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Abstract. GPU runtimes are historically implemented in CUDA or
other vendor specific languages dedicated to GPU programming. In this
work we show that OpenMP 5.1, with minor compiler extensions, is
capable of replacing existing solutions without a performance penalty.
The result is a performant and portable GPU runtime that can be com-
piled with LLVM/Clang to Nvidia and AMD GPUs without the need for
CUDA or HIP during its development and compilation.

While we tried to be OpenMP compliant, we identified the need
for compiler extensions to achieve the CUDA performance with our
OpenMP runtime. We hope that future versions of OpenMP adopt
our extensions to make device programming in OpenMP also portable
across compilers, not only across execution platforms.

The library we ported to OpenMP is the OpenMP device runtime
that provides OpenMP functionality on the GPU. This work opens the
door for shipping OpenMP offloading with a Linux distribution’s LLVM
package as the package manager would not need a vendor SDK to build
the compiler and runtimes. Furthermore, our OpenMP device runtime
can support a new GPU target through the use of a few compiler intrin-
sics rather than requiring a reimplementation of the entire runtime.

Keywords: OpenMP · LLVM · Portability · Target offloading ·
Runtimes · Accelerator

1 Introduction

In this paper, we describe how we ported the LLVM OpenMP device runtime
library to OpenMP 5.1 using only minor extensions not available in the stan-
dard. The OpenMP device runtime provides the OpenMP functionalities to
the user and implementation code on the device, which in this context means
on the GPU. As an example, it provides the OpenMP API routines as well as
routines utilized by the compiler e.g., for worksharing loops.
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Our work replaced the original LLVM OpenMP device runtime implemented
in CUDA to allow for code reusibility between different targets, e.g. AMD and
Nvidia. It further lowers the bar to entry for future targets that only need to
provide a few target specific intrinsics and minimal glue code.

The OpenMP device runtime library can now be shipped with pre-built
LLVM packages as they only need LLVM/Clang to build it; neither a target
device nor vendor SDKs are required, which lowers the barrier to entry for
OpenMP offloading. This work is a proof of concept for writing device run-
time libraries in OpenMP, with identical functionality and performance to that
available from CUDA or HIP compiled with the same LLVM version.

The remainder of the paper is organized as follows. We discuss background
and motivation in Sect. 2. Section 3 presents our approach, which is followed by
an evaluation in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Background

When compiling from one language to another, there are usually constructs that
are straightforward in the former and complicated or verbose in the latter. For
example, a single OpenMP construct #pragma omp parallel for is lowered
into a non-trivial amount of newly introduced code in the application, including
calls into a runtime that provides certain functionality, like dividing loop iter-
ations. In this work, the input is OpenMP target offloading code, that is the
OpenMP target directive and the associated code, and the output is ultimately
Nvidia’s PTX or AMD’s GCN assembler.

2.1 Device Runtime Library

The LLVM OpenMP device runtime library contains the various functions the
compiler needs to implement OpenMP semantics when the target is an Nvidia
or AMD GPU. The original implementation in LLVM was in CUDA [8], compiled
with Nvidia’s NVCC to PTX assembler which was linked with the application
code to yield a complete program. The source was later adapted to compile
alternatively as HIP, which is close enough to CUDA syntax for the differences to
be worked around with macros. Prior to this work the device runtime was hence
comprised of sources in a common and target dependent part. In order to let the
target dependent compiler recognize the code, target dependent keywords (such
as __device__ and __shared__ in CUDA) are replaced with macros (DEVICE
and SHARED), and the header where these macros are defined will be included
accordingly depending on the target. The basic idea is visualized in Listing 1.

// Common part
DEVICE void *__kmpc_alloc_shared(uint64_t bytes);
SHARED int shared_var;
// CUDA header
#define DEVICE __device__
#define SHARED __shared__
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// AMDGCN header
#define DEVICE __attribute__ (( device))
#define SHARED __attribute__ (( shared))

Listing 1. Macros in current device runtime.

This strategy works. For Nvidia offloading the source is compiled as CUDA,
for AMDGPU offloading it is compiled as HIP. Both produce LLVM bitcode
but with different final targets, Nvidia’s PTX and AMD’s GCN respectively.
However, if a programming model does not adequately resemble CUDA, such as
OpenCL or Intel’s DPC++ [3], the approach will become less straight forward.

What’s more, this setup requires vendor SDKs (such as CUDA Toolkit or
ROCm Developer Tools) to compile the device runtime, which creates a barrier
for the package managers of Linux distributions. In practice that means the
LLVM OpenMP installed from Linux distributions does not support offloading
out of the box because the package would require a dependence on the CUDA
or ROCm package, among other things.

2.2 Compilation Flow of OpenMP Target Offloading in
LLVM/Clang

The compilation of an OpenMP program with target offloading directives con-
tains the following two passes (as shown in Fig. 1):

Host Code Compilation. This pass includes the regular compilation of code
for the host and OpenMP offloading code recognition as preparation for the
second pass. Offloading regions are replaced by calls to the corresponding
host runtime library functions (e.g. __tgt_target for the directive target
in LLVM OpenMP) with suitable arguments, such as the kernel function
identifier, base pointers of each captured variables and the number of kernel
function arguments. In addition, a fallback host version of the kernel function
will be emitted in case target offloading fails at runtime.

Device Code Compilation. This pass utilizes the recognized OpenMP target
offload regions, as well as related functions and captured variables, and then
emits target dependent device code. This includes one entry kernel function
per target region, global variables (potentially in different address spaces),
and device functions, as well as some target dependent metadata. As part of
this compilation the OpenMP device runtime library is linked into the user
code as an LLVM bitcode library (dev.rtl.bc in the Fig. 1).

In addition to the target construct (as well as its combined variants), OpenMP
provides the declare target directive which specifies that variables and func-
tions are mapped onto a target device, and should hence be usable in device
code. The declare variant directive can be used to specify a context, e.g., the
compilation for a specific target, in which a specialized function variant should
replace the base version.
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Fig. 1. Compilation flow of an OpenMP program with target offloading.

2.3 Motivation

While the OpenMP device runtime library can be implemented in any language
it should be linked into the application in LLVM bitcode format for performance
reasons. This setup, shown in Fig. 1, allows to optimize the runtime together with
the application, effectively specializing a generic runtime as needed.

Given that the base language is irrelevant as long as we can compile to
LLVM bitcode, OpenMP comes to mind as a portable and performant way to
write code for different accelerators. As almost the entire device library can be
interpreted as C++ code, rather than a CUDA or HIP code base, the compilation
as OpenMP is feasible, in particular because LLVM/Clang is a working C++
and OpenMP compiler already.

Since OpenMP 5.1 all conceptually necessary building blocks are present in
the language specification:

– The declare target directive can be used to compile for a device, hence to
generate LLVM bitcode that is targeting Nvidia’s PTX or AMD’s GCN. As
we do not need a host version at all, we can even use the LLVM/Clang flag
-fopenmp-is-device to invoke only the device compilation pass described in
Sect. 2.2.

– The declare variant directive can be used if a target requires a function
implementation or global variable definition different from the default.

– The allocate directive provides access to the different kinds of memory on
the GPU.

For an additional target architecture, the work done in the compiler backend to
emit code for that architecture will allow one to retarget an OpenMP imple-
mented device runtime almost without any additional effort. The incremental
development cost is reduced from (re)implementing the device runtime in a lan-
guage that can be compiled to the new architecture to providing a few declare
variant specialisations.
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Finally, if the port uses compiler intrinsics instead of CUDA or HIP functions
for the small target dependent part, it can be compiled without a vendor specific
SDK present. This unblocks shipping offloading as part of Linux distributions.

3 Implementation

In this section, we describe the new LLVM OpenMP device runtime imple-
mented with OpenMP 5.1. First, we talk about the common part, and then
discuss how target dependent parts are implemented and why extensions were
necessary. Only AMD and Nvidia platforms are discussed as other GPU archi-
tectures cannot be targeted by the community LLVM version at this time.

3.1 Common Part

Device Code
Using the declare target directive around all source files causes all functions
and data to be emitted for the target device. Macros to indicate that functions
or globals are for the device, as shown in Listing 1, are not needed.

Global Shared Variables
The implementation of the device runtime maps an OpenMP team to a thread
block1 on the target device. Therefore, a shared variable visible to all threads in
the same thread block is equivalent to a variable that can be accessed within the
same OpenMP team. The allocate directive specifies how to allocate variables
in different memory spaces. Uses with an allocator(omp_cgroup_mem_alloc)2

we can place global variables in local shared memory, the equivalent of the CUDA
__shared__ shown in Listing 1.

In contrast to shared CUDA or HIP variables, C++ specifies that global
variables are default initialized. While we can technically do this for global
shared variables defined with OpenMP, it is not supported by LLVM/Clang
at this time. Furthermore, the performance is likely to suffer as the device
runtime is designed to initialize these variables explicitly on demand. To
this end, we extended LLVM/Clang with a variable attribute for this work:
loader_uninitialized [1]. The effect is that annotated variables will not have
a default initialized value but instead be uninitialized like the CUDA or HIP
shared variables are as well.

Listing 2 shows device code and global shared variable declaration as it is
used in our OpenMP device runtime.

#pragma omp begin declare target

// Function declaration
extern __kmpc_impl_threadfence ();

1 We are using CUDA terminology here. For AMD platforms it is wavefront.
2 The implementation currently uses allocator(omp_pteam_mem_alloc) which is

equivalent given the current mapping of parallelism.
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// Function definition
void __kmpc_flush(kmp_Ident *loc) {

__kmpc_impl_threadfence ();
}
// Global variable
int global_var;
// Shared variable
int shared_var;
#pragma omp allocate(shared_var). \

allocator(omp_pteam_mem_alloc )
// Shared variable declaration
extern int other_shared_var;
#pragma omp allocate(other_shared_var) \

allocator(omp_pteam_mem_alloc )

#pragma omp end declare target

Listing 2. An example of new device runtime code.

Atomic Operations
The device runtime uses five atomic operations, add, inc, max, exchange, and
cas, implemented in target dependent parts with LLVM/Clang builtin functions.

OpenMP 5.1 [4] introduces the compare clause, which supports conditional
update statements. When combined with the capture clause, all of these atomic
operations except inc can be implemented via OpenMP, as shown in Listing 3.
We implemented the support of the compare clause and its combination with
the capture clause for LLVM/Clang but the it has not been merged into the
community version yet. With the updated requirements for flush3, which we also
implemented for this work, our OpenMP versions of atomic operations can gen-
erate LLVM-IR that is identical to the original target dependent implementation
via compiler intrinsics.

uint32_t atomic_add(uint32_t *X, uint32_t E) {
uint32_t V;

#pragma omp atomic capture seq_cst
{ V = *X; *X += E; }
return V;

}
uint32_t atomic_max(uint32_t *X, uint32_t E) {

uint32_t V;
#pragma omp atomic compare capture seq_cst

{ V = *X; if (*X < E) { *X = E; } }
return V;

}
uint32_t atomic_exchange(uint32_t *X, uint32_t E) {

uint32_t V;

3 OpenMP 5.1 removes the requirement for a flush operation at the entry and exit
of an atomic operation if write, update, or capture is specified and the memory
ordering is seq_cst.
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#pragma omp atomic capture seq_cst
{ V = *X; *X = E; }
return V;

}
uint32_t atomic_cas(uint32_t *X, uint32_t E, uint32_t D) {

uint32_t V;
#pragma omp atomic compare capture seq_cst

{ V = *X; if (*X == E) { *X = D; } }
return V;

}

Listing 3. Atomic operations implemented in OpenMP 5.1.

The missing atomic operation is inc. According to the CUDA specification [2],
inc implements:

{ v = x; x = x >= e ? 0 : x + 1; }

and returns v. This atomic operation can not be represented in a form that
OpenMP 5.1 supports because OpenMP 5.1 requires that the order operation
be either < or >, and the alternative statement of the conditional expression
statement must be x itself. Therefore, we still keep it in the target dependent
part implemented with LLVM intrinsics as shown in Listing 4.

3.2 Target Specific Part

Target dependent global functions and variables are currently declared in a
header and implemented in target dependent source files which are only com-
piled for the specific target, either as CUDA or HIP. A drawback of this method
is that the creation of a device runtime for a new target might require us to
remove a function from the common part and insert it into the target specific
part if the existing (common) implementation is not suited for the new device.

SinceOpenMP 5.0, the declare variant directive declares a specialized vari-
ant of a base function and specifies the context in which that specialized variant
is used. It supports various context selector with the match clause, one of which
is device selector. For example, with match(device={arch(arch_name)}), the
code wrapped in a begin/end declare variant region will be only generated if
the target architecture matches the arch_name.

Listing 4 shows how the atomic inc function is implemented with target
dependent compiler intrinsics selected via the begin/end declare variant
directive for both Nvidia and AMD GPU targets.

Note that we use the match_any extension for Nvidia platforms as we support
two distinct architectures, nvptx and nvptx64, but we do not want to distinguish
between them in the device runtime. While this can be handled by duplicating
the code, our new context selector changes the semantic of the matching to
produce a match if any architecture in arch(nvptx, nvptx64) is targeted. By
default a match would require all architectures to be targeted. In addition to
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match_any we extended LLVM/Clang with other useful context selectors, e.g.,
match_none and allow_templates4.
#pragma omp declare target
// Fallback version , which raises a compilation error
uint32_t atomic_inc(uint32_t *X, uint32_t E) {

error("target␣dependent␣implementation␣missing");
}
// AMDGCN implementation
#pragma omp begin declare variant \

match(device ={arch(amdgcn)})
uint32_t atomic_inc(uint32_t *X, uint32_t E) {

return __builtin_amdgcn_atomic_inc32(X, E,
__ATOMIC_SEQ_CST , "");

}
#pragma omp end declare variant
// NVPTX implementation
#pragma omp begin declare variant \

match(device ={arch(nvptx ,nvptx64)}, \
implementation ={ extension(match_any)})

uint32_t atomic_inc(uint32_t *X, uint32_t E) {
return __nvvm_atom_inc_gen_ui(X, E);

}
#pragma omp end declare variant
#pragma omp end declare target

Listing 4. Atomic inc implementation with the match_any clause.

Other target dependent functions are required to handle synchronization, thread
hierarchy, etc. These are implemented via compiler intrinsics, function calls to
the corresponding native runtime library, or inline assembly.

4 Evaluation

In this section, we evaluated our proposed method in three ways: code compar-
ison, functional testing, and performance evaluation.

4.1 Code Comparison

The previous implementation compiled CUDA to LLVM-IR, and HIP to LLVM-
IR, while our proposed method compiles OpenMP to LLVM-IR for both plat-
forms. The accuracy of the port to OpenMP was assessed by comparing the
emitted LLVM IR of the library before and after changing over to OpenMP. If
the text forms were identical, we would be certain the language change made
no difference. This was not quite the case. The differences were in semanti-
cally unimportant metadata, symbol name mangling for variant functions, and
the order of inlining as preferred by the language front end which had minor
reordering effects on PTX and GCN generation.
4 See: https://clang.llvm.org/docs/AttributeReference.html#pragma-omp-declare-

variant.

https://clang.llvm.org/docs/AttributeReference.html#pragma-omp-declare-variant
https://clang.llvm.org/docs/AttributeReference.html#pragma-omp-declare-variant
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4.2 Functional Testing

There are a number of OpenMP test suites and applications in use for checking
the behaviour of the compiler, including SOLLVE V&V [7], and Ovo [5]. All
ran identically with the new OpenMP runtime as they had using the previous
device runtime.

4.3 Performance Evaluation

Systems Configuration. We evaluate the performance of our method experi-
mentally on the Summit supercomputer. Each Summit node contains two IBM
POWER9 processors and six Nvidia Volta V100 GPUs (only one was used in
this paper). CUDA 10.1.243 was used, which is the version loaded by default.

Benchmarks. The SPEC ACCEL benchmark suite V1.3 was used to evaluate
the new device runtime. Because support for Fortran is still in progress, we chose
those benchmarks written in C. There are 15 OpenMP enabled benchmarks in
SPEC ACCEL. Seven of them are in C, namely 503.postencil, 504.polbm,
514.pomriq, 552.pep, 554.pcg, 557.pcsp, and 570.pbt. 557.pcsp can not be
compiled5, therefore we only ran the other six benchmarks. We also chose a C++
proxy application, miniQMC [6].

-O2 compiler flag was used when compiling the benchmarks and application.
Each test case was executed five times, and the execution time was averaged.
miniQMC was measured through the miniqmc_sync_move benchmark executed
as follows: miniqmc_sync_move -g "2 2 1".

Results. Figure 2 compares the execution time when the original device runtime
is used with the execution time obtained using our proposed new device runtime.
We can see that the execution times are almost identical, and for those cases
where they are not same, the variance is less than 1% and assumed to be noise.

The proxy application benchmark miniqmc_sync_move contains two target
regions, evaluate_vgh and evaluateDetRatios. They are executed multiple
times. Table 1 shows the profiling results (execution time) of each target region
from Nvidia’s profiler nvprof. There is no performance difference between the
two versions.

All the results above demonstrate that our proposed portable OpenMP
device runtime can provide the same performance as the current CUDA-like
version on the Nvidia platform. Based on the code comparison, functional test-
ing and some AMD internal performance testing results, the portable runtime
is believed to show no performance change from its HIP predecessor either.

5 It can not be compiled by trunk version either. The compilation error is because
557.pcsp defines a macro max which conflicts with the same function in the math
header in Clang.
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Fig. 2. Comparison between execution time of original device runtime ( ) and that
of our proposed new device runtime ( ) on Nvidia platform.

Table 1. Comparison of execution time of the two target regions in miniqmc_sync_move
on Nvidia platform.

Target region Version Time (ms) # Calls Avg (µs) Min (µs) Max (µs)

evaluate_vgh Original 1374.72 64512 21.309 19.744 32.384
New 1376.59 21.338 19.776 33.760

evaluateDetRatios Original 573.46 18202 31.505 25.247 44.480
New 573.93 31.531 24.544 47.103

5 Conclusions and Future Work

OpenMP works well as a language to implementing GPU-only code libraries.
The direct support for memory allocators and the precise dispatch through
declare variant are clear advantages over C++. While minimal compiler mod-
ifications were required to match the CUDA and HIP semantics to the fullest,
we expect those to be incorporated into the OpenMP standard over time.

Using OpenMP is especially suitable as the vehicle for implementing an
OpenMP runtime library since the main prerequisite is an OpenMP compiler
which needs to be implemented all targets in any case. Since the library ships
with the LLVM repository, it can be built by any distribution which has built
Clang. Vendor SDKs or compilers are no longer required.

Since the host and device runtime libraries can build as part of LLVM, we
will coordinate with Linux distribution developers to ensure that people who
install the distribution LLVM package onto a system that has a target device
and driver available will be able to get this working “out of the box”.
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