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Abstract. In this paper, we introduce a design and implementation of
the free agent threads for OpenMP. These threads increase the malleabil-
ity of the OpenMP programming model, offering resource managers and
runtime systems flexibility to manage threads and resources efficiently.
We demonstrate how free agent threads can address load imbalances
problems at the OpenMP level and at an MPI level or higher. We use
two mini-apps extracted from two real HPC applications and represen-
tative of real-world codes to demonstrate this. We conclude that more
malleability in thread management is necessary, and free agents can be
regarded as a practical starting point to increase malleability in thread
management.

Keywords: OpenMP - Tasks - Free agent - Malleability -+ Dynamic
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1 Introduction

In the current race for exascale, the new HPC architectures are going in two
main directions to achieve their goal. On the one hand, adding accelerators to
the compute nodes, and on the other one, increasing the number of cores per
socket. These trends challenge parallel programming models to provide support,
transparency, and performance in these new architectures. When increasing the
number of cores per socket, the challenge is using a high number of cores effi-
ciently. To address this challenge, undoubtedly, all heads are turning to look at
OpenMP as the most widely used shared memory programming model.

Noise, load imbalance, complex code, or lack of parallelism, among others,
are some of the pitfalls that can jeopardize efficiency when using architectures
with a high number of cores per socket. To address these issues is no longer
enough to fight them; we need to adapt. Parallel programming models need to
offer flexibility (i.e., the execution model is not predetermined, several exter-
nal factors need to be considered, such as the current state of the system) and
malleability (i.e., the ability to increase or decrease the hardware resources used
at any time) to adjust the execution at runtime and make it transparent and
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straightforward for the user or developer of the code. Moreover, the different lay-
ers of the software stack, job schedulers, resource managers, distributed memory
programming models, or shared-memory programming models must cooperate
and coordinate.

This paper presents a design and implementation of the free agent threads
in the LLVM OpenMP runtime. The free agent threads increase the malleabil-
ity and flexibility of OpenMP, allowing extra threads to execute tasks in idle
computational resources, and at the same time, offering a tool that will help
coordinate the workload between different resource managers or runtime sys-
tems. Since tasks were introduced in OpenMP, there has been an interest in
having free agent or task-only threads in the model [18]. Now it is one of their
objectives in their roadmap for OpenMP 6.0 [5].

The remainder of this paper is organized as follows. In Sect. 2, we review the
current state of the art of different task-based programming models and their
malleability and other approaches that try to exploit malleability to improve
efficiency. Later, in Sect. 3, we discuss the design decisions regarding the defi-
nition and context of the free agent threads within the OpenMP standard. In
the following section, we explain some relevant implementation details of our
proposal. In Sect. 5, we present the evaluation of the proposal. For this evalua-
tion, we consider two use cases, in the first one a load imbalance problem at the
OpenMP level among different parallel regions. The second use case considers
a load imbalance between MPI processes that can be solved using a Dynamic
Load Balancing Library and the free agent threads implementation. Finally, in
Sect. 6, we will summarize the conclusions gathered from this work in the last
section.

2 Related Work

Several programming models are implementing a pure task-based approach ver-
sus a thread-based one. A pure task-based programming model relies on creating
work units that could be executed by any processing element available on the
system and does not usually tie the resulting parallel decomposition to any hard-
ware resource.

The OmpSs [4,8] programming model expresses the application parallelism
through task-generating constructs. A task construct is a compiler directive or a
source code comment that the compiler can interpret with well-defined seman-
tics. Tasks are also annotated with clauses to specify certain behaviors (e.g., the
data associated with the task; and if this data is read, written, or updated).
In addition to these task-generating constructs, the programmer has another
mechanism to handle the synchronization among tasks and guarantee correct-
ness accessing shared memory.

The Intel Threading Building Blocks [12] component, currently known as
oneTBB, is a C++ template library that allows parallelizing an application
breaking it down into tasks. The programmer may use any of the TBB pre-
packaged high-level interfaces (i.e., Generic Parallel Algorithms, Parallel STL,
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or Flow Graph interfaces) or directly using its low-level interface to create tasks.
A TBB task is an entity that defines a small computation unit and its associated
data. With that information, the runtime can create a task dependency graph
and execute tasks in parallel.

Intel Cilk++ SDK [11] is a language compiler add-on and a runtime library
included in the Intel compiler family. It allows expressing parallelism using only
three keywords: cilk_spawn (to create a task), cilk_for (to parallelize loops),
and cilk_sync to wait for completion. In addition to these three fundamental
keywords, the Cilk++ SDK offers other services to handle most parallel pro-
gramming challenges (locks, reducers, etc.). The current incarnation of the Cilk
language families is the OpenCilk [13] project, maintained by the Massachusetts
Institute of Technology. The project also includes an open-source implementa-
tion of the Cilk concurrency platform, compatible with the Cilk Plus language
extension to C and C++.

The OpenMP [16] programming model, in its version 3.0 [14], also included
a task-based approach. With the task construct, programmers were able to
annotate tasks. Since its version 4.0 [15], they could also annotate them with
the depend clause, enabling the runtime to compute the task dependency graph
and properly synchronize the task execution order. The main problem of this
tasking extension is that the execution model is still bound to the creation of
parallel regions, perpetuating the rigid fork-join pattern of this model.

Task-based parallel approaches ease the malleability of parallel executions.
And malleability allows adapting the use of underlying resources, and, in some
instances, it also allows to adapt it dynamically. This is the case of the afore-
mentioned OmpSs programming model. Its implementation includes a module,
the Thread Manager, which determines the number of threads and their binding
to the underlying CPUs. Furthermore, this module may agree with an external
component (e.g., a resource manager) which may decide to extend or reduce
the number of CPUs used at any given time. The resource manager may collect
information from different processes running in the node, which improves the
quality of this decision.

The Dynamic Load Balance library (DLB [9]) is one of these resource man-
agers. This software implements several policies to decide the usage and/or the
ownership (DROM [7]) of CPUs by a set of parallel processes linked to it. Then,
the library can shrink (in the phases it has not declared enough parallelism) or
expand (when the application reaches stages with a significant number of con-
current tasks) the number of threads for a given process. The ideal situation
occurs when a process may yield its CPUs to another one that requires them.

DLB can easily interoperate with OmpSs due to the remarkable malleability
of this programming model [10]. OmpSs can increase or reduce the number of
threads participating in the execution of a given program almost at every single
point. This is not the case with the OpenMP programming model. Once the
application starts executing a parallel region with a certain number of threads,
it is impossible to change the number of participants; it will break the semantics
of work-sharing. But the execution of tasks does not require a constant number
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of worker threads, neither that just threads from the current parallel region are
the only candidates to execute these tasks.

Some extensions of OpenMP attempt to include the idea of using additional
threads, not participating in the current parallel region, to help in the execution
of the instantiated tasks. Using the hidden helper threads implementation [19],
the authors propose to leverage not currently active worker threads to participate
in the offload of target regions to the device. This is a common use case: offloading
kernels to a GPU while executing the sequential part of the OpenMP program
and losing potential performance due to unused CPUs. The main difference
of this extension compared to our proposal is that hidden helper threads do
not allow dynamically changing the number of threads, where the OpenMP
standard does not impose any restriction. In addition, our proposal aims to
be more generic, and it allows executing any task rather than restricting these
threads to execute target tasks. This is also the main reason we have not used this
implementation as a comparison counterpart. We are not targeting devices other
than host, and, in addition, we base our fundamental source of improvement on
dynamically changing the number of threads (which is not possible with this
implementation of hidden helper threads).

3 Proposal

We present our design of free agent threads as an addition to the OpenMP spec-
ification to increase the malleability of the programming model. Our proposal
is driven towards making free agent threads as much flexible as possible. They
should be treated as helper threads that can be enabled or disabled, and the
OpenMP runtime will use them whenever possible.

The OpenMP specification distinguishes between implicit task, which is the
task implicitly assigned to any thread participating in a parallel region, and
explicit task, which is the task generated by a task construct. In our proposal,
free agent threads are OpenMP threads that will not be considered when encoun-
tering a parallel region. Their only purpose is to execute explicit tasks.

Free agent threads will neither participate in any team synchronization point,
such as barrier constructs or implicit barriers. They will, however, be part of
the initial thread contention group and will participate in other synchronization
constructs such as critical or atomic.

A task executed in a free agent thread may contain other parallelism-related
constructs, although we have not explored all the possibilities, and further inves-
tigation would be needed. The parallel construct is one of them, and probably
the one that presents more difficulties to compose with free agent threads con-
cerning nesting level, CPU bindings, etc. We believe that this construct should
be initially restricted for tasks executed in free agent threads. A free agent thread
could also encounter a taskgroup or a taskyield construct, or any other con-
struct that causes a task switching point. The only issue here is that the free
agent thread is not guaranteed to exist when the task becomes ready again.
Therefore, all tasks executed in a free agent thread should be considered untied
tasks.
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3.1 Considered Aspects in the Design

Free Agent Threads Are Not Organized in Teams. OpenMP threads are
typically grouped in teams. An OpenMP team is a set of one or more threads
created for a specific parallel region, whether the implicit parallel region or a
region generated from a parallel construct. In the case of explicit parallel
regions, the thread that encounters the parallel construct creates the team.
All the threads in that team will participate in the execution of the parallel
region.

During the initial design discussions, we explored the idea of free agent
threads being part of the same team, as in the hidden helper thread imple-
mentation. It certainly has some benefits, like an already defined task scheduler
model and implementation. But, it makes the model too strict for the use cases
that have motivated us for this article. We want to propose a model where free
agent threads are free to steal explicit tasks from any other team, not just the
tasks bound to a specific team or a thread set. Furthermore, the term team is
well defined in the OpenMP specification, and we believe that expanding its
definition for including free agent threads would be confusing.

By not constituting an exclusive team or forming part of any other regular
team, free agent threads will not participate in some team-wide synchronization
constructs, such as barriers. But they acquire some advantages:

— The number of participating free agent threads may be dynamic. Unlike
teams, the free agent threads group is an asynchronous structure. It will be
created during the initialization, but the number of participating free agent
threads might be modified at any time by using a runtime library routine.

— The execution of explicit tasks by free agent threads is not limited to tasks
bound to their team since there is none. Explicit tasks are still bound to the
thread set of the current team and optionally to the free agent threads set.

Free Agent Threads Might Be Dynamically Enabled or Disabled.
There is a necessity for application developers, users, and third-party tools to
have mechanisms to set the initial values or to dynamically change the number
or the state of free agent threads. The runtime must provide tools in the same
way that allows setting or modifying the number of threads.

These mechanisms are detailed in Sect. 3.3, but we distinguish some concepts.
They may be explicitly set using an environment variable, a runtime library
routine, an OMPT entry point, or decided by the implementation. First, the
total number of existing free agent threads is self-explanatory but does not tell
their situation, only that they are known. Then, the global free agent threads
policy is a single value that affects all the existing threads and states whether
they are enabled or disabled. And last, the free agent thread state is a per-
thread value that manages whether a specific free agent thread may execute
some explicit tasks, but only if the global policy allows it.
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3.2 The free_agent Task Clause

Free agent threads are intended for executing explicit tasks in situations where
the parallel region cannot exploit all the parallelism in the system. The task
construct generates an explicit task from the code for the associated structured
block, with an accordingly created data environment for the task that will be
destroyed when the structured block is completed. Since the task becomes an
independent entity of work, any free agent thread will execute it as long as the
task has been deferred.

Although, until now, tasks were supposed to be executed by any team mem-
ber, so developers may have written code relying on that. Listing 1.1 shows a task
where some data is stored in a private buffer indexed by thread number. The oper-
ation is not protected with a mutual exclusion because the developer expected
only one thread to modify this address. If omp_get_thread_num() returns 0 then
the above assumption is invalidated; if it returns a unique number, the program
will probably incur a memory access violation.

Listing 1.1. Task invoking a team related function.
#pragma omp parallel

#pragma omp task
buffer [omp_get_thread_num ()] += £();

Another example is shown in Listing 1.2, where at the end of the parallel
region, the participating threads perform a reduction of their respective thread-
private variables. In this example, if a free agent thread would have executed
any task, their accumulated value in counter will not be added to result.

Listing 1.2. Reduction assuming that tasks are executed by threads in the team.
int counter = 0;

#pragma omp threadprivate (counter)

#pragma omp parallel

{
#pragma omp taskgroup
#pragma omp task
counter += f£();

#pragma omp for schedule(static)

for(int i=0; i<omp_get_num_threads (); ++i)
#pragma omp atomic
result += counter;

There may be other programming patterns where developers did not foresee
that threads might execute explicit tasks outside the team. For this reason, we
propose the new clause free_agent(bool-expr) for the task and taskloop
constructs.

Since adding a new clause to many constructs might be time-consuming
for application developers, we also propose an environment variable to set the
default behavior: OMP_FREE_AGENT_TASKS={true,false}.
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In a task or taskloop construct, if a free_agent clause is present and eval-
uates to true, or if the environment variable OMP_FREE_AGENT_TASKS is set to
true and a clause free_agent does not evaluate to false, the generated task
may be executed by any thread in the team or by any free agent thread.

3.3 Proposed Mechanisms to Manage Free Agent Threads

We propose the following OpenMP environment variables to configure the initial
state of free agent threads in an OpenMP program. We also offer a set of runtime
library routines for applications to modify the state at run time. And finally, we
propose a set of entry points in the OMPT callback interface for OMPT tools
to gather information of free agent threads and enable or disable specific ones.

Environment Variables

OMP_FREE_AGENT_NUM_THREADS: sets the initial number of free agent threads
to use.

OMP_FREE_AGENT_PROC_BIND: sets the thread affinity policy to be used
for free agent threads. The value of this environment variable might be
true, false, initial, close, or spread. This variable is the equivalent of
OMP_PROC_BIND for free agent threads, except that it is relative to the initial
thread.

OMP_FREE_AGENT_PLACES: sets the place partition for free agent threads. The
allowed values are the same as in OMP_PLACES.
OMP_FREE_AGENT_WAIT_POLICY: sets the desired behavior of free agent
threads that are waiting. Possible values are active or passive.
OMP_FREE_AGENT_POLICY: sets the initial policy for free agent threads. Pos-
sible values are enabled or disabled. If the value is enabled, free agent
threads will be able to execute explicit tasks. If the value is disabled, free
agents must be suspended or even yet not created, and they must not execute
any explicit task.

OMP_FREE_AGENT_TASKS: sets whether all tasks are considered to have the
free_agent clause.

Runtime Library Routines

int omp_get_num_free_agent_threads(void): returns the number of
existing free agent threads.

void omp_set_num_free_agent_threads(int num_threads): affects the
number of free agent threads to be used by the runtime. If num_threads
is greater than the current number of free agent threads, the runtime may
create new ones. If num_threads is less than the current number of free agent
threads, exceeding threads are destroyed or suspended, but they will not count
as existing free agent threads.

void omp_set_free_agent_policy(omp_free_agent_policy_t policy):
sets the global policy, same as the variable OMP_FREE_AGENT_POLICY.
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Entry Points in the OMPT Callback Interface

— int ompt_get_num_free_agent_threads(void): returns the number of
existing free agent threads.

— int ompt_get_free_agent_thread_id(void): returns the internal thread
identifier of the free agent thread. The number must be in the range of 0..n-
1, where n is the number of existing free agent threads.

— void ompt_set_free_agent_thread_state(int free_agent_id,
int state): sets the individual state of the specified free agent thread. The
state argument can be either enabled or disabled.

4 Implementation

We have implemented a subset of the free agent threads proposal in the LLVM
OpenMP runtime [1]. Of the ~80 kSLOC of the runtime (not counting the library
for target support), our implementation required changing ~800 SLOC. This
suggests that a complete implementation of our proposal would have reasonable
implementation complexity.

The runtime creates one operating system thread (a pthread in Linux) for
each free agent thread. The number of free agents threads is defined by the envi-
ronment variable OMP_FREE_AGENT_NUM_THREADS. Free agents can be enabled
or disabled, and OMP_FREE_AGENT_POLICY characterizes their initial state. Cre-
ation of the free agent threads happens simultaneously the runtime initializes,
typically upon encountering the first OpenMP construct or OpenMP APT call.

The LLVM OpenMP runtime keeps two data structures related to the team
of a parallel region. One corresponds to the proper team of threads, and another
one is named the task team, which exists only if threads of the team create
explicit tasks. There is one queue of explicit tasks ready to be executed for each
thread of the team. When a task team is first created, all the free agent threads
are allowed to execute tasks of that task team. During the finalization of the
parallel region (when all the explicit tasks of that team have been completed),
free agents are not allowed to execute tasks of the finishing task team anymore.

The lifecycle of an enabled free agent thread is a loop for each of the allowed
task teams. Once the free agent thread enters a task team, it executes as many
explicit tasks as possible. It does this by stealing tasks from other (regular)
threads of the task team. While executing an explicit task, a free agent thread is
logically inside the task team, but it does not belong to the team of threads. The
semantics of team-requiring operations such as a call to omp_get_thread_num or
usage of threadprivate variables are for now intentionally left undefined. Once
no more tasks remain in the task team, the free agent thread leaves it. Once all
the allowed teams have been processed, the free agent thread is suspended to
avoid a busy loop.

When a thread of the team creates an explicit task, if there is a suspended
free agent thread, then the runtime will resume it. Free agent threads are also
resumed when they are enabled by the user code and periodically when threads
of the team are executing tasks.
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A free agent thread (with free agent thread number n) can create an explicit
task while executing another explicit task. When this happens, the new task
is added to the queue of the corresponding thread number n of the task team
(modulo the number of threads of the team).

In general, the LLVM OpenMP runtime does not defer the execution of
explicit tasks created in inactive parallel regions (regions executed by teams
with only one thread). However, to support detached tasks, the LLVM OpenMP
runtime can defer tasks also in inactive parallel regions. Our implementation
leverages this feature to allow deferring tasks created in such regions when free
agents are available. This enables a scenario where OMP_NUM_THREADS=1 and
OMP_FREE_AGENT_NUM_THREADS > 1.

5 Evaluation

The free agent threads implementation presented in this article has been tested
with applications to evaluate its performance. We expose two different use cases
to demonstrate the potential of free agent threads in different scenarios.

We analyze a pure OpenMP application in the first use case that presents a
load imbalance between two nested parallel regions. Free agent threads execute
explicit tasks encountered in the most loaded parallel regions, thus alleviating
the load balance issue.

The second use case shows a task-based MPI+OpenMP application that
presents a load imbalance among processes. A third-party tool, DLB, can exploit
the free agent threads enable and disable mechanism to modify the number of
productive threads assigned to a process to fix the load imbalance in hybrid
applications.

All the results have been obtained on the MareNostrum 4 supercomputer.
It is composed of compute nodes with two sockets Intel Xeon Platinum 8160
2.1GHz 24-core and 96 GB of main memory. Regarding the software, we used
the Intel compiler (version 17.0.4), a modified LLVM OpenMP runtime (based
on LLVM 11.0.0, OMP version 5.0.20140926), and DLB 3.0. Since we used the
Intel compiler, we have not implemented the free_agent clause, and we assume
that free agent threads can safely execute all tasks.

5.1 Use Case: Fixing Load Imbalance Between Parallel Regions

When an OpenMP thread reaches a task scheduling point, it may suspend the
execution of the current task and switch to a different task bound to the same
team. This task scheduling model allows, among other things, to use threads
that may have already finished their work to execute other pending explicit tasks
encountered in the same team. This model is crucial to avoid load balance issues
when the task creation is not perfectly distributed. Also, it does not necessarily
impact the performance in simpler algorithms such as a single thread creating
all the explicit tasks since all the threads in the team will participate in their
execution. However, threads may only switch to other tasks in the same team.
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In cases where the application has nested parallel regions, idle threads in one
parallel region cannot help and execute the tasks of a different parallel region.
The Density Matrix Renormalization Group (DMRG++) is a condensed mat-
ter physics application developed at ORNL used to study the superconductivity
properties of materials. For our study, we used a mini-app [3,6] that captures
the computation core of DMRG+H+. The code has been slightly modified from
previous versions; the structure of the code used is shown in Listing 1.3.

Listing 1.3. DMRG++ code structure.

for (int it = 0; it < NIts; ++it) {
#pragma omp parallel for num_threads (X)
for (int ipatch = 0; ipatch < npatches; ipatch++) {
/7 ...
#pragma omp parallel for schedule(dynamic, 1) num_threads(Y)
for (int jpatch = 0; jpatch < npatches; jpatch++) {
/7 ...
#pragma omp taskloop
for (int k = 0; k < k_size; k++) {
// Loop body
}
¥
}
}

Figure 1 shows two Paraver [2,17] traces of two different DMRG++ exe-
cutions. The Paraver traces in the figure represent a timeline in which the
X-axis is the elapsed time, the Y-axis the OpenMP threads, and explicit
tasks are shown in blue for each thread that executes them. The first trace
shows an iteration of a DMRG++ execution with two levels of nesting;
4,4, distributed on 16 logical CPUs. The program has been executed with
OMP_PLACES="{0,1,2,3},{4,5,6,7},{24,25,26,27},{28,29,30,31}" to bind
each OpenMP thread to a specific core. It can be appreciated how the load
imbalance of one of the innermost parallel regions causes the threads of the
other team to wait.

OpenMP task execution @ 4x4+0_passive.prv
THREAD 1.1.

CEEEE R
Ittt D I VN En I
eyt

759,895 us 2,633,269 us

OpenMP task execution @ 4x4+4_passive.prv
THREAD 1.1.1

THREAD 1.1.5

Il Task execution
THREAD 1.1.9

Free agent threads

THREAD 1.1.13 |

THREAD 1.1.17
THREAD 1.1.20

771,586°0% 2,644,820 us

Fig. 1. DMRG++ trace execution with a 4,4 nesting running on 16 CPUs, and same
execution running with free agent threads. Both traces are at the same duration time
scale.
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The second trace is the same configuration but enabling free agent threads
at the end of the iteration. Those free agent threads are different pthreads, and
Paraver draws them in another row, but they use the same logical CPUs as the
threads that just finished their region. As done with the execution without free
agents, the same OMP_PLACES is used, and the clause OMP_FREE_AGENT_PLACES="
{0,1,2,3,4,5,6,7,24,25,26,27,28,29,30,31}" is used to determine where
the free agents can be executed. This use case shows how free agent threads can
be exploited on otherwise unproductive CPUs to increase the parallelism when
needed.

The performance results of DMRG++ with free agent threads are shown in
Fig. 2. Different nesting configurations have been evaluated with a variable range
of free agent threads and wait policies active and passive. The nomenclature
N x M in the legend represents the OpenMP threads per nesting level: N for
level 1, M for level 2, executed in as many CPUs as needed to bind only one
OpenMP thread to a logical CPU, without considering free agent threads, e.g.,
the configuration “2 x4 passive” has been executed with OMP_NUM_THREADS=2,4,
OMP_WAIT_POLICY=passive, and using only eight logical CPUs, regardless of the
number of free agent threads used. The speedup values represent the relative
performance of each case with zero free agent threads, so only the effect of
free agent threads is shown. The number of free agent threads is limited to the
number of threads in the second level. Since free agent threads are running on
the CPUs of the faster parallel region, it would not be efficient to increase the
number of free agent threads to higher values.

DMRG++ Speedup with free agent threads

1.40 m— 2x4 active
= w= Qx4 passive
s 4x4 active
= 4x4 passive
4x8 active

4x8 passive

Speedup

0.90

Number of free agent threads

Fig. 2. Speedup of DMRG++ with free agent threads.

As it can be observed in the figure, the runtime can dynamically enable the
free agent threads to increase the number of active threads executing tasks. Thus,
load imbalance between parallel regions may be reduced and improve the overall
performance execution. In this case, we obtain up to a 36% speedup when using
free agent threads on a pure OpenMP application.
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5.2 Use Case: Solving Load Imbalance in a Hybrid Application
with DLB as an OMPT Tool

In the second use case, we analyze a more common situation: load imbalance
among processes. However, to efficiently use the free agent threads to solve this
load imbalance, we need a third-party tool responsible for enabling and disabling
the free agent threads of each process.

For this use case, we analyze a kernel extracted from Alya [20], a computa-
tional fluid dynamics (CFD) code optimized for HPC environments developed at
BSC. This kernel presents an iterative pattern of MPI communications followed
by a region of task-based computation with a slight load imbalance, LB = 0.74.
The task-based region also challenges resource balance techniques since the aver-
age task duration is only 200 us. Figure3 shows a Paraver trace of a hybrid
MPI4+OpenMP execution and a trace of the same configuration with DLB. In
the second trace, DLB runs as an OMPT tool monitoring the OpenMP events
of each MPI process and selectively enabling or disabling free agent threads to
fix the load imbalance with temporary helper threads. The right-hand side of
the figure shows a zoom of a few processes at the end of an iteration. It can be
appreciated how some free agent threads are enabled, acting as helper threads
only when a logical CPU becomes idle after another process reaches an MPI
synchronization call.

Task execution by rank @ alya_solver.prv
THRED 1.1.1
THED 1.5.1
THED 1.9.1
THED 1.13.1
THRER 1.17.1
THED 1.21.1
THRED 1.25.1
THRED 1.20.1
TRED 1.33.1
THRED 1.37.1
THREAD 1.41.1
THRED 1.45.1
THREAD 1.48.1

277,585,384 ns

Task execution by rank @ alya_solver_dlb.prv
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e 1.0.1 | £
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THRED 1.17.1
TRED 1.21.1
THRED 1.25.1
THRED 1.29.1
THRER 1.33.1
THRERD 1.37.1
THRED 1.41.1
THRERD 1.45.1
THRER 1.48.4

|

| |
‘I'H
|

|
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2,327,577,792 s 2,420,628,372 ns

Fig. 3. On top, Alya Paraver trace execution running on 48 CPUs. On the bottom,
execution with DLB and free agent threads. Each color represents different MPI ranks.
Both traces are at the same duration time scale.

Figure4 shows the speedup comparison of the Alya kernel running with 48
MPI ranks, 1 OpenMP thread each, and a variable number of free agent threads.
Due to the fine granularity of the tasks, using more threads than needed causes
a slight performance drop, which may have been caused either by our imple-
mentation or by some scheduling decision in DLB. There is still some future
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Fig. 4. Time and Speedup of Alya running 48 MPI processes, with DLB and a variable
number of free agent threads.

work in how DLB manages free agent threads, but even with a proof of concept
implementation, the execution was always 10-20% faster.

6 Conclusions and Future Work

In this paper, we have presented a proposal to extend the OpenMP programming
model and execution model. Our proposal intends to relax the rigid fork-join
approach by allowing the OpenMP threads to participate within the parallel
region and outside of it. This approach enables leveraging the assigned process-
ing elements when the OpenMP program has not fork threads yet. For nested
parallelism, we can generalize this statement as free agent threads may partic-
ipate in the execution of work units when the application has not reached the
inner level of parallelism it was designed for.

The free agent threads are designed to execute tasks. We consider tasks
are helpful to guarantee the required malleability of an application. A resource
manager can further exploit this characteristic to balance assigned resources
between processes. As the free agent threads are not directly bound to a parallel
region, their number may increase or decrease during the program execution.
Then, tasking models and dynamic free agent threads are a powerful combination
to maximize the application performance.

In Sect.5, we have presented the results of two different scenarios: intra-
and inter-process levels. In both cases, we have proved performance benefits by
using a small set of free agent threads. In the intra-process use case, we handle
fixing the imbalance between OpenMP parallel regions, obtaining up to a 36%
speedup. In the inter-process use case, we solve the load imbalance of a hybrid
application using the DLB resource manager, and it obtains up to 20% speedup
compared to the baseline.
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As future work, we plan to further develop more use-cases that can potentially
leverage the use of free agent threads. We will also investigate the potential
interaction of such threads with other OpenMP mechanisms, as it could be the
work-sharing construct (with dynamic schedulers) or TLS based data. Finally,
we also plan to study different schedulers and implementation alternatives of
our reference framework, especially when a task executed by a free agent thread
creates more tasks.
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