
Enhancing OpenMP Tasking Model:
Performance and Portability

Chenle Yu1,2(B), Sara Royuela1(B), and Eduardo Quiñones1(B)

1 Barcelona Supercomputing Center, Barcelona, Spain
{chenle.yu,sara.royuela,eduardo.quinones}@bsc.es
2 Universitat Politècnica de Catalunya, Barcelona, Spain

chenle.yu@upc.edu

Abstract. OpenMP, as the de-facto standard programming model in
symmetric multiprocessing for HPC, has seen its performance boosted
continuously by the community, either through implementation enhance-
ments or specification augmentations. Furthermore, the language has
evolved from a prescriptive nature, as defined by the thread-centric
model, to a descriptive behavior, as defined by the task-centric model.
However, the overhead related to the orchestration of tasks is still rel-
atively high. Applications exploiting very fine-grained parallelism and
systems with a large number of cores available might fail on scaling.

In this work, we propose to include the concept of Task Dependency
Graph (TDG) in the specification by introducing a new clause, named
taskgraph, attached to task or target directives. By design, the TDG
allows alleviating the overhead associated with the OpenMP tasking
model, and it also facilitates linking OpenMP with other programming
models that support task parallelism. According to our experiments, a
GCC implementation of the taskgraph is able to significantly reduce
the execution time of fine-grained task applications and increase their
scalability with regard to the number of threads.

Keywords: OpenMP specification · Tasking model · Runtime
overhead

1 Introduction

OpenMP is a parallel programming model widely used on shared memory sys-
tems by virtue of its programmability, portability, and competitive performance.
OpenMP 3.0 introduced support for fine-grained irregular parallelism with the
so-called task-centric model. Later, OpenMP 4.0 introduced fine-grained data-
driven synchronization mechanisms in the form of task dependencies. Since this
preliminary support for task parallelism, the OpenMP specification has evolved
from a prescriptive to a descriptive paradigm, enabling users to define what
has to be parallelized rather than how to parallelize it. Interestingly, the tasking
model can be now used not only for task parallelism, by using the task construct,
but also for data parallelism, by using the taskloop construct.
c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 35–49, 2021.
https://doi.org/10.1007/978-3-030-85262-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-85262-7_3


36 C. Yu et al.

Despite the clear benefits of the tasking model (including flexibility,
dynamism, and independence from the underlying resources), the implemen-
tations of this model typically introduce a considerable overhead related to the
management of the parallel execution of tasks. As a result, these overheads have
been extensively studied [8,13,15], concluding that a sufficiently coarse granu-
larity of tasks (i.e., workload assigned to a task) is the keystone to obtain the
expected performance gains. However, the smaller the granularity is, the greater
the overhead will represent the end-to-end execution time. Although the run-
time overhead is substantially dependent on each particular implementation,
the observations made on the studies are independent of the compiler and the
runtime used in the experiments.

To overcome the limitations derived from classic OpenMP implementations,
different works propose alternative solutions. Castelló et al. presented an imple-
mentation using lightweight threads (LWT) instead of POSIX threads [2] and
G.Tagliavini et al. designed and implemented an OpenMP runtime environment
specifically for the Kalray MPPA 256 [5], a many-core processor for embedded
systems. Despite the effectiveness of these solutions, they are either difficult
to apply on mainstream OpenMP runtime implementations, or they are not
portable to diverse shared memory systems.

This paper takes into account the limitations of the previous solutions, and
proposes a new feature in the OpenMP specification to allow users to define
taskgraph regions, i.e., regions of an OpenMP task-based program that can be
implemented more efficiently. This enhancement in the implementation is sub-
stantiated on the Task Dependency Graph (TDG) used to represent the execu-
tion of a task-based program (or region), and is only possible if either (a) the
TDG of the selected region can be completely expanded at compile-time (i.e.,
all tasks instances and their dependencies can be decided statically), or (b) the
region is going to be executed multiple times and the same TDG can be exploited
several times.

The approach proposed can reduce, by design, the runtime overhead related
to task management, and it has a higher abstraction level than previously pre-
sented methods. Hence, existing OpenMP implementations, including aforemen-
tioned work, can easily integrate taskgraph, thus benefiting from several layers
of optimization. Our main contributions are the following:

– A new approach for accelerating the OpenMP tasking model by reducing task
runtime overhead, together with the analysis of the use cases that can benefit
from this new approach.

– A new clause, namely taskgraph, providing the syntax and the semantics
thereof, and the characterization of the implications on the execution and
memory models of OpenMP.

– Preliminary results on the benefits that can be extracted from this new feature
considering (a) performance gain by virtue of a lighter implementation of
the OpenMP runtime, and (b) interoperability provided by the TDG, which
allows using OpenMP as a high-level API that can be lowered to different
programming models.



Enhancing OpenMP Tasking Model: Performance and Portability 37

2 Motivation

The main sources of overhead in the OpenMP runtime for handling tasks include:
(a) the contention caused by different threads accessing simultaneously to shared
resources, for instance, acquiring the lock that protects a shared data element;
and (b) the cost of handling tasks, including task creations, dependency res-
olutions and task deletions. While the former is proportional to the number
of threads running concurrently and the amount of parallelism exposed in the
application, the latter scales with the number of tasks, which tends to be large
in modern HPC applications. This can be explained by the increased workloads
and the growing number of logical threads incorporated in high-end modern
processors.

On the whole, to achieve the levels of performance provided by modern multi-
core and many-core accelerated architectures, the number of tasks exposed in
an application must be, at least, as large as the number of threads during most
part of the execution. However, using more threads does not systematically mean
higher performance, according to the sources of overhead stated above. There-
fore, reducing task-related overhead is of paramount importance for the success
of OpenMP task-based frameworks.

In a perfect world, where the compiler can statically determine the data
associated to all task instances and all dependencies among tasks, the allocation
of tasks and the resolution of the dependencies can be done at compile time. We
use an in-house implementation in the GCC 7.3.0 framework that uses a pre-
computed Task Dependency Graph to allocate tasks and decide dependencies
beforehand in order to illustrate the benefits of this approach. Figure 1 shows
the execution time1 of an optimized heat transfer simulation where the problem
size is fixed (2048× 2048 matrix), and the block size is changed throughout the
experiment, generating from 640 tasks (with 256×256 block size) to 16000 tasks
(with 52×52 block size). The line annotated as GCC+taskgraph corresponds to
the optimal case where the TDG is fully pre-calculated at compile-time, whereas
the line annotated as GCC + original GOMP runs the vanilla implementation
of GCC GOMP runtime. Essentially, the figure shows when the number of tasks
increases (and so the granularity of the tasks decreases because of the fixed total
workload) the modified version does not lose performance, while the original
version does once the number of tasks exceeds 4000.

Applications in the HPC domain are however commonly dynamic, in the
sense that their data is only known at runtime. As a consequence, compilers are
not able to automatically apply the optimizations explained above. However,
some HPC applications show other patterns that can also benefit from a similar
approach to reduce overhead. This is the case of applications that expose multiple
levels of parallelism, where the outer levels are dynamic and the inner levels are
static, e.g., the sLASs linear algebra solver [19], the Specfem3D simulator [6]

1 The execution has run in a node of the Marenostrum IV [1] supercomputer, equipped
with an Intel Xeon Platinum 8160 CPU, having 2 sockets of 24 physical cores each,
at 2.1 GHz and 33MB L3 cache.



38 C. Yu et al.

Fig. 1. Execution time of Heat transfer simulation using Gauss-Seidel method while
changing the number of tasks and reducing the task granularity.

and the Quantum ESPRESSO material modeling tool [4]. In these cases, where
inner TDG can become static after their first execution, benefits similar or even
better than the ones shown in Fig. 1 can be expected.

Nonetheless, it is unattainable for a compiler to detect these cases and lower
the code accordingly so the runtime does not create and destroy the inner (and
stable) TDGs each time they have to run. As a consequence, this paper proposes
to enable programmers to explicitly define the regions of their applications that
are static (i.e., decidable at compile-time) or stable (i.e., these will run several
times without changing the TDG and consumed data). In order to fit in the
OpenMP specification without introducing unnecessary changes, we propose a
new clause called taskgraph which, together with the task and target direc-
tives, acts as a hint to the compiler and the runtime system to recognize the
task region to optimize.

Furthermore, the possibility of pre-building a TDG opens the door for pro-
grams to be lowered, not only to the common OpenMP runtime (e.g., GCC,
LLVM), but also to other APIs in order to exploit the heterogeneity. This is of
particular interest in modern supercomputers as, for instance, 6 of the 10 most
powerful supoercomputers in the world now incorporate Nvidia GPUs to scale
their computation power [18], and various applications are legacy code, or are
highly tuned for a specific accelerator device. Thus, increasing the portability
of OpenMP to these models, as well as enhancing the programmability of low-
level APIs is crucial. Previous works [20] have already tackled this issue, and a
detailed analysis on these aspects is further provided in Sect. 4.2.

3 The Taskgraph Model

Despite the fact that application developers often use TDGs to express and
study their programs, the OpenMP specification does not include the concept
of TDG per se. We propose to introduce this concept, named taskgraph, in the
OpenMP specification to tackle the challenges mentioned in Sect. 2. To do so,



Enhancing OpenMP Tasking Model: Performance and Portability 39

this section presents the taskgraph mechanism and discusses how to integrate
this feature into the current OpenMP specification. Concretely, it defines first
the syntax of a new taskgraph clause and its semantic, considering its impact on
the execution and memory models of OpenMP; and then exhibits the conditions
required by the OpenMP program to use the taskgraph feature correctly.

3.1 The taskgraph Mechanism

Implementations supporting taskgraph shall be able to generate a TDG, either
at compile-time or at run-time, from a region annotated with the taskgraph
clause. By leveraging the information contained in the TDG, the compiler or the
runtime is capable of replacing the entire taskgraph region (meaning the user
code) with the execution of the TDG. Therefore, not only the overhead related
to task creation, dependency resolution and task deletion is alleviated, but also
loop and conditional statements can be skipped.

Figure 2 illustrates the taskgraph mechanism. Particularly, Fig. 2a shows a
snippet of a Heat transfer simulation implemented with OpenMP tasks and using
the taskgraph clause, and Fig. 2b shows an overview of the TDG extracted from
that application.

Fig. 2. Heat transfer simulation implemented with the Gauss-Seidel iterative method,
using the proposed taskgraph clause

The main limitation of the taskgraph appears when the TDG has to be com-
puted at run-time and, although the shape is stable for some time, there are con-
ditions in the application that can make this TDG change. For those cases, the
taskgraph clause can be declared with a list of variables, i.e., taskgraph(list )
, which can be monitored at runtime, and so when a variable changes, the TDG
is destroyed and rebuilt again. This mechanism is further described in Sect. 3.3.



40 C. Yu et al.

3.2 Syntax of the taskgraph Clause

The proposed syntax for exposing a taskgraph region in OpenMP is as a new
clause attached to the task or the target directives, as described next:

#pragma omp target|task [clause... ] taskgraph [(list) ]

With clause being the clauses currently allowed to be used with the corre-
sponding directive, and list being the list of variables that shape the TDG, e.g.,
the loop boundaries if tasks are instantiated within a loop statement.

Although taskgraph allows a new execution model for OpenMP (named
define-once-run-repeatedly, and described in the next subsection), there are
some reasons leading us to define it as a clause instead of a new directive: (a)
taskgraphs can be applied to both host and accelerator models, and so defining
it as a directive would force to introduce additional clauses to describe where
the taskgraph is to be executed; and (b) the taskgraph region can be seen as an
implicit task with nested parallelism and, as such, it can benefit from clauses
already defined for task directive like dependencies, priorities, and data-sharing
clauses, or those defined specifically for target directive, like mapping clauses.
Another option would be to add the new taskgraph clause to the taskgroup
directive. However, this will remove the possibility of defining dependencies
between the tasks in a taskgraph and previous/next tasks, and also reduce inter-
operability with the accelerator model. Overall, as of OpenMP 5.1 specification,
there are 16 different types of constructs (that is, executable OpenMP directives,
often attached to a block of user code), and 28 various constructs without count-
ing the combined ones, each construct may have numerous associated clauses.
By defining taskgraph as a clause to existing directives, we avoid rendering the
specification more complex and we reduce the implementation effort it induces,
because clauses as depend associated with tasks are currently implemented and
can be directly used to build the TDG when taskgraph is declared.

3.3 Semantics of the taskgraph Clause

This section describes the semantics of the taskgraph clause in terms of the
execution model and the memory model.

Execution Model. When a thread encounters a task or target directive
declared with taskgraph clause, it will be exposed to one of the following situ-
ations: (a) there is missing information in the TDG of the taskgraph region, or
(b) the TDG contains all task-related information in its structured-block, and its
execution is equivalent (in terms of functionality) to the execution of the source
code in the associated region. The procedure varies depending on the case:

– In the first case, the thread encountering the taskgraph clause executes the
corresponding taskgraph region, and is also in charge of saving the missing
information in the TDG runtime structures by, for instance, recording and
saving the data captured during the execution of the inner tasks.



Enhancing OpenMP Tasking Model: Performance and Portability 41

– In the second case, when the TDG is already complete, the encountering
thread needs to launch its execution so that other idle threads can execute
the TDG jointly. The user code in the taskgraph region will not drive the
execution of the tasks, but the TDG instead.

Additionally, if taskgraph (list) is declared, the variables included in list
shall be copied and saved when the region is executed for the first time. In other
words, these are considered as firstprivate variables to the taskgraph region.
While the program is running, the original copies of these variables in list can
change. In this case, the update will be propagated to the TDG the next time we
enter the taskgraph region, at which time the rebuild process of the TDG will
start. The list is user-defined and shall include only variables defining the shape
of the TDG, i.e., the variables defining the boundaries of loops or the branches
taken in conditional statements enclosing the inner tasks, or the variables in the
dependencies, if these change the memory object being dependent.

The TDG-driven execution can obtain its maximum efficiency when the task-
graph is defined once and replayed multiple times. This is the so-called defined-
once-run-repeatedly execution model (as for CUDA graphs). Hence, implemen-
tations of taskgraph are recommended to build the TDG either at compile-time
(if conditions allow, i.e., data size is known, loop boundaries are static, etc.) or
after running the taskgraph region for the first time, at run-time, in order to
maximize the performance gain of the subsequent executions.

The execution of the taskgraph region is synchronized by an implicit
taskgroup. In other words, tasks created in the taskgraph structured-block
belong to the same taskgroup set. The taskgroup is implicit and is declared as if
it was surrounding the task defined by the directive combining with taskgraph.

Memory Model. The new taskgraph clause does not affect the existing
OpenMP memory model regarding both the current global memory model, i.e.
relaxed-consistency shared-memory model, and the interpretation of the data-
sharing clauses that are attached to the task directives. However, the context
generated by the taskgraph clause manages its data environment differently
from how it is managed in a task.

More specifically, upon encountering a task directive (meaning task or
target), all the clauses declared with the directive are immediately evaluated,
including taskgraph. If taskgraph is executed, the declared data-sharing clauses
also apply for the Task Dependency Graph. Inner-tasks may have different data-
sharing clauses over the same data, e.g., a variable being global to the taskgraph
can be set as private to tasks within it, using firstprivate or private clauses.
Unlike task and target, where data environments are destroyed at completion,
when a task accompanied by a taskgraph clause finishes its execution, all its
data is recommended to be preserved, so the subsequent iterations can start
without initialization. Programs that rely on saving the context of a taskgraph
region after its completion to execute correctly are non-conforming and result in
unspecified behavior.



42 C. Yu et al.

3.4 Requirements of the taskgraph Region

A taskgraph region can be represented as a TDG, and so, it only stores infor-
mation related to the execution of the inner tasks. As a result, the taskgraph
clause is only applicable to those regions of code that are completly taskified, i.e.,
all the computation is done within the inner tasks, and the code in between only
decides the control flow, so there cannot be sequential code in-between tasks.

While analyzing the taskgraph region, it can happen that the inner tasks
contain nested tasks, as allowed in the current OpenMP specification. While
syntactically correct, defining nested taskgraphs is however prohibited. In other
words, a taskgraph region can contain nested tasks, but none of them can be
declared with taskgraph clause. The reason is that taskgraph contains all infor-
mation related to the execution of the tasks declared in its associated region,
meaning that an inner taskgraph is entirely included in its outer taskgraph.
Therefore, it is pointless to have nested taskgraphs, and it would break the
semantics of the outer taskgraph if an inner taskgraph changes its shape in a
different point in time than the outer one.

4 Projected Results

This section presents the expected results from integrating the taskgraph clause
into the OpenMP specification. Two aspects are covered: (a) the potential perfor-
mance gain from alleviating task management overhead and (b) the portability
facilitated by the TDG to map OpenMP into other programming models.

4.1 Potential Performance Gain

The taskgraph clause targets the reduction of the overhead due to the orchestra-
tion of the parallel execution of tasks, comprising task creation, task enqueue and
dependency resolution. According to Gautier et al. [3], who consider the LLVM
libOMP runtime library, resolving task dependencies represents the major over-
head source (up to 90%) when executing dependent tasks, and it further scales
with the number of threads. In other words, using taskgraph can optimally
relieve the greatest task overhead source and enhance the program scalability
by alleviating the overhead related to multi-threading.

The results of our experiments support this statement, as shown in Fig. 3. In
this example, we consider the heat transfer simulator and the HOG (Histogram
of Oriented Gradients) object detection application, run on a Marenostrum clus-
ter node, described in note 1. While the problem size and the task granularity
are kept invariant, we modify the number of threads across the experiment.
Both applications run for 128 iterations. Finally, the charts compare the exe-
cution using the original libgomp runtime library, labelled named GOMP, with
the enhanced libgomp supporting the recording of the TDG at runtime, named
Taskgraph. Particularly, Taskgraph version records the TDG in the first iteration
and reuses it for the next 127 iterations. The figure shows that using the pro-
posed taskgraph feature not only provides equivalent or better speedup than the



Enhancing OpenMP Tasking Model: Performance and Portability 43

original libgomp in all considered scenarios, but it also allows the application to
further benefit from the thread scaling.

0
5

10
15
20
25
30
35

16 24 32 48

sp
ee

du
p

Number of threads

GOMP Taskgraph

(a) Speedup of HOG

0
5

10
15
20
25
30

16 24 32 48

sp
ee

du
p

Number of threads

GOMP Taskgraph

(b) Speedup of Heat

Fig. 3. Speedup of Heat Transfer Simulation (using Gauss-Seidel method) and HOG
object detection application, running 128 iterations, using original GOMP runtime
library and a modified version with support for taskgraph

While the results seem promising, we must underline that it is preferable to
use taskgraph for repeated task region (e.g., the computation loop inside sim-
ulators as N-body simulation or iterative problem solvers as the Gauss-Seidel
method), because the first iteration will be charged by the generation of the
TDG, incurring greater runtime overhead than the original runtime system.
This is illustrated by Table 1, where we execute the kernels only once, with
fixed number of threads (24 threads in this case, assigned to a single socket).
The execution times are in milliseconds. GOMP execution corresponds to the
time needed to execute the applications with the native GOMP runtime library.
Similarly, Recorded execution is obtained with the modified library. The Record
overhead is simply Record execution time minus the GOMP execution time. As
the table depicts, the overhead incurred by the record mechanism increases when
the task number increases. Another factor that may impact the cost of recording
is the number of dependent variables, that is, the number of variables defining
the dependency relationship among tasks. More specifically, the more dependent
variables there are, the longer the dependency resolution will last, resulting in a
longer record process.

Table 1. Time needed (millisecond) to execute the kernels once, with 24 threads

Application name # tasks GOMP execution Recorded execution Record overhead

Heat transfer 2560 20.3 23 2.7

4000 19.8 23.9 4.1

HOG application 3600 48.5 52.1 3.6

8040 46.9 54.4 7.5



44 C. Yu et al.

4.2 The TDG: A Door for Expanding Portability

Task-based parallelism is very effective in uncovering the parallelism available in
HPC applications. There are several programming models supporting tasking,
e.g., OpenMP, Cilk++ [9], Intel TBB [7] and CUDA graphs [11] are among
the more extended. The major success of OpenMP in front of its competitors
substantiates in many factors: (a) it relies on relatively simple compile-time
directives to expose parallelism (hence avoiding the need of refactoring sequential
applications); (b) it is supported by a vast majority of compiler and chip vendors
(including Intel, GCC and LLVM in the former, and Intel, ARM and PowerPC
in the latter); and (c) it offers a great trade-off between programmability and
performance, among others.

The Task Dependency Graph representing an OpenMP task-based applica-
tion is however equivalent to that extracted when using other APIs to expose the
parallelism. Figure 4 illustrates the portability enabled by means of the TDG.
More specicifically, Fig. 4a shows a simple sequential code snippet, Fig. 4b shows
the TDG representing the concurrency available in the sequential code, and
Figs. 4c, 4d, 4e and 4f show the Cilk++, OpenMP, TBB and CUDA graph
implementations of the TDG, respectively.

As the Figure depicts, OpenMP effectively offers better programmability
by only introducing compile-time directives in an exact same version of the
sequential code. Conversely, all Cilk++, TBB and CUDA graphs require some
refactoring from the code for different reasons: (a) Cilk++ does not provide
data-flow dependencies, but full synchronizations instead; (b) TBB decouples
the description of the graph from its execution, and requires specific functions
for starting the graph and joining results; and (c) CUDA graphs provide a low-
level API that forces programmers to manage data copies and point-to-point
synchronizations. The performance comparison between these models is out of
the scope of this paper, but several works have already tackled this topic showing
performance results for OpenMP competitive to the other parallel models [12,
17].

Previous works already studied the portability provided by the TDG to trans-
form OpenMP task-based applications into CUDA graphs [20]. This approach
uses the static computation of the TDG to lower the code into calls to the CUDA
graph API instead of calls to a regular OpenMP implementation (e.g., GOMP
or LLVM).

OmpSs is another example of interoperability based on the TDG. This pro-
gramming model, developed by Barcelona Supercomputing Center, has been a
forerunner of OpenMP with respect to the tasking model. Therefore, it sup-
ports tasked-based parallelism, and also heterogeneous computing with devices
like GPUs and FPGAs [14]. The TDG extracted, at runtime, from the compile-
time directives defined with OmpSs is used to manage tasks across heterogeneous
architectures supporting different programming models like CUDA and OpenCL.
Results show how OmpSs can fully replace the host API of both CUDA and
OpenCL in a portable way.



Enhancing OpenMP Tasking Model: Performance and Portability 45

Fig. 4. TDG representation and high-level description of a simple code parallelized
with different task-based parallel programming models.



46 C. Yu et al.

5 Related Work

The imminent advent of exascale computing raises new challenges in on-node
parallelism, such as the efficient exploitation of modern many-core processors
and the increasing heterogeneity of HPC systems. OpenMP is the current de
facto standard parallel programming model, and it needs to address these chal-
lenges. Although the OpenMP tasking model is a convenient method to paral-
lelize applications, many authors have investigated to tackle the overhead this
model incurs [8,13,15]. That work is considered Sect. 1. This section focuses on
work related to the Task Dependency Graph representation and its benefits.

M. Serrano et al. [16] provided a timing analysis over OpenMP tasks, where
tasks with timing properties are represented in a TDG. This work strengthened
the possibility of using OpenMP untied tasks (i.e., once such task is suspended
by the initial thread, it can be correctly resumed by any idle thread within
the same OpenMP team) on safety-critical embedded systems. A. Munera et
al. [10] showed how statically generated TDGs can reduce the dynamic memory
usage of OpenMP tasks, so that the tasking model can be used on embedded
systems conveniently, where the amount of dynamic memory is often limited by
safety constraints. Taskgraph makes OpenMP more suitable for safety-critical
embedded systems by reinforcing their work:

– The taskgraph clause can be used with both tied and untied tasks, making
the analysis of [16] still valid for taskgraph. As a result, taskgraph can perform
the associated region in shorter time by reducing the runtime overhead, which
eases the scheduling of the region within a larger real-time application.

– Techniques used in [10] rely on the static generation of the TDG, the informa-
tion from which can be leveraged by the taskgraph clause to enhance the per-
formance. Therefore, by including the new clause in their method, the result-
ing framework should deliver better performance than the current OpenMP
tasking model, and also use less dynamic memory throughout the execution.

C. Yu et al. [20] proposed a framework to generate a CUDA graph [11] from
OpenMP task directives. The new execution model proposed by Nvidia, where
each node represents a CUDA kernel and edges express the dependencies among
them, is interestingly similar to the taskgraph structure. This work shows, on
the one hand, how OpenMP could benefit from a define-once-run-repeatedly
execution model, as that enabled by CUDA graphs, in terms of performance.
On the other hand, it shows how the programmability of CUDA graphs could be
enhanced by reducing the number of lines required from the programmer, going
from 15500 to 4 in a Cholesky implementation used for illustration purposes.



Enhancing OpenMP Tasking Model: Performance and Portability 47

6 Conclusion

This work describes a new method to tackle the OpenMP task overhead at a
higher abstraction level, that is, by introducing the concept of Task Dependency
Graph in the OpenMP specification through taskgraph clause.

Our preliminary results, based on GCC GOMP runtime library, validate the
effectiveness of the TDG, as a representation of a region of code that can be
boosted by the OpenMP framework. When the TDG holds the complete execu-
tion of a part of the user’s code, this code can be replaced by the execution of
the TDG. This results in the reduction of the overhead introduced by the access
to shared resources, like task queues, and the management of tasks, including
creation, orchestration and destruction.

The concept of TDG also allows a new execution model in OpenMP, the
define-once-run-repeatedly model, equivalent to that described by CUDA graphs.
This mechanism, which is a hint for the implementation and shall not change the
functional behavior of the program, allows further alleviating the overhead in
applications running several times the same TDGs. Interestingly, this proposed
mechanism can promote the use of the OpenMP API as a door for effectively
exploiting CUDA graphs.

Future investigations include implementing the taskgraph clause in major
compilers and runtime systems, such as LLVM, to further validate our results.
As a prediction, we expect taskgraph to deliver significant performance gain in
LLVM, as in GOMP library. This assumption is supported by Fig. 5, where we
run different applications with the OpenMP runtime libraries from LLVM and
GCC. Although the LLVM is better optimized in these cases (shorter execution
time), its runtime overhead increases when the task granularity shrinks, similar
to the GOMP library. Other research lines comprise (a) thoroughly testing the
performance impact of the new clause in larger applications and different pro-
cessor architectures; (b) using the taskgraph in applications with tasks inside
a taskgraph region and tasks outside the region; and (c) exploring usages and
improvements of other programming models through the use of the TDG gener-
ated by OpenMP taskgraph.

10

15

20

25

30

35

920 1296 2040 3600 8040

ex
ec

u
on

 
m

e 
(m

s)

Number of tasks

LLVM GOMP

(a) HOG object detection application

10
15
20
25
30
35
40

640 1440 2560 4000 7840 10240 12960 16000

ex
ec

u
on

 
m

e 
(m

s)

Number of tasks

LLVM GOMP

(b) Heat transfer simulator

Fig. 5. Execution time (in ms) analysis of different applications with original GCC
GOMP library and LLVM OMP runtime library, fixing the number of threads to 24



48 C. Yu et al.

Acknowledgements. This work has been supported by the EU H2020 project
AMPERE under the grant agreement no. 871669.

References

1. BSC: Marenostrum IV User’s Guide (2017). https://www.bsc.es/support/
MareNostrum4-ug.pdf

2. Castello, A., Seo, S., Mayo, R., Balaji, P., Quintana-Orti, E.S., Pena, A.J.: GLTO:
on the adequacy of lightweight thread approaches for openmp implementations.
In: Proceedings of the International Conference on Parallel Processing, pp. 60–69
(2017)

3. Gautier, T., Perez, C., Richard, J.: On the impact of OpenMP task granularity.
In: de Supinski, B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta,
J. (eds.) IWOMP 2018. LNCS, vol. 11128, pp. 205–221. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98521-3 14

4. Giannozzi, P., et al.: Quantum espresso: a modular and open-source software
project for quantum simulations of materials. J. Phys. Condens. Matter 21(39),
395502 (2009)

5. Kalray MPPA products (2021). https://www.kalrayinc.com/
6. Komatitsch, D., Tromp, J.: SPECFEM3D Cartesian (2021). https://github.com/

geodynamics/specfem3d
7. Kukanov, A., Voss, M.J.: The foundations for scalable multi-core software

in intel threading building blocks. Intel Technol. J. 11(4), 309–322 (2007).
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=79B311F4CEB9A4B6
10520177C7144D57?doi=10.1.1.71.8289&rep=rep1&type=pdf

8. Lagrone, J., Aribuki, A., Chapman, B.: A set of microbenchmarks for measur-
ing OpenMP task overheads. In: Proceedingis of International Conference on
Parallel and Distributed Processing Techniques and Applications II, pp. 594–
600 (2011). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.217.9615&
rep=rep1&type=pdf

9. Leiserson, C.E.: The Cilk++ concurrency platform. J. Supercomput. 51(3), 244–
257 (2010)

10. Munera, A., Royuela, S., Quinones, E.: Towards a qualifiable OpenMP framework
for embedded systems. In: Proceedings of the 2020 Design, Automation and Test
in Europe Conference and Exhibition, DATE 2020, no. 2, pp. 903–908 (2020)

11. Nvidia: CUDA Graph programming guide (2021). https://docs.nvidia.com/cuda/
cuda-c-programming-guide/#cuda-graphs

12. Olivier, S.L., Prins, J.F.: Evaluating OpenMP 3.0 run time systems on unbalanced
task graphs. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP
2009. LNCS, vol. 5568, pp. 63–78. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02303-3 6

13. Perez, J.M., Beltran, V., Labarta, J., Ayguade, E.: Improving the integration of
task nesting and dependencies in OpenMP. In: Proceedings - 2017 IEEE 31st Inter-
national Parallel and Distributed Processing Symposium, IPDPS 2017, pp. 809–818
(2017)

14. Sainz, F., Mateo, S., Beltran, V., Bosque, J.L., Martorell, X., Ayguadé, E.: Lever-
aging OmpSs to exploit hardware accelerators. In: 2014 IEEE 26th International
Symposium on Computer Architecture and High Performance Computing, pp. 112–
119. IEEE (2014)

https://www.bsc.es/support/MareNostrum4-ug.pdf
https://www.bsc.es/support/MareNostrum4-ug.pdf
https://doi.org/10.1007/978-3-319-98521-3_14
https://www.kalrayinc.com/
https://github.com/geodynamics/specfem3d
https://github.com/geodynamics/specfem3d
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=79B311F4CEB9A4B610520177C7144D57?doi=10.1.1.71.8289&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=79B311F4CEB9A4B610520177C7144D57?doi=10.1.1.71.8289&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.217.9615&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.217.9615&rep=rep1&type=pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#cuda-graphs
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#cuda-graphs
https://doi.org/10.1007/978-3-642-02303-3_6
https://doi.org/10.1007/978-3-642-02303-3_6


Enhancing OpenMP Tasking Model: Performance and Portability 49

15. Schuchart, J., Nachtmann, M., Gracia, J.: Patterns for OpenMP task data depen-
dency overhead measurements. In: de Supinski, B.R., Olivier, S.L., Terboven, C.,
Chapman, B.M., Müller, M.S. (eds.) Scaling OpenMP for Exascale Performance
and Portability, pp. 156–168. Springer International Publishing, Cham (2017)

16. Serrano, M.A., Melani, A., Vargas, R., Marongiu, A., Bertogna, M., Quiñones, E.:
Timing characterization of OpenMP4 tasking model. In: 2015 International Con-
ference on Compilers, Architecture and Synthesis for Embedded Systems, CASES
2015, pp. 157–166 (2015)

17. Stpiczyński, P.: Language-based vectorization and parallelization using intrinsics,
openmp, tbb and cilk plus. J. Supercomput. 74(4), 1461–1472 (2018)

18. TOP500 (2020). https://www.top500.org/lists/top500/2020/11/
19. Valero-Lara, P., Catalán, S., Martorell, X., Usui, T., Labarta, J.: sLASs: a fully

automatic auto-tuned linear algebra library based on openmp extensions imple-
mented in ompss (lass library). J. Parallel Distrib. Comput. 138, 153–171 (2020)

20. Yu, C., Royuela, S., Quiñones, E.: OpenMP to CUDA graphs: a compiler-based
transformation to enhance the programmability of NVIDIA devices. In: Proceed-
ings of the 23rd International Workshop on Software and Compilers for Embedded
Systems, SCOPES 2020, pp. 42–47 (2020)

https://www.top500.org/lists/top500/2020/11/

	Enhancing OpenMP Tasking Model: Performance and Portability
	1 Introduction
	2 Motivation
	3 The Taskgraph Model
	3.1 The taskgraph Mechanism
	3.2 Syntax of the taskgraph Clause
	3.3 Semantics of the taskgraph Clause
	3.4 Requirements of the taskgraph Region

	4 Projected Results
	4.1 Potential Performance Gain
	4.2 The TDG: A Door for Expanding Portability

	5 Related Work
	6 Conclusion
	References




