7.6  Unsupervised Feature Selection 
Methods

The most common use for unsupervised feature selection 
methods—thus, methods that do not take the endpoint into 
consideration—is to eliminate highly correlated features 
before training using simple correlation. Pearson’s product- 
moment correlation can be applied to create a correlation 
matrix among all features, and extremely highly correlated 
variables (multicollinearity) can be removed based upon 
these correlations. Considering multicollinearity is critical in 
regression analysis because multicollinearity can change 
coefficients to make them unsuitable for inference—for 
example, an increase in one feature that is highly correlated 
with another may be offset by a decrease in the other, negat-
ing each other’s effect and making the coefficients unsuitable 
for inference. Predictions will usually—empirically—
remain stable, and this is often enough for ML.  However, 
remember that empirical methods such as RFE or intrinsic 
methods such as the elastic net may also be equipped to han-
dle highly correlated variables in a more efficient way.

7.7  Conclusions

Feature selection is a critical step in building clinical prediction 
models, and there are various pathways to arriving at a parsi-
monious feature space that explains a high proportion of the 
variance of the dependent variable. Multiple factors must be 
considered, such as the size of the dataset, clinical applicability 

Fig. 7.3 Code snippet 
demonstrating recursive 
feature elimination (RFE) 
using the “caret” package in 
R [17] (Supplementary 
Content 7.3)
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and availability of the potential input features, and the compu-
tational power available. Feature selection based on univariable 
tests and corresponding p values, or correlations, are limited in 
their capacity to arrive at competitive models because they fail 
to consider more intricate interactions among features. Instead, 
wrapper methods, such as RFE, represent a powerful and 
empiric method for feature selection that can easily be imple-
mented in the most common ML libraries.
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8.1  Introduction

In the emerging era of big data sciences, the domain of brain 
sciences and neuroimaging is projected to follow genetics as 
the next most data-rich biomedical specialty [1, 2]. The com-
plexity of biomedical imaging is rapidly increasing due to 
the sheer mass of readily-available high-resolution data, 
including different imaging modalities such as magnetic 
resonance tomography (MRI), positron emission tomogra-
phy, or electroencephalography. Considering the vast quan-
tity and granularity of the available data, several large-scale 
collection initiatives have since emerged. In 2013, the 
Human Connectome Project (HCP) [3] was established, col-
lecting multimodal high-resolution MRI data of >1000 
healthy adults to characterize human brain connectivity and 
function. Other collaborations, such as the Enhancing 
NeuroImaging Genetics through Meta-Analysis (ENIGMA) 
Consortium, emphasized genetic profiling combined with 
neuroimaging in psychiatric diseases, including schizophre-
nia, depression, and attention-deficit/hyperactivity disorder 
[4]. Across disciplines, disease-specific open datasets 
became widely used. In the field of neurology, the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) [5, 6] initiated 
multimodal MRI collection in 2004 and has since been suc-
cessful in finding predictive phenotypes for the development 
of Alzheimer’s disease [7]. The UK Biobank (UKBB) was 
recently introduced as the perhaps most compelling data 
resource for population neuroimaging [8]. Prospective data 
aggregation was initiated in 2006 to gather various pheno-

typing descriptors across genetic profiling, environmental 
data, and electronic health records in 500,000 participants. In 
2014, the UKBB brain imaging extension was launched to 
collect multimodal MRI data across 100,000 participants by 
2022 [9]. Various neuroimaging investigations have since 
successfully targeted major principles of brain organization 
at the population scale using the UKBB imaging-genetics 
cohort. These investigations included multimodal examina-
tions of the neural structural-functional integration [10], 
brain phenotypes of gender differences [11], or the timely 
investigation of the neural correlates of loneliness amid the 
COVID-19 crisis [12].

The UKBB brain imaging cohort covers multimodal MRI 
data, including six different modalities as a raw and prepro-
cessed dataset for 40,000 participants as of the latest release 
[9, 12]. In the expected full set of 100,000 participants, the 
amount of raw neuroimaging data alone will result in approx-
imately 20 PB, that is 20,000,000 GB, of data. These num-
bers immediately illustrate the challenges that come along 
with big data neuroscience. Data sizes of that amount are 
hard to manage in terms of storage, computational speed, 
and memory. Without further processing, they inevitably 
lead to an over-parameterized setting, where the number of 
given features massively exceeds the number of samples. As 
the number of features increases, the applied statistical 
model becomes more complex and more prone to overfitting 
(see Chap. 3). Based on the “curse of dimensionality,” 
famously coined by Richard Bellmann in 1961, generaliza-
tion becomes increasingly difficult in said high dimensions. 
To work against the curse, the raw data’s dimensionality has 
to be reduced to meaningful and concise information, finding 
a lower-dimensional representation of the given feature 
space [13, 14]. Three different methodological approaches 
can be applied to alleviate the problems that arise in over- 
parameterized situations: (1) features can manually be 
designed into new sensible features in the process of feature 
engineering [15], (2) a subset of the original variables can be 
used within feature selection or subset selection using, e.g., 
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regularizing penalties to shrink their coefficients toward 
zero, and (3) dimensionality reduction methods can be 
applied to simplify the given high-dimensional data’s com-
plexity while retaining the underlying patterns of the data.

8.2  Feature Engineering Using Imaging- 
Derived Phenotypes (IDPs)

A pivotal step in any data analysis regime has been identify-
ing and efficiently encoding the most relevant variables. 
Using domain knowledge and analytical processing, the vast 
raw data can be encoded into an informative and concise set 
of features that allows a research objective to be answered. 
For example, in the UKBB, the raw imaging recordings are 
thoroughly preprocessed using a standardized protocol [16], 
which has already reduced the 20  PB (20,000,000  GB) of 
unprocessed data to 300 TB (300,000 GB) of high quality 
preprocessed data [2]. In addition to preprocessing the brain 
imaging data, approximately 4350 imaging-derived pheno-
types (IDPs) are automatically generated, which represent 
distinct measures of brain structure and function.

Examples of IDPs include volumes of different tissue 
types, total brain volume and volumetric summaries for cor-
tical and subcortical structures, microstructural parameters 
of tract-wise diffusion imaging data, or parcellations of 
resting- state network activity. Based on domain knowledge, 
the preprocessed data has been further engineered to sum-
maries of relevant regions of interest (ROIs), e.g., derived 
from anatomical or cyto-architectonic atlas parcellations, to 
compile structural or functional homogenous cortical areas. 
Similarly, recorded resting-state MRI time-series can be par-
cellated into spatially coherent regions of homogenous func-
tional connectivity using a data-driven fashion or established 
ROI delineations [17]. For instance, in the UKBB, resting- 
state MRI recordings were summarized using spatial inde-
pendent component analysis (ICA) at two different 
dimensionalities resulting in a parcellation of spatial compo-
nents representing group-average resting-state networks. In 
contrast to PCA, ICA separates the data into independent 
and additive subcomponents. Using available dictionaries of, 
e.g., cortical ROIs or data-driven network parcellations, 
effectively reduces the raw temporal data into meaningful 
units. Whenever possible, using domain knowledge can lead 
to more efficient representations of our data.

8.3  Dimensionality Reduction Using 
Principal Component Analysis

Another approach to reducing data’s complexity is feature 
extraction or transformation, where the original features are 
combined in a certain way to create new, more concise fea-

tures. While numerous dimensionality reduction methods 
exist, principal component analysis (PCA) [14, 18] has 
proven to be a competitive approach to simplify the high- 
dimensional data while retaining the underlying relevant pat-
terns. PCA is conceptually similar to clustering and a popular 
illustration of an unsupervised learning method, as it finds 
trends and patterns without any knowledge of the target vari-
able. When faced with a large-scale set of correlated data, 
PCA allows us to summarize the features by projecting them 
onto a smaller number of representative principal compo-
nents (PC), which are analytically defined as linear combina-
tions of the data’s original features. The lower-dimensional 
representation of the data is maximized to capture as much 
of the underlying variation in the original data. However, the 
fundamental idea is that (a) often a small number of PCs suf-
ficiently captures most variability in the original data, and (b) 
not all PCs are equally important. Based on these implica-
tions, PCA can be a powerful statistical tool for data explora-
tion and contribute a sensible reduction of the features’ 
complexity for further analyses.

The resulting PC can be geometrically interpreted. The 
projected directions of the PCs run along the axis of the high-
est variability in the original feature space. These projections 
consequently define lines and subspaces that are as close as 
possible to the observed data. This notion is appealing since 
a close relation between the PC and observed data points will 
likely provide a decent summary measure of the data. 
Additionally, all PCs must be geometrically orthogonal, 
meaning that they are uncorrelated with all previous PCs. 
The constraint of orthogonality explains why the second PC 
naturally captures far less information than the first 
PC. Geometrically interpreted, the first PC is defined as the 
direction along which the observed data varies the most (cor-
responding to the highest r2 of explained variance among the 
PCs). The second PC provides a lower-dimensional linear 
surface that remains closest to the observed data points. 
Hence, the intuition that the discovered dimensions corre-
spond closely to the observations extends beyond just the 
first PC.

In practice, it is sensible to use both approaches, feature 
engineering and dimensionality reduction methods. In a first 
step, combining raw data, such as information for every brain 
voxel in MR imaging, into concise IDPs already reduces the 
original data’s inherent complexity. In Smith et al., the authors 
investigated the relationship between the functional connec-
tome and 280 behavioral measures in the HCP cohort [19]. 
First, PCA was applied to the recorded functional MR imag-
ing (4  ×  15  min recordings for each participant) using the 
MIGP algorithm [20], which resulted in a lower-dimensional 
representation (4500 eigenvectors or PCs) of the original 
data. The PCs were then fed into group- ICA using the 
MELODIC tool [21] to further reduce the information into 
dimensionalities of D  =  100 distinct spatial components. 
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Similarly, 158 non-imaging features were reduced to n × 100. 
Both reduced set of features, the network matrices of the 
functional connectome and PCs of the non- imaging data, 
were then jointly analyzed in a canonical correlation analysis. 
The complexity of the original data was successfully simpli-
fied while important patterns were retained, resulting in an 
interpretable representation of a singular positive–negative 
mode of population covariation between brain connectivity 
and demographical data was identified [19].

8.4  Methodological Pitfalls

When appropriately applied, PCA is a powerful tool to han-
dle high-dimensional data, where the number of features p 
drastically exceeds the available samples n. Choosing a value 
of M principal components, where M ≪ p, can reduce the 
associated coefficient’s variance and significantly boost pre-
diction. However, several methodological pitfalls and their 
consequences for any resulting interpretations should be kept 
in mind.

 Scale Invariance

Standardization or scaling is a pivotal step required for 
PCA [18]. Quoting Lever et al.: “Scale matters with PCA” 
[22]. Therefore, we generally recommend standardizing 
each feature before generating PCs, which ensures that all 
variables are on the same scale. In the absence of standard-
ization, the features with high variance will play a larger 
role in the component solution obtained. In a small set of 
features, e.g., the simulated glioblastoma dataset for 10,000 
samples (www.micnlab.com/files), entailing 22 different 
features, including age (range 40–90, mean 66.0 [standard 
deviation 6.2], unit in years) and income (range 20,000–
500,000, mean 268,052 [62,867], unit in dollars), it is evi-
dent that based on different units the respective scales 
differ. Without standardization, the obtained PCs will be 
heavily weighted towards the features with a larger magni-
tude, while the remaining features will be ignored. As a 
consequence, the PCA results will be strongly biased 
towards the features with the higher magnitude and will 
selectively recover the related patterns of the respective 
features. Therefore, before performing PCA, all features 
should be standardized. Different scaling or standardiza-
tion approaches within the same dataset should be avoided. 
However, in homogenous and already scaled data such as 
gene expression data, standardization should be treated 
carefully, as the transformed gene expression data may 
closely resemble expression owing to noise [22].

 The Optimal Number of PCs

Unfortunately, there is no simple solution to find the optimal 
number of components. The question itself is ill-defined, as 
the optimal number of components highly depends on the 
application, specific dataset, and investigated research objec-
tive [18]. While an objective approach is lacking, we can 
revert to a different approach to estimate how many compo-
nents suffice. Generally, we would like to use the smallest 
number of PCs while retaining as much variation as possible 
to understand the data. We can visually investigate a scree 
plot in an exploratory aim, a graphical illustration of the pro-
portion of variance explained by the principal components 
(Fig. 8.1). The “elbow” of the plot indicates that the variance 
explained by each following PC drops off. In the given 
example (Fig. 8.1), the first and second PC explain a sizable 
proportion of variation, while the following PC3-10 do not 
add any additional variation. In this scenario, two PCs can be 
seen as the optimal number of components based on the 
scree plot method.

8.5  Conclusion

PCA can serve as an excellent data summary tool. But the 
underlying assumptions place limitations on its use. First, 
the structure of the original data is assumed to be linear. As 
the lower-dimensional PCs resemble linear combinations of 
the data’s original features, non-linear patterns might be 
missed. Based on the orthogonality constraint, highly corre-
lated trends may unresolved, as all PCs are uncorrelated. 
Conceptually, PCA is similar to clustering. However, impor-
tant distinctions should be kept in mind. PCA, generally, 
finds a low-dimensional representation that explain most of 
the data’s variance, while clustering finds homogenous sub-
groups so that the observations within each group are similar 
to each other, while observations across subgroups are maxi-
mally different [18]. With the aim of maximizing captured 
variance, PCA cannot always unmask underlying clusters 
[22]. Additional caveats, such as standardization and defin-
ing the number of components, should be considered when 
using PCA. When applied correctly, PCA is a competitive 
approach to simplify high-dimensional data to the main axes 
of variance.

Further resources There are excellent sources with different 
in-depth descriptions of PCA. James et al. can be highly rec-
ommended [18], which supplies the reader with different 
applications and provides R code for easy implementation. 
Further detailed literature can be found in: [14, 23], with 
additional extensions of sparsity in [24].
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Fig. 8.1 In an example of a 
simulated dataset (www.
micnlab.com/files), the 
optimal number of principal 
components (PCs) can 
visually be determined in a 
scree plot (a) displaying the 
proportional variance 
explained by each PC. An 
“elbow” can be seen after the 
second PC. Cumulative, PC1 
and PC2 explain the most 
variance, while from PC3 
onward, only a minimal 
amount of variance is 
subsequently captured. (b) 
The loading matrix can be 
used to understand how the 
original features contribute to 
the PCs’ lower-dimensional 
representation. The axis of 
variance in PC1 is highly 
influenced by overall survival 
(yellow), while, e.g., age and 
comorbidity show negative 
weights (purple). PC2 
represents a negative 
socio-economic axis highly 
influenced by marital status 
and working status
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9.1  Introduction

Machine learning is a domain of artificial intelligence (AI) 
that involves computer algorithms improving their pattern 
recognition and predictive ability through experience [1, 2]. 
Over the past two decades, machine learning techniques 
have been applied across medical domains, aiding in early 
diagnosis, patient management, and determining prognosis. 
As the algorithms have advanced, so too have their predictive 
capabilities, which sometimes rival or outperform those of 
experts [2]. In the context of neuro-oncology, neurosurgery, 
and neurology, machine learning models have accurately 
classified glioma World Health Organization grades [3], dif-
ferentiated pediatric posterior fossa tumors based on clinical 
symptomatology and imaging characteristics [4], and classi-
fied spike clusters in epilepsy [5].

Beneath the umbrella of “machine learning” falls a num-
ber of distinct approaches, each with relative advantages and 
disadvantages. The two main paradigms within machine 
learning involve supervised versus unsupervised learning.1 
While supervised algorithms require the use of a pre-labeled 
dataset on which to train the model for predictions on future 
data, thereby simulating “intelligent” behavior, unsupervised 
approaches detect patterns across unlabeled data. In the fol-
lowing sections, several common supervised and unsuper-
vised machine learning approaches are summarized, with 
attention to model background and past application in the 
neurosciences, neurosurgery, and neurology.

1 Reinforcement learning, a third subcategory, is not discussed here.

9.2  Early Applications of Machine 
Learning to Clinical Applications

Original explorations of machine learning and artificial intel-
ligence applied to the medical sphere have been documented 
as early as the mid- to late-1970s. In one of the first demon-
strations of computerized decision making, Edward Shortliffe 
developed MYCIN [6, 7], a rule-based approach to decision 
analysis purposed to guide antibiotic administration to 
patients with severe bacterial infections. Created under the 
tutelage of Bruce G. Buchanan, Stanley N. Cohen, and other 
faculty mentors at Stanford University, MYCIN was intended 
to resolve overutilization and inappropriate prescription of 
antibiotics, which was attributed to either a paucity of or 
poor accessibility to infectious disease experts [8]. As a rela-
tively primitive rule-based system, MYCIN was bounded by 
its expansive set of a priori compiled “rules,” each of which 
represented a modular chunk of medical knowledge. 
Subsequent validation of the MYCIN suggested classifica-
tion performance rivaling infectious disease subspecialists 
[9]; however, a number of limitations remained. First, as a 
rule-based approach, the ceiling of MYCIN’s performance 
was directly proportional to the granularity and breadth of 
rule set used. Second, while MYCIN’s rule set was designed 
to be modular for subsequent updating, the process for doing 
so was low throughput and inefficient, essentially requiring 
both an infectious disease expert and a programmer to manu-
ally update MYCIN’s knowledge base [6, 7].

Among early endeavors harmonizing machine learning 
theory with neuroscience applications included explorations 
into visual processing, rapid automated injury diagnosis, and 
molecular pathway reconstruction. Original studies explor-
ing image recognition pioneered approaches to edge detec-
tion, motion recognition, and lightness perception; however, 
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these models relied heavily on empiric constraints defined by 
users and developers [10]. Similarly, early attempts to 
develop automated approaches to nerve injury diagnosis, 
such as PLEXXUS, were often rule-based expert systems 
emulating the approach taken by MYCIN over a decade prior 
[11]. Lastly, SENEX was developed to integrate previously 
described central nervous system (CNS) signal transduction 
pathways (specifically those pertinent to aging) under an 
object-oriented programming framework designed to facili-
tate inter- and intra-pathway relationship recognition and 
knowledge retrieval [12]. Since the 1980s and 1990s, how-
ever, the rapid expansion of computing capabilities has led to 
exponential increases in both interest and investigations into 
leveraging machine learning principles to augment the sci-
ence and practice of neuroscience, neurology, and neurosur-
gery. This has led to diversity in not only application but also 
approach; while the above-mentioned studies pioneered the 
study of automata in medicine using rule-based and highly 
constrained expert systems, recent studies have incorporated 
a broad spectrum of methods for scientific and clinical pur-
poses. The subsequent sections categorize these approaches 
and highlight exemplar studies contributing to the continued 
integration of computerized methods in the neurosciences. 
Emphasis will be placed on supervised machine learning 
approaches given their prevalence in clinical predictive mod-
eling but a brief exploration of the role of unsupervised 
learning will also be presented.

9.3  Supervised Machine Learning 
Approaches

As previously noted, the origins of machine learning 
approaches in medicine and neuroscience leveraged rule- 
based supervised expert systems. More broadly, supervised 
algorithms are designed to learn a systematic approach to 
classification using a pre-labeled training set with known 
groupings. Subsequent application of the learned approach 
would then allow the user to estimate the class of future data 
that has not yet been classified. Methods such as regression 
analysis, support vector machines, and neural networks have 
seen increasingly extensive application for the prediction of 
clinical outcomes. In this section, we outline the overarching 
categories of supervised machine learning algorithms. 
Furthermore, we present notable advantages and limitations 
inherent to each approach while describing recent examples 
developed for use in clinical neurology and neurosurgery.

 Regression Analysis

Predictive modeling can be summarized as the incorporation 
of a set of input features that, taken together, can provide an 
estimate for the likelihood of a particular outcome-of- 

interest. Yet, beyond accurate prediction and robust classifi-
cation, understanding the contributions and significance of 
each feature is also of importance. Regression analysis offers 
an avenue to pursue both—while it is most frequently used 
for identification of independently important covariates in 
multivariable analyses, regression models may also be used 
for extrapolation and outcome prediction. Though regression 
analysis has existed since the early nineteenth century [13], 
their simplicity and reliability has made it foundational to 
clinical applications of machine learning. Most often, clini-
cal regression models take one of two forms: generalized 
linear models (GLMs) or proportional hazards models. When 
applied to machine learning in clinical medicine, the former 
aims to predict the expected value of a Bernoulli variable 
(essentially a “yes” or “no” response) by relating the included 
model features within a logistic function bounded by 0 and 1. 
In solving the linear combination of features and associated 
coefficients, the user can estimate the log-odds of the 
outcome- of-interest. Proportional hazards models, the most 
popular of which is the Cox model [14], apply the multipli-
cative effects of model features to a baseline hazard rate to 
approximate the time-to-event risk that the outcome-of- 
interest will occur. It is important to recognize that the base-
line hazard is assumed and not explicitly parameterized, 
making the Cox model semiparametric.

In particular, logistic regression remains a steadfast 
approach for both regression and classification analysis of 
Bernoulli outcomes (e.g., risk of readmission, presence of 
complications, poor discharge status, Fig. 9.1a). As such, it 
remains critical to understand the advantages and disadvan-
tages of logistic regression as well as the contexts to which it 
is most aptly applied. A major advantage of logistic regres-
sion is the ease with which it can be used and interpreted—
each included feature is associated with a coefficient which 
can be subsequently assessed for additive contribution to the 
likelihood of the outcome-of-interest. Additionally, because 
it inherently seeks to minimize logistic loss, a logistic regres-
sion model that meets all assumptions is generally well- 
calibrated and does not require subsequent refitting of class 
outputs as probability distributions (as is often required of 
SVM, decision trees, and neural networks) [15]. Nonetheless, 
a major drawback of logistic regression is the need to meet 
all assumptions, which include presumed linearity between 
the independent model features and the log-odds of the 
outcome- of-interest and the absence of multicollinearity 
between included covariates. Finally, sample size and event 
rate are important considerations for logistic regression, as 
an overly complex model trained on an insufficiently large 
sample is prone to overfitting [16, 17]. To address this last 
concern, logistic regression models may be penalized to 
limit complexity and improve generalizability through a pro-
cess called regularization. Regularization comes in three 
general forms: ridge regression, LASSO, and Elastic Net. 
Practically, the fundamental difference between ridge 
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 regression and LASSO is the ability to perform the variable 
selection; while ridge regression, also called L2 regulariza-
tion, asymptotically shrinks coefficients of large model coef-
ficients towards zero, no features are actually removed as 
part of the regularization process [18]. On the other hand, 
LASSO (L1 regularization) requires that the summed abso-
lute values of model coefficients be restricted, leading to 
removal of noncontributory features and simplification of the 
model itself (hence selection of features most important to 

predicting the outcome-of-interest) [19]. To address con-
cerns with each approach (for ridge regression, the lack of 
variable selection and for LASSO, model instability), Elastic 
Net was developed to incorporate both L1 and L2 penalties 
[20]. More recently, approaches for regularization of Cox 
models have also been developed [21, 22].

In a study of neurosurgical patients receiving endoscopic 
transsphenoidal surgery for resection of pituitary tumors, 
Voglis and Serra developed a boosted GLM model to predict 
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Fig. 9.1 Graphical overview of machine learning archetypes frequently used for clinical predictive modeling. Visual representations of (a) logistic 
regression, (b) support vector machine, (c) random forest, and (d) artificial neural network approaches
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post-operative hyponatremia [23]. Gradient boosting, in 
short, refers to an ensemble method—defined as one that 
seeks to develop multiple models subsequently combined 
into a single optimized combined model—that leverages 
serial sampling and reweighting to optimize the pertinent 
loss function. A GLM classifier with component-wise boost-
ing, a modification of gradient boosting that allows for vari-
able selection during model construction, outperformed 
alternative approaches including random forest, Naïve 
Bayes, and non-boosted GLMs by achieving a sensitivity of 
81.8% with a specificity of 77.5%. However, a limitation 
noted in Voglis et al. was that, while machine learning meth-
ods aim to optimize model performance, steps such as coef-
ficient shrinkage and variable selection limit the ability to 
directly infer clinical benefit from the individual model com-
ponents. Nonetheless, GLMs do offer easier interpretability 
than other “black box” models such artificial neural networks 
and often achieve comparable discriminative ability for pre-
diction of simple binary outcomes.

 Support Vector Machine

An alternative approach to supervised machine learning, 
support vector machine (SVM) is best summarized as a geo-
metric counterpart to the parametric approach taken by 
regression analysis (Fig.  9.1b). Unlike regression analysis, 
which seeks to discover underlying relationships explained 
by a user-defined feature set, SVM leverages the geometric 
distribution of the input dataset to define an “optimal” hyper-
plane or hyperplanes by which to discriminate data clusters 
based on the outcome-of-interest. In the case of linear SVM, 
these hyperplanes are drawn in d − 1 dimensions, where d is 
the dimensionality of the input data, and are selected to max-
imize the margin between these clusters. This resultant series 
of maximum-margin hyperplanes could then be used to 
extrapolate subsequent predictions by defining d- dimensional 
boundaries to be applied to newly sourced data. In the case of 
data that is not linearly separable, where a d − 1 dimension 
hyperplane is insufficient to robustly define cluster boundar-
ies, non-linear kernel functions may be applied to map the 
explicit data onto a higher dimension feature space allowing 
increasingly complex hyperplanes optimally classifying 
clusters to be drawn. In theory, and under ideal circumstances 
governed by limitless time and computational resources, 
SVMs with non-linear kernels may offer performance 
improvements compared to their linear counterparts. For 
example, it has been described that the frequently used 
Gaussian kernel, also known as the radial basis function 
(RBF) kernel, offers equal or better discrimination given 
comprehensive optimization of model hyperparameters [24]. 
In practice, linear SVM is often sufficient and offers similar 
classification performance to non-linear SVM while reduc-

ing model complexity and, by extension, improving compu-
tational scalability; this may be especially true in medical 
applications, in which information canvassed from the medi-
cal history, physical exam, laboratory assessments, and 
molecular diagnostics is vast and provides an expansive fea-
ture set reducing the need for transformation into higher 
dimension space [25]. In comparison to logistic regression, 
SVM offers numerous advantages such as the ability to be 
applied to semi-structured data without a rigidly defined fea-
ture set and may be less prone to overfitting (particularly in 
the case of linear SVM) [26]. However, a major downside of 
SVM is that subsequent cross-validation is necessary empiri-
cally determined class probability estimates [15]; further-
more, users must be deliberate with kernel choice and 
adequate tuning of model hyperparameters to achieve opti-
mal performance with SVM-based approaches.

SVM-based algorithms have long been used in the neuro-
sciences for classification of disease properties and patient 
outcomes. In an evaluation of individuals with at-risk mental 
states (ARMS) with increased risk of progression to clinical 
psychosis, research led by Koutsouleris and Meisenzahl 
developed a non-linear SVM approach with an RBF kernel 
to distinguish between healthy control subjects and patients 
with early and late stage ARMS (ARMS-E and ARMS-L, 
respectively) [27]. ARMS-E and ARMS-L were distin-
guished by the presence of either attenuated psychotic symp-
toms (e.g. magical thinking, ideas of reference, 
suspiciousness, paranoid ideation) or brief limited intermit-
tent psychotic symptoms (e.g. hallucinations, delusions, for-
mal thought disorder). Evaluating binary classification of 
healthy controls versus ARMS-E and ARMS-L, sensitivity 
was 95% and 76%, respectively, while specificity was 80% 
for both comparisons. Three-group classification was also 
robust, with sensitivity ranging between 76% and 90% and 
specificity ranging from 89% to 92%; overall model accu-
racy was 81%. Secondary analyses comparing healthy con-
trols to ARMS patients with and without transition to 
psychosis achieved similar discriminatory performance. 
While many of the limitations of the study require further 
external validation, such as evaluation across diverse institu-
tions and a broader subject population, the preliminary 
results presented in this study indicate a role for machine 
learning approaches in anticipating presence and progression 
of neuropsychiatric syndromes.

 Decision Trees and Random Forest

Decision trees also seek to identify geometric boundaries 
with which to best stratify data clusters into classes defined 
by the outcome-of-interest. Unlike SVM, which in high 
dimensions and with various kernel transformations applied 
may be difficult to comprehend and visualize, decision trees 
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are simpler. In the popular approach put forth by Breiman, 
classification and regression tree (CART) construction is 
comprised of recursive partitioning of the dataset into pro-
gressively smaller subgroups called nodes based on a series 
of heuristics [28]. This approach, called binary recursive 
partitioning, defines splits that minimize a predefined cost 
function (frequently the sum of squared errors, entropy, or 
the Gini index) [29]. Compared to logistic regression and lin-
ear SVM, which seek to define an optimal hyperplane with 
which to stratify data, decision trees are able to define non- 
linear boundaries by bisecting the data at each node. Decision 
trees, compared to logistic regression and linear SVM, offer 
a number of advantages including improved intuitive inter-
pretability (particularly given visual representation of the 
full tree) and easier implementation without requiring prior 
advanced statistical knowledge (given the heuristic-based 
approach). However, decision trees also harbor disadvan-
tages; namely, developing a robust decision tree requires a 
significant training cohort as each level of the tree results in 
an increasingly smaller portion of the original cohort on 
which the next decision heuristic can be constructed. Poorly 
constructed decision trees and those predicated upon insuf-
ficient data run the risk of overfitting and, although the user 
can preemptively safeguard against this with either pre- 
pruning or post-pruning (thereby limiting the complexity of 
the resultant tree), it remains difficult to balance the desire to 
maximally improve classification performance with the pos-
sibility of an overly complex and overfit model.

An extension of the simple decision tree, random forest 
refers to the ensemble approach characterized by aggrega-
tion of a collection of decision trees trained on random 
samplings of the training data (Fig. 9.1c) [30–32]. As previ-
ously discussed, a major concern with individual trees is 
the risk of overfitting complex models to the training set 
[33]; to address this, random forest mirrors a technique 
called bootstrap aggregating (bagging), which relies on 
repeated bootstrap sampling from the training dataset to 
each create a decision tree. Furthermore, these bagged 
decision trees are grown with a random subset of the full 
feature set (feature bagging). This is a significant modifica-
tion to the classical bagging approach as individual deci-
sion trees are most frequently constructed using greedy 
algorithms intended to minimize error at each decision heu-
ristic. In the absence of feature bagging, individual deci-
sion trees are likely to be highly correlated with each other, 
which limits the advantages of ensemble learning, as that 
relies on the construction of diverse individual models to 
maximize aggregate model accuracy [34]. In practice, the 
performance improvements of random forest over alterna-
tive approaches are well- recognized [35]. Nonetheless, 
proper bootstrap sampling and tuning of all model hyperpa-
rameters are necessary to achieve optimal classifier perfor-
mance [36].

A recent study by Audureau et al. evaluated the perfor-
mance of single decision tree and random forest approaches 
for predicting post-recurrence survival of glioblastoma 
patients [37]. Incorporating demographic and clinical fea-
tures available at the time of disease progression, both 
approaches narrowly outperformed a Cox regression-based 
approach by each achieving a Harrell’s concordance index of 
over 70 [38]. Beyond identifying KPS score at progression 
as the most important predictor of overall post-recurrence 
survival, they were able to identify four risk groups which 
drastically differed in survival duration: while patients with 
highest risk experienced a median survival of less than 
3 months post-recurrence, the majority of those classified as 
lowest risk lived for more than 12 months post-recurrence. 
Of note, glioblastoma outcomes are known to be strongly 
associated with genomic and epigenomic features not avail-
able in this study [39, 40]; subsequent efforts to improve risk 
classification may further increase performance by diversify-
ing the feature set included during model construction and 
training.

 Artificial Neural Networks

Artificial neural networks (ANNs) are best explained as a 
replication of the human brain: a collection of neurons which 
each modify an input by performing a simple computational 
task and propagate an output to the next downstream neuron 
in the chain. These interconnections form a network com-
prising three flavors of neurons arranged in layers: the input 
layer, the output layer, and a number of hidden layers respon-
sible for modification of the received input from upstream 
neurons (in the case of multilayer networks, Fig. 9.1d). More 
simply, the input layer is defined by the input feature set by 
defining each feature as an individual neuron while each out-
put class of the model is represented by a neuron in the out-
put layer. Single layer neural networks, known as perceptrons, 
consist only of an input layer and an output layer with inter-
neuron input–output connections serving as a computational 
layer. The computational layer itself includes an input- 
specific weight that scales with the contribution of each par-
ticular input neuron and an activation function, which 
transforms the weighted sum of the aggregate input neurons 
onto a user-defined output distribution. Depending on the 
intended output, the activation function can take various 
forms including sigmoid functions or piecewise functions. 
Sigmoid functions, bounded by 0 and 1, are appropriate 
when the output of a perceptron is expected to be a probabil-
ity for a binary outcome (as opposed to a softmax function 
for multi-class outcomes). A major drawback of sigmoid 
activation functions is known as the vanishing gradient, 
which describes the tendency of the incremental response 
variable change to asymptotically approach zero as the 
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 magnitude of the input becomes exceedingly large. This 
means that as the output trends towards the boundaries of the 
distribution, less learning is possible. This is particularly 
important in the context of deep learning where an increas-
ing number of hidden layers comprising a multilayer percep-
tron (MLP) facilitates the detection of non-linear patterns 
and representations within the data. For applications requir-
ing multilayer neural networks, ReLUs (rectified linear units, 
essentially a piecewise linear function expressed as 
f(x) = max(0,x)) solve the vanishing gradient problem while 
retaining more complexity than a simple linear function. 
Furthermore, ReLUs allow for zero representations within 
the model leading to increased model sparsity thereby 
improving learning speed. This property only becomes more 
valuable when considering models with a high quantity of 
hidden layers or neurons and models implementing back-
propagation of signals within convolutional neural 
networks.

Oermann and Ewend leveraged ensemble learning and 
ANNs to develop a method for predicting survival follow-
ing definitive stereotactic radiosurgery to brain metastases 
[41]. Features included in ANN construction were ECOG 
score, primary tumor type, presence of systemic disease, 
age, and number of brain metastases. Both the single ANN 
and ensemble ANN approach outperformed multivariable 
logistic regression, achieving AUROCs of 0.84 and 0.78, 
respectively. At a fixed sensitivity of 95%, 1-year survival 
prediction yielded a specificity of 38% for ensemble ANNs 
and 32% for single ANN (compared to 26% for multivari-
able logistic regression). While these results are encourag-
ing, a major advantage of the ANNs, particularly MLPs 
with signal backpropagation, is the ability to explore 
highly complex, non- linear relationships; by incorporating 
a more expansive feature set including genomic, epig-
enomic, and proteomic features known to correlate with 
patient outcomes, future studies may further harness the 
flexibility of ANN-based approaches for clinical predictive 
modeling.

 Naïve Bayes

Until now, all approaches discussed have been discriminative 
models that seek to define a boundary optimally separating 
classes defined by the outcome-of-interest. An alternative 
approach to predictive modeling is computing the posterior 
probability distribution explicitly based on all available 
information; models that take this approach are referred to as 
“generative,” among which one of the most frequently used 
is the Naïve Bayes classifier [42]. Briefly, the Naïve Bayes 
approach applies Bayes’ theorem to compute the probability 
of the outcome-of-interest occurring given a series of avail-
able features, each of which are independent of each other 

given the outcome-of-interest (conditional independence). 
This can be summarized by
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is important, and continuous and discrete features are fre-
quently modeled as Gaussian and Bernoulli variables, respec-
tively. Another consideration necessary for application of 
Naïve Bayes for classification is the possibility of features or 
feature levels absent in the training set but present in future 
data input into the classifier; to avoid the risk of zeroed prob-
abilities, Laplace smoothing may be applied [43].

Practically, the performance of Naïve Bayes models can 
be juxtaposed against that of logistic regression models; 
while the theoretical asymptotic error of the logistic regres-
sion is lower under perfect conditions with abundant training 
data, Naïve Bayes more efficiently approaches the asymp-
totic error making it an attractive alternative under realistic 
conditions in which the availability of training data may be 
limited [44]. However, it is rare to have data that flawlessly 
fulfills the conditional independence assumption, impacting 
the accuracy of the posterior probability estimate. 
Nonetheless, the classification performance of Naïve Bayes 
remains comparable to that of discriminative models and 
may offer additional benefits in sample-sparse settings with 
a limited training cohort.

One example of the Naïve Bayes approach to outcome 
prediction can be seen in a study conducted by Tunthanathip 
and Taweesomboonyat assessing risk of surgical site infec-
tions following neurosurgical operations [45]. Using features 
spanning demographics, operation type and course, and 
other post-operative complications, the authors identified 
Naïve Bayes as the optimal approach compared to decision 
tree and ANN-based models. At a specificity of nearly 90%, 
sensitivity for predicting post-operative surgical site infec-
tion was nearly 60%. Among limitations of the study include 
the low event rate of the outcome-of-interest, which may 
have contributed to the relatively superior performance of 
Naïve Bayes compared to discriminative methods. 
Additionally, it is likely that at least a subset of the features 
does not satisfy the assumption of conditional independence. 
However, as previously mentioned, few feature sets exhibit 
true conditional independence and even imperfect feature 
choice may offer sufficient performance to be of value.
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9.4  Unsupervised Machine Learning 
Approaches

As previously noted, the vast majority of predictive model-
ing in medicine has utilized supervised learning approaches; 
however, it bears noting that unsupervised learning also 
occupies a critical niche. Unlike supervised learning, which 
is predicated upon developing a predictive model using a 
pre-classified training set for classification of future data, 
unsupervised learning relies on pattern recognition and 
structure discovery within datasets without prior labels. 
Though there are many approaches to unsupervised machine 
learning including signal separation algorithms, such as prin-
cipal components analysis and singular value decomposi-
tion, and outlier detection, via techniques like isolation 
forests, emphasis will be placed on one of the most common 
applications in medicine: cluster analysis.

 Clustering

One of the most well-recognized uses of unsupervised 
machine learning is for cluster analysis, which refers to the 
identification of groupings within data comprised of mem-
bers with higher intra-cluster similarity than inter-cluster 
similarity [46]. Numerous algorithms exist for clustering 
but some of the most frequently applied include hierarchi-
cal clustering, k-means clustering, expectation-maximiza-
tion, and DBSCAN.  Hierarchical clustering can be 
characterized as either agglomerative (bottom-up starting 
from n clusters each containing a single datapoint) or divi-
sive (top-down starting from a single cluster containing n 
datapoints) and seek to minimize dissimilarity within clus-
ters as usually measured by metric such as Euclidean dis-
tance. While hierarchical clustering is highly interpretable 
given its intuitive nature, it is also computationally ineffi-
cient with a run time that scales cubically with dataset size 
[47]. An alternative approach is k-means clustering, which 
iteratively identifies k cluster centroids and categorizing 
datapoints based on closeness to each centroid [48]. 
However, application of the k-means algorithm requires 
sufficient prior knowledge of the dataset to intelligently 
specify the number of centroids. Expectation-maximization, 
similar to k-means, aims to iteratively refine its cluster defi-
nition given an expected number of groupings. Unlike 
k-means, however, expectation- maximization takes a puta-
tive mixture model architecture (e.g. n Gaussian distribu-
tions) and fits distribution parameters on the input dataset; 
once the mixture model is fully parameterized, each ele-
ment in the dataset can be assigned a probability of belong-
ing to each of the clusters [49]. Lastly, DBSCAN 

(Density-Based Spatial Clustering of Applications with 
Noise) is a nonparametric method for cluster identification 
based on data density [50, 51].

Applications of clustering algorithms in the neurosci-
ences have led to revolutionary advances in our understand-
ing of disease pathogenesis, furthering physicians’ ability to 
design increasingly accurate and robust predictive models. 
Agglomerative hierarchical clustering has not only been 
applied to genomics and transcriptomics to identify molecu-
lar subclasses of glioblastoma with differential outcomes 
[52], but has also been used to deconvolute the single-cell 
transcriptional microenvironment within glioblastoma 
tumors [53]. Others have used expectation-maximization for 
segmentation of brain MRIs, performing comparably to 
manual alternatives [54]. Finally, DBSCAN has been applied 
for clustering applications on brain MRI; combining 
DBSCAN with supervised machine learning, Plant and 
Ewers were able to both distinguish individuals with 
Alzheimer’s disease (AD) from healthy individuals and pre-
dict progression to AD in subjects with mild cognitive 
impairment [55].

9.5  Conclusion

Probabilistic modeling, risk estimation, and prediction are 
inherent to the practice of neuroscience, neurosurgery, and 
neurology. The use of machine learning algorithms to aid 
those processes will only continue to increase in the coming 
years as the maintenance of large clinical databases and the 
digitization of medical records continuously provide rich 
sources of data. From the early rule-based supervised expert 
systems, advances in computing have led to a diverse array 
of machine learning methodologies that allow extensive 
applications across the neurosciences. While the investiga-
tor must recognize the limitations of their data and the con-
straints inherent to individual models, they are able to tailor 
their approach given the need for variable selection, explo-
ration of non-linear relationships, pre-labeled training sets, 
computational scalability, or learning speed, among other 
considerations. In the preceding sections, six machine learn-
ing approaches across two broad learning paradigms were 
summarized. Though not a comprehensive review, it is 
hoped the descriptions herein provide an overarching sum-
mary of the current landscape of machine learning in the 
neurosciences as well as an understanding how existing 
models may be used to answer clinical or experimental 
questions.
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Foundations of Bayesian Learning 
in Clinical Neuroscience

Gustav Burström, Erik Edström, and Adrian Elmi-Terander

10.1  Introduction

In part driven by the demands made by evidence-based med-
icine, recent years have seen an increased interest in the use 
of prediction models to forecast clinical outcomes within the 
fields of clinical neuroscience and neurosurgery [1–3]. 
Building upon the now common use of simple regression 
models, the field has moved towards the use of prediction 
models incorporating more advanced machine learning (ML) 
methods [4]. These methods have the potential to better inte-
grate knowledge gained from large trials with patient- specific 
data than what has previously been possible, outperforming 
traditional statistical models for predicting patient outcomes 
[5–7]. However, with the increasing use of prediction models 
and improved availability of ML tools to clinicians, comes 
the responsibility of using them correctly. An understanding 
of key concepts and an awareness of analytical pitfalls is 
required for clinicians and researchers alike to avoid finding 
themselves unequipped to evaluate research based on ML 
methodologies [8].

Bayesian learning is a specific set of statistical and ML 
methods. Traditionally, it has consisted of a wide variety of 
classical statistical models for predicting outcomes based on 
known input variables. More recently, with the introduction 
of ML models working in conjunction with the traditional 

Bayesian statistical models, the field includes a number of 
different ML classifiers and prediction models. Bayesian 
belief networks, also called Bayesian networks (BNs) for 
short, are one group of ML tools that have been used in the 
field of neurosurgery. They enable visualization of the rela-
tionship between variables and provide the user some influ-
ence on how the prediction model is structured. A different 
form of Bayesian ML method is the naïve Bayes classifier, a 
supervised ML method that is similar in usage to other com-
mon ML classifiers such as random forests and support vec-
tor machines (SVMs).

In this chapter, we introduce Bayes theorem and predic-
tive statistics and provide examples of its use in machine 
learning. The first section introduces the mathematics behind 
Bayesian learning, but an understanding of these mathemati-
cal concepts is not necessary in order to understand when 
and how to apply the models presented later in the text. To 
investigate predictors of neurosurgical outcomes, we intro-
duce the use of machine learning-based Bayesian belief net-
works to structure and define associations between outcome 
predictors and final outcome. For issues related to the clas-
sification of neurosurgical problems or outcomes, where an 
understanding the underlying causes is less important, we 
focus on the naïve Bayes classifiers. The present work aims 
to orient researchers in Bayesian machine learning methods, 
and when and how to use them.

10.2  Bayes Theorem

To understand the foundations of Bayesian machine learning 
methods, a basic understanding of the underlying theory is of 
value. Bayes theorem, or Bayes rule, is one of the central 
rules of probability theory. It is used to calculate the proba-
bility of an event occurring given information about a condi-
tional event, known as a conditional probability. For example, 
it can be used to calculate the probability of a patient having 

G. Burström (*) · E. Edström · A. Elmi-Terander 
Department of Clinical Neuroscience, Karolinska Institutet, 
Stockholm, Sweden 

Department of Neurosurgery, ME Neurokirurgi, Karolinska 
University Hospital, Stockholm, Sweden
e-mail: gustav.burstrom@ki.se 

Previous presentations: No previous presentation.

10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85292-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-85292-4_10#DOI
mailto:gustav.burstrom@ki.se


76

cancer, given that a medical test came out positive. The 
Bayes theorem is stated as:

 

P A B
P A P B A

P B
( ) = ( )∗ ( )

( )  

In the above equation:

• P(A|B): Conditional probability of event A occurring, 
given event I

• P(A): Probability of event A occurring
• P(B): Probability of event B occurring
• P(B|A): Conditional probability of event B occurring, 

given event A

The Bayes theorem might seem far separated from the 
work as a clinician or neuroscientist. However, phrased in 
other terms, the equation is used in daily practice in a num-
ber of situations. As an example, consider a patient that has a 
positive finding on a CT scan and subsequently may, or may 
not, have glioblastoma. The probability of the patient having 
glioblastoma would equal the probability of having a posi-
tive finding among all patients with glioblastoma, divided by 
the probability of having a positive CT in the general popula-
tion. Given this example, the above equation would be:

• P(A|B): Probability of patient having glioblastoma, given 
a finding on CT

• P(A): Incidence of glioblastoma in the population
• P(B|A): Probability of having a finding on CT given the 

presence of a glioblastoma, i.e. the sensitivity of the test
• P(B): Probability of having a finding on CT, in the popu-

lation. P(B) can be calculated given that it is a sum of all 
true positives and all false positives, i.e. P(B) = sensitiv-
ity * prevalence + false positive rate * (1 − prevalence).

The above example includes one predictor variable (positive 
CT) for a binary classification (glioblastoma: yes/no). However, 
in real-world applications, there are usually more than one pre-
dictor variable and there can be many outcome variables. Due 
to the exponential growth in possible interdependencies with 
increased numbers of predictor and outcome variables, this cre-
ates both a computational load and an exponential demand for 
data to determine these interdependencies. This leads to a com-
putational problem and a data problem when attempting to 
structure datasets with multiple predictors and classifications, 
unless certain assumptions (as in naïve Bayes classifiers) or 
stepwise methods are applied (as in Bayesian networks).

10.3  Bayesian Networks

A Bayesian network (BN) is a graphical model that describes 
the conditional probability between predictor variables and 
outcome variables (as depicted in Fig.  10.1). In order to 

structure complex problems, Bayesian learning methods 
typically employ the use of graphical representations of each 
predictor variable leading up to the outcome, or classifica-
tion, variable. The dependencies between variables are visu-
alized with arrows, as demonstrated in Fig.  10.1. Such a 
graph is called a directed acyclic graph (DAG). Each condi-
tional probability is thereby separated into a specific place in 
the DAG, facilitating both interpretation and calculation of 
the resulting outcome prediction. However, when dealing 
with predictor and outcome variables with unknown rela-
tionships to each other, as is often the case when examining 
large datasets in neuroscience and neurosurgery, the struc-
ture of the BN is unknown. Finding a BN that describes real-
ity as true to reality as possible is therefore a key step. Thus, 
ML methodology is well suited to incorporate into BNs, to 
find the optimal graphical representation and hence, a 
descriptive solution to prediction modelling.

There are certain benefits of using BNs compared to other 
machine learning models. BNs structure problems in a 
sequential way, highlighting causalities and making interpre-
tation possible. This is different from most other machine 
learning models such as random forests, neural networks or 
SVMs, which functions more like “black boxes” producing 
an output without revealing their inner workings. Given that 
the method is structured, it is also easier to exploit expert 
knowledge when building and interpreting BN models since 
spurious correlations can be identified and removed from 
models while already known correlations can be incorpo-
rated from the start.

In order to build a BN model, BN algorithms first try to 
learn the graphical structure of the Bayesian network and 
then estimate conditional probabilities (or more specifically, 
conditional probability distributions) given the learned BN 
structure. This two-step approach has the advantage that it 
considers one conditional probability function at a time, and 

Y

X1 X2 X3

X4

Fig. 10.1 A depiction of a Bayesian network structure with four input 
variables including interdependencies (X1, X2, X3, and X4) and one out-
come variable (Y)
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it does not require modelling the global probability function 
a priori. The stepwise approach enables the method to be 
applicable to large datasets including multiple predictor and 
outcome variables that would otherwise pose a significant 
computational problem.

Structure learning algorithms used in Bayesian networks 
can be grouped in two categories, constraint-based  algorithms 
and score-based algorithms. Constraint-based algorithms 
learn the network structure by identifying independences 
between variables with statistical tests, and linking nodes 
that are not found to be independent from each other [9, 10]. 
Score-based algorithms, on the other hand, develop a multi-
tude of candidate BNs, assign scores to each candidate and 
then try to maximize it using a general- purpose heuristic 
search algorithm. These heuristic search algorithms use dif-
ferent techniques for solving the maximization problem 
faster than classical methods, and commonly used algo-
rithms in for BNs are hill-climbing, simulated annealing, or 
tabu search [11–13].

A unique strength of Bayesian networks in the neurosur-
gical setting is that pre-existing knowledge can be used to 
define constraints to the algorithms. For example, a known 
relationship between O6-methylguanine-DNA methyltrans-
ferase (MGMT) gene promoter methylation and temozolo-
mide treatment on outcomes for glioblastoma patients can be 
pre-defined, so that a correlation exists as a precondition for 
the structure learning algorithm. Likewise, if the Bayesian 
network output exhibits nonsensical correlations, such a 
relationship can be inhibited as a precondition when running 
the algorithm again.

10.4  Naïve Bayes Classifiers

Naïve Bayes (NB) classifiers are a type of supervised 
machine learning algorithms that rely on a simplification of 
Bayes theorem. The simplification is to assume that all pre-
dictor variables are independent from each other (Fig. 10.2), 
hence the term “naïve.” This enables calculation of condi-
tional probabilities given reasonably small datasets. The rea-
son for this simplification is that the Bayes theorem assumes 

that each input variable is (potentially) dependent upon all 
other variables, leading to increasing complexity in the cal-
culation as the number of variables increases. If Bayes theo-
rem was used, without the naïve simplification, to calculate 
the conditional probability of a certain outcome, one would 
need to calculate the interdependent conditional probabilities 
between all input variables. For every added input variable, 
the combinations to consider would increase exponentially. 
The computational cost would increase, and the input data 
required would become unmanageable for most situations.

Despite relying on a somewhat naïve simplification, NB 
classification can be used in a variety of classification prob-
lems in neurosurgical and neuroscientific settings with reli-
able results [3, 14–16]. When used in practice, NB classifiers 
are similar to other supervised ML algorithms such as ran-
dom forests or SVMs. Data is first split into a training set and 
a test set. Typical methods can be used, such as a 2:1 split (2 
training data for every 1 test data) or n-fold cross-validation 
[17]. After splitting the data, all independent variable data 
are normalized (i.e. feature scaling is performed) and the NB 
model is fitted to the training data (i.e. trained on the training 
data). Lastly, the NB model is evaluated by predicting clas-
sifications on the test data resulting in an estimation of sensi-
tivity, specificity, and balanced accuracy for the model.

10.5  Discussion

Bayesian networks (BNs) and naïve Bayesian (NB) classifi-
cation are two common machine learning methods relying 
on Bayesian statistics that can be used to create clinical pre-
diction models and help clinicians and researchers to better 
understand how patient-specific circumstances can affect 
clinical outcomes. BNs are well suited for developing pre-
diction models describing patient-specific risks in a struc-
tured matter, where known correlations can be incorporated 
in the models. NBs, on the other hand, offer a powerful tool 
for creating simple classification models with high efficacy. 
However, NBs and BNs only represent a fraction of available 
Bayesian methods that have been incorporated in machine 
learning models in some way or other, but these are beyond 
the scope of this introduction to Bayesian learning.

Although this text serves as an introduction to Bayesian 
learning, applying classification models without rigorous 
validation presents a risk, especially if deployed without 
fully understanding the implications. Bayesian statistics in 
general has a strength in that it includes prior probabilities, 
e.g. the frequency of a disease in the population being tested, 
when calculating the probability of an outcome. The impor-
tance of this step, often called “calibration” of a classifica-
tion model, is not always apparent when deploying 
classification models in a neurosurgical context. Frequently, 
the sensitivity and specificity of a prediction model is 

X1 X2 X3

Y

X4

Fig. 10.2 A depiction of a Naïve Bayesian structure with four input 
fully independent variables (X1, X2, X3, and X4) and one outcome vari-
able (Y)
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reported but not necessarily the calibrated value that would 
say that “there is an x% chance of having the predicted out-
come” [18]. This becomes even more important when 
employing prediction models outside of the population, or 
medical center, where they were developed, since the fre-
quency of diseases or complications can vary significantly. 
Therefore, recalibration, or even retraining, of prediction 
models on the population in question may be necessary if the 
initial model was developed in a specific setting not general-
izable to other centers [19]. Bayesian machine learning 
methods do not require this calibration step as part of build-
ing the classification models, however, but researchers work-
ing with Bayesian statistics should hopefully be primed to 
the importance of prior probabilities to calibrate their clas-
sification methods.

10.6  Conclusion

This introduction to Bayesian learning outlines Bayes the-
orem and the use of it in machine learning applications. 
Bayesian networks using machine learning methodology 
are particularly highlighted as a way to structure predic-
tion modelling in a comprehensible way, while Naïve 
Bayes classifiers are outlined as powerful tools to create 
simple classification models with high efficacy in neuro-
surgical and neuroscientific settings.
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Introduction to Deep Learning 
in Clinical Neuroscience

Eddie de Dios, Muhaddisa Barat Ali, Irene Yu-Hua Gu, 
Tomás Gomez Vecchio, Chenjie Ge, and Asgeir S. Jakola

11.1  Introduction

The application of machine learning (ML) technology is rap-
idly increasing in the biomedical field and countless ML 
methods are already behind significant achievements in 
modern society. A few of these examples include speech, 
vision and face recognition, language processing, board 
games, and social network filtering, as well as applications in 
medical imaging, drug development, and bioinformatics. 
Deep learning (DL), a subtype of ML, has drawn much atten-
tion lately as it can be used to automatically extract features 
from input data, in order to detect, classify, or predict a cer-
tain target variable. DL can be supervised or unsupervised. 
In supervised learning, the algorithm is trained from labeled 
data in the training dataset, whereas in unsupervised learn-
ing, the algorithm is given unlabeled training data. The unsu-
pervised learning methods thus attempt to find a structure 
within the dataset, in order to extract a meaningful output. 

DL is inspired by biological neural systems, consisting of 
deep layers for learning features and learning a classifier. 
While conventional ML methods use analytic models with 
human expert-defined hand-crafted features as input, DL 
methods are more attractive due to their plasticity for auto-
matically learning features or building black box models 
from large datasets, e.g. predicting the overall survival in 
glioma, based on a model learned from large amounts of 
magnetic resonance image (MRI) data.

This section on DL will focus on several applications of 
DL techniques in the field of clinical neuroscience. In par-
ticular, DL has demonstrated remarkable performance in the 
area of computer vision, ranging from face recognition in 
smartphones to fracture detection in X-rays [1]. However, to 
perform well, DL methods need to be trained with a large 
amount of input data with a good coverage of data statistics, 
which is a challenge in a field such as neuroscience where 
the number of patients typically is rather small [2]. In addi-
tion, real-world clinical datasets frequently present missing 
or non-standardized data. These difficulties pose real chal-
lenges for the successful application of DL methods in clini-
cal neuroscience.

This chapter describes several key issues encountered in 
DL-assisted clinical diagnosis of neurological diseases, 
where we specifically focus on MRI-based models for gli-
oma, although the principles and methods can be useful in a 
range of applications in clinical neuroscience.

11.2  Materials and Methods: Useful DL 
Methods in Clinical Neuroscience

The DL field encompasses many conceptual aspects and a 
few of them will be described in this section. The core con-
stituent of the “depth” of learning is normally regarded to be 
the number of “hidden layers” in the DL model. These hid-
den layers represent interneurons between the input and the 
output layers, and therefore not only the number of levels, 

E. de Dios 
Department of Neurosurgery, Sahlgrenska University Hospital, 
Gothenburg, Sweden 

M. B. Ali · I. Y.-H. Gu · C. Ge 
Department of Electrical Engineering, Chalmers University of 
Technology, Gothenburg, Sweden
e-mail: barat@chalmers.se; irenegu@chalmers.se 

T. G. Vecchio 
Department of Clinical Neuroscience, Institute of Neuroscience 
and Physiology, University of Gothenburg, Sahlgrenska Academy, 
Gothenburg, Sweden
e-mail: tomas.gomez.vecchio@gu.se 

A. S. Jakola (*) 
Department of Neurosurgery, Sahlgrenska University Hospital, 
Gothenburg, Sweden 

Department of Clinical Neuroscience, Institute of Neuroscience 
and Physiology, University of Gothenburg, Sahlgrenska Academy, 
Gothenburg, Sweden 

Department of Neurosurgery, St. Olavs University Hospital HF, 
Trondheim, Norway
e-mail: jakola.asgeir@gu.se

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85292-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-85292-4_11#DOI
mailto:barat@chalmers.se
mailto:irenegu@chalmers.se
mailto:tomas.gomez.vecchio@gu.se
mailto:jakola.asgeir@gu.se


80

but also the “interconnectivity” of these layers for effectively 
learning meaningful representations through back and forth 
propagation and tuning of information, can be regarded as a 
measure of “depth.” As an example, all the voxels from an 
MRI T1 contrast enhanced scan could represent the input 
layer with the goal of the output layer being to accurately 
predict the overall survival in glioma. The hidden layers will 
then be trained with training and validation sets for optimiza-
tion in predicting the desired outcome with a high accuracy. 
How the hidden layers actually interact is not necessarily 
understandable for humans, but with enough data, the model 
can identify representations that are associated with a certain 
outcome.

 Pre-processing of MRI Data

Pre-processing of MRI data is a crucial step, which may sig-
nificantly impact the final performance (could be >10% or 
even more). The pipeline of pre-processing of MRI usually 
includes cortical reconstruction, image size normalization, 
and intensity normalization (Fig. 11.1). Cortical reconstruc-
tion includes a set of processing like image re-orientation, 
image registration to a reference image, skull and neck 
removal, and bias field correction. Some software, like the 
recon-all function in “FreeSurfer” [3] can handle the entire 
cortical reconstruction process, though a combination of 
other software packages like “FSL” [4], the “FLIRT FERIB” 
linear image registration tool, “BET” brain extraction tool, 
and “ANTs” [5] can also be used. The intensity normaliza-
tion step scales image values in the range [0.0, 1.0]. Finally, 
software “MRIcron” can be used for visualizing and extract-
ing MRI slices.

 Segmentation of Region of Interest (ROI)

Segmentation of an ROI may serve as a mask/annotation to 
perform the desired task (e.g. molecular prediction). 
However, in some instances segmentation may also be the 
desired task [6]. Establishing tumor boundaries can provide 
important information in determining tumor burden and sub-
tle tumor growth, and thus also to detect response or failure 
of therapies. The Brain Tumor Segmentation (BraTS) chal-
lenge [7] uses multi-institutional preoperative MRI scans 

and focuses on the segmentation of heterogenous brain 
tumors, specifically gliomas. The BraTS challenge top- 
ranked algorithms from 2017 to present 2020 are available 
on the BraTS algorithmic repository [7]. It is known that a 
fusion of these algorithms have a slight advantage over its 
single use [8]. We are also getting closer to much needed 
clinical usefulness in tumor segmentation. For instance, 
Kickingereder et al. used a DL technique called U-Net, for 
automated identification and segmentation of contrast- 
enhanced tumor and non-enhanced T2-signal abnormalities 
on MRI in a recent landmark study [9]. U-Net and its vari-
ants have been widely employed for MRI-based tumor seg-
mentation, and other groups have also presented clinically 
relevant results [10, 11].

 Deep Convolutional Neural Networks (CNNs)

There exist many introductory articles or websites that 
describe the basics of DL and in particular CNNs [12–14]. A 
deep CNN usually consists of many layers, with a typical 
architecture containing a repetition of convolutional layers, 
nonlinear activation, and pooling layers for feature learning, 
followed by several fully connected (FC) layers for classifi-
cation. A convolutional layer computes the output of neurons 
from the input taken from small regions. The weights of neu-
rons are learned from the supervised training. The size of 
filter kernels usually starts small and gradually increases 
with the layers. The nonlinear activation function is usually 
added to introduce nonlinearity, where a most commonly 
used function is “ReLU” (the rectified linear unit), which 
gives zero value output for any negative input x, i.e. 
f(x)  =  max(0,x). Other nonlinear activation functions, e.g. 
“sigmoid,” “tanh,” and “softmax,” can also be used. A pool-
ing layer often achieves nonlinear down-sampling, e.g. a 2*2 
maxpool outputs one maximum value from a 2*2 input. For 
the FC layers, multidimensional input is usually first con-
verted into one-dimensional input by a flatten layer, then fol-
lowed by two or three FC layers where all neurons are 
connected to each other. The number of layers is usually 
selected experimentally, as there is no general theory or 
guidelines on this. Some experimental guidelines for initially 
selecting the number of layers could be dependent on the 
dimension of input data (e.g. 2D or 3D data), and the size of 
the training dataset. One could then adjust the number of lay-
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Fig. 11.1 Pre-processing pipeline for brain MR images
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ers by examining the training and validation accuracy curves 
as a function of epochs, i.e. the number of passes of the entire 
training dataset that the algorithm has completed. Based on 
DL experience, if the accuracy from the training is much less 
than the desired value, more convolutional layers are proba-
bly needed. If the disparity of accuracy curves between the 
training and validation is large, it indicates that the CNN is 
overfitting, and one should consider either to reduce the 
number of layers or to increase the size of the training data-
set. The number of layers in a CNN can vary significantly, 
e.g. the well-known VGG19 Net [15], GoogLeNet [16], and 
ResNet [17] consisted of 19, 22, and 152 layers, respectively. 
The outputs from convolutional layers for feature extraction 
result in feature maps, where the feature scale varies, from 
fine resolution in the first layer to the coarsest resolution in 
the last layer. One can then extract CNN feature maps for 
visualization. To evaluate the efficacy in feature learning 
from different DL methods, heatmap [18] is a useful tool that 
compares heatmaps from different methods and indicates 
which method is more effective. For human comprehension 
of these steps, several methods have been explored in an 
attempt to “look inside” a deep neural network, many of 
which have focused on visual interpretability. In the brain 
tumor segmentation context, for instance, the CNN model 
might have separate filters learning to detect normal brain 
tissue, followed by detecting brain edema, followed by 
detecting necrotic tissue, and so on, finally identifying the 
size of the active tumor component, contrast enhancing 
regions or other important predictive factors. However, one 
must also be aware that a CNN model is not necessarily pos-
sible to decode this way, as the network could spread infor-
mation between its convolutional layers in entangled and 
non-interpretable forms for human conceptualization [19].

In essence, a CNN employs a set of nonlinear filters 
whose coefficients are learned from the training data through 
supervised learning. As demonstrated later, CNNs are found 
useful for learning features or MRI data representation.

 Deep Autoencoders (AEs)

A deep AE consists of an encoder and a decoder, each con-
taining many layers of neural networks. It is used for learn-
ing the compressed representation of data. The encoder/
decoder coefficients are learned from the training data in an 
end-to-end manner that minimizes the reconstruction error 
under a selected criterion, either through supervised or unsu-
pervised learning. One can choose different DL methods for 
realizing the encoder and decoder, e.g. by a CNN. In such a 
case, the encoder part of the convolutional autoencoder 
(CAE) is itself a CNN, though the size of the filter kernel 
usually decreases when the number of layers increases. A 
decoder is an exact reverse of the encoder. The code size 

from the encoder output is a choice from the designer, 
depending on how much details one wishes to keep in the 
learned data representation. After the training, only the 
encoder and its output are kept. As demonstrated later, AEs 
are useful DL tools for learning features or MRI data 
representation.

 Generative Adversarial Networks (GANs)

A GAN is a DL method that is widely employed for distin-
guishing real and fake data, for preventing adversarial 
attacks, and also for generating synthetic data that is 
highly similar to the real ones. A GAN consists of two 
neural networks, a generator G and a discriminator D. 
They work together to produce highly realistic images or 
data through adversarial learning. D and G can be formed 
by CNNs. For G, the input is usually a random image or 
seed data z, and tries to generate an output image/data 
G(z) as similar as the real one. A discriminator D tries to 
distinguish the real and fake image/data. The two net-
works D and G are trained sequentially in alternation until 
convergence, usually under the min-max criterion  
min max log [log~ ~G D x z p zV D G E D x E D G z

x z
, pdata

( ) = ( )  + − ( )(
( ) ( ) 1 ))(  .  

As demonstrated later, GANs are useful for effectively 
generating synthetic MRI data to increase the size of the 
training dataset, and for mapping MRI datasets presenting 
large variations.

When working with MRI datasets we often wish to use 
the complementary information provided by different 
sequences (e.g. T1, T1 contrast enhanced, T2, and FLAIR). 
Often the training dataset consists of data from a rather small 
number of patients, and missing sequences of MRI data in 
some patients can reduce the number of patients available for 
the training set even further. A so-called pairwise-GAN can 
be used to generate the missing MRI sequence based upon 
the already existing ones. A pair-wise GAN consists of two 
sets of GANs that are cross-linked between the two modali-
ties, where the input of the second discriminator D2 is con-
nected to the output of the first generator G1, whose input is 
the data from an existing modality (e.g. T2), and output is the 
synthetic data on the missing modality (e.g. T1). Similarly, 
G1 and D2 are also cross-linked.

 Techniques to Effectively Combining Several 
Small Datasets

A common issue in datasets in clinical neuroscience is that 
they are usually small (i.e. collected from just a few hundred 
patients). This is undesirable for DL as it requires learning 
the statistics/representations from a large amount of data. To 
compensate for small single-institutional data, several small 
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datasets from multiple institutions can be combined. 
However, directly combining these training datasets into a 
large one may not help to improve the generalization perfor-
mance on the test data despite the steps of pre-processing 
mentioned above, since there may exist large variations 
between the obtained datasets. In the setting of MRI data, 
such differences may be due to different scanners and param-
eter settings.

To effectively merge such training datasets, domain map-
ping can be used. The essence of domain mapping [20] is to 
find a mapping function of each individual dataset onto a 
common dataset. This common dataset can be a newly cre-
ated one or one of the existing datasets. After the mappings, 
these datasets may share more uniform properties. Domain 
mapping can be employed by the DL method cycle-GAN. A 
cycle-GAN is a technique for training unsupervised data 
mapping functions through the GAN architecture using 
unpaired collections of data from two different domains. 
Assuming there are two datasets X and Y, that one wishes to 
map onto a common dataset Z, let us first consider how to 
map X to Z by training a cycle-GAN. A cycle-GAN tries to 
minimize the cycle consistency loss, where its two GANs 
(i.e. GAN GANXZ Z Xx x

, ) are connected and trained together 

to minimize the loss. In a similar way, one can map the data-
set Y onto Z by employing another cycle-GAN that learns its 
two GANs (i.e.

 
GAN GANYZ Z Yy y

, ).

11.3  Results: DL-Assisted Diagnostics 
in Gliomas

 Results of Tumor Segmentation Performed by 
DL Instead of Manual Outline

In the BraTS challenge 2012–2013 most of the individual 
DL-based segmentation methods did not outperform inter- 
rater agreement across expert clinicians, but the fusion of 
DL-based segmentation from top-ranked algorithms outper-
formed all individual methods and was comparable with the 
inter-rater agreement. The Dice score and Hausdorff distance 
of the fused segmentations consistently ranked first in both 
metrics [7]. In a recent publication segmentation with a 
U-Net architecture, consisting of an encoder and a decoder 
network interconnected with skip connections, was a signifi-
cantly better surrogate endpoint than traditional image 
assessment using the central Response Assessment in Neuro- 
Oncology (RANO) criteria [21] for predicting overall sur-
vival in the European Organization for Research and 
Treatment of Cancer-26101 trial (EORTC-26101) test data-
set, acquired from 38 institutions across Europe (hazard 
ratios DL 2.59 [95% CI 1.86–3.60] versus central RANO 
2.07 [95% CI 1.46–2.92]; p < 0.0001) [9]. In this study, the 
median Dice coefficient was 0.89 (95% CI 0.86–0.90) and 

0.93 (95% CI 0.92–0.94) for MRI contrast enhancing and 
non-enhancing tumors, respectively, in the Heidelberg test 
set of 239 MRI scans. For the EORTC-26101 trial test set, it 
was 0.91 (0.90–0.92) and 0.93 (0.92–0.94) for MRI contrast 
enhancing and non-enhancing tumors, respectively [9]. In 
the work of Yogananda et  al. described subsequently for 
tumor classification, they included U-Net-based automatic 
segmentation in the process and achieved a whole tumor seg-
mentation average Dice score of 0.80  ±  0.007  in T2 only 
[22], and 0.89 ± 0.006 when combining T1 contrast enhanced, 
T2, and FLAIR [23].

 Prediction of Glioma Subtypes of New Patients 
with MRIs Only

Several glioma grading and molecular-subtype prediction 
methods have been developed with relatively good accuracy 
by using methods such as 3D Dense-Nets, residual neural 
networks (RNNs), CNNs, and CAEs. While some methods 
use automated segmentation [22–24], others rely on a more 
time-consuming manual segmentation. These prediction 
models have been tested in both institutional research data-
sets [20, 24–27] as well as open access datasets, including 
The Cancer Genome Atlas (TCGA), The Cancer Imaging 
Archive (TCIA), and the BraTS datasets. Some datasets 
contain both high-grade gliomas (HGG) and low-grade glio-
mas (LGG), while others rely exclusively on LGG [20, 24, 
25, 27]. The datasets may also differ due to inter-institu-
tional image variability [20]. Most DL implementations 
focus on predicting biomarkers such as IDH mutation and 
1p/19q codeletion. Table  11.1 shows the results of some 
recent DL applications, including a brief description of their 
methods and results.

 Results Following Expanding Training  
Data by DL

For DL tasks using MRI as source data, techniques to 
expand data by augmentation may include flipping, rota-
tion, and adding noise [30]. However, as mentioned, pair-
wise GANs (red box in Fig.  11.2a) can be applied for 
generating missing sequences to avoid excluding patients, 
and for generating fake patient MRI data. The feature learn-
ing was performed by 3-stream 2D CNNs (blue box in 
Fig. 11.2a) on the enlarged training dataset, containing real 
and GAN-generated sequences. After the training, the sys-
tem is ready for tumor subtype prediction of new patients 
from their MRI scans. This system was tested for predic-
tion of IDH mutation status where results from the enlarged 
training dataset improved the classification rate on the test 
set with 3–5% [28].
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Table 11.1 Examples of MRI-based DL-assisted applications for prediction of glioma subtype (by type of classification and performance)

Authors Methods Significant findings Comments
C. Yogananda 
[23]

3D Dense-UNet
TCIA and TCGA datasets
GBM and lower-grade glioma 
combined, n = 214

Prediction of IDH mutation
Mean accuracy of 
97.12% ± 0.09 on test set, 3 
runs
Sensitivity: 0.98 ± 0.02
Specificity: 0.97 ± 0.001
Whole tumor Dice score: 
0.89 ± 0.006

Less pre-processing, similar results using one 
MRI sequence (T2) compared to multiple.
The model includes automatic segmentation.
Performance increased when using patients with 
quite dissimilar looking tumors (GBM and LGG 
included together).
Strict data splitting according to patients into 
training and test.
Each run was on the initial split for threefold 
cross validation.

Z. Li [24] Convolutional neural network + support 
vector machine classifier
Single institution dataset
Lower-grade glioma only, n = 118

Prediction of IDH mutation
Accuracy of 0.9118 on test 
set, single run
Sensitivity: 0.9231
Specificity: 0.8750
Whole tumor Dice score: 
0.77

DL used for feature extraction; ML support 
vector machine used as classifier
The model includes automatic segmentation.
Strict data splitting according to patients into 
training and test.
Standard deviation was not reported.

C. Ge [28] Multi-stream convolutional neural 
networks
TCGA dataset
GBM and lower-grade glioma 
combined, n = 167

Prediction of IDH mutation
Mean accuracy of 
88.82% ± 6.57 on test sets, 5 
runs
Sensitivity: 81,81% ± 11.13
Specificity: 92.17% ± 4.77

Strict data splitting according to patients into 
training and test sets.
Each run was on re-split training and test sets.

K. Chang [26] Residual convolutional neural network
Multi-institutional research datasets 
and TCIA
GBM and lower-grade glioma 
combined, n = 496

Prediction of IDH mutation
Mean accuracy of 85.7% on 
test set, single run

Strict data splitting according to patients into 
training and test.
Sensitivity, specificity, and standard deviation for 
MRI sequence network model were not reported.

S. Liang [29] 3D Dense-Net
BraTS 2017 and TCGA datasets
GBM and lower-grade glioma 
combined, n = 167

Prediction of IDH mutation
Mean accuracy of 84.6% on 
validation set, 5 runs
Sensitivity: 78.5%
Specificity: 88.0%

No strict data splitting: Results based on fivefold 
cross-validation.
Standard deviation was not reported.

Y. Matsui [27] Residual neural networks
Multimodal dataset, containing MRI, 
PET, CT, and clinical patient 
characteristics
Lower-grade glioma only, n = 217

Prediction of IDH mutation
Mean accuracy of 82.9

No strict data splitting: Results based on 
leave-one-out cross validation.
The result was the average accuracy of the 217 
models when predicting each set of training 
data.
Sensitivity, specificity, and standard deviation 
were not reported.

M. Ali [20] Multi-stream convolutional 
autoencoders
Multi-institutional datasets
Diffuse WHO grade 2 glioma only, 
n = 161

Prediction of IDH mutation
Prediction of IDH mutation:
Mean accuracy of 
81.19% ± 3.70 on test sets, 5 
runs
Sensitivity: 93.33% ± 3.39
Specificity: not reported

Strict data splitting according to patients into 
training and test sets.
Each run was on re-split training and test sets.
Used rectangular bounding box of tumors (no 
segmentation).

Y. Matsui [27] Residual networks.
Multimodal dataset, containing MRI, 
PET, CT, and clinical patient 
characteristics
Lower-grade glioma only, n = 217

Prediction of 3-group 
molecular subtypes
Mean accuracy of 68.7%

No strict data splitting: Results based on 
leave-one-out cross validation.
The result was the average accuracy of the 217 
models when predicting each set of training data.
Sensitivity, specificity, and standard deviation 
were not reported.

(continued)
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Table 11.1 (continued)

Authors Methods Significant findings Comments
C. Yogananda 
[22]

3D Dense-UNet.
TCIA and TCGA datasets
GBM and lower-grade glioma 
combined, n = 368

Prediction of 1p/19q 
co-deletion
Mean accuracy of 
93.46% ± 0.86 on test set, 3 
runs
Sensitivity: 0.90 ± 0.003
Specificity: 0.95 ± 0.01
Whole tumor Dice score: 
0.80 ± 0.007

T2 images only.
The model includes automatic segmentation.
Results not reported in the strict LGG group
Strict data splitting according to patients into 
training and test.
Each run was on the initial split for threefold 
cross validation.

Z. Akkus [25] Convolutional neural network.
Single institution dataset
Lower-grade glioma only n = 159

Prediction of 1p/19q 
co-deletion
Accuracy of 87.7% on test 
set, single run.
Sensitivity: 93.3%
Specificity: 82.22%

No strict data splitting of patients into training 
and test.
Standard deviation and AUC were not reported.

Y. Matsui [27] Residual networks.
Multimodal dataset, containing MRI, 
PET, CT, and clinical patient 
characteristics
Lower-grade glioma only, n = 217

Prediction of 1p/19q 
co-deletion
Mean accuracy of 75.1%

No strict data splitting: Results based on 
leave-one-out cross validation.
The result was the average accuracy of the 217 
models when predicting each set of training data.
Sensitivity, specificity, and standard deviation 
were not reported.

M. Ali [20] Multi-stream convolutional 
autoencoders
Multi-institutional datasets
Diffuse WHO grade 2 glioma only, 
n = 161

Prediction of 1p/19q 
co-deletion
Mean accuracy of 
74.81% ± 0.98 on test set, 
over 5 runs.
Sensitivity: 75.93% ± 3.12
Specificity: not reported

Strict data splitting according to patients into 
training and test sets.
Each run was on re-split training and test sets.
Used rectangular bounding box of tumors (no 
segmentation).

Fig. 11.2 A DL and classification scheme for brain tumor subtype prediction. (a) Pipeline of the scheme; (b) detailed architecture of the 3-stream 
2D-CNNs in the blue box of (a)
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 Results Following Fitting Data from Several 
Sources with Significant Variability

In the work of Ali et al. several DL techniques were employed 
(e.g. combining multi-institutional datasets by cycle-GAN 
domain adaptation, enlarging the training dataset by unpaired 
GANs, feature learning by CAEs and fusion) for predicting 
1p/19q codeletion status. With the use of domain mapping 
the classification rate improved with 7.78% on the test set 
[20]. The pipeline of the system is shown in Fig. 11.3.

11.4  Discussion

Based on the results described in this chapter several DL 
techniques, including CNNs, CAEs, GANs, U-Nets, and oth-
ers, are found to be promising tools for applications in neu-
roscience. On the more generic side, DL methods can expand 
the training data through data augmentation, either by gener-
ating fake patients (e.g. new MRI sets) or by replacing miss-
ing parts of a dataset (e.g. a missing T1 contrast enhanced 
sequence) to avoid excluding those patients. Also, if multi- 
institutional datasets with significant data variability exist, 
domain mapping or adaptation for combining training datas-
ets can significantly improve the test results. Furthermore, 
although not strictly related to DL methods, we and others 
have experienced when analyzing brain tumors using MRI 
that (a) pre-processing is an important step that has a signifi-
cant impact on performance, and (b) tumor segmentation 
before applying DL methods for learning tumor representa-
tion is needed, where again DL methods such as U-Net has 
been found effective.

Despite the success in the computer vision area, success-
fully applying DL methods in clinical neuroscience remains 
challenging, partly due to the lack of large datasets with 
annotated data, variations between datasets, and importantly, 
the current gaps between medical and engineering expertise 
requiring broad and close collaborations. Because of the 
relatively scarce data in clinical neuroscience [2], we have 
included aspects where DL-based methods can evade dis-
carding data, in addition to boosting it. This generic DL use 
may assist more researchers to further explore areas in clini-
cal neuroscience despite the rather small datasets. More spe-
cifically, examples in this chapter demonstrate that DL 
methods show potential applications for clinical neurosci-
ence, especially for automatically learning features and rep-
resentations of data if there exist medium/large annotated 
training datasets. Hybrid ML and DL can be combined when 
there exist clearly clinically related features. In cases of lack 
of expert knowledge, for example, associating features in 
MRIs with molecular subtypes of glioma, ML and DL show 
their strength in finding associated features that are notori-
ously difficult even for medical experts [31]. Another benefit 
of DL is that time-consuming tasks can be automated, like 
tumor segmentation, and this may ultimately pave the way 
for the much needed shift from qualitative or crude measures 
such as one- or two-diameter volumetric assessments [32].

Since DL methods are relatively new to most researchers 
within the field of clinical neuroscience, attention should be 
paid to several issues. First, whether training and testing 
datasets are partitioned according to patients. If they are not 
strictly separated, data correlation within each individual 
patient could give a false impression of the performance with 
high accuracy on the validation or test set, however, when 
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testing data from unseen new patients is applied, the perfor-
mance could drop significantly (sometimes a drop of 20% or 
more can be seen). Second, whether the performance is on 
the test set (if on validation set, the performance is usually 
significantly higher, as DL often uses an early stopping strat-
egy in the training, hence validation performance is coupled 
with the training even though slightly lower). Third, the per-
formance criteria on whether it is on average accuracy on 
two/multiple classes or using the Area under the ROC Curve 
(AUC), noting they are not directly comparable. Fourth, 
whether multiple tests are done on re-split test sets, as mul-
tiple times of random partition of training and test sets fol-
lowed by re-training and re-testing processes give a better 
indication of the true test performance.

There are other obstacles in the implementation of novel 
prediction models by ML, and perhaps in particular when 
using DL. There already exist numerous prediction models 
where most are not in clinical use, and one could argue that 
a slight improvement achieved by an opaque method (i.e. 
“black box” prediction) is not likely to radically change clin-
ical decision making [33, 34]. On the other hand, the benefit 
would be access to decision support systems that are not geo-
graphically constrained or restricted to certain centers of 
excellence. For this reason, improving the explainability of 
DL models has recently gained increased coverage in the sci-

entific literature. For images, this is exemplified by a step-
wise illustration of what parts of the image that are used by 
the algorithms into understandable concepts for humans, in 
order to tackle the mystifying “black box” effect [19]. 
Explaining the nuances of these highly complex models may 
positively affect the willingness of physicians to incorporate 
DL into their practices [35, 36]. Explainable models may 
also aid the researcher to identify the behavior of their net-
works on early stages of model development [37]. 
Furthermore, DL models are better equipped for tasks that 
are time-consuming or require rigorous attention to detail, 
such as detection of abnormalities or complex measurements 
on MRIs. As previously mentioned, a research group demon-
strated that DL assessment of tumor response was signifi-
cantly better in predicting overall survival than the RANO 
criteria [21], enabling an automated on-demand quantitative 
tumor response assessment in roughly 10 min [9]. Evidently, 
these findings require prospective validation before broad 
clinical implementation can be recommended, but this holds 
promise both for more efficient and accurate delivery of care 
in the future.

The use of DL for imaging data holds promise also out-
side the neuro-oncological field, which can be exemplified 
by the work of Chilamkurthy et  al., where DL accurately 
identified abnormalities requiring urgent attention [38]. 

Fig. 11.3 A DL and classification scheme for predicting glioma sub-
types where cycle-GAN is used for combining two small training data-
sets through domain mapping, and multi-stream CAEs and fusion are 

used for feature learning. (a) Pipeline of the scheme; (b) details of 
“multi-stream CAE classifier” in the blue box of (a)
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Their training set contained 313,318 head computed tomog-
raphy (CT) scans, with a test set of 21,095 CT scans, achiev-
ing AUC scores between 0.90 and 0.96 for detecting different 
types of intracranial hemorrhage, demonstrating the poten-
tial for providing efficient care and rational allocation of 
human resources. Furthermore, in the epilepsy field, DL was 
applied to whole-brain presurgical structural connectomes 
from diffusion tensor imaging, thereby isolating abnormal 
individualized patterns, providing a highly accurate predic-
tion of seizure outcomes after surgery [39].

Finally, outside the field of image analysis, DL has dem-
onstrated encouraging results in several other areas of clini-
cal neuroscience. A systematic review of DL-based 
electroencephalography (EEG) ascertained the exponential 
rise of DL-applications for EEG-processing in domains such 
as brain-computer interfacing, sleep, epilepsy, cognitive, and 
affective monitoring, with various DL architectures being 
used successfully, with CNNs, RNNs, and AEs being used 
most often [40]. Notably, a substantial proportion of medical 
data is tabular and for such data ML methods dominate, 
exemplified by support vector machines [41, 42]. Although 
still in the infancy it is possible for DL methods to transform 
tabular data to images and later classify images based upon 
conventional DL methods with apparent good results 
[43–45].

We acknowledge that these examples only constitute a 
minimal proportion of the large number of DL studies that 
have been published during the last few years in topics 
related to neuroscience. The increased interest in this field is 
assumed to reflect a need for clinical decision-making sup-
port systems, more efficient use of (limited) human resources, 
and that DL is believed to have a role in improving the man-
agement and outcome of patients. The examples provided in 
this chapter are only meant to serve as an introduction to this 
multidisciplinary and complex field, and it is beyond the 
scope of this chapter to give a complete overview of potential 
medical applications, or to provide in-depth technical data to 
allow readers to learn how to set up a functioning DL 
system.

11.5  Concluding Remarks

DL is a complex architecture of multiple sequential layers of 
learning algorithms, making its workings conceptually simi-
lar to the plasticity and the related learning capacity of the 
biological brain. For this reason, DL can be better than ML 
due to the more automatic and dynamic processing and 
learning of data that DL methods can offer. DL can also be 
better than the human brain due to its ability to handle much 
larger amounts of information and perform highly complex 
computations, without human errors or biases. However, for 

optimal performance DL requires large, pre-processed and 
integrated datasets, which pose practical challenges for its 
use in clinical neuroscience. Importantly, there is also a need 
for thorough external validation before it can be allowed to 
be implemented in a clinical support decision setting. 
Nevertheless, we believe that DL models have potential to be 
used effectively for data augmentation, segmentation, detec-
tion, classification, prediction, and prognostication, based on 
clinical, radiological, and several other diagnostic modali-
ties, for a more rational, accurate, and time-efficient use of 
resources that could benefit clinical practice and improve 
patient outcome.
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Machine Learning-Based Clustering 
Analysis: Foundational Concepts, 
Methods, and Applications

Miquel Serra-Burriel and Christopher Ames

12.1  Introduction

On a day-to-day basis, one after another, we make uncon-
scious classifications around the things we perceive. From 
colors to personalities, we classify observations into groups. 
A recent hypothesis in neuroscience suggests that brains 
spontaneously learn statistical structure of images by extract-
ing their properties such as geometry or illumination [1]. 
Clustering analysis is the branch of statistics that formally 
deals with this task, learning from patterns, and its formal 
development is relatively new in statistics compared to other 
branches.

Statistical learning can be broadly defined as supervised, 
unsupervised, or a combination of the previous two. While 
supervised learning aims at mapping inputs to pre-specified 
outputs, unsupervised learning aims at grouping objects so 
that elements in each group are more similar to each other 
than those in other groups. The advantage of this approach is 
that it does not require any assumptions regarding the under-
lying joint distribution of patterns, also unsupervised learn-
ing also does not require labelling, which is usually time- and 
cost-sensitive or entirely impossible for large, unstructured 
datasets.

There are a lot of types of clustering. However, the main 
thing that they share in common is the fact that they try to 
explain variance in the data with discrete partitions. Cluster 

analysis made its first public appearance in human anthro-
pology by Driver and Kroeber in 1932 in their quantitative 
expression of cultural relationships [2]. They used a simple 
trait-count model of the populations of Polynesia, Plains Sun 
Dance, America Northwest Coast, and Peru to cluster them. 
Much has happened since, and the number of applications of 
such a simple principle is almost infinite. Marketing [3], 
genetics [4], politics [5], physics [6], ecology [7], and many 
more fields benefit from it. Most digital companies use it to 
segment their market and customer base according to their 
online preferences and behaviors.

How can we cluster? There are a lot of approaches to clus-
ter observations, namely: connectivity-based clustering or 
hierarchical clustering, centroid-based clustering, and 
density- based clustering. We will go through each approach, 
with applications, review dimensionality reduction and two 
examples of papers that we find meaningful. The 
Supplementary Content 12.1 presents the R code to replicate 
our results and create your own, while following these 
examples.

12.2  Connectivity-Based Clustering

Connectivity-based clustering is based on the idea of build-
ing a hierarchy of similar elements within a sample. It can be 
performed in two ways, bottom-up or agglomerative and top- 
down or divisive. The former begins with each observation 
being its own cluster and later pairing them recursively, the 
later starts with one cluster containing all observations and 
recursively splitting them into smaller clusters until each 
observation forms its own group. The results of clustering 
are usually presented in dendrograms, tree-shaped objects 
that represent the hierarchy of the clustering product.

To illustrate the basic functionality, let us begin with a toy 
example of hierarchical clustering with two dimensions or 
features of a population. We have a sample of 1000 individu-
als who were subject to two visual perception tasks, one of 
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movement perception and another one of color perception. 
The scatterplot of the performance in both tasks is presented 
in Fig. 12.1.

Each dot presents an observation of our study, the x axis 
presents the score of the movement perception task and the 
y-axis presents the score of the color perception one. We 
want to create groups that are homogeneous within them-
selves and heterogenous across. The first step to clustering is 
to create a distance or dissimilarity matrix. This matrix con-
tains the relative distance of each observation with respect to 
all other observations in the set. There are a lot of ways to 
create a distance matrix. The most widely used is the 
Euclidean distance (Eq. 12.1):
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(12.1)

where the distance between observations p and q is equal to 
the square root of the squared sum of differences in position 
of p and q for n dimensions. In our case, since we have 1000 
observations, each Euclidean distance for participant i, with 
respect to participant j, takes form in the following way 
(Eq. 12.2):
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 (12.2)

where mps is the movement perception score and cps is the 
color perception score. Figure  12.2 presents the matrix of 
distances as measured by different metrics.

The upper left panel of the figure presents the Euclidean 
distance, the upper right panel presents the maximum dis-

tance, the lower left the Manhattan distance, and the lower 
right panel presents the Canberra distance. It can be noted 
that irrespective of the distance measure, the overall struc-
ture of the matrix is fairly similar. Once the matrix has been 
constructed, two approaches are possible, the above- 
mentioned agglomerative (also called Agnes) and divisive 
(also called Diana) functions. In general terms, agglomera-
tive methods are mainly used to find small clusters and divi-
sive methods larger clusters. Let us use the Euclidean 
distance matrix from Fig. 12.2 to build a dendrogram for the 
bottom-up approach and split it into four clusters.

Figure 12.3 represents the resulting dendrogram. The 
x-axis presents each observation, while the y-axis connec-
tions present the pairs of observations and groups of observa-
tions. In the figure, the number of clusters is predefined to be 
4. However, how can one determine the “natural” or optimal 
number of clusters in the sample? In our sample there are 
between 2 and 999 potential clusters. The hierarchy of the 
model aids us in distinguishing which subgroups stem from 
other bigger clusters recursively.

There are three main methods in determining the number 
of clusters: the elbow method [8], average silhouette method 
[9], and the gap statistic method [10].

The elbow method basically computes the resulting intra- 
cluster variation (also known as wss) for each of the potential 
cluster groupings. The location of the bend or “knee,” mean-
ing the inflexion point is usually chosen as the indicator of 
the appropriate number of clusters. The silhouette method 
computes a silhouette value that considers how close each 
observation is to its own cluster compared to the others and 
the value ranges from −1 to 1, with higher values indicating 
better clustering for each iteration on the number of clusters. 
The gap statistic method is similar to the silhouette method; 
however, it compares the resulting difference in intra-cluster 
variation from each clustering distribution with a random 
Monte Carlo simulated sample. Figure  12.4 presents the 
results on the optimal number of clustering by each of the 
described methods.

Independently, each method points toward two underly-
ing clusters. We rebuild the previous dendrogram and plot 
clustered scatterplot of cognition performance groups 
(Fig. 12.5).

What are the advantages and disadvantages of hierarchi-
cal clustering?

Advantages:
• The clustering model has an imposed structural hierarchy, 

which tends to be more interpretable than other outputs.
• Its construction process is independent of the number of 

clusters, thus conserving some information that can be of 
value for the researcher.

• Their simplicity and transparency foster interpretation 
and reproducibility in external settings.

Fig. 12.1 Scatterplot of cognition performance
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Disadvantages:
• Given its static recursive approach, once a data point has 

been placed within a cluster, the model does not test for 
other potential combinations.

• It is more computationally demanding than other cluster-
ing algorithms.

• Its sensitivity to outliers requires caution in the pre- 
processing stage.

• Its results also depend on the metric used to compute the 
distance or dissimilarity matrix.

12.3  Centroid-Based Clustering

Instead of computing distance across observations and then 
recursively imposing a hierarchy over them, centroid-based 
clustering aims to partition observations into k groups in 
such a way that the sum of distances from points to the cen-
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troid of their respective clusters is minimized. A valid anal-
ogy would be to split a lot of identical pies into k pieces, not 
in even parts necessarily, and select the splitting pattern that 
is more satisfying. The history of this type of clustering 
started in the late 50s, with Hugo Steinhaus first in 1956 [11] 
and Stuart Lloyd in 1957 [12] as a technique for representing 
analog signals in a digital way. However, the algorithm was 
further refined by James MacQueen in 1967 [13] and the cur-
rently most used one was published in 1979 by Hartigan and 
Wong [14].

The algorithm has two steps, assignment, and update, pre-
ceded by an initialization method. The initialization can be 
done in two ways. Randomly choosing k (the same amount of 

desired clusters) observations and using them as the initial 
means or randomly assigning a cluster to each observation and 
using that cluster mean as the centroid. Then, with either 
method the assignment step follows. Each observation is 
assigned to the cluster that is nearer, measured with the 
Euclidean distance to the centroid as described in Eq. (12.1). 
Then, the update step follows by simply computing the 
 centroid or mean again for the observations assigned to it. The 
process is repeated until the observations classified to each 
cluster do not change. Note that this process does not need to 
converge necessarily, and the general recommendation is to 
initialize the algorithm with several random starts, which 
sometimes prevents the algorithm from not converging.

Fig. 12.4 Optimal number of clusters by method

Fig. 12.5 Optimized Agnes Dendrogram Clustering built with Euclidean distances and scatterplot by cluster
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Using the same dataset since the beginning of the chapter 
we perform a k-means clustering with the Hartigan–Wong 
algorithm, 5 random starts, and from 2 to 7 clusters. 
Figure 12.6 presents the results of the clustering.

To determine the optimal number of clusters, the same 
methods described before apply: the elbow method, the sil-
houette and the Gap method. Again, as with the hierarchical 
clustering approach the optimal amount is revealed to be two 
by all accounts. The results of both algorithms are strikingly 
similar. Figure 12.7 presents the results of the optimization 
process.

What are the advantages and disadvantages of centroid- 
based clustering?

Advantages:
• Simpler algorithm to implement.
• Computationally efficient.
• It has been shown to produce results with high external 

validity.
• Adapts and recognizes well clusters with distinct func-

tional forms and relative sizes.

Disadvantages:
• It does not identify clusters with non-convex shapes.
• It has difficulties identifying clusters of different size.
• It is not completely suited to clustering exercises of high 

dimensionality, due to Euclidean distance causing the 
algorithm to converge almost immediately.

12.4  Density-Based Clustering

Compared to the previous two methods of clustering, density- 
based clustering does not impose a hierarchy or partitions the 
space. It rather choses clusters based on the defined areas 
higher statistical density than the rest. Different from before, 

all observations are not assigned a cluster, points outside the 
optimized clusters are considered to be noise.

The most used clustering method based on this principle 
is the density-based spatial clustering of applications with 
noise (DBSCAN) (Fig. 12.8). Developed in 1996 by Ester, 
Kriegel, Sander, and Xu, and it is a non-parametric algorithm 
[15]. The intuition of the algorithm is straightforward. The 
model uses what is called minPts, a threshold on the number 
of neighboring points, within a radius e. Points with more 
neighboring points than the threshold are considered as a 
core point, analogous to a centroid. The objective of the 
algorithm is then to find separated areas of high-density vs. 
areas of low density.

In abstract terms, the DBSCAN algorithm has three steps. 
Find the points within the e radius of every point, and iden-
tify core points with a number of observations above the 
threshold minPts. Then, the connected core points are 
merged, and finally points are assigned either to clusters or to 
noise.

What are the advantages and disadvantages of density- 
based clustering?

Advantages:
• It does not require a pre-specified or optimized number of 

clusters.
• It does recognize non-convex clusters, and even strange 

shapes such as circles within circles.
• Because density has a noise component, the method is 

robust with respect to eliminating outliers.
• It only requires two parameters which are independent of 

the order or functional forms of the underlying data- 
generating process.

Disadvantages:
• It does not cluster well data with different densities, 

meaning that if there are two clusters in the dataset, but 

Fig. 12.6 k-means clustering partitions, from 2 to 7 clusters
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one is highly dense and the other is not, density-based 
models will have difficulty recognizing them.

• Given some combinations of both parameters in the algo-
rithm, irrelevant tiny clusters might appear.

• It requires the most user supervision of all the algorithms, 
as the results are highly unstable based on different com-
binations of parameters.

12.5  Dimensionality Reduction

Until now, all of our examples have been based on two 
dimensions, x- and y-axis values. However, in real-life sce-
narios, it is unlikely that setting investigated has only two. 

Most problems in clinical science appear within incredibly 
complex causal networks. Patients, their diseases, and reali-
ties are highly dimensional. We have highlighted that cluster-
ing algorithms tend to fail when the number of dimensions 
increases because distance-based metrics tend to be mean-
ingless at high values. The response to this phenomena: to 
reduce dimensions of your data.

Dimension reduction is the task that transforms high 
dimensions of data to low dimensions while conserving the 
most important relations and features of the original. There is 
an almost infinity of ways to achieve such a purpose, from 
principal component analysis to uniform manifold approxi-
mation and projection algorithms. Let us demonstrate this 
with another toy example.

Fig. 12.7 Optimal number of clusters by method
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We have now performed six additional cognitive tasks on 
our imaginary sample, resulting in eight variables. However, 
we want to describe the sample with as little complexity as 
possible, let us say three components maximum. The first 
step is to compute the principal components of the dataset. To 
do so, the covariance matrix of the data has to be estimated, 
and the eigenvalues and eigenvectors are factored in to diago-
nalize the elements that form the variance of each respective 
dimensions. The proportion of explained variance that each 

eigenvector reflects is calculated by dividing the eigenvalue 
by the addition of each eigenvector. In our case, the first com-
ponent explains 36% of the data variance, the second 20%, 
and the third around 12%. This means that by using the first 
three components we are resembling 68% of the original 
dataset, with of 3 out 8 dimensions, or 37.5% of the original 
data. Figure 12.9 shows the graphical presentation.

We cut the dimensions to three, and now we apply again 
the optimized hierarchical clustering algorithm of the 

c

d e f

a b

Fig. 12.8 DBSCAN clustering results with varying parameters. Notes: (a) e = 0.25, minPts = 40, (b) e = 0.25, minPts = 30, (c) e = 0.25, 
minPts = 20, (d) e = 0.15, minPts = 10, (e) e = 0.30, minPts = 30, (f) e = 0.35, minPts = 30
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beginning of this chapter resulting in three clusters pre-
sented in Fig. 12.10.

12.6  Applications

 Adult Spinal Deformity

We previously published one paper, in 2019 [16], using the 
methods described in this chapter. We did it in the adult spi-
nal deformity (ASD) field. ASD, also known as scoliosis of 
the adult, is a highly heterogeneous and debilitating condi-
tion. Its defining feature is a physical deformation of the 
spine mainly measured in key angles of its shape. Up to that 
point, the available classifications of the disease were mainly 
based in X-ray measurements of the Spine, the Schwab [17] 
and Lenke [18] classifications. And, while it is true that the 
spine is a complex structure that entails a lot of features, to 

us, ignoring non-spine specific patient parameters seemed 
like an incomplete model of the disease process.

Using a combined data query from both the European 
Spine Study Group (ESSG) and the International Spine 
Study Group (ISSG) we set up to simply describe and char-
acterize the potential latent patient clusters. Adding simple 
quality of life and demographic metrics, we performed a 
hierarchical clustering modelling to group similar patients 
from dissimilar ones. We found an optimal of three types of 
patients, we called them, young coronal patients, old first- 
timers, and old-revisions. The main descriptive characteris-
tics of the groups were: young coronal patients typified by 
much younger patients with a coronal spinal deformity and 
little sagittal malalignment. Old first-timers were patients 
mostly in their late 50s or early 60s with a more severe defor-
mity mostly related to the lumbar spine and with no previous 
spinal surgery. Finally, old revision patients were the oldest 
and the ones with the most severe malalignment, especially 
in the sagittal plane and who had undergone prior spinal 
surgery.

However, to us the task seemed incomplete, and on top of 
a patient-specific clustering exercise we also applied it to 
surgical techniques. The surgical treatment of scoliosis 
involves a wide variety of different techniques. The termina-
tion levels of fusions and placement of nerve decompres-
sions and vertebral releases and osteotomies result in 
significant treatment heterogeneity. When we clustered the 
range of surgical treatments, we found four types of surger-
ies to be the main clusters.

Finally, by superimposing both the patient and surgery 
classification, we obtained a descriptive grid of patient and 
surgery heterogeneity. By doing so, we were able to look at 
what happened 2 years after surgery when patients within a 
same cluster where operated on by different surgical clusters. 
What we obtained was not only a descriptive result in terms 
of clusters, but also a simple prognostic model associating 
types of patients and surgeries to outcomes. We observed 
that, for instance, young coronal patients were the ones with 
the lowest functional and quality of life improvement, on 
average, while those young coronal patients receiving more 
aggressive surgeries were also experiencing higher levels of 
post-surgical complications. This allowed us to identify sim-
ple areas of improvement in terms of patient and surgical 
selection with a cost-benefit that might not justify more 
aggressive surgeries.

 Sepsis

One of our favorite examples of a successful application of 
k-means clustering is an article by Seymour and coauthors 
published in 2019 in JAMA [19]. They developed and vali-
dated clinical phenotypes for sepsis and model the potential 

Fig. 12.9 Variance explained by each dimension

Fig. 12.10 Optimized hierarchical clusters of the simplified dataset
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benefit and harm of treatments with data from an external 
randomized controlled trial.

Sepsis is highly heterogeneous condition defined by an 
unregulated immune response to an infection that leads to 
acute organ failure. Given the multidimensional array of 
clinical symptoms and biological features, the authors used a 
variety of variables that ranged from demographic, vital 
signs, markers of inflammation, to markers of organ dys-
function. Out of more than 50 potential candidate variables a 
total of 29 were selected and observations were clustered 
according to the consensus k-means clustering method. A 
total of four phenotypes, alpha, beta, gamma, and omega 
were found to be optimal using diverse measures of optimi-
zation. When looking at the outcomes at any time during 
hospitalization they found startling differences. The first 
phenotype, alpha, had only a 2% in-hospital mortality with 
only 25% of patients admitted to the ICU, while the last clus-
ter or phenotype had a 32% in-hospital mortality and 85% 
ICU admissions rates. Compared to the standard classifica-
tion of sepsis, the proposed “phenotypic” classification was 
fairly constant across the other scheme, highlighting that the 
human-proposed classification did not capture relevant 
variance.

The authors then, go a step further, analogous to the 
above-mentioned cost/benefit grid. They used external RCT 
data to estimate differential treatment effects across pheno-
types. First, they assign the observations of three RCTs 
(ACCESS, PROWESS, and ProCESS) to each of their 
derived clusters. After, they vary the proportion of patients 
from each cluster in each trial to simulate scenarios and their 
causal effects. They find that out of the three interventions 
used in the RCTs, according to which phenotype they are 
applied, the effects varied remarkably: from total benefit to 
an extremely high likelihood of harm.

 Common Pitfalls and Proposed Solutions

The three most common pitfalls in clustering research relate 
to (a) the use of high-dimensional data, (b) the lack of com-
parison of results across clustering methods, and (c) deter-
mining whether the results are meaningful. Geometry 
behaves irregularly in high-dimensional settings, hence mea-
sures of distance are rendered non-useful. Sparsity and the 
identification of relevant variables in the problem tend to be 
hidden under large numbers of irrelevant ones. We recom-
mend to thoroughly inspect data in the pre-implementation 
stage and to make sure that each included feature has a 
potential meaningful implication. As we have discussed in 
this chapter, different methods can produce different results, 
hence judging one clustering configuration without compar-
ing it to potential others can render the external validity of 
the results null. We recommend applying, at least, three dif-

ferent optimized algorithms to assess the robustness of the 
results. The determination of the usefulness of the results is 
perhaps the most crucial part, and where we researchers tend 
to use follow-up data or third-party linked results. It is 
imperative to pair any good clustering exercise with expert 
knowledge on the underlying data-generating process.

12.7  Conclusions

Any clustering task involves investigator-related choices, 
and many of them are critical to the validity of results, 
both internally and externally. In the present chapter we 
have introduced, with examples, a few of the most relevant 
unsupervised learning techniques for the practicing clini-
cal neuroscience researcher. We have not extensively cov-
ered all potential algorithms or methods, as that would 
require a series of books in itself, but we have provided a 
few visual examples and applications that we hope suc-
cessfully aid other researchers in the use of these tools. 
Moreover, the full capacities of data will only be achieved 
if everyone learns to pair the right research question with 
the appropriate tools. Clustering methods are the most 
important tool for data discovery and description, and its 
integration with both predictive and causal objectives is 
crucial to maximize its potential, as alone, it still is a 
descriptive method.

Our experience reveals that the advantages of using for-
mal unsupervised learning algorithms are superior to stan-
dard supervised classification methods for the description of 
phenotypes or clusters. Not only that, but given their poten-
tial for heterogeneous treatment effects, they will be a cor-
nerstone for trial design by selecting populations with 
expected effect sizes well below or above the mean.

In short, clustering is perhaps, more than other machine 
learning techniques, the most underused and underappreci-
ated, and should be strongly considered in questioning scien-
tific paradigms regarding classification of features.

For further reading we recommend the books by Trevor 
Hastie, Robert Tibshirani & Jerome Friedman. “The ele-
ments of statistical learning: data mining, inference, and 
prediction” Springer Science & Business Media, 2009, and 
M.  Emre Celebi & Kemal Aydin. “Unsupervise learning 
algorithms” Berlin: Springer International Publishing, 
2016. 
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Deployment of Clinical Prediction 
Models: A Practical Guide 
to Nomograms and Online Calculators

Adrian E. Jimenez, James Feghali, Andrew T. Schilling, 
and Tej D. Azad

13.1  Introduction

Within the neurosurgical literature, there has been a prolif-
eration of efforts to develop and validate clinical prediction 
models [1]. In addition to forecasting postoperative out-
comes using traditional statistical regression techniques, pre-
dictive modeling efforts have also incorporated machine 
learning algorithms to automate tumor volumetric measure-
ments, detect surgical complications within clinical texts, 
and explore a number of other novel applications [2–5].

Accompanying the burgeoning interest in neurosurgical 
predictive modeling has been important commentary aimed 
at delineating the best techniques for quantifying the accu-
racy and calibration of such models, an increased awareness 
of the strengths and limitations of various modeling strate-
gies, and a renewed focus on the importance of external vali-
dation [1, 6–11]. Importantly, many neurosurgical predictive 
models have been made available to clinicians and patients 
through nomograms, web applications, and RStudio (Boston, 
MA) Shiny applications [4, 12, 13].

Here, we discuss deployment methods of predictive mod-
els and provide instructions on navigating model deployment 
using the R programming language for two common deploy-
ment modalities: nomograms and Shiny application calcula-
tors. The present work aims to make model deployment 
simple and intuitive in order to allow researchers to make 
their models more transparent and accessible, with the ulti-
mate goal of facilitating the creation of tools that can aid 
clinicians in clinical decision making, thereby improving 
patient outcomes.

The following tutorial requires both R programming lan-
guage software (found at https://cran.r- project.org/) and 
RStudio (found at https://rstudio.com/products/rstudio/
download/). Readers should also download the 
“Glioblastoma_Dataset.xlsx” and the “script_classification” 
files from the MICN lab website (https://micnlab.com/files/). 
After downloading the files, both should be saved within the 
same folder on your computer. The “script_classification” 
file should then be run within RStudio to load the glioblas-
toma dataset into the global environment, to load required R 
packages, and to train the predictive models that will be 
deployed into nomogram and calculator format in this chap-
ter. Instructions for creating a Shinyapps account and link-
ing the account to the version of RStudio installed on your 
computer are available at https://docs.rstudio.com/shin-
yapps.io/, specifically within Chap. 2. The required R pack-
ages necessary for constructing nomograms and building 
the online calculator are included within the relevant R code 
snippets displayed throughout the chapter, and the full R 
scripts containing the code used in this tutorial have been 
included as supplementary content (Supplementary Content 
13.1 and 13.2).

13.2  Nomograms

Nomograms are visual representations of predictive models 
that allow for individualized risk-estimation based on a 
patient’s unique demographic and clinical characteristics. 
Nomograms are used to calculate a patient-specific numeric 
score which is translated to a specific probability that the 
patient will experience the outcome of interest based on the 
underlying statistical model represented in the nomogram. 
Nomograms are simple and intuitive tools that may easily be 
incorporated into clinical workflows and used at the bedside 
for patient counseling. An important limitation of nomo-
grams is that the required calculations may become overly 
time-consuming and therefore unfeasible in a clinical setting 
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as the number of prognostic factors that are considered 
increases, such as for models trained on very large datasets.

As shown in the R nomogram script (Fig. 13.1), the first 
step to creating a nomogram is to specify the distribution 
summaries for our predictor variables of interest using the 
“datadist()” rms function. This function determines metrics 
such as effect and plotting ranges, adjustment values, and 
overall ranges for predictor variables [14]. As specified 
within the MICN classification script, the following vari-
ables were selected for model-building using recursive fea-
ture elimination (RFE): age, hospital caseload, chemotherapy, 
comorbidity, IDH (isocitrate dehydrogenase) mutation sta-
tus, KPS (Karnofsky Performance Score), sex, MGMT (O6- 
alkylguanine DNA alkyltransferase)-methylation status, 
tumor midline localization, prior surgeries, radiotherapy 
dose, tumor size, and TERT (telomerase reverse transcrip-
tase) promoter mutations. Age, hospital caseload, and KPS, 
radiotherapy dose, and tumor size were analyzed as continu-
ous variables (specified using “as.numeric()”), while the 
remaining predictors were analyzed as categorial variables 
(specified using “as.factor()”). These variables are stored 
within the “train” dataset, and therefore the code within sec-
tion 1 of Fig. 13.1 serves to both specify distribution sum-
maries for these variables and to store these summaries using 
the “options()” function to streamline any future model- 
building that uses these predictors. Next, section 2 fits a 
logistic regression model predicting the probability of 
12-month postoperative survival (binary outcome) following 
glioblastoma surgery using standard R formula syntax, and a 
nomogram object is generated and stored as “nom.lrfit_rms” 
within section 3. Within the “nomogram()” function, the 
“fun” argument transforms the logistic regression output of 

log-odds of 12-Month Postoperative Survival into the prob-
ability of 12-Month Postoperative Survival, allowing for a 
more intuitive clinical interpretation of the model’s output. 
The “lp=FALSE” argument may be used to suppress the log- 
odds output from being displayed on the nomogram; 
“lp=TRUE” may be used to display both the log-odds output 
in addition to the predicted probability. “funlabel” is used to 
label the predicted probability on the nomogram, while the 
“fun.at” argument specifies the tick marks that are displayed 
on the predicted probability nomogram output. The final 
“nom.lrfit_rms” nomogram object may then be visualized 
using the “plot()” function as shown in section 4, with the 
final nomogram output displayed in Fig. 13.2.

13.3  Online Calculators

Shinyapps calculators are created using the Shiny R package 
and allow implementation of predictive models as online cal-
culators that output predicted probabilities depending on 
user input. Predictive models are developed and serve as the 
functional backend of the calculator. A graphic user interface 
is generated to allow users to enter patient information. User 
interfaces may be customized using both the R programming 
language as well as HTML (Hypertext Markup Language), 
allowing for significant flexibility in how calculator results 
are presented. Calculators may be uploaded online with a 
Shinyapps account, allowing anyone with the calculator’s 
web address to access the predictive model. While users may 
deploy up to 5 applications with a maximum of 25 h total use 
time with a free account, premium Shiny accounts and 
monthly payments are required to exceed these data caps.

Fig. 13.1 R code for constructing nomogram
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The R Shinyapps script (Figs.  13.3 and 13.4) contains 
code for specifying both the user interface and the server 
logic required to output predicted probabilities from a Caret 
model [15]. Importantly, any R script that will be used to 
 create a Shiny application should have the file type “app.R,” 
rather than the “.R” type utilized with normal R scripts. Prior 
to launching a Shiny application, a model generated using a 
separate R script must be saved as an individual file. This 
tutorial will use the stochastic gradient boosting machine 
(GBM) model that is trained after the MICN lab classifica-
tion script is run within R studio. Once the “gbmfit” object 
appears in the global environment, the function “saveRDS()” 
may be used entered into the RStudio console to save the 
model under the file name “gbmfit”:

     > saveRDS(gbmfit, “gbmfit”)

This file should then be saved into a dedicated folder 
alongside the app.R script file, as this folder will be uploaded 
to a Shiny server once the app.R calculator script is 
finalized.

Within the first part of the app.R calculator script 
(Fig.  13.3), running the code in section 0 will load the 
required packages or prompt installation if they have not yet 
been installed. Section 1 defines the code specifying the user 
interface (i.e. the components of the calculator that a user 

sees and is able to directly manipulate). Section 1.1, specifi-
cally the “titlePanel()” function, is used to label the calcula-
tor as a risk calculator for 12-month survival following 
glioblastoma surgery. The calculator sidebar, coded within 
section 1.2, is where users will enter the patient-specific pre-
dictive variables used to calculate an individualized pre-
dicted probability of 12-month survival. There are many 
ways to customize the sidebar (thereby affecting how users 
may enter information into the calculator), but the present 
worked example will only focus on three aspects of the side-
bar sufficient for deploying the GBM model: “numericIn-
put(),” “selectInput(),” and “helpText().” “numericInput()” is 
useful for specifying how users may enter continuous vari-
ables, such as age and hospital caseload. The “inputID” argu-
ment to the “numericInput()” function assigns an object 
name to the input that can be called later when reconstruct-
ing the predictive model, while the “label” argument dis-
plays a label on the user interface that can be used to specify 
what type of information should be inputted. Within “numer-
icInput(),” “min,” and “max” designate the minimum and 
maximum value that a user may enter into the calculator, 
while “value” designates the numeric starting value utilized 
at calculator initialization. The “selectInput()” function, on 
the other hand, is useful for specifying how categorial vari-
ables are entered into the calculator. Within “selectInput(),” 
“choices,” and “list()” may be used to provide users with a 

Fig. 13.2 Final nomogram
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Fig. 13.3 R code for 
calculator user interface
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list of possible options, with each labeled option correspond-
ing to a specific input that the model can use for prediction 
(i.e. selecting “Male” under “Select Patient Sex” will pro-
vide the model with a factor level of “1,” while selecting 
“Female” would correspond to a factor level of “0”). Similar 
to the “value” option within “numericInput(),” the “selected” 
option within “selectInput()” defines the factor level utilized 
for the default prediction at calculator initialization. Lastly, 
the “helpText()” option is useful for adding any additional 
instructions for user input, such as clarifying unintuitive clin-

ical terms. In the present example, “helpText()” is used to 
more precisely define “comorbidity status” for the calculator 
user. In section 1.3, the “mainPanel()” function is used to 
customize the main panel of the calculator, defined as being 
comprised of two tabs via the “tabsetPanel()” function: a 
“Disclaimer” tab and a “Calculator Output” tab. The former 
is important for communicating important information to 
calculator users, such as the fact that this calculator is for 
educational use only and should not be utilized in clinical 
settings. The latter tab contains the actual numeric predictions 

Fig. 13.4 R code for calculator server logic
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generated by the statistical model. “tableOutput()” desig-
nates that the predictions generated by the GBM model 
(stored in the object “model_table”) will be formatted within 
the “Calculator Output” tab as a table output element.

Section 2 of the app.R script contains the server function, 
which enters user input values into the GBM model and out-
puts the model’s predicted probability of 12-month survival 
(Fig.  13.4). The code in section 2.1 loads our previously 
saved GBM Caret model using “readRDS()” and saves it as 
a Caret object labeled “gbmfit.” Section 2.2 defines the 
model output as a reactive object, meaning that the predicted 
probability is automatically updated whenever input values 
are changed using the user interface. In this present example, 
this functionality allows calculator users to observe how 
changes in patient characteristics such as age, comorbidity 
status, and KPS affect 12-month survival probability in real 
time. Within the reactive function, and as detailed in section 
2.2.1, an R data frame object is defined with a “Result” col-
umn to label what the model output signifies (i.e. the model’s 
binary yes/no prediction of whether the patient will be alive 
12 months after surgery as well as a predicted probability of 
12-month postoperative survival) and an “Output” column of 
this data frame to contain the predicted yes/no output plus 
the numeric probability returned by the GBM model. 
Importantly, the “Output” column contains our “gbmfit” 
model object, a data frame (which contains our new data 
used for prediction) containing values extracted from our 
user interface inputs, and a “predict.train(object, newdata=, 
type=)” function to extract predictions using both the “gbm-
fit” model and the data frame containing the user interface 
inputs. Importantly, each entry within the data frame must be 
correctly specified as a continuous or categorical variable 
using “as.numeric()” and “as.factor(),” respectively, and also 
must be saved using the same name as one of the predictor 
variables that the model was trained on. For example, 
“Age=as.numeric(input$age)” takes the user-specified 
patient age and saves it within the data frame as a value titled 
“Age,” which may then be used by the GBM model to calcu-
late the predicted probability of survival at 12 months of sur-
gery. The “type=” argument within the “predict.train” 
function can be used to either specify that the output should 
be a yes/no prediction of 12-month postoperative survival 
(type=“raw”) or a predicted probability of 12-month postop-
erative survival (type=“prob”). For the binary prediction, a 
default cutoff of 0.5 is used, with predicted probabilities 
≥0.5 corresponding to an output of “yes” for 12-month post-
operative survival and predicted probabilities of <0.5 corre-
sponding to an output of “no.” Furthermore, the argument for 
specifying a binary yes/no prediction is wrapped in an “as.
character()” function to ensure that the output are the actual 
words “yes” or “no” rather than the integers “1” or “2,” 
which is how R normally stores factor levels. When output-
ting predicted probabilities using the “type=“prob” argu-

ment, the additional “[,“yes”]” argument is included so that 
only the predicted probability of the patient being alive is 
outputted. If “[,“no”]” was instead used, the predicted prob-
ability would instead correspond to patient mortality within 
12 months of surgery. If neither is used, both probabilities 
are printed. Finally, the predicted probability output can be 
limited to two decimal places by using the function 
“formatC().”

The code within section 2.3 concludes the server logic 
segment of the app.R code by assigning the reactive object 
“model_output” to be displayed as a table on the main calcu-
lator panel, which was defined in section 1.3. Finally, the 
code under section 3 builds the shinyApp object by uniting 
the user interface and server logic components. Within R stu-
dio, Shiny applications can be directly uploaded to any shin-
yapps.io account. Detailed instructions on managing 
applications within a shinyapps.io account can be found at 
https://docs.rstudio.com/shinyapps.io/. A working example 
of the calculator developed in this chapter can be accessed 
using the following link: https://neurooncsurgery2.shin-
yapps.io/gbm_calculator/.

13.4  Other Methods of Deployment

Aside from nomograms and Shinyapps calculators, neuro-
surgical predictive models have also been deployed using 
native mobile applications (e.g. iOS and Android) and other 
web applications besides Shiny [12, 16]. Such alternatives 
may allow more nuanced customization of model deploy-
ment compared to the discrete set of functionalities available 
through Shinyapps. These modalities may also be a more 
cost-effective option compared to premium Shinyapps sub-
scriptions depending on how much the applications will be 
accessed by users. Overall, the choice between deploying 
prediction models using nomograms, Shinyapps, or other 
custom web applications depends on technical website- and 
application-building knowledge, model accessibility, and 
personal preference.

13.5  Discussion

Nomograms and Shinyapps calculators are two common 
methods for deploying clinical prediction models and allow-
ing users to better understand how patient-specific informa-
tion affects the predicted probabilities of important clinical 
outcomes. Both tools may be created in R and have the 
potential to be easily incorporated into clinical workflows. 
Aside from these two methods, clinical prediction models 
may also be deployed into formats such as native mobile 
apps and other web applications. While the methodology 
detailed in the present chapter can be used to deploy predic-
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tive models trained on tabulated patient demographic and 
clinical data, the deployment of more complex models incor-
porating techniques such as radiographic image  segmentation 
or conversion requires addition user interface and server 
capabilities beyond the scope of this tutorial.

Though the present chapter is focused on instructing 
researchers on how their predictive models may be deployed 
using nomograms or risk calculators, it is also important to 
consider the trade-offs involved with creating open-access 
prediction models. With the increasing use of prediction 
models and deployment methods allowing for open-access 
use of such models, clinicians and investigators have begun 
to express concerns over whether predictive models are 
being deployed preemptively in ways that may compromise 
patient safety [17–19]. Some researchers argue that deploy-
ment of predictive models into an open-access format may 
be potentially hazardous if rigorous external validation has 
not been performed or if all predictive performance metrics 
have not been reported [19]. Other investigators contend that 
deployment of predictive models, even with limited external 
validation, may serve as an educational aid by allowing read-
ers to directly interact with the model via an accessible front- 
end (i.e. an online calculator) [18]. Regarding these concerns, 
if predictive models are employed prior to external valida-
tion, researchers should add disclaimers to their calculators 
specifying that the tool is not to be used in clinical settings 
and to direct users toward the peer-reviewed research articles 
which fully characterize the limitations of their training data 
or their statistical models. For example, a disclaimer might 
state that a model specifically trained on surgically-treated 
patients to predict postoperative outcomes should not be 
used to prognosticate outcomes for patients treated solely 
using medical therapy. The disclaimer might also clarify that 
the model deployed in an online calculator format is an arti-
ficial neural network (ANN), and that ANNs are prone to 
overfitting on their training datasets [20–22]. In this manner, 
researchers can allow readers to better understand their 
model while also avoiding preemptive clinical use that may 
compromise patient safety.

Overall, when deploying predictive models, it is impor-
tant to thoroughly delineate the limitations of the model and 
to externally validate predictive performance metrics using 
novel datasets whenever possible. Establishing whether or 
not a predictive model was trained on data that is representa-
tive of a larger patient population can only be determined by 
assessing predictive performance on external datasets (e.g. 
patient data collected at a different medical center than where 
the model was created) and by quantifying metrics such as 
model calibration, discrimination, accuracy, sensitivity, and 
specificity [19, 23]. Such external validation is crucial for 
minimizing bias that results from single-center data such as 
surgeon caseloads, unique hospital workflows/protocols, and 
patient demographics specific to a particular geographic area 

[19]. These precautions are of paramount importance for 
establishing replicable scientific findings and for ensuring 
patient safety. By encouraging the responsible deployment 
of clinical predictions models though nomograms and online 
calculators may serve to further educate users about the util-
ity of predictive analytics within neurosurgery and may also 
help streamline the implementation of predictive models into 
clinical and operative workflows.

13.6  Conclusion

The present chapter details step-by-step instructions on 
deploying clinical prediction models using nomograms and 
Shinyapps online calculators. When used appropriately, such 
tools may serve to improve understanding of predictive mod-
els and may also help streamline the implementation of such 
models into clinical and operative settings.
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Updating Clinical Prediction Models: 
An Illustrative Case Study

Hendrik-Jan Mijderwijk, Stefan van Beek, 
and Daan Nieboer

14.1  Introduction

The performance of clinical prediction models may deterio-
rate over time as patient populations evolve over time. 
Application of a clinical prediction model to another setting, 
e.g. outpatient surgery vs. inpatient surgery, likely results in 
a different model performance. Such domain validation stud-
ies are especially suited for model updating due to the differ-
ences in case mix and event rate [1]. Model updating is an 
efficient method for the development of clinical prediction 
models and avoids the generation of multiple de novo predic-
tion models [2, 3].

A range of updating methods are available for predictive 
analytic techniques. For prediction modeling with logistic 
regression analysis, updating methods include recalibration 
(adjusting intercept), model revision (adjusting the coeffi-
cient of the prognostic variables), and model extension 
(inclusion of new prognostic variables) [4, 5].

This paper provides a synopsis of these updating tech-
niques. For illustration, we use data from two randomized 
controlled trials (RCTs) to illustrate this methodology with a 
case study.

14.2  Methods

The case study uses data from two double-blinded placebo- 
controlled RCTs with a very similar methodological frame-
work conducted at Erasmus MC [6, 7]. Therefore, some 
sections here are in line with previous publications reporting 
on these data. Both RCTs evaluated the effect (amongst oth-
ers) of preoperative administered benzodiazepines on early 
(<24 h) postoperative anxiety. The studies were approved by 
the Medical Ethical Committee of Erasmus MC and by the 
Netherlands Central Committee on Research involving 
Human Subjects. Signed written informed consent was 
obtained from all patients.

 Study Population and Design

 Model Development Set
Between October 2010 and September 2011, 400 mixed 
patients undergoing minor surgery at the day-case surgery 
department of Erasmus MC were included. Inclusion criteria 
were as follows: all patients who were referred for ambula-
tory surgery and at least 18 years of age. Health care profes-
sionals, patients, and researchers were blinded to the 
treatment condition; however, nurses who were not involved 
directly in the care of these patients prepared the study medi-
cation according to the randomization table. Patients who 
consented to participate completed a set of online question-
naires when waiting for surgery (T0). Next, in the preopera-
tive holding another nurse blinded to treatment condition 
injected the benzodiazepine by peripheral infusion before 
induction of anesthesia. The placebo group received an equal 
volume of 0.9% NaCl. After the surgical procedure, patients 
completed an online questionnaire before discharge (T1).

 External Data Set for Domain Updating
Between July 2014 and September 2015, 192 mixed patients 
undergoing major surgery were recruited from the depart-
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ments of general surgery, gynecology, and urology at 
Erasmus MC.  Inclusion criteria were the requirement for 
laparotomy, planned postoperative hospital stay for at least 3 
days, and age at least 18  year. While waiting for surgery, 
patients completed the first set of questionnaires (T0). In the 
preoperative holding area, the independent recovery nurses 
prepared and administered the benzodiazepine prior to 
induction of anesthesia according to the group assignment 
document. The placebo group received an equal volume of 
0.9% NaCl. Postoperative care was carried out according to 
the institution’s Enhanced Recovery after Surgery protocol. 
After the surgical procedure, patients completed an online 
questionnaire on the first postoperative day (T1). The health-
care professionals who administered the questionnaires were 
blinded to the treatment allocation.

A modified flowchart from both studies is shown in 
Fig. 14.1.

 Outcome Definition

Early postoperative anxiety was measured by the Dutch ver-
sion of the State-Trait Anxiety Inventory (STAI) [8]. The 
STAI consists of 2 scales (State and Trait), each containing 
20 items. We used the State scale (STAI-State) in this case 
study as outcome measure because this scale measures how 
the patient feels at the moment of completing the question-
naire [8]. We calculated the sum score by summing the scores 
on the items, theoretically ranging from 20 to 80. Greater 
scores indicate a greater level of anxiety. In line with on pre-
vious literature using normative data, we dichotomized 
patients into 2 groups: patients scoring <39 are considered 
having no anxiety and patients scoring ≥39 are considered 
having anxiety [9]. We note that ideally continuous variables 
should not be dichotomized to prevent loss of information.

 Predictor Variables

To develop a simple prediction model, patient age and gen-
der, in addition to preoperative anxiety (STAI-State) were 

considered. To illustrate updating with model extension, we 
added as predictor the STAI-Trait scale. In contrast to the 
State scale, the Trait scale measures how one generally feels 
[8]. Theoretically, the latter is not expected to be affected by 
a stressful situation like surgery.

 Statistical Analysis

Binary logistic regression analysis was performed in the 
development set to develop the prediction model. 
Subsequently different model updating approaches were 
considered in the external data set and calibration and dis-
crimination of the updated models were assessed in the 
external data set. Discrimination refers to the ability of a pre-
diction model to discriminate between patients with and 
without the event of interest and is quantified using the c- 
statistic. The c-statistic ranges from 0.5 to 1, where 0.5 
means that the prediction model is equivalent to a coin toss 
and 1 refers to perfect discrimination. Calibration refers to 
the agreement between predicted and observed outcome and 
was assessed visually using a calibration plot.

 Updating Strategies

 Reference Method
In this method, the original developed prediction model is 
applied, without any modifications, on the new external 
patient data set.

 Recalibration Method
The recalibration method encompasses two options: inter-
cept recalibration and logistic recalibration. In the former 
option, only the intercept of the model is adjusted to the new 
situation while keeping the relative effects of each predictor 
fixed. Technically this is done by fitting a logistic regression 
model using the linear predictor as an offset. In the latter 
option, all predictor effects are modified according to one 
common factor in addition to the intercept of the model. 
Technically this is performed by fitting a logistic regression 

Fig. 14.1 Adapted time line 
of the RCTs. T0: baseline 
assessment on the day of 
surgery (self-reported 
questionnaire), T1: 
assessment <24 h 
postoperative (self-reported 
questionnaire), STAI Stait 
Trait Anxiety Inventory
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model using the linear predictor of the developed model as 
the only predictor.

These relatively simple recalibration methods using logis-
tic regression models are similar to “Platt scaling.” More 
flexible approaches of recalibration can also be considered, 
such as allowing a non-linear transformation for the linear 
predictor in logistic recalibration. In machine learning, 
 isotonic regression is also commonly applied besides Platt 
scaling, as the isotonic regression technique is nonparamet-
ric and can adjust for any—even non-linear—monotonic dis-
tortions. However, this is also the exact downfall of isotonic 
regression: The recalibration tends to be overfitted to the dis-
tortion in the training dataset, especially if sample sizes are 
relatively low and distortions are not entirely consistent 
among resamples of the training set—as is often the case in 
medical datasets. These more advanced recalibration tech-
niques, however, require larger sample sizes to reduce the 
risk of overfitting and logistic recalibration may be preferred 
in clinical settings with limited data.

 Model Revision
This approach updates all predictor estimates by re- 
estimating all regression coefficients. Consequently, the 
external data set should have a considerable amount of data 
corresponding to the data set used for model development.

 Model Extension
Model extension is a powerful model updating method [4]. 
Here, the updated model provides new estimates on the ini-
tial parameters used for model development and for the new 
considered predictor(s).

Table 14.1 shows a summary of the updating strategies 
including rationale und caveats. Descriptive analysis and 
prediction modeling analysis were performed using R soft-
ware version 3.5.2.

14.3  Results

The model development set contained 388 patients of which 
60 (15%) showed early postoperative anxiety (Table 14.2). 
The external data set (i.e. domain updating set) contained 
187 patients of which 49 (26%) showed postoperative anxi-
ety. The patients in the development set were on average 
older and showed less preoperative state anxiety (Table 14.2).

The reference method as updating strategy reveals that the 
developed model underestimates the overall risk of postop-
erative anxiety in the external data set (Fig. 14.2). Regarding 
the recalibration method: updating the model intercept 
improved calibration while recalibration further improved 
the calibration. The more extensive model revision slightly 
improved the discriminative ability but showed a comparable 
calibration and discrimination to the recalibrated model 

(Table 14.3, Fig. 14.2). Extending the model with the new 
predictor (i.e. STAI-Trait) further improved the discrimina-
tive ability of the prediction model (Table 14.3). However, 
the simpler update method of recalibration and extension 

Table 14.1 Summary table of model updating methods

Updating 
method Rationale Caveats

How to 
perform?

Reference No data needed. No improvement 
in model 
performance.

–

Intercept 
updating

Simple 
updating 
method where 
only the model 
intercept is 
updated to 
reflect 
differences in 
baseline risk 
between 
settings. As 
only the model 
intercept is 
updated relative 
little data is 
required.

This approach 
does not 
improve 
discriminative 
ability or the 
calibration 
slope.

Fit a logistic 
regression 
model with 
the linear 
predictor of 
the original 
model as an 
offset.

Recalibration Update the 
model intercept 
and additionally 
adjust all 
predictor effects 
by a common 
factor.

Does not 
improve 
discriminative 
ability.

Fit a logistic 
regression 
model using 
the linear 
predictor as 
the only 
covariate.

Model 
revision

Re-estimate all 
predictor effects 
and adjust 
baseline risk.

Requires 
extensive 
sample sizes 
comparable to 
model 
development 
and has 
relatively high 
risk of 
overfitting.

Fit a logistic 
regression 
model 
containing 
all individual 
predictors.

Recalibration 
+ extension

Adjust the 
baseline risk 
and adjust 
individual 
predictor effects 
by a common 
factor and 
include extra 
predictor(s).

Simple 
adjustment 
method which 
may 
overestimate the 
added value of 
the new 
predictor based 
on performance 
of the original 
model.

Fit a logistic 
regression 
model using 
the linear 
predictor and 
new 
predictor(s) 
as covariates.

Revision + 
extension

Re-estimate the 
baseline risk all 
individual 
predictor effects 
and extend the 
model with new 
predictor(s).

Requires 
extensive 
sample size.

Fit a logistic 
regression 
model using 
all original 
predictors 
and new 
predictor(s) 
as covariates.
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showed a similar performance to the more extensive model 
revision and extension (Table 14.3, Fig. 14.2).

14.4  Discussion

We discussed several approaches to update binary logistic 
regression models ranging from simple recalibration  methods 
to model revision and extension. In this case study, we 
observed that updating methods improved the model perfor-
mance in the external patient data set. Recalibration methods 
provided a model with similar model performance compared 
to model revision.

Model updating is a useful tool to develop more robust 
prediction models in the data at hand, however, from a clini-
cal viewpoint it needs to be reasonable to apply the previ-

ously developed prediction model in the external update set. 
Relatively simple update methods such as intercept updat-
ing and recalibration assume there are only minor differ-
ences between the development and update populations, 
while more extensive model revision relaxes this assump-
tion. However, a major drawback of model revision 
approaches is the large amount of data needed to reliably 
estimate the coefficients in the prediction model and limit 
the risk of overfitting. To further reduce the risk of overfit-
ting shrinkage methods may be employed using a heuristic 
shrinkage factor [10].

Several methods of model updating have been shown; it 
can be challenging to select a priori the most appropriate 
update method for the data at hand [11]. A closed test proce-
dure has been proposed to use a statistical test to compare 
several update methods simultaneously while controlling the 
significance level while performing multiple statistical tests. 
This approach aims to select the most appropriate update 
method in a data driven fashion, but requires sufficient data 
to ensure that the test has enough power to detect relevant 
differences [11]. In the present case study, the closed test 
method identified the intercept updating method as most 
appropriate update strategy.

It is recommended to update prediction models periodi-
cally because model performance deteriorates over time 
[12]. Calibration drift is a well-known phenomenon that 
jeopardizes the safe use of prediction models as it may 
induce flawed predictions. Reasons for this include, but are 
not limited to, variations in patient case mix, new clinical 
workflows and/or guidelines, or technical innovations. There 
is a need to detect calibration drift in an early stage to inform 

Table 14.2 Patient descriptives of the used data sets

Variables
Model development 
set (n = 388)

External set for 
domain updating 
(n = 187)

Age (mean, SD) 37 (29–49) 59 (47–67)
Gender (n, %) 174 (45%) 70 (37%)
State anxiety (mean, SD)
Preoperative 37 (32–44) 39 (33–45)
Early postoperative 30 (26–35) 32 (27–39)
Trait anxiety (mean, 
SD)

– 31 (26–36)

Early postoperative 
anxiety above 39 (n, %)

60 (15%) 49 (26%)

We analyzed the patients having no missing data. SD standard 
deviation

Fig. 14.2 Calibration plot for 
updated models in the 
external data set
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model updating. Recently, a detection system to continu-
ously monitor calibration drift has been proposed [13].

The updating methods described here can be adapted to 
survival models and multinominal risk models, [14] and the 
recalibration methods may also be applied to more flexible 
machine learning techniques.

To conclude, model updating is an efficient technique and 
promising alternative to the de novo development of clinical 
prediction models [5].
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Table 14.3 Parameter estimates of each of the updated models

Parameter

Update method
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model

Update model 
intercept

Logistic 
recalibration

Model 
revision
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Model revision and 
extension

Intercept −6.13 −5.63 −4.88 −3.95 −5.70 −4.03
Age (per decade) 0.06 0.06 0.05 −0.10 0.00 −0.01
Sex 0.36 0.36 0.30 0.14 0.24 0.06
Preopertive state 
anxiety

0.10 0.10 0.08 0.08 0.07 0.07

Preoperative trait 
anxiety
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Apparent c-statistic 0.71 0.71 0.71 0.71 0.73 0.73
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Is My Clinical Prediction Model 
Clinically Useful? A Primer on Decision 
Curve Analysis

Hendrik-Jan Mijderwijk and Daan Nieboer

15.1  Introduction

The performance of clinical prediction models is commonly 
evaluated using performance measures that describe overall 
model performance or specific dimensions of model perfor-
mance (e.g. calibration and discrimination). These perfor-
mance measures, however, inadequately describe the 
potential impact of a prediction model on actual clinical 
practice. This impact, also called clinical usefulness, is a rel-
evant metric by which to assess prediction models [1]. An 
increasingly popular method to assess the impact of a predic-
tion model on medical decision making is a decision curve 
analysis [2]. Herein we aim to provide a short introduction of 
decision curve analysis for evaluating the clinical usefulness 
of clinical prediction models. We illustrate the interpretation 
of decision curves using a simulated dataset of glioblastoma 
patients.

15.2  Methodology

Imagine, a glioblastoma patient visits your outpatient clinic 
after post-operative radiochemotherapy. The routine follow-
 up MRI shows contrast enhancement in the radiated field. It 
is not possible to differentiate between glioblastoma progres-
sion or pseudoprogression. The patient will certainly ask the 
neurosurgeon what is best to do next. For didactic reasons, 

we consider two options: (1) intervening by doing a biopsy 
to obtain a histological diagnosis or (2) conservative treat-
ment with clinical follow-up without biopsy. The threshold 
for the decision depends on the benefits and harms of either 
option. In this example the benefit consists of detecting a 
glioblastoma progression, while harms of performing a 
biopsy might be infection or bleeding.

 Decision Curves

Figure 15.1 exemplifies the graphical summary of a decision 
curve analysis.

The x-axis shows the threshold probability. This repre-
sents the preference of the patient or the preference of the 
neurosurgeon, such as the minimum probability of glioblas-
toma progression at which the patient would undergo a 
biopsy, or the number of patients the neurosurgeon would be 
willing to biopsy to identify one patient with glioblastoma 
progression [3]. The link between the threshold probability 
and the harm-to-benefit ratio is the key component underpin-
ning decision curve analysis. The odds of a particular thresh-
old equals the harm-to-benefit ratio. Thus, if the neurosurgeon 
opts for a biopsy at a threshold probability of 20%, then the 
harm-to-benefit ratio is 1:4 (odds [20%]  =  1/4) [4]. That 
means that the benefit of diagnosing glioblastoma progres-
sion is considered four times higher than the harm of a super-
fluous biopsy. In other words, the neurosurgeon accepts 
performing biopsies in five patients to correctly diagnose one 
patient with glioblastoma progression. Analogously, if the 
threshold probability is 10%, the harm-to-benefit ratio equals 
1:9 and 10 biopsies are accepted to find one glioblastoma 
progression. Theoretically, the range of threshold probabili-
ties can range from 0% to 100% but is often restricted to a 
range of clinically relevant thresholds which is dependent on 
the clinical context (Fig. 15.1, gray dotted lines). This would 
also reflect the variation in clinical practice where threshold 
probabilities may vary between neurosurgeons with an 
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aggressive treatment strategy versus more conservative but 
can also vary between patients based on the comorbidities or 
anxiety level of a patient. It is imperative that the threshold 
probability is known before deploying a prediction model for 
medical decision making [5].

The y-axis shows the net benefit. This represents the dif-
ference in number of true positive classifications and false- 
positive classifications, weighted by the harm-to-benefit 
ratio [3, 6]. If a prediction model at a particular threshold 
probability has a net benefit of 0.05 higher compared to 
another strategy, then this means that a treatment strategy in 
which the prediction model is used for clinical decision mak-
ing is equivalent to a strategy in which 5 extra true positive 
classifications per 100 patients are detected without obtain-
ing extra false positives [3]. The net benefit can be negative 
and the maximum is equal to the prevalence of the outcome 
in the population (or event rate). The net benefit of using a 
prediction model is always compared to the default strategies 
of treating all patients and treating no patients, as these are 
often clinically reasonable strategies. In this example these 
strategies would be to biopsy all patients and to not perform 
a biopsy on the patients and monitor them.

The treat all line (Fig. 15.1, purple line) decreases with an 
increasing threshold probability. In a treat all strategy, the 
number of true positives and false positives is fixed, and only 
the weighting factor relating both changes. With an increas-
ing probability threshold these harms are considered more 
important, i.e. one is willing to biopsy less patients to detect 
one progression.

The treat none line (Fig.  15.1, yellow line) has a net 
benefit of zero as nobody undergoes a biopsy and hence 
nobody experiences benefits or harms associated with the 
biopsy. The treat all line intersect the treat none line at the 
event rate.

The green line in Fig. 15.1 represents the net benefit of a 
hypothetical multivariable prediction model predicting glio-
blastoma progression. The prediction model is considered 
clinically useful if the net benefit of the prediction model is 
higher compared to the default strategies across the range of 
clinically relevant thresholds. Thus, the hypothetical predic-
tion model depicted in Fig. 15.1 is of benefit for the majority 
of the clinical relevant thresholds. However, if there is a low 
threshold probability the net benefit of the prediction model 
is worse than the “treat all” strategy. In other words, the 
patient should be biopsied irrespective of the results pro-
vided by the prediction model.

 Interventions Avoided

In many clinical examples the default strategies would be to 
perform an intervention in all patients. In the above men-
tioned hypothetical clinical example the default strategy of 
the neurosurgeons would be to perform a biopsy. In these 
scenarios the aim of a prediction model or would be to reduce 
the number of unnecessary biopsies. In this case the net ben-
efit can also be transformed to the net number of interven-
tions avoided. This is recommended if the default strategy 
would be to treat all patients. This would not change conclu-
sions as to which the prediction model has the highest net 
benefit [5].

15.3  Example

To show an illustrative example of a decision curve analysis, 
we use the open-access files provided by the Machine 
Intelligence in Clinical Neuroscience (MICN) Lab (https://
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Fig. 15.1 Graphical 
summary of a hypothetical 
decision curve analysis
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mcinlab.com/files) from the Department of Neurosurgery 
and Clinical Neuroscience Center, University Hospital 
Zurich. This simulated dataset comprises 10,000 glioblas-
toma patients. Two multivariable clinical prediction models 
predicting 12-month mortality were developed. One model 
serves as a baseline model containing the predictors age, 
gender, Karnofsky performance score (KPS), and post- 
operative radiochemotherapy. We also developed an extended 
model containing the same predictors of the baseline model 
and additionally O6-methylguanine-DNA methyltransferase 
promoter methylation (MGMT) status. The baseline model 
had a c-statistic equal to 0.73 while the extended model had 
a c-statistic of 0.74.

The decision curve analysis showed that both models had 
a higher net benefit compared to the default strategies in the 
range of thresholds of 20–80% (Fig. 15.2). This means that if 
the range of clinically relevant risk thresholds falls between 
20% and 80%, then these results indicate that using the pre-
diction models has a higher net benefit compared to the 
default strategies. The extended prediction model had higher 
net benefit compared to the base model. The R Code is pro-
vided in the supplementary material (Supplementary 
Material 15.1).

15.4  Final Comment

This paper provides a short introduction to decision curve 
analysis. This technique helps to identify models that may 
support medical decision making. Furthermore, it ranks 
competing clinical prediction models. To support a clinical 

prediction model for medical decision making, the model 
should outperform the default “treat all” and “treat none” 
strategies across the (whole) range of clinically relevant 
thresholds. If more than one model is analyzed, it is recom-
mended to use the model that has the highest net benefit. 
However, if the superior model requires data that is associ-
ated with an increasing patient-risk or additional/expensive 
workload, clinicians may intuitively prefer the inferior 
model. It is possible to include harm associated with a clini-
cal prediction model into a decision curve [2].

Another decision analytic performance measure is the 
relative utility curve [7]. Relative utility curves are related to 
decision curve analysis [8]. In relative utility curves the net 
benefit of using a prediction model is related to the relevant 
baseline strategy (treat all/treat none) and to perfect 
classification.

Here we considered prediction models for a binary out-
come measure for didactic reasons, but the decision curve 
analysis can be extended to survival data too [9]. Finally, we 
want to emphasize that decision curve analysis should not be 
used to identify an optimal risk threshold. This reverses 
threshold probability and risk provided by a prediction 
model. Before creating a decision curve, researchers should 
define a range of clinically relevant thresholds based on the 
relative harms and benefits of avoiding an intervention on a 
patient with the outcome versus unnecessarily performing an 
intervention on a patient who is disease free. Subsequently 
the net benefit of using a prediction model for decision mak-
ing should be compared to the default strategies across the 
range of clinically relevant thresholds.

If used sensibly, a decision curve analysis is an elegant 
technique to assess the clinical usefulness of clinical predic-
tion models. For the interested reader, more detailed infor-
mation on decision curve analysis can be found elsewhere 
[2, 6, 9, 10].
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16.1  Introduction

In the last decade, the amount of biomedical data within the 
neuroscientific community has grown exponentially. The 
large amount of readily available information coining the age 
of “big data” comes in different types such as genomic data, 
gene expression, or multi-modal imaging data. Advances in 
scanning and imaging acquisition made it possible to accu-
mulate rich, readily available, and high-resolution imaging 
data, including modalities such as magnetic resonance 
tomography (MRI), positron emission tomography, or elec-
troencephalography. Consequently, the field of neuroimag-
ing is projected to follow genetics as the next most data-rich 
biomedical specialty [1, 2]. The sheer increase in data com-
plexity has led to efficient and sophisticated computational 
tools to analyze and interpret the large amount of granular 
data. Artificial intelligence (AI) and machine learning (ML) 
algorithms represent such computational tools. Although 
their presence in the literature has significantly increased 
during recent years, AI and ML are not novel. AI was first 
described in the 1950s and referred to computers that per-
form tasks typically requiring human intelligence [3, 4]. The 
overarching goal of AI is the emulation of natural intelli-
gence, to not only learn but apply the gained knowledge and 

make elaborate decisions to solve complex problems mim-
icking human reasoning. ML, which represents a sub- 
methodology of AI, was described in the early 1950s and 
found its first medical applications in the 1960s. An ML 
algorithm inductively learns to automatically extract patterns 
from data to generate insight without being explicitly pro-
grammed [5]. This makes ML an attractive option to approx-
imate and predict highly complex phenomena without 
pre-specifying an a priori theoretical model.

The gold-standard of functional magnetic resonance 
imaging (fMRI) analysis has been the standard mass- 
univariate analysis by modeling the brain response within an 
experimental paradigm as linear combinations of the applied 
experimental conditions [6, 7]. A statistical test has to be per-
formed at each voxel to find regions associated with the con-
dition, and different contrasts are applied over the succeeding 
conditions to reveal the underlying neural pattern to the cor-
responding cognitive function of interest. Recently, ML 
approaches, including multivariate pattern analysis, have 
been used to decode or predict individual brain states using 
neuroimaging data. Instead of using in-sample testing, the 
goodness of fit of the ML model is assessed by its predictive 
performance via cross-validation. ML-based studies have 
become successful in decoding brain states and enabled per-
sonalized clinical decisions by predicting disease pheno-
types, course, or clinical outcome [8–10].

16.2  Main Part

Neuroimaging techniques, including functional and 
resting- state magnetic resonance imaging (fMRI, rsMRI), 
are frequently applied to study brain function in vivo, aim-
ing to find a mechanistic understanding of the nervous sys-
tem. Neuroimaging data are complex, high dimensional, 
and come in a wide range of spatial and temporal resolu-
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tions; for these reasons, advanced analysis techniques are 
necessary to describe data derived from each imaging 
method. ML provides such opportunities. However, spe-
cific steps need to be executed before the data can be uti-
lized by the ML algorithms. The necessary workflow 
includes image preprocessing, dimensionality reduction, 
and feature selection.

 Image Preprocessing

Before feeding neuroimaging data into ML models, depend-
ing on the modality, standard preprocessing must be applied. 
For the modality of fMRI, a standard preprocessing pipeline 
includes motion correction, slice timing correction, co- 
registration, and normalization to a shared space, primarily 
the Montreal Neurologic Institute (MNI) template. Usually, 
signal cleaning is performed to remove non-informative 
trends and artifacts using detrending, normalization, or fre-
quency filtering. Detrending removes a linear trend over the 
fMRI time-series due to the reasoning that the voxel inten-
sity itself is non-informative, and the interest instead lies in 
the variation and correlation between voxels. Normalization 
remedies different scales and value ranges by setting the 
variance to one. Physiological or scanner-induced noise can 
be mitigated by low- or high-frequency filtering. There are 
various sources for code implementation, including the 
Python interface nipype [11], Matlab-based SPM [6], or 
FSL [12].

 Dimensionality Reduction

Neuroimaging produces high-dimensional data with mas-
sively more features p than available samples n. In the case 
of fMRI, the number of features, that is, activation in each 
voxel, can quickly add up to p = ~105 features. However, in 
small sample settings, where n ≪ p, statistical models and 
ML models alike tend to overfit. Based on the “curse of 
dimensionality,” generalization to new data becomes 
increasingly difficult in n < <p situations. To prevent the 
curse, the data’s dimensionality has to be reduced to mean-
ingful and concise information, finding a lower-dimen-
sional representation of the given feature space [13, 14]. 
Therefore, neuroimaging data often requires the applica-
tion of a dimensionality reduction step to decrease the com-
plexity of the data before performing further analyses. 
Dimensionality reduction methods transform high-dimen-
sional data into simpler representations while preserving 
most of the relevant information. Commonly applied meth-
ods include principal component analysis (PCA) or inde-
pendent component analysis (ICA). For a detailed overview, 
see Chap. 8.

 Feature Selection

Another possibility to reduce the complexity of neuroimag-
ing data is the application of feature selection [15]. Different 
approaches can be used: (1) using domain knowledge, redun-
dant features or features known to be of less importance for 
the investigated disorder can be removed. (2) Using feature 
engineering to construct new informative variables, e.g., by 
summarizing fMRI activation in a region of interest (ROIs) 
specific to the investigated neurological diseases. 
Furthermore, (3) numerous methods, including univariate 
and multivariate filter analyses, wrapper, and embedded 
methods, exist to select the most relevant features. In univari-
ate analyses, every feature is examined on a single level and 
ranks individually. Although this approach is fast and robust, 
it misses dependencies between features, which can be 
assessed by multivariate analysis. While univariate and mul-
tivariate techniques identify the best set of features indepen-
dently from model selection, wrapper methods and embedded 
methods combine model selection with a feature subset 
search. Embedded techniques for feature selection search for 
the optimal subset of features inside the classifier. This 
means that the search is performed in the combined space of 
feature subsets and hypotheses. Examples of wrapper selec-
tion approaches include greedy forward selection or back-
ward elimination strategies (for more detail, see Chap. 
7—Feature Selection).

 fMRI Analyses: Supervised vs. Unsupervised

Supervised machine learning algorithms are trained using 
known targets, while unsupervised learning refers to algo-
rithms, which learn on data with unknown targets. Once a 
target variable y is to be predicted, the problem becomes 
supervised. Depending on the type of the target variable, 
supervised learning can be divided into two subcategories. If 
the target variable is categorical, hence representing different 
classes (e.g., healthy versus disease), the problem is referred 
to as classification. If the target variable takes continuous 
values, the problem is referred to as regression. A popular 
example of supervised analysis in fMRI brain imaging is the 
decoding/encoding framework.

 Decoding/Encoding Framework

Decoding refers to learning a model that predicts a target 
variable from the available brain imaging data (Fig.  16.1) 
and has become a powerful method in the neuroscientists’ 
tool kit. The most famous example for decoding is the sim-
plified experiment presented in Haxby et al. [17], which has 
been intensively studied and ultimately became the reference 
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example for decoding [18, 19]. In the original work, partici-
pants are presented with eight different categories of visual 
stimuli. Given the recorded fMRI volumes, the goal is to 
decode and predict the category of the presented stimulus. 
The given inference of a decoding analysis tells us that if a 
certain pattern of brain activity is observed, we can deduce 
the underlying task or stimulus. Inversely to the encoding 
setting, such conclusions are often referred to as reverse 
inference. Hence, decoding answers questions of, e.g., “what 
is the underlying function of a neuronal subsystem?” while 
not probing the underlying task or cognitive process [20]. 
The applied predictive models can differ and are best chosen 
balancing modeling flexibility and regularization [21], 
including Bayesian models, Lasso- or ridge regression, sup-
port vector machines.

In contrast to decoding, encoding (Fig.  16.1) describes 
the prediction of imaging data given an external variable, 
such as experimental stimuli descriptors [16]. The applied 
type of inference in encoding is “forward inference.” Based 
on the provided stimulus, we can conclude that the experi-
mental task recruits certain brain regions. Specifically, the 
extent of variability captured by each voxel can be evaluated 
using techniques such as cross-validation and common met-
rics such as R2 scores.

 Clustering

The decoding/encoding framework is an example of super-
vised learning. In carefully designed fMRI experiments, a 
known target (e.g., a known behavioral or clinical stimulus) 
is used to investigate the underlying relation between brain 
and behavior. In contrast to task-related MRI, resting-state 
fMRI produces unlabeled data in the sense that the brain 

activity is recorded without specific task stimuli present. In 
ML, the analysis of unlabeled data is commonly known as 
unsupervised learning.

Cluster analysis is an unsupervised learning technique 
that can identify patterns in data and aggregate observations 
into groups without any previous knowledge of their target 
variable. The notion of similarity degree is essential to clus-
ter analysis. The clustering results strongly depend on the 
adopted similarity measure. Even though a wide variety of 
clustering algorithms exists and many efforts have been allo-
cated to solve the problems related to clustering, the main 
difficulty related to these methodologies concerns choosing 
the “optimal” number of clusters. However, this is an innately 
ill-posed question, as the optimal number of clusters depends 
on the complexity of the data and method used. Consequently, 
different indices have been introduced to approximate the 
optimal number of clusters, including the Davies–Bouldin, 
the Dunn, or the silhouette index [14]. In functional MRI, the 
similarity of neighboring voxels in regard to their connectiv-
ity can be used to form homogenous regions using cluster 
analysis [22]. Defining spatially distributed but functionally 
homogenous networks can be formulated as a problem of 
blind source separation. Typically, ICA is a common 
approach to recover these network structures [23].

16.3  Conclusion

Through technical advances, increased availability, and 
sophisticated analytical tools, the quality and quantity of 
neuroimaging data have risen exponentially in the last 
decades. This trend will likely continue and accelerate con-
sidering modern computational capacities. In this develop-
ment, ML methods will rather act as catalysts than pure 

Encoding

Decoding

Forward inference

Reverse inference

TASK/STIMULUS

Fig. 16.1 Illustration of decoding and encoding in brain imaging using 
fMRI. Decoding refers to learning a model that predicts a target vari-
able or stimulus from the available brain imaging data. Encoding 
describes the prediction of imaging data given an external variable or 

experimental stimulus [16]. Decoding applies reverse inference, e.g., 
drawing conclusions of behavioral processes from the neural process. 
In contrast, encoding applies forward inference, which is a statement on 
whether or not the neural signal is well explained by the stimulus
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analytical armory. ML models will likely evolve into the 
dominating paradigm in neuroimaging analysis by observ-
ing, classifying, and clustering patterns beyond the scope of 
our human comprehension. However, any statistical or ML 
model is only an approximation to reality. To ensure that this 
approximation adds to the scientific signal—and not the 
noise—structured and standardized frameworks for data 
quality, preprocessing, dimensionality reduction, feature 
selection, and finally, the choice and tuning of the models are 
pivotal. Efforts towards such frameworks should become a 
priority to leverage ML’s powerful technologies to their full 
benefit.
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17.1  Introduction

Machine learning (ML) and artificial intelligence (AI) 
applications in the field of neuroimaging have been rising 
in recent years, and their adoption is increasing worldwide 
[1]. Due to the availability of extensive amounts of data, 
their inherent complexity, and the potentially unlimited 
applications, neuroimaging is particularly attractive for 
ML, since virtually every step in clinical imaging spanning 
from image acquisition and processing to disease detection, 
diagnosis, and outcome prediction can be the target of ML 
algorithms [2–9].

Deep learning (DL) is a field of ML that can be defined as 
a set of algorithms enabling a computer to be fed with raw 
data and to then progressively discover—through multiple 
layers of representation—more complex and abstract pat-
terns in large data sets [10–12]. The reports of DL algorithms 
in imaging tasks have been increasing, with applications in 
the context of several diseases of neurosurgical relevance 
including but not limited to brain tumors [7, 9, 13–15], aneu-
rysms [16–18] and spinal diseases [19, 20]. In addition to 
anatomical imaging, ML-augmented histological diagnosis 
has been investigated [21]. Another field of ML in neuroim-
aging is radiomics. The workflow underlying DL applica-
tions for radiomics is often complex and may appear 

confusing for those unfamiliar with the field. Even so, reports 
combining both radiomic feature extraction and ML are 
increasing [22–24].

In the present chapter, we provide clinical practitioners, 
researchers, and medical students with the necessary founda-
tions in a rapidly developing area of clinical neuroscience. 
We highlight the basic concepts underlying ML applications 
in neuroimaging, and discuss technical aspects of the most 
promising algorithms adopted into this field—with a spe-
cific focus on Convolutional Neural Networks (CNNs) and 
Generative Adversarial Networks (GANs) [25–27]. While in 
the recent past, segmentation and classification tasks have 
attracted the most interest, many other tasks exist [8, 28–31]. 
These tasks can be considered to some extent overlapping, 
even if the underlying algorithms may be different. While the 
vast potential of ML and AI can still be considered early in 
its development, a clearer categorization of tasks and report-
ing standardization would be valuable in favoring reproduc-
ibility and performance comparison of different studies. 
At present, this technology is still mainly confined to aca-
demic research centers and industry. Still, it is reasonable to 
expect that the near future will witness a variable integration 
of ML-based computer-aided tasks in patient management 
[32]. For this reason, reported applications from a practical 
standpoint are introduced in the last section of the chapter 
including image reconstruction and restoration, image syn-
thesis and super-resolution, registration, segmentation, clas-
sification, and outcome prediction.

17.2  The Radiomic Workflow

Radiomics can be defined as the extraction of a significant 
number of features from medical images applying algo-
rithms for data characterization. “Radiomic features” have 
the potential to highlight characteristics that are not identi-
fiable by conventional image analysis. The underlying 
hypothesis is that these distinctive imaging characteristics 
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invisible to the naked eye may provide additional relevant 
information to be exploited for enhanced image character-
ization, which can then in turn be applied for enhanced 
prognosis or prediction. Importantly, recent advances have 
moved the field from the use handcrafted characteristics 
such as shape-based (shape, size, surface information), 
first-order (mean, median ROI value—no spatial relations) 
and second-order features (inter-voxel relationships) 
towards data-driven and ML-based approaches, which can 
automatically perform feature extraction and classification 
[22, 33, 34].

In general, the radiomic pipeline [35] consists of a series 
of consecutive steps that may be summarized as following 
(Fig. 17.1):

 1. Image Acquisition.
 2. Processing.
 3. Feature Selection/Dimensionality Reduction.
 4. Downstream Analysis.

Image acquisition protocols depend on chosen imaging 
technique (ultrasound, X-ray, computed tomography (CT), 
magnetic resonance imaging (MRI), positron emission 
tomography (PET)). An important limitation with this 
respect is represented by intra- and inter-institutional differ-
ences in hardware, acquisition and imaging processing tech-
niques, which—by definition—affect image quality, noise, 
and texture. For practical reasons, it has proven difficult to 
reach standardization of such heterogeneous equipment and 
acquisition pipeline, although increasingly pursued by means 
of international consortia and consensus statements [36]. 
Corrections during pre-processing may be necessary, with 
methods specific to the imaging modality of choice. For 
example, CT uses Hounsfield units which are absolute and 
anchored to the radiodensity of water, while MRI—due to 
differing voxel intensities—requires normalization relative 
to another structure.

Then, a region of interest (ROI) that has to be radiomi-
cally analyzed has to be defined through either manual 
or (semi-) automatic segmentation. Segmentation can 
be achieved in two-dimensional (2D) space or volume 
of interest (VOI) segmentation can be achieved in three-
dimensional (3D) space. This process is required to identify 
the area where the radiomic features are to be calculated. 
This process can be either manual (the traditional gold-
standard, even if affected by inter and intra-rater variabil-
ity), semi- automatic or fully automatic (by means of ML, 
also affected by a series of pitfalls such as artifact and 
noise disturbances) [22, 36]. Once segmented images are 
obtained, additional processing steps may be necessary 
before feature extraction and analysis such as interpola-
tion to isotropic voxel spacing, range re- segmentation and 
intensity outlier filtering (normalization), discretization. 

For further details on this processing step please refer to 
van Timmeren et al. [35] Radiomic features to be extracted 
can be categorized into statistical —including histogram-
based and texture-based—model-based, transformation- 
based, and shape-based [24]. The already introduced 
heterogeneity of the imaging modality—and therefore of 
their extracted features—have led to the recent introduction 
of recommendations, guidelines, definitions, and reference 
values for image features [37]. Interpretations of medical 
data remains to date largely in the hands of trained prac-
titioners, with limitations due to inter-observer variabil-
ity, complexity of the image, time constraints, and fatigue 
[5]. Conventional algorithms like Random Forest (RF), 
Support Vector Machine (SVM), Neural Networks (NN), 
k-Nearest Neighbor (KNN), and DL algorithms such as 
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Fig. 17.1 Radiomic workflow. Schematic representation of the 
radiomic workflow is shown: image acquisition, processing, feature 
selection/dimension reduction, downstream analysis
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Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN), and Generative Adversarial Networks 
(GANs) have been investigated to overcome these draw-
backs [5, 38]. Among DL-based approaches for imaging 
applications, which led to the most astonishing results, 
CNNs and GANs have attracted considerable attention and 
will be introduced in the next section.

17.3  Introduction to Deep Learning 
Algorithms for Imaging

 Convolutional Neural Networks (CNNs)

 Architecture
CNNs have been applied to several tasks in radiological 
image processing (segmentation, classification, detection, et 
cetera) [25, 28]. CNN architecture is derived from the neuro-
biology of the visual cortex and is composed of neurons, 
each having a learnable weight and bias. The structure itself 
is made up of an input layer, multiple hidden layers (convo-
lutional layers, pooling layers, fully connected layers, and 
various normalization layers), and one output layer 
(Fig. 17.2).

The next sections will detail the foundational concepts of 
these layers in more detail. As a brief summary, the convolu-
tional layer is meant to merge two sets of information. On the 
other hand, the pooling layer reduces dimensionality by 
associating the output of neuron clusters in one layer with 
the single neuron. Fully connected layers connect every neu-
ron in one layer to every neuron in another layer. Its primary 
purpose is to classify the input images into several classes, 
based on the training datasets [25]. To simplify, it can be 
stated that each new CNN layer learns filters—or kernels—
of increasing complexity. In a commonly reported and 
straightforward example, the first layers learn basic feature 

detection filters such as edges, corners and similar. The mid-
dle layers can detect higher-order features, for example, eyes 
or ears in facial recognition tasks. The higher the layer, the 
more complex features are recognized, such as differences 
between faces, et cetera.

 Convolution and Kernels
The convolution operation allows the network to detect the 
same feature in different regions of the image and for this 
reason, the convolutional layer can be considered the crucial 
building block of a CNN [39, 40]. In mathematics, convolu-
tion between two functions results in a third function express-
ing how the shape of one function is modified by another. In 
practice, this operation allows feature extraction by applying 
a kernel (or filter) to the input (or tensor), both numeric in 
nature. The product of each element of the kernel and input 
tensor is derived at each location and added to generate fea-
ture maps. The process is repeated through the application of 
different kernels resulting in an arbitrary number of feature 
maps, each representing different features of the input ten-
sors. For this reason, different kernels are regarded as differ-
ent feature extractors [41].

A single CNN layer detects only local features of the 
image, while multilayer CNNs allow increasing the percep-
tion field and synthesizing the features extracted at previous 
layers. Moreover, CNNs reduce the number of weights by 
sharing them between the network’s neurons, which results 
in a considerable memory reduction.

 Hyperparameter Optimization
CNNs aim to identify and “learn” the kernels that perform 
best for a chosen task based on a training dataset. 
Hyperparameter optimization of kernel size and number is 
crucial in defining the convolution operation. When visual-
izing the kernel as a matrix that moves over the input tensor, 
there are two other concepts that are relevant to be able to 

Convolution Pooling Convolution Pooling

Fully connected

Output
prediction

Fig. 17.2 CNN architecture. A simplified CNN architecture structure: input, convolutional, pooling, fully connected layer, and output are shown
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grasp how a CNN processes imaging data: padding and 
stride.

Given that the convolution operation does not center the 
kernel to overlap the boundaries of the input data, this would 
result in reduction of the dimension of the output feature 
map, leaving out the very border of the image. For this rea-
son, to solve the so-called border effect problem, padding is 
applied. This consists of adding rows and columns of data to 
the frame of the input tensor, most commonly zero-padding, 
i.e. columns and rows of zeros, allowing the kernel center to 
fit on the outermost element of the input, i.e. more space for 
the kernel to cover the image, and maintain in-plane dimen-
sion when the convolution operation is performed [41, 42].

Stride can instead be defined as the distance between two 
successive kernel positions. For a thorough overview of 
stride and padding, readers are encouraged to refer to 
Doumolin and Visin [43].

Of note, kernel values are learned during the training pro-
cess in the convolution layer (parameter). In contrast, kernel 
size and number, padding, and stride require being set before 
training, and are then adjusted during hyperparameter 
tuning.

Another hyperparameter to be selected is the batch size, 
namely the number of samples that will be propagated 
through the network before “updating” its kernels. To explain 
this concept, we hypothesize to have 500 training samples 
and to set the batch size as 50. The algorithm will train the 
network based on the first 50 samples (1–50). Then, it will 
train using samples 51–100, and so on. A different concept is 
instead represented by the epoch, which is defined as the 
number of passes through the training data. Of course, batch 
size can take values between 1 and the number of samples in 
the training dataset, while the number of epochs can take any 
integer value ≥1 [44].

 Activation Function and Backpropagation
Outputs of the convolutions, which are a linear function, are 
passed through an activation function. Activation functions 
allow learning more complex functional mappings between 
the different layers. Examples of activation functions are the 
binary step function, a simple linear activation function, or 
nonlinear functions such as sigmoid, hyperbolic tangent, or 
rectified linear unit (ReLU), and leaky ReLU [45]. A binary 
step function, where activation is single-threshold-based, 
does not support multi-value output (i.e. multiple categories 
as output). A linear function on the contrary, after receiving 
the input (modified by the weight of each neuron) produces 
an output signal that is proportional to its input. Although 
smooth nonlinear functions have been extensively used given 
their similarity with physiological neuronal behavior, ReLU 
is now more commonly used. In simple words these func-
tions are equations determining the activation (or firing) of a 
neuron. Specifically, a ReLU will output the input directly in 

a linear way if it is positive—otherwise, it will output zero. A 
leaky ReLU will allow a small positive gradient when the 
input is negative, i.e. changing the slope to a minimum in 
these cases.

Two major drawbacks of linear activations are the follow-
ing: they cannot use backpropagation, because the derivative 
of the function is a constant and is thus not related to the 
input, preventing weight adjustment. Also, the neural net-
work would be constituted by one collapsed layer as the last 
function would still be linear, making the NN a linear regres-
sion model [46]. On the contrary, nonlinear activation func-
tions allow the model to identify complex relationships 
among inputs and outputs—an essential feature for complex 
(or multi-dimensional) data analysis. In this case, backprop-
agation and multilayer representation is possible (allowing 
hidden layers to achieve higher abstraction levels on com-
plex data).

 Backpropagation
We have just introduced the important concept of backpropa-
gation. When fitting a feed-forward neural network, back-
propagation allows descending the gradient with respect to 
all the weights simultaneously. By chaining the gradients 
found using the “chain rule,” backpropagation computes the 
gradient for any weight that is to be optimized—and conse-
quently, can compute improvements with respect to the errors 
backwards towards the most upstream layer in the network 
[47, 48]. Due to its high efficiency, backpropagation is use-
ful in many gradient descent methods for training multilayer 
networks, correcting weights to minimize loss. To better 
understand how this process works, we can describe that 
CNNs work in reverse. The gradient (updates to the weights) 
decreases closer to the input layer and increases towards 
the output layer as a result of backpropagation updating the 
weights from the final layer backwards towards the first. 
Minimization of error (loss) occurs at the final layer, where 
a higher level of abstraction is recognized and adjusted, trac-
ing back through previous layers. Intuitively, starting from 
the input instead, a CNN can be described as progressively 
better at discriminating, e.g. an object that is to be identified, 
by stepping away from tiny details and looking instead at the 
“big picture” from a distance [40].

 Optimization and Network Training
A loss (or cost) function computes the congruence between 
output predictions of the network through forward propaga-
tion and known ground truth labels. Loss functions are one 
of the hyperparameters to be determined according to the 
given task [41, 49]. The amount to which weights are updated 
during training is referred to as the step size or the “learning 
rate” [50]. This is an additional hyperparameter used in the 
training of neural networks, usually taking a small positive 
value.

V. Stumpo et al.
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A variety of algorithms can be applied for optimization of 
weights to reduce losses. These include gradient descent, 
stochastic gradient descent (SGD), mini-batch gradient 
descent, momentum, Nesterov-accelerated gradient, 
Adagrad, Adadelta, Adam, and RMSProp [51–55].

Gradient descent is a first-order optimization algorithm 
dependent on the first-order derivative of a loss function. It 
aims to compute in which direction weights should be modi-
fied so that the function can reach a minimum (Fig. 17.3a). 
The loss is transferred from one layer to another by means of 
backpropagation, as discussed before, and the model’s 
parameters—or weights—are modified depending on the 
losses, so that loss itself can be minimized. Such optimiza-
tion is performed after the gradient is calculated on the whole 
dataset. In addition to normal (batch) gradient descent, SGD 
and mini-batch descent are most commonly employed. SGD 
is particularly helpful to minimize the risk of reaching a local 
minimum (non-convex function) instead of the global mini-
mum—one of the major drawbacks of normal gradient 

descent (Fig.  17.3b). In a commonly reported example, a 
normal gradient optimizes weights in a dataset with 1000 
observations only after these are all analyzed (every epoch). 
In SGD, in contrast, the different data rows are analyzed 
individually, and thus model parameters are updated more 
often than in batch gradient descent. Of note, despite the 
higher fluctuations in updating weights, SGD requires sig-
nificantly less time and less memory. In mini-batch gradient 
descent, model parameters are instead updated after every 
mini-batch (a certain subset of the training data). Normal 
batch gradient descent can be used for smoother curves. 
SGD can be used when the dataset is very large. In addition, 
batch gradient descent converges directly to minima, while 
SGD converges faster when datasets are very large.

The advantages and disadvantages of other optimization 
techniques are briefly discussed. Given the high variance in 
SGD, momentum was introduced—with the need for an 
additional hyperparameter, namely γ—to accelerate descent 
in the right directions, and to limit fluctuation to the wrong 

Global minimum
(best)

Local minimum

MomentumNestorov

accelerated gradient

c

d

a

b

Fig. 17.3 Schematic representation of intuitions underlying: (a) gradi-
ent descent. Gradient descent is an optimization algorithm used to mini-
mize a function by moving in the direction of steepest descent as 
defined by the negative of the gradient. In machine learning, it is used 
to update the parameters of the model; (b) stochastic gradient descent 
(SGD). While gradient descent risks to reach a local with respect to the 

global minimum, SGD fluctuations enable it to jump to new and poten-
tially better local minima; (c) momentum. Momentum was introduced 
to limit the high fluctuations of SGD, allowing faster convergence in the 
right direction; (d) Nesterov-accelerated gradient (NAG). It can be used 
to modify a gradient descent-type method to improve its initial 
convergence
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one (Fig.  17.3c) [56]. A too high momentum may miss a 
minimum and start to ascend again. To address this problem, 
Nesterov-Accelerated Gradient (NAG)—or gradient descent 
with Nesterov momentum—was introduced (Fig. 17.3d). The 
intuition of NAG consists in anticipating when the slope is 
going to decrease. To achieve this, previously calculated gra-
dients are considered for the calculation of the momentum, 
instead of current gradients. This process guarantees that 
minima are not missed, but makes the operation slower when 
minima are close.

Differently from the previously discussed optimizers, 
where the learning rate is constant, both with respect to 
parameters and cycle, Adagrad changes the learning rate, 
making smaller updates for parameters associated with fre-
quently occurring features, and larger updates for ones 
occurring less often. One advantage of such an approach is 
that the learning rate does not require manual tuning. 
Unfortunately, squared gradients are accumulated in the 
denominator, causing the learning rate to continuously 
decrease reaching infinitesimally small values. For this rea-
son, Adadelta was introduced, in which the sum of gradients 
is recursively defined as a decaying average of all past 
squared gradients. A similar rationale was the basis for the 
development of the RMSprop optimizer. Lastly, Adam 
(Adaptive Moment Estimation), in addition to storing an 
exponentially decaying average of past squared gradients 
like Adadelta and RMSprop, is also characterized by an 
exponentially decaying average of past gradients, similar to 
momentum. Intuitively, when visualizing momentum as a 
ball slope, Adam can be described as a slower ball with fric-
tion, which thus prefers flat minima in the error surface. Still 
other optimizers have been developed (AdaMax, Nadam, 
AMSGrad), but their discussion is out of the scope of this 
chapter [51, 54].

 Pooling, Fully Connected Layers, and Last 
Activation Function
Convolutional layers are limited to the fact that a precise 
position of the feature map is recorded and small changes 
in the position of the feature in the input image will deter-
mine rather different feature maps. Pooling layers perform 
a downsampling operation which decreases in-plane 
dimensionality of feature maps obtained in the convolu-
tion. This layer lacks learnable parameters, while still 
maintaining other hyperparameters previously described. 
The aim of the operation is to reduce the spatial size of the 
input while maintaining volume depths. This results in a 
decrease of the number of learnable parameters. The final 
objective of this step, as described above, is to make the 
representation resilient to minor translations of the input. 
This resilience means that if we translate the input by a 
small amount, the values of most of the pooled outputs do 
not change [41, 42].

There are different pooling operations, such as maximum 
pooling and average pooling [42]. Average pooling calcu-
lates an average for each patch of the feature map according 
to pre-specified criteria. Maximum pooling instead calcu-
lates the maximum value in each specified patch. The results 
are downsampled to the pooled feature maps that highlight 
the most present feature in the patch, but not the average 
presence of the feature in the case of average pooling. This 
has been found to work better in practice than average pool-
ing for computer vision tasks like image classification 
(Fig. 17.4).

At the fully connected layer level, feature maps of the last 
convolution/pooling layer are said to be “flattened,” i.e. con-
verted into a one-dimensional vectors, in which every input 
is connected to every output by a learnable weight. The final 
fully connected layer typically has the same number of 

Fig. 17.4 Schematic 
representation of maximum 
and average pooling. Pooling 
reduced in-plane 
dimensionality of feature 
maps obtained in the 
convolution to make the 
representation become 
invariant to minor translations 
of the input (noise 
suppression). Average pooling 
calculates an average for each 
patch of the feature map 
according to pre-specified 
criteria. Maximum pooling, 
instead calculates the 
maximum value in each 
specified patch. Both 
approaches result in a 
downsampled feature map
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output nodes as the number of output classes. Their function 
is essentially to compile the data extracted by previous layers 
to arrive at the final output [41].

The activation function applied to the last fully connected 
layer is different from the previous ones and is selected 
depending on the task of interest (linear, sigmoid, softmax). 
Also, the loss function is selected according to the last acti-
vation function implemented (mean square error, cross- 
entropy). As an example, for multiclass classification, a 
softmax function is chosen which normalizes output values 
from the last fully connected layer to target class probabili-

ties, where each value ranges between 0 and 1 and all values 
sum to 1 [41, 57].

 Overfitting and Dropout
When training a ML model, one of the most important prob-
lems is overfitting (Fig.  17.5a). This phenomenon occurs 
when an algorithm “learns” training data too closely, subse-
quently failing to generate accurate predictions on new sam-
ples. Data are usually split into training and validation set, 
and performance is tested on this unseen validation set to 
determine generalizability.

Underfitting
Appropriate

fitting
Overfitting

Error

Testing
error

Training
error

Training stepsEarly stop

c

a

b
X

X

X

Fig. 17.5 Schematic representation of: (a) overfitting. In overfitting, 
algorithm training leads to a function that too closely fit a limited set of 
data, preventing generalizability on new unseen data; and selected regu-
larization approaches, i.e. (b) dropout. Dropout allows to decrease com-

plexity of the model by dropping a certain set of neurons chosen at 
random, forcing the network to rely on more robust feature for training; 
(c) early stopping. In early stopping, training stop as soon as the valida-
tion error reaches the minimum
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Several strategies are available to help prevent overfit-
ting, including increasing amounts of training data, data 
augmentation approaches, regularization (weight decay, 
dropout), batch normalization, early stopping, as well as 
reducing architectural complexity [41, 58]. Also, when a 
small training dataset is anticipated, novel approaches have 
focused on fine-tuning previously developed CNNs for 
adaptation to new applications in a process termed transfer 
learning, which is addressed in another paragraph below 
[14, 59, 60].

As stated, data augmentation may be required in the set-
ting of limited sample availability. A variety of basic 
approaches have been used in the past, such as image flip-
ping, rotation, scaling, cropping, translation, Gaussian noise, 
et cetera [61].

Regularization approaches to avoid overfitting include 
among others dropout and weight decay. The term “dropout” 
refers to dropping out units (hidden and visible) in a neural 
network. By dropping a unit out, we mean temporarily 
removing it from the network, along with all its incoming 
and outgoing connections. For this reason, this regularization 
technique can be described as a noise-adder to the hidden 
units. The choice of which units to drop at each iteration is 
random, and dropout probability is set as a hyperparameter 
[58, 62–64] (Fig. 17.5b).

Weight decay, reduces overfitting by penalizing the mod-
el’s weights so that the weights take only small values. This 
is obtained by adding an additional error, proportional to the 
sum of weights (L1 norm) or squared magnitude (L2 norm) 
of the weight vector, to the error at each node. L2 regulariza-
tion is most commonly used as it strongly penalizes peaky 
weight vectors and prefers diffuse weight vectors. Due to 
multiplicative interactions between weights and inputs this 
system encourages the network to distribute little use of 
more inputs rather than high selective use of less of them. L1 
regularization is a less common alternative. Simply stated, 
neurons with L1 regularization use only a sparse subset of 
their most important inputs and ignore noisy features. A 
combination of L1 with L2 regularizations is the elastic net 
regularization [58, 65, 66].

Batch normalization consists of a supplemental layer 
which adaptively normalizes (centering and scaling) the 
input values of the following layer, mitigating the risk of 
overfitting, as well as improving gradient flow through the 
network, allowing higher learning rates, and reducing the 
dependence on initialization. This allows the use of increased 
learning rates, and may eliminate the need for dropout and 
results in reduction of the number of training epochs needed 
to train the network. For a more structured overview on batch 
normalization, we advise consulting Ioffe and Szegedy [67], 
and of a simplified overview by Brownlee [50].

Lastly, early stopping can be considered a form of cross- 
validation strategy in which a part of the training set is used 

as a validation set. When the performance on this retained 
validation set starts to deteriorate, training of the model is 
interrupted (Fig. 17.5c).

 2D vs. 3D CNN
Past image segmentation research has focused on 2D 
images. For MRI, for example, the approach has been indi-
vidual segmentation for each slice followed by post-pro-
cessing to connect 2D segmented slices in a 3D volume. Of 
course, this approach is prone to inhomogeneity in the 
reconstruction of the 3D images and loss of anatomical 
information [68]. Recent reductions in computational costs 
and the advent of graphics processing units (GPUs) in ML 
have allowed application of CNNs to 3D medical images 
using 3D deep learning. The mathematical formulation of 
3D CNNs is very similar to 2D CNNs, with an extra dimen-
sion added. Here, a 3D convolution is different from the 2D 
one as the kernel slides in three dimensions as opposed to 
two dimensions (Fig.  17.6). The implications are particu-
larly relevant for medical imaging when a model is con-
structed using 3D images voxels, granting increased 
precision and spatial resolution, higher data reliability at the 
expense of increased model complexity and slower compu-
tation [68–70]. For further readings on 3D CNN use for 
medical imaging, consult Singh et al. and Despotovic et al. 
[68, 70]

Fig.  17.6 Schematic representation of 2D versus 3D convolution. For 
imaging application, three-dimensional voxels increase spatial resolu-
tion and retain complex relationship for model training that would not 
be used otherwise
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 Transfer Learning
Recently the use of algorithms pre-trained for similar appli-
cations to be extended for other applications has proven 
valuable [60, 71]. This technique is named deep transfer 
learning (TL) and several reports in brain tumor research 
have been produced, for example, with CNNs [14, 59, 72, 
73]. A pre-trained CNN has to be able to extract relevant fea-
tures while maintaining irrelevant features and underlying 
noise. For a comprehensive overview of transfer learning, 
consult Zhuang et al. [71]

 Available CNN Architectures
A variety of CNN architectures have been developed and are 
being extensively exploited in imaging applications: LeNet, 
AlexNet, GoogLeNet, ResNet, SENet, VGG16, VGG19 
[74]. For a comprehensive overview of pre-trained CNN 
architectures we refer the readers to Khan et al. [75]

 Generative Adversarial Networks

The basic function of GANs is to train a generator and dis-
criminator in an adversarial way. Based on different require-
ments, either a stronger generator or a more sensitive 
discriminator is designed as the target goal [26, 76, 77]. 
These two models are typically implemented by neural net-
works such as CNNs. The generator tries to capture the dis-
tribution of true examples for new data example generation. 

The discriminator is usually a binary classifier, discriminat-
ing generated examples from the true examples as accurately 
as possible (Fig.  17.7). With improving generator perfor-
mance, discriminator performance worsens. For this reason, 
GAN optimization is said to be a “minimax optimization 
problem.” The optimization terminates at a saddle point 
(convergence) that is a minimum in terms of error with 
respect to the generator and a maximum in terms of error 
with respect to the discriminator [26]. Past the transitory 
convergent state, model training may continue with the dis-
criminator providing only random feedback (50/50 or coin 
tossing), implying for the generator to train on meaningless 
feedback. This of course would result in decreased perfor-
mance of the generator.

The contribution of GANs to medical imaging is there-
fore twofold. The generative part can help in exploring hid-
den structures in the training data leading to new image 
synthesis with valuable implications for addressing issues 
such as lack of data and privacy concerns. The discriminative 
part can be instead considered as a “learned prior” for nor-
mal images, so that it can be used as a regularizer or detector 
when presented with abnormal images [27].

 Data Availability and Privacy

We have already mentioned how, to some extent, the “fire-
power” granted by DL techniques is difficult to implement 

Generated fake images

Real images

Discriminator

Generator

Random noise

Real

Fake

Fig. 17.7 GAN architecture. A simplified GAN is shown: generator and discriminator are trained in adversarial way. The discriminator attempts 
to distinguish generated examples from the true examples as accurately as possible
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due to the poor availability of training data. Morever, the sen-
sitive nature of patient medical information, data safety prac-
tices such as deidentification (anonymization and 
pseudo-anonymization) are crucial [78]. One solution to the 
lack of data availability has been proposed using ML 
approaches such as artificial image synthesis for data aug-
mentation [79, 80]. Another option is federated learning, in 
which an algorithm is trained at various sites locally, without 
exchanging data—exchanging only the weights of the fur-
ther trained model [81].

 Deep Learning-Based Tasks in Imaging

The number of tasks that can be performed by DL in imaging 
is vast and intrinsically problem-oriented. A major distinc-
tion consists in supervised versus unsupervised machine 
learning approaches. In supervised learning, training data are 
given with known labels for which the correct outputs are 
already known, differently from unsupervised learning in 
which labels are not available, e.g. clustering [82]. Each of 
these methods carries its own advantages and disadvantages. 
Regardless of the approach, practical applications derive 
from widely appreciated clinical problems such as subopti-
mal image acquisition, time-consuming image analysis, and 
long learning curves for clinical experts or inter-observer 
variability in disease diagnosis and classification. In the next 
paragraphs, we aim to provide an overview of some clinical 
problems and the ML-based approaches that have been 
applied to tackle them. For descriptive purposes we identi-
fied the following tasks subgroups: image reconstruction and 
restoration, synthesis and super-resolution, registration, 
detection and classification, outcome prediction.

 Image Reconstruction and Restoration
Image reconstruction refers to several scenarios where high- 
quality images are obtained from incomplete data or partial 
signal loss. The underlying issues are technique-dependent 
and can vary in different imaging modality for e.g. MRI, 
PET-CT, CT [33, 83]. Such problems are intimately con-
nected to image restoration, whose aim is to improve the 
quality of suboptimal images acquired because of technical 
limitations or patient-related factors (e.g. respiration, dis-
comfort, radiation doses). Other terminology to indicate 
issues of pertaining to image restoration are “denoising” and, 
more broadly, also artifact detection can be considered in this 
area. Few examples are here presented.

A study by Schramm et  al. investigated anatomically- 
guided PET reconstruction aiming to improve bias-noise 
characteristics in brain PET imaging using a CNN. By apply-
ing a dedicated data augmentation during the training phase 
they showed encouraging results which could be generated 
in virtually real-time [84]. Yan et  al. [85] trained a GAN 

algorithm to generate BOLD signals that were lost for tech-
nical reasons during fMRI.  Intriguingly, reconstructed sig-
nals closely resembled the uncompromised signals and were 
coherent with each individual’s functional brain organiza-
tion. Kidoh et al. [86] have reported in five patients artificial 
noise addition to brain MRI, and training of a CNN to per-
form image reconstruction. The authors reported that their 
algorithm significantly reduced image noise while preserv-
ing image quality for brain MR images. CNNs have been 
most commonly reported for this task. Despite the prelimi-
nary encouraging results, recent reports point at instabilities 
in deep learning based methods raising concern on artifacts 
formation, failure to recover structural changes (from com-
plete removal of details to more subtle distortions and blur-
ring of the features) and others [87]. Additional applications 
are related to 3D reconstruction of anatomical regions. In 
spine surgery, DL can substitute manual segmentation and 
3D reconstruction to aid surgical planning [88].

 Image Synthesis and Super-Resolution
The applications of image synthesis are different and can be 
categorized in unconditional synthesis and cross-modality 
synthesis (image conversion), with the former meaning 
image generation from random noise without conditional 
information and the latter being instead referred to, for 
example, obtaining CT-like images from MRI or more in 
general to derive new parametric images or new tissue con-
trast [27, 89, 90].

This latter application has also been referred to as image 
super-resolution whose aim is to reconstruct a higher resolu-
tion image or image sequence from the observation of low- 
resolution images [91].

Especially for ML modeling, this allows training data to 
be augmented without recurring to traditional methods such 
as scaling, rotation, flipping, translation, and elastic defor-
mation which do not account for variations resulting from 
different imaging protocols or sequences, not to mention 
variations in the size, shape, location, and appearance of spe-
cific pathology [27, 80]. Some examples of past studies are 
here discussed. Liu et  al. [91] reported super-resolution 
reconstruction of experiments real datasets of MR brain 
images and demonstrated that multiscale fusion convolution 
network was able to recover detailed information from MR 
images outperforming traditional methods. A recent small 
preliminary study reported training of GANs to generate 
MRI T2w images from CT spine slices, obtaining far from 
optimal results [29]. The potential advantages of 
 unconditional synthesis are related to overcoming privacy 
issues related to medical imaging use and the insufficient 
cases of patients positive for a given pathology [27, 79]. 
Generative Adversarial Networks (GANs) and Convolutional 
Neural Networks (CNNs) have been studied for this 
application.
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 Image Registration
Registration establishes anatomical correspondences 
between two images by mapping source and reference vol-
ume to the same coordinates [31, 92]. This task is required 
for intraoperative navigation, 3D reconstruction, multimo-
dality image mappings, atlas construction, and arithmetic 
operations such as image averaging, subtraction, and correla-
tion [31]. Implications are clear: Intraoperative neuronaviga-
tion requires mapping of a preoperative image onto an 
intraoperative image by registration. Another clinically rele-
vant application in neuro-oncology is found in the context of 
rapid brain tumor growth, which requires longitudinal evalu-
ation for disease evolution and for treatment results monitor-
ing—both of which may greatly benefit from accurate 
registration to improve intra-individual imaging comparison 
[92]. Traditional methods can be summarized in deformable 
or elastic registration and linear registration or graph-based 
approaches [92].

Investigators have used a variety of approaches, with dif-
ferent degrees of manual interaction, to perform image regis-
tration. These approaches use either information obtained 
about the shape and topology of objects in the image or the 
presumed consistency in the intensity information from one 
slice to its immediate neighbor or from one brain or image 
set to another [31].

Despite the several strategies proposed, this task remains 
challenging due to the computational power needed, high- 
dimensional optimization, and task-dependent parameter 
tuning [93]. Recently, Fan et al. [93] reported the use of dual- 
supervised fully convolutional networks for image registra-
tion by predicting deformation from image appearance and 
showed promising registration accuracy and efficiency com-
pared with the state-of-the-art methods. Estienne et al. [92] 
recently reported the introduction of DL-based framework to 
address segmentation and registration simultaneously.

 Image Segmentation, Classification, 
and Outcome Prediction
Segmentation can be described as the process of partitioning 
an image into multiple non-overlapping regions that share 
similar attributes, enabling localization and quantification. 
Both supervised and unsupervised learning can play a role in 
segmentation tasks [12]. Segmentation from MR images is 
useful for diagnosis, growth prediction, and treatment plan-
ning. Its results are labels identifying each homogeneous 
region or a set of contours describing the region limits [68]. 
Of course, the higher the lesion complexity, the more prob-
lematic the segmentation. Well-defined lesions are easier to 
segment, while infiltrative, diffuse lesions are more daunt-
ing. Other obstacles to successful segmentation are repre-
sented by lesion variable shape, size, and location in addition 
to unstandardized voxel values in different modalities [28]. 
Segmentation applications have been reported for acute isch-

emic lesion segmentation [94], brain tumor (gliomas, menin-
giomas, metastases) [9, 15, 28, 79, 95–97], spine [19, 98], 
and aneurysms [4, 99] have been reported. Segmentation and 
classification are always intimately connected as segmenta-
tion implies a classification, while an imaging classifier 
implicitly segments an image. The segmentation results can 
be further used in several applications such as for analysis of 
anatomical structures, for the study of pathological regions, 
for surgical planning, et cetera [68]

The research area of disease detection, classification, 
and grading through machine learning based methods has 
also been referred as computer-aided diagnosis (CAD) 
[14]. A few examples are here discussed together with clin-
ical implications. Deepak et al. [14] reported an automatic 
classification system designed for three brain tumor types 
(glioma, meningioma, and pituitary tumor) using a deep 
transfer learned CNN model for feature extraction from 
brain MRI images and classified using a SVM algorithm 
with high accuracy and AUC. CAD of a brain tumor can 
have a significant impact on clinical practice. For example, 
in the context of metastatic disease, early and accurate 
identification of brain metastases is crucial for optimal 
patient management. Given their small size, similarity to 
blood vessels and low technical contrast to background 
ratio, computer-assisted detection by means of DL algo-
rithms can provide a valuable tool for early lesion identifi-
cation [9]. Also, glioma recurrence can be difficult to 
identify at MRI due to post- treatment changes such as 
pseudo-progression and radiation necrosis and DL-based 
classification of these two lesions would be highly clini-
cally relevant [13]. In the field of vascular neurosurgery, 
CNNs have proven useful in improving aneurysms detec-
tion at neuroimaging [100, 101]. Stemming from segmen-
tation and classification tasks, outcome prediction – such as 
survival - has also been assessed preliminary by some stud-
ies [15, 102, 103].

17.4  Conclusions

The present chapter introduces ML applications in neuroim-
aging in a step-wise manner. The concept of radiomics has 
significantly increased expectations deriving from image 
analysis with respect to enhanced lesion diagnosis, char-
acterization, segmentation, classification, outcome predic-
tion, and prognosis evaluation. The computational power 
granted by ML—and DL in particular—has convincingly 
 demonstrated preliminary potential to significantly impact 
patient management. CNNs and GANs, among other algo-
rithms, constitute flexible tools to tackle multiple differ-
ent ML tasks. Successful application in a variety of tasks 
spanning from image reconstruction and restoration, image 
synthesis and super-resolution, segmentation, classification, 
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and outcome prediction have been introduced. Technical and 
ethical challenges posed by this technology are yet to be 
solved, with future research expected to improve upon the 
current limitations—Especially regarding explainable learn-
ing. Foundational knowledge of this field of ML by clini-
cians is required to safely guide the next medical revolution, 
truly introducing ML into neuroimaging.
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Machine Learning-Based Radiomics 
in Neuro-Oncology
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and Julius M. Kernbach

18.1  Introduction

With synergistic advances in the development of novel learn-
ing algorithms and the increasing availability of low- cost 
computation, artificial intelligence (AI) has conquered vari-
ous fields in modern biomedical research. AI is commonly 
understood as the ambition to enable computers to behave in 
a human-like nature to solve a broad array of tasks. Machine 
learning (ML), which falls under the umbrella term of AI, 
can be understood as a technique that enables algorithms to 
learn inductively from data without being explicitly pro-
grammed and make predictions about new data. Deep learn-
ing (DL) is a subsequent branch of AI and ML, based on 
multilayered neural networks, which are well-suited to dis-
cover intricate patterns in high-dimensional data [1, 2]. 
Especially in data-rich disciplines, such as biomedical imag-

ing or genetics, DL- or AI-based research has the potential to 
improve diagnostic and therapeutic methods in medicine. At 
the forefront of neuro-oncology and AI-research, the field of 
radiomics has emerged using non-invasive assessments of 
quantitative radiological biomarkers mined from complex 
imaging characteristics across various imaging modalities, 
such as magnetic resonance imaging (MRI) or positron emis-
sion tomography (PET), that are beyond human perception 
[3, 4]. The objective of this review is to provide an overview 
of common applications of ML- and DL-based radiomics in 
primary and secondary brain tumors and their implications 
for future research in the field.

18.2  Methodological Foundations

The term “radiomics” usually comprises processes and meth-
ods to extract quantitative variables from available imaging 
data [3, 4]. These values and features are usually beyond 
human perception and cannot be adequately utilized during 
clinical routine [3, 4]. Thus, a significant amount of obtained 
data and information are not incorporated into the reading of 
images. The overachieving objective of radiomics is to make 
full use of the obtained (quantitative) imaging data in a repro-
ducible, ideally user-independent way to advance diagnostic 
testing and outcome prediction [3–6]. Radiomics can be sub-
divided into a supervised feature- based and a DL-based 
approach. Both analytical streams require various preprocess-
ing steps, including intensity normalization, spatial resam-
pling and smoothing, noise reduction, and de-confounding of 
scanner- and movement- introduced noise [5, 7].

In feature-based radiomics, mathematically pre-defined 
characteristics of varying complexity, ranging from shape 
features, including diameter, volume, or sphericity, and dis-
tributional features, including mean, median, entropy, skew-
ness, and other histogram-based characteristics to complex 
textural features of contrast, energy, homogeneity and inten-
sity, and higher-order features mined by computational 
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transformations or filters are extracted and computationally 
selected [7]. These variables, known as agnostic features, 
usually include Haralick and Laws textures, wavelets, 
Laplacian transforms, Minowski functionals, and fractional 
dimensions [3]. These features complement the semantic 
annotations of radiologists. Semantic annotations are mostly 
used to describe imaging findings in a qualitative way [3, 4]. 
Such terms may refer to the tumor size, shape, location, vas-
cularity, spiculation, necrosis, and lepidics and large efforts 
are being made to standardize the usage of these terms to 
avoid heterogeneity among imaging readings [3]. Before 
feature extraction, the respective regions of interest (ROI) 
must be identified manually, semi-automatically, or automat-
ically. This process bears the risk of a user-dependent selec-
tion of ROI, potentially limiting the reproducibility of the 
obtained features and subsequent study results. Once a stan-
dardized approach of ROI selection is developed and applied, 
feature extraction can be realized. Today, several software 
options are available to extract features from imaging data, 
including many open-source tools [8–12]. As the amount of 
extracted features may be in the hundreds and, thus, often 
larger than the actual size of the study cohort, it is required to 
perform some form of feature selection to avoid model over-
fitting [3]. Feature selection commonly includes the elimina-
tion of features that highly correlate with each other or those 
that do not correlate with the study endpoint [3, 7, 13]. In 
general, feature selection is divided into supervised and 
unsupervised methodologies and is described in detail else-
where [7]. After the features have been selected, they can be 
used for the model generation to assess the respective 
research question.

In contrast, DL-based radiomics can automatically extract 
relevant granular features at different levels of abstraction 
using complex network architectures with multiple hierar-
chical layers, including convolutional layer designs [7, 14]. 
Thus, a manual or semi-automatic segmentation of the ROI 
is not necessary. The network layers are identifying and 
extracting the relevant features without prior input. However, 
this approach demands larger datasets compared to the clas-
sic feature-based radiomics approach and, thus, may have a 
limited applicability in neuro-oncology [7]. Both approaches, 
feature- and DL-based radiomics have been successfully 
applied in various cancer imaging studies showing promis-
ing results for future implementation in daily clinical routine 
[6]. Radiomics can be an effective way to leverage imaging 
data to improve patient care, risk stratification, and treatment 
planning [4, 6]. Current challenges, especially in the field of 
neuro-oncology, comprise the lack of methodological stan-
dardization in regard to image acquisition, feature extraction 
and selection, availability of multicenter datasets and, there-
fore, reproducibility [4, 6, 13].

18.3  Recent Implications 
for Neuro-Oncology

DL-based radiomics have recently made remarkable prog-
ress along with advances in biomedical imaging, most nota-
ble in central nervous system (CNS) neoplasms. Gliomas 
are the most common primary brain tumors. Pathologic 
grading is made according to the WHO classification and 
ranges from grade I to IV. Grade IV gliomas, including glio-
blastomas (GB), have an extremely poor prognosis and dis-
mal overall survival [15, 16]. As secondary brain tumors, 
cerebral metastases pose another considerable neuroonco-
logical challenge. A third of all patients with solid tumors 
will eventually develop brain metastases (BM), with often 
subsequent clinical deficits and need for treatment [17, 18]. 
In total, approximately 170,000 patients are annually diag-
nosed with cerebral metastases in the USA alone [19–21]. 
Clinical diagnostics and treatment monitoring for both met-
astatic and primary brain tumors routinely include MRI 
studies, and thus generate large imaging datasets containing 
data from the initial diagnosis to follow-up imaging. ML 
and DL are well-suited and increasingly used for radiomic 
analysis in primary and secondary brain tumors leading to 
numerous high-quality studies and literature reviews [22–
25]. As lesion delineation is explicitly required before any 
radiomic analysis, we also include DL-based studies for 
tumor identification and segmentation in our review. 
Common applications include outcome prediction (e.g. sur-
vival, local control), discrimination between primary and 
secondary tumors, as well as between progression and 
pseudo-progression, and molecular phenotyping, envisioned 
in the field of radiogenomics. The results of respective stud-
ies and analyses are depicted herein.

18.4  Automated Tumor Segmentation

Accurate lesion segmentation of both primary and second-
ary brain tumors is essential for radiomic analyses. A vari-
ety of methodological approaches have been proposed so 
far, ranging from manual delineation to semi-automated 
methods and user-independent DL methods. Manual or 
semi-automated segmentation performed by experienced 
neuroradiologists and clinicians is often time-consuming 
and subject to a high rate of inter-rater variability [26, 27]. 
Ideally, fully- automated segmentations should reliably 
detect a tumor or peritumoral areas as regions of interest on 
standard imaging data and accurately contour them to miti-
gate user variability. Various studies have since explored 
ML- or DL-based automated segmentation in primary and 
secondary brain tumors [28–34]. Advances in automated 
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segmentation tools have been facilitated by the release of 
large public databases such as The Cancer Imaging Archive 
(TCIA) and further accelerated by the annual Multimodal 
Brain Tumor Image Segmentation Benchmark (BraTS) 
challenge, which provided a well- accepted platform for the 
development and critical evaluation of novel algorithms 
[35–37]. With high reported performances, DL-based 
methods have since surpassed the more traditional segmen-
tation approaches [37].

Among other highly competitive DL methods, convolu-
tional neural networks (CNNs) gained popularity based on 
their tremendous success in complex image analysis [1]. 
By maintaining local topological relationships between 
layers, CNNs are well-suited to perform highly complex 
image recognition tasks by leveraging and preserving local 
image relations and low-level abstraction. With their suc-
cess in the ImageNet Challenge, CNNs are now considered 
the benchmark in many fields, including image segmenta-
tion and radiomics [32, 38–41]. For instance, the DeepMedic 
3D-CNN was successfully applied to multimodal MRI data 
for the segmentation of brain metastases and glioma [40]. 
The applied network structure achieved a fair model perfor-
mance, with a promising DICE similarity coefficient of 
0.79 [40]. By adding an additional sub-path with larger 
convolutional filters, the tweaked DeepMedic network used 
by Liu and colleagues to contour metastases, with a dedi-
cated focus on metastases with less than 1.5 cc, achieved a 
mean DICE of 0.67 [32]. Different model architectures, 
such as the inception module-based GoogLeNet, were pre-
viously applied to detect and segment brain metastases [33, 
42]. Results were grouped by the number of brain metasta-
ses (1–3, 4–10, >10 lesions per patient) in a cohort of 156 
patients, with the network achieving overall DICE scores of 
0.76, 0.83, and 0.78, respectively [33]. Curated by the 
BraTs Challenge, an increased number of the state-of-the-
art segmentation algorithms specifically for low- and high-
grade glioma was proposed. Successful model architectures 
included 2D-convolutions, as well as fully-connected 
multi- scale CNNs with 3D-convolutions [28, 43–45]. 
Based on the in 2015 introduced U-Net Structure, the seg-
mentation performance of the complete tumor, core, and 
enhancing area, successively increased, reaching promising 
DICE scores in the BraTs 2017 competition of 0.89, 0.79 
and 0.73, respectively [46, 47]. Building upon U-Net, the 
encoder–decoder architectures were subsequently modified 
with the addition of residual connections, densely con-
nected layers, second decoder implementations, or differ-
ent loss functions, e.g. DICE or focal loss [14, 48–53]. The 
winning approach of the 2020 challenge implemented an 
ensemble-based “no new net” U-Net (nnU-Net) architec-
ture achieving highest DICE scores of 0.88, 0.85, and 0.82 
for the whole tumor, tumor core, and enhancing tumor, 
respectively [36].

18.5  Molecular Phenotyping 
and Radiogenomics

Radiomics has advanced our understanding of neuro- 
oncology by seeking associations between the imaging 
domain and other disciplines, and hence evolved into a vital 
part of multi-omics. Perhaps most intriguing is the combina-
tion of radiomic image analyses with genetic or mutational 
expression patterns, which—depending on the source—has 
been coined the field of radiogenomics [54, 55]. Given the 
high clinical relevance of molecular biomarkers and the 
potential of providing non-invasive in vivo characterizations 
of molecular heterogeneity, radiogenomics has since 
advanced diagnostics and treatment stratification of patients 
with primary and secondary brain tumors [56].

In glioma radiogenomics, the non-invasive prediction of 
molecular markers includes clinically relevant targets such as 
the isocitrate dehydrogenase (IDH) genotype, the O6- 
methylguanine- DNA methyltransferase (MGMT) promoter 
methylation status, or the 1p19q codeletion. Based on the 
TCIA dataset, Lu and colleagues successfully applied a three-
level ML-framework based upon support vector machines to 
predict IDH genotype and 1p19q-status from MRI data achiev-
ing accuracies of 88.9–91.7% and 80%, respectively [57]. 
Chang et  al. applied CNNs to conventional MRI of 259 
patients with glioma yielding classification accuracies of 94% 
for IDH mutation status, 92% for 1p19q codeletion, and 83% 
for MGMT promoter methylation [58]. DL-implementations 
such as multimodal 3D-DenseNet architectures reached com-
parable classification accuracy regarding IDH mutation status 
of 84.6% in The Cancer Genome Atlas (TCGA) data set [59]. 
While most studies focus on conventional MRI data, other 
sequences, including texture analysis of diffusion tensor imag-
ing or different imaging modalities such as O-(2-[18F]
fluoroethyl)-l-tyrosine (FET)-PET have been investigated 
[60–64]. For instance, Lohmann and colleagues predicted the 
IDH genotype with an evaluated accuracy of 86% in a tenfold 
cross-validated logistic regression model in 86 glioma patients 
based on combined FET-PET/MRI radiomic parameters [62].

Molecular subtypes and mutation status of secondary 
brain tumors are equally crucial given the recent develop-
ments in the field of targeted therapies. While lung cancer 
often bears a dismal prognosis, several molecular targets have 
been identified in the last years, which fostered the develop-
ment of targeted drugs to exploit altered cellular pathways 
[65, 66]. One target of particular interest is the epidermal 
growth factor receptor (EGFR). It has been shown that 
patients with respective mutations show improved survival 
after treatment with EGFR-associated tyrosine kinase inhibi-
tors [65–67]. Ahn et al. extracted radiomic features from T1 
contrast-enhanced MRI scans of 61 lung cancer patients with 
210 BM to predict the EGFR mutation status [68]. Twenty-
nine patients in the study cohort had a confirmed EGFR 

18 Machine Learning-Based Radiomics in Neuro-Oncology



142

mutation and six cases of SCLC were included, the rest were 
NSCLC patients [68]. Notably, mutation status was obtained 
by lung biopsy samples, not by examination of the BM tissue. 
The authors tested four different classification systems with a 
random forest algorithm demonstrating the best overall per-
formance (Area under the curve (AUC) 0.86) [68]. Another 
recent study by Park et al. followed a similar approach but 
limited their sampling to NSCLC patients and acquisition of 
the EGFR mutation status from BM tissue as well as from the 
primary lung tumor [69]. Twenty-three out of 28 samples 
were EGFR-mutant tumors [69]. Preoperative imaging 
sequences included T1 contrast-enhanced and diffusion ten-
sor images (DTI). The best-performing algorithm (linear dis-
criminant algorithm) with the five best-performing imaging 
features achieved an AUC of 0.73 [69]. The EGFR mutation 
discordance rate between the primary lung lesion and the BM 
was 12% [69]. Like the EGFR mutation in lung cancer, proto-
oncogene B-Raf (BRAF) expression in malignant melanoma 
can be specifically addressed by targeted therapies, with sub-
sequent improvements in overall survival [70]. Shofty et al. 
utilized imaging radiomics to predict the BRAF mutation sta-
tus based on MRI data [71]. The study cohort comprised 25 
BRAF positive and 29 negative BM from 53 patients [71]. 
With the implementation of an support vector machine 
(SVM), an AUC of 0.78 was achieved [71].

18.6  Prediction of Clinical Outcome

For both primary and secondary brain tumors, the prediction 
of clinical outcome in current practice is mainly based on 
clinical parameters, including functional impairment, age, 
tumor grade and histology, as well as the molecular finger-
print [72, 73]. Notably, radiomic features are currently not 
adopted in prognostic models regarding primary or second-
ary brain tumors. Simple feature-based parameters, such as 
tumor enhancing volume or maximal diameter, were shown 
to be predictive beyond clinical models, yet, more complex 
DL-based features may facilitate the prediction of outcome 
for both metastatic brain tumors as well as glioma even fur-
ther [74, 75].

Recent radiomic models were proposed to predict overall 
survival (OS) in glioblastoma in a supervised as well as unsu-
pervised fashion [76–80]. SVM based on features extracted 
from traditional and advanced MRI sequences predicting sur-
vival (stratified into a low-, medium-, and high-risk group) with 
an accuracy approaching 80% identified volume, angiogenesis, 
peritumoral infiltration, cell density, and distance to the ven-
tricular system as most predictive features. Combining a super-
vised principal component analysis on 12,190 features yielding 
eleven radiomic variables combined with clinical data resulted 
in a fair performance of OS prediction (C-index of 0.696), sur-
passing the performance of the radiomic and clinical subset 
alone [78, 80]. A fully-automated DL-model applied by Li and 

colleagues based on multiparametric radiomic signatures 
achieved even better performance, with a C-index of 0.705, and 
stratified patients into a low- and high-risk group [76] . Using 
CNN-based transfer learning, Lao and colleagues combined 
clinical risk factors with six-deep-feature phenotypes based on 
least absolute shrinkage and selection operator (LASSO) Cox 
regressions achieving prediction of overall survival (C-index 
0.739) [77]. In an unsupervised fashion, Rathore et al. identi-
fied rim-enhancing, irregular, and solid as three latent imaging 
phenotypes using K-means clustering, which showed differen-
tial clinical outcomes and corresponded to different expression 
levels of molecular characteristics [79].

ML- and DL-based radiomics may be a suitable tool for 
enhanced prediction of OS and local failure in secondary 
brain tumors as well. Studies have shown that various imag-
ing features, including the associated perilesional edema, the 
presence of a necrotic core, and the degree of contrast 
enhancement, may influence local failure or even survival 
[81–83]. Cha et  al. were the first to assess whether a 
CT-trained neural network can predict the treatment response 
after stereotactic radiosurgery [84]. The authors trained ten 
CNNs on 110 BM CT scans [84]. Responses were classified 
as “responders” (complete and partial response per RECIST 
1.1) and “non-responders” (stable and progressive disease 
per RECIST 1.1) [84, 85]. The AUC of the ensemble net-
works ranged between 0.76 and 0.85 [84]. A more recent 
study by Mouraviev et  al. showed that the addition of 
radiomics features of T1 contrast-enhanced and T2 fluid- 
attenuated inversion recovery (FLAIR) imaging data to a set 
of clinical, dosimetric, and structural radiographic features 
improves local response prediction after stereotactic radio-
surgery [86]. In contrast to the previously described study, 
the RANO-BM criteria were applied [87]. While the non- 
radiomic features achieved an AUC of 0.66, the addition of 
the top twelve radiomic features improved the performance 
to an AUC of 0.79 [86]. In another study, 133 BM from 100 
patients were analyzed to extract the top five radiomic fea-
tures for response prediction after hypo-fractionated stereo-
tactic radiation therapy [88]. The optimal radiomic feature 
composition achieved an AUC of 0.79 for the overall local 
failure prediction and 0.80 as well as 0.81 for the 6-month 
and 12-month local-failure prediction, respectively [88].

18.7  Discriminating Radiation Necrosis 
from Tumor Progression and Primary 
from Secondary Brain Lesions

With the general availability of radiosurgery and multimodal 
treatments of brain tumors in combination with radiotherapy, 
the incidence of radiation necrosis is rising and may be 
apparent in up to 26% of patients after treatment [89, 90]. 
This underlines the necessity for reliable and fast discrimina-
tion between radiation necrosis and tumor progression, given 
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their often indistinguishable appearance on conventional 
MRI and CT scans [91]. The current gold standard for diag-
nosing a radiation injury or necrosis is the pathological 
examination of the suspicious brain area. However, even 
after biopsy, a risk for misdiagnosis may be present as lesions 
can be heterogeneous [92]. As the pathophysiological pro-
cesses of a radiation injury and tumor growth substantially 
differ, differences may be hidden within the imaging data 
that cannot be perceived by the radiologist’s eye. Thus, the 
application of radiomics to this persistent clinical problem 
may improve clinical decision making. So far, radiomic anal-
yses on this matter have focused on plain MRI data but also 
investigated emerging functional imaging methods like the 
FET-PET [93–97]. An early feasibility study from Tiwari 
et  al. investigated a set of radiomic features from T1 con-
trast-enhanced, T2 weighted, and T2 FLAIR MRI data of 43 
patients to discriminate radiation injury from tumor progres-
sion [93]. The performance of the top five most discriminat-
ing features on each MRI sequence was tested against two 
senior neuroradiologist [93]. For the 15 test cases, the estab-
lished SVM identified twelve cases correctly, whereas the 
neuroradiologists were correct in seven and eight cases, 
respectively [93]. A comparable approach was applied by 
Hettal et al., extracting radiomics features from T1 contrast-
enhanced imaging to achieve an AUC of 0.83 [96]. Moreover, 
the prediction accuracy for radiation necrosis and tumor pro-
gression were 75% and 91%, respectively [96]. Peng et al. 
investigated 82 lesions of 66 patients who had received ste-
reotactic radiosurgery with radiomics [94]. Again, T1 con-
trast-enhanced imaging and T2 FLAIR imaging were 
analyzed. With an optimized IsoSVM, an overall AUC of 
0.81 was obtained, showing a sensitivity and specificity of 
65% and 86%, respectively [94]. In contrast, the reviewing 
senior neuroradiologist was able to classify 73% of cases, 
with a high sensitivity of 97% and low specificity of 19% 
[94]. As for the plain MRI studies, Zhang et al. have chosen 
a slightly different approach as they implemented radiomic 
features from two different time points to investigate poten-
tial changes and robustness in radiomic features over time 
(so-called delta radiomics) [97]. In this study, 87 patients 
with pathologically confirmed radiation necrosis or tumor 
progression after GammaKnife- based radiosurgery were 
included [97]. With five delta radiomic features, an algo-
rithm with an AUC of 0.73 was obtained [97]. Given these 
results, future studies implementing delta radiomics may 
help to identify more robust radiomic features that can 
improve future algorithms. This objective may also be 
reached by implementing functional imaging modalities like 
FET-PET, which is gaining more and more attention in 
neuro-oncology. In a recent study from Lohmann et al., 52 
patients with pathologically confirmed recurrent brain 
metastasis (21 patients) and radiation injury (31 patients) 
were investigated by means of contrast-enhanced MRI and 
additional FET-PET data [98]. Radiomic features were 

extracted for both imaging modalities, and respective predic-
tion models were created. While no independent test cohort 
was available, cross-validation with different numbers of 
subsamples was utilized [98]. The best results were obtained 
when MRI and FET-PET features were combined, as the 
AUC improved by 0.05–0.11 up to 0.86, depending on the 
validation method [98]. The highest achieved AUC during 
validation for the models using only contrast-enhanced MRI 
and FET-PET data were 0.77 and 0.79, respectively [98].

Not only in regard to subsequent medical treatment, the 
discrimination between primary and secondary brain lesions 
is of utmost importance for further patient management. This 
is especially relevant for the differentiation between a single 
BM and GB. So far, several studies have investigated the use-
fulness of ML and radiomics for this task [99–105]. Bae 
et al. applied seven traditional ML classifiers and multi-input 
deep neural networks on a cohort of 248 patients [102]. The 
deep neural network outperformed the best-performing tra-
ditional ML model, achieving an AUC 0.95 (vs. an AUC of 
0.89), indicating the potential of DL for such a task [102]. 
Other authors tackling the same neurooncological challenge 
applied classic methods like SVM, random forest, naïve 
Bayes, ensemble classifiers, linear discriminant analysis, and 
k-nearest neighbor, achieving AUCs ranging from 0.80 to 
0.98 [99, 101, 103, 104]. Swinburne et  al. also included 
another important entity into their radiomic study: CNS lym-
phoma [105]. The trained multiclass model achieved an 
overall maximum accuracy of 0.69 in a small cohort of 26 
patients [105]. The exclusive differentiation between CNS 
lymphoma and GB was investigated by Chen et al., applying 
three classifiers based on various radiomic features on a 
cohort of 138 patients, obtaining excellent AUCs ranging 
from 0.95 to 0.97 [106].

18.8  Conclusions

Medicine has evolved into an increasingly data-centered dis-
cipline. In this context, AI and ML are promising methods to 
analyze multi-dimensional data. Along with the steep rise in 
the development and advancements of AI, the field of 
radiomics has gained popularity across various aspects of 
neuro-oncology. Due to its inherent ability to intricately 
mine patterns beyond human perception, radiomics is placed 
at the crossroad between radiology and precision medicine. 
The retrieved information or imaging phenotypes may have 
far-reaching potential to revolutionize the diagnosis, patient 
stratification, treatment selection and monitoring. Despite 
the remarkable progress towards personalized medicine, 
analytical and practical challenges remain.

Overall, the published studies have shown promising 
results. However, due to the manifold of analytical knobs 
and choices, small sample sizes, and lacking external vali-
dation, they rarely remain comparable (Table 18.1). This is 
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particularly critical for insatiable data-hungry DL methods, 
which often require an extensive sample size beyond the 
applied patient cohort. Accordingly, simulation studies sug-
gest to scale the minimum sample size to the problem and 
the applied method at hand [113, 114]. As many studies 
frame their objective as classification problems, for instance, 
MGMT promoter methylation versus non- methylated, 
imbalances between classes can cause additional bias and 
lead to poor generalizability [115]. Additionally, there is a 
paramount need for standardized image acquisition in 
radiomic analysis. Multiple studies addressed the impact of 
varying acquisition parameters, including sequence varia-
tions, image reconstruction, and scanner specifications, as 
well as the influence of different spatial resolutions and dif-
ferences regarding 2D versus 3D analysis [116–120]. 
Various software implementations were introduced to unify 
the analytical workflow. For instance, the BraTS Toolkit 
offers a joint approach from Digital Imaging and 
Communications in Medicine (DICOM) to brain tumor seg-
mentation. Furthermore, multiple open-source tools were 
introduced to allay inhibiting factors for successful imple-
mentation into clinical routine [9, 10, 121]. Despite their 
current limitations, the swift translation of ML- and 
DL-based radiomics into clinical practice will potentially 
provide a significant benefit to diagnostics and treatment 
monitoring in primary and secondary brain tumors. 
However, future multicenter studies will be essential to vali-
date the robustness and generalizability of the respective 
methods.
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Foundations of Brain Image 
Segmentation: Pearls and Pitfalls 
in Segmenting Intracranial Blood 
on Computed Tomography Images

Antonios Thanellas, Heikki Peura, Jenni Wennervirta, 
and Miikka Korja

19.1  Introduction

Among the medical emergencies that have a devastating 
impact, especially if left undiagnosed or misdiagnosed, are 
intracranial haemorrhages. In subarachnoid haemorrhage 
(SAH), which is usually of a spontaneous nature, blood 
bursts through a damaged intracranial vessel and accumu-
lates widely in the subarachnoid space. In contrast, in epi-
dural (EDH) and subdural haemorrhages (SDH), which are 
most often caused by head traumas, blood accumulation hap-
pens in much more restricted spaces. Because of the ever- 
growing number of diagnostic head computer tomography 
(CT) scans, which seem to retain their position as the first- 
line modality in busy emergency units, these critical brain 
haemorrhages may sometimes be missed. Given the global 
and increasing trend of a shortage of radiologists, the likeli-
hood of misdiagnoses in emergency imaging is rising. For 
these reasons, machine learning (ML) models are required 
for head CT scans and not only for magnetic resonance (MR) 
images, which are rarely performed in an emergency setting. 
To develop supervised ML models, which are often preferred 
over the unsupervised models (that require much more 
extensive training material), a high-quality set of segmented 
lesions is needed to train the models.

Despite ML methods in the field of radiology enjoy an 
increased popularity with a seemingly unmatched perfor-
mance, relatively few ML models have been put into use in 
radiology departments worldwide. This may be linked to the 
fact that in the clinical setting the performance of developed 
ML models is often inferior to the performance described in 

the product descriptions. Superior results of ML models can 
only be achieved by a sequence of successful decisions, 
ranging from the selection of a proper model and relevant 
features to the appropriate hyperparameters and representa-
tive datasets. Any mistake in this chain will inevitably propa-
gate and reflect upon the final performance level. In this 
sense, preparing the training material to represent a wide 
variety of clinical cases is not a trivial undertaking. 
Furthermore, choosing the most appropriate segmentation 
strategy for a lesion of interest, adopting an adequate granu-
larity depth in segmentation, and selecting a proper software 
that will assist experts in the creation of the training sets are 
other important decisions to be made. In the current book 
chapter, we discuss these topics and explain why high- 
quality segmentations should be a priority in developing ML 
models for radiology. Moreover, we provide practical advice 
on how to fasten the segmentation step and choose the proper 
software.

19.2  Segmentation: What, Why, and How

During a standard labelling process a binary value (0 or 1) is 
assigned to the imaging series, every slice in the series, or 
every true positive voxel in a single slice. Such binary clas-
sification divides imaging series, slices, or voxels into a fore-
ground (only the lesion) and background (anything but the 
lesion), which are the key components in training ML mod-
els. A distinct difference between annotations and segmenta-
tions is that the former operates at a fuzzy and binary level in 
identifying the region of interest, while the latter accurately 
delineates the target lesion at the voxel level. Annotations do 
not aim at a voxel-level accuracy and can be done, for exam-
ple, in the form of bounding boxes [1, 2]. Segmentations, by 
contrast, aim at maximizing the labelling precision since 
their scope is at the voxel level [3]. A flowchart showing the 
segmentation design rationale is presented in Fig. 19.1, and 
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the differences between a box annotation and segmentation 
are illustrated in Fig. 19.2.

Every slice out of the stack of slices that comprises the 3D 
CT volume consists of pixel elements. Each slice is spaced a 
certain distance from its preceding and successive slices. 
This distance gives the slice a particular depth, which is a 
third dimension. Therefore, instead of talking about pixels 
we are talking about “volume pixels,” which are better 
known as voxels. If only one structure or lesion is to be seg-
mented, which is the most common case, then all voxels are 
labelled with the same categorical value (typically 1), while 
the rest of the scan’s voxels get the background value (typi-

cally 0). In a less common case, where more than one struc-
ture or lesion is going to be segmented (multi-label 
segmentation), structures’ voxels will get a unique categori-
cal value (e.g. 1, 2, 3, etc.), while the rest will get the same 
background value of 0. In all of these cases, segmentation 
leads to a new image layer, which is called an image mask. 
The image mask has exactly the same dimensions as the 
original image layer, but its voxels contain categorical values 
instead of intensity units. In daily clinical CT imaging, a CT 
scanner generates an attenuation profile of the X-ray beams, 
and this profile is expressed as tissue attenuation coefficient 
maps. These maps, in turn, are converted into the intensity 
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Fig. 19.1 Segmentation design rationale

ca b

Fig. 19.2 (a) A single slice of a non-contrast head CT scan with intra-
cerebral haemorrhage. (b) An example of a box annotation where the 
lesion is surrounded with a square box. This bounding box is binary (it 

either exists or not in a given slice) and it marks multiple voxels (all 
voxels covered by the edges of the rectangle). (c) An example of a seg-
mentation where the lesion is delineated as accurately as possible
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units, i.e. Hounsfield units [4], so that they are relative to a 
reference quantity. This reference quantity is the water at 
room temperature, and different tissues can be compared 
with this reference quantity based on their Hounsfield units.

The necessity for voxel-level accuracy in the segmenta-
tion process makes the task much more laborious than that of 
an annotation. The time required to complete an accurate 
segmentation of, for example, blood in a head CT scan of 
one patient can be hours. Still, we prefer segmentations over 
annotations. The inherent characteristic of segmentations to 
localize the areas of interest at the maximum precision 
results in a high-quality training material, which in turn leads 
to a ML model accuracy [5] that can be only achieved with 
much larger annotated image sets [6].

Assessing reliably the quality of any segmentation, 
regardless of whether it is produced by an algorithm or an 
expert, has been studied extensively [7]. Knowing that a 
trained expert can create variable results while segmenting 
the same structure twice (intra-rater variability), or that there 
can be considerable variation between one expert’s results 
and those of others (inter-rater variability), reveals the com-
plexity of the task. The methodologies employed to address 
agreement among experts’ segmentations range from major-
ity voting rules [8] to expert agreement measures [9], label 
fusion [10, 11], and hybrid methods that combine different 
principles [12]. Similarly, comparing segmentations made 
by algorithms with those prepared by experts requires vari-
ous metrics. Among the ones most used are volumetry (i.e. 
total volume in cubic millimetres), volumetric overlap esti-

mates (i.e. Dice and Jaccard coefficients [13, 14]) and bound-
ary differences (i.e. Hausdorff [15] distance). Combining the 
various metrics that quantify different aspects of the segmen-
tation’s quality into one final score has also been addressed 
in the literature [16].

19.3  Multi-label Segmentation

A multi-label segmentation often appears as a single image 
mask with every structure’s or lesion’s voxels having their 
specific categorical value (e.g. 1, 2, 3, etc., with the value 0 
often reserved for the background). A multi-label segmenta-
tion can also exist in the form of multiple binary image 
masks or a mask that stores voxel values in multiple 3D 
arrays. An example of a multi-label segmentation is illus-
trated in Fig. 19.3a.

A multi-label segmentation requires that every structure 
or pathology gets all of its voxels labelled, as discussed ear-
lier, which translates into an increased time of completing 
the segmentation. As an example, in a binary label segmenta-
tion, all blood clusters will be given the same categorical 
value, i.e. will be segmented equally, regardless of the bleed-
ing subtype. In contrast to the binary label segmentation, a 
multi-label segmentation enables us to give every blood clus-
ter a specific categorical value, depending on whether the 
blood represents EDH, SDH, SAH, intraventricular (IVH), 
or intraparenchymal haemorrhage (ICH) (Fig.  19.3c). The 
need to differentiate various types of bleedings, e.g. multi- 

ca b

Fig. 19.3 A single slice of a non-contrast head CT scan with (a) multi- 
label segmentation. The right ventricle is segmented in green, the IVH 
inside this ventricle in brown, and its calcified choroid plexuses in tur-
quoise. In a similar fashion, the left ventricle is segmented in blue, its 
IVH in yellow, and the calcification in pink. This compartmentalization 

allows for individual metrics for each region of interest. (b) A glioblas-
toma in the right hemisphere is hypodense with ill-defined borders. (c) 
Multi-label segmentation. The IVH of the lateral ventricles is seg-
mented in magenta and the intracerebral haemorrhage of the right basal 
ganglia in red
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label the head CT images with intracranial haemorrhages, 
becomes crucial when, for example, the aim of training con-
volution neural networks is to develop a comprehensive clin-
ical solution for an emergency setting.

19.4  Segmentation of Blood Detected 
in Head CT Scans

One of the most challenging segmentation tasks is a diffuse 
intracranial bleeding, such as SAH, which is scattered around 
the brain. The segmentation burden in such cases is propor-
tional to the amount of blood and its dispersion inside the 
subarachnoid space. Other obstacles complicating the seg-
mentation task arise from the various stages of haematoma 
evolution. In an intracranial haemorrhage, the initial hyper-
dense (acute) presentation of the blood (i.e. haematoma) in a 
non-contrast CT scan (NCCT) will first evolve to an isodense 
(subacute) and then to a hypodense (chronic) stage. Unless 
the delay from symptom onset to imaging has been con-
trolled, the dataset may include cases with, for instance, 
acute and chronic haematomas with highly varying 
Hounsfield units. An algorithm that primarily detects, for 
example, subacute bleedings may not serve the purpose for 
which it was meant. Depending on the application’s objec-
tives, segmentations on stringently selected images inevita-
bly lead to more specific ML models, which often is the 
desired end goal. Therefore, a careful consideration of the 
study’s aims, options, and limitations should be dealt with 
beforehand. Simply put, if your aim is to create a ML solu-
tion for acute intracranial haemorrhages your dataset should 
consist of acute cases. When segmenting intracranial blood 
detected in a head CT scan, it must be stressed that reaching 
a 100% voxel accuracy in the segmentation process is a vir-
tually impossible goal. There will always be some ambigu-
ous voxel clusters about which even experienced 
neuroradiologists disagree (whether they represent blood or 
not). Therefore, this also means that there will never be a ML 
algorithm that has a 100% voxel accuracy relative to a gold 
standard, which represents expert segmentation of intracra-
nial blood. In this sense, a voxel-level performance reporting 
of an algorithm is merely of academic interest, and the slice 
level (how many of the slices are rated/diagnosed correctly) 
reporting should be the rule for clinical algorithms.

19.5  Confounders in Segmenting Blood

The complexity of a structure (or lesion) determines, to a 
large extent, the time that will be spent on segmentation. A 
vascular tree segmentation, for example, can be prohibitively 

time consuming, without any form of automatic or semi- 
automatic assistance [17]. An accurate segmentation of the 
finer branches of the tree might even become impossible not 
only because of the image noise interference at such a small 
scale but also because it can be very difficult to follow all of 
the tiny branches, especially if using 2D projections. In a 
similar fashion, structures with unclear borders create uncer-
tainties during the demarcation, which can lead to further 
challenges. For example, gliomas that are surrounded by 
oedema have unclear margins in NCCT scans [18], thus fall-
ing into this category (Fig.  19.3b). The dynamic intensity 
range of soft tissues in NCCT is quite restrictive [19]. As a 
result, soft tissues tend to map into very similar intensity 
ranges, leading to low contrast and ill-defined borders. A 
smooth reconstruction filter, typically used with multi-planar 
reformat (MPR) images emphasizing soft tissues, will reduce 
the innate granular noise of NCCT at the expense of its spa-
tial accuracy. This means that the higher the smoothing, the 
lower the noise and the poorer the tissue borders. In addition 
to these challenges, numerous other factors may confound 
segmentations.

Calcifications are a common radiological finding that can 
be attributed to physiological or pathological aetiologies. 
Calcifications are observed in different sites of the paren-
chyma, dura, and leptomeninges [20]. For example, calcified 
choroid plexuses (Fig. 19.4c) have in their periphery intensi-
ties that overlap with those of intracranial blood. Therefore, 
an accurate segmentation of, for instance, blood in the cis-
terns and ventricles is sometimes challenging.

Normal vasculature can become a source of confounding 
when segmenting intracranial blood. Normal vascularization 
around the cavernous sinus (Fig. 19.4b) has often intensity 
ranges that resemble acute blood. In the case of subarach-
noid haemorrhage, once again, the presence of blood in the 
carotid or chiasmatic cistern may complicate the delineation 
of the borders that separate the blood from the normal vascu-
lature. Similar phenomena can be present around other major 
brain sinuses (Fig. 19.4c).

Secondary pathologies, such as oedemas, herniations, and 
mass effects (Fig. 19.4e), also complicate the segmentation 
task. They are often responsible for large deformations, 
therefore disrupting the natural anatomy and increasing the 
delineation difficulty. Moreover, as the anatomy is deformed, 
segmented lesions or structures are not in their usual loca-
tions, making it more difficult for a convolutional neural net-
work to learn the spatial presentation of a classified lesion.

Previous intracranial interventions, such as microneuro-
surgical clippings or endovascular coilings of aneurysms, 
introduce streak image artefacts, which vary markedly 
depending on the materials used. Serious metallic artefacts 
have the potential not only to substantially hinder the seg-
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mentation process but also to make it impossible (Fig. 19.4a). 
Similarly to aneurysm clips and coils, ventricular shunts 
(Fig.  19.4c) or ventriculostomies may cause artefacts that 
sometimes complicate the blood segmentations. These very 
same artefacts are a true challenge for a real-world ML solu-
tion, which is developed to assist on-call radiologists to 
detect intracranial blood in various case scenarios. Therefore, 
these confounding cases must be included in the datasets 
used to train convolutional neural networks.

19.6  Selecting a Segmentation Software

Selecting the appropriate segmentation software is an impor-
tant step. Finding a fully integrated and functioning-as- 
designed software is not a straightforward process. 
Functionalities should be carefully examined to determine 
the extent to which they fulfil the needs and objectives of an 
institution’s research group. Commercial demos of the soft-
ware’s capabilities can give an excellent impression, but an 

c

d e f

a b

Fig. 19.4 A single slice of a non-contrast head CT scan with (a) aneu-
rysm clips that introduce very strong streak artefacts, (b) a normal vas-
culature of the cavernous sinus and the sella turcica (can be confused 
with acute blood), (c) a ventricular catheter may cause a few artefacts 
and the calcification of the choroid plexuses of the lateral ventricles can 

be confused with acute blood, (d) a pneumocephalus in the frontal and 
middle fossae, (e) an extra-axial cerebrospinal fluid collection and a 
subfalcine herniation, and (f) hyperattenuated (calcified) left and right 
middle cerebral arteries
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exciting demo does not always guarantee an exciting soft-
ware. Therefore, the segmentation software selection 
 process, particularly in the case of a commercial solution, 
should include a proper trial period. Among the appealing 
characteristics of open-source solutions is that they have no 
trial periods, and they most often come at much lower costs 
than their commercial counterparts. One downside with 
many open- source segmentation programmes is that they are 
targeted to somewhat smaller sized research-oriented groups 
with some prior knowledge of similar open-source solutions. 
The learning curve for some of them can be quite long par-
ticularly if the user has no previous experience with a similar 
software. Therefore, even though these open-source segmen-
tation programmes are excellent tools for many users, they 
are often less intuitive and user-friendly for clinicians. If a 
segmentation task requires a major input from clinicians, it is 
perhaps wise to test various commercial segmentation pro-
grammes and choose more than one to meet varying end-
user requirements. As a rule of thumb, clinicians prefer a 
simple user interface. At the same time, one should bear in 
mind that simplicity versus functionality is not always a 
good trade- off. Another aspect that should be carefully con-
sidered is the software’s maturity, which can be estimated 
based on the time passed since its initial release, its develop-
ment rate with new releases, and its number of active users. 
Using an immature software that falls behind in functionality 
might very well mean spending time as its involuntary beta 
tester. On a more practical level, a segmentation software 
needs to have proper tools that will help the user to carry out 
different segmentation tasks. These tools include a colour 
palette to do multi-label segmentations, adjustable opacities 
for each label when overlapping segmentations should be 
visualized simultaneously, 3D-rendering of the images and 
their overlaid segmentations for a better perspective, semi-
automatic or fully automatic routines to complete segmenta-
tions, and an option to choose proper settings of the window 
width and window level. Of the open-source solutions that 
offer semi- or fully automatic segmentation tools, the ITK-
Snap [21] and 3DSlicer [22] with a history of more than a 
decade of development are among the most established ones. 
In brief, selecting a user-friendly and sufficiently versatile 
segmentation software is key to efficiently segmenting a 
high-quality dataset for ML training.

19.7  Practical Segmentation Tips

As stated earlier in this chapter, image segmentation is a cru-
cial step in achieving high-accuracy ML models. If segmen-
tation is done with high accuracy, less than 100 CT volumes 
per lesion type will in most cases be sufficient to create a 
clinically reliable ML model that can detect certain haemor-
rhage types. Since there are multiple intracranial haemor-

rhage types, the required workload of clinical experts to 
segment the training dataset for the ML training can still be 
extensive.

A high-quality image dataset that will be used to train the 
ML model should contain diverse images that cover a real- 
world spectrum of cases encountered in hospital. In addition 
to different intracranial haemorrhage types, the image set 
should contain, for instance, pre- and postoperative images. 
Perhaps the best way to start with segmentations is to focus 
on simple but clinically meaningful entities. Of the intracra-
nial bleeding types, ICH is among the easiest ones to seg-
ment, whereas SAH is probably the most demanding. People 
doing the segmentations should have medical experience, 
skills, and time for the task. Therefore, we recommend that a 
neurosurgeon or neuroradiologist at least verifies the accu-
racy of every segmentation. Preferably, a neurosurgeon or 
neuroradiologist will segment the training datasets. A ground 
truth segmentation can be derived from the segmentations of 
multiple experts using fusion labelling, which is available as 
an open-source solution in, among others, the ITK-Snap 
(using c3d staple) [21].

Before starting the segmentation work, it should be con-
sidered whether the ML training is going to be performed in 
collaboration with non-medical personnel. Such collabora-
tion can in fact save a lot of time and money. If, for example, 
companies are involved in the algorithm development pro-
cess, then anonymization of the images may become a neces-
sity, as it is crucial that all patient data are handled with 
caution and according to national data privacy laws and leg-
islation during the whole process. If data anonymization 
needs to be done, a conversion from the Digital Imaging and 
Communications in Medicine (DICOM) file format to the 
Neuroimaging Informatics Technology Initiative (NIfTI) 
format is perhaps the easiest way to ensure anonymization. 
However, unnecessary conversions between image file for-
mats, such as, e.g. DICOM or NIfTI, should be avoided 
along with image data pre-processing to minimize data loss, 
which may negatively affect the algorithm’s final accuracy.

When segmenting blood from CT scans, a useful tip to 
increase the segmentation accuracy and reduce the time 
spent is to create an additional mask using a Hounsfield unit- 
based approach. This additional mask, which should enclose 
all areas except the blood, permits an easier inspection of the 
actual borders of the bleeding and can guide the user through 
the segmentation process. Hounsfield unit-based masking is 
an available functionality in most segmentation software.

Last, it should be decided at the beginning whether the 
aim is to create individual ML algorithms for each haemor-
rhage type or to create one that handles all types. If more 
than one intracranial haemorrhage type is to be tackled with 
a single ML algorithm, the multi-label segmentation tech-
nique is, in our opinion, preferred. If the aim is to create indi-
vidual algorithms, then the binary approach is perhaps the 
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way to start. For the reader interested in understanding the 
fundamentals of image segmentation and processing, the 
book by Gonzalez et  al. [23] reviews these concepts and 
methodologies, while keeping the mathematical complexity 
at a reasonable level. A book by Ranscharet et al. [24] offers 
a more general overview of these topics and focuses on the 
use of artificial intelligence in the field of medical imaging 
without going into programming detail.

19.8  Conclusions

The ultimate goal of any ML method in radiology is to accu-
rately pinpoint every abnormal voxel on an image stack and 
provide a structured report that describes the findings and 
makes a list of useful and understandable metrics that sup-
port the findings report. In practice, a realistic goal in devel-
oping clinically useful algorithms for intracranial 
haemorrhages is to achieve 100% accuracy at the slice level, 
not the voxel level. Such solution would be sufficiently 
accurate to be deployed in emergency room settings. To 
achieve this goal, regions of interest should often be seg-
mented by clinical experts. The segmentation step, indeed, 
is the most crucial step in developing clinically useful and 
reliable ML algorithms. The capabilities and potential of 
ML methods to accurately locate regions of interest on 
radiological images depend almost entirely on the quality 
and diversity of segmented images. A carefully designed 
and executed game plan that has considered all options, 
from selecting the most appropriate software to choosing 
the most suitable segmentation strategy, can be decisive 
regarding both the project’s completion time and the algo-
rithm’s performance.
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20.1  Introduction

The utilisation of machine learning in medical imaging is an 
area of growing interest. It is widely believed that it has the 
capacity to reform the way we interact with medical imaging 
[1]. Imaging in clinical practice is used to screen, diagnose, 
monitor, stage and prognosticate illnesses, and machine 
learning has been implemented in each of these aspects [1, 
2]. Usually, the process of generating a machine learning 
application is conducted outside the treating medical team/
hospital, which creates numerous regulatory and confidenti-
ality challenges that could vary between institutes and coun-
tries [3]. As treating clinicians, the access to such data, 
although difficult, is significantly simpler. In this chapter we 
aim to give a practical guide for interested clinicians with 
some programming experience on how to work with medical 
imaging data in the context of neurotrauma. This will be 
done using open source software tools and can be applied to 
any type of medical imaging. Throughout this practical 
explanation, the authors assume that the reader has basic 
knowledge and understanding of the Python programming 
language and associated libraries such as matplotlib and 
Keras [1, 2].

When a patient sustains a traumatic brain injury (TBI), an 
emergency computed tomography (CT) scan is indicated in 
the vast majority of patients with severe and moderate head 
injuries, and in some patients with mild TBI [4, 5]. This type 
of imaging is key to determine the type and reversibility of 
the injury, and to guide management plans for the patient. 
Multiple attempts have been made to automate the detection 
of abnormalities on CT scans in TBI [6–8]; the algorithms 

were able to successfully identify the type and location of 
intracranial pathologies. Two- or three-dimensional analyses 
of the scans have been utilised with satisfying results [9]. 
Following the acute phase of TBI, the focus of imaging is 
shifted to assess the delayed sequelae of TBI, for instance 
vascular and venous injuries. Although there are some publi-
cations depicting the utilisation of machine learning in vas-
cular imaging in other contexts, no literature exists in the 
context of intracranial vascular imaging in TBI, and thus this 
may become an area of future interest. Further down the 
timeline of TBI, magnetic resonance imaging (MRI) is used 
to visualise injuries not visible on the CT scan, or for prog-
nostication [10]. For example, the authors are working on a 
model to interpret susceptibility weighted imaging for prog-
nostication. Single Photon Emission CT (SPECT) and posi-
tron emission tomography (PET) scans may also be utilised 
in the context of TBI to visualise lesions, estimate cerebral 
blood flow, and prognostication [10]. In this chapter the 
authors will explain the structure of medical imaging files, 
how to obtain the images from said files, and how to imple-
ment them in a two-dimensional convolutional neural net-
work (CNN).

20.2  Digital Imaging and Communications 
in Medicine (DICOM)

Developed in 1993 by The American College of Radiology 
(ACR) and the National Electrical Manufacturers Association 
(NEMA), the Digital Imaging and Communications in 
Medicine (DICOM) file protocol has become the beating 
heart of the modern medical imaging industry [11]. It has 
been updated multiple times since its launch, and the DICOM 
protocol has been used to standardise the storage and com-
munication of patient data, imaging and therapeutic informa-
tion [11, 12]. Maintained by NEMA, the DICOM standard is 
freely available online (https://www.dicomstandard.org/), 
and is recognised by the International Organization for 
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Standardization (ISO) as ISO 12052:2017. Describing the 
detailed structure of the DICOM file system is outside the 
scope of this chapter, nevertheless, in order to understand 
how to extract and pre-process medical imaging we need a 
basic understanding of it.

When stored offline, all DICOM data have a dictionary 
file named DICOMDIR, the absence of this file indicates a 
non-DICOM protocol of storage [13–15]. The DICOMDIR 
file is arranged in a hierarchical structure, storing data into 
four principal DICOM tables: patient, study, series, and 
image illustrated in Fig. 20.1. Accessing a specific study is a 
multistep process; first you will need to select the patient, 
then the study, the series, and finally the images.

To read and view the DICOM images, we used Pydicom 
[16] and Matplotlib [17] libraries on an Anaconda installa-
tion of Python (Python Software Foundation. Python 
Language Reference, version 3.7.9. Available at http://www.
python.org). We use a Jupyter Notebook as the text editor, 
and to visualise the code and the images.

20.3  Practical Steps

Before you can start any step in this practical guide, you 
need to import essential libraries as shown in Fig. 20.2. You 
also want to ensure that your graphs can be visualised by 

running %matplotlib inline. Following this, you need to 
obtain the path to the DICOMDIR file directory. The code 
below refers to where our DICOMDIR file exists in relation 
to the Jupyter notebook that is concurrently running, 
Fig. 20.3.

Once you have opened the DICOMDIR file, you need to 
identify and select the patient record, the study and the 
series of interest, Fig. 20.4. To list them in between each 
step you can run a for loop for patient records, studies and 
all series. By listing all_series, you can visualise and select 
the targeted series by standard Python indexing. Once you 
have identified the series you are interested in, you need to 
extract the list of locations for the files storing the series, 
Fig. 20.5.

Now that you have the desired list of paths, several steps 
must be performed before it is possible to visualise the 
images. First, the paths must be converted to string format 
using the str Python function, adding the directory relative to 
the notebook, as mentioned above, to the beginning of the 
path. Next, obtain the image dimensions and spacing and 
store them into a single array as per the code in Fig. 20.6. You 
can read more about this code on the Pydicom website 
(https://pydicom.github.io/). To view each image with its 
index in the scan, you will have to iterate though the 
ArrayDicom pre-built array in the for loop, and use pyplot to 
view it, as shown in Fig. 20.7.

DICOMDIR

Patient 1 Patient
2

...
etc

... etc

... etc

Study 1 Study 2

Series a Series aSeries b Series b

Images

Fig. 20.1 Illustrates the 
structure of the standard 
DICOMDIR file

Fig. 20.2 Start by importing 
essential libraries
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20.4  Image Preprocessing

Now that the DICOM images are organised into arrays and 
you are able to view them, a decision must be made whether 
the images will be viewed in two or three dimensions. In this 
chapter, we describe the two-dimensional image process. 
Once the images are identified, they need to be labelled 

based on target features. This can be done by appending the 
image and its label to separate empty lists using listname.
append(the image), listname.append(thelable). The author 
prefers to create a tuple with the image and its label at this 
stage because tuples are immutable [18]. Each image is 
stored using the pickle module in python [18, 19]. Only when 
aggregating all the data to a single file is the tuple broken into 

Fig. 20.3 Locate, import and 
read the DICOMDIR file and 
print its directory

Fig. 20.4 Selecting the 
targeted patient, study and 
series

Fig. 20.5 Select the targeted series, locate images and read paths
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its forming elements. For the purpose of simplicity and stan-
dardisation, all the images should be added to a list named X, 
and all the targets in a list named Y. Unifying the size of all 
images is part of the good coding practice in machine learn-
ing [20–22]. This can be done using the OpenCV 2 resize 
function [23, 24]; the OpenCV 2 library has been imported 
as cv2, Fig. 20.8.

Now that we have images (X) and labels (Y), you will 
need to create a holdout group and split the rest of the data 
into training and testing, using the Scikit-learn train-test split 
function [25]. There are no specific guidelines for the ratio 
used in splitting the data into holdout, train and test subsets, 
however a 20:60:20 ratio is generally accepted. This can be 
achieved by using train-test split function twice (the first time 
to generate the hold out group, the second time to generate 
train and test data). Alternatively, an 80:20 split followed by 

K fold splitting of the training data is a reasonable approach, 
like shown below. You will eventually integrate a CNN into a 
stratified K fold cross validation process with adjusted class 
weights, Fig. 20.10 [25]. In order to do so, the required librar-
ies need to be imported. Subsequently, class weights will 
need to be calculated, and the Keras data generator will need 
to be setup, illustrated in Figs. 20.9 and 20.10.

It is possible to now use custom performance assessment 
functions to return values for the true positive, true negative, 
false positive and false negative. In addition to this, you will 
be able to calculate a precision score, accuracy score, F1 
score and compute the area under the receiver operating 
characteristic curve (ROC AUC), Fig. 20.11. Finally, the K 
fold cross validation code structure is detailed in Fig. 20.12. 
The CNN part has been omitted at this stage, and will be 
discussed separately in the following segment.

Fig. 20.6 Obtain image dimensions and creating a single array for 3-dimensional series (like CT scans)

Fig. 20.7 The code shows 
you how to view the images 
from the array built in the 
previous step

Fig. 20.8 Resize all images 
into a uniform size using 
OpenCV

M. A. K. Mohamed et al.



165

Fig. 20.9 Importing libraries and functions important for CNN development and for K fold process

Fig. 20.10 Top: calculating 
the weights of the different 
classes. Bottom: data 
augmentation generator setup
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20.5  Convolutional Neural Network (CNN) 
Building and Assessment

Building a CNN is not overly onerous, however optimising 
the structure of the network to achieve tangible results whilst 
avoiding under or overfitting can be a time-consuming exer-
cise. There are multiple well-known architectures of CNN 
reported in the literature, and the reader may wish to refer to 
the bibliography for further detail [26–30]. In this practical 
example we will use a modified AlexNet [26] architecture. 
Classically, AlexNet is composed of five convolutional lay-
ers and three densely connected layers. In this example there 
will be three convolutional layers, two densely connected 
layers and a single outcome layer.

In building a CNN model, start with a two (or three) 
dimensional image, and apply a small filter (2–3 pixels * 2–3 
pixels) to all areas of the image (Fig. 20.13). This will be fol-
lowed by an activation function—in this case, we will use the 
rectified linear unit (relu) activation function [31]. The out-
comes will be summarised by a pooling function; in this use 
case we employ a maximum pooling function, which has 
been reported to outperform other pooling functions [32]. 
For the purpose of this exercise we repeated this convolution 
step two more times and added a 30% neuron drop out to 
these layers. The outcome of these layers will be a two- 
dimensional array, and before it is possible to connect it to a 

dense neural network it must be converted to a one- 
dimensional array by using a Flatten layer. The dense con-
nected layers will also have a relu activation function and a 
0.3 neuron drop out. Finally, a single output layer with a sig-
moid activation function will generate the prediction. In the 
code above, we chose Adaptive Moment Estimation (Adam) 
as an optimisation function with modified parameters and 
binary cross entropy as a loss function. We also utilised the 
early stopping function to optimise the training time, and 
restore the best performing model.

Before incorporating this model into the K fold cross vali-
dation code structure, it is imperative to experiment and test 
the model on the data, and modify the model’s depth, layer’s 
density (number of neurons), the structure of the model, def-
erent activation and optimisation functions. Learning about 
different functions used in similar classification problems is 
useful in identifying the best option, however, trial and error 
is also an accepted method. The model needs to be assessed 
using standard classification metrics, area under the curve 
(AUC) and different cross validation methods, such as the 
prementioned K fold cross validation. Lastly, the final pre-
dictions will be calculated by averaging the predictions of 
the different models in the K fold process. The code is 
published in more detail with accompanying example data 
on a GitHub repository (https://github.com/Mouminakm/
DICOM- Machine- Learning.git).

Fig. 20.11 Customised 
performance assessment 
metrics
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Fig. 20.12 Illustration of the stratified K fold code
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21.1  Introduction

Radiology has made great advances since X-rays were first 
used to detect broken bones and bullet fragments at the turn 
of the nineteenth century. But even with the plethora of com-
puting power driving today’s machine learning (ML) algo-
rithms one aspect has remained constant over the years: the 
endeavor to detect lesions, to differentiate normal from 
abnormal, and to single out and define abnormalities within 
organs or amongst organs within a population. Lesion detec-
tion is central to the radiological process and precedes all 
further processes which include but are not limited to seg-
mentation, characterization, quantification, longitudinal dis-
ease assessment, prognosis, and prediction of treatment 
response. For purposes of lesion detection, four distinct cat-
egories exist: lesions that are clearly detectable by the human 
reader, lesions that are incidentally found, lesions where the 

human reader benefits from assisted lesion detection, and 
lesions that are yet to be discovered through ML.

Brain tumors, intracranial hemorrhage, and stroke are 
examples of lesions that a human reader will detect with a 
high sensitivity. The premise is simple: we know exactly 
what we are looking for and will scrutinize images until sat-
isfied, either by detecting a lesion or deeming the study unre-
markable. With certain lesions, ML-based lesion detection 
may not necessarily aid the human reader with the study they 
are presently reading, but can help improve patient outcome 
in other manners, for example by highlighting scans with 
critical/acute findings waiting to be read in the list. In other 
clinical settings, such as follow-up studies of multiple scle-
rosis patients, ML-based detection will aid the human reader 
to discover new lesions, especially in patients with a tediously 
high lesion burden. Furthermore, ML-based lesion detection 
can help decrease inter-reader variability when lesion detec-
tion has direct implications for patient management, e.g., 
through automated ASPECT scoring in acute stroke [1].

The second category of lesion encompasses incidental 
findings. Brain aneurysms, for example, will be detected by 
a human reader with a high sensitivity given an MR angiog-
raphy. However, for routine follow up of brain tumors and 
multiple sclerosis, a dedicated MR angiography is not rou-
tinely performed and the focus of the human reader is else-
where. Here, a system assessing for relevant incidental 
findings running in the background could provide additional 
value in patient care.

The third category of lesion includes cases where human 
readers need help with visual perception, i.e., the lesion in 
question lingers near the threshold of a human reader’s abil-
ity to correctly detect it. We know exactly what we are look-
ing for but we may not always be able to detect the lesion. 
Focal cortical dysplasia type 1 is an example of this. Here, 
we scrutinize the entire cortex, searching for a tiny area of 
gray-white blurring or relative cortical signal alteration, but 
these findings may not always be apparent. Work is con-
stantly being done to improve sequences and thus detection 
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[2] but help in the form of statistical pixel-value based ML 
lesion detection would be a welcome addition. The same can 
be said for dementia, where detection of a mildly atrophied 
cortex remains a challenge through visual assessment alone. 
Tiny aneurysms also fall into this category.

The fourth category of lesion involves syndromes for 
which an imaging biomarker has yet to be discovered, if at 
all. In schizophrenia, imaging has always played a second-
ary, exclusionary role, performed to rule out physical or 
structural causes, while diagnosis is made based on clinical 
assessment of behavior, emotional expression, psychotic 
symptoms, etc. Recently, ML techniques have been applied 
to resting state functional MRI describing an 87% accuracy 
in differentiating drug-native schizophrenia patients from 
healthy controls [3]. In other words, the capability to detect 
schizophrenia based on imaging has now been presented to 
human readers through machine learning. It is conceivable 
that ML will one day be able to detect lesions in other clini-
cal syndromes for which an established imaging biomarker 
does not yet exist, ultimately challenging our notion of nor-
mal by highlighting areas on imaging studies we have not yet 
attributed importance to.

21.2  Technical Considerations

The field of radiomics involves the extraction of predefined 
features such as shape, intensity, and texture from a seg-
mented (tumor) volume of interest [4]. Texture analysis (TA) 
is commonly used for quantitative medical image analysis 
and computer-aided classification [5, 6]. The texture features 
are derived from different groups, i.e., Histogram, Gradient 
distortion, Gray-Level-Co-Occurrence-Matrix (GLCM), 
Gray-Level-Dependency-Matrix (GLDM), Gray-Level-Run- 
Length-Matrix (GLRM), Gray-Level-Size-Zone-Matrix 
(GLZM), Neighboring-Gray-Tone-Difference-Matrix 
(NGTM), and Gray-Level-Dependence-Matrix (GLDM). 
These groups can be divided into several levels. Histogram 
analysis for example takes into account the mere frequency 
distribution of pixel intensities within a given region-of- 
interest and is therefore considered a first order TA feature. 
GLCM is considered a higher level feature, as it takes into 
account the spatial co-occurrence of certain pixel intensities 
as well. These predefined TA features allow for transparency 
when one considers to develop a generalizable algorithm for 
the purpose of lesion detection. The computed TA features 
are generally used as input to several machine learning algo-
rithms to predict the abnormalities of interest. The resulting 
algorithms are graded according to their sensitivity, specific-
ity, F1 score and the area-under-the-curve in receiver- 
operating- characteristics (ROC-AUC). In case the training 
data sets are either of insufficient size or include unnecessary 
features, the results will not be reproducible on an indepen-

dent data set. To avoid this so called overfitting problem, it is 
important to perform dimension reduction (e.g., reproduc-
ibility, redundancy, information criterion) and split of data 
into training, testing and independent validation data sets.

In contrast to Texture analysis with custom-engineered 
features, deep learning allows for automatic feature extrac-
tion from imaging inputs. Multilayer artificial neural net-
works for instance are roughly comparable to biologic neural 
systems. For this purpose, weighted connections between 
neurons/ nodes are iteratively adjusted based on example 
pairs of inputs and target outputs. Back-propagation is used 
as a corrective measure through the network architecture. 
For computer vision tasks, convolutional neural networks 
(CNNs) have proven to be effective. Recently, several clini-
cal applications of CNNs have been proposed and studied in 
radiology for classification, detection, and segmentation 
tasks [7].

Deep learning architecture based on CNNs consist of 
multiple layers. This network can represent a hierarchy of 
features that are of an increasingly complex composition of 
low-level input features, thereby modeling higher levels of 
abstractions (e.g., shape, edges, texture, contrast) from the 
input data. Predictions from a sample image require the 
sequential activation of each node of each layer, starting 
from the input layer up to the output layer, a process called 
forward propagation. In the setting of a classification task, 
the activation of the output layer is typically submitted to a 
function, e.g., a normalized “squashing” function that maps 
a vector of real values to a probability distribution. Therefore, 
this softmax function converts raw activation signals from 
the output layer to target class probabilities [7].

Training of a deep learning network is performed by 
repeatedly adjusting these parameters, which consist of the 
weights and biases of each node. Starting from a random ini-
tial configuration, the parameters are then adjusted via an 
optimization algorithm [7].

For the purpose of lesion detection, deep learning can be 
used in various ways. Recently, a novel method called 
“masked R-CNN” has been proposed. It allows for parallel 
evaluation of region proposal (attention), object detection 
(classification), and instance segmentation. In short, it is a 
combination of object detection within bounding boxes 
around each instance of a class and subsequent semantic seg-
mentation within each of the bounding boxes.

Initially, a preconfigured distribution of bounding boxes 
at various shapes and resolutions is tested for the presence of 
a potential abnormality. Next, the highest ranking bounding 
boxes are identified and used to generate region proposals, 
therefore focusing algorithm attention on specific regions 
within the medical image. These composite region proposals 
are pruned using e.g., non-maximum suppression and are 
then used as input into a classifier to determine the presence 
or absence of a pathology [8]. In the case of a positive detec-
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tion, a final segmentation branch of the network is used to 
generate binary masks (Fig. 21.1). The efficiency of a mask 
R-CNN architecture arises from a common backbone net-
work that generates a shared set of image features for the 
various parallel detection, classification, and segmentation 
tasks [8].

To assess the quality of Radiomics studies for lesion 
detection, a Radiomics Quality Score (RQS) has been 
recently proposed [9]. The RQS consists of 16 parameters 
ranging from image protocol standards to calibration statis-
tics. The resulting score positively correlates with the quality 
and reliability of the presented results (Table 21.1).

21.3  Clinical Applications

 Introduction to Clinical Applications

Neuroimaging is frequently vital to rule out or to detect 
abnormalities of the central nervous system for the diagnosis 
and clinical management of patients with neurological con-
ditions. Precise detection, characterization and interpretation 
of any changes are required for a quick and accurate assess-
ment, in order to decrease the burden of the condition and 
prevent permanent functional impairment [10]. Machine 
learning and deep learning technology may be better suited 
for certain tasks in comparison to humans, such as detection 
and classification of abnormalities. Furthermore, it may be 
helpful for extracting patterns and features from images, 
which include automatic identification, notation, segmenta-

a

b

Fig. 21.1 Sample detection of people using a masked R-CNN: (a) 
Source image (Stacy Wyss/Realistic Shots), (b) Application of masked 
R-CNN to identify people within the image by use of COCO index 
mapping and Tensorflow deep learning architecture

Table 21.1 Radiomics Quality Score (modified from [9])

RQS criteria Points
1 Image protocol quality—well-documented image protocols and/or usage of public 

image protocols allow reproducibility/replicability
+1 (if protocols are well- documented) +1 (if public 
protocol is used)

2 Multiple segmentations—possible actions are: segmentation by different 
physicians/algorithms/software, perturbing segmentations by (random) noise, 
segmentation at different breathing cycles. Analysis of feature robustness to 
segmentation variabilities

+1

3 Phantom study on all scanners—Detection of inter-scanner differences and 
vendor-dependent features. Analysis of feature robustness to these sources of 
variability.

+1

4 Imaging at multiple time points—collect images of individuals at additional time 
points. Analyze feature robustness to temporal variabilities

+1

5 Feature reduction or adjustment for multiple testing—decreases the risk of 
overfitting. Overfitting is inevitable if the number of features exceeds the number of 
samples

−3 (if neither measure is implemented) +3 (if 
either measure is implemented)

6 Multivariable analysis with non radiomics features—is expected to provide a more 
holistic model

+1

7 Detect and discuss biological correlates—demonstration of phenotypic differences. +1
8 Cutoff analyses—determine risk groups by either the median, a previously 

published cutoff or report a continuous risk variable
+1

9 Discrimination statistics—report discrimination statistics (for example, C-statistic, 
ROC curve, AUC) and their statistical significance (for example, p-values, 
confidence intervals). One can also apply resampling method (for example, 
bootstrapping, cross-validation)

+1 (if a discrimination statistic and its statistical 
significance are reported) +1 (if a resampling 
method technique is also applied)

(continued)
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tion and delineation or outlining of the potentially abnormal 
changes (stroke, hemorrhage, tumors, and other structural 
abnormalities). Such applications are not only important for 
initial diagnosis, but in follow up imaging as well, i.e., for 
monitoring of any morphological or functional changes of 
the abnormalities [11, 12].

These same principles can be applied to normal changes. 
However, radiologists should be involved in setting up 
(sometimes subjective) threshold values of normal and 
abnormal findings and should take the lead role in determin-
ing the benefit of such applications to provide clinical value 
in everyday workflow [13, 14].

21.4  Stroke

In stroke and especially in ischemic stroke, time is an utmost 
important factor for successful recovery, thus a rapid and 
accurate diagnosis is crucial for optimal treatment and 
decrease in permanent disability in these patients. The proto-
col of appropriate assessment and triage of these patients, 
however, relies on a number of steps, which include collabo-
ration among different clinical professions such as radiolo-
gists and neurologists. This process may absorb valuable 
time and the subspecialized infrastructure may not be fully 

accessible to all patients in need. Therefore, an automated 
support of image evaluation would be desirable to optimize 
the stroke detection step [15, 16].

Different imaging modalities are used when diagnosing 
stroke, but even these might sometimes not be enough for a 
successful identification of abnormalities by an imaging spe-
cialist. Computer-aided diagnosis (CAD) and machine learn-
ing algorithms, which have gained a lot of popularity in other 
fields of medicine, could provide additional image informa-
tion in a shorter amount of time [11, 17, 18].

 ASPECTS

The Alberta Stroke Program Early CT Score is a 10-point 
quantitative topographic CT scan score in patients with mid-
dle cerebral artery stroke to determine appropriate manage-
ment [19].

This scoring is a challenging methodology to standardize 
[20], however currently there are a number of commercially 
available applications (software platforms), which provide a 
ML algorithm for automated ASPECTS assessment: 
Brainomix e-ASPECTS (Oxford, UK), Siemens Frontier 
(Erlangen, Germany), iSchemaView ASPECTS (Menlo 
Park, California, USA), and others that are in use or in devel-

Table 21.1 (continued)

RQS criteria Points
10 Calibration statistics—report calibration statistics and their statistical significance 

(for example, P-values, confidence intervals). One can also apply resampling 
method

+1 (if a calibration statistic and its statistical 
significance are reported) +1 (if a resampling 
method technique is also applied)

11 Prospective study registered in a trial database—provides the highest level of 
evidence supporting the clinical validity and usefulness of the radiomics biomarker

+7 (for prospective validation of a radiomics 
signature in an appropriate trial)

12 Validation—the validation is performed without retraining and without adaptation 
of the cutoff value, provides crucial information with regard to credible clinical 
performance

−5 (if validation is missing) +2 (if validation is 
based on a dataset from the same institute) +3 (if 
validation is based on a dataset from another 
institute) +4 (if validation is based on two datasets 
from two distinct institutes) +4 (if the study 
validates a previously published signature) +5 (if 
validation is based on three or more datasets from 
distinct institutes)
*Datasets should be of comparable size and should 
have at least 10 events per model feature

13 Comparison to “gold standard”—assess the extent to which the model agrees with/
is superior to the current “gold standard” method

+2

14 Potential clinical utility—report on the current and potential application of the 
model in a clinical setting

+2

15 Cost-effectiveness analysis—report on the cost-effectiveness of the clinical 
application

+1

16 Open science and data—make code and data publicly available. Open science 
facilitates knowledge transfer and reproducibility of the study

+1 (if scans are open source) +1 (if region-of-
interest segmentations are open source) +1 (if code 
is open source) +1 (if radiomics features are 
calculated on a set of representative ROIs and the 
calculated features and representative ROIs are 
open source)

Total points 36 (100%)
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opment [16, 21, 22]. Both Nagel et al. [23] and Herweh [24] 
have shown a non-inferior performance of e-ASPECTS to 
the clinical experts. In patients with preexisting neurostruc-
tural changes the performance was somewhat inferior [25]. 
In a recent study [26], a recurrent residual convolutional neu-
ral network (RRCNN) for ASPECTS classification using 
diffusion-weighted imaging (DWI) achieved better perfor-
mance than pre-trained convolutional neural networks 
(CNNs), such as VGG16, Inception V3, and a 3D convolu-
tional neural network (3DCNN). Maegerlein et  al. [27] 
showed RAPID ASPECTS (iSchemaView) software of hav-
ing higher consensus correlation in comparison to two neu-
roimaging specialists. An advantage of RRCNN is that of the 
residual unit, which aids the deep architecture learning and 
feature accumulation with recurrent residual convolutional 
layers ensuring better feature representation for segmenta-
tion tasks [28].

 Large Vessel Occlusion (LVO)

For large vessel occlusion (LVO) detection, CNNs might be 
the most suitable method applied to computed tomography 
(CT) and CT angiography images [16]. A U-Net based model 
created by You et al., which used clinical and imaging data 
for hyperdense middle cerebral artery (MCA) sign detection, 
showed a 68% sensitivity and 61% specificity [29]. 
Amukotuwa et al. achieved 95% sensitivity and 79% speci-
ficity [30] and Chatterjee et al. a 82% sensitivity and 94% 
specificity in a study with 650 patients [31]. Olive-Gadea 
et  al. [32] tested Methinks LVO software in 1453 patients 
with non-contrast CT scans and achieved 83% sensitivity 
and 71% specificity. In a recent study, Stib et al. achieved an 
AUC of 0.89, a sensitivity of 100% and a specificity of 77%, 
by utilizing CNN in multiphase CT examinations with 
delayed phases [33].

 Identification of Infarct Core and Tissue at 
Risk/Penumbra

In ischemic brain tissue, two main types of changes are 
observed: the core (irreversible) and the penumbra or tissue 
at risk (reversible). The detection of these changes is difficult 
to train on automated algorithms, as the reference values do 
not depend solely on imaging values. Training is mostly 
done by manual delineation [16]. Applications using a 
threshold lesion detection method can show a high variabil-
ity of lesion volumes due to individually chosen different 
cutoff values [34–36]. One such algorithm, RAPID [37], 
achieved 100% sensitivity and 93% specificity for detecting 
a mismatch on perfusion images on patients from the 
DEFUSE trial [38]. A CNN based technique for segmenta-

tion of acute ischemic changes based on diffusion-weighted 
magnetic resonance imaging (MRI) images, by including 
two separate CNNs (DeconvNets (EDD Net) and a multi- 
scale convolutional label evaluation net (MUSCLE Net)), 
achieved a mean accuracy of the Dice coefficient of 0.67 
(range 0–1) [39]. Lee et al. [40] showed a ML algorithm out-
performing imaging experts in detecting diffusion-weighted 
imaging—fluid-attenuated inversion recovery (DWI-FLAIR) 
mismatch for the identification of patients with acute isch-
emic stroke within 4.5 h window for thrombolysis therapy in 
a study of 355 patients.

 Hemorrhagic Transformation

Recently, CNN-based methods have also been utilized for 
detection of hemorrhagic transformation after reperfusion 
therapy [41] in patients with acute ischemic stroke, with one 
study showing comparable results to that of a radiological 
SEDAN score, with improved performance after including 
clinical data from NIHSS [42].

 Intracranial Hemorrhage

The detection of an intracranial hemorrhage is usually done 
using computed tomography or magnetic resonance imag-
ing. In particular, the detailed diagnosis is done by examin-
ing non-contrast CT images [13] and standard MRI sequences 
as well as dedicated susceptibility weighted imaging (SWI) 
sequences for the detection of microbleeds [43]. Detection 
based on CNN transfer-learning technology has shown 
promising results, with the advantage of being able to exe-
cute it on a small number of testing data [12]. For instance, 
Chang et al. demonstrated the high performance of masked 
R-CNNs fully automated, deep learning architecture to accu-
rately detect and quantify intraparenchymal, epidural, sub-
dural, and subarachnoidal hemorrhage on non-contrast CT 
examinations of the head [8]. However, the goal of such 
tasks should not only be to quantify, but also to qualify the 
imaging data in order to help in triage, re-prioritize, and 
modify workflow in order to improve assessment of critical 
cases and decrease the time from diagnosis to treatment. 
Qualification and standardization of data may be somewhat 
difficult, as it needs to be objectivized into which findings 
are important or urgent and which are expected in which 
patient group (e.g., microhemorrhages in stroke, postopera-
tive hemorrhages). There are many factors that need to be 
taken into account for such decision making, which compli-
cates automatic assessment or worklist prioritization, thus 
clinical experience still plays a key role [10, 13]. The 
Radiological Society of North America (RSNA) 2019 Brain 
CT Hemorrhage Challenge involved a publicly available 
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874,035-image, multi-institutional, and multinational brain 
hemorrhage CT dataset, composed of annotations of the five 
hemorrhage subtypes (subarachnoid, intraventricular, subdu-
ral, epidural, and intraparenchymal hemorrhage), in order to 
encourage machine learning development in this field [44]. 
The winners showed the potential of AI to improve the effi-
ciency and quality of care in radiology with high 
complexness.

21.5  Multiple Sclerosis

The manual assessment of MRI images regarding multiple 
sclerosis (MS) lesions may be a time consuming process. 
The main task of machine learning in multiple sclerosis is 
lesion detection and classification, for which different imag-
ing modalities can be used [45]. Shui-Hua Wang et al. devel-
oped a 14-Layer convolutional neural network with batch 
normalization, dropout, and stochastic pooling for MS detec-
tion on MRI images from 64 subjects, which were validated 
by MS imaging experts. They achieved an impressive 99% 
sensitivity, 99% specificity, and 99% accuracy [46]. Zurita 
et  al. [47] developed an algorithm to confidently identify 
multiple sclerosis patients from healthy subjects by using 
support vector machine classifications of functional and dif-
fusion MRI data. Ion-Mărgineanu et al. [48] used magnetic 
resonance spectroscopy (MRS) data from 87 patents together 
with clinical data for differentiating between relapsing- 
remitting, primary and secondary progressive forms of 
MS. Yoo et al. [49] used 3D image patches of myelin maps 
and corresponding T1-weighted MR images to distinguish 
between multiple sclerosis patients and healthy controls. 
Narayana et  al.’s [50] algorithm predicted lesion enhance-
ment in multiple sclerosis from unenhanced multiparametric 
MRI images with good accuracy. With this information, it 
might be possible to avoid the use of contrast agents. Duong 
[51] and Gessert [52] both constructed a CNN based method 
for lesion segmentation using FLAIR images, achieving a 
median Dice score of 0.79 and a true positive rate of 74% 
respectively.

21.6  Neuro-Oncology

The large variety of neurooncological imaging appear-
ances frequently remains a challenge for the human reader. 
Brain tumor detection and segmentation of numerous fea-
tures is important for clinical management [12, 45]. New 
applications can be tested using the publicly available The 
Brain Tumor Image Segmentation dataset of images of 
manually segmented brain tumors [53]. Since then, there 
has been an explosion of machine learning software avail-
able for tumor classification and segmentation [12, 45, 
54]. Different approaches have been used, examples of 

most recent studies include: a transfer-learning approach 
based on a Convolutional Neural Network (CCN) for 
better classification of five multiclass tumor datasets 
compared to six different ML models [55], a fully auto-
mated 3D-Dense-UNets deep learning method for accu-
rate segmentation of low grade and high grade gliomas 
from Brain Tumor Segmentation Challenge 2019 [56], 
radiomics including imaging data [57], successful auto-
mated brain tumor segmentation on FLAIR images from 
Brain Tumor Segmentation Challenge 2019, namely glio-
mas [58], using CNNs for detecting glioma heterogeneity 
[59], an outlier detecting framework using one- class sup-
port vector machine to extract features from post-contrast 
T1-weighted and FLAIR images [60] and classification of 
brain tumors based on IDH Status and 1p/19q- codeletion 
[61, 62] (Fig. 21.2). Methods based on CNN (such as 3D 
U-Net) can also be utilized for detection and segmentation 
of brain metastases from multimodal MR images [63–65] 
or different types of head and neck tumors from MRI, CT 
and fluorodeoxyglucose positron emission tomography 
(FDG PET) imaging modalities [45, 66], such as parotid 
gland tumors [67], nasopharyngeal carcinoma [68] and 
superficial laryngopharyngeal cancer [69].

21.7  Epilepsy

ML techniques can be beneficial in detection, localization 
and segmentation of potentially abnormal morphologic epi-
leptogenic areas [10, 70]. A variety of potential clinical 
applications are described in the literature, mostly based on 
CNN technology, for example: CNN based on transfer learn-
ing using diffusion kurtosis images (DKI) for foci detection 
on segmented hippocampus images [70], a combination of 
electroencephalography (EEG) in functional magnetic reso-
nance imaging (rs-fMRI) for separating preictal (pre-seizure) 
from non-preictal states [71], automatic segmentation of hip-
pocampus with combination of a deep belief network (DBN) 
and the lattice Boltzmann (LB) method [72] and a newly 
developed method of iterative local linear mapping (ILLM) 
for hippocampus segmentation on both 1.5 and 3T MR 
images achieving similar mean Dice coefficients 0.89 and 
0.88 respectively [73].

21.8  Aneurysms

Intracranial aneurysms are not uncommon. The majority of 
them will be asymptomatic, however a rupture of an aneu-
rysm might result in severe morbidity or mortality. Their 
prevalence in general population consist of roughly 3% [74] 
(in the population with connective tissue disease even more 
than 10% [75]), around 85% out of which account for non-
traumatic subarachnoid hemorrhages [76]. Thus detection 
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and segmentation of unruptured aneurysms is also a relevant 
field to explore in ML [45]. Existing deep learning algo-
rithms, mainly CNN based, can utilize images from 3D time- 
of- flight (TOF) MR angiography [77–79], 2D images from 
digital subtraction angiography (DSA) [80, 81] or computed 
tomographic angiography (CTA) [82] (Fig. 21.3). All showed 
impressive results and could greatly aid the diagnostic 
physician.

21.9  Neurodegeneration and Others

Detection and differentiation of dementia types from image 
data sets may sometimes prove challenging. As such, effec-
tive AI tools might assist in giving a correct diagnosis [10], 
with development being facilitated in recent years due to a 
number of publicly available databases [83]. As a result, a 

a

b

Fig. 21.2 Example of a U-Net Architecture for automated glioma seg-
mentation of multimodal magnetic resonance imaging scans. Two- 
dimensional axial, sagittal, and coronal planes were generated from 3D 
multimodal T1ce, T1, T2 and T2-FLAIR images (a), which were used as 
an input into the U-Net Architecture (b) to segmentate areas of the whole 

tumor, tumor core, and enhancing tumor. (Adapted with reprint permis-
sion from Wu S, Li H, et  al. Three-Plane-assembled Deep Learning 
Segmentation of Gliomas. Radiology: Artificial Intelligence Vol. 2 No. 
2, 2020. Published online March 11, 2020. https://doi.org/10.1148/
ryai.2020190011. © Radiological Society of North America [54])
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variety of machine learning applications with promising 
results have been developed, which include combinations of 
CNN, RNN, and other techniques for differentiating of 
Alzheimer’s disease (AD) and mild cognitive impairment 
(MCI) from MR images [84–88] or from positron emission 
tomography (PET) with fluorodeoxyglucose (FDG) data [89, 
90], separating symptomatic Alzheimer’s Disease from 
depression [91], multiclass differentiation of neurodegenera-
tive diseases (such as Alzheimer’s disease, frontotemporal 
lobe degeneration, Dementia with Lewy bodies and vascular 
dementia) [92] and detection of heterogeneity in such condi-
tions by utilizing imaging data with other biomarkers [93].

Kalmady et  al. demonstrated the capability to detect 
schizophrenia based on imaging through machine learning. 
This diagnosis is used to be made on the basis of clinical 
parameters, and imaging has been used at most to exclude a 
structural cause for the symptoms. Using resting state func-
tional MRI, the authors described an 87% accuracy in dif-
ferentiating drug-native schizophrenia patients from healthy 
controls [3].

21.10  Conclusion

A number of machine learning algorithms focusing on lesion 
detection have been developed in recent years. They may 
either support or extend imaging tasks and an increasing 
number of applications are currently under development. 
Emphasis has been put on AI algorithms to assist (neuro-) 
radiologists and other clinicians in managing the growing 
everyday workflow by improving diagnostic accuracy and 
automation of time consuming repetitive clinical tasks. 
Selected established and proven applications have already 

found their way into daily clinical routine, and many other 
highly interesting and promising projects are currently under 
development.

However, despite the high and rapidly growing number of 
AI related applications in medical imaging, regular and wide-
spread usage of such AI technology in clinical practice is not 
yet established. There are many important aspects which have 
to be considered for the implementation of AI applications in 
the clinical routine. Some of them are complex and have to be 
thoroughly and critically considered from various facets. 
Next to the technical requirements, these points include the 
need for standardization, evidence based research, assessing 
legal responsibility in case of adverse events, data protection, 
economic and ethical aspects, valid guidelines, as well as the 
confidence and trust in the technique by healthcare profes-
sionals, patients and other stakeholders. In addition, some 
human factors, such as emotional intelligence, communica-
tion skills in difficult situations or a mindful and critical 
thinking might not be fully reproducible by AI.

Future efforts have to focus on these aspects. Thus, it is 
important that the different disciplines from a variety of 
backgrounds including clinicians, radiologists, vendors, 
startups, and venture capitalist work closely together to 
achieve this demanding task, which will yield to the future of 
medical imaging.
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Foundations of Multiparametric Brain 
Tumour Imaging Characterisation Using 
Machine Learning

Anne Jian, Kevin Jang, Carlo Russo, Sidong Liu, 
and Antonio Di Ieva

22.1  Introduction

Advances in neuroradiology have led to improved structural 
and functional characterisation of brain tumours and their 
microenvironment. However, accurately characterising sub-
regional changes remains challenging due to temporal varia-
tions in tumour dynamics and molecular heterogeneity [1]. 
Radiomics analysis using high-throughput computational 
methods increasingly allows extraction of quantitative fea-
tures from medical images [2]. Combining multiple features 
from imaging sequences yields superior discriminative 
power compared to single parameters or visual radiological 
assessment as it comprehensively captures voxel-based het-
erogeneity in relation to tumours’ anatomical, cellular, meta-
bolic and microvascular patterns. As such, multiparametric 
analysis may provide a noninvasive means of characterising 

tumour phenotype to identify diagnostic, prognostic and pre-
dictive imaging biomarkers. The high-dimensional data in 
multiparametric studies, however, poses significant chal-
lenges for human interpretation. Machine learning (ML) 
techniques can be deployed to train computers to recognise 
patterns and integrate information across thousands of imag-
ing features to make predictions [3]. They can also be trained 
to improve upon on their performance by selecting the most 
useful imaging features to build a clinical diagnostic or prog-
nostic model in an automated and efficient manner.

In this paper, we describe the methodological pipeline of 
developing multiparametric models (Fig. 22.1), focusing on 
ML- and radiomic-based analysis to characterise brain 
tumours. We discuss imaging modalities, quantitative param-
eters and computational tools that have been proposed, with 
the aim to familiarise clinicians with the pitfalls and oppor-
tunities presented by ML-based multiparametric analysis to 
improve diagnostic and prognostic accuracy in brain tumour 
patients.

22.2  Methodological Foundations

 Multiparametric Imaging

The selection of imaging sequences for multiparametric 
assessment of brain tumours should be guided by available 
facilities, expertise, and the clinical problem at hand. 
Table 22.1 outlines examples of imaging sequences, features 
and different computational and ML-based algorithms 
implemented for different clinical tasks [4–8, 10–21].

Conventional MRI sequences (T1-weighted gradient- 
echo imaging pre- and post-gadolinium contrast, T2-weighted 
and T2-weighted fluid-attenuated inversion recovery 
(FLAIR)) have been most widely investigated in multipara-
metric studies. They are easily accessible and more robust to 
different acquisition and analysis methods, however they do 
not utilise information about tumour tissue fingerprintings 
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Brain tumour
images

Pre-processing

Without ML

With ML

Manual ROI selection

Automatic / semi-auto
ROI selection

ROI segmentations

Knowledge-based
prediction

ML prediction
Automatic ML feautures:

CNN features

Handcrafted features:
volumetric, geometric,

shape, texture, etc

Fig. 22.1 Schematic illustration of brain tumour image characterisation pipeline involving image acquisition, preprocessing, region of interest 
(ROI) selection and segmentation, feature extraction and prediction

Table 22.1 Examples of multiparametric brain tumour characterisation using computational modelling and machine learning techniques

Application Imaging sequence and features Segmentation Feature selection Classifier(s)
Diagnosis of brain tumours
Devos et al. 
(2005) [4]

Imaging intensities on 
conventional MRI sequences 
and metabolic data from MR 
spectroscopy

Semiautomatic (model-based 
clustering algorithm)

PCA (prior to LDA only) LDA, least squares- 
SVM with linear and 
radial basis function 
kernela

Zacharaki 
et al. (2009) 
[5]

Shape, statistical, intensity, 
texture features from T1W, T1C, 
T2W, FLAIR and relative CBV 
maps (DSC)

Manual Ranking-based criterion and 
recursive feature elimination

LDA, kNN, nonlinear 
SVMa

Di Ieva et al. 
(2016) [6]

Signal ratio and fractal 
dimension from SWI-3 Tesla 
MRI

Manual – ROC analysis

Suh et al. 
(2018) [7]

First-order, shape, texture 
features from T1C, T2W and 
FLAIR, tenth percentile ADC 
value

Semiautomatic (signal 
intensity threshold, region 
growing and edge detection)

Univariate filtering using 
Student’s t-test and recursive 
feature elimination

Random forest

Petrujkić 
et al. (2019) 
[8]

Euclidean, texture and fractal 
parameters from T1C, T2, SWI 
MRI

Manual Selected combination of 
parameters that performed best 
on individual analysis

ROC analysis

Di Ieva et al. 
(2020) [9]

Fractal parameters from SWI Manual PCA Linear and quadratic 
discriminant analysis, 
kNN and SVMa

Glioma grading
Di Ieva et al. 
(2013) [10]

Fractal dimension from 
SWI—7 Tesla MRI

Manual – Statistical

Zhang et al. 
(2017) [11]

Histogram and texture features 
from T1C, FLAIR, and 
parametric maps from ASL, 
DWI and DCE

Manual RFE 25 classifiers incl. 
SVMa

Vamvakas 
et al. (2019) 
[12]

Texture and histogram features 
from conventional, DTI, DSC, 
mean rCBV and 1H-MRS 
metabolic ratios

Semiautomatic (clustering 
method based on DTI 
parametric maps)

SVM-RFE SVM

Molecular subtyping
Alis et al. 
(2020) [13]

Texture features from FLAIR, 
T1C and ADC maps

Manual Wrapper method Random forest

Bisdas et al. 
(2018) [14]

Intensity and texture features 
from FLAIR and DKI

Manual SVM-RFE SVM with RBF kernel

Akkus et al. 
(2017) [15]

Features extracted by deep 
learning model from T1C and 
T2W compared with intensity 
and texture features

Semiautomatic CNN CNN compared with 
SVM

Prognostic biomarkers

A. Jian et al.
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such as metabolic, perfusion or diffusion features. Diffusion 
weighted imaging (DWI) is commonly acquired prior to con-
trast injection at varying b-values from which the apparent 
diffusion coefficient (ADC) parametric map can be  generated 
to assess tumour cellularity and magnitude of diffusion at a 
voxel level. However, DWI is sensitive to magnetic field 
inhomogeneities, and the presence of vasogenic edema and 
necrosis increases extracellular water diffusivity, possibly 
falsely elevating ADC even in highly cellular tumours [22]. 
Diffusion tensor imaging (DTI) further considers the magni-
tude and direction of water molecules along multiple dimen-
sions, thus disruptions in tissue microstructure can be 
characterised. There are conflicting results in the literature 
for diffusion quantification in a number of clinical applica-
tions [22].

Both perfusion-weighted imaging (PWI) and magnetic 
resonance spectroscopy (MRS) have demonstrated superior 
performance in tasks such as distinguishing treatment- 
induced changes from tumour progression [23] and deter-
mining glioma IDH status [24, 25]. PWI allows 
characterisation of tumour vascularity and vessel permeabil-
ity, such as through dynamic susceptibility contrast (DSC)-
derived cerebral blood volume (CBV) and Ktrans from 
dynamic contrast enhancement (DCE) sequence. Maximal, 
mean or normalised values of these metrics can be used, with 
some studies proposing threshold values [19], but these are 

unlikely to be generalisable across different settings. 
Radiomic analysis of these parametric maps allows a more 
comprehensive evaluation of the heterogeneous patterns in 
microvascular density and permeability [11]. Although not 
generally used for grading and tumour typing in clinical set-
ting, susceptibility-weighted imaging (SWI) may also be a 
valuable tool due to its capacity to evaluate intratumoural 
features such as microvasculature and microbleeds, and thus 
demonstrating intratumour heterogeneity [10, 26].

MRS is performed using single-voxel and/or multi-voxel 
point resolved spectroscopy (PRESS) sequences with short 
and long echo. A number of methodological aspects should 
be considered, including method of placement of the Region 
of Interest (e.g. largest area of contrast enhancement? maxi-
mal cerebral blood volume (CBV)?), voxel size, spectral fit-
ting and metabolite ratio calculation method, all of which 
can affect the predictive accuracy of features extracted. The 
use of hybrid positron emission tomography–magnetic reso-
nance imaging (PET/MRI), particularly with amino acid 
tracers such as O-(2-[18F]fluoroethyl)-l-tyrosine (FET) and 
11C-methionine (MET), provides additional valuable meta-
bolic information that enhances the performance of predic-
tive ML models [17, 27], although investigators should be 
mindful of the distinct challenges presented by PET acquisi-
tion and reconstruction variations in radiomics analysis, 
which are reviewed extensively elsewhere [28].

Table 22.1 (continued)

Application Imaging sequence and features Segmentation Feature selection Classifier(s)
Cui et al. 
(2016) [16]

Statistical, texture, morphologic, 
histogram features from T1C 
and FLAIR

Semiautomatic (hidden 
Markov random field model, 
expectation-maximisation 
algorithm)

Least absolute shrinkage and 
selection operator (LASSO)

Multivariate regression

Papp et al. 
(2018) [17]

Tumour-to-background 
first-order and texture features 
from 11C-MET PET and clinical 
information

Semiautomatic Genetic algorithms Geometric probability 
covering algorithm

Zhou et al. 
(2016) [18]

Texture features from tumour 
subregions on T1C, FLAIR, 
T2W

Automatic OTSU 
thresholding

Supervised forward feature 
ranking

kNN, Naïve Bayes, 
SVM with RBF kernela

Distinguishing treatment-induced changes from tumour recurrence
Nael et al. 
(2018) [19]

Perfusion parameters from DCE 
and DSC, ADC

Semiautomatic (voxel-based 
signal intensity threshold 
method)

Manual Logistic regression

Kim et al. 
(2018) [20]

First-order, volume, shape, 
texture, wavelet-transformed 
features from T1C, FLAIR, 
ADC and CBV data

Semiautomatic (threshold 
and region-growing 
algorithm)

LASSO Generalised linear 
model

Gao et al. 
(2020) [21]

Features extracted by DL model 
from T1W, T1C and T2W

Semiautomatic DNN (VGG16, VGG19, 
ResNet50, InceptionV3, 
InceptionResNetV2)

DNN

ADC apparent diffusion coefficient, ASL arterial spin labeling, CBV cerebral blood volume, CNN convolutional neural network, DCE dynamic 
contrast enhancement, DKI diffusion kurtosis imaging, DNN deep neural network, DSC dynamic susceptibility contrast, DTI diffusion tensor 
imaging, DWI diffusion weighted imaging, FD fractal dimension, kNN k-nearest neighbour, LASSO least absolute shrinkage and selection operator, 
LDA linear discriminant analysis, MET PET methionine position emission tomography, mRMR minimum redundancy maximum relevance, MRS 
magnetic resonance spectroscopy, PCA principal component analysis, RBF radial basis function, RFE recursive feature elimination, ROC receiver-
operating characteristic, SWI susceptibility-weighted imaging, SVM support vector machine, T1C gadolinium-contrast enhanced T1 sequence
aClassifier achieved highest diagnostic performance of all classifiers investigated in the study
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Advanced MRI exploits a full range of tumour characteris-
tics but presents its own challenges for image preprocessing 
and analysis. A greater number of sequences incorporated 
increases the processing time and resources for widespread 
clinical deployment. Investigators may also select whole 
tumour volume, single, contiguous or orthogonal slices, and 
examine peritumoral area and/or tumoral subregions. Thus, 
considering the benefits and costs, multiparametric assessment 
requires targeted selection of MRI sequences and data input.

22.3  Image Preprocessing

After image acquisition, preprocessing is usually required to 
remove bias and artefacts in neuroimaging data generated by 
inhomogeneous magnetic fields in MRI, and body motions 
such as head movements and respiratory motions. It follows a 
number of steps, including resampling image pixel size to 
reduce resolution variability, skull stripping (i.e. brain seg-
mentation to exclude surrounding structures, such as bone, 
orbits’ contents, etc.), images’ co-registration, intensity nor-
malisation and bias field correction. The public software FSL 
is widely used, integrating components such as the Brain 
Extraction Tool, a deformable surface modal based algorithm 
for skull stripping, and FLIRT, an intensity-based image reg-
istration tool [29]. However, many artefact removal and image 
registration algorithms, such as the Brightness Progressive 
Normalisation algorithm [30, 31], nonparametric nonunifor-
mity normalisation (N3) algorithm [32] and SyN algorithm 
[33] have been developed. Unlike conventional semiauto-
mated skull stripping algorithms, deep learning (DL)-based 
methods have also been implemented which are robust to 
variations in MRI acquisition parameters and applicable to 
various sequences [34]. A few advanced preprocessing algo-
rithms have been proposed to standardise datasets acquired 
from multiple sites/ systems using different protocols, such as 
the spherical coordinates transformation [35] and the multi-
atlas region segmentation (MUSE) pipeline [36].

As mentioned above, additional preprocessing is often 
needed where advanced MRI data are acquired. Raw spectral 
data from MRS undergo baseline correction, frequency 
inversion and phase shift before calculation of metabolite 
signals for N-acetyl aspartate, creatine, choline, lipid, gluta-
mine and lipids. Data from DSC, DCE and diffusion imaging 
are processed on workstations to calculate parametric maps 
[11, 12, 37].

22.4  Region of Interest (ROI) Selection

Accurate ROI selection of brain tumours is crucial to obtain 
useful parameters to assist image characterisation. This can 
be an approximate box surrounding the tumour region, or 
more precisely, the exact delineation of the tumour contour, 

namely “tumour segmentation”. In some cases, such as CBV 
maps, investigators may select single or multiple areas of 
increased perfusion using the “hotspot” method, but this is 
susceptible to operator-dependent areas. ROI selection on 
images such as DWI can also be challenging due to poor 
spatial resolution, thus conventional sequences are required 
to accurately delineate tumour and exclude areas of necrosis 
and edema.

Although manual segmentation by experienced clinicians 
is considered the gold-standard (the “ground truth”), this 
method is subject to high inter-operator variability, particu-
larly in assessing postoperative tumour volume of glioblas-
toma, with intraclass correlation coefficient (ICC) reported 
to be 0.52 [38]. Manual segmentation of non-enhancing part 
of glioblastoma is also variable, demonstrating an ICC of 
0.61 preoperatively, 0.25 postoperatively and 0.53 at pro-
gression even among experts [39]. Moreover, it can be time 
consuming and impractical in providing a large enough data-
set for radiomics-based analysis. Thus, automated and semi-
automated ML segmentation methods have been explored, 
such as techniques of contour extraction, grey level threshold 
[30] and clique propagation [40]. In one study, k-medians 
clustering algorithm based on DTI parametric maps was 
used to semiautomatically delineate tumour from the sur-
rounding brain tissue [12]. However, surrounding structures 
could merge with tumour region in the automatic selection 
process. Automatic grey level-based methods are also prone 
to errors due to lack of standardisation and different 
hyperintense- hypointense signal response of tumours in the 
radiologic images.

Brain tumour segmentation is particularly challenging, 
above all in diffuse gliomas, due to their infiltrative growth 
patterns and irregular morphologies which can be visualised 
as incremental changes in intensity and morphology on 
MRI.  As a result, two distinct lesions may look virtually 
identical in appearance with similar grey levels, and where 
the imaging sequence is not specific to the tumour detection, 
accurate segmentation can be quite difficult. For this reason, 
a number of automatic DL algorithms [41] have been pro-
posed that overcome the problems associated with manual 
and conventional automatic methods.

22.5  Feature Extraction 
and Multiparametric Analysis

Standard radiomic models extract lower- and higher-order 
features characterising histogram-based properties, inter- 
voxel relationships and grey-scale patterns to evaluate seg-
mented whole tumour or tumour subregions [42], as outlined 
in Table  22.2. Specifically, first-order features refer to the 
distribution of individual voxels irrespective of their spatial 
relationships. Second-order features, known as “textural” 
features, quantify the spatial relationships between neigh-
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Table 22.2 Radiomic parameters used in brain tumour imaging

Parameters and main 
references Definition
First-order texture statistics
Entropy Measures the inherent randomness in the grey level intensities of an image or ROI
Uniformity Measures the homogeneity of grey level intensities within an image or ROI
Second- and higher-order texture statistics
Grey level co-occurrence 
matrix

Examines the spatial distribution of grey level intensities within an image through a 2D grey tone histogram

Angular second 
movement

Measures the textural uniformity of an image (also referred to as homogeneity)
Captures the two-dimensional complexity of the edge of the tumour abnormalities

Inverse difference 
moment

Measures local image homogeneity as it assumes larger values for smaller grey tone differences in pair elements

Contrast Measures spatial tone frequency of an image as the difference between the highest and lowest values of a 
contiguous set of pixels

Correlation Measure of grey tone linear dependencies in the image
Bounding ellipsoid 
volume ratio

Ratio of the tumour volume to the volume of the smallest ellipsoid that entirely encapsulates the tumour. 
Captures the three-dimensional complexity of tumours

Semi-axis diameter ratios Ratios of the minor semi-axis length to the longest bounding ellipsoid semi-axis diameter
Captures the three-dimensional complexity of tumours

Margin fluctuation Captures the two-dimensional complexity of the edge of the tumour abnormalities
Standard deviation of the difference between the ordered radial distances of the tumour edge from the centroid to 
all the boundary points, smoothed with an averaging filter of length equal to 10% of tumour boundary

Mean intensity Average intensity of the pixel values within the ROI
Mean of positive pixel 
values

Average pixel values of only the positive pixel values within the ROI

Standard deviation (SD) Quantification of the variance from the mean value (high SD indicating wide variation of pixel values)
Kurtosis Peakedness (or pointedness) of the histogram of pixel values

Positive kurtosis = more peaked distribution
Negative kurtosis = flatter distribution

Skewness Quantifies asymmetry of the histogram
Negative skewness = longer tail on left side of histogram
Positive skewness = longer tail on right

Grey level run matrix 
(GLRL)

Number of contiguous voxels that have the same grey level value
Characterises the grey level run lengths of different grey level intensities in any direction

Short runs emphasis 
(SRE)

Measures distributions of short runs. Higher values indicate fine textures

Long runs emphasis 
(LRE)

Measures distribution of long runs. Higher values indicate course textures

Grey level nonuniformity 
(GLN)

Measures the distribution of runs over the grey values. Low value when runs are equally distributed along grey 
levels. Lower value indicates higher similarity in intensity values

Run length nonuniformity 
(RLN)

Measures distribution of runs over run lengths. Low value when runs are equally distributed over run lengths

Run percentage (RP) Measures the fraction of the number of realised runs and the maximum number of potential runs
Highly uniform ROI volumes produce a low run percentage

Neighbourhood grey tone 
difference matrix

One dimensional matrix where each grey level entry is the summation of the differences between all the pixels 
with grey level value and the average grey level value of its neighbourhood

Coarseness Quantitative measure of local uniformity
Busyness Rapid intensity changes of neighbourhoods in a given ROI
Complexity Quantifies the complexity of the spatial information present in an image
Texture strength Characterising the visual aesthetics of an image
Local binary pattern 
(LBP)

Quantifies local pixel structures through a binary coding scheme
Measures tumour microenvironment

Scale-invariant feature 
transform (SIFT)

Detects distributed key points with radius on tumour images
Measures tumour spatial characteristics

Histogram of oriented 
gradients (HOG)

Computes block-wise histogram gradients with multiple orientations
Measures tumour microenvironment

(continued)

22 Foundations of Multiparametric Brain Tumour Imaging Characterisation Using Machine Learning



188

bouring voxels, thus capturing intratumoural heterogeneity 
[43]. For example, the differential growth patterns of 
 high- grade glioma and other neoplastic lesions result in 
changes in contrast enhancement patterns and distribution of 
extracellular fluid that manifest in different spatial 
 distributions of intensities at the voxel level. This can be 
quantified by texture analysis to differentiate between tumour 
types [7, 44]. Higher-order features use mathematical filters 
to identify more abstract patterns including different shades 
of image texture by suppressing noise or accentuating details.

Apart from texture analysis, the morphological assess-
ment of intracranial neoplasms has been further advanced by 
the use of fractal analysis, a mathematical tool that quantifies 
the morphological complexity of objects [45–47]. The frac-
tal dimension (FD), a basic metric in fractal analysis, mea-
sures the structural complexity of natural objects. Our 
previous findings showed that higher FD values of intratu-
moral SWI patterns (more geometrically complex) were 
associated with microbleeds and necrosis, and lower values 
with tumour microvasculature [10]. Applications of fractal- 
based parameters for differentiation between tumour types 
[6], tumour segmentation [48], oncological grading [10, 48] 
and therapeutic monitoring [30, 48] have demonstrated 
promising results.

A large number of high-dimensional features are gener-
ated in multiparametric studies. Thus, feature selection 
algorithms such as Least absolute shrinkage and selection 
operator (Lasso) and Elastic Net [49] are commonly used to 
shrink irrelevant variables and retain the most discrimina-
tory features. Dimension reduction techniques, such as 
Principal Component Analysis (PCA) [50] which we 
adopted, reduce feature complexity. Some studies also 
incorporate feature robustness analysis to select only fea-
tures that are robust to varying parameters [16, 51]. The 
feature selection process is important to avoid overfitting, 
an issue that arises when the number of features exceeds 

the number of samples, causing model performance to 
degrade in other patient cohorts not evaluated [2].

 Machine Learning Classifiers

Extracted parameters can be input into different ML algo-
rithms to define the scoring automatically for a binary or 
multiclass classification task, using the “ground truth” or ref-
erence standard as class labels for supervised training. 
Alternatively, parameters can be clustered in an unsuper-
vised fashion, such as using k-means clustering of voxels 
that incorporates multiparametric quantitative measurements 
to differentiate between radiation necrosis and recurrent 
glioblastoma [52].

Classic ML methods generally employ handcrafted fea-
tures and user-defined classification e.g. Support Vector 
Machine (SVM), Random Forest, and Logistic Regression, 
and regression algorithms including Linear Regression, 
Gaussian Process, Tweedie Regressor, etc. The advantages 
and limitations of several algorithms are summarised in 
Table 22.3. For any diagnostic or prognostic task, however, 
the performance of different ML classifiers varies, depend-
ing on the combination of imaging sequences and tumour 
features selected, as well as ML model parameters optimised 
e.g. kernel types for SVM classifier [11].

22.6  Deep Learning in Brain Tumour 
Characterisation

Unlike classical ML methods, deep learning is a subset of 
ML algorithms that uses an end-to-end approach to integrate 
feature learning and classification. It uses the full amount of 
information from the original images and features extracted 
automatically from DL models to directly obtain the final 

Table 22.2 (continued)

Parameters and main 
references Definition
Fractal
Fractal dimension 
(box-counting and 
sand-box algorithms)

A non-integer number between 0 and 2, in a two-dimensional space, or 0 and 3, in a three-dimensional volume, 
that quantifies the space-filling properties of irregularly shaped objects

Outline box dimension Evaluates the irregularity in shape of the image. (i.e. how much it deviates from classic geometric figures)
Lacunarity Pixel distribution of an image at different box sizes and at various grid orientations. Describes the degree of 

nonhomogeneity within an image
Spatial filtering
Median filter Reduces sparse noise. Sets each pixel in ROI equal to the median pixel value of its specified neighbourhood
Entropy filter Accentuates edges by brightening pixels which have dissimilar neighbours

Sets each pixel in the ROI equal to the entropy (measure of disorder) of the pixel values in its specified 
neighbourhood

Laplacian of Gaussian 
(LoG) filter

Laplacian filter is a derivative filter used to find areas of rapid change (edges) in an image
Images are first smoothed using Gaussian filter before applying the Laplacian

Reprinted with permission [42]
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result. Therefore, it eliminates dependence on the segmenta-
tion step, user-defined feature descriptors and classifiers. DL 
algorithms have been implemented for glioma genotyping 
[53] and pseudo-progression detection [21]. We recently 
developed a Lesion Encoder framework based on the 
Variational Auto Encoder U-Net [54] to automatically extract 
features from ROIs using convolutional neural networks 
(CNN) and then predict overall survival of glioma patients 
[55]. DL represents the state-of-art ML algorithms and will 
be increasingly used in multiparametric brain tumour 
characterisation.

22.7  Performance Evaluation of ML 
Algorithms

Different metrics are employed to quantitatively evaluate the 
performance of ML algorithms in different applications. For 
tumour segmentation, Dice Similarity Coefficient (DSC) and 
95% Hausdorff Distance (HD) are commonly used to com-
pare the segmentations of whole tumour or tumour subre-
gions to the ground truth labels. For regression tasks, e.g. 
determining overall survival, Mean Squared Error (MSE) 
and Median Standard Deviation can be used to assess the 
pairwise error between predicted and actual survival; 
 accuracy can also evaluate the number of correctly classified 
survivors based on their status, e.g. short- (<10  months), 

mid- (10–15 months) and long-survivors (>15 months). For 
classification tasks, such as distinction between IDH-
wildtype and -mutant glioma, or between tumour recurrence 
and pseudo- progression, Sensitivity, Specificity, Area Under 
Curve (AUC) and Accuracy are used as evaluation metrics. 
While improved accuracy is important, the emphasis is usu-
ally given to high sensitivity as clinically, it is more impor-
tant to be able to reliably predict the genetic profile (e.g. IDH 
gene status) and true tumour recurrence cases which may 
have poorer prognosis.

22.8  Clinical Applications

ML models have been investigated for a number of diagnos-
tic and prognostic applications. We recently proposed a 
radiomics model to merge advanced fractal-based computa-
tional modelling with ML methods to objectively discrimi-
nate between gliomas and brain metastases [9]. In this study, 
we acquired preoperative images of 61 patients with grade 
II–IV gliomas and metastases who underwent conventional 
MRI protocol and three-dimensional SWI.  All sequences 
were rigidly registered on SWI using the freely available 
Medical Image Processing, Analysis, and Visualisation 
(MIPAV) application. This was followed by tumour volume 
delineation by a neurosurgeon and a neuroradiologist in con-
sensus on each slice of susceptibility-weighted images and 

Table 22.3 Summary of classical machine learning algorithms commonly used for brain tumour classification tasks

Description Advantages Disadvantages
Support Vector 
Machine (SVM)

Maps feature vectors into a feature space then 
seeks a hyper-plane that segregates two classes 
with largest margin

•  Less sensitive to amount of 
data and input dimension

•  Can generate nonlinear 
decision boundaries using 
kernel tricks

•  Nonparametric models, support 
vectors need to be saved as part of 
the model

•  Sensitive to imbalanced class 
distributions

Random forest Ensemble classifier combining predictions 
from several decision trees to generate a more 
stable classifier

•  Can integrate large number 
of input variables

•  Robust to noise

•  A black box, difficult to interpret 
how the model works

K-nearest 
neighbour (KNN)

Compares test sample with training samples to 
find those similar to it then assign it the 
majority class label

•  Simple, no need for train a 
model

•  No assumption on data 
distribution and suitable for 
nonlinear data

•  Nonparametric models, training 
samples need to be saved and 
applying the model to new sample 
is slow

•  Sensitive to irrelevant /redundant 
features

Naïve Bayes Uses prior probabilities of classes and 
observed feature values of a class to estimate 
the posterior probability of the test sample 
belonging to that class

•  Computes multiple 
probability distributions, 
distinct for each feature of 
every class

•  Does not penalise inaccurate 
probability assignment

•  Assumes features are independent

Linear 
Discriminant 
Analysis (LDA)

Models each class as a Gaussian distribution 
and assigns a test sample to the class whose 
mean is the closest to it

•  Closed-form solution, easy 
to compute decision 
boundaries

•  Inherently a multiclass 
model

•  Assumes all the classes have a 
Gaussian distribution and the 
Gaussians have the same 
covariance matrix

•  Requires significant amount of data 
for accurate estimation of the 
Gaussians

22 Foundations of Multiparametric Brain Tumour Imaging Characterisation Using Machine Learning



190

image preprocessing to homogenise the greyscale level of 
the SWI signals across the dataset using the Brightness 
Progressive Normalisation algorithm. Several Euclidean 
parameters and fractal parameters based on the fractal 
dimension were calculated, as shown in Fig. 22.2. We used 
the box-counting method implemented in a custom software 
that we developed in C++ for fractal analysis [56]. Finally, 
we performed principal component analysis on the trans-
formed variables and selected those components which 
explained most of the variation for the classification proce-
dure. Linear and quadratic discriminant analysis, k-nearest 
neighbour and support vector machine (SVM) methods were 
evaluated for the diagnostic task. We found that the SVM 
classifier achieved the best results, accurately predicting 
88% of glioblastomas using quantification of intratumoral 
SWI features. Differentiation of other glioma grades, partic-
ularly grade III gliomas, and metastasis yielded poorer 
performance.

The distinction of treatment-induced changes from early 
tumour progression in glioblastoma is also a challenging yet 
important application. Kim et al. [20] developed a radiomics 
model using first-order, volume, shape and texture features 
from contrast-enhanced T1, FLAIR, ADC and CBV data to 
differentiate pseudo-progression in glioblastoma patients 
who had newly developed or enlarging contrast-enhancing 
lesions on MRI within 3 months of completing chemoradia-
tion therapy. They used a segmentation threshold and region- 
growing algorithm to semiautomatically segment the 
contrast-enhancing tumour region, and after feature extrac-
tion, selected the significant features using the LASSO 
method, followed by classification using a generalised linear 
model. Upon both internal and external validation, they 
found a superior performance by the multiparametric 
radiomics model (AUC 0.96 and 0.85, respectively) com-
pared to using only conventional MRI, ADC map, CBV map, 
or any single parameter approaches.

c
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Fig. 22.2 (a) SWI of a right-sided glioblastoma. (b) Automatic seg-
mentation of the intratumoral SWI pattern for computing of the 3D FD 
(P2), evaluating the complexity of the heterogeneity of the SWI signal. 
(c) ROI volume (P5) on the entire slices’ stack. (d) Volume/ROI volume 

ratio. (e) 3D Histogram FD (P1), evaluating the grey levels distribution; 
(f) 3D inner FD (P3), evaluating the grey level and pixels’ distribution. 
(Reprinted with permission [9])
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22.9  Conclusions

Multiparametric assessment of brain tumours affords a com-
prehensive characterisation of the tumour phenotype with 
the potential to improve diagnostic and prognostic outcomes. 
Understanding the fundamentals of the methodological 
workflow, including the applications of various imaging 
sequences, quantitative parameters and machine learning 
algorithms will aid clinicians to maximise the performance 
and utility of a clinical predictive model. Ongoing progress 
in machine learning such as deep learning algorithms also 
presents exciting opportunities to improve the accuracy of 
tumour segmentation and stability of trained models across 
varying imaging acquisition and preprocessing methods.
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Tackling the Complexity 
of Lesion- Symptoms Mapping: How 
to Bridge the Gap Between Data 
Scientists and Clinicians?

Emmanuel Mandonnet and Bertrand Thirion

23.1  Introduction

Large-scale data integration is currently a major trend in neu-
roscience, where this approach has shown important benefits 
for standardized measures of the link between brain connec-
tivity and functional scores in the general population [1]. It is 
yet unclear whether it brings benefit for lesion studies, where 
the high variability in individual characteristics of both the 
lesion and its impact potentially overwhelm information 
gleaned by population-level analysis. More generally, the 
question arises whether ML algorithms fed by large amounts 
of data can outperform clinicians acting on a much smaller 
dataset for predicting unseen cases.

Lesion-symptom mapping addresses the following ques-
tions: given a set of behavioural and imaging connectivity 
measures at the time the lesion occurred in a patient, can we 
predict what the long-term functional scores will be? For a 
neurosurgeon, the question becomes: how to predict which 
cognitive deficits would be induced by a planned extent of 
resection in a given patient, for whom we have preoperative 
cognitive scores and functional MRI data? For a neurologist, 
the most common question is: how to predict the degree of 
recovery after rehabilitation, given the observed cognitive 
deficits and functional imaging right after a stroke? While 
they are related to each other, these two questions are not the 
same: the timing of patient-data acquisition differs, and dif-
ferent pathophysiological mechanisms underpin the two sit-

uations: for example, the well-known phenomenon of 
prelesional plasticity precedes the surgical resection but not 
the stroke, explaining the striking difference in outcomes 
between the two pathologies [2, 3]. Notwithstanding these 
pathophysiological differences, the overall framework is 
similar for both situations, and the methods discussed here 
can, with slight changes, be applied to one or the other. We 
will refer implicitly to the surgical resection case, but most 
statements carry over to stroke.

As recently summarized by Price et  al. [4] for strokes, 
outcome prediction is a very hard challenge. This endeavour 
requires dealing with (1) the complexity of structure- function 
relationships in the brain, that are only partly common to the 
population (2) the variability of lesion localization and 
extent. These two dimensions hamper the accuracy of indi-
vidual outcome prediction. In this paper, we argue that there 
is a gap between data scientists and clinicians: while clini-
cians might have difficulties to leverage the information pro-
vided by existing datasets, data scientists might miss the 
clinical knowledge that would synthesize this information in 
a unique mechanism that better carries over across individu-
als than low-level imaging patterns.

In the next sections, we first analyze the problem in 
greater detail, showing how it relates to other neuroscience 
questions. Then, following Price et al. [4], we emphasize the 
distinction between data-based predictions—in which ML 
algorithms learn to make predictions from data only, and 
model-based predictions, in which predictions are derived 
from a two-step modelling: a first step, inferring how the 
brain is/was functioning before the lesion, and a second step 
describing how the lesion will/has impact(ed) brain organi-
zation. Finally, we argue that model-based predictions can 
leverage the information provided by extensively explored 
single cases. We call for a new paradigm to combine insights 
gained from single-cases analysis with the predictive power 
of ML algorithms.
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23.2  Clarifying the Problem

Several important concepts are implicitly involved in the 
definition of lesion-symptom mapping proposed above:

 – Predictive personalized medicine. The main goal is to 
make predictions at the individual level, i.e. we are not 
interested in group-level analysis.

 – Multimodal data-informed approach. The inter-individual 
variability of brain structural and functional connectivity 
in relation to anatomical landmarks [5] impedes individ-
ual prediction from anatomical MRI alone. Moreover, the 
weak correlation between structural or functional connec-
tivity and behavioural scores calls for augmenting imag-
ing data. Furthermore, individual outcomes are likely not 
captured by a single score, but rather by a pattern of defi-
cits, explored through a battery of functional tasks.

 – Post-lesional plasticity. We are not aiming to predict the 
behavioural scores right after the lesion, but the func-
tional domains for which plasticity will be overwhelmed, 
thus limiting patient’s recovery.

 Lesional Localizationism, Lesional 
Hodotopism, Functional Localizationism

Despite all the issues related to inter-individual variability in 
brain organization and lesions characteristics as well, the 
lesion-symptom mapping problem is well-posed, in the 
sense that the same pattern of functional deficits should be 
observed whenever two similarly organized brains undergo 
the same topographical lesion from the same pathophysio-
logical mechanism—although different plasticity potentials 
could nonetheless lead to slightly different levels of recov-
ery. In other words, there is a lesional localizationism. This 
grounds the clinicians’ knowledge and expertise: in front of 
a patient with a lesion, the clinician remembers other cases 
with similar lesion size and location, and infers outcome 
from those past cases.

This lesional localizationism contrasts with the more 
recent view of lesional hodotopism [6], that states that two 
spatially distant lesions can induce the same dysfunction, 
because they would impact the same spatially distributed 
functional network. However, even if a given dysfunction 
can be caused by two spatially distant lesions, when looking 
at the whole spectrum of functions, each lesion topography 
leads to a specific fingerprint. Consequently, lesional hodo-
topism does not help much for clinical practice.

Functional localizationism uses lesional localizationism 
to “assign a functional role to an area” just by taking the 
“negative” of the deficit [7]. It is inspired from primary 

(sensory)-motor processing: a lesion to the precentral gyrus 
leads to a specific motor deficit, hence we assign to the pre-
central gyrus the functional role of driving voluntary 
motricity. But this logical shortcut cannot be generalized: 
the local functional information provided by the conse-
quence of lesions only informs us about the necessary 
implication of regions into the functional process as a 
whole. This does not tell us how the entire network would 
reorganize if the area were damaged, and consequently, one 
cannot deduce the deficit just by knowing the “functional 
role of an area”.

In summary, there are two separate—albeit closely 
related—problems [8]:

 – Determining, for a given lesion, the set of tasks/scores 
that will be impacted in the long term.

 – Determining the set of areas that are recruited by the per-
formance of a given task, and predicting behavioural 
scores from network connectivity measures gained from 
imaging techniques.

 From Behavioural Measurements to Cognitive 
Processes: Leveraging Multidimensional 
Scores

It is well established that no one-to-one relationship exists 
between lesion topography and score deficit. In fact, we for-
mulated the questions directly in terms of multiple scores 
from a set of tasks involving different functions, because 
these functional scores are not independent from each other. 
A consequence for lesion-symptom analysis is that behav-
ioural scores should be considered jointly. Specifically, mul-
tivariate analytic procedures, such as Principal/Independent 
Components Analysis PCA/ICA or clustering, attempt to 
reduce the dimension of the scoring system. The aim of such 
analysis is twofold: (1) create composite variables that are 
less noisy than the initial scores; (2) identify elementary cog-
nitive subprocesses that together give rise to behaviour.

An inspiring example is given by language function and 
its subdivision in (lexico-)semantic, phonological, and motor 
subsystems. Although this organization has long been recog-
nized (see for example Indefrey & Levelt [9]), it has recently 
been revisited through a PCA applied to a set of different 
language testing scores, in order to get a fully data-driven 
definition of these three components [10, 11]. In these latter 
studies, the components were reported to be spatially sepa-
rable (see [7, 12, 13] for definitions of double dissociation 
and spatial separability). One could thus expect that well- 
designed compound generally benefit to lesion-symptom 
mapping.
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 The Complexity of Lesion-Symptom Mapping

The complexity of lesion mapping is daunting, given the 
variability of both prelesional brain connectomics and 
lesional topographies and etiologies: very large multimodal 
datasets may be necessary to cover all the dimensions of the 
problem. A possible way forward is to break down the prob-
lem, by restricting the analysis to small regions taken e.g. 
from brain atlases. Yet binding together these unitary pieces 
of lesion-symptoms mappings for predicting the deficit of a 
larger lesion remains challenging, given the expected nonlin-
earity between lesion and deficits. Indeed, whenever two 
small areas A & B are damaged, the resulting deficit might 
not be the sum of deficit A  +  deficit B (neither a linear 
weighting of the two deficits). Interestingly, some authors 
have proposed to tackle this nonlinearity by introducing dif-
ferent kinds of interactions between two lesions, and model-
ling these interactions by a hierarchical tree statistical 
approach [14].

23.3  Data-Driven vs. Model-Based 
Approaches

 Data-Driven Approaches

The revolution in lesion-symptom mapping came out at the 
turn of the century, when MRI registration algorithms [15] 
gave birth to voxel-lesion-symptom mapping (VLSM) tech-
niques [16], that are the lesion-domain counterpart of stan-
dard brain mapping techniques. The basic principle is 
explained in Fig. 23.1. Although perfectly identified from the 
start, the limitations of this methodology have been over-

looked until recently [17, 18]. In VLSM, voxels are treated 
independently from each other, which is problematic in two 
regards:

 – The voxels impacted by a lesion are not randomly distrib-
uted within the brain. The laws of the underlying biology 
of the different pathologies impose strong spatial correla-
tions between voxels. For example, in a stroke, the vascu-
lar architecture dictates the probability to find a lesioned 
voxel in the vicinity of a given voxel. VLSM ignores this 
important prior information.

 – When it comes to functions being supported by spatially 
distributed networks, the functional consequence of a 
lesioned voxel is directly related to the extent of the lesion 
to another part of the network. Here again, voxels cannot 
be treated independently from each other.

It has been demonstrated in [17] on a sample of stroke 
lesions with simulated ground-truth lesion-symptoms rela-
tionships that VSLM can be heavily biased. The simplest 
way to circumvent this limitation is to introduce multivariate 
analysis, through application of ML algorithms (see 
Fig. 23.2). An important asset of multivariate methods is that 
they avoid the counterproductive isolation of brain regions, 
and instead rely on intermediate representations, aka predic-
tive patterns [19, 20]. The statistical maps representing such 
predictive patterns should not be confused with classical sta-
tistical maps based on the univariate approach: the latter test 
marginal associations between voxel-based signal and some 
information (presence of a lesion), while the former do so, 
conditionally to all other regions considered. This difference 
has been acknowledged in the field of brain mapping [21, 
22], but it turns out to be crucial for lesion mapping: only 
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Fig. 23.1 Principle of mass 
univariate voxel-based 
lesion-symptoms mapping 
(VLSM). All patients’ images 
are registered in the same 
anatomical reference. For 
each voxel, a contingency 
table is determined, and a 
statistical test is applied to 
decide if the deficit correlates 
with a higher rate of lesions in 
this voxel. Classical methods 
of corrected thresholding for 
multiple comparison are used, 
given the high number of 
voxels (typically between 105 
and 106)
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multivariate analyses can discount the effect of non-specific 
associations, such as those induced for example by the vas-
cular tree structure [17, 18].

As these algorithms require training over a large sample 
of cases, neuropsychological studies should upscale to thou-
sands rather than hundreds of cases [17, 18]. This seems at 
least challenging, although there exist now some attempts to 
gather such datasets [23, 24]. The limited datasets available 
might explain the low predictive accuracy of current 
ML-based approaches [20, 25, 26]. It is also worth empha-
sizing that multivariate methods have a hard time dealing 
with lesion anatomical dependence [27]: if the underlying 
physiopathological mechanism causes two regions to be 
either both preserved or damaged, no conclusion can be 
drawn about the contribution of each area to deficit predic-
tion. The sample complexity of ML approaches—i.e. the 
number of samples that are required to make reliable infer-
ence on the behavioural impact of lesions—can be reduced 
by relying on compressed representations of the data, for 
instance, using parcellation techniques [28–30]. However, if 
the true functional unit is a network (distributed over several 
spatially distant areas) rather than a single area, parcellations 
might be not the optimal solution for reducing the dimen-
sionality in lesion-symptoms mapping.

 Model-Driven (Top-Down) Approaches

Model-driven (top-down) methods constitute a different 
class of approaches. They leverage prior knowledge about 
brain functional organization in order to tackle the complex-
ity of lesion-symptom mapping. Even if accurate predictions 
could be obtained through ML approaches, a certain amount 
of frustration would remain, as the “black box” nature of 

some ML algorithms (e.g. deep neural networks) provides 
only limited evidence about the prediction mechanisms. An 
alternative approach is to rely on reasoning (including gener-
alizations and analogies) for inferring, even from a few sin-
gle cases, a phenomenological or, at best, mechanistic model 
of the lesion-symptom link, that is to understand how the 
lesions changed brain functional organization, and how these 
changes explain behavioural deficits. In terms of causal rea-
soning, lesion is an (unwanted) treatment, of which the het-
erogeneous impacts depend on the prelesional state of the 
subjects [31]. Such analysis thus requires an in-depth knowl-
edge of the prelesional brain state.

In the first step of the procedure, one should attempt to 
identify the individual prelesional brain structure and func-
tion. The best way is probably to detect deviations to a refer-
ence brain. While this is highly challenging in stroke patients 
(for whom we do not have premorbid data), this is not trivial 
either in presurgical glioma patients—despite the fact that 
we can collect in that case both behavioural and imaging data 
before the surgical lesion: the glioma might have already 
reshaped the native structural and functional connectivity, 
rendering the comparison with healthy subjects tricky. In this 
perspective, current efforts in cognitive neuroscience to build 
datasets of thousands of people with combined behavioural 
and imaging data should help to define not only a standard 
functional brain—by determining group-averaged networks 
for each cognitive task—but also a population-level distribu-
tion of phenotypic variants of structural and functional con-
nectivity for different cognitive task. Such work has already 
been partly achieved for resting-state functional connectivity 
[32]. The most well-known example of phenotypic variant to 
the structuro-functional brain of reference is a left-right flip. 
Indeed, whereas in most people the left hemisphere is sup-
porting, among other functions, combinatorial phonology for 

Fig. 23.2 Multivariate analysis of lesion-symptoms mapping. Patients 
are represented in columns and voxels in rows. 0 stands for no lesion in 
a given voxel for a given patients, and 1 for a lesion. Machine learning 
algorithms are trained to predict the first row (presence or absence of 
deficits in each patient), given the following rows. Given the large 

dimensionality (number of rows), training requires a very large number 
of patient-cases. Once the algorithm has been trained, it can predict, 
from the binary values of V1 to VM, the presence or absence of deficits 
in a new patient
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language processing and the right hemisphere is supporting, 
among other functions, visuospatial and executive process-
ing, about 6% of left-handed and 1% of right-handed people 
exhibit the reversed pattern of functional organization. 
Detecting these outliers is of utmost importance, as it has 
been shown that the reverse pattern of deficits is indeed 
observed in patients with this left-right flip [33]. However, 
the importance of phenotypic variants outside of this extreme 
example remains to be determined.

A second level of modelling aims to describe lesion impact 
on brain structure and function, that is to determine both how 
the structural and functional connectivities are modified by 
the lesion and how these changes reverberate onto behav-
ioural performances. The simplest model that was initially 
tested by neurosurgeons was the following: if any node of the 
network evidenced on a task-based functional MRI of a given 
task is damaged by the lesion, the patient cannot perform the 
task anymore. It has been clearly demonstrated that this was 
not valid [34–36]. A refinement consists in computing first 
how a lesion will impact the connectivity of each cortical area 
of a brain parcellation, relying on an atlas of tractograms 
obtained from healthy people. This approach has recently 
been applied to a large series of stroke patients [37], but the 
results were rather disappointing, as the prediction did not 
improve compared to the standard method, in which predic-
tors were defined as lesion-load of each cortical area. A pos-
sible reason why this innovative disconnective approach was 
unsuccessful is the reliance on a brain parcellation that iso-
lates local territories, whereas the relevant functional unit 
should be a network of spatially distant areas. The importance 
of a network-level approach in lesion- symptoms mapping has 
been underlined recently [38], in a work that introduces a 
method of mapping symptoms to networks, using our current 
knowledge of resting-state functional connectome. Hence 
different lesions locations can be bound together, by pointing 
to a common dedicated network for each functional deficit 
[39]. For example, tractograms of HCP subjects and a 
patient’s lesion can be registered in the same MNI space, 
allowing to compute how much a lesion disconnected a func-
tional network (see Fig. 23.3). One would expect these net-
work disconnection indices to provide better predictors than 
the disconnection indices of each separate area as proposed in 
[37]. Moreover, selecting a limited number of networks of 
interest (NOI) can dramatically reduce the number of predic-
tors, thus improving statistical results.

More recently, simulation-based models have been pro-
posed. For example, we can take advantage of the new pos-
sibility to compute a patient-specific virtual brain functional 
connectivity from this patient’s structural connectivity [42]. 
While this approach seems appealing, we note that plasticity 
is currently not yet included in the model. Moreover, the 
value of functional connectivity to predict behavioural scores 
is rather low [43].

In summary, it is anticipated that model-based approaches 
will inform data-driven predictions, by allowing to reduce 
the high-dimensional data to a limited number of relevant 
predictors, that reflect our current knowledge on brain con-
nectivity. By using the right level abstraction to generalize 
across individuals, the combination of model-based 
approaches and ML holds the premise of providing efficient 
prediction of individual outcome [44].

23.4  How to Capitalize on Multimodal 
Longitudinal Single Cases?

 The Value of Multimodal Longitudinal Single 
Cases

In the big data era, it is tempting to leave apart the knowledge 
gained from the old-fashioned approach of case reports. In 
this last part, we would like to demonstrate their value and 
plead for a renewal of single-cases reports. It should be kept 
in mind that such single case studies have played an essential 
role in the past. Most of our current neuropsychological 
knowledge is deeply rooted in single case studies [45, 46]. It 
should also be noted that there is a recent trend in neurosci-
ence towards single-case comprehensive approaches. Several 
studies in healthy individual explored few subjects (typically 
less than ten), but with extensive measures, ranging from 
imaging to behavioural scores [47, 48]. Moreover, the degree 
of universality of a lesion-symptom mechanism from a sin-
gle case might be higher than expected, especially when con-
sidering longitudinal cases, as those offered by surgical 
glioma patients: the generalizability is not about the correla-
tion between a lesion and a deficit, but rather in the causal 
impact of a lesion on a pre-resective brain configuration. 
Indeed lesional localizationism states that two similarly 
organized brains (as established by prelesional non-invasive 
tools) undergoing the same physiopathological (surgical) 
lesion will end in the same functional state. Consequently, if 
the mechanism has been clearly identified, even in a single 
case, it can help to generate relevant prediction for new 
cases.

For example, Mandonnet et al. reported a case showing a 
strong impairment in set-shifting abilities after resection of a 
glioma in the right temporo-parietal junction [49]. The resec-
tion damaged the structural connectivity of the cognitive 
control network B, resulting in a disrupted functional con-
nectivity of this network. In a second case, the same authors 
used intraoperative electrical stimulation and axono-cortical 
evoked potentials to confirm the involvement of the cogni-
tive control network B in set-shifting abilities [50]. The com-
prehensive analysis of these two single cases led us to infer 
the general hypothesis that indices of structural disconnec-
tion within a given network could provide the most relevant 
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predictors (see Fig. 23.3 for a detailed explanation). Hence, 
what was learned from the analysis of these two cases was 
not some putative area supporting cognitive flexibility, but 
rather a new way to quantify network-level impact of a lesion 
for symptom prediction.

 A New Paradigm for Combining Single-Case 
Analysis with the Predictive Power of Machine 
Learning

Single-case analysis gives the rare opportunity to formulate 
new hypotheses regarding brain function and the way it is 
impacted by a lesion. This understanding is naturally inte-
grated in the model-based approach, that can overcome the 
curse of dimensionality, by downsizing the multidimensional 

voxels space to a much more restricted set of predictors, on 
which ML algorithms can be applied efficiently. If the predic-
tive validity is demonstrated, this would constitute a success-
ful generalization from few cases. Nonetheless, it is true that 
such validation studies still require a relatively large number 
of cases (typically from 102 to 103). This highlights the need 
to find a standardized framework for reporting extensively 
explored single cases. Building usable databases of image 
data hinges on the ability to standardize the organization of 
such data. Fortunately, this bioinformatics endeavour has 
been taken up by some contributors in the brain imaging com-
munity, leading to the BIDS dataset format [51], an extension 
of which is necessary to handle lesion analysis specifically. 
This key contribution opens the way towards large data aggre-
gation approaches, probably facilitating in a near future the 
validation of the paradigm proposed in Fig. 23.4.

Fig. 23.3 Reducing the dimensionality. Integrity of the “green” net-
work is supposed to be implicated in a given cognitive task. The blue 
streamlines represent the connectome map of this network, i.e. all the 
streamlines (either from the patient or from an atlas) linking any of two 
areas of the network. The magenta streamlines represent the part of the 
blue streamlines passing through the orange lesion, hence disconnected 
by the lesion. The ratio between the magenta and blue streamlines pro-

vides a predictor reflecting the amount of disconnection induced by the 
lesion among the green network. Repeating this approach to a restricted 
set of networks of interest allows to reduce the dimension to the number 
of selected networks. The method is very generic, in the sense that the 
networks of cortical areas can be patient-specific (and determined by 
task-based fMRI or resting-state fMRI) or atlas-based (see for example, 
the Neurosynth database [40] or the parcellation of Yeo et al. [41])
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23.5  Conclusion

Data scientists and clinicians need each other: clinicians can 
be very good at inferring a model allowing data scientists to 
reduce the high-dimensional anatomical space to a relevant 
restricted set of predictors, hence providing the adequate 
level of abstraction for generalization and in turn, data sci-
entists can provide clinicians with optimized predictions 
powered by ML. We are confident that such collaborative 
efforts will contribute in a near future to significant advances 
in symptoms predictions from brain lesion imaging.
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24.1  Introduction

Consider the following thought experiment, known as the 
Chinese Room Argument [1]: a man who does not speak any 
Chinese is alone in a room with a book containing questions 
and their answers written in Chinese characters. A person 
outside of the room slips the man a note containing a ques-
tion in Chinese. The man then looks up this question in the 
book and generates the correct answer, which he then out-
puts back to the person outside (Fig. 24.1).

The question remains, does the man inside the room 
understand Chinese? To those of us who see the complete 
picture, we know that the answer is no, but as his output 
responses make perfect sense to the input questions, he suc-
cessfully fools those outside the room that he is a fluent 
Chinese speaker. This example demonstrates the twin goals 
of natural language processing (NLP) and natural language 
generation (NLG). An NLP system simulates understanding: 
natural language in, meaning out. An NLG system moves in 
the opposite direction: meaning in, natural language out. A 
sequence-to-sequence framework can be thought of as an 
NLP and NLG system working together, which gives digital 
assistants the “ability” to, among other applications, answer 
spoken questions, retrieve relevant information, and translate 
novel human utterances.

But just as the man in the room has impoverished knowl-
edge about the questions that he is answering, so too does a 
computer “fake” understanding. The ideal scenario in apply-
ing NLP and NLG is that the system is able to capture the 
information in the input well enough that the output is cor-
rect, relevant, fluent, timely, etc. Since medical professionals 
are uniquely positioned to evaluate the usefulness and qual-
ity of information in medical natural language data, their 

guidance is essential in developing NLP/NLG tools for 
medicine.

Autocomplete, in which a small number of suggested 
completions / corrections for a partially-inputted natural lan-
guage utterance appear, is now ubiquitous. While the time- 
saving effect is clear when the suggestions are good, criticism 
of autocomplete, especially if its suggestions override the 
user by default, is also ubiquitous. As a running example, 
let’s discuss some basic approaches to autocomplete and 
their implications for medical applications. The simplest 
autocomplete system is not much more than a list of words. 
For some input string, this system would just return all of the 
words that begin with that string.

Clearly, such a solution is insufficient. An empty input 
would return the entire list of words. A misspelled input 
might return no words. Something in between could still 
return too many suggestions to be useful. So to improve the 
system, we could reformulate the lookup task into a predic-
tion task. This way, the system not only collects and returns 
suggestions, but it also computes the probabilities of these 
suggestions. It should come as little surprise that given per-
fect data, the most frequently observed suggestion is the 
most probable suggestion. So, with the recent availability of 
huge datasets of text and powerful computers to process 
them, we can make great predictions. In fact, speech recogni-
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tion has reached its current level of deployment because the 
predictive models consider increasingly complex contexts: 
not just the current word but several preceding ones, even 
high-dimensional representations of the entire document. 
The cutting edge is now concerned with which notion of con-
text provides the most appropriate suggestions. The remain-
der of this chapter discusses the answer to this question 
within the particular domain of electronic health records 
(EHRs).

24.2  Contextual Autocomplete Literature 
Review

Clinicians spend a significant amount of their time charting 
information in electronic health records, leading to a notable 
documentation burden. The taxing process of inefficient 
EHRs is one of the leading causes of physician stress and 
burnout [2, 3]. One solution that scientists have begun inves-
tigating is contextual autocomplete, which uses natural lan-
guage processing techniques to provide more efficient 
charting that will save the clinician substantial time every 
day [4, 5]. Another motivation for contextual autocomplete 
in EHRs is the ability to curate prospective clinical data in a 
manner that does not restrict the clinician to follow a rigid 
template nor interrupt the clinical workflow [4, 5].

The first study that we will explore is Greenbaum et al. 
[5], which built an autocomplete model to predict the chief 
complaint (presenting problem) in the Emergency 
Department. This model used a multiclass Support Vector 
Machine (SVM) trained on triage information and repre-
sented free text in a Bag-of-Words (BoW) model.1 The 
authors motivated their work as a way to reduce documenta-
tion burden and streamline data collection, aiding interoper-
ability. The study highlighted the effectiveness of using a 
contextual autocomplete model over a standard autocom-
plete model: providing predictive suggestions based on the 
“context” and a predicted probability rather than simply 
spelling. They operationalized contextual information as all 
information gathered when a patient is triaged in the emer-
gency department: initial patient vital signs as well as the 
triage nurse’s description of the patient’s state at arrival. In 
their experiments, “the mean number of keystrokes required 
to document a presenting problem” was reduced from 11.6 to 
0.6, resulting in a 95% improvement. Their system also pro-
vided a solution to collecting structured data prospectively, 
as opposed to using NLP to extract it retrospectively, which 
they argue is more prone to inaccuracies.

The second study that we will explore is Gopinath et al. 
[4], which built on the Greenbaum et al. [5] study to provide 

1 For more information on SVMs and BoW, please refer to the tutorial in 
the next section.

contextual autocomplete functionality for an entire unstruc-
tured clinical note, as opposed to solely the chief complaint. 
This model extracted clinical concepts from medical notes 
with the help of named entity recognition (NER). Their 
application of NER filtered words to only words in the 
Unified Medical Language System (UMLS), and these fil-
tered words were inserted into a Trie2 data structure. Then, 
terms which occurred within a negative context were identi-
fied and concepts which appeared fewer than 50 times were 
pruned out. Concepts were then grouped into two categories: 
conditions the patient has a history of and symptoms. Finally, 
they used a TF-IDF3 encoder to capture a normalized BoW 
representation of the text.

The main motivations in [4] were to increase documenta-
tion efficiency, increase documentation readability by allevi-
ating the need to rely on complicated medical jargon and 
acronyms for efficiency, and provide some structure to notes 
that were otherwise free text for use in future applications. 
The contextual information used in this study included both 
the patient triage information as well as prior medical notes 
or history about the patient. Their system grouped clinical 
terms into “relevancy buckets,” which were then used for 
categorical predictions. They used four concept-specific 
ranking models: conditions, symptoms, labs, and medica-
tions. The machine learning model itself was a shallow, dual- 
branch neural network architecture that was first trained on 
the model relevancy buckets and then trained on individual 
concepts to mention in the note. They combined a context 
consisting of a TF-IDF representation of triage text and a 
feature vector indicating the binary presence of each model 
relevancy bucket in prior EHR notes. The result of this sys-
tem was a 67% reduction in keystroke burden in a live envi-
ronment. It is important to note that the 95% improvement in 
keystroke reduction discussed in [5] is with regards to solely 
chief complaints, whereas the 67% keystroke reduction in 
[4] is with respect to the entire free text clinical note.

The studies on contextual autocompletion in EHRs dis-
cussed above show promising results with regards to a solu-
tion for alleviating documentation burden as well as curating 
structured data without compromising the clinical workflow. 
Several technical concepts were mentioned, including insert-
ing and looking up terms in a trie data structure, TF-IDF 
encodings, BoW models, and multiclass SVMs. The follow-
ing tutorial will dive deeper into these technical concepts to 
illustrate how an EHR autocomplete system works and how 
pieces of this pipeline might be used for related medical 
applications.

2 For more information on Tries, please refer to the tutorial in the next 
section.
3 For more information on TF-IDF, please refer to the tutorial in the next 
section.
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24.3  Contextual Autocomplete: Technical 
Toolkit

In this tutorial, we will review some of the critical NLP tech-
niques mentioned above that are used for contextual auto-
completion. Please feel free to follow along and run the code 
at the following Google Colab link: https://colab.research.
google.com/drive/1Fg9CJyoNDb_3yqYBoJhV8TcRom
gOW_O2?usp=sharing.

 Trie Data Structure

A core data structure used in both studies is the Trie, which 
is particularly useful in looking up words given a specific 
prefix. An extremely simple autocomplete model that is 
solely based on the letters a user types can be implemented 

using only a Trie data structure. Following is the Python 
code, heavily inspired by [6], needed to implement a simple 
Trie-based algorithm that provides predictive suggestions 
given a prefix (Figs. 24.2 and 24.3):

 BoW Model

Text vectorization is the process of converting text into lists 
(vectors) of numbers. The perhaps simplest, yet still relevant 
and robust, method for constructing vectors is called the 
“bag of words.” A bag-of-words vector just gives the number 
of times each unique word occurs. The order of the words in 
the vector is arbitrary and there are no repeats, so all ordering 
information from the original text is lost in this model. 
Therefore, the sole critical implementation choice is which 
words to include in the vector. Extremely common words 

Fig. 24.2 Python 
implementation of the 
TrieNode and Trie classes

24 Natural Language Processing: Practical Applications in Medicine and Investigation of Contextual Autocomplete
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known as stop words, such as “the,” have little discriminative 
power. They occur everywhere, and more importantly, occur-
ring more or less in some group of interest is quite likely to 
be an accident rather than a true distinction (Fig. 24.4).

 TF-IDF Encoding

While not including stop words in the model’s so-called 
vocabulary (the words that are counted and represented in 
the BoW vector) is one potential solution, another approach 

is to scale the numbers in the vector by their predicted use-
fulness. One way to do that is to use TF-IDF scores rather 
than simple counts. TF-IDF stands for “Term Frequency” 
and “Inverse Document Frequency.” Term frequency is the 
number of occurrences of a particular word in a document 
divided by the total number of words in that document. The 
equation for term frequency is:

 

TFi j
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Fig. 24.3 Continuation of 
the Trie class implementation
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Inverse document frequency is the log of the total number 
of documents divided by the number of documents that con-
tain a particular word. The equation for inverse document 
frequency is:

 

IDF
DFt

w
N( ) = æ

è
ç

ö

ø
÷log

 

The TF-IDF is simply the product of the term frequency 
and the inverse document frequency. This process is a useful 
measure of the relevance of a given word since TF favors 
words that occur more frequently but IDF disfavors words 
that occur more widely. For example, if “the” occurs in every 

document, then its IDF is zero, which makes its TF-IDF zero 
as well. The following is a basic TF-IDF implementation that 
builds on the BoW implementation, above. This code is also 
heavily inspired by [7] (Figs. 24.5 and 24.6).

 Support Vector Machine (SVM)

Support vector machines are a form of supervised machine 
learning that can be used for both classification and regres-
sion tasks. The most simple SVM model is a linear classifier. 
The following is an implementation of a linear classifier 
SVM, reproduced from [8] (Fig. 24.7).

Fig. 24.4 Python 
implementation of the BoW 
model

Fig. 24.5 Python 
implementation of the TF 
function
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 Confusion Matrix for Visualizing Model 
Accuracy

Once you have an NLP model built and trained, the next 
step is to evaluate how well that model is performing. 
While the range of evaluation methods in NLP is vast and 
the best method depends on the specific task, a simple yet 
powerful tool for visualizing model accuracy, particularly 
for supervised learning classifiers such as the linear SVM 

above, is called the Confusion Matrix. Each row corre-
sponds to an instance of the predicted class, while each 
column corresponds to an instance of the actual class. It is 
easy to visualize the accuracy of the model according to 
this matrix since all values across the diagonal of the 
matrix represent correct predictions, while values outside 
the main diagonal represent prediction errors. This can be 
implemented directly using the sklearn package as follows 
(Fig. 24.8).

Fig. 24.6 Python 
implementation of the IDF 
and TF-IDF functions
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Fig. 24.7 Python 
implementation of a linear 
SVM

Fig. 24.8 Python 
implementation of a 
confusion matrix
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24.4  Conclusion

NLP is poised to help alleviate clinical documentation bur-
den and the lack of structured EHR data. Contextual auto-
complete in electronic medical records shows promising 
results with respect to improving documentation efficiency 
and providing a method to curate structured data without 
interrupting the clinical workflow. This chapter discusses 
some basic technical methods in NLP that serve as the foun-
dation for building a model for predictive suggestions.
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25.1  Introduction

Data in a temporal resolution consisting of a chronological 
sequence of observations are referred to as time series (TS). 
The analysis of temporal data is widespread across scientific 
disciplines, including finance, marketing, environmental sci-
ences, and medicine. Historically, TS analyses were first 
applied to physical sciences problems, which account for the 
strong mathematical and engineering-based flavor permeat-
ing the vocabulary and methodological approaches to TS 
analysis. Based on the data’s observed properties, over the 
last half-century, the primary objective of TS analysis has 
been the development of a mathematical model capturing 
these inherent properties to enable forecasting of future 
events. TS analysis highlighted important mathematical 
aspects, including trend, seasonality, and residue or noise [1, 
2]. Trend describes a long-term decrease or increase in the 
observed data. The mathematical forms these temporal 
trends can adopt vary, including linear or higher-order pat-
terns. Without an apparent trend, the values’ level does not 
change significantly over time, but the observed data fluctu-
ates around a fixed equilibrium. Thus, a window in the data 
at timepoint zt will be on the same level as at timepoint zt + k 
for any t or k. Temporal data behaving in this static fashion 
are called stationary [1]. A second essential property is sea-
sonality, which describes repeating patterns that reoccur in 
temporal intervals, such as blood pressure (BP) or intracra-
nial pressure (ICP) measurements. Seasonality can encode 
important morphological features that can be leveraged for 

forecasting problems. The remaining unsystematic fluctua-
tions in TS are called residue or noise. Measurement inac-
curacies, physiological confounders, or motion artifacts are 
frequent sources of noise.

Based on the data’s assumptions (trends, seasonality, sta-
tionarity), a mathematical model can be formulated to cap-
ture the existing dynamic relations, understand the 
data-generating process, and potentially enable forecasting 
within the limit of the proposed assumptions. Many tradi-
tional stochastic methods, including exponential smoothing, 
moving averages, and autoregressive integrated moving 
averages (ARIMAS), were successfully applied to forecast 
future events. More recently, temporal prediction approaches 
based on machine learning (ML) algorithms gained popular-
ity, due to their potential of leveraging highly nonlinear 
(complex) patterns and flexible adaption in nonparametric 
settings [3–6]. Empirically, ML-based methods demon-
strated competitive levels of performance and frequently out-
performed traditional models [5, 7–9]. In this article, we 
review classical methods for TS analysis, which, based on 
historical developments, are rarely considered as typical ML 
methods, as well as the extension of nonparametric and com-
plex ML methods.

25.2  Foundational Methods

The potential applications of TS analysis are vast but gener-
ally adhere to analytical frameworks, with the goals of fore-
casting or predicting future events from historical data, 
recognizing patterns within our data, or sometimes both. 
However, forecasting—or in ML lingo prediction—and pat-
tern recognition problems should be regarded as rather inter-
twining than divisional. Forecasting evolved in TS analysis 
long before the recent ML “hype” started [10]. Due to this 
historically distinct development of TS forecasting and ML 
prediction approaches, we find a lingual division between 
classical forecasting methods and ML methods. However, 
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the classical methods are frequently applied in ML as well. 
In the following, we review both traditional parametric meth-
ods as well as advanced nonparametric approaches.

 Parametric Methods

Parametric methods require a priori information about data 
distribution [3]. Assumptions, including gaussianity or 
 normality, are well recognized in classical statistics. Similar 
assumptions are pertinent to forecasting methods and include 
pivotal assumptions about stationarity, trend and seasonality 
[11]. Additionally, in parametric modeling, we make assump-
tions regarding the function best describing our data [3].

Autocorrelation is characterized by serial correlation or 
similarity between two TS with a specified temporal lag. 
Referring to our definition of stationary TS in the introduc-
tion, in comparing timepoint zt and zt + k, the lag is expressed 
by k [1]. Several classical parametric methods thrive on 
leveraging autocorrelation, highlighting the importance of 
the prior assumed data distribution [10]. In an ICP TS where 
the lag equals the time between the ECG’s p-waves, the lin-
ear relationship between two observed parts of the TS will 
show a strong autocorrelation.

The first set of parametric methods are built on using 
some form of smoothing. As a popular approach, moving 
average (MA) describes the use of a mean function of past 
observations to “predict” future values. MA is one of the 
most simplistic methods and has been applied for almost a 
century [10, 11]. The traditional MA uses a fixed number of 
observations to calculate the next value by weighting every 
observation equally. MA is still frequently used to calculate 
and visualize trends within the data. However, due to the 
smoothing effect, that is, averaging over seasonality and 
other intrinsic patterns of the data, MA performs poorly in 
predicting actual future values [2, 5, 11]. The extensions of 
MA include additional weightings to specific features, such 
as exponential smoothing (ES). Simple exponential smooth-
ing (SES), also known as first-order exponential smoothing, 
adds more weight to more recent events [1, 5]. That way, the 
importance of past observations in predicting the next obser-
vation decreases. However, SES demonstrated a limited per-
formance for predicting future observations that inherit 
trend or seasonality [11]. The limitation in predicting non- 
stationary data was initially addressed in the 1950s by 
Charles Holt, introducing a model using three equations and 
two corresponding smoothing parameters, which better rep-
licated the data’s underlying trends [5, 12]. Holt’s exponen-
tial smoothing method (HESM) was further developed to 
adjust for seasonality [5, 11, 13] resulting in the Holt- 
Winter’s seasonal exponential smoothing method 
(HWESM). This parametric approach applies an additional 
assumption to adjust for seasonality within the smoothing 

parameters and therefore considers trend, seasonality, and 
level. The correct selection of smoothing parameters is criti-
cal for a well-functioning model and delivering adequate 
predictions [11].

The second domain of classical forecasting methods are 
called ARIMA methods [11]. As the name suggests, ARIMA 
models consist of three components: autoregression (AR), 
integration (I), and moving average (MA). For each compo-
nent, we need to define the order of the model (p, d, q). The 
mathematical equations behind the components are well dis-
cussed in the literature and can help develop an intuitive 
understanding of the model order’s meaning [11]. 
Autoregression uses autocorrelation (see above, i.e., the sim-
ilarity between data at different time points) within the data 
over a chosen number of temporal lags [1, 11]. The order of 
autocorrelation AR(p) corresponds to the number of chosen 
lags. In ARIMA, MA can capture the variation based on 
autocorrelation and uses a regression model on past errors 
for forecasting. Additionally, we need to specify the order of 
the applied MA, MA(q). MA(q) can be imagined as the 
window- length of the MA. Theoretically, AR and MA form 
an ARMA(p,q) model and can already be used for TS predic-
tion. However, ARMA models assume that the observed TS 
are stationary [2]. Integration (I) is the last component of the 
ARIMA model and is essential for its applicability to non- 
stationary TS. This can be achieved by differencing, i.e., not 
calculating the consequential observations of a TS but the 
differences between them. This procedure is repeated until a 
stationary dataset is reached. We call this first or second- 
order differencing, and it enables the application of ARIMA 
to nonstationary data. It is also possible to extend ARIMA 
models with seasonality to so-called SARIMA models [5, 
11]. Selecting the appropriate model orders and parameters 
can be challenging in ARIMA-based models. Different 
approaches have been suggested to optimize the selection 
process [1, 5, 11, 14]. Thus, ARIMA methods not only 
resemble ML models in their learning ability but also their 
general workflow using hyperparameter tuning, training, and 
testing.

 Nonparametric Methods

Nonparametric models do not need a priori information 
about the data distribution or the function used as a statistical 
model, respectively [3]. Nonparametric methods scale to 
complex multidimensional data and nonlinear properties. 
ML prediction strategies can broadly be categorized as 
supervised, unsupervised, or semi-supervised [3]. When 
labeled target data are available, supervised models are 
appropriate. Here, we optimize a model or a function that 
maps our input features onto the target data (dependent vari-
able). The target’s form is important for the model’s 
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underlying approach: for continuous targets, regression 
models can be applied (e.g., age, BP, ICP). When the target is 
discrete, the applied models will be based on classification 
(e.g., age- group, outcome-scales, 30-day mortality) [3]. 
Unsupervised models do not require labeled target variables. 
Applications include cluster analysis by defining groups 
within the input data that share distinctive properties. 
Unsupervised models can detect important patterns in the 
data and help identify relations beyond human 
comprehension.

Neural Networks (NN) are based on the architecture we 
attribute to neuronal organization in the brain [11, 15, 16]. 
For a simple one-directional, so-called feed-forward NN, the 
input layer receives the data from the initial features. 
Following the input layer, an arbitrary number of hidden lay-
ers follows. Each layer consists of at least one neuron and 
receives input from neurons of the previous layer. 
Accordingly, the layers’ output is then passed to the next 
layer. Finally, the output layer returns the final output of the 
function. For the learning process of these constructs, the 
connections between the layers are essential. Between lay-
ers, a weight is added to the passed-on output. These weights 
are modified in the learning process resulting in a model that 
then maps an output to an input in the testing or validation 
phase [5, 11, 17]. In brief, every neuron in an artificial neu-
ronal network (ANN) receives inputs and generates outputs. 
The final result from the output layer is a combination of all 
weighted inputs from previous layers. ANN can produce 
models mapping complex input and output relations. The 
above-described ANN are only moving in one direction, i.e., 
they are feed-forward. In recurrent neural networks (RNN) 
[18], layers can also feed input into previous layers. These 
layers are called context layers, and their output is a condi-
tionality depending on prior processed input based on 
weights gradients. In RNNs, a memory effect is created by 
backpropagation and a so-called vector-state in the hidden 
layers [18, 19]. Hence, RNNs apply to data with temporal 
dependencies. However, training RNNs can be computation-
ally intense and be affected by the gradient problems; that is, 
gradients can vanish or explode [5, 20]. A proposed solution 
for these problems is introducing gate functions as they are 
implemented in long short-term memory networks (LSTM) 
[21]. In LSTMs, gates influence a cell state, which resembles 
a memory function of previously received inputs. This ulti-
mately results in the capability of remembering long-term 
relationships within the data. LSTM has shown extremely 
promising results in TS analysis and offer state-of-the-art 
solutions for distinct problems in deep learning [19, 22–24].

Support vector machines (SVM), albeit not strictly non-
parametric, are frequently applied to classification problems. 
Geometrically, SVM find a plane to separate different classes 
of data best. In two dimensions, this plane would simply be 
a line. For the given data, SVM will optimize a separating 

line that reflects a maximal margin between data observa-
tions from different classes [3, 25]. When the dimensions are 
extended, the line evolves into a hyperplane [3, 25]. SVMs 
have been among the first ML algorithms applied to TS pre-
dictions [6] such as stock markets [26, 27], water-demand in 
urban distribution centers [28], or meteorological TS [29]. 
SVMs demonstrated acceptable performance applied to vari-
ous TS data and frequently outperformed many parametric 
methods [9, 26].

K nearest neighbor (kNN) can be applied in regression 
and classification. kNN is a popular example of instance 
learning, where the entire dataset is stored, and the distances 
of new input are compared to already known labeled data 
points. The new input is then classified toward the k nearest 
neighbors, that is, the already labeled data points with the 
smallest distances to the new data point. The k determines 
how many near neighbors are considered in the classifica-
tion process [3]. The application of kNN in TS analysis 
seems counterintuitive due to the sequential character of 
TS.  However, the recently proposed variant called kNN 
Time Series Prediction with Invariances (kNN-TSPI) [4] 
shows promising results in TS forecasting. The kNN-TSPI 
aims to recognize similarities in TS by utilizing complexity 
measures, such as permutation entropy, for distance calcula-
tion. The applied algorithm performs well compared to 
established methods and, considering its novelty, remains a 
promising candidate for future nonparametric TS analytical 
tools [4, 5].

 Clinical Applications

Continuous ICP monitoring plays a pivotal role in the man-
agement of neurosurgical ICU patients with traumatic brain 
injury (TBI) [30, 31], subarachnoid hemorrhage (SAH) [32, 
33], and intracranial hemorrhage (ICH) [34, 35]. Early detec-
tion of increased ICP is critical to prevent secondary brain 
injury [36]; thus, predicting ICP events could result in early 
diagnosis and improved treatment of ICP crisis, thereby pre-
venting secondary brain injury. ML is a suitable choice to 
predict such harmful events from mined ICP data, as several 
studies demonstrated the use of ML algorithms for accurate 
ICP predictions. Using an algorithm called Morphological 
Clustering and Analysis of Intracranial Pressure (MOCAIP) 
[37] on ICP waveform morphology, combined with a qua-
dratic classifier, Hamilton and colleagues predicted ICP ele-
vations 5  min before the event, with an accuracy of 0.77, 
sensitivity of 0.9, and specificity of 0.75 [38]. Modern moni-
toring systems provide clinicians with constant new informa-
tion about potential pathophysiological developments and 
ensure fast notification in critical events. Nevertheless, most 
monitoring systems operate based on a simple threshold 
mechanism resulting in high rates of false alarms on ICUs 
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[39]. Comparing SVM and spectral regression kernel dis-
criminant analysis (SRKDA) in both supervised and semi- 
supervised models, Scalzo and colleagues used trend and 
morphological features of 4791 labeled ICP alarms from 108 
subjects to reduce the frequency of false alarms. The false 
alarm rate is reported to be mitigated by 16% using SVMs 
and 27% using SRKDA respectively, while maintaining a 
correct alarm recognition rate of 99% [40]. For both models, 
the semi-supervised version performed better than the 
 supervised version. DL approaches have also been applied to 
ICP monitoring to detect elevated ICP events: Quachtran 
et  al. used an auto-encoder combined with convolutional 
neuronal networks (CNN) [41] on ICP data derived from 60 
patients. Their model was trained using >70,000 samples and 
threefold cross-validation, achieving an accuracy of 0.92 in 
detecting elevated ICP.  However, ICP monitoring is rarely 
used exclusively, but is usually combined with other TS data, 
such as BP or heart rate (HR), in a multivariate approach to 
predict ICP.  Bonds et  al. report successful ICP prediction 
within a future 5-min timeframe using >5400 h of physiolog-
ical data from 132 patients (consisting of HR, systolic BP, 
shock index, mean arterial pressure (MAP), pulse pressure, 
and ICP) and a model of nearest neighbor regression. Their 
model showed good consistency with the measured data with 
a bias of 0.02 (±1.96 SD = 4 mmHg) for the 5-min timeframe 
and −0.02 (±1.96 SD = 10 mmHg) for 2 h, respectively [42].

Estimating individual prognosis after TBI, ICH, or SAH 
is difficult, mostly static, and based on initial clinical scores 
such as Hunt and Hess for SAH [43]. Naturally, outcome 
prediction is highly complex and entails significant uncer-
tainty for clinical decision making, due to the limited appli-
cability of empirically derived scores for the individual 
patient. Reliable long-term outcome prediction could benefit 
the individual patient, clinical caretakers, and the health-care 
system. Empirically, ML models performed fairly in predict-
ing clinical outcomes in various investigations. Raj and col-
leagues used two models based on logistic regression 
predicting 30-day mortality based on multimodal data of 472 
patients. The first model used ICP, MAP, and cerebral perfu-
sion pressure (CPP), and the second model added GCS, 
achieving an AUC of 0.81 and 0.84 respectively [44]. While 
outcome prediction based on clinical features is usually lim-
ited to a snapshot of the observed clinical condition, here, TS 
is used for the development of dynamic models. Dynamic 
modeling offers a powerful tool for clinical decision-making 
and can potentially be adapted for other applications as well.

The acquisition of synchronous extracellular brain poten-
tials by electroencephalography (EEG) is a leading approach 
for the noninvasive investigation of functional connectivity 
[45, 46]. The introduction of ML into EEG analysis marked a 
paradigm shift toward a better diagnosis of epilepsy, localiza-
tion of epileptic foci, as well as treatment monitoring in epi-
lepsy patients [47–51]. Concurrently, the number of 

publications using ML in EEG is extensive [52, 53]. Most 
ML methods enable the user to cluster and automatically 
detect seizures in EEG data with high accuracy, and generally 
supervised models perform with higher accuracy than unsu-
pervised models [52]. Zhang and colleagues found an average 
accuracy of 0.98 or higher using a local mean decomposition 
algorithm in five different classification models, including a 
backpropagation neural network, kNN, linear discriminant 
analysis, SVM, and an SVM with genetic algorithm optimi-
zation (GA-SVM). The GA-SVM ultimately outperformed 
the other models [54]. Feature extraction and dimensionality 
reduction of highly multidimensional data is a pivotal step for 
ML modeling. Comparing principal component analysis 
(PCA) with a modified so-called global modular PCA 
(GMPCA) for feature extraction and SVM for classification, 
Jaiswal and Banka report an accuracy of 1.0 (while an accu-
racy of 1.0 should always warrant careful methodological 
interpretation) for seizure detection [55]. Besides SVM, 
ANNs have been frequently used for automated seizure 
detection [56–58]. Tzallas et al. reported an accuracy ranging 
from 0.97 to 1.0 using a feed-forward ANN [58] after apply-
ing time-frequency processing methods (namely the smoothed 
pseudo-Wigner-Ville distribution) ahead of classification. 
Srinivasan et al. use the approximate entropy as input for two 
ANN (one recurrent and backpropagating, the other feed-
forward), achieving an accuracy of up to 1.0 [57]. Both pub-
lications, Tzallas 2007 and Srinivasa 2007, demonstrate the 
use of combined feature extraction and prediction methods. A 
different approach was applied by Rabbi and Fazel-Rezai 
using a fuzzy logic method, which is to a certain degree rule-
based and can thus mimic “human reasoning” [50]. They 
obtained a sensitivity of 0.95 for seizure detection, using 
>112 h of EEG data from 20 patients [50].

25.3  Conclusions

TS data are prevalent in many aspects of clinical medicine 
and academic neuroscience. Predicting future events from 
historical data offers us a powerful tool in neurocritical care, 
and ML has shown highly accurate results in various research 
objectives ranging from seizure detection in the analysis of 
electrocorticography data [59–61], massive parallel spike 
train data (as increasingly recorded with microelectrode 
arrays) [62], and even in target identification in the surgical 
treatment of epilepsy [63]. However, flaws in methodology 
and small sample size can lead to overly optimistic predic-
tive performance [53]. The sheer volume of available meth-
ods and existing possibilities can be daunting for clinicians 
unfamiliar with the methodology. Nevertheless, the adaption 
of ML for TS analysis can reform old paradigms and can 
potentially benefit patient care when correctly adopted into 
the clinical practice. This review introduced the historically 
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used approaches and innovations based on ML methods to 
ease the implantation into clinical neurosurgery.
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26.1  Introduction

Natural language processing (NLP) and time series analyses 
(TSA) have emerged as highly useful computational tech-
niques in modern-day data science and machine learning, 
with increasingly relevant applications in medicine [1, 2]. 
NLP is the automatic analysis and representation of human 
language whereby machines utilize techniques and algo-
rithms to break down text or speech content to extract mean-
ingful and usable information [3]. One immediately 
recognizable application would be to leverage NLP in order 
to automate the conversion of free-text patient notes in the 
electronic medical record into a set of analyzable variables 
(e.g., tumor size, tumor location, tumor stage), thereby obvi-
ating the resource-intensive process of manual chart review 
[4]. The steps of processing human text rely on a sequence of 
“low-level tasks,” such as assigning parts of speech to words 
and detection of sentence boundaries, and “high-level tasks” 
(build on low-level tasks), such as named entity recognition 
(NER-identifying and categorizing words/phrases into con-
ceptual entities such as “locations” or “diseases”) [5].

TSA is used to evaluate repeated measurements for one or 
more variables taken at uniform time intervals (e.g., hourly, 
monthly, etc.) and can determine associations with other 
trends or events as well as forecast the future based on past 
values in a series (e.g., forecasting the birth rate at all hospi-
tals within a certain city each year or whether an electroen-
cephalogram recording in seconds indicates a patient is 
experiencing a certain seizure) [1, 6]. Several machine learn-
ing algorithms can be used to achieve NLP tasks and perform 
effective TSA.  Herein, we provide a detailed overview of 
salient deep learning algorithms in the form of a gentle intro-
duction, assuming no prior knowledge in advanced linear 
algebra or calculus. We also describe relevant techniques in 

preprocessing data in preparation for modeling. We focus on 
conceptual underpinnings and basic underlying mathemati-
cal operations rather than coding language to ensure 
accessibility.

26.2  Natural Language Processing

 Preprocessing

Before applying algorithms on textual data, it must be con-
verted into a mathematical framework that can be modeled. 
The first step in analyzing a hypothetical website with medi-
cal news articles (all the articles as a whole would be denoted 
as the “corpus” of the project) of different categories for 
example would be to organize these articles (every individual 
article would be an “observation”) into a dataframe of rows 
representing individual articles and columns representing 
various properties of those articles (Table 26.1). This can be 
achieved by applying specific functions to the HTML con-
tent of the website. Then, another series of functions are uti-
lized to standardize variations in the text (Fig. 26.1).

Other preprocessing steps include stemming, lemmatiza-
tion, and stopword removal. Word stems are essentially the 
base form of the word with all affixes or inflections removed 
(Fig. 26.2), and stemming involves truncating a word back 
into its stem. Stemming is an important normalization step in 
information retrieval projects but can sometimes produce 
words that do not exist in the dictionary because it is heuris-
tic or applies a strict set of rules (e.g., convert “his” to “hi” 
based on the “s” to “ ” rule or “studies” to “studi” based on 
the “ies” to “i” rule). Two popular stemming algorithms are 
the Porter [7] stemmer and the Snowball [8] stemmer. 
Lemmatization is a more sophisticated process compared to 
stemming since it resolves words to their basic dictionary 
form or “lemma” (singular form of nouns, infinitive form of 
verbs, and positive form of adjective or adverb; e.g., converts 
“studies” to “study”); however, the part of speech of the 

J. Feghali · A. E. Jimenez · A. T. Schilling · T. D. Azad (*) 
Department of Neurosurgery, Johns Hopkins University School of 
Medicine, Baltimore, MD, USA
e-mail: tazad1@jhmi.edu

26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85292-4_26&domain=pdf
https://doi.org/10.1007/978-3-030-85292-4_26#DOI
mailto:tazad1@jhmi.edu


222

input word would be needed. In that sense, stemming oper-
ates independently of context and hence requires less infor-
mation and runs more rapidly despite the lower accuracy of 
the output, which may not matter in some applications. The 
goal of both processes is to normalize different morphologi-
cal variants into a single item thereby reducing the number of 
distinct terms or complexity of the text [9]. This makes sub-
sequent tasks run more efficiently. Stopwords are words that 
do not contribute critical meaning to a sentence such as 
determiners (e.g., “the”, “a”, “an” etc.), or prepositions (e.g., 
“in”, “under” etc.), and stopwords happen to be the most 
commonly encountered words in a textual corpus. Depending 
on the final objective of an NLP project, these can be removed 
with little consequence using pre-built lists of stopwords that 
can be modified by the user.

Tokenization is another fundamental preprocessing step. 
It involves splitting text into smaller components or “tokens” 
such as words or characters based on certain delimiters (e.g., 
spaces). Most often, the tokens are words, and a main goal is 
to discover the “vocabulary” or set of unique words in a text.

 N-grams
N-grams are a series of nearby words represented together, 
whereby an N-gram is a sequence of N words. For example, 
“the doctor” is a bigram, and “the doctor administered” is a 
trigram. Breaking down text into a series of N-grams is a 

form of tokenization that can be best understood with a sen-
tence example: “The doctor administered the drug”. The out-
put of a unigram would be: “The, doctor, administered, the, 
drug” while the output of a bigram tokenization would be: 
“The doctor, doctor administered, administered the, the 
drug”. Subsequently, one can calculate the probability of 
occurrence of each N-gram in the text, which could be useful 
in certain applications of NLP, including automated sentence 
completion relying on the most frequent N-gram.

 Data Representation

 Bag of Words
The bag of words approach is a common way to organize 
textual data in preparation for analysis. It is a representation 
of text using a dataframe with columns representing indi-
vidual words of the complete corpus vocabulary and each 
row denoting an individual article. The cells would contain 
the frequency in which the word occurred in each article 
(Table 26.2). This form of representation has proven to be 
successful in many NLP pipelines that extract information 
from radiology reports, including the annotation of head CT 
reports with important clinical findings (e.g., acute hemor-
rhage) and the quantification of the number of brain metasta-
ses (single vs. 2 or more) in MRI reports [10, 11]. There are 
two main limitations associated with the bag of words repre-
sentation. First, it ignores word order and grammar thus 
completely stripping words of their contextual information. 
Second, it is biased toward more frequent words which usu-
ally contribute less meaning.

 One-Hot Encoding
One-hot encodings are an additional way one can convert 
textual data into numbers amenable for modeling and 

Table 26.1 Basic organization of medical news website articles into a dataframe

Article No. Title Content Category
0 New CT technology… Researchers have developed a high… Innovation
1 Novel immunotherapy… The immunological mechanisms of… Innovation
2 The first in-utero repair… Yesterday, surgeons at the hospital… Innovation
3 Malpractice case in … Medical malpractice cases have… Legal

Remove accents Expand contractions

DejavuDéjavu
Remove special characters

It was amazing!   It was amazing

He couldn’t He could not

Fig. 26.1 Standardize text

Stem

Inflections

P   L    A   Y

F   U    L

I   N    G

E   D

Fig. 26.2 A word stem with examples of inflections

J. Feghali et al.



223

analysis. A word can be represented by a vector with a length 
of N = number of words in the complete corpus vocabulary, 
with a value of zero at all positions except the position cor-
responding to that word, where a value of 1 is present 
(Fig.  26.3). A whole observation, or article, can be repre-
sented using a one-hot encoding matrix where each row is a 
unique word in the vocabulary (N number of rows) and the 
columns are the successive words of the article (Table 26.3). 
The columns in that matrix would be the one-hot encoding 
vectors for every word in the article. There are several limita-
tions to one-hot encodings. The contextual or semantic relat-
edness between words is not communicated by the one-hot 
vectors. For instance, the vector of the word “cat” would not 
have more similarity to that of “dog” compared to that of 
“car” or “restaurant.” Similarity between two vectors can be 
measured with a technique called cosine similarity. 
Figure  26.4 describes this concept with an example and 
reviews some algebraic definitions such as vector dot prod-
uct and magnitude. In one-hot encoded representations, all 
word vectors are orthogonal to one another, meaning that the 
dot product of every word pair is zero and similar-meaning 
words cannot be identified by looking at the vectors. Another 
limitation of one-hot encoded vectors is the large vector 
dimensions (as large as the vocabulary) and the large number 
of zeros in the resultant matrices (such matrices are known as 
“sparse” matrices).

 Word Embeddings: Neural Network Basics
Word embeddings, like one-hot encodings, are vector repre-
sentations of words. However, they are known as “distrib-
uted” representations because the meaning of the word is 

spread out across all the vector positions rather than having 
the value “1” only at a single position. Unlike one-hot encod-
ing, the dimension size of the vector is much smaller than the 
vocabulary size (e.g., can be 300 in a 10,000 word vocabu-
lary). An example of word embeddings is provided in 
Fig.  26.5. Word analogies can even be represented using 
arithmetic operations and the embedded word vectors as 
such: king −  man  +  woman  =  queen (man is to king as 
woman is to queen) or athens − greece + england = london. 
The word embeddings are generated based on context, where 
the meaning of a particular word is derived based on sur-
rounding words. In the two sentences “the doctor adminis-
tered the drug” and “the nurse administered the drug,” 
“doctor” and “nurse” could be understood to share certain 
semantic features just by sharing similar contexts. More spe-
cifically, they are more likely to be situated around a similar 
set of neighboring words. This contextual meaning is what 
most word embedding algorithms utilize to generate the 
word vectors.

One widely utilized machine learning neural network 
algorithm that is used to generate word embeddings is the 
word2vec algorithm, developed by Tomas Mikolov at Google 
[12]. To understand how this algorithm works, the basic 
structure of a neural network should be explained. In the case 
of supervised learning, where learning occurs on datasets 
consisting of labeled input-output pairs (e.g., patients with a 
certain demographic profile [inputs] and whether they actu-
ally experienced a complication after surgery [labeled out-
put]), neural networks approximate the function that maps 
from the inputs to the output by first randomly assigning the 
function’s parameters (or assigning them to zero) and then 
iteratively adjusting them based on calculated errors between 
the output predicted by the function and the true output (a 
process called loss minimization).

We will first explain the terminology and structure of a 
neural network using the example of a prediction project uti-
lizing a multivariable logistic regression neural network and 
then extrapolate the concepts to the example of word embed-
dings. Neural networks are also called “artificial neural net-
works” or ANNs because they are loosely based on the 
neuronal structure and connectivity of the brain. The neural 
network components can be better understood through the 
logistic regression example in Fig. 26.6, which seeks to pre-
dict the probability of a patient experiencing a surgical com-
plication based on some input variables. A neural network is 
made up of “layers”, each consisting of “neurons” or “nodes.” 

Table 26.2 Bag of words representation method

Article No. Technology Malpractice Immunotherapy Repair Novel Category
0 15 0 0 1 5 Innovation
1 0 0 25 0 6 Innovation
2 1 0 0 9 1 Innovation
3 0 10 0 0 0 Legal

Position 1
corresponds
to the word
“the”

Position 2
corresponds
to the word
“doctor”

Position 3
corresponds
to the word
“imaging”

Position 4
corresponds
to the word
“data”

Position 5
corresponds
to the word
“analyzed”

the (1,0,0,0,0,0,0,0,0,0)
doctor (0,1,0,0,0,0,0,0,0,0)

analyzed (0,0,0,0,1,0,0,0,0,0)
data (0,0,0,1,0,0,0,0,0,0)

( n1, n2, n3, n4, n5,...,nN ); N=10

Fig. 26.3 Example of one-hot encoding vectors in a hypothetical proj-
ect where the total vocabulary is ten words
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The first layer is known as the input layer and the final layer 
is known as the output layer, and there could be layers in 
between called hidden layers, where function operations or 
“transformations” are carried out. The layers are connected 
to each other by neuron-to-neuron connections known as 
“arcs”, and every arc carries a certain “weight.” A “fully con-
nected” neural network is one in which every neuron in a 
given layer is connected to every neuron in the next layer. 
Likewise, a “dense” or “fully connected” layer is a type of 
hidden layer whereby every neuron is connected to every 
other neuron in the next layer. The goal of an input layer in a 
logistic regression project is to receive the values of the pre-
dictor variables (e.g., age, body mass index, gender) for a 
certain observation (e.g., neurosurgery patient in the data-
set), and the number of neurons composing the input layer 
would be equal to the number of independent predictor vari-

ables (each neuron represents a predictor variable). A neuron 
in layers other than the input layer computes the weighted 
sum of the neuron values it is receiving from the previous 
layer (e.g., age*its weight, body mass index*its weight, 
gender*its weight, etc.) or in other words, computes a 
weighted sum of all its inputs, where the weights are those 
assigned to the connecting arcs. Each neuron also has a 
“bias” term that it adds to that weighted sum. This bias term 
can be thought of as a firing threshold for the neuron because 
it plays a role in determining what output values will be 
propagated forward; it also functions to add flexibility to the 
overall model in fitting the given data. Both the weights and 
the bias terms are what the model is seeking to learn based 
on the data, as they are the parameters involved in the map-
ping function. After summing the weighted inputs and the 
bias term, a neuron feeds the result into an “activation func-
tion,” which may transform the result into some value 
between a minimum and a maximum. Two examples of com-
monly used activation functions are the sigmoid function 

[σ x
e x( ) =

+ −

1

1
] and the rectified linear unit function 

(ReLU) [f(x) =  max (0, x)], where x in both cases is the sum 
of the weighted inputs and the bias term. The sigmoid func-
tion converts x into a number between 0 (x values that are 
relatively large and negative) and 1 (x values that are rela-
tively large and positive). A similar function that converts 
inputs into a number between −1 and 1 is the tanh function 

[ tanh x
e x( ) =

+
−−

2

1
1

2
]. The ReLU function returns zero if x 

is negative and the actual value of x if it is positive. To further 
understand the concept of bias and threshold for firing, any 
negative x is not carried forward by a neuron if it employs the 
ReLU activation function since 0 signifies a non-firing neu-
ron. For a bias term of +1, the threshold for firing is reduced 
to −1, because now for example, a weighted sum of −0.99 
would result in an x of 0.01 which is positive and hence pro-
vides an output to the next layer.

To explain how learning, or the optimization of the func-
tion parameters, occurs, some definitions are worth explain-
ing. Unlike epidemiological definitions, the word “sample” in 
ANNs refers to a single observation or row of data (e.g. one 
patient) rather than the complete dataset. The word sample is 
also equivalent to “observation”, “input vector”, “feature vec-

Table 26.3 One-hot encoding representation of an article

a surge of affected patients with a …last word in article
a 1 0 0 0 0 0 1 –
Of 0 0 1 0 0 0 0 –
With 0 0 0 0 0 1 0 –
Surge 0 1 0 0 0 0 0 –
Patients 0 0 0 0 1 0 0 –
Affected 0 0 0 1 0 0 0 –
…N – – – – – – – –

restaurant (5,2)

diner (5,1)

cat (1,6)

dog (1,5)

θ = 11.7°

Cosine similarity (restaurant, diner)

restaurant .diner

dinerrestaurant
= cosine θ =

= 5×5+2×1
×

×

= cosine (11.7°)
52+22 52+12

Fig. 26.4 Cosine similarity between vectors. Cosine similarity is used 
as an index of similarity between two vectors i.e., the higher the cosine 
similarity, the more similar the two vectors are. Cosine similarity can be 
calculated geometrically as the cosine of the angle between two vectors 
or by calculating the dot product (x1*x2 + y1*y2 + z1*z2 etc.) and dividing 
it by the product of the magnitude (square root of the sum of the squared 
coordinates). Visually, notice how the angle between restaurant and 
diner is smaller (higher cosine similarity) than the angle between res-
taurant and dog, or how the dog and cat vectors are more similar to each 
other compared with those of either restaurant or diner. From this sim-
ple example, we can begin to understand the potential of encoding some 
form of meaning or relatedness in the word vectors. If the same words 
were encoded with one-hot vectors (e.g., dog (1,0,0,0); diner (0,1,0,0); 
cat (0,0,1,0); restaurant (0,0,0,1)), the dot product between any two vec-
tors would be 0 and hence no semantic meaning is encoded
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tor” (i.e. a patient is considered a combination of features 
such as age, BMI, gender, etc.), or an “instance.” The algo-
rithm includes “parameters,” which are part of the mapping 
function or final model, and “hyperparameters.” Parameters 
are the weights and the bias term which the model seeks to 
learn automatically, while hyperparameters are set manually 
by the user and are external to the model (not dependent on 
the dataset). They affect the speed and accuracy with which 
the learning process occurs and are usually fine-tuned by trial 
and error or by following rules of thumb. After randomly ini-
tializing the parameters or setting them to zero, the model 
subsequently updates those parameters after measuring the 
loss or error between the predicted output and the true output. 
One can think of a “loss function” as a function describing the 

magnitude of the error for an observation. The specific loss 
function is often chosen by the user based on the predictive 
model that is being developed (e.g. whether it is predicting a 
continuous outcome like length of stay or predicting a cate-
gorical outcome like complication occurrence). The best loss 
function for a given model will be one that has a minimum 
point where specific parameter values minimize the loss and 
can be approximated (such a function is amenable to being 
“optimized” or is convex shaped with some “local minima” 
and a single most minimum point called the “global mini-
mum”). We will take two simple examples to help visualize 
what the function looks like when plotted. If only one param-
eter (w) is being optimized, such a loss function plotted as 
loss on the y-axis versus w on the x-axis would be u-shaped 
(parabola) for instance. If two parameters, w and b, are being 
optimized, plotting loss on the z-axis versus w and b on the 
x- and y-axes respectively would yield a bowl-shaped func-
tion in three- dimensional space with a single minimum point. 
An example of a loss function often used in logistic regres-
sion is given in Fig. 26.7. The term “cost function” is often 
used when evaluating loss with respect to several observa-
tions and is the average loss across these observations. The 
process of learning the correct parameters based on the error 
between predicted and actual values is known as “gradient 
descent.” A simplified example that can help develop some 
intuition about the concept as well as general equations 
involved in the process can be found in Fig. 26.8. Extrapolating 
these concepts to the case of logistic regression, the derivative 

dog (0.90, 0.11, -0.03, 0.20)
cat (0.85, 0.09, -0.02, 0.10)
restaurant (0.22, 0.92, 0.33, -0.50)
diner (0.18, 0.95, 0.28, -0.47)
apple (0.01, 0.52, -0.63, 0.93)

Dot product (dog, cat) = 0.796
Dot product (dog, diner) = 0.164

Fig. 26.5 Example of a word embedding. In this example, five words 
are encoded using vectors of dimension d = 4. Notice how visually, the 
dog and cat vectors are similar as are the restaurant and diner vectors. 
Both pairs are very different from the vector of apple. The dot product 
values (proportional to cosine similarity) confirm the visual 
comparison

Input Layer Output Layer

age

BMI

gender

diabetes

No. of input layer
neurons = number
of predictor variables

One output layer neuron
computing probability of a 
surgical complication

If z is very large, σ approximates 1

If z is very small, σ approximates 0

So sigma basically converts the linear
expression wx +b into a probability between 0
and 1

w1,1

w2,1

w3,1

w4,1

1

1

zz

1 + ez 1 + e–z
ez

=

=
=

=σ

σ (z)
Σ (wx) + b
ŷ

Fig. 26.6 Neural network example for logistic regression. Input layer 
is  made up of four neurons each representing a predictor variable. 
Initially, before any observations are “seen” by the algorithm, the 
weights and bias terms are assigned random values or zero values (“ini-
tialization”). Output layer neuron computes the weighted sum of its 
inputs for a patient (e.g. w1,1*20 years + w2,1*32 kg/m2 + w3,1*1 (1 coded 
as female and 0 as male) + w4,1*1 (patient is diabetic)) and adds a bias 

term (b) to the result to obtain z for a particular patient. Subsequently, 
the probability of a complication is computed by the sigmoid activation 
function (σ). By comparing the error between the predicted probability 
(ŷ) and the true output (y), the weights and bias terms are then adjusted, 
and the process repeats iteratively until the error is minimized. The final 
optimized weights and bias term will make up the beta values and con-
stant of the predictive model
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of the loss function with respect to the parameters (weights 
and bias term) can also be calculated in order to apply gradi-
ent descent (Fig.  26.9). Figures  26.8 and 26.9 detail the 
underlying mathematical operations that characterize learn-
ing in any neural network.

The “batch size” is a hyperparameter that determines how 
many samples should be passed through the algorithm before 
it updates the parameters (e.g., update parameters after pass-
ing five patients through the algorithm). The number of 
“epochs” is a hyperparameter that determines how many 
times the algorithm will iterate through the entire dataset. 
Epoch numbers are relatively large (hundreds or thousands) 
in order to ensure appropriate error minimization. One can 
plot the error against the epochs in what is known as a “learn-
ing curve” to track learning with progression through the 
dataset. The term “stochastic gradient descent” denotes a 
batch size of 1, meaning the parameters update after every 
observation. “Batch gradient descent” denotes a batch size 
equal to the size of the training dataset, meaning the param-
eters update after the algorithm has seen all the data.

At this point, it is useful to mention that a machine learn-
ing project with neural networks often utilizes three datasets: 
the training, validation, and test sets. The training dataset 
contains the labeled samples that are used to train the model 
using gradient descent. The validation set is usually a held- 
out subset of the initial labeled dataset. One can randomly 
split a large dataset of labeled samples for instance into a 
training dataset containing 80% of observations and a valida-

tion dataset containing the remaining 20%. In practice, as the 
model is being trained through gradient descent using obser-
vations in the training dataset, it is simultaneously being 
tested for accuracy on observations in the validation dataset. 
It is important to note that loss in the validation dataset is not 
used in the training process, and observations in the valida-
tion dataset do not contribute to training but are only used to 
check accuracy as the model is being trained. This process is 
carried out in order to verify whether there is “overfitting”, a 
situation whereby the accuracy in matching predictions to 
true values is high in the training dataset but poorer in the 
validation dataset. This indicates that the model might be 
overfitted to the training data used to develop the model but 
might perform poorly on new data. The validation dataset is 
also used to fine-tune hyperparameters of the model, such as 
the number of hidden layers in a network. The test set can 
also be a held-out subset of the initial labeled data and is 
used to test the predictive accuracy of the final model with its 
specified hyperparameters.

 Word Embeddings: Learning an Embedding 
Matrix
With an understanding of the structure of a neural network 
and how it optimizes a set of parameters to minimize loss, 
the process of word embedding can be discussed in more 
detail. The task of word embedding can be conceptualized as 
the process of learning the values of an “embedding matrix” 
(E) of dimensions d by N, where d is the desired size of the 

Fig. 26.7 Loss and cost functions for logistic regression
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embedded word vectors and N is the size of the vocabulary. 
This matrix, when multiplied by the one-hot encoded vector 
of a word (size N), yields the embedded word vector. An 
example with a cursory review of relevant linear algebra is 
provided in Fig. 26.10. Learning E will consist of randomly 
initializing its components (the parameters) and then learn-
ing them through the process of gradient descent. Word2vec 
represents a family of algorithms that can set up a supervised 
prediction task of words in a text, facilitating the learning of 
E. There are two main versions of word2vec that can be used, 
known as “continuous bag of words” (CBOW), where we try 
to predict a target word given its surrounding context, and 
“skip-gram”, where we try to predict the surrounding context 
given a target or focus word (Fig. 26.11). In general, CBOW 
is more suitable for generating word embeddings from a 
small corpus while skip-gram works better in a large corpus. 
To understand some of the algorithms involved in word2vec, 
we will take a simplified setup of skip-gram where word 
embeddings are generated by predicting a single context 
word from a given focus word in a hypothetical small vocab-
ulary of 5 words. Moving from the input layer to the hidden 
layer is described in Fig. 26.12, and moving from the hidden 
layer to the output layer is described in Fig. 26.13. These are 
meant to provide a general intuition on how word embed-
dings are generated by setting up a supervised learning task 
of prediction. Note that the goal is really not to predict nearby 
words if given a specific word, but this setup appears to be a 
very effective way to generate word embeddings with con-

textual meaning. From Fig. 26.13, we notice that the softmax 
function will require summing up dot products across the 
vocabulary in the denominator, and in practice, this opera-
tion is inefficient or computationally expensive. Word2vec 
utilizes “hierarchical softmax” or “negative sampling” to 
render the algorithm more efficient, but these processes are 
beyond the scope of this chapter [12]. Aside from word2vec, 
GloVe (global vectors for word representations) represents 
an even simpler algorithm for generating word embeddings 
that is also commonly used [13].

 Word Embeddings: Implementation
In practice, a user does not have to generate word embed-
dings for every NLP project. There are several pre-trained 
word embeddings that were generated from very large 
vocabularies and text corpora, some of which are clinic notes 
[14]. Such word embeddings are expected to generalize and 
work well in NLP projects utilizing the same type of input 
text (e.g., clinic notes).

 Recurrent Neural Networks

Recurrent neural networks (RNNs) are neural networks that 
are suited for tasks dealing with sequential data. In NLP, that 
would mean a task where the sequence of the words is a fun-
damental piece of information for completing the task (e.g., 
information about previous words feeding in as input to 

Fig. 26.8 Simplified 
example of gradient descent 
when trying to find the 
intercept (parameter of 
interest) of the line of best fit 
for two observed points 
(assume slope of best fit line 
is known)
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Fig. 26.9 Gradient descent applied to the loss function of logistic regression
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functions working on downstream words). One such task can 
be word prediction, where an algorithm can predict the next 
most likely word given a sequence of words. Another appli-
cation is machine translation from one language into another. 
NER, predicting whether a word falls under a certain cate-
gory (e.g., a person’s name), represents another task that can 
leverage RNNs. An example that demonstrates how 
sequences can help with entity recognition is the following 

sentence: “The surgeon who previously took care of the 
patient Mr. Keys was Dr. Rivers.” The words “surgeon” and 
“Dr.” help identify “Rivers” as a person’s name, and “patient” 
as well as “Mr.” help identify “Keys” as a person. The struc-
ture of a basic RNN is represented in Fig. 26.14. If the same 
task was modeled with a standard feed-forward neural net-
work (multilayer perceptron) where the input word vectors 
are stacked on top of each other in an input layer followed by 
a dense hidden layer then an output layer, one can imagine 
how difficult it would be to go through different samples. 
That is because each sample has a different number of inputs 
and hence the input layer cannot have a fixed number of neu-
rons (unless the input layer is “padded” with zero-value neu-
rons as large as the largest sample—not feasible). In addition, 
if an RNN learns that “Harry” is a person’s name in position 
1 of a sequence, it can easily identify “Harry” as a name in 
any position (learned features generalize across different 
positions of text). That is not possible in a standard feed- 
forward network because of the difference in architecture. If 
words are used as inputs, these can be one-hot vectors or 
word embeddings. The potential advantage of using word 
embeddings becomes clear if you take the sentences: “The 
surgeon on the case was John Fisher” and “The doctor on the 
case was William Madison.” If an RNN uses word embed-
dings to learn that John Fisher is the name of a person, the 
similarity between the embedded vectors of “surgeon” and 
“doctor” will make it easier for the network to recognize that 
William Madison is also a name. The type of RNN used in 
NER has a many-to-many (inputs-to-outputs) structure with 
equal numbers of inputs and outputs (each input word has a 
predicted probability as an output). Other structures can be 
used for different tasks. For sentiment classification (e.g., 
determining whether a patient’s free-text review of a doctor 
is positive or negative), a many-to-one RNN with only a 
 single “ŷ” coming after the last input word in a sequence can 
be used.

Before moving on to more sophisticated RNNs, it is 
worthwhile discussing the limitations of the simplest RNN 
architectures. One limitation is unidirectionality, which 
becomes clear in the example “Keys was the surgeon on the 
case.” In a unidirectional RNN, the algorithm cannot use 
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0.3x0 + 0.25x1 + 0.5x0 + 0.25x0
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=
=

Embedded word vector
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Fig. 26.10 Word embedding matrix example. A vector can be thought 
of as a matrix of dimensions: vector size by 1. Matrices can be multi-
plied together when the number of columns in the first matrix equal the 
number of rows in the second matrix. The number of rows (d) of an 
embedding matrix “E” is set to the desired size of the final embedded 
word vector. The number of columns is equal to the size of the vocabu-
lary (N). To get the embedded word vector, the embedding matrix is 
multiplied by the one-hot vector of the word (in this case, the second 
word in a hypothetical vocabulary of four words). The resulting matrix 
from a matrix multiplication has dimensions: no. of rows = no. of rows 
of first matrix (e.g., 2); no. of columns  =  no. of columns of second 
matrix (e.g., 1). The 1 by 1 value of the resultant matrix is obtained by 
the dot product of the first row in matrix E with the first and only col-
umn in the one-hot matrix. The 2 by 1 value is the dot product of second 
row in E with the column in the one-hot matrix. Notice how multiplying 
by the embedding matrix simply picks out the values of a certain col-
umn: here for example, the second word in the vocabulary picks out the 
second column of E. Every column in E represents the corresponding 
embedded word vector. Word embedding consists of learning the values 
inside that embedding matrix, which are the parameters of the learning 
task

“doctor administered drugs in clinic”

CBOW Skip-gram

doctor administered in clinic drugs

predict target word “drug” given
neighboring context words within

a window of ±2 words

predict neighboring context
words within a window of ±2

words given a target word “drug”

Fig. 26.11 CBOW and 
skip-gram approaches of 
setting up a prediction 
task. The window of words 
constitutes a hyperparameter 
that can be set to a desired 
number
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information from “surgeon” to figure out that “Keys” is a 
name. Hence, bidirectional RNNs are better suited for NER 
tasks [15]. Another major limitation of simpler RNNs is the 
vanishing gradient problem which limits the ability of 
RNNs to process long-term dependencies (e.g., how a word 
very early on in a sentence affects a word located very far 
downstream). The vanishing gradient problem can be 
understood by looking at how backpropagation works to 
modify early parameters. By closely looking at the chain 
rule, the gradient of the loss with respect to the parameters 
in the early layers (e.g., first time-step) is a product of 
derivatives that depend on components situated at later lay-
ers. If some of the terms in this product are small (less than 
1), then the resulting gradient of the early parameters will 
be even smaller. In some instances, it is too small to cause 
a meaningful update in the weights after a certain batch, 
especially after being multiplied by a learning rate. The 
weight is hence “stuck” and cannot be optimized due to this 
vanishingly small gradient. A similar problem that occurs 
less often in RNNs is the exploding gradient problem, 
whereby many of the terms are large (>1), and the resulting 
gradient is exponentially large, complicating the optimiza-
tion process. RNNs processing data over thousands of 
time-steps and feed-forward ANNs that are very deep (sev-
eral hidden layers) can suffer from these unstable 
gradients.

 Gated Recurrent Units
Gated recurrent units (GRUs) are a modification of the stan-
dard RNNs that mitigates the vanishing gradient problem by 
employing gate mechanisms that determine which word ele-
ments are worth retaining from time-step to time-step [16, 
17]. That way, they are able to learn long-term dependencies 
between words. They can be thought of as an RNN frame-
work that prioritizes the memory of certain words and word 
elements over others (e.g., the words “doctor” and “drug” are 
more important than articles and prepositions; retaining 
whether a subject is singular or plural helps in predicting 
whether the verb downstream is singular or plural). The 
structure of a simplified GRU and the underlying mathemati-
cal operations are summarized in Fig. 26.15.

 Long Short-Term Memory (LSTM) Network
Another neural network structure capable of mitigating the 
vanishing gradient problem and of learning long-term depen-
dencies is the LSTM, which came before GRUs and is more 
flexible but more computationally expensive [18]. The 
repeating unit of an LSTM has a cell state (c) that flows 
through the unit and that can be modified with only some 
minor linear (i.e., can be modeled with a straight line) inter-
actions according to the values of different gates. The struc-
ture of a basic LSTM is represented in detail in Fig. 26.16. 
Certain variants of that structure can be used, including the 
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Fig. 26.12 Skip-gram predicting one context word “clinic” given the 
word “drugs” in a vocabulary of five words: from input to hidden 
layer. The input layer has no. of neurons equal to the corpus vocabulary 
(N) where each neuron represents a word. The input to that layer is a 
one-hot encoded vector representing the focus word (drugs in this one- 
sample example). The hidden layer has a size equal to the desired 
dimension of the embedded word vectors (in this case: 2). The neurons 

compute the weighted sum of their inputs. This can be represented by a 
matrix-vector multiplication where the embedding matrix contains the 
weights that the algorithm is seeking to optimize. E has dimensions d 
by N, and every column is the embedded vector of a word. The multi-
plication picks out the embedded vector of the corresponding input 
word
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addition of a “peephole” element, which is basically allow-
ing the gates to take a peek at the cell state of the previous 
cell to compute their values [19]. There is no universally bet-
ter algorithm when comparing GRUs and LSTM variants, 
and both have achieved favorable results in a variety of tasks.

 Convolutional Neural Networks

Convolutional neural networks (CNNs) are models that uti-
lize filters (also known as kernels) to extract features from 
the input by an operation known as convolution. CNNs were 
first developed to solve tasks that relied on processing visual 
input (e.g., classify picture of an animal as a cat vs. a dog or 
a handwritten number as the correct intended number by 
determining shared features between different pictures of the 
class “cat” or the number “9” for instance) or what is known 
as “computer vision” [20]. Hence, we will explain the basic 
concepts of a CNN using examples from computer vision 

and then generalize to NLP. First, the building blocks of a 
CNN will be discussed individually followed by a descrip-
tion of the complete CNN architecture.

In visual input processing, a grayscale image can be 
thought of as a 2-dimensional (2D) matrix of pixel values 
that represent brightness (higher values = brighter or more 
white pixels). One possibility to process such an image 
would be to convert it into a flattened vector of pixel values 
and feed it to a standard feed-forward ANN (Fig.  26.17). 
Several limitations become apparent with this approach. 
First, if one is starting with an 800 by 680 pixel image for 
example, the flattened input vector size and hence input layer 
neurons would be 544,000. With a subsequent dense hidden 
layer of 1000 neurons for example, the weight matrix operat-
ing on the inputs would be of size 1000 by 544,000 (544 
million parameters). With such a large number of parameters 
to learn, the computational process would be impractical, 
and an immense amount of data would be required to build a 
model that does not suffer from overfitting. Moreover, col-
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Fig. 26.13 Skip-gram predicting one context word “clinic” given the 
word “drugs” in a vocabulary of five words: from hidden to output 
layer.  An output matrix, of dimensions N by d, is multiplied by the 
embedded vector to produce an output vector of dimension N. The rows 
of the output matrix can be thought of as containing embedded vectors 
for context words. To convert the contents of the output layer into a 
probability distribution, a softmax activation function, which resembles 
the sigmoid function, is assigned to the output neurons, converting the 
output contents into a probability of occurrence for different words in 

the vocabulary as a context word two positions down from “drugs”. 
Note that sigmoid activation functions are typically used in binary clas-
sification problems (two possible outcomes) while the softmax is used 
in k-possible classifications (k-possible outcomes). Discrepancy 
between the probability assigned to “clinics” (the right word at that 
position) and “1” can be represented by a loss function. The process of 
stochastic gradient descent can optimize the embedding matrix to mini-
mize that loss and hence provide word embeddings of size “d” for 
words in the vocabulary
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lapsing the 2D pixel matrix into a single vector eliminates 
valuable spatial information from the image. In CNN, the 
input can take on more than one dimension, such as the 
example of a 2D, N by N matrix representation of pixel val-
ues of a grayscale image. The filter or kernel is a 2D, n by n 
matrix of a smaller size that can “convolve” over the image 
pixels or overlap them sequentially to extract certain features 
that are registered in a resultant matrix called a feature map. 
This process of convolution is described in Fig. 26.18. If the 
filter contains some specific values, it can systematically 
extract a certain feature from the image, such as vertical 
edges (Fig.  26.19). There are different filters for different 
features, including horizontal edges and diagonal edges. 
While one can design the filter to extract a specific feature, 
the values of a filter are actually weights that are learnable in 
the context of a visual processing task (e.g., determining the 
value of a handwritten number). When CNNs are set up with 
randomly initialized filters, the network can learn specific 
weights that end up extracting important features, such as 
vertical or horizontal edges, that are relevant to the task at 

hand. A potential issue to think about is that the corner and 
edge pixels in the input image are included in much less con-
volution steps than central pixels, so they contribute less 
information. One way to address this would be to “pad” the 
input image with zero-value pixels (Fig. 26.20). The padding 
can also be used to take care of stride values that may cause 
the filter to “fall off” the input image while convolving. 
“Same padding” is when padding is applied to yield a feature 
map with the same size as the unpadded image, such as in 
Fig. 26.20, where a pad of size 1 applied to a 4 × 4 image 
yields a 4 × 4 feature map. In addition to convolving over a 
2D input, it is also possible for CNNs to receive 3D input 
volumes, such as an RGB image with three stacked pixel 
matrices for every channel (red-green-blue). The convolu-
tion process in this case is described in Fig. 26.21.

With this knowledge, a convolution layer of a CNN can 
now be described (Fig. 26.22). Each filter essentially yields a 
feature map that gets summed with a bias term, and the result 
is fed through an activation function such as ReLU. One can 
rely on certain notations to describe any convolution layer 
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Fig. 26.14 Recurrent neural network structure with NER example. A 
sentence is being fed into the network to predict how likely each word 
represents a person’s name. This is an example of a many-to-many 
RNN structure where the number of outputs ŷ〈i〉 equals the number of 
inputs x〈i〉. The letter “a” represents hidden layers and every x〈i〉 is a 
word fed sequentially into an input layer, whereby every x〈i〉 in the 
sequence is referred to as the “ith time-step”. a〈0〉 is a starting point and 
is just an all-zero vector. An example of possible dimensions of every 
layer and weight matrix are provided in the figure and can be set by the 
user. Here for instance, pre-trained 300-dimension word embeddings 
are used as inputs, and hidden layers of 100 neurons and a ReLU activa-
tion function (tanh is another function that is commonly used) are used. 
The hidden layer also adds a bias term (ba). The output layer in this case 

is a single neuron with a sigmoid function and a bias term (by). Notice 
how information from the hidden layer of a word is fed to a downstream 
hidden layer with a Waa matrix transformation. This represents a form 
of “memory” for the network. The words can be one-hot vectors or 
word embeddings for example, and Wax is the weight matrix that is mul-
tiplied by the input word vector. Putting this all together, the operations 
in the hidden and output layers can be summarized by: a〈1〉 = ReLU (Waa 
a〈0〉 + Wax x〈1〉 + ba) & ŷ〈1〉 = σ(Way a〈1〉 + by). The discrepancy between 
the predicted probabilities (ŷ) and the labeled truth (y) can be modeled 
with a loss function typically used for sigmoid functions: L(ŷ,y) = −
[ylog ŷ + (1 − y) log (1 − ŷ)]. Backward propagation “through time” 
(since passes through different time-steps) subsequently optimizes the 
weights and bias terms as sentences are fed into the network
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(l). The input to that layer can be denoted by: 

N N dH
l

W
l l−[ ] −[ ] −[ ]× ×1 1 1 , which are the height, width, and depth 

dimensions. The generated output can be similarly denoted 

by: N N dH
l

W
l l[ ] [ ] [ ]× × , where d[l] is the number of filters. Each 

filter is denoted by: n[l] × n[l] × d[l − 1], where the filter depth is 
equivalent to the input depth. The size of the output can be 
calculated with the following formula: 

N
N n p

s
H
l H

l l l

l

[ ]
−[ ] [ ] [ ]

[ ]=
− +

+
1 2

1 , where “p” and “s” are the pad-

ding size and stride size, respectively. The width can also be 
calculated with the same formula. The number of filters, 
stride, and padding size at each layer are all hyperparameters 
of the CNN.

In addition to convolution layers, CNNs contain pooling 
layers, which reduce the spatial size of the representation, 
thereby decreasing the number of parameters and increasing 
the computational speed. One type of pooling is referred to 
as “max pooling,” and this process is described in Fig. 26.23. 
Pooling layers only have hyperparameters, such as dimen-
sion size and stride. Padding is rarely employed, except in 
some specific circumstances. Commonly used hyperparam-
eters include 2 × 2 max pooling with a stride of 2, which 
halves the height and width in the absence of padding. In 
pooling, there are no parameters to be learned by backpropa-

gation. Pooling works by capturing local regions of high 
activation from the input and preserving them which shrinks 
the representation while maintaining valuable information. 
Another type of pooling is known as “average pooling,” 
where the average of values in a certain window of cells, 
rather than the maximum value, is calculated. Pooling also 
works on volume inputs, whereby the pooling process is 
applied separately to every channel of the input. The output 
would hence have the same depth as the input.

Toward the end of the network, the third type of layer that 
is encountered is the fully connected layer. The volume pro-
duced by a series of convolution and pooling operations is 
typically flattened into a vector (a column of neurons) that is 
subsequently fed into fully connected layers (dense connec-
tions) prior to reaching the output layer. Putting all this infor-
mation together, the complete architecture of a CNN can be 
visualized (Fig. 26.24). With progression through the layers, 
the height and width dimensions typically decrease while the 
depth increases. The selection of the hyperparameters is 
often guided by previously published literature.

 CNNs Applied to NLP
Having discussed the structure of a CNN as it relates to 
visual input processing, the information can be readily 

Fig. 26.15 Gated recurrent unit cell structure.  In essence, one can 
think of a GRU as an RNN framework containing a hidden state (h〈t〉) 
that could either stay the same as that of the previous time-step (h〈t − 1〉) 
or update into a new one if the model learns that important information 
worth “memorizing” is encoded in the particular input word. The candi-
date hidden state that can replace the previous one is denoted by h t . 
The update gate (u〈t〉)is a sigmoid function that can be conceptualized as 
yielding 0 or 1 depending on the importance or relevance of the input. 
The hidden state of the current memory cell (h〈t〉) consequently keeps 
the same value from the previous time-step if u〈t〉 = 0 (check equation of 
h〈t〉) or takes on the value of the candidate hidden state if u〈t〉 = 1. When 

the gate value is 1 (i.e., cell will replace the previous hidden state with 
a candidate hidden state), we pay attention to a reset gate or relevance 
term (r〈t〉) which reflects how relevant the previous hidden state is to 
computing the candidate hidden state (if it is zero, the candidate hidden 
state is reset to a value completely independent from the previous time- 
step). The resultant h〈t〉 is fed forward to the next cell and possibly to an 
output layer, as in standard RNNs. Note that h t , h〈t − 1〉, u〈t〉, and r〈t〉 are 
vectors of the same size, so the “ʘ” symbol denotes element-wise rather 
than matrix multiplication. So in effect, there is gating for retention of 
individual features or elements of the input
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extrapolated to NLP. The same basic principles apply except 
for some considerations regarding input structure and filter 
dimensions. CNNs can achieve good results in several NLP 
tasks, especially those that involve classification, including 
sentiment analysis (e.g., is an online review of a doctor 
 positive or negative) and topic categorization [21]. The input 
can be in the form of embedded word vectors such as those 
generated by word2vec or GloVe. An example of a CNN 
applied in the context of NLP is provided in Fig. 26.25.

26.3  Time Series Analysis

With a general understanding of how a variety of neural net-
works process data in order to optimize model parameters in 
the context of NLP, the application of these same algorithms 
in TSA can be readily appreciated. Neural networks have 

Fig. 26.16 Long short-term memory (LSTM) cell structure.  As the 
cell state flows through the unit (c〈t − 1〉 to c〈t〉), it can be modified with 
linear interactions according to the contents of different gates, which 
are all sigmoid functions operating on the input of the current unit x〈t〉 
and the hidden state from the previous time-step h〈t − 1〉 to determine how 
best to modify the cell state. The first gate is the forget gate f〈t〉 which 
determines what information from the previous cell state will be 
dumped or forgotten (0  =  discard; 1  =  retain). For example, when 
encountering a new subject, the network might need to forget the prop-

erties (gender; singular vs. plural) of the past subject. In the subsequent 
steps, the network determines what new information is going to be 
stored in the cell state. A vector of candidate values 

c t  is generated 
from a tanh operation on x〈t〉 and h〈t − 1〉, and it is then multiplied element- 
wise with an update gate that determines what portion of each candidate 
element will be added to the cell state. The resultant state is passed on 
to the next cell. A filtered version of this cell state, created by a tanh 
activation function and multiplication by an output gate (decides which 
elements to output), is also fed into an output layer and the next cell
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Fig. 26.17 Processing visual input by flattening the image matrix into 
a vector
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achieved favorable results in many TSA tasks, especially 
forecasting [22]. In the remaining part of this chapter, we 
present some neural network architectures used in 
forecasting.

 Preprocessing

Prior to implementing algorithms, the time series data is 
often explored to identify general trends, which are a long- 
term increase or decrease of values in a series (e.g., decrease 
in cigarette sales over time), and seasonality, which is a fixed 
repeating short-term cycle in the series (e.g., fixed increase 

in alcohol sales every weekend). Seasonality can be additive 
(fixed magnitude of variation) or multiplicative (fixed per-
centage of variation) as demonstrated in Fig.  26.26. 
Moreover, the series can be analyzed for the presence of 
autocorrelation, which is the significant correlation between 
values at a time (t) and preceding values with a certain lag 
(t −  1, t −  2, t −  3, etc.). To measure autocorrelation, lag 
variables of the measurement of interest can be created 
(Table 26.4), and the association between the original vari-
able and the lag variable can be evaluated with a Pearson 
correlation test for example. One can also produce an auto-
correlation plot (correlation coefficient vs. lag value), also 
known as an autocorrelation function, which can also help 
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Fig. 26.18 Convolution process. The n by n filter is overlapped with 
an N by N input image matrix, and the element-wise products are 
summed together to compute the corresponding value in the resultant 
matrix, called a feature map, at the first position (66). The filter then 
“convolves” to the next position by moving to the right by a “stride” of 
squares set by the user (here s = 2) and computes the sum of element- 
wise products to yield the next value of the feature map (52). A similar 
process occurs for the third step. At the fourth step, the filter moves 

back to the left-most edge of the input image and displaces downwards 
by the stride value (top left corner of filter would overlap with “7” from 
the input image) and the process continues until all the feature map is 
filled. The formula used to compute the size of the feature map is: 
N n

s

−
+1 . If the result is a decimal, then it is rounded down. The aster-

isk in this figure denotes the convolution operation
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identify seasonality (Fig.  26.27). Commonly encountered 
autocorrelations are a positive correlation and a negative cor-
relation between values at time (t) and values from the previ-
ous time-step (t − 1), known as “stickiness” and “swings,” 
respectively. All these data exploration steps and others are 
often guided by some domain knowledge or expertise in the 
specific topic. In this phase, it is also necessary to identify 

unusual periods or outliers to avoid training the network on 
these nonsystematic components of the time series. In TSA, 
it is imperative to note that splitting up the data into training 
and validation cannot be done randomly because the values 
are not independent. Successive observations are needed to 
train and test a model, so typically, the first n% of successive 
observations are selected for training, leaving the next 100- 
n% for validation.

 Neural Networks: Multilayer Perceptron

A standard feed-forward ANN with an input layer, hidden 
layers, and an output layer is also referred to as a multilayer 
perceptron. This neural network can be used to forecast the 
next value in a time series (yt+1) using current (yt) and previ-
ous (yt−1, yt−2, …, yt−n) values. Every prediction will be 
made according to a window or sequence size of previous 
time- steps (e.g. in a training dataset of 100 values and a 
window of 4, use first 4 successive values as input (yt−3, yt−2, 
yt−1, yt) to predict the fifth value (yt+1); then in the second 
sample, use second to fifth values as input (yt−3, yt−2, yt−1, yt) 
to predict the sixth value (yt+1), and so on iteratively). The 
architecture of such a network in TSA is provided in 
Fig. 26.28. One preprocessing step that might help the acti-
vation functions work better is to convert the numerical 
input data into proportional values between 0 and 1 (maxi-
mum value becomes 1, minimum value becomes zero, and 
all values in between become proportional decimals 
between 0 and 1), a process known as normalization, since 
activation functions are sensitive to the magnitude of con-
tinuous variables (e.g., can work poorly with very large 
numbers). This transformation can be achieved with differ-
ent functions in various softwares (e.g., “MiniMaxScaler” 
in Python). After the model is trained/validated and predic-
tions are made, these predictions can be “inverse- 
transformed” into the original input scale (e.g., from 0–1 to 
$0–$950) to evaluate predictive accuracy. In time series 
forecasting applications, the multilayer perceptron models 
commonly include a single hidden layer. With an increase 
in the number of hidden layers and their neurons, the risk of 
overfitting and the computational time increase. To capture 
seasonality in the model, an additional input (yt−k; k = sea-
sonality; e.g., 12 in a monthly time series with a seasonal 
cycle every year) can be provided.

 Neural Networks: LSTM

Given their suitability for sequence type data, RRNs in 
general and LSTMs in particular represent other com-
monly used algorithms in time series forecasting. 
Similarly to the multilayer perceptron, the time series 
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Fig. 26.19 Vertical edge detection filter. This filter is designed to cap-
ture vertical edges in an image. Notice how the resultant 4 × 4 matrix is 
maximally activated at its center, indicating that the input image had a 
vertical edge in its center. This is only a simplified example. With a 
larger and more complex input image, the feature map would also be an 
image containing white vertical edges at the same places where the ini-
tial image had vertical edges

Fig. 26.20 Padding example of a 4  ×  4 input image with a pad 
size = 1. Even for a stride value of 2, the filter matrix can now convolve 
over the input without falling off on the right edge. Note that if the input 
image was not padded, no computations would have been performed 
for filter positions that do not completely overlap the input. To compute 
the size of the resultant feature map with padding involved, the follow-

ing equation can be used: N n p

s

− +
+

2
1 , where p is the padding size 

(here p = 1)
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data can be preprocessed according to a certain window 
or sequence size to create input-output pairs (e.g., four 
successive values in the time series predicting the fifth 
value). The successive values can be fed to LSTM cells, 
and the output can be a single predicted value which is 
compared to the true value. Mean squared error can also 
be used as a loss function. Several LSTM layers can be 
stacked on top of each other in addition to using subse-
quent dense layers before the single predicted output. As 
with other neural networks, risk of overfitting increases 
as the network increases in depth. The initial time series 
does not require preprocessing in terms of seasonality 
since the LSTM is designed to capture that component 
during the modeling process.

 Neural Networks: CNNs

CNNs can also be used in time series forecasting and are 
employed in similar fashion to NLP applications, whereby a 
one-dimensional sequence of values (in univariable cases) is 
taken as input to predict the next output. Like all algorithms 
used for forecasting, the data must be preprocessed into 
input-output pairs (e.g., using six successive values to pre-
dict the seventh value). As in NLP, the filters must have the 
same width as the input (width  =  1  in a univariable time 
series). The filters convolve vertically over the time series 
input according to a stride value and feed the data forward 
into the network (Fig. 26.29). In time series forecasting, the 
output usually contains a linear activation function.
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Fig. 26.21 Convolving over a volume (e.g., RGB image with three 
channels). This is a convolution operation over a volume, in this case 
stacked matrices of pixels in an RGB (red-green-blue) image. Shown 
here is the example of one filter, which should also be a volume with the 
same “depth” (d) as the input. The depth is also known as the “number 
of channels.” Notice that the filter channels need not have the same 
values, but the overall filter can be thought of as extracting a certain 
feature from corresponding channels in the input. The filter channels 
are simultaneously overlapped over their corresponding input channels. 
As a result, a sum of element-wise products is produced in every chan-

nel, and the summed total would be the first value in the feature map. 
The remaining values are calculated by the same convolutional process 
described in the 2D input example, with the filters moving together 
simultaneously. Notice that the feature map has a size calculated by the 

same formula: 
N n

s

−
+1 , but now the depth would equate to the num-

ber of filters. Here, only one filter of three dimensions was used, so the 
depth of the feature map is one. If an x number of three-dimensional 
filters were used to extract several features, then the feature map would 
have a depth of x
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Fig. 26.22 CNN convolutional layer. First, a bias term (b1) is added to 
all the values of the output from the first filter and then the resultant 
values are passed through a ReLU activation function for example. 
Another bias term (b2) is added to the output values of the second filter 
followed by a ReLU activation. The resultant 3 × 3 × 2 volume repre-
sents the activation in the next layer. The values in the filters can be 
thought of as weights that are to be learned. The bias terms are the other 

parameters that need to be learned. In a hypothetical example involving 
50 3 × 3 × 3 filters (for 50 features), the number of parameters to be 
learned would be: 3 × 3 × 3 × 50 + 50 = 1400. Notice that no matter how 
large the input image is, the number of parameters would remain the 
same (dependent on the number and size of filters), which is a favorable 
property of CNNs
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Fig. 26.23 Max pooling.  Max pooling sequentially goes through a 
window of cells and selects out the maximum value. In this example, 
the hyperparameters are set to 2 × 2, 1-stride max pooling, so a 2 × 2 
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Fig. 26.24 Complete CNN architecture: example of predicting the class of an input image. Architecture usually consists of alternating convolu-
tion and pooling layers, after which the volume of features is flattened and fed through a series of fully connected layers
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Fig. 26.25 Example of CNN as applied to NLP. In NLP, the input can 
be successive words encoded as word embedding vectors of size d = 3 
for instance. The width of the filters should equate to the size of the 
word embedding because the embeddings constitute discrete symbols 
(i.e., words). Encoding information from partial embeddings across 
many words (e.g., 2 by 2 filter with stride 1 moving across the example 
input) would not work well. The filters hence start at the top of the input 
and compute the resultant sum of element-wise products; they then 
move downward by a stride value which is often set to 1. Example val-

ues are provided for the first filter to facilitate visualization. Activation 
functions, such as ReLU, and a bias are also added to the computation. 
Here, four different filters are used, some with a different length, to 
capture a variety of word relations (between nearby words for length = 2 
and far away words for length = 3). Pooling provides the single highest 
value for every feature map, and the resultant values are concatenated 
into a feature vector. This is subsequently fed into an output layer 
through a matrix transformation
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Table 26.4 Daily alcohol sales with lag variables

Day Sales ($) Lag-1 sales ($) Lag-2 sales ($) Lag-1 sales ($)
1 423.2 – – –
2 445.1 423.2 – –
3 456.3 445.1 423.2 –
4 461.4 456.3 445.1 423.2
5 652.2 461.4 456.3 445.1
6 821.4 652.2 461.4 456.3
7 450.4 821.4 652.2 461.4
8 432.7 450.4 821.4 652.2

If the series has N periods, N lag variables can be created, but they will 
become successively shorter
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Fig. 26.26 Time series with an increasing trend and seasonal varia-
tion. Additive seasonality (left) versus multiplicative seasonality (right)
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Fig. 26.27 Autocorrelation plot. Bars surpassing the threshold repre-
sent statistically significant autocorrelations. A negative autocorrelation 
is observed for lag value 4 (t vs. t − 4), and seasonality is evident every 
seven time-steps (e.g., 1 week if measurements are daily)
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Fig. 26.28 Simplified multilayer perceptron with one hidden layer of 
two neurons applied to time series forecasting. The input consists of a 
series of consecutive values, and the hidden layer consists of an activa-
tion function such as sigmoid or ReLU. The output layer is a single 
neuron with a linear activation function that outputs the next predicted 

value (e.g., $452.1 predicted alcohol sales on the next day). The dis-
crepancy between predicted values and the actual values is modeled 
with a loss function, suitable for the prediction of continuous variables 
(e.g., mean squared error), which is minimized by learning the param-
eters (weights and bias terms) of the model
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Fig. 26.29 Example of CNN as applied to time series forecasting. As 
in NLP, the width of the filters should equate to the size of the input 
(e.g., width = 1 in a univariable time series). The filters hence start at the 
top of the input and compute the resultant sum of element-wise prod-
ucts; they then move downward by a stride value which is often set to 1. 
Example values are provided for the first filter to facilitate visualization. 
In this example, six successive values in the sequence are used to pre-

dict the seventh value. Activation functions, such as ReLU, and a bias 
are also added to the computation. Here, four different filters are used, 
some with a different length. Pooling provides the single highest value 
for every feature map, and the resultant values are concatenated into a 
feature vector. This is subsequently fed into an output layer through a 
matrix transformation

26.4  Conclusion

A host of machine learning algorithms have been used to 
perform several different tasks in NLP and TSA. Prior to 
implementing these algorithms, some degree of data pre-
processing is required. Deep learning approaches utilizing 
multilayer perceptrons, RNNs, and CNNs represent com-
monly used techniques. In supervised learning applica-
tions, all these models map inputs into a predicted output 
and then model the discrepancy between predicted values 
and the real output according to a loss function. The 
parameters of the mapping function are then optimized 
through the process of gradient descent and backward 
propagation in order to minimize this loss. This is the 
main premise behind many supervised learning algo-
rithms. As experience with these algorithms grows, 
increased applications in the fields of medicine and neuro-
science are anticipated.
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27.1  Introduction

Machine learning (ML) is a subfield of artificial intelligence 
that involves algorithms which can dynamically learn from 
data to make predictions or decisions. The promise of ML is 
algorithms capable of automated self-improvement without 
the need for iterative programming [1]. Ideally, this enables 
the algorithms to accommodate for complexity in data or 
prediction beyond human comprehension [2]. These algo-
rithms are typically trained on sample data before deploy-
ment. Broadly, ML can be categorized as supervised learning, 
unsupervised learning, or reinforcement learning according 
to the feedback provided throughout training. The data ana-
lyzed can be structured, like a tabular database, or unstruc-
tured, such as clinical imaging or an electronic health record. 
ML algorithms typically perform as a function of the scale of 

their training dataset; large and rich training data is likely to 
yield a more robust algorithm [3]. While ML is increasingly 
part of modern applications, its role within medicine and 
neurosurgery continues to evolve [4]. Clinical neurosurgery 
encompasses a highly diverse set of disease processes, 
inspiring the development of a variety of unique ML applica-
tions for clinical prediction, diagnosis, and prognosis. Here, 
we present a brief history of the use of machine learning in 
neurosurgery over the past three decades, highlighting con-
temporary applications and the near future.

27.2  The Evolution of Machine Learning 
in Neurosurgery

 1990s: Early Applications in Neurosurgery

It is well-appreciated that the principles underlying machine 
learning emerged from early attempts by physiologists and 
mathematicians to model the brain [5]. Donald O.  Hebb’s 
discoveries in the field of neural plasticity were soon imple-
mented in silico [6, 7]. The origins of neural networks date 
back to foundational efforts by Frank Rosenblatt in the 1950s 
to create the perceptron, an algorithm designed for image 
recognition inspired by the natural organization of neurons 
[8, 9]. While many fields benefited from these neurologically- 
informed advancements in computing over the subsequent 
decades, the initial application of machine learning in neuro-
surgery began in the 1990s. Throughout this decade, clinical 
prediction and preoperative planning were the predominant 
applications of machine learning [10]. Commonly, these 
tasks were examples of supervised learning as researchers 
began pitting computers against radiologists and neurosur-
geons in mock battles of clinical decision-making [1].

Early endeavors to apply ML to unstructured data in neu-
rosurgery were met with modest success. Researchers com-
monly compared artificial neural networks (ANN) to the 
performance of clinicians on a variety of image identification 
tasks. An early proof-of-concept emerged in 1992 when 
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Floyd et  al. demonstrated that an ANN could outperform 
human observers at detecting circular lesions in simulated 
single-photon emission computed tomography images [11]. 
However, this signal detection task was conducted using 
computer-generated images with significant noise, meant to 
resemble a brain or liver lesion. A few years later, machine 
learning was explored more broadly on neurosurgical clini-
cal imaging. In 1995, Christy et al. developed a neural net-
work developed for grading supratentorial astrocytomas 
[12]. The study compared feature detection in magnetic reso-
nance imaging (MRI). The neural network correctly distin-
guished between high- and low-grade tumors with an 
accuracy of 61% relative to a 57% for a neuroradiologist, 
though this modest improvement did not reach statistical sig-
nificance. By the end of the decade, researchers developed 
ANNs that could outperform clinical experts at glioma grad-
ing from MRIs [13]. Forays into unsupervised machine 
learning methods such as fuzzy c-means (FCM) clustering 
for tumor volume estimation on MRI similarly yielded simi-
larly promising results [14].

 2000s: Refinement and Expansion

After the potential for machine learning in neurosurgery was 
first widely demonstrated in the 1990s, incremental advance-
ments were steadily made in the 2000s. Neurosurgical publi-
cations featuring machine learning rose from 3–4 per year in 
2000–2001 to 12–13 per year by the end of the decade [10]. 
The role of unsupervised learning in brain tumor detection 
and segmentation was further developed. FCM algorithms 
continued to outperform clinical experts at glioma segmenta-
tion [15]. With the success of tumor detection and segmenta-
tion using MRI, machine learning was subsequently applied 
to the radiologic diagnosis of brain tumors. Several ANNs 
outperformed radiologists at distinguishing between the 
imaging characteristics of various intra-axial cerebral tumors, 
pediatric posterior fossa tumors, and suprasellar masses on 
MRI [16–18]. Additional machine learning algorithms were 
also introduced in the neurosurgical literature throughout this 
time including support vector machines and naïve Bayes clas-
sifiers [19]. Notably, the use of ML for outcome prediction in 
neurosurgery was largely neglected in this decade [10].

Furthermore, the stage was set in the 2000s for the 
advent of “big data.” With the passage of legislation such as 
Health Information Technology for Economic and Clinical 
Health Act in 2009, the American medical industry saw a 
paradigm shift from paper records to electronic health 
records [20]. Interest in “big data” rapidly grew, as these 
electronic health records enabled clinicians to search and 
process clinical data at a larger scale than before. This 
trend, along with a growing awareness and interest in 
machine learning among medical researchers, led to a 

marked increase in the application of ML within neurosur-
gery that defined the subsequent decade [1].

 2010s: Exponential Growth and Adoption 
of Machine Learning

Around the start of the 2010s, ML began to see explosive 
growth within the neurosurgical community. This coincided 
with the rapid expansion of both structured and unstructured 
data throughout medicine secondary to the widespread adop-
tion of electronic health records [21]. Databases, such as the 
National Inpatient Sample (NIS) and the National 
Neurosurgery Quality and Outcome Database (N2QOD), 
increased access to large-scale neurosurgical datasets [22]. 
The number of neurosurgery ML publications rose from less 
than 15 per year in 2010–2011 to greater than 40 per year in 
2015–2016, and by the end of this period ML was being 
applied to all stages of neurosurgical care: preoperative plan-
ning, intraoperative guidance, postoperative outcome predic-
tion, and neurophysiological monitoring [10]. By the end of 
the decade, one survey study of neurosurgeons demonstrated 
that 28.5% of respondents were utilizing ML in their clinical 
practice, and 31.1% in their research [23].

As the initial excitement surrounding ML led to wide-
spread utilization, it became evident that certain applications 
of ML algorithms would be more successful than others. For 
example, ML proved to be particularly effective at analyzing 
unstructured data, as these data sources often contain valu-
able information that is difficult to characterize using tradi-
tional statistical methods. A majority of these efforts were 
directed toward clinical imaging, but other applications 
included interpretation of electroencephalography and free- 
text clinical notes [10]. ML studies demonstrated promising 
results for a variety of clinical tasks, including preoperative 
characterization of lesions on imaging [24, 25]. intraopera-
tive classification of tumors [26], and advanced prediction of 
epileptic seizures based on EEG signals [27]. The develop-
ment of deep learning algorithms led to unprecedented 
breakthroughs in machine vision when provided with large 
training datasets [28]. On the other hand, the application of 
ML to structured data forms, such as tabular data regarding 
clinical features and patient outcomes, generated mixed 
results. Although some studies demonstrated that ML out-
performed traditional statistical modeling for clinical out-
come prediction [29–31], a multitude of other neurosurgical 
publications found no difference between ML and regression 
modeling [32–34]. Toward the end of the decade, critical 
analysis of ML performance was also garnering attention in 
the greater medical literature. One systematic review across 
multiple specialties even demonstrated that there was no 
overall difference between ML and logistic regression model 
performance for binary outcomes [35].
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Overall, this decade saw a great increase in the awareness 
and utilization of ML in neurosurgical research and clinical 
practice. As seen with many new technologies, the use of ML 
within neurosurgery followed a trajectory well-characterized 
by the Gartner Hype Cycle; initial excitement resulted in 
extensive utilization, which was followed by a critical analy-
sis of the capabilities of the technology and its appropriate 
use [36]. While ML can offer powerful advantages over tra-
ditional statistics in certain scenarios, care must be taken in 
selecting the appropriate applications for ML.

27.3  Contemporary and Novel 
Applications

In recent years, there has been a surge of new machine learn-
ing implementations seeking to address challenging ques-
tions within neurosurgery. In this section, we highlight a 
group of studies that appropriately apply ML to derive clini-
cally meaningful data from generally imperceptible patterns 
and features.

ML has demonstrated promise in brain tumor manage-
ment through a wide variety of applications. Current clinical 
workflows for neurosurgical tumor care require multiple 
imaging studies for surgical planning and follow-up. These 
studies provide a rich source of data to which ML can readily 
be applied to gain clinically valuable information. For 
instance, several studies have applied ML to cranial imaging 
for tumor diagnosis and characterization as well as glioma 
grading [15, 17, 18, 37, 38], and some have demonstrated 
similar or better diagnostic performance when directly com-
pared to radiologists [37, 38]. Notably, two of the studies that 
evaluated radiologists assisted by ML versus radiologists 
alone both demonstrated a significant improvement in clas-
sification of intracranial tumors when aided by ML [17, 18]. 
This shift from ML-versus-clinician to ML-plus-clinician 
will be crucial in future research, as initial clinical imple-
mentation is more likely to follow the latter framework [39].

Additional applications of ML to brain tumor imaging 
highlight its ability to derive clinically meaningful data from 
features that are not easily discernible by visual inspection. 
One common phenomenon that often complicates neurosur-
gical tumor care is pseudoprogression of brain tumors after 
treatment with stereotactic radiosurgery. Pseudoprogression 
is simply a sequela of radiosurgical treatment involving 
tumor necrosis, inflammation, and vascular injury, but it is 
often visually indistinguishable from true tumor progression 
on follow-up magnetic resonance imaging. Thus, the current 
gold standard for differentiating pseudoprogression from 
true progression is pathologic examination. However, 
researchers have demonstrated that ML models hold promise 
for differentiating pseudoprogression from true tumor pro-
gression for both brain metastases and glioblastoma [40, 41].

Another neurosurgical question that has been difficult to 
resolve with conventional imaging interpretation is peritu-
moral glioblastoma invasion. It is well known that glioblas-
toma extends beyond visible enhancing tumor on MRI, but it 
has been extremely difficult to differentiate infiltrating tumor 
from vasogenic edema in the peritumoral region on imaging. 
One study by Akbari et al. demonstrated that ML algorithms 
applied to multiparametric MRI images were able to esti-
mate the extent of tumor infiltration and even predict loca-
tions of future tumor recurrence [42]. This novel application 
of ML demonstrates how future integration into clinical 
workflows may improve preoperative tumor targeting by 
informing boundaries for supratotal tumor resection.

Intraoperatively, ML promises to dramatically alter surgi-
cal workflow through the real-time diagnosis of brain tumors. 
When compared to pathologist-confirmed histology, deep 
convolutional neural networks (CNNs) predicted brain tumor 
diagnosis using stimulated Raman histology with commen-
surate accuracy in under 150 s [43]. Finally, ML algorithms 
have also demonstrated promise in predicting molecular sub-
type and even survival for glioblastoma patients based on 
complex radiographic patterns [44]. Overall, novel applica-
tions of ML modeling to neurosurgical tumor management 
have shown how the technology has the potential to advance 
each stage of care, from initial diagnosis to long-term 
outcomes.

While the above examples illustrate the utility of ML in 
brain tumor management, ML has also been applied within a 
variety of other neurosurgical domains. For neurosurgical 
emergencies such as stroke, hemorrhage, and hydrocephalus, 
time to diagnosis and treatment has a drastic impact on treat-
ment success and patient outcomes. One study demonstrated 
that a three-dimensional convolutional neural network was 
able to accurately screen computed tomography (CT) head 
imaging for acute neurological illnesses and reduce time to 
diagnosis from minutes to seconds in a randomized, double- 
blinded, prospective trial [45]. Within the field of spine sur-
gery, ML models have been developed for automated spine 
segmentation for computer-assisted surgery and automated 
detection of vertebral body compression fractures on CT 
imaging [46, 47]. Functional neurosurgeons have utilized 
ML to predict treatment outcomes for patients undergoing 
surgical treatment for epilepsy based on perioperative brain 
imaging, demonstrating how ML can aid clinical decision- 
making by identifying which patients are most likely to ben-
efit from surgical intervention [48–50].

Although the majority of ML research thus far within 
neurosurgery has been related to image analysis, additional 
studies have also demonstrated its effectiveness with other 
unstructured data sources. ML has also demonstrated prom-
ise in rudimentary EEG analysis, such as differentiating 
 normal from abnormal signals and detecting epileptic sei-
zures [51–54]. Natural language processing (NLP) has been 
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applied to clinical notes to extract key information from 
unstructured text, such as identifying incidental durotomies 
in spine surgery and extracting key radiographic variables 
from radiology reports [55–57]. These initial applications 
demonstrate how NLP is a powerful way for clinicians to 
quickly and accurately extract data from notes, and its prom-
ise as a potential tool for retrospective analysis of key clini-
cal outcomes.

Despite the success of novel ML applications within neu-
rosurgical research, significant barriers remain to its wide-
spread clinical implementation. Many ML models are 
mechanistically impossible to interpret, and thus referred to 
as “black box” models. While they can still be assessed based 
on their output, the lack of comprehensible information 
regarding how the model derived that output may cause 
reluctance in implementation [58, 59]. Furthermore, ML 
models are highly dependent on the quantity and quality of 
data they are trained on and applied to, which can further 
limit generalizability and reproducibility [60]. This means 
that (1) ML models may underperform in real world applica-
tions, as research data may be of higher quality and (2) large 
training data sets will be essential to advanced ML modeling. 
Current access to patient data across institutions and regions 
remains quite limited. While considerable challenges still 
impede the widespread clinical adoption of ML, recent stud-
ies detailing novel applications of ML within neurosurgery 
demonstrate how proper development and deployment has 
the potential to shift the paradigm of both clinical research 
and patient care.

27.4  Conclusion

The rapid growth of machine learning in neurosurgery over 
the past three decades has been catalyzed by the digitization 
of medicine and the democratization of data science tools. 
While the benefit of machine learning may be comparable to 
conventional regression techniques when analyzing struc-
tured data, it offers an unprecedented potential to revolution-
ize the analysis of unstructured data. Amidst the quantitative 
expansion of machine learning in neurosurgery, there is an 
increased need for qualitative improvement and judicious 
deployment thereof.
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Machine Learning and Ethics

Tiit Mathiesen and Marike Broekman

28.1  Introduction

Machine learning (ML) has a unique capacity to structure 
and analyze data in amounts beyond a human scale. The 
complexity and size of data surpasses detailed oversight and 
accountability by humans. Human ethical duties and respon-
sibilities may become occluded or altered when ML is used. 
Subsequently, novel ethical dilemmas arise when ML han-
dles very large data sets or calculates statistical correlations 
and covariation in such sets for medical decision-making. 
Three ethically sensitive areas include (1) personal integrity 
in cases of data leakage in a wide sense, (2) justice in resource 
reallocation from care-cost to cost for information technol-
ogy (it), and (3) ethical accountability in ML-assisted medi-
cal decision-making. In this essay, we will discuss these 
areas and attempts to ameliorate the ethical risk. This essay 
is intended to introduce these themes of ethical challenges in 
medical applications of AI.

28.2  Personal Integrity

A prerequisite for and hallmark of ML is an ability to rapidly 
systematize or analyze large data sets. Such sets contain 
enormous amounts of personal information, both sensitive 
and insensitive. This creates a potential source for leakage, 

as these data sets can never be completely anonymous or 
inaccessible to misuse [1–3].

Indeed, each individual dataset may become large enough 
to be unique and over-determined: it will be possible to 
remove information such as names and personal 
identification- numbers without compromising uniqueness of 
the set. Thus, everyone is theoretically identifiable even if 
overt personal identification is removed in a process of “ano-
nymization.” In principle, everybody in the database can be 
identified and thus personal information is accessible with 
enough efforts. The same argument goes with data protection 
in general. Security analysts equal data protection with mak-
ing access to stored data too complex to be cost-effective 
while data is never completely protected [4]. In reality, data 
security breaches are common large-scale events [5, 6]. 
Democratically elected political leaders advocate it should 
be commercialized and made available to external partners to 
improve care but also to generate revenue [7]. 
Commercialization is only possible if legal protection is 
attenuated: new legislation needs to change protection of 
personal integrity. Data security breaches can have serious 
consequences.

In addition to the inherent risks related to the collection 
and storage of data, there will be weaknesses related to the 
use and ownership of data [8]. For example, personal data 
has become a business asset [9]. Private companies sell data 
for identification and targeting of customers or, even worse, 
to manipulate populations [10]. Although tech companies 
sell data with users’ explicit consent, but a different trend has 
emerged during the last years. Apparently, a market for pop-
ulation biological- and health data has arisen. The prime 
example is Iceland, where a private company owns data on 
genetic codes and health on two-third of the population [2]. 
Policy makers have come to think of individual, population 
data as an asset. Political leaders in Sweden advocate for 
changes in legislation to allow large-scale export of popula-
tion health data with a double aim. The major argument is 
disruptive, beneficial knowledge of health to “revolutionize 
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healthcare.” The second aim is commercialization to finance 
hospitals, support novel technology and generate revenue [7, 
11]. There is an obvious disagreement between the values 
that lead to our prevailing legal protection of personal data, 
including some degree of individual ownership, and the poli-
tics behind realization of commercial values. Apart from the 
conflict of values, large-scale data-mining projects for 
health-care solutions have a history of failure to deliver 
expected results.

Given the above, it is not realistic to believe that sensitive 
personal information will always be stored and used in a safe 
way and they will probably always be accessible for an 
attacker with sufficient zeal and resources.

28.3  Justice and Investments 
in Information Technology

Justice is one of the four biomedical principles suggested by 
Childress and Beauchamp [12] to facilitate ethical decision- 
making in medicine. Justice addresses resource allocation 
and comprises an imperative to design distributions that 
maximize equality in care and health. Health care spending 
has increased constantly, and measures to limit spending and 
cut down health-care budgets appear to become increasingly 
important for political management of society. Political 
resource allocation and choice between different budget 
areas such as healthcare, education, police and infrastructure 
comprise horizontal prioritization of resources, while priori-
tization within a field is “vertical”; e.g., the choice between 
allocating more resources for pediatric oncology or ventila-
tors for Covid-19 patients. Horizontal prioritization of novel 
information technology for healthcare will leave less money 
available for biomedical research, staff, buildings, instru-
ments, and material for care. Investments to improve produc-
tivity become attractive when healthcare budgets are strained, 
and prioritization of information technology is typically pro-
mulgated as a means to increase productivity. Marketing of 
new technology is strong. Technological inventions are part 
of a thriving entrepreneurial industry of skilled engineers 
and salesmen. However, we will see below that large tenders 
have led to enormous public investments in untested techno-
logical solutions.

Information technology has been successful in pattern 
recognition in large data sets such as radiological images 
and biological molecular files. We have also seen spec-
tacular examples that AI can overpower humans in strate-
gic games like Go, Chess and Jeopardy. Enthusiasm from 
such applications has fostered hopes of comprehensive 
it-solutions of “the future healthcare challenge.” The IBM 
Watson employed spectacular advanced natural- language 
processing in playing Jeopardy. The system was tested in 
a laboratory setting and produced show case examples 

demonstrated how IBM Watson outperformed clinicians 
in diagnoses of rare diseases. Given such promising IT 
achievements, business models for AI-assisted healthcare 
and management of huge datasets developed rapidly and 
attracted investments. For example, the IBM Watson pro-
grams were expected to improve complex medical deci-
sions in real life or even replace human medical experts 
for diagnostics and therapy. Systematic tracking of health-
care procedures, including strategies, indications and 
results would improve therapies and research. Investments 
were made by large tech companies, start-up companies 
and public partners. Money that would have been avail-
able to deliver care or investments in already validated 
technologies was redistributed to tech companies and 
entrepreneurs. Today, AI has unfortunately not lived up to 
its promise.

Indeed, many spectacular and widely published projects 
have turned into scandals, especially when public actors such 
as governmental regions and hospitals have made large 
investments in unproven technology. One can even argue that 
money moved from healthcare to industry in a “reverse 
Robin Hood”-like process. Health care expenditure has 
increased massively in the last decades, and lead to a reactive 
call for rationing and prioritization to curb costs. Hence, 
health care is increasingly under-financed in relation to pop-
ulation expectations and demands; rich countries such as 
Sweden even reported that they were not able to meet legiti-
mate healthcare needs under normal conditions [13]. In con-
trast, tech industry is already fed with huge investments in 
the hope of financial return.

One example is implementation of the comprehensive 
health records, that do not involve AI per se, but have been 
bought as potential platforms for future ML applications. 
The capital region in Denmark invested in a system from 
Epic. “Sundhetsportalen” (SP) was bought by elected politi-
cians as a comprehensive platform for communication, 
research, analysis and documentation, although health-care 
personnel criticized its lack of intuitive support of daily 
work. It soon became evident that expected functionalities 
had not been developed and could thus not be delivered. The 
program worked well for tracking cost and accounting of 
patients, but workflows and communication met obstacles as 
the system was primarily designed for accounting and cre-
ated obstacles when used by nursing staff and physicians for 
daily delivery of healthcare; hopes for research support and 
data analyses were never met. The Danish national auditors 
concluded that money intended for healthcare had been 
badly invested for untested technology, which decreased pro-
ductivity by 30% and created new costs to maintain safety 
and research [14, 15]. Interestingly, this negative information 
has not been disclosed as the system is sold on in the US, 
Holland, Sweden and Finland as a fully successful solution 
to future health-care management.
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Another scandal is related to the IBM Watson. IBM 
Watson had been described to “almost understand the mean-
ing of language, rather than just recognizing patterns of 
words” [16]. It was aggressively marketed “is real, it’s main-
stream, it’s here, and it can change almost everything about 
health care” [17]. One application was developed as a com-
prehensive oncology tool: “Watson for Oncology was sup-
posed to learn by ingesting the vast medical literature on 
cancer and the health records of real cancer patients. The 
hope was that Watson, with its mighty computing power, 
would examine hundreds of variables in these records—
including demographics, tumor characteristics, treatments, 
and outcomes—and discover patterns invisible to humans. It 
would also keep up to date with the bevy of journal articles 
about cancer treatments being published every day” [16]. 
Large institutions like Cleveland Clinic, MD Andersson and 
Memorial Sloan Kettering Cancer Center entered into largely 
published partnerships with large investments [16]. It soon 
became clear that Watson was unable to independently mine 
and process medical news or published knowledge, retrieve 
relevant patient info from charts, compare individual patients 
to the “big data” of previous patients, or even suggest thera-
pies beyond simple guidelines. The flagship collaborations 
were discontinued within a few years after large spending. 
The MD Anderson cancer center spent $62 million on the 
project before canceling it 2016 according to the University 
audit [16].

A third example was the locally largely published GVD- 
project in Stockholm City council [18, 19]. This was also an 
IT-system for unified documentation of all care related-data 
and single portal access with extensive hopes for data analy-
ses. The project was expended to be running in 2004. 
Responsible personnel left or were fired, and the project was 
finally discontinued in 2007 after having exceeded the bud-
get of 200 million SEK with 1.4 billion SEK “of taxpayers 
money.” It was very delayed and delivered nothing that was 
clinically useful or applicable [19]. The auditors had then 
since 2003 criticized poor anchoring in actual care- processes, 
lack of cost control and nebulous chains of command. The 
analytic capacity of AI is indispensable for metabolomics 
and analyses of gene- or epigenetic panels, but such suc-
cesses cannot be freely extrapolated to analyses of complex, 
ambiguous or vague data and outcomes.

The investment decisions appear to have been fueled by 
spectacular examples of pattern recognition and performance 
in games with fixed rules where analogy with “other com-
plex tasks” has been taken to guarantee similar abilities in 
categorically different challenges, such as health care deliv-
ery. It appears that the public investors, typically third-party 
payers, confidently made strategic decisions while lacking 
sufficient knowledge of healthcare and AI to analyze neces-
sary performance of products. Confidence without correla-
tion to competence was described by Kruger and Dunning 

[20]. The decision-makers were probably particularly vul-
nerable when attracted by bandwagon-style marketing of 
“future technology” and “disruptive novelty.” This moder-
ately informed desire to join cutting-edge development 
paired with a need to decrease direct health-care cost has 
been toxic to health care performance and budgets. The good 
intentions paired with limited economic accountability and 
the Dunning–Kruger effect lead to redistribution of money 
from healthcare to an already thriving entrepreneurial IT 
industry. This reversed Robin Hood effect creates injustice in 
vertical prioritization of societal and health-care resources.

28.4  Accountability: Who Decides 
and What Is the Decision Based On?

Health care delivery entails a social contract between expert 
caregivers and society. Essential elements include expert 
skills, professional ethics and accountability among care giv-
ers, which are the only guarantees that professional experts 
fulfil their contract obligations. Expertise has elements that 
can only be understood by experts, which is why external 
regulation cannot fully grasp or regulate professional activity 
[21]. Moreover, every medical decision combines medical 
facts and values. Medical facts require medical knowledge 
and must be differentiated from values. Values belong to the 
realm of ethics. For accountability, value judgments and 
medical facts must be transparent and the process from val-
ues and facts to a decision must be traceable [22]. This is 
challenged by the introduction of AI into healthcare.

 Values and AI

The classic example of values and artificial intelligence is the 
hypothetical case of an automatically driving car that faces 
collision when a child suddenly steps into the road: to we 
want the car to guarantee driver safety and run over the child, 
or do we prefer a drastic maneuver that saves the child but 
may hurt the driver. The dilemma must either be solved with 
programing measures or one must consider that machine 
learning will allow the program to make an autonomous 
choice independent of human deliberation? For this kind of 
problem, Goodall [23] concluded: “The study reported here 
investigated automated vehicle crashing and concluded the 
following: (a) automated vehicles would almost certainly 
crash, (b) an automated vehicle’s decisions that preceded 
certain crashes had a moral component, and (c) there was no 
obvious way to encode complex human morals effectively in 
software.”

With todays’ AI, deliberate programming of ethical 
parameters is still necessary for machine learning of this 
kind of dilemma. The explicit definition of values is a 
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prerequisite. In analogy, games where AI excel like chess, go 
or Jeopardy comprise explicit definitions of success. In con-
trast to moral decisions, the concept of winning a game is 
free of any ambiguity and does not include involvement of 
meta- level judgment. An algorithm for machine learning 
from a training cohort of past instances is probably too com-
plex for success. Even a hypothetical case of successful ML 
is, however, problematic, regardless of whether supervised 
or unsupervised learning is employed. With a supervised 
strategy, ML is instructed by the programmer of what is right 
and wrong. In contrast, an unsupervised strategy would dis-
cern patterns of deliberate human action and thereby perpet-
uate bias of human performance without any meta-level 
ethical evaluations or critical analyses.

Another narrative involves the concept of independent 
artificial intelligence. Moore’s law expresses that processors 
increase processing capacity exponentially. Moore’s law and 
the postulate that consciousness will arise as a necessary 
result of sufficient complexity foster a belief that any suffi-
ciently complex computer can achieve independent cogni-
tion and moral agency like a human individual—but with a 
superior capacity. The theme of “AI taking over” is fre-
quently evoked in popular culture, not least “a Space Odyssey 
2001” by Arthur C Clarke and the subsequent film by Stanley 
Kubrick. The dystopic suggestion is that AI, if “conscious,” 
will protect itself and the hardware while allowing children 
and passengers or even all of mankind to succumb. Nick 
Bostrom has developed philosophical analyses and warned 
for independent and unaccountable AI [24]. Philosophy of 
consciousness holds the postulate above as a simplification 
with limited support, but it still does not appear that we can 
expect ML or AI to provide accountable human moral 
deliberation.

 Traceability of Decisions 
and Recommendations

A main feature of ML is its capacity to learn from data with-
out explicit programming [25]. In other words, data is han-
dled without an explicit instruction of how data is to be 
evaluated and grouped. Even the programmer of ML or neu-
ronal networks is ignorant of the exact steps that lead to a 
result. Results of a calculation are thus displayed without any 
explanation of which calculation, evaluation, comparison or 
strategy led to the specific result. In reality, input is trans-
formed in a “black box” to generate an answer to the pro-
grammed task. For example, in neural networks a middle 
layer is inserted between input and output. The weights con-
necting input variables to the middle variables and those con-
necting the middle variables to the output variable are being 
adjusted in several iterations. The end model is a result of 

these iterations, but cannot be interpreted as to how much the 
various input variables contribute to the outcome [26].

Under this condition, accountable ethical decision- 
making can be a problematic. One can argue that at least one 
person must be the responsible moral agent, i.e., the person 
that makes an ethical decision [27, 28]. One could speculate 
that the real moral agent is the manufacturer of the device, 
the owner of the system or a responsible professional. The 
traditional framework of healthcare identifies a responsible 
physician as the ultimate moral agent; the physician will be 
asked to make a decision based on a recommendation from a 
machine learning process that he cannot oversee or fully 
interpret [29]. The difficulty to interpret ML data is illus-
trated by abundant examples of bias or misleading decision- 
making. It is important to realize that one or several correct 
result from an ML program can never guarantee the next 
question will be correctly answered. Machine learning can, 
as it works today, not outstep boundaries of its training 
cohort and the basis or its judgment are not explicit when a 
response is delivered. The training cohort may be biased, 
comprise an irrelevant population, fail to differentiate objec-
tive and man-made qualities that can be influenced by the 
results of ML or make decisions based on covariates that in 
reality represent epiphenomena.

Ribeiro et  al. [30] made the” Wolf vs. husky” study, 
which illustrates the importance of a classifier in ML.  In 
this study, they used a training set with images of wolves 
and huskies for supervised learning and soon came up with 
an algorithm that made a number of consecutive classifica-
tions of images not used for training correctly before clas-
sifying some very clear images wrongly. The researchers 
suspected a bug but found out that the model learned to 
classify an image based on whether there was snow in it. 
All images of wolves used for training had snow in the 
background, while the ones of huskies did not. Subsequently, 
wolves without snow in the background were classified as 
huskies and vice versa.

Moreover, in real life other animals than those in the 
training set can be encountered. Ribeiro et al. continue: “We 
know our wolf vs. husky model doesn’t know a bear when it 
sees one. It will try to classify it as either a wolf or a husky.” 
The neural model assigns a probability to a given output, but 
the probability does not reflect the confidence in the output. 
Predictions are confident even if they make no sense at all: 
“When the model encounters the image of a bear, the output 
can be anything from 100% wolf to 100% husky.” Sending a 
pet-dog to play with a “husky” may kill the dog if the crea-
ture is a mis-classified wolf or a bear.

In analogy, moral medical and ethical decisions based 
on ML or AI can have catastrophic results if the algorithm 
has made mistakes of a kind a human cannot vision or 
understand.

T. Mathiesen and M. Broekman
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28.5  Discussion

We have described several of the ethical dilemmas inherent 
in big data and Machine learning: lack of guaranteed privacy, 
risk of unjust horizontal resource allocations and a funda-
mental lack of ethical accountability. These must be acknowl-
edged and addressed when implementing support and 
benefits of ML and AI.

Protection of privacy is dependent on regulation and pre-
vention. Privacy and implementations of data are already 
legally governed. In Europe, the data protection law (GDPR) 
limits storage and use of individual data and EU-guidelines 
require use of data to be lawful, ethical and robust [31]. 
Still, whenever AI. ML or Big Data are employed for future 
benefits past proven or even necessary utility, massive 
amounts of personal information are potentially available 
for “predators” and may be utilized providing cost is lower 
than benefit. For this reason, active prevention of very large 
sets of individual data is fundamental. The need to prevent 
access and formation of very large sets is unfortunately seen 
by some policymakers and entrepreneurs as an unnecessary 
obstacle of necessary progress and neglected for the enthu-
siastic promises of benefit and revenue from large-scale 
“future comprehensive access,” such that were exemplified 
as misuse of public money in the “justice” section. 
Regardless, a major factor for reasonable vertical prioritiza-
tion is awareness of the Kruger–Dunning effect and delega-
tion of decisions that involve professionals and requires 
professional knowledge to those with bona fide competence 
of the area affected. Probably, stricter legal requirements for 
accountability and personal responsibility of public spend-
ing can limit ignorance-fed well intended projects that 
turned into financial scandals.

Human judgment is necessary even if artificial intelli-
gence may develop autonomous ethical judgment, much like 
alpha-zero learned to play chess by playing games against 
itself. Such judgments must be evaluated, and Alan Winfield 
suggested an “Ethical Turing Test.” This test would have 
multiple judges to decide if the AI’s decision is ethical or 
unethical [32]. Another, but ethically unacceptable, solution 
for the ethical governance of computational systems is to 
bypass human ethics and imagine “the construction of ethics, 
as an outcome of machine learning rather than a framework 
of values” [33]. An unethical robot is just as likely as an ethi-
cal robot [34].

We conclude that the ability to make an accountable ethi-
cal decision depends on how AI results can be interpreted. 
We must modulate our expectations of which kind of ML 
results are traceable enough to be interpreted and that can 
support human ethical deliberation [35]. The need for a 
moral agent to be informed is, however, not unique for AI 
and ML related decisions, this is a prerequisite for all ethical 
decisions. Still, we can never be informed of all facts nor 

independently analyze all underlying information for any 
decision in ethics and healthcare. The lack of complete trace-
ability is thus not unique to AI it is a difference of degree and 
magnitude. The novel and unique situation arises when 
potential computing possibilities and size of data create a 
situation where inherent or unique AI-related bias leads to 
recommendations and support that is profoundly perverted 
and misleading, while appreciated by the human decision- 
maker as a high-quality result of objective, advanced tech-
nology. The moral agent needs to retain moral integrity. In 
addition to moral competence, knowledge of how AI and ML 
work to produce output is crucial. Critical analyses must 
always be exercised. Precaution is necessary to rely only on 
AI output that has resulted from an explicit interpretable ana-
lytic task in a relevant population.
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29.1  Introduction

The field of medicine has become increasingly data-driven, 
with artificial intelligence (AI) and machine learning (ML) 
attracting much interest across disciplines [1–4]. While the 
implementation in patient care still lags behind, almost every 
type of clinician is predicted to use some form of AI technol-
ogy in the foreseeable future [3]. Evolving with the industri-
alization of AI, where the academic and industrial boundaries 
of AI-associated research are increasingly blurred, the num-
ber of ML-based algorithms developed for clinical and com-
mercial application within health care is continuously 
increasing. Realizing the accompanying rising ethical con-
cerns, many institutions, governments, and companies alike 
have since formulated sets of rules and principles to inform 
research and guide the implementation into clinical care [5]. 
More than 80 policies on “Ethical AI” have since been pro-
posed [6], including popular examples such as the European 
Commission’s AI strategy [7], the UK’s Royal College of 
Physicians’ Task Force Report [8], the AI Now Institute’s 
Report [9], as well as statements from major influences form 
the industry (e.g., Google, Amazon, IBM) [10]. Collectively, 
there appears to be a widespread agreement between the dis-
tinct proposals regarding meta-level aims, including the use 
of AI for the common good, preventing harm while uphold-
ing people’s rights, and following widely-respected values of 

privacy, fairness, and autonomy. Demonstrating consider-
able overlap, the suggested pillars building Ethical AI con-
verge to the principles of autonomy, beneficence, 
non-maleficence, justice and fairness, privacy, responsibility, 
and transparency [6]. While certain principles, generally 
describing the four bioethical principles of autonomy, benef-
icence, non-maleficence, and justice, are well-known in 
healthcare, AI-specific concerns arise regarding the auton-
omy, accountability, and need of explicability of AI-based 
systems.

Until now, there are relatively few neurosurgical papers 
implementing AI.  However, the recent trend demonstrates 
the growing interest in ML and AI in neurosurgery [11, 12]. 
From a clinician’s point of view, AI can be untransparent, 
and without methodological foundations, pose a severe risk 
to patients’ care. How can we make AI transparent for clini-
cians and patients? How do we choose which clinical deci-
sions are going to be delegated to AI? How do we prevent 
adverse events caused by AI algorithms? When the AI agent 
makes wrong decisions—who can be held responsible? 
There is a clear increase of directives and papers on AI ethics 
[6, 10] offering guidelines to these critical questions. This 
article non-exhaustively covers basic practical guidelines 
regarding AI-specific ethical aspects that will be useful for 
every ML or AI researcher, author, and reviewer aiming to 
ensure ethical innovation in AI-based medical research.

29.2  Transparency and Explicability

Research in AI systems rapidly advances across medical dis-
ciplines; however, the trust placed in developed applications 
lags behind [13]. Many proposals on ethical AI guidelines 
acknowledge the lack of algorithmic transparency and 
accountability as the most prevalent problems to address [6]. 
As humans and responsible clinicians, we must understand 
and interpret the outcome of an AI or ML model. With the 
European Union being at the forefront of shaping the 
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international debate on Ethical AI, the General Data 
Protection Regulation (GDPR) was introduced in 2018. 
Herein, articles 13–14 mandates “meaningful information 
about the logic involved” for all decisions made by artifi-
cially intelligent systems [14]. This right to an explanation 
of the directive implies that any clinician using AI-based 
decision-making is legally bound to convey patients with 
explanations to the applied ML and AI models’ inner work-
ings. Suppose the AI-based decision cannot be explained. In 
that case, the clinician ends up in the uncomfortable position 
of vouching for the application’s trustworthiness without 
being able to interpret its methodology and outcome. 
Unfortunately, many ML and AI models are considered 
“black boxes” that do not explain their predictions in a com-
prehensible way. The consequent lack of transparency and 
explicability of predictive models in medicine can have 
severe consequences [15, 16].

The precise lack of interpretability has been exacerbated 
with the rise and popularity of deep learning (DL) models. 
As a form of representation learning with multiple layers of 
abstraction, DL methods are extremely good at discovering 
intricate patterns in high-dimensional data [17, 18] that are 
beyond the human scope of perception. DL methods have 
produced promising results in speech recognition, visual 
object recognition, object detection, and many other domains 
such as drug discovery and genomics. They frequently out-
performed different ML algorithms in image recognition and 
computer vision [19–21], speech recognition [22, 23] and 
more. DL methods, including deep neural networks, are 
increasingly complex and challenging—if not impossible—
to interpret because the function relating the input data 
through multiple complex layers of neurons to the final out-
come vector is far too complex to comprehend. Fortunately, 
in the spirit of “Explainable AI” [24–26], approaches have 
been developed to address the black box problem. Broadly, 
Explainable AI involves creating a second (post hoc) model 
to explain the first black box model [26]. Successful analyti-
cal approaches to “open the black box” have since been pro-
posed. One example are local interpretable model-agnostic 
explanations (LIME), which can explain the predictions of a 
classifier in a comprehensible manner by learning an inter-
pretable model locally around the prediction [27]. Other 
implementations primarily rely on assessing variable impor-
tance, such as RISE (Randomized Input Sampling for 
Explanation), which probes deep image classification modes 
with a randomly masked version of the input image [28]. 
However, particularly in the clinical context, evidence to 
whether post hoc approximations can adequately explain 
deep models remains very limited [27, 29, 30].

With the increasing success of AI and, in particular, DL, a 
“myth of accuracy-interpretability trade-off” arise, meaning 
that complicated deep models are necessary for excellent 
predictive performance [26]. However, more complex mod-

els are often not more accurate, particularly when the data 
are structured with a good representation in terms of natu-
rally meaningful features. In DL, the inherent complexity 
scales to large datasets [17, 31]. Particularly successful 
examples of employed DL include studies on electronic 
health records, as demonstrated by Rajkomar and colleagues 
in >200,000 adult patients cumulating a total of >46.8 billion 
data points [32], and large prospective population cohort 
studies of >500,000 participants from the UK Biobank [33]. 
But even in the big-data omics fields, such as imaging or 
genomics, investigations in part question the superiority of 
DL compared to simple models based on available data. 
Schulz and colleagues showed that the increase in perfor-
mance of linear models in brain imaging does not saturate at 
the limit of current data availability, and DL is not beneficial 
at the currently exploitable sample sizes such as those based 
on the UK Biobank (>10,000 3D multimodal brain images 
[34]. In the prediction of genomic phenotypes, DL perfor-
mance was competitive to linear models but did not outper-
form linear models by a sizable margin (>100,000 participants 
with >500,000 features) [35]. Historically, linear models 
have long dominated data analysis, as complex transforma-
tions into rich high-dimensional spaces were computation-
ally infeasible. In small sample sizes particularly, complex 
methods with high variance such as many DL methods tend 
to overfit: the algorithm performs “too well” on training data 
to the extent that it negatively impacts the interpretation of 
new data. Less complex models such as general linear mod-
els are generally less prone to overfitting—especially with 
regularization strategies applied [36, 37].

The best practice recommendations on predictive model-
ing hence include considerations of the given structure on the 
input data, the choice of feature engineering, sample size and 
model complexity, and more [38–40] and should always be 
considered when selecting the appropriate models for a given 
predictive modeling task.

29.3  Fairness and Bias

There is global agreement that AI should be fair and just [6]. 
Herein, unfairness relates explicitly to the effect of unwanted 
bias and discrimination. While biased decision-making is 
hardly unique to AI and ML, research demonstrated that ML 
models tend to amplify societal bias in the available training 
data [41, 42]. Skewed training data is a major influence on 
bias amplification and can lead to severe adverse events aris-
ing from the lack of inclusion of ethical minorities. Esteva 
and colleagues used DL to identify skin cancer from photo-
graphs using 129,450 images (with only 5% of dark-skinned 
participants). While the classification works en par with 
expert knowledge on light skin, it fails to diagnose mela-
noma in people with dark skin colors [3, 43]. This highlights 
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the importance of deliberate data acquisition that is repre-
sentable and diverse (e.g., regarding race, gender), focusing 
on including minorities. Many of the ML applications avail-
able today can be considered “narrow AI,” that is, they help 
with specific tasks on specific types of data. An AI system 
trained on a certain patient cohort cannot unconsciously be 
used on an entirely different population. Therefore, the limits 
of generalizability should always be kept in mind. However, 
even in balanced data sets, bias may be amplified due to spu-
rious (mostly unlabeled) correlations. For example, in a bal-
anced picture data set of 50% men cooking and 50% women 
cooking, unlabeled influences, e.g., children, which co-occur 
more often with women, can be labeled cooking as well. 
Hence, more women will be associated with cooking [30]. 
To counteract unwanted bias in balanced data sets, adver-
sarial debiasing was proposed [30, 44, 45]. Models are 
trained adversarially to preserve task-specific information 
while eliminating, e.g., gender-specific cues in images. The 
removal of features associated with the protected variable 
(gender, ethnicity, age, or others) within the intermediate 
representation leads to less biased predictions in balanced 
data sets. Protected variables include gender, race, and socio-
economic status. Failure to address the societal bias could 
ultimately widen the present gap in health outcome [3, 46].

We welcome increasing diversity within a research group 
itself, which increases detection of possible (unconscious-
ness) biases. Nowadays, diversity is an important factor in 
obtaining European and national research funding [47]. For 
every AI application, it should clearly be outlined which 
patient characteristics within training were available. An 
extensive table with patient characteristics, including sex, 
age, ethical background, length, weight, and BMI, as well as 
detailed disease information should be included. Major 
sources of bias should be described within the limitation sec-
tion as well. It is important to realize that most biases are 
unintended and do not arise deliberately. Despite attempts to 
reduce biases, these can occur when not expected at all.

29.4  Liability and Legal Implications

While the important ethical issues mentioned above are still 
a matter of intensive and critical debate, the first steps toward 
structured and transparent software legalization using ML 
have been successfully made. The Medical Device Regulation 
(MDR, EU Regulation 2017/745) is an essential step toward 
better software use regulation, aiming at improved safety and 
transparency. MDR and the Guidance on Qualification and 
Classification of Software in Regulation (EU) 2017/745, 
which was endorsed by the Medical Device Coordination 
Group (MDCG), accurately address the definition of soft-
ware. Herein, software is regarded as a medical device, 
meaning that medical device software (MDSW) is any soft-

ware that is intended to be used alone or in combination for 
any purpose mentioned by the definition of medical device, 
i.e., used for diagnostic, prevention, prediction, prognosis or 
treatment of a disease (for a full report, c.f. to the EU 
2017/745). MDSW can be independent and still qualifies as 
such regardless of its physical localization (i.e., cloud).

Furthermore, the MDR defines software as a set of 
instructions that processes input data and creates output data. 
Thus, MDR encompasses to a full extend any use of AI tech-
nology. One needs to look more precisely at the decision 
steps assisting the qualification as MDSW.  Here, one will 
unmistakably find that if the software is not acting for the 
individual patient’s benefit, it is not covered by the MDR. A 
more critical interpretation of this part could suggest that 
software or AI technology, which is not used in a clinical 
setup, is not considered by the MDR. This is indeed the usual 
case when AI technology is used in an experimental and sci-
entific setting. However, in this setting, any discoveries or 
assistance by the AI technology should not be directly used 
to influence patients’ diagnostics or treatment. In the case of 
IBM Watson’s AI for Oncology program [15], the developed 
algorithm for the recommendation of treatment choices for 
patients with cancer frequently suggested harmful and erro-
neous treatment regimes. If the harmful algorithm were to be 
integrated into the actual clinical routine, many patients 
would have suffered preventable harm. Compared to errors 
on the single doctor-patient level, the faulty AI recommender 
would have inflicted harm on an exponentially higher level. 
Following this line of thought and embracing the ethical 
axiom of “primam non nocere,” one can argue that any soft-
ware, AI technology, or ML algorithm, which is intended to 
be used for clinical decision-making of any kind, needs to be 
CE or FDA approved. Although this is inevitably associated 
with considerable effort, it will guarantee that every software 
life cycle will include all the steps of paramount importance, 
such as hazard management and quality management. 
Although the software does not directly harm a patient, it 
still can create harmful situations by providing incorrect 
information. This gap has been successfully addressed by the 
Rule 11 of the MDR. Consequently, many software applica-
tions (including AI, ML, and statistical tools like risk calcu-
lators) will fall into Class IIa or Class IIb. Indeed, all these 
regulating measures may seem less progressive. Still, they 
try to solve the legal question of liability by introducing 
terms as the intended purpose and the use outside of it.

One further problem in AI liability is that the law, includ-
ing tort law, “is built on legal doctrines that are focused on 
human conduct, which when applied to AI, may not func-
tion” [48]. Moreover, until now, there is no clear legal defini-
tion of AI that can be used as a foundation for new laws 
regarding its use since existing definitions were created to 
understand AI instead of regulating it. The legal definitions 
are, therefore, often circular and/or subjective [49]. 
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Additionally, adopting AI applications that might influence 
clinical decision-making may “evolve dynamically in ways 
that are at times unforeseen by system designers” [50]. With 
adaptation, the AI system gains autonomy. But our definition 
of what is considered autonomous or intelligent is still ill- 
defined and will likely change over time due to rapid devel-
opments within the field of AI [49].

Until AI definitions and regulations are clearly defined, 
care should be warranted to use AI-assisted tools. Clinical 
decision-making algorithms could be allocated to research 
purposes only, which demands the approval of an ethical 
commission, patient insurance, and patients’ consent before 
its use. AI has already been proven very helpful—especially 
in making diagnoses and predicting prognosis and out-
come—also within the field of neurosurgery [11]. In the end, 
every outcome from an AI algorithm should be checked 
against the current medical gold-standard and clinical guide-
lines. For future considerations, the development of concise 
AI definitions and regulations is relevant to deflect potential 
harm.

29.5  Conclusion

With the continuously advancing field of AI, fostering trust 
in the clinical implementation of AI applications becomes 
imperative. Almost every type of clinician is predicted to 
use some form of AI technology in the foreseeable future, 
hence, shaping the ethical and regulatory use of AI becomes 
increasingly important. In the article, we reviewed trans-
parency and algorithmic explicability as the trade-off 
between complexity and available data, the mitigation of 
unwanted biases that even affect balanced data sets, and the 
legal considerations when advancing AI in health care. We 
introduce approaches, including post hoc models and 
adversarial attacks, to combat the above problems and fos-
ter Ethical AI.
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Predictive Analytics in Clinical Practice: 
Advantages and Disadvantages

Hendrik-Jan Mijderwijk and Hans-Jakob Steiger

30.1  Introduction

Predictive analytics are daily used by clinical neuroscien-
tists, mainly for nonclinical purposes. Google algorithms for 
example pave the way for rapid access to our personal inter-
ests and needs. Predictive analytics applied to daily clinical 
patient care are however less used. Ironically, clinical neuro-
scientists increasingly report on predictive algorithms spe-
cifically developed to support daily clinical care [1, 2]. The 
availability of electronic health record (EHR) systems and 
user-friendly statistical packages has fueled model develop-
ment approaches by many clinical neuroscientists.

The overarching aim of predictive analytics in clinical 
practice is to improve patient outcomes in terms of quality, 
safety, and efficiency [3]. Nowadays, predictive analytics 
have become inevitable because stakeholders (policy mak-
ers, funders, and patients themselves) want to participate in 
decision making on which treatment to choose that provides 
maximal benefit together with minimal costs and patient 
burden.

Although it is known that predictive analytics can outper-
form the predictions made by clinical neuroscientists them-
selves [4], it has been hard to include predictive analytics in 
current clinical workflows. The increasing amount of avail-
able predictive algorithms induces uncertainty by potential 
end-users (e.g., clinical neuroscientists) which model to use, 
if any. Their potentiality is often not recognized by 
end-users.

Herein, we describe and tabulate advantages and disadvan-
tages of predictive analytics in clinical practice (Table 30.1). 

We highlight the application of predictive analytics and 
address potential endeavors that might foster the inclusion of 
these tools into clinical workflows.
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Table 30.1 Several advantages and disadvantages of predictive ana-
lytics in clinical practice

Advantages Disadvantages Potential remedy
The toolbox of 
predictive analytics 
is expanding

Predictive 
analytics can 
become more 
“engineering” than 
science resulting in 
research waste

We should not go for 
analyzing available 
data, but for analyzing 
clinical conditions in 
equipoise regarding 
the optimal 
management

Advanced predictive 
analytic techniques 
are able to model 
complex predictor- 
outcome 
associations

Models may 
become opaque for 
end-users resulting 
in a decline in user 
trust and usage

Developers should be 
transparent in model 
reporting and give 
sufficient detailed 
background 
information

Sophisticated 
analyses can be 
executed easily

Interpretability and 
generalizability 
can be jeopardized

Keep analysis simple, 
but not simplistic

Risk estimations are 
increasingly based 
on large patient 
cohorts

Individual patients 
and confounding 
may still not be 
captured by the 
model

Clinical 
neuroscientists should 
have basic scientific 
knowledge on how to 
interpret a model and 
should understand 
that risks provided by 
a model are still 
conditional

Predictive analytics 
may aid decision 
making and clinical 
workflow

Overreliance on 
predictive analytics 
may induce 
de-skilling of 
(clinical) 
competencies

Regular reflection by 
end-users

The rise of EHRs 
and other data 
sources have made 
predictive analytics 
available to clinical 
neuroscientists and 
modeling 
commonplace

Using immature 
tools may harm 
many patients

Regulatory approval 
including certification 
labels
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30.2  Data Considerations: What to Put into 
a Predictive Tool?

 Quantity Versus Quality

Large sample sizes are highly desirable when prediction 
models are generated, especially when highly flexible meth-
ods are used [5, 6]. However, the quantity of the available 
data does not guarantee high quality of the data. This is 
nicely demonstrated in the Google Flu Trends (GFT) analy-
sis in 2013. Google search-term data were used to predict the 
seasonal flu. Some predictors identified by the Google algo-
rithm had no (biological) relation with the flu. The GFT pre-
diction was unreliable and a simple model from the Centers 
for Disease Control and Prevention outperformed the GFT 
model [7]. Theory-free studies and theory-free driven algo-
rithms are prone to provide biased results since they rely too 
much on the data.

Hypothesis based studies use subject matter knowledge to 
mitigate bias, resulting in more quality and structured data 
sets. These data sets are therefore more tailored to the stud-
ied clinical condition. However, such data collection is often 
manually executed and therefore time consuming, which 
may result in lower sample sizes.

In 2020, Google published a predictive analytic tool that 
was trained on a big data set that was of high clinical quality 
[8]. The predictive analytic tool outperformed clinicians in 
diagnosing malignancies on radiological studies. Thus, to 
flourish and reach its potential, predictive analytics need a 
combination of data quantity and data quality—that may 
come from different data sources—to aid clinical neuroscien-
tists in understanding and controlling complex conditions in 
neuroscience such as subarachnoid hemorrhage (SAH) [9].

 Theoretical Construct and Empirical Construct

Predictive analytics in clinical practice are normally based 
on the results of empirical data. Clinical neuroscientists try 
to better understand theoretical constructs through empiri-
cal data. However, do the study variables (predictors and 
outcomes) adequately represent the condition that is aimed 
to be unraveled? For example, do empirical surrogate mark-
ers such as health insurance status adequately represent a 
tested theoretical construct such as social economic status? 
[10]. Other observational data from a national registry have 
shown that functional outcome (empirical construct) may 
not be a valid indicator for quality of care (theoretical con-
struct) when comparing stroke centers [11]. Thus, measure-
ment instruments may not fully capture the theoretical 
construct and may not be comparable across cases and 
centra.

The array of data resources that are being used for predic-
tive analytics is increasing. Next to (national) registry data, 
other data sources like EHRs, open sources (such as meteo-
rological data), and claim data have been used for analyses. 
Nowadays, neurosurgical procedures and diagnoses are 
coded in EHRs for billing purposes. These codes can be eas-
ily used for predictive analytics. For example, ICD codes 
have been used to predict spontaneous subarachnoid hemor-
rhage admissions to evaluate the gut feeling of clinical neu-
roscientists that SAH admissions appear in clusters [9]. Such 
data collection (covering a long time period, i.e., data from a 
decade) would not have been possible so easily with tradi-
tional manual data collection by researchers. The rationale 
for documentation of this kind of data is not for scientific 
purposes but rather for administrative purposes which may 
result in several data anomalies and incomplete patient infor-
mation. First, confounding variables are normally not docu-
mented, and clinical outcomes are omitted. Patient frailty, 
for example, is not routinely assessed and documented, but is 
a robust predictor of poor surgical outcomes [12, 13]. 
Second, miscoding of variables may emerge. It has been 
shown that postoperative complications have been miscoded 
as comorbidities [14]. Using such data may create bias in 
effect estimation of predictor-outcome associations and ulti-
mately in prediction. Third, coding behavior varies between 
hospitals and among health care professionals. If no one 
codes a SAH, the patient does not have a SAH and will be 
wrongly excluded from analysis. Fourth, different EHR soft-
ware is currently being used between hospitals, such as HiX 
and Epic. Thus, currently, patient data is spread across mul-
tiple inter-institutional and intra-institutional data sources. 
The lack of an integral EHR system makes it hard to include 
all the relevant data from a patient into a predictive analytic 
tool.

Clinical empirical data can also be noisy and threaten the 
theoretical construct studied. For example, cardiopulmonary 
variables such as pulse oximetry, capnography, and heart rate 
are prone for artifacts. Blood samples taken from a patient 
may be hemolytic and hence subjected to artifacts such as 
falsely elevated potassium levels. A predictive tool is only 
able to provide sensible predictions if the input is adequate. 
In general: garbage in, garbage out.

 Analyzing Available Data or Analyzing Clinical 
Equipoise

Intraarterial nimodipine therapy and norepinephrine infu-
sions for symptomatic vasospasm in patients suffering from 
aneurysmal subarachnoid hemorrhage are highly predictive 
for poor functional outcome and patient mortality. Although 
such a predictive model may be highly accurate, it does not 
provide an option to reduce the risk for the patient. Such pre-
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dictive models do not influence clinical decision making by 
clinical neuroscientists and will not improve clinical out-
comes. The model is not able to provide interventions to pre-
vent patients from becoming poor grade patients. In other 
words, the actionability of such models is low. A much more 
interesting question is to predict rebleeding prior to cerebral 
aneurysm treatment (microsurgical clipping or neuroendo-
vascular treatment) when an aneurysmal SAH patient arrives 
at the hospital at 22:00  hours, because there is equipoise 
regarding the optimal management. Can we wait for another 
12 h to treat the aneurysm at daytime leaving the patient at 
risk for a rebleeding? Or should we intervene immediately 
and expose the patient to a probably fatigued and less expe-
rienced team? A predictive tool that accurately classifies 
those patients into high and low rebleeding risks will help the 
clinical neuroscientist to make informed decisions and will 
influence patient outcomes accordingly.

Another example: predicting readmissions after brain sur-
gery with data automatically drawn from EHR has become 
of increasing interest [15]. These noble predictive analyses 
often overfit the small number of patients however. 
Furthermore, the local EHR will not notice a readmission in 
another hospital. The actionability is again supposed to be 
low, because providing the risk of a readmission in 30 days 
is unlikely to change the behavior of the clinical neuroscien-
tist. The model might be useful for just informing patients, 
however. The performance measures of such models is gen-
erally low, likely due to the fact that clinical data alone is 
insufficient and other factors such as social determinants of 
health are not considered, yet more appropriate for predict-
ing hospital readmission [16].

30.3  Interpreting the Model’s Output: 
An Essential Role for the Clinical 
Neuroscientist

 Clinical and Scientific Competencies

Clinical decision making on new patients currently still 
involves clinical judgment and personal preferences extrapo-
lated from our previous experiences. In contrast to the num-
ber of patients predictive models are exposed to (models are 
commonly trained on hundreds, thousands or even bigger 
numbers of patients), the number of patients a clinical neuro-
scientist is exposed to is relatively small. Therefore, clinical 
decision making based on our own clinical experience can be 
moot.

To interpret a model adequately, basic knowledge on 
quantitative predictive analysis is needed for clinical neuro-
scientists to understand and integrate probabilistic data in 
their patient work-up. Predictive analytics using logistic 
regression for example, will provide a probability of an 

event to occur. The probability provided will likely be 
incorrect, because either the patient will undergo the event 
or not. In clinical practice, a patient cannot be 75% shunt-
dependent after aneurysmal SAH after 30 days. The patient 
will be judged as shunt-dependent and will have a perma-
nent shunt inserted or will be judged as not shunt-depen-
dent. Another important aspect to be aware of is statistical 
overfitting. Overfitting is a common problem due to com-
plex modeling relative to the effective sample size. Using 
an overfitted model on new patients may be harmful. 
Overfitted models likely provide overestimated risks for 
high-risk patients and underestimated risks for a low-risk 
patient, which can be observed in a calibration plot. 
Therefore, clinical neuroscientist should be aware of the 
model’s performance. Discrimination and calibration are 
well-known model performance measures. Discrimination 
refers to the ability of a prediction model to discriminate 
between patients with and without the event of interest and 
is quantified using the c- statistic. The c-statistic ranges 
from 0.5 to 1, where 0.5 means that the prediction model is 
equivalent to a coin toss and 1 refers to perfect discrimina-
tion. Calibration refers to the agreement between predicted 
and observed outcome and is highly consequential to medi-
cal decision making—it has been labeled as the Achilles 
heel of predictive analytics [17].

Methodological aspects such as study bias should be con-
sidered as well. Confounding is a critical aspect in translat-
ing results from predictive analytics into clinical decision 
making. Predictive analytics are often hampered by con-
founding by indication. Causal inferences can therefore not 
be drawn. An example in which confounding by indication 
matters is the use of predictive analytics based on retrospec-
tive glioblastoma patient data. Predictive analytics for patient 
survival often include treatment effects such as extent of sur-
gical resection and type of post-surgical therapy. Drawing 
conclusions on the effectiveness of therapies should be done 
cautiously. Exemplifying this, it is likely that glioblastoma 
patients with a good general condition as reflected in the 
Karnofsky performance score (KPS) with a relatively good 
prognosis for survival will get standard post-surgical therapy 
(radiotherapy plus concomitant and maintenance temozolo-
mide) and that glioblastoma patients with a poor general 
condition with a worse survival prognosis have a greater 
probability to receive subparts of standard therapy and/or 
experimental designs. However, if bias is adequately taken 
into account, such models can be well used for shared deci-
sion making with relatives or patients themselves.

Thus, interpreting results from predictive analytics urge 
for an adequate risk communication to patients and their 
relatives across all educational levels, especially in shared 
decision making situations. This will be a vital new skill that 
clinical neuroscientists should master in the future, because—
at least for now—a computer cannot take over this skill.
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Clinical neuroscientists are also at risk of de-skilling of 
their clinical competencies. Overreliance on predictive ana-
lytics may negatively affect the ability of making firm inter-
pretations of signs and symptoms [18]. In addition, it may 
induce stereotyping of patients and decrease clinical knowl-
edge and self-confidence [18–20]. In unforeseen situations, 
such as the local shutdown of the academic hospital in 
Düsseldorf in 2020, neurosurgeons and other clinical neuro-
scientists should be able to provide adequate patient care 
without the use of modern predictive analytics, which may 
be difficult for younger professionals as a result of de- skilling 
[21]. We should be aware of de-skilling due to overreliance 
which can be controlled by regular reflections of end-users.

 Clinical Neuroscientist’s Vigilance

The imperfect nature from predictive analytics should be 
considered and is highly consequential. Predictive analytics 
are dynamic processes. The lifetime of a prediction tool may 
be limited. It is known that the performance of predictive 
tools wane over time if the tool is exposed to more data or to 
new promising prognostic variables.

Another vital aspect to consider is the condition of the 
investigated patients. For example, the course of the aneurys-
mal SAH disease may be complicated by meningitis which 
in a worst-case scenario progresses into a meningitis-sepsis. 
Clinical neuroscientists may consult predictive analytic tools 
that are trained to identify (meningitis)-sepsis. Likely, those 
tools have learned from patients diagnosed with a sepsis 
[22]. Utilizing such a tool for clinical decision making should 
be done cautiously in patients without a diagnosed sepsis, 
since those tools are commonly not trained on patients that 
are—although they were at risk for a sepsis—prevented from 
a sepsis due to adequate medical care at the neurointensive 
care unit.

Sometimes the inclusion or exclusion of interesting vari-
ables into a predictive tool can make the model impractical. 
Recently, a predictive analytic approach for predicting shunt- 
dependency after aneurysmal SAH showed an impressive 
performance [23]. The use of prognostic variables that may 
emerge in the course of the disease, such as delayed cerebral 
ischemia, make application of the tool by clinical neurosci-
entists, however, complex. Another example: surgical resec-
tion of a recurrent glioblastoma during the course of the 
disease in glioblastoma patients is difficult to include in a 
predictive analytic tool because this data is not available at 
baseline or at the moment the model is intended to be used. 
However, this may alter survival time. Thus, if a predictive 
tool is used for prognostication, the clinical neuroscientist 
should critically evaluate if his/her patient resembles the 
patients used for model generation.

30.4  Integrating the Model into 
the Clinical Workflow: Reporting Is 
Imperative

 User Trust

Why do we trust our patient interview? Why do we trust our 
clinical patient examination? Why do we trust the additional 
investigations—such as laboratory results from our lumbar 
puncture and radiological results of the MRI scan—of our 
patient? One of the reasons is that we know they are reliable 
at most of the time. We trust them, because we observe the 
glioblastoma in the left temporal lobe as we perform the sur-
gical procedure. We see that our liquor tap is purulent, and 
that it becomes clearer during therapy with antibiotics. 
Furthermore, we are able to (re)weight the strength of our 
observations in the light of the clinical course of the patient. 
Although the literature provides many reports of predictive 
analytics that should have promising effects for our daily 
clinical routine, why don’t we use them regularly in our daily 
clinical practice? Do we not trust these tools? One of the 
reasons might be that we are not familiar we these tech-
niques, and probably the lack of technical know-how. 
Clinicians are commonly not trained in statistics and scien-
tific methodology like epidemiologists and statisticians—
understanding the structure of algorithms from machine 
learning methods can be challenging even for experts, how-
ever. End-users remain wary, especially when machine learn-
ing algorithms are used, as they cannot directly and exactly 
see, control, and understand how the patient data is weighted 
and modeled by the developers in opaque predictive analytic 
tools. End-users want to know how a predictive tool got the 
results provided [3].

 Transparency

To make predictive analytics convincing for the clinical neu-
roscientist, model transparency is imperative. Transparency 
is key to trust and application of the predictive tool. 
Transparent reporting according to the Transparent Reporting 
of a multivariable prediction model for Individual Prognosis 
or Diagnosis (TRIPOD) guidelines is needed for transpar-
ency in model development and for external validation and 
impact study attempts [24]. Caveats for clinical use of the 
model should be clearly explained and readily available. For 
example, is the model for shared decision making and con-
founding by indication should be taken into account, then the 
clinical neuroscientist should be aware of that. Trust in pre-
dictive analytics by clinical neuroscientists will further 
enhance if models are regularly updated as more data 
becomes available, since patient populations may evolve 
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over time and the half-life of clinical data can be short [25]. 
Recently, an innovative calibration drift detection system 
identifying the need for model updating has been proposed 
[26]. Such reporting systems are important because miscali-
bration may lead to severely flawed predictions. For exam-
ple, patients identified by a miscalibrated model as having 
low risk of postoperative complication may be falsely with-
drawn from preventive treatment.

 Safe Use and Regulatory Approval

It is known that clinicians may incorrectly interpret the 
results of predictive analytics, and many biases may have to 
be taken into account [6, 27]. Applying a predictive tool to 
patients not taking into account methodological shortcom-
ings can harm many patients and is unethical. Developers 
should ideally provide online calculators, apps or desktop 
applications that possibly can be embedded within EHRs to 
aid uptake in the clinical workflow together with sufficient 
detailed background information of the model development 
including its caveats.

Merely presenting a clinical predictive tool without a 
clear recommended action will likely not survive in clinical 
practice. However, a clinical predictive tool with a clear rec-
ommendation that disrupts the workflow of a clinical neuro-
scientist will also not survive. The variables needed for the 
predictive tool should be easily accessible and being measur-
able without minimal measurement error [1]. The predictive 
tools provided should offload the clinical neuroscientists and 
not load them with additional work. Ideally, clinical neuro-
scientists should not have to open additional packages next 
to their EHR to use a predictive tool. Re-entering patient data 
into a model to obtain individual prognosis estimates should 
be avoided if these data can be derived directly from the 
EHR, such as age, patient gender, and KPS.

Clinical neuroscientists need impact studies that show the 
benefits, harms, and sustainability of the clinical prediction 
models used. Unfortunately, these studies are clearly under-
represented in the literature. There is an over-emphasis on 
model development studies and a focus on increasing model 
performances measures. Model performance measures are 
likely not convincing enough for end-users; yet the impact of 
predictive tools on the outcomes—i.e., effectiveness of the 
model—tracked over time will increase model trust and 
usability [3]. In addition, a label that certifies a prediction 
model to be deployed in clinical practice might be a next step 
to enhance clinical uptake. Attempts to estimate the value of 
predictive analytics in clinical practice, such as the “number 
needed to benefit” have been suggested [28]. Regulatory 
approval endeavors have been underway [22]. Food and 
Drug Administration (FDA) approval or Conformité 
Européenne (CE) approval may ultimately help to convince 

clinical neuroscientists that a particular predictive tool meets 
clinical quality standards and can be applied safely.

30.5  Concluding Remarks

In this relatively new era of predictive analytics, clinical neu-
roscientists play a critical role in outlining the clinical prob-
lems the predictive analytics have to solve. In addition, 
clinical neuroscientists play a critical role in interpreting the 
output of predictive analytics in light of the clinical scenario 
of the individual patient. Only clinicians can discuss the 
results with the patients and activate treatment regimes. 
Clinical neuroscientists should be therefore ideally trained 
and skilled on how to integrate a model in their patient work-
 up. To fully use the potential of predictive analytics, clinical 
neuroscientists need to understand at the one hand the differ-
ence between his/her patient and the ones included in the 
predictive algorithm, and the available resources that might 
be considered to intervene in the course of the patients’ 
disease.

Combining predictive analytics with the knowledge clini-
cal neuroscientists have of the pathophysiology and patient’s 
preferences will have a positive synergistic effect on indi-
vidual patient care what neither can do alone. Ultimately, if 
used sensibly, predictive analytics have the potential to be an 
additional component in the history taking—clinical exami-
nation—additional investigations—(predictive analytics)—
diagnosis/treatment plan patient work-up of clinical 
neuroscientists. It can enhance this clinical process by mak-
ing better informed decision together with their patients.

To foster the progress of predictive analytics into the clin-
ical workflow of the clinical neuroscientist, (1) the used data 
sets should be more refined to the clinical scenario studied, 
(2) predictive analytics should ideally be used to study 
patients in equipoise regarding optimal management, not to 
study the available data, and (3) clinical neuroscientists 
should have knowledge on effective implementation of the 
designed predictive tools for the right patients.
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31.1  Introduction

The clinical neurosciences have always been at the forefront 
of research innovation, adopting the most innovative and 
novel technologies to enhance understanding of the neural 
axis. Two important and increasingly utilized concepts that 
evolved together over time are big data and machine 
learning.

Machine learning models have been applied in a growing 
number of areas and across scientific disciplines, especially 
within neuroscience. One of the first studies to mention 
“machine learning” as a predictive modeling tool was a 1967 
article fittingly published in the Journal of Theoretical 
Biology. Reed et al. described a series of experiments carried 
out by “high speed computers” that successfully predicted 
evolutionary patterns based on hereditary changes and the 
natural selection process outlined by Darwin [1]. 
Interestingly, the study conclusions were the result of com-
puter simulations of a poker game, equating game strategy to 
evolutionary survival strategy. Driven by advances in com-
puting software, machine learning and the coevolution of big 
data collection methods transitioned from theory into 
practice.

Defining big data is more challenging. Commonly, big 
data is described as a large, complex set of data requiring 
advanced computational analysis to identify trends or asso-
ciations. Machine learning models often augment these anal-
yses, which can be too complex and time consuming for 
human processing power alone. Therefore, machines are 
needed to find patterns hidden within big data, but clinicians 
or researchers must still determine which associations are 
most clinically relevant. Examining relationships identified 
from big datasets and machine learning is one of the current 
frontiers in clinical neuroscience.

This chapter will discuss the initial development of big 
data within neurosurgery and how early adopters set the stan-
dards for accurate data collection and reporting. Additional 
focus will be placed on the more recently developed national 
databases and registries which aim to elicit real world quality 
improvements in neurosurgical practice. Finally, machine 
learning’s influence on the current and future states of clini-
cal research across subspecialties will also be discussed.

31.2  Historical Context Within 
Neurosurgery

One of the earliest studies in the neurosurgical literature to 
specifically mention machine learning as a predictive tool 
was for traumatic brain injury (TBI). Beginning in the 1970s, 
several studies describe various prediction algorithms for 
TBI outcomes. The rationale for using these innovative 
machine learning models was the need to more accurately 
guide management plans while also balancing difficult fam-
ily discussions for patients with severe TBI. Numerous clini-
cal factors such as Glasgow Coma Scale (GCS) and pupillary 
response were known to be important clinical prognostic fac-
tors, but accuracy of long-term clinical outcome predictions 
were enhanced when predictive modeling was applied. Choi 
et  al. described decision-tree models in which patients are 
split into smaller and smaller subsets based on clinical char-
acteristics [2] and logistic regression modeling where the 
study sample is split into test and validation groups [3]. The 
authors concluded that the decision-tree and logistic regres-
sion models provided the most accurate predictions for 
patients with severe TBI and that decision-trees in particular 
enhanced bedside decision-making owing to the simple 
visual representation.

As the statistical methodologies for predicting clinical 
outcomes began to evolve, so too did the way in which data 
was managed. Improvements in computing technology 
enabled collection of larger amounts of data and the ability to 
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aggregate similar data from other institutions. Thus, the con-
cept of a clinical database was formed. Again, the earliest 
neurosurgical implementation of large databases began in 
neurotrauma. Jennett et al. first reported on the creation of a 
database in 1968 for severe TBI patients in Scotland that was 
eventually expanded to also include a total of 700 patients 
from the Netherlands and the United States (US) [4]. Like 
many of the national registries today which will be discussed, 
the Jennett data bank required trained persons to enter the 
clinical data, ensuring consistency across sites.

Citing Jennett’s trauma database as the origin, in 1979 the 
National Traumatic Coma Data Bank (TCDB) pilot phase 
began, which collected a more comprehensive set of vari-
ables that included pre-hospital data such as injury mecha-
nism, alcohol or drug use at time of injury, and whether the 
patient had been wearing a helmet or seatbelt [5]. In addition 
to addressing predictive factors for clinical outcomes, the 
study discussed the importance of the TCDB as a tool for 
multicenter and interdisciplinary collaboration, which would 
provide the foundations for continued research. The TCDB 
proved to be successful in contributing significantly to the 
neurosurgical literature. Perhaps, the most enduring aspect 
of the TCDB though was the methodology devised to ensure 
accuracy. Intensive care unit data was prospectively col-
lected via standardized forms at least every 8 h. Data was 
then entered into a “microcomputer” within each hospital 
that transmitted all data to the central repository at one center 
and was programmed to prevent erroneous entry of values. 
Furthermore, staged data audits occurred at individual sites 
and training sessions for those responsible for data collec-
tion, entry, and monitoring were frequently held. The use of 
standardized data collection forms, microcomputers and 
computer-based editing, all innovative at the time, have 
become the basic procedural standards that are familiar to 
researchers today.

One additional concept that has become increasingly 
important today in discussing clinical studies is the common 
data element (CDE). These standardized terms and validated 
collection tools create a core framework around which inves-
tigators can develop a study. Importantly, use of CDEs allows 
for more reliable comparisons between studies on the same 
topic and thus can help facilitate meta-analyses. CDEs are 
often consensus-driven and provide a quick and cost- 
effective way to identify which variables and data instru-
ments should be included for a specific research topic [6]. 
For example, the National Institute of Neurological Disorders 
and Stroke (NINDS) defined 980 data elements across nine 
content areas to serve as a guideline for variables to be 
included in stroke studies [7]. Another example is the Patient- 
Reported Outcomes Measurement Information System 
(PROMIS), which provides a validated set of tools often uti-
lized in spine studies to assess quality of life metrics. Use of 
CDEs becomes especially important when developing a clin-

ical database and helps to guide decisions regarding which 
variables are most important to collect.

31.3  Evolution of Clinical Neurosurgical 
Databases

During the past decade, numerous national databases, regis-
tries, and international collaborations have facilitated trends 
in literature primarily toward an outcome-based analysis of 
current neurosurgical practice. This is in part a direct result 
of the analytic opportunities big data affords, particularly 
when combined with machine learning. As multicenter par-
ticipation grows over time, the sample size and follow-up 
periods increase, enabling stronger and more accurate pre-
dictions of how specific treatments affect patient outcomes. 
More importantly, the relevant data becomes actionable and 
often elicits a change in practice leading to quality improve-
ment (QI).

One of the most notable QI efforts is the National Surgical 
Quality Improvement Program (NSQIP) which was devel-
oped within the Veteran’s Administration in the US during 
the 1990s. Its aim was to stratify morbidity and mortality 
risks of numerous surgical procedures and subsequently 
improve care for veterans undergoing surgery [8]. With data 
from over 400,000 cases, the program defined a median 
benchmark for acceptable risks and identified outlier hospi-
tals performing both better and worse than the average. Some 
argued that these distinctions would harbor punitive actions 
against the low-performing institutions, or even the surgeons 
themselves. Conversely, lessons learned from institutions 
who consistently demonstrate a lower rate of adverse events 
could be applied broadly, and thus lead to national quality 
improvements.

The most successful of the national surgical databases, 
however, is the Society of Thoracic Surgeons (STS) National 
Database, first established in the late 1980s and now with 
over 90% participation of US thoracic surgeons [9, 10]. 
Results from the database enabled the STS to set their own 
national benchmarks for performance and allowed surgeons 
to compare their individual outcomes and foster quality 
improvement. In addition, utilization of big data provided 
robust support for the true value of thoracic procedures with 
respect to reimbursements.

Citing the success of the STS database in achieving wide- 
reaching quality improvements and policy reforms, the 
National Neurosurgery Quality Outcomes Database 
(N2QOD), presently QOD, sought to build a similar model 
for neurosurgical outcomes. Additionally, the Affordable 
Care Act led to Centers for Medicare and Medicaid Services 
(CMS) reforms that allowed specialty groups such as neuro-
surgery to create Qualified Clinical Data Registries (QCDRs). 
Partnering with national leaders in national quality improve-
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ment and computer software designed with a focus on col-
lection of clinical data, QOD developed predictive models 
for quality of life (QOL) outcomes in patients undergoing 
spine surgery. The models aimed to enhance shared decision- 
making with patients through expectation setting and modifi-
able risk factor adjustments [11, 12]. A significant number of 
high impact studies have been published as a direct result of 
QOD analyses. However, the greater success of QOD has 
been confirmation that the undertaking is feasible and worth-
while across all clinical settings from academic to 
community- based and lends supports for its continued 
expansion [13].

Since its inception, the QOD spine module has expanded 
to include registries for lumbar, cervical and spinal defor-
mity surgeries. Most recently, QOD and the American 
Academy of Orthopaedic Surgeons (AAOS) Registry 
Program announced a collaboration with the goal of creating 
a more encompassing and impactful database called the 
American Spine Registry (ASR). While the results of this 
partnership are yet to be elucidated, the ASR will likely 
enhance spine surgeons’ efforts to offer highly competitive 
value-based healthcare in today’s evolving market. Although 
the ASR will become the largest spine registry, there are 
other highly productive databases that further highlight the 
importance of this growing area of data science. For exam-
ple, the International Spine Study Group (ISSG) has pub-
lished primarily on treatment of adult spinal deformity 
(ASD) over the past decade and have recently begun to 
examine long-term outcomes in minimally invasive ASD 
surgery [14]. Surgical innovation and new technology may 
drive these evolutions in practice initially, but ultimately 
favorable long-term outcomes lead to broad acceptance 
within the field, which now is often augmented by analysis 
of large surgical databases.

Other neurosurgical subspecialties have developed 
national databases as well. Similar to the ASR model, in 
2019 the NeuroVascular Quality Initiative (NVQI) merged 
with the QOD vascular module to form the NVQI-QOD reg-

istry for stroke, aneurysm, and arteriovenous malformations. 
The Neuropoint Alliance, which oversees QOD, also man-
ages the Stereotactic Radiosurgery Registry and the Registry 
for the Advancement of Deep Brain Stimulation in 
Parkinson’s Disease (RAD-PD), both of which aim to 
improve quality within functional neurosurgery. A timeline 
highlighting the foundation of each of the national neurosur-
gical databases discussed in this chapter is shown in Fig. 31.1.

However, limitations exist for large multicenter databases 
and machine learning models used to analyze them. The 
accuracy of predicted outcomes and impact on clinical prac-
tice is directly related to the quality and accuracy of the gran-
ular data inputted. Presently, the electronic health record is 
designed to allow easier charting of clinical data and extrap-
olation for coding and billing purposes, often making data 
extraction difficult when conducting research. Thus, it is 
critical that efficient data collection methods such as natural 
language processing (NLP) are established [15]. Loss to fol-
low- up during multi-year study periods, particularly in select 
spine cohorts, also presents a common problem and affects 
prediction accuracy of long-term outcomes [16]. To mitigate 
these challenges, the resources needed to ensure extensive 
data collection can be costly and may limit the scalability of 
databases to the larger centers with enough human and eco-
nomic capital. Furthermore, the rapid increase in machine 
learning modeling to explore large datasets created a lack of 
reporting standardization, making results less reproducible 
and limiting validity [17]. The Transparent Reporting of a 
multivariate prediction model for Individual Prognosis Or 
Diagnosis (TRIPOD) Statement attempts to improve report-
ing and offers a 22-item checklist for reference [18]. Finally, 
the questions posited and answered with data from these reg-
istries should be actionable in clinical practice, driving the 
quality improvement process forward.

Additional efforts are now being directed at collecting 
patient outcome data in a real-time manner. The potential 
exists for patient function to be tracked algorithmically. This 
would allow for data collection to be performed without such 
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Fig. 31.1 Timeline highlighting the development of the national surgical databases and registries
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discrete time points (e.g.,: preoperatively and postopera-
tively at 3, 6, 12, and 24 months). Rather, the patient could be 
assessed on any given day or week, minimizing sampling 
bias. This would also allow for the detection of declining 
function, to allow for continuous prospective patient moni-
toring as shown in Fig. 31.2.

31.4  Future Directions

Despite some limitations, big data will continue to play an 
important role in clinical research. Today’s world is data- 
driven in nearly every facet, and new computing technology 
will undoubtedly improve the ability to collect data, analyze 
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Fig. 31.2 A 61-year-old 
female with leg and back pain 
diagnosed with a degenerative 
anterolisthesis of L4 on L5 
(Panel a) who underwent an 
L4–5 minimally invasive, 
endoscopic transforaminal 
lumbar interbody fusion 
(TLIF) (Panel b). At her 
3-month postoperative visit, 
the patient reported complete 
resolution of her preoperative 
symptoms. The patient’s 
activity data collected from 
her iPhone demonstrated a 
progressive decline in activity 
level leading up to surgery 
(Panel c). Her 1-year 
preoperative average daily 
physical activity was 
1905 ± 1474 steps taken. Two 
months prior to surgery her 
average daily steps taken had 
fallen to 1450 ± 1243 steps 
(p < 0.001). Her average 
weekly steps taken exceeded 
her 1-year preoperative 
baseline at 6 weeks 
(1911 ± 1320 steps), 
demonstrating rapid 
improvement. Her activity 
remained relatively stable 
until about 130 weeks 
postoperatively (as indicated 
by the blue arrow), which 
coincided with a new 
diagnosis of pancreatic cancer
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results, and evolve clinical practice as first occurred decades 
ago. The foundations within neurosurgery for national data-
bases and predictive analytics already exist so the question 
remains—where will the field go from here?

Within spine surgery, one possible application is interna-
tional collaboration and merging of quality improvement 
concepts to foster real-time changes in healthcare standards. 
Enhanced Recovery After Surgery (ERAS) programs have 
become an international QI project over the past two decades, 
through which iterative improvements in standardized peri-
operative protocols aim to fully optimize outcomes [19]. 
Neurosurgery has become a recent implementer of ERAS 
programs and has a history of developing successful national 
data banks as previously discussed. Therefore, creation of an 
international ERAS outcomes database that prospectively 
tracks all patients enrolled in pathways may provide a revo-
lutionary way in patient care is developed and implemented 
worldwide.

Other subspecialties have adapted machine learning tools 
to not only predict various outcome measures but enhance 
preoperative surgical planning. For example, the role of con-
nectomics in cranial neurosurgery has become increasingly 
popular. While concepts like the Human Connectome Project 
have many decades, if not generations, until complete, other 
more readily available applications have been examined [20, 
21]. Recent studies have demonstrated promising results that 
connectome analysis with machine learning tools can be 
used to predict clinical outcomes after temporal lobe epi-
lepsy and deep brain stimulation surgeries [22, 23]. For 
neuro-oncologists, predicting particular genotype mutations 
like IDH in gliomas based on MRI and connectome sequences 
may prove useful for adjuvant treatment planning [24]. 
Algorithms that analyze diffusion tensor imaging sequences 
have been recently developed to augment preoperative surgi-
cal planning for intracranial lesions as well [25]. Machine 
learning models have also been shown to predict the devel-
opment of delayed cerebral ischemia in subarachnoid hem-
orrhage patients more accurately than standard models or 
clinicians [26]. As the national registries in each of the sub-
specialties develop over time, machine learning applications 
will continue to identify solutions for improving neurosurgi-
cal care.

31.5  Conclusion

In summary, big data and the machine learning tools used for 
analyses clearly have an important role in the development 
of neurosurgical care. The origins of big data in neurosur-
gery trace back to the TBI databases developed in the 1960s 
and 1970s and set standards for the ways in which data 
should be collected and managed. The continued develop-
ment of robust clinical databases used today can enhance the 

shared decision-making process between patient and sur-
geon and set expectations for outcomes. Furthermore, the 
databases aim to set national benchmarks within neurosur-
gery that provide leverage as the US transitions to a value- 
based care model. The QOD spine modules have been the 
most successful to date, but newer collaborations such as the 
ASR and NVQI-QOD will likely become the new standards 
for which neurosurgical care is compared. Lastly, machine 
learning models will further support the utility of big data 
within the clinical neurosciences as advances in theory and 
technology simultaneously evolve.

Conflict of Interest Statement The authors declare the following con-
flicts of interest:

G. Damian Brusko: None.
Gregory Basil: Stockholder (Kinesiometrics).
Michael Wang: Consultant (Depuy-Synthes Spine, Spineology, 

Stryker); Royalties (Children’s Hospital of Los Angeles, Depuy-
Synthes Spine, Springer Publishing, Quality Medical Publishing); 
Speaker’s Bureau (Medtronic, Globus); Stock (Innovative Surgical 
Devices, Kinesiometrics, Medical Device Partners).

References

 1. Reed J, Toombs R, Barricelli NA. Simulation of biological evolu-
tion and machine learning. I. Selection of self-reproducing numeric 
patterns by data processing machines, effects of hereditary control, 
mutation type and crossing. J Theor Biol. 1967;17:319–42. https://
doi.org/10.1016/0022- 5193(67)90097- 5.

 2. Choi SC, Muizelaar JP, Barnes TY, Marmarou A, Brooks DM, Young 
HF. Prediction tree for severely head-injured patients. J Neurosurg. 
1991;75:251–5. https://doi.org/10.3171/jns.1991.75.2.0251.

 3. Choi SC, Barnes TY, Bullock R, Germanson TA, Marmarou 
A, Young HF.  Temporal profile of outcomes in severe head 
injury. J Neurosurg. 1994;81:169–73. https://doi.org/10.3171/
jns.1994.81.2.0169.

 4. Jennett B, Teasdale G, Galbraith S, Pickard J, Grant H, Braakman 
R, Avezaat C, Maas A, Minderhoud J, Vecht CJ, Heiden J, Small R, 
Caton W, Kurze T. Severe head injuries in three countries. J Neurol 
Neurosurg Psychiatry. 1977;40:291–8. https://doi.org/10.1136/
jnnp.40.3.291.

 5. Marshall LF, Becker DP, Bowers SA, Cayard C, Eisenberg H, 
Gross CR, Grossman RG, Jane JA, Kunitz SC, Rimel R, Tabaddor 
K, Warren J.  The National Traumatic Coma Data Bank. Part 1: 
design, purpose, goals, and results. J Neurosurg. 1983;59:276–84. 
https://doi.org/10.3171/jns.1983.59.2.0276.

 6. Whyte J, Vasterling J, Manley GT.  Common data elements for 
research on traumatic brain injury and psychological health: cur-
rent status and future development. Arch Phys Med Rehabil. 
2010;91:1692–6. https://doi.org/10.1016/j.apmr.2010.06.031.

 7. Saver JL, Warach S, Janis S, Odenkirchen J, Becker K, Benavente 
O, Broderick J, Dromerick AW, Duncan P, Elkind MS, Johnston 
K, Kidwell CS, Meschia JF, Schwamm L. Standardizing the struc-
ture of stroke clinical and epidemiologic research data: the National 
Institute of Neurological Disorders and Stroke (NINDS) stroke 
common data element (CDE) project. Stroke. 2012;43:967–73. 
https://doi.org/10.1161/strokeaha.111.634352.

 8. Khuri SF, Daley J, Henderson W, Hur K, Demakis J, Aust JB, 
Chong V, Fabri PJ, Gibbs JO, Grover F, Hammermeister K, Irvin 
G III, McDonald G, Passaro E Jr, Phillips L, Scamman F, Spencer 
J, Stremple JF.  The Department of Veterans Affairs’ NSQIP: 

31 Big Data in the Clinical Neurosciences

https://doi.org/10.1016/0022-5193(67)90097-5
https://doi.org/10.1016/0022-5193(67)90097-5
https://doi.org/10.3171/jns.1991.75.2.0251
https://doi.org/10.3171/jns.1994.81.2.0169
https://doi.org/10.3171/jns.1994.81.2.0169
https://doi.org/10.1136/jnnp.40.3.291
https://doi.org/10.1136/jnnp.40.3.291
https://doi.org/10.3171/jns.1983.59.2.0276
https://doi.org/10.1016/j.apmr.2010.06.031
https://doi.org/10.1161/strokeaha.111.634352


276

the first national, validated, outcome-based, risk-adjusted, and 
peer-controlled program for the measurement and enhancement 
of the quality of surgical care. National VA Surgical Quality 
Improvement Program. Ann Surg. 1998;228:491–507. https://doi.
org/10.1097/00000658- 199810000- 00006.

 9. Clark RE. The development of the Society of Thoracic Surgeons 
voluntary national database system: genesis, issues, growth, and 
status. Best Pract Benchmarking Healthc. 1996;1:62–9.

 10. Thourani VH, Badhwar V, Shahian DM, O’Brien S, Kitahara H, 
Vemulapalli S, Brennan JM, Habib RH, Fernandez F, D'Agostino 
RS, Lobdell K, Rankin JS, Gammie JS, Higgins R, Sabik J, 
Schwann TA, Jacobs JP.  The Society of Thoracic Surgeons 
adult cardiac surgery database: 2019 update on research. Ann 
Thorac Surg. 2019;108:334–42. https://doi.org/10.1016/j.
athoracsur.2019.05.001.

 11. Asher AL, McCormick PC, Selden NR, Ghogawala Z, McGirt 
MJ. The National Neurosurgery Quality and outcomes database and 
NeuroPoint Alliance: rationale, development, and implementation. 
Neurosurg Focus. 2013;34:E2. https://doi.org/10.3171/2012.10.
Focus12311.

 12. McGirt MJ, Bydon M, Archer KR, Devin CJ, Chotai S, Parker SL, 
Nian H, Harrell FE Jr, Speroff T, Dittus RS, Philips SE, Shaffrey CI, 
Foley KT, Asher AL. An analysis from the quality outcomes data-
base, part 1. Disability, quality of life, and pain outcomes following 
lumbar spine surgery: predicting likely individual patient outcomes 
for shared decision-making. J Neurosurg Spine. 2017;27:357–69. 
https://doi.org/10.3171/2016.11.Spine16526.

 13. Asher AL, Knightly J, Mummaneni PV, Alvi MA, McGirt MJ, 
Yolcu YU, Chan AK, Glassman SD, Foley KT, Slotkin JR, Potts 
EA, Shaffrey ME, Shaffrey CI, Haid RW, Fu KM, Wang MY, 
Park P, Bisson EF, Harbaugh RE, Bydon M. Quality outcomes 
database spine care project 2012–2020: milestones achieved in 
a collaborative north American outcomes registry to advance 
value-based spine care and evolution to the American spine reg-
istry. Neurosurg Focus. 2020;48:E2. https://doi.org/10.3171/202
0.2.Focus207.

 14. Wang MY, Tran S, Brusko GD, Eastlack R, Park P, Nunley PD, 
Kanter AS, Uribe JS, Anand N, Okonkwo DO, Than KD, Shaffrey 
CI, Lafage V, Mundis GM, Mummaneni PV. Less invasive spinal 
deformity surgery: the impact of the learning curve at tertiary spine 
care centers. J Neurosurg Spine. 2019:1–8. https://doi.org/10.3171/
2019.6.Spine19531.

 15. Staartjes VE, Stienen MN.  Data mining in spine surgery: lever-
aging electronic health records for machine learning and clinical 
research. Neurospine. 2019;16:654–6. https://doi.org/10.14245/
ns.1938434.217.

 16. Schröder ML, de Wispelaere MP, Staartjes VE. Predictors of loss 
of follow-up in a prospective registry: which patients drop out 
12 months after lumbar spine surgery? Spine J. 2019;19:1672–9. 
https://doi.org/10.1016/j.spinee.2019.05.007.

 17. Azad TD, Ehresman J, Ahmed AK, Staartjes VE, Lubelski D, 
Stienen MN, Veeravagu A, Ratliff JK. Fostering reproducibility 
and generalizability in machine learning for clinical prediction 
modeling in spine surgery. Spine J. 2020. https://doi.org/10.1016/j.
spinee.2020.10.006.

 18. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, 
Steyerberg EW, Vickers AJ, Ransohoff DF, Collins GS. Transparent 
reporting of a multivariable prediction model for individual progno-
sis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern 
Med. 2015;162:W1–73. https://doi.org/10.7326/m14- 0698.

 19. Ljungqvist O, Scott M, Fearon KC.  Enhanced recovery after 
surgery: a review. JAMA Surg. 2017;152:292–8. https://doi.
org/10.1001/jamasurg.2016.4952.

 20. Markram H. The blue brain project. Nat Rev Neurosci. 2006;7:153–
60. https://doi.org/10.1038/nrn1848.

 21. Toga AW, Clark KA, Thompson PM, Shattuck DW, Van Horn 
JD. Mapping the human connectome. Neurosurgery. 2012;71:1–5. 
https://doi.org/10.1227/NEU.0b013e318258e9ff.

 22. Gleichgerrcht E, Keller SS, Drane DL, Munsell BC, Davis KA, 
Kaestner E, Weber B, Krantz S, Vandergrift WA, Edwards JC, 
McDonald CR, Kuzniecky R, Bonilha L. Temporal lobe epilepsy 
surgical outcomes can be inferred based on structural connectome 
hubs: a machine learning study. Ann Neurol. 2020;88:970–83. 
https://doi.org/10.1002/ana.25888.

 23. Shang R, He L, Ma X, Ma Y, Li X.  Connectome-based model 
predicts deep brain stimulation outcome in Parkinson’s disease. 
Front Comput Neurosci. 2020;14:571527. https://doi.org/10.3389/
fncom.2020.571527.

 24. Kesler SR, Harrison RA, Petersen ML, Rao V, Dyson H, Alfaro- 
Munoz K, Weathers SP, de Groot J.  Pre-surgical connectome 
features predict IDH status in diffuse gliomas. Oncotarget. 
2019;10:6484–93. https://doi.org/10.18632/oncotarget.27301.

 25. Yeung JT, Taylor HM, Young IM, Nicholas PJ, Doyen S, Sughrue 
ME. Unexpected hubness: a proof-of-concept study of the human 
connectome using pagerank centrality and implications for intra-
cerebral neurosurgery. J Neurooncol. 2021;151(2):249–56. https://
doi.org/10.1007/s11060- 020- 03659- 6.

 26. Savarraj JP, Hergenroeder GW, Zhu L, Chang T, Park S, Megjhani 
M, Vahidy FS, Zhao Z, Kitagawa RS, Choi HA. Machine learning 
to predict delayed cerebral ischemia and outcomes in subarach-
noid hemorrhage. Neurology. 2021;96(4):e553–62. https://doi.
org/10.1212/wnl.0000000000011211.

G. D. Brusko et al.

https://doi.org/10.1097/00000658-199810000-00006
https://doi.org/10.1097/00000658-199810000-00006
https://doi.org/10.1016/j.athoracsur.2019.05.001
https://doi.org/10.1016/j.athoracsur.2019.05.001
https://doi.org/10.3171/2012.10.Focus12311
https://doi.org/10.3171/2012.10.Focus12311
https://doi.org/10.3171/2016.11.Spine16526
https://doi.org/10.3171/2020.2.Focus207
https://doi.org/10.3171/2020.2.Focus207
https://doi.org/10.3171/2019.6.Spine19531
https://doi.org/10.3171/2019.6.Spine19531
https://doi.org/10.14245/ns.1938434.217
https://doi.org/10.14245/ns.1938434.217
https://doi.org/10.1016/j.spinee.2019.05.007
https://doi.org/10.1016/j.spinee.2020.10.006
https://doi.org/10.1016/j.spinee.2020.10.006
https://doi.org/10.7326/m14-0698
https://doi.org/10.1001/jamasurg.2016.4952
https://doi.org/10.1001/jamasurg.2016.4952
https://doi.org/10.1038/nrn1848
https://doi.org/10.1227/NEU.0b013e318258e9ff
https://doi.org/10.1002/ana.25888
https://doi.org/10.3389/fncom.2020.571527
https://doi.org/10.3389/fncom.2020.571527
https://doi.org/10.18632/oncotarget.27301
https://doi.org/10.1007/s11060-020-03659-6
https://doi.org/10.1007/s11060-020-03659-6
https://doi.org/10.1212/wnl.0000000000011211
https://doi.org/10.1212/wnl.0000000000011211


277© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. E. Staartjes et al. (eds.), Machine Learning in Clinical Neuroscience, Acta Neurochirurgica Supplement 134, 
https://doi.org/10.1007/978-3-030-85292-4_32

Natural Language Processing 
Applications in the Clinical 
Neurosciences: A Machine Learning 
Augmented Systematic Review

Quinlan D. Buchlak, Nazanin Esmaili, Christine Bennett, 
and Farrokh Farrokhi

32.1  Introduction

Natural language processing (NLP) is a subfield of computer 
science, artificial intelligence (AI) and linguistics. It encom-
passes a set of computational techniques underpinned by 
machine learning that have been designed to represent, 
model and analyze human language [1–3]. NLP involves 
converting unstructured text data into structured datasets that 
can be readily analyzed by computers and used to predict 
and classify [4]. NLP application in medicine may be rule- 
based or statistical [5, 6] and can be used to process high- 
volume text datasets for information extraction, 
dimensionality reduction, pattern analysis, keyword identifi-
cation, anonymization, topic modeling, document classifica-
tion, sentiment analysis, translation, text generation and 
question answering [7–9].

The number of studies applying NLP in medicine has 
been growing steadily [8]. NLP has been used to classify 
health records [10], detect adverse drug reactions [11–13], 
facilitate medication reconciliation [14], develop and anno-
tate radiology reports [15], automate the diagnostic process 
[16–21], develop clinical decision support tools [22], enable 
risk stratification [23, 24], identify cohorts of patients [25–
27], facilitate immunohistochemical analysis [28], guide the 
administration of intravenous contrast [29] and monitor for 
infection [30–33] and infection risks [34]. Buchlak et  al. 

applied NLP to facilitate the systematic review process [35]. 
Electronic medical records (EMR) have been widely imple-
mented and the volume of text data captured in the course of 
routine clinical practice is immense and growing. Text-based 
clinical notes provide rich and detailed clinical data that may 
not be gleaned from other parts of the EMR [36]. These fac-
tors have spurred research into more advanced and capable 
NLP methods [37] to facilitate clinical research.

NLP is increasingly being used to predict clinical out-
comes. It has been applied to the automated detection of 
postoperative complications [38] and to predict patient 
length of stay and discharge disposition [39]. Murff et al. 
applied NLP to automate the identification of 30-day post-
operative complications in patients undergoing major sur-
gery [40]. Karhade et  al. applied NLP to automate the 
detection of postoperative infections after lumbar discec-
tomy surgery [41]. Rajkomar et al. used NLP to develop a 
system to automatically chart patient symptoms using tran-
scribed medical history conversations [42]. Liang et  al. 
applied NLP to automate the diagnosis of childhood dis-
eases, analyzing EMR text data from more than 1.3 million 
pediatric patient visits [43]. Galetta et al. used NLP to ana-
lyze clinical trial documentation and predict the likelihood 
of study termination [44].

NLP research has benefited from the development and 
release of deep transformer [45] models and transfer learn-
ing. Transfer learning involves pretraining a model on a data- 
rich problem, allowing it to develop relevant associations 
that can then be transferred to generate appropriate solutions 
to subsequent tasks [46]. The Text-to-Text Transfer 
Transformer (T5) [46], Generative Pre-trained Transformer 3 
(GPT-3) [47], Bidirectional Encoder Representations from 
Transformers (BERT) [48], XLNet [49] and RoBERTa [50] 
models are deep transformer language models, each incorpo-
rating many millions of parameters, which have been pre-
trained on vast text datasets. The Collossal Clean Crawl 
Corpus (C4) dataset used to train the T5 model stands at 750 
gigabytes of text data. These models can be used to effec-
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tively perform a wide array of NLP functions including the 
generation of news articles [47] and text summaries [51, 52] 
that are indistinguishable from those written by humans. 
Pretrained deep language models can be used for high per-
formance document classification without necessitating text 
preprocessing or feature engineering [48]. The exploration 
and application of pretrained language models may be ben-
eficial to research and practice in the clinical neurosciences.

The primary objective of this study was to provide a sys-
tematic, up-to-date review of NLP applications in the clinical 
neurosciences. Its secondary objective was to explore some 
basic NLP use cases to facilitate literature synthesis and pro-
vide a sample of clear examples for a clinical audience. This 
study was guided by two research questions: (1) How has 
NLP been applied in the clinical neurosciences? (2) Can 
NLP be applied to facilitate the systematic review process?

32.2  Method

Our method was informed by the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines [53]. A comprehensive search strategy was devel-
oped [54] and applied to the following databases in accor-
dance with recommended practice [55]: PubMed, 
ScienceDirect, Embase, Ovid, Ebsco, Google Scholar and 
Scopus. The PROBAST (prediction model risk of bias 
assessment tool) was used to assess risk of bias [56, 57].

 Study Identification

The literature search was conducted between September and 
October, 2020. The search strategy employed comprehensive 
combinations of search terms, including methodological and 
clinical domain keywords and MeSH terms (Table 32.1). The 
following search query used as an input to PubMed and gen-
erated 213 results: [(nlp OR “natural language processing” 
OR “text classification” OR “topic modeling” OR “topic 

modelling”) AND (neurosurgery OR “spine surgery” OR 
neuroscience)]. All clinical neuroscience journals indexed by 
Scimago were individually searched for articles that had 
applied NLP. The reference lists of each included study were 
searched to identify additional relevant papers [58]. 
Reference lists of relevant review articles were also mined.

 Inclusion and Exclusion Criteria

Inclusion criteria were: original research published in a peer- 
reviewed journal; applied NLP methods; research question 
was relevant to clinical neuroscience (e.g., neurosurgery, spine 
surgery, or neurology); and published in English. Reviews that 
applied NLP were included. Exclusion criteria were: described 
NLP but did not apply it; research protocol; published abstract 
only; and research that focused on psychiatric disorders, cog-
nitive neuroscience or neurophysiology. Articles were selected 
for inclusion by QDB and selections were verified by 
NE. Articles classified as meeting inclusion and exclusion cri-
teria independently by both researchers were included in the 
analysis, with disagreements resolved by discussion.

 Data Collection and Extraction

Numerous datapoints from each included study were col-
lected and coded. Data included: abstract, reference, pur-
pose, study design, NLP input, NLP output, software and 
data resources used and performance metrics. Authors of 
each included paper were recorded, along with the lead 
author’s institution and country.

 Analysis

Quantitative and qualitative analyses were conducted. Data 
extracted from each article was used to calculate descriptive 
statistics. Abstracts were used to feed an NLP analysis that 
consisted of three phases: (1) keyword identification, (2) text 
summarization, and (3) training and testing document classi-
fiers. The text was tokenized and converted to lower case, 
numeric characters and English stop words were removed 
and remaining tokens were lemmatized [35]. Text summari-
zation was achieved by using the large (770 million parame-
ters) and small (60 million parameters) forms of the T5 
transformer model [46]. Multiple document classifiers were 
trained to explore the development of a system to facilitate 
automated article screening and selection. The classification 
outcome was article inclusion in this systematic review, after 
completion of manual selection and coding. A transfer learn-
ing approach for text classification was applied using the 
BERT [48], RoBERTa [50], and XLNet [49] pretrained deep 

Table 32.1 MeSH terms and keywords used in the search strategy

Methods
Clinical 
neurosciences

Keywords and 
MeSH terms

•  Natural language 
processing

•  Gensim
•  Latent Dirichlet 

allocation
•  NLTK
•  SpaCy
•  Topic modeling
•  Text/document 

classification
•  Transformer model
•  Language model

•  Brain
•  Neurology
•  Neurosciences
•  Neurosurgery
•  Spine
•  Spine surgery
• Brain surgery

Q. D. Buchlak et al.
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language models. These models enabled the use of raw, 
unprocessed text as input. Model classification performance 
was assessed using threefold cross-validation, with the accu-
racy, area under the receiver operating characteristic curve 
(AUC), precision, recall, F1 and Matthew’s correlation coef-
ficient (MCC) metrics. The MCC ranges from negative-one 
to one, while other metrics range between zero and one, with 
higher numbers indicating better performance. Analyses were 
conducted using custom Python scripts and the SciPy [59], 
Scikit-learn [60], NLTK [61], gensim [62, 63], Keras [64], 
transformers [65], and simpletransformers [66] packages.

32.3  Results

The search resulted in the retrieval of 1131 records. We 
assessed 142 full-text articles; 94 were excluded, which left 
48 for analysis (Fig.  32.1). Study characteristics are dis-
played in Table 32.2. The most prevalent institutions (affili-
ated with the first author) were Harvard Medical School 
(n = 5) and Cincinnati Children’s Hospital (n = 3). The num-
ber of publications applying NLP to the clinical neurosci-
ences has increased substantially over the past 5  years 
(Fig. 32.2).

Fig. 32.1 Overview of study screening and selection
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 NLP Application Domains

NLP has been applied in the clinical neurosciences to facili-
tate literature synthesis, data extraction, patient identifica-
tion, automated clinical reporting, and outcome prediction 
(Table 32.3).

 NLP for Patient Cohort Identification
NLP enabled the identification of groups of patients at scale. 
Zhang et al. processed 4.2 million patient records, identify-
ing 5589 patients with potential cerebral artery aneurysms 

for inclusion in their study [67]. Zanaty et al. used NLP to 
retrospectively analyze health records and identify patients 
for inclusion in their study on decreasing the rate of intracra-
nial aneurysm growth by administering aspirin [27].

 NLP for Automated Reporting
NLP was applied to facilitate automated reporting. Karhade et al. 
[41] developed a system that processed clinical notes of patients 
who underwent spine surgery to identify those who required 
reoperation for wound infection within 90 days. Karhade et al. 
also developed NLP-based systems that processed clinical notes 
to automatically identify intraoperative vascular injuries [68] and 
incidental durotomies [69] associated with spine surgery. 
Wissel et al. incorporated their NLP-based system into a hos-
pital EMR. It analyzed clinical notes and sent alerts to neu-
rologists when epilepsy patients who could potentially 
benefit from surgery had an upcoming visit. To maximize 
performance and safety, the algorithm was retrained weekly 
[70].

 NLP for Data and Information Extraction
NLP was used to extract structured data from text. Senders 
et  al. developed an open-source NLP pipeline for variable 
extraction from clinical text and used it to extract salient fea-
tures associated with glioblastoma from MRI reports [71]. 
Knapp et al. [72] used NLP to extract clinical data from the 
medical records of 3075 Alzheimer’s patients. Palacios et al. 
[73] extracted topics from the text and metadata of a patient 
support community website.

 NLP for Literature Synthesis
NLP was deployed to analyze and synthesize academic lit-
erature. Sing et al. [74] derived 100 topics from over 25,000 
spine surgery abstracts. Buchlak et  al. [35] used NLP to 
facilitate the systematic review process by modeling topics.

 NLP for Outcome Prediction
Only a few studies used NLP to predict clinical outcomes. 
Danilov et al. [75] used NLP to process 101,654 operative 
reports and predict the duration of a patient’s postoperative 
hospital stay. Monsour et al. developed an NLP-based tool to 
predict non-home discharge subsequent to craniotomy for 
meningioma resection using preoperative clinical notes and 
radiology reports. This tool appears to be the first publicly 
available NLP-driven clinical decision support tool imple-
mented in the clinical neurosciences [76].

 NLP Analysis

Keywords extracted using NLP techniques highlighted pri-
mary clinical practice domains (epilepsy and surgery), data 
sources and analysis methods used across the corpus 

Table 32.2 A summary of included study characteristics

Study characteristic Descriptive statistics
Design 45 (94%) retrospective

3 (6%) prospective
Article type 45 (92%) original research

3 (8%) review
Clinical domain 21 (45%) neurology

16 (33%) neurosurgery
8 (16%) spine surgery
3 (6%) clinical neuroscience

Country 32 (65%) USA
4 (8%) France
2 (4%) UK
2 (4%) Canada
2 (4%) China
2 (4%) Russia
1 (2%) Australia
1 (2%) Japan
1 (2%) Germany
1 (2%) Netherlands

Fig. 32.2 The number of included publications that have applied NLP 
within the clinical neurosciences by year

Q. D. Buchlak et al.



281

Table 32.3 Summaries of included studies

Reference

Clinical 
neuroscience 
subdomain NLP algorithm inputs NLP algorithm outputs

NLP purpose/
application type

Risk 
of 
bias

Barbour et al. 
(2019) [82]

Neurology Electronic medical records Risk factors for sudden 
unexpected death in epilepsy

Patient/cohort 
identification, risk 
stratification

+

Buchlak et al. 
(2019) [35]

Neurosurgery Research abstracts Topics Topic modeling +

Campillo- 
Gimenez et al. 
(2012) [77]

Neurosurgery Clinical notes from 5010 patients 
(radiology and pathology reports, 
discharge summaries, consultation 
notes)

Surgical site infections after 
neurosurgery within 30 days (no 
implant) or within 1 year 
(implant)

Outcome 
prediction

+

Castro et al. 
(2017) [94]

Neurology Electronic medical records Identification of patients with 
cerebral aneurysms and controls

Patient/cohort 
identification

+

Chase et al. 
(2017) [95]

Neurology Enriched set of clinical notes from 
patients with well-established MS 
(n = 165) and controls (n = 545)

MS diagnosis Patient/cohort 
identification

+

Cohen et al. 
(2016) [96]

Neurosurgery Clinical notes Identification of potential 
surgical candidates

Patient/cohort 
identification

+

Connolly et al. 
(2014) [97]

Neurology Epilepsy progress notes Epilepsy type and treating 
hospital

Patient/cohort 
identification, 
data/information 
extraction

+

Crasto and 
Shepherd (2007) 
[98]

Clinical 
neuroscience

177 Journal of Neuroscience abstracts Identification of an article as 
citable or not

Document 
classification

+

Crasto et al. 
(2003) [99]

Clinical 
neuroscience

177 Journal of Neuroscience abstracts Identification of an article as 
citable or not

Document 
classification

+

Cui et al. (2014) 
[100]

Neurology Discharge summaries Extracting epilepsy phenotypes 
and correlated anatomical 
locations

Data/information 
extraction, 
document 
classification

+

Dang et al. 
(2009) [101]

Spine surgery Radiology reports Descriptive statistics and trends Data/information 
extraction

?

Danilov et al. 
(2020) [75]

Neurosurgery 101,654 operative reports Duration of postoperative 
hospital stay

Outcome 
prediction

+

Danilov et al. 
(2020) [102]

Neurosurgery Preoperative clinical text for 1167 glial 
tumor resection patients

Muscle weakness (paresis) Outcome 
prediction, data/
information 
extraction

+

Dergachyova 
et al. (2018) 
[103]

Neurosurgery 103 postoperative reports (anterior 
cervical discectomy and fusion, lumbar 
disc herniation, and pituitary adenoma). 
62,489 PubMed abstracts. 32,271 
full-text articles

The next activity in a surgical 
process—a verb describing the 
movement performed by the 
surgeon, an instrument used, and 
an operated anatomical structure

Outcome 
prediction

+

Elkins et al. 
[104]

Neurology 471 neuroradiology reports Coding report for stroke Document 
classification

+

Fonferko- 
Shadrach et al. 
(2019) [105]

Neurology Epilepsy clinic letters Extract clinical information 
from clinic letters to enrich 
routinely collected data

Data/information 
extraction

+

Fraser et al. 
(2014) [106]

Neurology Transcriptions of speech for patients 
with semantic dementia and progressive 
nonfluent aphasia, and healthy controls

Syntactic and semantic features Patient/cohort 
identification, 
document 
classification

+

Gaebel et al. 
(2015) [107]

Neurosurgery Clinical documentation (in German) in 
electronic health records

Identification of adverse events 
documented in the EMR that 
occurred during treatment

Data/information 
extraction, 
document 
classification

−

Hamid et al. 
(2013) [18]

Neurology Clinical notes of 742 Iraq and 
Afghanistan veterans

Psychogenic nonepileptic 
seizure diagnosis

Document 
classification

+

(continued)
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Table 32.3 (continued)

Reference

Clinical 
neuroscience 
subdomain NLP algorithm inputs NLP algorithm outputs

NLP purpose/
application type

Risk 
of 
bias

Hoogenboom 
et al. (2014) 
[108]

Neurology EMR notes Identification of patients with 
MDD for inclusion in the study

Patient/cohort 
identification

+

Huhdanpaa et al. 
(2018) [5]

Spine surgery Lumbar spine MRI radiology reports Extracted reported presence of 
type 1 Modic endplate changes

Document 
classification

?

Karhade et al. 
(2019) [69]

Spine surgery Operative notes Detection of incidental 
durotomies

Document 
classification

+

Karhade et al. 
(2020) [41]

Spine surgery Free-text notes of patients who 
underwent surgery

Reoperation for wound infection 
within 90 days

Automated 
reporting/
document 
classification

+

Karhade et al. 
(2020) [68]

Spine surgery Operative notes Automated identification of 
intraoperative vascular injury

Automated 
reporting/
document 
classification

+

Knapp et al. 
(2016) [72]

Neurology 3075 Alzheimer’s patient clinical 
records

Observational data Data/information 
extraction

+

Lin et al. (2008) 
[109]

Neurology Abstracts from the Society for 
Neuroscience annual meeting 
2001–2006

Topics Topic modeling +

Marcotte et al. 
(2017) [76]

Neurology Clinical notes (25 patients) Extraction of linguistic features 
(fluency, lexical, syntactic 
complexity and semantic)

Data extraction −

Monsour et al. 
(2020) [76]

Neurosurgery Preoperative clinical notes and 
radiology reports

Discharge disposition Outcome 
prediction

+

Naud and Usui 
(2008) [110]

Clinical 
neuroscience

Research posters presented at the 
Society for Neuroscience annual 
meeting

Topics Topic modeling +

Noorbakhsh- 
Sabet et al. 
(2018) [111]

Neurology Brain MRI reports Patients with cerebral 
microbleeds

Document 
classification, 
patient/cohort 
identification

+

Palacios et al. 
(2020) [73]

Neurology Text and metadata from a patient 
community website

Topics Topic modeling +

Pantazatos et al. 
(2009) [112]

Neurology Neuroimaging and microarray datasets Coding of phenotypes Data/information 
extraction

+

Pons et al. 
(2019) [113]

Neurology CT reports and clinical notes Extraction of indication, 
Glasgow Coma Scale score, and 
CT outcome

Data/information 
extraction

+

Senders et al. 
(2020) [71]

Neurosurgery MRI reports for 562 patients with 
glioblastoma

Extraction of 15 radiologic 
characteristics

Data/information 
extraction

+

Sing et al. 
(2017) [74]

Spine surgery 25,805 spine research abstracts Derived 100 topics Topic modeling +

Speier et al. 
(2013) [114]

Neurology Electrocorticography signals Improved spelling performance Data processing +

Tan et al. (2018) 
[115]

Spine surgery 413 X-ray reports and 458 MRI reports Clinical findings associated with 
back pain

Information/data 
extraction

+

Thirukumaran 
et al. (2019) 
[116]

Spine surgery Clinical notes from 172 patients with 
SSI and 1407 controls

Identification of surgical site 
infections

Reporting, patient/
cohort 
identification

+

Titano et al. 
(2018) [20]

Neurology Cranial imaging reports Acute neurologic events Reporting, patient/
cohort 
identification

+

Tvardik et al. 
(2018) [33]

Neurosurgery Clinical records Hospital acquired infections Reporting, patient/
cohort 
identification

+

Q. D. Buchlak et al.
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(Table  32.4). Document classifiers demonstrated moderate 
performance, with XLNet slightly outperforming BERT and 
RoBERTa (Figure 32.3). The T5 transformer model yielded 
credible abstract summaries with only a few errors. The 
larger 770 million parameter T5 model appeared to yield bet-
ter summaries than the smaller 60 million parameter model 
(Table 32.5)

 NLP Resources

Various tools and resources have been developed and used to 
facilitate NLP research. Those applied in the identified clini-
cal neuroscience corpus included guidelines, software pack-
ages and datasets (Table 32.6).

32.4  Discussion

This study provided a systematic overview and synthesis of 
NLP applications within the clinical neurosciences. To this 
point, these applications have been diverse but limited. It was 
evident that NLP use cases coalesced primarily into five 
main themes: automated reporting, patient cohort identifica-
tion, clinical data and information extraction, research litera-
ture synthesis and clinical outcome prediction. NLP has 
demonstrated the potential to facilitate quality and safety 
improvement, clinical coding and automated prospective 
monitoring and reporting for adverse events and clinical out-
comes at the organizational and health system levels [77, 
78]. NLP designed to predict outcomes has the potential to 
improve clinical decision making and facilitate the develop-
ment of personalized medicine [79]. Analysis of included 
articles suggested that the number of published studies 
applying NLP to the clinical neurosciences is increasing rap-

Table 32.3 (continued)

Reference

Clinical 
neuroscience 
subdomain NLP algorithm inputs NLP algorithm outputs

NLP purpose/
application type

Risk 
of 
bias

Weng et al. 
(2017) [36]

Neurology Clinical notes Medical specialty classification 
(e.g., cardiology, neurology, etc.)

Document 
classification

+

Wissel et al. 
(2020) [117]

Neurosurgery Clinical notes from patients with 
epilepsy and a history of surgery and 
patients who were seizure-free without 
surgery

Identification of candidates for 
epilepsy surgery

Risk stratification, 
patient/cohort 
identification

+

Wissel et al. 
(2019) [70]

Neurosurgery Clinical notes Assign surgical candidacy scores 
to patients

Patient/cohort 
identification

+

Xu et al. (2020) 
[118]

Neurology Diagnostic text or codes Patients with neurological 
disorders

Patient/cohort 
identification

+

Yang et al. 
(2012) [119]

Neurosurgery PubMed abstracts Identification of 1168 glioma- 
related molecules

Data/information 
extraction

+

Yarkoni et al. 
(2011) [120]

Neurology Research articles Functional mapping Data/information 
extraction

+

Zanaty et al. 
(2019) [27]

Neurosurgery Clinical notes Identification of patients with 
intracanial aneurysms

Patient/cohort 
identification

+

Zhang et al. 
(2019) [67]

Neurosurgery 4.2 million patient records 5589 patients with potential 
cerebral aneurysms

Patient/cohort 
identification

+

EMR electronic medical record, CT computed tomography, MDD major depressive disorder, MRI magnetic resonance imaging, MS multiple 
sclerosis, SSI surgical site infection

Table 32.4 Keywords identified across the abstracts of all included 
articles using NLP

Keyword Frequency
Patient 126
Data 76
NLP 67
Algorithm 62
Clinical 61
Study 56
Note 46
Epilepsy 45
Language 43
Model 43
Processing 39
Analysis 39
Report 37
Natural 36
Medical 35
Learning 35
Surgical 35

32 Natural Language Processing Applications in the Clinical Neurosciences: A Machine Learning Augmented Systematic Review



284

Fig. 32.3 Performance of 
document classifiers trained 
to differentiate articles 
included in this review from 
those that were excluded. 
Article abstracts were used as 
input

Table 32.5 Text summarization results for selected abstracts

Abstract used as 
NLP input

NLP-generated summary using the small 60 million 
parameter T5 model

NLP-generated summary using the large 770 million 
parameter T5 model

Karhade et al. 
(2020)

Background: Surgical site infections are a major driver of 
morbidity, study says. The aim of this study was to 
develop natural language processing (NLP) algorithms for 
automated reporting of postoperative wound infection 
requiring reoperation after lumbar discectomy

Surgical site infections are a major driver of morbidity and 
increased costs in the postoperative period after spine 
surgery. This study developed natural language processing 
(NLP) algorithms for automated reporting of wound 
infection requiring reoperation after lumbar discectomy

Senders et al. 
(2020)

The aim of this study was to develop an open-source 
natural language processing pipeline. The pipeline allows 
for text mining of narratively written clinical reports. 
Small sample sizes and class imbalance should not be 
considered as absolute contraindications

Study developed an open-source natural language 
processing (NLP) pipeline for text mining. Model extracted 
radiologic characteristics from free-text radiology reports 
for patients with glioblastoma. Report-level classification 
accuracy was not associated with the number of words in 
the distinct text documents

Wissel et al. 
(2020)

A natural language processing application was trained on 
notes from patients with epilepsy and history of resective 
surgery. The testing set included all patients who were 
seizure-free without surgery and an upcoming neurology 
visit. Training and testing sets were updated weekly for 
1 year. One- to three-word phrases contained in patients’ 
notes were used as features

Natural language processing (NLP) application uses 
provider notes to assign epilepsy surgery candidacy scores. 
Training set [sic] was updated weekly and included notes 
from a mean of 519 67 [sic] patients. Of the 6395 patients 
who visited the neurology clinic, 4211 (67%) were 
evaluated by the model

Zhang et al. 
(2019)

Intracranial aneurysms and surrounding vasculature could 
affect risk of rupture. Morphological parameters 
correlated with ruptured middle cerebral artery (MCA)

Five hundred sixty-one patients with 638 MCA aneurysms 
diagnosed between 1990 and 2016 were included in this 
study. Greater bottleneck and size ratio, and irregular, 
multilobed, temporally projecting, are [sic] associated with 
higher rupture risk, according to a statistical analysis

The present study Natural language processing (NLP) is a domain of 
artificial intelligence that models human language. It has 
been used to automate the diagnostic process, detect 
adverse events, develop decision support tools and predict 
clinical outcomes. However, applications to the clinical 
neurosciences appear to be limited. NLP has recently 
matured with the implementation of deep transformer 
models and transfer learning

Natural language processing (NLP) has been used to 
automate the diagnostic process, detect adverse events and 
predict clinical outcomes. Applications to the clinical 
neurosciences have so far been limited, but research is 
underway to enhance research and practice in the 
neurosciences

Sentences output by the models were capitalized
Errors in model-generated text have been marked
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idly. This trend is likely driven by the recent development 
and open release of mature NLP technologies, along with the 
accumulation of rich text datasets within health system 
EMRs. EMR systems and the corresponding accumulation 
of large text-based datasets in the course of routine clinical 
practice have set the scene for the effective application of 
NLP technologies. NLP enables further beneficial use of 
clinical notes, beyond the immediate patient care lifecycle. It 
can be used to rapidly acquire additional data from large 
clinical text corpora, facilitating research and the develop-
ment of clinical interventions.

Few studies deployed pretrained deep language models 
(e.g., XLNet, BERT, RoBERTa, T5, etc.). These models 
can be used for successful document classification and 
summarization. A salient benefit of these models is that 
they remove the need for feature engineering, resulting in a 
more efficient and replicable classifier training and valida-
tion process. The automated generation of NLP features is 
more scalable and efficient and less labor intensive [41]. 
These deep learning models, however, require much more 
training data than shallower machine learning models that 
necessitate feature engineering. Limited datasets, like the 
one used to train the classifiers in this study to differentiate 
between included and excluded articles, appear to be asso-

ciated with only moderate performance when using pre-
trained deep learning models. Future research may 
investigate the deployment of other machine learning mod-
els to facilitate systematic review article screening. 
Improved deep learning model performance may be 
achieved by exploring text dataset augmentation tech-
niques. There is substantial potential to further explore the 
application of deep language models to classify and sum-
marize documents in the clinical neurosciences.

As clinical NLP matures, multiple issues require close 
consideration by researchers including model interpretabil-
ity, research replicability, the development of personalized 
models, the delivery of time sensitive predictions [37], and 
ethical system implementation to facilitate clinical practice 
[80]. The potential for bias should be considered and miti-
gated [81]. Challenges facing the implementation of NLP 
include variations in EMR systems, clinical practice and 
clinical language and access to sufficiently sized clinical 
datasets [82]. Integrating NLP-based decision support sys-
tems into comprehensive perioperative care processes may 
serve to improve patient safety [83]. The continued develop-
ment of guidelines [37] and principles [80] will facilitate the 
efficacious development and implementation of beneficial 
and safe machine learning driven clinical tools.

NLP research is often underpinned by powerful open- 
source software. NLP resources are continually developing 
and becoming more usable for clinicians. Resources applied 
in the body of literature reviewed here were summarized to 
facilitate future research. Because NLP research in the neu-
rosciences appears to be in the early stages of development, 
this list is incomplete. NLP software packages include gen-
sim [62, 63], SpaCy [84], the Natural Language Toolkit 
(NLTK) [61], pyLDAvis [85], Simple Transformers [66], 
Stanza (formerly known as StanfordNLP) [86, 87] and the 
General Architecture for Text Engineering (GATE) [88]. We 
focus primarily on packages that can be used with Python 
because our team has specialized in this language. Gensim is 
a fast and widely used library that facilitates unsupervised 
topic modeling and other NLP functions for large volumes of 
text [63]. SpaCy is a library designed for production use and 
has a reputation for rapid parsing [89]. It enables natural lan-
guage understanding, information extraction and preprocess-
ing to facilitate deep learning [84]. NLTK is a platform that 
facilitates both symbolic and statistical NLP.  It interfaces 
with annotated corpora and offers access to text processing 
libraries for tokenization, stemming, tagging, parsing, 
semantic reasoning and classification [90]. pyLDAvis 
enables topic visualization and interpretation [85]. Simple 
Transformers facilitates access to, and the implementation 
of, deep transformer models [66]. It does not yet, however, 
support some custom weighted models like ClinicalBERT 
[91]. Stanza interfaces with CoreNLP and offers a broad 
range of tools for various NLP functions (e.g., linguistic 

Table 32.6 NLP resources used by clinical neuroscience researchers

Domain Tools
Guidelines and 
standards

• Velupillai et al. (2018) [37]

Software • BERT [48]
•  Cancer Text Information Extraction System 

(caTIES) [121]
•  General architecture for text engineering 

(GATE) framework [88]
•  GloVe [122]
•  Health Information Text Extraction (HITEx) 

[123]
•  Medical Knowledge Analysis Tool 

(MedTAS/P) [124]
•  NeuroText
•  NOMINDEX [125, 126]
•  pyLDAvis
•  quanteda (R)
•  RoBERTa [50]
•  tidytext (R)
•  tidyverse (R)
•  word2vec [127]
•  Yale cTAKES Extension (YTEX) [128]

Datasets •  CLEF eHealth datasets [129]
•  Columbia Open Health Data (COHD) [130]
•  iDASH repository [131]
•  Japanese clinical documents [132]
•  National Surgical Quality Improvement 

Program (NSQIP) registry
•  Spoken clinical handover transcriptions 

[133]
•  Transcribed medical reports (www.

mtsamples.com)
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annotation), supporting more than 60 languages [86, 87]. It 
now incorporates clinical and biomedical models to enable 
named entity recognition and syntactic analysis in specialist 
literature [92]. GATE, developed over a 20-year period, pro-
vides a collection of text analysis tools and processes for vari-
ous aspects of language engineering [88]. While some of these 
packages are designed to perform specific and distinct func-
tions, there is substantial overlap between many of them and 
many cater for numerous languages. Comparisons of NLP 
software packages, reviewing performance and documenta-
tion quality, are rare. StanfordNLP (Stanza) appears to demon-
strate strong named entity recognition performance when 
compared with other packages [93]. Further development of 
open-source software systems by engineers that make the 
application of mature NLP technologies easier for clinicians 
will facilitate translational research and clinical innovation. 
Further adoption of these kinds of tools by clinical neurosci-
ence practitioners is likely to result in additional useful 
research outputs and clinical decision support tools that may 
deliver benefits to patients. Future research evaluating and 
quantifying the impact of NLP systems on the overall time it 
takes to complete systematic reviews would be informative.

The majority of included studies came from the United 
States. While a small number of studies were identified from 
non-English speaking countries, NLP is inherently tied to 
language and some articles applying NLP to the neurosci-
ences published in languages other than English may not 
have been captured by this review.

32.5  Conclusion

The application of NLP in the clinical neurosciences has so 
far been limited, but this field of research appears to be 
snowballing. As NLP technologies mature, the potential for 
them to generate clinical benefits for patients and providers 
grows. NLP and machine learning appear to be enhancing 
research and practice in the clinical neurosciences.
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Machine Learning in Pituitary Surgery
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and Carlo Serra

33.1  Introduction

Pituitary tumors (PTs) constitute a heterogeneous group of 
lesions of the central nervous system (CNS) with high inci-
dence Pituitary adenomas (PAs) are categorized by their 
dimension and their hormone secretion. Specific clinical fea-
tures are associated with oversecretion of each hormone i.e., 
Cushing’s disease for adrenocorticotrophic hormone 
(ACTH), acromegaly for growth hormone (GH), and galac-
torrhea/amenorrhea for prolactin [1]. Non-functioning pitu-
itary adenomas are usually identified by sequelae of their 
mass effect, such as headache, visual defects (bitemporal 
hemianopsia), hormonal deficits, or also an incidental radio-
logical finding [1]. Transsphenoidal surgery is recommended 
in symptomatic patients, In the case of prolactinomas, medi-
cal treatment is recommended [2]. Fifteen to fifty percent of 
functioning PA patients resolve their hormonal abnormality 
after surgical treatment, while 2% to 15% of patients may 
have new hormonal deficits [1]. Other less common pituitary 
lesions of neurosurgical pertinence include craniopharyngio-
mas, Rathke cleft cysts and pituitary carcinomas [3–5].

Machine learning (ML) is a rapidly developing field in 
clinical neuroscience with applications to neurosurgical dis-
ease management. Given the advent of “big data,” technical 
improvements and widespread availability of sufficient com-
putational power, ML algorithms have the potential to help 
tackle existing issues in daily clinical practice [6, 7]. A recent 
worldwide survey strikingly found that almost 28.5% of neu-
rosurgeons reported using ML in their clinical practice, and 
31.1% in research, most commonly for outcome and compli-
cation prediction, imaging interpretation or quantification, or 
patient counseling and shared decision-making [8]. A review 

by Senders et al. [9] systematically reviewed past studies in 
neurosurgery where human expert evaluation was compared 
to ML algorithms’ performance for a variety of tasks includ-
ing tumor classification and grading, surgical decision- 
making, segmentation and localization of epileptogenic 
zones, as well as outcome prediction. The authors concluded 
that although ML models have the potential to enhance 
decision- making capacity of clinicians, significant chal-
lenges remain to be addressed to switch from competitive to 
a collaborative human-machine paradigm. Despite the prom-
ises held by ML and artificial intelligence (AI), translation 
clinical practice is complex [7]. Selection of a clinical prob-
lem, the prediction of which can be relevant at the appropri-
ate steps during therapeutic management is critical. Once a 
suitable clinical problem is identified, the approach needs to 
equally be well thought out with respect modeling strategy 
and data collection. Data availability is another crucial issue, 
as thousands of patients may be needed for proper model 
training and external validation, which is necessary for con-
firming adequate generalizability of the developed model 
[10]. At the same time, implementation of the model in the 
daily clinical practice should ideally be straightforward and 
not require extensive data collection. Heterogenous data 
sources can be selected as input variables to train a ML 
model such as, for example, clinical data, histopathological 
slides, as well as radiological images [11–14]. Importantly, a 
variety of technical pitfalls, including overfitting and class 
imbalance, need to be accurately addressed to assure reli-
ability of the trained model [10, 15, 16].

33.2  Machine Learning Applications 
in Pituitary Surgery

ML learning applications in surgical specialties, and in neu-
rosurgery specifically, are more commonly reported for 
diverse tasks including faster and more accurate preoperative 
diagnosis [17, 18], enhanced lesion characterization [19], 
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and surgical outcome [20–22], complications [13, 23] and 
cost prediction [24]. In this respect, pituitary surgery makes 
no exception, even if—compared to other diseases of neuro-
surgical relevance—the reported literature is less extensive 
[25, 26]. Past research has attempted to answer clinically rel-
evant questions to better assist surgeons and clinicians in dif-
ferential diagnosis [27, 28], pituitary tumor biology 
investigation before surgery [29–33], prediction of gross 
total resection (GTR) and recurrence [34–37], complications 
such as intraoperative cerebrospinal fluid (CSF) [38] and 
postoperative hyponatremia [39] or response to pharmaco-
logical therapy [40]. In the present chapter, we provide an 
overview and discuss relevant publications of ML in pitu-
itary tumor management (Table 33.1).

 Enhanced Preoperative Lesion 
Characterization

ML has been preliminarily investigated for presurgical tumor 
characterization i.e., differential diagnosis [27, 28], immuno-
histochemical markers prediction [31, 32], anatomical inva-
sion of surrounding structures like cavernous sinus (CS) 
[30], and texture features such as tumor consistency [29, 33].

 Differential Diagnosis
Already in 2009, a small-scale study evaluated the assistance 
of artificial neural network (ANN) in increasing radiologists’ 
diagnostic performance regarding large sellar and suprasel-
lar masses (rathke cleft cysts, PA, craniopharyngioma). The 
study showed improved accuracy and AUC with a greater 
improvement obtained in general radiologists which—with 
ANN assistance—performed as well as neuroradiologists in 
differentiating these lesions [27]. An imaging-based 
decision- making algorithm to support differential diagnosis 
of pituitary metastasis from immune checkpoint inhibitor- 
induced autoimmune hypophysitis was also recently devel-
oped by means of a random forest (RF) algorithm [28]. Other 
studies attempted to identify acromegalic patients with ML 
approaches analyzing facial features [41, 42].

 Immunohistochemical Characterization of PA
Despite PAs being mostly clinically silent lesions identified 
on incidental imaging, a subpopulation of these tumors has a 
more aggressive biology, with features of local invasiveness 
and higher risk of recurrence after surgical removal [43]. It 
has been shown that a variety markers such as for example 
strong immunopositivity for p53 and high Ki-67 can identify 
lesions associated with more malignant behavior [44]. At 
present, such biomarker evaluation is available only postop-
eratively, thus preoperative prediction of lesion aggressive-
ness at an early stage may enable more aggressive 
management and follow-up indication [31]. Ugga et al. [32] 

evaluated 89 patients who underwent endoscopic endonasal 
removal of PA, whose Ki-67 labeling was investigated post-
operatively and, after identifying a subset of relevant 
radiomic features, trained a k nearest neighbor (KNN) classi-
fier to accurately identify patients’ Ki-67 based on MR 
images. The algorithm was able to correctly discriminate 
patients with high versus low Ki-67 with an accuracy of 
92%. A similar attempt on MRI data was pursued by Peng 
et al. [31] who, in a population of 235 PA patients, trained 
different ML models to predict immunohistochemical 
marker positivity (t-box pituitary transcription factor—Tpit; 
pituitary transcription factor 1—Pit-1; steroidogenic factor 
1—SF-1). The models were trained on T1-weighted, 
T2-weighted and contrast-enhanced T1-weighted radiomic 
features. Among the trained models, SVM performed best on 
T2w images with an accuracy of 0.89, area under the curve 
(AUC) of 0.95, and high sensitivity and specificity.

 CS Invasion by PA Adenoma
Tumor invasion into the CS is one of the most important 
determinants of subtotal pituitary adenoma resection [45, 
46]. Unfortunately, distinction between CS compression and 
invasion preoperatively is not always possible and is ulti-
mately established at intraoperative visualization [47]. In 
view of the fact that a failure to achieve GTR leads to a com-
bination of subtotal resection and radiotherapy as a viable 
strategy, more accurate preoperative confirmation of CS 
invasion can better inform patient management decision. In 
particular, especially for Knosp grades 2 and 3, invasion is to 
be determined on a case by case basis [46]. Niu et al. [30] in 
a population of 194 patients with PA Knosp grade 2 and 3, 
split in a 50/50 ratio into training and test set, used least 
absolute shrinkage and selection operator (LASSO) regres-
sion to identify radiomic features predictive of invasion. 
They then used a support vector machine (SVM) to fit CE-T1 
weighted radiomic signature, and constructed a nomogram 
based on clinical-radiological risk factors and radiomic sig-
nature reporting an AUC of 0.87 in the test set.

 Tumor Consistency
Firm consistency—or texture—is widely recognized as a 
significant limiting factor in adequate PA resection [48–50]. 
As opposed to soft tumors, whose removal can be easily per-
formed by means of endoscopic approach, hard fibrous 
tumors are associated with failure of transsphenoidal resec-
tion, and may require a second surgery or complementary 
treatment strategies. For this reason, prediction of tumor tex-
ture can be valuable for better planning surgical strategy and 
informed patient management decision. A variety of 
approaches have attempted to characterize PA consistency 
using MRI features with conflicting results [48, 51–53]. 
More recently, also ML applications for texture prediction 
have been attempted based on MR images [29, 33, 54]. 
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Table 33.1 Selected publications exploiting ML approaches for pituitary disease classification and/or outcome prediction

Author Year Journal

Patients 
(training/
validation)

Model/
Algorithm Outcome Performance Main findings

Kitajima 
et al.

2009 Academic Radiology 43 ANN Classification of sellar/
suprasellar masses into 
PA, 
craniopharyngioma, 
and Rathke’s cleft cyst

GR: General radiologists, 
NR: Neuroradiologists
AUC
All w/o ANN: 0.91; All 
w/ANN: 0.98
GR w/o ANN: 0.88; GR 
w/ ANN: 0.98;
NR w/o ANN: 0.95; NR 
w/ ANN: 0.99

ANN output can significantly 
improve accuracy of NR and 
GR performance in the DD of 
sellar-suprasellar mass lesions 
using MRI. ↑ improvement for 
GA
After ANN → GR = NR

Hollon 
et al.

2018 Neurosurgical Focus 400
(300/100)

NB, SVM, 
LR-EN, RF

Poor early post-op 
outcome defined as any 
of the following: Major 
medical and early 
surgical complications, 
extended LOS, ED 
admission, inpatient 
readmission, and death

AUC-ROC—NB: 0.79; 
SVM: 0.83; RF: 0.85; 
LR-EN: 0.83
AUC-PR—NB: 0.65; 
SVM: 0.67; RF: 0.67; 
LR-EN: 0.69
Accuracy—NB: 0.79; 
SVM: 0.83; RF: 0.85; 
LR-EN: 0.87
Sensitivity—NB: 0.24; 
SVM: 0.48; RF: 0.56; 
LR-EN: 0.68
Specificity—NB: 0.97; 
SVM: 0.95; RF: 0.95; 
LR-EN: 0.93
PPV—NB: 0.75; SVM: 
0.75; RF: 0.78; LR-EN: 
0.77
NPV—NB: 0.79; SVM: 
0.84; RF: 0.86; LR-EN: 
0.90

LR-EN best predicted early 
postoperative outcomes of 
pituitary adenoma surgery 
testing set. The most important 
predictive variables were 
lowest perioperative sodium, 
age, BMI, highest 
perioperative sodium, and 
Cushing’s disease

Kocak et al. 2018 European Radiology 47 KNN Response to 
somatostatin analogues 
(SA) in acromegaly 
patients with growth 
hormone (GH)-
secreting pituitary 
macroadenoma

Resistant: Rt; responsive: 
Rp
AUC—0.847
Sensitivity—Rt: 0.83; Rp: 
0.87
Specificity—Rt: 0.87; Rp: 
0.83
Precision—Rt: 0.86; Rp: 
0.84
Recall—Rt: 0.83; Rp: 
0.87
F measure—Rt: 0.84; 
Rp: 0.86

ML-based quantitative texture 
analysis of T2-weighted MRI 
is a potential non-invasive tool 
in predicting response to SAs 
in patients with acromegaly 
and GH-secreting pituitary 
macroadenoma. ↑ performance 
than qualitative and 
quantitative rSI and 
immunohistochemical 
evaluation

Muhlestain 
et al.

2018 The Journal of 
Neurosurgery

15,487 Gradient boost 
tree ensemble

Total charges for TSS 
surgery

Ensemble 1—T RMSE: 
0.45; V RMSE: 0.45
Ensemble 2—T RMSE: 
0.52; V RMSE: 0.53

Ensemble model comprising 
three gradient boosted tree 
classifiers best predicted total 
charges. LOS was the 
strongest predictor—↑ $5000/
day.
Others: Admission type, 
hospital region, race, post-op 
complication, hospital 
ownership type

Zhang et al. 2018 European Radiology 112 (75/37) SVM NFPA subtype 
prediction (NCAs vs. 
others)

AUC—T1: 0.80; CE-T1: 
0.51
Sensitivity—T1: 0.81; 
CE-T1: 0.58
Specificity—T1: 0.82; 
CE-T1: 0.45
Accuracy—T1: 0.81; 
CE-T1: 0.54

A model developed using 
clinical and radiomic features 
achieves good performance for 
NFPA subtype preoperative 
diagnosis. CE-T1 features 
achieve ↓ performance that T1 
features

(continued)
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Fan et al. 2019 European Journal of 
Radiology

163 (108/55) SVM-RBF 
kernel

Invasive FPA remission 
after surgery

RS: radiomic signature; 
CM: clinical model; RM: 
radiomic model
Accuracy—RS: 0.73; 
CM: 0.65; RM: 0.74
Sensitivity—RS: 0.77; 
CM: 0.65; RM: 0.61
Specificity—RS: 0.67; 
CM: 0.67; RM: 0.92
PPV—RS: 0.75; CM: 
0.71; RM: 0.71
NPV—RS: 0.70; CM: 
0.59; RM: 0.70
AUC—RS: 0.81; CM: 
0.76; RM: 0.81

Radiomic-clinical data can be 
successfully employed to train 
ML models with good 
discrimination and calibration 
to predict treatment response 
in patients with invasive FPA

Fan et al. 2019 Frontiers in 
Endocrinology

163 SVR, LR Postsurgical response 
in invasive functioning 
PA

Radiomic model
AUC—0.81
Accuracy—0.74
Sensitivity—0.61
Specificity—0.92
PPV—0.70
NPV—0.65

7 radiomic features → 
radiomic signature (RS)
Radiomic model (RM): 
RS + Knosp grade
The RS and RM ↑ 
performance than clinical 
features model

Liu et al. 2019 Neuroendocrinology 354 LR, NB, DT, 
GBDT, RF, 
AdaBoost, 
XGBoost

12-months CD 
recurrence

AUC—DT: 0.63; RF: 
0.78; LR: 0.68; NB: 0.61; 
GBDT: 0.69; AdaBoost: 
0.72; XGBoost: 0.73; 
post-op morning cortisol: 
0.63
RF—Youden’s index: 
0.45; sensitivity: 0.87; 
specificity: 0.58

AUCs of the 7 models ranged 
from 0.61 to 0.78. Best 
performance achieved by 
RF > LR > Post-op morning 
cortisol. According to the 
feature selection
Algorithms, top 3 predictors 
were age, postoperative serum 
cortisol, and postoperative 
ACTH

Niu et al. 2019 European Radiology 194 (97/97) SVM CS invasion by PA CR: Clinico-radiological, 
CE-T1; T2; CE-T1 + T2; 
N: Normogram
AUC—CR: 0.83; CE-T1: 
0.83; T2: 0.73; 
CE-T1 + T2: 0.80; N: 
0.87
Accuracy—CR: 0.77; 
CE-T1: 0.80; T2: 0.68; 
CE-T1 + T2: 0.79; N: 
0.79
Sensitivity—CR: 0.82; 
CE-T1: 0.80; T2: 0.63; 
CE-T1 + T2: 0.77; N: 
0.86
Specificity—CR: 0.69; 
CE-T1: 0.81; T2: 0.71; 
CE-T1 + T2: 0.79; N: 
0.76

The developed nomogram 
incorporating the radiomics 
signature and clinico- 
radiological risk factors 
performed better than 
clinic-radiological model and 
radiomics models based on 
CE-T1, T2, and CE-T1 and T2 
images for pre-op prediction 
of CS invasion

Staartjes 
et al.

2019 Neurosurgical Focus 140
CV w/o holdout

KC, Deep NN, 
LR

PA GTR AUC—K: 0.87; NN: 
0.96; LR: 0.86
Accuracy—K: 0.81; NN: 
0.91; LR: 0.82
Sensitivity—K: 0.92; 
NN: 0.94; LR: 0.81
Specificity—K: 0.70; 
NN: 0.89; LR: 0.83
PPV—K: 0.75; NN: 0.89; 
LR: 0.83
NPV—K: 0.90; NN: 0.94; 
LR: 0.81
F1 score—K: 0.83; NN: 
0.91; LR: 0.82

Deep neural network 
outperforms
LR and Knosp classification in 
predicting GTR in PA patients

Table 33.1 (continued)

Author Year Journal

Patients 
(training/
validation)

Model/
Algorithm Outcome Performance Main findings
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Ugga et al. 2019 Neuroradiology 108 (60%/40%) KNN Pre-op MRI-base ki-67 
proliferation index 
class prediction

AUC—0.87
Sensitivity—0.92
Specificity—0.86
Precision—0.92
Matthews correlation 
coefficient—0.79
F score—0.92

ML analysis of texture-derived 
parameters from preoperative 
T2 MRI is effective for 
prediction of pituitary 
macroadenomas ki-67 
proliferation index class

Zeynalova 
et al.

2019 Neuroradiology 55 ANN PA consistency AUC—0.71
Accuracy—0.72
Sensitivity—0.66
Specificity—0.79
Precision—0.73
F measure – 0.69

ML-based histogram analysis 
on T2-weighted MRI has 
potential to predict 
consistency of PAs. Future 
large-scale studies needed

Cuocolo 
et al.

2020 Neuroradiology 89 Extra trees Pituitary surgical 
consistency

S: soft; F: fibrous
AUC—S, F: 0.99
Sensitivity—S: 0.87; F: 
1.00
PPV—S: 1.00; F: 0.87
F score—S, F: 0.93

ML model trained on radiomic 
data extracted from T2w MRI 
had high accuracy in 
classification of soft and 
fibrous pituitary 
macroadenomas

Machado 
et al.

2020 Computers in Biology 
and Medicine

27 MLP, RF, 
SVM, LR, 
KNN

NFPA recurrence after 
surgery
2D/3D radiomic 
features (RF) models

3DRF
Accuracy—MLP: 0.90; 
RF: 0.96; SVM: 0.93; LR: 
0.89; KNN: 0.93
Specificity—MLP: 0.96; 
RF: 1.00; SVM: 1.00; LR: 
1.00; KNN: 1.00
Sensitivity—MLP: 0.83; 
RF: 0.92; SVM: 0.83; LR: 
0.75; KNN: 0.83
AUC—MLP: 0.96; RF: 
0.96; SVM: 0.95; LR: 
0.95; KNN: 0.94

2D and 3D RF models achieve 
high discrimination in 
predicting NFPA tumor 
recurrence
3D-based models achieved ↑ 
performances using ↓ features 
when compared to 2D-based 
models

Meng et al. 2020 Frontiers in 
Endocrinology

124 LDA Acromegaly patients 
identification using 
facial features

NA 3D imaging enables 
quantification of facial 
characteristics. ML can be 
used for early detection of 
acromegalic patients

Peng et al. 2020 European Journal of 
Radiology

235 SVM, KNN, 
NB

Immunohistochemical 
characterization of PAs

T2w radiomic feature 
model—SVM: 0.89; 
KNN: 0.83; 0.80
Accuracy—Pit-1: 0.91; 
SF-1: 0.94; Tpit: 0.91
Sensitivity—Pit-1: 0.81; 
SF-1: 0.93; Tpit: 0.86
Specificity—Pit-1: 0.82; 
SF-1: 0.89; Tpit: 0.85

SVM model trained on 
radiomics features based on 
pre-op MR images precisely 
classify immunohistochemical 
PA subtypes. T2-w images 
model had a better 
performance compared with 
that from T1-w and ceT1-w 
images

Qiao et al. 2020 Pituitary 833 Penalized LR, 
SVM, GBM, 
NN, Ensemble

6 months endocrine 
remission in 
GH-secreting adenoma 
pts

Ensemble model—Partial: 
P; full: F
Remission based on GH
AUC—P: 0.80; F: 0.88;
Prospective validation 
cohort—P: 0.80; F: 0.90
External validation 
cohort—P: 0.77; F: 0.87
Remission based on GH 
and IGF-1
AUC—P: 0.77; F: 0.85;
Prospective validation 
cohort—P: 0.76; F: 0.90

Development and validation of 
interpretable and applicable 
ML model to predict early 
endocrine remission after 
surgical resection of a 
GH-secreting pituitary 
adenoma. ↑ performance with 
respect TO single variables

Staartjes 
et al.

2020 The Journal of 
Neurosurgery

154 
(70%/15%/15%)

NN Intraoperative CSF 
leak

AUC—0.84
Accuracy—0.88
Sensitivity—0.83
Specificity—0.89
PPV—0.71
NPV—0.94
F1 score—0.77

Deep neural network well 
predicts intraoperative CSF leak
High suprasellar hardy grade, 
prior surgery, and older age 
contributed most to the 
predictions

(continued)

Table 33.1 (continued)

Author Year Journal

Patients 
(training/
validation)

Model/
Algorithm Outcome Performance Main findings
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Voglis et al. 2020 Pituitary 207 (155/52) RF, NB, 
bGLM, GLM

Hyponatremia within 
30 days of surgery

AUC—RF: 0.64; NB: 
0.65; bGLM: 67.1; GLM: 
59.5
Accuracy—RF: 0.69; 
NB: 0.48; bGLM: 0.68; 
GLM: 0.63
Sensitivity—RF: 0.28; 
NB: 0.73; bGLM: 0.48; 
GLM: 0.47
Specificity—RF: 0.82; 
NB: 0.41; bGLM: 0.74; 
GLM: 0.68
PPV—RF: 0.32; NB: 
0.27; bGLM: 0.35; GLM: 
0.31
NPV—RF: 0.79; NB: 
0.84; bGLM: 0.82; GLM: 
0.81
F1—RF: 0.30; NB: 0.40; 
bGLM: 0.41; GLM: 0.27

Boosted generalized linear 
model was able to learn the 
complex risk factor 
interactions and showed a high 
discriminative capability on 
unseen patient data to predict 
postoperative hyponatremia

Zhu et al. 2020 BMC Med Inform 
Decis Mak

374 CycleGAN 
DenseNet
ResNet
CRNN

Tumor texture 
classification

Multisequence: M; T1; 
T2
Accuracy—M: 0.92; T1: 
0.89: T2: 0.89
Precision—M: 0.90; T1: 
0.87; T2: 0.87
Recall—M: 0.95; T1: 
0.93: T2: 0.94
F1 score—M: 0.92; T1: 
0.60: T2: 0.90

Deep NN model for 
determining consistency of 
pituitary tumors (PT). 
CycleGAN amplifies the PT 
dataset to generate 
multisequence samples (to 
solve undersampling) ResNet 
extracts PT features, which 
improve the classification 
efficiency of the network to 
some extent. Extracted PT 
features are fed to CRNN for 
classification/grading of the 
softness level of pituitary 
tumors. ↑ results than previous 
methods

Zoli et al. 2020 Neurosurgical Focus 151 (80%/20%) GTR: KNN, 
early post-op 
remission: 
SVM; 
Long-term 
remission: 
GBM

Cushing disease-GTR, 
post- surgical 
remission, long-term 
disease control

G: GTR; E: Early 
remission; L: Late 
remission
AUC—G: 0.99; E: 1.00; 
L: 0.78
Accuracy—G: 0.97; E: 
1.00; L: 0.81
Sensitivity—G: 0.96; E: 
1.00; L: 0.96
Specificity—G: 1.00; E: 
1.00; L: 0.37
PPV—G: 1.00; E: 1.00; 
L: 0.81
NPV—G: 0.75; E: 1.00; 
L: 0.75
F1 score—G: 0.98; E: 
1.00; L: 0.88
Brier score—G: 0.0.35; 
E: 0.097; L: 0.151

Demographic, radiological, 
and histological variables can 
be employed for robust ML 
models training and internal 
validation for GTR and 
remission prediction in CD 
patients

AdaBoost adaptive boosting, ANN artificial neural network, AUC area under the curve, CD Cushing disease, CRNN convolutional recurrent neural 
network, CS cavernous sinus, CSF cerebrospinal fluid, CV cross-validation, DD differential diagnosis, DenseNet densely connected convolutional 
networks, ED emergency department, EN elastic net, DT decision tree, GAN generative adversarial network, GBM gradient boosting machine, 
GBDT gradient boosting decision tree, GLM generalized linear model, GTR gross total resection, KC Knosp classification, KNN k nearest neigh-
bor, LDA linear discriminant analysis, LOS length of stay, NB Naïve Bayes, NN neural network, NF non-functioning, LDA linear discriminant 
analysis, LOS length of stay, LR logistic regression, ML machine learning, MR magnetic resonance, mos months, NA not available, NCA null cell 
adenoma, NB Naïve Bayes, NN neural network, PA pituitary adenoma, PPV positive predictive value, PR precision recall, Pit-1 pituitary transcrip-
tion factor 1, RBF radial basis function, ResNet deep residual networks, RF random forest, RMSLE root mean square logarithmic error, SF-1 ste-
roidogenic factor, SVM support vector machine, w/o without, Tpit t-box pituitary transcription factor, TSS transsphenoidal surgery, XGBoost 
extreme gradient boost

Table 33.1 (continued)

Author Year Journal

Patients 
(training/
validation)

Model/
Algorithm Outcome Performance Main findings
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Zeynalova et  al. [33], after a series of processing steps, 
extracted first order texture features using PyRadiomics from 
55 patients with PA and, after training an artificial neural net-
work (ANN) for classifying their consistency, compared 
resulting AUC with that obtained using signal intensity ratio 
(SIR) evaluation. They found that ANN achieved a signifi-
cantly higher AUC with respect to SIR. Similarly, Cuocolo 
et al. [29] in a population of 89 patients used an Extra Tree 
classifier for the same purpose. After feature stability analy-
sis and a multistep selection, synthetic minority  oversampling 
technique (SMOTE) was applied to counteract class imbal-
ance. Data were split in a 80/20 ratio, with the former train-
ing group serving for hyperparameter tuning via stratified 
fivefold cross-validation, and the latter left as holdout set. 
Despite the small study population, the model achieved good 
discrimination confirming the hypothesis that radiomic fea-
tures can in principle be exploited to predict tumor texture. 
Zhu et al. [54] reported use of an automatic method for pitu-
itary tumors texture analysis starting from unbalanced MRI 
data using a combination of a cycleGAN, DenseNet, ResNet, 
and a convolutional recurrent neural network.

 Surgical Outcome and Complication Prediction

 Gross Total Resection
One existing issue in clinical practice consists in approxi-
mating the prediction of gross total resection (GTR) after PA 
surgery. A variety of factors can influence surgical outcome 
such as adenoma dimension, growth pattern, invasion of the 
dura or of the cavernous sinus (CS), surgical strategy, etc. To 
guide best management approaches, clinical scores have 
been proposed proving an estimate of GTR resection proba-
bility, among which the gold standard is represented by the 
Knosp classification [45, 46]. More recently, the Zurich 
Pituitary Score (ZPS) was introduced, the 4 grades of which 
are calculated by simply dividing the maximum horizontal 
adenoma diameter (HD) by the minimal intercarotid distance 
at the level of the horizontal C4 segment of the internal 
carotid artery (ICD) and evaluating tumor encasement of the 
ICA [55]. External validation of this model showed steady 
decrease in GTR and EOR as well as increasing RV for each 
step-up in ZPS grade [56]. Moreover, the model was found to 
have high inter-rater agreement. Computational power 
granted by ML is particularly attractive for evaluating surgi-
cal outcome prediction with even higher accuracy for a 
patient-specific tailored prognostic evaluation. GTR predic-
tion in PA surgery by means of ML was preliminarily inves-
tigated by our group in a cohort of 140 patients who 
underwent endoscopic transsphenoidal surgery [36]. A deep 
neural network, namely a multilayer perceptron with five 
hidden layers, was chosen for this purpose. In this study, 
with limited sample size, fivefold cross-validation without 
holdout to assess out-of-sample performance for deep learn-
ing (DL) and logistic regression (LR) was chosen with 

respect to conventional holdout for model testing. This 
allowed to compare LR and DL approach, and both of them 
were compared to Knosp classification as a recognized clini-
cal standard. The neural network trained reached optimal 
performance with an AUC of 0.96. Other discrimination 
parameters were higher with the proposed model than those 
obtained by conventional LR and by Knosp classification. In 
summary, the trained model improved GTR prediction with 
respect to more traditional statistical methods and the gold 
standard clinical classification. Of note, the improved accu-
racy was particularly relevant in intermediate Knosp 
grades—where the preoperative prediction of CS invasion is 
more difficult. Zoli et al. [37] also showed that a KNN algo-
rithm trained on demographic, radiological, and histological 
variables achieved remarkably high AUC and accuracy in 
predicting GTR.

 Intraoperative Cerebrospinal Fluid (CSF) Leak
CSF leaks during transsphenoidal surgery are associated 
with postoperative CSF fistulas and consequent patient mor-
bidity, meningitis, increased length of stay, readmission and 
costs. For this reason, several publications aimed to identify 
factors that predict intraoperative CSF leaks [57, 58]. In a 
study by our group, a prospective registry of 154 patients 
was used to train a deep neural network (DNN) to predict 
CSF leaks during transsphenoidal surgery. While traditional 
statistics could not identify any risk factor for this complica-
tion, the ML model reached a high accuracy and high 
AUC. The importance of prediction of complication devel-
opment resides in the possibility to adjust surgical strategy in 
a patient-tailored manner, for example by using lumbar 
drains in a targeted patient population [38, 59].

 Tumor Recurrence and Endocrinological 
Remission
For functioning adenomas, incomplete tumor resection will 
lead to tumor recurrence with endocrinological manifesta-
tions. A variety of risk factors associated with recurrence 
have been investigated in the past by means of traditional 
statistical methods, including postoperative hormonal levels, 
with conflicting results and variable accuracy [60–64]. Some 
studies applied ML algorithms to predict disease recurrence 
after surgical treatment for functional adenomas using 
diverse approaches [34, 35, 37, 65]. Zoli et al. [37] showed 
that SVM and gradient boosting machine (GBM) algorithms 
can be trained to predict early and late remission in a popula-
tion of 151 patients with Cushing disease (CD). The trained 
models achieved excellent discrimination for early remission 
prediction and fair discrimination for late remission. 
Similarly, Liu et al. [35] followed-up a population of 354 CD 
patients for at least 1 year, and trained different ML algo-
rithms to predict recurrence showing that a random forest 
(RF) achieved best performance and outperformed tradi-
tional statistics or postoperative serum cortisol nadir, which 
was often evaluated in previous studies. For invasive func-
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tioning PA, a preoperative prediction can better inform 
patient management strategy and the relative symptom per-
sistence, due to elevated hormone levels after surgical resec-
tion. Previous research tried to identify variables influencing 
prognosis. With respect to traditional investigations, ML has 
the potential to better integrate the ever-growing complexity 
of available data. Combining radiomic features extraction 
and ML algorithms has proved to be a viable strategy. In par-
ticular, Fan et al. [34] built a radiomic signature using a SVM 
algorithm in a population of invasive functional PA patients 
to predict treatment response preoperatively, and evaluated 
its performance metrics as compared with a clinical model 
and a radiomic model including both radiomic signature and 
Knosp classification.

 Hyponatremia
Postoperative hyponatremia is a relevant complication occur-
ring in 2% to 25% of patients after transsphenoidal pituitary 
surgery, which can lead to patient readmission. Factors pre-
dictive of hyponatremia are unclear, and associations have 
been described between entity of the pituitary tumor or 
tumor size and hyponatremia [66]. However, as delayed 
hyponatremia occurs mainly around the 8–10 day after sur-
gery, routine measurement of sodium should be recom-
mended on the day of hospital dismission [67]. Voglis et al. 
[39] investigated prediction of hyponatremia by means of 
ML. After evaluating on the training set generalized linear 
models (glm), boosted GLMs [glmBoost], naïve Bayes clas-
sifiers (NB), and RF, based on performance metric glmBoost 
was selected for validation on an unseen internal validation 
set. This model confirmed high discrimination with AUC of 
0.84 and accuracy of 0.78.

 Drug Treatment Response
Kocak et  al. [40] investigated the potential of quantitative 
texture analysis extracted from T2-weighted MRI in predict-
ing the response of GH-secreting pituitary macroadenomas 
to somatostatin analogues in a cohort of 47 patients. A KNN 
algorithm was shown to correctly classify 85.1% of the mac-
roadenomas regarding response to secreting adenomas with 
an AUC of 0.85—significantly better than qualitative and 
quantitative relative signal intensity and immunohistochemi-
cal evaluation (the accuracy range of other methods was 
57.4–70.2%, AUC 0.57–0.70, p < 0.05).

 Costs
Increased interest in health care quality improvement, cou-
pled with resource optimization and policies on reimburse-
ment strategies led to increasing number of publications in 
recent years [68–70]. Muhlestein et  al. [24] trained an 
ensemble model made up of 3 gradient boosted tree classifi-
ers on 15,487 patients who underwent TSS to predict total 
hospital charges (note: different from total costs). Length of 

stay (LOS) was—unsurprisingly—found to be the most 
important predictor for charges (increasing them of 5000 
dollars/day). Additional predictors identified were non- 
elective admission, geographic hospital location, postopera-
tive complication and others. Measured root mean square 
logarithmic error was 0.446.

 Limitations

Many ML publications in pituitary surgery suffer from small 
sample size, considerably limiting the reported findings. In 
order to achieve the ultimate goal of ML predictive analytics, 
strong methodological accuracy is required to overcome pit-
falls of model training and reach sufficient generalizability. 
Most studies were not externally validated, making them 
unsuitable for clinical practice [71]. To this end, pitfalls such 
as class imbalance, overfitting, et cetera need to be accu-
rately ruled out. Moreover, thorough discrimination and cali-
bration reporting are required [10]. The swift rise of deep 
learning and of black box models due to their excellent per-
formance should not come at the cost of interpretability 
given the ethical issues deriving from potential translation to 
patient management of inexplicable “black box” models—
the decision-making of which is, by definition, not known 
[72].

 Future Directions

Despite the limited current translation to the clinic of ML 
applications in pituitary surgery, the topic represents a para-
digm of challenges to be addressed in order for this research 
field to reach its maximal potential. Upon selection of a clini-
cally relevant outcome, development of a robust model by 
means of multicenter collaboration for data collection, exter-
nal validation, implementation and impact assessment is 
required for improving patient management [7, 10]. 
Moreover, the potential of ML to include a notable number 
of features to achieve a performance benefit should not come 
at the cost of inapplicability in the clinical practice, and inte-
gration into the clinical workflow of a web-app for quick pre-
diction estimate has been proposed as a practical strategy 
[13, 73, 74].

33.3  Conclusions

With respect to other neurosurgical diseases, pituitary surgery 
has so far received less scrutiny as target of ML and AI algo-
rithms. Reported applications include mainly preoperative 
lesion characterization (immunohistochemistry, CS invasion, 
tumor consistency), surgical outcome and complication 
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predictions (GTR, tumor recurrence and endocrinological 
remission, CSF leak, hyponatremia). ML models have shown 
potential for translation into the clinic, but most reports can 
be considered preliminary and require larger training popula-
tions and strong external validation. In order for ML to be 
exploited clinically, a thoughtful selection of clinically rele-
vant and modifiable outcome of interest and application of a 
methodologically solid model development pipeline are 
required, together with accurate multicenter collaborations 
allowing sufficient data collection and external validation.
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At the Pulse of Time: Machine Vision 
in Retinal Videos

Timothy Hamann, Maximilian Wiest, Anton Mislevics, 
Andrey Bondarenko, and Sandrine Zweifel

34.1  Introduction

Pulsations of the central retinal vein and its branches often 
referred to as spontaneous venous pulsations (SVP) are a 
common finding in fundus biomicroscopy and have been 
described as far back as 1921 [1]. While the presence of SVP 
is a feature of a clinically normal optic disc (OD) in a healthy 
individual [2], its absence can be of clinical importance [3–
5]. A relevant example in ophthalmology is glaucoma, one of 
the leading cause of blindness worldwide [6]. Here, the 
absence of SVP is directly correlated to a higher probability 
of rapid disease progression [7]. In neurology, the absence of 
SVP has been reported to indicate increased intracranial 
pressure (ICP) [4, 8, 9], with some authors reporting no 
observation of SVP in patients with an ICP of higher than 
190 mmH2O [4].

To date, identification of SVP is mostly performed by cli-
nicians during biomicroscopy of the fundus. This method is 
observer-dependent, thereby subjective, and rarely docu-
mented. To objectify SVP findings, an automated approach 

is warranted. Upon review of the literature, two groups 
investigating this were identified.

McHugh et al. demonstrated successful detection of SVP 
utilizing near-infrared devices [10].

Shariflou et  al. assessed SVP via a tablet-based camera 
approach in a cohort of 30 patients [11]. While near-infrared 
devices provide high-quality, stabilized black and white vid-
eos, which allow easy identification of SVP, they are of 
reduced availability as they are mostly cost-intensive devices 
used in ophthalmological institutions. Therefore, a potential 
approach based on visible light videos might target a broader 
public than an automatic assessment of SVP based on near- 
infrared imaging. Shariflou et al. used color videos acquired 
using a tablet-based camera, augmented with 28 diopter 
optics [11]. This represents a type of input that is more 
openly available, but their method requires manual segmen-
tation of the optic nerve disc in at least one image per video, 
which requires a high level of ophthalmological expertise 
and again constitutes a non-standardized approach.

While both of these approaches show promising results, 
they are based on high-quality scientific data, which are not 
necessarily reproducible in a routine clinical practice setting. 
In order to introduce automated detection of SVP to clinical 
practice, several factors need to be addressed. First, a tool for 
enhancing SVP in videos of varying quality and different ori-
gins should be created. This would ease the burden of access 
as less training for personnel, and no specific imaging 
devices are required using such a tool. Second, automatic 
detection of SVP in the resulting imaging data should be 
developed.

To embrace the challenge of enhancing SVP in imaging 
data of various quality, we introduce a machine vision 
approach for SVP enhancement in grayscale videos acquired 
using a Zeiss FF450 plus fundus camera (Carl Zeiss Meditec 
AG, Jena, Germany). We aim to provide a detailed protocol 
of our research to present a foundation for future investiga-
tions using retinal videos for machine vision projects.
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34.2  Methods

 Source Data

The dataset consists to date of 718 video sequences acquired 
in 523 patients. The video sequence resolution is 720 × 576 
pixels; they have been recorded with a frame rate of 24 frames 
per second, coded in 8-bit grayscale. Videos have varying 
lengths ranging from roughly 8000 to 15,000 frames, which 
approximately corresponds to 330–625 s. The field of view 
of the frames is 30° displaying the OD fully or partially in 
one of the corners or borders with the associated retinal vas-
culature, and the surrounding retinal tissue. Outer limiting 
elements of the frames include static black areas, an artifact 
of the optical lens and a static bright needle which allows 
patients to focus during video recording (see Fig.  34.1). 
Challenges resulting from this data set and how to overcome 
them are outlined in successive order.

Non-aligned frames, further referred to as non-registered 
frames, were assessed with regard to translation and rotation. 
Medium amounts of frame translation (in worst cases, up to 
200 pixels, usually less than 100 pixels) and slight rotation 
(less than 10°) were present within some frames. Motion- 
blurred frames, a result of microsaccade movements of the 
eye, were identified to be a major problem for successful reg-
istration. The majority of such blurry frames are standalone, 
meaning that nearby frames are free of blurriness. An addi-
tional blur-related problem is the shallow depth of field of 
the lens. Frames exploration has shown that the lens could be 
correctly focused on the mid-part of the frame but will lack 
focus on the frame edges—OD and other border areas due to 
the geometry of the eye. In addition to that, there are many 
artifacts like large blurry areas induced by the eyelashes or 
light-glare artifacts. Motion blur was considered as a critical 
problem, while other blur types such as minor ones pre-
vented the successful registration of the frame sequences.

The varying illumination field introduced large variability 
even into seemingly similar frames. This was another critical 

problem that prevented successful registration. However, it 
should be noted that some registration approaches suffered 
more from this than the others. On the far end of this problem, 
there are fully or partially overexposed and underexposed 
frames. OD was found to be overexposed in part of the frames 
and have normal exposure in the other frames, which posed an 
additional problem on how we will be comparing such frames 
to detect blood vessel pulsations. Figure 34.1 shows blurry, 
underexposed, and partially overexposed frames.

Square regions of the frames that had slightly different 
gray-values distribution (color) in comparison to nearby 
regions were detected during workup. These artifacts were 
results of image correction algorithms applied by the imag-
ing device; obviously, they were introduced to resolve some 
image capturing error, possibly to mask out some high-level 
noise or artifact introduced by the noise. Such noise is an 
error introduced by the measurement device, in this case, the 
imaging sensor. This error is highly evident in the frame’s 
dark regions and especially obvious when frames are com-
pared side by side. Although such type of artifacts was con-
sidered as non-critical, due to the fact that it appeared only in 
severely underexposed areas of the frames without any blood 
vessels, hence no pulsations could be potentially corrupted 
by such type of noise. Apart from such rare noisy regions, the 
background noise was observed in all of the pixels. Here, the 
same pixel, when compared to all its time-domain neighbors 
from nearby frames, displays a slight variation in its inten-
sity, which results from the measurement error. This type of 
noise, given its amount, was not of critical importance for the 
registration procedure but turned out to be a major problem 
for the pulsations detection.

 Pre-Processing

There are many approaches on how to deal with the above- 
listed problems. The main problem apart from blurriness was 
variability due to illumination changes and the various types 

ca b

Fig. 34.1 An example of the underexposed frame (a), a blurry frame is showing “ghosted” blood vessels (b) and partially overexposed frame (c). 
In all of the frames, a static “needle” and surrounding black region is shown
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of noise. Examination of the overexposed and underexposed 
frames have shown that they are not usable due to a large 
amount of noise, which became highly pronounced once 
image illumination was normalized.

 Filters for Frames Normalization and Noise 
Reduction

Based on data exploration, the pre-processing routine that 
would suppress the retina surface and highlight blood ves-
sels best was evaluated. Thus the aim was to reduce illumi-
nation variability and noise—ideally, a segmentation map 
of blood vessels without any other details would be 
achieved. In many cases, such a blood vessels segmentation 
map is frequently acquired by applying filters to the green 
channel of the color (red, green, blue (RGB)) frames, or 
application of various filters [12]. Some are coupling 
sophisticated filters with classifiers and perform supervised 
training [13, 14]. Finally, deep learning-based segmenta-
tion models are widespread [15]. Green channel-based 
approaches were not usable as the dataset consisted of 
grayscale images. A deep learning-based U-Net segmenta-
tion network trained on the available dataset was evaluated, 
but due to illumination variability, high variability in the 
extracted segmentation maps was the result.

Another problem experienced was that the U-Net model 
could correctly mark pixel belonging to the wall of the blood 
vessel on one frame and discard it on the next (aligned) 
slightly underexposed frame. Therefore, image processing 
and filtering approaches like Contrast Limited Adaptive 
Histogram Equalization (CLAHE) [16], Retinex filter, based 
on Land et al. theory of color perception [17], Sobel filters 
[18], which is one of the edge detection algorithms, Gaussian 
blurring [19], a Laplacian operator applied on a 2D image 
[20] in combination with regular histogram equalization and 
a Meijering filter [21] were investigated. We applied these 
operators in varying order, with varying parameters, and in 
varying combinations. The best registration results were 
acquired using the Meijering filter applied over a slightly 
blurred (Gaussian blur with kernel = 5 × 5) image. Images 
processed using this approach have highlighted blood ves-
sels networks with suppressed background details.

 Dealing with Blurry Frames

The next critical problem for the successful registration was 
blurry images. There are several types of blur present in our 
images. The most critical one is motion blur, which produced 
images with ghosted blood vessels pattern (see Fig. 34.1b for 
reference). Non-critical types of a blur for registration are 
out-of-focus blur due to shallow depth of focus and blur 

induced by eyelashes. An overview of the deblurring 
approaches is given by [22], where non-deep-learning-based 
approaches are covered. Out of the extended list of available 
methods, approaches like Wiener filer-based deblurring [23] 
and Richardson-Lucy algorithm [24] were explored, but both 
produced unsatisfactory results. A simple blind deblurring 
approach with point spread function estimation that trans-
forms the image from the spatial domain to the frequency 
domain and performs operations there with subsequent back-
ward transformation was evaluated as well. However, the 
deblurred images contained an extensive amount of noise, a 
high amount of blur and so-called “rounding” artifacts intro-
duced by the procedure. This might be due to the high noise 
level present in the frames and possibly due to the used algo-
rithm’s simplicity. Instead of further experimentation, this 
approach was abandoned.

The deblurring approaches review would not be complete 
without a deep-learning-based method; for the review of 
deep learning-based approaches, please refer to [25]. These 
deblurring tools have gained huge popularity. There are sev-
eral available types of algorithms, like utilization of the deep 
network for features extraction. The idea is to utilize a deep 
learning artificial neural network to come up with features 
that are later combined for “deblurring” kernel estimation 
[26]. Another approach uses a convolutional neural network 
for direct kernel coefficients estimation to directly perform 
deblurring [27]. Previously described algorithms are calcu-
lating the motion blur kernel for the whole image. At the 
same time, some methods are working on a patch level and 
are estimating motion kernel for each patch separately [28]; 
this allows to perform deblurring with varying kernels in dif-
ferent parts of the picture. The most recent techniques use an 
end-to-end approach where a convolutional neural network- 
based model is directly restoring an image. These methods 
were considered unsuitable because such artificial neural 
networks are trained to perform deblurring on high-quality 
RGB images, for example, photos of real-life objects. Our 
dataset is small, grayscale, and depicts retina; thus, available 
pre-trained deblurring models would produce below-average 
results. To circumnavigate this issue, training a new model 
would be required, but no sharp grayscale images are avail-
able. Another concern was that most recent and advanced 
end-to-end models are essentially “drawing” a new version 
of the image, potentially introducing some artificial data, and 
might prevent detection of blood vessel pulsations and cor-
rect estimation.

Therefore a blur detector approach, which would be used 
to drop blurry frames, was constructed. This approach turned 
to be viable as the exploration of the data has shown that 
blurry frames are standalone, and in between such frames, 
there are lengthy sequences of frames with acceptable qual-
ity that could be successfully registered. The simplest blur 
detector could be built by calculating the variance of the 
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Laplacian operator. A variance of Laplacian applied over the 
Meijering filtered masked images proved successful as a blur 
detector. Laplacian itself measures the second spatial deriva-
tive of the image, i.e., how fast intensity changes when mov-
ing from one pixel to its spatial neighbors. Hence blurry 
images will have smoother (slower) transitions in color 
intensities, and this will result in a smaller Laplacian vari-
ance measure; in contrast, detail-rich and sharp images will 
have a larger variance of Laplacian values. For blur detec-
tion, static areas (surrounding black region and “the needle”) 
were masked out and were excluded from calculations. In 
initial experiments, this mask was created manually, although 
its creation could be automated via filters or with the help of 
a trained U-Net segmentation model. An example of the blur 
detector applied over the whole frame sequence can be seen 
in Fig. 34.2.

The blur detector based on a variance of Laplacian 
allowed detection of not only blurry images but also of 
underexposed, overexposed, partially overexposed images 
and the sharpest image, which will be used as a keyframe 
against which all others will be registered. Series of images 
with the low variance of Laplacian around frame numbers 
1200–1800, 3800–4200, and 6200–6800  in Fig.  34.2 are 
originated due to the blinking light source applied to the 
retina rendering every second frame underexposed. It is 
worth mentioning that more sophisticated alternatives for 
blur detection exist [29], and some of them [30] are capable 
of detecting different types of blur (motion vs. out-of-focus) 

in different parts of the image. Finally deblurring based on 
deep learning (non end-to-end approach) is capable of detect-
ing blurring kernel.

 Registration

In the scope of registration (alignment), there are several 
aspects that should be considered when the registration algo-
rithm is selected. The first dichotomy is feature-based vs. 
area-based algorithms. The feature-based approach relies on 
the extraction of key-points from two frames with subse-
quent matching and calculation of the deformation transfor-
mation needed to align images. ORB [31], SIFT [32], and 
SURF [33] algorithms were explored without success. This 
is due to the fact that such algorithms were not able to reli-
ably detect and match key-points. The problem is that there 
are many patches of varying intensity (for example, junc-
tions of blood vessels) with high similarity to one another; 
thus, the matching algorithm fails. This is the reason why 
many authors are performing registration based on the green 
channel of the RGB images, which is filtered to contain only 
blood vessels, which later on are processed to build a graph 
of the blood vessels. Later on, two such graphs from the pair 
of images are compared, and transformation is found to 
match these graphs [34]. Stewart et al. [35] have developed a 
successful implementation that extracts blood vessels junc-
tions and, using the Iterative Closest Point (ICP) algorithm, 
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performs their matching. This algorithm is specifically appli-
cable in cases when significant changes can be present in 
between two frames (in cases when images were taken sev-
eral weeks or months apart).

The next dichotomy is transformation, i.e., deformation 
needed to be applied to the second frame to align it with the 
first (key) frame. The complexity of the deformation dictates 
the complexity of the problem and a registration algorithm. 
There are several types of deformations present in the image 
set: translation (shift) and rotation.

The next thing to consider is the domain in which the 
algorithm will be operating, i.e., spatial or frequency domain. 
The spatial domain is working with some sort of image simi-
larity measure in the spatial domain, while frequency-based 
methods are working in the transformation domain. These 
methods tend to work faster but are able to find only simple 
transformations like scaling, rotation, and translation.

Lastly, in the case of area-based approaches, it is impor-
tant to select appropriate similarity measure. In cases when 
images are similar intensity-based comparison like the sum 
of squared differences (SSD) [36, 37] is the simplest one, but 
in cases when images are belonging to different modalities, 
like CT/MRI or PET/CT, a more sophisticated similarity 
measure is needed, like Joint Histogram Mutual Information 
[38] or Mattes Mutual Information measure [39]. Mutual 
Information measure was relied on when experimenting with 
the spatial domain; this is due to the fact that the images have 
varying illumination and other noises.

There are a plethora of frameworks available to perform 
registration. It is worth mentioning the command-line 
toolbox Elastix [40, 41], which allows registering images. 
It has a set of available GUI frontends, which makes it a 
user- friendly solution not requiring any programming 
skills. But the aim is a fully automated solution. Thus, pro-
grammatic frameworks such as SimpleITK (SITK) [42], 
OpenCV [43], Scikit-Image [44], and PyStackReg library, 
which is based on the following publication [45], were 
explored. Only the last one worked, but this is just due to 
the specifics of the dataset. For different datasets, all men-
tioned frameworks would be a good choice for explora-
tion. SimpleITK is a well-known registration framework 
with an emphasis on medical data registration, be it 2D or 
3D volumes. Different sets of combinations of algorithms, 
similarity measures, and other parameters were evaluated 
without a consistent result. OpenCV was utilized to try out 
its optical-flow algorithms. The first one is the Lucas–
Kanade algorithm, which is relying on corners detection 
using the Shi–Tomasi algorithm to estimate motion [46]. 
The second one is Dense Motion Estimation, which is cal-
culating motion field using all pixels in the image [47], 
which unfortunately have failed on this dataset; again, the 
most probable reason was illumination variability and 
presence of noise in frames.

The Scikit-Image framework was utilized to explore its 
frequency-based algorithm, which worked well for transla-
tional deformation in images, but not good results were 
achieved when rotation was added. Finally, PyStackReg is a 
library that works in the frequency domain, so it supports 
only basic transformations. It allows to perform a sub-pixel 
level registration (like SITK and Scikit-Image) but does not 
support masking to exclude static regions, which should not 
be considered during registration (which is available in SITK 
and Scikit-Image for pixel-level translation-only registra-
tion). This required to crop out a rectangular sub-frame so 
that it will not contain nor static black region nor “needle.” 
The problem was resolved by posing a non-convex optimiza-
tion problem of finding the largest area rectangle inscribed 
into the non-masked area (area marked as not having static 
regions). For this task, the pyOpt python optimization library 
was successfully applied [48].

Overall image normalization and registration procedure 
could be seen in Fig. 34.3. The first step is static elements 
mask creation, then frames quality assessment, which is per-
formed using the variance of Laplacian applied over the 
Meijering filtered + Gaussian (5  ×  5) blurred image. This 
allows detecting the best quality keyframe and best quality 
sequence of frames. Afterward, based on the static elements 
mask, the largest rectangle was inscribed, which will be used 
to crop sub-frames for subsequent registration. Then regis-
tration is performed on rectangular sub-frames, and transfor-
mation matrices are acquired; afterward, they are used to 
transform full-scale frames.

 Detection/Enhancement of SVP

The end goal of the whole process is the detection of blood 
vessels pulsations. This stage assumes normalized, denoised, 
and registered frames. Even though the best quality regis-
tered frame sequence was identified, there is still a great 
degree of noise and variation in illumination. The simplest 
way to deal with that is to normalize illumination across each 
frame separately, which can be achieved by simple calcula-
tion of the mean grayscale color of the square patch of prese-
lected size (in this case 12 × 12 size, but the exact size has to 
be chosen in the scope of the overall workflow by measuring 
end result). This operation will produce an illumination map 
of reduced size (12 times smaller than the original in this 
case), which has to be up-scaled to the original image size 
and subtracted from that. This approach did not serve well as 
it smoothens single frame illumination, but different frames 
still have varying light fields. To overcome that, a better 
approach is to match histograms of all frames against the 
single frame in the sequence [49].

Once histograms are equalized, different sources of 
noise were still present, like minimal illumination varia-
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tions, camera sensor noise, and spontaneous eyelashes or/
and blur glare artifacts. A nice overview of noise reduction 
methods can be found here [50]. The approaches that were 
readily available within the OpenCV framework and tar-
geted at video noise reduction were explored with good 
results [51]. However, we have to sacrifice the first 
n-frames and last n-frames. Again n have to be chosen 
experimentally via the assessment of the overall workflow 
result.

In the introductory part, Reza et al.’s method was men-
tioned [52], but a manual selection of the blood vessels 
cross-sections was used to measure changes in blood vessels 
diameters, which was not acceptable.

In the scope of the pulsations detection, Morgan et al. [53] 
have used a video sequence that was synchronized with 
sound recording heartbeats, which eased the blood vessel 
pulsation detection. As our dataset lacked heartbeat data, a 
simpler approach was necessary, like principal component 
analysis based algorithm, which was proposed by Moret 
et al. [54]. It enhances images in a way that pulsations are 
magnified and made more pronounced. In addition, extracted 
principal components analysis can show areas where pulsa-
tions are present (frame sequences have to be long enough to 
catch up heartbeat cycle). The problem with this approach 
was that the images still contained large amounts of noise (as 
described—due to specifics of our dataset), and PCA 
extracted components that were describing such undesirable 
noises. Thus it was impossible to clearly separate pulsations 
from background noise.

Another viable approach is Eulerian Video Magnification 
[55], which works in the frequency domain and allows to 
select a frequency band (in which heartbeat can occur) that 
should be magnified. This results in pronounced movement 
explicitly visible after magnification is performed. The mag-
nification factor can be changed as well. This approach 
tended to be useful as it allowed to magnify pulsations so 
that they became clearly visible and detectable by simple 
motion detection approaches. A simple difference-based 
approach, i.e., difference calculation between the first frame 

and every other frame, was evaluated with success. Another 
viable solution is blood vessels segmentation map acquisi-
tion and calculation of the union and intersection of such 
segmentation maps. The difference between segmentation 
maps union and the intersection will uncover changes in 
blood vessels diameters and will highlight collapse and dila-
tion. It is important to note that just like with registration, 
motion detection is possible not only on a pixel level but on 
a sub-pixel level in case the image will be up-scaled and 
analyzed.

Hracho et al. [56] are using Discrete Fourier Transform to 
analyze each pixel values changes across the registered stack 
of frames, which allows applying filters to detect heartbeat 
by analyzing frequency power-spectrum and building a heat-
map for each pixel. Overlaying such “pulsations” heatmap 
over the segmentation map showing blood vessels allows to 
see, detect, and quantify pulsations. This algorithm seems 
the most viable alternative to PCA and EVM approaches, as 
it will deal with noises and detect slightest variations in the 
pixels values.

34.3  Discussion

During the review of the data, it became evident that in the 
setting of our study, where source data was of varying qual-
ity, proper registration of images stack necessitated careful 
selection and pre-processing of input data. The greatest 
challenge was a wide range of image exposure and 
blurriness.

In order to perform registration, normalization of images 
was executed by reducing variability as far as possible. This 
was achieved by the application of the Meijering Filter 
applied as an overlay to the Gaussian blurred (5 × 5) image. 
As a result, blood vessels were highlighted, and the back-
ground with high levels of noise was suppressed, which sup-
ported performing registration on non-blurry images. Deep 
learning-based approaches are a topical method in enhancing 
image quality [57]. One major disadvantage to established 
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deep learning algorithms, featuring pre-trained convolu-
tional neural network learned filters for deblurring of images 
is training in color images, whereas our dataset consists of 
grayscale images. Noteworthy, the most recent end-to-end 
deep learning-based deblurring creates novel information 
during the deblurring process by essentially redrawing an 
image that appears sharper and cleaner to the human eye but 
not necessarily conserves information of the original image. 
For our aim, to detect the subtle changes of SVP, we depend 
on precise pixels intensity values. Thereby deep learning 
approaches were disqualified for our study. Still, due to 
motion blur present in some images, registration did not 
yield sufficient quality. Hence, an approach for blur detec-
tion was developed, which allowed us to identify and elimi-
nate blurry frames.

After applying different methods for noise reduction 
and deblurring on the full extent of the dataset, we found 
regular occurrences of 3–4 s long image sequences of suf-
ficient quality to be used for registration. In order to iden-
tify these frames in an efficient way, we have built a blur 
detector using the variance of Laplacian as a measurement 
for the overall sharpness and detail of any single image. 
This helped us to identify and exclude said images from 
further investigations. In conclusion, the total number of 
frames included for registration was reduced by a factor of 
1000 (3–4 s of video instead of 330–625 s long videos), 
which forces us to drop some potentially useful frames, 
but at the same time greatly improves overall workflow 
execution speed.

In the next step, registration was performed. Our chosen 
library “Pystackreg” qualified for registration purposes as it 
fulfilled the requirement of sub-pixel registration, compen-
sating for translation and rotation, thereby accounting for 
non-stabilization of the source data. As outlined in the meth-
ods section, static elements constituted a major challenge to 
image registration. To overcome this challenge, masking of 
these sub-regions was executed. Nevertheless, the OD, as 
well as the peripapillary region (the area surrounding the 
optic nerve head), which displays the largest retinal vessels, 
were not affected.

Since retinal vessel pulsation can be very subtle, we 
explored various mathematical methods of enhancing 
rhythmic changes in our dataset. While principal compo-
nent analysis (PCA) allows us to highlight small pulsa-
tions, it, unfortunately, does not allow us to control the 
magnitude of the movement enhancement. To overcome 
the limitations of PCA, we turned to Eulerian Video 
Magnification. This method allows controlling the move-
ment magnification. Furthermore, because it works in the 
frequency domain, it allows defining a range of frequen-
cies that will be magnified. Such magnified video can then 
be fed into image analysis workflow that will pick up 
movements and quantify them.

34.4  Conclusion

In conclusion, we provide a detailed assessment of the cura-
tion of retinal videos using machine vision techniques. We 
showcase the tools helpful in circumventing challenges 
regarding video quality, registration of images, and enhance-
ment of SVP or other pulsatile movements using frequency 
domain.

While our approach has certain limitations, such as the 
loss of information through the elimination of frames and 
masking of static pixels, it has been shown to be an efficient 
and easy method to implement for retinal imaging data.
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35.1  Introduction

Adult spinal deformity (ASD) is a complex, heterogenous 
condition resulting in severe pain and functional limitations 
[1–3]. The burden of ASD is comparable or greater than that 
caused by chronic diseases such as hypertension, diabetes, or 
heart disease [1, 2]. The prevalence of ASD is reported to be 
over 65% in patients over 60 years old [4], and as the average 
life expectancy continues to increase, the number of patients 
undergoing ASD surgery will grow [5–7]. Previous studies 
have found that operative management is beneficial for 
patients with ASD, but the procedure can be complex and 
difficult with complication rates approaching nearly 100% 
(depending on the definition of complication) [6, 8–11]. 
While understanding of the pathophysiology of the disorder 
and surgical techniques have significantly improved, appli-
cation of emerging technologies represents opportunities to 
further optimize interventions and patient outcomes 
[10–13].

Advancements in software and hardware as well as 
increasing availability of large datasets have allowed artifi-
cial intelligence (AI) to gain traction in medicine [14]. 
Recent studies in spine surgery, orthopedic surgery, and neu-
rosurgery have reported several applications of this technol-
ogy [15–18].

Sub-fields of AI such as computer vision and predictive 
analytics may improve precision medicine and optimize 
patient safety in ASD surgery [19]. As such, the purpose of 

this study was to review the current literature on the use of 
artificial intelligence in ASD.

35.2  Methods

A literature review of adult spinal deformity and artificial 
intelligence was conducted according to Preferred Reporting 
Items for Systematic reviews and Meta-analysis (PRISMA) 
guidelines to identify all articles available in PubMed from 
January 1st, 2015 to August 1st, 2020. Ten journals were 
queried: The Spine Journal, Spine, Clinical Spine Surgery, 
Spine Deformity, Asian Spine Journal, European Spine 
Journal, Journal of Neurosurgery: Spine, Global Spine 
Journal, Clinical Orthopaedics and Related Research, and 
Journal of Bone and Joint Surgery. Search syntax was built 
from terms related to “adult spinal deformity” and “artificial 
intelligence.” Supplementary Fig. S1 includes specific search 
syntax.

Inclusion criteria for the study were any articles that 
involved topics of spinal deformity and artificial intelligence. 
Exclusion criteria includes patients less than 18 years of age, 
studies including spine surgery in general and not adult spi-
nal deformity specifically (Fig. 35.1).

35.3  Results

Figure 35.2 shows the flow diagram for data collection. The 
initial PubMed search started with 152 articles. Of the 19 
eligible studies, 13 (68%) included machine learning, four 
incorporated computer vision, one involved augmented real-
ity, and one combined augmented reality and machine learn-
ing. Seventeen of 19 studies were published in the year 2018 
or later. The cohort size in each study ranged from 15 to 
37,852 (median = 557) subjects with variables ranging from 
12 to 150 (median = 32). The data were predominantly retro-
spectively (n  =  9, 47%) or prospectively collected (n  =  8, 
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42%). One (5%) study used a large national database and one 
(5%) was a biomechanical study. All of the nine (47%) stud-
ies by the International Spine Study Group (ISSG) and 
European Spine Study Group (ESSG) were prospectively 
collected using multicenter databases.

The most common predictive variables of machine learning 
studies were intraoperative and postoperative  complications 
following ASD and risk factor predictions. Of the 13 machine 
learning studies, 12 (92%) were supervised and one (8%) was 
clustering or unsupervised. One study (8%) reported percent-

ages of missing values and four (31%) used multiple imputa-
tion to approximate the missing values. Common predictive 
analytic modeling mechanisms include tree-based algorithms, 
consisting of decision trees, random forest, and classification 
and regression trees. Nine (69%) studies reported outcomes 
using area under the curve and one (8%) study also reported 
the Brier score. Six (46%) machine learning studies included 
global explanation for relative variable importance and zero 
studies evaluated calibration or decision curve analysis as part 
of their results (Table 35.1).

35.4  Discussion

ASD is a debilitating condition that often causes chronic 
pain and disability [1–3]. AI usage is growing rapidly in 
healthcare for its ability to solve complex problems and 
without requiring simplifications such as linear assumptions 
for biomedical data. This study reviews the use of AI in ASD 
studies. There are 19 studies that were included in this 
review, of which 13 included machine learning or predictive 
analytics, four incorporated computer vision, one involved 
augmented reality, and one combined computer vision and 
machine learning over the past 5 years.

 Machine Learning

The number of studies utilizing machine learning in ASD has 
increased rapidly over the past few years and their methodol-
ogy has become more advanced. In 2018, Durand et  al. 

Artificial
Intelligence

Machine
Learning Robot

Natural
Language

Processing 
Vision

Augmented
Reality 

Image
Recognition 

Fig. 35.1 Types of artificial intelligence

Studies Identified by
PubMed Search (N=152) 

Records screened by
Title and Abstract

(N=45) 

Studies Included after
Full Text Review (N=19) 

Fig. 35.2 Flow diagram of studies included
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developed a classification tree and random forest models to 
predict blood transfusions after ASD surgery using a retro-
spective database [20]. The authors employed multiple 
imputation for missing values and tenfold cross-validation to 
optimize their model. Multiple imputation can reduce bias 
which is created when exclusion of missing variables occurs 
in datasets [21]. Cross-validation is a statistical method that 
estimates performance and prevents overfitting of models 
[22, 23].

The ISSG and ESSG have used multicenter prospective 
databases to develop models [16, 24–30]. This may increase 
generalizability of findings compared to institutional data-
bases [31–33]. Ames et al. compared eight algorithms to pre-
dict answers to the Scoliosis Research Society Questionnaire 
22 [25]. Five hundred sixty-one patients and 150 variables 
were used to predict these responses, with testing AUC of 
0.56–0.87, producing accuracy of 35%–80% [25]. While 
many of the machine learning studies use supervised learn-

ing, Ames et al. (AI based −2019) created AI-based hierar-
chical clustering of patient types and intervention categories 
using unsupervised learning [26]. Unsupervised learning 
identifies undetected patterns with no pre-existing labels and 
minimum human involvement. For example, supervised 
learning uses a labeled dataset of both outcomes and predic-
tor variables to learn and train the model, whereas an unsu-
pervised model draws inferences and patterns without 
labeled outcomes [34].

 Computer Vision/Augmentation

There are four studies that utilized computer vision with 
respect to ASD [35–38]. The utilization of computer vision 
ranges from fully automating radiological analysis to inte-
grating computer vision to the navigation system and opti-
mize pedicle screw placement. Convolutional neural network 

Table 35.1 Adult spinal deformity and artificial intelligence studies included

Study Type of AI Outcome variable AUC Other results
Jain (2020) [46] Machine learning 90-day discharge, readmission, medical 

complication
0.65–
0.77

Cho (2020) [36] Computer vision Lumbar lordosis angle 0.914 86.2% accuracy
Edström (2020) 
[39]

Augmented reality Pedicle screw density PS density: Navigation 86.3% vs. free hand 
74.7%

Ebrahimi S 
(2019) [47]

Machine learning/
computer vision

Vertebral axis rotation 84% accuracy

Ames (2019) 
[24]

Machine learning Catastrophic cost R2 = 28.8%–87.8%

Pan (2019) [35] Computer vision Cobb angle Intraclass correlation coefficient: 0.854, 
absolute difference = 3.32°

Ames (2019) 
[25]

Machine learning SRS-22R questions 0.56–
0.87

Pellisé (2019) 
[16]

Machine learning Risk stratification model 0.717 Brier score = 10.1%–19.5%

Ames (2019) 
[26]

Machine learning Clustering of patient types and 
intervention

Gap statistic K = 0.67

Khatri (2019) 
[48]

Machine learning Pullout strength of pedicle screw Correlation coefficient 0.96, relative 
absolute error 0.28

Burström 
(2019) [38]

Computer vision Automatic segmentation, pedicle screw 
navigation

Overall accuracy 86.1%

Galbusera 
(2019) [37]

Computer vision Anatomical parameters Standard error 2.7 degrees-11.5

Yagi (2019) 
[49]

Machine learning 2 year major complications 0.963 84% accuracy in external dataset

Kim (2018) 
[50]

Machine learning Surgical complications 0.547–
0.787

Scheer (2018) 
[27]

Machine learning Oswestry disability index minimal 
clinically important difference

R2 = 20%–45%, MAE = 8%–15%

Passias (2018) 
[28]

Machine learning Distal junctional kyphosis 0.870

Durand (2018) 
[20]

Machine learning Blood transfusion 0.850

Scheer (2017) 
[29]

Machine learning Major complications 0.89 Accuracy = 87.6%

Scheer (2017) 
[30]

Machine learning Proximal junction failure 0.89 Accuracy = 86.3%

35 Artificial Intelligence in Adult Spinal Deformity
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was the most common deep learning methodology used in 
these studies. Cho et al. used U-Net, a well-established con-
volutional neural network, to automate lumbar lordosis 
angles [36]. The study was able to automate evaluation of 
radiological parameters with excellent performance—testing 
AUC of 0.914 and accuracy of 86.2%. Moreover, Burstrom 
et  al. created a system to automate segmentation, pedicle 
identification, and pedicle screw placement with the use of a 
three-dimensional navigation system [38]. The technology 
has potential to aid surgeons in navigational planning and 
optimization of workflow to increase patient safety. Of note, 
this study was performed on cadavers without spinal defor-
mity and future studies in ASD patients will further substan-
tiate the promise of this technology.

Similarly, the same group investigated whether the use of 
augmented reality surgical navigation could impair implant 
density compared to the free hand technique [39]. They found 
that augmented reality enabled surgeons to increase pedicle 
screw density and minimize use of hooks during surgery with-
out prolonging OR time. This results in robust constructs that 
might last longer, thereby possibly decreasing the need for 
revision surgery without compromising patient safety during 
the operation. The use of navigation in spine surgery is limited 
by cost and operative time, but this study showed how aug-
mented reality surgical navigation might be used to decrease 
length of hospital stay and decrease blood loss [40, 41].

 Future

Artificial intelligence is a continuously growing field and 
there is high level of optimism for the future of AI in ASD 
surgery. Algorithms are continuing to grow in complexity 
with additional techniques and modifications. Despite this 
promise, this review uncovered some areas in which studies 
may improve in the future. Studies might improve by report-
ing the number of missing values as well as the methodology 
used to handle missing data, which could potentially bias the 
results and the derived algorithm. Multiple imputation and 
cross-validation are not yet standardized, of which only six 
studies used multiple imputation and seven using cross- 
validation. Also, while many studies do report an area under 
the curve (AUC), formalized TRIPOD reporting would make 
systematic and easily comparable models [42]. The 
TRIPOD-ML (cite the study proposing TRIPOD-ML) have 
recently been proposed and adherence to these guidelines 
when they become available will further improve the meth-
odological rigor of predictive studies in ASD. Until then, the 
standard TRIPOD criteria include calibration-in-the-large or 
the model intercept (A); calibration slope (B); discrimination 
with an AUC (C); and clinical usefulness with decision curve 
analysis (D). Finally, many models were created using multi- 
institutional, prospective databases, thereby increasing the 
generalizability of the data. Continued cross-institutional 

collaboration and work by international study groups such as 
ISSG and ESSG promises to improve both ASD patients’ 
outcomes and our understanding of this pathology.

Computer vision and augmentation reality are more recent 
in their adaptation to healthcare and ASD, but the potential 
applications are extensive. Gregory et  al. presented a study 
that showed a 3-D hologram of a patient’s scapula in real time 
during a shoulder replacement with the use of the Microsoft 
HoloLens [43]. This headset allows surgeons to maintain ste-
rility while accessing 3-D holograms and interact with others. 
Recently, as of June 2020, three surgeons at Johns Hopkins 
University performed spine surgery using head-mounted dis-
play of augmented reality. The technology provides both 2-D 
and 3-D views of the surgical field without the necessity to 
view a screen and reduce obstruction [44].

There are also applications of robotics and natural language 
processing that have not been published in ASD literature. 
Other surgical subspecialties have thus far outpaced spine sur-
gery in the use of robotics. AI advancements can help auto-
mate procedures and help surgeons plan using the 3-D digital 
segmentation generated prior to surgery to personalize their 
techniques [19, 45]. Natural language processing is another 
subset of artificial intelligence that continues to grow in its 
application in healthcare. It can be used to automate research, 
but also be implemented in hospital systems to continuously 
survey hospital records for detection of adverse events—
enhancing safety reporting and monitoring hospital quality.

35.5  Conclusion

This study shows the conscious efforts of spine surgeons to 
employ evolving technology to advance the field of 
ASD. Artificial intelligence allows surgeons to further opti-
mize precision medicine and improve patient safety in 
ASD. As surgeons become familiar with this technology, the 
applications of AI will continue to grow in both the clinical 
and research settings.
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and Carmelo Lucio Sturiale

36.1  Introduction

Intracranial aneurysms (IAs) affect 3 to 5% of the general 
population and their incidental diagnosis has been rising due 
to the increased availability of diagnostic imaging performed 
for minor neurological symptoms [1]. Unfortunately, in most 
circumstances aneurysm rupture results in severe subarach-
noid hemorrhage (SAH) as first clinical manifestation, which 
carries significant morbidity and mortality [2]. After SAH, 
patient prognosis is determined not only by the rupture event, 
but also by secondary major complications such as vaso-
spasm, hydrocephalus, seizures, and delayed ischemic events 
[3]. Recent computational advancements and increased 

availability of epidemiological, clinical, and imaging data 
constitute the basis for enhanced disease detection, more 
informed management evaluation, and treatment planning 
[4, 5]. Improving the detection of unruptured IAs (uIAs) is 
the most effective way to prevent SAH. The evaluation of 
risk of rupture is at the cornerstone of management for these 
patients as rupture risk has to be balanced with treatment- 
related risk. Moreover, in the event of SAH presentation, 
identifying patients with higher risk for developing vaso-
spasm, hydrocephalus, seizures, and ischemic complications 
could represent a significant therapeutic advantage favoring 
a possible outcome improvement [3, 6]. Also, functional out-
come prediction has the potential to better inform patient 
management. In this context, machine learning (ML) and 
artificial intelligence (AI) constitute a rapidly rising research 
area in biomedical sciences that covers several applications 
spanning from image processing, segmentation and classifi-
cation, disease detection, as well as complication and out-
come prediction [7–10]. With respect to traditional statistical 
methods, ML algorithms have the potential to learn and 
improve their predictive performance when fed with large 
data sets without the need of being specifically programmed. 
The implications of such approach are several: firstly, 
depending of the desired ML approach, data can be presented 
to the algorithm categorized/processed or uncategorized/raw. 
A certain degree of pre-processing may be required to 
improve the model performance or, on the contrary, algo-
rithms can also be trained to automatically extract certain 
features that are important for the resulting prediction. Many 
publications have already investigated ML applications in 
diverse pathologies of neurosurgical relevance including pri-
mary and secondary brain tumors and spinal diseases [7, 9, 
11–16]. More recently ML has also been introduced in the 
area of IA research, especially in the subfield relating to deep 
learning [17]. Given the pace at which new progress is made, 
it is not unreasonable to expect that future developments will 
result in a computer-assisted working framework for more 
informed and transversal aneurysm patient management. 
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New studies in the field are reported on a daily basis, and 
adequate understanding of ML is required for informed cli-
nicians to remain up-to-date on one side and to embrace and 
contribute to the progress in aneurysm research on the other. 
In the present study, we aimed to provide an overview of past 
studies applying ML and AI in the field of intracranial aneu-
rysm surgery and aneurysm patient management.

36.2  Machine Learning Applications 
in the Management of Patients 
with Intracranial Aneurysms

Based on our literature review, we identified four main areas 
of ML and AI research applications in the field of intracra-
nial aneurysm management.

 Aneurysm Detection [18–27] (Table 36.1)

For this task, electronic health records and transcriptomic 
signatures have been used to identify subpopulations at 
higher risk of aneurysm development [20, 25]. Convolutional 
neural networks (CNNs) have been also exploited for image 
segmentation and processing to enhance detection accuracy 
on 3D time-of-flight magnetic resonance angiography 
(3D-TOF-MRI) [21, 22, 26, 27], digital subtraction angiog-
raphy (DSA) [18, 19], and computed tomography angiogra-
phy (CTA) [23]. Aneurysm detection studies on neurovascular 
imaging mostly evaluated CNN algorithms [18, 19, 21–24, 
26, 27]. These studies provide evidence that automatic 
ML-based segmentation is not inferior to manual contouring 
and may result in increased sensitivity and accuracy in aneu-
rysm detection compared with traditional image analyses 
[23, 24, 27]. Use of commercially available CNNs has been 
also reported with encouraging results [19, 27]. Concerns of 
excessive false positive (FP) findings have been raised by 
some authors, but specific solutions such as a certain degree 
of image processing have been successfully implemented 
[22, 26]. Additionally, the potential for reduced time in aneu-
rysm detection has been highlighted [18]. When demo-
graphic, clinical, and laboratory data were used, models 
were trained using algorithms such as logistic regression 
(LR), random forest (RF), support vector machine (SVM) 
for aneurysm detection tasks [20, 25].

 Aneurysm Rupture Risk and Stability 
Prediction [28–32] (Table 36.2)

Of higher clinical importance, some studies assessed the 
possibility to predict the risk of aneurysm rupture—a highly 
debated clinical topic in scientific literature intrinsically 

linked with the still not fully understood natural history of 
IAa. The reported approaches are heterogeneous and include 
use of demographic, clinical, and morphological features, as 
previously attempted by means of scores developed using 
traditional statistics or expert consensus [28, 33, 34]. One 
study recently aimed to predict the risk of rupture through 
the evaluation of the aneurysm wall contrast-enhancement—
which is known to be associated with tissue degeneration and 
higher wall instability—combining geometrical features, 
clinical risk factors, and hemodynamic pattern [30]. Other 
studies tried to identify features suggestive of aneurysms sta-
bility by means of ML [29, 32]. Importantly, ML-derived 
model developed on a relatively limited patient population 
has been reported to outperform more traditional statistical 
approaches as well as previously developed risk scores [32]. 
The use of radiomic features obtained from CTA for ML 
model training has also been evaluated in some pilot studies 
showing promising results for aneurysm risk or rupture strat-
ification and stability prediction [29, 31].

 Complications and Outcome Prediction [35–43] 
(Table 36.3)

Several studies have attempted to accurately predict the 
occurrence of vasospasm and delayed cerebral ischemia 
(DCI) [35, 36, 38, 39]. For vasospasm prediction, either angi-
ographic images or a variable combination of clinical and 
laboratory parameters were used [35, 38]. For DCI predic-
tion, demographical, clinical, and CT images were instead 
employed to train different ML models [38, 39]. Functional 
outcome prediction after SAH has also been studied [40, 42–
44]. Survival at day 1, favorable Glasgow Coma Scale (GCS) 
at discharge and at 6  months, and modified Rankin Score 
were investigated. These studies almost exclusively used 
demographic and clinical variables for model training [40, 
42–44]. Algorithms employed included decision tree, LR ad 
RF [40, 42–44]. Ventriculo-peritoneal shunt dependency after 
SAH was also studied [36, 44]. With respect to periprocedural 
outcome and complications, Paliwal et al. developed a model 
to predict occlusion after flow-diverter (FD) treatment [37]. 
Finally, Staartjes et al. in a pilot study investigated ML poten-
tial to predict functional outcome, new neurological deficits, 
and complication after uIA microsurgery [41].

36.3  Discussion

 IA Screening and Detection

Given its relatively rare incidence, screening for intracranial 
aneurysms is not performed except in high-risk circum-
stances, e.g., positive family history [45]. Several factors are 
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thought to contribute to de novo aneurysm formation and 
rupture but the current evidence with respect to screening 
guidelines is limited [46]. ML methods are in principal ideal 
to identify hidden features and nonlinear associations in the 
data, for this reason they have been proposed as a valuable 
tool to be applied to electronic health care records, with the 
caveat that this would require external validation in different 
healthcare settings and that different geographical regions 
may need tailored algorithm development [47]. Heo et  al. 
hypothesized that health records at population level could be 
used to identify a subpopulation at higher risk of aneurysm 
development. Among the studied algorithm, a scalable tree 
boosting model (XGB) was found to achieve the best AUC 
(0.765). Classes of risk were identified with the XGB report-
ing a incidence rate ratio between the lowest- and highest- 
risk groups of 49.85 [20]. Despite the study limitations, the 
possibility of identifying a group of patients as at higher risk 
for screening purposes based on electronic health data well 
exemplifies the power granted by big data analysis. The inte-
gration of high-throughput genomic and transcriptomic data 
with ML technologies has the potential to classify and risk- 
stratify different patient groups with respect to a given out-
come of interest [48, 49]. Based on previous evidence that 
unruptured aneurysms present a specific RNA neutrophil 
signature, Poppenberg et al. [25] used LASSO feature selec-
tion to identify non-redundant candidate features and showed 
that RF algorithm outperformed other classification models 
in both training and test set with high AUC.  Interestingly, 
demographic and comorbidities did not affect model perfor-
mance [25, 50, 51]. Despite encouraging results, a combina-
tion of personalized medicine and ML computational power 
are still fully to be exploited. It is growingly common for 
aneurysms to be incidentally identified as neuroimaging is 
performed for other neurological symptoms [1, 52]. Despite 
this trend, image evaluation is time-consuming and aneu-
rysm identification is not straightforward especially in an 
unspecific clinical context, and, moreover, reports may suffer 
from inter-rater variability [23, 53]. CNNs have proven 
extremely well-performing algorithms for detection and rec-
ognition tasks [54]. Readers are encouraged to consult 
Dhillon and Verma [54], Anwar et  al. [55], and Yamashita 
et al. [56] for more organized overview on CNNs. Semi- and 
fully-automated machine learning approaches for aneurysm 
detection on neuroradiological images obtained with differ-
ent modalities have been proposed employing CNNs [23, 
27]. Ueda et al. trained a CNN algorithm for the automated 
diagnosis of cerebral aneurysms from TOF MR angiography 
images showing sensitivity of 91% and 93% in internal and 
external test data sets, respectively, and further improving 
detection with respect to initial radiologist report by 4.8% in 
the internal test data set and by 13% in the external test data 
set [27]. Sichtermann et al. trained a previously developed 
open-source CNN to detect aneurysm from TOF-MRA 3D 

images and could demonstrate an overall sensitivity of 90% 
even if this model also suffered from a high FP-to-case ratio. 
Importantly, some degree of processing was able to decrease 
FP findings. A lower sensitivity was measured for small 
lesions but, as these were underrepresented in the data set, 
the authors suggested that increased sample size may achieve 
optimal performance also in this setting [26]. Park et  al. 
applied a 3D CNN to CTA exams to obtain segmentation 
outputs to be evaluated by clinicians. Such hybrid 
AI-augmented image evaluation by clinicians increased sen-
sitivity, accuracy, and inter-rater agreement with respect to 
traditional evaluation [23]. Importantly, the high- 
computational power and extensive data availability needed 
to appropriately train a CNN for task such as segmentation 
and object detection can be overcome by employing previ-
ously developed algorithms in different setting followed by 
fine-tuning to accurately tailor algorithm to the requested 
problem-solving scenario (transfer learning) [26, 57].

While rupture status can be easily diagnosed by hemor-
rhage patterns on the computed tomography (CT), multiple 
aneurysms are a common finding. As inaccurate identifica-
tion of a ruptured aneurysm can lead to re-bleeding events, 
accurate assessment of rupture is essential [6, 58]. 
Rajabzadeh-Oghaz et al. used morphological and hemody-
namic data to identify bleeding aneurysm in patients with 
multiple aneurysms and reported increased performance of 
two different LR models with respect to the best associated 
variable they found in their study, namely size ratio [59].

Some studies make the assumption that rupture-prone 
aneurysms may more closely resemble ruptured ones than 
their unruptured stable counterparts. This is why some 
authors have developed models to discriminate such patient 
populations, speculating a possible future use in the context 
of rupture risk prediction (Supplementary Table S1). For 
example, Detmer et al. developed and externally validated a 
model based on morphological and hemodynamic parame-
ters that was able to well discriminate among ruptured and 
unruptured aneurysms [60, 61]. Silva et al. reported training 
of different ML models using demographic, clinical, and 
radiological variables from 845 aneurysms in 615 patients 
(309 of which were ruptured) and could achieve good AUC 
in all the cases with satisfying discrimination measures [62]. 
CNN application has been also reported to discriminate 
among ruptured and unruptured aneurysms. Kim et  al. 
applied a CNN to images of 3D DSA to evaluate the rupture 
status in patients with small-sized aneurysms of the anterior 
circulation. The algorithm was trained on a retrospective 
data set of 368 patients and prospectively tested in 272 
patients [63].

These publications are limited by the use of models devel-
oped for rupture assessment—Only being able to differenti-
ate unruptured cases from SAH cases on neuroimaging is of 
limited real-world clinical relevance. These models all being 
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trained to discriminate among ruptured and unruptured 
cases, the predicted probabilities very likely only represent 
the model’s confidence in the detection of SAH, as opposed 
to a true rupture risk. Predicting rupture risk would warrant 
longitudinal data for training and validation on unruptured 
aneurysms—a more difficult approach to pursue, given that 
once high-risk incidental aneurysms are discovered, these 
would receive prophylactic treatment [60, 62].

 Rupture Risk and Aneurysm Stability

Once a given aneurysm is identified, the benefits granted 
from prophylactic treatment need to be weighed against the 
risks inherent to surgical or endovascular treatment. This 
topic is highly debated in the literature with respect to both 
indication for treatment and best therapeutic strategy. 
Several attempts were made to inform clinicians’ decision-
making through clinical scores weighing some of known 
risk factors for aneurysm rupture. Specifically, the PHASES 
[33] and the Tominari score [34] were developed for esti-
mation of aneurysm rupture risk, the ELAPSS [64] and 
Juvela growth score [65] for assessing risk of growth which 
is in turn considered a surrogate of rupture risk, besides 
being size still considered by surgeon one of the most 
important parameters evaluated before clinical decision. 
Also an international multidisciplinary consensus estab-
lished an additional score named UIATS [66] which pro-
vides distinct recommendations about management 
(treatment versus conservative management versus unclear 
indication) and a similar attempt was produced by Juvela 
(Juvela treatment score) [67]. Unfortunately, following ini-
tial introduction and some sparse validation attempts 
(mostly on retrospective studies and on ruptured aneu-
rysm), these scores have only partially entered the clinical 
setting due to concerns of unreliability or insufficient vali-
dation [68, 69]. Other studies have investigated morpho-
logical characteristics and hemodynamic parameters [70, 
71]. Importantly, these scores, with the exception of 
UIATS—the only one not based on a statistical derivation 
of risk factors but deriving from an expert consensus—only 
evaluate a limited amount of variables [66, 69]. ML 
unleashes the potential of including a huge variety of dif-
ferent data from significant number of patients. A well-
trained model can in principle provide a prediction tool that 
is specific with respect to the outcome of interest. Given the 
open question on aneurysm risk of rupture evaluation for 
incidental aneurysm, some studies assessed this clinical 
issue. Despite aneurysm diameter being still considered the 
most important determinant for treatment decision, it is 
widely accepted that many ruptured aneurysms are instead 
of small dimension, lower than the 7 mm cut-off suggested 
by the ISAT trial and that these lesions are not well identi-

fied as high risk with available scores such as PHASES [69, 
72, 73]. For this reason, the other clinically relevant side of 
risk of rupture evaluation can be considered the assessment 
of aneurysm “stability”—defined as an unruptured aneu-
rysm not increasing in size at imaging follow-up and not 
becoming symptomatic. Instead of trying to predict which 
aneurysms will rupture, a specular clinical question con-
sists in identifying variables predictive of stability, or, by 
means of ML, training models to recognize such features. 
Liu et  al. automatically extracted morphological features 
from 719 aneurysms from PyRadiomics and identified 
association of some variables to aneurysm stability while 
also reporting hypertension can significantly alter morphol-
ogy of unstable aneurysm. The authors propose a combined 
morphological/topographical/clinical prediction model 
which could reach an AUC of 0.85 [29]. Ou et  al. [31] 
recently reported an interesting investigation where mor-
phological and radiomic features were extracted to train 
progressively complex ML models. Only unruptured aneu-
rysms parameters were used to train the model as rupture 
status significantly alters aneurysm morphology, but the 
trained model could well discriminate between aneurysms 
remained stable during a follow-up of at least 2 years and 
those that ruptured during yearly follow-up. A limited sam-
ple size and short follow-up limits the findings of the study 
but the methodological approach of the authors is com-
mendable [31].

As wall enhancement in MRI has been associated with 
increased rupture risk, also its prediction by means of ML 
has been attempted. Lv et al. showed that a variety of hemo-
dynamic factors, size ratio and PHASES score can be suc-
cessfully used for training ML model to predict wall 
enhancement [30]. For aneurysm stability prediction, a vari-
ety of ML models like RF, SVM, and ANN trained with 
clinical morphological variables have been shown to outper-
form LR and PHASES score suggesting that this strategy 
may be successfully employed in the future for optimal 
patient management [32].

 Outcome Prediction

Another relevant contribution of ML to aneurysm research 
can be identified in post-procedural clinical outcome pre-
diction. Data-driven clinical predictions are an integral part 
of medical practice. With ML, different data sources enable 
to rapidly develop prediction models. With respect to infer-
ential model development—whose study setting has often 
been well-controlled to mitigate potential sources of bias 
and confounding—recent ML applications have the risk to 
overlook such phenomena and for this reason sound meth-
odology in model training and strong external validation 
are requested [74].
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 Delayed Cerebral Ischemia, Vasospasm, 
and Shunt-Dependent Hydrocephalus
Delayed cerebral ischemia (DCI) caused by vasospasm is a 
feared complication of aneurysmal SAH occurring 7 to 
10 days from aneurysm rupture. Moreover, management of 
vasospasm is complex—from identification to treatment [6]. 
For these reasons, a reliable prediction of vasospasm would 
better inform therapeutic strategy and patient monitoring. 
Ramos et  al. [39] demonstrated that machine learning can 
achieve a significantly better—even if modest—AUC than 
conventional logistic regression when clinical variables only 
are used for model training while a combination of extracted 
image features and clinical data can significantly improve 
the performance of DCI prediction [39]. Another study by 
Tanioka et al. [38] trained a RF model with a combination of 
clinical data and matricellular protein plasma levels in 95 
patients and showed accurate prediction of DCI, angio-
graphic vasospasm, and cerebral infarction—without any 
validation. Hydrocephalus is another relatively common 
SAH complication. Such manifestations can be transient and 
self-limiting, require external ventricular drainage or become 
chronic requiring permanent cerebrospinal fluid diversion 
with all its associated drawbacks [75]. Identification of 
patients at high risk for shunt-dependent hydrocephalus 
could result in optimized management avoiding neurological 
complications, increased hospital length of stay—ultimately 
improving functional outcome and quality of life [75]. 
Several predictors have been identified and clinical risk 
scores proposed, despite being their reliability poorly inves-
tigated [36, 75]. ML has been also employed in such setting 
by Muscas et al. who showed that among 4 models trained, a 
distributed RF model including 21 input variables predicted 
development of shunt-dependent hydrocephalus in a SAH 
patient population with high accuracy [36].

 Functional Outcome Prediction
Functional outcome prediction after SAH is clinically rele-
vant. A large number of studies have investigated predictors 
of poor functional and cognitive performance after aSAH 
while less have addressed predictions of favorable outcome 
[76]. A long list of prognostic scores has been proposed 
including but not limited to Hunt and Hess, WFNS, modified 
Fisher, BNI, HATCH, HAIR, FRESH, and SAFIRE scores 
[44, 77]. Most of these predictive tools are developed by 
means of traditional statistical methods and may fail to inte-
grate the ever-growing complexity of heterogeneous data 
sources [44]. While no ML-based algorithm has yet entered 
clinical practice with this purpose, previous research is 
promising. Zafar et al. developed a penalized LR model that 
based on readily available data at SAH diagnosis could pre-
dict GCS functional outcome at discharge with accuracy 
>80% [43]. Rubbert et al. trained a random forest algorithm 
using a variety of demographical and clinical variables 

obtained at admission and reported fairly accurate prediction 
of 6-month functional outcome after SAH [40]. Another 
study by Hostettler et al. [44] reported similar accuracy for 
favorable GCS prediction at diverse timepoints using deci-
sion tree model and could also predict with an accuracy of 
0.75 survival at day 1.

 Periprocedural Outcome Prediction
Clipping of unruptured aneurysm has been the standard of 
care for decades. More recently, endovascular modalities 
have been added to the therapeutic armamentarium, includ-
ing standard coiling, balloon and stent-assisted coiling, flow 
diversion [78]. Only few reports are present with respect to 
ML applications for periprocedural outcome prediction, 
whether endovascular or surgical. Paliwal et al. reported use 
of ML to predict aneurysm occlusion after FD treatment 
based on morphological and hemodynamic data. Although 
limited by small sample size, evaluation limited to ICA 
aneurysms, lack of inclusion of patient clinical and comor-
bidities data, they could show a 90% predictive accuracy in 
the internal test set. The authors also highlighted how best 
performance was reached when the model was trained also 
using variables not significantly associated with occlusion 
further highlighting the additional potential of ML with 
respect to conventional statistics [37]. With respect to post- 
surgical outcome, a recent pilot study by Staartjes et al. eval-
uated the performance metrics of machine learning-based 
models on data from a prospective registry to predict early 
clinical endpoints after microsurgery for UIAs. In the inter-
nal validation cohort, area under the curve (AUC) and accu-
racy values for new neurological deficit and for any 
complication were 0.63–0.77 and 0.78–0.91, respectively. As 
the study cohort included only 156 patients, larger training 
samples and external validation on a multi-center patient 
cohorts are required [41]. In the near future, the PRediction 
of Adverse Events after Microsurgery for Unruptured 
AneurysMs (PRAEMIUM) study, a multi-center collabora-
tive effort stemming from this investigation may provide an 
externally validated model suitable for clinical practice.

36.4  Future Directions

ML in neuroscience—and in neurosurgery in particular—is 
rapidly advancing, yet relatively unexplored, and without 
standardized methodology. ML research remains largely het-
erogenous in approaches and reporting, and the clinical ben-
efits derived so far in the field of IAs can be considered 
limited to non-existing. External validation is largely miss-
ing, too.

Despite extensive scientific knowledge and increased 
therapeutic possibilities, the management of IAs patients has 
so far failed to translate ML- and AI-based experimental 
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results into the clinic. CNNs hold promise for assisting clini-
cians in imaging analysis and it is not unreasonable that 
commercial software may aid in this task already in the next 
future. In terms of ML-based prediction of rupture risk, 
stronger methodology based on longitudinal data, larger 
training sample size, and extensive external validation to 
confirm findings generalizability are required. For complica-
tion and functional outcome prediction, the ongoing 
PRAEMIUM study aims to translate to clinic possible appli-
cation of a ML generated model in the form a web-app, like 
previously established for example in brain tumors to predict 
functional impairment [79].

36.5  Conclusions

ML approaches are increasingly reported as a viable strategy 
to tackle existing clinical issues in IA research. Several stud-
ies have attempted to provide reliable models for screening 
indication and aneurysm detection. CNN models trained 
with variable degree of human interaction on data obtained 
from diverse imaging modalities have shown high sensitivity 
in aneurysm detection tasks, also outperforming expert 
image analysis. When prediction of rupture and stability 
assessment were chosen as outcome, ML was preliminarily 
shown to achieve better performance of conventional statisti-
cal methods and existing risk scores but replication of these 
findings, larger training population, and stronger external 
validation are needed before clinical implementation. 
ML-based complication and functional outcome prediction 
in the event of SAH have been more extensively reported, in 
contrast to outcome investigation in unruptured IA patients. 
In conclusion, ML has the potential to be a major game 
changer in IA patient management, but currently translation 
of experimental results to the clinic is limited.
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Clinical Prediction Modeling 
in Intramedullary Spinal Tumor Surgery
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and John H. Shin

37.1  Introduction

Intramedullary spinal cord tumors (IMSCT) are challenging 
to diagnose and treat as they are rare lesions that can cause 
severe neurologic deterioration and affect quality of life [1]. 
Numerous IMSCT exist, of which, ependymoma, astrocy-
toma, and hemangioblastoma are most commonly encoun-
tered. Each type of tumor has characteristic radiographic and 
pathologic features and can present with variable clinical 
symptoms [2]. Sometimes, these lesions are found inciden-
tally. To date, surgical resection remains the mainstay 
approach for diagnosis and removal of these tumors with the 
goal of improving neurological symptoms. In cases of inva-
sive tumors such as astrocytoma however, complete resec-
tion is often not possible due to the absence of clear margins 
between the tumor and spinal cord. As such, local control for 
these and any type of IMSCT is a challenge, and recurrence 
is subject to achieving gross total resection when feasible. 
Adjuvant therapies including radiation therapy, systemic 
therapies, or a combination of both, are offered to patients 
with high-grade tumors, and in instances when total resec-
tion cannot be achieved to avoid progression of the disease 
[3]. Because the role of such adjuvant regimens is not well 
established, surgeons seek to refine resection strategies uti-
lizing advances in intraoperative imaging and neuromonitor-
ing [4].

Recent years have seen an extensive exploration of pre-
dictive analytics and machine learning algorithms (ML) to 
provide mathematical-based solutions to the most intricate 
aspects of management of spine tumors [5]. Several applica-
tions of artificial intelligence (AI) in cancer have focused on 

improving the accuracy of diagnostic tools, modeling the 
progression and treatment of diseases, risk stratification, dis-
covering potential therapeutics, and ultimately improving 
quality of life [6]. Because benign and malignant intramed-
ullary tumors represent a heterogenous group of different 
primary histologies, and often times respond differently to 
surgical, systemic, and radiation treatment, AI and high- 
throughput, data-intensive biomedical research assays and 
technologies could provide a greater understanding of patho-
physiologic factors and processes that contribute to tumor 
behavior, and could lead to personalized approaches to the 
nuanced and often unique features possessed by individual 
patients diagnosed with IMSCT [7]. In this chapter, we 
review the state-of-the-art AI and ML applications in spine 
oncology, particularly those relevant to intramedullary 
tumors and forecast how spine surgery will incorporate AI in 
the future.

37.2  A Primer on Machine Learning 
and Predictive Analytics

Before getting into specific skills and tasks that could be per-
formed using AI, there are some concepts in ML that need to 
be defined [8]. Machine learning strategies can be broadly 
split into two approaches that have different goals: (1) unsu-
pervised and (2) supervised learning [9]. Unsupervised 
learning focuses on discovering underlying structure or rela-
tionships among variables in a dataset, whereas supervised 
learning often involves classification of an observation into 1 
or more categories or outcomes (e.g., “Does this spinal cord 
lesion represent a high-grade or low-grade lesion?”). 
Supervised learning thus requires a dataset with predictor 
variables (features) and labeled outcomes. Predictive model-
ing is often performed when observations have labels such as 
“cases” or “controls,” and these observations are paired to 
associated features such as age, sex, or clinical variables. In 
the next section of this chapter, we will look at the various 
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types of features that could help us predict with enough 
power and accuracy, the different outcomes that are of inter-
est to both surgeons and patients. For predictive analytics to 
be effective, we first need to define the problem that we want 
to address. In the following section, we detail the most com-
mon outcomes of interest for spine surgeons treating IMSCT.

37.3  Defining Outcome Measures 
for Intramedullary Spinal Cord 
Tumors

The challenge with treating IMSCT is that though natural 
history without treatment may lead to neurologic and func-
tional deterioration, surgery itself can lead to significant 
morbidity and mortality [2]. While the primary goal of sur-
gery is to restore neurological function and improve func-
tional status and quality of life, the risks associated with 
surgery are balanced with achieving gross total resection 
to decrease the chance of tumor recurrence [10–12]. 
Several studies showed that the extent of resection is a 
strong predictor of overall survival, with 90%–100% of 
patients showing improvement following complete resec-
tion [4, 13, 14]. However, certain characteristics like tumor 
infiltration, high- grade histopathology, and absence of a 
clear surgical plane of dissection pose significant chal-
lenges for surgeons [15]. In general, benign tumors such as 
ependymomas and hemangioblastomas may exhibit a 
plane of dissection that facilitates resection [16]. The 
absence of a normal spinal cord–tumor interface in infiltra-
tive tumors such as astrocytoma often leads to subtotal 
resection or biopsy alone as gross total resection is often 
not possible [17].

Patients with IMSCTs who present with minimal or no 
focal neurological deficits are often faced with the decision 
to undergo surgical resection and risk neurological decline. 
Moreover, studies have showed mixed results about the 
effectiveness of surgery to improve neurological outcomes 
[11, 15]. Predictors of neurological outcomes can be mea-
sured (1) before surgery; such as the intramedullary lesion 
length, baseline neurological and functional status; (2) intra-
operatively by assessment of somatosensory-evoked poten-
tials (SSEP) and transcranial motor evoked potentials 
(TCMEPs); (3) after surgery by modeling functional prog-
ress during recovery and rehabilitation [18–21].

During surgery for IMSCT, there is risk of injury to the 
dorsal column, which stems from the difficulty of identifying 
the appropriate place of tumor resection. Intraoperative mon-
itoring using SSEPs and TCMEPs provides increased accu-
racy in detecting injury to sensory and motor pathways that 
can help prevent postoperative neurologic dysfunction [22]. 
D-waves recordings directly monitor the fast motor fibers in 
the corticospinal tracts and are more sensitive in detecting 

early injury to the spine. Moreover, dorsal column mapping 
may be used to guide a safer resection by identifying ana-
tomic landmarks such as the dorsal median sulcus to guide a 
safe midline myelotomy and maximize the extent of the 
resection when the tumor distorts normal anatomy [23].

Studies have shown that combining both SSEPs and 
TCMEPs monitoring can help predict neurological outcomes 
after surgery [21, 24]. Many factors like tumor location, 
anatomy, extent of infiltration, and the threshold for signal 
changes affect the sensitivity and specificity of these moni-
toring tools. For this reason, D-wave monitoring is recom-
mended to monitor motor pathways to decrease false-positive 
results and maximize resection [25]. However, D-wave mon-
itoring may not be available in a given hospital, so TCMEP 
is the workhorse modality to assess motor function intraop-
eratively [26].

Apart from tumor recurrence and neurological function, 
quality of life after surgery for IMSCT may be compromised 
by neuropathic pain or postsurgical myelopathy [27]. 
Syringomyelia associated with IMSCT is a strong predictor 
of neuropathic pain [28]. Other factors like older age and 
preoperative presence of neuropathic pain may contribute to 
neuropathic pain after surgery [29].

Machine learning approaches can be applied to predict 
and calculate each of the outcomes discussed above. Because 
the outcomes of interest involve highly interdependent fea-
tures that stem from surgical, pathologic, genomic, biomedi-
cal imaging, and clinical data, it is important to capture and 
centralize this data to train models that could more accu-
rately predict outcomes.

37.4  Available Sources of Data 
for Prediction Modeling in IMSCT

Clinical prediction models are emerging in spine surgery as 
data-driven decision-making tools. At present, clinical pre-
diction models for IMSCT are derived from a variety of data 
sources, notably institutional and national databases [30]. 
Because primary spinal cord tumors are rare, the volume of 
data available to develop prediction models that are both 
accurate and reproducible are particularly difficult to achieve. 
Though survival is the most common outcome in IMSCT 
that researchers often seek to predict using machine learning 
algorithms, research groups are also interested in predicting 
other treatment-related outcomes such as local control, 
progression- free survival, readmission, revision surgery, 
complications, long-term opioid use, and functional out-
comes [12, 31–35].

Although the aforementioned outcomes are of great inter-
est for the spine surgeon and other specialists involved in the 
treatment of IMSCT, modeling clinical predictive models for 
these outcomes is practically limited and dependent on the 
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availability of data. The Surveillance, Epidemiology, and 
End Results (SEER) registry, which serves as a source of 
population-based data to analyze cancer treatment outcomes, 
was utilized to predict survival of patients with spinal epen-
dymoma [35]. In parallel, the MD Anderson Cancer Center 
and institutions from the Rare Cancer Network engaged in 
the curation of a more granular research database that was 
able to provide greater insight about the potential predictors 
of outcomes for IMSCT. Most studies look at demographic 
variables, tumor histology, disease status, and treatment 
modality. Achieving gross total resection (GTR) was associ-
ated with improved overall survival [35]. A nomogram to 
predict 5- and 10-year overall survival for Primary 
Intramedullary Spinal Cord Grade II/III Ependymoma (636 
patients registered in SEER) was developed and included age 
(40–64 or ≥65), gender (female or male), marital status 
(unknown, married, or single), surgery (GTR, subtotal resec-
tion, or no surgery), WHO grade (grade II or grade III) [36]. 
The nomogram was able to accurately distinguish the prog-
nosis in different risk groups [36], but external validation is 
required at this point to confirm the performance of the 
nomogram. The role of radiation therapy (RT) is controver-
sial, but prospective studies may provide more evidence if 
adjuvant RT could benefit progression-free survival in epen-
dymoma [35, 37–39].

As detailed above, available prediction models for IMSCT 
are primarily based on clinical data and do not incorporate 
other sources of data. For clinical prediction models to per-
form better, different sources of data that provide valuable 
information about IMSCT are required as inputs, such as 
imaging studies.

37.5  Imaging Features and Biomarkers 
to Predict Outcomes for IMSCT

As for many spinal conditions, Magnetic Resonance Imaging 
(MRI) is the modality of choice to evaluate a potential spinal 
cord tumor by delineating the spinal cord and surrounding 
structures. Because medical image analysis has advanced 
with more facilitated processes to extract quantitative fea-
tures from images that reflect underlying pathophysiology, it 
is now more commonly used for hypothesis generation and 
decision support [40]. Visualization of tumor heterogeneity 
may prove critical in the assessment of tumor aggressiveness 
and prognosis. In the case of IMSCT, lesions may have well- 
circumscribed or infiltrative margins. Being able to charac-
terize tumor margins on MRI is important to spine surgeons 
who are more likely to pursue a gross total resection in a 
circumscribed tumor with a well-defined surgical plane, ver-
sus a subtotal resection in an infiltrative tumor [41].

Preoperative neuroimaging assessment of a circumscribed 
tumor (e.g., ependymoma arising from the central canal) or 

an infiltrative tumor (e.g., astrocytoma arising from the cord 
parenchyma) can help devise the microsurgical strategy of 
resection or biopsy, especially given the limited accuracy 
(about 70%) of intraoperative frozen-section diagnosis [10]. 
The diagnosis of IMSCT tumors is a challenge for both radi-
ologists and surgeons when considering the heterogenous 
characteristics of lesions exhibited on imaging. Though there 
are discerning characteristics of various tumor types, patho-
logic diagnosis is not currently possible by MRI alone. 
Imaging segmentation could help delineate tumor compo-
nents and overcome intra- and inter-variability in assessing 
tumor characteristics. To the best of our knowledge, only one 
pipeline to automate the segmentation of IMSCT has been 
developed. Lemay et al. prepared and labeled a large number 
of MRI scans for three main components associated with 
IMSCT: enhanced and non-enhanced tumor component, 
liquid- filled cavities, and edema [42]. A convolutional neural 
network was trained to recognize these specific elements of 
the tumors, but the performance of the model was not perfect 
because the volume of imaging studies that were used to 
train the model to recognize cavities and edemas was limited 
as tumors have variable intensity patterns and ill-defined 
boundaries. In the future, the performance of the model can 
be optimized by training on larger imaging datasets that bet-
ter represent the variability of the tumors.

More recently, the concept of using image data to identify 
physiologically distinct regions within lesions has been 
described [43]. In this approach, images with different acqui-
sition parameters (e.g., contrast material-enhanced 
T1-weighted MR imaging, diffusion-weighted, and fluid 
attenuation sequences) can be combined to yield regions with 
specific combinations of quantitative image data. These 
regions are called habitats, because they represent physiologi-
cally distinct volumes, each with a specific combination of 
blood flow, cell density, necrosis, and edema. This approach 
could be of particular interest for IMSCT, as being able to 
extract features from these habitats could help identify unique 
properties of the tumors that would guide surgical treatment, 
response to radiation or chemotherapy, and follow-up plans.

IMSCT are a group of heterogenous tumors with several 
identifiable radiologic features that may suggest potential 
diagnoses. For instance, an intramedullary lesion at the epi-
center of the central canal is most likely an ependymoma 
[44, 45]. Unlike ependymomas, astrocytomas tend to mani-
fest eccentric to the central canal and may be associated with 
neurofibromatosis type 1 but not neurofibromatosis type 2. 
These account for the majority of pediatric intramedullary 
tumors [45, 46]. Hemangioblastoma tends to arise at the pial 
surface and exhibits intense T1-post contrast enhancement 
often associated with flow voids and vasogenic edema [47]. 
Both astrocytoma and ependymoma also tend to enhance at 
imaging with possible cystic or hemorrhagic changes. 
Diffuse infiltrating astrocytoma can show a range of possible 
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enhancement patterns from a range of possible enhancement 
patterns from non-enhancing to homogeneously or heteroge-
neously enhancing that is associated with a higher-grade 
tumor and lower 5-year survival. For example, angiogenesis 
and necrosis in spinal cord glioblastoma manifest as hetero-
geneous enhancement that can be multicentric in location.

In addition to demonstrating tumor location and margins 
on conventional sequences, DTI in spinal cord tractography 
has also been shown to be helpful [48]. Specifically, the dis-
placement or splaying of white matter tracts (streamlines) 
has a high positive predictive value for a circumscribed 
tumor, including ependymomas in adults and pilocytic astro-
cytomas in children [49]. The depiction of disrupted or tra-
versing white matter tracts is nonspecific and can be seen in 
circumscribed or infiltrative tumors. Traversing streamlines 
can also be seen in inflammatory lesions [50].

Clearly, radiomics could offer a nearly limitless supply of 
imaging biomarkers that could potentially improve diagnosis 
and prognosis accuracy, and prognosis accuracy. These data 
can be combined with clinical data and other patient data like 
genomics (Fig. 37.1). In the following section, we will dis-
cuss studying genomics markers to understand IMSCT biol-
ogy and improve prediction of treatment outcomes.

37.6  Genetic Biomarkers of IMSCT

In recent years, genomics has emerged as an innovative area 
of research that could potentially transform our understand-
ing of tumor biology and response to treatment. Advances in 

genetic sequencing could provide new insights into under-
standing the pathobiology of IMSCT and their tumor micro-
environment. The ultimate goal is to identify biomarkers that 
could objectively differentiate among different groups of 
microscopically indistinguishable IMSCT and more accu-
rately predict prognosis. At present, large-scale genomic 
efforts that systematically profile IMSCT are limited, due to 
the rarity of the lesions and small size of the lesion that limits 
availability of tissue for research purposes. To start, next 
generation sequencing revealed that IMSCT may be differ-
ent than their brain counterparts [51]. Because reviewing all 
genetic markers for IMSCT is beyond the scope of this chap-
ter, we will focus more on molecular targets that were 
reported to have prognostic and treatment value.

 Ependymoma

Investigation of the PI3K signaling pathway in pediatric 
ependymomas indicates that upregulation of protein kinase 
B (PKB or Akt protein kinase) and PI3K correlates with poor 
progression-free survival. Although both PKB and PI3K are 
potential therapeutic targets, their expression is lower in spi-
nal ependymomas, which could potentially limit their useful-
ness in treatments of these tumors. Upregulated expression 
of epidermal growth factor receptor (EGFR) in intracranial 
ependymomas correlates with poor prognosis; this associa-
tion was further demonstrated by targeted inhibition of 
EGFR with gefitinib and with AEE788, which reduced tumor 
proliferation in an in vivo model [52, 53]. These results sug-

Fig. 37.1 Standard pipeline of the radiomics analysis and integration of genomics, transcriptomics, and clinical data for classification of tumor 
biology, prediction of clinical outcomes, and development of targeted therapies
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gest that inhibition of EGFR may prove beneficial in spinal 
ependymomas, should it be validated as a tumor driver. 
Targeted therapy for spinal ependymomas is also scarcely 
described in the literature, although a report of a PDGF- 
expressing tumor that responded to treatment with imatinib 
suggests that this medication may have a potential for treat-
ing such tumors [54].

 Astrocytoma

Although many studies have investigated the genetics of 
intracranial astrocytomas, fewer studies have probed the 
genetics of astrocytomas occurring in the spinal cord. Some 
common mutations observed in cranial GBMs are also noted 
in spinal astrocytomas, including mutations in the p16 gene, 
the phosphatase and tensin homolog (PTEN)gene, the B-Raf 
proto-oncogene (BRAF), p53, and the replication- 
independent histone 3 variant H3.3 gene (H3F3A). 
Importantly, numerous downstream targets from PTEN have 
been identified, such as mTOR and Akt, and several chemi-
cal antagonists of these effector proteins are currently under 
clinical investigation for managing cranial astrocytoma, 
which may offer the possibility of expanding treatments to 
spinal astrocytoma.

The BRAF gene has been observed to contain mutations 
in spinal astrocytomas, namely the BRAF-KIAA1549 fusion 
gene and BRAFV600E mutation. KIAA1549–BRAF was seen in 
higher frequency than BRAFV600E or other genetic aberra-
tions in pediatric spinal low-grade gliomas and experienced 
lower death rates compared to KIAA1549–BRAF negative 
patients, although this was not statistically significant [55]. 
This further supports that BRAF mutations may be useful in 
prognostication and could provide information for therapy 
choice as more targeted therapies are being studied.

In parallel, high-grade spinal astrocytomas are rare. The 
so-called H3-K27M-mutant which was classified in a sepa-
rate entity in the 2016 World Health Organization (WHO) 
was found to be associated with survival and prognosis in 
glioma. However, studies showed inconsistent results con-
cerning the prognostic role of H3-K27M mutation in glioma 
[56, 57].

 Hemangioblastoma

Approximately 25% of hemangioblastoma patients have evi-
dence of familial von Hippel-Lindau (VHL) disease charac-
terized by the VHL mutation. The impact of VHL mutations 
on spinal hemangioblastoma has not been extensively stud-
ied, but 1 study reported that spinal hemangioblastomas 
were strongly associated with the VHL syndrome (in 88% of 
cases) but occurred less frequently in sporadic cases (21%) 

and often were associated with significant VHL expression 
in multilevel disease [58]. Overall, the understanding of the 
role of mutated genes other than VHL in spinal hemangio-
blastoma remains limited.

37.7  Genome-Wide Association Studies

Machine learning methods have been applied in genome- 
wide association studies (GWAS) to discover genetic vari-
ants underlying complex human diseases and to dissect the 
biological basis of diseases, develop new drugs, and to 
advance precision medicine. At present, GWAS are more 
prevalent to brain than to spine tumors. GWAS have been 
successful in identifying germline variants associated with 
glioma susceptibility. Traditionally, the risk of glioma is rec-
ognized to be associated with a number of Mendelian cancer 
predisposition syndromes, notable neurofibromatosis (NF1 
and NF2), Li–Fraumeni, and Turcot. More fruitful have been 
efforts over the past decade to investigate the contribution of 
small-effect variants that are common in the general popula-
tion to many traits including glioma through GWAS.  The 
combination of technological advancements and collabora-
tive efforts in establishment of consortia such as the Glioma 
International Case–Control (GICC) [59] study has enabled 
genotyping of hundreds of thousands of variants in thou-
sands of glioma cases and controls. It is now recognized that 
a substantial component of glioma genetic risk is explained 
by combinations of common polymorphisms of modest 
effect, with 27 loci in total identified so far from glioma 
GWAS. Many studies have explored GWAS in intracranial 
tumors, but data regarding their spinal counterparts remain 
scarce, likely because of the rarity of the IMSCT. Because it 
is well established that GWAS improves understanding of 
disease etiology, a model collaboration program that includes 
various centers of excellences around the world that treat 
IMSCT is needed to collect genomic and clinical data to 
study genetic variants of the disease.

37.8  Discovery of Biomarkers 
and Prediction of Therapeutic 
Responses

Many therapies enter clinical trials for potential treatment, 
but a very small proportion of these targeted therapies gain 
approval for clinical use. The problem becomes particularly 
challenging for cancers that are not associated with strong 
targetable genetic drivers. Biomarkers are needed to develop 
targeted therapies and predict a drug response. Since cancers 
without these known drivers lack clear biomarkers with 
which to stratify drug response, A better basic understanding 
of the molecular pathways governing drug sensitivity would 
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help greatly in determining which patients should be treated 
and with which drugs. There has recently been a great deal of 
interest in applying advances in artificial intelligence, includ-
ing machine learning and deep learning, to classic problems 
in biomedicine. Whereas popular applications include 
 disease diagnosis from biomedical images and interpretation 
of electronic medical records, machine learning models are 
also of high interest in predicting drug responses.

37.9  Conclusion

The potential areas of application of machine learning extend 
far beyond the analyses of clinical data to include several 
areas of artificial intelligence, such as genomics and com-
puter vision. Integration of various sources of data and appli-
cation of advanced analytical approaches could improve risk 
assessment for intramedullary tumors. Although recent years 
have seen great interest in the development of prediction 
models in spine oncology, there remains uncertainty over 
whether use of any of the models in clinical practice actually 
improves surgical and patient-reported outcomes. For now, 
collaborations are needed to integrate molecular and radio-
graphic features in clinical prediction tools. Ultimately, we 
must continue the difficult work of identifying the best strat-
egies for collecting data and implementing these tools in 
practice to help decision-making and shared treatment dis-
cussions with patients.
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38.1  Introduction

Gliomas consist of a heterogeneous pathology character-
ized by diverse anatomic-pathological and molecular fea-
tures. This aspect has been stressed in 2016 WHO 
classification of brain tumors by introducing molecular 
profiles as a requested hallmark to categorize gliomas bet-
ter and to understand their behavior and prognosis in a 
more precise way [1]. Besides tumor-specific features, 
gliomas harbor individual genetic and molecular traits that 
confer every tumor a characteristic signature, ultimately 
translating in an intrinsic difficulty to predict tumor behav-
ior and prognosis reliably [2, 3].

In recent years, radiomics has undergone a significant 
development also in the field of neuro-oncology. Radiomics 
defines a set of techniques that extracts and quantifies digital 
medical data from digitalized radiological exams in a repro-
ducible way to detect features possibly related to a clinical 
dilemma such as, for instance, the definition of the histologi-
cal tumor grading, identification of tumor infiltration zones, 
disease stratification and prognosis, survival prediction, 
presence of specific molecular markers, and others [4–6]. 
Such features are otherwise either subject to a descriptive 

and individual interpretation, thereby lacking a precise rec-
ognition and quantification, or cannot be detected by a medi-
cal investigator.

Due to the high volume of features investigated, to select 
and incorporate them in a reproducible model to answer a 
clinical question, the knowledge and use of machine learning 
techniques are essential in radiomics [7, 8].

In this chapter, we aim at reviewing the fundamental con-
cepts of radiomics and the critical steps of model creation 
with a focus on neurosurgical tasks. Next, a short review of 
recent applications in the field of neuro-oncology and spe-
cifically of gliomas will be carried through. Finally, the iden-
tification of radiomic features able to improve the extent of 
surgical resection will follow.

38.2  Basic Workflow in Radiomics

The goal of radiomics is to generate quantitative data from 
medical imaging and create reproducible and generaliz-
able models for a specific task. Every kind of imaging scan 
can be investigated, like computed tomography (CT), mag-
netic resonance imaging (MRI), and positron emission 
tomography (PET). However, a considerable amount of 
information in brain tumors has been extracted from MRI 
due to its common application for diagnosing and follow-
ing-up of brain gliomas [9, 10]. The specific features of 
different MR sequences exploit and highlight the patho-
logical features of the tumor differently: radiomics per-
forms an automated features extraction and creates 
algorithms that incorporate the most informative features 
to predict a specific event like, for instance, overall sur-
vival, response to treatment, and MGMT methylation [9, 
11]. This is based on the hypothesis that tumor imaging 
reflects pathological anatomy and physiology of small-
scale phenomena that cannot be detected on the meso-
scopic scale of clinical, radiological evaluation [12].
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 Image Post-Processing and Tumor 
Segmentation

In clinical routine, data are acquired from different scans 
with different acquisition protocols, limiting the generaliz-
ability and reproducibility of models. A few steps are 
required to overcome these limits before extracting data 
from the scans to correct inter-subjects and pathology-related 
inhomogeneities, signal noise, and differences among 
machines and acquisition parameters. The goal is to obtain 
standardized intensity ranges for each imaging modality 
across all subjects and generate well-defined inputs for quan-
titative feature extraction [4, 13]. The critical steps include, 
but are not limited to, intensity normalization, spatial 
smoothing, spatial resampling, noise reduction, and correc-
tions of MRI field inhomogeneities [14] and can be achieved 
through different methods [4, 15–17]. Smoothing and inten-
sity normalization and decomposition can be executed by 
applying filters, dividing each voxel intensity by the standard 
deviation of the whole-brain value, or performing the z-score 
transformation to whole-brain images [5, 18]. An alternative 
approach excluded the top 0.1% intensity voxels on both 
non-contrast- and contrast-enhanced T1-weighted images 
and reallocated the remaining voxels in 256 grayscale [11]. 
Eventually, different correction methods can be used, whose 
in-depth discussion is beyond this chapter’s purposes and is 
reviewed here [19].

Consequently, an operator manually selects the region of 
interest (ROI) from which data shall be extracted (i.e., visual 
characteristics should be quantified) by masking the region’s 
contour. Since the ROIs ultimately influence the radiomic 
analysis results, semiautomatic segmentation has been 
recently developed to aid dedicated machine learning algo-
rithms [13, 18, 20]. Important to mention, different aspects 
can be investigated, like the contrast-enhancing lesion, the 
necrotic core, or the perilesional edema [14].

 Radiomic Features

Radiomic features can be extracted from different sequences 
after post-processing [16]. This is an automated process for 
which different methods and dedicated software have been 
used, whose detailed description can be found elsewhere [4, 
11, 13, 16–18, 21, 22]. Two approaches can be used to extract 
features, namely the computational or the biologically 
inspired [12]: the first select and compute visual characteris-
tics within the ROIs (i.e., tumor, edema, or specific regions 
within it), whereas the latter is based on specific biological 
hypotheses that quantify the recognized radiological knowl-
edge. Biologically inspired features can be disease-specific 
and dependent on the MR sequence being used (for example, 
the measured extracellular space per unit of tissue volume 

[23], local contrast enhancement, edema, or cellularity [24]). 
In contrast, computational features are shared among differ-
ent diseases and divided into two main subgroups: local- 
level and global-level features [12]. Local-level features 
compare a given pixel with its immediate neighbors and 
detect characteristics that may not be detectable to the medi-
cal investigator. In contrast, global-level features investigate 
the ROI features as a whole and concentrate on their shape 
and overall appearance [12]. A different way to classify 
radiomic features describes different groups [4, 13, 22]: first- 
order statistics; second-order statistics (or textural features); 
shape- and size-based features; wavelet features (see 
Table  38.1 for a partial summary of commonly extracted 
features).

 Feature Selection and Model Creation

The extraction of features for a specific task in radiomics 
brings to the identification of hundreds of items, of which 
only a part is relevant to build a valuable radiomic model. 
Some features may be redundant, correlated, irrelevant, or 
duplicated, thereby producing an overfitting model [14, 
22]. To avoid this, scanning high-volume databases and 
feature selection through either supervised or unsupervised 
machine learning algorithms is essential before creating the 
model [14]. These techniques can be synthetically defined 
as methods that do not consider class labels and remove 
redundant features (unsupervised methods, like principal 
component and cluster analysis) [13], against those exam-
ining the feature’s relationship with the investigated class 
or their contribution to the correct classification. There are 
three main subtypes of supervised algorithms [14]: filter or 
univariate methods, which investigate the relationship of 
each feature with the outcome but ignore the correlations 
within the different features (for instance, the Wilcoxon 
rank-sum test, the Fisher score, the Chi-squared score, the 
Student’s t-test, or the minimum redundancy maximum rel-
evance) [25]; wrapper or multivariate methods, that take 
into account the relationships between features by scoring 
how different subsets of features influence the predictive 
performance and include forward feature selection, back-
ward feature elimination, complete feature selection, or 
bidirectional search [25, 26]; embedded methods, which 
select the most appropriate features during the training of 
the predictive machine learning models: compared to wrap-
per methods, these are less computationally demanding and 
less prone to overfitting. Commonly used embedded meth-
ods are ridge regression, tree-based algorithms like random 
forest classifiers, or the least absolute shrinkage and selec-
tion operator (LASSO) [14].

After feature selection, different algorithms are granted to 
train a model to predict a specific task. The detailed 
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Table 38.1 Summary of some of commonly used radiomic features and their description [12–14, 18, 20, 22]

Feature group Definition Examples Description
First-order 
statistics

Quantitative statistical description 
of the distribution of signal 
intensities in an ROI regardless of 
spatial relationships

Entropy Measures the inherent randomness in the gray-level 
intensities of an image or ROI

Uniformity Measures the homogeneity of gray-level intensities 
within an image or ROI

Kurtosis The degree of intensities histogram sharpness
Maximum Maximum intensity value
Mean Mean intensity value
Median Median intensity value
Range Range of intensity values
Skewness The degree of the intensities histogram asymmetry 

around the mean
Standard deviation and 
variance

Measures of the histogram dispersion, that is, a measure 
of how much the gray levels differ from the mean

Second-order 
statistics or 
textural 
features

Statistical relationships between 
intensity levels of neighboring 
pixels or voxels or groups of pixels 
or voxels. Reflect tumor 
heterogeneity

Gray-level co-occurrence 
matrix

Represents the number of times that two intensity levels 
occur in neighboring pixels or voxels within a specific 
distance along a fixed direction

Neighborhood Gray-level 
different matrix

The difference of intensity levels between one voxel and 
its 26 neighbors in three dimensions

Short runs emphasis Measures distributions of short runs. Higher values 
indicate fine textures

Long runs emphasis Measures distribution of long runs. Higher values 
indicate course textures

Gray-level 
non-uniformity

Measures the distribution of runs over the gray values. 
Lower value indicates higher similarity in intensity values

Coarseness Quantitative measure of local uniformity
Busyness Rapid intensity changes of neighborhoods in a given ROI
Local binary pattern Quantifies local pixel structures through a binary coding 

scheme. Measures tumor microenvironment
Histogram of oriented 
gradients

Computes block-wise histogram gradients with multiple 
orientations

Shape- and 
size-based 
features

Descriptors of the three-
dimensional size and shape of the 
tumor region

Volume Determined by counting the number of pixels in the 
tumor region and multiplying this value by the voxel size

Maximum 3D diameter The maximum three-dimensional tumor diameter
Surface area The surface area can be calculated by triangulation (i.e., 

dividing the surface into connected triangles)
Surface to volume ratio Describes how elongated the shape of the tumor is
Sphericity Describes how spherical the shape of the tumor is

High-order 
statistics or 
wavelet 
features

Extracted by applying filters or 
mathematical transforms to images 
for the identification of repeating 
patterns, noise suppression, edge 
enhancement, histogram-oriented 
gradients, or local binary patterns

After decomposition, 
each first- or second-
order statistic can be 
further computed

discussion of each model definition and mechanisms is 
beyond this chapter’s purposes and can be found elsewhere 
[27]. The selection of the best model for a specific task fol-
lows an established pipeline in machine learning, which is 
described in detail in other chapters and will be only sum-
marized here. Briefly, the dataset is split into two groups, of 
which one is used to training the model (train set, i.e., to 
select the best algorithm and its parameter using the previ-
ously selected features) and the other, the test set to evaluate 
the model performances. Ideally, a third dataset is created at 
the beginning to further validate the model efficacy in per-
forming a specific task on previously unseen data.

38.3  Applications in Neuro-Oncology

A considerable amount of efforts in radiomics research has 
been put in recent years in the field of high-grade gliomas, 
the ultimate goal being to predict overall survival, a possible 
response to treatment or tumor histology, and grading and 
pathological features.

Many studies have found a consistent association between 
textural heterogeneity described as the spatial distribution of 
gray levels in an ROI and higher glioma grades on 
T1-weighted, FLAIR sequences, and diffusion-weighted 
imaging (DWI) through apparent diffusion coefficient 
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(ADC) [28–31]. With the 2016 update to the WHO classifi-
cation of brain tumors and the growing role of molecular 
profiles in the diagnosis of gliomas, the research for a non- 
invasive identification through radiomics of specific biomo-
lecular patterns has gained further attention. For instance, 
identifying IDH mutation and MGMT promoter methylation 
[11, 32] could be done successfully. Specifically, the use of 
diffusional kurtosis imaging, together with texture analysis, 
has proved to be a valid method to discriminate IDH-mutant 
from IDH-wildtype tumors and grade II from grade III glio-
mas [33]. Similarly, the presence of 1p/19q co-deletion could 
be successfully predicted using decisional three-based algo-
rithms and features extracted from contrast-enhanced 
T1-weighted, T2-weighted, and FLAIR sequences with an 
accuracy as high as 96% [34, 35].

However, a considerable amount of research concentrated 
on identifying the most accurate composition of features (so- 
called “radiomic signature”) to identify the tumor response 
to treatment or the tumor behavior regardless of the presence 
of any particular biomolecular feature. For example, Liu 
et al. [18] created a radiomic signature composed of 9 fea-
tures correlated with progression-free survival in low-grade 
gliomas in both training and validation sets, independent of 
any clinicopathological factor. Similarly, a survival estimate 
before treatment was also possible in patients with glioblas-
toma by identifying different radiomic profiles describing 
different tumor heterogeneity grades based on T1, T2, 
FLAIR sequences, and ADC [5, 13], and also independently 
from other clinicopathological factors [4, 6]. Alternatively, 
radiomic profiles can be integrated into the knowledge of the 
tumor molecular profile and histology to improve disease 
stratification and prognosis, without an explicit dependency 
of radiomic features to the tumor characteristics being dem-
onstrated [16, 17].

Also, radiomic research has focused on the discrimination 
between gliomas and other entities with similar radiologic 
manifestations on MR imaging. For instance, radiomics have 
shown encouraging results in diagnosing glioblastoma ver-
sus brain metastasis [36] or recognizing treatment-related 
changes in suspected disease relapse [37–40].

38.4  Features Associated with Extent 
of Resection in Brain Glioma

The role of radiomics in brain gliomas surgery holds promise 
to support decision making for planning surgical strategies, 
post-surgical therapy, and follow-up. The main factor influ-
encing these three phases is the amount of residual tumor 
after surgical exeresis, which, as previously demonstrated, 
correlates with the patient’s prognosis [41]. Therefore, the 
earlier and the most accurate the identification or the esti-
mate of the residual tumor, the more appropriate the planned 

therapeutic strategies will be, aiming at precision treatment 
on an individual basis beyond shared protocols and algo-
rithms with their intrinsic limitations.

Radiomic models can influence the treatment strategy by 
creating maps of tumoral infiltration to guide the surgeon in 
tumor removal and enhance the extent of resection [42, 43]; 
by searching for preoperative features that could predict 
tumor remnants [6]; or by detecting early postoperative 
tumor residuals, identifying areas at the need for further 
treatment and replacing the qualitative and operator- 
dependent definitions of “gross total,” “subtotal,” “partial 
resection” [44].

Different information on the presence of tumoral cells can 
be extracted from different MRI sequences. For instance, 
T1-weighted contrast-enhanced sequences depict alterations 
in regional angiogenesis and integrity of the blood-brain bar-
rier in the tumor; T2-weighted and FLAIR sequences assess 
extracellular fluid in brain parenchyma; diffusion tensor 
imaging (DTI) informs about the water molecules diffusion 
in the brain, which affected in part by tumor cells architec-
ture and density; dynamic susceptibility contrast-enhanced 
(DSC)-MRI techniques reflect aspects of perfusion in the 
brain and of regional microvasculature and hemodynamics.

All these aspects can be altered by infiltrating tumor cells 
and, individually, may not be sufficiently specific to define 
tumor infiltration areas. Recent studies dealing with the cor-
rect identification of tumoral extension have variably com-
bined the information gained from these different methods to 
offer reliable radiomic models.

For example, Akbari et al. [42] proposed a model based on 
supporting vector machine (SVM) combining features 
extracted from T1, T2-weighted and FLAIR sequences, diffu-
sion tensor imaging (DTI; specifically: fractional anisotropy 
[FA], radial diffusivity [RAD], axial diffusivity [AX], and trace 
[TR]), and perfusion. They were able to identify three catego-
ries of features used for estimating the infiltration pattern: a 
first group describing signal intensity from contrast- and non-
contrast-enhanced T1, T2-weighted and FLAIR sequences; a 
second group consisting of statistics from features derived 
from diffusion tensor DTI; and a third group relating to tissue 
vascularization, perfusion, and  permeability of blood vessels, 
identified through principal component analysis (PCA). 
Despite a satisfactory ability to topographically identify areas 
of tumor recurrence with an AUC of 0.84, sensitivity of 91%, 
and specificity of 93%, and recurrence odds ratio estimates of 
9.29 for tissue predicted to be infiltrated, the retrospective 
nature of the study and the absence of histological specimen 
confirmations requires caution before clinical application.

Rathore et al. [6] produced an estimates map of glioblas-
toma recurrence based on preoperative MRIs. To do this, 
they analyzed preoperative pre- and post-contrast 
T1-weighted, T2, FLAIR, DTI, and DSC-MRI.  They 
identified five types of radiomic features from peritumoral 
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zones on a voxel-wise basis: intensity features, distance 
(from the tumor) features, statistical features (or first-order 
features), textural features, and temporal perfusion dynam-
ics. SVM was used to assign each voxel a probability score, 
and then a comparison was made between the estimated 
infiltration map and post-surgical MRIs of patients with and 
without actual tumor recurrence. The model’s predictive 
power was described by the area under the receiver operating 
characteristic curve (AUC) of 0.83 and 0.91 for the training 
and validation sets, respectively. Interestingly, they found 
tumor recurrence areas to be characterized by higher cellu-
larity and vascularity and lower signal intensities on T2 and 
FLAIR, suggesting lower water concentration than areas 
without recurrence. The exciting results of this work may 
further benefit from multicenter validation.

Attempts to purposefully distinguish peritumoral edema 
from real tumor infiltration have been made with different 
approaches [45], like extracting first-, second-, and high- 
order statistics from peritumoral edema in patients with glio-
blastoma and meningioma. Features were selected with a 
LASSO method. The best performances to predict tumor 
infiltration in glioblastomas in perilesional edema (AUC 
0.99) were obtained from GLCM difference entropy on 
contrast- enhanced T1-weighted imaging after post- 
processing normalization. The main limitation of this study, 
however, was the small cohort involved.

In their recent work, Yan et al. [46] developed convolu-
tional neural networks with 112 features among first- and 
second-order features to predict tumor recurrence areas after 
surgery, with the most distinctive features being gained from 
contrast-enhanced T1 sequences and ADC. The overall sen-
sitivity and specificity were 80% and 97.7%, respectively.

 Future Perspectives

Different radiomics-based models to identify tumor infil-
tration zones in gliomas share some features despite studies 
being conducted with diverse methodologies. The most 
recent studies concentrated on identifying tumor recur-
rence areas, early or delayed, within anatomic zones usu-
ally deemed as either perilesional edema or unaffected 
brain tissue with conventional radiological examinations. 
Overall, radiomic features that measure cellularity and his-
tological irregularities, as well as features describing irreg-
ularities in the diffusion of water molecules, seem to 
provide a reliable means to spot tumor infiltration, mainly 
through first- and second-order features. On the other hand, 
shape- and size- based features have gained less attention 
concerning this specific aspect of neuro-oncology.

However, incorporating and validating size- and shape- 
related features could be interesting to test some fascinating 

biological hypotheses concerning gliomas behavior. For 
instance, a larger tumor would represent an advanced stage 
of the disease with a higher chance of presenting infiltration 
zones. The field of fractal analysis, defined as a mathemati-
cal tool to assess and quantify natural objects’ morphologi-
cal features [22], has obtained limited attention regarding 
this task.

38.5  Conclusions

Radiomics has proven to offer significant advantages over 
conventional radiological analysis, and benefits seem to be 
granted in the future for the field of neuro-oncology.

To further influence surgery and improve patients’ prog-
nosis, correct identification of tumor borders beyond the lim-
its identified by conventional radiological techniques and 
more precise identification of areas at risk for disease relapse 
should be sought more extensively.

Although some patterns seem to emerge from the studies 
that have dealt with the issue, research is still open to fully 
exploiting the support provided by radiomics and possibly 
discovering new strategies for a more precise measurement 
of radiological data.
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39.1  Introduction

Machine learning (ML) involves dynamic evaluation of 
healthcare data by artificial intelligence that may be applied 
to diagnostic and therapeutic medical interventions [1–3]. 
Analysis for pattern extraction aids to classify and design an 
algorithm to predict outcomes from a trained dataset while 
mitigating bias [4]. Advances in the neurosciences—includ-
ing diagnostic imaging, genetic correlates, and improved 
understanding of neural circuits—have enhanced application 
of machine learning to gain new insight into disease and 
optimize identification and treatment that account for com-
plex interactions of clinical, environmental, and genetic vari-
ables [5, 6]. Machine learning may aid physician diagnosis 
and decision-making in treatment plans by analyzing com-
plex variable interactions (i.e., clinical, genetic, environmen-
tal) for peak performance. Practically, these algorithms may 
aid in determining an individual’s candidacy for surgery or 
optimizing intraoperative identification for retrieval of can-
cerous tissue. Predictive algorithms are a current metric for 
healthcare utilization to anticipate a patient’s hospital stay, 
payments, and readmission [7, 8].

Algorithms (e.g., decision trees, support vector machine 
(SVM), random forest, and gradient boosting models, 
among others) that have been applied to medical transla-
tional research are classified as supervised learning, unsu-
pervised learning, or reinforcement learning [9]. Machine 
learning in the neurosciences primarily utilizes supervised 
learning models for their optimal ability to account for and 
integrate complex and dynamic models [10–22]. The most 
frequently used model for neurological pathologies is SVM 
due to its flexibility to represent complex relationships and 
moderate nonlinearities for classification, regression, and 
outlier detection [23–25]. Glaser et al. propose four specific 
areas in which machine learning can be categorized: (1) 
solving engineering problems, (2) identifying predictive 
variables, (3) benchmarking simple models, and (4) serving 
as a model for the brain [24]. Machine learning has been 
utilized to predict neural activity related to seizures [24, 26, 
27]. Depending on the engineered algorithm, its flexibility 
attempts to reflect reality to accurately evaluate and corre-
late multiple variables for optimal function [24, 28]. The 
most accurate model of ganglion cell activity currently is a 
deep learning algorithm that demonstrates the present defi-
ciencies in the biological model [14]. Deep learning neural 
networks demonstrate parallels to the neural network of our 
brains not only in terms of structure but also activation pat-
terns which can be valuable in gaining a better understand-
ing of sensory cortical processing or behavior prediction 
[24, 29].

In the present review, we discuss the landscape of ML in 
schizophrenia, epilepsy, Alzheimer’s disease, and neuro- 
oncology as those neurological disorders are some of the 
most cited in association with artificial intelligence [11, 19, 
23]. Additionally, multifactorial risk factors and vague clini-
cal presentations often complicate diagnoses in absence of 
biomarkers for certain conditions such as Alzheimer’s dis-
ease—ML may benefit surgical decision-making by utilizing 
predictive modeling to aid management and approach.
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39.2  Materials and Methods

 Data Extraction

We framed 4 searches to identify machine learning studies 
across some of the fields in neuroscience richest in machine 
learning. A PICOS model (Participants, Intervention, 
Comparison, Outcomes, Study Design) was used to define 
the usage of machine learning algorithms in the diagnosis 
and treatment of epilepsy, neuro-oncology, schizophrenia, 
and Alzheimer’s cases. We analyzed the articles that focused 
primarily on the use of machine learning algorithms in an 
adult population including systematic reviews and compara-
tive studies.

 PICOS Outline

Participants: Adult patients ≥18 years of age.
Intervention: Diagnosis and/or treatment for Alzheimer’s, 

epilepsy, brain tumors, or schizophrenia.
Comparison: Performance of machine learning algo-

rithms to the current diagnostic and treatment options.
Outcomes: Area under the curve (AUC) or percent accu-

racy in utilizing a machine learning algorithm.
Study Design: Inclusive of systematic reviews and retro-

spective studies.

 Search Criteria

For this review, we conducted the search on January 5th, 
2021 using the PubMed Databases between 2015 to 2020 
[30]. Further, studies needed to report a standardized evalua-
tion metric of accuracy with the inclusion of the area under 
the curve (AUC) or quantitative statistics. Additional articles 
used in the references were incorporated from the references 
of those articles identified in the searches. We used Keyword 
and MeSH terms for predictive outcomes to include the fol-
lowing terms with numbered iterations for the two databases 
as follows:

 1. Pubmed: Neuro-oncology AND machine learning: 85 
articles; 13 included.

 2. Pubmed: Schizophrenia AND machine learning: 388 arti-
cles; 10 included.

 3. Pubmed: Epilepsy AND machine learning: 508 articles; 
11 included.

 4. Pubmed: Alzheimer’s AND machine learning: 967 arti-
cles: 12 included.

Risk of bias evaluation: Assessment of conflict of interest, 
funding for study and study design were assessed according 
to QUADAS criteria.

 Inclusion and Exclusion Criteria

Inclusion criteria involved studies with adult patients 
≥18 years of age with Alzheimer’s, epilepsy, brain tumor, or 
schizophrenia. Randomized controlled trials, prospective, 
retrospective, and systematic review studies were included. 
Exclusion criteria involved studies with nonhuman subjects, 
pediatric population, language other than English, and those 
studies without full text. Studies that did not use a machine 
learning algorithm or those that did use one but did not vali-
date their algorithm were excluded. Final selection of articles 
was also based on author discretion for relative impact to the 
field and unique purpose or methods to bring light to recent 
advancements.

39.3  Results

 Neuro-Oncology

We identified 13 studies between 2015 and 2020 that utilized 
machine learning in the treatment and diagnosis of brain 
tumors (Table  39.1). Neuro-oncology studies reported the 
success of their algorithms with area under the curve (AUC) 
measures, accuracy percentages, similarity coefficient, con-
cordance index, or mean absolute predicted error. Accuracy 
of ML algorithms ranged from AUC 0.80 to 0.85, underscor-
ing their predictive ability in determining the location and 
extent of the tumor. The percent accuracy reported ranged 
from 61% to 99%. Studies reported sample sizes ranging 
from 18 to 45,814 patients. Results were verified using a sub-
set of cross-validation. In general, studies utilized a leave- 
one- out cross-validation approach, possibly since it’s 
recognized to be unbiased. However, five- and tenfold cross- 
validation approaches were also utilized by four studies pos-
sibly as that method has decreased variability [31].

 Epilepsy

In our review of ML and epilepsy, we found support vector 
machine algorithm to be the most utilized in epilepsy 
research (Table  39.2). These studies presented with AUC 
ranging from 0.84 to 0.91. Others reported their results with 
accuracy percentages ranging from 43% to 95%. Studies 
reported sample sizes ranging from 20 to 519. Interestingly, 
studies with larger sample sizes (over 200) tended to use 
five- or tenfold cross-validation instead of the leave-one-out 
method. This could be because the leave-one-out method 
would be more time consuming and has more variance when 
handling a larger sample size [20]. From the 11 articles iden-
tified related to neurosurgery for epilepsy, seven attempted to 
create an algorithm to identify patients that were seizure free 
post-surgery (Table 39.2) [10, 12, 15, 17, 18, 32, 33]. Of the 
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Table 39.1 Machine learning and neuro-oncology

Title Publication Variables Purpose
Machine learning 
algorithms

Sample 
size Accuracy

Validation 
method

Predicting inpatient 
length of stay after 
brain tumor surgery: 
developing machine 
learning ensembles to 
improve predictive 
performance

Neurosurgery Preoperative 
patient 
characteristics

Predict LOS 
following 
craniotomy

Two gradient 
boosted trees 
and SVM

45,814 RMSLE 
0.555 on 
internal 
validation

Cross- 
validation

Machine learning 
assisted intraoperative 
assessment of brain 
tumor margins using 
HRMAS NMR 
spectroscopy

PLoS 
Computational 
Biology

HRMAS NMR Predicting 
micro-scale 
tissue with 
leftover tumor 
during surgery

Random 
forest-based 
approach, CNN, 
PLS-DA

565 AUC 85.6% Eightfold 
cross- 
validation

Raman spectroscopy to 
differentiate between 
fresh tissue samples of 
glioma and normal 
brain: a comparison 
with 5-ALA-induced 
fluorescence-guided 
surgery

Journal of 
Neurosurgery

Raman 
spectroscopy

Differentiate 
between Raman 
spectroscopy 
and 5ALA 
induced 
fluorescence 
guided surgery

Principal 
component 
analysis (PCA); 
linear 
discriminant 
analysis (LDA)

73 Accuracy: 
0.99

Leave-one- 
sample-out 
cross- 
validation

Serum microRNA is a 
biomarker for 
post-operative 
monitoring in glioma

Journal of 
Neuro- 
Oncology

Serum 
microRNA

Find a 
biomarker for 
longitudinal 
monitoring

Random forest 
analysis

108 Accuracy: 
99.8%

Monte- 
Carlo based 
validation 
approach

Next for neuro- 
radiosurgery: A fully 
automatic approach for 
necrosis extraction in 
brain tumor MRI using 
an unsupervised 
machine learning 
technique

International 
Journal of 
Imaging 
Systems and 
Technology

MRI Delineates 
necrotic regions 
of tissue

NeXT, 
unsupervised 
machine 
learning 
algorithm

32 Similarity 
coefficient 
95.93%

N/A

Integration of machine 
learning and 
mechanistic models 
accurately predicts 
variation in cell density 
of glioblastoma using 
multiparametric MRI

Scientific 
Reports

MRI Identify tumor 
cell invasion

Hybrid model 
of proliferation- 
invasion (PI) 
with imaging 
data-driven 
graph-based 
model

18 Mean 
absolute 
predicted 
error (MAPE) 
of 0.106

Leave-one- 
patient-out 
cross- 
validation

Radiogenomics of 
glioblastoma: machine 
learning–based 
classification of 
molecular 
characteristics by using 
multiparametric and 
multiregional mr 
imaging features

Radiology MRI Association of 
MRI imaging 
features with 
molecular 
characteristics 
in patients

Gradient 
boosting, 
random forest, 
penalized 
logistic 
regression 
classifiers

152 Accuracy: 
(63% EGFR, 
61% RTK II

Tenfold 
cross- 
validation

Overall survival 
prediction in 
glioblastoma 
multiforme patients 
from volumetric, shape 
and texture features 
using machine learning

Surgical 
Oncology

MRI Survival 
prediction

SVM 163 Accuracy: 
98.7% 
(2-class), 
88.95% 
(3-class)

Fivefold 
cross- 
validation

(continued)
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remaining four, three publications utilized ML to determine 
patient candidacy for surgical intervention and one attempted 
to diagnose and localize the epileptic zone for surgery 
 resection [20–22, 34]. Six publications utilized the SVM 
algorithm for analysis, possibly because it is often used for 
research, is resistant to overfitting, and performs well with 
high-dimensional data [15, 17, 18, 32–34]. Other models 
included the extreme gradient boosting algorithm, random 
forest, natural language processing, and linear discriminant 
analysis function with certain papers analyzing multiple 
algorithms for comparison [10, 12, 18, 20–22, 34].

 Alzheimer’s Disease

Of the 12 studies published between 2015 and 2020, two 
measured clinical variables, one measured specific serum 
markers in body fluid (e.g., micro-RNA), eight measured 
different anatomical regions with either PET or MRI scans, 
and one measured electroencephalography (EEG) response 
after scopolamine administration (Table 39.3). Accuracy of 

these studies is often greater than 90%. However, among 
studies for which the outcome was diagnosis of Alzheimer’s 
disease, there was no consistent dependent variable investi-
gated (in contrast to studies utilizing ML in schizophrenia, 
below).

 Schizophrenia

Of the 10 studies identified, a majority (eight) used SVM 
algorithm to analyze the data. Accuracy and AUC measure-
ments were frequently demonstrated to be greater than 0.80 
and SVM was frequently the most accurate algorithm, occa-
sionally yielding accuracies greater than 90%, when compar-
ing ML methodologies within the same dataset (Table 39.4). 
Current research into ML and schizophrenia primarily 
focuses on imaging modalities such as MRI to identify 
abnormally anatomical patterns [35]. Of ten articles pub-
lished within the last 5 years, nine utilize MRI measurements 
of cortical volume or thickness and one uses brain fractional 
anisotropy [36–45].

Table 39.1 (continued)

Title Publication Variables Purpose
Machine learning 
algorithms

Sample 
size Accuracy

Validation 
method

An online calculator 
for the prediction of 
survival in 
glioblastoma patients 
using classical 
statistics and machine 
learning

Neurosurgery 13 demographic, 
socioeconomic, 
clinical, and 
radiographic 
features

Personalized 
survival curves

Decision trees, 
random forests, 
linear models, 
etc. (15 total)

20,821 Concordance 
index = 0.70

Fivefold 
cross- 
validation

Imaging surrogates of 
infiltration obtained via 
multiparametric 
imaging pattern 
analysis predict 
subsequent location of 
recurrence of 
glioblastoma

Neurosurgery MRI Delineate areas 
of tumor 
infiltration and 
predict early 
recurrence

SVM 65 AUC: 0.84 Leave-one- 
patient-out 
cross- 
validation

Deep learning-based 
framework for in vivo 
identification of 
glioblastoma tumor 
using hyperspectral 
images of human brain

Sensors Hyperspectral 
imaging

Delineate 
location of 
tumor in vivo

SVM and deep 
learning

16 AUC: 80% Leave-one- 
patient-out 
cross- 
validation 
framework

Prediction of 
pseudoprogression 
versus progression 
using machine learning 
algorithm in 
glioblastoma

Nature MRI Post-surgical 
progression for 
glioblastoma

Convolutional 
neural network 
(CNN) and long 
short-term 
memory 
(LSTM)

78 AUC: 0.83 Tenfold 
cross 
validation

Radiomics-based 
machine learning in 
differentiation between 
glioblastoma and 
metastatic brain tumors

Frontiers in 
Oncology

MRI Differentiate 
glioblastomas 
from metastatic 
brain tumors

LDA, SVM, 
random forest 
etc. (6 total)

134 AUC of 0.80 
for two 
models
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Table 39.2 Epilepsy and Machine Learning

Title Publication Variables Purpose

Machine 
learning 
algorithm

Sample 
size Accuracy Validation method

Machine learning- 
XGBoost analysis of 
language networks to 
classify patients with 
epilepsy

Brain 
Informatics

fMRI Diagnosis 
and 
localization 
for surgery

Extreme 
Gradient 
Boosting 
(XGBoost 
algorithm)

55 AUC: 91 ± 5% Nested cross- 
validation 
scheme with an 
outer Monte 
Carlo 
cross-validation

Structural brain network 
abnormalities and the 
probability of seizure 
recurrence after epilepsy 
surgery

Neurology MRI + clinical 
data

Post-surgical 
outcome

SVM 80 AUC: 
0.84 ± 0.06

Nested 
cross-validation

Temporal lobe epilepsy 
surgical outcomes can be 
inferred based on 
structural connectome 
hubs: a machine learning 
study

Annals of 
Neurology

MRI Post-surgical 
outcome

SPSS 168 AUC: 0.88 Cross-validation 
using 
independent 
multi-set data

Localization of the 
epileptogenic zone using 
Interictal MEG and 
Machine learning in a 
large cohort of drug- 
resistant epilepsy patients

Frontiers in 
Neurology

MEG 
recordings

Post-surgical 
outcome

SVM and 
random 
forest

94 SVM: 43.77% 
accuracy 
random forest: 
49.03%

Leave-one-out 
cross validation

Investigation of bias in an 
epilepsy machine learning 
algorithm trained on 
physician notes

Epilepsia Clinical notes Surgical 
eligibility

NLP 443 AUC was 0.94 Tenfold 
cross-validation

Methodological issues in 
predicting pediatric 
epilepsy surgery 
candidates through natural 
language processing and 
machine learning

Biomedical 
Informatics 
Insights

Clinical notes Surgical 
candidacy

SVM, Naive 
Bayes 
Classifier

200 F-measures: 
0.71 to 0.82

Tenfold 
cross-validation

Multimodal data and 
machine learning for 
surgery outcome 
prediction in complicated 
cases of mesial temporal 
lobe epilepsy

Computers in 
Biology and 
Medicine

MRI and 
demographical 
data

Post-surgical 
outcome

LS-SVM 20 95.0% Leave-one-out 
cross-validation

Prospective validation of 
a machine learning model 
that uses provider notes to 
identify candidates for 
resective epilepsy surgery

Epilepsia Clinical notes Surgical 
candidacy

NLP 519 AUC: 
0.90 ± 0.04

Tenfold 
cross-validation

The impact of epilepsy 
surgery on the structural 
connectome and its 
relation to outcome

Neuroimage: 
Clinical

MRI Post-surgical 
outcome

SVM 53 79% accuracy Leave-one-out 
cross-validation

Evaluation of machine 
learning algorithms for 
treatment outcome 
prediction in patients with 
epilepsy based on 
structural connectome 
data

NeuroImage MRI and chart 
review data

Post-surgical 
outcome

SVM 118 70% accuracy Tenfold 
cross-validation

Magnetic resonance 
imaging pattern learning 
in temporal lobe epilepsy: 
Classification and 
prognostics

Annals of 
Neurology

MRI Post-surgical 
outcome

LDA 114 92% accuracy Leave-one-out 
cross-validation
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Table 39.3 Alzheimer’s disease and machine learning

Title Publication Variables Purpose
Machine learning 
algorithm

Sample 
size Accuracy

Validation 
method

Machine learning to 
detect Alzheimer’s 
Disease from 
circulating non-coding 
RNAs

Genomics, 
Proteomics and 
Bioinformatics

sncRNA/
miRNA

Diagnosis Gradient boosted 
tree model

465 AUC 87.6% and 
83.5% (# of 
controls)

Tenfold 
cross- 
validation

Machine learning for 
comprehensive 
forecasting of 
Alzheimer’s Disease 
progression

Scientific 
Reports

44 clinical 
variables

Disease 
progression

Conditional 
Restricted 
Boltzmann 
Machine (CRBM)

1909 AUC 0.5 Fivefold 
cross- 
validation

Optimizing machine 
learning methods to 
improve predictive 
models of Alzheimer’s 
Disease

Journal of 
Alzheimer’s 
Disease

MRI, 
demographics, 
APOE4

Diagnosis & 
Disease 
Progression

Decision trees, 
support vector 
machines, 
K-nearest 
neighbor, 
ensemble linear 
discriminant, 
boosted trees, and 
random forests

1329 Cognitively 
normal vs. AD 
92.8%
Future 
conversion—6, 
12, 24, 36, & 
48 months 
(63.8%, 68.9%, 
74.9%, 75.3%, 
77.0%)

Tenfold 
cross- 
validation

Machine learning 
based hierarchical 
classification of 
frontotemporal 
dementia and 
Alzheimer’s disease

NeuroImage: 
Clinical

MRI Diagnosis Hierarchical 
classifier

50 AD, 
146 
CN

CN vs. dementia 
0.917
AD vs. FTD 0.955

Tenfold 
cross- 
validation

A deep learning 
model to predict a 
diagnosis of 
Alzheimer Disease by 
using 18F-FDG PET 
of the brain

Radiology 18F-FDG PET Diagnosis Adam: first-order 
gradient-based 
stochastic 
optimization 
algorithm

899 AUC 0.92 Tenfold 
cross- 
validation

Machine learning 
identified an 
Alzheimer’s 
disease-related 
FDG-PET pattern 
which is also 
expressed in Lewy 
body dementia and 
Parkinson’s disease 
dementia

Scientific 
Reports

FDG-PET Diagnosis General linear 
model (GLM), 
subprofile 
modeling 
(SSM)13, and 
support vector 
machine (SVM)

346 AUC 0.945 Tenfold 
cross- 
validation

Using high- 
dimensional machine 
learning methods to 
estimate an 
anatomical risk factor 
for Alzheimer’s 
disease across 
imaging databases

NeuroImage MRI and 
cognitive 
assessment

Diagnosis Elastic net 
regularized 
logistic regression 
(EN-RLR) 
classifier

359 Tenfold 
cross- 
validation

Hybrid multivariate 
pattern analysis 
combined with 
extreme learning 
machine for 
Alzheimer’s dementia 
diagnosis using 
multi-measure 
rs-fMRI spatial 
patterns

PLoS One rs-fMRI Diagnosis Support vector 
machine (SVM)

460 98.86% Leave-one- 
out and 
tenfold 
cross- 
validation
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39.4  Discussion

 Neuro-Oncology

Traditionally, one of the treatment hurdles of neuro- oncology 
is overcoming penetration of the blood–brain barrier that 
prevents systemic chemotherapy and immunotherapy [46, 
47]. Often, surgical resection is necessary in cases of neuro-
logical impairment, resistance to medical therapy, dominant 
metastatic lesion, and/or prognosis [48, 49]. Depending on 
the location and type of tumor, gross total resection may not 
be achievable or come at the expense of vital neurovascular 
structure or eloquent regions [49, 50]. Machine learning may 
serve as a tool to maximize total resection of lesions, choose 
approaches or navigation equipment, predict outcomes, and/
or monitor the patient postoperatively [13, 16, 51–56].

Patient samples reported therein ranged from eight 
patients to 45,000. Dependent variables included preopera-
tive patient characteristics, Nuclear Magnetic Resonance 
spectroscopy, MRIs, and serum micro-RNA.  In contrast to 
the epilepsy studies, more variability was observed in the 
type of ML algorithms to assist with treatment and diagnosis 

of brain tumors. Most studies did not use SVM, for instance, 
and the techniques utilized range from simple (e.g., random 
forest analysis) to complex hybrid ML analyses (e.g., semi- 
supervised learning model with proliferation-invasion imag-
ing). The objectives of these studies were also different than 
those investigating ML in epilepsy: in neuro-oncology ML 
was used to delineate the borders of the tumor for better sur-
gical outcomes, predict individual survival statistics, or aid 
in post-surgical follow-up, while ML was used to predict sur-
gical candidacy or post-surgical seizure activity for epilepsy 
patients.

Morokoff et  al. conducted a study in 2020 to compare 
serum micro-RNA profiles of 91 glioma patients with 17 
healthy controls utilizing a random forest analysis and 
Monte-Carlo ML algorithm to discover a biomarker for lon-
gitudinal monitoring of glioma patients [16]. Gaw et al. con-
ducted a study in 2019 to precisely identify the borders of 
tumor cell invasion using 82 preoperative biopsies from 18 
glioblastoma patients [57]. Instead of using a simple ML 
algorithm, this study combined a proliferation-invasion 
model with a semi-supervised machine learning model (SSL) 
to combine the strengths of each algorithm. Semi-supervised 

Table 39.3 (continued)

Title Publication Variables Purpose
Machine learning 
algorithm

Sample 
size Accuracy

Validation 
method

Identification of 
Alzheimer’s disease 
and mild cognitive 
impairment using 
multimodal sparse 
hierarchical extreme 
learning machine

Human Brain 
Mapping

MRI, 
FDG-PET, 
CSF

Diagnosis Multi-modal 
sparse hierarchical 
extreme leaning

202 97.12% Tenfold 
cross- 
validation

EEG machine learning 
for accurate detection 
of cholinergic 
intervention and 
Alzheimer’s disease

Scientific 
Reports

EEG Diagnosis Elastic net logistic 
regression

158 92% Tenfold 
cross- 
validation

A clinically- 
translatable machine 
learning algorithm for 
the prediction of 
Alzheimer’s disease 
conversion in 
individuals with mild 
and premild cognitive 
impairment

Journal of 
Alzheimer’s 
Disease

Demographics Diagnosis 16 tested. Best 
results from SVM

184 AUC 0.962 Leave-pair- 
out-cross-
validation

Machine learning- 
based individual 
assessment of cortical 
atrophy pattern in 
Alzheimer’s disease 
spectrum: 
Development of the 
classifier and 
longitudinal 
evaluation

Scientific 
Reports

MRI Diagnosis Non-specific 
individual-level 
machine learning 
algorithm

1342 Sensitivity and 
specificity of 
87.1% and 93.3%

Tenfold 
cross- 
validation
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Table 39.4 Schizophrenia and machine learning

Title Publication Variables Purpose
Machine learning 
algorithm

Sample 
size Accuracy

Validation 
method

Classification of 
schizophrenia using 
feature-based 
morphometry

Journal of Neural 
Transmission

MRI Diagnosis SVM 108 84.1% Leave-one-out 
cross 
validation

Using multivariate 
machine learning methods 
and structural MRI to 
classify childhood onset 
schizophrenia and healthy 
controls

Front Psychiatry MRI Diagnosis Random Forest 197 73.7% None

Clinical utility of 
machine-learning 
approaches in 
schizophrenia: Improving 
diagnostic confidence for 
translational neuroimaging

Frontiers in Psychiatry MRI Diagnosis SVM 39 69.1%–
77%

Leave-one- 
subject-out 
cross 
validation

Support vector machine- 
based classification of first 
episode drug-naïve 
schizophrenia patients and 
healthy controls using 
structural MRI

Schizophrenia Research MRI Diagnosis SVM 326 81.8–
85.0%

Tenfold 
cross- 
validation

Discriminative analysis of 
schizophrenia using 
support vector machine 
and recursive feature 
elimination on structural 
MRI images

Medicine (Baltimore) MRI Diagnosis SVM with 
recursive feature 
elimination 
(RFE) classifier

83 88.4% Leave-one-out 
cross- 
validation

Using deep belief network 
modelling to characterize 
differences in brain 
morphometry in 
schizophrenia

Scientific Reports MRI Diagnosis Deep belief 
network 
(DBN-DNN) 
and SVM

258 73.6% 
(DBN) 
vs. 68.1 
(SVM)

Threefold 
cross- 
validation

Decreased resting-state 
interhemispheric functional 
connectivity correlated 
with neurocognitive 
deficits in drug-naive 
first-episode adolescent-
onset schizophrenia

International Journal of 
Neuropsychopharmacology

fMRI Diagnosis 
(specific 
drug 
naive)

SVM & 
voxel-mirrored 
homotopic 
connectivity 
(VMHC)

79 94.93% Leave-pair-out 
cross- 
validation

Shared atypical default 
mode and salience network 
functional connectivity 
between autism and 
schizophrenia

Autism Research fMRI Diagnosis Multivariate 
pattern analysis 
(MVPA)

109 83.3% Leave-one-out 
cross- 
validation

Multimodal discrimination 
of schizophrenia using 
hybrid weighted feature 
concatenation of brain 
functional connectivity and 
anatomical features with 
an extreme learning 
machine

Frontiers in 
Neuroinformatics

fMRI Diagnosis SVM, linear 
extreme learning 
machine (ELM), 
LDA, and 
random forest 
bagged tree 
classifier

144 99.3% Nested 
10-by-tenfold 
cross- 
validation

Machine learning 
classification of first-
episode schizophrenia 
spectrum disorders and 
controls using whole brain 
white matter fractional 
anisotropy

BMC Psychiatry Brain 
fractional 
anisotropy

Diagnosis SVM 154 62.34% 77-fold 
cross- 
validation
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machine learning has been successfully applied in previous 
studies that contain unlabeled data, which proved useful in 
this study as the authors placed a voxel in multiple cross- 
sections of unlabeled MRIs for analysis. Additionally, a 
graph-based algorithm was chosen in the supervised machine 
learning model as it was previously determined to accurately 
predict new glioblastoma patients from the trained model 
[57]. The proliferation-invasion model is useful as it can 
handle more biological information such as the intuition 
from patient-specific parameters. This publication indicates 
the usefulness of combining ML algorithms with other data 
analysis models.

Some studies utilize multiple ML algorithms to determine 
the most accurate model. Kickingereder et al. conducted a 
retrospective chart review in 2016 to determine associations 
between characteristics seen on MRI with molecular bio-
markers in patients with glioblastoma [13]. The study applied 
three ML methods appropriate for binary classification: sto-
chastic gradient boosting machine, random forest, and penal-
ized logistic regression classifiers. Each classifier was then 
subjected to a tenfold cross-validation resampling procedure. 
Interestingly, whereas the penalized logistic regression 
model achieved the highest accuracy for predicting epider-
mal growth family receptor status, the gradient boosting and 
random forest model had the highest accuracy for predicting 
the receptor tyrosine kinase II status. Similarly, Senders et al. 
used 15 machine learning algorithms, including boosted 
decision trees, random forests, and naïve Bayes, among oth-
ers, to create personalized survival cures based on 13 patient 
characteristics [56]. Through inferential analyses, the accel-
erated time algorithm demonstrated the highest accuracy in 
predicting overall and 1-year survival probability for glio-
blastoma patients [56]. Chen et al. conducted a study in 2019 
to investigate if a ML model could differentiate between 
glioblastomas and metastatic brain tumors [58]. This study 
utilized 30 diagnostic models using five selection methods 
and six classification algorithms. The two models with the 
most promising results were (1) distance correlation with a 
linear discriminant analysis and (2) distance correlation with 
a logistic regression as both algorithms had a diagnostic abil-
ity with an AUC of 0.80 [58]. This study revealed the dis-
crepancy in choice of algorithm and sample size as SVM 
performs better for sample size of 50–60 patients, whereas 
linear discriminant analysis or logistic regression are more 
suitable for a larger sample size (>100) [58].

Deep learning is a subset of machine learning that uses 
artificial neural networks to learn from a dataset. Fabelo 
et al. conducted a study in 2019 to create a framework for 
processing hyperspectral images of brain tissue in  vivo to 
identify the location of a tumor and aid a surgeon in resection 
during operation [52]. The thematic map created with the 
deep learning framework had an AUC of 80%, significantly 
higher than that of a typical SVM map. Further exploration 

into deep learning models has the potential to improve care 
of individuals with brain tumors.

 Epilepsy

Epilepsy affects around 50  million individuals worldwide, 
with anti-epileptic drugs benefitting up to 70% of patients 
[59]. As many as 33% of patients with epilepsy may be 
medication- resistant and possibly require surgical interven-
tion to resect epileptic foci or receive placement of respon-
sive neurostimulation or vagal nerve stimulator [60–62]. 
Such situations require many factors to be considered before 
reaching a decision. For example, surgery has variable ben-
efits—closely analyzing a patient’s medical history to deter-
mine their surgical candidacy is crucial. It is also important 
to localize the area for resection and ensure it will not affect 
any eloquent structures or major neural white matter tracts. 
Machine learning algorithms may be incorporated to map 
imaging and demographic characteristics that may aid surgi-
cal decision-making.

In 2019, Wissel et  al. investigated the natural language 
processing algorithm to select surgical candidates from a 
cohort of 443 patients with epilepsy [22]. Because the algo-
rithm had to be trained to analyze physician notes, using a 
model that could deconstruct and interpret human language 
such as natural language processing proved to be useful. 
Torlay et al. conducted a study in 2017 that used the extreme 
gradient boosting algorithm to discriminate between patients 
who did and did not have epilepsy, and to identify atypical 
patterns of language networks in fMRI to determine poten-
tial locations for surgical resection [20]. The extreme gradi-
ent boosting algorithm is a type of ensemble-based, 
supervised learning: multiple ML models that, individually, 
are poor predictors are combined, producing a more accurate 
analysis. Extreme gradient boosting creates decision trees to 
determine outcomes and builds this framework sequen-
tially—i.e., each tree is built from the previous tree. The ben-
efit of this algorithm model is that it has fast computation 
with high accuracy, can scale data, and can learn to improve 
from previous decisions [20].

Most studies used cross-validation to investigate ML in 
epilepsy [10, 12, 17, 18, 20, 32, 33]. Gleichgerrcht et al. con-
ducted a retrospective study in 2020 utilizing preoperative 
MRI images from 121 patients with drug resistant temporal 
lobe epilepsy to create a neural network classification model 
[12]. This model was then cross-validated on 47 different 
patients with known outcomes to assess its predictive value. 
Taylor et al. conducted a study in 2018 of an SVM algorithm 
on diffusion MRI to predict surgical outcome [33]. Data 
were divided into test and training sets with a “leave-one-
out” cross-validation scheme. In this approach, one data 
point is omitted, and the remaining data points are used to 
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train the model. The omitted data point is then used to vali-
date the model. The process is repeated, and new data points 
are omitted and subsequently used for validation.

Wissel et al. conducted a study utilizing the natural lan-
guage processing algorithm to assign epilepsy surgery candi-
dacy scores based on provider notes [21]. The training 
dataset of roughly 519 patients had an AUC of 0.90 and the 
prospective AUC for 4211 patients was 0.79. Both the sensi-
tivity and specificity of this algorithm were calculated by 
comparing the algorithm’s given scores to known patient 
outcomes. The sensitivity was 0.80 and the specificity was 
0.77. The model assigned surgical candidacy scores without 
bias, considering the various aspects of a patient’s case. 
Nissen et al. conducted a study analyzing magnetoencepha-
lography recordings from 94 patients to localize epilepto-
genic zone for surgery by comparing delta power, 
low-to-high-frequency power ratio, and functional connec-
tivity [18]. The SVM algorithm discriminated between 
resection and non-resection areas with 59.94% accuracy, 
while the random forest algorithm discriminates with 60.34% 
accuracy. Neither, however, could discriminate seizure-free 
from not seizure-free patients [18]. This underscores the 
necessity of analyzing and modifying the metrics utilized for 
the machine learning algorithm and serves as a reminder of 
the importance of evaluating the accuracy of the models.

 Alzheimer’s Disease

In 2017, Simpraga et al. attempted to identify a neural sub-
strate or biological signature of disease state for Schizophrenia 
using EEG and cholinergic profiles [63]. As a selective mus-
carinic receptor antagonist, scopolamine is commonly 
regarded as the ideal study tool to induce cholinergic- 
dependent cognitive deficits similar to Alzheimer’s disease. 
It was demonstrated that ML determines the peak scopol-
amine condition which, otherwise, would be too difficult to 
measure given innate variability between days. After utiliz-
ing ML to determine cholinergic profiles, measurement of 
electroencephalography response improved allowing for 
construction of a response curve to better assess an index of 
Alzheimer’s disease state [64].

Standardized structures for cortical thickness or volume 
measurement in Alzheimer’s disease is not present and 
such elucidation in the field is ongoing. One study by Kim 
et al., however, uniquely utilized a preprocessing algorithm 
to develop a frequency measurement of cortical thicknesses 
mapped across an oscillation map, not only bypassing the 
lack of a specific measurement target but improving mea-
surement of generalized cortical atrophy [65]. Through this 
technique, a variety of targets were proposed for further 
distinguishing dementia, frontotemporal dementia, and 
Alzheimer’s disease.

While SVM is considered one of the better algorithms in 
the field of neuroscience [35], the algorithms utilized in stud-
ies for Alzheimer’s disease reported herein are varied. Other 
algorithms utilized include gradient boosted tree model, con-
ditional restricted Boltzmann machine, K-nearest neighbor, 
ensemble linear discriminant, boosted tree, random forest, 
general linear model, multi-modal sparse hierarchical 
extreme leaning machine, and elastic net regularized logistic 
regression as well as a few proprietary algorithms.

Current publications regarding ML in Alzheimer’s dis-
ease do not appear to have a targeted dependent variable such 
as that seen with MRI and schizophrenia; rather, studies 
reporting on Alzheimer’s disease investigate structures with 
varied levels of success. A ML analysis to incorporate these 
disparate measurements would likely yield a better guide and 
provide framework for future research.

 Schizophrenia

Schizophrenia is a psychiatric disorder that affects 100,000 
new individuals annually [66]. Clinical diagnosis is based on 
the American Psychiatric Association definition given in the 
Diagnostic and Statistical Manual of Mental Disorders V 
[67], characterized by cognitive impairment, positive symp-
toms (i.e., delusions, hallucinations, and/or loss of reality), 
and negative symptoms (i.e., anhedonia, avolition, logia, 
and/or flat affect). Classically, while environmental and 
genetic factors play a role in phenotypic expression of the 
disease, diagnosis is clinical because objective biomarkers 
that may standardize diagnosis are yet unknown.

Two studies focused on larger datasets of cortical volume 
to assess its viability as a primary basis for diagnosis [37, 40]. 
Liu et al. and Chen et al. used 240 and 255 distinct volume 
areas, respectively, to better power their ML model to assess 
functional connectivity, hypothesizing that functional connec-
tivity would be reduced in patients with schizophrenia [40, 64, 
68]. The other seven studies utilize targeted measurements 
across a variety of structures: cortical thickness measurements 
include the frontal, temporal, parietal, and occipital lobes, 
while volume measurements include the lateral ventricle, thal-
amus, hippocampus, and dorsolateral prefrontal cortex.

39.5  Conclusions

Current applications of ML in medicine are far-reaching, 
including implementation for drug creation in pharmaceutical 
development, diagnostics, surgical planning, outcome predic-
tion, and intraoperative assistance [69]. Supervised learning 
models appear to be the most commonly incorporated algo-
rithm models for machine learning across the reviewed 
neuroscience disciplines with primary aim of diagnosis. 
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Accuracy ranges are from 63% to 99% across algorithms. As 
certain neurological diseases such as Alzheimer’s disease and 
schizophrenia are classically influenced by multiple clinical 
and environmental factors, ML may offer unique insight into 
weighted influences of variables. Early identification of dis-
ease may allow early intervention and management. Machine 
learning contributions to diagnostic and therapeutic opportu-
nities may enhance current medical best practices in the neu-
rosciences while also broadening our understanding of the 
brain. As neural networks and deep learning models continue 
to grow, future directions and studies may harness big data 
and interdisciplinary management of complex disease states.

Funding No funding sources, grants, or other financial reports were 
used in the present study.

Conflict of Interest The authors have no conflicts of inter-
ests to disclose.

References

 1. Hey T, Butler K, Jackson S, Thiyagalingam J.  Machine learn-
ing and big scientific data. Philos Trans A Math Phys Eng Sci. 
2020;378:20190054. https://doi.org/10.1098/rsta.2019.0054.

 2. Nichols JA, Herbert Chan HW, Baker MAB.  Machine learn-
ing: applications of artificial intelligence to imaging and diag-
nosis. Biophys Rev. 2019;11:111–8. https://doi.org/10.1007/
s12551- 018- 0449- 9.

 3. Richards BA, Lillicrap TP, Beaudoin P, Bengio Y, Bogacz R, 
Christensen A, Clopath C, Costa RP, de Berker A, Ganguli S, Gillon 
CJ, Hafner D, Kepecs A, Kriegeskorte N, Latham P, Lindsay GW, 
Miller KD, Naud R, Pack CC, Poirazi P, Roelfsema P, Sacramento 
J, Saxe A, Scellier B, Schapiro AC, Senn W, Wayne G, Yamins D, 
Zenke F, Zylberberg J, Therien D, Kording KP.  A deep learning 
framework for neuroscience. Nat Neurosci. 2019;22:1761–70. 
https://doi.org/10.1038/s41593- 019- 0520- 2.

 4. LeCun Y, Bengio Y, Hinton G.  Deep learning. Nature. 
2015;521:436–44. https://doi.org/10.1038/nature14539.

 5. Marblestone AH, Wayne G, Kording KP.  Toward an integra-
tion of deep learning and neuroscience. Front Comput Neurosci. 
2016;10:94. https://doi.org/10.3389/fncom.2016.00094.

 6. Vu MT, Adali T, Ba D, Buzsaki G, Carlson D, Heller K, Liston 
C, Rudin C, Sohal VS, Widge AS, Mayberg HS, Sapiro G, 
Dzirasa K.  A shared vision for machine learning in neurosci-
ence. J Neurosci. 2018;38:1601–7. https://doi.org/10.1523/
JNEUROSCI.0508- 17.2018.

 7. Dietz N, Sharma M, Alhourani A, Ugiliweneza B, Wang D, Drazin 
D, Boakye M. Evaluation of predictive models for complications 
following spinal surgery. J Neurol Surg A Cent Eur Neurosurg. 
2020;81:535–45. https://doi.org/10.1055/s- 0040- 1709709.

 8. Stromblad CT, Baxter-King RG, Meisami A, Yee SJ, Levine 
MR, Ostrovsky A, Stein D, Iasonos A, Weiser MR, Garcia-
Aguilar J, Abu-Rustum NR, Wilson RS.  Effect of a predic-
tive model on planned surgical duration accuracy, patient wait 
time, and use of Presurgical resources: a randomized clinical 
trial. JAMA Surg. 2021;156(4):315–21. https://doi.org/10.1001/
jamasurg.2020.6361.

 9. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, 
and prospects. Science. 2015;349:255–60. https://doi.org/10.1126/
science.aaa8415.

 10. Bernhardt BC, Hong SJ, Bernasconi A, Bernasconi N.  Magnetic 
resonance imaging pattern learning in temporal lobe epilepsy: clas-
sification and prognostics. Ann Neurol. 2015;77:436–46. https://
doi.org/10.1002/ana.24341.

 11. Celtikci E.  A systematic review on machine learning in neu-
rosurgery: the future of decision-making in patient care. Turk 
Neurosurg. 2018;28:167–73. https://doi.org/10.5137/1019- 5149.
JTN.20059- 17.1.

 12. Gleichgerrcht E, Keller SS, Drane DL, Munsell BC, Davis KA, 
Kaestner E, Weber B, Krantz S, Vandergrift WA, Edwards JC, 
McDonald CR, Kuzniecky R, Bonilha L. Temporal lobe epilepsy 
surgical outcomes can be inferred based on structural connectome 
hubs: a machine learning study. Ann Neurol. 2020;88:970–83. 
https://doi.org/10.1002/ana.25888.

 13. Kickingereder P, Bonekamp D, Nowosielski M, Kratz A, Sill M, 
Burth S, Wick A, Eidel O, Schlemmer HP, Radbruch A, Debus 
J, Herold-Mende C, Unterberg A, Jones D, Pfister S, Wick W, 
von Deimling A, Bendszus M, Capper D.  Radiogenomics of 
glioblastoma: machine learning-based classification of molecu-
lar  characteristics by using multiparametric and multiregional 
MR imaging features. Radiology. 2016;281:907–18. https://doi.
org/10.1148/radiol.2016161382.

 14. Maheswaranathan N, Kastner DB, Baccus SA, Ganguli 
S. Inferring hidden structure in multilayered neural circuits. PLoS 
Comput Biol. 2018;14:e1006291. https://doi.org/10.1371/journal.
pcbi.1006291.

 15. Memarian N, Kim S, Dewar S, Engel J Jr, Staba RJ. Multimodal 
data and machine learning for surgery outcome predic-
tion in complicated cases of mesial temporal lobe epilepsy. 
Comput Biol Med. 2015;64:67–78. https://doi.org/10.1016/j.
compbiomed.2015.06.008.

 16. Morokoff A, Jones J, Nguyen H, Ma C, Lasocki A, Gaillard 
F, Bennett I, Luwor R, Stylli S, Paradiso L, Koldej R, Paldor I, 
Molania R, Speed TP, Webb A, Infusini G, Li J, Malpas C, Kalincik 
T, Drummond K, Siegal T, Kaye AH. Serum microRNA is a bio-
marker for post-operative monitoring in glioma. J Neurooncol. 
2020;149:391–400. https://doi.org/10.1007/s11060- 020- 03566- w.

 17. Munsell BC, Wee CY, Keller SS, Weber B, Elger C, da Silva 
LA, Nesland T, Styner M, Shen D, Bonilha L.  Evaluation of 
machine learning algorithms for treatment outcome predic-
tion in patients with epilepsy based on structural connectome 
data. Neuroimage. 2015;118:219–30. https://doi.org/10.1016/j.
neuroimage.2015.06.008.

 18. Nissen IA, Stam CJ, van Straaten ECW, Wottschel V, Reijneveld 
JC, Baayen JC, de Witt Hamer PC, Idema S, Velis DN, Hillebrand 
A.  Localization of the epileptogenic zone using Interictal MEG 
and machine learning in a large cohort of drug-resistant epi-
lepsy patients. Front Neurol. 2018;9:647. https://doi.org/10.3389/
fneur.2018.00647.

 19. Staartjes VE, Stumpo V, Kernbach JM, Klukowska AM, Gadjradj 
PS, Schroder ML, Veeravagu A, Stienen MN, van Niftrik CHB, 
Serra C, Regli L. Machine learning in neurosurgery: a global sur-
vey. Acta Neurochir. 2020;162:3081–91. https://doi.org/10.1007/
s00701- 020- 04532- 1.

 20. Torlay L, Perrone-Bertolotti M, Thomas E, Baciu M.  Machine 
learning-XGBoost analysis of language networks to classify 
patients with epilepsy. Brain Inform. 2017;4:159–69. https://doi.
org/10.1007/s40708- 017- 0065- 7.

 21. Wissel BD, Greiner HM, Glauser TA, Holland-Bouley KD, 
Mangano FT, Santel D, Faist R, Zhang N, Pestian JP, Szczesniak 
RD, Dexheimer JW.  Prospective validation of a machine learn-
ing model that uses provider notes to identify candidates for 
resective epilepsy surgery. Epilepsia. 2020;61:39–48. https://doi.
org/10.1111/epi.16398.

 22. Wissel BD, Greiner HM, Glauser TA, Mangano FT, Santel D, 
Pestian JP, Szczesniak RD, Dexheimer JW. Investigation of bias in 

39 Machine Learning in Neuro-Oncology, Epilepsy, Alzheimer’s Disease, and Schizophrenia

https://doi.org/10.1098/rsta.2019.0054
https://doi.org/10.1007/s12551-018-0449-9
https://doi.org/10.1007/s12551-018-0449-9
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1038/nature14539
https://doi.org/10.3389/fncom.2016.00094
https://doi.org/10.1523/JNEUROSCI.0508-17.2018
https://doi.org/10.1523/JNEUROSCI.0508-17.2018
https://doi.org/10.1055/s-0040-1709709
https://doi.org/10.1001/jamasurg.2020.6361
https://doi.org/10.1001/jamasurg.2020.6361
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1002/ana.24341
https://doi.org/10.1002/ana.24341
https://doi.org/10.5137/1019-5149.JTN.20059-17.1
https://doi.org/10.5137/1019-5149.JTN.20059-17.1
https://doi.org/10.1002/ana.25888
https://doi.org/10.1148/radiol.2016161382
https://doi.org/10.1148/radiol.2016161382
https://doi.org/10.1371/journal.pcbi.1006291
https://doi.org/10.1371/journal.pcbi.1006291
https://doi.org/10.1016/j.compbiomed.2015.06.008
https://doi.org/10.1016/j.compbiomed.2015.06.008
https://doi.org/10.1007/s11060-020-03566-w
https://doi.org/10.1016/j.neuroimage.2015.06.008
https://doi.org/10.1016/j.neuroimage.2015.06.008
https://doi.org/10.3389/fneur.2018.00647
https://doi.org/10.3389/fneur.2018.00647
https://doi.org/10.1007/s00701-020-04532-1
https://doi.org/10.1007/s00701-020-04532-1
https://doi.org/10.1007/s40708-017-0065-7
https://doi.org/10.1007/s40708-017-0065-7
https://doi.org/10.1111/epi.16398
https://doi.org/10.1111/epi.16398


360

an epilepsy machine learning algorithm trained on physician notes. 
Epilepsia. 2019;60:e93–8. https://doi.org/10.1111/epi.16320.

 23. Buchlak QD, Esmaili N, Leveque JC, Farrokhi F, Bennett C, 
Piccardi M, Sethi RK.  Machine learning applications to clinical 
decision support in neurosurgery: an artificial intelligence aug-
mented systematic review. Neurosurg Rev. 2020;43:1235–53. 
https://doi.org/10.1007/s10143- 019- 01163- 8.

 24. Glaser JI, Benjamin AS, Farhoodi R, Kording KP.  The roles 
of supervised machine learning in systems neuroscience. 
Prog Neurobiol. 2019;175:126–37. https://doi.org/10.1016/j.
pneurobio.2019.01.008.

 25. Noble WS.  What is a support vector machine? Nat Biotechnol. 
2006;24:1565–7. https://doi.org/10.1038/nbt1206- 1565.

 26. Abbasi B, Goldenholz DM.  Machine learning applications in 
epilepsy. Epilepsia. 2019;60:2037–47. https://doi.org/10.1111/
epi.16333.

 27. Usman SM, Usman M, Fong S.  Epileptic seizures prediction 
using machine learning methods. Comput Math Methods Med. 
2017;2017:9074759. https://doi.org/10.1155/2017/9074759.

 28. Lebedev AV, Westman E, Van Westen GJ, Kramberger MG, 
Lundervold A, Aarsland D, Soininen H, Kloszewska I, Mecocci 
P, Tsolaki M, Vellas B, Lovestone S, Simmons A, Alzheimer's 
Disease Neuroimaging I, The AddNeuroMed Consortium. Random 
Forest ensembles for detection and prediction of Alzheimer’s dis-
ease with a good between-cohort robustness. Neuroimage Clin. 
2014;6:115–25. https://doi.org/10.1016/j.nicl.2014.08.023.

 29. Yamins DL, DiCarlo JJ. Using goal-driven deep learning models to 
understand sensory cortex. Nat Neurosci. 2016;19:356–65. https://
doi.org/10.1038/nn.4244.

 30. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred 
reporting items for systematic reviews and meta-analyses: the 
PRISMA statement. J Clin Epidemiol. 2009;62:1006–12. https://
doi.org/10.1016/j.jclinepi.2009.06.005.

 31. Browne MW.  Cross-validation methods. J Math Psychol. 
2000;44:108–32. https://doi.org/10.1006/jmps.1999.1279.

 32. Sinha N, Wang Y, Moreira da Silva N, Miserocchi A, McEvoy AW, 
de Tisi J, Vos SB, Winston GP, Duncan JS, Taylor PN. Structural 
brain network abnormalities and the probability of seizure recur-
rence after epilepsy surgery. Neurology. 2020;96(5):e758–71. 
https://doi.org/10.1212/WNL.0000000000011315.

 33. Taylor PN, Sinha N, Wang Y, Vos SB, de Tisi J, Miserocchi A, 
McEvoy AW, Winston GP, Duncan JS.  The impact of epilepsy 
surgery on the structural connectome and its relation to outcome. 
Neuroimage Clin. 2018;18:202–14. https://doi.org/10.1016/j.
nicl.2018.01.028.

 34. Cohen KB, Glass B, Greiner HM, Holland-Bouley K, Standridge 
S, Arya R, Faist R, Morita D, Mangano F, Connolly B, Glauser 
T, Pestian J.  Methodological issues in predicting pediatric epi-
lepsy surgery candidates through natural language processing and 
machine learning. Biomed Inform Insights. 2016;8:11–8. https://
doi.org/10.4137/BII.S38308.

 35. de Filippis R, Carbone EA, Gaetano R, Bruni A, Pugliese V, 
Segura-Garcia C, De Fazio P.  Machine learning techniques in a 
structural and functional MRI diagnostic approach in schizophre-
nia: a systematic review. Neuropsychiatr Dis Treat. 2019;15:1605–
27. https://doi.org/10.2147/NDT.S202418.

 36. Castellani U, Rossato E, Murino V, Bellani M, Rambaldelli G, 
Perlini C, Tomelleri L, Tansella M, Brambilla P.  Classification 
of schizophrenia using feature-based morphometry. J Neural 
Transm (Vienna). 2012;119:395–404. https://doi.org/10.1007/
s00702- 011- 0693- 7.

 37. Chen H, Uddin LQ, Duan X, Zheng J, Long Z, Zhang Y, Guo 
X, Zhang Y, Zhao J, Chen H.  Shared atypical default mode 
and salience network functional connectivity between autism 
and schizophrenia. Autism Res. 2017;10:1776–86. https://doi.
org/10.1002/aur.1834.

 38. Greenstein D, Malley JD, Weisinger B, Clasen L, Gogtay N. Using 
multivariate machine learning methods and structural MRI to clas-
sify childhood onset schizophrenia and healthy controls. Front 
Psych. 2012;3:53. https://doi.org/10.3389/fpsyt.2012.00053.

 39. Iwabuchi SJ, Liddle PF, Palaniyappan L. Clinical utility of machine- 
learning approaches in schizophrenia: improving diagnostic con-
fidence for translational neuroimaging. Front Psych. 2013;4:95. 
https://doi.org/10.3389/fpsyt.2013.00095.

 40. Liu Y, Guo W, Zhang Y, Lv L, Hu F, Wu R, Zhao J.  Decreased 
resting-state interhemispheric functional connectivity correlated 
with neurocognitive deficits in drug-naive first-episode adolescent- 
onset schizophrenia. Int J Neuropsychopharmacol. 2018;21:33–41. 
https://doi.org/10.1093/ijnp/pyx095.

 41. Lu X, Yang Y, Wu F, Gao M, Xu Y, Zhang Y, Yao Y, Du X, Li 
C, Wu L, Zhong X, Zhou Y, Fan N, Zheng Y, Xiong D, Peng H, 
Escudero J, Huang B, Li X, Ning Y, Wu K. Discriminative analysis 
of schizophrenia using support vector machine and recursive fea-
ture elimination on structural MRI images. Medicine (Baltimore). 
2016;95:e3973. https://doi.org/10.1097/MD.0000000000003973.

 42. Mikolas P, Hlinka J, Skoch A, Pitra Z, Frodl T, Spaniel F, Hajek 
T.  Machine learning classification of first-episode schizophrenia 
spectrum disorders and controls using whole brain white matter 
fractional anisotropy. BMC Psychiatry. 2018;18:97. https://doi.
org/10.1186/s12888- 018- 1678- y.

 43. Pinaya WH, Gadelha A, Doyle OM, Noto C, Zugman A, Cordeiro 
Q, Jackowski AP, Bressan RA, Sato JR.  Using deep belief net-
work modelling to characterize differences in brain morphometry 
in schizophrenia. Sci Rep. 2016;6:38897. https://doi.org/10.1038/
srep38897.

 44. Qureshi MNI, Oh J, Cho D, Jo HJ, Lee B. Multimodal discrimina-
tion of schizophrenia using hybrid weighted feature concatenation 
of brain functional connectivity and anatomical features with an 
extreme learning machine. Front Neuroinform. 2017;11:59. https://
doi.org/10.3389/fninf.2017.00059.

 45. Xiao Y, Yan Z, Zhao Y, Tao B, Sun H, Li F, Yao L, Zhang W, 
Chandan S, Liu J, Gong Q, Sweeney JA, Lui S.  Support vec-
tor machine- based classification of first episode drug-naive 
schizophrenia patients and healthy controls using structural 
MRI.  Schizophr Res. 2019;214:11–7. https://doi.org/10.1016/j.
schres.2017.11.037.

 46. Ferraris C, Cavalli R, Panciani PP, Battaglia L.  Overcoming 
the blood-brain barrier: successes and challenges in developing 
nanoparticle-mediated drug delivery systems for the treatment of 
brain tumours. Int J Nanomedicine. 2020;15:2999–3022. https://
doi.org/10.2147/IJN.S231479.

 47. Kumari S, Ahsan SM, Kumar JM, Kondapi AK, Rao NM. 
Overcoming blood brain barrier with a dual purpose Temozolomide 
loaded Lactoferrin nanoparticles for combating glioma (SERP-
17-12433). Sci Rep. 2017;7:6602. https://doi.org/10.1038/
s41598- 017- 06888- 4.

 48. Hatiboglu MA, Wildrick DM, Sawaya R.  The role of surgical 
resection in patients with brain metastases. Ecancermedicalscience. 
2013;7:308. https://doi.org/10.3332/ecancer.2013.308.

 49. Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, Vazquez-Ramos 
C, Mahato D, Tavanaiepour D, Rahmathulla G, Quinones-Hinojosa 
A.  Advances in brain tumor surgery for glioblastoma in adults. 
Brain Sci. 2017;7:166. https://doi.org/10.3390/brainsci7120166.

 50. Yaeger KA, Nair MN. Surgery for brain metastases. Surg Neurol 
Int. 2013;4:S203–8. https://doi.org/10.4103/2152- 7806.111297.

 51. Cakmakci D, Karakaslar EO, Ruhland E, Chenard MP, Proust F, 
Piotto M, Namer IJ, Cicek AE. Machine learning assisted intraop-
erative assessment of brain tumor margins using HRMAS NMR 
spectroscopy. PLoS Comput Biol. 2020;16:e1008184. https://doi.
org/10.1371/journal.pcbi.1008184.

 52. Fabelo H, Halicek M, Ortega S, Shahedi M, Szolna A, Pineiro 
JF, Sosa C, O'Shanahan AJ, Bisshopp S, Espino C, Marquez M, 

M. English et al.

https://doi.org/10.1111/epi.16320
https://doi.org/10.1007/s10143-019-01163-8
https://doi.org/10.1016/j.pneurobio.2019.01.008
https://doi.org/10.1016/j.pneurobio.2019.01.008
https://doi.org/10.1038/nbt1206-1565
https://doi.org/10.1111/epi.16333
https://doi.org/10.1111/epi.16333
https://doi.org/10.1155/2017/9074759
https://doi.org/10.1016/j.nicl.2014.08.023
https://doi.org/10.1038/nn.4244
https://doi.org/10.1038/nn.4244
https://doi.org/10.1016/j.jclinepi.2009.06.005
https://doi.org/10.1016/j.jclinepi.2009.06.005
https://doi.org/10.1006/jmps.1999.1279
https://doi.org/10.1212/WNL.0000000000011315
https://doi.org/10.1016/j.nicl.2018.01.028
https://doi.org/10.1016/j.nicl.2018.01.028
https://doi.org/10.4137/BII.S38308
https://doi.org/10.4137/BII.S38308
https://doi.org/10.2147/NDT.S202418
https://doi.org/10.1007/s00702-011-0693-7
https://doi.org/10.1007/s00702-011-0693-7
https://doi.org/10.1002/aur.1834
https://doi.org/10.1002/aur.1834
https://doi.org/10.3389/fpsyt.2012.00053
https://doi.org/10.3389/fpsyt.2013.00095
https://doi.org/10.1093/ijnp/pyx095
https://doi.org/10.1097/MD.0000000000003973
https://doi.org/10.1186/s12888-018-1678-y
https://doi.org/10.1186/s12888-018-1678-y
https://doi.org/10.1038/srep38897
https://doi.org/10.1038/srep38897
https://doi.org/10.3389/fninf.2017.00059
https://doi.org/10.3389/fninf.2017.00059
https://doi.org/10.1016/j.schres.2017.11.037
https://doi.org/10.1016/j.schres.2017.11.037
https://doi.org/10.2147/IJN.S231479
https://doi.org/10.2147/IJN.S231479
https://doi.org/10.1038/s41598-017-06888-4
https://doi.org/10.1038/s41598-017-06888-4
https://doi.org/10.3332/ecancer.2013.308
https://doi.org/10.3390/brainsci7120166
https://doi.org/10.4103/2152-7806.111297
https://doi.org/10.1371/journal.pcbi.1008184
https://doi.org/10.1371/journal.pcbi.1008184


361

Hernandez M, Carrera D, Morera J, Callico GM, Sarmiento R, 
Fei B.  Deep learning-based framework for in  vivo identifica-
tion of glioblastoma tumor using hyperspectral images of human 
brain. Sensors (Basel). 2019;19:920. https://doi.org/10.3390/
s19040920.

 53. Fan Y, Chen C, Zhao F, Tian Z, Wang J, Ma X, Xu J. Radiomics- 
based machine learning technology enables better differentiation 
between glioblastoma and anaplastic Oligodendroglioma. Front 
Oncol. 2019;9:1164. https://doi.org/10.3389/fonc.2019.01164.

 54. Livermore LJ, Isabelle M, Bell IM, Edgar O, Voets NL, Stacey R, 
Ansorge O, Vallance C, Plaha P. Raman spectroscopy to differen-
tiate between fresh tissue samples of glioma and normal brain: a 
comparison with 5-ALA-induced fluorescence-guided surgery. J 
Neurosurg. 2020:1–11. https://doi.org/10.3171/2020.5.JNS20376.

 55. Muhlestein WE, Akagi DS, Davies JM, Chambless LB. Predicting 
inpatient length of stay after brain tumor surgery: developing 
machine learning ensembles to improve predictive performance. 
Neurosurgery. 2019;85:384–93. https://doi.org/10.1093/neuros/
nyy343.

 56. Senders JT, Staples P, Mehrtash A, Cote DJ, Taphoorn MJB, 
Reardon DA, Gormley WB, Smith TR, Broekman ML, Arnaout 
O.  An online calculator for the prediction of survival in glio-
blastoma patients using classical statistics and machine learning. 
Neurosurgery. 2020;86:E184–92. https://doi.org/10.1093/neuros/
nyz403.

 57. Gaw N, Hawkins-Daarud A, Hu LS, Yoon H, Wang L, Xu Y, 
Jackson PR, Singleton KW, Baxter LC, Eschbacher J, Gonzales A, 
Nespodzany A, Smith K, Nakaji P, Mitchell JR, Wu T, Swanson 
KR, Li J.  Integration of machine learning and mechanistic mod-
els accurately predicts variation in cell density of glioblastoma 
using multiparametric MRI.  Sci Rep. 2019;9:10063. https://doi.
org/10.1038/s41598- 019- 46296- 4.

 58. Chen C, Ou X, Wang J, Guo W, Ma X. Radiomics-based machine 
learning in differentiation between glioblastoma and metastatic 
brain tumors. Front Oncol. 2019;9:806. https://doi.org/10.3389/
fonc.2019.00806.

 59. WHO. Epilepsy. Geneva: World Health Organization; 2019.

 60. Ben-Menachem E.  Vagus-nerve stimulation for the treatment of 
epilepsy. Lancet Neurol. 2002;1:477–82. https://doi.org/10.1016/
s1474- 4422(02)00220- x.

 61. Skarpaas TL, Jarosiewicz B, Morrell MJ.  Brain-responsive 
neurostimulation for epilepsy (RNS((R)) system). Epilepsy Res. 
2019;153:68–70. https://doi.org/10.1016/j.eplepsyres.2019.02.003.

 62. Tang F, Hartz AMS, Bauer B.  Drug-resistant epilepsy: multiple 
hypotheses, few answers. Front Neurol. 2017;8:301. https://doi.
org/10.3389/fneur.2017.00301.

 63. Renner UD, Oertel R, Kirch W.  Pharmacokinetics and 
pharmacodynamics in clinical use of scopolamine. Ther 
Drug Monit. 2005;27:655–65. https://doi.org/10.1097/01.
ftd.0000168293.48226.57.

 64. Simpraga S, Alvarez-Jimenez R, Mansvelder HD, van Gerven 
JMA, Groeneveld GJ, Poil SS, Linkenkaer-Hansen K.  EEG 
machine learning for accurate detection of cholinergic interven-
tion and Alzheimer’s disease. Sci Rep. 2017;7:5775. https://doi.
org/10.1038/s41598- 017- 06165- 4.

 65. Kim JP, Kim J, Park YH, Park SB, Lee JS, Yoo S, Kim EJ, Kim 
HJ, Na DL, Brown JA, Lockhart SN, Seo SW, Seong JK. Machine 
learning based hierarchical classification of frontotemporal demen-
tia and Alzheimer’s disease. Neuroimage Clin. 2019;23:101811. 
https://doi.org/10.1016/j.nicl.2019.101811.

 66. Health NIoM. 2015. https://www.nimh.nih.gov/health/topics/
schizophrenia/raise/fact- sheet- first- episode- psychosis.shtml. 2021.

 67. American Psychiatric Association, American Psychiatric 
Association, DSM-5 Task Force. Diagnostic and statistical manual 
of mental disorders: DSM-5. 5th ed. Washington, DC: American 
Psychiatric Association; 2013.

 68. Sheffield JM, Kandala S, Tamminga CA, Pearlson GD, Keshavan 
MS, Sweeney JA, Clementz BA, Lerman-Sinkoff DB, Hill SK, 
Barch DM. Transdiagnostic associations between functional brain 
network integrity and cognition. JAMA Psychiat. 2017;74:605–13. 
https://doi.org/10.1001/jamapsychiatry.2017.0669.

 69. Valliani AA, Ranti D, Oermann EK.  Deep learning and neurol-
ogy: a systematic review. Neurol Ther. 2019;8:351–65. https://doi.
org/10.1007/s40120- 019- 00153- 8.

39 Machine Learning in Neuro-Oncology, Epilepsy, Alzheimer’s Disease, and Schizophrenia

https://doi.org/10.3390/s19040920
https://doi.org/10.3390/s19040920
https://doi.org/10.3389/fonc.2019.01164
https://doi.org/10.3171/2020.5.JNS20376
https://doi.org/10.1093/neuros/nyy343
https://doi.org/10.1093/neuros/nyy343
https://doi.org/10.1093/neuros/nyz403
https://doi.org/10.1093/neuros/nyz403
https://doi.org/10.1038/s41598-019-46296-4
https://doi.org/10.1038/s41598-019-46296-4
https://doi.org/10.3389/fonc.2019.00806
https://doi.org/10.3389/fonc.2019.00806
https://doi.org/10.1016/s1474-4422(02)00220-x
https://doi.org/10.1016/s1474-4422(02)00220-x
https://doi.org/10.1016/j.eplepsyres.2019.02.003
https://doi.org/10.3389/fneur.2017.00301
https://doi.org/10.3389/fneur.2017.00301
https://doi.org/10.1097/01.ftd.0000168293.48226.57
https://doi.org/10.1097/01.ftd.0000168293.48226.57
https://doi.org/10.1038/s41598-017-06165-4
https://doi.org/10.1038/s41598-017-06165-4
https://doi.org/10.1016/j.nicl.2019.101811
https://www.nimh.nih.gov/health/topics/schizophrenia/raise/fact-sheet-first-episode-psychosis.shtml
https://www.nimh.nih.gov/health/topics/schizophrenia/raise/fact-sheet-first-episode-psychosis.shtml
https://doi.org/10.1001/jamapsychiatry.2017.0669
https://doi.org/10.1007/s40120-019-00153-8
https://doi.org/10.1007/s40120-019-00153-8

	Contents
	1: Machine Intelligence in Clinical Neuroscience: Taming the Unchained Prometheus
	1.1	 Preface
	References

	Part I: Clinical Prediction Modeling
	2: Foundations of Machine Learning-Based Clinical Prediction Modeling: Part I—Introduction and General Principles
	2.1	 Introduction
	2.2	 Machine Learning: Definitions
	2.3	 Optimization: The Central Dogma of Learning Techniques
	2.4	 Explanatory Modeling Versus Predictive Modeling
	2.5	 Workflow for Predictive Modeling
	2.6	 Conclusion
	References

	3: Foundations of Machine Learning-Based Clinical Prediction Modeling: Part II—Generalization and Overfitting
	3.1	 Introduction
	3.2	 Overfitting
	The Bias-Variance Trade-Off
	Combatting Overfitting: Resampling
	Considerations on Algorithm Complexity
	Data Leakage

	3.3	 Importance of External Validation in Clinical Prediction Modeling
	3.4	 Feature Reduction and Selection
	3.5	 Conclusion
	References

	4: Foundations of Machine Learning-Based Clinical Prediction Modeling: Part III—Model Evaluation and Other Points of Significance
	4.1	 Introduction
	4.2	 Evaluation of Classification Models
	The Importance of Discrimination and Calibration
	Model Discrimination
	Area Under the Curve (AUC)
	Accuracy
	Sensitivity and Specificity
	Positive Predictive Value (PPV) and Negative Predictive Value (NPV)
	F1 Score

	Model Calibration
	Calibration Intercept and Slope
	Brier Score
	Other Calibration Metrics
	Recalibration Techniques


	4.3	 Evaluation of Regression Models
	4.4	 Points of Significance
	Choosing a Cutoff for Binary Classification
	Sample Size
	Standardization
	One-Hot Encoding
	Missing Data and Imputation
	Class Imbalance
	Extrapolation

	4.5	 Conclusion
	References

	5: Foundations of Machine Learning-Based Clinical Prediction Modeling: Part IV—A Practical Approach to Binary Classification Problems
	5.1	 Introduction
	5.2	 Setup and Pre-processing Data
	R Setup and Package Installation
	Importing Data
	Check the Imported Data
	Reformat Categorical Variables
	Remove Unnecessary Columns
	Enable Multicore Processing
	Partition the Data for Training and Testing
	Impute Missing Data
	Variable Selection Using Recursive Feature Elimination
	Get a Final Overview of the Data

	5.3	 Model Training
	Setting Up the Training Structure
	Model Training

	5.4	 Model Evaluation and Selection
	Model Training Evaluation
	Select the Final Model
	Internal Validation on the Test Set

	5.5	 Reporting and Visualization
	Compiling Training Performance
	Compiling Internal Validation Performance
	Assessing Variable Importance

	5.6	 Conclusion
	References

	6: Foundations of Machine Learning-Based Clinical Prediction Modeling: Part V—A Practical Approach to Regression Problems
	6.1	 Introduction
	6.2	 Setup and Pre-processing Data
	Reformat Categorical Variables
	Remove Unnecessary Columns
	Enable Multicore Processing
	Partition the Data for Training and Testing
	Impute Missing Data
	Variable Selection using Recursive Feature Elimination
	Get a Final Overview of the Data

	6.3	 Model Training
	Setting Up the Training Structure
	Model Training

	6.4	 Model Evaluation and Selection
	Model Training Evaluation
	Select the Final Model
	Internal Validation on the Test Set

	6.5	 Reporting and Visualization
	Compiling Training Performance
	Compiling Internal Validation Performance
	Assessing Variable Importance

	6.6	 Conclusion
	References

	7: Foundations of Feature Selection in Clinical Prediction Modeling
	7.1	 Introduction
	7.2	 Foundations of Feature Selection
	7.3	 Statistical Filtering Methods
	Correlation and Significance Testing

	7.4	 Algorithmic Wrapper Methods
	Feature Importance-Based
	Purposeful Variable Selection Algorithm
	Recursive Feature Elimination

	7.5	 Intrinsic Methods
	Tree- and Rule-Based Methods
	Lasso

	7.6	 Unsupervised Feature Selection Methods
	7.7	 Conclusions
	References

	8: Dimensionality Reduction: Foundations and Applications in Clinical Neuroscience
	8.1	 Introduction
	8.2	 Feature Engineering Using Imaging-Derived Phenotypes (IDPs)
	8.3	 Dimensionality Reduction Using Principal Component Analysis
	8.4	 Methodological Pitfalls
	Scale Invariance
	The Optimal Number of PCs

	8.5	 Conclusion
	References

	9: A Discussion of Machine Learning Approaches for Clinical Prediction Modeling
	9.1	 Introduction
	9.2	 Early Applications of Machine Learning to Clinical Applications
	9.3	 Supervised Machine Learning Approaches
	Regression Analysis
	Support Vector Machine
	Decision Trees and Random Forest
	Artificial Neural Networks
	Naïve Bayes

	9.4	 Unsupervised Machine Learning Approaches
	Clustering

	9.5	 Conclusion
	References

	10: Foundations of Bayesian Learning in Clinical Neuroscience
	10.1	 Introduction
	10.2	 Bayes Theorem
	10.3	 Bayesian Networks
	10.4	 Naïve Bayes Classifiers
	10.5	 Discussion
	10.6	 Conclusion
	References

	11: Introduction to Deep Learning in Clinical Neuroscience
	11.1	 Introduction
	11.2	 Materials and Methods: Useful DL Methods in Clinical Neuroscience
	Pre-processing of MRI Data
	Segmentation of Region of Interest (ROI)
	Deep Convolutional Neural Networks (CNNs)
	Deep Autoencoders (AEs)
	Generative Adversarial Networks (GANs)
	Techniques to Effectively Combining Several Small Datasets

	11.3	 Results: DL-Assisted Diagnostics in Gliomas
	Results of Tumor Segmentation Performed by DL Instead of Manual Outline
	Prediction of Glioma Subtypes of New Patients with MRIs Only
	Results Following Expanding Training Data by DL
	Results Following Fitting Data from Several Sources with Significant Variability

	11.4	 Discussion
	11.5	 Concluding Remarks
	References

	12: Machine Learning-Based Clustering Analysis: Foundational Concepts, Methods, and Applications
	12.1	 Introduction
	12.2	 Connectivity-Based Clustering
	12.3	 Centroid-Based Clustering
	12.4	 Density-Based Clustering
	12.5	 Dimensionality Reduction
	12.6	 Applications
	Adult Spinal Deformity
	Sepsis
	Common Pitfalls and Proposed Solutions

	12.7	 Conclusions
	References

	13: Deployment of Clinical Prediction Models: A Practical Guide to Nomograms and Online Calculators
	13.1	 Introduction
	13.2	 Nomograms
	13.3	 Online Calculators
	13.4	 Other Methods of Deployment
	13.5	 Discussion
	13.6	 Conclusion
	References

	14: Updating Clinical Prediction Models: An Illustrative Case Study
	14.1	 Introduction
	14.2	 Methods
	Study Population and Design
	Model Development Set
	External Data Set for Domain Updating

	Outcome Definition
	Predictor Variables
	Statistical Analysis
	Updating Strategies
	Reference Method
	Recalibration Method
	Model Revision
	Model Extension


	14.3	 Results
	14.4	 Discussion
	References

	15: Is My Clinical Prediction Model Clinically Useful? A Primer on Decision Curve Analysis
	15.1	 Introduction
	15.2	 Methodology
	Decision Curves
	Interventions Avoided

	15.3	 Example
	15.4	 Final Comment
	References


	Part II: Neuroimaging
	16: Introduction to Machine Learning in Neuroimaging
	16.1	 Introduction
	16.2	 Main Part
	Image Preprocessing
	Dimensionality Reduction
	Feature Selection
	fMRI Analyses: Supervised vs. Unsupervised
	Decoding/Encoding Framework
	Clustering

	16.3	 Conclusion
	References

	17: Machine Learning Algorithms in Neuroimaging: An Overview
	17.1	 Introduction
	17.2	 The Radiomic Workflow
	17.3	 Introduction to Deep Learning Algorithms for Imaging
	Convolutional Neural Networks (CNNs)
	Architecture
	Convolution and Kernels
	Hyperparameter Optimization
	Activation Function and Backpropagation
	Backpropagation
	Optimization and Network Training
	Pooling, Fully Connected Layers, and Last Activation Function
	Overfitting and Dropout
	2D vs. 3D CNN
	Transfer Learning
	Available CNN Architectures

	Generative Adversarial Networks
	Data Availability and Privacy
	Deep Learning-Based Tasks in Imaging
	Image Reconstruction and Restoration
	Image Synthesis and Super-Resolution
	Image Registration
	Image Segmentation, Classification, and Outcome Prediction


	17.4	 Conclusions
	References

	18: Machine Learning-Based Radiomics in Neuro-Oncology
	18.1	 Introduction
	18.2	 Methodological Foundations
	18.3	 Recent Implications for Neuro-Oncology
	18.4	 Automated Tumor Segmentation
	18.5	 Molecular Phenotyping and Radiogenomics
	18.6	 Prediction of Clinical Outcome
	18.7	 Discriminating Radiation Necrosis from Tumor Progression and Primary from Secondary Brain Lesions
	18.8	 Conclusions
	References

	19: Foundations of Brain Image Segmentation: Pearls and Pitfalls in Segmenting Intracranial Blood on Computed Tomography Images
	19.1	 Introduction
	19.2	 Segmentation: What, Why, and How
	19.3	 Multi-label Segmentation
	19.4	 Segmentation of Blood Detected in Head CT Scans
	19.5	 Confounders in Segmenting Blood
	19.6	 Selecting a Segmentation Software
	19.7	 Practical Segmentation Tips
	19.8	 Conclusions
	References

	20: Applying Convolutional Neural Networks to Neuroimaging Classification Tasks: A Practical Guide in Python
	20.1	 Introduction
	20.2	 Digital Imaging and Communications in Medicine (DICOM)
	20.3	 Practical Steps
	20.4	 Image Preprocessing
	20.5	 Convolutional Neural Network (CNN) Building and Assessment
	References

	21: Foundations of Lesion Detection Using Machine Learning in Clinical Neuroimaging
	21.1	 Introduction
	21.2	 Technical Considerations
	21.3	 Clinical Applications
	Introduction to Clinical Applications

	21.4	 Stroke
	ASPECTS
	Large Vessel Occlusion (LVO)
	Identification of Infarct Core and Tissue at Risk/Penumbra
	Hemorrhagic Transformation
	Intracranial Hemorrhage

	21.5	 Multiple Sclerosis
	21.6	 Neuro-Oncology
	21.7	 Epilepsy
	21.8	 Aneurysms
	21.9	 Neurodegeneration and Others
	21.10	 Conclusion
	References

	22: Foundations of Multiparametric Brain Tumour Imaging Characterisation Using Machine Learning
	22.1	 Introduction
	22.2	 Methodological Foundations
	Multiparametric Imaging

	22.3	 Image Preprocessing
	22.4	 Region of Interest (ROI) Selection
	22.5	 Feature Extraction and Multiparametric Analysis
	Machine Learning Classifiers

	22.6	 Deep Learning in Brain Tumour Characterisation
	22.7	 Performance Evaluation of ML Algorithms
	22.8	 Clinical Applications
	22.9	 Conclusions
	References

	23: Tackling the Complexity of Lesion-Symptoms Mapping: How to Bridge the Gap Between Data Scientists and Clinicians?
	23.1	 Introduction
	23.2	 Clarifying the Problem
	Lesional Localizationism, Lesional Hodotopism, Functional Localizationism
	From Behavioural Measurements to Cognitive Processes: Leveraging Multidimensional Scores
	The Complexity of Lesion-Symptom Mapping

	23.3	 Data-Driven vs. Model-Based Approaches
	Data-Driven Approaches
	Model-Driven (Top-Down) Approaches

	23.4	 How to Capitalize on Multimodal Longitudinal Single Cases?
	The Value of Multimodal Longitudinal Single Cases
	A New Paradigm for Combining Single-Case Analysis with the Predictive Power of Machine Learning

	23.5	 Conclusion
	References


	Part III: Natural Language Processing and Time Series Analysis
	24: Natural Language Processing: Practical Applications in Medicine and Investigation of Contextual Autocomplete
	24.1	 Introduction
	24.2	 Contextual Autocomplete Literature Review
	24.3	 Contextual Autocomplete: Technical Toolkit
	Trie Data Structure
	BoW Model
	TF-IDF Encoding
	Support Vector Machine (SVM)
	Confusion Matrix for Visualizing Model Accuracy

	24.4	 Conclusion
	References

	25: Foundations of Time Series Analysis
	25.1	 Introduction
	25.2	 Foundational Methods
	Parametric Methods
	Nonparametric Methods
	Clinical Applications

	25.3	 Conclusions
	References

	26: Overview of Algorithms for Natural Language Processing and Time Series Analyses
	26.1	 Introduction
	26.2	 Natural Language Processing
	Preprocessing
	N-grams

	Data Representation
	Bag of Words
	One-Hot Encoding
	Word Embeddings: Neural Network Basics
	Word Embeddings: Learning an Embedding Matrix
	Word Embeddings: Implementation

	Recurrent Neural Networks
	Gated Recurrent Units
	Long Short-Term Memory (LSTM) Network

	Convolutional Neural Networks
	CNNs Applied to NLP


	26.3	 Time Series Analysis
	Preprocessing
	Neural Networks: Multilayer Perceptron
	Neural Networks: LSTM
	Neural Networks: CNNs

	26.4	 Conclusion
	References


	Part IV: Ethical and Historical Aspects of Machine Learning in Medicine
	27: A Brief History of Machine Learning in Neurosurgery
	27.1	 Introduction
	27.2	 The Evolution of Machine Learning in Neurosurgery
	1990s: Early Applications in Neurosurgery
	2000s: Refinement and Expansion
	2010s: Exponential Growth and Adoption of Machine Learning

	27.3	 Contemporary and Novel Applications
	27.4	 Conclusion
	References

	28: Machine Learning and Ethics
	28.1	 Introduction
	28.2	 Personal Integrity
	28.3	 Justice and Investments in Information Technology
	28.4	 Accountability: Who Decides and What Is the Decision Based On?
	Values and AI
	Traceability of Decisions and Recommendations

	28.5	 Discussion
	References

	29: The Artificial Intelligence Doctor: Considerations for the Clinical Implementation of Ethical AI
	29.1	 Introduction
	29.2	 Transparency and Explicability
	29.3	 Fairness and Bias
	29.4	 Liability and Legal Implications
	29.5	 Conclusion
	References

	30: Predictive Analytics in Clinical Practice: Advantages and Disadvantages
	30.1	 Introduction
	30.2	 Data Considerations: What to Put into a Predictive Tool?
	Quantity Versus Quality
	Theoretical Construct and Empirical Construct
	Analyzing Available Data or Analyzing Clinical Equipoise

	30.3	 Interpreting the Model’s Output: An Essential Role for the Clinical Neuroscientist
	Clinical and Scientific Competencies
	Clinical Neuroscientist’s Vigilance

	30.4	 Integrating the Model into the Clinical Workflow: Reporting Is Imperative
	User Trust
	Transparency
	Safe Use and Regulatory Approval

	30.5	 Concluding Remarks
	References


	Part V: Clinical Applications of Machine Learning in Clinical Neuroscience
	31: Big Data in the Clinical Neurosciences
	31.1	 Introduction
	31.2	 Historical Context Within Neurosurgery
	31.3	 Evolution of Clinical Neurosurgical Databases
	31.4	 Future Directions
	31.5	 Conclusion
	References

	32: Natural Language Processing Applications in the Clinical Neurosciences: A Machine Learning Augmented Systematic Review
	32.1	 Introduction
	32.2	 Method
	Study Identification
	Inclusion and Exclusion Criteria
	Data Collection and Extraction
	Analysis

	32.3	 Results
	NLP Application Domains
	NLP for Patient Cohort Identification
	NLP for Automated Reporting
	NLP for Data and Information Extraction
	NLP for Literature Synthesis
	NLP for Outcome Prediction

	NLP Analysis
	NLP Resources

	32.4	 Discussion
	32.5	 Conclusion
	References

	33: Machine Learning in Pituitary Surgery
	33.1	 Introduction
	33.2	 Machine Learning Applications in Pituitary Surgery
	Enhanced Preoperative Lesion Characterization
	Differential Diagnosis
	Immunohistochemical Characterization of PA
	CS Invasion by PA Adenoma
	Tumor Consistency

	Surgical Outcome and Complication Prediction
	Gross Total Resection
	Intraoperative Cerebrospinal Fluid (CSF) Leak
	Tumor Recurrence and Endocrinological Remission
	Hyponatremia
	Drug Treatment Response
	Costs

	Limitations
	Future Directions

	33.3	 Conclusions
	References

	34: At the Pulse of Time: Machine Vision in Retinal Videos
	34.1	 Introduction
	34.2	 Methods
	Source Data
	Pre-Processing
	Filters for Frames Normalization and Noise Reduction
	Dealing with Blurry Frames
	Registration
	Detection/Enhancement of SVP

	34.3	 Discussion
	34.4	 Conclusion
	References

	35: Artificial Intelligence in Adult Spinal Deformity
	35.1	 Introduction
	35.2	 Methods
	35.3	 Results
	35.4	 Discussion
	Machine Learning
	Computer Vision/Augmentation
	Future

	35.5	 Conclusion
	References

	36: Machine Learning and Intracranial Aneurysms: From Detection to Outcome Prediction
	36.1	 Introduction
	36.2	 Machine Learning Applications in the Management of Patients with Intracranial Aneurysms
	Aneurysm Detection [18–27] (Table 36.1)
	Aneurysm Rupture Risk and Stability Prediction [28–32] (Table 36.2)
	Complications and Outcome Prediction [35–43] (Table 36.3)

	36.3	 Discussion
	IA Screening and Detection
	Rupture Risk and Aneurysm Stability
	Outcome Prediction
	Delayed Cerebral Ischemia, Vasospasm, and Shunt-Dependent Hydrocephalus
	Functional Outcome Prediction
	Periprocedural Outcome Prediction


	36.4	 Future Directions
	36.5	 Conclusions
	References

	37: Clinical Prediction Modeling in Intramedullary Spinal Tumor Surgery
	37.1	 Introduction
	37.2	 A Primer on Machine Learning and Predictive Analytics
	37.3	 Defining Outcome Measures for Intramedullary Spinal Cord Tumors
	37.4	 Available Sources of Data for Prediction Modeling in IMSCT
	37.5	 Imaging Features and Biomarkers to Predict Outcomes for IMSCT
	37.6	 Genetic Biomarkers of IMSCT
	Ependymoma
	Astrocytoma
	Hemangioblastoma

	37.7	 Genome-Wide Association Studies
	37.8	 Discovery of Biomarkers and Prediction of Therapeutic Responses
	37.9	 Conclusion
	References

	38: Radiomic Features Associated with Extent of Resection in Glioma Surgery
	38.1	 Introduction
	38.2	 Basic Workflow in Radiomics
	Image Post-Processing and Tumor Segmentation
	Radiomic Features
	Feature Selection and Model Creation

	38.3	 Applications in Neuro-Oncology
	38.4	 Features Associated with Extent of Resection in Brain Glioma
	Future Perspectives

	38.5	 Conclusions
	References

	39: Machine Learning in Neuro-Oncology, Epilepsy, Alzheimer’s Disease, and Schizophrenia
	39.1	 Introduction
	39.2	 Materials and Methods
	Data Extraction
	PICOS Outline
	Search Criteria
	Inclusion and Exclusion Criteria

	39.3	 Results
	Neuro-Oncology
	Epilepsy
	Alzheimer’s Disease
	Schizophrenia

	39.4	 Discussion
	Neuro-Oncology
	Epilepsy
	Alzheimer’s Disease
	Schizophrenia

	39.5	 Conclusions
	References



