
Communication-Aware Task Scheduling
Strategy in Hybrid MPI+OpenMP

Applications

Romain Pereira1,3(B), Adrien Roussel1,2, Patrick Carribault1,2,
and Thierry Gautier3

1 CEA, DAM, DIF, 91297 Arpajon, France
{romain.pereira,adrien.roussel,patrick.carribault}@cea.fr

2 Université Paris-Saclay, CEA, Laboratoire en Informatique Haute Performance
pour le Calcul et la simulation, 91680 Bruyères-le-Châtel, France
3 Project Team AVALON INRIA, LIP, ENS-Lyon, Lyon, France

thierry.gautier@inrialpes.fr

Abstract. While task-based programming, such as OpenMP, is a
promising solution to exploit large HPC compute nodes, it has to be
mixed with data communications like MPI. However, performance or
even more thread progression may depend on the underlying runtime
implementations. In this paper, we focus on enhancing the application
performance when an OpenMP task blocks inside MPI communications.
This technique requires no additional effort on the application developers.
It relies on an online task re-ordering strategy that aims at running first
tasks that are sending data to other processes. We evaluate our approach
on a Cholesky factorization and show that we gain around 19% of execution
time on an Intel Skylake compute nodes machine - each node having two
24-core processors.

Keywords: MPI+OpenMP · Task · Scheduling · Asynchronism

1 Introduction

High Performance Computing (HPC) applications target distributed machines,
which inevitably involve inter-node data exchanges that can be handled by MPI
(Message Passing Interface). But, at compute-node level, the number of cores is
increasing, and task programming models seem to be well-suited for efficient use
of all computing resources and to satisfy the needs of asynchronism. Since 2008,
OpenMP [1,14] defines a standard for task programming. This leads to codes
that finely nest MPI communications within such OpenMP tasks. Furthermore,
OpenMP 4.0 introduced data dependencies between tasks. Thus, within parallel
regions exploiting tasks, applications can be seen as a single global data-flow
graph which is distributed across MPI processes, where each process has its own
OpenMP task scheduler with no view of the global graph. This may result in
poor performance [12] and even deadlocks [19].
c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 197–210, 2021.
https://doi.org/10.1007/978-3-030-85262-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-85262-7_14


198 R. Pereira et al.

Fig. 1. Top: sub-graph of a distributed blocked Cholesky factorization mapped onto 2
MPI Ranks (matrix size: 2048 × 2048 with tile of size 512). Bottom: Gantt chart with
2 threads per MPI rank.

Fig. 2. Alternative scheduling for the graph in Fig. 1.

Deadlocks can be due to the loss of cores when threads execute blocking MPI
calls within OpenMP tasks [11]. Several solutions address this issue [16,18,20]
and enable working MPI+OpenMP(tasks) codes, but performance issues remain.

Task scheduling in this hybrid context can significantly improve the overall
performance. As an example, Fig. 1 presents a subgraph of the task dependency
graph (TDG) for a Cholesky factorization [19], and its scheduling trace on 2
processors of 2 threads each. Tasks are scheduled following a standard First In,
First Out (FIFO) policy: once precedence constraints are resolved, the first tasks
created are scheduled first. This policy leads to 61% idle time on Process 0,
partially because it is waiting for data from Process 1. A similar result would be
obtained with regular OpenMP runtimes (GNU-OpenMP [6], LLVM-OpenMP
[8]) which uses a mix of FIFO and Last In, First Out (LIFO) policies. It is
possible to reduce this idle time to 36% by adapting the scheduling policy to
prioritize inter-process edges (see Fig. 2).

This paper proposes a communication-aware task re-ordering strategy for
OpenMP that aims at reducing idle periods in hybrid MPI+OpenMP (tasks)



Communication-Aware Task Scheduling Strategy 199

applications by favoring tasks on a path to communications. This strategy relies
on hybrid scheduling techniques and proposes an automatic TDG prioritization
based on communication information. Our solution heavily leverages runtime
interoperations but requires no OpenMP/MPI extensions and no further efforts
on the user side on tasks prioritization. Section 2 presents related work.
Then, Sect. 3 highlights our task scheduling strategy and Sect. 4 exposes its
implementation and evaluation. Finally, Sect. 5 concludes and discusses future
work.

2 Related Work

The Dominant Sequence Clustering (DSC) [22] was proposed as a heuristic for
scheduling tasks on an unlimited number of distributed cores. This algorithm
distributes a fully-discovered TDG onto cores - the clustering phase - and
prioritizes tasks using global bottom and top levels. Our paper focuses on
hybrid MPI+OpenMP(tasks) which are the widely used standards in the HPC
community. With this programming model, the clustering is done by the user
which distributes OpenMP tasks onto MPI processes. Each OpenMP tasks
scheduler only has a view on its local subgraph (i.e. its cluster). The tasks
global bottom and top levels (blevel, tlevel) are not known, which leads us to
prioritize the TDG using purely local information.

MPI+OpenMP(tasks) model may lead to a loss of thread, when a thread
executes blocking MPI code within an OpenMP task [11,12]. Many works
addressed this issue [4,9,11,16,18,19]. Some approaches [4,11] consist of marking
communication tasks from user codes and dedicating threads to communication
or computation. This guarantees that both communications and computations
progress and fix deadlock issues due to the loss of threads. However, it
requires user-code adaptations and creates load balancing issues between
communication and computation threads. In 2015, MPI+ULT (User Level
Thread, Argobots) [9] proposed to run MPI code within a user-level thread, and
make it yield whenever an MPI communication blocks. In OpenMP, yielding can
be achieved using the taskyield directive. Schuchart et al. [19] explored various
implementations of it, and having implementations that effectively suspend,
enables the expression of fine MPI data movement within OpenMP tasks. This
resulted in a more efficient implementation of the blocked Cholesky factorization
with fewer synchronizations and led to new approaches on MPI+OpenMP(tasks)
interoperability, such as TAMPI [18] and MPI_Detach [16]. TAMPI was
proposed as a user library to enable blocking-tasks pause and resume mechanism.
It transforms calls to MPI blocking operations to non-blocking ones through
the PMPI interface and interoperates with the underlying tasking runtime -
typically using the taskyield in OpenMP, or nanos6_block_current_task in
Nanos6. The authors of [16] proposed another interoperability approach using the
detach clause, which implies MPI specifications extensions to add asynchronous
callbacks on communications completion, and also user code adaptations.

Among all these works, our solution on the loss of threads issue differs from [4,
11,16]: we aim at no user code modifications, and to progress both communications



200 R. Pereira et al.

and computations by any thread opportunistically. Our approach is more likely a
mix of [9,16,18] with automation through runtime interoperations. This part of
our strategy is detailed in Sect. 3.1.

Other reasons can lead to threads idling. For instance, an unbalanced
distribution of work between nodes leads to threads idling. CHAMELEON [7] is
a reactive task load balancing for MPI+OpenMP tasks applications and enables
OpenMP tasks migration between MPI processes. Another idling reason could be
communication synchronization. A dynamic broadcast algorithm for task-based
runtimes was proposed in [5] which aims at no synchronizations. Their algorithm
consists of aggregating data-send operations to a single request, which holds all
the recipients’ information. Our work assumes that the task load is balanced
across MPI processes and that applications only use asynchronous point to point
communications. Thus, our scheduling strategy should be used alongside [5,7]
to achieve the best performances in real-life applications.

Asynchronous communications progression in hybrid MPI+OpenMP tasks
programming is discussed by David Buettner et al. in [2]. They proposed an
OpenMP extension to mark tasks that contain MPI communications. This
allows them to asynchronously progress MPI communication on every OpenMP
scheduling point. We retrieved this technique in our paper, as part of our
execution model. However, we propose it without the need to mark tasks on
the user side, by adding runtime interoperability.

3 Task Scheduling Strategy

We target applications that nest MPI point-to-point communications within
OpenMP dependent tasks. Our strategy aims at scheduling first tasks that
send data to reduce idle time on the receiving side. For this purpose, let us
denote respectively recv-tasks and send-tasks tasks that contain MPI_Recv
and MPI_Send calls, or their non-blocking version - MPI_Irecv and MPI_Isend
- paired with a MPI_Wait. We will discuss in Sect. 3.3 how to identify them.
This section starts by the presentation of the assumed interoperation between
OpenMP and MPI. Then it exposes, in a progressive way, different policies to
adapt task scheduling in order to send data at the earliest: through manual
(using OpenMP priority clause) or automatic computation of the required
tasks annotation.

3.1 Interoperation Between MPI and OpenMP Runtimes

Each MPI process has its own OpenMP scheduler, which executes tasks
according to their precedence constraints (expressed through the depend clause)
and their priorities. To address the loss of cores issue introduced by a blocking
MPI communication calls, and to keep asynchronous communication progression,
we propose a mix of User Level Threads (ULT), TAMPI, and MPI_Detach
[2,9,16,18]. On the MPI runtime side, whenever a thread is about to block,
it injects a communication progression polling function inside OpenMP, to be



Communication-Aware Task Scheduling Strategy 201

called on every scheduling point - as it was proposed by D. Buettner and al.
[2]. Moreover, the MPI runtime notifies the OpenMP runtime that the current
task must be suspended. The MPI communication progresses on each OpenMP
scheduling point, and whenever it completes, MPI notifies OpenMP runtime
that the suspended task is eligible to run again. This solution enables the
progression of both communication and computation asynchronously, by any
threads opportunistically.

3.2 Manual Policies

This section presents a preliminary strategy to favor communication tasks based
on source-code modification to evaluate the overall approach. To express the
fact that a specific task contains an MPI communication or it is on a path to
such operation, this strategy relies on the OpenMP priority clause. Thus, this
section introduces 3 manual policies to annotate programs in order to fix the
priorities of each task. We call this process TDG prioritization: Fig. 3 resumes
the priorities setting by the policies.

Fig. 3. Task priorities set by the various policies for the graph Fig. 1 - the value on the
nodes corresponds to the task priority

MA-1. Relies on a binary priority 0 (the lowest) and 1 (the highest). Tasks
with priority 1 are always scheduled - once dependencies are fulfilled - over
the ones with priority 0. Here, the user has to manually sets priority 1 on
send-tasks, and sets no priority on other tasks resulting in a 0 low priority
internally. This way, whenever the scheduler has multiple tasks marked as ready
(i.e., with fulfilled dependencies), it may schedule send-tasks if there are any.
This manual prioritization policy is presented in [17].

MA-2. In similar situations to the one depicted in Fig. 1, we would also like to
prioritize all the tasks that precede a send-task, to fulfill its dependencies to
the earliest. In this specific case, the user should prioritize the path (L, M, N)



202 R. Pereira et al.

to resolve O dependency constraint. MA-2 consists in setting to 1 the priority on
send-tasks and on all their predecessors recursively.

MA-3. MA-2 does not allow to finely distinguish send-tasks and their path.
However, this is important since sent data may be needed by a remote node
earlier or later. The earlier the data is needed in a remote rank, the earlier it
should be sent. MA-3 relies on discrete priorities to prioritize various send-tasks
distinctly. One way is to use their depth in the local TDG: the shorter the path
to the send-task in the local TDG, the higher the priorities on its paths. This
prioritization follows Algorithm 1 and is illustrated in Fig. 3. Send-tasks are set
with the maximum priority (line 3). If the task has no successor (lines 4–5) or if
no path from it leads to a send-task (lines 8–10), then we set no priority for it.
Otherwise, there is a path from the current task to a send-task and we set its
priority by decrementing the value of the highest priority among its successors
(line 12).

In practice, the MA-3 strategy requires the user to annotate every task on a
path that contains a send-task.

Algorithm 1. Task prioritization
Input: Task T
Output: P(T) - the priority of T
1: function ComputePriority(T)
2: if T is a send-task then
3: return omp_get_max_priority()
4: if Successors(T ) = Ø then
5: return 0
6: for all S ∈ Successors(T ) do
7: P(S) = ComputePriority(S)
8: M = max({P (S) | S ∈ Successors(T )})
9: if M = 0 then

10: return 0
11: else
12: return M - 1

3.3 (Semi-)Automatic Policies

While MA-3 reduces the idling periods by sending data to the earliest, manually
prioritizing the TDG is tedious to implement at user level. Users will have to
manually compute the depth of each tasks in the local TDG, and setting the
priority clause accordingly. From the runtime point of view, this information
could be tracked. So, we propose two runtime automations on the TDG
prioritization to reduce user programming efforts to identify predecessors of a
task as well as to identify communication tasks.



Communication-Aware Task Scheduling Strategy 203

SA. In the Semi-Automatic (SA) approach, the user simply marks send-tasks
with an arbitrary priority. Once a task construct is encountered, the runtime is
guaranteed that all of its predecessors were already created too. So, the runtime
internally sets its priority to the highest value, and automatically propagates it
through the TDG following Algorithm 1.

FA. SA enables a more straightforward MA-3 implementation but it still
requires the user to mark send-tasks. The Fully-Automatic (FA) approach
enables a TDG prioritization similar to MA-3, but with absolutely no hints
given by the users to the runtime, by adding fine collaboration between MPI
and OpenMP runtimes. At execution time, whenever MPI is about to perform
a send operation, it notifies the OpenMP runtime. If the current thread was
executing an explicit task, it registers its profile with information such as its:

– size (shared variables)
– properties (tiedness, final-clause, undeferability, mergeability, if-clause)
– parent task identifier (the task that spawns current task)
– number of predecessors (fully-known at run-time)
– number of successors (may be incomplete)

Then, future tasks may be matched with registered profiles to detect
send-tasks. This approach uses full-matching on the size, the properties,
the parent task identifier, and the number of predecessors. It mainly targets
iteration-based applications, where send-tasks profiles are likely to be identical
between iterations.

The send-tasks cannot be detected until a task with a similar profile was
scheduled, performed an MPI send operation, and registered its profiles in the
OpenMP runtime. So unlike the SA policy, the prioritization cannot be done on
task constructs with FA. We propose to perform it asynchronously during idle
periods. This way, the runtime is more-likely to have detected send-tasks when
performing the matching, and idle periods are overlapped by the prioritization
without slowing down ready computations. Algorithm 2 is a single-threaded
asynchronous TDG prioritization proposal. The parameter ROOTS corresponds
to the task-nodes from which the prioritization should start, i.e. the blocking
tasks. Line 9 to 17 consists of breadth-first-searching leaves, so we have them
sorted by their depth in the TDG. Line 18 to 24 goes up from founded leaves
to roots, matching tasks with registered profiles and propagating the priority to
predecessors.

Table 1. Summary of approaches

Policies MA-1 MA-2 MA-3 SA FA

send-tasks u u u u r
send-tasks path N/A u u r r
u - user/manual
r - runtime/automatic



204 R. Pereira et al.

Algorithm 2. Priority propagation (single-thread, during idle periods)
1: Variables
2: List D, U � D, U stands for DOWN, UP
3: Task T, S, P
4:
5: procedure Prioritize(ROOTS) � Prioritize the TDG from given root nodes
6: D = [], U = [] � Empty lists
7: for T in ROOTS do
8: Append T to D � Add T to the tail of D
9: while D is not empty do

10: T = D.pop() � Pop T from D’s head
11: if T has successors then
12: for S in Successors(T ) do
13: if S is not VISITED then
14: Mark S as VISITED
15: Append S to D
16: else
17: Append T to U
18: while U is not empty do
19: if T is not queued then
20: Set T.priority � match with registered task profiles
21: for P in Predecessors(T ) do
22: if P.priority < T.priority - 1 then
23: P.priority = T.priority - 1
24: Prepend T to U

3.4 Summary

Table 1 summarizes the different approaches of computing priorities on tasks
that perform MPI communications and tasks that contribute to execute
communications (through OpenMP task dependencies). Almost all policies
require user modifications of the application source code (through priority
OpenMP clause) to mark tasks that perform send operations except the FA
strategy that automatically detects such tasks by comparing profiles with
previously-executed tasks. Furthermore, marking the whole path from the source
task to the ones that perform MPI operations can be done manually (approaches
MA2 or MA3) or automatically (approaches SA or FA).

4 Implementation and Evaluation

4.1 Implementation

The scheduling strategy and the different policies presented in Sect. 3 were
implemented into MPC [15]: a unified runtime for MPI and OpenMP 1. It is
based on hierarchical work-stealing, similar to [13,21], where red-black tree
1 Available at: http://mpc.hpcframework.com/.

http://mpc.hpcframework.com/


Communication-Aware Task Scheduling Strategy 205

priority queues are placed at the different topological levels built from the
hardware topology [10]. Each thread is assigned to multiple queues, and steal
tasks from other queues when it falls idle. The task with the highest priority is
popped from the selected queue.

To implement the interoperability approach presented Sect. 3.1, we made
two modifications to MPC framework. First of all, we added an MPC-
specific OpenMP entry-point to suspend the current task until an associated
event is fulfilled - mpc_omp_task_block(omp_event_t event). When a
thread is about to block on an MPI call, it suspends its current task
through this routine. The communication progresses, and on completion,
omp_fulfill_event(omp_event_t event) is called so that the associated task
is eligible to resume.

Furthermore, to avoid deadlocks, we added contexts to OpenMP tasks in
MPC based on a modified version of the <ucontext> C library to handle
MPC-specific TLS [3]. This add some extra instructions on tasks management
measured using Callgrind. For each task, contexts added ∼ 200 instructions
on launch, ∼ 2000 instructions on the first suspension, and ∼ 200 instructions
each time a task suspends.

Based on these modifications, we implemented the MA-1, MA-2, SA and
FA approaches presented in the previous section. However, MA-3 was not
implemented since it is too tedious on the user-side.

Task prioritization is done synchronously on task construct in the SA policy.
In the FA policy it is done asynchronously: whenever a thread falls idle,
it runs Algorithm 2 with ROOTS being the list of tasks suspended through
mpc_omp_task_block.

4.2 Evaluation Environment

We present the result of multiple experiments on the fine-grained blocked
Cholesky factorization benchmark. We denote n the size of the matrix to
factorize, and b the size of the blocks. The time complexity of the factorization
is O(n3), and the memory used is about 8n2 bytes.

All experiments run onto Intel Skylake nodes (two 24-core Intel(R) Xeon(R)
Platinum 8168 CPU @ 2.70GHz, with 96GB of DDR). Interconnection network
is a Mellanox ConnectX-4 (EDR 100Gb/s InfiniBand) system. MPC (commit
702ce5c2) was configured with optimizations enabled, and compiled with GCC
7.3.0. We forked J. Schuchart fine-grained blocked Cholesky factorization
benchmark.2 The benchmark is compiled with MPC patched GCC [3], linked
with Intel Math Kernel Library (MKL 17.0.6.256), MPC-MPI, and MPC-
OpenMP. Each run uses SLURM exclusive parameter, which ensures that no
other jobs may run concurrently on the same node. Each time corresponds to
medians taken on 20 measurements.

To evaluate our strategy and different policies of Sect. 3 we compare measured
performance against the FIFO reference policy, previously explained in Sect. 1.

2 Sources are available at: https://gitlab.inria.fr/ropereir/iwomp2021.

https://gitlab.inria.fr/ropereir/iwomp2021


206 R. Pereira et al.

This policy does nothing except that the MPC MPI and OpenMP runtimes
interoperate to avoid deadlocks.

Fig. 4. Cholesky factorisation time based on the prioritization policy, and the
MPI/OMP cores spreading on 16 Skylakes nodes (e.g., 16–48 stands for 16 MPI ranks
of 48 threads each) - with a matrix of size n = 131072, and blocks of size 512.

4.3 Experimental Results

Figure 4 shows the impact of cores spreading between MPI and OpenMP on
the performance of each prioritization policy described in Sect. 3. The time
was measured using a tool that traces every MPC-OpenMP tasks events and
replay the schedule post-mortem to extract in-tasks (time spent in tasks
body - MKL computation, non-blocking MPI communications initialization),
idle (time spent outside tasks with no ready-tasks - idling, communications
progression, prioritizations in FA), and overhead categories (time spent outside
tasks with ready-tasks - tasks management, communications progression). The
matrix size is n = 131072, and 16 fully-allocated Skylake nodes. The benchmark
ran with different spreading configurations. On the left-most bars, there are 16
MPI ranks of 48 OpenMP threads each (1 MPI rank per node). On the right-
most bars, there are 128 MPI ranks of 6 threads each (8 MPI ranks per node). In
configurations with multiple MPI ranks on the same node, OpenMP threads of
the same MPI rank always are on the same NUMA node. Note that the amount
of computation between each configuration remains constant, there are precisely
2.829.056 OpenMP computation tasks in each run distributed across MPI ranks.
The number of communication tasks increases with the number of MPI ranks
and is depicted in Table 2.



Communication-Aware Task Scheduling Strategy 207

Table 2. Number of point-to-point communication tasks in Fig. 4 runs

Cores spreading (MPI-OpenMP) 16–48 32–24 64–12 128–6

P2P communication tasks (overall) 388.624 640.632 892.640 1.372.880

This result demonstrates that tasks prioritization in MPI+OpenMP tasks
applications can have significant impact on performance (as predicted in Figs. 1
and 2). First of all, MA-1 and MA-2 policies are not sufficient and they do not
improve performance over the baseline FIFO policy. By prioritizing send-tasks
and their path, the policies SA and FA significantly reduce idle periods. For
instance in the 32-24 spreading, the total execution time and the idle time
respectively are 33.2s and 8.0s for the FIFO policy, 28.4s and 4.4s for FA policy.
However, being fully automatic has some costs. The FA policy is never as good
as the SA one, with up to a 8% overhead in the 128-6 spreading. For FA,
the prioritization only occurs once some send-tasks execution, their profile
is registered and eventually a thread becomes idle to set and propagate the task
priority. It means there is no prioritization for the first executed tasks. Moreover,
the profile registering and matching mecanisms induce some overhead.

The 32-24 scheme reaches the best performance thanks to NUMA domain
data-locality. MPC-MPI also optimizes intra-node rank exchanges, processing
them in shared memory.

Table 3. Execution times of runs in Fig. 5

Number of MPI ranks 1 2 4 8 16 32

FIFO 22.28 s 24.05 s 25.82 s 26.46 s 31.02 s 33.36 s.
SA 22.67 s 24.46 s 24.58 s 24.91 s 25.96 s 27.01 s.
FA 22.63 s 24.48 s 25.05 s 25.38 s 26.27 s 27.89 s

Figure 5 is a weak-scaling on MPI ranks. Each time corresponds to the time
spent by MPI processes in the factorization, given by the benchmark itself. The
efficiency is relative to the mono-rank execution per prioritization policy, this is
why times are also given in Table 3. Each MPI process fills a Skylake processor,
with 24 OpenMP threads. The scaling starts from a single processor on 1 node,
with a matrix factorization of size n = 41286, which represents 13% of the node
memory capacity. The scaling ends at 16 nodes, with 32 MPI ranks, and a matrix
of size n = 131072. The exact number of tasks is given in Table 4, where the
compute category corresponds to potrf, gemm, syrk and trsm tasks, and the
communication category to send-tasks and recv-tasks.



208 R. Pereira et al.

Fig. 5. Weak-scaling on MPI ranks, on the blocked Cholesky factorisation, with blocks
of size 512, and MPI processes with 24 OMP threads per rank (Skylake socket)

Table 4. Figure 5 tasking details

Number of ranks 1 2 4 8 16 32

Matrix size (n) 41.286 52.015 65.536 82.570 104.031 131.072

Number of computation tasks 88.560 176.851 357.760 708.561 1.414.910 2.829.056

Number of communication tasks 0 10.100 32.512 102.082 243.616 640.632

In this application, the tasks graph is evenly distributed across MPI ranks.
Data-dependencies are whether retrieved from local compute tasks or through
recv-tasks completion. The weak-scaling result depicted in Fig. 5 scales the
number of communications, while keeping constant computation work per MPI-
rank. This experiment amplifies the inter-node data exchanges, and thus, the
idling phenomenon we have introduced. We see that MA-1 and MA-2 prioritization
does not improve the performance scaling compared to the reference FIFO
prioritization. SA and FA prioritization enables better performance scaling, with
up to 19% performance gain in the 32 ranks configuration.

5 Conclusion and Future Work

MPI+OpenMP task programming encounters some interoperability issues that
lead to thread idling. Solutions were proposed to address the loss of cores, the
load balancing, or the communication collectives, but scheduling issues remain.
This paper proposes a task scheduling strategy for OpenMP schedulers to reduce
idle periods induced by MPI communications, by favoring send-tasks. We
propose and evaluate several policies from purely manual approaches which
require user cooperation to fully automatic policy.



Communication-Aware Task Scheduling Strategy 209

The best method significantly improves performance and scaling of the
Cholesky factorization [19], with up to 19% performance gain in our largest
run. Some overhead in the fully automatic strategy has been identified and we
are planning to improve graph traversal to reduce the runtime cost.

For future work, we plan to validate our approach on a wider set of
applications. Furthermore, in this paper, we only considered explicit data
dependencies expressed through the depend clause: we consider adding support
for control dependencies. Also, prioritization of send-tasks is purely based
on local information (the dependency graph between OpenMP tasks) without
taking into account task dependencies in other MPI ranks. We are thinking to
improve our strategy by taking into account global information.

References

1. Ayguadé, E., et al.: A proposal for task parallelism in OpenMP. In: Chapman,
B., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007.
LNCS, vol. 4935, pp. 1–12. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-69303-1_1

2. Buettner, D., Acquaviva, J.T., Weidendorfer, J.: Real asynchronous MPI
communication in hybrid codes through OpenMP communication tasks, pp. 208–
215 (December 2013). https://doi.org/10.1109/ICPADS.2013.39

3. Carribault, P., Pérache, M., Jourdren, H.: Thread-local storage extension to
support thread-based MPI/OpenMP applications. In: Chapman, B.M., Gropp,
W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS, vol. 6665, pp. 80–93.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21487-5_7

4. Chatterjee, S., et al.: Integrating asynchronous task parallelism with MPI. In: 2013
IEEE 27th International Symposium on Parallel and Distributed Processing, pp.
712–725 (2013). https://doi.org/10.1109/IPDPS.2013.78

5. Denis, A., Jeannot, E., Swartvagher, P., Thibault, S.: Using dynamic broadcasts
to improve task-based runtime performances. In: Euro-Par - 26th International
European Conference on Parallel and Distributed Computing. Euro-Par 2020,
Rzadca and Malawski, Springer, Warsaw, Poland (August 2020). https://doi.org/
10.1007/978-3-030-57675-2_28, https://hal.inria.fr/hal-02872765

6. GNU Project: GOMP - An OpenMP implementation for GCC. https://gcc.gnu.
org/projects/gomp/

7. Klinkenberg, J., Samfass, P., Bader, M., Terboven, C., Müller, M.: CHAMELEON:
reactive load balancing for hybrid MPI+OpenMP task-parallel applications. J.
Parallel Distrib. Comput. 138, 55–64 (2019). https://doi.org/10.1016/j.jpdc.2019.
12.005

8. LLVM Project: OpenMP R©: Support for the OpenMP language. https://openmp.
llvm.org/

9. Lu, H., Seo, S., Balaji, P.: MPI+ULT: overlapping communication and
computation with user-level threads, pp. 444–454 (2015). https://doi.org/10.1109/
HPCC-CSS-ICESS.2015.82

10. Maheo, A., Koliaï, S., Carribault, P., Pérache, M., Jalby, W.: Adaptive OpenMP
for large NUMA nodes, pp. 254–257 (June 2012). https://doi.org/10.1007/978-3-
642-30961-8_720

https://doi.org/10.1007/978-3-540-69303-1_1
https://doi.org/10.1007/978-3-540-69303-1_1
https://doi.org/10.1109/ICPADS.2013.39
https://doi.org/10.1007/978-3-642-21487-5_7
https://doi.org/10.1109/IPDPS.2013.78
https://doi.org/10.1007/978-3-030-57675-2_28
https://doi.org/10.1007/978-3-030-57675-2_28
https://hal.inria.fr/hal-02872765
https://gcc.gnu.org/projects/gomp/
https://gcc.gnu.org/projects/gomp/
https://doi.org/10.1016/j.jpdc.2019.12.005
https://doi.org/10.1016/j.jpdc.2019.12.005
https://openmp.llvm.org/
https://openmp.llvm.org/
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.82
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.82
https://doi.org/10.1007/978-3-642-30961-8_720
https://doi.org/10.1007/978-3-642-30961-8_720


210 R. Pereira et al.

11. Marjanovic, V., Labarta, J., Ayguadé, E., Valero, M.: Effective communication and
computation overlap with hybrid MPI/smpss, vol. 45, pp. 337–338 (2010). https://
doi.org/10.1145/1693453.1693502

12. Meadows, L., Ishikawa, K.: OpenMP tasking and MPI in a lattice QCD benchmark.
In: de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S.
(eds.) IWOMP 2017. LNCS, vol. 10468, pp. 77–91. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65578-9_6

13. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M., Prins, J.F.: OpenMP
task scheduling strategies for multicore NUMA systems. Int. J. High Perform.
Comput. Appl. 26(2), 110–124 (2012). https://doi.org/10.1177/1094342011434065

14. OpenMP Architecture Review Board: OpenMP application program interface
version 3.0 (May 2008). http://www.openmp.org/mp-documents/spec30.pdf

15. Pérache, M., Jourdren, H., Namyst, R.: MPC: a unified parallel runtime for clusters
of NUMA machines. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par 2008.
LNCS, vol. 5168, pp. 78–88. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85451-7_9

16. Protze, J., Hermanns, M.A., Demiralp, A., Müller, M.S., Kuhlen, T.: MPI detach
- asynchronous local completion. In: 27th European MPI Users’ Group Meeting,
pp. 71–80. EuroMPI/USA 2020, Association for Computing Machinery, New York,
NY, USA (2020). https://doi.org/10.1145/3416315.3416323

17. Richard, J., Latu, G., Bigot, J., Gautier, T.: Fine-grained MPI+OpenMP plasma
simulations: communication overlap with dependent tasks. In: Yahyapour, R.
(ed.) Euro-Par 2019. LNCS, vol. 11725, pp. 419–433. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29400-7_30, https://hal-cea.archivesouvertes.
fr/cea-02404825

18. Sala, K., Teruel, X., Perez, J.M., Peña, A.J., Beltran, V., Labarta, J.: Integrating
blocking and non-blocking MPI primitives with task-based programming models.
Parallel Comput. 85, 153–166 (2019). https://doi.org/10.1016/j.parco.2018.12.008

19. Schuchart, J., Tsugane, K., Gracia, J., Sato, M.: The impact of taskyield on the
design of tasks communicating through MPI. In: de Supinski, B.R., Valero-Lara,
P., Martorell, X., Mateo Bellido, S., Labarta, J. (eds.) IWOMP 2018. LNCS,
vol. 11128, pp. 3–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98521-3_1

20. Seo, S., et al.: Argobots: A lightweight low-level threading and tasking framework.
IEEE Trans. Parallel Distrib. Syst. 29(3), 512–526 (2018). https://doi.org/10.
1109/TPDS.2017.2766062

21. Virouleau, P., Broquedis, F., Gautier, T., Rastello, F.: Using data dependencies
to improve task-based scheduling strategies on NUMA architectures. In: Euro-Par
2016. Euro-Par 2016, Grenoble, France (August 2016). https://hal.inria.fr/hal-
01338761

22. Yang, T., Gerasoulis, A.: DSC: scheduling parallel tasks on an unbounded number
of processors. Parallel Distrib. Syst. IEEE Trans. 5, 951–967 (1994). https://doi.
org/10.1109/71.308533

https://doi.org/10.1145/1693453.1693502
https://doi.org/10.1145/1693453.1693502
https://doi.org/10.1007/978-3-319-65578-9_6
https://doi.org/10.1007/978-3-319-65578-9_6
https://doi.org/10.1177/1094342011434065
http://www.openmp.org/mp-documents/spec30.pdf
https://doi.org/10.1007/978-3-540-85451-7_9
https://doi.org/10.1007/978-3-540-85451-7_9
https://doi.org/10.1145/3416315.3416323
https://doi.org/10.1007/978-3-030-29400-7_30
https://hal-cea.archivesouvertes.fr/cea-02404825
https://hal-cea.archivesouvertes.fr/cea-02404825
https://doi.org/10.1016/j.parco.2018.12.008
https://doi.org/10.1007/978-3-319-98521-3_1
https://doi.org/10.1007/978-3-319-98521-3_1
https://doi.org/10.1109/TPDS.2017.2766062
https://doi.org/10.1109/TPDS.2017.2766062
https://hal.inria.fr/hal-01338761
https://hal.inria.fr/hal-01338761
https://doi.org/10.1109/71.308533
https://doi.org/10.1109/71.308533

	Communication-Aware Task Scheduling Strategy in Hybrid MPI+OpenMP Applications
	1 Introduction
	2 Related Work
	3 Task Scheduling Strategy
	3.1 Interoperation Between MPI and OpenMP Runtimes
	3.2 Manual Policies
	3.3 (Semi-)Automatic Policies
	3.4 Summary

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Evaluation Environment
	4.3 Experimental Results

	5 Conclusion and Future Work
	References




