
Simon McIntosh-Smith
Bronis R. de Supinski
Jannis Klinkenberg (Eds.)

LN
CS

 1
28

70 OpenMP:
Enabling Massive
Node-Level Parallelism
17th International Workshop on OpenMP, IWOMP 2021
Bristol, UK, September 14–16, 2021
Proceedings

Lecture Notes in Computer Science 12870

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Simon McIntosh-Smith •

Bronis R. de Supinski • Jannis Klinkenberg (Eds.)

OpenMP:
Enabling Massive
Node-Level Parallelism
17th International Workshop on OpenMP, IWOMP 2021
Bristol, UK, September 14–16, 2021
Proceedings

123

Editors
Simon McIntosh-Smith
University of Bristol
Bristol, UK

Bronis R. de Supinski
Lawrence Livermore National Laboratory
Livermore, CA, USA

Jannis Klinkenberg
RWTH Aachen University
Aachen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-85261-0 ISBN 978-3-030-85262-7 (eBook)
https://doi.org/10.1007/978-3-030-85262-7

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2021
Chapter “FOTV: A Generic Device Offloading Framework for OpenMP” is licensed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For
further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5312-0378
https://orcid.org/0000-0002-0339-1006
https://orcid.org/0000-0002-5518-7904
https://doi.org/10.1007/978-3-030-85262-7
http://creativecommons.org/licenses/by/4.0/

Preface

OpenMP is a widely used application programming interface (API) for high-level
parallel programming in Fortran, C, and C++. OpenMP has been supported in most
high-performance compilers and by hardware vendors since it was introduced in 1997.
Under the guidance of the OpenMP Architecture Review Board (ARB) and the diligent
work of the OpenMP Language Committee, the OpenMP specification has evolved up
to version 5.1, with version 5.2 soon to be released. OpenMP has become the most
widely used HPC language as a result of its continuing evolution.

The latest proposed specification, which is documented in OpenMP Technical
Report 10 (TR10), will be the basis of OpenMP 5.2 when the ARB releases it later this
year. This version primarily reorganizes and refactors the specification of the directives
and clauses that the language provides. These changes necessarily identified incon-
sistencies in the specification, particularly for the directive and clause syntax and the
restrictions that apply to it. Thus, it will replace syntax inconsistencies with the form
used more generally throughout the specification in addition to ensuring that common
restrictions are consistently and clearly specified.

While these changes are small advancements, work has also begun on the next
version of the specification: OpenMP 6.0. Larger changes that we anticipate for that
version include the ability for a thread to create a task to be executed by a thread in a
different parallel team and to enable free-agent threads to execute tasks in addition to
the threads explicitly created for that team. While the details of the latter functionality
are still under discussion, this volume includes a paper that explores a proposed
mechanism for it. The papers that appear at IWOMP are one avenue through which the
OpenMP Language Committee carefully evaluates and incorporates community needs
into the OpenMP specification.

OpenMP is important both as a stand-alone parallel programming model and as part
of a hybrid programming model for massively parallel, distributed memory systems
consisting of homogeneous manycore nodes and heterogeneous node architectures, as
found in leading supercomputers. As much of the increased parallelism in the exascale
systems will be within a node, OpenMP has become widely used in top-end systems.
Importantly, the features in OpenMP 6.0 will further support applications on such
systems in addition to facilitating portable exploitation of specific system attributes.

The community of OpenMP researchers and developers is united under the cOM-
Punity organization. This organization has held workshops on OpenMP around the
world since 1999: the European Workshop on OpenMP (EWOMP), the North
American Workshop on OpenMP Applications and Tools (WOMPAT), and the Asian
Workshop on OpenMP Experiences and Implementation (WOMPEI) attracted annual
audiences from academia and industry. The International Workshop on OpenMP
(IWOMP) consolidated these three workshop series into a single annual international
event that rotates across Europe, Asia-Pacific, and the Americas. The first IWOMP
workshop was organized under the auspices of cOMPunity. Since that workshop, the

IWOMP Steering Committee has organized these events and guided development
of the series. The first IWOMP meeting was held in 2005, in Eugene, Oregon, USA.
Since then, meetings have been held each year, in Reims, France; Beijing, China; West
Lafayette, USA; Dresden, Germany; Tsukuba, Japan; Chicago, USA; Rome, Italy;
Canberra, Australia; Salvador, Brazil; Aachen, Germany; Nara, Japan; Stony Brook,
USA; Barcelona, Spain, and Auckland, New Zealand. Each workshop draws partici-
pants from research, program developer groups, and industry throughout the world. In
2020, IWOMP continued the series with technical papers and tutorials presented
through a virtual conference, due to the COVID-19 pandemic. We thank the generous
support of sponsors that help make these meetings successful, they are cited on the
conference pages (present and archived) at the iwomp.org website.

The evolution of the specification would be impossible without active research in
OpenMP compilers, runtime systems, tools, and environments. The OpenMP research
community is vibrant and dedicated to continuing to improve OpenMP. As we move
beyond the present needs, and adapt and evolve OpenMP to the expanding parallelism
in new architectures, the OpenMP research community will continue to play a vital
role. The papers in this volume demonstrate the adaption of new features found in
OpenMP 5.0 and 5.1 and show how the OpenMP feature set can significantly enhance
user experiences on a wide range of systems. These papers also demonstrate the
forward thinking of the research community, and potential OpenMP directions and
further improvements for systems on the horizon.

The IWOMP website (www.iwomp.org) has the latest workshop information, as
well as links to archived events. This publication contains proceedings of the 17th
International Workshop on OpenMP, IWOMP 2021. The workshop program included
15 technical papers and tutorials on OpenMP. All technical papers were peer reviewed
by at least four different members of the Program Committee. The work evidenced by
these authors and the committee demonstrates that OpenMP will remain a key tech-
nology well into the future.

September 2021 Simon McIntosh-Smith
Bronis R. de Supinski

Jannis Klinkenberg

vi Preface

https://www.iwomp.org

Organization

General Chair

Simon McIntosh-Smith University of Bristol, UK

Program Committee Chair

Bronis R. de Supinski Lawrence Livermore National Laboratory, USA

Publication Chair

Jannis Klinkenberg RWTH Aachen University, Germany

Tutorial Chairs

Yun (Helen) He National Energy Research Scientific Computing Center
(NERSC), USA

Tom Deakin University of Bristol, UK

Local Organiser Chair

Tim Lewis Croftedge Marketing, UK

Program Committee
Patrick Atkinson NVIDIA, UK
Eduard Ayguade Universitat Politècnica de Catalunya, Spain
Mark Bull University of Edinburgh, UK
Sunita Chandrasekaran University of Delaware, USA
Florina M. Ciorba University of Basel, Switzerland
Bronis R. de Supinski Lawrence Livermore National Laboratory, USA
Tom Deakin University of Bristol, UK
Johannes Doerfert Argonne National Laboratory, USA
Alex Duran Intel Iberia, Spain
Deepak Eachempati HPE, USA
Jini George AMD, USA
Oscar Hernandez Oak Ridge National Laboratory, USA
Paul Kelly Imperial, UK
Jannis Klinkenberg RWTH Aachen University, Germany
Michael Kruse Argonne National Laboratory, USA
Kelvin Li IBM, USA
Chunhua Liao Lawrence Livermore National Laboratory, USA

Will Lovett Arm, UK
Larry Meadows Intel, USA
Kent Milfeld TACC, USA
Stephen Olivier Sandia National Laboratories, USA
Joachim Protze RWTH Aachen University, Germany
Mitsuhisa Sato RIKEN Center for Computational

Science (R-CCS), Japan
Thomas Scogland Lawrence Livermore National Laboratory, USA
Adrian Tate NAG, UK
Terry Wilmarth Intel, USA
Justs Zarins EPCC, UK

Website

Tim Lewis Croftedge Marketing, UK

IWOMP Steering Committee

Steering Committee Chair

Matthias S. Müller RWTH Aachen University, Germany

Steering Committee

Dieter an Mey RWTH Aachen University, Germany
Eduard Ayguadé BSC, Universitat Politècnica de Catalunya, Spain
Mark Bull EPCC, University of Edinburgh, UK
Barbara Chapman Stony Brook University, USA
Bronis R. de Supinski Lawrence Livermore National Laboratory, USA
Rudolf Eigenmann University of Delaware, USA
William Gropp University of Illinois, USA
Michael Klemm AMD, Germany
Kalyan Kumaran Argonne National Laboratory, USA
Lawrence Meadows Intel, USA
Stephen L. Olivier Sandia National Laboratories, USA
Ruud van der Pas University of Delaware, USA
Alistair Rendell Flinders University, Australia
Mitsuhisa Sato RIKEN Center for Computational Science (R-CCS),

Japan
Sanjiv Shah Intel, USA
Oliver Sinnen University of Auckland, New Zealand
Josemar Rodrigues de

Souza
SENAI Unidade CIMATEC, Brazil

Christian Terboven RWTH Aachen University, Germany
Matthijs van Waveren OpenMP ARB & CS Group, France

viii Organization

Contents

Synchronization and Data

Improving Speculative taskloop in Hardware Transactional Memory 3
Juan Salamanca and Alexandro Baldassin

Vectorized Barrier and Reduction in LLVM OpenMP Runtime. 18
Muhammad Nufail Farooqi and Miquel Pericàs

Tasking Extensions I

Enhancing OpenMP Tasking Model: Performance and Portability 35
Chenle Yu, Sara Royuela, and Eduardo Quiñones

OpenMP Taskloop Dependences . 50
Marcos Maroñas, Xavier Teruel, and Vicenç Beltran

Applications

Outcomes of OpenMP Hackathon: OpenMP Application Experiences
with the Offloading Model (Part I) . 67

Barbara Chapman, Buu Pham, Charlene Yang, Christopher Daley,
Colleen Bertoni, Dhruva Kulkarni, Dossay Oryspayev, Ed D’Azevedo,
Johannes Doerfert, Keren Zhou, Kiran Ravikumar, Mark Gordon,
Mauro Del Ben, Meifeng Lin, Melisa Alkan, Michael Kruse,
Oscar Hernandez, P. K. Yeung, Paul Lin, Peng Xu, Swaroop Pophale,
Tosaporn Sattasathuchana, Vivek Kale, William Huhn,
and Yun (Helen) He

Outcomes of OpenMP Hackathon: OpenMP Application Experiences
with the Offloading Model (Part II) . 81

Barbara Chapman, Buu Pham, Charlene Yang, Christopher Daley,
Colleen Bertoni, Dhruva Kulkarni, Dossay Oryspayev, Ed D’Azevedo,
Johannes Doerfert, Keren Zhou, Kiran Ravikumar, Mark Gordon,
Mauro Del Ben, Meifeng Lin, Melisa Alkan, Michael Kruse,
Oscar Hernandez, P. K. Yeung, Paul Lin, Peng Xu, Swaroop Pophale,
Tosaporn Sattasathuchana, Vivek Kale, William Huhn,
and Yun (Helen) He

An Empirical Investigation of OpenMP Based Implementation
of Simplex Algorithm . 96

Arkaprabha Banerjee, Pratvi Shah, Shivani Nandani, Shantanu Tyagi,
Sidharth Kumar, and Bhaskar Chaudhury

Task Inefficiency Patterns for a Wave Equation Solver 111
Holger Schulz, Gonzalo Brito Gadeschi, Oleksandr Rudyy,
and Tobias Weinzierl

Case Studies

Comparing OpenMP Implementations with Applications
Across A64FX Platforms . 127

Benjamin Michalowicz, Eric Raut, Yan Kang, Tony Curtis,
Barbara Chapman, and Dossay Oryspayev

A Case Study of LLVM-Based Analysis for Optimizing SIMD
Code Generation . 142

Joseph Huber, Weile Wei, Giorgis Georgakoudis, Johannes Doerfert,
and Oscar Hernandez

Heterogenous Computing and Memory

Experience Report: Writing a Portable GPU Runtime with OPENMP 5.1. 159
Shilei Tian, Jon Chesterfield, Johannes Doerfert, and Barbara Chapman

FOTV: A Generic Device Offloading Framework for OpenMP 170
Jose Luis Vazquez and Pablo Sanchez

Beyond Explicit Transfers: Shared and Managed Memory in OpenMP. 183
Brandon Neth, Thomas R. W. Scogland, Alejandro Duran,
and Bronis R. de Supinski

Tasking Extensions II

Communication-Aware Task Scheduling Strategy in Hybrid
MPI+OpenMP Applications . 197

Romain Pereira, Adrien Roussel, Patrick Carribault,
and Thierry Gautier

An OpenMP Free Agent Threads Implementation . 211
Victor Lopez, Joel Criado, Raúl Peñacoba, Roger Ferrer, Xavier Teruel,
and Marta Garcia-Gasulla

Author Index . 227

x Contents

Synchronization and Data

Improving Speculative taskloop

in Hardware Transactional Memory

Juan Salamanca(B) and Alexandro Baldassin

IGCE – Sao Paulo State University (Unesp), Rio Claro, SP, Brazil
{juan,alex}@rc.unesp.br

Abstract. Previous work proposed and evaluated Speculative taskloop

(STL) on Intel Core implementing new clauses and constructs in
OpenMP. The results indicated that, despite achieving some speed-ups,
there was a phenomenon called the Lost-Thread Effect that caused the
performance degradation of STL parallelization. This issue is caused by
the nonmonotonic scheduling implemented in the LLVM OpenMP Run-
time Library. This paper presents an improvement in the STL mecha-
nism by modifying the OpenMP runtime to allow monotonic schedul-
ing of tasks generated by taskloop. We perform an evaluation with
two different versions of the OpenMP runtime, both optimized for STL
revealing that, for certain loops, infinite slowdowns (deadlocks) using the
original OpenMP runtime can be transformed in speed-ups by applying
monotonic scheduling. The experimental results show the performance
improvement of STL using the modified version of the runtime, reaching
speed-ups of up to 2.18×.

Keywords: taskloop · Speculative parallelization · OpenMP

1 Introduction

The taskloop construct was implemented in OpenMP 4.5 and allows the par-
allelization of a loop, dividing its iterations into chunks that are executed by
a number of tasks [7,18]. The worksharing constructs suffer from certain issues
that are overcome by taskloop, for example: (a) load imbalance, in the case of
taskloop the scheduler at runtime will distribute the load in a balanced way
using work stealing, whereas in worksharing constructs it is more difficult to
achieve this; (b) traditional worksharing can lead to ragged fork/join patterns;
and (c) worksharing constructs in inner loops need to create a team of threads
(parallel) in each call of the outer loop, generating a large overhead in the
parallelization. As shown in Fig. 1, it is very difficult to try to create a team of
threads just once. However, with taskloop this is much simpler and the over-
head of opening and closing successive parallel regions is avoided, creating the
team of threads before the outer loop, as shown in Fig. 2.

This work is supported by FAPESP (grants 18/07446-8 and 18/15519-5).

c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-85262-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_1&domain=pdf
http://orcid.org/0000-0002-0569-2806
http://orcid.org/0000-0001-8824-3055
https://doi.org/10.1007/978-3-030-85262-7_1

4 J. Salamanca and A. Baldassin

Fig. 1. Fragment of Sparse CG’s code
using parallel for

Fig. 2. The same code using taskloop

A weakness of taskloop is that it does not ensure the correct paralleliza-
tion of a loop when it is non-DOALL, that is, when it is not possible to prove
statically that a loop is free of loop-carried dependences. For that case, other
parallelization techniques must be used: DOACROSS [2] and Thread-Level Spec-
ulation (TLS) [16,17]. DOACROSS parallelization was implemented in OpenMP
4.5 through the ordered clause (available in the for worksharing construct) and
the ordered stand-alone directive; on the other hand, TLS has not been officially
implemented yet in OpenMP.

The ordered construct can be used to mark the source and the sink of a
loop-carried dependence, thus enabling the use of parallel for to parallelize
DOACROSS loops [7,14]. For instance, Fig. 3 shows the hottest loop of 429.mcf
benchmark from SPEC2006. This loop is an example of a may DOACROSS
loop: it means that is not DOALL and may be DOACROSS depending on the
input of the benchmark (if cond1 and cond2 are true, a loop-carried depen-
dence in basket size is generated). Previous experiments show that this loop
is DOACROSS at runtime for its reference input [12], thus it is not correct
to parallelize it using parallel for or taskloop, but one can try to parallelize
this loop using the ordered construct.

The ordered construct is suitable when the loop can be statically considered
DOACROSS as also its sequential and parallel components are known—parallel
components have to do significant work concerning the loop iteration time to
be performant. If the loop is may DOACROSS and the presumed sequential
component can be known, ordered can also be beneficial. However, the most
difficult task for the programmer is to recognize these loop components. In the
example of Fig. 3, a may DOACROSS loop, it is possible to separate components
to make use of fine-grained ordered. However, a non-trivial loop restructuring
is required (Fig. 4) because it is not possible to give a correct value to sink in
depend(sink:) basketsize++ due to the indeterminism of the control flow and

Improving Speculative taskloop in HTM 5

Fig. 3. mcf’s hottest loop

Fig. 4. Restructured mcf’s hottest loop
with ordered (speed-up = 0.15×)

Fig. 5. The same loop using tls

construct, and taskloop tls (speed-
up= 1.16×)

the iterator increment variability. Thus, one has to be conservative and assume
that the component is sequential for each iteration (depend (sink:i-1)). Unfor-
tunately, the parallelization performance of this loop using ordered is poor (a
speed-up of 0.15× with respect to serial execution on Intel Core using libomp12
and Clang 12.0), even worse than the sequential execution, because the work
of the parallel components (without ordered synchronization) is not significant
with respect to the total time of the loop iteration, and the synchronization
overhead outweighs the parallelized work.

Thread-Level Speculation is a technique that allows for effectively paralleliz-
ing may DOACROSS loops that have a low probability of materializing their
loop-carried dependencies at runtime. The lower this probability the more likely
it is to achieve a performant parallelization. In the case that the loop is effec-
tively DOACROSS at runtime, if the fraction of iterations with loop-carried
dependences is low with respect to the total number of iterations, TLS can still

6 J. Salamanca and A. Baldassin

be performant; however, it also depends on the pattern of distribution of these
loop-carried dependencies throughout loop iterations at runtime [12].

Previous work proposed Speculative taskloop (STL) to have the best of two
worlds: (a) the advantages of task-based parallelism over worksharing constructs
described above; and (b) the effectiveness of TLS to parallelize may DOACROSS
loops where OpenMP DOALL or DOACROSS techniques fail [13]. Another pre-
vious work added clauses (spec private and spec reduction) and directives
(tls if read, tls if write, etc.) from Speculative Privatization [11] to Spec-
ulative taskloop, and evaluated the results of this parallelization technique [10].
For instance, Fig. 5 shows the parallelization of the hottest mcf loop using Specu-
lative taskloop and Speculative Privatization, which offers the advantage of not
needing to recognize the components and complex loop restructuring, resulting
in better performance (speed-up of 1.16× with respect to serial execution on
Intel Core using libomp12 and Clang 12.0).

However, in both of the previous papers, the performance was hurt by an
issue called the Lost-Thread Effect [13] caused by the OpenMP runtime. This
paper fixes this problem and presents new results using Speculative taskloop.
In particular, we make the following contributions:

– We modify the LLVM OpenMP Runtime Library to support monotonic
scheduling of tasks in Speculative taskloop, thus improving the results
obtained previously;

– We perform an evaluation with two different versions of the OpenMP runtime,
both optimized for STL. The experimental results show the improvement
of using the modified version of the runtime (Sect. 5). We further compare
against the ordered construct, which was implemented previously by Shirako
et al. [14].

This paper is organized as follows. Section 2 describes the background mate-
rial and discusses related works. Section 3 details the design and implementation
of the monotonic scheduling in two versions of the OpenMP Runtime Library.
Benchmarks, methodology and settings are described in Sect. 4. Section 5 evalu-
ates the performance of STL. Finally, Sect. 6 concludes the work.

2 Background and Related Work

This section presents related works and the main concepts used in this paper:
Task-based Parallelism, TLS, Speculative Taskloop, Lost-Thread Effect, and
OpenMP Runtime Library.

2.1 Task-Based Parallelism

In this model, the execution can be modeled as a directed acyclic graph, where
nodes are tasks and edges define data dependences between tasks. A runtime
system schedules tasks whose dependences are resolved over available worker

Improving Speculative taskloop in HTM 7

threads, thus enabling load balancing and work stealing [4]. At runtime, the
task creation code packs the kernel code pointer and the task operands, and
then adds them in the task pipeline; in this way, the generating thread can
continue creating additional tasks.

Tasks in OpenMP are blocks of code that the compiler envelops and arranges
to be executed in parallel. Tasks were added to OpenMP in version 3.0 [1]. In
OpenMP 4.0 [6], the depend clause and the taskgroup construct were incor-
porated and, in OpenMP 4.5, the taskloop construct was proposed and added
to the specification [7]. Like worksharing constructs, tasks are generally created
inside of a parallel region. To spawn each task once, the single construct is
used. The ordering of tasks is not defined, but there are ways to express it: (a)
with directives such as taskgroup or taskwait; or (b) with task dependences
(depend clause).

Variables that are used in tasks can be specified with data-sharing attribute
clauses (private, firstprivate, shared, etc.) or, by default, data accessed by
a task is shared. The depend clause takes a type (in, out, or inout) followed
by a variable or a list of variables. These types establish an order between sib-
ling tasks. The taskwait clause waits for the child tasks of the current task.
taskgroup is similar to taskwait but it waits for all descendant tasks created
in the block. Moreover, task reduction was introduced in OpenMP 5.0 [8].

The taskloop construct was proposed by Teruel et al. [18] and allows paral-
lelizing a loop by dividing its iterations into a number of created tasks, with each
task being assigned to one or more iterations of the loop. The grainsize clause
specifies how many iterations are assigned for each task and the number of tasks
can be calculated automatically. OpenMP brings another clause called priority
to specify the level of priority of each task used by the runtime scheduler [7].
taskloop is compatible with the parallel for construct, the main difference
is the lack of the schedule clause in the taskloop [9].

2.2 TLS on Hardware Transactional Memories

Thread-Level Speculation (TLS) is an environment where threads operate spec-
ulatively, performing potentially unsafe operations, and temporarily buffering
the state that they generate [20]. Then, the operations of a thread are declared
to be correct or incorrect. If they are correct, the thread commits; if they are
incorrect, the thread is rolled back and typically restarted from its beginning.
The term TLS is most often associated with a scenario where the goal is to par-
allelize a sequential application. However, in general, TLS can be applied to any
environment where speculative threads are executed and can be squashed and
restarted [20]. Thread-Level Speculation or Speculative DOACROSS has been
widely studied in the past [15–17].

For performance, TLS requires hardware mechanisms that support four pri-
mary features: conflict detection, speculative storage, in-order (monotonic) com-
mit of transactions, and transaction roll-back. However, to this day, there is no
off-the-shelf processor that provides direct support for TLS. Speculative exe-
cution is supported, however, in the form of Hardware Transactional Memory

8 J. Salamanca and A. Baldassin

(HTM) available in processors such as the Intel Core and the IBM POWER.
HTM implements three out of the four key features required by TLS: conflict
detection, speculative storage, and transaction roll-back. Thus, these architec-
tures have the potential to be used to implement TLS [12]. Speculative taskloop
is based on this approach.

2.3 Speculative taskloop (STL)

TLS is a technique to enable the parallel execution of loop iterations in the
presence of potential dependences. We proposed adding Hardware-Transactional-
Memory-based TLS (TLS-HTM) to taskloop—Speculative taskloop (STL)—
through the addition of the clause tls to taskloop in a previous work [13]. This
clause can be used to speculate about data dependences between tasks generated
by a taskloop construct in non-DOALL loops, thus STL manipulates multiple
tasks of loop iterations in order to exploit task parallelism (load balancing, work
stealing, efficient creation of parallel, etc.) and to accelerate the loop execution.
The addition of Speculative Privatizations [11] to taskloop tls was proposed by
Salamanca et al. [10], through the clauses spec private and spec reduction, in
order to integrate speculative execution into OpenMP task-based parallelization.
A sketch of the Fig. 5’s code (STL) converted to the OpenMP standard is shown
in Fig. 6.

1 next_strip_to_commit=init;
2 #pragma omp parallel num_threads(N_CORES)
3 #pragma omp single // or master
4 #pragma omp taskloop grainsize(1) default(none) firstprivate(stop_arcs,init,nr_group)

shared(basket_size,perm,next_strip_to_commit) private(red_cost,arc)
5 for(arc_s=init; arc_s<stop_arcs; arc+=nr_group*S_SIZE){
6 char flag_r_basket=0, flag_w_basket=0;
7 long basket_sizeL;
8 char speculative = BEGIN(&next_strip_to_commit,arc_s);
9 for(arc=arc_s; arc<stop_arcs && arc-arc_s<S_SIZE*nr_group; arc+=nr_group){

10 if (arc->ident>BASIC)){
11 red_cost = arc->cost - arc->tail->potential + arc->head->potential;
12 if(bea_is_dual_infeasible(arc, red_cost)){
13 if (!flag_r_basket){
14 flag_r_basket = 1;
15 basket_sizeL = basket_size;
16 }
17 basket_sizeL++;
18 flag_w_basket=1;
19 perm[basket_sizeL]->a = arc;
20 perm[basket_sizeL]->cost = red_cost;
21 perm[basket_sizeL]->abs_cost = ...;
22 }
23 }
24 }
25 END(speculative,&next_strip_to_commit,arc_s);
26 if (flag_w_basket) basket_size = basket_sizeL;
27 next_strip_to_commit += nr_group*S_SIZE;
28 }

Fig. 6. STL parallelization of the mcf’s loop converted to standard OpenMP

Improving Speculative taskloop in HTM 9

2.4 Lost-Thread Effect

In a previous work [13], we were able to verify that, at one point during the STL
execution, a thread (the lost thread) begins to execute high iteration counts and
therefore suffers from order-inversion aborts1 almost all the time, in this way it
executes almost no effective work and degrades the parallelization performance.
We called this issue the Lost-Thread Effect, and it is generated because taskloop
assigns chunks of iterations to tasks in an order that is usually not the increasing
logical iteration order (nonmonotonic), thus tasks that execute high iteration
counts have to abort due to order inversion and have to wait for tasks executing
lower iteration counts.

2.5 LLVM OpenMP Runtime Library

The task-based model relies on the OpenMP runtime to distribute tasks onto
worker threads, thus enabling load balancing and work stealing. We study two
versions: (a) the version libomp20160808 of the runtime used in the previous
papers [10,13]; and (b) the latest stable version in LLVM 12.0, libomp12.

libomp20160808 [5] – The mechanism for taskloop in this runtime is imple-
mented in the kmpc taskloop function in the kmp tasking.c file. When
taskloop is executed by the thread that encounters the construct (the generat-
ing thread that also encounters single), the kmp tasklooop linear function is
invoked. Then, it generates tasks following the increasing order of the loop itera-
tions. These tasks are pushed into the thread’s deque (double-ended queue) and
thus scheduled to be executed (kmp push task); however, if the deque is full, the
task is immediately executed by the thread. If this task corresponds to a high iter-
ation count, the Lost-Thread Effect is generated in STL. The size of each deque
has been defined as 256 tasks. On the other hand, each thread that is part of the
team created in the parallel region executes the kmp execute tasks template
function, where it first executes the tasks of its own deque, and then it tries to
steal tasks from deques of other threads. When a thread looks for its own tasks, it
invokes the kmp remove my tasks function which removes tasks from the tail of
its deque; in this way the thread executes a high iteration count of loop causing
the Lost-Thread Effect in STL.

libomp12 [19] – The mechanism for taskloop in this runtime is also imple-
mented in the kmpc taskloop and the kmp taskloop functions. The main dif-
ference between libomp20160808 and libomp12 is that libomp12 is implemented
in C++ (kmp tasking.cpp). Another important difference is that kmp taskloop
not only invokes the kmp taskloop linear function to split the iteration space,
but also the kmp taskloop recur function which recursively partitions the loop

1 An abort caused by order-inversion rolls back a transaction that completes execution
out of order using an explicit abort instruction (xabort).

10 J. Salamanca and A. Baldassin

iterations into chunks to generate tasks until reaching a threshold. This kind
of partition is nonmonotonic because it does not follow the increasing order of
the loop iterations and could cause a complete Lost-Thread Effect (all thread
lost or deadlock) in STL. Tasks are also pushed into the thread deque or exe-
cuted immediately if the deque is full (libomp12 has the same deque size of 256
tasks). As in libomp20160808, each thread that is part of the team executes the
function kmp execute tasks template.

3 Implementation

This section presents a description of the changes made to each OpenMP runtime
to enable the monotonic scheduling in Speculative taskloop.

3.1 First Attempt: Use priority Clause

To avoid modifying the runtime, as a first idea to implement monotonic schedul-
ing, we tried to use the priority clause, giving higher priorities to tasks exe-
cuting low iteration counts and lower priorities to tasks executing high itera-
tion counts. However, in taskloop, all the tasks created have the same priority
assigned through the priority clause, thus we transform the loop with strip
mining and use the task construct: the outer loop generates tasks and the inner
loop (with S SIZE iterations) is marked with the task construct and the respec-
tive priority clause, as shown in the Fig. 7.

1 next=init;
2 prty=omp_get_max_task_priority();
3 #pragma omp parallel num_threads(N_CORES)
4 #pragma omp single
5 for (arc_s=init; arc_s<stop_arcs; arc+=nr_group*S_SIZE){ //outer loop
6 prty--;
7 #pragma omp task priority(prty) shared(basket_size,perm,next)...
8 { ...
9 int spec=BEGIN(&next,arc_s);

10 for(arc=arc_s; arc<stop_arcs && arc-arc_s<S_SIZE*nr_group; arc+=nr_group){ //inner loop
11 ...//loop body
12 }
13 END(spec,&next,arc_s);
14 next+=S_SIZE;
15 }
16 }

Fig. 7. First attempt: using tasks and priority clause in mcf’s hottest loop

In libomp20160808, it was observed in our experiments that the priority
clause for tasks is not implemented. Anyway, the partitioning of the iterations in
libomp20160808 is linear and in the increasing order of the iterations, so using
priority would have had the same result. The causes of the Lost-Thread Effect
in this runtime are, as explained above: (a) the immediate execution of tasks by

Improving Speculative taskloop in HTM 11

the generating thread when its deque is full; and (b) the thread that encounters
single, after finishing generating the tasks, begins to remove tasks from its own
deque to be executed starting from the deque’s tail (higher iteration count).

On the other hand, libomp12 implements a recursive partition of iterations.
Using the task construct, as in Fig. 7, it is possible to avoid the deadlock gen-
erated by the taskloop construct that are due to the recursive partition of the
iterations (which introduce a nonmonotonic scheduling), and to obtain a linear
partition generated by the outer loop after the loop transformation. However, the
same two issues found in libomp20160808 persist and generate the Lost-Thread
Effect despite using strip mining and task priority.

3.2 Recursive Partition of Iterations

The first problem causing the Lost-Thread Effect is the recursive partition-
ing of iterations by taskloop in the OpenMP runtime (only in libomp12).
kmp taskloop recur function uses a binary splitting approach in which the iter-
ation space is recursively split into chunks. Each chunk is assigned to a new task
that continues binary splitting until a minimal chunk size is reached. This func-
tion in invoked when the number of tasks is greater than the minimum num-
ber of tasks (threshold). In this way, when Speculative taskloop is executed
(kmp taskloop function), we set num task min to the total number of tasks so
that kmp taskloop linear can always be executed and to avoid the Lost-Thread
Effect, as shown in Fig. 8.

Fig. 8. Modification in kmp taskloop function

Fig. 9. kmp push task Fig. 10. kmp remove my task

12 J. Salamanca and A. Baldassin

3.3 Immediate Execution When Deque is Full

The second problem that results in the Lost-Thread Effect is the immediate exe-
cution of tasks by the generating thread in taskloop when its deque is full. The
deque size of the threads, especially the one of the generating thread, which is the
deque that stores all the tasks generated by taskloop, is critical. Both versions
of the OpenMP runtime have an initial deque size of 256 tasks (TASK DEQUE BITS
= 8).

libomp12 – To implement monotonic scheduling in this runtime, it is neces-
sary to prevent a task that cannot be pushed onto a full queue from being
executed immediately. This can be accomplished by reallocating the deque to
an increased size. In the libomp12 runtime, reallocation is already implemented
but it depends on a variable called kmp enable task throttling, which is true
and prevents reallocation. The condition can be modified in kmp push task so
that when the deque is full and the task being pushed was generated by Spec-
ulative taskloop, it is not allowed to start immediately (as shown in Fig. 9).
Another way to achieve the non-execution of the task is to increase the initial
size of the deque. A reasonable value is 1024, which does not allow the deque
to be full in the evaluated loops. In terms of performance, the second option is
faster because it avoids copying the deque to another portion of memory, and
this was confirmed in the experiments carried out; however, it is not a complete
solution. We use a combination of both.

libomp20160808 – The main difference with the other version studied is that
here kmp push task did not invoke kmp realloc task deque in any case, so
a mechanism, similar to libomp12, had to be implemented from scratch. The
deque size was also increased to 1024.

3.4 Removal from Tail of Thread’s Deque

When the generating thread finishes sweeping all the iterations, it runs
kmp execute tasks template to start executing tasks and, firstly, it checks its
own deque. As the deque of the generating thread has all the tasks generated by
taskloop, there are already team threads stealing tasks from it (from the head),
so it starts removing from the deque’s tail (high iteration counts in a linear par-
tition). To implement a monotonic scheduling it is necessary to ensure that the
generating thread also removes its own tasks from the head. To accomplish this,
the kmp remove my task function was modified as shown in the Fig. 10. This is
similar in the two versions of the runtime.

4 Benchmarks, Methodology and Experimental Setup

The performance assessment in this work reports speed-ups and abort/commit
ratios (transaction outcome) for the STL (Speculative taskloop) [10,13]

Improving Speculative taskloop in HTM 13

and ordered parallelizations of may DOACROSS loops from the Collective
Benchmark[3] (cBench) and SPEC benchmark suites running on Intel Core. For
all experiments, the default input is used for the cBench benchmarks and the
reference input for mcf. The baseline for speed-up comparisons is the serial exe-
cution of the same benchmark program compiled at the same optimization level.
Loop times are used to calculate speed-ups. Each software thread is bounded to
a unique core. Each benchmark was run twenty times and the average time is
used. Runtime variations were negligible and are not presented.

We compiled the programs with Clang 4.0 and used libomp20160808 [5] as
the OpenMP Runtime Library in two flavors: (a) the original version; and (b)
the one modified to allow monotonic scheduling, explained in Sect. 3. However,
to validate that these changes work not only for an older version of the OpenMP
runtime but also for the latest version, we also used libomp12 [19] in the exper-
iments. For compatibility reasons, in the experiments that use libomp12, the
programs were compiled with Clang 12.0 [19] to generate a more updated code
for the runtime. However, the tls clause for taskloop, and the clauses and
directives for Speculative Privatization are not yet implemented in Clang 12.0,
therefore we made manual code transformations to the evaluated loops follow-
ing the algorithms described in previous works [10,13] thus obtaining the STL
parallelization of the benchmarks. They were then executed using an Intel Core
i7-6700HQ machine, and their speed-ups measured with respect to sequential
execution. Table 1 lists the loops used in the study.

The benchmarks were compiled with Clang 4.0 when libomp20160808 was
used (stl-l2016), and with Clang 12.0 when libomp12 (stl-l12) was used,
both at optimization level -O3 and with the set of flags specified in each bench-
mark program. Code compiled by clang -fopenmp was linked against the respec-
tive version of the OpenMP runtime in two flavors: monotonic (stl-lx-mon)
and nonmonotonic (stl-lx-nm). ordered parallelization of the benchmarks
was compiled with Clang 12.0 and linked against libomp12. To guarantee
that each software thread is bound to a unique core, the environment vari-
able KMP AFFINITY was set to granularity = fine,scatter. This experimen-
tal evaluation was carried out on an Intel Core i7-6700HQ processor with 4
cores with 2-way SMT, running at 2.6 GHz, with 16 GB of memory on Ubuntu
18.04.5 LTS (GNU/Linux 4.15.0-139-generic x86 64). The cache-line prefetcher
is enabled by default. Each core has a 32 KB L1 data cache and a 256 KB L2
unified cache. The four cores share an 6144KB L3 cache.

5 Experimental Results and Analysis

This section presents results and analysis. The first part of Table 1 shows the
information of loops: (1) the ID of the loop in this study; (2) the benchmark of
the loop; (3) the file/line of the target loop in the source code; (4) %Cov, the
fraction of the total execution time spent in the loop; and (5) the number of
invocations of the loop in the whole program. The features used to characterize
the loops are shown in the second part of Table 1: (1) N , the average number of

14 J. Salamanca and A. Baldassin

Table 1. Characterization and STL Execution of Loops.

Loop Loop Information Loop Characterization STL Execution ordered

ID Benchmark Location %Cov Invocations N %lc Average Iteration S SIZE libomp2016 Speed-ups libomp12 Speed-ups Execution
Size nonmonotonic monotonic nonmonotonic monotonic Speed-up

A automotive bitcount bitcnts.c,65 100% 560 1125000 100% 12 B 5020 1.61 1.69 - 1,55 0.21
E automotive susan s susan.c,725 100% 22050 600 0% 14 B 25 1.71 1.98 1.79 2.0 0.75
H automotive susan e susan.c,1117 18% 374 442 0% 3 KB 1 1.91 2.18 - 1.24 1.00
I automotive susan e susan.c,1056 56% 374 444 0% 4 KB 1 1.13 1.17 - 1.04 0.93
V automotive susan c susan.c,1614 7% 782 440 34% 1 KB 8 1.06 1.12 - 1.16 0.81
mcf 429.mcf pbeampp.c,165 40% 21854886 300 3.1% 300 B 75 1.17 1.13 1.16 1.11 0.15

Fig. 11. Speed-ups and abort ratios (4 threads) for STL (with two different OpenMP
runtime versions) and ordered parallelizations on Intel Core

loop iterations; (2) %lc, the percentage of iterations that have actual RAW loop-
carried dependences for the default input of cBench loops and the reference input
of mcf; and (3) the average size in bytes read/written by an iteration. The param-
eters in the third part of Table 1 describe: (1) S SIZE, the strip size used for the
experimental evaluation of STL parallelization; (2) the average speed-ups with
four threads for stl using the original version of libomp2016 (nonmonotonic)
and the modified version (Sect. 3) to support monotonic scheduling; (3) the aver-
age speed-ups with four threads for STL using the original (nonmonotonic) and
the modified (monotonic) version of libomp12; (4) the average speed-ups with
four threads for ordered using schedule(auto). Symbol ‘-’ in speed-ups means
that the loop did not finish due to a deadlock.

Firstly, the performance of the STL parallelization of the benchmarks
improves with the implementation of monotonic scheduling in the two OpenMP
runtime libraries. This is more noticeable with two threads—where STL-
parallelization slowdowns using nonmonotonic scheduling are transformed to

Improving Speculative taskloop in HTM 15

substantial performance improvements—since the Lost-Thread Effect causes a
large number of aborts due to order inversion (almost 100% of the transactions
started with 2 threads2) and removing it by applying a monotonic scheduling
decreases the ratio of order-inversion aborts.

On the other hand, it is important to note that it is possible to achieve speed-
ups using STL and the modified libomp12 (stl-l12-mon) in loops that did not
even finish (deadlock) with nonmonotonic scheduling (stl-l12-nm). This and
the reduction of order-inversion aborts in all evaluated loops, with respect to
nonmonotonic scheduling (as shown in Fig. 11), confirms the effectiveness of
monotonic scheduling of tasks in STL parallelization.

The performance improvements of STL using both runtimes with monotonic-
scheduling support is similar, except for loopH. This is because, in loopH, the
execution time of the serial version using Clang 12.0 is much shorter (even com-
piling with -O1) than that generated by Clang 4.0. Even so, it is possible to get
a speed-up of 1.24× with 4 threads in stl-l12-mon. However, with 2 threads
there are slowdowns (0.86×) because the overhead of creating tasks outweighs
the parallelized work.

As mentioned before, in stl-l12-nm parallelization, a complete Lost-Thread
Effect is generated causing no thread to progress due to the recursive partition
of the iteration space, which is completely nonmonotonic; however, the results in
Fig. 11 show that loopE completed its execution for three and four threads. After
investigating the libomp12 code, it was observed that the value of the variable
num tasks min is equal to the minimum between the initial value of the thread
deque (256) and the result of multiplying the number of threads by 10 (40 and
30 for four and three threads respectively). Since the number of iterations of this
loop is 600 and its S SZE value is 25, the number of tasks generated by taskloop
is 24. Thus, when the condition num tasks > num tasks min is reached in the
kmp taskloop function, it will be false and it will invoke taskloop linear func-
tion rather than the taskloop recur. As shown in Fig. 11, the performance of
stl-l12-nm for loopE is worse than the monotonic version, and very similar to
stl-l16-nm.

loopA has the same or better speed-ups with three threads than with four
threads when monotonic scheduling is used in both versions of the runtime
because the abort ratio due to order inversion drops dramatically using three
threads compared to four threads. The abort overhead, in this case, outweighs
the work parallelized by one more thread. In loopV, the ratio of aborts due to
conflict increases using monotonic scheduling. This is because the thread that
was lost and repeatedly aborting participates in the parallelization, decreasing
the ratio of aborts due to order inversion but conflicting with the other threads
for the variable n (loop-carried). The number of commits also increases using

2 In nonmonotonic scheduling, there are 100% aborts due to order inversion using two
threads because one thread generates tasks and the another consumes them slowly
and not speculatively (only one consuming thread). When the generating thread
finishes generating all the tasks, it executes iteration n− 1 and aborts due to order
inversion repeatedly until the another thread arrives.

16 J. Salamanca and A. Baldassin

this type of scheduling, which generates a performance improvement; however,
the percentage of transactions committed remains almost the same due to the
increase in transaction aborts due to conflict.

The mcf hottest loop is a particular case because, with the S SIZE used,
only four tasks are generated. Two of three exposed issues that generate the
Lost-Thread Effect do not affect the STL-parallelization of this loop: a) when
using four threads or less, the partition will be linear (and no recursive) due to
the same reasons explained above for loopE; and b) the deque of the generating
thread will never be packed because only four tasks are generated (the deque
has a capacity of 256 tasks).

Moreover, if the generating thread removes tasks from the tail (nonmonotonic
scheduling), since there are only four tasks, the Lost-Thread Effect does not
occur because the other three threads will execute the three first tasks (strips)
and will arrive quickly when the generating thread is executing the fourth strip.
On the other hand, using monotonic scheduling, the generating thread tries to
remove tasks from the head of its deque, which causes more competition for
this resource and a performance detriment. Only for this particular reason, the
nonmonotonic version of this loop offers better speed-ups with four threads than
the monotonic version.

For the parallelization with ordered, schedule (auto) clause is used, oth-
erwise the performance is even worse (loopA had slowdowns up to 0.01× for 4
cores). In general, ordered should be used in (may) DOACROSS loops where:
(a) their (possible) dependences and components (parallel and serial) can be
statically known; and (b) their parallel components do significant work with
respect to the iteration time. In the evaluated loops, the performance is poor
because either it is not possible to distinguish parallel/serial components or the
work of the parallel components is not significant.

6 Conclusions

This paper confirms our claim in previous work about the performance detriment
of the Lost-Thread Effect and shows that the implementation of monotonic
scheduling improves the performance of Speculative taskloop. We present an
evaluation with two different versions of the OpenMP runtime, both optimized
for STL, that reveals that, for certain loops, slowdowns or infinite slowdowns
(deadlocks), using the original OpenMP runtime, can be transformed in speed-
ups by applying monotonic scheduling.

Acknowledgments. The authors would like to thank the anonymous reviewers for
the insightful comments.

References

1. Ayguade, E., et al.: The design of OpenMP tasks. IEEE Trans. Parallel Distrib.
Syst. (TPDS) 20(3), 404–418 (2009)

Improving Speculative taskloop in HTM 17

2. Cytron, R.: Doacross: beyond vectorization for multiprocessors. In: International
Conference on Parallel Processing (ICPP), pp. 836–844 (1986)

3. cTuning Foundation: cBench: Collective benchmarks (2016). http://ctuning.org/
cbench

4. Gayatri, R., Badia, R.M., Ayguade, E.: Loop level speculation in a task based pro-
gramming model. In: 20th Annual International Conference on High Performance
Computing, pp. 39–48 (2013)

5. Intel: Intel OpenMP runtime library, version 20160808 (2016). http://clang-omp.
github.io/

6. OpenMP-ARB: OpenMP application program interface version 4.0 (2013)
7. OpenMP-ARB: OpenMP application program interface version 4.5 (2015)
8. OpenMP-ARB: OpenMP application program interface version 5.0 (2018)
9. Podobas, A., Karlsson, S.: Towards unifying OpenMP under the task-parallel

paradigm. In: Maruyama, N., de Supinski, B.R., Wahib, M. (eds.) IWOMP 2016.
LNCS, vol. 9903, pp. 116–129. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45550-1 9

10. Salamanca, J., Baldassin, A.: Evaluating the performance of speculative doacross
loop parallelization with taskloop. In: IEEE International Conference on High Per-
formance Computing and Simulation (HPCS), Barcelona, Spain (2020)

11. Salamanca, J., Baldassin, A.: Using hardware transactional memory to implement
speculative privatization in OpenMP. In: International Workshop on Languages
and Compilers for Parallel Computing (LCPC), New York, USA (2020)

12. Salamanca, J., Amaral, J.N., Araujo, G.: Performance evaluation of thread-level
speculation in off-the-shelf hardware transactional memories. In: Rivera, F.F.,
Pena, T.F., Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 607–621.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64203-1 44

13. Salamanca, J., Baldassin, A.: A proposal for supporting speculation in the OpenMP
taskloop construct. In: Fan, X., de Supinski, B.R., Sinnen, O., Giacaman, N. (eds.)
IWOMP 2019. LNCS, vol. 11718, pp. 246–261. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-28596-8 17

14. Shirako, J., Unnikrishnan, P., Chatterjee, S., Li, K., Sarkar, V.: Expressing
DOACROSS loop dependences in OpenMP. In: Rendell, A.P., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 30–44. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40698-0 3

15. Sohi, G.S., Breach, S.E., Vijaykumar, T.N.: Multiscalar processors. In: Interna-
tional Symposium on Computer Architecture (ISCA), S. Margherita Ligure, Italy,
pp. 414–425 (1995)

16. Steffan, J., Mowry, T.: The potential for using thread-level data speculation to
facilitate automatic parallelization. In: High-Performance Computer Architecture
(HPCA), Washington, USA, pp. 2–13 (1998)

17. Steffan, J.G., Colohan, C.B., Zhai, A., Mowry, T.C.: A scalable approach to thread-
level speculation. In: International Conference on Computer Architecture (ISCA),
Vancouver, British Columbia, Canada, pp. 1–12 (2000)

18. Teruel, X., Klemm, M., Li, K., Martorell, X., Olivier, S.L., Terboven, C.: A proposal
for task-generating loops in OpenMP*. In: Rendell, A.P., Chapman, B.M., Müller,
M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 1–14. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40698-0 1

19. The LLVM Project: LLVM 12.0.0 (2021). https://github.com/llvm/llvm-project
20. Torrellas, J.: Speculation, Thread-Level, pp. 1894–1900. Springer, Boston (2011)

http://ctuning.org/cbench
http://ctuning.org/cbench
http://clang-omp.github.io/
http://clang-omp.github.io/
https://doi.org/10.1007/978-3-319-45550-1_9
https://doi.org/10.1007/978-3-319-45550-1_9
https://doi.org/10.1007/978-3-319-64203-1_44
https://doi.org/10.1007/978-3-030-28596-8_17
https://doi.org/10.1007/978-3-030-28596-8_17
https://doi.org/10.1007/978-3-642-40698-0_3
https://doi.org/10.1007/978-3-642-40698-0_1
https://github.com/llvm/llvm-project

Vectorized Barrier and Reduction
in LLVM OpenMP Runtime

Muhammad Nufail Farooqi(B) and Miquel Pericàs

Chalmers University of Technology, Gothenburg, Sweden
{nufail,miquelp}@chalmers.se

Abstract. Barrier synchronization is a well known operation in parallel
processing that can be an obstacle for getting performance in parallel
programs, particularly for high thread counts. Similarly, reduction is a
collective communication pattern frequently used in parallel applications
and needs to be optimized for applications to achieve their best perfor-
mance. With the introduction of multi-core and many-core processors
several new barrier and reduction implementations have been proposed.
As the number of cores per node continues to grow, implementation of
these primitives need to be revisited and adapted for upcoming architec-
tures. We see an opportunity to improve synchronization by exploiting
vector units present in modern and future CPU designs based on vector
ISAs such as ARM’s Scalable Vector Extension and the RISC-V Vector
extension. In this work we propose vectorized barriers and reductions
using the vector length agnostic paradigm and implement them in the
LLVM OpenMP runtime. Our barrier implementation achieves up to
2.2× and 1.4× speedup over the default LLVM OpenMP implementa-
tion on Intel KNL and Fujitsu A64FX, respectively.

Keywords: OpenMP · Vectorization · Barrier · Reduction

1 Introduction

In a fork/join parallel pattern, a group of threads running in parallel to perform a
task or computation often requires to coordinate their execution flow by waiting
for a specific task to be completed or a data item to be updated before proceeding
further execution for correctness. This is achieved by a barrier, that is, a point
in a program where all participating threads or processes wait to reach before
continuing its execution. Similarly, algorithms often combine a number of values
into a single value by applying an arithmetic operation. This pattern is known as
reduction. Barriers and reductions are two commonly used operations in parallel
programs.

A major concern about synchronization is that it causes threads to idle as
a result of load imbalance, leading to performance degradation and resource
underutilization. However, the barrier itself is a costly task and can be subject
to scaling issue with increasing number of threads [6]. This is shown in Fig. 1
c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 18–32, 2021.
https://doi.org/10.1007/978-3-030-85262-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-85262-7_2

Vectorized Barrier and Reduction in LLVM OpenMP Runtime 19

where the time spent in EPCC’s barrier and reduction benchmarks [3] is observed
to increase as one increases the number of threads from 2 to 256 on Intel Knights
Landing (KNL) machine. The barrier overhead has been identified as an obstacle
for getting performance in parallel programs [22,25]. Similarly, reductions have
been observed to scale badly with increasing number of threads [6].

Fig. 1.OpenMP barrier and reduction construct overheads using the EPCC benchmark
on Intel Knights Landing (KNL). One threads per core is used until 64 threads and 2,
3, 4 threads per core for 128, 192, 256 threads, respectively.

OpenMP is the most widely used shared memory parallel programming
model. Two types of barriers occur frequently in OpenMP: explicit or implicit
barriers. Explicit barriers are inserted via the barrier pragma (#pragma omp
barrier) and implicit barriers are employed automatically at the end of many
OpenMP constructs, e.g. OpenMP parallel, for and single. Reductions are explic-
itly specified via a reduction clause that includes reduction variable/s and the
corresponding reduction operation. Each participating OpenMP thread performs
the reduction operation on a subset of the values and then the local results from
all threads are further reduced to a single value that is shared among all threads.

On chip parallelism is increasing and is expected to raise even more at exas-
cale, thus posing a challenge to keep the cost of barriers low as the number of
cores on chip rise. At the same time, vector units are being added to micropro-
cessor chips in order to perform certain operations more efficiently. For exam-
ple, Fujitsu’s A64FX processor includes a 512-bit vector unit based on ARM-
SVE [21]. Vector units are designed to process multiple data items in parallel.
Barriers and reductions involve operations that are applied to multiple data
items, and can be applied simultaneously to all items. This raises the following
question: Can modern vector units be used to accelerate synchronization and
reduction operations?

20 M. N. Farooqi and M. Pericàs

Many algorithms for barrier synchronization have been developed over the
past four decades. A discussion of the most relevant proposals is given in Sect. 2.
The performance of barriers depends on many factors, like the number of threads
to synchronize, the underlying hardware architecture, the application type and
the system load at the time of synchronization [15,17]. Barriers implemented
with a tree synchronization pattern are well suited for high number of threads [1].
We focus on the LLVM OpenMP runtime, which implements a few state of the
art tree based barrier algorithms.

Caballero et al. [4,5] implemented a tree based barrier algorithm in the Intel
OpenMP runtime for the Intel Xeon Phi Coprocessor. They utilize the SIMD
unit in the coprocessor for barrier synchronization as well as for performing
reductions. Their work is specific for SIMD while we aim to generalize it for
vector architectures. Furthermore, they implement SIMD specific reduction in
the runtime while we use clang ’s code generator to generate vectorized LLVM-IR
reduction code. The runtime approach requires an ISA or even machine specific
implementation for all standard reduction operations and can’t be implemented
for custom reductions. However, the code generator approach has the capability
to generate code that is portable across all ISAs as the LLVM-IR for the Vector
Length Agnostic (VLA) programming model standardises.

In this paper, we implement low overhead barriers and reduction in LLVM
OpenMP for ARM-SVE, RISC-V Vector Extensions and Intel’s Advanced Vec-
tor Extensions (AVX) by vectorizing the threads arrival flag check and release
operation in barriers. We also vectorize reduction operation to reduce partially
reduced values from all threads. Our contributions are as follows:

– We implement vectorized barrier and reduction support in LLVM OpenMP
runtime for ARM-SVE, RISC-V Vector Extensions and AVX.

– We implement LLVM-IR generator in clang to generate vectorized reduction
function.

– We provide performance measurement and comparison of Fujitsu A64FX and
Intel KNL, and validate the correctness for RISC-V Vector Extensions. Our
evaluation shows that the vectorized barrier achieves 2.2× speedup on an
Intel KNL and 1.52× speedup on a Fujitsu A64FX.

The rest of the paper is organised as follows: Sect. 2 gives background about
different types of barriers that are found in the literature and of the imple-
mentation of barriers and reduction in the LLVM OpenMP runtime. Section 3
presents the vectorized barrier algorithm and the LLVM-IR generation for vec-
torized reduction in clang. Performance results are then discussed in Sect. 4,
while Sect. 5 concludes the paper.

2 Background and Related Work

In this section, first we discuss different types of barriers found in the literature.
We classify barriers mainly on the underlying data structure used for implemen-
tation. Here, we also explain how barriers and reduction are implemented in
LLVM OpenMP.

Vectorized Barrier and Reduction in LLVM OpenMP Runtime 21

2.1 Types of Barriers in Literature

Two types of data structures are usually used for barrier implementation. One is
centralised data structure where a single variable that is shared among all threads
is used for synchronization. The other data structure is to use a dedicated flag
for each thread. The actual pattern of how the synchronization is performed also
depends on the data structure used.

The types of barriers with centralised data structure implementation uses a
single shared variable as counter. Each thread, upon reaching at synchronization
point, increment the counter variable to mark its arrival. Access to the shared
counter is controlled via locks or is incremented through atomic operations.
These type of barriers do not scale with increasing number of threads due to the
lock contention that is required by threads before modifying the counter [18].
There exist a number variants for centralised barrier algorithms [10,13,23,24]
that are based on this type of data structures. A major variant is software
combining tree barrier [26] that uses multiple shared counters organised as a tree
where each counter is dedicated for a subgroup of threads to reduce contention.

Barriers implemented using dedicated flags has a fixed variable for each
thread that is used to mark its arrival at the synchronization point. The flag
variable can be either a variable in thread’s own data structure or a dedicated
location in a shared array. This type of implementation can scale well with
increasing number of threads because each thread only modifies its dedicated
location and do not require any lock. The drawback is that all flags are required
to be checked to ensure the arrival of all threads at the synchronization point.

Dissemination Barrier [9,10], Tournament Barrier [10,14], Static Tree Bar-
rier [15], Multi-Degree SIMD Combining Tree Barrier Algorithm [5] and barrier
implementations in the LLVM OpenMP runtime uses dedicated flags to mark
threads arrival. The Dissemination Barrier takes places in multiple stages where
at a stage x each thread synchronizes with its 2xth adjacent thread. Tournament
and Static Tree synchronizes in a tree manner with dedicated array for each tree
level. The difference between the two is that Static Tree Barrier uses a static
thread to synchronize sibling threads in a subgroup at a level and mark arrival
of subgroup at higher level while the in Tournament Barrier a winner thread
performs this task. The winner thread is selected dynamically depending on its
time of arrival. Diego’s [5] algorithm is similar to Static Tree Barrier except that
tree levels can have variable number of nodes.

Besides software barriers, there are also efforts at the hardware level to imple-
ment low cost synchronization. These are either fully in hardware [11,16,19] or
a hybrid of software and hardware [20].

2.2 Barriers and Reductions in OpenMP

Barriers: The clang code generator replaces every #pragma omp barrier with a
call to the OpenMP runtime’s barrier subroutine. The LLVM OpenMP runtime
implementation of a barrier is composed of two phases: A Gather and a Release
phase. In Gather phase, all threads marks their arrival at synchronization point

22 M. N. Farooqi and M. Pericàs

by incrementing their flags and then wait to be released. Any task e.g. reduction
that is needed to be performed is carried out. Then followed by the Release phase
where parent threads releases child threads by resetting the flags.

The LLVM’s OpenMP runtime, based on use of a barrier in a program, imple-
ment two barrier models. One is Fork-join model that is used implicitly with
OpenMP parallel construct and the other is Plain model that is used everywhere
else both for implicit and explicit barriers. The Fork-join model as compared to
the Plain model is implemented with an additional assumption that a threads’
data may not exist because either it is not created yet or it deleted its data
after leaving the barrier at the end of a parallel region. That is why it is used
for parallel construct because threads are created at the beginning of a parallel
construct and destroyed at the end.

The runtime, for synchronization of threads in a team implements four types
of patterns: Linear, Tree, Hyper and Hierarchical.

– Linear: A single master thread is responsible for ensuring arrival of all team
member threads at a barrier and performs any required task before releasing
them.

– Tree: This pattern uses a balanced tree approach with a branching factor in
powers of 2 where threads at a level l work as master thread for child threads
at level l+1.

– Hyper: This is hypercube-embedded tree like pattern with a branching factor
in powers of 2. Hypercube is explained at [7].

Fig. 2. An example of how reduction is handled in LLVM OpenMP.

Vectorized Barrier and Reduction in LLVM OpenMP Runtime 23

– Hierarchical: Similar to a tree pattern but the tree structure is based on
machine hierarchy.

Reductions: There are two components involved in implementation of a reduc-
tion. One is the clang code generator that automatically generate a reduction
function @reduction func that performs the reduction operations specified in
the reduction clause. The other involve inserting a call to the runtime’s subrou-
tine kmpc reduce for the reduction. A function pointer to the reduction func-
tion @reduction func and pointer to reduction variables are passed as parame-
ter to the subroutine. During program execution all threads encounter a call to
the runtime subroutine kmpc reduce. This subroutine in turn calls the reduc-
tion function @reduction func using the function pointer between the Gather
and Release phases of an embedded barrier. Figure 2 shows an example of what
a compiler generates when it encounters a reduction clause and then how the
compiled program interacts with the OpenMP runtime.

3 Low Overhead Barrier and Reduction in OpenMP

We present low overhead barrier and reductions implementation in LLVM’s
OpenMP runtime by utilizing the vector unit in the modern processors. We
added this as an optional feature in the LLVM OpenMP that can be enabled by
−fopenmp use vbr compiler command line option.

3.1 Vectorized Barrier

We changed both the data structure and the synchronization pattern in the
runtime for vectorized barrier implementation. The existing OpenMP runtime
uses dedicated flags, embedded in each thread’s own data structure, to mark the
arrival of threads at synchronization point. However, vector units are designed
to processes a contiguous chunk of data. Therefore we added an array per team
that is shared among all threads in a team and is used to mark the arrival of
threads at barrier. The same array is also used to signal the release of threads
after processing any required task. All the flags are initialized to 1 when the
shared flags array for a team is allocated.

The Gather and Release phases of the synchronization pattern for a Plain
barrier model implementation are shown in Fig. 3. In the Gather phase, each
thread marks its arrival by setting the dedicated location to 0 in the shared flags
array and start waiting on the same flag at the Release phase except the master
thread. Threads in a team need to wait at a synchronization point until all the
threads arrive. Thus master thread continuously loads a part of the shared array
(depends on the vector length) and perform bitwise or operation between the
loaded part and a temporary vector register until the entire array is processed
in the inner loop. The master thread then in an outer loop checks if any of the
threads did not reach yet by looking for any bit that is still set in the temporary
vector register. After arrival of all threads the master thread completes any task

24 M. N. Farooqi and M. Pericàs

that need to be performed and then release all child threads in the Release phase
by setting their flags equal to 1.

We use tree pattern for barrier synchronization where branching factor can
be set using an environment variable and allocate a dedicated shared array for
each tree level.

Fig. 3. Pseudocode for barrier (Gather and Release phases). VLEN is length of the
vector unit and nThreads are number of threads participating in the barrier.

3.2 Vectorized Reduction

The OpenMP runtime and the clang code generator for OpenMP are both mod-
ified to implement vectorized reduction.

In the OpenMP runtime, a shared array per team for each reduction variable
in a reduction clause is created. The same arrays are reused for subsequent reduc-
tion clauses, if any. The partial reduction result from each thread is copied to the
shared reduction array during the Gather phase of a barrier that is embedded
inside the runtime’s reduction subroutine. The master thread then computes the
reduction result by calling the vectorized @reduction func function. We modify
signature of the reduction subroutine kmp reduce for vectorized reduction. A
parameter is added to pass the reduction variables sizes to the runtime that is
later used to copy the partial reduction results for each thread into the shared
reduction array. The signature of pointer to the reduction function that is passed
to kmp reduce is also changed because of an additional parameter in the vec-
torized reduction function.

The code generator is adapted to generate vectorized LLVM-IR code for the
reduction operation in the @reduction func function. Pseudocode for the vec-
torized reduction function is shown in Fig. 4. The function signature is changed
by passing the number of threads as additional parameter that indicates the
number of elements to be reduced. The default reduction function perform the
reduction operation on two variables while the vectorized reduction function

Vectorized Barrier and Reduction in LLVM OpenMP Runtime 25

Fig. 4. Pseudocode for vectorized reduction function

reduces an array with elements equal to the number of threads in a team. We
use the reduction method described in [12]. The code generator also inserts a
call to kmp reduce with the modified signature.

Our implementation of LLVM-IR code generator for vectorized reduction
function in clang supports AVX, ARM-SVE and RISC-V Vector Extensions.
Currently, there is no standardised LLVM-IR for scalable vectors so the LLVM-
IR generated is different for each instruction set.

4 Performance Results

We carried out performance measurements using EPCC’s parallel, barrier and
reduction benchmarks on Intel KNL for AVX and Fujitsu A64FX for Arm SVE.
EPCC’s parallel, barrier, for and reduction benchmarks measures the perfor-
mance of (#pragma omp parallel), (#pragma omp barrier), (#pragma omp
for) and (#pragma omp parallel reduction(+:sum)) pragmas, respectively. The
EPCC’s reduction benchmark measures the overhead of reduction by appending
the reduction clause to OpenMP parallel pragma. Measuring the pure over-
head of a reduction clause is not possible. Therefore, we also write another
benchmark to measure the overhead of reduction where we append the reduc-
tion clause to OpenMP for pragma as (#pragma omp for reduction(+:sum)).
Table 1 shows machine specifications for Intel KNL and Fujitsu A64FX. In all
experiments, LLVM OpenMP’s default barrier and reduction are used as base-
line for comparison with vectorized barrier and reduction. The runtime uses
hypercube-embedded tree barrier pattern as default.

Table 1. Machine specifications.

Intel KNL Fujitsu A64FX

Cores 68 48

L1 32 KB 64 KB

L2 34 MB (private) 32 MB (shared)

Memory 192 GB 32 GB

Bandwidth 90 GB/s 1 TB/s

26 M. N. Farooqi and M. Pericàs

For RISC-V Vector Extension, we validated the functional correctness of
implementation using qemu [2] and vehave emulator [8]. We could not perform
any performance studies because, currently, there is no machine or simulator
available that can be used to carry out performance studies for multithreaded
RISC-V Vector Extension.

We ran experiments with different branching factors for the tree pattern
that we use for barrier synchronization. For both Intel KNL and A64FX, the
best performance is achieved when branching factor is maximum and all the
threads are at same level that is equivalent to a linear pattern.

Fig. 5. Performance of vectorized barrier and reduction with varying padding for bar-
rier flags and reduction array (256 Threads on Intel KNL with snc4 cluster mode).

4.1 Intel KNL

We analysed the effect of padding the shared flags array for vectorized barri-
ers and the reduction array on Intel KNL. Figure 5 shows speedup for parallel,
barrier and reduction benchmarks running on Intel KNL for 256 threads. On
the x-axes, omp is the default OpenMP and vec-x-y is for OpenMP with vec-
torized barrier and reduction where x is the number of bytes used for a barrier
flag (including the padding) and y is the number of bytes used for an element
of reduction array (including the padding). In vec-x, no padding is used for

Vectorized Barrier and Reduction in LLVM OpenMP Runtime 27

reduction array and vector loads to are used to load the reduction array instead
of a gather instruction. The performance of vectorized barrier increases as we
increase the padding until 8 bytes (i.e. 8 threads sharing a cache line) and then
starts degrading with further increase in the padding. The performance initially
increases due to the reduction in false sharing that is caused by threads sharing a
cache line but starts degrading with further increase in the padding because of an
increase in the on-chip memory traffic. The maximum performance is achieved
when the balance between false sharing and on-chip memory traffic is optimal.
For reduction, the maximum performance is without padding and performance
declines when the padding is increased.

Fig. 6. Vectorized barrier and reduction on Intel KNL with snc4 cluster mode (padding:
8 bytes).

Figure 6, 7 and 8 shows scaling results in terms of speedup for the barrier,
parallel, parallel-reduction, for and for-reduction benchmarks when using 8, 16
and 32 bytes padding for each thread’s barrier flag on Intel KNL with snc4
clustering mode. The vectorized barrier was able to achieve a maximum of 2.2×
speedup for 128 threads when a padding of 8 bytes is used. In all the three cases,
the performance increase as we increase the number of threads until the optimal
balance between false sharing and on-chip memory traffic is achieved and then
deteriorates with further increase in the number of threads. For lower number
of threads when we increase the padding the performance also increase because
it reduces the false sharing while the on-chip network is still not saturated due
to memory traffic.

The performance penalty in the parallel benchmark is due to the extra over-
head caused by the initialization of barrier and reduction arrays that are created
at entry to the parallel region and destroyed at the exit. The performance gain

28 M. N. Farooqi and M. Pericàs

Fig. 7. Vectorized barrier and reduction on Intel KNL with snc4 cluster mode (padding:
16 bytes).

Fig. 8. Vectorized barrier and reduction on Intel KNL with snc4 cluster mode (padding:
32 bytes).

Vectorized Barrier and Reduction in LLVM OpenMP Runtime 29

in the for benchmark is due to the implicit barrier that is used to synchronize
all threads threads at the exit.

The parallel-reduction and for-reduction benchmarks are implemented by
adding the reduction clause to the OpenMP parallel and for pragmas, respec-
tively. Thus the performance measured using these benchmarks is the combined
performance of the pragma used and the reduction. The vectorized parallel-
reduction do not achieve a clear performance improvement over the default
parallel-reduction. However, the benefit of vectorized reduction is visible from
the additional speedup achieved by the parallel-reduction compared to the par-
allel benchmark and the for-reduction compared to the for benchmark when the
number of threads are high.

4.2 Fujitsu A64FX

Padding the shared flags array for vectorized barriers and the reduction array
was also analysed on Fujitsu A64FX. Maximum performance was observed when
using a padding of 64 bytes for barrier and no padding for reduction array.
Figure 9 shows scaling results in terms of speedup for barrier, parallel, parallel-
reduction, for and for-reduction benchmarks on A64FX using a padding of 64
bytes for barrier i.e. a single cache line per thread. On A64FX, the vectorized
barrier achieved a maximum speedup of 1.4x for 8, 16 and 32 cores i.e. when
number of cores are in multiple of 8. Vectorized reduction couldn’t outperform
the default implementation on A64FX as the number of threads are low as
compared to Intel KNL.

Fig. 9. Vectorized barrier and reductions on A64FX (64 byte padded array for barrier
flags and no padding for reduction array).

30 M. N. Farooqi and M. Pericàs

5 Conclusions

In this paper, we implemented low overhead barriers and reduction in LLVM
OpenMP by vectorizing the threads arrival flag check and release operation in
barriers and reduction operation to reduce partially reduced values from all
threads. The goal was to utilise vector/SIMD units available in modern archi-
tectures to prepare the OpenMP runtime for the massive cores counts that is
expected in exascale era. Our implementation supports ARM-SVE, RISC-V Vec-
tor Extension and Intel’s Advanced Vector Extensions. We carried out perfor-
mance studies on Fujitsu A64FX for ARM-SVE and on Intel KNL for AVX. The
vectorized barriers achieved 2.2x speedup on Intel KNL for 128 threads and 1.4x
speedup on A64FX for 32 threads over the default OpenMP barrier implementa-
tion. Measuring the pure overhead of a reduction clause is not possible as it used
as an additional clause to OpenMP pragma like parallel and for. The vectorized
reduction show performance improvements on Intel KNL when performance of
parallel is compared with parallel-reduction and for with for-reduction bench-
mark. However, the reduction benchmark on A64FX do not show performance
improvements.

In experimentation with different padding sizes for barrier flags, we found
that the cache coherency protocol plays an important role in the performance of
vectorized barriers. Reducing the overhead of barriers and reduction further by
doing optimization only in the software is not a trivial task and would benefit
from hardware support. In the future, we are planning to work on the cache
coherency mechanism to provide support for synchronizations and reductions in
the cache hierarchy.

Acknowledgements. This work has been done as part of the European Proces-
sor Initiative project. The European Processor Initiative (EPI) (FPA: 800928) has
received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement EPI-SGA1: 826647. The computations were enabled
by resources provided by the Swedish National Infrastructure for Computing (SNIC)
at HPC2N, partially funded by the Swedish Research Council through grant agreement
no. 2018–05973. We thank Barcelona Supercomputer Center (BSC-CNS) for their sup-
port and providing access to the CTE-ARM cluster.

References

1. Arenstorf, N.S., Jordan, H.F.: Comparing barrier algorithms. Parallel Comput.
12(2), 157–170 (1989)

2. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC 2005, p. 41,
USENIX Association, USA (2005)

3. Bull, J.M., Reid, F., McDonnell, N.: A microbenchmark suite for OpenMP tasks.
In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012.
LNCS, vol. 7312, pp. 271–274. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30961-8 24

https://doi.org/10.1007/978-3-642-30961-8_24
https://doi.org/10.1007/978-3-642-30961-8_24

Vectorized Barrier and Reduction in LLVM OpenMP Runtime 31

4. Caballero, D.: SIMD@OpenMP: a programming model approach to leverage SIMD
features. Ph.D. Thesis, Universitat Politecnica de Catalunya (2015)

5. Caballero, D., Duran, A., Martorell, X.: An OpenMP* Barrier Using SIMD instruc-
tions for intel R© Xeon PhiTM coprocessor. In: Rendell, A.P., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 99–113. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40698-0 8

6. Doodi, T., et al.: OpenMP runtime instrumentation for optimization. In: de Supin-
ski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) Scaling
OpenMP for Exascale Performance and Portability. Lecture Notes in Computer
Science, pp. 281–295. Springer International Publishing, Cham (2017)

7. https://people.eecs.berkeley.edu/∼demmel/cs267-1995/lecture10/lecture10.html
8. https://repo.hca.bsc.es/gitlab/epi-public/risc-v-vector-simulation-environment
9. Han, Y., Finkel, R.A.: An optimal scheme for disseminating information. In: Pro-

ceedings of the International Conference on Parallel Processing, ICPP ’88, The
Pennsylvania State University, University Park, PA, USA, August 1988. Volume
2: Software, pages 198–203. Pennsylvania State University Press (1988)

10. Hensgen, D., Finkel, R., Manber, U.: Two algorithms for barrier synchronization.
Int. J. Parallel Program. 17, 1–17 (1988). https://doi.org/10.1007/BF01379320

11. Hetland, C., et al.: Paths to fast barrier synchronization on the node. In: Pro-
ceedings of the 28th International Symposium on High-Performance Parallel and
Distributed Computing, HPDC 2019, pp. 109–120. Association for Computing
Machinery, New York, NY, USA, (2019)

12. Lin, H., Sips, H.: Parallel vector reduction algorithms and architectures. J. Parallel
Distrib. Comput. 5(2), 103–130 (1988)

13. Lubachevsky, B.D.: An approach to automating the verification of compact parallel
coordination programs. I. Acta Inf. 21(2), 125–169 (1984)

14. Lubachevsky, B.D.: Synchronization barrier and related tools for shared memory
parallel programming. Int. J. Parallel Prog. 19(3), 225–250 (1991)

15. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

16. Mondal, H.K., Cataldo, R.C., Marcon, C.A.M., Martin, K., Deb, S., Diguet, J.-
P.: Broadcast-and power-aware wireless NoC for barrier synchronization in parallel
computing. In: 2018 31st IEEE International System-on-Chip Conference (SOCC),
pp. 1–6 (2018)

17. Nanjegowda, R., Hernandez, O., Chapman, B., Jin, H.H.: Scalability evaluation
of barrier algorithms for OpenMP. In: Müller, M.S., de Supinski, B.R., Chapman,
B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 42–52. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02303-3 4

18. Pfister, G.F., Norton, V.A.: “hot spot” contention and combining in multistage
interconnection networks. IEEE Trans. Comput. C 34(10), 943–948 (1985)

19. Sampson, J., Gonzalez, R., Collard, J.-F., Jouppi, N.P., Schlansker, M., Calder, B.:
Exploiting fine-grained data parallelism with chip multiprocessors and fast barriers.
In: 2006 39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 2006), pp. 235–246 (2006)

20. Sartori, J., Kumar, R.: Low-overhead, high-speed multi-core barrier synchroniza-
tion. In: Patt, Y.N., Foglia, P., Duesterwald, E., Faraboschi, P., Martorell, X. (eds.)
HiPEAC 2010. LNCS, vol. 5952, pp. 18–34. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11515-8 4

21. Sato, M., et al.: Co-Design for A64FXManycore Processor and “Fugaku”. In: SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–15, November 2020

https://doi.org/10.1007/978-3-642-40698-0_8
https://people.eecs.berkeley.edu/~demmel/cs267-1995/lecture10/lecture10.html
https://repo.hca.bsc.es/gitlab/epi-public/risc-v-vector-simulation-environment
https://doi.org/10.1007/BF01379320
https://doi.org/10.1007/978-3-642-02303-3_4
https://doi.org/10.1007/978-3-642-11515-8_4
https://doi.org/10.1007/978-3-642-11515-8_4

32 M. N. Farooqi and M. Pericàs

22. Satoh, S., Kusano, K., Sato, M.: Compiler optimization techniques for OpenMP
programs. Sci. Program. 9(2–3), 131–142 (2001)

23. Tang, P., Yew, P.: Processor self-scheduling for multiple-nested parallel loops. In:
Hwang, K., Jacobs, S., Swartzlander, E. (eds) Proceedings of the International
Conference on Parallel Processing, Proceedings of the International Conference on
Parallel Processing, pp. 528–535. IEEE, December 1986

24. Tang, P., Yew, P.-C.: Software combining algorithms for distributing hot-spot
addressing. J. Parallel Distrib. Comput. 10(2), 130–139 (1990)

25. Tatebe, O., Sato, M., Sekiguchi, S.: Impact of OpenMP optimizations for the
MGCG method. In: Valero, M., Joe, K., Kitsuregawa, M., Tanaka, H. (eds.)
High Performance Computing. Lecture Notes in Computer Science, pp. 471–481.
Springer, Berlin, Heidelberg (2000). https://doi.org/10.1007/3-540-39999-2 44

26. Yew, P.-C., Tzeng, N.-F.: Lawrie: distributing hot-spot addressing in large-scale
multiprocessors. IEEE Trans. Comput. C 36(4), 388–395 (1987)

https://doi.org/10.1007/3-540-39999-2_44

Tasking Extensions I

Enhancing OpenMP Tasking Model:
Performance and Portability

Chenle Yu1,2(B), Sara Royuela1(B), and Eduardo Quiñones1(B)

1 Barcelona Supercomputing Center, Barcelona, Spain
{chenle.yu,sara.royuela,eduardo.quinones}@bsc.es
2 Universitat Politècnica de Catalunya, Barcelona, Spain

chenle.yu@upc.edu

Abstract. OpenMP, as the de-facto standard programming model in
symmetric multiprocessing for HPC, has seen its performance boosted
continuously by the community, either through implementation enhance-
ments or specification augmentations. Furthermore, the language has
evolved from a prescriptive nature, as defined by the thread-centric
model, to a descriptive behavior, as defined by the task-centric model.
However, the overhead related to the orchestration of tasks is still rel-
atively high. Applications exploiting very fine-grained parallelism and
systems with a large number of cores available might fail on scaling.

In this work, we propose to include the concept of Task Dependency
Graph (TDG) in the specification by introducing a new clause, named
taskgraph, attached to task or target directives. By design, the TDG
allows alleviating the overhead associated with the OpenMP tasking
model, and it also facilitates linking OpenMP with other programming
models that support task parallelism. According to our experiments, a
GCC implementation of the taskgraph is able to significantly reduce
the execution time of fine-grained task applications and increase their
scalability with regard to the number of threads.

Keywords: OpenMP specification · Tasking model · Runtime
overhead

1 Introduction

OpenMP is a parallel programming model widely used on shared memory sys-
tems by virtue of its programmability, portability, and competitive performance.
OpenMP 3.0 introduced support for fine-grained irregular parallelism with the
so-called task-centric model. Later, OpenMP 4.0 introduced fine-grained data-
driven synchronization mechanisms in the form of task dependencies. Since this
preliminary support for task parallelism, the OpenMP specification has evolved
from a prescriptive to a descriptive paradigm, enabling users to define what
has to be parallelized rather than how to parallelize it. Interestingly, the tasking
model can be now used not only for task parallelism, by using the task construct,
but also for data parallelism, by using the taskloop construct.
c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 35–49, 2021.
https://doi.org/10.1007/978-3-030-85262-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-85262-7_3

36 C. Yu et al.

Despite the clear benefits of the tasking model (including flexibility,
dynamism, and independence from the underlying resources), the implemen-
tations of this model typically introduce a considerable overhead related to the
management of the parallel execution of tasks. As a result, these overheads have
been extensively studied [8,13,15], concluding that a sufficiently coarse granu-
larity of tasks (i.e., workload assigned to a task) is the keystone to obtain the
expected performance gains. However, the smaller the granularity is, the greater
the overhead will represent the end-to-end execution time. Although the run-
time overhead is substantially dependent on each particular implementation,
the observations made on the studies are independent of the compiler and the
runtime used in the experiments.

To overcome the limitations derived from classic OpenMP implementations,
different works propose alternative solutions. Castelló et al. presented an imple-
mentation using lightweight threads (LWT) instead of POSIX threads [2] and
G.Tagliavini et al. designed and implemented an OpenMP runtime environment
specifically for the Kalray MPPA 256 [5], a many-core processor for embedded
systems. Despite the effectiveness of these solutions, they are either difficult
to apply on mainstream OpenMP runtime implementations, or they are not
portable to diverse shared memory systems.

This paper takes into account the limitations of the previous solutions, and
proposes a new feature in the OpenMP specification to allow users to define
taskgraph regions, i.e., regions of an OpenMP task-based program that can be
implemented more efficiently. This enhancement in the implementation is sub-
stantiated on the Task Dependency Graph (TDG) used to represent the execu-
tion of a task-based program (or region), and is only possible if either (a) the
TDG of the selected region can be completely expanded at compile-time (i.e.,
all tasks instances and their dependencies can be decided statically), or (b) the
region is going to be executed multiple times and the same TDG can be exploited
several times.

The approach proposed can reduce, by design, the runtime overhead related
to task management, and it has a higher abstraction level than previously pre-
sented methods. Hence, existing OpenMP implementations, including aforemen-
tioned work, can easily integrate taskgraph, thus benefiting from several layers
of optimization. Our main contributions are the following:

– A new approach for accelerating the OpenMP tasking model by reducing task
runtime overhead, together with the analysis of the use cases that can benefit
from this new approach.

– A new clause, namely taskgraph, providing the syntax and the semantics
thereof, and the characterization of the implications on the execution and
memory models of OpenMP.

– Preliminary results on the benefits that can be extracted from this new feature
considering (a) performance gain by virtue of a lighter implementation of
the OpenMP runtime, and (b) interoperability provided by the TDG, which
allows using OpenMP as a high-level API that can be lowered to different
programming models.

Enhancing OpenMP Tasking Model: Performance and Portability 37

2 Motivation

The main sources of overhead in the OpenMP runtime for handling tasks include:
(a) the contention caused by different threads accessing simultaneously to shared
resources, for instance, acquiring the lock that protects a shared data element;
and (b) the cost of handling tasks, including task creations, dependency res-
olutions and task deletions. While the former is proportional to the number
of threads running concurrently and the amount of parallelism exposed in the
application, the latter scales with the number of tasks, which tends to be large
in modern HPC applications. This can be explained by the increased workloads
and the growing number of logical threads incorporated in high-end modern
processors.

On the whole, to achieve the levels of performance provided by modern multi-
core and many-core accelerated architectures, the number of tasks exposed in
an application must be, at least, as large as the number of threads during most
part of the execution. However, using more threads does not systematically mean
higher performance, according to the sources of overhead stated above. There-
fore, reducing task-related overhead is of paramount importance for the success
of OpenMP task-based frameworks.

In a perfect world, where the compiler can statically determine the data
associated to all task instances and all dependencies among tasks, the allocation
of tasks and the resolution of the dependencies can be done at compile time. We
use an in-house implementation in the GCC 7.3.0 framework that uses a pre-
computed Task Dependency Graph to allocate tasks and decide dependencies
beforehand in order to illustrate the benefits of this approach. Figure 1 shows
the execution time1 of an optimized heat transfer simulation where the problem
size is fixed (2048× 2048 matrix), and the block size is changed throughout the
experiment, generating from 640 tasks (with 256×256 block size) to 16000 tasks
(with 52×52 block size). The line annotated as GCC+taskgraph corresponds to
the optimal case where the TDG is fully pre-calculated at compile-time, whereas
the line annotated as GCC + original GOMP runs the vanilla implementation
of GCC GOMP runtime. Essentially, the figure shows when the number of tasks
increases (and so the granularity of the tasks decreases because of the fixed total
workload) the modified version does not lose performance, while the original
version does once the number of tasks exceeds 4000.

Applications in the HPC domain are however commonly dynamic, in the
sense that their data is only known at runtime. As a consequence, compilers are
not able to automatically apply the optimizations explained above. However,
some HPC applications show other patterns that can also benefit from a similar
approach to reduce overhead. This is the case of applications that expose multiple
levels of parallelism, where the outer levels are dynamic and the inner levels are
static, e.g., the sLASs linear algebra solver [19], the Specfem3D simulator [6]

1 The execution has run in a node of the Marenostrum IV [1] supercomputer, equipped
with an Intel Xeon Platinum 8160 CPU, having 2 sockets of 24 physical cores each,
at 2.1 GHz and 33MB L3 cache.

38 C. Yu et al.

Fig. 1. Execution time of Heat transfer simulation using Gauss-Seidel method while
changing the number of tasks and reducing the task granularity.

and the Quantum ESPRESSO material modeling tool [4]. In these cases, where
inner TDG can become static after their first execution, benefits similar or even
better than the ones shown in Fig. 1 can be expected.

Nonetheless, it is unattainable for a compiler to detect these cases and lower
the code accordingly so the runtime does not create and destroy the inner (and
stable) TDGs each time they have to run. As a consequence, this paper proposes
to enable programmers to explicitly define the regions of their applications that
are static (i.e., decidable at compile-time) or stable (i.e., these will run several
times without changing the TDG and consumed data). In order to fit in the
OpenMP specification without introducing unnecessary changes, we propose a
new clause called taskgraph which, together with the task and target direc-
tives, acts as a hint to the compiler and the runtime system to recognize the
task region to optimize.

Furthermore, the possibility of pre-building a TDG opens the door for pro-
grams to be lowered, not only to the common OpenMP runtime (e.g., GCC,
LLVM), but also to other APIs in order to exploit the heterogeneity. This is of
particular interest in modern supercomputers as, for instance, 6 of the 10 most
powerful supoercomputers in the world now incorporate Nvidia GPUs to scale
their computation power [18], and various applications are legacy code, or are
highly tuned for a specific accelerator device. Thus, increasing the portability
of OpenMP to these models, as well as enhancing the programmability of low-
level APIs is crucial. Previous works [20] have already tackled this issue, and a
detailed analysis on these aspects is further provided in Sect. 4.2.

3 The Taskgraph Model

Despite the fact that application developers often use TDGs to express and
study their programs, the OpenMP specification does not include the concept
of TDG per se. We propose to introduce this concept, named taskgraph, in the
OpenMP specification to tackle the challenges mentioned in Sect. 2. To do so,

Enhancing OpenMP Tasking Model: Performance and Portability 39

this section presents the taskgraph mechanism and discusses how to integrate
this feature into the current OpenMP specification. Concretely, it defines first
the syntax of a new taskgraph clause and its semantic, considering its impact on
the execution and memory models of OpenMP; and then exhibits the conditions
required by the OpenMP program to use the taskgraph feature correctly.

3.1 The taskgraph Mechanism

Implementations supporting taskgraph shall be able to generate a TDG, either
at compile-time or at run-time, from a region annotated with the taskgraph
clause. By leveraging the information contained in the TDG, the compiler or the
runtime is capable of replacing the entire taskgraph region (meaning the user
code) with the execution of the TDG. Therefore, not only the overhead related
to task creation, dependency resolution and task deletion is alleviated, but also
loop and conditional statements can be skipped.

Figure 2 illustrates the taskgraph mechanism. Particularly, Fig. 2a shows a
snippet of a Heat transfer simulation implemented with OpenMP tasks and using
the taskgraph clause, and Fig. 2b shows an overview of the TDG extracted from
that application.

Fig. 2. Heat transfer simulation implemented with the Gauss-Seidel iterative method,
using the proposed taskgraph clause

The main limitation of the taskgraph appears when the TDG has to be com-
puted at run-time and, although the shape is stable for some time, there are con-
ditions in the application that can make this TDG change. For those cases, the
taskgraph clause can be declared with a list of variables, i.e., taskgraph(list)
, which can be monitored at runtime, and so when a variable changes, the TDG
is destroyed and rebuilt again. This mechanism is further described in Sect. 3.3.

40 C. Yu et al.

3.2 Syntax of the taskgraph Clause

The proposed syntax for exposing a taskgraph region in OpenMP is as a new
clause attached to the task or the target directives, as described next:

#pragma omp target|task [clause...] taskgraph [(list)]

With clause being the clauses currently allowed to be used with the corre-
sponding directive, and list being the list of variables that shape the TDG, e.g.,
the loop boundaries if tasks are instantiated within a loop statement.

Although taskgraph allows a new execution model for OpenMP (named
define-once-run-repeatedly, and described in the next subsection), there are
some reasons leading us to define it as a clause instead of a new directive: (a)
taskgraphs can be applied to both host and accelerator models, and so defining
it as a directive would force to introduce additional clauses to describe where
the taskgraph is to be executed; and (b) the taskgraph region can be seen as an
implicit task with nested parallelism and, as such, it can benefit from clauses
already defined for task directive like dependencies, priorities, and data-sharing
clauses, or those defined specifically for target directive, like mapping clauses.
Another option would be to add the new taskgraph clause to the taskgroup
directive. However, this will remove the possibility of defining dependencies
between the tasks in a taskgraph and previous/next tasks, and also reduce inter-
operability with the accelerator model. Overall, as of OpenMP 5.1 specification,
there are 16 different types of constructs (that is, executable OpenMP directives,
often attached to a block of user code), and 28 various constructs without count-
ing the combined ones, each construct may have numerous associated clauses.
By defining taskgraph as a clause to existing directives, we avoid rendering the
specification more complex and we reduce the implementation effort it induces,
because clauses as depend associated with tasks are currently implemented and
can be directly used to build the TDG when taskgraph is declared.

3.3 Semantics of the taskgraph Clause

This section describes the semantics of the taskgraph clause in terms of the
execution model and the memory model.

Execution Model. When a thread encounters a task or target directive
declared with taskgraph clause, it will be exposed to one of the following situ-
ations: (a) there is missing information in the TDG of the taskgraph region, or
(b) the TDG contains all task-related information in its structured-block, and its
execution is equivalent (in terms of functionality) to the execution of the source
code in the associated region. The procedure varies depending on the case:

– In the first case, the thread encountering the taskgraph clause executes the
corresponding taskgraph region, and is also in charge of saving the missing
information in the TDG runtime structures by, for instance, recording and
saving the data captured during the execution of the inner tasks.

Enhancing OpenMP Tasking Model: Performance and Portability 41

– In the second case, when the TDG is already complete, the encountering
thread needs to launch its execution so that other idle threads can execute
the TDG jointly. The user code in the taskgraph region will not drive the
execution of the tasks, but the TDG instead.

Additionally, if taskgraph (list) is declared, the variables included in list
shall be copied and saved when the region is executed for the first time. In other
words, these are considered as firstprivate variables to the taskgraph region.
While the program is running, the original copies of these variables in list can
change. In this case, the update will be propagated to the TDG the next time we
enter the taskgraph region, at which time the rebuild process of the TDG will
start. The list is user-defined and shall include only variables defining the shape
of the TDG, i.e., the variables defining the boundaries of loops or the branches
taken in conditional statements enclosing the inner tasks, or the variables in the
dependencies, if these change the memory object being dependent.

The TDG-driven execution can obtain its maximum efficiency when the task-
graph is defined once and replayed multiple times. This is the so-called defined-
once-run-repeatedly execution model (as for CUDA graphs). Hence, implemen-
tations of taskgraph are recommended to build the TDG either at compile-time
(if conditions allow, i.e., data size is known, loop boundaries are static, etc.) or
after running the taskgraph region for the first time, at run-time, in order to
maximize the performance gain of the subsequent executions.

The execution of the taskgraph region is synchronized by an implicit
taskgroup. In other words, tasks created in the taskgraph structured-block
belong to the same taskgroup set. The taskgroup is implicit and is declared as if
it was surrounding the task defined by the directive combining with taskgraph.

Memory Model. The new taskgraph clause does not affect the existing
OpenMP memory model regarding both the current global memory model, i.e.
relaxed-consistency shared-memory model, and the interpretation of the data-
sharing clauses that are attached to the task directives. However, the context
generated by the taskgraph clause manages its data environment differently
from how it is managed in a task.

More specifically, upon encountering a task directive (meaning task or
target), all the clauses declared with the directive are immediately evaluated,
including taskgraph. If taskgraph is executed, the declared data-sharing clauses
also apply for the Task Dependency Graph. Inner-tasks may have different data-
sharing clauses over the same data, e.g., a variable being global to the taskgraph
can be set as private to tasks within it, using firstprivate or private clauses.
Unlike task and target, where data environments are destroyed at completion,
when a task accompanied by a taskgraph clause finishes its execution, all its
data is recommended to be preserved, so the subsequent iterations can start
without initialization. Programs that rely on saving the context of a taskgraph
region after its completion to execute correctly are non-conforming and result in
unspecified behavior.

42 C. Yu et al.

3.4 Requirements of the taskgraph Region

A taskgraph region can be represented as a TDG, and so, it only stores infor-
mation related to the execution of the inner tasks. As a result, the taskgraph
clause is only applicable to those regions of code that are completly taskified, i.e.,
all the computation is done within the inner tasks, and the code in between only
decides the control flow, so there cannot be sequential code in-between tasks.

While analyzing the taskgraph region, it can happen that the inner tasks
contain nested tasks, as allowed in the current OpenMP specification. While
syntactically correct, defining nested taskgraphs is however prohibited. In other
words, a taskgraph region can contain nested tasks, but none of them can be
declared with taskgraph clause. The reason is that taskgraph contains all infor-
mation related to the execution of the tasks declared in its associated region,
meaning that an inner taskgraph is entirely included in its outer taskgraph.
Therefore, it is pointless to have nested taskgraphs, and it would break the
semantics of the outer taskgraph if an inner taskgraph changes its shape in a
different point in time than the outer one.

4 Projected Results

This section presents the expected results from integrating the taskgraph clause
into the OpenMP specification. Two aspects are covered: (a) the potential perfor-
mance gain from alleviating task management overhead and (b) the portability
facilitated by the TDG to map OpenMP into other programming models.

4.1 Potential Performance Gain

The taskgraph clause targets the reduction of the overhead due to the orchestra-
tion of the parallel execution of tasks, comprising task creation, task enqueue and
dependency resolution. According to Gautier et al. [3], who consider the LLVM
libOMP runtime library, resolving task dependencies represents the major over-
head source (up to 90%) when executing dependent tasks, and it further scales
with the number of threads. In other words, using taskgraph can optimally
relieve the greatest task overhead source and enhance the program scalability
by alleviating the overhead related to multi-threading.

The results of our experiments support this statement, as shown in Fig. 3. In
this example, we consider the heat transfer simulator and the HOG (Histogram
of Oriented Gradients) object detection application, run on a Marenostrum clus-
ter node, described in note 1. While the problem size and the task granularity
are kept invariant, we modify the number of threads across the experiment.
Both applications run for 128 iterations. Finally, the charts compare the exe-
cution using the original libgomp runtime library, labelled named GOMP, with
the enhanced libgomp supporting the recording of the TDG at runtime, named
Taskgraph. Particularly, Taskgraph version records the TDG in the first iteration
and reuses it for the next 127 iterations. The figure shows that using the pro-
posed taskgraph feature not only provides equivalent or better speedup than the

Enhancing OpenMP Tasking Model: Performance and Portability 43

original libgomp in all considered scenarios, but it also allows the application to
further benefit from the thread scaling.

0
5

10
15
20
25
30
35

16 24 32 48

sp
ee

du
p

Number of threads

GOMP Taskgraph

(a) Speedup of HOG

0
5

10
15
20
25
30

16 24 32 48

sp
ee

du
p

Number of threads

GOMP Taskgraph

(b) Speedup of Heat

Fig. 3. Speedup of Heat Transfer Simulation (using Gauss-Seidel method) and HOG
object detection application, running 128 iterations, using original GOMP runtime
library and a modified version with support for taskgraph

While the results seem promising, we must underline that it is preferable to
use taskgraph for repeated task region (e.g., the computation loop inside sim-
ulators as N-body simulation or iterative problem solvers as the Gauss-Seidel
method), because the first iteration will be charged by the generation of the
TDG, incurring greater runtime overhead than the original runtime system.
This is illustrated by Table 1, where we execute the kernels only once, with
fixed number of threads (24 threads in this case, assigned to a single socket).
The execution times are in milliseconds. GOMP execution corresponds to the
time needed to execute the applications with the native GOMP runtime library.
Similarly, Recorded execution is obtained with the modified library. The Record
overhead is simply Record execution time minus the GOMP execution time. As
the table depicts, the overhead incurred by the record mechanism increases when
the task number increases. Another factor that may impact the cost of recording
is the number of dependent variables, that is, the number of variables defining
the dependency relationship among tasks. More specifically, the more dependent
variables there are, the longer the dependency resolution will last, resulting in a
longer record process.

Table 1. Time needed (millisecond) to execute the kernels once, with 24 threads

Application name # tasks GOMP execution Recorded execution Record overhead

Heat transfer 2560 20.3 23 2.7

4000 19.8 23.9 4.1

HOG application 3600 48.5 52.1 3.6

8040 46.9 54.4 7.5

44 C. Yu et al.

4.2 The TDG: A Door for Expanding Portability

Task-based parallelism is very effective in uncovering the parallelism available in
HPC applications. There are several programming models supporting tasking,
e.g., OpenMP, Cilk++ [9], Intel TBB [7] and CUDA graphs [11] are among
the more extended. The major success of OpenMP in front of its competitors
substantiates in many factors: (a) it relies on relatively simple compile-time
directives to expose parallelism (hence avoiding the need of refactoring sequential
applications); (b) it is supported by a vast majority of compiler and chip vendors
(including Intel, GCC and LLVM in the former, and Intel, ARM and PowerPC
in the latter); and (c) it offers a great trade-off between programmability and
performance, among others.

The Task Dependency Graph representing an OpenMP task-based applica-
tion is however equivalent to that extracted when using other APIs to expose the
parallelism. Figure 4 illustrates the portability enabled by means of the TDG.
More specicifically, Fig. 4a shows a simple sequential code snippet, Fig. 4b shows
the TDG representing the concurrency available in the sequential code, and
Figs. 4c, 4d, 4e and 4f show the Cilk++, OpenMP, TBB and CUDA graph
implementations of the TDG, respectively.

As the Figure depicts, OpenMP effectively offers better programmability
by only introducing compile-time directives in an exact same version of the
sequential code. Conversely, all Cilk++, TBB and CUDA graphs require some
refactoring from the code for different reasons: (a) Cilk++ does not provide
data-flow dependencies, but full synchronizations instead; (b) TBB decouples
the description of the graph from its execution, and requires specific functions
for starting the graph and joining results; and (c) CUDA graphs provide a low-
level API that forces programmers to manage data copies and point-to-point
synchronizations. The performance comparison between these models is out of
the scope of this paper, but several works have already tackled this topic showing
performance results for OpenMP competitive to the other parallel models [12,
17].

Previous works already studied the portability provided by the TDG to trans-
form OpenMP task-based applications into CUDA graphs [20]. This approach
uses the static computation of the TDG to lower the code into calls to the CUDA
graph API instead of calls to a regular OpenMP implementation (e.g., GOMP
or LLVM).

OmpSs is another example of interoperability based on the TDG. This pro-
gramming model, developed by Barcelona Supercomputing Center, has been a
forerunner of OpenMP with respect to the tasking model. Therefore, it sup-
ports tasked-based parallelism, and also heterogeneous computing with devices
like GPUs and FPGAs [14]. The TDG extracted, at runtime, from the compile-
time directives defined with OmpSs is used to manage tasks across heterogeneous
architectures supporting different programming models like CUDA and OpenCL.
Results show how OmpSs can fully replace the host API of both CUDA and
OpenCL in a portable way.

Enhancing OpenMP Tasking Model: Performance and Portability 45

Fig. 4. TDG representation and high-level description of a simple code parallelized
with different task-based parallel programming models.

46 C. Yu et al.

5 Related Work

The imminent advent of exascale computing raises new challenges in on-node
parallelism, such as the efficient exploitation of modern many-core processors
and the increasing heterogeneity of HPC systems. OpenMP is the current de
facto standard parallel programming model, and it needs to address these chal-
lenges. Although the OpenMP tasking model is a convenient method to paral-
lelize applications, many authors have investigated to tackle the overhead this
model incurs [8,13,15]. That work is considered Sect. 1. This section focuses on
work related to the Task Dependency Graph representation and its benefits.

M. Serrano et al. [16] provided a timing analysis over OpenMP tasks, where
tasks with timing properties are represented in a TDG. This work strengthened
the possibility of using OpenMP untied tasks (i.e., once such task is suspended
by the initial thread, it can be correctly resumed by any idle thread within
the same OpenMP team) on safety-critical embedded systems. A. Munera et
al. [10] showed how statically generated TDGs can reduce the dynamic memory
usage of OpenMP tasks, so that the tasking model can be used on embedded
systems conveniently, where the amount of dynamic memory is often limited by
safety constraints. Taskgraph makes OpenMP more suitable for safety-critical
embedded systems by reinforcing their work:

– The taskgraph clause can be used with both tied and untied tasks, making
the analysis of [16] still valid for taskgraph. As a result, taskgraph can perform
the associated region in shorter time by reducing the runtime overhead, which
eases the scheduling of the region within a larger real-time application.

– Techniques used in [10] rely on the static generation of the TDG, the informa-
tion from which can be leveraged by the taskgraph clause to enhance the per-
formance. Therefore, by including the new clause in their method, the result-
ing framework should deliver better performance than the current OpenMP
tasking model, and also use less dynamic memory throughout the execution.

C. Yu et al. [20] proposed a framework to generate a CUDA graph [11] from
OpenMP task directives. The new execution model proposed by Nvidia, where
each node represents a CUDA kernel and edges express the dependencies among
them, is interestingly similar to the taskgraph structure. This work shows, on
the one hand, how OpenMP could benefit from a define-once-run-repeatedly
execution model, as that enabled by CUDA graphs, in terms of performance.
On the other hand, it shows how the programmability of CUDA graphs could be
enhanced by reducing the number of lines required from the programmer, going
from 15500 to 4 in a Cholesky implementation used for illustration purposes.

Enhancing OpenMP Tasking Model: Performance and Portability 47

6 Conclusion

This work describes a new method to tackle the OpenMP task overhead at a
higher abstraction level, that is, by introducing the concept of Task Dependency
Graph in the OpenMP specification through taskgraph clause.

Our preliminary results, based on GCC GOMP runtime library, validate the
effectiveness of the TDG, as a representation of a region of code that can be
boosted by the OpenMP framework. When the TDG holds the complete execu-
tion of a part of the user’s code, this code can be replaced by the execution of
the TDG. This results in the reduction of the overhead introduced by the access
to shared resources, like task queues, and the management of tasks, including
creation, orchestration and destruction.

The concept of TDG also allows a new execution model in OpenMP, the
define-once-run-repeatedly model, equivalent to that described by CUDA graphs.
This mechanism, which is a hint for the implementation and shall not change the
functional behavior of the program, allows further alleviating the overhead in
applications running several times the same TDGs. Interestingly, this proposed
mechanism can promote the use of the OpenMP API as a door for effectively
exploiting CUDA graphs.

Future investigations include implementing the taskgraph clause in major
compilers and runtime systems, such as LLVM, to further validate our results.
As a prediction, we expect taskgraph to deliver significant performance gain in
LLVM, as in GOMP library. This assumption is supported by Fig. 5, where we
run different applications with the OpenMP runtime libraries from LLVM and
GCC. Although the LLVM is better optimized in these cases (shorter execution
time), its runtime overhead increases when the task granularity shrinks, similar
to the GOMP library. Other research lines comprise (a) thoroughly testing the
performance impact of the new clause in larger applications and different pro-
cessor architectures; (b) using the taskgraph in applications with tasks inside
a taskgraph region and tasks outside the region; and (c) exploring usages and
improvements of other programming models through the use of the TDG gener-
ated by OpenMP taskgraph.

10

15

20

25

30

35

920 1296 2040 3600 8040

ex
ec

u
on

m

e
(m

s)

Number of tasks

LLVM GOMP

(a) HOG object detection application

10
15
20
25
30
35
40

640 1440 2560 4000 7840 10240 12960 16000

ex
ec

u
on

m

e
(m

s)

Number of tasks

LLVM GOMP

(b) Heat transfer simulator

Fig. 5. Execution time (in ms) analysis of different applications with original GCC
GOMP library and LLVM OMP runtime library, fixing the number of threads to 24

48 C. Yu et al.

Acknowledgements. This work has been supported by the EU H2020 project
AMPERE under the grant agreement no. 871669.

References

1. BSC: Marenostrum IV User’s Guide (2017). https://www.bsc.es/support/
MareNostrum4-ug.pdf

2. Castello, A., Seo, S., Mayo, R., Balaji, P., Quintana-Orti, E.S., Pena, A.J.: GLTO:
on the adequacy of lightweight thread approaches for openmp implementations.
In: Proceedings of the International Conference on Parallel Processing, pp. 60–69
(2017)

3. Gautier, T., Perez, C., Richard, J.: On the impact of OpenMP task granularity.
In: de Supinski, B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta,
J. (eds.) IWOMP 2018. LNCS, vol. 11128, pp. 205–221. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98521-3 14

4. Giannozzi, P., et al.: Quantum espresso: a modular and open-source software
project for quantum simulations of materials. J. Phys. Condens. Matter 21(39),
395502 (2009)

5. Kalray MPPA products (2021). https://www.kalrayinc.com/
6. Komatitsch, D., Tromp, J.: SPECFEM3D Cartesian (2021). https://github.com/

geodynamics/specfem3d
7. Kukanov, A., Voss, M.J.: The foundations for scalable multi-core software

in intel threading building blocks. Intel Technol. J. 11(4), 309–322 (2007).
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=79B311F4CEB9A4B6
10520177C7144D57?doi=10.1.1.71.8289&rep=rep1&type=pdf

8. Lagrone, J., Aribuki, A., Chapman, B.: A set of microbenchmarks for measur-
ing OpenMP task overheads. In: Proceedingis of International Conference on
Parallel and Distributed Processing Techniques and Applications II, pp. 594–
600 (2011). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.217.9615&
rep=rep1&type=pdf

9. Leiserson, C.E.: The Cilk++ concurrency platform. J. Supercomput. 51(3), 244–
257 (2010)

10. Munera, A., Royuela, S., Quinones, E.: Towards a qualifiable OpenMP framework
for embedded systems. In: Proceedings of the 2020 Design, Automation and Test
in Europe Conference and Exhibition, DATE 2020, no. 2, pp. 903–908 (2020)

11. Nvidia: CUDA Graph programming guide (2021). https://docs.nvidia.com/cuda/
cuda-c-programming-guide/#cuda-graphs

12. Olivier, S.L., Prins, J.F.: Evaluating OpenMP 3.0 run time systems on unbalanced
task graphs. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP
2009. LNCS, vol. 5568, pp. 63–78. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02303-3 6

13. Perez, J.M., Beltran, V., Labarta, J., Ayguade, E.: Improving the integration of
task nesting and dependencies in OpenMP. In: Proceedings - 2017 IEEE 31st Inter-
national Parallel and Distributed Processing Symposium, IPDPS 2017, pp. 809–818
(2017)

14. Sainz, F., Mateo, S., Beltran, V., Bosque, J.L., Martorell, X., Ayguadé, E.: Lever-
aging OmpSs to exploit hardware accelerators. In: 2014 IEEE 26th International
Symposium on Computer Architecture and High Performance Computing, pp. 112–
119. IEEE (2014)

https://www.bsc.es/support/MareNostrum4-ug.pdf
https://www.bsc.es/support/MareNostrum4-ug.pdf
https://doi.org/10.1007/978-3-319-98521-3_14
https://www.kalrayinc.com/
https://github.com/geodynamics/specfem3d
https://github.com/geodynamics/specfem3d
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=79B311F4CEB9A4B610520177C7144D57?doi=10.1.1.71.8289&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=79B311F4CEB9A4B610520177C7144D57?doi=10.1.1.71.8289&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.217.9615&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.217.9615&rep=rep1&type=pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#cuda-graphs
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#cuda-graphs
https://doi.org/10.1007/978-3-642-02303-3_6
https://doi.org/10.1007/978-3-642-02303-3_6

Enhancing OpenMP Tasking Model: Performance and Portability 49

15. Schuchart, J., Nachtmann, M., Gracia, J.: Patterns for OpenMP task data depen-
dency overhead measurements. In: de Supinski, B.R., Olivier, S.L., Terboven, C.,
Chapman, B.M., Müller, M.S. (eds.) Scaling OpenMP for Exascale Performance
and Portability, pp. 156–168. Springer International Publishing, Cham (2017)

16. Serrano, M.A., Melani, A., Vargas, R., Marongiu, A., Bertogna, M., Quiñones, E.:
Timing characterization of OpenMP4 tasking model. In: 2015 International Con-
ference on Compilers, Architecture and Synthesis for Embedded Systems, CASES
2015, pp. 157–166 (2015)

17. Stpiczyński, P.: Language-based vectorization and parallelization using intrinsics,
openmp, tbb and cilk plus. J. Supercomput. 74(4), 1461–1472 (2018)

18. TOP500 (2020). https://www.top500.org/lists/top500/2020/11/
19. Valero-Lara, P., Catalán, S., Martorell, X., Usui, T., Labarta, J.: sLASs: a fully

automatic auto-tuned linear algebra library based on openmp extensions imple-
mented in ompss (lass library). J. Parallel Distrib. Comput. 138, 153–171 (2020)

20. Yu, C., Royuela, S., Quiñones, E.: OpenMP to CUDA graphs: a compiler-based
transformation to enhance the programmability of NVIDIA devices. In: Proceed-
ings of the 23rd International Workshop on Software and Compilers for Embedded
Systems, SCOPES 2020, pp. 42–47 (2020)

https://www.top500.org/lists/top500/2020/11/

OpenMP Taskloop Dependences

Marcos Maroñas1,2(B), Xavier Teruel1, and Vicenç Beltran1

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
{mmaronas,xteruel,vbeltran}@bsc.es
2 Huawei Research, Edinburgh, Scotland

marcos.maronas.bravo@huawei.com

http://www.bsc.es

Abstract. Exascale systems will contain multicore/manycore proces-
sors with high core count in each node. Therefore, using a model that
relaxes the synchronization, such as data-flow, is crucial to adequately
exploit the potential of the hardware. The flexibility of the data-flow
execution model relies on the dynamic management of data-dependences
among tasks.

The OpenMP standard already provides a construct, known as
taskloop, that distributes the loop iteration space into several tasks,
but this construct does not support the use of the depend clause yet. In
this paper we propose the use of the induction variable to define data
dependences in tasks created by the taskloop construct. By using the
induction variable, each task will contain its own dependences based on
the partition of work they received.

We also aim to demonstrate that using taskloop with dependences
provides an enhancement in terms of programmability with respect to
using stand-alone tasks to parallelize a loop. Our implementation does
not introduce any significant overhead on the taskloop implementation
and, in certain cases, it outperforms the stand-alone task version.

Keywords: OpenMP · Tasking · Loops · Synchronization · Taskloop
construct · Depend clause

1 Introduction

The introduction of the first multiprocessor architectures led to the development
of shared memory programming models. One of those is OpenMP, which became
a de facto standard for parallelization on shared memory environments.

OpenMP [12], with its highly optimized fork-join execution model, is a good
choice to exploit structured parallelism, especially when the number of cores
is small. Worksharing constructs, like the well-known omp for construct, are
good examples of how OpenMP can efficiently exploit structured parallelism.
However, when the number of cores increase and the work distribution is not
perfectly balanced, the rigid fork-join execution model can hinder performance.

c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 50–64, 2021.
https://doi.org/10.1007/978-3-030-85262-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-85262-7_4

OpenMP Taskloop Dependences 51

The omp for construct accepts different scheduling policies that can mitigate
load-balancing issues; and the nowait clause avoids the implicit barrier at the
end of an omp for. Still, both techniques are only effective in a few specific situ-
ations. Moreover, the fork-join execution model is not well-suited for exploiting
irregular, dynamic, or nested parallelism.

Task-based programming models were developed to overcome some of the
above-mentioned limitations. The first tasking models were based solely on the
tasks and taskwaits primitives, which naturally support irregular, dynamic, and
nested parallelism. However, these tasking models are still based on the fork-
join execution model. The big step forward came with the introduction of data
dependences. Thus, replacing the rigid fork-join execution model by a more
flexible data-flow execution model that relies on fine-grained synchronizations
among tasks. Modern task-based programming models such as Cilk, OmpSs or
OpenMP tasking model have evolved with advanced features to exploit nested
parallelism [13], hardware accelerators [1,2,6], and seamless integration with
message passing APIs such as MPI [14,15].

Exascale systems will contain multicore/manycore processors with high core
count in each node. Therefore, using a model that relaxes the synchronization,
such as data-flow, is crucial to adequately exploit the potential of the hardware.

Additionally, worksharing techniques are easier to apply compared to tasking.
A single worksharing construct is enough to parallelize a loop. In contrast, using
tasks, it requires more effort from the user. There must be at least a task per
core, to feed all the cores and prevent lack of parallelism. A frequent technique
applied to create enough tasks is blocking. This technique partitions a loop in
several blocks, and each block is processed by an independent task. Although
this is not a complex technique, it requires more effort than the worksharing
alternative.

The OpenMP standard contains a directive able to distribute the iteration
space of a loop into tasks, which, theoretically, enables users to parallelize a
whole loop with a single construct using tasks. This is the taskloop construct.
However, in practice, it is not useful for a single reason: it does not support data
dependences. Thus, a taskloop creates a set of tasks that cannot have data
dependences, and so, the synchronization must be done using coarse-grained
synchronization points (i.e., the implicit taskgroup, or explicit taskwaits). So,
basically, we end up in a fork-join model but with increased overhead compared
to worksharing constructs.

We propose adding support for data dependences to the taskloop construct.
Our proposal enables programmers to use the induction variable of the loop to
specify data dependences. Thus, each task created by the taskloop will register
the data dependences specified by the user. If the induction variable is used to
specify any dependence, each task will register the dependence using its own
value of the induction variable. As a result, apply blocking is possible using a
single construct, enhancing programmability.

52 M. Maroñas et al.

2 Tasking Programmability Challenges

Compared to using worksharing techniques, tasks are more complicated to use.
If we simply replace worksharing constructs by task constructs, there is very few
parallelism, and most of the cores are idle. This is because a worksharing con-
struct distributes the work among all the available cores, that run concurrently.
In contrast, an instantiated task is a piece of code that runs only in a single core
at a given instant of time. Figure 1 shows such a problem. The figure also shows
one possible solution, which is the use of blocking.

Fig. 1. Illustration of CPU occupation using different parallelism techniques.

Listings 1.1 and 1.2 shows a real code using worksharing constructs and task
with blocking respectively. It is possible to see that applying blocking techniques
is simple, but also that it requires more effort than using worksharing constructs.
For a single loop, worksharing constructs require only three lines of code, while
tasks with blockings require five lines of code.

The OpenMP standard already provides a construct known as taskloop that
distributes work into several tasks. This construct is the natural replacement of
worksharing constructs to use tasks. Listing 1.3 shows the very same exam-
ple using the taskloop construct. Notwithstanding, the tasks created using the
taskloop construct cannot have data dependences, so they can only be synchro-
nized using synchronization points (i.e., keeping the implicit taskgroup region
or using explicit taskwaits). As a result, we have a fork-join pattern with its
rigid synchronization. So, we moved from worksharing constructs to tasks to
benefit from a more lightweight data-flow synchronization, but the impossibility
of using data dependences when using the taskloop construct prevents us from
obtaining all its benefits.

In summary, tasks require more effort from users than worksharing con-
structs. However, tasks provide key benefits that fit the requirements of Exas-
cale systems better than worksharing constructs. For instance, programmers
may parallelize different stages of the program by means of tasks, as long as
they guarantee a proper task depend annotation. Then, they can rely on the

OpenMP Taskloop Dependences 53

Listing 1.1. Simple code using the work-sharing construct

#pragma omp f o r
f o r (s i z e t j = 0 ; j < N; j++)

b [j] = s c a l a r ∗c [j] ;

Listing 1.2. Simple code using the task construct (and blocking)

f o r (s i z e t j = 0 ; j < N; j+=BS) {
s i z e t s i z e = j+BSIZE > N ? N−j : BSIZE ;
#pragma omp task depend (in : c [j : s i z e]) depend (out : b [j : s i z e])
f o r (s i z e t j 2=j ; j 2 < j+s i z e ; j 2++)

b [j 2] = s c a l a r ∗c [j 2] ;
}

Listing 1.3. Simple code using the taskloop construct

#pragma omp task loop chunks ize (BSIZE)
f o r (s i z e t j = 0 ; j < N; j++) {

b [j] = s c a l a r ∗c [j] ;
} // imp l i c i t taskgroup reg i on

OpenMP run-time library to compute the correct synchronization order among
these tasks. In other words, task parallelization improves composability.

In the other hand, the taskloop construct enables programmers to use tasks
with a similar effort than the effort required by worksharing constructs. Nev-
ertheless, it does not support data dependences, and this prevent users from
getting the key benefits of tasking.

3 Related Work

We already mentioned in the previous section that OpenMP supports both loop-
based parallelism and task-based parallelism. The most common way of using
loop-based parallelism in OpenMP is by means of the worksharing constructs.
In terms of programmability, worksharing constructs enable users to parallelize
loops using a single construct. Thus, they are very simple to use. In terms of
performance, worksharing constructs deliver good performance in the general
case. Nevertheless, they contain an implicit barrier at the end of the worksharing
region, introducing very rigid synchronization.

The task-based approach is a bit more complex in terms of programmabil-
ity. It usually requires blocking techniques to uncover parallelism, which require
some more code than a single construct. Regarding performance, tasks have a
natural ability to deal with load imbalance, but they have associated costs that
may introduce some overhead depending on task’s granularity. OpenMP provides
also the taskloop construct, that distributes the iteration space of a loop into
several tasks. There is the possibility of specifying a grainsize guaranteeing that

54 M. Maroñas et al.

each of the tasks created executes no less than grainsize iterations. Thus, the
taskloop construct simplifies the use of task-based parallelism, enabling users
to parallelize loops with a single construct. Nevertheless, OpenMP does not
support dependences in the taskloop construct. As a result, users must rely on
fork-join-like synchronization with explicit synchronization points. Consequently,
dropping the data-flow execution model of task-based parallelism, and its bene-
fits. By enabling the use of data dependences in the taskloop construct, we offer
users the possibility of parallelizing loops in a single construct while keeping the
benefits of the data-flow execution model. Additionally, the use of the taskloop
construct, may reduce the tasking overhead because allocations could be opti-
mized to be done as a whole, instead of one by one. However, the number of
tasks that will be created and scheduled is still proportional to the problem size.

On the other hand, OpenMP 4.5 [11] already included the doacross depen-
dences for work-sharing loops based on the source and sink dependence types
and the extension of the ordered construct to support the depend clause. This
feature allows to express general cross-iteration loop dependences and thereby
support doacross parallelization [16]. The loop dependencies that cross the iter-
ation space are enforced via point-to-point synchronization injected where the
compiler finds the ordered construct. The main advantage of this extension is
that only applying to a unique iteration space, it could be easily implemented
by a single 2D matrix of per chunk relationships, imposing a very low overhead
to the runtime. This advantage is also its main drawback, as it does not allow
to dynamically connect to other loop iteration spaces (neither combine it with
any other work-sharing or task generating constructs).

Intel Cilk presents the cilk for [7], which is used to parallelize loops. The
body of the loop is converted into a function that is called recursively using a
divide and conquer strategy for achieving better performance. However, there
is a cilk sync at the end of each iteration. Therefore, synchronization is quite
rigid, similarly to OpenMP worksharings. Moreover, Cilk tasks do not support
data dependencies between tasks.

The CUDA programming model [8,10] allows expressing kernel dependencies
using proper streams and events. This approach will be similar to the stand-alone
task model implemented by the OpenMP standard and requires manually trans-
form the loop to its blocked version, to decompose the iteration space. Further-
more, the use of multiple streams and their synchronization via events could be
non-trivial in some cases. On the other hand, CUDA offers the option to capture
and reuse such task instantiation using the CUDA graph set of routines, offering
an extra optimization by reducing the overhead. The CUDA graph functionality
is out of the scope of this paper and should be considered as an extension that
can be widely used, not only in taskloop constructs but in any portion of code
parallelized with tasks.

4 Taskloop with Dependences

In this section, we detail the syntax of our proposal to support data dependences
in the taskloop construct. In short, we propose the use of the induction variable

OpenMP Taskloop Dependences 55

Fig. 2. Partition of work and dependences between tasks created using taskloop

to define data dependences in tasks created by the taskloop construct. By using
the induction variable, each task will contain its own dependences based on the
partition of work they received. Figure 2 shows an example. There is an outer
loop and an inner loop parallelized using the enhanced taskloop construct with
data dependences. As we can see, the data dependences contain the induction
variable. In this case, it means that each of the tasks register a dependence over
the i-th element of x. As each of the tasks receive a part of the iteration space,
each of the tasks will have different values for i, thereby allowing them to run
concurrently, but defining a dependence with tasks of the next and previous t
iteration that work over the same data. Figure 2 also includes the code to get
equivalent behavior using regular tasks.

With this mechanism, expressivity is enhanced and the taskloop construct
becomes usable in many real-world examples while keeping the key benefits of
tasking.

We would like to point out that the mechanism to define the granularity of
a task created by the taskloop construct is the grainsize clause, as shown
in Fig. 2. As the loop iteration distribution should be deterministic and visible
to the programmer (in order to allow him/her to combine tasks generated by
the taskloop with stand-alone generated tasks), the use of taskloop dependences
will assume the strict modifier within the grainsize clause. If no grainsize is
provided, default applies.

A second observation relates the task instantiation order and the depen-
dence computation. Currently, taskloop does not guarantee any task creation
order, while the proper dependence computation relies on it. Although the
implementation does not need to actually create tasks in such order, it must
compute dependencies AS IF they were created in the logical iteration order.
The OpenMP runtime can easily follow this behavior due to it can compute the
number of tasks and the corresponding task boundaries when encountering the
taskloop construct. In addition, the current specification says “Programs that

56 M. Maroñas et al.

rely on any execution order of the logical iteration are non-conforming”; such
part of the specification must be relaxed to take into account synchronization
arising from dependences.

Although in our implementation the compiler is able to detect the use of the
loop control variable and modify the corresponding value for each task instance,
a more OpenMP-aligned approach would involve the use of a modifier within
the depend clause. We may have two different options:

– Leverage the existent iterator modifier by extending its syntax to accept a
new loop-based value generator. Then, the example in Fig. 2 could be rewrit-
ten by annotating the loop using:
#pragma omp taskloop depend(iterator(t=taskrange), inout: x[t])
grainsize(5).

– Define a new modifier based on the task loop boundaries. Again, the example
in Fig. 2 could be rewritten using:
#pragma omp taskloop depend(taskrange(b=begin), inout: x[b:5])
grainsize(5).

While the first option relies in the multiple values generated by the itera-
tor modifer (by means of a new iterator range specifier: taskrange); the second
one uses the chunk-associated lower bound (by means of the new OpenMP key-
word begin and a new depend modifier: taskrange) combined with the grainsize
parameter in order to define an array section.

Finally, adding taskloop dependences on the OpenMP specification should
relax the implicit taskgroup region defined as part of the taskloop construct.
It will be recommended to implicitely consider the nogroup clause when the
programmer uses any dependence clause on the taskloop construct.

5 Implementation

Our proposal is done in the OmpSs-2 programming model, built on top of the
Mercurium compiler and the Nanos6 runtime library. Following, we detail the
extensions done in both components to support dependences in the taskloop
construct. We also conceptually explain our implementation.

Semantics. The taskloop construct is a convenient “syntactic sugar” to ease
the use of tasks. It can be implemented just by applying an automatic blocking
technique in the compiler side, similar to a manual blocking done by the end-
user. But it also allows smarter implementations that can improve performance
by reducing the associated overhead.

Mercurium Compiler. The Mercurium compiler has been extended to sup-
port the use of data dependences in the taskloop construct. Mercurium is a
source to source compiler, meaning that it receives code as an input, and gener-
ates code as an output. Mercurium creates a function to register dependences per

OpenMP Taskloop Dependences 57

each task construct found in the user code. To support the use of the induction
variable in the taskloop dependences, Mercurium has to accept a new parameter
in the functions used to register dependences. Given that in our implementation
it is the runtime who partitions the work and assigns iterations to the tasks,
Mercurium must receive the information of the assigned iterations to replace the
induction variable by its real value.

Additionally, in the same line, Mercurium creates a function per task type
including the user code that the task has to run. In this case, it also has to
receive an additional parameter: the iterations that each task has to run.

Finally, when creating a taskloop entity, Mercurium has to enable some flags
to let the runtime system know that this is not a regular task, but a taskloop.

Nanos6 Runtime Library. In the runtime system, the first step is to extend
the work descriptor of a task to include the iteration space of the loop, and
the grainsize specified by the user, if any. This single task will represent the
whole taskloop and it will register the whole set of dependencies, which are
generated based on the iteration space and the grainsize value. When the task
instance that represents the taskloop is executed it will instantiate one sub-task
for each partition of the iteration space with its corresponding dependencies.
This approach works because we are leveraging the weak dependencies and early
release features of OmpSs-2 [13] that enables the parent task to become ready
even if the dependencies are still not fulfilled. In this way, the sub-tasks created
behave as if they were created on the dependency domain of the parent taskloop.
A side effect of this implementation is that the creation and execution of the
taskloop is not blocking, so many of them can be executed in parallel. Each
sub-task created inside a task-loop will behave as a regular task, waiting for its
data-dependencies before it can become ready.

We would like to point out that our current implementation focuses on pro-
grammability. Therefore, we are trying to provide a simpler way of using tasks
that introduces no significant overhead compared to using other techniques such
as manual blocking. Nevertheless, the taskloop construct provides the opportu-
nity to apply further optimizations that cannot be applied in the case of manual
blocking. Such optimizations could include a single allocation for all the loop
tasks, instead of allocating space for each of them individually; or the applica-
tion of smarter throttle policies to mitigate memory overuse when there are too
many tasks in flight. In this way, throttle policies may take into account the total
number of tasks needed to instantiate the whole loop iteration space, rather than
consider each of the tasks as an independent entity (i.e., making decisions based
on each individual item).

6 Experiment Results

In this section, we wish to demonstrate that the taskloop with dependences pro-
vides an enhancement in programmability when using tasks, while introducing no

58 M. Maroñas et al.

significant overhead compared to a manual equivalent implementation. For that
purpose, our evaluation will focus in both programmability and performance.

Regarding programmability, we used several different metrics to compare
the different implementations: Source Lines of Code (SLOC) [9], Development
Estimate Effort (DEE) [5], and Cyclomatic Complexity (CC) [17]. It is important
to highlight that for the SLOC metric we only consider the code related to
the parallelization. And it is also important to notice that this metric is an
approximation to measure code complexity based only on the number of lines
but it ignores that some individual lines can be more complex than others.

In terms of performance, we compare the different implementations to demon-
strate that using the taskloop construct do not add any significant overhead.

Environment. The experiments were carried out on the Marenostrum 4 super-
computer. It is composed of nodes with 2 sockets Intel Xeon Platinum 8160
2.1 GHz 24-core and 96 GB of main memory.

Regarding the software, we used the Mercurium [3] compiler (v2.3.0) and
the Nanos6 runtime library [4] as the baseline components to implement our
proposal (described in Sect. 5); the gcc and gfortran compilers (v7.2.0), in order
to compile Mercurium and Nanos6 (included here for reproducibility purposes);
and the Intel compilers (v17.0.4), as the native compiler used by Mercurium to
generate binary code.

Methodology. As previously introduced, we focus our evaluation in two dif-
ferent aspects: performance and programmability. Our experiments will use two
different versions of each application/benchmark:

– T. Version using regular tasks. It requires manual blocking.
– TL. Version using the taskloop construct with dependences.

Regarding performance, for each of the benchmarks/applications, we select
two different problem sizes, one small-medium size, and one big size. For each of
the problem sizes, we try several block sizes to show that the differences between
the T and the TL are small or even non-existent in several different scenarios.

All the experiments ran using the interleaving policy offered by the numactl
command, spreading the data evenly across all the available NUMA nodes, in
order to minimize the NUMA effect.

The results shown in the figures are averages of five different executions.
We decided to use only five executions because the variability across different
executions was very small.

Related to programmability, we count the SLOC required to parallelize the
baseline code for each of the versions, and use the SLOCCount [18] tool and the
Lizard [19] tool to retrieve the DEE and CC respectively.

Performance Evaluation. In this section, we evaluate several application-
s/benchmarks to demonstrate that the use of the taskloop construct does not

OpenMP Taskloop Dependences 59

Fig. 3. Evaluation of taskloop using DOTPROD benchmark

introduce overhead compared to a manual alternative. All the figures show the
Figure of Merit (FOM) of the application on the y-axis, and different task gran-
ularities in the x-axis. All of them have four series: one using the T version with
a small-medium problem size, one using the TL version with a small-medium
problem size, one using the T version with a big problem size, and one using
the TL version with a big problem size. We would like to highlight that the T
versions use the usual approach where a single core creates all the tasks.

Figure 3 shows the results of the dot product benchmark. In this case, we
repeat the dotprod kernel a given number of iterations to make the execution
longer. For both problem sizes, the TL version performs better than the T version
in the small task sizes. The T version has only a single core creating tasks. When
the granularity is small, a single creator cannot create rapidly enough to feed all
the cores. As explained in Sect. 5, the TL version may have several cores creating
tasks, speeding up the creation, and increasing the overall performance. The TL
version may have several cores producing tasks because each iteration of the
kernel is a taskloop instance, that can be running in different cores concurrently,
while the T version has a single core creating all the iterations sequentially.
Finally, from TS = 8192, all the versions perform very similarly.

Figure 4 shows the results of the N-body benchmark. For this benchmark, we
see again a difference in the smallest granularity, where the TL version outperform
the T version for both problem sizes. Like previously, this is because there are
several taskloops that can be creating tasks concurrently in the TL version, while
there is a single core creating tasks sequentially in the T version, and it is not
quick enough to feed all the cores.

Finally, Fig. 5 shows the results of the Stream benchmark. The results pre-
sented are an average of the four different kernels of the Stream benchmark.
In this benchmark, there are some differences between the T and TL versions.
Firstly, in the smallest granularity, the TL version outperforms the T version in
both problem sizes. Like in some previous benchmarks, this is because the TL
version has multiple taskloops that can create concurrently rather than a single
one, and speeding up the creation improves the overall performance. Then, when
TS = 64, for the small problem size the T version outperforms the TL version, and

60 M. Maroñas et al.

Fig. 4. Evaluation of taskloop using NBODY benchmark

the other way around for the big problem size. Our runtime system has an imme-
diate successor mechanism to exploit data locality between successor tasks. In
this case, this mechanism is making the difference. We repeated the experiment
with no immediate successor, and the results for both versions were very similar.
For the big problem size, the TL version is able to find more immediate successor
tasks than the T version, and the other way around for the small problem size.

Fig. 5. Evaluation of taskloop using STREAM benchmark

Overall, we see that there are few differences between the T and TL versions,
with the TL versions generally outperforming the T versions in fine granularities,
thanks to the use of multiple creators. Thus, we can conclude that the TL is not
only introducing very few overhead, but it is able to enhance performance in
some specific scenarios.

Programmability Evaluation. Table 1 shows the different programmability
metrics evaluated in this analysis for different benchmarks. The DEE is a metric
that tries to estimate the effort that a developer must spend to write a given
code. In this case, it is measured in person-months. The size of the code affects
the DEE. The CC metric is higher when a code can take more different paths.
For instance, adding an if increases the CC.

In Table 1, some benchmarks show no difference between the T version and the
TL version. As previously explained, a frequent way of parallelize an application

OpenMP Taskloop Dependences 61

Listing 1.4. Stream code using tasks with blocking

f o r (i n t k=0; k<nTimes ; k++) {
f o r (s i z e t b lock = 0 ; block < NUMBLOCKS; block++) {

s i z e t aux = block ∗BSIZE ;

s i z e t s i z e = aux+BSIZE > N ? N−aux : BSIZE ;

#pragma oss task in (a [aux ; s i z e]) out (c [aux ; s i z e])

f o r (s i z e t j 2=aux ; j2 < aux+s i z e ; j 2++)

c [j 2] = a [j2] ;

}
f o r (s i z e t b lock = 0 ; block < NUMBLOCKS; block++) {

s i z e t aux = block ∗BSIZE ;

s i z e t s i z e = aux+BSIZE > N ? N−aux : BSIZE ;

#pragma oss task in (c [aux ; s i z e]) out (b [aux ; s i z e])

f o r (s i z e t j 2=aux ; j2 < aux+s i z e ; j 2++)

b [j2] = s c a l a r ∗c [j 2] ;

}
f o r (s i z e t b lock = 0 ; block < NUMBLOCKS; block++) {

s i z e t aux = block ∗BSIZE ;

s i z e t s i z e = aux+BSIZE > N ? N−aux : BSIZE ;

#pragma oss task in (a [aux ; s i z e] , b [aux ; s i z e]) out (c [aux ; s i z e])

f o r (s i z e t j 2=aux ; j2 < aux+s i z e ; j 2++)

c [j 2] = a [j2]+b [j2] ;

}
f o r (s i z e t b lock = 0 ; block < NUMBLOCKS; block++) {

s i z e t aux = block ∗BSIZE ;

s i z e t s i z e = aux+BSIZE > N ? N−aux : BSIZE ;

#pragma oss task in (b [aux ; s i z e] , c [aux ; s i z e]) out (a [aux ; s i z e])

f o r (s i z e t j 2=aux ; j2 < aux+s i z e ; j 2++)

a [j 2] = b [j2]+ s c a l a r ∗c [j 2] ;

}
}
#pragma oss taskwai t

with tasks is using blocking, thereby converting a single loop into two loops, one
to iterate over blocks, and one to iterate over the elements of each block. The
taskloop construct prevents users from requiring this twofold loop structure
in some cases, saving some lines of code. In the case of the Nbody benchmark,
the data layout in our implementation is blocked, so we cannot eliminate the
twofold loop. Thus, there is no real improvement in programmability for this
benchmarks. In contrast, the Stream benchmark shows improvements in all the
different metrics, reaching up to a 3.57x reduction of SLOC. Regarding the CC,

Table 1. Programmability metrics to compare the use of the taskloop construct with
the manual use of tasks

T TL

SLOC DEE CC SLOC DEE CC

DOTPROD 7 0.07 4 3 0.05 2.5

NBODY 10 0.29 2.6 10 0.29 2.6

STREAM 25 0.37 13.5 7 0.3 9.5

62 M. Maroñas et al.

Listing 1.5. Stream code using taskloop

f o r (i n t k=0; k<nTimes ; k++) {
#pragma oss task loop g r a i n s i z e (BSIZE) in (a [j]) out (c [j])

f o r (j = 0 ; j < N; j++) {
c [j] = a [j] ;

}

#pragma oss task loop g r a i n s i z e (BSIZE) in (c [j]) out (b [j])

f o r (j = 0 ; j < N; j++) {
b [j] = s c a l a r ∗c [j] ;

}

#pragma oss task loop g r a i n s i z e (BSIZE) in (a [j] , b [j]) out (c [j])

f o r (j = 0 ; j < N; j++) {
c [j] = a [j]+b [j] ;

}

#pragma oss task loop g r a i n s i z e (BSIZE) in (b [j] , c [j]) out (a [j])

f o r (j = 0 ; j < N; j++) {
a [j] = b [j]+ s c a l a r ∗c [j] ;

}
}
#pragma oss taskwai t

using taskloop reduces it from 13.5 to 9.5 because we are able to remove four
different for loops, as you can see comparing the code snippets in Listings 1.4
and 1.5. Similarly, in the dotprod benchmark we can remove two for loops,
reducing the CC.

7 Conclusions and Future Work

The taskloop construct is a directive that distributes the iteration space of
a loop into several tasks. This gives a boost to productivity when using the
tasking model. However, the current implementation of this construct does not
cover the vast majority of cases, because it is missing data dependences support.
Therefore, users are forced to use explicit synchronization points, like in the
fork-join model. As a result, users get a fork-join like structure, with increased
overhead compared to worksharing constructs.

By providing support for data dependences to the taskloop construct, we
enable users to utilize this directive in the majority of cases. Thus, they are able
to fully convert their loops into tasks with a single directive, maximizing pro-
ductivity, while keeping the main benefit of tasks, a lightweight synchronization
based on data dependences.

Our evaluation shows that taskloop with dependences delivers as much per-
formance as its manual counterpart, but with a reduced number of lines of code.
The number of lines of source code required to parallelize a code using taskloop
with dependences is up to 3.57x times smaller than its manual counterpart.

OpenMP Taskloop Dependences 63

As future work, we plan to further investigate the interactions of taskloop
dependences with other OpenMP features. The big challenge will imply combin-
ing dependences with the collapse clause. As this clause specifies the number
of loops that are collapsed into a logical iteration space that then is divided
according to the grainsize and num tasks clauses; the implementation should
take into account partial innermost level loop partition that will hinder the array
section definition.

Another opportunity for future research include the study of the interaction
with the loop transformation constructs (i.e., the tile and the unroll con-
structs). Although it seems the programmer should apply the semantics of the
taskloop dependences on top of the already transformed loops, such use cases
should be considered to discard potential corner cases.

Acknowledgements. This research has received funding from the European Union’s
Horizon 2020/EuroHPC research and innovation programme under grant agreement
No 955606 (DEEP-SEA); and the support of the Spanish Ministry of Science and
Innovation (Computacion de Altas Prestaciones VIII: PID2019-107255GB).

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concur. Com-
put. Pract. Exp. 23(2), 187–198 (2011)

2. Ayguade, E., et al.: A proposal to extend the OpenMP tasking model for hetero-
geneous architectures. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.)
IWOMP 2009. LNCS, vol. 5568, pp. 154–167. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02303-3 13

3. Barcelona Supercomputing Center: Mercurium Compiler. https://github.com/bsc-
pm/mcxx. Accessed 24 March 2019

4. Barcelona Supercomputing Center: Nanos6 Runtime. https://github.com/bsc-pm/
nanos6. Accessed 24 March 2019

5. Wheeler, D.A.: SLOCCount: More about COCOMO. https://dwheeler.com/
sloccount/sloccount.html#cocomo. Accessed 05 July 2021

6. Duran, A., Duran, A., et al.: OmpSs: a proposal for programming heterogeneous
multi-core architectures. Parallel Process. Lett. 21(2), 173–193 (2011)

7. Intel: Intel C++ Compiler 19.0 Developer Guide and Reference. https://software.
intel.com/en-us/cpp-compiler-developer-guide-and-reference-cilk-for. Accessed 24
March 2019

8. Luebke, D.: Cuda: scalable parallel programming for high-performance scientific
computing. In: 2008 5th IEEE international symposium on biomedical imaging:
from nano to macro, pp. 836–838. IEEE (2008)

9. Nguyen, V., Deeds-rubin, S., Tan, T., Boehm, B.: A SLOC counting standard. In:
COCOMO II Forum 2007 (2007)

10. Nvidia: CUDA C++ Programming Guide 11.4 (June 2021). https://docs.nvidia.
com/cuda/archive. Accessed 05 July 2021

11. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face 4.5 (Nov 2015). Accessed 18 Feb 2021

https://doi.org/10.1007/978-3-642-02303-3_13
https://doi.org/10.1007/978-3-642-02303-3_13
https://github.com/bsc-pm/mcxx
https://github.com/bsc-pm/mcxx
https://github.com/bsc-pm/nanos6
https://github.com/bsc-pm/nanos6
https://dwheeler.com/sloccount/sloccount.html#cocomo
https://dwheeler.com/sloccount/sloccount.html#cocomo
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-cilk-for
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-cilk-for
https://docs.nvidia.com/cuda/archive
https://docs.nvidia.com/cuda/archive

64 M. Maroñas et al.

12. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face (Nov 2018). https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf. Accessed 24 Mar 2019

13. Perez, J.M., Beltran, V., Labarta, J., Ayguadé, E.: Improving the integration of
task nesting and dependencies in OpenMP. In: 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 809–818. IEEE (2017)

14. Sala, K., et al.: Improving the interoperability between MPI and task-based pro-
gramming models. In: Proceedings of the 25th European MPI Users’ Group Meet-
ing, pp. 1–11 (2018)

15. Sala, K., Teruel, X., Perez, J.M., Peña, A.J., Beltran, V., Labarta, J.: Integrating
blocking and non-blocking MPI primitives with task-based programming models.
Parallel Comput. 85, 153–166 (2019)

16. Shirako, J., Unnikrishnan, P., Chatterjee, S., Li, K., Sarkar, V.: Expressing doacross
loop dependences in OpenMp. In: 9th International Workshop on OpenMP,
IWOMP 2013, vol. 8122, pp. 30–44 (Sep 2013). https://doi.org/10.1007/978-3-
642-40698-0

17. Watson, A.H., McCabe, T.J.: Structured testing: A testing methodology using the
cyclomatic complexity metric, vol. 500, no. 235. Technical report., NIST Special
Publication (1996)

18. Wheeler, David A.: SLOCCount. https://dwheeler.com/sloccount. Accessed 24
March 2019

19. Yin, T.: Lizard. https://github.com/terryyin/lizard. Accessed 24 March 2019

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1007/978-3-642-40698-0
https://doi.org/10.1007/978-3-642-40698-0
https://dwheeler.com/sloccount
https://github.com/terryyin/lizard

Applications

Outcomes of OpenMP Hackathon:
OpenMP Application Experiences
with the Offloading Model (Part I)

Barbara Chapman5, Buu Pham1, Charlene Yang2, Christopher Daley3,
Colleen Bertoni4, Dhruva Kulkarni3, Dossay Oryspayev5, Ed D’Azevedo6,
Johannes Doerfert4, Keren Zhou7, Kiran Ravikumar8, Mark Gordon1,

Mauro Del Ben3, Meifeng Lin5, Melisa Alkan1, Michael Kruse4,
Oscar Hernandez6, P. K. Yeung8, Paul Lin3, Peng Xu1(B), Swaroop Pophale6,

Tosaporn Sattasathuchana1, Vivek Kale5, William Huhn4,
and Yun (Helen) He3

1 Iowa State University, Ames, IA, USA
{buupq,mgordon,alkan,pxu,tsatta}@iastate.edu

2 NVIDIA Corporation, Santa Clara, CA, USA
charleney@nvidia.com

3 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
{csdaley,dkulkarni,mdelben,paullin,yhe}@lbl.gov

4 Argonne National Laboratory, Lemont, IL, USA
{bertoni,jdoerfert,mkruse,whuhn}@anl.gov

5 Brookhaven National Laboratory, Upton, NY, USA
{doryspaye,mlin,vkale}@bnl.gov

6 Oak Ridge National Laboratory, Oak Ridge, TN, USA
{dazevedoef,oscar,pophaless}@ornl.gov

7 Rice University, Houston, TX, USA
keren.zhou@rice.edu

8 Georgia Institute of Technology, Atlanta, GA, USA
kiran.r@gatech.edu,pk.yeung@ae.gatech.edu

Abstract. This paper reports on experiences gained and practices
adopted when using the latest features of OpenMP to port a variety
of HPC applications and mini-apps based on different computational
motifs (BerkeleyGW, WDMApp/XGC, GAMESS, GESTS, and Grid-
Mini) to accelerator-based, leadership-class, high-performance supercom-
puter systems at the Department of Energy. As recent enhancements to
OpenMP become available in implementations, there is a need to share
the results of experimentation with them in order to better understand
their behavior in practice, to identify pitfalls, and to learn how they can
be effectively deployed in scientific codes. Additionally, we identify best
practices from these experiences that we can share with the rest of the
OpenMP community.

Supported by Exascale Computing Project (ECP) OpenMP Hackathon hosted by SOL-
LVE and NERSC [25].

c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 67–80, 2021.
https://doi.org/10.1007/978-3-030-85262-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-85262-7_5

68 B. Chapman et al.

Keywords: OpenMP · Device offload · Application experiences

1 Introduction

As the HPC landscape moves to more heterogeneous architectures, we are seeing
more efforts from applications to adapt to GPU programming. Programming on
GPUs is an attractive solution as GPUs provide tremendous computing capabil-
ity from their thousands of tiny processing cores while consuming less energy per
floating-point operation as compared to traditional CPUs. A GPU’s ability to
run thousands of threads in parallel make it ideal for single-instruction multiple-
data (SIMD) or data parallel workloads. Recently, the focus has moved from
more architecture-specific programming to performance portability. OpenMP is
one such programming model that can give performance closer to architecture-
specific programming interfaces like CUDA while maintaining portability across
architectures [22].

In this paper, we explore the use of the capability in OpenMP to offload
computational work to a GPU for a variety of HPC applications and mini-apps
- BerkeleyGW, WDMApp/XGC (in Part I), GAMESS, GESTS, and GridMini
(in Part II) based on different computational motifs. As recent enhancements to
OpenMP become available in its implementations, there is a need to share the
results of application experiences with the larger OpenMP user-base in order to
impart specific lessons learnt, share critical issues that were overcome to achieve
better performance, and identify pitfalls and how to overcome them in scientific
codes.

2 Platforms Used

The primary platforms used for this study are:

– Cori GPU system at NERSC has 18 nodes total. Each node contains two
sockets of twenty-core Intel Xeon Skylake 2.4 GHz CPUs, 384 GB DDR4
memory; and eight NVIDIA Tesla V100 GPUs, each with 16 GB HBM2
memory and connected with NVLink interconnect.

– Summit at OLCF [6] uses IBM Power System AC922 nodes. Each of the
approximately 4,600 compute nodes contain two IBM POWER9 processors
and six NVIDIA Tesla V100 accelerators with 512 GB of DDR4 memory (for
POWER9), 96 GB of HBM2 (for accelerators), and 1.6TB of non-volatile
memory that can be used as a burst buffer.

3 Application Experiences

3.1 BerkeleyGW

BerkeleyGW [13] is a massively parallel software package employed to study
the excited state properties of electrons in materials by using GW , Bethe-
Salpeter Equation (BSE) methods and beyond. The first-principle GW [18,19]

OpenMP Application Experiences I 69

and BSE [23] approaches are among the most accurate and effective electronic
excited-stated methods broadly employed to study materials with applications
such as energy storage and conversion, photovoltaics, quantum information tech-
nologies, and nano-electronics, to cite a few.

3.1.1 Application Overview
The software package1 is primarily written in Fortran 2003, with auxiliary and
post-processing utilities written in C, C++, Python, Perl and Bash. BerkeleyGW
supports interfacing with many popular DFT codes, with efficient built-in wrap-
pers for them. These DFT codes include Abinit [16], Octopus [26], Quantum
ESPRESSO [15] and SIESTA [24].

BerkeleyGW is comprised of four major modules: epsilon (computes the
dielectric function and its frequency dependence), sigma (computes GW self-
energy matrix elements and quasiparticle eigenvalues), kernel (constructs the
electron-hole interaction kernels) and absorption (solves the Bethe-Salpeter
equation and outputs exciton eigenvalues and eigenfunctions). The four stand-
alone executables allow for flexible configurations for different steps in the GW
and BSE workflow, and reuse of intermediate products between steps.

BerkeleyGW employs a multi-level parallelization strategy, using MPI for
inter-node communication and OpenMP for the many-core implementation at
the CPU level. Experimental GPU support has been implemented for all four
major modules employing a hybrid CUDA+OpenACC programming model and
associated libraries [2]. The version of the code optimized on NVIDIA hardware
shows near linear strong and weak scaling up to the full scale of Summit [6] at
OLCF, with 27,648 NVIDIA V100 GPUs. At full scale on Summit, the sigma
executable achieves 105.9 PFLOP/s double-precision performance (52.7% of the
peak) and time to solutions of the order of 10 min for a 2,742-atom structure with
over 10,000 electrons in the simulation cell [12]. BerkeleyGW exploits optimized
HPC libraries whenever possible for its basic computational kernels:

– Required: BLAS, LAPACK, FFTW
– Recommended: MPI, ScalaPACK, HDF5
– Optional: ELPA, PRIMME, cuBLAS, cuFFT

3.1.2 Application Motif
The work presented in this paper is focused on the porting of the sigma module
to GPUs using OpenMP target offload, henceforth referred to as OpenMP-target.
Starting from the dielectric function computed by epsilon, sigma evaluates a
set of self-energy matrix elements (between 10–1000 depending on the calcula-
tion type) employed to solve the Dyson’s equations and obtain the electrons’
quasiparticle eigenvalues (quasiparticle energies EQP) [13]. This computation,
together with the evaluation of the dielectric function by epsilon, represent the

1 The BerkeleyGW software package [1] is distributed under an open-source 4-clause
BSD license, with mainline development branch maintained on GitHub [3].

70 B. Chapman et al.

two major bottlenecks of the overall GW workflow, each displaying an O(N4)
growth of the computational complexity with system size.

Fig. 1. Left, schematic representation of the MTXEL kernel, and right, pseudocode for
the GPP kernel in sigma. Shown on the right of the GPP pseudocode is the relative size
of the loops for each kernel invocation for a large scale application.

In sigma, within the Generalized Plasmon-Pole (GPP) model [19], two major
computational kernels can be isolated (see Fig. 1):

– MTXEL matrix elements kernel: Calculate intermediate matrix elements
between the original system’s wave functions and an auxiliary plane-wave
(PW) basis. From a computational standpoint this kernel is implemented as
a large number of serial FFTs (approximately 100,000 grid points per FFT).
For large scale applications, this kernel takes less than 5% of the total com-
putational workload.

– GPP kernel: Represents by far the most intensive computational kernel for large
scale applications (>95%). Starting from the matrix elements computed by
MTXEL and the dielectric function computed by epsilon, GPP computes self-
energy matrix elements, each obtained as tensor-like reduction across different
matrices with a complex matrix-vector interdependence.

3.1.3 OpenMP Parallelization Strategy
The approach employed in our porting strategy is summarized as follow:

1. Devise a porting strategy for the major computational bottlenecks based on
preliminary analysis of mini-apps2 simulating the full application running at
scale.

2. Add a portability layer to the main applications to switch between vari-
ous programming models. For the current case we include three layers: (i)
multi-threaded OpenMP (CPU) (ii) offload with OpenACC (iii) offload with
OpenMP-target.

2 The mini-apps are design to quickly and systematically assess the features of various
programming models and associated libraries.

OpenMP Application Experiences I 71

3. Isolate the computational kernels, simulated by the mini-apps, in the main
application, organizing each of them within the portability layer framework.

4. Translate from OpenMP (CPU) or OpenACC to OpenMP-target, assessing
compiler support, correctness of results and performance compared to other
programming models.

5. Improve performance systematically of OpenMP-target implementation, fol-
lowing a similar approach to our original OpenACC porting [27].

6. Test intermediate ports using BerkelyGW’s full continuous integration suite.
7. Merge successful ports back into the mainline branch.
8. Report compiler bugs and issues to vendors.

For the case of sigma these steps resulted in interfacing to vendor-accelerated
FFT and GEMM libraries and translating from OpenMP to OpenMP-target in
the GPP kernel.

3.1.4 Results
Unless otherwise stated, the benchmark calculations have been obtained on a
shared node (interactive queue) on Cori GPU employing 4 GPUs and 16 cores,
with a parallel setup of 4 MPI tasks total each comprised of one GPU and 4
OpenMP (CPU) threads. The benchmark system employed for the performance
measurements is a small/medium calculation, evaluating NEqp = 2 quasiparti-
cle energies of a divacancy defect in silicon with 214 atoms in the simulation
cell (referred as Si-214) [11]. The NVIDIA HPC SDK 20.11 compiler was used
with the compiler flags -acc -mp=gpu -Mcuda to enable mixed use of multiple
programming models.

Fig. 2. For the MTXEL kernel shown is the portability layer between OpenACC and
OpenMP-target for the (left) complex-to-complex FFT function cufftExecZ2Z of the
cuFFT library and (right) the PUT function of the MTXEL kernel.

The porting of the MTXEL kernel (see Fig. 1) to OpenMP-target was straight-
forward to adapt from our previous OpenACC port. This kernel, for each of the

72 B. Chapman et al.

NEqp quasiparticle state, loops over all bands/wavefuntions NB in the calcula-
tions and performs a series of simple operations between FFTs. The FFT is exe-
cuted on the GPU using the complex-to-complex FFT function cufftExecZ2Z
of the cuFFT library for both OpenACC and OpenMP-target. As an example,
Fig. 2 shows the OpenACC/OpenMP-target portability layer for the FFT call
and the PUT function. Host↔GPU data transfer is only performed before/after
the PUT and GET for vector data type, without the need to copy large FFT boxes.

The Si-214 benchmark has values of NEqp = 2 and NB = 6, 397, correspond-
ing to ≈1, 600 bands per MPI task/GPU. To avoid hitting the memory limit on
the GPU, the NB loop is thus performed over batches (batch size ≈ 20 − 40).
Since this version of the NVIDIA compiler did not support the nowait clause
on the target construct, no asynchronous scheduling of batches is used in our
OpenMP-target port. Our benchmarks show this lack of asynchronous schedul-
ing in the OpenMP-target port has negligible performance impact compared to
the OpenACC port of the MTXEL kernel for the Si-214 benchmark (see Table 1).

Fig. 3. Top-Left, OpenMP (multi-threaded) Fortran source code of the GPP kernel,
isolated to be ported to OpenMP-target. Top-Right, OpenMP-target (v3) GPP ker-
nel. Bottom, improvements in kernel performance (time to solution) for the various
optimization step of the OpenMP-target GPP kernel.

OpenMP Application Experiences I 73

For the GPP kernel, a straightforward conversion of the OpenACC port to
OpenMP-target was unsuccessful. The code was non-trivial and implemented
many optimizations. This made it hard to understand whether the OpenMP-
target port failed because of programmer error or compiler error. In order to
make progress, we reverted back to a simplified OpenMP multi-threaded CPU
version of the kernel, ported this to OpenMP-target, and iteratively optimized.
Figure 3 represents the CPU version, which closely matches the pseudo-code in
Fig. 1.

To port this simplified GPP kernel to OpenMP-target, it was necessary to move
the innermost iw loop outside the kernel since double-complex array reductions
are not currently supported in this version of the NVIDIA compiler. The first
version (v1) of the OpenMP-target port used a target teams loop combined
construct and collapsed all three loops using the collapse(3) clause. Default
assignment for either shared or private variables in the kernel was not correctly
supported and, to ensure correctness of results, it was necessary to explicitly
specify the data-sharing attributes. The target teams distribute parallel
do combined construct compiled but failed at runtime, necessitating usage of
the target teams loop construct; the converse case was found for the simple
PUT/GET and multiply functions in the MTXEL kernel. The reason for the differ-
ence is that the NVIDIA compiler uses a different code generation path for the
loop construct. Neither code generation path is mature in the 20.11 compiler.
We have since found that these issues have been resolved in the 21.3 compiler.

Once the baseline (v1) implementation was working, we optimized the perfor-
mance of the GPP kernel in a two-step procedure. A summary of the performance
improvements in terms of time to solution for the kernel is given at the bottom
of Fig. 3. As a first step (v2), long latency instructions, such as complex division
and absolute values, were replaced by reciprocals and squares, yielding a 25%
improvements in time to solution (1.3× speedup).

The greatest improvements came from the final set of optimizations (v3). We
see in (v3) Fig. 3, the outermost (n1 loc) and innermost (ig) loops are blocked,
and each block is executed sequentially by each thread via stride loops. To ensure
that the innermost two loops are executed sequentially by each thread we added
the bind(thread) clause. This prevents the NVIDIA compiler auto-parallelizing
these two loops over threads. We could have also disabled auto-parallelization
with the compiler option -mp=noautopar. Improvements in time to solution here
come from (i) reducing re-computation in the innermost part of the kernel and
(ii) improving cache reuse and data locality [27]. This optimization is not applied
automatically by the compiler, although it could be once compilers implement
the OpenMP-5.1 tile directive.

The final v3 version of the GPP kernel has a runtime of 43% of the v1 baseline
implementation (2.3× speedup), and it compares favorably with the optimized
OpenACC version (see Table 1). Both OpenACC and OpenMP-target versions
lie within ≈10% in time to solution compared to the CUDA version. This discrep-
ancy is due to the additional levels of optimization implemented in the CUDA
version and not applied to the OpenACC and OpenMP-target versions. These

74 B. Chapman et al.

Table 1. Runtime comparison (in seconds) of the various kernels of sigma on Cori
GPU (4 GPUs + 16 cores) at NERSC for Si-214 benchmark system.

MTXEL GPP Total

CPU OpenMP 62 1235 1311
GPU CUDA 1.7 27.3 34.5
GPU OpenACC 3.2 30.2 43.4
GPU OpenMP-target 3.5 31.5 45.9

include (i) further blocking of the n1 loc loop, each block assigned to an inde-
pendent CUDA stream allowing for multiple GPP kernels to run simultaneously
on the GPU increasing occupancy, (ii) ad hoc implementation of the reduction,
partially on GPU and finalized on host and (iii) use of non-blocking point to
point MPI communication on the host which overlaps with the GPP kernel exe-
cution on the GPU. More details can be found in ref. [12].

3.1.5 Challenges and Lessons Learned
The majority of our OpenMP target offload porting experience used NVIDIA
HPC SDK 20.11, the first NVIDIA compiler supporting OpenMP target offload
to NVIDIA GPUs. In a relatively short period of time, even with the compiler
issues, we were able to port most of the BerkeleyGW sigma module to OpenMP
target offload and achieved comparable performance to our previous OpenACC
port. Some of our workarounds for NVIDIA HPC SDK 20.11 included

– Switching between target teams distribute parallel do and target
teams loop compute directives on certain loops to avoid application run
time errors.

– Explicitly specifying the data sharing attributes of all variables used in an
OpenMP target region.

– Explicitly mapping all variables used in OpenMP target region data reduc-
tions.

One of the keys to our success over the years has been the use of BerkeleyGW
mini-apps. Having mini-apps that accurately capture the computational motifs
without the various library dependencies and a small data footprint (data set fits
in memory of single compute node) was helpful for sharing with vendors for inde-
pendent assessment [4]. Another critical component of our GPU porting workflow
has been the creation of OpenMP-target and OpenACC builds in our Buildbot
continuous integration suite running on Amazon Web Services (AWS). These
builds run all GPU-accelerated kernels through the full BerkeleyGW regression
test suite for every pull request. Thanks to this we have been able to include the
OpenMP-target features developed in this work into BerkeleyGW mainline and
released in the 3.0 version of the software package.

Despite not being an issue of the OpenMP standard itself, we found that
true portability is hampered by library API issues. In fact, we have found that

OpenMP Application Experiences I 75

it is necessary to include compiler-dependent preprocessor statements into the
OpenMP-target code base to handle differences between vendor offload imple-
mentations of “standardized” APIs like BLAS/LAPACK3. This is only exac-
erbated for library calls where no standardized API is supported by multiple
vendors, such as batched linear algebra and FFT operations.

During the development process, the NVIDIA compiler flag -Minfo was par-
ticularly useful since it provides informational messages about the compilation
process, notably parallelization, vectorization, and GPU offloading. We found the
following runtime environment variables helpful: OMP TARGET OFFLOAD=MAND-
ATORY to make sure code runs on GPU and NVCOMPILER ACC NOTIFY=3 to show
kernel launch configurations as well as data transfers. Two profiling tools were
used for the BerkeleyGW runs on the NVIDIA GPUs. Nsight Systems has a
relatively small overhead (≈2–4×) for our OpenMP-target and OpenACC runs.
We used it to visually inspect the kernel performances of OpenMP offload and
OpenACC implementations. HPCToolkit has a much higher overhead (≈20×)
because it samples the Program Counter (PC). We gained a 12% performance
improvement when a single line of complex division in a nested loop was found
as a top hotspot and replaced with reciprocals.

We plan to use OpenMP target offload as our portable solution across DOE
machines in the coming years. We are confident that OpenMP compilers will
meet BerkeleyGW requirements, as multiple vendors are committed to support-
ing a common subset of OpenMP features on accelerators [21].

3.2 WDMApp

The goal of the DOE Exascale Computing Project (ECP) Whole Device Model
Application (WDMApp) project is high-fidelity simulation of magnetically con-
fined fusion plasmas for future fusion reactors [7]. This involves coupling the
gyrokinetic codes in different domains of the reactor, e.g., core region vs edge
region. The gyrokinetic code, XGC, models the edge plasma regime [20].

3.2.1 Application Overview
XGC is a modern edge gyrokinetic particle-in-cell (PIC) code [8]. One of the
key kernels is the computation of Coulomb collisions. XGC employs a non-linear
collision operator [17].

XGC is a Fortran 90 code employing OpenMP (intranode) and OpenACC
(intranode, GPU) for parallelism. There has been a recent effort to convert XGC
to C++ from Fortran; consequently, the collision kernel has been converted to
C++ and uses Kokkos [14] to run on GPUs.

3.2.2 Application Motif
This work focuses on the XGC collision operator. The computational grid is
essentially a torus and consists of 2D planes (discretized by 2D unstructured

3 No such differentiation is normally needed for CPU/multicore builds.

76 B. Chapman et al.

triangular elements) in the toroidal direction. The collision operator is calculated
at each vertex in the grid.

XGC includes a standalone collision kernel. This collision standalone proxy
application or “mini-app” is written in C++ and employs Kokkos to run on
GPUs, and is the focus of this work.

3.2.3 OpenMP Parallelization Strategy
The XGC Collision mini-app was already GPU-enabled using Kokkos with the
Kokkos CUDA backend. A performance profile showed that the application made
poor use of GPU hardware. This was because the parallelization strategy only
exploited parallelism on coarse-grained outer loops, as is common in many CPU-
only applications. At the hackathon [25] we decided to experiment with a fine-
grained parallelization strategy to make better use of GPU hardware. We could
have done the experimentation in Kokkos, however, we chose to create a hybrid
Kokkos+OpenMP target offload mini-app to quickly prototype different paral-
lelization strategies with OpenMP target offload.

Our hackathon strategy relied on OpenMP compilers supporting the use
of CUDA-allocated data in OpenMP target regions. Listing 1.1 shows how the
is device ptr clause was used to access CUDA-allocated data in the OpenMP
target region. The parallelization strategy is identical to the Kokkos implementa-
tion, where the function E and D s omptarget is executed by every single GPU
thread.
1 #pragma omp target teams distribute \
2 parallel for is_device_ptr (...)
3 for (int idx =0; idx <col_f_nvrm1_nvzm1; idx++)
4 E_and_D_s_omptarget (...);
5
6 void E_and_D_s_omptarget (...) {
7 // ... user code
8 for (index_ip = 0; index_ip <nvzm1; index_ip ++) {
9 for (index_jp = 0; index_jp <nvrm1; index_jp ++) {

Listing 1.1. XGC v1: Coarse-grained parallelism + OpenMP-4.0 compute constructs

We modified the original, poorly performing, code by moving the outer
loop into E and D s omptarget function. We parallelized and workshared this
outer loop with teams distribute and the inner two loops with parallel for
collapse(2). The inner loops additionally required an OpenMP reduction over
5 scalar variables. Listing 1.2 shows the original fine-grained implementation.
1 void E_and_D_s_omptarget_v2 (...) {
2 #pragma omp target teams distribute is_device_ptr (...)
3 for (int idx=0; idx <col_f_nvrm1_nvzm1; idx ++) {
4 // ... user code
5 #pragma omp parallel for collapse (2) reduction (+:...)
6 for (index_ip = 0; index_ip <nvzm1; index_ip ++) {
7 for (index_jp = 0; index_jp <nvrm1; index_jp ++) {

Listing 1.2. XGC v2: Fine-grained parallelism + OpenMP-4.0 compute constructs

The original fine-grained code has a benefit and a downside. The benefit is
that parallelism is now exploited on the innermost loops making it more suitable
for execution on GPUs. The downside is that our implementation uses an inner
parallel construct that is not strictly nested inside a teams region. This is a

OpenMP Application Experiences I 77

performance concern because there is a fork-join point, which itself has over-
head, and the possibility that the code in the target region cannot be safely
executed by each GPU thread as Single Program Multiple Data (SPMD). Pub-
lications have reported significant slowdowns when using the pattern shown in
Listing 1.2 [9,10]. As an alternative, the NVIDIA compiler has a tuned implemen-
tation of the OpenMP-5.0 loop construct to avoid these performance concerns.
The loop construct specifies that loop iterations may be executed concurrently
and has restrictions that help compilers generate high performance code. List-
ing 1.3 shows our OpenMP-5.0 loop implementation. The bind clause specifies
the threads that may execute the loop region. Our outer loop has an implicit
bind(teams) clause and the inner loops have an explicit bind(parallel) clause.
This usage instructs the NVIDIA compiler to workshare the outer loop itera-
tions over CUDA thread blocks and the inner loop iterations over CUDA threads
when generating code for the GPU.
1 void E_and_D_s_omptarget_v3 (...) {
2 #pragma omp target teams loop is_device_ptr (...)
3 for (int idx=0; idx <col_f_nvrm1_nvzm1; idx ++) {
4 // ... user code
5 #pragma omp loop bind(parallel) collapse (2) reduction (+:..)
6 for (index_ip = 0; index_ip <nvzm1; index_ip ++) {
7 for (index_jp = 0; index_jp <nvrm1; index_jp ++) {

Listing 1.3. XGC v3: Fine-grained parallelism + OpenMP 5.0 loop construct

3.2.4 Results
We compiled the XGC collision mini-app with NVIDIA HPC SDK 21.5 and
executed an XGC test problem with 100 mesh nodes on Cori GPU. The results
are shown in Table 2.

Table 2. XGC collision time spent in seconds in the dominant two functions. Runs
performed on Cori-GPU, which has NVIDIA V100 GPUs.

v0 (Kokkos) v1 v2 v3

E and D ab 0.95 0.94 0.50 0.17
E and D s 0.68 0.44 0.22 0.19

The results show that the fine-grained parallelism approach with the
OpenMP loop directive (v3) compiled with the NVIDIA HPC SDK 21.5 com-
piler gave a 5.6x and 3.6x improvement over the original Kokkos implementa-
tion. We plan to backport this fine-grained parallelism approach into the original
Kokkos mini-app. We also plan to assess the performance of the mini-app using
the Kokkos OpenMP target offload backend. This backend is a work in progress,
however, performance observations from this code and other codes have influ-
enced the placement of OpenMP constructs in Kokkos to enable SPMD execution
[5].

78 B. Chapman et al.

3.2.5 Challenges and Lessons Learned
Our lessons learned are as follows: Profile the Application. We had written
high quality OpenMP target offload code that considered every single message
printed by the -Minfo=mp compiler diagnostic to ensure that the OpenMP tar-
get region was mapped to the GPU kernel in exactly the way we expected.
Yet, at runtime, our initial performance with an older version of the compiler
(NVIDIA HPC SDK 20.11) was very poor. It was only by profiling the code with
the NVIDIA Nsight-systems and Nsight-compute tools that we found that the
NVIDIA OpenMP runtime was launching the dominant GPU kernel with only
8 OpenMP teams (CUDA thread blocks).

Leverage Compiler Experts. We were unable to reproduce the issue of 8
OpenMP teams in a simple standalone code to report an NVIDIA compiler bug.
It was only by having NVIDIA compiler engineers present at the hackathon that
they could rationalize about the cause of the issue and fix the issue in subse-
quent versions of the compiler. The results in this paper used the 21.5 compiler.
This should be a reminder that today’s applications are often sufficiently com-
plicated that the standard model of application developers reporting simplified
reproducers is not always possible.

Need for Streamlining the Performance Analysis Process. The XGC
collision kernel mini-app is a Kokkos-based application with minimal library
dependencies (BLAS and LAPACK); however, as the mini-app is built through
the build system of the main XGC application, the mini-app has inherited many
redundant dependencies (e.g. PETSc, CABANA, FUSIONIO, HDF5, FFTW).
Consequently, it is unwieldy for experimentation with different compilers as these
dependencies need to be satisfied across all compiler stacks. For comparing per-
formance across compilers, it would be more efficient if the redundant depen-
dencies inherited by the mini-app were eliminated by additional logic in the
build system. It would also help us if there were pre-packaged compatible math
libraries with all compilers, e.g. the NVIDIA HPC SDK provides LAPACK-
/BLAS libraries.

We continue our application experiences with GAMESS, GESTS, and Grid-
Mini in Part II.

References

1. BerkeleyGW. http://www.berkeleygw.org. Accessed 25 July 2021, 06:48:38
2. BerkeleyGW CUDA version. https://gitlab.com/NESAP/berkeleygw/berkeleygw-

cuda. Accessed 25 July 2021, 06:48:38
3. BerkeleyGW development mainline. https://github.com/BerkeleyGW. Accessed

25 July 2021, 06:48:38
4. BerkeleyGW kernels and miniapps. https://gitlab.com/NESAP/berkeleygw/

berkeleygw-kernels. Accessed 25 July 2021, 06:48:38
5. Kokkos Pull Request #3808. https://github.com/kokkos/kokkos/pull/3808.

Accessed 25 July 2021, 06:48:38

http://www.berkeleygw.org
https://gitlab.com/NESAP/berkeleygw/berkeleygw-cuda
https://gitlab.com/NESAP/berkeleygw/berkeleygw-cuda
https://github.com/BerkeleyGW
https://gitlab.com/NESAP/berkeleygw/berkeleygw-kernels
https://gitlab.com/NESAP/berkeleygw/berkeleygw-kernels
https://github.com/kokkos/kokkos/pull/3808

OpenMP Application Experiences I 79

6. OLCF Summit. https://www.olcf.ornl.gov/summit/. Accessed 25 July 2021,
06:48:38

7. WDMApp. https://www.exascaleproject.org/research-project/wdmapp. Accessed
25 July 2021, 06:48:38

8. XGC1. https://hbps.pppl.gov/computing/xgc-1. Accessed 25 July 2021, 06:48:38
9. Daley, C., Ahmed, H., Williams, S., Wright, N.: A case study of porting HPGMG

from CUDA to OpenMP target offload. In: Milfeld, K., de Supinski, B.R.,
Koesterke, L., Klinkenberg, J. (eds.) IWOMP 2020. LNCS, vol. 12295, pp. 37–
51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58144-2 3

10. Davis, J.H., Daley, C., Pophale, S., Huber, T., Chandrasekaran, S., Wright, N.J.:
Performance assessment of OpenMP compilers targeting NVIDIA V100 GPUs.
In: Seventh Workshop on Accelerator Programming Using Directives (WACCPD-
2020) (2020)

11. Del Ben, M.: BerkeleyGW Si214 Benchmarks (2021)
12. Del Ben, M., Yang, C., Li, Z., Jornada, F.H.d., Louie, S.G., Deslippe, J.: Accel-

erating large-scale excited-state GW calculations on leadership HPC systems. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. SC ’20. IEEE Press (2020)

13. Deslippe, J., Samsonidze, G., Strubbe, D.A., Jain, M., Cohen, M.L., Louie, S.G.:
Berkeleygw: a massively parallel computer package for the calculation of the quasi-
particle and optical properties of materials and nanostructures. Comput. Phys.
Commun. 183(6), 1269–1289 (2012)

14. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014). Domain-Specific Languages and High-
Level Frameworks for High-Performance Computing

15. Giannozzi, P.: Quantum espresso: a modular and open-source software project for
quantum simulations of materials. J. Phys. Cond. Matter 21(39), 395502 (2009)

16. Gonze, X., et al.: ABINIT: First-principles approach to material and nanosystem
properties. Comput. Phys. Commun. 180(12), 2582–2615 (2009)

17. Hager, R., Yoon, E., Ku, S., D’Azevedo, E., Worley, P., Chang, C.: A fully
non-linear multi-species Fokker-Planck-Landau collision operator for simulation
of fusion plasma. J. Comput. Phys. 315, 644–660 (2016)

18. Hybertsen, M., Louie, S.G.: First-principles theory of quasiparticles: calculation of
band gaps in semiconductors and insulators. Phys. Rev. Lett. 55(13), 1418 (1985)

19. Hybertsen, M.S., Louie, S.G.: Electron correlation in semiconductors and insula-
tors: band gaps and quasiparticle energies. Phys. Rev. B 34(8), 5390 (1986)

20. Ku, S., et al.: A fast low-to-high confinement mode bifurcation dynamics in the
boundary-plasma gyrokinetic code XGC1. Phys. Plasmas 25(5), 056107 (2018)

21. Kwack, J., et al.: OpenMP roadmap for accelerators across DOE Pre-
Exascale/Exascale machines. In: Presentation at the ECP 2021 Annual Meeting
on Apr 15 2021 (2021)

22. OpenMP.org: OpenMP Application Programming Interface version 4.5 (2015)
23. Rohlfing, M., Louie, S.G.: Electron-hole excitations and optical spectra from first

principles. Phys. Rev. B 62, 4927–4944 (2000)
24. Soler, J.M., et al.: The SIESTA method for ab-initio order-N materials simulation.

J. Phys.: Conden. Matter 14(11), 2745–2779 (2002)
25. SOLLVE and NERSC: January 2021 ECP OpenMP Hackathon by SOLLVE and

NERSC (2021 [Online]), the event happened on 22, 27, 28, 29 Jan 2021. https://
sites.google.com/view/ecpomphackjan2021. Accessed 7 Apr 2021

https://www.olcf.ornl.gov/summit/
https://www.exascaleproject.org/research-project/wdmapp
https://hbps.pppl.gov/computing/xgc-1
https://doi.org/10.1007/978-3-030-58144-2_3
https://sites.google.com/view/ecpomphackjan2021
https://sites.google.com/view/ecpomphackjan2021

80 B. Chapman et al.

26. Tancogne-Dejean, N., et al.: Octopus, a computational framework for exploring
light-driven phenomena and quantum dynamics in extended and finite systems. J.
Chem. Phys. 152(12), 124119 (2020)

27. Yang, C.: 8 Steps to 3.7 TFLOP/s on NVIDIA V100 GPU: Roofline Analysis and
Other Tricks (2020). https://arxiv.org/abs/2008.11326

https://arxiv.org/abs/2008.11326

Outcomes of OpenMP Hackathon:
OpenMP Application Experiences

with the Offloading Model (Part II)

Barbara Chapman5, Buu Pham1, Charlene Yang2, Christopher Daley3,
Colleen Bertoni4, Dhruva Kulkarni3, Dossay Oryspayev5, Ed D’Azevedo6,
Johannes Doerfert4, Keren Zhou7, Kiran Ravikumar8, Mark Gordon1,

Mauro Del Ben3, Meifeng Lin5, Melisa Alkan1, Michael Kruse4,
Oscar Hernandez6, P. K. Yeung8, Paul Lin3, Peng Xu1(B), Swaroop Pophale6,

Tosaporn Sattasathuchana1, Vivek Kale5, William Huhn4,
and Yun (Helen) He3

1 Iowa State University, Ames, IA, USA
{buupq,mgordon,alkan,pxu,tsatta}@iastate.edu

2 NVIDIA Corporation, Santa Clara, CA, USA
charleney@nvidia.com

3 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
{csdaley,dkulkarni,mdelben,paullin,yhe}@lbl.gov

4 Argonne National Laboratory, Lemont, IL, USA
{bertoni,jdoerfert,mkruse,whuhn}@anl.gov

5 Brookhaven National Laboratory, Upton, NY, USA
{mlin,vkale}@bnl.gov

6 Oak Ridge National Laboratory, Oak Ridge, TN, USA
{oscar,pophaless}@ornl.gov

7 Rice University, Houston, TX, USA
keren.zhou@rice.edu

8 Georgia Institute of Technology, Atlanta, GA, Georgia
kiran.r@gatech.edu,pk.yeung@ae.gatech.edu

Abstract. This paper reports on experiences gained and practices
adopted when using the latest features of OpenMP to port a variety
of HPC applications and mini-apps based on different computational
motifs (BerkeleyGW, WDMApp/XGC, GAMESS, GESTS, and Grid-
Mini) to accelerator-based, leadership-class, high-performance supercom-
puter systems at the Department of Energy. As recent enhancements to
OpenMP become available in implementations, there is a need to share
the results of experimentation with them in order to better understand
their behavior in practice, to identify pitfalls, and to learn how they can
be effectively deployed in scientific codes. Additionally, we identify best
practices from these experiences that we can share with the rest of the
OpenMP community.

Supported by Exascale Computing Project (ECP) OpenMP Hackathon hosted by SOL-
LVE and NERSC [29].

c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 81–95, 2021.
https://doi.org/10.1007/978-3-030-85262-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-85262-7_6

82 B. Chapman et al.

Keywords: OpenMP · Device offload · Application experiences

1 Introduction

In this paper we continue the exploration of OpenMP usage in HPC applications
(GAMESS, GESTS, and GridMini) in Sect. 2. We conclude in Sect. 3 and provide
acknowledgments in Sect. 4.

2 Application Experiences

2.1 GAMESS

2.1.1 Application Overview
GAMESS is a general electronic structure software package comprising of
a variety of quantum mechanical (QM) methods [6]. GAMESS is primarily
written in Fortran and parallelized using both pure MPI [12,14] and hybrid
MPI/OpenMP [23,24]. A high-performance C++/CUDA library, namely LibC-
Chem, has been recently developed to accelerate GAMESS on GPUs. Alter-
natively, GAMESS Fortran is directly offloaded to GPUs using OpenMP. In
this section, offloading strategies of the Hartree-Fock (HF) method, which is an
essential step of ab initio methods, will be discussed.

2.1.2 Application Motif
A HF computation requires i) evaluation of N4 electron repulsion integrals
(ERIs) as shown in eq. (1), ii) formation of N2-element Fock matrix, iii) Fock
matrix diagonalization for eigen energies and vectors. Here, N is the system
size, usually represented by the number of Gaussian basis functions φμ(r). In
GAMESS, a basis function can be characterized by a few parameters, including
the so-called angular momentum, which is an integer starting from 0 upwards,
used here for sorting ERIs.

(μν|λσ) =
∫∫

dr1 dr2φ
∗
μ(r1)φν(r1)r12−1φ∗

λ(r2)φσ(r2), (1)

To provide the optimal performance for ERI evaluation, three different inte-
gral algorithms have been implemented in GAMESS, including a) Rotated-
axis [1,21,25,28], b) Electron repulsion Integral Calculator (ERIC) [13], and c)
Rys quadrature [11,19,27]. Depending on the characteristics of basis functions,
different ERI algorithms are selected at runtime (Fig. 1a).

In this work, we focus on i) offloading the Rys quadrature kernel from full
GAMESS package, ii) examining OpenMP offloading compiler support using a
Fortran mini-app of rotated-axis integral code, and iii) analyzing performance
of a C++ integral kernel from GAMESS-LibCChem. The first two efforts were
carried out on Ascent/Summit, while the latter was performed on NERSC’s
CoriGPU.

OpenMP Application Experiences II 83

2.1.3 OpenMP Parallelization Strategy
In the OpenMP HF implementation targeting CPUs [2,22], there is a large work-
load imbalance between threads. This imbalance is handled by using dynamic
loop scheduling and loop collapsing (c.f. lines 2 and 3, Figure 1a). To adapt
this code to the SIMT architecture in GPUs, the ERI codes were restructured
based on their optimal algorithms as discussed in [4]. However, this code can be
improved by sorting the integrals with respect to basis function angular momen-
tum and the inherent permutational symmetry of the integrals into different
classes (e.g. R 1112, R 1121 in Fig. 1c). In this study, a particular class, the
1121-kernel is presented in Fig. 1d and for further optimization see Fig. 1e. The
main bottleneck of the 1121-Rys kernel is to contract calculated ERIs (line 6 of
Fig. 1d) with density for six Fock matrix elements using atomic operations (lines
12 − 14). To reduce such synchronization overhead, in Fig. 1e, ERIs are evalu-
ated in chunk (lines 4−7), which are then contracted with density to update the
Fock matrix in a separated GPU parallel region (lines 10 − 17). Data exchange
between quartet evaluation and Fock update are managed by the target data
directive (lines 1 and 18).

2.1.4 Results
Relative timing of the new (Fig. 1e) and the original (Fig. 1d) offloading schemes
for the 1121-kernel is studied using water cluster of 16 − 128 molecules. The
cc-pVDZ basis set is used for all water clusters introducing 54 − 570K quartets
for computation and Fock digestion. The 1121-kernel wall time of (H2O)64 is
recorded while varying the number of quartets computed concurrently, which
is NSIZE∗80 ∗ 128, the number of teams (NTEAMS) and threads per team
(NTHREAD). The optimal wall time is usually achieved with a small number
of threads, large number of team and medium value of chunk size (Fig. 2).

Table 1. Wall time (s) and speedup of new offloading implementation (Fig. 1e). relative
to the original one (Fig. 1d)

NQUART Scheme 1d Scheme 1e Speedup

(H2O)16 54, 274 0.30 0.41 0.73
(H2O)32 263, 075 0.73 0.51 1.43
(H2O)64 1, 256, 691 2.94 1.00 2.94
(H2O)80 2, 095, 639 4.82 1.75 2.75
(H2O)96 3, 118, 724 6.97 2.56 2.72
(H2O)112 4, 322, 306 9.49 3.69 2.57
(H2O)128 5, 727, 489 12.40 4.80 2.58

Stacking optimal series, i.e., those contain minimum wall time data point,
showing that the 1121-kernel can be evaluated in 1.00 (s) with medium chunk size

84 B. Chapman et al.

a)

1 do ish=1,nshell
2 !$omp parallel do

schedule(dynamic) collapse(2)
3 do jsh=1,ish
4 do ksh=1,ish
5 do lsh=1,ksh
6 !choose ERI package
7 if (do sp) call sp
8 if (do spd) call spd
9 if (do eric) call eric

10 if (do rys) call rys
11 enddo
12 enddo
13 enddo
14 !$omp end parallel do
15 enddo

b)

1 !$omp target teams distribute
parallel do

2 do isp=1,n sp
3 call sp(isp)
4 enddo
5 !$omp target teams distribute

parallel do
6 do ispd=1,n spd
7 call spd(ispd)
8 enddo
9 !$omp target teams distribute

parallel do
10 do ieric=1,n eric
11 call eric (ieric)
12 enddo
13 !$omp target teams distribute

parallel do
14 do irys=1,n rys
15 call rys(irys)
16 enddo

c)

1 ! computing each ERI class
using Rys

2 !$omp target teams distribute
parallel do

3 do i1112=1,n 1112
4 call r 1112(i1112)
5 enddo
6 !$omp target teams distribute

parallel do
7 do i1121=1,n 1121
8 call r 1121(i1121)
9 enddo

10 !$omp target teams distribute
parallel do

11 do i1122=1,n 1122
12 call r 1122(i1122)
13 enddo
14 ...

d)

1 !$omp target teams distribute
&

2 !$omp parallel do
3 do i=1,n 1121
4 ! evaluating quartet i-th
5 call r 1121 int(quart(i))
6 ! fock matrix contraction
7 do k=1,6
8 !$omp atomic
9 fock(k)=fock(k) &

10 + quart(i) den(k)
11 enddo
12 enddo

e)

1 !$omp target data map(alloc:
quart (ichunkstart:ichunkend))

2 do ichunk = 1, nchunk 1121
3 ! evaluating in chunk
4 !$omp target teams distribute

parallel do
5 do i=ichunkstart,ichunkend
6 call r 1121 int mod(

quart(ichunkstart:ichunkend))
7 enddo
8 !Fock matrix contraction
9 !$omp target teams distribute

parallel do
10 do i=ichunkstart,ichunkend
11 do k=1,6
12 !$omp atomic
13 fock(k)=fock(k) &
14 +quart(i) den(k)
15 enddo
16 enddo
17 enddo
18 !$omp end target data

f)

1 subroutine eri mini
2 do ish=1,nshell
3 do jsh=1,ish
4 do ksh=1,ish
5 do lsh=1,ksh
6 call shellquart
7 call fock mat
8 enddo
9 enddo

10 enddo
11 enddo
12 end subroutine eri mini
13 subroutine shellquart
14 call setcrd(rmat,p,t,q)
15 call r12loop(r12,r34)
16 call fmt(fgrid ,xgrid)
17 call jtype(gmat,rmat,p,t,q,

r12,r34 fgrid ,xgrid)
18 end subroutine shellquart

Fig. 1. (a) CPU OpenMP implementation, (b) refactoring ERI codes based on optimal
algorithm, (c) further sorting for the Rys quadrature algorithm, (d) detail of 1121-Rys
kernel; and (e) separation of ERI evaluation and digestion, f) Fortran mini-app ERI
code and its SHELLQUART kernel.

Fig. 2. a,b) variation of the 1121-kernel wall time with respect to NTEAMS,
NTHREAD and NSIZE. Optimal series for each chunk size is in bold green; c) stacking
of optimal series extracted from various chunk sizes.

NSIZE 80, NTEAMS 160, and NTHREAD 8. In comparison with the original
algorithm, separating atomic updates introduce a speedup of 2.5× (Table 1).

OpenMP Application Experiences II 85

2.1.5 Fortran Mini-App
A Fortran mini-app was extracted from the rotated-axis algorithm (Fig. 1f) to
be portable to a variety of computer clusters and explore GPU compilers from
different vendors. This Fortran mini-app has been compiled on various hardware
and compilers (Table 2). The explicit interface is not required for the offloading
region for IBM compiler, while it was needed for NVIDIA’s HPC SDK 21.2
compiler. However this issue was resolved with HPC SDK 21.3. Despite the
fact that the ERI code was well modularized and worked well on CPU, using
compilers for offloading to GPU with the automatic inlining option (e.g., using
-qinline) did not show noticeable performance improvements. On the other
hand, manually inlining implementation greatly improves the performance. A
noteworthy observation was made that a runtime out-of-memory on the device
was encountered, which was resolved by moving some subroutine arguments to
modules (e.g., STCRD, R12LOOP, FMT, and JTYPE).

Table 2. Summary of various compilers used for the mini-app.

Compiler Systems Declare target for
external subroutine

Compiler flags

IBM Ascent No clause -qsmp=omp -qoffload -O2|

NVIDIA

HPC

SDK 21.2 CoriGPU Explicit interface -Mextend -tp=skylake -Mcuda=cc70
-ta=tesla:cc70 -fast -mp=gpu

2.1.6 C++-mini-app
A C++ mini-app was extracted from LibCChem and ported to GPU using
CUDA and OpenMP. The kernel was wrapped into a Google Benchmark [15]
application that is configured using CMake [20]. Google Benchmark can adjust
the number of iterations depending on single kernel execution time and mea-
surement noise to output a reliable result. CMake and preprocessor provide
flags handling of the compiler required for C++, CUDA, or OpenMP in a single
source directory with multiple build directories, one for each compiler.

Table 3. Mini-Mini-App performance results in seconds.

Language Compiler Variant CPU Kernel GPU Kernel

CUDA Nvcc 2003.0 43.0

CUDA Nvcc Localmem 1934.0 50.8

OpenMP Clang 2657.0 54.3

OpenMP CCE 2023.0 75.7

OpenMP Gcc 5885.0 2054.9

OpenMP Nvc Error

86 B. Chapman et al.

For the Cori GPU system, Table 3 shows the Google Benchmark CPU time
per iteration (including waiting for results to arrive in the CPU) and the GPU
kernel-only time as measured by NVIDIA’s nvprof. The CUDA version has a
“localmem” variant which uses temporary __shared__ arrays containing copies
of the working set of a single block, but otherwise calls the same (inlined) ker-
nel. The OpenMP source does not have an equivalent to the localmem variant
because required data-initialization of team-local memory in OpenMP are incom-
patible with clang’s SPMD-mode and would cause a major performance penalty.
For OpenMP, Clang performed the best, slightly behind the CUDA version, fol-
lowed by CCE. The execution time when compiled with gcc was not competitive.
NVIDIA’s HPC SDK 21.3 compiler (formerly PGI) either failed with a compiler
error or produced a crashing executable (-O0 or -O1).

2.1.7 Challenges and Lessons Learned
To adapt the GPU SIMT model, the Hartree-Fock code was restructured so
that integrals of the same class are computed concurrently. The bottleneck was
found to be atomic updates in the Fock matrix contraction (Fig. 1d), which
were further optimized by using them in a separate target region (Fig. 1e), in
which data exchange between parallel regions are retained on GPU and gov-
erned by the target data directive. The kernel performance was also found
to vary strongly with respect to the number of teams, threads per team and
amount of data loaded to GPU for computation. The results show that utilizing
NTEAMS=160 and NTHREAD=8 to be processed at a time yields desirable
performance. The rotated-axis mini-app was offloaded with the basic target con-
structs and tested on various systems, and shown that “out-of-memory” runtime
error can be resolved by using modules. The C++ mini-app was ported to GPU
using CUDA and OpenMP, with the kernel wrapped into a Google Benchmark
application configured using CMake. It was found that gcc-compiled OpenMP
kernel did not show competitive timing. NVIDIA’s HPC SDK 21.3 compiler
either failed with a compiler error or produced a crashing executable.

2.2 GESTS

2.2.1 Application Overview
GESTS (GPUs for Extreme Scale Turbulence Simulations) is a pseudo-spectral
Direct Numerical Simulation (DNS) code used to study the fundamental behav-
ior of turbulent flows [17]. The presence of disorderly fluctuations over a wide
range of scales in three-dimensional (3D) space and time poses stringent resolu-
tion requirements [30], especially if localized events of high intensity [31] must be
captured accurately. However, large scale pseudo-spectral simulations are dom-
inated by communication costs, which become an even greater burden versus
computation when codes are ported to heterogeneous platforms whose principal
strengths are in computational speed.

In recent work on Summit, we addressed these challenges by developing a
batched asynchronous algorithm [26] to enable overlapping computations, data

OpenMP Application Experiences II 87

copies and network communication using CUDA, which enabled problem sizes
as large as 6 trillion grid points.

P0
P1
P2
P3

y

x

z

N/P

N(a)

N

N/P

N/np

(b)

Fig. 3. Left/(a): Decomposition of an N3 solution domain among P MPI processes
into slabs of data of size N × N × N/P . Right/(b): Further decomposition of a slab
into np smaller sub-volumes, each of size N × N/np × N/P .

Here we discuss the development of a portable implementation using
advanced asynchronous OpenMP features on the GPUs, in order to enable even
larger problem sizes using newer exascale architectures like Frontier.

2.2.2 Application Motif
We focus on three-dimensional Fast Fourier Transforms (3D FFT) which are cru-
cial to the GEST code. To benefit from the architecture of emerging platforms
with large CPU memory and multiple accelerators we use a one-dimensional
(slabs) domain decomposition as shown in Fig. 3a. This helps reduce commu-
nication costs as fewer MPI processes are involved [26] although point-to-point
message sizes are larger. Within each plane in a slab, 1D FFTs in two direc-
tions (here x and y) are performed readily using highly optimized GPU libraries
(cuFFT or rocFFT), while the FFT in the third (z) direction requires an all-to-
all global transpose that re-partitions the data into, say, x−z planes. However if
N is very large (up to 18,432 in [26]) a complete slab may not fit into the smaller
GPU memory. We address this by dividing each slab into np smaller sub-volumes,
as in Fig. 3b. In effect, batches of data formed from the sub-volumes are copied
to the GPU, computed on, and copied back; while operations on different por-
tions may overlap with one another. For example, as the code proceeds from
left to right, GPU computation on a sub-volume colored in blue, host-to-device
copy for another in red (or device-to-host in green) and non-blocking all-to-all
on another in brown can occur asynchronously.

2.2.3 OpenMP Implementation Strategy
In the “batched” scheme described above, when FFTs in y need to be computed,
a sub-volume of data consisting of N ×N/P lines of size N/np need to be copied.
Essentially, for each value of y (between 1 to N) and z (between 1 to N/P)
a copy needs to be performed for N/np elements in the innermost dimension
(x) of length N . Efficient strided data transfers between the CPU and GPU

88 B. Chapman et al.

are thus important. Simple approaches such as packing on the host prior to
transfer, or performing multiple copies one line at a time are inefficient, because
of an extra data-reordering operation on the CPU and the overhead of numerous
smaller copies respectively [26]. Instead, we make use of two different approaches
depending on the complexity of the strided memory accesses.

For simple strided copies where strides are small and in the innermost dimen-
sion only, we can use omp target memcpy rect which copies a specified sub-
volume inside a larger array on the host to a smaller buffer on the device or vice
versa. This OpenMP 4.5 routine is similar to cudaMemcpy2d but asynchronous
execution will be supported only in OpenMP 5.1. We are using OpenMP tasks
as a workaround.

1 TARGET ENTER DATA MAP(to:d buf)
DEPEND(IN:indep) DEPEND(OUT:tdep)
NOWAIT

2

3 TARGET TEAMS DISTRIBUTE
PARALLEL DO COLLAPSE(4)
DEPEND(INOUT:tdep) NOWAIT
IS DEVICE PTR(h buf)

4 do yg=1,nt
5 do z=1,mz
6 do y1=1,my
7 do x=1,N
8 y = my*(yg−1)+y1
9 d buf(x,y,z) = h buf(x,z,y1,yg)

10 end do
11 end do
12 end do
13 end do
14 END TARGET TEAMS DISTRIBUTE

PARALLEL DO
15

16 TARGET EXIT DATA MAP(from:d buf)
DEPEND(IN:tdep)
DEPEND(OUT:outdep) NOWAIT

1 TASK DEPEND(out:var) DETACH(event)
2 TARGET DATA USE DEVICE PTR(a)
3 FFTExecute (a, forward, stream)
4 FFTExecute (a, inverse , stream)
5 END TARGET DATA

6 cudaStreamAddCallback (stream,

ptr cp, C LOC(event), 0)
7 END TASK
8

9 TARGET UPDATE TO(b)
DEPEND(inout:b) NOWAIT

10

11 TARGET TEAMS DISTRIBUTE
DEPEND(IN:var) NOWAIT

12 a (:, :, :) = a(:, :, :)/N
13 END TARGET TEAMS DISTRIBUTE

1 subroutine callback (stream, status, event)
2 call omp fulfill event(f event)
3 end subroutine callback

(a) zero-copy (b) detach

Fig. 4. (a) Asynchronous OpenMP implementation of the zero-copy kernel for unpack-
ing data from the pinned host array (h buf) to the device array (d buf). Here for an
N3 problem my = mz = N/nt where nt is MPI process count. (b) Interoperability
between non-blocking FFT libraries and OpenMP tasks using DETACH while ensuring
correct asynchronous execution.

For more complex stride patterns, like those in unpacking operations where
strided read and write memory access are required to transpose data in the sec-
ond and third dimension as shown in line 9 of Fig. 4a, a zero-copy kernel [3] is
appealing. In this approach, GPU threads are used to initiate many small trans-
fers between pinned memory on the host and the device memory. The array on
the host is made device accessible using the IS DEVICE PTR clause. However,
since using GPU compute resources for data copies may slow down other com-
putations, we use the zero-copy approach only when complex stride patterns
are involved.

OpenMP Application Experiences II 89

In OpenMP, asynchronous execution can be achieved using the TASK clause
for work on the host, NOWAIT for device kernels and data copies, and DEPEND to
enforce the necessary synchronization between different tasks. However, when
non-blocking libraries such as cuFFT or rocFFT are called from inside an
OpenMP task, the desired asynchronism breaks down. Figure 4b illustrates the
issue via a 1D FFT code fragment, in which Task A calls the non-blocking
libraries to compute the transforms, Task B performs a host-to-device data copy,
whereas Task C multiplies the result by a scalar. It is important to note here
that the FFT library function is called from the host but device arrays need
to be passed in to it. This is achieved using the USE DEVICE PTR clause which
tells the OpenMP runtime to pass the device pointer of the array, to the library
call. In OpenMP 5.1 usage of the USE DEVICE PTR with a Fortran pointer is
depreciated, but the USE DEVICE ADDR clause can be used equivalently instead.
Without the highlighted gray lines, the host thread that is executing task A will
launch the FFT kernels to the GPU. Since these library calls are non-blocking,
control will return immediately to the host thread, which proceeds to end the
task. As a result, the device kernels launched may not have completed, or even
started running, when Task A is considered “complete”. The subsequent release
of dependency between Tasks A and C allows the latter to start prematurely,
leading to incorrect answers.

Correct execution can be ensured using the OpenMP 5.0 DETACH clause,
with cudaStreamAddCallback, as shown in Fig. 4b. Now as the host thread
launches the FFTs, it introduces a callback function (where ptr cb is a pointer
to it) into the stream in which the FFTs are executing. The host thread then
detaches itself from task A to proceed with other operations. Once the FFTs
finish executing on the device, the callback function is invoked which “fulfills”
the event and completes task A, releasing the dependency and thus allowing
Task C to execute correctly with the intended data. We also understand that
OpenMP interop clause introduced in the 5.1 standard can help overcome this
issue as well. However, so far we have chosen to use DETACH as it is part of the
5.0 standard and is expected to be supported by the compilers earlier.

2.2.4 Summary and Future Work
We have briefly addressed some key challenges encountered in developing a
portable implementation of extreme scale 3D FFTs using OpenMP to target
GPUs. Efficient strided data copies are performed using Zero-copy kernels and
omp target memcpy rect. Although full compiler support for it is not yet avail-
able, the OpenMP 5.0 feature DETACH is expected to resolve an issue of inter-
operability between non-blocking GPU library calls and OpenMP tasks. Future
work will include testing the DETACH approach and using it to develop a batched
asynchronous 3D FFT code (and eventually pseudo-spectral simulation of tur-
bulence) capable of problem sizes beyond that recently achieved on Summit.
Timing data over a range of problem sizes will be reported separately when
available.

90 B. Chapman et al.

2.3 GridMini

2.3.1 Application Overview
Lattice Quantum Chromodynamics (LQCD) [16] is a computational framework
that allows scientists to simulate strong interactions between the subatomic
particles called quarks and gluons. LQCD provide crucial theoretical input to
nuclear and high energy physics research, but its high computational demand
limits the precision of the numerical results it can obtain. LQCD software has
been written and optimized for many different computer architectures, including
many/multi-core CPUs [9] and NVIDIA GPUs [10], to access as many comput-
ing resources as possible. Recently there has also been significant effort getting
some of the major LQCD code bases to run on Intel and AMD GPUs. Portable
programming models and frameworks such as Kokkos, HIP and SyCL have been
investigated [7,18], and implementations for production-grade software are under
way. Here we evaluate use of OpenMP as a portable programming model for
Grid [8], a new lattice QCD library written in modern C++. Since Grid is
a fairly large library, with multi-level abstractions, we use a mini-app based
on Grid, GridMini1, to evaluate several OpenMP features that are needed to
support LQCD computing, including the target directive and associated data
management clauses.

2.3.2 Application Motif
LQCD is a cartesian-grid based application, with a four-dimensional hypercubic
mesh representing space and time. Each grid point represents a quark field vari-
able, while the links between grid points approximate the gluon field variables.
The main computational algorithm in lattice QCD is Markov Chain Monte Carlo
simulations that are used to generate ensembles of background gluon fields. These
gluon field ensembles are then used to perform measurement calculations which
then lead to physical results. In both the Monte Carlo ensemble generation and
measurement calculations, high-dimensional complex sparse matrix inversions
are needed, which are usually done through iterative linear solvers such as con-
jugate gradient (CG). In CG, the key computational kernel is high-dimensional
matrix-vector multiplication, the so-called Dslash operator in LQCD. There are
several variants of the discrete Dslash operator depending on the discretization
schemes used, but in modern lattice QCD simulations, all of them are very large
sparse matrices, on or larger than the order of 1010 ×1010. The arithmetic inten-
sity for the Dslash operator is about 1.7 flops per byte in double precision. Since
we use red-black preconditioning for CG, the arithmetic intensity is even lower,
reduced to 0.85 flops per byte. Therefore LQCD computation is highly mem-
ory bandwidth bound, and the on-node performance of LQCD code depends
on achieving as much memory bandwidth as possible on the given architecture.
Grid has been highly optimized for many-core and multi-core CPUs with effi-
cient SIMD vectorization, so our work focuses on performance and portability
on the GPUs.

1 https://github.com/meifeng/GridMini.

https://github.com/meifeng/GridMini

OpenMP Application Experiences II 91

2.3.3 OpenMP Parallelization Strategy
Grid and GridMini support different architectures at the low level through C++
preprocessor macros, which may invoke different implementations. Since LQCD
parallelization is mostly done to the for loops that iterate through lattice sites,
an accelerator for macro is defined, along with function attribute macros that
may expand to different architecture-dependent definitions. Different implemen-
tations are enabled through macros passed through the compiler flag -D. The
OpenMP paralleization for CPUs uses the standard omp parallel for direc-
tive, while for accelerator offloading, omp target directives are used. A relevant
code snippet is shown in Listing 1.1.

1 #define naked_for(i,num,...) for (uint64_t i=0;i<num;i++) { __VA_ARGS__ } ;
2 #define accelerator_inline __attribute__((always_inline)) inline
3 #ifdef OMPTARGET
4 #define accelerator_for(iterator,num,nsimd, ...) \
5 { _Pragma("omp target teams distribute parallel for num_teams(nteams) thread_limit(gpu_threads)") \
6 naked_for(iterator, num, { __VA_ARGS__ }); }
7 #elif defined (GRID_OMP)
8 #define accelerator_for(iterator,num,nsimd, ...) _Pragma("omp parallel for") naked_for(iterator, num, { __VA_ARGS__

});
9 #endif

10
11 //other code omitted
12 accelerator_for(ss,me.size(),1,{
13 me[ss] = eval(ss,expr);
14 })

Listing 1.1. C++ macros that define the loop-level computation in GridMini.

A more tricky issue is the memory management, as Grid uses deeply nested
data structures. In the CUDA implementation, cudaMallocManaged is used as
the default dynamic memory allocator, so it is unnecessary to perform man-
ual data management. Previously [5], we successfully used cudaMallocManaged
together with OpenMP target offloading. But since it is CUDA specific, the
code cannot run on other GPU architectures. Recently we have successfully
replaced cudaMallocManaged with manual data management through OpenMP
map clauses, but in order to do that, we have to explicitly expose the raw data
pointer. An example of this is shown in Listing 1.2.

1 auto xv=x.View(); auto yv=y.View(); auto zv=z.View(); //x,y,z are arrays of SU(3) matrices
2 #pragma omp declare mapper(decltype(xv) x) map(x._odata[0:x.size()]) map(x)
3 extern uint32_t gpu_threads;
4 #pragma omp target enter data map(alloc:zv) map(to:xv) map(to:yv)
5 #pragma omp target teams distribute parallel for thread_limit(gpu_threads)
6 for(int64_t s=0;s<vol;s++) {
7 zv[s]=xv[s]*yv[s];
8 }
9 #pragma omp target exit data map (from:zv) map (delete:yv) map (delete:xv)

Listing 1.2. Manual data mapping in GridMini.

2.3.4 Results
We use the SU(3)×SU(3) benchmark (main computation is shown in Listing 1.2)
to evaluate the GPU memory bandwidth, as this is highly indicative of the perfor-
mance we can achieve on the GPUs since our application is memory-bandwidth
bound. We compiled our code with LLVM/Clang++ built from the main LLVM
repository on 01/17/2021, with the compiling options std=c++14-g-fopenmp
-fopenmp-cuda-mode-O3-fopenmp-targets=nvptx64-nvidia-cuda. We used

92 B. Chapman et al.

gcc/8.3.0 and cuda/11.0.3. The results for achieved GPU memory bandwidth
of the NVIDIA V100 GPU on the NERSC’s CoriGPU system as a function
of the memory footprint are shown in Fig. 5, where we compare four differ-
ent implementations. llvm map refers to the implementation with manual map
clauses and malloc memory allocator. llvm managed uses cudaMallocManaged
without any manual data mapping. llvm map+managed allocates memory with
cudaMallocManaged, but also uses map to do data copying. nvcc managed is the
reference CUDA implementation with cudaMallocManaged, compiled with the
nvcc compiler.

Bytes

G
B

/s

0

200

400

600

800

1.1
1E

+0
5

1.7
7E

+0
6

8.9
6E

+0
6

2.8
3E

+0
7

6.9
1E

+0
7

1.4
3E

+0
8

2.6
6E

+0
8

4.5
3E

+0
8

7.2
6E

+0
8

1.1
1E

+0
9

1.6
2E

+0
9

2.2
9E

+0
9

3.1
6E

+0
9

4.2
5E

+0
9

5.6
0E

+0
9

7.2
5E

+0
9

llvm map llvm managed llvm map+managed nvcc managed

Fig. 5. Measured GPU memory bandwidth on NVIDIA V100 (Cori) with the
SU(3)×SU(3) benchmark.

We find that the llvm map implementation generally performs a little worse
than the llvm managed version. But if we combine the managed memory alloca-
tor with manual data mapping, in the llvm map+managed version, we obtain the
best performance, which even outperforms the native CUDA implementation. In
all these tests, 8 GPU threads per block is used, which gives the best perfor-
mance compared to 16, 32 and up to 512 threads per block. This is probably
due to the fact that the current data layout does not guarantee data coalescing.

3 Conclusions

The five applications presented in the paper(s) have different complexity and
computational motifs. As seen in the BerkeleyGW application, some optimiza-
tions required line-level profiling information. It is therefore desirable for all
OpenMP compilers to provide accurate symbolic debugging information without
impeding compiler optimizations. For the WDMApp/XGC application, the main
challenge was to tune a multi-level loop nest using OpenMP target offload con-
structs. Finding concurrency in applications and exploiting it using fine-grained

OpenMP Application Experiences II 93

parallelism is important for achieving good performance. With different vendor
implementations, it becomes necessary for applications to be aware of equivalent
OpenMP directives that may not be equally performant. For example, a parallel
for construct was converted into a loop construct because this provided better
performance with the NVIDIA OpenMP compiler.

The lessons learnt by the GAMESS team during the hackathon were the need
to reduce overhead in atomic operations using chunks, strategies for target data
and offloading blocks of code, and selecting the optimal number of threads per
team. The GESTS application discussed some of the current challenges they are
facing regarding the portable implementation of the extreme-scale 3D FFTs, a
Fortran code, using OpenMP, and reported on efficient strided data copies. The
detach clause is used to address the problem of synchronizing an OpenMP kernel
that uses the depend clause with a prior asynchronous CUDA call. The GridMini
application team has reported on their SU(3)×SU(3) benchmark in order to eval-
uate the GPU memory bandwidth, since the application is memory-bandwidth
bound. They found that cudaMallocManaged allocators can be replaced with
OpenMP unstructured maps for local host storage and that the use of cudaMal-
locManaged with OpenMP gave the best performance.

The more successful application teams had mini-apps to experiment with
before porting the actual application. One major advantage of this approach is
isolation of experimental changes for easy debugging and reproducibility. Having
compiler experts at hand to help with ports is beneficial to applications, espe-
cially while resolving issues that appear in full-scale application runs but are
not reproducible in mini-apps. Most applications also reported issues between
OpenMP and vendor math libraries. It would be beneficial for applications if
there were prepackaged compatible math libraries with all OpenMP compilers.
Most of the applications were successfully able to use the OpenMP offload API
as well as see speedup, which is very encouraging for OpenMP adoption by
applications.

Acknowledgement. This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations
(Office of Science and the National Nuclear Security Administration) responsible for the
planning and preparation of a capable exascale ecosystem, including software, applica-
tions, hardware, advanced system engineering and early testbed platforms, in support
of the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-AC05-
00OR22725.

This research used resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility located
at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-
05CH11231.

This work was supported by the Argonne Leadership Computing Facility, which is
a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

We’d like to thank all other mentors who volunteered their time and expertise
during the hackathon.

94 B. Chapman et al.

References

1. Shimura, K., Nagase, S.: A new algorithm of two-electron repulsion integral calcu-
lations: a combination of Pople-Hehre and McMurchie-Davidson methods. Theor.
Chem. Acc. 120, 185–189 (2008). https://doi.org/10.1007/s00214-007-0295-5

2. Alexeev, Y., Kendall, R.A., Gordon, M.S.: The distributed data SCF. Comput.
Phys. Commun. 143(1), 69–82 (2002)

3. Appelhans, D.: Tricks, tips, and timings: the data movement strategies you need
to know. In: GPU Technology Conference (2018)

4. Bak, S., et al.: OpenMP application experiences: porting to accelerated nodes.
summitted

5. Bak, S., et al.: OpenMP application experiences: porting to accelerated nodes.
Submitted to Parallel Computing (2020)

6. Barca, G.M.J., et al.: Recent developments in the general atomic and molecular
electronic structure system. J. Chem. Phys. 152(15), 154102 (2020)

7. Bi, Y.J., et al.: Lattice QCD package GWU-code and QUDA with hip. arXiv
preprint arXiv:2001.05706 (2020)

8. Boyle, P., Yamaguchi, A., Cossu, G., Portelli, A.: Grid: A next generation data
parallel c++ qcd library. arXiv preprint arXiv:1512.03487 (2015)

9. Boyle, P.A.: Machines and algorithms. arXiv preprint arXiv:1702.00208 (2017)
10. Clark, M.A., Babich, R., Barros, K., Brower, R.C., Rebbi, C.: Solving lattice QCD

systems of equations using mixed precision solvers on GPUs. Comput. Phys. Com-
mun. 181, 1517–1528 (2010)

11. Dupuis, M., Rys, J., King, H.F.: Evaluation of molecular integrals over gaussian
basis functions. J. Chem. Phys. 65(1), 111–116 (1976)

12. Fedorov, D.G., Olson, R.M., Kitaura, K., Gordon, M.S., Koseki, S.: A new hierar-
chical parallelization scheme: generalized distributed data interface (GDDI), and an
application to the fragment molecular orbital method (FMO). J. Comput. Chem.
25(6), 872–880 (2004)

13. Fletcher, G.D.: Recursion formula for electron repulsion integrals over Hermite
polynomials. Int. J. Quantum Chem. 106(2), 355–360 (2006)

14. Fletcher, G.D., Schmidt, M.W., Bode, B.M., Gordon, M.S.: The distributed data
interface In Gamess. Comput. Phys. Commun. 128(1), 190–200 (2000)

15. Google: Google benchmark - a microbenchmark support library. https://github.
com/google/benchmark

16. Gupta, R.: Introduction to lattice QCD: Course. In: Les Houches Summer School
in Theoretical Physics, Session 68: Probing the Standard Model of Particle Inter-
actions (1997)

17. Ishihara, T., Gotoh, T., Kaneda, Y.: Study of high Reynolds number isotropic
turbulence by direct numerical simulations. Annu. Rev. Fluid Mech. 41, 165–180
(2009)

18. Joó, B., et al.: Performance portability of a wilson dslash stencil operator mini-
app using kokkos and SYCL. In: 2019 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC), pp. 14–25. IEEE
(2019)

19. King, H.F., Dupuis, M.: Numerical integration using Rys polynomials. J. Comput.
Phys. 21(2), 144–165 (1976)

20. Kitware: Cmake. https://cmake.org/
21. McMurchie, L.E., Davidson, E.R.: One- and two-electron integrals over cartesian

gaussian functions. J. Comput. Phys. 26(2), 218–231 (1978)

https://doi.org/10.1007/s00214-007-0295-5
http://arxiv.org/abs/2001.05706
http://arxiv.org/abs/1512.03487
http://arxiv.org/abs/1702.00208
https://github.com/google/benchmark
https://github.com/google/benchmark
https://cmake.org/

OpenMP Application Experiences II 95

22. Mironov, V., Alexeev, Y., Keipert, K., D’mello, M., Moskovsky, A., Gordon, M.S.:
An efficient mpi/openmp parallelization of the hartree-fock method for the second
generation of intel R© xeon phiTM processor. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
SC 2017, Association for Computing Machinery, New York, NY, USA (2017)

23. Mironov, V., Moskovsky, A., D’Mello, M., Alexeev, Y.: An efficient MPI/OpenMP
parallelization of the Hartree-Fock-Roothaan method for the first generation of
Intel R© Xeon phiTM processor architecture. Int. J. High Perform. Comput. Appl.
33(1), 212–224 (2019)

24. Pham, B.Q., Gordon, M.S.: Hybrid distributed/shared memory model for the RI-
MP2 method in the fragment molecular orbital framework. J. Chem. Theor. Com-
put. 15(10), 5252–5258 (2019)

25. Pople, J.A., Hehre, W.J.: Computation of electron repulsion integrals involving
contracted gaussian basis functions. J. Comput. Phys. 27(2), 161–168 (1978)

26. Ravikumar, K., Appelhans, D., Yeung, P.K.: GPU acceleration of extreme scale
pseudo-spectral simulations of turbulence using asynchronism. In: Proceedings of
The International Conference for High Performance Computing, Networking and
Storage Analysis SC (2019), Denver, CO, USA. ACM, New York, NY, USA

27. Rys, J., Dupuis, M., King, H.F.: Computation of electron repulsion integrals using
the Rys quadrature method. J. Comput. Chem. 4(2), 154–157 (1983)

28. Schlegel, H.B.: An efficient algorithm for calculating ab initio energy gradients
using s, p cartesian gaussians. J. Chem. Phys. 77(7), 3676–3681 (1982)

29. SOLLVE and NERSC: January 2021 ECP OpenMP Hackathon by SOLLVE and
NERSC (2021 [Online]), the event happened on 22, 27, 28, 29 Jan 2021. https://
sites.google.com/view/ecpomphackjan2021. Accessed 7 Apr 2021

30. Yeung, P.K., Sreenivasan, K.R., Pope, S.B.: Effects of finite spatial and tempo-
ral resolution on extreme events in direct numerical simulations of incompressible
isotropic turbulence. Phys. Rev. Fluids 3, 064603 (2018)

31. Yeung, P.K., Zhai, X.M., Sreenivasan, K.R.: Extreme events in computational tur-
bulence. Proc. Nat. Acad. Sci. 112, 12633–12638 (2015)

https://sites.google.com/view/ecpomphackjan2021
https://sites.google.com/view/ecpomphackjan2021

An Empirical Investigation of OpenMP
Based Implementation of Simplex

Algorithm

Arkaprabha Banerjee1, Pratvi Shah1, Shivani Nandani1, Shantanu Tyagi1,
Sidharth Kumar2, and Bhaskar Chaudhury1(B)

1 Group in Computational Science and High Performance Computing,
DA-IICT, Gandhinagar, India

bhaskar chaudhury@daiict.ac.in
2 University of Alabama at Birmingham, Birmingham, USA

Abstract. This paper presents a shared-memory based parallel imple-
mentation of the standard simplex algorithm. The simplex algorithm is a
popular technique for linear programming used to solve minimization and
maximization problems that are subject to linear constraints. The simplex
algorithm reduces the optimization problem to a series of iterative matrix
operations. In this paper we perform an empirical analysis of our algo-
rithm and also study the impact of the density of the underlying matrix
on the overall performance. We observed a maximum speedup of 10.2 at
16 threads and also demonstrated that our proposed parallel algorithm
scales well over a range of matrix densities. We also make an important
observation that the effect of increasing the number of constraints is more
significant than the effect of varying the number of variables.

Keywords: Large-scale problems · Linear programming · Simplex ·
Parallel computing · Scalable algorithms · OpenMP

1 Introduction

Linear programming, also known as linear optimization, is a method to achieve
the optimal outcome for a minimization or maximization problem, subject to a
set of linear relationships. Among the various methods available for solving linear
programming problems, simplex is the most widely used algorithm, both com-
mercially and academically [1]. The storage and computational overhead make
the standard simplex method an expensive approach for solving large linear pro-
gramming problems. Apart from the computational cost, the standard simplex
algorithm also requires the previous iteration to be completed before the new
solution can be computed, thus restricting the scope of parallelization [2].

Even though the simplex algorithm is primarily sequential, several attempts
have been made during the last decades to parallelize it. There are broadly two
implementations for the Simplex Algorithm: The Standard Simplex Method and
The Revised Simplex Method (RSM). The Standard Simplex method refers to
c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 96–110, 2021.
https://doi.org/10.1007/978-3-030-85262-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-85262-7_7

Empirical investigation of Simplex Algorithm 97

the original algorithm proposed by George Dantzig [1]. RSM, on the other hand,
seeks to efficiently implement the Standard Simplex algorithm by employing a
host of Matrix operations specifically built to exploit the sparsity of matrices [3,4].
This means that the RSM is mathematically equivalent to the standard simplex
method but differs in implementation. In RSM, instead of having to compute and
store the full table in each iteration, it is only necessary to keep track of some of
the information, reducing the redundancy, and use the matrix operations directly
on the relevant data. This matrix-oriented approach allows for greater computa-
tional efficiency, as it exploits, the sparsity of the matrix using matrix inversion
techniques optimized for sparse matrices. Apart from certain GPU-based imple-
mentations, RSM’s optimizations strategies fall short for denser matrices. Fur-
thermore, the steps employed have a limited scope for parallelization [1].

As we moved to the multi processor era, the importance shifted to running
the standard algorithm on multiple cores. In 2000, Maros and Mitra presented a
cooperative parallel version of the sparse implementation of the revised simplex
method for linear programs on distributed memory multiprocessors [5]. Ploskas
presented a parallel implementation of the standard simplex algorithm using a
personal computer with two cores. Due to dense matrices and heavy communi-
cation, the ratio of computation to communication is extremely low and Ploskas’
computational results show that a linear speedup is hard to achieve even with care-
fully selected communication optimization [3,5]. Later many other optimization
strategies were proposed [6] such as using certain linear algebraic techniques nec-
essary to exploit the dual block-angular structure of the problem or parallelizing
the matrix inverse step based upon GPU implementations. Most of these improve-
ments were primarily done on the revised simplex algorithm [5]. A parallel imple-
mentation based on combination of CPU and GPU was also proposed in 2016 [7].

In this paper, we analyze the performance gains of an efficient parallel imple-
mentation of the Standard Simplex Algorithm over the sequential version, using
a shared-memory architecture. The standard simplex version has been chosen
over the revised method owing to known issues of scalability for denser matrices.
Here, we define the density of a matrix as the ratio of non-zero elements to the
total elements in the matrix. Our study revolves around the following parame-
ters which will help in effective understanding of the parallel implementation of
the Standard Simplex Algorithm proposed in this paper:

– Explore the scalability of the algorithm over a range of densities
– Explore the effect on varying the number of constraints
– Explore the effect on varying the number of variables
– Effectively exploiting the SIMD units to update the matrix.

We have analyzed the most important aspects of the algorithm based on the
above parameters and the underlying hardware architecture, which to the best
of our knowledge, have not been explored and reported in the existing literature.
The state-of-the-art implementation does not talk about the performance of the
algorithm on varying the density of the matrices. The code has been run on
shared-memory architecture systems. All processors share a single view of data
and the communication between them can be as fast as memory accesses to

98 A. Banerjee et al.

a particular location with a lot of intra-node parallelisms to exploit and our
implementation is designed specifically for this purpose.

2 Serial Algorithm

Any linear programming (LP) problem can be modelled into the following stan-
dard form:

maximize Z = CX

subject to AX = B where X ≥ 0

where A is the constraint matrix, B forms the constant vector matrix and C
corresponds to the objective function coefficients. The objective function is the
function whose value is to be either minimized or maximized subject to the
given set of constraints given by Z. The X vector is the required solution to the
LP problem. After the initial modifications, the problems are formulated in the
above representation for solving via the Simplex Algorithm.

The simplex method is an iterative procedure for getting the most feasible
solution. In this method, we keep transforming the value of basic variables to
get the maximum value for the objective function. Within the current context
the following assumptions have been made for the linear inequality problems:

– All problems are maximization problems. In the event of a minimization prob-
lem, the objective function is multiplied by -1.

– All problems are to be initially considered in the form of less than or equal
(≤) inequalities.

AX ≤ B

The following steps illustrate the working of the serial simplex algorithm.

1. Introduce Slack Variables to convert inequality to equality constraints (AX =
B). The slack variables are known as basic variables and the original ones as
non-basic. All slack variables have a zero coefficient in the objective function.

2. Create an initial table1 consisting of n non-basic variables and m-basic vari-
ables. The table consists of the coefficient of the linear constraint variables
and the coefficients of the objective function. The slack variables form the
initial basis.

Cj C1 C2 · · · 0 0

CB XB B x1 x2 · · · xn+1 xn+2 · · · Min Ratio Row Operations

Cn+1 Xn+1 B1 A11 A12 · · · 1 0 · · ·
Cn+2 Xn+2 B2 A21 A22 · · · 0 1 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Zj − Cj ans −C1 −C2 · · · · · · 0 0

1 Note: The table mentioned in Step 2 is not in the block-structured notation. The
sample table has been employed in order to effectively explain the serial algorithm.

Empirical investigation of Simplex Algorithm 99

3. The value of the objective function with respect to every variable (Zj) at
that instant can be calculated by summing up the product of the objective
function coefficients of the variable in the basis and the coefficient associated
to other variables in the same row of the table.

4. Calculate Zj – Cj for all the variables. Cj represents the coefficient of the
variable in contention in the objective function. The column with the max-
imum value (< 0) represents the entering variable for the basis in the next
iteration. This column is known as the pivot column. If all values of reduced
cost (Zj - Cj) are ≥ 0 then the optimal solution has been reached.

5. Calculate the ratio of the elements of B with the corresponding coefficients
of the pivot column. The row representing the minimum positive value of the
ratio represents the variable that will leave the basis in the next iteration.
This row is known as the pivot row. If all the values of the replacement ratio
are either negative or infinite, then it represents a case of unbounded solution.

6. The intersection value of the Pivot row and Pivot column gives the value of
the pivot coefficient. Divide the pivot row with the pivot coefficient. Subtract
all the other rows from the new modified pivot row by a multiplier such
that all the other values in the pivot column apart from the pivot coefficient
become zero. In order to prepare for the next iteration, swap the entering and
leaving variables along with all the other associated values.

7. Go to step 3. Repeat until the algorithm ends.

An example of the above-mentioned algorithm can be seen in AppendixA.

3 Parallel Algorithm

Fig. 1. Flowchart for the parallel implementation. Nodes with an overlying boundary
in the background represent regions where multiple threads work concurrently.

100 A. Banerjee et al.

Researchers till now have stated that the serial time complexity of the simplex
algorithm is generally a polynomial, but for the worst case, the time complexity
tends to increase exponentially [6]. The execution time depends on two factors:
time taken for each iteration and secondly, the number of iterations which will
be equal to the number of pivots that need to be traversed in order to reach the
optimal point in the n-dimensional space which satisfies the given constraints [8].
The latter factor makes the evaluation of time complexity a highly involved task,
as every problem depending on the density and the structure of the constraint
matrix gives rise to a novel situation.

Efforts to effectively modify the algorithm, by evaluating the different cases,
are being carried out in order to generalize the time complexity expression [6].
From a generic standpoint, one can assume that the time complexity increases
with the number of equations or the number of variables, however, this is not
guaranteed. For certain cases, it tends to the worst exponential time complexity,
leading to an exceptionally large number of iterations to obtain a solution, even
for relatively smaller problem sizes [9].

In order to understand how the serial algorithm can be parallelized, the time
distribution among various steps of the naive serial version (Sect. 2) is analyzed.
The results show that Step 6 constitutes the major portion of the run time with
more than 99.5% contribution followed by Steps 3 and 4 (or Step 7), with Step
5 taking the least time.

3.1 Implementation

In this Section we provide a methodology for parallel implementation using
OpenMP which optimizes its serial counterpart mentioned in Sect. 2. Figure 1,
gives an overview of the steps involved in the implementation.

Steps 1 and 2 are the same as the serial implementation of the standard
simplex algorithm given in Sect. 2, since it is essential to perform these steps in
a sequential format before solving the linear programming problem. After these
steps, we create a parallel region and define the required number of threads and
move to OpenMP implementation.

Step 3 and 4 now uses all the threads that were initialized. Every thread
works among a defined set of columns to find the index of the column holding
the maximum absolute value among the negative elements in the objective row.
A user-defined class consisting of the values of the maximum data entry and
the corresponding index are stored and evaluated via the reduction clause. This
class notation and reduction clause together form a powerful tool to evaluate
maximum or minimum elements in a data structure, as compared to traditional
explicit comparison mechanisms.

For Step 5, we again make use of the reduction clause with the user-defined
class to find the leaving variable by evaluating the Minimum Ratio row-wise.
Finally, a single thread with a nowait clause checks if the solution is unbounded
or not present, and exit the parallel region if the solution satisfies the unbounded
constraints.

Empirical investigation of Simplex Algorithm 101

In Step 6, the pivot row is now updated concurrently among the threads. Once
the pivot row has been updated, all the remaining rows are updated. The rows
are evaluated via the pragma for construct, while the iterations among columns
has also been vectorized via the simd construct. Simultaneous modifications are
possible because there are no dependencies among columns or rows.

Steps 3 and 4 (as Step 7), are again performed in the parallel region with
the mechanism mentioned above. A single thread finally updates all iteration-
specific local variables. Finally, the loop continues until a solution reached, or
an exit clause is triggered for ’Unbounded Solution/No Possible solution’.

The above steps are implemented using a block-structured matrix notation
having dimensions (m+ 1) × (n+m+ 1) (where m is the number of constraints
and n, the number of variables) as proposed in the case of the Standard Simplex

method of Dantzig [1]. The same is given as
[
A B

−C 0

]
where A is an mxn matrix,

B is an mx1 vector, and C is an 1xn matrix.

Algorithm 1. Parallel Implementation of Simplex Algorithm

1 //Get the dimension of the table

2 Rows(R)= m + 1,

3 Columns(C) = m + n + 1

4 Initialize & load the data in table

5 Algorithm time starts from here

6

7 # pragma omp parallel <shared variables>

8 {
9 //Step 3 & 4

10 # pragma omp for <schedule> <reduction>

11 for(int j=0;j<C;j++){
12 find max negative value (max value)

13 from reduced cost row

14 }
15

16 Corresponding index=max index

17 & column=Pivot Col

18

19 #pragma omp single nowait

20 max value=0

21

22 do{
23 // Step 5

24 #pragma omp for <schedule><reduction>

25 for(int j=0;j<R;j++) {
26 find the min value

27 (min value) from Min Ratio column

28 do count++ for negative values

29 }
30

31 #pragma omp single nowait

32 {
33 if count == R

34 there is unbounded/no solution

35 flag=False break

36 else

37 Row corresponding to

38 min value is the

39 Pivot row with index= min index

40 }
41

42 // Step 6

43 pivot = table[min index][max index]

44 #pragma omp barrier

45

46 #pragma omp parallel for

47 for(int i=0;i<C;i++)

48 update Pivot Row

49 #pragma omp parallel for

50 for(int i=0;i<C;i++)

51 #pragma omp simd

52 for(int i=0;i<R;i++)

53 update all elements except

54 that of Pivot row

55 }
56

57 //Step 3 & 4 repeated

58 #pragma omp for <schedule> <reduction>

59 for(int i=0;i<C;i++)

60 find the new reduced cost values

61 for updated table

62 countNegative++ for negative values

63

64 #pragma omp single

65 Update the initial conditions

66 }while(countNegative and flag)

67 }
68

69 //Algorithm time ends here

70 Solution = table[Rows][Columns]

102 A. Banerjee et al.

3.2 Optimization Strategies

After analyzing the time bifurcation and identifying the steps which take sig-
nificant amount of time we conducted experiments to optimize the code. The
following methodologies were explored to make the algorithm more efficient.

Optimal Scheduling Clause and Load Balancing: As shown in Fig. 2,
for larger problem sizes, the performance for static scheduling clauses is pos-
sibly hampered when some threads take more time to complete their share of
work. Even for dynamic scheduling, with a completely random thread allocation,
enhanced performance may require guided scheduling. Thus, guided scheduling
mechanisms were used to effectively tackle the load balancing problem.

Optimal SIMD Units: In order to find the SIMD units for vectorization in
Step 6 above, multiple values of SIMD units ranging from 2 to 8 were considered.
The optimal SIMD length was found to be 4 for our implementation, just half of
the total number of lanes. We assume that the use of all SIMD lanes generates
excessive overhead for using additional SIMD units, and the use of fewer than
half the SIMD lanes under-utilizes a SIMD unit’s resources (Fig. 3).

Fig. 2. Scheduling on 512×512 dataset
of 0.5 density

Fig. 3. Variation of simdlen()

3.3 Algorithm Analysis

In this section the algorithm is analyzed to provide a basis for drawing out
conclusions.

Cache Miss Analysis Assume that the number of rows is ‘r’ and the number
of columns is ‘c’, while the matrix is stored in row-major format in the memory.
Theoretical analysis of each step led to the following expression: The steps men-
tioned below are the corresponding steps in the Serial Algorithm mentioned in
Sect. 2.

Steps 3 and 4 access the matrix row wise (considering a cache line of 64
bytes and double data-type): c/8 misses

Step 5 requires us to access the matrix column-wise: r misses
Step 6 update almost the entire matrix : r∗c

8 . Thus Miss ratio in a single
iteration of the overall loop would be

MissRatio =
c
8 + r + r∗c

8

r + c + r ∗ c
≈ 1

8

Empirical investigation of Simplex Algorithm 103

In order to verify the above miss ratio, profiling was performed via Valgrind
using the memcheck and callgrind tools on BENCH2 for a 256 × 256 problem
of density 0.5. The cache simulator simulates a computer with a split L1 cache
(separate instruction I1 and data D1), which is backed up by a single second-level
cache (L2). This is consistent with the architecture of most modern machines’
caches. The reads/writes and respective misses recorded after profiling for L1
data and L2 unified cache are (Table 1):

Table 1. D refs (Data cache memory reads), D1 misses (D1 cache data misses but found
in L2), LLd misses (L2 cache data misses but found outside it), LL refs (Combined L2
cache references), LL misses (Combined L2 cache misses)

D refs D1 misses LLd misses D1 miss rate LL refs LL misses LL miss rate

Serial 39,028,802,003 66,529,666 28,606 0.1705% 66,547,316 31,020 0.0466%

openMP 44,301,959,277 66,980,319 29,457 0.1512% 66,998,585 32,331 0.0483%

The key observations to be made here is that that the D1 cache miss rate has
gone down in the parallel (OpenMP) version as compared to the serial version.
Furthermore, the cache miss rate is significantly less than what is expected the-
oretically. This can be explained by the fact that instead of bringing in cache
blocks one by one, the compiler automatically optimizes this procedure based
on the repetitive access patterns that it finds with every iteration. One such
compiler optimization is pre-fetching. Pre-fetches are possible only if the mem-
ory addresses can be determined ahead of time. However, for extremely small
table sizes, the cache miss rate is much higher on account of ineffective compiler
optimizations and follows the standard expected values.

Analyzing the Nature of the Algorithm. The serial implementation of
the simplex algorithm, Sect. 2, was evaluated for understanding the nature of
the algorithm, in particular, whether the algorithm is CPU-bound or memory-
bound. In our algorithm we consider m as the number of constraints and n as
the number of variables. So, the size of the table will be (m + 1) × (n + m + 1),
and let a = m + 1 and b = n + m + 1.

Now, let’s consider a single iteration of the do loop, as this represents the
most granular as well as comprehensive segment of this iterative algorithm. An
analysis of its steps will provide a basic picture of the algorithmic operation. We
obtained the following expression after analyzing the number of computations
and memory access counts:

Computations = 3a + b + a + 2ab + 6b
Memory Access = 2a + b + a + 2ab + 2b

The above figures will be multiplied by the total number of pivots which is
a constant factor, depending upon the problem. So, barring that factor, we can
state that our implementation of the simplex algorithm has more computations
in comparison to memory access and thus, being CPU-bound it will be more
suitable to be parallelized on a shared-memory architecture.

104 A. Banerjee et al.

4 Experimental Results and Observations

We have implemented our algorithm on two systems with the following hardware
architecture.

Specifications BENCH1 BENCH2

Model Name Intel(R) Xeon(R) Intel(R) Xeon(R)

Silver 4214R CPU @ 2.40 GHz CPU E5-2640 v3 @ 2.60 GHz

Core(s) per socket 12 8

Socket(s) 2 2

L1d cache 768 KB 32 KB

L2 cache 24 MB 0.256 MB

L3 cache 33 MB 20.48 MB

GNU GCC version 9.3.0 10.2.0

The primary motivation for using two different hardware architectures was to
understand the performance of this algorithm on different hardware cores with
large and small L1 caches and large and small L2 caches per core. The above
data represents the total cache of the system in consideration. BENCH1 has
1MB L2 cache per core while BENCH2 has 256KB of L2 cache per core. L3
cache is shared in both cases.

We have compared certain selected results with the current state-of-the-art
algorithm implementation which was implemented on a system with four AMD
Opteron 6376 processors with 16 cores, totalizing 64 cores, 768KB L1 and 16MB
L2 individual caches per core, and 16Mbytes L3 caches per socket, running
Ubuntu 16.04.2 LTS [5].

For reproducibility, we have made use of the standard NETLIB LP dataset2,
which comes in the specific mps format, consisting of all the necessary variables
and their respective coefficients. In addition to the Netlib dataset, we made use
of a computationally generated dataset of specific dimensions and density [10].
The generated datasets do not guarantee a finite solution, and hence, some
anomalies might arise in the analysis of those datasets, but they are not relevant
to the behavior of the algorithm. The results have been verified using standard
reference codes, and the answer is consistent over multiple thread configurations.

Keeping into consideration the configuration of our machines and the fact that
in the worst case the Simplex algorithm can take exponential time to solve, we
limit our observations to the maximum number of variables to 4096 and the num-
ber of constraints as 512 in the primal formulation. We have also analyzed their
dual counterpart. For most of the cases we have either fixed variables to 256 and
varied the number of constraints or vice versa, as this allowed us to efficiently
exploit the different levels of the underlying memory hierarchy of the system.

2 http://www.netlib.org/.

http://www.netlib.org/

Empirical investigation of Simplex Algorithm 105

All mean execution times have been measured in seconds. All standard graphs
have been plotted with respect to the run time on the BENCH1 unless mentioned
otherwise.

4.1 NETLIB Dataset

In this section we evaluated the standard Netlib dataset using our serial and
parallel code.

Fig. 4. Speedup for standard netlib
datasets (performed on BENCH 1)

From Fig. 4 we observed that the
speedup for all the datasets remained
within the linear upperbound and we
could also see that for smaller datasets
the speedup for large number of threads
was very low due to the synchronisation
overhead. The decrease in speedup after
certain problem size is due to fetching of
the data from L3 cache as we have 1MB
per core L2 cache and the size of dataset
exceeds that limit.

4.2 Variation of the Number of
Variables

In this section, we examine LP problems of 256 constraints and variables varying
from 256 to 4096 with a density of 0.5. We can verify from the hardware architec-
ture that the data with this large problem size would be fetched from the L2 or
L3 cache. This lead to an increase in fetching time and overhead incurred due to
the necessity to maintain consistent copies of the data across all the processors.

In Fig. 5 (256 constraints) it is observed that the speedup for each thread
size increases (up to a point at mid-size) and then decreases. Peak values for
large thread counts occur at larger problem sizes. At the largest problem size,
the reduction in the peak performance is greatest for small thread counts (1, 2
and 4) and smallest for the largest thread counts (8,12 and 16).

We could observe superlinear speedup in the case of 2 and 4 threads for
certain problem sizes. Due to pragma omp for, there is coarse parallelization,
whereas the use of simd enables finer parallelization within each thread and
specifying the vector length in simdlen() can give us control over the extent of
parallelization needed/supported by the system. Thus, the superlinear speedup
can be attributed to this increased parallelization within each thread.

From Fig. 6 we see that the speedup achieved in the BENCH2 is similar to
the one achieved in the BENCH1, till the problem size fits in the L1 and L2 cache
of the respective systems. After that, we witness a drop in the speedup. In the
case of BENCH2, when the work allocated per thread (in terms of the size of the

106 A. Banerjee et al.

table) exceeds the L2 cache size and results in data being continuously fetched
from the L3 cache, an increase in the mean execution time occurs. BENCH1 had
larger L1 and L2 cache sizes leading to higher speedup for its simulation.

Our implementation observes a maximum speedup of 10.2 with 16 threads for
256× 2048 which is comparable to the maximum speedup of ≈ 10 for a problem
size of 256 × 4096 with 16 threads in a state-of-the-art implementation, shown
in [5]. Secondly, we see that in the state-of-the-art implementation, although
the relative trend is similar, the speedup increases till 16 threads for all problem
sizes but in our case, it starts decreasing from 4 to 8 threads for smaller problem
sizes owing to the difference in the hardware architecture.

Fig. 5. Speedup (256 constraints) Fig. 6. Speedup (256 constraints and
12 threads)

4.3 Variation of the Number of Constraints

In this section, we examine LP problems for 256 variables and constraints varying
from 256 to 4096 with a density of 0.5.

Fig. 7. Speedup (256 variables) Fig. 8. Speedup (256 variables and 12
threads)

On increasing the constraints for 256 variables, the speedup increases faster
(because of the number of iterations increase), as compared to when the number
of variables increased. As a result of this, the drop in speedup on increasing
threads, which occurred in the previous section for 256 constraints(Fig. 5), now
happens at a lower threshold and is evident from Fig. 7 and Fig. 8. For 2048

Empirical investigation of Simplex Algorithm 107

constraints with 256 variables the problem size is about 36 MB which exceeds
the L3 cache limit for the BENCH1. Thus we observe a drop. We observe a
temporary increase for 4096 × 256 since the problem has no solution and has a
very low execution time.

As compared to the state-of-the-art implementation, for problems with 256
variables, we see that in both the implementations, the speedup increases for
larger problem size as threads increase to 16 and vice versa is seen for smaller
problem sizes where the speedup first increases and then decreases as the threads
increase to 16. We see smaller speedup values, in general, as compared to the
state-of-the-art implementations. This can be attributed to the smaller cache
architecture for L2 and L3 levels.

4.4 Variation in Matrix Density

The standard Simplex Algorithm for OpenMP was initially proposed in [5] pri-
marily for dense matrices. In this section, we attempt to explore its scalability
to lower densities. We have considered 512×512 matrices with densities varying
from 0.1 to 1 in steps of 0.1. These experiments were performed on BENCH1.

Fig. 9. Speedup vs Matrix Density

Sparse problems often take fewer num-
ber of iterations to be solved, as compared
to dense matrices, owing to their inher-
ent matrix structure and the number of
manipulations involved. Therefore, the syn-
chronization overhead has a greater prece-
dence, and speedup is reduced. Hence from
a generic standpoint, sparse matrices may
have a slightly less speedup as compared to
dense matrices in this algorithm. The final
result however depends on the actual prob-
lem structure. We can see from Fig. 9, that the speedup in all the cases remains
almost constant or increases a little when the density of the matrices increases.
Hence, the parallel algorithm is scalable in that nature.

4.5 Discussion

As the number of threads increase, the problem partitioning also increases. Since
every iteration needs to modify the entire table, using more threads increases
the synchronization overhead, while using a lower number of threads reduces the
parallelization. We achieve an optimal limit on the number of threads somewhere
in between. We could also conclude that there exists a critical problem size
for each thread where the nature of the speedup changes from increasing to
decreasing on either side of that critical number. This critical value is achieved
at a larger problem size when using a larger thread count.

We observed that smaller problems performed better with a lower number
of threads as the overhead associated with a larger number of threads signifi-
cantly increases the run-time. This overhead is mainly attributed to two factors:

108 A. Banerjee et al.

synchronisation overhead amongst the threads, and false sharing when there are
multiple threads working on the same cache line(primarily in step 6). However,
on increasing the problem size, the synchronization overhead takes less prece-
dence as the scope for parallelization increases leading to higher speedups.

In general, efficiency decreases with an increase in the number of threads. At
large problem sizes with high thread counts, even though the absolute speedup
is high, the efficiency is quite low. This can be verified from Fig. 10. For larger
problems with higher iteration counts, we need to maintain synchronization even
among a single iteration, highlighted by pragma omp barrier constructs in the
parallel implementation. This is why the synchronization overhead plays a major
role.

Fig. 10. Efficiency (256 constraints)

As compared to the state-of-the-art
implementation, for problems with 256 con-
straints, we see similarity for smaller num-
ber of variables where efficiency decreases
as threads increases for a given number of
variables. The comparison for 2 threads is
not valid due to their assumption that the
time for serial implementation is double
that of using 2 threads while we did not
make that assumption.

5 Conclusion

The theoretical understanding of the standard simplex algorithm supported by
the experimental observations from our OpenMP based parallel implementation
on two different architectures for a variety of problem sizes enabled us to critically
analyze the problem. In our CPU based parallel implementation, vectorization
contributes significantly towards improving the performance, however, this is
constrained by the hardware properties of the system as well as the problem
structure. Our parallel algorithm proved to be fairly scalable, in terms of relative
speedup, for the matrices of varying densities (in range of 0.1 to 1).

We could also conclude that the number of constraints has a greater factor of
proportionality while determining speedup in comparison to the number of vari-
ables. This is because the problem size or the number of computations increases
more with the increase in the number of constraints in comparison to the number
of variables. This can also be explained using two types of overhead, synchro-
nization overhead and/or the overhead due to completely filled cache leading to
delayed memory access. Increasing the number of constraints for the chosen prob-
lem sizes lead to cache fulfillment hence the drop in the performance, whereas on
increasing variables, the synchronisation overhead incurred due to false sharing,
dominates and in a bid to maintain consistent values, in the shared L3 cache and
higher memory units, we incurred a drop in the performance. The source code
pertaining to this work is being made publicly available under a permissive open
source licence at Github https://github.com/arkaprabha10/Simplex-Algorithm.

https://github.com/arkaprabha10/Simplex-Algorithm

Empirical investigation of Simplex Algorithm 109

A Appendix: Serial Algorithm - Working Example

This example illustrates the standard simplex algorithm steps mentioned in
Sect. 2. Steps 1 to 7 are the basic steps of the algorithm, whereas steps 8 and
onward are for a second iteration.

Suppose, Z = 3x1 + 4x2
Subject to,
x1 + 2x2 ≤ 4
3x1 + 2x2 ≤ 6
x1, x2 ≥ 0

1. Introduce slack variables to get,
Z = 3x1 + 4x2 + 0x3 + 0x4
Subject to,
x1 + 2x2 + x3 + 0x4 = 4
3x1 + 2x2 + 0x3 + x4 = 6
x1, x2 ≥ 0

2. Table of coefficients is made with
slack variables as basic variables.

3. The Zj − Cj differences are eval-
uated.

4. The smallest value (-4 here) for
x2 is determined. It becomes the
new entering variable and the
corresponding column becomes
the pivot column.

5. The min ratios are determined
and the smallest value (2) is
set for x3 variable, which be-
comes the leaving variable, and
the corresponding row becomes
the pivot row.

6. The pivot row is divided by the
pivot coefficient (2).

7. Now we have the new basis vari-
ables as x2 and x4. We again eval-
uate Zj − Cj values.

8. The smallest value for differences
is -1, and is set in x1, which is
the new entering variable, with
the corresponding column set as
the pivot column.

9. The min ratios are determined
and the smallest value (1) is set
in x4, which becomes the leaving
variable, and the corresponding
row becomes the pivot row.

10. The pivot row is divided by the
pivot coefficient (2).

11. Now we have the new basis vari-
ables as x2 and x1. We again eval-
uate all Zj − Cj values. All val-
ues are ≥ 0 and we terminate
the algorithm with: x1 = 1, x2 =
3
2 , and Z = 9

110 A. Banerjee et al.

References

1. Dantzig, G.B.: Origins of the simplex method. In: A History of Scientific Comput-
ing, pp. 141–151. Association for Computing Machinery, New York (1990). https://
doi.org/10.1145/87252.88081

2. Borgwardt, K.H.: A Probabilistic Analysis of the Simplex Method. Springer, Hei-
delberg (1986). https://doi.org/10.1007/978-3-642-61578-8

3. Ploskas, N., Samaras, N., Margaritis, K.: A parallel implementation of the revised
simplex algorithm using OpenMP: some preliminary results. In: Migdalas, A.,
Sifaleras, A., Georgiadis, C., Papathanasiou, J., Stiakakis, E. (eds.) Optimization
Theory, Decision Making, and Operations Research Applications. Springer Pro-
ceedings in Mathematics & Statistics, vol. 31. Springer, New York (2013).
https://doi.org/10.1007/978-1-4614-5134-1 11

4. Wagner, H.M.: A comparison of the original and revised simplex methods. Oper.
Res. 5(3), 361–369 (1957). https://doi.org/10.1287/opre.5.3.361

5. Coutinho, D., Souza, S.X., Aloise, D.: A scalable shared-memory parallel simplex
for large-scale linear programming (2018). https://arxiv.org/pdf/1804.04737v1.pdf

6. Goldfarb, D.: On the Complexity of the Simplex Method. In: Gomez, S., Hennart,
J.P. (eds.) Advances in Optimization and Numerical Analysis. Mathematics and
Its Applications, vol. 275. Springer, Dordrecht (1994). https://doi.org/10.1007/
978-94-015-8330-5 2

7. Mamalis, B., Perlitis, M.: A hybrid parallelization scheme for standard simplex
method based on CPU/GPU collaboration. In: Proceedings of the 20th Pan-
Hellenic Conference on Informatics (PCI 2016), Article 12, pp. 1–6. Association
for Computing Machinery, New York (2016). https://doi.org/10.1145/3003733.
3003757

8. Fearnley, J., Savani, R.: The complexity of the simplex method. In: Proceedings
of the Forty-Seventh Annual ACM Symposium on Theory of Computing (STOC
2015), pp. 201–208. Association for Computing Machinery, New York (2015).
https://doi.org/10.1145/2746539.2746558

9. Klotz, E., Newman, A.M.: Practical guidelines for solving difficult linear programs.
Surv. Oper. Res. Manag. Sci. 18(1–2), 1–17 (2013). https://doi.org/10.1016/j.
sorms.2012.11.001. ISSN 1876–7354

10. Ketabchi, S., Moosaei, H., Sahleh, H., Hedayati, M.: New methods for solving large
scale linear programming problems in the windows and linux computer operating
systems (2012). https://doi.org/10.12785/amis/070440

https://doi.org/10.1145/87252.88081
https://doi.org/10.1145/87252.88081
https://doi.org/10.1007/978-3-642-61578-8
https://doi.org/10.1007/978-1-4614-5134-1_11
https://doi.org/10.1287/opre.5.3.361
https://arxiv.org/pdf/1804.04737v1.pdf
https://doi.org/10.1007/978-94-015-8330-5_2
https://doi.org/10.1007/978-94-015-8330-5_2
https://doi.org/10.1145/3003733.3003757
https://doi.org/10.1145/3003733.3003757
https://doi.org/10.1145/2746539.2746558
https://doi.org/10.1016/j.sorms.2012.11.001
https://doi.org/10.1016/j.sorms.2012.11.001
https://doi.org/10.12785/amis/070440

Task Inefficiency Patterns for a Wave
Equation Solver

Holger Schulz1(B), Gonzalo Brito Gadeschi2, Oleksandr Rudyy3,
and Tobias Weinzierl1

1 Department of Computer Science, Durham University, Durham, UK
{holger.schulz,tobias.weinzierl}@durham.ac.uk

2 NVIDIA GmbH, Munich, Germany
gonzalob@nvidia.com

3 High Performance Computing Center Stuttgart (HLRS), University of Stuttgart,
Stuttgart, Germany

oleksandr.rudyy@hlrs.de

Abstract. The orchestration of complex algorithms demands high lev-
els of automation to use modern hardware efficiently. Task-based pro-
gramming with OpenMP 5.0 is a prominent candidate to accomplish this
goal. We study OpenMP 5.0 ’s tasking in the context of a wave equation
solver (ExaHyPE) using three different architectures and runtimes. We
describe several task-scheduling flaws present in currently available run-
times, demonstrate how they impact performance and show how to work
around them. Finally, we propose extensions to the OpenMP standard.

Keywords: OpenMP 5.0 · Task-based parallelism · Assembly-free
task graph · Dynamic tasking · Message queue · Shared memory

1 Introduction

Modern high-performance computing (HPC) architectures exhibit unprece-
dented hardware parallelism [1,6]. The potential of which must be harnessed on
the software side. As traditional loop-based parallelism and, in particular, the
bulk-synchronous (BSP) paradigm increasingly struggle to achieve this alone,
task-based programming promises to come to the programmers’ rescue. Task
graphs [2] allow the programmer to oversubscribe the system logically, i.e. to
write software with a significantly higher concurrency than the hardware pro-
vides. Once task graphs are translated to task-based source code, a threading
runtime can efficiently map this code onto the actual hardware, as the over-
subscription provides the scheduler with the freedom to utilise all resources.
Despite the promise and flexibility it offers, tasking as a low-level parallelisation
paradigm, i.e. for tiny work units [5], often yields inferior performance compared
to more traditional parallelisation.

Our work orbits around the second installment of the code ExaHyPE [20],
which can solve hyperbolic equation systems in the first-order formulation. We
c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 111–124, 2021.
https://doi.org/10.1007/978-3-030-85262-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-85262-7_8

112 H. Schulz et al.

focus on its patch-based Finite Volume schemes realising block-structured adap-
tive mesh refinement (AMR) [7]. This application requires a high degree of con-
currency in order to smooth out the imbalances introduced by dynamic AMR,
consecutive solver steps that are drastically different in their compute character-
istics, and bandwidth limitations due to a flurry of MPI activity. We orchestrate
all that with a task formalism on top of classic domain decomposition. Despite its
complexity, the code’s execution time is dominated by bursts of similar compu-
tational steps applied to a large set of unknowns. For example, the application
of the same compute kernel to a large number of cells. This pattern is likely
archetypical for many HPC codes.

Our demonstrator code ExaHyPE uses a parallelisation strategy consisting
of MPI and OpenMP [12]. We note that, with current OpenMP runtimes, our
implementation that uses native OpenMP task parallelisation yields an infe-
rior time-to-solution compared to plain BSP-style parallelism. Further, the task-
based formalism struggles to compete with traditional data decomposition. Our
analysis identifies two primary reasons for this behaviour in the OpenMP run-
times and versions that we studied.

BSP task subgraphs are treated as critical paths. If the runtime encounters
an imbalance, idle times are not used to swap in further ready tasks from the
non-BSP region. Instead, we busily wait for the completion of the BSP subgraph.

The creation of massive numbers of ready tasks is likely to lead to the suspen-
sion of currently active tasks. We observe the runtime to prioritise the execution
of descendent tasks before resuming the primarily active ones—even if there are
no dependencies.

The aforementioned shortcomings of OpenMP task runtimes lead us to reject
the hypothesis that task-based parallelism helps mitigate load imbalances and
sequential program phases introduced by classic BSP-style parallelism. We iden-
tify causal properties and propose wrappers around existing OpenMP calls to
mitigate these flaws. The patterns studied in this work are not exclusive to
ExaHyPE. The ideas presented are therefore of broader interest for the super-
computing community working with task graphs.

The remainder of the text is organised as follows: We sketch our application
in Sect. 2 with a particular emphasis on two distinct task graphs produced by two
different solver implementations. After introducing the test platform (Sect. 3),
these task patterns are analysed. We highlight shortcomings encountered with
current runtimes, and outline tweaks to the OpenMP port of our application.
This Sect. 4 is the main part of our contribution. A brief summary and an outlook
(Sect. 5) close the discussion.

2 Case Studies

We use the patch-based Finite Volume (FV) solver on adaptive Cartesian meshes
[7] that comes with the second generation of the ExaHyPE engine [16]. The
mesh consists of squares (dimension d = 2) or cubes (d = 3). Each cell hosts a
patch of Nd d-dimensional volumes. Each volume carries a piece-wise constant

Task Inefficiency Patterns 113

representation of the solution, and an additional halo-layer of d-dimensional
volumes surrounds each patch.

Once per time-step, our FV solvers evolve all patches in time by computing
the underlying Riemann problem with a Rusanov scheme [10] supplemented by
volumetric source terms (right-hand side). The Rusanov scheme requires the
halo layer mentioned above to evolve the cells at the patch boundary. After the
temporal evolution, the FV solvers reduce the maximal eigenvalue of the solution
over all cells. This eigenvalue determines the largest time-step that satisfies the
CFL condition [10]. Before the next time-step, each patch writes 4N (d = 2)
or 6N2 (d = 3) boundary cells into a face buffer. Each cell has its own halo.
This enables us to separate the halo updates into a “project onto faces” epilogue
of the patch solve, and a “write halo” preamble to a patch update, ultimately
allowing the patches to be independently advanced in time.

Solver 1: Plain BSP-Style Adaptive Time-Stepping. Our baseline code splits the
computational domain into non-overlapping segments along a space-filling Peano
curve (SFC) [21]. Several adjacent segments along the SFC are deployed to
each MPI rank. Per time-step, each rank maps its local SFC segments onto an
OpenMP taskloop [12]. The programming paradigm is classic SPMD on the
MPI side, followed by a BSP-style traversal of the local subdomains per rank.
Equivalent code using a parallel for construct with dynamic scheduling yields
the same performance.

Every time the task encounters a cell, it writes the halo, updates the cell,
determines the next permissible time-step size, and stores the new halo data
in the faces. The computation of the permissible time-step size is a per-cell
operation and is therefore fused with the actual cell update, meaning that one
large BSP section per time-step is sufficient.

The underlying load balancing problem is a chains-on-chains problem [14].
We operate with an SFC subpartition count that is close or equal to the num-
ber of available cores. Due to the AMR, boundary handling and administrative
overhead, the individual subpartitions are not perfectly balanced per thread. We
obtain a classic BSP-style task graph (Fig. 1), where the bulk is not perfectly
balanced.

Solver 2: Enclave Tasking. In contrast to the plain domain decomposition
scheme, this solver traverses the mesh twice per time-step, and it classifies cells
as either skeleton (those adjacent to partition boundaries or AMR resolution
transitions) or enclave cells (all others) [4]. As soon as the primary traversal
encounters a skeleton cell, it updates it and thereby determines the new local
solution, the permissible time-step size and the new value as required by adja-
cent cells in the next time-step. This data has to be interpolated or restricted,
sent via MPI, or copied over locally to another logical subpartition.

If the thread-local traversal hits an enclave cell, it maps this local cell update
onto a task. At the end of this primary grid sweep, we exchange the parti-
tion boundary data. The secondary grid traversal waits for its task to termi-
nate, weaves the task outcome into the solution representation, and reduces the

114 H. Schulz et al.

(a) BSP-type solver (b) Enclave solver

Fig. 1. Anatomy of a time-step. a): Plain domain decomposition yields one BSP-type
graph per MPI rank with a warm up phase per time-step (white) where we determine
the time-step size and global variables. Each local SFC subpartition is processed by
one thread (light grey). A quasi-serial bit of code handles the MPI boundary exchange
(dark grey). b): In our enclave solver, the rank-local domain traversal is split into two
BSP-type traversals. The first bulk produces small enclave tasks (rounded corner),
while skipping local computations within the subdomain. It is faster than the plain
counterpart and immediately triggers the boundary data exchange. Once completed, it
spawns another bulk which weaves in the enclave task outcomes before completing the
time-step. The producer-consumer dependencies are shown for one enclave task only.
The critical path is highlighted in red. (Color figure online)

permissible time-step size per rank. A final, brief serial phase launches the global
time-step size reduction and finalises all MPI data exchanges.

Our enclave tasking (Fig. 1) is realised as a sequence of two taskloop con-
structs per time-step (Algorithm 1). In contrast to the plain implementation,
the first taskloop acts as a producer of tasks. It does not synchronise with
the spawned enclave tasks, as the nogroup first eliminates all implicit barriers
and the taskwait then waits for the direct children of the master thread only.
Despite the elimination of this barrier we continue to refer to this as task group.
The local domain decomposition remains invariant and generates only a few rel-
atively large tasks. The stark contrast to the plain variant is that we create a
plethora of tiny enclave tasks per primary sweep.

We use a simple hashmap for the bookkeeping of our task outcomes: Enclave
tasks are assigned a unique number at the point of their creation. Upon comple-
tion, they reduce their permissible time-step size and enter the new time-step
data of their associated patch in the hash map.

The busy waits in the secondary traversals of Algorithm 1 incorporate simu-
lation outcomes into the computational mesh. This is required to allow updating

Task Inefficiency Patterns 115

Algorithm 1. Schematic layout of the time-stepping in our enclave tasking.
1: function timeStep(dt)
2: #pragma omp taskloop nogroup

3: for rank-local partition do � Primary traversal (large task)
4: for local cell do
5: if cell is skeleton then
6: update cell
7: else
8: #pragma omp task � Spawn enclave task
9: update cell

10: end if
11: end for
12: end for
13: #pragma omp taskwait � Wait only for traversal tasks
14: Realise domain boundary exchange
15: #pragma omp taskloop nogroup

16: for rank-local partition do � Secondary traversal (large task)
17: for local cell do
18: if cell is enclave then
19: busy-wait for enclave task outcome � With taskyield

20: end if
21: end for
22: end for
23: #pragma omp taskwait � Implicitly wait for all tasks
24: end function

the patch halo and synchronising the patches with their neighbours. In our base-
line OpenMP implementation, this is realised by busy waiting: The code polls the
hash map repeatedly. As long as the hash map does not yet contain the required
task outcome, the polling code releases the semaphore and issues a taskyield
before it polls again. This constitutes a näıve implementation of the consumer
in a producer-consumer pattern.

3 Test Environment

We work with three different test systems (Table 1), each using a different com-
piler: A GNU compiler, the Intel compiler, and the new LLVM-based Intel com-
piler. This allows use to make qualitative statements. Quantitative comparisons
are beyond the scope of this work. All tasking code is based on OpenMP5.0 .
OMP PROC BIND is set to close.

We simulate compressible Euler equations in a unit-square domain with peri-
odic boundaries, hosting 59,049 patches. An initial high-density peak in the
domain serves as a causal agent for spreading waves. We use FV with a patch
size of 63 × 63 per cell such that the face count (Riemann problems) per patch
along each coordinate axis equals a power of two. The computational simplicity

116 H. Schulz et al.

Table 1. Test systems

Test system Hamilton HPE Hawk Cosma

CPU Intel Xeon E5-2650V4 AMD EPYC 7742 Intel Xeon Gold 5218

Name Broadwell Rome Cascade Lake

Cores 2× 14 2× 64 2× 16

NUMA domains 2 2× 4 2

Baseline freq. 2.4GHz 2.25GHz 2.3GHz

L2/L3 256 kB/30 MB 512 kB/16 MB 1 MB/22 MB

Compiler icpc (ICC) 19.1.3.304 g++ (GCC) 10.2.0 icpx (ICX) 2021.1 Beta

of Euler equations implies that the code is never compute-bound. Due to this
characteristic, scheduling flaws become apparent immediately.

We limit our experiments to a single node but explicitly keep all management
code for inter-node data exchange enabled, i.e. after each time-step, we run the
routines that orchestrate multi-node and heterogeneous runs. Doing so eliminates
interference with MPI. We further disable dynamic load balancing (cf. [13]) and
instead rely on two static ways to split the domain along the Peano SFCs: For our
first, well-balanced mode, we ensure that each core obtains one SFC-partition of
the domain and that the partition sizes (cell counts) do not differ by more than
10%. When using a single core we end up with 58,564 enclave cells. Splitting
the same domain over 24 cores yields a smaller total of 53583 enclave cells as we
have more boundaries and therefore more skeletons. In our second, ill-balanced
mode, we assign around half of the partition (26,244 cells) to the first core and
then continue to iteratively cut the partition size in half for the remaining cores.
Doing so yields a highly ill-balanced data decomposition with up to 20 partitions
where the smallest partition consists of only one patch.

4 Benchmarking and Task Runtime Modifications

We first compare the performance of the BSP-style solver and the enclave solver
without modifications of the OpenMP 5.0 runtime (referred to as “native” in the
following). The baseline BSP-type code scales robustly only for the well-balanced
domain decomposition (Fig. 2a). In the ill-balanced setup, BSP parallelisation
(circles in Fig. 2b) maximally achieves a 2x-speedup (w.r.t. single-core), regard-
less of the number of cores and type of machine studied. The enclave algorithm
arguably performs better than pure BSP. All measurements report time per
time-step and patch.

The strength of enclave tasking is its ability to migrate computational work
to underutilised cores. This migration pays off for an ill-balanced setup, but
its impact in a well-balanced setup is small, as this (experimental) choice does
not benefit from the flexibility of OpenMP tasking. Overall, the strong scaling
regime exhibits limited efficiency which is, however, beneficial for our purposes
as it makes all scheduling flaws immediately apparent.

Task Inefficiency Patterns 117

1 2 4 8 16 32 64 128
Cores

2−15

2−14

2−13

2−12

2−11

2−10

2−9

2−8
T
im

e
pe
r
tim

e-
st
ep

an
d
pa
tc
h
[s
] Hamilton BSP

Hamilton enclave
Hawk BSP
Hawk enclave

(a) Well-balanced setup

1 2 4 8 16 32 64 128
Cores

2−11

2−10

2−9

2−8

T
im

e
pe
r
tim

e-
st
ep

an
d
pa
tc
h
[s
] Cosma BSP

Cosma enclave

(b) Ill-balanced setup

Fig. 2. Baseline scaling, measuring the time per time-step and patch. Both the BSP
and the enclave implementation use native OpenMP tasks.

4.1 Direct Translation of Enclave Tasking to OpenMP (native)

Busy Polling. In our baseline code, we map enclave tasks directly onto OpenMP
tasks and realise the busy-wait in Algorithm 1 via polling: We check whether the
task outcome is available and otherwise invoke taskyield. This implementation
notoriously causes OpenMP runtimes to starve once the number of domain par-
titions exceeds the number of OpenMP threads: Those consumer threads of the
taskgroup which have not yet hit the implicit barrier take turns waking up each
other instead of an enclave task, thereby starving the latter.

Observation 1. taskyield tends to switch between tasks within the same
group. This pattern starves ready tasks outside the task loop. The OpenMP imple-
mentations tested are not “fair”.

To be formally correct, our implementation should introduce dependencies
between the tasks instead of polling. We refrain from doing so as the additional
bookkeeping would require complex rewrites over multiple classes distributed
among multiple components. Some parallel algorithms, like our enclave tasking,
are “starvation-free” yet require “fair” task scheduling to progress. If taskyield
does not yield to other taskgroups, progress for these algorithms can be mini-
mal or the code can starve. In contrast, non-fair scheduling switching between
few ready tasks is advantageous in many situations as it avoids cache capacity
misses.

Feature 1. It is desirable to annotate taskyields with scheduling hints to allow
it to also process tasks that are not direct descendants.

Since we lack a cross-taskgroup yield, oversubscribing the machine threads
with large traversal tasks is not an option. The flexibility that geomet-
ric load balancing offers is therefore limited [13]. More flexible scheduling
(KMP TASK STEALING CONSTRAINT) or untied task progression do not help in this

118 H. Schulz et al.

situation: They facillitate optimisation within a given scheduling strategy (cf. [18]
for a discussion on taskyield behaviour) but do not allow to change the strategy
itself.

0
100
101
102
103
104
105

Pe
nd

in
g
ta
sk
s

0 100 200 300
Simulation time in seconds

0

2

4

B
SP

ta
sk
s

(a) Well-balanced setup

0
100
101
102
103
104
105

Pe
nd

in
g
ta
sk
s

native
hold-back
backfill

0 100 200 300
Simulation time in seconds

0

2

4

B
SP

ta
sk
s

(b) Ill-balanced setup

Fig. 3. Analysis of five time-steps. Top: Number of pending enclave tasks for three
different tasking realisations. The native OpenMP implementation prevents spawning
more than 1,000 enclave tasks. Middle: Number of active BSP (producer/consumer)
tasks. The two traversals per time-step are clearly visible. The native OpenMP imple-
mentation leads to the first traversal taking much longer than the second. For the other
implementations, the behaviour is the opposite. Bottom: Core activities of the native
implementation (brown: CPU time, red: spinning). The data show five time-steps of
two runs on Hamilton utilising four cores. (Color figure online)

Task Execution Pattern. For the enclave tasking to have its desired effect, it
is imperative to spawn a large number of tasks during the first traversal to
have them pending for the second traversal. Our measurements (Fig. 3) clearly
show that the native OpenMP implementation caps the number of tasks at
about 1,000. The runtime processes pending tasks immediately. In doing so,
the completion of the majority of the tasks coincides with the taskwait clause
at the end of the primary traversal (Algorithm1, line 13). All our OpenMP
implementations use this scheduling point to process a significant amount of
enclave tasks (ready by definition). Once the runtime progresses beyond the
synchronisation point, in the native implementation, only a few enclave tasks
(if any) remain. This implies that any idle time in the subsequent BSP-type
traversal cannot be backfilled with further ready tasks. The resulting wait at the
end of the secondary sweep causes the spin times in the traces measured. This
behaviour leads to the first traversal lasting significantly longer than the second
one, exactly the opposite of what enclave tasking requires. It should be noted
that an ill-balanced domain partitioning amplifies the observed patterns. The
following paragraphs describe how we circumvent these effects.

Task Inefficiency Patterns 119

4.2 Manual Task Postponing (Hold-Back)

Thresholds that influence the task processing behaviour degrade the predictabil-
ity of the runtime performance, and they destroy our code’s efficiency: We create
enclave tasks to compensate for imbalances once the primary taskloop has ter-
minated. If OpenMP decides to suspend the task producer and instead launches
tasks immediately, or OpenMP does not continue with the main control flow at
the synchronisation point, the desired pay-off vanishes.

Observation 2. OpenMP runtimes switch to immediate task processing if the
number of ready tasks exceeds a threshold. This behaviour introduces the risk that
these tasks are not available to mend subsequent imbalances. It also denies the
programmer the opportunity to migrate expensive but not immediately required
work to subtasks.

Observation 3. OpenMP’s taskwait allows the runtime to switch to process-
ing any ready tasks—not only the child tasks of the current task region—rather
than continuing with the main control flow. That suspends the task producer
thread.

1 2 4 8 16 32 64 128
Cores

2−14

2−13

2−12

2−11

2−10

2−9

2−8

T
im

e
pe
r
tim

e-
st
ep

an
d
pa
tc
h
[s
] Cosma native

Cosma hold-back
Cosma backfill

(a) Well-balanced setup

1 2 4 8 16 32 64 128
Cores

2−11

2−10

2−9

2−8

T
im

e
pe
r
tim

e-
st
ep

an
d
pa
tc
h
[s
] Hamilton native

Hamilton hold-back
Hamilton backfill
Hawk native
Hawk hold-back
Hawk backfill

(b) Ill-balanced setup

Fig. 4. Three different enclave tasking strategies per machine: Native mapping onto
OpenMP tasks, manually hold-back of spawned enclave tasks, and a manual backfilling
of idling cores. We measure the time per time-step and patch.

Our code eliminates the immediate task processing by adding a manual queue:
Instead of spawning OpenMP tasks, the BSP-type task regions queue their tasks
in this helper container. They hold back the tasks manually. The busy polling
checks whether a task outcome is available, otherwise processes one task from our
manual queue, and then checks again. It implicitly realises a lazy task evaluation.

Our measurements show that such an additional, thin, user-defined tasking
layer on top of OpenMP ensures that all enclave tasks remain pending while
we continue to spawn tasks (Fig. 3). In contrast to the native implementation,

120 H. Schulz et al.

we now see (Fig. 3, middle panel plots) that the primary traversal is very short
compared to its secondary counterpart. The reason is that the manual queue col-
lects all tasks instead of processing them. Consequently, the secondary traversal
dominates the runtime thanks to the lazy evaluation. The secondary sweep’s
polling does not discriminate which tasks are spawned by which BSP-type task.
It simply grabs the tasks one by one and automatically balances out the sec-
ondary BSP tasks. This advantageous behaviour is much more pronounced in
the ill-balanced setup.

Feature 2. It is desirable to manually control OpenMP’s ready task thresholds
or inform the runtime that many tasks will be spawned, and although they are
ready, not to process them right away.

Feature 3. It is desirable to manually annotate OpenMP’s scheduling points
that the (serial) control flow in the code is part of the critical path.

It is reasonable to introduce a threshold for ready tasks to avoid excessive
bookkeping overhead incurred by long task queues. However, we have an algo-
rithm that suffers tremendously from immediate task processing as it relies on
bursts of ready tasks to compensate for task ill-balancing in subsequent compu-
tational phases. In this case, injecting domain knowledge (“do not process imme-
diately”) into task scheduling reduces the time-to-solution. Analogous reasoning
holds for scheduling points: It is hugely advantageous to inform the runtime of
the program’s critical path along with the control flow. By construction, this
information is unknown to OpenMP, which relies on a dynamic assembly of the
task graph.

Our modifications do not have a sizeable effect on the runtime for a well-
balanced setup. They, however, do improve the time-to-solution for an ill-
balanced setup (Fig. 4). Unfortunately, this improvement is not robust: It holds
for low core counts and once we go beyond one socket. Three effects compete
here: Firstly, the hold-back mechanism avoids that OpenMP hits a synchronisa-
tion point (taskwait after the primary sweep) and thereby ensures progression
along the critical path. Secondly, it reduces any cache thrashing that arises from
balancing out task workloads within the primary traversal. Both effects bring
down the runtime of the BSP-type task production. Thirdly, the centralised task
queue increases the coordination pressure (semaphore access) between the tasks.

4.3 Manual Backfilling (Backfill)

Manual task postponing (holding back) and the native OpenMP task processing
behaviour materialise two extreme cases of task scheduling: They either process
tasks relatively early (around the synchronisation point) or very late due to our
lazy mechanism.

It is not immediately clear which approach is more beneficial. On the one
hand, making taskwait work through the set of ready tasks as aggressively as
possible reduces the bookkeeping overhead, and for many codes, we may assume

Task Inefficiency Patterns 121

that any ready task will spawn further tasks. Discovering this early reveals more
fragments of the final task graph. This approach yields high throughput. If, on
the other hand, we make taskwait busy poll its siblings instead of processing
further tasks, we prevent situations where the BSP-type subgraph terminates,
but the runtime does not immediately continue with the source code following
the BSP-type section. This approach eliminates latency along the BSP-type
subgraph.

Algorithm 2. Manual backfilling of a BSP-type task section.
1: busyThreads ← max(#threads, #bsp tasks) � Ensure all threads are used
2: for i = 0..busyThreads − 1 do � A parallel for would be equivalent
3: #pragma omp task shared(busyThreads)

4: {
5: if i < #tasks then
6: run(task[i])
7: end if
8: #pragma omp atomic

9: busyThreads ← busyThreads − 1
10: while busyThreads > 0 ∧ busyThreads < #threads do � Second clause
11: processPendingTasks � avoids deadlocks
12: end while
13: }
14: end for
15: #pragma omp taskwait

Our code requires a compromise between high throughput and low latency, as
any delay along the control flow with the BSP section will introduce imbalances
and delays later down the line. We, therefore, augment the postponed scheduling
with a manual task backfilling (Algorithm 2): Enclave tasks created within the
task group (BSP-style) are enqueued using a container as before. They are not
handed over to OpenMP. Once a BSP-type task terminates, it decrements a
global counter of active BSP tasks (busyThreads). If there are fewer active BSP-
type tasks than logical threads, and not all BSP-type tasks have terminated yet,
we grab tasks from the local task queue and process them immediately. This is
the actual backfilling, which is in essence a conservative form of work-stealing
[11].

The backfilling ensures that our latency-sensitive BSP-subgraph realisation
does not let threads idle. Therefore, the backfilling robustly outperforms a native
OpenMP task implementation, as long as we utilise only one socket (Fig. 4—one
socket means 14 cores for Hamilton, 16 cores for Cosma, 64 cores for Hawk).
If we have a well-balanced setup, the backfilling does not kick in. We, however,
benefit from the payoffs of the hold-back strategy, which automatically balances
partitions with different numbers of enclave tasks. These tasks differ, even if the
partitions all have similar cell count. If we have an ill-balanced setup, backfilling

122 H. Schulz et al.

outperforms a native OpenMP version, as we benefit from the hold-back mech-
anisms but do not let cores idle. The benefits disappear as soon as we use both
sockets or the problem gets too small. The program suffers from cache thrashing
and synchronisation overhead, and is therefore outperformed by the hold-back
strategy.

Feature 4. It would be beneficial if a taskwait or implicit BSP synchronisation
could be annotated whether throughput or latency (immediate continuation) take
priority.

Our backfilling wraps around OpenMP’s BSP constructs (taskloop), and makes
it latency-aware: The implementation works well if the BSP-graph section is
aligned with the task graph’s critical path, and thus latency-critical. However,
it does not prioritise latency above all else. Instead, it tries to process enclave
tasks—but only if other tasks are still busy with the BSP section. It is thus
weakly latency-aware.

5 Evaluation and Conclusion

Our studies start from the observation that a plain taskification of source code
with OpenMP does not necessarily reduce the time-to-solution for sophisticated
codes. If a code is intrinsically BSP-style, we should map it onto BSP constructs.
If we add tasking on top of these BSP regions, we quickly suffer from poor per-
formance. The reason for this is not solely rooted in tasks of low arithmetic
intensity, but also stems from the fact that OpenMP runtime characteristics
impede performance as soon as we go beyond a pure tree-based task-graph lay-
out.

We propose extensions of tasking runtimes and their API. They can be sum-
marised as a proposal to allow the programmer to inform OpenMP about the
criticality and characteristics of tasks (implying statements on the arithmetic
intensity and task type homogeneity) as well as to facilitate balancing manu-
ally between throughput- and latency-prioritisation. Some of this information
is available in approaches with a priori, i.e. static task graph assembly [9,17]
or can be mapped onto OpenMP’s task priorities, though the latter is not fully
implemented in the OpenMP runtimes that we used. Our approach goes beyond
sole prioritisation and does not require a static task graph assembly. Instead, we
wrap task APIs to include more domain knowledge about the long-term knock-
on effects of scheduling decisions. We are confident that this idea is of value
for many codes that exhibit more of a consumer-producer tasking pattern. It is
worthwhile to discuss how to make these concepts available within OpenMP.

It is safe to assume the performance gain from our techniques will be sig-
nificantly higher if the queues and scheduling are directly integrated into the
runtime. Different to state-of-the-art queue implementations, our queue is not
distributed and thus suffers from congestion if many threads check it simultane-
ously. Different to high-level frameworks like Kokkos [8] and RAJA [3,15] it also
lacks any affinity knowledge [19] and thus stresses the caches.

Task Inefficiency Patterns 123

Acknowledgments. Holger’s and Tobias’ work is sponsored by EPSRC under
the ExCALIBUR Phase I call through the grants EP/V00154X/1 (ExaClaw) and
EP/V001523/1 (Massively Parallel Particle Hydrodynamics for Engineering and Astro-
physics). Both appreciate the support from ExCALIBUR’s cross-cutting tasking theme
(grant ESA 10 CDEL). The Exascale Computing ALgorithms & Infrastructures Ben-
efiting UK Research (ExCALIBUR) programme is supported by the UKRI Strategic
Priorities Fund. The programme is co-delivered by the Met Office on behalf of PSREs
and EPSRC on behalf of UKRI partners, NERC, MRC and STFC. The present software
[20] is part of a major rewrite of the original ExaHyPE code funded by the European
Union’s Horizon 2020 research and innovation programme under grant agreement No
671698 (ExaHyPE). Oleksandr’s work motivating this research has received funding
from the European Union’s Horizon 2020 research and innovation programme under
the project CoE POP, grant agreement No. 824080.

Our work made use of the facilities of the Hamilton HPC Service of Durham Univer-
sity, and it also made use of the facilities provided by the ExCALIBUR Hardware and
Enabling Software programme, funded by BEIS via STFC grants ST/V001140/1 and
ST/V002724/1, and hosted by the DiRAC@Durham Memory Intensive facility man-
aged by the Institute for Computational Cosmology on behalf of the STFC DiRAC
HPC Facility (www.dirac.ac.uk). The equipment was funded by BEIS capital funding
via STFC capital grants ST/P002293/1, ST/R002371/1 and ST/S002502/1, Durham
University and STFC operations grant ST/R000832/1. DiRAC is part of the UK’s
National e-Infrastructure.

This work was funded under the embedded CSE programme of the ARCHER2 UK
National Supercomputing Service (http://www.archer2.ac.uk), grant no ARCHER2-
eCSE04-2.

References

1. EuroHPC2020: EuroHPC supercomputer systems. European Commission (2021).
http://eurohpc.eu/

2. Ayguade, E., et al.: The design of OpenMP tasks. IEEE Trans. Parallel Distrib.
Syst. 20(3), 404–418 (2009). https://doi.org/10.1109/TPDS.2008.105

3. Beckingsale, D.A., et al.: RAJA: portable performance for large-scale scientific
applications. In: 2019 IEEE/ACM International Workshop on Performance, Porta-
bility and Productivity in HPC (P3HPC) (2021)

4. Charrier, D., Hazelwood, B., Weinzierl, T.: Enclave tasking for dg methods on
dynamically adaptive meshes. SIAM J. Sci. Comput. 42(3), C69–C96 (2020)

5. Demeshko, I., et al.: Tbaa20: taskbased algorithms and applications. doe report
la-ur-21-20928 (2021). https://permalink.lanl.gov/object/tr?what=info:lanl-repo/
lareport/LA-UR-21-20928

6. Dongarra, J., et al.: The international exascale software project roadmap 1. IJH-
PCA 25, 3–60 (2011). https://doi.org/10.1177/1094342010391989

7. Dubey, A., et al.: A survey of high level frameworks in block-structured adaptive
mesh refinement packages. CoRR 74(12), 3217–3227 (2016)

8. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore per-
formance portability through polymorphic memory access patterns. J. Parallel
Distrib. Comput. 74(12), 3202–3216 (2014). https://doi.org/10.1016/j.jpdc.2014.
07.003, http://www.sciencedirect.com/science/article/pii/S0743731514001257.
Domain-Specific Languages and High-Level Frameworks for High-Performance
Computing

www.dirac.ac.uk
http://www.archer2.ac.uk
http://eurohpc.eu/
https://doi.org/10.1109/TPDS.2008.105
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-21-20928
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-21-20928
https://doi.org/10.1177/1094342010391989
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
http://www.sciencedirect.com/science/article/pii/S0743731514001257

124 H. Schulz et al.

9. Haensel, D., Morgenstern, L., Beckmann, A., Kabadshow, I., Dachsel, H.: Eventify:
event-based task parallelism for strong scaling. In: Proceedings of the Platform for
Advanced Scientific Computing Conference (2020)

10. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts
in Applied Mathematics, Cambridge University Press (2002). https://doi.org/10.
1017/CBO9780511791253

11. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M., Prins, J.F.: OpenMP
task scheduling strategies for multicore NUMA systems. Int. J. High Perform.
Comput. Appl. 26(2), 110–124 (2012). https://doi.org/10.1177/1094342011434065

12. OpenMP Architecture Review Board: OpenMP application program interface
version 5.0 (2018). https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf

13. Orland, F., Terboven, C.: A case study on addressing complex load imbalance in
OpenMP. In: Milfeld, K., de Supinski, B.R., Koesterke, L., Klinkenberg, J. (eds.)
IWOMP 2020. LNCS, vol. 12295, pp. 130–145. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58144-2 9

14. Pinar, A., Aykanat, C.: Fast optimal load balancing algorithms for 1D partitioning.
J. Parallel Distrib. Comput. 64(8), 974–996 (2004)

15. RAJA: RAJA performance portability layer (2021). https://github.com/LLNL/
RAJA

16. Reinarz, A., et al.: ExaHyPE: an engine for parallel dynamically adaptive simula-
tions of wave problems. Comput. Phys. Commun. 254, 107251 (2020)

17. Schaller, M., Gonnet, P., Chalk, A.B.G., Draper, P.W.: Swift: using task-based
parallelism, fully asynchronous communication, and graph partition-based domain
decomposition for strong scaling on more than 100,000 cores. In: Proceedings of the
Platform for Advanced Scientific Computing Conference. PASC ’16. Association
for Computing Machinery, New York (2016). https://doi.org/10.1145/2929908.
2929916

18. Schuchart, J., Tsugane, K., Gracia, J., Sato, M.: The impact of Taskyield on
the design of tasks communicating through MPI. In: de Supinski, B.R., Valero-
Lara, P., Martorell, X., Mateo Bellido, S., Labarta, J. (eds.) IWOMP 2018. LNCS,
vol. 11128, pp. 3–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98521-3 1

19. Terboven, C., et al.: Approaches for task affinity in OpenMP. In: Maruyama, N.,
de Supinski, B.R., Wahib, M. (eds.) IWOMP 2016. LNCS, vol. 9903, pp. 102–115.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45550-1 8

20. Weinzierl, T., et al.: ExaHyPE-an exascale hyperbolic PDE engine (2021). http://
www.exahype.eu. http://www.exahype.eu

21. Weinzierl, T.: The peano software - parallel, automaton-based, dynamically adap-
tive grid traversals. CoRR arXiv:1506.04496 (2015)

https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1177/1094342011434065
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1007/978-3-030-58144-2_9
https://doi.org/10.1007/978-3-030-58144-2_9
https://github.com/LLNL/RAJA
https://github.com/LLNL/RAJA
https://doi.org/10.1145/2929908.2929916
https://doi.org/10.1145/2929908.2929916
https://doi.org/10.1007/978-3-319-98521-3_1
https://doi.org/10.1007/978-3-319-98521-3_1
https://doi.org/10.1007/978-3-319-45550-1_8
http://www.exahype.eu
http://www.exahype.eu
http://www.exahype.eu
http://arxiv.org/abs/1506.04496

Case Studies

Comparing OpenMP Implementations
with Applications Across A64FX

Platforms

Benjamin Michalowicz1(B), Eric Raut1, Yan Kang1, Tony Curtis1,
Barbara Chapman1,2, and Dossay Oryspayev2

1 Institute For Advanced Computational Science, Stony Brook University,
Stony Brook, NY, USA

{benjamin.michalowicz,eric.raut,yan.kang,anthony.curtis,
barbara.chapman}@stonybrook.edu

2 Computational Science Initiative, Brookhaven National Laboratory,
Upton, NY, USA

{bchapman,doryspaye}@bnl.gov

Abstract. The development of the A64FX processor by Fujitsu has cre-
ated a massive innovation in High-Performance Computing and the birth
of Fugaku: the current world’s fastest supercomputer. A variety of tools
are used to analyze the run-times and performances of several appli-
cations, and in particular, how these applications scale on the A64FX
processor. We examine the performance and behavior of applications
through OpenMP scaling and how their performance differs across differ-
ent compilers both on the new Ookami cluster at Stony Brook University
as well as the Fugaku supercomputer at RIKEN in Japan.

1 Introduction

The introduction of the A64FX processor by Fujitsu, and its use in the Fugaku
supercomputer (Fugaku), has sparked the re-emergence of vectorized proces-
sors/programming and the birth of the next world’s-fastest supercomputer1.
This comes on top of the fact that the A64FX chip also brings an unprecedented
co-design approach, impressive performance, and energy awareness that puts it
at the top of all 5 major HPC benchmarks. In this paper, we will be analyz-
ing OpenMP2, a well-known shared memory/parallel programming model, from
its scaling abilities on the A64FX processor to how it performs across different
compiler toolchains.

The full list of current compilers that support OpenMP can be found at
https://openmp.org3. Although there is one OpenMP specification, compiler
support varies both in terms of specific OpenMP features and general perfor-
mance.
1 https://top500.org/.
2 https://www.openmp.org/.
3 https://www.openmp.org/resources/openmp-compilers-tools/.

c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 127–141, 2021.
https://doi.org/10.1007/978-3-030-85262-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_9&domain=pdf
https://openmp.org
https://top500.org/
https://www.openmp.org/
https://www.openmp.org/resources/openmp-compilers-tools/
https://doi.org/10.1007/978-3-030-85262-7_9

128 B. Michalowicz et al.

In the next two subsections we give a brief overview of the A64FX processor,
followed by the paper’s contribution and organization.

1.1 The A64FX Processor

The A64FX processor [13,18] is the processor specifically manufactured for
Fugaku, which was made possible as part of the Japanese FLAGSHIP 2020
project as a co-design between RIKEN and Fujitsu. Currently, Fugaku is ranked
number 1 on both Top500 and HPCG lists. The A64FX, is a general-purpose
processor based on the Armv8.2-A architecture [18] and comes with 48 compute
cores + 2/4 cores dedicated to OS activities.

The A64FX processor produced by Fujitsu has 4 core memory groups (CMG).
In the FX700 chip, each CMG has 12 cores, while the FX1000 chip has 2-4 extra
assistant cores. Ookami currently has the FX700 chips, with each core laid out
sequentially: cores 0-11 make up CMG 0, 12-23 make up CMG 1, etc. [2].

1.2 Paper’s Contribution and Organization

Although OpenMP support is available in many compilers, to the best of our
knowledge, there were no studies of OpenMP’s performance in various compilers
(and specific versions) specifically for A64FX processors with the set of applica-
tions considered in this paper, and features of OpenMP they’re using. To that
end, the paper’s contributions are as follows:

– We present and evaluate the single node performance of various applications
using all available compilers on two systems that have A64FX processors, viz.
Ookami and Fugaku.

– We present, evaluate, and compare the differences in performance on two
different models of A64FX.

– We discuss our findings, and based on the results obtained, we summarize the
maturity level of compilers available on these two systems to fully utilize the
features of A64FX processors.

The rest of the paper is organized as follows. In Sect. 2 we present the details
of the applications considered in this study, and of the systems and compilers
used. In Sect. 3 we present and discuss the results obtained as well as inferences
obtained from running applications through various profilers and performance
analysis tools. In Sect. 4 we list related work and discuss their contributions and
the contribution of our work. Finally, in Sect. 5 we summarize our findings and
list some work to be performed in near future.

2 List of Applications and Experimental Setup

2.1 List of Applications

– PENNANT [4] - A mesh physics mini-app designed for advanced architecture
research. PENNANT is dominated by pointer chasing and operates based on

Comparing OpenMP Implementations with Applications 129

input files with different parameters. The larger the parameters, the larger
the mesh. PENNANT can be run solely with MPI, OpenMP, or in a hybrid
MPI+OpenMP fashion, and uses OpenMP’s static scheduling feature.

– SWIM - a weather forecasting model designed for testing current performance
of supercomputers. It is a Fortran code using OpenMP. Like PENNANT, it
also uses static scheduling of OpenMP. It has been updated within SPEC
CPU 2000 benchmark collections by Paul N. Swarztrauber [19].

– Minimod [9,15,16] - a seismic modeling mini-app that solves the acoustic
wave equation using finite differences with a stencil. Minimod is developed
by TotalEnergies and is designed as a platform to study the performance
of emerging compilers and runtimes for HPC. In this paper we consider the
OpenMP loop-based and task-based variants of the code [16].

2.2 Systems and Compilers

Fugaku is the world’s fastest supercomputer, located at the RIKEN Center for
Computational Science in Japan [17], and runs on the FX1000 A64FX, which
provides extra cores for OS-communication. Its underlying TofuD interconnect
is implemented as an interconnect controller (ICC) chip to allow for low latency
and offloading [6].

Table 1. Compilers of Fugaku and Ookami.

Compiler family Versions

Fugaku Ookami

ARM – 20.3

Cray – 10.0.1

Fujitsu 4.3.0a, 4.4.0a –

GCC 8.3.1, 10.2.1 8.3.1, 10.2.1, 11.0.0

LLVM 11.0.0 11.0.0, 12.0.0

Ookami is a cluster
installed at Stony Brook
University (SBU) in the
middle of 2020. It con-
tains 174 compute nodes,
with another two set
aside for quick experi-
mentation. Ookami was
funded through an NSF
grant [11] as the first
A64FX cluster outside of Japan. It comes with an array of software modules,
including GNU, LLVM, and Cray compilers, profilers, and MVAPICH/OpenMPI
packages. Ookami uses a non-blocking HDR 200 switching fabric via 9 40-port
Mellanox Infiniband switches in a 2-level tree, which allows for a peak band-
width of 100 Gb/s between nodes. In addition, each node currently has 32GB
of high-bandwidth memory with a peak memory bandwidth of 1 TB/s. Both
systems’ compiler toolchains are shown in Table 1.

2.3 Runtime Environment

Each benchmark was run on 1 compute node with 1 MPI rank/process to avoid
shared memory operations that occur with 2 or more processing elements and
over-subscription of threads to cores, which result in degraded performance.
Threads are bound to cores using the OMP PLACES environment variable.

130 B. Michalowicz et al.

Threads are assigned to specific cores (e.g. Thread 0 is assigned to Core 0)
and divided equally among specific CMGs. For example, 32 threads are divided
equally among the four CMGs on a single Ookami node (cores 0-8 in CMG 0,
12-19 in CMG 1, etc.) using

OMP PLACES="{0}:8,{12}:8,{24}:8,{36}:8".

We ran experiments using 1, 2, 4, 8, 12, 16, 24, 32, 36, and 48 OpenMP threads.
For every value up to 12, we placed all threads in one CMG. The 16-thread and
24-thread experiments were run on 2 CMGs, with each group having half the
total thread values. The 32-thread and 48-thread experiments were run on all 4
CMGs on the A64FX chip, with 36 threads being run on 3 CMGs.

2.4 Compiler Options

Table 2. Flags used for each compiler.

Compiler Flags

Cray -homp -hvector3 -hthread3

GCC -mcpu=a64fx -Ofast -fopenmp

LLVM -mcpu=a64fx -Ofast -fopenmp

Fujitsu-Traditional -Nnoclang -Nlibomp -O3

-Kfast,-Kopenmp,ARMV8 2 A-KSVE,A64FX

Fujitsu-LLVM -Nclang -Nlibomp -Ofast -Kfast,openmp

-mcpu=a64fx+sve

For each compiler men-
tioned in Sect. 2.2, we
turned on specific flags,
maximizing thread opti-
mization, SVE instruc-
tion generation, and exe-
cution speed while main-
taining correctness of out-
put. We also enabled fine-
tuning for the A64FX
processor and the ARM-8.2 architectures where possible. The flags are listed
for each compiler/group are set as shown in Table 2. Note that GCC versions
before version 9 do not support the mcpu=a64fx flag – for GCC 8, we com-
pile directly on an A64FX node and use mcpu=native. These flags instruct the
compiler to use auto-vectorization; we have not tested OpenMP’s SIMD clauses.

3 Experimental Results

Our experiments analyzed runtime, relative speedup through OpenMP threads,
and efficiency with respect to different compiler/compiler classes – Cray, ARM,
GNU, and LLVM. Subsect. 3.1 contains all the results run on SBU’s Ookami
cluster, followed by Subsect. 3.2 containing results from Fugaku. For each appli-
cation, we deemed three compilers as “best in class” (best runtime) for the
families mentioned above: GNU-10.2.0 (gcc/g++/gfortran), ARM/LLVM-20.1.3
(armclang/armclang++/armflang), and Cray-10.0.1 (cc/CC/ftn), with the
results for the other compilers explained in the following subsections. Prelimi-
nary results are showin in [10].

Our results are drawn from running our programs 5 times per OpenMP
thread value requested (1, 2, 4, 8, 12, 16, 24, 32, 36, 48) and taking the arithmetic
mean values from each set of runs. These experiments are limited to a single node.

Comparing OpenMP Implementations with Applications 131

3.1 Ookami

PENNANT. Runs were based on 2 medium-sized inputs whose memory
constraints did not expend the A64FX’s high bandwidth memory and swap
space: Leblancbig and Sedovbig. These inputs both revolve around structured
meshes with all square zones, but deal with considerably different mesh param-
eters, such as the number of elements in the respective mesh’s zone adjacency
lists and the number master/slave points/array sizes.

Figure 1(a) shows how, in every value given for OMP NUM THREADS, the Cray
compilers vastly outpace every other compiler toolchain presented. It has a max-
imum runtime with Leblancbig of 1056 s on 1 OpenMP thread, and 28 s on 48
threads. Conversely, the generic LLVM compilers had the absolute worst run-
time, running consistently around 2200 s on 1 OpenMP thread, nearing 70 s with
48 threads. Part of this is a result of how many SVE instructions are generated by
each compiler when vector optimizations are turned on at the compilation stage.
Cray generates the second largest amount of SVE instructions after the Fujitsu
compilers, followed by the generic GNU and ARM compilers. Conversely, the
generic LLVM compilers produce no SVE instructions at all, nor do they make
use of the A64FX’s z[0-32] registers.

18
82

95
3

49
0

25
1.

4

17
0.

3

12
8.

5

87 66
.5

59
.9

48

19
89

99
6.

5

50
0

25
1

16
8.

8

12
8

86
.3

66 59 45
.6

10
56

53
3

26
7.

7

13
5.

4

91
.6

69
.8

48 36 34 28

1 2 4 8 12 16 24 32 36 48
0

500

1000

1500

2000

2500

R
un

tim
e

(s
ec

on
ds

)

GCC/10.2.0
armclang++/20.3
Cray/10.0.1

(a) Compiler Runtime Comparisons

0 10 20 30 40 50
0

10

20

30

40

50

S
pe

ed
up

GCC/10.2
armclang++/20.3
Cray/10.0.1

(b) Relative Speedup

Fig. 1. PENNANT/LeblancBig Input Results on Ookami; X-axes refer to number of
OpenMP threads

In Fig. 1(b), we show the relative speedup observed between each of the “best
in class compilers”, measured by the amount of speedup at a given thread value
compared to 1 OpenMP thread. While the armclang results from Fig. 1(a) show
it having the slowest runtime, it has the largest and most linear relative speedup,
with the Cray compilers having the smallest relative speedup. Because the Cray
compiler is able to efficiently utilize SVE instructions, increasing the number of
OpenMP threads will not necessarily guarantee a linear speedup.

Efficiency for these tests is measured as speedup divided by the number of
threads used for a given result. We noticed that the ARM compilers are the most
efficient when compared to the GNU and Cray compilers.

132 B. Michalowicz et al.

Profiling the LeblancBig input with CrayPat [3] and ARM Forge [1] on
Ookami using 48 threads, we noticed that while the output remained the same
with different values for OMP WAIT POLICY, different policies resulted in sub-
stantially different behaviors. An “active” wait policy showed that PENNANT
spends 66.3% of its runtime in OpenMP regions, with the initial thread tak-
ing 66% more load on account for allocating all of the data before creating the
mesh and performing computations. A “passive” wait policy shows sharply con-
trasting behavior: only 17.8% of LeblancBig’s runtime was spent inside these
OpenMP regions, with the initial thread only taking 21.2% more of the load. The
difference in time spent between computation and synchronization of threads is
proportional to the number of threads requested at execution runtime, with very
little time–under 30%– being used for thread synchronization.

Similar trends are seen with Sedovbig, with the fastest runtimes seen with
the Cray compilers–its slowest runtime being 1387 s–and the slowest runtimes
seen by the ARM-based LLVM compilers (2694 s)–in Fig. 2(a). The generic
LLVM compilers, not shown in the graph, displayed runtimes as slow as 3000 s.

24
16

12
24

61
5

31
1.

8

20
9

15
7.

6

10
6.

8

81 73 56
.5

26
94

13
91

71
6.

6

37
7.

8

26
5

20
6

14
8.

6

11
8

10
7.

6

87

13
87

69
2

34
8

17
5.

8

11
7.

8

90 62 49 44 35
.4

1 2 4 8 12 16 24 32 36 48
0

500

1000

1500

2000

2500

R
un

tim
e

(s
ec

on
ds

)

GCC/10.2.0
armclang++/20.3
Cray/10.0.1

(a) Compiler Runtime Comparison

0 10 20 30 40 50
0

10

20

30

40

50

S
pe

ed
up

GCC/10.2
armclang++/20.3
Cray/10.0.1

(b) Relative Speedup

Fig. 2. PENNANT/SedovBig Input Results on Ookami; X-axes refer to number of
OpenMP threads

Unlike the results from Fig. 1(b), Fig. 2(b) shows the GNU compilers having
the most linear/largest speedup, with the Cray compilers coming in relatively
close until diverging at the 24-thread experiments. The armclang experiments
deviate from the Cray and GNU experiments after 4 OpenMP threads.

SWIM was run with the default test problem, swim.ref.in. It sets up a
7701× 7701 matrix running 3000 iterations. In our experiments, we tested 7 dif-
ferent compiler versions, but to avoid clutter and data overlap, we have chosen
3 representatives from the various compiler families: GNU, ARM’s LLVM-based
compiler, and Cray. We present results from these compilers in this section. The
runtime results and speed-up plots are shown in Figs. 3(a) and (b):

Comparing OpenMP Implementations with Applications 133

55
71

28
04

14
09

72
2

51
6

38
9

26
9

20
0

18
0

15
1

34
63

17
54

89
3

49
4

40
5

30
4

20
5

15
5

13
8

95

18
81

95
2

49
8

32
4

32
0

24
6

16
6

13
8

12
8

90

1 2 4 8 12 16 24 32 36 48
0

1000

2000

3000

4000

5000

6000
R

un
tim

e
(s

ec
on

ds
)

GCC10.2
armclang/20.3
Cray10.0.1

(a)

0 10 20 30 40 50
0

10

20

30

40

S
pe

ed
up

GCC10.2
armclang/20.3
Cray

(b)

Fig. 3. (a) SWIM/Ookami Compiler Runtimes (b) SWIM/Ookami Relative Speedup

As shown in Fig. 3(a), it is clear that the Cray compiler has the best per-
formance among all three compilers with SVE support enabled on the Ookami
cluster. Cray obtained a 2.3x faster performance than armclang with a single
thread. The ARM-based LLVM compiler generally has better performance than
the ARM-based GNU compilers, which is also expected. The LLVM compiler
has generated more SVE operations comparing with GNU compiler which leads
to the better runtime performance.

In Fig. 3(b), we see that among all the compilers, the GNU compiler seems
to have the greatest speed up. 48 threads achieve a 37x speed-up over 1 thread.
Conversely, the Cray compiler only gives a 16x speedup between 1 and 48 threads
shown in Fig. 3(b).

A clear result shows that the GNU compiler obtained the best efficiency
among all these three compilers. On the contrary, the Cray compiler seems to
have a much lower efficiency than GNU and ARM based compilers for all runs.
For all three compilers the general trends are the similar. Clear drops are hap-
pening when using 2, 4, 8 and 12 OpenMP threads especially at 12 threads. It
is also interesting that even though Cray compiler obtained the best runtime
performance, there are still a lot more could be improved.

With profiling tools ARM MAP and CrayPat [3] on Ookami with 48 threads,
SWIM has spent 70.2% runtime on OpenMP region which is understandable
since it is a purely OpenMP benchmark. OpenMP generates a small amount
of overhead: 28.5% was seen with this particular runs. Like with PENNANT,
this indicates that more threads will spend more time communicating with each
other and less overall time on performing computations.

134 B. Michalowicz et al.

Minimod runs with the following two different OpenMP configurations (see
[16] for details):

– Loop xy: Grid is blocked in x (largest-stride) and y dimensions. A OpenMP
parallel for loop is applied to the 2-D loop nest over x-y blocks. (A
collapse(2) is used to combine the two loops).

– Tasks xy: Grid is blocked in x and y dimensions. Each x-y block is a task
using OpenMP’s task directive. OpenMP’s depend clause is used to manage
dependencies between timesteps.

A grid size of 5123 was used. Minimod times are shown for each configuration
in Figs. 4(a) and (b), with speedups in Fig. 5(a) and (b). Note that the Cray C
compiler was unable to compile this code, due to an internal compiler error, so
only GCC and Arm compiler results are shown.4

85
5

46
3

24
7

12
3

82

63

42 33 29 25

94
2

51
7

27
2

13
6

91

69

46 36 31 26

1 2 4 8 12 16 24 32 36 48
0

200

400

600

800

1000

R
un

tim
e

(s
ec

on
ds

)

GCC/9.3
armclang/20.3

(a)

87
4

48
0

25
3

12
6

99

73

47 36 32 26

94
8

52
6

27
5

13
7

91

69

46 35 32 25

1 2 4 8 12 16 24 32 36 48
0

200

400

600

800

1000

R
un

tim
e

(s
ec

on
ds

)

GCC/9.3
armclang/20.3

(b)

Fig. 4. (a) Minimod/Ookami/timing (loop xy) (b) Minimod/Ookami/timing (tasks
xy)

In the GCC compilers, the loop-based configuration tends to outperform
the task-based configuration. In LLVM compilers, however, the performance is
similar between the two configurations.

We profiled Minimod using the ARM Forge Performance Report tool with
48 threads. We find that in both configurations, the application spends almost
the entire runtime within OpenMP regions, and both have a high number of
stalled cycles (76.5% and 80.7% of cycles for loop-xy and tasks-xy configurations
respectively), indicating that the application is memory-bound. This makes the
HBM2 memory of the A64FX processor potentially advantageous for this type
of application.

4 A Fortran version of Minimod was also evaluated using the Cray Fortran compiler.
While this version was successfully compiled, the final numerical result was incorrect
with optimization turned on.

Comparing OpenMP Implementations with Applications 135

0 10 20 30 40
0

10

20

30

40
S

pe
ed

up
GCC/9.3
armclang/20.3

(a)

0 10 20 30 40
0

10

20

30

40

S
pe

ed
up

GCC/9.3
armclang/20.3

(b)

Fig. 5. (a) Minimod/Ookami/speedup (loop xy) (b) Minimod/Ookami/speedup (tasks
xy)

3.2 Fugaku

With Fugaku’s customized Linux kernel and its compute node’s processors hav-
ing 2 extra cores compared to Ookami, it was a slight challenge creating experi-
ments whose environment matched the conditions set in the Ookami-based exper-
iments. The Fujitsu compiler’s ability to compile with either their traditional
backend and an LLVM backend creates the ability to compare a compiler’s per-
formance with itself. In this section, we will break down and explain our results
on the Fugaku supercomputer comparing results between GNU Compilers, and
the Fujitsu compilers. Per the experiments in Sect. 2, we ran each application 5
times and took the average of their runtimes.

PENNANT. Of all the compilers mentioned in this subsection and in Sect. 3.1,
those from Fujitsu resulted in the longest recorded runtimes for both the
LeblancBig and SedovBig inputs. In particular, the single-threaded runtimes
for both inputs had surprisingly large standard deviations (107 s as opposed to
a fraction of a second). Conversely, both versions of GNU compilers on Fugaku,
when applied to PENNANT, still maintained comparable runtimes to those on
Ookami.

In Fig. 6(a), we noticed that the traditional backend options for the Fujitsu
Compiler took substantially longer runtimes in 1-and 2-thread runs compared
to the LLVM-backend (see Sect. 2.4). Profiling LeblancBig shows that the tra-
ditional Fujitsu compiler backend takes a longer runtime, yet executes a higher
amount of GFLOPS, than the LLVM backend on the LeblancBig input. In par-
ticular, both backends show a better runtime at 24 OpenMP threads – 181 s on
the LLVM backend and 186 s on the traditional backend – than at 48 OpenMP
threads – 233 and 236 s for the LLVM and traditional backends, respectively.
This appears to be caused by the increased communication between each of the

136 B. Michalowicz et al.

23
23

.6

12
21

62
2

32
5

23
0

24
6

18
6 24

0

21
4

23
7

13
09

66
1.

5

35
1

20
3

16
1 19
6.

3

18
1 23

5

21
6.

5

23
3.

4

17
38

88
2

45
2

23
0

15
5

15
5

79 60
.5

53
.8

41
.7

1 2 4 8 12 16 24 32 36 48
0

500

1000

1500

2000

2500

R
un

tim
e

(s
ec

on
ds

)

Fujitsu-Trad/4.3.0
Fujitsu-LLVM/4.3.0
GCC/8.3.1

(a) Compiler Runtime Comparisons

0 10 20 30 40 50
Num Threads

0

10

20

30

40

50

S
pe

ed
up

PENNANT/LeblancBig Rel. Speedup on Fugaku

Fuj-Trad/4.3.0
Fuj-LLVM/4.3.0
GCC/10.2.0

(b) Relative Speedup

14
89

80
5

39
2

29
4.

4

28
2

24
2.

8

28
1

28
6

31
2

16
63

82
6

42
9

25
9.

6

19
8 25

1

22
6 30

3

27
4.

4

30
3

22
38

11
36

57
3

28
9

19
4.

8

19
4.

1

10
0

75 67 51

1 2 4 8 12 16 24 32 36 48
0

500

1000

1500

2000

2500

R
un

tim
e

(s
ec

on
ds

)

Fujitsu-Trad/4.3.0
Fujitsu-LLVM/4.3.0
GCC/10.3.0

(c) Compiler Runtime Comparisons

0 10 20 30 40 50
Num Threads

0

10

20

30

40

50
S

pe
ed

up

PENNANT/SedovBig Rel. Speedup on Fugaku

Fuj-Trad/4.3.0
Fuj-LLVM/4.3.0
GCC/10.2.0

(d) Relative Speedup

Fig. 6. (a)/(b): LeblancBig Input Results on Fugaku, (c)/(d): SedovBig Input Results
on Fugaku; X-axes refer to number of OpenMP threads

CMGs on the A64FX processor, especially as the thread count and number of
CMGs used increases.

Similarly, this results in observed reduced speedup for the Fujitsu compiler,
especially after reaching 12 threads placed in 1 CMG (See Fig. 6(b)).

The GNU compilers across both the Ookami and Fugaku systems allow for
reasonable speedup, and efficiency as well on top of this. All 3 compiler options
first start off with similar trends, but once each compiled binary is run on more
than twelve threads, we see a massive drop in efficiency with the Fujitsu com-
pilers. One reason this may be the case is how the underlying communication
between CMGs and how the Fujitsu compilers generate SVE instructions to
rely more on MPI-based parallelism versus OpenMP/thread-based parallelism,
especially if each process only takes 1 thread.

Similar cases occur with the SedovBig input. Here, we see that 1 CMG
full of threads runs more quickly than 2 or more CMGs full of threads with
LeblancBig, per in Fig. 6(c). The runtime for a single-OpenMP-thread run
with the SedovBig input can take more than 3000 s on the Fujitsu-traditional

Comparing OpenMP Implementations with Applications 137

backend, and over half as long as on the Fujitsu-LLVM backend. Similar trends
in speedup are shown in Fig. 6(d).

In an experiment on Fugaku, we ran the “Fujitsu Instant Performance Pro-
filer” (FIPP) [5] on SedovBig using 1 OpenMP thread, as adding more threads
results in minimal runtime differences between runs of PENNANT compiled by
both Fujitsu backends. Using the LLVM backend results in a shorter runtime
(1662 s) and fewer GFLOPS (1.41) while having a higher bandwidth usage (1.69
GB/s). Conversely, the traditional backend results in nearly twice the runtime
(3108 s), a larger GFLOP value (1.93), but just over half the bandwidth usage
(0.8868 GB/s) of the LLVM-backend’s run. Larger values of OpenMP threads
using PENNANT compiled by either backend begins leveling off/converging once
a user requests more than 12 OpenMP threads for their application, as per
Fig. 6(c).

SWIM. With the Fugaku cluster, two compilers were used to test SWIM’s
capabilities: Fujitsu v4.4.0a and GNU-10.2.1. In contradiction with PENNANT
results mentioned in Sect. 3.2, SWIM has gained a significant runtime improve-
ment with Fujitsu compiler compared with best runtime performance with
Ookami cluster as shown in Fig. 7(a). As for the GNU compiler, the runtime
results are much comparable with runs made on Ookami. Note that the Fujitsu
compilers do not support multiple backends for Fortran.

It is also worth mentioning that memory allocation across multiple
CMGs running for thread parallelism is crucial for optimizing SWIM’s
runtime performance. The environment variable XOS MMM L PAGING POLICY
is set to demand:demand:demanddemand:demand:demand for multiple CMGs
in order to place data near the thread that has first touched it, and
prepage:demand:prepage for a single CMG, as recommended.

51
90

26
12

13
16

67
3

49
4

39
4

28
2

19
8

19
3

19
0

97
0

48
7

29
7

29
8

32
4

24
5

16
5

12
4

11
2

85

1 2 4 8 12 16 24 32 36 48
0

1000

2000

3000

4000

5000

6000

R
un

tim
e

(s
ec

on
ds

)

GCC10.2
Fujitsu/4.40a

(a)

0 10 20 30 40 50
0

10

20

30

40

S
pe

ed
up

GCC10.2
Fujitsu/4.40a

(b)

Fig. 7. (a) SWIM/Fugaku Timing (b) SWIM/Fugaku Relative Speedup

138 B. Michalowicz et al.

Although the Fujitsu compiler has better overall performance, as shown in
Fig. 7(b), the GNU compiler seems to have a greater speed up than the Fujitsu
compiler. GNU runs with 36 threads achieve a 32x speed-up over 1 thread,
while he Fujitsu compiler only obtained 25x speed up with the same thread
difference. The Fugaku-based runs show a drop in relative speedup starting at
8 OpenMP threads before leveling out at 12 threads. Our studies on relative
compiler efficiency have further backed up our results in Fig. 7(b).

On Fugaku, with the Fujitsu Instant Performance Profiler, SWIM has shown
a much better performance than all other compilers that we have tested previ-
ously on Ookami. It has achieved 31.20 GFLOPS with 48 threads, and overall
faster runtimes compared to those made on Ookami. One reason might be the
extreme high SVE operation rate. As shown in the profiling results, a 99.9%
SVE operation rate has been obtained by Fujitsu compiler. Besides the impres-
sive performance results, the rest are similar with Ookami profiling results. Most
of the runtime went into the OpenMP region.

Minimod times are shown for each configuration in Figs. 8(a) (loop xy) and
Fig. 8(b) (tasks xy), with speedups in Fig. 9(a) and (b). Because the traditional
backend for the Fujitsu compiler supports OpenMP up to only version 3.0, it
cannot compile the task-based version of Minimod, whereas the LLVM backend
supports up through the latest OpenMP specification versions, per Figs. 8(b)
and Fig. 9(b).

67
8

37
5

19
7

99

67 51 36 31 31 33

71
6

40
1

21
0

10
6

72 55 40 34 33 39

15
31

81
4

42
8

21
4

14
4

10
9

75 59 53 48

1 2 4 8 12 16 24 32 36 48
0

200

400

600

800

1000

1200

1400

1600

R
un

tim
e

(s
ec

on
ds

)

Fujitsu-Trad/4.3.0
Fujitsu-LLVM/4.3.0
GCC/8.3.1

(a)

71
5

40
8

21
3

10
6

72 55 40 34 34 38

15
34

83
0

43
3

21
5

17
2

12
7

85 65 60 59

1 2 4 8 12 16 24 32 36 48
0

200

400

600

800

1000

1200

1400

1600

R
un

tim
e

(s
ec

on
ds

)

Fujitsu-LLVM/4.3.0
GCC/8.3.1

(b)

Fig. 8. (a) Minimod/Fugaku/timing (loop xy) (b) Minimod/Fugaku/timing (tasks xy)

Comparing OpenMP Implementations with Applications 139

0 10 20 30 40
0

5

10

15

20

25

30
S

pe
ed

up
Fujitsu-Trad/4.3.0
Fujitsu-LLVM/4.3.0
GCC/8.3.1

(a)

0 10 20 30 40 50
0

5

10

15

20

25

30

S
pe

ed
up

Fujitsu-LLVM/4.3.0
GCC/8.3.1

(b)

Fig. 9. (a) Minimod/Fugaku/speedup (loop xy) (b) Minimod/Fugaku/speedup (tasks
xy)

Profiling of the Minimod application on Fugaku is currently in progress.

4 Related Work

In [12], a group from RIKEN reports their preliminary performance analysis of
A64FX compared to the Marvell (Cavium) ThunderX2 (TX2) and Intel Xeon
Skylake (SKL) processors based on 7 HPC applications and benchmarks. Some
of the applications considered use only OpenMP and others use hybrid MPI +
OpenMP for parallelization. The compilers used in this study are the Fujitsu
Compiler 4.2.0 (under development) for A64FX, ARM-HPC Compiler 20.1 for
TX2, and Intel Compiler 19.0.5.281 for SKL.

Another group [8] from EPCC at The University of Edinburgh, reports on
their study of various complex scientific applications and mini-kernel benchmarks
across multiple nodes, as well as on a single node on different production HPC
platforms, which include Fujitsu A64FX processors, 3 Intel Xeon series – E5-2697
v2 (IvyBridge), E5-2695 (Broadwell), and Platinum 8260M (Cascade Lake)–
and Marvell ThunderX2. Different compiler families, including several versions
of some of them, like, Fujitsu, Intel, GCC/GNU, ARM/LLVM, and Cray, were
used in their study. Also, they have considered various MPI implementations
and scientific libraries.

Several recent works evaluated benchmark applications using multiple com-
pilers on the A64FX processor; e.g., [7,14]. However, these works do not focus
on OpenMP.

5 Conclusions and Future Work

In this paper, we have studied and observed the behavior of OpenMP implemen-
tations on the A64FX processor across several applications and several compiler

140 B. Michalowicz et al.

toolchains. We have observed that Cray’s compilers and GNU/LLVM compil-
ers that have support for ARM-based processors appear to scale better with
OpenMP compared to the Fujitsu compilers. We have observed that, while hav-
ing the most optimal performance, the Cray Compilers may fail to compile code
or generate incorrect instructions, such as with the Minimod application, leading
to incorrect results.

Moving forward, we wish to explore more complex OpenMP behavior, includ-
ing different data-sharing attributes and SIMD clauses. In addition, examining
how the Fujitsu compiler toolchain behaves on Ookami will make an interest-
ing comparison between both its structure and that on Fugaku. Another avenue
to explore would be to examine serial versus OpenMP runtimes and analyze
how much of an impact the overhead has in each runtime environment across
compilers.

Acknowledgements. We would like to thank the NSF for supporting the Ookami
cluster, and the ability to research the A64FX processor by Riken and Fujitsu, through
grant OAC 1927880. We would like to thank the Riken Center for Computational
Science for providing us with accounts to use the Fugaku supercomputer and conduct
research on it. We would also like to thank Stony Brook University and the Institute for
Advanced Computational Science for providing the resources to allow us to conduct
our studies on Ookami. Finally, we would like to thank TotalEnergies Exploration
and Production Research and Technologies for their support of experimentation using
MiniMod.

References

1. ARM. Arm forge documentation. https://developer.arm.com/documentation/
101136/2021/Performance-Reports

2. F. Corp. A64fx microarchitecture manual. https://github.com/fujitsu/A64FX/
blob/master/doc/A64FX Microarchitecture Manual en 1.3.pdf

3. H. P. Enterprise. Craypat documentation. https://pubs.cray.com/bundle/HPE
Performance Analysis Tools User Guide S-8014 2012/page/CrayPat Runtime
Environment.html

4. Ferenbaugh, C.R.: Pennant: an unstructured mesh mini-app for advanced architec-
ture research. https://www.osti.gov/biblio/1079561-pennant-unstructured-mesh-
mini-app-advanced-architecture-research

5. Fujitsu: Fujitsu instant performance profiler. https://www.fujitsu.com/global/
about/resources/publications/technicalreview/2020-03/article07.html

6. Fujitsu: Icc: an interconnect controller for the tofu interconnect architecture.
https://www.fujitsu.com/global/Images/20100824hotchips22 tcm100-933454.pdf

7. Graziano, V., Nystrom, D., Pritchard, H., Smith, B., Gravelle, B.: Optimizing a
3D multi-physics continuum mechanics code for the HPE APOLLO 80 system. In:
Cray User Group (CUG) 2021, Virtual, May 2021

8. Jackson, A., Weiland, M., Brown, N., Turner, A., Parsons, M.: Investigating appli-
cations on the A64fx. In: 2020 IEEE International Conference on Cluster Comput-
ing (CLUSTER), Los Alamitos, CA, USA, September 2020, pp. 549–558. IEEE
Computer Society (2020)

https://developer.arm.com/documentation/101136/2021/Performance-Reports
https://developer.arm.com/documentation/101136/2021/Performance-Reports
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.3.pdf
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.3.pdf
https://pubs.cray.com/bundle/HPE_Performance_Analysis_Tools_User_Guide_S-8014_2012/page/CrayPat_Runtime_Environment.html
https://pubs.cray.com/bundle/HPE_Performance_Analysis_Tools_User_Guide_S-8014_2012/page/CrayPat_Runtime_Environment.html
https://pubs.cray.com/bundle/HPE_Performance_Analysis_Tools_User_Guide_S-8014_2012/page/CrayPat_Runtime_Environment.html
https://www.osti.gov/biblio/1079561-pennant-unstructured-mesh-mini-app-advanced-architecture-research
https://www.osti.gov/biblio/1079561-pennant-unstructured-mesh-mini-app-advanced-architecture-research
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article07.html
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article07.html
https://www.fujitsu.com/global/Images/20100824hotchips22_tcm100-933454.pdf

Comparing OpenMP Implementations with Applications 141

9. Meng, J., Atle, A., Calandra, H., Araya-Polo, M.: Minimod: a finite difference
solver for seismic modeling (2020)

10. Michalowicz, B., Raut, E., Kang, Y., Curtis, T., Chapman, B., Oryspayev, D.:
Comparing the behavior of OpenMP implementations with various applications
on two different Fujitsu A64FX platforms. In: Proceedings of the Practice and
Experience in Advanced Research Computing in Evolution Across All Dimensions,
New York, NY, USA. Association for Computing Machinery (2021)

11. NSF. Ookami: a high-productivity path to frontiers of scientific discovery enabled
by exascale system technologies. https://www.nsf.gov/awardsearch/showAward?
AWD ID=1927880

12. Odajima, T., Kodama, Y., Tsuji, M., Matsuda, M., Maruyama, Y., Sato, M.: Pre-
liminary performance evaluation of the Fujitsu A64FX using HPC applications.
In: 2020 IEEE International Conference on Cluster Computing (CLUSTER), pp.
523–530, September 2020

13. Okazaki, R., et al.: Supercomputer Fugaku CPU A64FX realizing high perfor-
mance, high-density packaging, and low power consumption. Fujitsu Technical
Review, November 2020

14. Poenaru, A., Deakin, T., McIntosh-Smith, S., Hammond, S., Younge, A.: An eval-
uation of the a64fx architecture for HPC applications. In: Cray User Group (CUG)
2021, Virtual, May 2021

15. Raut, E., Anderson, J., Araya-Polo, M., Meng, J.: Porting and evaluation of a
distributed task-driven stencil-based application. In: Proceedings of the Twelfth
International Workshop on Programming Models and Applications for Multicores
and Manycores, PMAM ’21, New York, NY, USA. Association for Computing
Machinery (2021)

16. Raut, E., Meng, J., Araya-Polo, M., Chapman, B.: Evaluating performance of
OpenMP tasks in a seismic stencil application. In: Milfeld, K., de Supinski, B.R.,
Koesterke, L., Klinkenberg, J. (eds.) IWOMP 2020. LNCS, vol. 12295, pp. 67–81.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58144-2 5

17. RIKEN. Fugaku project. https://www.r-ccs.riken.jp/en/fugaku/project
18. Sato, M., et al.: Co-design for a64fx manycore processor and “Fugaku”. In: Proceed-

ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2020. IEEE Press (2020)

19. SPEC. Swim benchmark page. https://www.spec.org/cpu2000/CFP2000/171.
swim/docs/171.swim.html

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1927880
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1927880
https://doi.org/10.1007/978-3-030-58144-2_5
https://www.r-ccs.riken.jp/en/fugaku/project
https://www.spec.org/cpu2000/CFP2000/171.swim/docs/171.swim.html
https://www.spec.org/cpu2000/CFP2000/171.swim/docs/171.swim.html

A Case Study of LLVM-Based Analysis
for Optimizing SIMD Code Generation

Joseph Huber1, Weile Wei2(B), Giorgis Georgakoudis3, Johannes Doerfert4,
and Oscar Hernandez1

1 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
{huberjn,oscar}@ornl.gov

2 Lousiana State University, Baton Rouge, LA 70803, USA
wwei9@lsu.edu

3 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
georgakoudis1@llnl.gov

4 Argonne National Laboratory, Lemont, IL 60439, USA
jdoerfert@anl.gov

Abstract. This paper presents a methodology for using LLVM-based
tools to tune the DCA++ (dynamical cluster approximation) applica-
tion that targets the new ARM A64FX processor. The goal is to describe
the changes required for the new architecture and generate efficient sin-
gle instruction/multiple data (SIMD) instructions that target the new
Scalable Vector Extension instruction set. During manual tuning, the
authors used the LLVM tools to improve code parallelization by using
OpenMP SIMD, refactored the code and applied transformation that
enabled SIMD optimizations, and ensured that the correct libraries were
used to achieve optimal performance. By applying these code changes,
code speed was increased by 1.98× and 78 GFlops were achieved on the
A64FX processor. The authors aim to automatize parts of the efforts in
the OpenMP Advisor tool, which is built on top of existing and newly
introduced LLVM tooling.

Keywords: OpenMP · SIMD · Compilers · Feedback · LLVM · HPC
tools

1 Introduction

Program analysis tools are important in helping users understand, improve, and
port their applications to new platforms. This is crucial for applications that
need tuning and significant code restructuring to exploit new types of hardware
devices, such as single instruction/multiple data (SIMD) units and accelerators.
Compiler-based tools are crucially important for identifying opportunities to
improve application codes as the compiler generates code for different architec-
tures. In particular, the LLVM compiler is an open-source compiler that provides

c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 142–155, 2021.
https://doi.org/10.1007/978-3-030-85262-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-85262-7_10

A Case Study of LLVM-Based Analysis 143

a set of tools for the static analysis and feedback of application code. Static pro-
gram analysis information can be combined with dynamic information (profile-
based) to filter the large amount of information produced by the compiler so
that users can focus on the most frequently executed regions of their code.

This paper presents a methodology for using LLVM-based tools to tune an
application to generate efficient SIMD instructions that target the new ARM
A64FX processor, as well as describes what is required to achieve good perfor-
mance.

2 Case Study: Porting DCA++ to Wombat

This section describes the authors’ experiences in porting the DCA++ (dynam-
ical cluster approximation) application to the Wombat1 cluster, an ARM-based
heterogeneous cluster at Oak Ridge National Laboratory. This section presents
a methodology for using LLVM-based tools to tune the DCA++ application
targeting the ARM A64FX and ThunderX2 processors. The goal is to describe
what changes are required for the new architecture and generate efficient SIMD
instructions that target the new Scalable Vector Extension (SVE) instruction
set available in the A64FX processors based on LLVM-based tools information.

2.1 Evaluation Environment

The case study used the Wombat test bed with 24 compute nodes. Sixteen
compute nodes are based on the Fujitsu A64FX processor with SVE and a theo-
retical peak performance of 3.3792 TFlops. Each A64FX node has one processor
socket with 32 GB of second-generation High-Bandwidth Memory (HBM2). The
A64FX-equipped nodes do not have additional Double Data Rate (DDR) mem-
ory. Eight compute nodes have two ThunderX2 processors with NEON vector
instructions and a theoretical peak performance of 560 GFlops. The ThunderX2
nodes have 256 GB of DDR4 RAM and a 480 GB solid-state drive for node-
local storage. All nodes are connected with Enhanced Data Rate InfiniBand
(100 Gbit/s). The compilers on the system are the ARM 20.3 compilers and the
Clang upstream compiler, which is based on Clang 12. The scientific libraries
available on Wombat are the ARM Performance Libraries (APL) version 20.3.

2.2 DCA++

Quantum Monte Carlo (QMC) solver applications are popular tools essential to
the US Department of Energy-supported scientific software. This paper studies
one cutting-edge QMC application called the DCA++ algorithm. DCA++ [6]
implements quantum cluster algorithms to solve quantum many-body problems
in condensed matter physics. DCA++ is a highly scalable and performant scien-
tific software written in modern C++ and has been ported to various high-
performance computing architectures, including IBM Power9, x86 64, Thun-
derX2, and ARM A64FX [13]. The DCA++ software currently integrates three
1 Wombat: www.olcf.ornl.gov/olcf-resources/compute-systems/wombat/.

www.olcf.ornl.gov/olcf-resources/compute-systems/wombat/

144 J. Huber et al.

different programming models—message passing interface (MPI), Compute Uni-
fied Device Architecture (CUDA), and High Performance ParalleX (HPX)/C++
threading—together with numerical libraries (e.g., Basic Linear Algebra Subpro-
grams [BLAS], Linear Algebra Package [LAPACK], and MAGMA) to expose the
parallel computation structure.

Wei et al. [13] reported that DCA++ with the HPX run time system [10] has
produced a 20% run time speedup over the one with C++ standard threading
support. The speedup is primarily due to the faster thread context switching and
reduced scheduler synchronization overheads in the HPX run time. Moreover,
Autonomic Performance Environment for Exascale (APEX) [8] is an in situ pro-
filing and adaptive tuning framework to the HPX run time system that can cap-
ture operating system and hardware system performance data through various
interfaces, such as Performance Application Programming Interface (PAPI) [12].
Because APEX is highly integrated into the HPX run time, for HPX-supported
applications, users can easily capture PAPI counter information (e.g., level 2 data
cache misses, vector/SIMD instructions, floating point instructions) through
HPX function annotation. The overhead introduced by APEX profiling is as
low as ∼1% [5] compared with the overall application run time.

In DCA++, the QMC solver is the most computation-intensive unit that
models strongly correlated electron systems [13]. Computation on the QMC
solver is parallelized by using a multithreading scheme that comprises walker
(i.e., producer) and accumulator (i.e., consumer) tasks. Each task runs on an
independent thread. There are multiple walkers running concurrently. Each
walker is responsible for a Monte Carlo (MC) update (sampling from the Markov
chain), and then an accumulator is popped from the head of the accumulator
waiting queue to compute an MC measurement from the walker. When each
accumulator finishes its accumulation measurement, it is pushed back to the
end of the queue. The walker-accumulator synchronization is managed by the
synchronization primitives mutex and conditional variable.

2.3 Baseline Performance

The following experiments compare DCA++’s performance on Wombat by
using its A64FX and ThunderX2 nodes. The performance is measured using
48 accumulators and 48 walkers and using 100,000 measurements, which is
a representative scientific simulation case in production. On A64FX, DCA++
is built with two different configuration settings: SVE vectorization and SVE-
disabled. The SVE vectorization version of DCA++ means that DCA++ is
built with SVE compiler flags enabled and vectorized loops, and it uses the APL
optimized for SVE (i.e., LAPACK, BLAS, Fastest Fourier Transform in the
West [FFTW]). The SVE compiler flags are set to “-DNDEBUG -fsimdmath
-fopenmp -O3 -mcpu=a64fx” The SVE-disabled version means that DCA++ is
built with original DCA++ code and open-source scientific libraries, including
Netlib-LAPACK and FFTW. Similarly, on ThunderX2, DCA++ is built with
two different configurations: with NEON and NEON disabled.

A Case Study of LLVM-Based Analysis 145

Figure 1 shows DCA++ execution time on A64FX and ThunderX2 architec-
tures. On A64FX, the SVE vectorization version of DCA++ performs ∼2× faster
than the SVE-disabled version. On ThunderX2, the NEON version of DCA++ is
observed to be ∼1.66× faster than the NEON-disabled version. Noticeably, the
SVE vectorization version of DCA++ on A64FX has ∼3.3× speedup over the
NEON version on ThunderX2. Meanwhile, the NEON version on ThunderX2 is
measured to have ∼27 GFlops, and the SVE vectorization version of DCA++
on A64FX reached ∼78 GFlops (∼2.8×).

Thes results show the performance gains of DCA++ due to the peak perfor-
mance improvements of the A64FX processor (e.g., 500 GFlops for ThunderX2
vs. 2.5 TFlops for A64FX).

vectorization
walltime (seconds) ±
standard deviation

speedup Gflop/s

no 488.42±3.09 - 17
yes 246.98±0.48 1.98 78
no 1336.61±178.09 - 14
yes 805.53±24.06 1.66 27

A64fx

ThunderX2

Fig. 1. DCA++ execution time.

Figure 2 shows the breakdown of DCA++ execution time into four categories:
application, scientific libraries, HPX run time, and other activities. Each cate-
gory only considers functions that have more than 1% overhead shown in the
final profiling report generated from perf, a Linux built-in performance profil-
ing tool. The application category includes custom modules developed in the
DCA++ source code. The HPX run time category represents necessary schedul-
ing and coordination efforts in HPX threads manager. The scientific libraries
category captures routines from external numerical libraries, such as BLAS,
LAPACK, FFTW, and math routines. The other activities category summarizes
all other functions that have less than 1% overhead in the final profiling report.

Several observations were made from the timing breakdown shown in Fig. 2.

1. With SVE vectorization or NEON optimization, the dominant percentage of
the overall execution time is shifted from the external scientific libraries to
the application source code. For example, on A64FX, the percentage of appli-
cation time in the SVE-disabled vectorization version of DCA++ is 26%,
whereas the percentage of application time in the SVE version is 57%. A
similar percentage shift is also observed on ThunderX2 comparisons. In other
words, with APL (SVE vectorization on A64FX or NEON optimization on
ThunderX2), less time is spent on scientific libraries because APL are partic-
ularly optimized on targeting platforms.

2. The HPX run time library imposes minimal overhead to the overall program
execution. The overhead is primarily due to a lack of sufficient parallelism
from the application so that some HPX worker threads in the kernel level are
spinning and waiting for user-level tasks.

146 J. Huber et al.

Fig. 2. DCA++ timing breakdown.

Accumulator % total L2_DCM VEC_INS TOT_CYC FP_INS
no SVE 30.86 9.29E+09 6.05E+11 1.29E+13 2.73E+12

standard deviation 0.30 4.27E+07 0.00E+00 2.24E+10 0.00E+00
SVE vectorization 51.11 9.88E+09 6.53E+10 1.09E+13 2.62E+12
standard deviation 0.17 3.59E+07 0.00E+00 0.00E+00 0.00E+00

Walker % total L2_DCM VEC_INS TOT_CYC FP_INS
no SVE 62.15 6.15E+10 3.99E+12 2.61E+13 8.37E+11

standard deviation 0.61 2.03E+08 0.00E+00 4.70E+10 0.00E+00
SVE vectorization 40.14 6.27E+10 5.05E+10 8.56E+12 3.45E+11
standard deviation 0.14 1.11E+08 0.00E+00 8.87E+09 0.00E+00

Total (Acc. + Walker) % total L2_DCM VEC_INS TOT_CYC FP_INS
no SVE 93.00 7.08E+10 4.60E+12 3.90E+13 3.57E+12

standard deviation 0.90 2.46E+08 0.00E+00 6.94E+10 0.00E+00
SVE vectorization 91.25 7.26E+10 1.16E+11 1.95E+13 2.97E+12
standard deviation 0.31 1.46E+08 0.00E+00 8.87E+09 0.00E+00

Fig. 3. PAPI counter for DCA++ runs on A64FX.

A Case Study of LLVM-Based Analysis 147

Further investigation using hardware performance counters is shown in Fig. 3.
Here, hpx::annotated function() is used to wrap accumulator and walker
tasks so that their activities (i.e., timing information and PAPI counters) can
be distinguished in the final profiling report generated from the HPX-APEX
profiling tool. Figure 3 shows that the total execution time of accumulator and
walker takes the majority of the overall program execution time (∼93.00% in
the SVE-disabled version and ∼91.25% in SVE vectorization version). Several
observations were made from Fig. 3.

1. The SVE-disabled version of DCA++ on A64FX has nearly ∼40× higher
VEC INC, 2× higher TOT CYC, and 1.2× higher FP INS than the SVE vec-
torization version, where VEC INC is vector/SIMD instructions, TOT CYC
is total cycles, and FP INC is floating point instructions. The authors noticed
that by using the optimized libraries, the application uses less vector and
floating point SVE instructions. Because SVE has wider 512 bit width, fewer
vector instructions are needed in the computation than NEON, which has
128 bit width. Also, the SVE has a more powerful instruction set that uses
fewer instructions for the same operation.

2. The L2 DCM (L2 data cache misses) does not change with the SVE optimized
version because the SVE optimization does not impact overall memory access
patterns. Access to HBM2 remained constant in both versions.

3. Using SVE vectorization on DCA++ shifts timing percentages between
accumulator and walker in overall program execution. To perform efficient
matrix-related operations, the implementation of walker extensively uses
DGEMM routines, which are provided by the scientific libraries. The timing
percentage of walker is 62.15% with the SVE-disabled version of DCA++ in
overall program execution and is reduced to 40.14% with the SVE vectoriza-
tion version. The percentage reduction of walker is similar to the percentage
reduction of scientific libraries observed in Fig. 2.

The results show that to further improve the DCA++ application, the focus
must be on tuning the application source code, particularly the accumulator
code, to determine which loops need further optimization and which were suc-
cessfully vectorized by the compiler. This requires significant interaction with
the LLVM tools to understand the application hot spots and the opportunities
for SVE optimizations.

3 An LLVM Tool Methodology to Generate Efficient
Vectorization

A64FX performance is highly dependent on how well the source can be mapped
to SVE instructions. It is important to determine which application loops are
not being vectorized and their impact on the application’s overall performance.
The ARM C/C++ compiler is based on the LLVM/Clang compiler, which is
also the basis for the authors’ exploration and automation toward vectorizing
the most important loops in an application.

148 J. Huber et al.

Like most modern compilers, LLVM/Clang and its derivatives support pro-
file guided optimization (PGO). The idea is that the compiler inserts profiling
instructions into the target binary to collect information when the application is
run. During application shutdown, profiling information is stored on the disk for
later use. When the application is recompiled in the future, the collected profil-
ing information is used to drive heuristics (e.g., to determine a suitable unroll
count for loops). Such profiling also allows the compiler to approximate how
much time was spent in a certain portion of code, also referred to as code hot-
ness. The latter makes PGO especially interesting to filter optimization remarks
because it allows users to only view remarks emitted for hot code regions. Thus,
with PGO, users can be guided toward the loops that would benefit the most
from vectorization and avoid overloading them with a plethora of uninteresting
remarks.

The authors manually analyzed several loops in the DCA++ application
by using the aforementioned method described to determine what was hinder-
ing loop vectorization. Some loops required a simple change in vectorization
flags, and others required user intervention (e.g., vectorization directives, such
as OpenMP SIMD) to assist the compiler. The authors also identified loops that
required transformations to make the vectorization more efficient. The following
sections present a brief discussion for four hot loops that the compiler was unable
to vectorize without user intervention.

3.1 OpenMP SIMD

When optimizing any loops, the compiler’s vectorization pass must preserve
the semantics of the original source code. This usually requires static analyses
to verify that the transformation is legal. However, it is not uncommon for a
transformation to be correct but unable to be statically verified by the compiler.
Since OpenMP 4.0, OpenMP has added support for the SIMD directive, which
provides a cross-platform method for statically asserting information about the
program’s semantics to the compiler’s vectorization pass [7]. In DCA++, various
loops require additional information to be successfully vectorized.

Figure 4 shows a classical reduction loop. Because x val is a floating point
value, any reordering of the iterations (e.g., as part of vectorization) would
break strict Institute of Electrical and Electronics Engineers (IEEE) floating
point compliance and might introduce errors in the result. By default, LLVM/-
Clang will not vectorize the loop but will instead emit a remark (lower part)
that explains how ffast-math or vectorization pragmas can be used to overwrite
the IEEE floating point semantics. The Clang pragmas are a less feature-rich
variant of the cross-platform OpenMP SIMD directives, but both explicitly tell
the compiler to allow vector execution for a loop. In the OpenMP variant, users
should make the parallel reduction explicit. Additionally, the authors used the
aligned clause to pass alignment information to the compiler, which can lead to
improved performance due to specialized memory instructions.

In line 6 of Fig. 5, there is a noncontinuous memory load—a gather. ARM’s
SVE supports fast gathering operations; however, the compiler cannot vectorize

A Case Study of LLVM-Based Analysis 149

1 #pragma omp simd reduction(−:x val) aligned(x val, G ptr : 64)
2 for (int i = 0; i < j; i++)
3 x val −= x ptr[i] ∗ G ptr[i];

remark: loop not vectorized : cannot prove it is safe to reorder floating−point
operations; allow reordering by specifying ’#pragma clang loop
vectorize(enable)’ before the loop or by providing the compiler option
’−ffast−math’

Fig. 4. A loop performing a parallel reduction that is not vectorized automatically.

this loop without manual intervention because the accessed arrays M ij , M,
config left , and config right might alias and hence overlap. In these situations,
the compiler is often able to version the loop and generate a vectorized variant
guarded by a run time alias check to verify that the accessed ranges of the
arrays do not overlap at run time. However, the support for such run time alias
checks in LLVM/Clang is limited to the case in which the accessed bounds are
known statically [1]. Because the index into the M array is based on the values
loaded from the configuration arrays, the access range cannot be bound statically.
The compiler remark shown below the loop nest summarizes this discussion in
a way that is difficult or impossible for application developers to understand.
Using OpenMP SIMD effectively tells the compiler that there are no overlapping
accesses, allowing the loop to be vectorized. Care must be taken to ensure that
no aliasing actually occurs, otherwise this will result in incorrect results.

1 for (int j = start index right [orb j]; j < end index right [orb j]; ++j) {
2 const int out j = j − start index right [orb j];
3 #pragma omp simd
4 for (int i = start index left [orb i]; i < end index left [orb i]; ++i) {
5 const int out i = i − start index left [orb i];
6 M ij (out i , out j) = M(config left [i]. idx, config right [j]. idx) ;
7 }
8 }

remark: loop not vectorized : Unknown array bounds

Fig. 5. A loop performing a memory gather that requires OpenMP SIMD to be vec-
torized by the ARM compiler.

3.2 Using the Correct Compiler Flags

Some loops require additional compiler flags to be vectorized. The code shown
in Fig. 6 has two run time calls, line 5 and 6, which prevent the compiler from

150 J. Huber et al.

automatically vectorizing it. A function call usually requires an explicit vector
version of the function and compiler support to allow vectorized execution. The
ARM compiler provides an optimized math library that includes vector variants
of common math functions. Users must explicitly enable such a vector library
because it will disturb the precision of the result, similar to the floating point
reordering. The ARM compiler provides the fsimdmath option to use its perfor-
mance libraries, whereas standard Clang requires fveclib to be set to the desired
vectorized library. ffast-math or fno-math-errno will allow the compiler to exe-
cute the loop out of order, but no vectorized math library is used. This means
that the vector lanes are effectively unpacked before the call, and the math
function is executed once per vector lane.

Another issue is that the application uses a custom matrix class that per-
forms bounds checking by using assertions in the overloaded access operators.
Although assertions are a good software engineering practice, their “complex”
semantics must be preserved by the compiler. The problem is that no code is
executed after a violated assertion. Thus, if assertions are enabled and present in
a loop, the compiler must verify that the assertion cannot trigger to execute any
side effects succeeding the assertion (e.g., from the next iteration). To disable
assertions completely, NDEBUG can be defined during compilation; however
this will cause a tension between “debug” and “release” builds that is often not
desirable. For developers to identify issues that stem from assertions and other
errors in handling code, the authors added a new remark to the LLVM vector-
izer, which is shown below the code. For these experiments, the authors disabled
assertions, provided a vectorized math library, and added OpenMP SIMD to
allow vectorization, even in the presence of possibly aliasing accesses.

1 for (int j = 0; j < n v; ++j) {
2 #pragma omp simd
3 for (int i = 0; i < n w; ++i) {
4 const ScalarType x = configuration[j].get tau() ∗ w [i];
5 T [0](i , j) = std::cos(x);
6 T [1](i , j) = std:: sin(x);
7 }
8 }

remark: loop not vectorized : loop exit block contains control flow that does not
return
remark: loop not vectorized : library call cannot be vectorized. Try compiling
with −fno−math−errno, −ffast−math, or similar flags

Fig. 6. A code block using the math library functions cos and sin.

A Case Study of LLVM-Based Analysis 151

3.3 Loop Transformations

The loop in Fig. 7 contains gathers from memory at lines 11 and 18. More impor-
tantly, the code uses a column-major layout for all its matrices while this loop
iterates across a row. This will require expensive scattering operations to dis-
tribute the stores to discontinuous memory addresses. This loop can be trans-
formed to better exploit SIMD parallelism. Each iteration of this loop is inde-
pendent, and the matrices are guaranteed to be square in the code, so this loop
can safely be transposed to improve memory accesses. This transformation will
also improve performance without vectorizing the loop.

1 for (int i = 0; i < Gamma.Rows(); i++) {
2 for (int j = 0; j < Gamma.Cols(); j++) {
3 int spin idx i = random vertex vector[i];
4 int spin idx j = random vertex vector[j];
5
6 if (spin idx j < vertex index) {
7 Real delta = (spin idx i == spin idx j)

.1?8
;.0:9

10 Real N ij = N(spin idx i, spin idx j) ;
11 Gamma(i, j) =
12 (N ij ∗ exp V[j] − delta) /
13 (exp V[j] − 1.);
14 } else
15 Gamma(i, j) = G precomputed(
16 spin idx i ,
17 spin idx j − vertex index);
18 if (i == j) {
19 Real gamma k = exp delta V[j];
20 Gamma(i, j) −=
21 (gamma k) / (gamma k − 1.);
22 }
23 }
24 }

for (int j = 0; j < Gamma.Cols(); j++) {
#pragma omp simd

for (int i = 0; i < Gamma.Rows(); i++) {
int spin idx i = random vertex vector[i];
int spin idx j = random vertex vector[j];

if (spin idx j < vertex index) {
Real delta = (spin idx i == spin idx j)

? 1.
: 0.;

Real N ij = N(spin idx i, spin idx j) ;
Gamma(i, j) =

(N ij ∗ exp V[j] − delta) /
(exp V[j] − 1.);

} else
Gamma(i, j) = G precomputed(

spin idx i ,
spin idx j − vertex index);

}

Real gamma k = exp delta V[j];
Gamma(j, j) −=

(gamma k) / (gamma k − 1.);
}

remark: loop not vectorized : control flow cannot be substituted for a select
remark: loop not vectorized : cannot identify array bounds

Fig. 7. A loop requiring a source transformation and OpenMP SIMD (left) and its
transformed version (right).

This loop contains conditional expressions that must be transformed into
masks to be vectorized. This requires calculating the result of each branch and
conditionally moving it into the final register by using a mask. In this case, the
true condition of the loop at line 6 is much more computationally expensive than
the false condition. If the result was not needed, then this will be calculated at
each iteration of the loop, only to be thrown away. This problem is even worse
for the final update across the diagonal at line 17, which will only be needed once
every iteration of the inner loop but calculated every iteration. This conditional
update can be hoisted from the loop to improve performance significantly.

Another issue is the division at line 14. This could cause a division-by-zero
error that can block vectorization if regular error handling semantics are main-
tained. This can be disabled with fast math, but in some cases, the compiler

152 J. Huber et al.

is able to vectorize it by using masked division instructions. This would be a
good application of the assume directive added in OpenMP 5.1 to assert to the
compiler that the division will never cause an error.

Fig. 8. The loops in Figs. 6, 5, 7, and 4, respectively, before and after the barriers to
SVE execution were remedied. Performance is measured as the total time spent by all
the threads in a run using 24 accumulators/walker threads over 100, 000 measurements.

3.4 Results

The overall impact of these transformations is shown in Fig. 8, which shows a
significant speedup in most cases. The loop in Fig. 6 had the largest improvement
when using ARM’s vector math support. The reduction loop in Fig. 4 yielded no
improvement. Upon further investigation, this was because the loop’s trip count
was very small in the average case, so the majority of the time was spent doing
the final reduction, and work was rarely done in parallel. The other loops saw
reasonable improvements, but their performance was limited by the gathering
instructions required to vectorize them.

4 Automating the Process: The OpenMP Advisor

It is unrealistic but unfortunately still common practice to optimize code and add
support for new platforms and features by manually inspecting and modifying
the application. Given the increasing complexity when it comes to hardware and
the requirement to support multiple heterogeneous platforms simultaneously, the
authors must rethink their software engineering practices to ensure that the code
is not only correct but also performant and portable. To automate this manual
process and boost programmers’ productivity, the authors began developing the
OpenMP Advisor. Based on the portable OpenMP directive language, we hope
to evolve the OpenMP Advisor over time into a valuable software engineering
tool by using and extending LLVM capabilities. During the porting effort of the

A Case Study of LLVM-Based Analysis 153

DCA++ application described here, the authors experienced various issues that
require interpretation to derive actionable advice. Using their experience, the
authors began automating the parts of the process and improving the compiler
remarks that were missing or misleading. As a result, the OpenMP Advisor the
authors develop as part of the LLVM compiler framework will use optimiza-
tion remarks from multiple optimization passes to report the most performance-
critical problems in the code based on the available profiling data.

5 Related Work

There are several other tools that analyze source code or provide support for par-
allelization but with limited support that automatically inserts SIMD directives
in the code. These include: CAPO [9] for automatic OpenMP work-sharing direc-
tives generation, which supports Fortran 77 and some F90 extensions; Appen-
tra’s Parallware [2], which focuses on parallelizing C/C++ applications by using
OpenMP and OpenACC for multicores and accelerators; and Cray Reveal [4],
which helps autoscope OpenMP variables and generate OpenMP work-sharing
for Fortran and C/C++ for multicore and accelerators. Intel Inspector focuses on
OpenMP semantic checking for data race detection. Foresys [11] and the Dragon
Analysis tool [3] are legacy tools that supported the maintenance of Fortran code
and help with parallelization with OpenMP.

6 Conclusion

Porting the DCA++ application to the A64FX processor requires the use of opti-
mized scientific libraries and vectorizing the application hot spots. This process
can be overwhelming to users, and tools are needed to automate this process.
This work shows that by using LLVM tools, users can easily detect hot spots,
determine why loops are not vectorized, and correct the issues by applying the
correct compiler flags, transforming the code, or applying OpenMP directives.

Currently, authors are working an OpenMP Advisor tool that is built on top
of existing and newly introduced LLVM tooling to automate this process. Ulti-
mately, the authors want to enable application developers to navigate and handle
compiler-generated information productively. Optimization reports should pin-
point important opportunities to tune the code (e.g., non-vectorized loops) and
simultaneously provide sufficient information and suggestions to allow informed
decisions without elaborate studies of compiler and programming language the-
ory. The authors believe that tools can recommend portable annotations, such
as OpenMP SIMD directives, when they inform users about the requirements
for correctness. Furthermore, compiler analysis and optimizations can directly
target the recently proposed OpenMP assume directive to request user feed-
back. In other words, OpenMP assume directives and the authors’ implementa-
tion in the LLVM compiler will enable analyses and transformations to request
high-level information from users naturally. The OpenMP Advisor will improve
communication in the other direction to present users with important requests

154 J. Huber et al.

and remarks, together with information and examples that translate “compiler
language” to “application language.”

Acknowledgment. The authors would like to thank Manuel Arenaz (Appentra Solu-
tions), Hartmut Kaiser (Louisiana State University), and Kevin Huck (University of
Oregon) for their guidance and feedback on this work.

This work was supported by the Scientific Discovery through Advanced Computing
(SciDAC) program funded by US Department of Energy, Office of Science, Advanced
Scientific Computing Research (ASCR) and Basic Energy Sciences (BES) Division of
Materials Sciences and Engineering. This research was also supported by the Exas-
cale Computing Project (17-SC-20-SC), a collaborative effort of the US Department
of Energy Office of Science and the National Nuclear Security Administration, in par-
ticular its subproject on Scaling OpenMP with LLVM for Exascale performance and
portability (SOLLVE).

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract
DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government
retains and the publisher, by accepting the article for publication, acknowledges that
the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or allow others to do so, for
US government purposes. DOE will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan).

This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
(LLNL-CONF-819815).

References

1. Alves, P., et al.: Runtime pointer disambiguation. In: Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2015, pp. 589–606. Association for
Computing Machinery, New York (2015)

2. Arenaz, M., Martorell, X.: Parallelware tools: an experimental evaluation on
POWER systems. In: Weiland, M., Juckeland, G., Alam, S., Jagode, H. (eds.) ISC
High Performance 2019. LNCS, vol. 11887, pp. 352–360. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34356-9 27

3. Chapman, B., et al.: Dragon: an open64-based interactive program analysis tool
for large applications. In: Proceedings of the Fourth International Conference on
Parallel and Distributed Computing, Applications and Technologies, pp. 792–796
(2003)

4. DeRose, L., Poxon, H., Beyer, J., Hart, A.: A high level programming environment
for accelerator-based systems. Procedia Comput. Sci. 29, 1480–1490 (2014). 2014
International Conference on Computational Science

5. Diehl, P., et al.: Performance measurements within asynchronous task-based run-
time systems: a double white dwarf merger as an application (2021)

6. Hähner, U.R., et al.: DCA++: a software framework to solve correlated electron
problems with modern quantum cluster methods. Comput. Phys. Commun. 246,
106709 (2020)

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-030-34356-9_27

A Case Study of LLVM-Based Analysis 155

7. Huber, J.N., Hernandez, O.R., Lopez, M.G.: Effective vectorization with OpenMP
4.5, March 2017

8. Huck, K.A., et al.: An autonomic performance environment for exascale. Super-
comput. Front. Innov. 2(3), 49–66 (2015)

9. Ierotheou, C.S., Jin, H., Matthews, G., Johnson, S.P., Hood, R.: Generating
OpenMP code using an interactive parallelization environment. Parallel Comput.
31(10), 999–1012 (2005). OpenMP

10. Kaiser, H., et al.: HPX - the C++ standard library for parallelism and concurrency.
J. Open Source Softw. 5(53), 2352 (2020)

11. Pazat, J.-L.: Tools for high performance FORTRAN: a survey. In: Perrin, G.-R.,
Darte, A. (eds.) The Data Parallel Programming Model. LNCS, vol. 1132, pp.
134–158. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61736-1 46

12. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance data with
PAPI-C. In: Müller, M., Resch, M., Schulz, A., Nagel, W. (eds.) Tools for High
Performance Computing 2009, pp. 157–173. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11261-4 11

13. Wei, W., Chatterjee, A., Huck, K., Hernandez, O., Kaiser, H.: Performance analysis
of a quantum Monte Carlo application on multiple hardware architectures using
the HPX runtime. In: 2020 IEEE/ACM 11th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems (ScalA), pp. 77–84. IEEE (2020)

https://doi.org/10.1007/3-540-61736-1_46
https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1007/978-3-642-11261-4_11

Heterogenous Computing and Memory

Experience Report: Writing a Portable
GPU Runtime with OpenMP 5.1

Shilei Tian1(B) , Jon Chesterfield3 , Johannes Doerfert2 ,
and Barbara Chapman1

1 Department of Computer Science, Stony Brook University, Stony Brook, USA
{shilei.tian,barbara.chapman}@stonybrook.edu

2 Mathematics and Computer Science, Argonne National Laboratory, Lemont, USA
jdoerfert@anl.gov

3 AMD, Milton Keynes, UK

Abstract. GPU runtimes are historically implemented in CUDA or
other vendor specific languages dedicated to GPU programming. In this
work we show that OpenMP 5.1, with minor compiler extensions, is
capable of replacing existing solutions without a performance penalty.
The result is a performant and portable GPU runtime that can be com-
piled with LLVM/Clang to Nvidia and AMD GPUs without the need for
CUDA or HIP during its development and compilation.

While we tried to be OpenMP compliant, we identified the need
for compiler extensions to achieve the CUDA performance with our
OpenMP runtime. We hope that future versions of OpenMP adopt
our extensions to make device programming in OpenMP also portable
across compilers, not only across execution platforms.

The library we ported to OpenMP is the OpenMP device runtime
that provides OpenMP functionality on the GPU. This work opens the
door for shipping OpenMP offloading with a Linux distribution’s LLVM
package as the package manager would not need a vendor SDK to build
the compiler and runtimes. Furthermore, our OpenMP device runtime
can support a new GPU target through the use of a few compiler intrin-
sics rather than requiring a reimplementation of the entire runtime.

Keywords: OpenMP · LLVM · Portability · Target offloading ·
Runtimes · Accelerator

1 Introduction

In this paper, we describe how we ported the LLVM OpenMP device runtime
library to OpenMP 5.1 using only minor extensions not available in the stan-
dard. The OpenMP device runtime provides the OpenMP functionalities to
the user and implementation code on the device, which in this context means
on the GPU. As an example, it provides the OpenMP API routines as well as
routines utilized by the compiler e.g., for worksharing loops.

c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 159–169, 2021.
https://doi.org/10.1007/978-3-030-85262-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_11&domain=pdf
http://orcid.org/0000-0001-6468-6839
http://orcid.org/0000-0002-8546-2014
http://orcid.org/0000-0001-7870-8963
http://orcid.org/0000-0001-8449-8579
https://doi.org/10.1007/978-3-030-85262-7_11

160 S. Tian et al.

Our work replaced the original LLVM OpenMP device runtime implemented
in CUDA to allow for code reusibility between different targets, e.g. AMD and
Nvidia. It further lowers the bar to entry for future targets that only need to
provide a few target specific intrinsics and minimal glue code.

The OpenMP device runtime library can now be shipped with pre-built
LLVM packages as they only need LLVM/Clang to build it; neither a target
device nor vendor SDKs are required, which lowers the barrier to entry for
OpenMP offloading. This work is a proof of concept for writing device run-
time libraries in OpenMP, with identical functionality and performance to that
available from CUDA or HIP compiled with the same LLVM version.

The remainder of the paper is organized as follows. We discuss background
and motivation in Sect. 2. Section 3 presents our approach, which is followed by
an evaluation in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Background

When compiling from one language to another, there are usually constructs that
are straightforward in the former and complicated or verbose in the latter. For
example, a single OpenMP construct #pragma omp parallel for is lowered
into a non-trivial amount of newly introduced code in the application, including
calls into a runtime that provides certain functionality, like dividing loop iter-
ations. In this work, the input is OpenMP target offloading code, that is the
OpenMP target directive and the associated code, and the output is ultimately
Nvidia’s PTX or AMD’s GCN assembler.

2.1 Device Runtime Library

The LLVM OpenMP device runtime library contains the various functions the
compiler needs to implement OpenMP semantics when the target is an Nvidia
or AMD GPU. The original implementation in LLVM was in CUDA [8], compiled
with Nvidia’s NVCC to PTX assembler which was linked with the application
code to yield a complete program. The source was later adapted to compile
alternatively as HIP, which is close enough to CUDA syntax for the differences to
be worked around with macros. Prior to this work the device runtime was hence
comprised of sources in a common and target dependent part. In order to let the
target dependent compiler recognize the code, target dependent keywords (such
as __device__ and __shared__ in CUDA) are replaced with macros (DEVICE
and SHARED), and the header where these macros are defined will be included
accordingly depending on the target. The basic idea is visualized in Listing 1.

// Common part
DEVICE void *__kmpc_alloc_shared(uint64_t bytes);
SHARED int shared_var;
// CUDA header
#define DEVICE __device__
#define SHARED __shared__

Experience Report: Writing a Portable GPU Runtime with OpenMP 5.1 161

// AMDGCN header
#define DEVICE __attribute__ ((device))
#define SHARED __attribute__ ((shared))

Listing 1. Macros in current device runtime.

This strategy works. For Nvidia offloading the source is compiled as CUDA,
for AMDGPU offloading it is compiled as HIP. Both produce LLVM bitcode
but with different final targets, Nvidia’s PTX and AMD’s GCN respectively.
However, if a programming model does not adequately resemble CUDA, such as
OpenCL or Intel’s DPC++ [3], the approach will become less straight forward.

What’s more, this setup requires vendor SDKs (such as CUDA Toolkit or
ROCm Developer Tools) to compile the device runtime, which creates a barrier
for the package managers of Linux distributions. In practice that means the
LLVM OpenMP installed from Linux distributions does not support offloading
out of the box because the package would require a dependence on the CUDA
or ROCm package, among other things.

2.2 Compilation Flow of OpenMP Target Offloading in
LLVM/Clang

The compilation of an OpenMP program with target offloading directives con-
tains the following two passes (as shown in Fig. 1):

Host Code Compilation. This pass includes the regular compilation of code
for the host and OpenMP offloading code recognition as preparation for the
second pass. Offloading regions are replaced by calls to the corresponding
host runtime library functions (e.g. __tgt_target for the directive target
in LLVM OpenMP) with suitable arguments, such as the kernel function
identifier, base pointers of each captured variables and the number of kernel
function arguments. In addition, a fallback host version of the kernel function
will be emitted in case target offloading fails at runtime.

Device Code Compilation. This pass utilizes the recognized OpenMP target
offload regions, as well as related functions and captured variables, and then
emits target dependent device code. This includes one entry kernel function
per target region, global variables (potentially in different address spaces),
and device functions, as well as some target dependent metadata. As part of
this compilation the OpenMP device runtime library is linked into the user
code as an LLVM bitcode library (dev.rtl.bc in the Fig. 1).

In addition to the target construct (as well as its combined variants), OpenMP
provides the declare target directive which specifies that variables and func-
tions are mapped onto a target device, and should hence be usable in device
code. The declare variant directive can be used to specify a context, e.g., the
compilation for a specific target, in which a specialized function variant should
replace the base version.

162 S. Tian et al.

foo.c

Host
Compiler

Device
Compiler

host.o

device.img

dev.rtl.bc

Offload
Bundler

foo.o

Fig. 1. Compilation flow of an OpenMP program with target offloading.

2.3 Motivation

While the OpenMP device runtime library can be implemented in any language
it should be linked into the application in LLVM bitcode format for performance
reasons. This setup, shown in Fig. 1, allows to optimize the runtime together with
the application, effectively specializing a generic runtime as needed.

Given that the base language is irrelevant as long as we can compile to
LLVM bitcode, OpenMP comes to mind as a portable and performant way to
write code for different accelerators. As almost the entire device library can be
interpreted as C++ code, rather than a CUDA or HIP code base, the compilation
as OpenMP is feasible, in particular because LLVM/Clang is a working C++
and OpenMP compiler already.

Since OpenMP 5.1 all conceptually necessary building blocks are present in
the language specification:

– The declare target directive can be used to compile for a device, hence to
generate LLVM bitcode that is targeting Nvidia’s PTX or AMD’s GCN. As
we do not need a host version at all, we can even use the LLVM/Clang flag
-fopenmp-is-device to invoke only the device compilation pass described in
Sect. 2.2.

– The declare variant directive can be used if a target requires a function
implementation or global variable definition different from the default.

– The allocate directive provides access to the different kinds of memory on
the GPU.

For an additional target architecture, the work done in the compiler backend to
emit code for that architecture will allow one to retarget an OpenMP imple-
mented device runtime almost without any additional effort. The incremental
development cost is reduced from (re)implementing the device runtime in a lan-
guage that can be compiled to the new architecture to providing a few declare
variant specialisations.

Experience Report: Writing a Portable GPU Runtime with OpenMP 5.1 163

Finally, if the port uses compiler intrinsics instead of CUDA or HIP functions
for the small target dependent part, it can be compiled without a vendor specific
SDK present. This unblocks shipping offloading as part of Linux distributions.

3 Implementation

In this section, we describe the new LLVM OpenMP device runtime imple-
mented with OpenMP 5.1. First, we talk about the common part, and then
discuss how target dependent parts are implemented and why extensions were
necessary. Only AMD and Nvidia platforms are discussed as other GPU archi-
tectures cannot be targeted by the community LLVM version at this time.

3.1 Common Part

Device Code
Using the declare target directive around all source files causes all functions
and data to be emitted for the target device. Macros to indicate that functions
or globals are for the device, as shown in Listing 1, are not needed.

Global Shared Variables
The implementation of the device runtime maps an OpenMP team to a thread
block1 on the target device. Therefore, a shared variable visible to all threads in
the same thread block is equivalent to a variable that can be accessed within the
same OpenMP team. The allocate directive specifies how to allocate variables
in different memory spaces. Uses with an allocator(omp_cgroup_mem_alloc)2

we can place global variables in local shared memory, the equivalent of the CUDA
__shared__ shown in Listing 1.

In contrast to shared CUDA or HIP variables, C++ specifies that global
variables are default initialized. While we can technically do this for global
shared variables defined with OpenMP, it is not supported by LLVM/Clang
at this time. Furthermore, the performance is likely to suffer as the device
runtime is designed to initialize these variables explicitly on demand. To
this end, we extended LLVM/Clang with a variable attribute for this work:
loader_uninitialized [1]. The effect is that annotated variables will not have
a default initialized value but instead be uninitialized like the CUDA or HIP
shared variables are as well.

Listing 2 shows device code and global shared variable declaration as it is
used in our OpenMP device runtime.

#pragma omp begin declare target

// Function declaration
extern __kmpc_impl_threadfence ();

1 We are using CUDA terminology here. For AMD platforms it is wavefront.
2 The implementation currently uses allocator(omp_pteam_mem_alloc) which is

equivalent given the current mapping of parallelism.

164 S. Tian et al.

// Function definition
void __kmpc_flush(kmp_Ident *loc) {

__kmpc_impl_threadfence ();
}
// Global variable
int global_var;
// Shared variable
int shared_var;
#pragma omp allocate(shared_var). \

allocator(omp_pteam_mem_alloc)
// Shared variable declaration
extern int other_shared_var;
#pragma omp allocate(other_shared_var) \

allocator(omp_pteam_mem_alloc)

#pragma omp end declare target

Listing 2. An example of new device runtime code.

Atomic Operations
The device runtime uses five atomic operations, add, inc, max, exchange, and
cas, implemented in target dependent parts with LLVM/Clang builtin functions.

OpenMP 5.1 [4] introduces the compare clause, which supports conditional
update statements. When combined with the capture clause, all of these atomic
operations except inc can be implemented via OpenMP, as shown in Listing 3.
We implemented the support of the compare clause and its combination with
the capture clause for LLVM/Clang but the it has not been merged into the
community version yet. With the updated requirements for flush3, which we also
implemented for this work, our OpenMP versions of atomic operations can gen-
erate LLVM-IR that is identical to the original target dependent implementation
via compiler intrinsics.

uint32_t atomic_add(uint32_t *X, uint32_t E) {
uint32_t V;

#pragma omp atomic capture seq_cst
{ V = *X; *X += E; }
return V;

}
uint32_t atomic_max(uint32_t *X, uint32_t E) {

uint32_t V;
#pragma omp atomic compare capture seq_cst

{ V = *X; if (*X < E) { *X = E; } }
return V;

}
uint32_t atomic_exchange(uint32_t *X, uint32_t E) {

uint32_t V;

3 OpenMP 5.1 removes the requirement for a flush operation at the entry and exit
of an atomic operation if write, update, or capture is specified and the memory
ordering is seq_cst.

Experience Report: Writing a Portable GPU Runtime with OpenMP 5.1 165

#pragma omp atomic capture seq_cst
{ V = *X; *X = E; }
return V;

}
uint32_t atomic_cas(uint32_t *X, uint32_t E, uint32_t D) {

uint32_t V;
#pragma omp atomic compare capture seq_cst

{ V = *X; if (*X == E) { *X = D; } }
return V;

}

Listing 3. Atomic operations implemented in OpenMP 5.1.

The missing atomic operation is inc. According to the CUDA specification [2],
inc implements:

{ v = x; x = x >= e ? 0 : x + 1; }

and returns v. This atomic operation can not be represented in a form that
OpenMP 5.1 supports because OpenMP 5.1 requires that the order operation
be either < or >, and the alternative statement of the conditional expression
statement must be x itself. Therefore, we still keep it in the target dependent
part implemented with LLVM intrinsics as shown in Listing 4.

3.2 Target Specific Part

Target dependent global functions and variables are currently declared in a
header and implemented in target dependent source files which are only com-
piled for the specific target, either as CUDA or HIP. A drawback of this method
is that the creation of a device runtime for a new target might require us to
remove a function from the common part and insert it into the target specific
part if the existing (common) implementation is not suited for the new device.

SinceOpenMP 5.0, the declare variant directive declares a specialized vari-
ant of a base function and specifies the context in which that specialized variant
is used. It supports various context selector with the match clause, one of which
is device selector. For example, with match(device={arch(arch_name)}), the
code wrapped in a begin/end declare variant region will be only generated if
the target architecture matches the arch_name.

Listing 4 shows how the atomic inc function is implemented with target
dependent compiler intrinsics selected via the begin/end declare variant
directive for both Nvidia and AMD GPU targets.

Note that we use the match_any extension for Nvidia platforms as we support
two distinct architectures, nvptx and nvptx64, but we do not want to distinguish
between them in the device runtime. While this can be handled by duplicating
the code, our new context selector changes the semantic of the matching to
produce a match if any architecture in arch(nvptx, nvptx64) is targeted. By
default a match would require all architectures to be targeted. In addition to

166 S. Tian et al.

match_any we extended LLVM/Clang with other useful context selectors, e.g.,
match_none and allow_templates4.
#pragma omp declare target
// Fallback version , which raises a compilation error
uint32_t atomic_inc(uint32_t *X, uint32_t E) {

error("target␣dependent␣implementation␣missing");
}
// AMDGCN implementation
#pragma omp begin declare variant \

match(device ={arch(amdgcn)})
uint32_t atomic_inc(uint32_t *X, uint32_t E) {

return __builtin_amdgcn_atomic_inc32(X, E,
__ATOMIC_SEQ_CST , "");

}
#pragma omp end declare variant
// NVPTX implementation
#pragma omp begin declare variant \

match(device ={arch(nvptx ,nvptx64)}, \
implementation ={ extension(match_any)})

uint32_t atomic_inc(uint32_t *X, uint32_t E) {
return __nvvm_atom_inc_gen_ui(X, E);

}
#pragma omp end declare variant
#pragma omp end declare target

Listing 4. Atomic inc implementation with the match_any clause.

Other target dependent functions are required to handle synchronization, thread
hierarchy, etc. These are implemented via compiler intrinsics, function calls to
the corresponding native runtime library, or inline assembly.

4 Evaluation

In this section, we evaluated our proposed method in three ways: code compar-
ison, functional testing, and performance evaluation.

4.1 Code Comparison

The previous implementation compiled CUDA to LLVM-IR, and HIP to LLVM-
IR, while our proposed method compiles OpenMP to LLVM-IR for both plat-
forms. The accuracy of the port to OpenMP was assessed by comparing the
emitted LLVM IR of the library before and after changing over to OpenMP. If
the text forms were identical, we would be certain the language change made
no difference. This was not quite the case. The differences were in semanti-
cally unimportant metadata, symbol name mangling for variant functions, and
the order of inlining as preferred by the language front end which had minor
reordering effects on PTX and GCN generation.
4 See: https://clang.llvm.org/docs/AttributeReference.html#pragma-omp-declare-

variant.

https://clang.llvm.org/docs/AttributeReference.html#pragma-omp-declare-variant
https://clang.llvm.org/docs/AttributeReference.html#pragma-omp-declare-variant

Experience Report: Writing a Portable GPU Runtime with OpenMP 5.1 167

4.2 Functional Testing

There are a number of OpenMP test suites and applications in use for checking
the behaviour of the compiler, including SOLLVE V&V [7], and Ovo [5]. All
ran identically with the new OpenMP runtime as they had using the previous
device runtime.

4.3 Performance Evaluation

Systems Configuration. We evaluate the performance of our method experi-
mentally on the Summit supercomputer. Each Summit node contains two IBM
POWER9 processors and six Nvidia Volta V100 GPUs (only one was used in
this paper). CUDA 10.1.243 was used, which is the version loaded by default.

Benchmarks. The SPEC ACCEL benchmark suite V1.3 was used to evaluate
the new device runtime. Because support for Fortran is still in progress, we chose
those benchmarks written in C. There are 15 OpenMP enabled benchmarks in
SPEC ACCEL. Seven of them are in C, namely 503.postencil, 504.polbm,
514.pomriq, 552.pep, 554.pcg, 557.pcsp, and 570.pbt. 557.pcsp can not be
compiled5, therefore we only ran the other six benchmarks. We also chose a C++
proxy application, miniQMC [6].

-O2 compiler flag was used when compiling the benchmarks and application.
Each test case was executed five times, and the execution time was averaged.
miniQMC was measured through the miniqmc_sync_move benchmark executed
as follows: miniqmc_sync_move -g "2 2 1".

Results. Figure 2 compares the execution time when the original device runtime
is used with the execution time obtained using our proposed new device runtime.
We can see that the execution times are almost identical, and for those cases
where they are not same, the variance is less than 1% and assumed to be noise.

The proxy application benchmark miniqmc_sync_move contains two target
regions, evaluate_vgh and evaluateDetRatios. They are executed multiple
times. Table 1 shows the profiling results (execution time) of each target region
from Nvidia’s profiler nvprof. There is no performance difference between the
two versions.

All the results above demonstrate that our proposed portable OpenMP
device runtime can provide the same performance as the current CUDA-like
version on the Nvidia platform. Based on the code comparison, functional test-
ing and some AMD internal performance testing results, the portable runtime
is believed to show no performance change from its HIP predecessor either.

5 It can not be compiled by trunk version either. The compilation error is because
557.pcsp defines a macro max which conflicts with the same function in the math
header in Clang.

168 S. Tian et al.

503
.post

enc
il

504
.polb

m

514
.pom

riq
552

.pep
554

.pcg
570

.pb
t

10
20
30
40
50
60
70

13.8

32.2
28.2

68.6

98.1 513

13.6

32.2
28.2

68.6

98.1 514

E
xe

cu
ti

on
T

im
e

(s
)

Fig. 2. Comparison between execution time of original device runtime () and that
of our proposed new device runtime () on Nvidia platform.

Table 1. Comparison of execution time of the two target regions in miniqmc_sync_move
on Nvidia platform.

Target region Version Time (ms) # Calls Avg (µs) Min (µs) Max (µs)

evaluate_vgh Original 1374.72 64512 21.309 19.744 32.384
New 1376.59 21.338 19.776 33.760

evaluateDetRatios Original 573.46 18202 31.505 25.247 44.480
New 573.93 31.531 24.544 47.103

5 Conclusions and Future Work

OpenMP works well as a language to implementing GPU-only code libraries.
The direct support for memory allocators and the precise dispatch through
declare variant are clear advantages over C++. While minimal compiler mod-
ifications were required to match the CUDA and HIP semantics to the fullest,
we expect those to be incorporated into the OpenMP standard over time.

Using OpenMP is especially suitable as the vehicle for implementing an
OpenMP runtime library since the main prerequisite is an OpenMP compiler
which needs to be implemented all targets in any case. Since the library ships
with the LLVM repository, it can be built by any distribution which has built
Clang. Vendor SDKs or compilers are no longer required.

Since the host and device runtime libraries can build as part of LLVM, we
will coordinate with Linux distribution developers to ensure that people who
install the distribution LLVM package onto a system that has a target device
and driver available will be able to get this working “out of the box”.

Acknowledgement. This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations
(Office of Science and the National Nuclear Security Administration) responsible for the

Experience Report: Writing a Portable GPU Runtime with OpenMP 5.1 169

planning and preparation of a capable exascale ecosystem, including software, applica-
tions, hardware, advanced system engineering, and early testbed platforms, in support
of the nation’s exascale computing imperative.

References

1. Attributes in Clang. https://clang.llvm.org/docs/AttributeReference.html#loader-
uninitialized

2. CUDA Toolkit Documentation v11.3.0. https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html#atomicinc

3. IntelR© oneAPI DPC++/C++ Compiler. https://software.intel.com/content/www/
us/en/develop/tools/oneapi/components/dpc-compiler.html

4. OpenMP Application Programming Interface Version 5.1. https://www.openmp.
org/spec-html/5.1/openmp.html

5. OvO: OpenMP vs Offload. https://github.com/TApplencourt/OvO
6. QMCPACK/miniqmc. https://github.com/QMCPACK/miniqmc
7. Sollve/sollve_vv. https://github.com/SOLLVE/sollve_vv
8. Jacob, A.C., et al.: Efficient fork-join on GPUs through warp specialization. In: 2017

IEEE 24th International Conference on High Performance Computing (HiPC), pp.
358–367 (2017). https://doi.org/10.1109/HiPC.2017.00048

https://clang.llvm.org/docs/AttributeReference.html#loader-uninitialized
https://clang.llvm.org/docs/AttributeReference.html#loader-uninitialized
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomicinc
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomicinc
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html
https://www.openmp.org/spec-html/5.1/openmp.html
https://www.openmp.org/spec-html/5.1/openmp.html
https://github.com/TApplencourt/OvO
https://github.com/QMCPACK/miniqmc
https://github.com/SOLLVE/sollve_vv
https://doi.org/10.1109/HiPC.2017.00048

FOTV: A Generic Device Offloading Framework
for OpenMP

Jose Luis Vazquez and Pablo Sanchez(B)

University of Cantabria, TEISA Dpto, Santander, Spain
{vazquezjl,sanchez}@teisa.unican.es

Abstract. Since the introduction of the “target” directive in the 4.0 specification,
the usage of OpenMP for heterogeneous computing programming has increased
significantly. However, the compiler support limits its usage because the code
for the accelerated region has to be generated in compile time. This restricts the
usage of accelerator-specific design flows (e.g. FPGA hardware synthesis) and
the support of new devices that typically requires extending and modifying the
compiler itself.

This paper explores a solution to these limitations: a generic device that is
supported by the OpenMP compiler but whose functionality is defined at run-
time. The generic device framework has been integrated in an OpenMP compiler
(LLVM/Clang). It acts as a device type for the compiler and interfaces with the
physical devices to execute the accelerated code. The framework has an API that
provides support for newdevices and accelerated codewithout additionalOpenMP
compiler modifications. It also includes a code generator that extracts the source
code of OpenMP target regions for external compilation chains.

In order to evaluate the approach, we present a new device implementation
that allows executing OpenCL code as an OpenMP target region. We study the
overhead that the framework produces and show that it is minimal and comparable
to other OpenMP devices.

Keywords: OpenMP · Heterogeneous computing · Offloading · Generic devices

1 Introduction

Over the course of the past few years, more and more projects are looking to harness the
efficiency and computing power of specific accelerator devices through heterogeneous
computing techniques. These programs typically offload defined sections of highly data
parallel computation to GPU devices [3, 5] or FPGA-based accelerators. In order to
support heterogeneous computing programing, OpenMP 4.0 [4] introduced the “tar-
get” family of directives that the latest specifications have extended and improved. The
“target” directives instruct the compiler to allocate and move data to and from a tar-
get device and to execute code on that device. Nowadays, compiler support for these
directives extends to multiple CPU and GPU architectures [7–9].

However, the current approach has certain limitations. For example, the code for the
target region is generated and compiled in parallel with rest of the program [5, 6], and

© The Author(s) 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 170–182, 2021.
https://doi.org/10.1007/978-3-030-85262-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-85262-7_12

FOTV: A Generic Device Offloading Framework for OpenMP 171

therefore the OpenMP compiler has to generate the target code, produce the target binary
with a specific compilation chain and integrate all target binaries in a fat binary. There-
fore, the integration of a new device typically requires specific compiler modifications
that require OpenMP-compiler internal knowledge. Additionally, the OpenMP compiler
generates the target binaries, which limits device-specific optimizations, performance
analysis and target compilation chain. For FPGA-based accelerators, this limitation could
have an important impact on performance. OpenMP 5.1 introduces the interop capability
[4], allowing OpenMP to interface with other heterogeneous computing runtimes (e.g.
OpenCL). While this is a step forward, it does not directly facilitate new device support.

The complex integration of new devices could limit the usage of OpenMP for hetero-
geneous computing. Other approaches, for example OpenCL [2], do not require modi-
fying the host compiler, only some functions have to be implemented in a shared library.
Additionally, OpenCL and OpenMP require a device specific compilation toolchain but,
in OpenCL, the toolchain is not defined in the host compiler and the users can provide
the kernel code or the kernel binary. This work explores a similar approach for OpenMP
in order to facilitate new device integration.

We have integrated a generic device, FOTV (Future Offload Target Virtualization)
in an open-source compiler (LLVM/Clang, version 13). The generic device is a con-
tainer that supports new devices and target-region implementations in an OpenMP com-
piler. All the functionality that FOTV requires from a new device is encapsulated in
a device-management component. Additionally, a target-region component defines all
the functions that FOTV requires to execute an offloaded code in a particular device.
These components define the set of functions (API) that the FOTV device requires to
support in OpenMP a new device and/or device-specific target-region implementations.
The implementations of these components are included in dynamic libraries that are
loaded during the execution of the OpenMP program.

Additionally, a code generator extracts the target region code during OpenMP com-
pilation.With this code, a device-specific toolchain could optimize, analyze and produce
specific binary code after OpenMP compilation. These specific binaries will be loaded
at runtime. The approach has been evaluated with a device that uses OpenCL code to
implement the target region code.

The main contributions of the paper are the identification of an API for target device
and implementation definition, the integration of a generic device (FOTV) in anOpenMP
compiler and the definition of a methodology for dynamic loading of device-specific
behaviors.

The rest of the paper is structured as follows. In Sect. 2, we describe the stan-
dard OpenMP offloading strategy and analyze its limitations to motivate this work.
Section 3 presents the framework architecture and details two main components: the
runtime library and the code extraction tool. The API for adding new devices and imple-
mentations is introduced in Sect. 4. Section 5 presents an example of a new device that
uses OpenCL code. Section 6 evaluates the new device with several examples. Section 7
analyzes the related works and finally, Sect. 8 presents the conclusions and future work.

172 J. L. Vazquez and P. Sanchez

2 Background: OpenMP Offloading Infrastructure

This section briefly describes the OpenMP offloading strategy of Clang and analyzes the
limitations that are faced in this work. A detailed definition of the offloading strategy is
described in [5, 6]. Other compilers use a similar approach and therefore the conclusions
of this work can be extended to them.

2.1 Offloading Strategy

The OpenMP offloading infrastructure integrates a runtime manager (“libomptarget”),
some device specific libraries (device plugins), a target code-generation infrastructure
and a binary bundler. The “libomptarget” module implements the interface between the
host and the target devices. It defines a set of functions that the target devices have to
implement in a specific device plugin,which provides devicemanagement functionalities
such as device startup, data allocation and movement, target region launch and binary
load.

The target-code generation infrastructure extracts target-region code in a compiler
intermediate representation. This code is then compiled through a device-specific com-
pilation toolchain that is compatible with the host compiler representation. The output
binaries of all toolchains are embedded in a “fat binary”: a single executable binary with
the host and target binaries of all target regions. The bundler is used to make sure that
the device binaries have the correct format when they are embedded into the host binary.

At runtime, the device plugins load the target specific binaries from the “fat binary”
and launch target-region executions when it is required.

2.2 Advantages and Limitations

The previously commented strategy has several advantages such as a generic API for
device management and device plugins for the specific implementations. However, it
has several limitations:

• The runtime library (“libomptarget”) is focused on device management but it has not
control of the target regions that are loaded by the device plugins.

• Every time that a new device plugin has to be defined, the source code of the host
compiler has to be modified.

• All the device tool chains have to be able to interact with the host compiler. Therefore,
the integration of a new tool chain is not trivial.

• The host and device binaries have to be generated during the host compilation process
and the OpenMP compiler has to support all required target devices.

• The target-code generation infrastructure produces a compiler-related code that cannot
be easily adapted or modified for a specific device. OpenMP has introduced a new
feature, the variant directive, that partially face this problem but the specific variant
devices have to be supported by the host compiler.

Our proposal tackles these concerns by implementing a single OpenMP device plu-
gin, an external runtime device/target-region manager and a source code extraction tool
to interface with external device toolchains. This approach has several advantages:

FOTV: A Generic Device Offloading Framework for OpenMP 173

• The extracted source code has the original syntax, which makes it easy to modify or
adapt to specific targets.

• The approach supports off-line compilation with tool chains that are independent of
the host compiler.

• Decoupling the process from the host compiler also means that new device support
does not need any host compiler modifications.

• The framework loads both device and target region implementations at runtime. Con-
sequently, there is no need to generate all implementations for all target regions during
compilation.

For device manager, the proposed approach uses an API that is compatible with
“libomptarget” in order to be easily integrated in an OpenMP compiler.

3 Architecture of the FOTV Generic Device Framework

The main elements of FOTV architecture are presented on Fig. 1. An open-source com-
piler (Clang) analyzes theOpenMP code.We have extended the last development version
(v13) ofClang to support the FOTVdevice. The runtime library (“FOTVManager”)man-
ages FOTV-based devices and device-specific implementations at runtime. The compiler
extension also includes a code generator that extracts, duringOpenMP code compilation,
the target-region code and some additional metadata such as file name, statement line,
pragma directive and “for-loop” boundaries. All this information is stored in a “json”
file.

Fig. 1. Main elements of the FOTV architecture

3.1 The Runtime Library Components

The FOTV framework defines two components (“DeviceManager” and “TgtRegion-
Base”) that encapsulate all device and target-region specific functionality. For a particu-
lar device, the “DeviceManager” methods have to be implemented with device-specific
code.

174 J. L. Vazquez and P. Sanchez

The “DeviceManager” component integrates most of the operations of a device, cen-
tered around data movement and target region association and execution. The “TgtRe-
gionBase” component represents a device-specific implementation of a target region.
The “DeviceManager” and “TgtRegionBase” objects are integrated in dynamic libraries.
When these libraries are loaded, all declared objects are registered in specific lists that
are used to manage the FOTV components at runtime.

At runtime, the “FOTVManager” component controls all devices that have been
defined with the generic device framework at runtime. During execution startup, the
manager looks for dynamic libraries that include information about new devices and
implementations. It loads the device/target-code libraries, checks their integrity and
associates the implementations to devices.When a target-region is executed in the FOTV
device, themanager checks if an implementation is available. If there is nodevice-specific
implementation, the host target-region code will be executed.

3.2 The Code Extraction Tool

The proposed approach can use compilation tool chains that are independent of the host
compiler. These toolchains require target-region source code to produce device specific
binaries. The code extractor identifies, during host compilation, the target-region source
code and some additionalmetadata that can be used for automatic code generation. It also
generates the infrastructure that is needed to load the target-region code at runtime. This
infrastructure can be used to integrate device specific implementations that are not related
to the OpenMP target region code. All the information that the extraction tool produces
for a compilation unit is included in two JSONfiles: a target-region and a data region file.
The JSON file includes parameter mapping information, the outlined function identifier
and the source code of the target region. Among the meta-data generated information is
the full generating pragma, the mapping clauses, source location and mapped variables.
The tool will generate the files during the host compilation process and it is integrated
in a Clang optimization pass. Figure 3 presents a simplified diagram of the tool and next
figure shows an example of the generated JSON file.

Fig. 2. JSON file example.

4 Device Management API Description

This section introduces the basic elements of the approach. The DeviceManagement
component functions are similar to those of “libomptarget”, but they are modified to
accommodate for the functionality of our runtime. The methods in the “TgtRegionBase”
component are used to manage the target region implementations.

FOTV: A Generic Device Offloading Framework for OpenMP 175

Fig. 3. Simplified compilation process and location of the extraction tool

4.1 DeviceManagement Component

A DeviceManagement implementation requires a minimum block of information that is
used for identification and future compatibility with the OpenMP interop feature. This
information includes an identifier string that is necessary for target region registration,
a parameter block, an event queue and an internal host-to-device pointer mapping. The
component contains 3 types of functions: basic runtime functions, memory management
functions and synchronous and asynchronous data movement.

Basic Runtime Functions. These functions handle device operation. These include the
implementation registration function for each device, functions to query the information
block of a device, device synchronization routine, implementation registration, resource
initialization and pause routines, and pointer map querying functions.

Synchronous and Asynchronous Data Movement Functions. These functions man-
age synchronous and asynchronous data movement in all directions: to the device, from
the device and between devices.

Memory Management Functions. These functions are used to handle device memory
and how it maps to the device. Includes the basic “alloc” and “free” operations as well
as explicit pointer association and disassociation functions.

4.2 TgtRegionBase Component

The TgtRegionBase component is a simple wrapper with three fields. In certain cases,
the user might need to extend the component with device-specific information. The core
component fields are presented on Table 1.

176 J. L. Vazquez and P. Sanchez

Table 1. Target region fields

Name Type Explanation

dev_id string Device identifier. It is used for target region registration in a particular device

fn_id string Function identifier that is used for implementation querying. The identifier is
derived from the original offloaded function symbol, and it is available in the
code extraction output

fn void * The implementation function to be executed

5 Case Study: Running OpenCL Kernels as OpenMP Regions

In order to evaluate the generic-device framework, we have developed a FOTV-based
device. This device uses the OpenCL runtime to identify the available platforms and
hardware devices. These devices are discovered at runtime and mapped to new OpenMP
devices. Therefore, in this case the OpenMP runtime provides the application with the
compiler supported devices and all devices that are identified by the OpenCL runtime.
The proposed approach also requires that the OpenMP target-regions be transformed
into OpenCL kernels. Next sections describe the structure of the FOTV-based device.

5.1 The OpenCL Device Requirements

When a generic device infrastructure uses the OpenCL runtime, some problems have
to be fixed. On the one hand, the runtime typically identifies more than one device at
runtime and the “DeviceManager” component is designed to support only one specific
device or device family. On the other hand, OpenCL requires some scaffolding code to
be operated and it depends of the device and kernel. The generic device infrastructure
assumes that the device functions are independent from the target-region functions and
the OpenMP runtime uses these device functions to provide all the infrastructure that
the target-region needs. This approach is not directly aligned with the OpenCL runtime.

These specific requirementsmake theOpenCLdevice a good use case to demonstrate
the flexibility and efficiency of the proposed generic device. To comply with these
requirements, the OpenCL device includes three elements that are presented on Fig. 4:

• A device-specific target region module (TgtRegionOpenCL). This new module
includes the OpenCL kernel code. This code could be pre-compiled or an OpenCL C
source built at runtime.

• A shared infrastructure (FOTVOCLEnvironment) between the device and the im-
plementation. This object contains pointers to the OpenCL scaffolding as well as
various ordered data mapping interfaces to be used by the target region module.

• An OpenCL specific device manager extension (OpenCLDeviceManagement). This
extension consists of three major blocks: The first one is an OpenCL-specific
implementation register. We also add initializer code that initializes OpenCL scaf-
folding. Finally, every extension requires device-specific implementations for the
API introduced in the previous section, which in this case means OpenCL-specific
implementations.

FOTV: A Generic Device Offloading Framework for OpenMP 177

Fig. 4. Extended component diagram for OpenCL operation

6 Results

For benchmarking, we used an edge detection algorithm (Canny filter) in an image
processing pipeline. The video pipeline includes four modules: a video capture, an
image converter, an image filter and an image display module. The filter has a “target
teams distribute parallel for collapse(2)” pragma in its top loop.

The tests were produced with code compiled using a FOTV version integrated in
a development build of LLVM/Clang 13, using a standard workstation with the specs
included in Table 2. The platform includes a CPU with 16 cores and a NVIDIA GPU
with 768 cores. The FOTV device integrates the OpenCL backend that was presented in
the previous section.

Table 2. Execution platform specs

Component Type Capabilities

CPU Intel Xeon E5-2687W 16c/32t @ 3.1GHz

GPU NVidia GTX1050Ti 6 CUs, 768 CUDA cores, 1392 MHz

Main memory 64 GB DDR3

Operating system Ubuntu Linux 18.04 OpenCL 2.0, LLVM/Clang 13

The OpenCL kernel code for the filter was manually generated from the JSON files,
although it could be automatically created.

The main goal of the test is to evaluate the impact of the FOTV infrastructure and the
flexibility that it provides to OpenMP. Two tests are proposed to evaluate these features.

178 J. L. Vazquez and P. Sanchez

Thefirst test evaluates theFOTVperformance impact. Figure 5presents a comparison
between the FOTV system offloading to GPU via OpenCL and the OpenMP native GPU
offloading. The figure presents three data: the FOTV execution time including OpenCL
data transfers, the FOTV execution time without the OpenCL data transfers and the
standard OpenMP execution time with GPU offloading. As we can see, the OpenCL data
transfer overhead is responsible for the difference between the FOTV and the standard
OpenMP offloading strategies. If the OpenCL data transfer overhead is removed, the
execution time of FOTV and OpenMP is very low.

Fig. 5. Median execution times for different resolutions

The second test is oriented to evaluate the flexibility of FOTV. As we previously
mentioned, FOTV can handle multiple devices with multiple interfaces. In Fig. 6, we are
running the same test with a live device offloading reconfiguration of device swapping.
In this case, the system has 2 offloading devices handled by FOTV: a local OpenCL-
based GPU plugin and a remote POCL-r [15] based plugin. The remote POCL server
provides access to a NVidia Quadro RTX4000 GPU. During the test, the remote access
causes the large increase in execution time.

We observe a spike in the plot, just through a few images after device switching.
This is produced largely by the implementation switch, while the extra execution time
is caused by the remote communications and server load. This spike represents device
switchover and the manager caching the new implementation function as well as device
warmup, and averages out over the course of the run.

7 Related Works

The usage of dynamic libraries to define new devices and implementationswas presented
in Álvarez et al. [1]. However, it is a proof of concept that is not integrated in an OpenMP

FOTV: A Generic Device Offloading Framework for OpenMP 179

Fig. 6. Response time with a live device swapping for a local to a remote GPU

compiler and forces to use custom device implementations. The proposed FOTV generic
device works seamlessly as an OpenMP device without any special requirements other
than adding it as an offload target in compile time.

The addition of an external library for device management was inspired by the
Aurora VE offload system [9]. The Aurora paper describes how to introduce the VE
as an OpenMP offload target by introducing a custom toolchain that executes a source-
to-source compiler and proprietary tools to generate the fat binary. After this process,
they use the standard VE management library tools within a target device plugin to
manage the device. This design allows higher flexibility than other device integrations
such as the NVidia GPU [5, 6] support module that requires embedding architecture-
specific runtime calls into the fat binary for operation. Unlike [9], this paper uses a
compiler toolchain independent approach and defines a set of functions that facilitate
the integration of new devices. Additionally, the proposed approach also dynamically
loads the device-specific target-region implementations instead of including them in the
fat binary. This provides a higher flexibility, as new devices don’t require a tool-chain
and/or backend to be integrated in the library, as well as giving the option of providing
only relevant target implementations instead of having all target regions built for all
devices.

Multiple works exist that extend the device pool of OpenMP with new features. The
works range from adding an existing device into a different frontend [11], to adding
entire cloud infrastructures as offloading devices [10]. In most cases, the new target still
requires compile time code generation, making the approach device-specific and hard
to extend. One of these implementations is the FPGA offloading device from Sommer
et al. [12] that requires a High-Level Synthesis (HLS) compiler for the target device.
This typically leads to very high compile times and very low FPGA occupation and
performance, since CPU- and GPU-optimized code is notably inefficient in the FPGA
architectures. Further work by Knaust [13] and Huthmann [14] attack this problem in
different ways. The first one opts to prototype the FPGA device with OpenCL and
compiler-specific interfaces, requiring IR (Intermediate Representation) backporting to
make use of the HLS system and OpenCL interfaces. The second one creates a more

180 J. L. Vazquez and P. Sanchez

efficient compilation toolchain, obtainingOpenMP-optimizedHDL code to synthesize it
in a faster and more efficient way. These approaches are still device-specific, which was
our main concern when creating the generic interface. The proposed approach allows
using the standard HLS process that provides the most efficient implementations. These
implementations use dynamic loading at runtime.

More flexible than [13, 14] is the aforementioned Yviquel et al. [10] work. It does not
generate target binary code but rather a Scala implementation (as a Java runtime binary)
to be ran on any Apache Spark cluster. It uses a configuration file for authentication and
configuration of a cloud cluster that is started on the RTL plugin device initialization call.
The nature of this offloading infrastructure allows formore target flexibility than standard
extensions, as the target is a cloud cluster middleware instead of specific hardware, but
it’s still limited to that specific runtime and would require rebuilding the code generation
in case of anAPI extension. This work outperforms these approacheswith the integration
of a generic device in the OpenMP compiler and the definition or an API that simplifies
the definition of new devices and the integration of specific implementations.

8 Conclusions and Future Works

In this paper we introduce FOTV, an offloading target for OpenMP that allows for
extended device support through a runtime management library. We prove that it can
handle otherwise unsupported devices by running OpenCL code through it, and show
that it has minimal overhead over traditional OpenMP offloading. We also present a
way the end user can optimize both device and implementations, allowing for better
performance than other OpenMP device implementations.

This first version presents the base form of FOTV as a device bridge. A future goal
would be to introduce an extended runtime library that manages resource loads for opti-
mal performance and efficiency across multiple heterogeneous devices, exposing the
entire platform as a single device to OpenMP. We also hope to create an automatic
implementation generator, using information from the code extractor to create a rudi-
mentary implementation function code that end users can then adapt to their particular
devices.

Acknowledgement. This work was done as part of the FitOptiVis project, funded by the
ECSEL JointUndertaking, grantH2020-ECSEL-2017–2-783162, and the SpanishMICINN, grant
PCI2018–093057. It was partially funded by the Platino project, funded by the MICINN, grant
TEC2017–86722-C4–3-R.

References

1. Álvarez, Á., Ugarte, Í., Fernández, V., Sánchez, P.: OpenMP dynamic device offloading in
heterogeneous platforms. In: Fan, X., de Supinski, B.R., Sinnen, O., Giacaman, N. (eds.)
IWOMP 2019. LNCS, vol. 11718, pp. 109–122. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-28596-8_8

https://doi.org/10.1007/978-3-030-28596-8_8

FOTV: A Generic Device Offloading Framework for OpenMP 181

2. Khronos Group, “OpenCL: The open standard for parallel programming of heterogeneous
systems” (2010). https://www.khronos.org/opencl/

3. NVIDIA,CUDA–ComputeUnifiedDeviceArchitecture. https://developer.nvidia.com/cuda-
zone

4. Open MP API Specification. Version 5.0 (November 2018). https://www.openmp.org/specif
ications/

5. Bertolli, C., et al.: Integrating GPU support for OpenMP offloading directives into Clang. In:
LLVM-HPC2015, Austin, Texas, USA, 15–20 November 2015

6. Antao, S.F., et al.: Offloading support for OpenMP in Clang and LLVM. In: LLVM-HPC2016,
Salt Lake City, Utah, USA, 13–18 November 2016

7. Clang 13 documentation: OpenMP Support. https://clang.llvm.org/docs/OpenMPSupport.
html

8. Offloading support in GCC. https://gcc.gnu.org/wiki/Offloading
9. Cramer, T., Römmer, M., Kosmynin, B., Focht, E., Müller, M.S.: OpenMP target device

offloading for the SX-Aurora TSUBASA vector engine. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 12043 LNCS, pp. 237–249 (2020)

10. Yviquel, H., Cruz, L., Araujo, G.: Cluster programming using theOpenMP acceleratormodel.
ACM Trans. Archit. Code Optim. 15(3), 1–23 (2018)

11. Özen, G., Atzeni, S., Wolfe, M., Southwell, A., Klimowicz, G.: OpenMP GPU offload in
flang and LLVM. In: 2018 IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure
in HPC (LLVM-HPC), 2018, pp. 1–9 (2018)

12. Sommer, L., Korinth, J., Koch, A.: OpenMP device offloading to FPGA accelerators. In:
2017 IEEE 28th International Conference on Application-specific Systems, Architectures
and Processors (ASAP), 2017, pp. 201–205 (2017)

13. Knaust, M., Mayer, F., Steinke, T.: OpenMP to FPGA offloading prototype using OpenCL
SDK. In: 2019 IEEE International Parallel andDistributed Processing SymposiumWorkshops
(IPDPSW), 2019, pp. 387–390 (2019)

14. Huthmann, J., Sommer, L., Podobas, A., Koch, A., Sano, K.: OpenMP device offloading
to FPGAs using the nymble infrastructure. In: Milfeld, K., de Supinski, B., Koesterke,
L., Klinkenberg, J. (eds.) OpenMP: Portable Multi-Level Parallelism on Modern Systems.
IWOMP 2020. Lecture Notes in Computer Science, vol. 12295. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58144-2_17

15. Solanti, J., Babej, M., Ikkala, J., Jääskeläinen, P.: POCL-R: distributed OpenCL runtime for
low latency remote offloading. In: Proceedings of the International Workshop on OpenCL
(IWOCL 2020). Association for Computing Machinery, New York, NY, USA, Article 19,
pp. 1–2 (2020). https://doi.org/10.1145/3388333.3388642

https://www.khronos.org/opencl/
https://developer.nvidia.com/cuda-zone
https://www.openmp.org/specifications/
https://clang.llvm.org/docs/OpenMPSupport.html
https://gcc.gnu.org/wiki/Offloading
https://doi.org/10.1007/978-3-030-58144-2_17
https://doi.org/10.1145/3388333.3388642

182 J. L. Vazquez and P. Sanchez

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Beyond Explicit Transfers: Shared
and Managed Memory in OpenMP

Brandon Neth1(B), Thomas R. W. Scogland2(B), Alejandro Duran3,
and Bronis R. de Supinski2

1 University of Arizona, Tucson, AZ 85721, USA
brandonneth@email.arizona.edu

2 Lawrence Livermore National Lab, Livermore, CA 94550, USA
scogland1@llnl.gov

3 Intel Corporation, Iberia, Spain

Abstract. OpenMP began supporting offloading in version 4.0, almost
10 years ago. It introduced the programming model for offload to GPUs
or other accelerators that was common at the time, requiring users to
explicitly transfer data between host and devices. But advances in hetero-
geneous computing and programming systems have created a new envi-
ronment. No longer are programmers required to manage tracking and
moving their data on their own. Now, for those who want it, inter-device
address mapping and other runtime systems push these data manage-
ment tasks behind a veil of abstraction. In the context of this progress,
OpenMP offloading support shows signs of its age. However, because of
its ubiquity as a standard for portable, parallel code, OpenMP is well
positioned to provide a similar standard for heterogeneous programming.
Towards this goal, we review the features available in other program-
ming systems and argue that OpenMP expand its offloading support to
better meet the expectations of modern programmers. The first step,
detailed here, augments OpenMP’s existing memory space abstraction
with device awareness and a concept of shared and managed memory.
Thus, users can allocate memory accessible to different combinations
of devices that do not require explicit memory transfers. We show the
potential performance impact of this feature and discuss the possible
downsides.

1 Introduction

Heterogeneous systems are becoming the new norm in computing, from the
smartphones in our hands to the largest computers in the world. GPUs, and
the introduction of general purpose GPU (GPGPU) programming, have been
the stars of this growth in popularity. Even so, leveraging the performance ben-
efits of a heterogeneous system can be a time intensive process. One cause of
this complexity is the variety of GPU programming systems available to pro-
grammers. Compounding this problem is the desire to write single-source code
that will perform well across a variety of node architectures. While OpenMP*
c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 183–194, 2021.
https://doi.org/10.1007/978-3-030-85262-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-85262-7_13

184 B. Neth et al.

has supported heterogeneous programming to some extent since v4.0, managing
memory among the execution units has been limited.

OpenMP’s current support for memory allocation includes allocating host
memory and allocating device memory. In contrast to this binary model, CUDA*
supports a much wider variety of memory allocations, including device-accessible
host memory, managed memory accessible by all execution units, and different
levels of device-only memory, such as thread-private and thread-group-private
memory. Similarly, OpenCL* 3.0 supports shared memory and different device
memory allocations, while oneAPI Level Zero(Level Zero) supports a more
relaxed model of memory ownership, where host memory allocations are device-
accessible, and data movement does not need to be explicit.

If OpenMP is to stay competitive in this space, a more nuanced system of
memory allocation is necessary. This paper presents such a system. The contri-
butions of this work include:

– a survey of memory allocation and management features in existing hetero-
geneous programming systems,

– a proposed improvement to OpenMP’s current allocation and management
features, and

– an evaluation of the potential performance impact of such a change.

Section 2 summarizes OpenMP’s current support for memory allocation.
Section 3 surveys the approach to memory allocation and management in exist-
ing programming systems. Section 4 proposes new memory allocation features for
OpenMP. Section 5 compares the performance of OpenMP’s current capabilities
with the capabilities of other programming systems. Section 6 concludes.

2 Current Support in OpenMP

2.1 Allocators

Because it was originally designed for shared-memory multi-core parallelism,
OpenMP’s memory model does not easily line up with those commonly used
in offloading. One specific concept that is missing is accessibility of memories
from more than one device. Instead, OpenMP supports two completely separate
interfaces for memory on the host and memory on target devices.

2.2 Host Memory

The OpenMP allocator APIs support only memory that is accessible by the host.
The allocator clauses can support device memory when executing a construct
on that device, but only in certain circumstances. Rather than allocating for
other devices, it allows a programmer to specify the properties they want for
an allocation to allow allocation in lower latency, larger or higher bandwidth
memories as appropriate:

Beyond Explicit Transfers: Shared and Managed Memory in OpenMP 185

– omp default mem space: Default system storage
– omp large cap mem space: Storage with large capacity
– omp const mem space: Storage optimized for reading rather than writing
– omp high bw mem space: Storage with high bandwidth
– omp low lat mem space: Storage with low latency.

Note that within these five predefined memory spaces, no clarification is made
about the location of the memory in terms of device accessibility [5](2.13.1).
Also they are all properties that change based on where code is running, so the
context is important. The implicit context for all of these properties is that of
the thread doing the allocation, not the one that creates the allocator.

Memory spaces are used by OpenMP memory allocators to request memory
from the system [5](2.13.2). There are two ways to use an allocator within a
target region. First, if the target region contains the uses allocators clause, the
target region can contain allocate directives that use the specified allocators.
Second, default allocators and allocator routines can be used within a target
region if the requires(dynamic allocators). clause is present [5](2.5.1).

2.3 Device Memory

OpenMP also supports directive-based data movement between the host and
device for specific code regions. When a target region begins, the map clause
indicates what data to move when, either host to device (to), from device back
to host (from), or host to device and back (tofrom) [5](2.21.7.1). The particular
nature of how this data is moved, copied, mapped, registered or even if anything
is done at all, is implementation defined. So the programmer does not have
control over how the memory becomes accessible to the device, only control over
whether it needs to be made accessible.

Although it is not supported using directives, OpenMP has runtime functions
for allocation and management of device memory. For allocation and freeing
of device memory, programmers use omp target alloc and omp target free.
Memory from the device is considered inaccessible from the host, and from other
devices. Beyond that, the pointer returned by omp target alloc() isn’t even
considered a valid pointer (no pointer arithmetic allowed, can not be derefer-
enced, may not be unique) until it has been passed, and possibly fixed up, by
passing it to the device it was allocated for with an is device ptr() clause.
There is also support for queries about device memory: omp target is present
checks whether a pointer refers to memory that has been mapped with one of
the mapping constructs, and omp target is accessible checks whether mem-
ory can be accessed by a device. Copying is supported using omp target memcpy
and omp target memcpy rect, asynchronously by omp target memcpy async
and omp target memcpy rect async. Finally, omp target associate ptr asso-
ciates a device pointer to a host pointer so map clauses move the host pointer’s
data to the device pointer instead of potentially allocating new device mem-
ory [5](3.8). LLVM specific extensions also exist for allocating host-accessible,
device-accessible, and migratable memory [1].

186 B. Neth et al.

3 Survey

Multiple different programming systems are in use for heterogeneous computing.
We survey those systems here, focusing on their approach to memory allocation
and management.

3.1 OpenCL

Within an OpenCL program, the highest level scope is the context, which con-
tains a host, some number of devices, command-queues, and memory. The mem-
ory model describes how the other elements of the context access and modify
data values. It is broken into four parts: memory regions, memory objects, shared
virtual memory, and consistency model [3](3.3).

Memory regions, named address spaces between which memory objects are
moved, are divided into two top-level types. Host memory is the memory avail-
able to the host device. This is “normal” memory recognizable to homogeneous
system programmers. Device memory is the memory available to the devices
executing OpenCL kernels. Device memory is further divided into four address
spaces. Global (device) memory is memory accessible to all parts of all devices.
Constant (device) memory is similar to global memory, but it is initialized by
the host and can not be changed by the devices. Local (device) memory is a
memory region accessible by a single work-group. All work-items in the group
can access local memory. Finally, private (device) memory is only accessible by
individual work items.

Memory objects manage the transfer and manipulation of pieces of data.
OpenCL contains three types of memory objects, all of which are part of global
memory. The simplest memory object is the buffer. A buffer is a block of con-
tiguous memory that can hold any data and is manipulable through pointers.
Second is the image, which holds one, two, or three dimensional images. While as
a data structure the image is more complex than the buffer, it is moved between
host and device in the same manner as the buffer. The last memory object is
the pipe, similar to the queue data structure. The pipe has two endpoints that
kernels can connect to. One kernel connects to the write endpoint, where it pro-
duces values and writes them into the pipe. The second kernel connects to the
read endpoint, where it consumes the values for its own computation [3](3.3.2).

Shared virtual memory (SVM), introduced in OpenCL 2.0, combines parts of
the global and host memory regions to create a region accessible by all computing
elements. OpenCL has three types of SVM. Coarse-grained buffer SVM works
at the level of buffer memory objects. Explicit synchronization drives updates
between the host and devices, so coarse-grained SVM mimics non-SVM in code
design. However, because coarse-grained SVM does not move buffers between
devices, pointer-based structures like trees can be used by devices. Fine-grained
buffer SVM works at the level of individual accesses to the bytes within buffer
objects, while fine-grained system SVM works at the level of individual accesses
to the bytes of the entire host memory. For fine-grained SVM, consistency is
guaranteed using explicit synchronization between devices [3](3.3.3).

Beyond Explicit Transfers: Shared and Managed Memory in OpenMP 187

The last piece of the OpenCL memory model is the consistency model, con-
sisting of rules about the behavior of data manipulation. OpenCL’s consistency
model is based on that of ISO C11, using a relaxed memory consistency model.
Depending on their needs, a programmer can specify what ordering they need
for atomic operations, ranging from the less restrictive memory order relaxed
to the more restrictive memory order acq rel. Also, different memory scopes
for the ordering constraints enable potential optimizations. For example, atomic
operations at the work-item (thread) scope require much less synchronization
than those at the global scope [3](3.3.5).

3.2 Level Zero

Unlike OpenCL, which has different named address spaces, Level Zero uses a uni-
fied memory design with a single address space. While it uses a single address
space, memory can still be managed at a finer granularity. For devices, there is
device-wide local memory (global memory in OpenCL terms) and two control-
lable cache levels (roughly local and private memory in OpenCL terms).

For allocations, three types are supported, based on the ownership of the
memory. Host allocations are made out of system memory, but can still be
accessed by devices. Because Level Zero uses a unified virtual address space,
the same pointer is used on host and device. While host allocations can be
accessed on device, they are not meant to be transferred from host memory
to device memory, so all accesses must occur over interconnects. Device alloca-
tions are made and owned by a specific device. These allocations are not meant
to be accessed by any device other than the one they are made on, but have
high access speed. Device allocations can be explicitly copied to the host or
another device if those devices need access. Last, shared allocations are intended
to migrate between the host and devices. These allocations are comparable to
CUDA’s managed memory [2].

3.3 CUDA

The CUDA programming model, like OpenCL, has a different execution and
memory model than OpenMP. Like OpenMP, individual execution units are
called threads. Groups of threads are called blocks, and groups of blocks are
called grids [4](2.2). This creates a 3 level hierarchy reflected in the memory
model. Global memory is accessible by all threads, shared memory (local in
OpenCL terms) by threads within a block (work group), and local memory
(private) by individual threads [4](2.3). Furthermore, constant memory is a read-
only section of global memory.

CUDA supports a variety of approaches to sharing data between host and
device. The simplest is explicit transfers to and from the device. Before a kernel
begins, the host allocates memory on the device using cudaMalloc and copies the
host data to the device using cudaMemcpy. There are also functions to allocate
and copy 2D and 3D arrays [4](3.2.2).

188 B. Neth et al.

Another sharing technique uses pinned host memory to improve transfer
speed and enable concurrent copying. The programmer can use cudaHostAlloc
and cudaFreeHost to allocate and free pinned memory, and cudaHostRegister
to pin pageable memory [4](3.2.5). Because pinned memory can be copied
directly between devices using DMAs, it reduces the transfer cost. Furthermore,
transfers can be overlapped with kernel execution. Finally, pinned memory can
be mapped into the device address space. This technique is called mapped mem-
ory or zero-copy memory. While computation using mapped memory has lower
bandwidth, it removes the need to explicitly allocate and transfer data to the
device, and the computation and data transfer are automatically overlapped
[4](3.2.5.3).

The final data sharing technique in CUDA is Unified Memory Programming.
The fundamental component of Unified Memory is the managed memory space:
a single memory space, visible and accessible by all devices, with a common
address space. For this reason, it is used interchangeably with “managed mem-
ory”. Like with mapped memory, managed memory removes the need for explicit
allocations and transfers between devices. However, with mapped memory, the
physical location of the memory is always with the host. With managed mem-
ory, data is moved towards where it is being used, so it may reside on any of the
devices in the system [4](M.1). Programmers allocate managed memory using
cudaMallocManaged, and on some systems, using system allocators [4](M.1.1).

By removing the explicit transfers between devices, Unified Memory also
removes the synchronization inherent in the transfers. Thus, programmers need
to use cudaDeviceSynchronize before the CPU uses results from a GPU kernel.
This is another distinction between mapped memory and managed memory,
because with mapped memory the CPU can access the memory while the GPU
is active. Even so, some systems (those with the concurrentManagedAccess
property), support simultaneous access of managed memory [4](M.2.2.2).

3.4 HIP

HIP is a runtime API and kernel language for creating single-source applications
for both AMD and NVIDIA GPUs. Thus, much of HIP’s memory and execution
model is based on CUDA’s, and its API is described as a “strong subset” of
CUDA [7]. Of CUDA’s memory sharing techniques described above, HIP sup-
ports explicit transfer and pinned/mapped host memory [6](3.3.1). HIP does not
support managed memory [6](3.4.2.3).

4 Proposed OpenMP Extension

Detailed further in Fig. 1, across all of the models we’ve surveyed, we found
support for:

– Device memory accessible only from that device, this OpenMP already sup-
ports.

Beyond Explicit Transfers: Shared and Managed Memory in OpenMP 189

OpenCL Level Zero CUDA HIP OpenMP
Device-exclusive

memory Yes Yes Yes Yes Yes

Explicit transfers Yes Yes Yes Yes Yes
Device-accessible
host memory Mapped buffers Host allocations Mapped memory Mapped memory No

Managed memory Coarse-grained SVM Shared allocations Unified memory In development No

Shared memory Fine-grained SVM Shared allocations
Mapped memory, unified
memory on some systems Mapped memory No

Unformatted
allocations Buffers Memory Linear memory Linear memory Arrays

Formatted
allocations Images, Pipes Images CUDA arrays None

Rectangular
subvolumes

Language-level
variable qualifiers

global, constant,
local, private None

device , constant ,
shared , managed

constant ,
shared None

Fig. 1. Summary of feature support across programming systems. Table entries are the
internal feature name.

– Host memory accessible from other devices: this memory usually also provides
faster transfers due to being pinned to a specific physical memory resource.

– Managed memory, accessible from the host and at least one other device but
may only be valid to access from one of them at any given time, requiring
synchronization even when concurrent access would not otherwise be a race
condition.

– Shared, shared virtual, or unified memory that can be accessed by all rele-
vant devices simultaneously and provides some mechanism for finer grained
coherence than managed memory.

There are several factors at play in this set of interfaces. If we leave off
the memory that is only accessible to the device it was allocated for, which
is already supported, then we are left with three forms of memory which are
all accessible by the host and some set of other devices. Conventionally they
map to three, or perhaps four, functions, but amount to three separate axes of
memory properties: what devices can access the memory, what synchronization
is required for accesses to be correct, and where is the memory allocated and
initially resident.

To better support these features, we propose the following extensions to the
OpenMP specification. First, we expand the memory space concept to include
information about what devices need access to the memory space. Second, we
introduce support for memory accessible from multiple devices in the form of
shared and managed memory. Last, we’ll discuss options for controlling where the
memory is allocated, and possibly how it is allowed to migrate after allocation.

4.1 Memory Space Accessibility

In order to expand allocators to apply to multiple devices, we propose to
add a way to request new memory spaces, in addition to those provided by
default by OpenMP. The new omp get target memspace function would accept
an array of devices, and a default memory space, and return a new mem-
ory space that provides memory accessible from all the devices listed in the

190 B. Neth et al.

array. This method includes the host, whose device number is accessible using
omp get initial device() [5](3.7.7).

1 omp_memspace_handle_t * omp_get_target_memspace(

2 int count,

3 int *dev_nums,

4 omp_memspace_handle_t existing_memory_space);

Allocators created from the new memory space with omp init allocator
will allocate memory accessible from all relevant devices. This interface is cur-
rently slightly different from the other allocator interfaces in that it uses a pointer
to an omp memspace handle t object. We decided to do that so that a NULL
return value could indicate that the requested memory space couldn’t be con-
structed. The existing memory space argument serves to provide a hint to the
runtime about what should be prioritized for memory allocated from this space
as well.

4.2 Shared and Managed Memory

Ideally OpenMP should provide a way to request all the relevant allocation
types discussed above, but as always OpenMP also needs to remain portable
to a variety of hardware and foreign runtimes. The portability is a concern
because while the percentage of runtimes that support shared or unified memory
(henceforth shared memory) rather than just managed memory is growing, it is
still not universal. If we look at these properties across each type however, the
coherence and accessibility properties of host pinned memory and shared memory
are reasonably equivalent. Further, since managed memory requires more and
more stringent synchronization, using either in place of managed memory results
in a correct program. It is their performance characteristics that differ.

Since that is the case, any platform that can provide at least host pinned
memory could in principle provide semantically correct execution for programs
requesting managed or even shared memory, if at a low quality of implemen-
tation. That opens the way to use allocator traits to request the appropriate
synchronization model, where managed memory could be allocated as managed,
shared, or if necessary host pinned and shared could fall back to host pinned
as well. Thus, we propose to add a new allocator trait memory access with val-
ues of managed or coherent. For coherent mode, the memory acts like common
shared memory, allowing (with other extensions) atomics and other fine-grained
synchronization. In managed mode, we would further require that all work on
the device had been synced to the host before the host is allowed to access the
memory. That roughly matches the requirement used by HIP and CUDA, but
currently lacks a method of tying a specific managed allocation to a stream. It
would require the”no mapping” mode of OpenCL SVM either to be available or
to be emulated by calls from the OpenMP runtime to perform the appropriate
mappings. Since OpenMP lacks an equivalent concept, we will need to consider
alternate mechanisms. An interface using a depend object may be an option,
but there’s no clean mapping for that functionality.

Beyond Explicit Transfers: Shared and Managed Memory in OpenMP 191

One main downside to relying on this fallback behavior for portability is
that it could pose a significant performance problem for code that relies on
memory migrating automatically. While we could make it unspecified behavior
to use these modes on systems where a fallback is necessary, or add a requires
clause for it, it would reduce the portability of such code substantially and
further subdivide implementations. We discuss some options for detecting and
mitigating that in Sect. 4.3.

4.3 Memory Location Control

Much like selecting between managed and coherent, selecting the location of an
allocation is better done at a finer granularity than the memory space. OpenMP
needs a way to specify the context to use when allocating memory from an
allocator, in a way that it can be used for both device selection and locality with
other places on the host.

We propose that OpenMP adds two new allocator property keys to the allo-
cator traits. preferred location will take a device ID and preferred place a
place ID, indicating the users preference for allocations on that device and near
that place.

1 omp_alloctrait_t traits[] = {{.key = preferred_location, .value = 0},

{.key = preferred_place, .value = 1}};

Specifying the preferred location this way expands the flexibility of existing
traits to allow requesting things like lowest latency with respect to a place, but
makes allocating with different preferences across an application cumbersome.
Having a way to specify an allocator property as part of an actual allocation, as
an extension to the existing allocator API, could help mitigate that but there
are several routines and directives involved which would make it a wide-ranging
change. Adding a function to produce an allocator from an existing allocator
with one property adjusted or added could also help with the proliferation of
allocator objects, but exploring that is left for future work.

To offer control over whether memory should be allowed to migrate or not,
we propose to leverage the existing pinned allocator trait as well. While that
makes it partly overloaded, using it in this way avoids adding another trait, and
makes it clear that the memory should not migrate even within the device.

Allowing the location and the memory access characteristics to be traits, and
effectively hints, allows the API to remain consistent but adds to the challenge for
programmers to understand the behavior of their code. If these interfaces become
part of OpenMP, it will be important to expand the allocator API with a way
to query or guarantee what access behavior, location and other trait properties
are actually provided by a given allocation, or guaranteed by an allocator.

5 Evaluation

To evaluate the potential benefit of our proposal, we compare an OpenMP
microbenchmark implementation with two CUDA implementations. The sys-

192 B. Neth et al.

tem we used for our evaluation uses two 24-core IBM Power9* CPUs and 4
NVIDIA* V100 Volta GPUs, however our evaluation only uses one GPU. For
the OpenMP variant we used IBM’s XL compiler, version 16.1.1. For the CUDA
variants we used NVIDIA’s nvcc compiler, version 10.1.243. We evaluated using
a single node.

In our microbenchmark, we execute the daxpy (double precision a*x + y)
kernel a number of times. In the OpenMP variant, we utilize a naive data move-
ment strategy. Each time the kernel is executed, map() clauses move the data
back and forth between the host and device. The kernel is extracted into the
function shown in Listing 1.1. This microbenchmark simulates the potential
data reuse between consecutive kernels in a larger application that does not use
shared memory. Using this naive approach to improve the code’s modularity
comes at the cost of repeated data movement.

1 void omp_daxpy(int n, double a, double * x, double * y, double * z) {
2 #pragma omp target map(to: x[0:n], y[0:n], n, a) map(tofrom: z[0:n])
3 #pragma omp teams distribute parallel for simd
4 for(int i = 0; i < n; i++) {
5 z[i] += a * x[i] + y[i];
6 }
7 }

Listing 1.1. OpenMP microbenchmark kernel implementation.

In contrast, the two CUDA variants use either mapped (zero-copy) or man-
aged memory. With these implementations, the kernel implementation remains
modularized, but the data movement is not always performed and when it is it
can happen asynchronously. The CUDA variants show the potential for OpenMP
codes to maintain modularity and reduce unnecessary data movement without
requiring modifying outer scope code as with using target data. Performance
results for 1, 10, and 100 kernel repetitions are shown in Fig. 2. We report the
average of three runs.

Figure 2 shows the high costs of offloading data transfers in OpenMP com-
pared to mapped or managed memory. For the managed memory variant, the
increase in execution time is minimal, driven by the increase in the size of the
computation. In fact, between 1 and 10 repetitions, execution time increases only
7%. In contrast, for the OpenMP variant, execution time increases by 250% from
1 rep to 10 reps and by almost 700% from 10 to 100 due to the transfers back and
forth on every iteration. The mapped memory variant increases 12× between 1
rep and 10 reps and 10× between 10 and 100. However, the mapped memory
variant still outperforms the OpenMP variant at all tested repetitions. These
results demonstrate the necessity for OpenMP to support other types of data
sharing among devices if it is to remain competitive not only for functionality
but in some cases for performance as well.

Beyond Explicit Transfers: Shared and Managed Memory in OpenMP 193

Fig. 2. Execution time for OpenMP offloading, CUDA mapped (zero-copy) memory,
and CUDA managed memory variants (lower is better).

6 Conclusion

OpenMP endeavors to provide a comprehensive API for parallel programming,
including of heterogeneous nodes since the release of OpenMP 4.0. While the
flexibility and power of many of the interfaces for offload have been refined and
extended since, support for memories accessible by multiple devices has largely
stayed the same. The addition of requires unified shared memory helps for
cases where true shared memory is available, but it’s becoming ever more clear
that enforcing an all-or-nothing switch on unified memory for an application is
not sufficient to cover common uses across platforms anymore. Therefore, we
present a survey of the state of memory accessibility and memory allocation
interfaces across several APIs along with a proposal to extend OpenMP to cover
a wider variety of commonly available memory types. Further we present a test
case where the availability of a managed, or even pinned, allocation in an other-
wise manually managed memory application allows for far greater efficiency and
performance, 5× faster for this particular microbenchmark in the 100-run case.

Beyond what we have explicitly proposed here, bringing allocations support-
ing access from multiple devices into OpenMP opens the door to many more
use-cases in the future. Fine-grained synchronization between host and target

194 B. Neth et al.

devices with cross-device atomics along with scoped atomics become a possibility
in portable applications. Incorporating the notion of places in devices raises the
possibility of supporting subsections of devices, and more closely incorporating
offload devices into the places list as well.

Disclaimers

*Brands and names are the property of their respective owners.

References

1. grokos. [libomptarget] add allocator support for target memory (March 2021)
2. Intel. oneAPI Level Zero: 1.1.2 (2020)
3. Khronos OpenCL Working Group: OpenMP application program interface version

5.1 (April 2021)
4. NVIDIA. Cuda C++ programming guide v11.3.1 (May 2021)
5. Board, O.M.P.A.R.: OpenMP application program interface version 5.1 (November

2020)
6. Radeon Open Compute. HIP API (May 2021)
7. Radeon Open Compute. Hip-faq (2021)

Tasking Extensions II

Communication-Aware Task Scheduling
Strategy in Hybrid MPI+OpenMP

Applications

Romain Pereira1,3(B), Adrien Roussel1,2, Patrick Carribault1,2,
and Thierry Gautier3

1 CEA, DAM, DIF, 91297 Arpajon, France
{romain.pereira,adrien.roussel,patrick.carribault}@cea.fr

2 Université Paris-Saclay, CEA, Laboratoire en Informatique Haute Performance
pour le Calcul et la simulation, 91680 Bruyères-le-Châtel, France
3 Project Team AVALON INRIA, LIP, ENS-Lyon, Lyon, France

thierry.gautier@inrialpes.fr

Abstract. While task-based programming, such as OpenMP, is a
promising solution to exploit large HPC compute nodes, it has to be
mixed with data communications like MPI. However, performance or
even more thread progression may depend on the underlying runtime
implementations. In this paper, we focus on enhancing the application
performance when an OpenMP task blocks inside MPI communications.
This technique requires no additional effort on the application developers.
It relies on an online task re-ordering strategy that aims at running first
tasks that are sending data to other processes. We evaluate our approach
on a Cholesky factorization and show that we gain around 19% of execution
time on an Intel Skylake compute nodes machine - each node having two
24-core processors.

Keywords: MPI+OpenMP · Task · Scheduling · Asynchronism

1 Introduction

High Performance Computing (HPC) applications target distributed machines,
which inevitably involve inter-node data exchanges that can be handled by MPI
(Message Passing Interface). But, at compute-node level, the number of cores is
increasing, and task programming models seem to be well-suited for efficient use
of all computing resources and to satisfy the needs of asynchronism. Since 2008,
OpenMP [1,14] defines a standard for task programming. This leads to codes
that finely nest MPI communications within such OpenMP tasks. Furthermore,
OpenMP 4.0 introduced data dependencies between tasks. Thus, within parallel
regions exploiting tasks, applications can be seen as a single global data-flow
graph which is distributed across MPI processes, where each process has its own
OpenMP task scheduler with no view of the global graph. This may result in
poor performance [12] and even deadlocks [19].
c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 197–210, 2021.
https://doi.org/10.1007/978-3-030-85262-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-85262-7_14

198 R. Pereira et al.

Fig. 1. Top: sub-graph of a distributed blocked Cholesky factorization mapped onto 2
MPI Ranks (matrix size: 2048 × 2048 with tile of size 512). Bottom: Gantt chart with
2 threads per MPI rank.

Fig. 2. Alternative scheduling for the graph in Fig. 1.

Deadlocks can be due to the loss of cores when threads execute blocking MPI
calls within OpenMP tasks [11]. Several solutions address this issue [16,18,20]
and enable working MPI+OpenMP(tasks) codes, but performance issues remain.

Task scheduling in this hybrid context can significantly improve the overall
performance. As an example, Fig. 1 presents a subgraph of the task dependency
graph (TDG) for a Cholesky factorization [19], and its scheduling trace on 2
processors of 2 threads each. Tasks are scheduled following a standard First In,
First Out (FIFO) policy: once precedence constraints are resolved, the first tasks
created are scheduled first. This policy leads to 61% idle time on Process 0,
partially because it is waiting for data from Process 1. A similar result would be
obtained with regular OpenMP runtimes (GNU-OpenMP [6], LLVM-OpenMP
[8]) which uses a mix of FIFO and Last In, First Out (LIFO) policies. It is
possible to reduce this idle time to 36% by adapting the scheduling policy to
prioritize inter-process edges (see Fig. 2).

This paper proposes a communication-aware task re-ordering strategy for
OpenMP that aims at reducing idle periods in hybrid MPI+OpenMP (tasks)

Communication-Aware Task Scheduling Strategy 199

applications by favoring tasks on a path to communications. This strategy relies
on hybrid scheduling techniques and proposes an automatic TDG prioritization
based on communication information. Our solution heavily leverages runtime
interoperations but requires no OpenMP/MPI extensions and no further efforts
on the user side on tasks prioritization. Section 2 presents related work.
Then, Sect. 3 highlights our task scheduling strategy and Sect. 4 exposes its
implementation and evaluation. Finally, Sect. 5 concludes and discusses future
work.

2 Related Work

The Dominant Sequence Clustering (DSC) [22] was proposed as a heuristic for
scheduling tasks on an unlimited number of distributed cores. This algorithm
distributes a fully-discovered TDG onto cores - the clustering phase - and
prioritizes tasks using global bottom and top levels. Our paper focuses on
hybrid MPI+OpenMP(tasks) which are the widely used standards in the HPC
community. With this programming model, the clustering is done by the user
which distributes OpenMP tasks onto MPI processes. Each OpenMP tasks
scheduler only has a view on its local subgraph (i.e. its cluster). The tasks
global bottom and top levels (blevel, tlevel) are not known, which leads us to
prioritize the TDG using purely local information.

MPI+OpenMP(tasks) model may lead to a loss of thread, when a thread
executes blocking MPI code within an OpenMP task [11,12]. Many works
addressed this issue [4,9,11,16,18,19]. Some approaches [4,11] consist of marking
communication tasks from user codes and dedicating threads to communication
or computation. This guarantees that both communications and computations
progress and fix deadlock issues due to the loss of threads. However, it
requires user-code adaptations and creates load balancing issues between
communication and computation threads. In 2015, MPI+ULT (User Level
Thread, Argobots) [9] proposed to run MPI code within a user-level thread, and
make it yield whenever an MPI communication blocks. In OpenMP, yielding can
be achieved using the taskyield directive. Schuchart et al. [19] explored various
implementations of it, and having implementations that effectively suspend,
enables the expression of fine MPI data movement within OpenMP tasks. This
resulted in a more efficient implementation of the blocked Cholesky factorization
with fewer synchronizations and led to new approaches on MPI+OpenMP(tasks)
interoperability, such as TAMPI [18] and MPI_Detach [16]. TAMPI was
proposed as a user library to enable blocking-tasks pause and resume mechanism.
It transforms calls to MPI blocking operations to non-blocking ones through
the PMPI interface and interoperates with the underlying tasking runtime -
typically using the taskyield in OpenMP, or nanos6_block_current_task in
Nanos6. The authors of [16] proposed another interoperability approach using the
detach clause, which implies MPI specifications extensions to add asynchronous
callbacks on communications completion, and also user code adaptations.

Among all these works, our solution on the loss of threads issue differs from [4,
11,16]: we aim at no user code modifications, and to progress both communications

200 R. Pereira et al.

and computations by any thread opportunistically. Our approach is more likely a
mix of [9,16,18] with automation through runtime interoperations. This part of
our strategy is detailed in Sect. 3.1.

Other reasons can lead to threads idling. For instance, an unbalanced
distribution of work between nodes leads to threads idling. CHAMELEON [7] is
a reactive task load balancing for MPI+OpenMP tasks applications and enables
OpenMP tasks migration between MPI processes. Another idling reason could be
communication synchronization. A dynamic broadcast algorithm for task-based
runtimes was proposed in [5] which aims at no synchronizations. Their algorithm
consists of aggregating data-send operations to a single request, which holds all
the recipients’ information. Our work assumes that the task load is balanced
across MPI processes and that applications only use asynchronous point to point
communications. Thus, our scheduling strategy should be used alongside [5,7]
to achieve the best performances in real-life applications.

Asynchronous communications progression in hybrid MPI+OpenMP tasks
programming is discussed by David Buettner et al. in [2]. They proposed an
OpenMP extension to mark tasks that contain MPI communications. This
allows them to asynchronously progress MPI communication on every OpenMP
scheduling point. We retrieved this technique in our paper, as part of our
execution model. However, we propose it without the need to mark tasks on
the user side, by adding runtime interoperability.

3 Task Scheduling Strategy

We target applications that nest MPI point-to-point communications within
OpenMP dependent tasks. Our strategy aims at scheduling first tasks that
send data to reduce idle time on the receiving side. For this purpose, let us
denote respectively recv-tasks and send-tasks tasks that contain MPI_Recv
and MPI_Send calls, or their non-blocking version - MPI_Irecv and MPI_Isend
- paired with a MPI_Wait. We will discuss in Sect. 3.3 how to identify them.
This section starts by the presentation of the assumed interoperation between
OpenMP and MPI. Then it exposes, in a progressive way, different policies to
adapt task scheduling in order to send data at the earliest: through manual
(using OpenMP priority clause) or automatic computation of the required
tasks annotation.

3.1 Interoperation Between MPI and OpenMP Runtimes

Each MPI process has its own OpenMP scheduler, which executes tasks
according to their precedence constraints (expressed through the depend clause)
and their priorities. To address the loss of cores issue introduced by a blocking
MPI communication calls, and to keep asynchronous communication progression,
we propose a mix of User Level Threads (ULT), TAMPI, and MPI_Detach
[2,9,16,18]. On the MPI runtime side, whenever a thread is about to block,
it injects a communication progression polling function inside OpenMP, to be

Communication-Aware Task Scheduling Strategy 201

called on every scheduling point - as it was proposed by D. Buettner and al.
[2]. Moreover, the MPI runtime notifies the OpenMP runtime that the current
task must be suspended. The MPI communication progresses on each OpenMP
scheduling point, and whenever it completes, MPI notifies OpenMP runtime
that the suspended task is eligible to run again. This solution enables the
progression of both communication and computation asynchronously, by any
threads opportunistically.

3.2 Manual Policies

This section presents a preliminary strategy to favor communication tasks based
on source-code modification to evaluate the overall approach. To express the
fact that a specific task contains an MPI communication or it is on a path to
such operation, this strategy relies on the OpenMP priority clause. Thus, this
section introduces 3 manual policies to annotate programs in order to fix the
priorities of each task. We call this process TDG prioritization: Fig. 3 resumes
the priorities setting by the policies.

Fig. 3. Task priorities set by the various policies for the graph Fig. 1 - the value on the
nodes corresponds to the task priority

MA-1. Relies on a binary priority 0 (the lowest) and 1 (the highest). Tasks
with priority 1 are always scheduled - once dependencies are fulfilled - over
the ones with priority 0. Here, the user has to manually sets priority 1 on
send-tasks, and sets no priority on other tasks resulting in a 0 low priority
internally. This way, whenever the scheduler has multiple tasks marked as ready
(i.e., with fulfilled dependencies), it may schedule send-tasks if there are any.
This manual prioritization policy is presented in [17].

MA-2. In similar situations to the one depicted in Fig. 1, we would also like to
prioritize all the tasks that precede a send-task, to fulfill its dependencies to
the earliest. In this specific case, the user should prioritize the path (L, M, N)

202 R. Pereira et al.

to resolve O dependency constraint. MA-2 consists in setting to 1 the priority on
send-tasks and on all their predecessors recursively.

MA-3. MA-2 does not allow to finely distinguish send-tasks and their path.
However, this is important since sent data may be needed by a remote node
earlier or later. The earlier the data is needed in a remote rank, the earlier it
should be sent. MA-3 relies on discrete priorities to prioritize various send-tasks
distinctly. One way is to use their depth in the local TDG: the shorter the path
to the send-task in the local TDG, the higher the priorities on its paths. This
prioritization follows Algorithm 1 and is illustrated in Fig. 3. Send-tasks are set
with the maximum priority (line 3). If the task has no successor (lines 4–5) or if
no path from it leads to a send-task (lines 8–10), then we set no priority for it.
Otherwise, there is a path from the current task to a send-task and we set its
priority by decrementing the value of the highest priority among its successors
(line 12).

In practice, the MA-3 strategy requires the user to annotate every task on a
path that contains a send-task.

Algorithm 1. Task prioritization
Input: Task T
Output: P(T) - the priority of T
1: function ComputePriority(T)
2: if T is a send-task then
3: return omp_get_max_priority()
4: if Successors(T) = Ø then
5: return 0
6: for all S ∈ Successors(T) do
7: P(S) = ComputePriority(S)
8: M = max({P (S) | S ∈ Successors(T)})
9: if M = 0 then

10: return 0
11: else
12: return M - 1

3.3 (Semi-)Automatic Policies

While MA-3 reduces the idling periods by sending data to the earliest, manually
prioritizing the TDG is tedious to implement at user level. Users will have to
manually compute the depth of each tasks in the local TDG, and setting the
priority clause accordingly. From the runtime point of view, this information
could be tracked. So, we propose two runtime automations on the TDG
prioritization to reduce user programming efforts to identify predecessors of a
task as well as to identify communication tasks.

Communication-Aware Task Scheduling Strategy 203

SA. In the Semi-Automatic (SA) approach, the user simply marks send-tasks
with an arbitrary priority. Once a task construct is encountered, the runtime is
guaranteed that all of its predecessors were already created too. So, the runtime
internally sets its priority to the highest value, and automatically propagates it
through the TDG following Algorithm 1.

FA. SA enables a more straightforward MA-3 implementation but it still
requires the user to mark send-tasks. The Fully-Automatic (FA) approach
enables a TDG prioritization similar to MA-3, but with absolutely no hints
given by the users to the runtime, by adding fine collaboration between MPI
and OpenMP runtimes. At execution time, whenever MPI is about to perform
a send operation, it notifies the OpenMP runtime. If the current thread was
executing an explicit task, it registers its profile with information such as its:

– size (shared variables)
– properties (tiedness, final-clause, undeferability, mergeability, if-clause)
– parent task identifier (the task that spawns current task)
– number of predecessors (fully-known at run-time)
– number of successors (may be incomplete)

Then, future tasks may be matched with registered profiles to detect
send-tasks. This approach uses full-matching on the size, the properties,
the parent task identifier, and the number of predecessors. It mainly targets
iteration-based applications, where send-tasks profiles are likely to be identical
between iterations.

The send-tasks cannot be detected until a task with a similar profile was
scheduled, performed an MPI send operation, and registered its profiles in the
OpenMP runtime. So unlike the SA policy, the prioritization cannot be done on
task constructs with FA. We propose to perform it asynchronously during idle
periods. This way, the runtime is more-likely to have detected send-tasks when
performing the matching, and idle periods are overlapped by the prioritization
without slowing down ready computations. Algorithm 2 is a single-threaded
asynchronous TDG prioritization proposal. The parameter ROOTS corresponds
to the task-nodes from which the prioritization should start, i.e. the blocking
tasks. Line 9 to 17 consists of breadth-first-searching leaves, so we have them
sorted by their depth in the TDG. Line 18 to 24 goes up from founded leaves
to roots, matching tasks with registered profiles and propagating the priority to
predecessors.

Table 1. Summary of approaches

Policies MA-1 MA-2 MA-3 SA FA

send-tasks u u u u r
send-tasks path N/A u u r r
u - user/manual
r - runtime/automatic

204 R. Pereira et al.

Algorithm 2. Priority propagation (single-thread, during idle periods)
1: Variables
2: List D, U � D, U stands for DOWN, UP
3: Task T, S, P
4:
5: procedure Prioritize(ROOTS) � Prioritize the TDG from given root nodes
6: D = [], U = [] � Empty lists
7: for T in ROOTS do
8: Append T to D � Add T to the tail of D
9: while D is not empty do

10: T = D.pop() � Pop T from D’s head
11: if T has successors then
12: for S in Successors(T) do
13: if S is not VISITED then
14: Mark S as VISITED
15: Append S to D
16: else
17: Append T to U
18: while U is not empty do
19: if T is not queued then
20: Set T.priority � match with registered task profiles
21: for P in Predecessors(T) do
22: if P.priority < T.priority - 1 then
23: P.priority = T.priority - 1
24: Prepend T to U

3.4 Summary

Table 1 summarizes the different approaches of computing priorities on tasks
that perform MPI communications and tasks that contribute to execute
communications (through OpenMP task dependencies). Almost all policies
require user modifications of the application source code (through priority
OpenMP clause) to mark tasks that perform send operations except the FA
strategy that automatically detects such tasks by comparing profiles with
previously-executed tasks. Furthermore, marking the whole path from the source
task to the ones that perform MPI operations can be done manually (approaches
MA2 or MA3) or automatically (approaches SA or FA).

4 Implementation and Evaluation

4.1 Implementation

The scheduling strategy and the different policies presented in Sect. 3 were
implemented into MPC [15]: a unified runtime for MPI and OpenMP 1. It is
based on hierarchical work-stealing, similar to [13,21], where red-black tree
1 Available at: http://mpc.hpcframework.com/.

http://mpc.hpcframework.com/

Communication-Aware Task Scheduling Strategy 205

priority queues are placed at the different topological levels built from the
hardware topology [10]. Each thread is assigned to multiple queues, and steal
tasks from other queues when it falls idle. The task with the highest priority is
popped from the selected queue.

To implement the interoperability approach presented Sect. 3.1, we made
two modifications to MPC framework. First of all, we added an MPC-
specific OpenMP entry-point to suspend the current task until an associated
event is fulfilled - mpc_omp_task_block(omp_event_t event). When a
thread is about to block on an MPI call, it suspends its current task
through this routine. The communication progresses, and on completion,
omp_fulfill_event(omp_event_t event) is called so that the associated task
is eligible to resume.

Furthermore, to avoid deadlocks, we added contexts to OpenMP tasks in
MPC based on a modified version of the <ucontext> C library to handle
MPC-specific TLS [3]. This add some extra instructions on tasks management
measured using Callgrind. For each task, contexts added ∼ 200 instructions
on launch, ∼ 2000 instructions on the first suspension, and ∼ 200 instructions
each time a task suspends.

Based on these modifications, we implemented the MA-1, MA-2, SA and
FA approaches presented in the previous section. However, MA-3 was not
implemented since it is too tedious on the user-side.

Task prioritization is done synchronously on task construct in the SA policy.
In the FA policy it is done asynchronously: whenever a thread falls idle,
it runs Algorithm 2 with ROOTS being the list of tasks suspended through
mpc_omp_task_block.

4.2 Evaluation Environment

We present the result of multiple experiments on the fine-grained blocked
Cholesky factorization benchmark. We denote n the size of the matrix to
factorize, and b the size of the blocks. The time complexity of the factorization
is O(n3), and the memory used is about 8n2 bytes.

All experiments run onto Intel Skylake nodes (two 24-core Intel(R) Xeon(R)
Platinum 8168 CPU @ 2.70GHz, with 96GB of DDR). Interconnection network
is a Mellanox ConnectX-4 (EDR 100Gb/s InfiniBand) system. MPC (commit
702ce5c2) was configured with optimizations enabled, and compiled with GCC
7.3.0. We forked J. Schuchart fine-grained blocked Cholesky factorization
benchmark.2 The benchmark is compiled with MPC patched GCC [3], linked
with Intel Math Kernel Library (MKL 17.0.6.256), MPC-MPI, and MPC-
OpenMP. Each run uses SLURM exclusive parameter, which ensures that no
other jobs may run concurrently on the same node. Each time corresponds to
medians taken on 20 measurements.

To evaluate our strategy and different policies of Sect. 3 we compare measured
performance against the FIFO reference policy, previously explained in Sect. 1.

2 Sources are available at: https://gitlab.inria.fr/ropereir/iwomp2021.

https://gitlab.inria.fr/ropereir/iwomp2021

206 R. Pereira et al.

This policy does nothing except that the MPC MPI and OpenMP runtimes
interoperate to avoid deadlocks.

Fig. 4. Cholesky factorisation time based on the prioritization policy, and the
MPI/OMP cores spreading on 16 Skylakes nodes (e.g., 16–48 stands for 16 MPI ranks
of 48 threads each) - with a matrix of size n = 131072, and blocks of size 512.

4.3 Experimental Results

Figure 4 shows the impact of cores spreading between MPI and OpenMP on
the performance of each prioritization policy described in Sect. 3. The time
was measured using a tool that traces every MPC-OpenMP tasks events and
replay the schedule post-mortem to extract in-tasks (time spent in tasks
body - MKL computation, non-blocking MPI communications initialization),
idle (time spent outside tasks with no ready-tasks - idling, communications
progression, prioritizations in FA), and overhead categories (time spent outside
tasks with ready-tasks - tasks management, communications progression). The
matrix size is n = 131072, and 16 fully-allocated Skylake nodes. The benchmark
ran with different spreading configurations. On the left-most bars, there are 16
MPI ranks of 48 OpenMP threads each (1 MPI rank per node). On the right-
most bars, there are 128 MPI ranks of 6 threads each (8 MPI ranks per node). In
configurations with multiple MPI ranks on the same node, OpenMP threads of
the same MPI rank always are on the same NUMA node. Note that the amount
of computation between each configuration remains constant, there are precisely
2.829.056 OpenMP computation tasks in each run distributed across MPI ranks.
The number of communication tasks increases with the number of MPI ranks
and is depicted in Table 2.

Communication-Aware Task Scheduling Strategy 207

Table 2. Number of point-to-point communication tasks in Fig. 4 runs

Cores spreading (MPI-OpenMP) 16–48 32–24 64–12 128–6

P2P communication tasks (overall) 388.624 640.632 892.640 1.372.880

This result demonstrates that tasks prioritization in MPI+OpenMP tasks
applications can have significant impact on performance (as predicted in Figs. 1
and 2). First of all, MA-1 and MA-2 policies are not sufficient and they do not
improve performance over the baseline FIFO policy. By prioritizing send-tasks
and their path, the policies SA and FA significantly reduce idle periods. For
instance in the 32-24 spreading, the total execution time and the idle time
respectively are 33.2s and 8.0s for the FIFO policy, 28.4s and 4.4s for FA policy.
However, being fully automatic has some costs. The FA policy is never as good
as the SA one, with up to a 8% overhead in the 128-6 spreading. For FA,
the prioritization only occurs once some send-tasks execution, their profile
is registered and eventually a thread becomes idle to set and propagate the task
priority. It means there is no prioritization for the first executed tasks. Moreover,
the profile registering and matching mecanisms induce some overhead.

The 32-24 scheme reaches the best performance thanks to NUMA domain
data-locality. MPC-MPI also optimizes intra-node rank exchanges, processing
them in shared memory.

Table 3. Execution times of runs in Fig. 5

Number of MPI ranks 1 2 4 8 16 32

FIFO 22.28 s 24.05 s 25.82 s 26.46 s 31.02 s 33.36 s.
SA 22.67 s 24.46 s 24.58 s 24.91 s 25.96 s 27.01 s.
FA 22.63 s 24.48 s 25.05 s 25.38 s 26.27 s 27.89 s

Figure 5 is a weak-scaling on MPI ranks. Each time corresponds to the time
spent by MPI processes in the factorization, given by the benchmark itself. The
efficiency is relative to the mono-rank execution per prioritization policy, this is
why times are also given in Table 3. Each MPI process fills a Skylake processor,
with 24 OpenMP threads. The scaling starts from a single processor on 1 node,
with a matrix factorization of size n = 41286, which represents 13% of the node
memory capacity. The scaling ends at 16 nodes, with 32 MPI ranks, and a matrix
of size n = 131072. The exact number of tasks is given in Table 4, where the
compute category corresponds to potrf, gemm, syrk and trsm tasks, and the
communication category to send-tasks and recv-tasks.

208 R. Pereira et al.

Fig. 5. Weak-scaling on MPI ranks, on the blocked Cholesky factorisation, with blocks
of size 512, and MPI processes with 24 OMP threads per rank (Skylake socket)

Table 4. Figure 5 tasking details

Number of ranks 1 2 4 8 16 32

Matrix size (n) 41.286 52.015 65.536 82.570 104.031 131.072

Number of computation tasks 88.560 176.851 357.760 708.561 1.414.910 2.829.056

Number of communication tasks 0 10.100 32.512 102.082 243.616 640.632

In this application, the tasks graph is evenly distributed across MPI ranks.
Data-dependencies are whether retrieved from local compute tasks or through
recv-tasks completion. The weak-scaling result depicted in Fig. 5 scales the
number of communications, while keeping constant computation work per MPI-
rank. This experiment amplifies the inter-node data exchanges, and thus, the
idling phenomenon we have introduced. We see that MA-1 and MA-2 prioritization
does not improve the performance scaling compared to the reference FIFO
prioritization. SA and FA prioritization enables better performance scaling, with
up to 19% performance gain in the 32 ranks configuration.

5 Conclusion and Future Work

MPI+OpenMP task programming encounters some interoperability issues that
lead to thread idling. Solutions were proposed to address the loss of cores, the
load balancing, or the communication collectives, but scheduling issues remain.
This paper proposes a task scheduling strategy for OpenMP schedulers to reduce
idle periods induced by MPI communications, by favoring send-tasks. We
propose and evaluate several policies from purely manual approaches which
require user cooperation to fully automatic policy.

Communication-Aware Task Scheduling Strategy 209

The best method significantly improves performance and scaling of the
Cholesky factorization [19], with up to 19% performance gain in our largest
run. Some overhead in the fully automatic strategy has been identified and we
are planning to improve graph traversal to reduce the runtime cost.

For future work, we plan to validate our approach on a wider set of
applications. Furthermore, in this paper, we only considered explicit data
dependencies expressed through the depend clause: we consider adding support
for control dependencies. Also, prioritization of send-tasks is purely based
on local information (the dependency graph between OpenMP tasks) without
taking into account task dependencies in other MPI ranks. We are thinking to
improve our strategy by taking into account global information.

References

1. Ayguadé, E., et al.: A proposal for task parallelism in OpenMP. In: Chapman,
B., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007.
LNCS, vol. 4935, pp. 1–12. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-69303-1_1

2. Buettner, D., Acquaviva, J.T., Weidendorfer, J.: Real asynchronous MPI
communication in hybrid codes through OpenMP communication tasks, pp. 208–
215 (December 2013). https://doi.org/10.1109/ICPADS.2013.39

3. Carribault, P., Pérache, M., Jourdren, H.: Thread-local storage extension to
support thread-based MPI/OpenMP applications. In: Chapman, B.M., Gropp,
W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS, vol. 6665, pp. 80–93.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21487-5_7

4. Chatterjee, S., et al.: Integrating asynchronous task parallelism with MPI. In: 2013
IEEE 27th International Symposium on Parallel and Distributed Processing, pp.
712–725 (2013). https://doi.org/10.1109/IPDPS.2013.78

5. Denis, A., Jeannot, E., Swartvagher, P., Thibault, S.: Using dynamic broadcasts
to improve task-based runtime performances. In: Euro-Par - 26th International
European Conference on Parallel and Distributed Computing. Euro-Par 2020,
Rzadca and Malawski, Springer, Warsaw, Poland (August 2020). https://doi.org/
10.1007/978-3-030-57675-2_28, https://hal.inria.fr/hal-02872765

6. GNU Project: GOMP - An OpenMP implementation for GCC. https://gcc.gnu.
org/projects/gomp/

7. Klinkenberg, J., Samfass, P., Bader, M., Terboven, C., Müller, M.: CHAMELEON:
reactive load balancing for hybrid MPI+OpenMP task-parallel applications. J.
Parallel Distrib. Comput. 138, 55–64 (2019). https://doi.org/10.1016/j.jpdc.2019.
12.005

8. LLVM Project: OpenMP R©: Support for the OpenMP language. https://openmp.
llvm.org/

9. Lu, H., Seo, S., Balaji, P.: MPI+ULT: overlapping communication and
computation with user-level threads, pp. 444–454 (2015). https://doi.org/10.1109/
HPCC-CSS-ICESS.2015.82

10. Maheo, A., Koliaï, S., Carribault, P., Pérache, M., Jalby, W.: Adaptive OpenMP
for large NUMA nodes, pp. 254–257 (June 2012). https://doi.org/10.1007/978-3-
642-30961-8_720

https://doi.org/10.1007/978-3-540-69303-1_1
https://doi.org/10.1007/978-3-540-69303-1_1
https://doi.org/10.1109/ICPADS.2013.39
https://doi.org/10.1007/978-3-642-21487-5_7
https://doi.org/10.1109/IPDPS.2013.78
https://doi.org/10.1007/978-3-030-57675-2_28
https://doi.org/10.1007/978-3-030-57675-2_28
https://hal.inria.fr/hal-02872765
https://gcc.gnu.org/projects/gomp/
https://gcc.gnu.org/projects/gomp/
https://doi.org/10.1016/j.jpdc.2019.12.005
https://doi.org/10.1016/j.jpdc.2019.12.005
https://openmp.llvm.org/
https://openmp.llvm.org/
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.82
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.82
https://doi.org/10.1007/978-3-642-30961-8_720
https://doi.org/10.1007/978-3-642-30961-8_720

210 R. Pereira et al.

11. Marjanovic, V., Labarta, J., Ayguadé, E., Valero, M.: Effective communication and
computation overlap with hybrid MPI/smpss, vol. 45, pp. 337–338 (2010). https://
doi.org/10.1145/1693453.1693502

12. Meadows, L., Ishikawa, K.: OpenMP tasking and MPI in a lattice QCD benchmark.
In: de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S.
(eds.) IWOMP 2017. LNCS, vol. 10468, pp. 77–91. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65578-9_6

13. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M., Prins, J.F.: OpenMP
task scheduling strategies for multicore NUMA systems. Int. J. High Perform.
Comput. Appl. 26(2), 110–124 (2012). https://doi.org/10.1177/1094342011434065

14. OpenMP Architecture Review Board: OpenMP application program interface
version 3.0 (May 2008). http://www.openmp.org/mp-documents/spec30.pdf

15. Pérache, M., Jourdren, H., Namyst, R.: MPC: a unified parallel runtime for clusters
of NUMA machines. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par 2008.
LNCS, vol. 5168, pp. 78–88. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85451-7_9

16. Protze, J., Hermanns, M.A., Demiralp, A., Müller, M.S., Kuhlen, T.: MPI detach
- asynchronous local completion. In: 27th European MPI Users’ Group Meeting,
pp. 71–80. EuroMPI/USA 2020, Association for Computing Machinery, New York,
NY, USA (2020). https://doi.org/10.1145/3416315.3416323

17. Richard, J., Latu, G., Bigot, J., Gautier, T.: Fine-grained MPI+OpenMP plasma
simulations: communication overlap with dependent tasks. In: Yahyapour, R.
(ed.) Euro-Par 2019. LNCS, vol. 11725, pp. 419–433. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29400-7_30, https://hal-cea.archivesouvertes.
fr/cea-02404825

18. Sala, K., Teruel, X., Perez, J.M., Peña, A.J., Beltran, V., Labarta, J.: Integrating
blocking and non-blocking MPI primitives with task-based programming models.
Parallel Comput. 85, 153–166 (2019). https://doi.org/10.1016/j.parco.2018.12.008

19. Schuchart, J., Tsugane, K., Gracia, J., Sato, M.: The impact of taskyield on the
design of tasks communicating through MPI. In: de Supinski, B.R., Valero-Lara,
P., Martorell, X., Mateo Bellido, S., Labarta, J. (eds.) IWOMP 2018. LNCS,
vol. 11128, pp. 3–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98521-3_1

20. Seo, S., et al.: Argobots: A lightweight low-level threading and tasking framework.
IEEE Trans. Parallel Distrib. Syst. 29(3), 512–526 (2018). https://doi.org/10.
1109/TPDS.2017.2766062

21. Virouleau, P., Broquedis, F., Gautier, T., Rastello, F.: Using data dependencies
to improve task-based scheduling strategies on NUMA architectures. In: Euro-Par
2016. Euro-Par 2016, Grenoble, France (August 2016). https://hal.inria.fr/hal-
01338761

22. Yang, T., Gerasoulis, A.: DSC: scheduling parallel tasks on an unbounded number
of processors. Parallel Distrib. Syst. IEEE Trans. 5, 951–967 (1994). https://doi.
org/10.1109/71.308533

https://doi.org/10.1145/1693453.1693502
https://doi.org/10.1145/1693453.1693502
https://doi.org/10.1007/978-3-319-65578-9_6
https://doi.org/10.1007/978-3-319-65578-9_6
https://doi.org/10.1177/1094342011434065
http://www.openmp.org/mp-documents/spec30.pdf
https://doi.org/10.1007/978-3-540-85451-7_9
https://doi.org/10.1007/978-3-540-85451-7_9
https://doi.org/10.1145/3416315.3416323
https://doi.org/10.1007/978-3-030-29400-7_30
https://hal-cea.archivesouvertes.fr/cea-02404825
https://hal-cea.archivesouvertes.fr/cea-02404825
https://doi.org/10.1016/j.parco.2018.12.008
https://doi.org/10.1007/978-3-319-98521-3_1
https://doi.org/10.1007/978-3-319-98521-3_1
https://doi.org/10.1109/TPDS.2017.2766062
https://doi.org/10.1109/TPDS.2017.2766062
https://hal.inria.fr/hal-01338761
https://hal.inria.fr/hal-01338761
https://doi.org/10.1109/71.308533
https://doi.org/10.1109/71.308533

An OpenMP Free Agent Threads
Implementation

Victor Lopez(B) , Joel Criado , Raúl Peñacoba , Roger Ferrer ,
Xavier Teruel , and Marta Garcia-Gasulla

Barcelona Supercomputing Center (BSC), Barcelona, Spain
{vlopez,jcriado,rpenacob,rferrer,xteruel,martag}@bsc.es

Abstract. In this paper, we introduce a design and implementation of
the free agent threads for OpenMP. These threads increase the malleabil-
ity of the OpenMP programming model, offering resource managers and
runtime systems flexibility to manage threads and resources efficiently.
We demonstrate how free agent threads can address load imbalances
problems at the OpenMP level and at an MPI level or higher. We use
two mini-apps extracted from two real HPC applications and represen-
tative of real-world codes to demonstrate this. We conclude that more
malleability in thread management is necessary, and free agents can be
regarded as a practical starting point to increase malleability in thread
management.

Keywords: OpenMP · Tasks · Free agent · Malleability · Dynamic
load balancing

1 Introduction

In the current race for exascale, the new HPC architectures are going in two
main directions to achieve their goal. On the one hand, adding accelerators to
the compute nodes, and on the other one, increasing the number of cores per
socket. These trends challenge parallel programming models to provide support,
transparency, and performance in these new architectures. When increasing the
number of cores per socket, the challenge is using a high number of cores effi-
ciently. To address this challenge, undoubtedly, all heads are turning to look at
OpenMP as the most widely used shared memory programming model.

Noise, load imbalance, complex code, or lack of parallelism, among others,
are some of the pitfalls that can jeopardize efficiency when using architectures
with a high number of cores per socket. To address these issues is no longer
enough to fight them; we need to adapt. Parallel programming models need to
offer flexibility (i.e., the execution model is not predetermined, several exter-
nal factors need to be considered, such as the current state of the system) and
malleability (i.e., the ability to increase or decrease the hardware resources used
at any time) to adjust the execution at runtime and make it transparent and

c© Springer Nature Switzerland AG 2021
S. McIntosh-Smith et al. (Eds.): IWOMP 2021, LNCS 12870, pp. 211–225, 2021.
https://doi.org/10.1007/978-3-030-85262-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85262-7_15&domain=pdf
http://orcid.org/0000-0002-3113-9166
http://orcid.org/0000-0002-6482-0214
http://orcid.org/0000-0001-9639-0485
http://orcid.org/0000-0003-3306-8610
http://orcid.org/0000-0001-5181-7545
http://orcid.org/0000-0003-3682-9905
https://doi.org/10.1007/978-3-030-85262-7_15

212 V. Lopez et al.

straightforward for the user or developer of the code. Moreover, the different lay-
ers of the software stack, job schedulers, resource managers, distributed memory
programming models, or shared-memory programming models must cooperate
and coordinate.

This paper presents a design and implementation of the free agent threads
in the LLVM OpenMP runtime. The free agent threads increase the malleabil-
ity and flexibility of OpenMP, allowing extra threads to execute tasks in idle
computational resources, and at the same time, offering a tool that will help
coordinate the workload between different resource managers or runtime sys-
tems. Since tasks were introduced in OpenMP, there has been an interest in
having free agent or task-only threads in the model [18]. Now it is one of their
objectives in their roadmap for OpenMP 6.0 [5].

The remainder of this paper is organized as follows. In Sect. 2, we review the
current state of the art of different task-based programming models and their
malleability and other approaches that try to exploit malleability to improve
efficiency. Later, in Sect. 3, we discuss the design decisions regarding the defi-
nition and context of the free agent threads within the OpenMP standard. In
the following section, we explain some relevant implementation details of our
proposal. In Sect. 5, we present the evaluation of the proposal. For this evalua-
tion, we consider two use cases, in the first one a load imbalance problem at the
OpenMP level among different parallel regions. The second use case considers
a load imbalance between MPI processes that can be solved using a Dynamic
Load Balancing Library and the free agent threads implementation. Finally, in
Sect. 6, we will summarize the conclusions gathered from this work in the last
section.

2 Related Work

Several programming models are implementing a pure task-based approach ver-
sus a thread-based one. A pure task-based programming model relies on creating
work units that could be executed by any processing element available on the
system and does not usually tie the resulting parallel decomposition to any hard-
ware resource.

The OmpSs [4,8] programming model expresses the application parallelism
through task-generating constructs. A task construct is a compiler directive or a
source code comment that the compiler can interpret with well-defined seman-
tics. Tasks are also annotated with clauses to specify certain behaviors (e.g., the
data associated with the task; and if this data is read, written, or updated).
In addition to these task-generating constructs, the programmer has another
mechanism to handle the synchronization among tasks and guarantee correct-
ness accessing shared memory.

The Intel Threading Building Blocks [12] component, currently known as
oneTBB, is a C++ template library that allows parallelizing an application
breaking it down into tasks. The programmer may use any of the TBB pre-
packaged high-level interfaces (i.e., Generic Parallel Algorithms, Parallel STL,

An OpenMP Free Agent Threads Implementation 213

or Flow Graph interfaces) or directly using its low-level interface to create tasks.
A TBB task is an entity that defines a small computation unit and its associated
data. With that information, the runtime can create a task dependency graph
and execute tasks in parallel.

Intel Cilk++ SDK [11] is a language compiler add-on and a runtime library
included in the Intel compiler family. It allows expressing parallelism using only
three keywords: cilk spawn (to create a task), cilk for (to parallelize loops),
and cilk sync to wait for completion. In addition to these three fundamental
keywords, the Cilk++ SDK offers other services to handle most parallel pro-
gramming challenges (locks, reducers, etc.). The current incarnation of the Cilk
language families is the OpenCilk [13] project, maintained by the Massachusetts
Institute of Technology. The project also includes an open-source implementa-
tion of the Cilk concurrency platform, compatible with the Cilk Plus language
extension to C and C++.

The OpenMP [16] programming model, in its version 3.0 [14], also included
a task-based approach. With the task construct, programmers were able to
annotate tasks. Since its version 4.0 [15], they could also annotate them with
the depend clause, enabling the runtime to compute the task dependency graph
and properly synchronize the task execution order. The main problem of this
tasking extension is that the execution model is still bound to the creation of
parallel regions, perpetuating the rigid fork-join pattern of this model.

Task-based parallel approaches ease the malleability of parallel executions.
And malleability allows adapting the use of underlying resources, and, in some
instances, it also allows to adapt it dynamically. This is the case of the afore-
mentioned OmpSs programming model. Its implementation includes a module,
the Thread Manager, which determines the number of threads and their binding
to the underlying CPUs. Furthermore, this module may agree with an external
component (e.g., a resource manager) which may decide to extend or reduce
the number of CPUs used at any given time. The resource manager may collect
information from different processes running in the node, which improves the
quality of this decision.

The Dynamic Load Balance library (DLB [9]) is one of these resource man-
agers. This software implements several policies to decide the usage and/or the
ownership (DROM [7]) of CPUs by a set of parallel processes linked to it. Then,
the library can shrink (in the phases it has not declared enough parallelism) or
expand (when the application reaches stages with a significant number of con-
current tasks) the number of threads for a given process. The ideal situation
occurs when a process may yield its CPUs to another one that requires them.

DLB can easily interoperate with OmpSs due to the remarkable malleability
of this programming model [10]. OmpSs can increase or reduce the number of
threads participating in the execution of a given program almost at every single
point. This is not the case with the OpenMP programming model. Once the
application starts executing a parallel region with a certain number of threads,
it is impossible to change the number of participants; it will break the semantics
of work-sharing. But the execution of tasks does not require a constant number

214 V. Lopez et al.

of worker threads, neither that just threads from the current parallel region are
the only candidates to execute these tasks.

Some extensions of OpenMP attempt to include the idea of using additional
threads, not participating in the current parallel region, to help in the execution
of the instantiated tasks. Using the hidden helper threads implementation [19],
the authors propose to leverage not currently active worker threads to participate
in the offload of target regions to the device. This is a common use case: offloading
kernels to a GPU while executing the sequential part of the OpenMP program
and losing potential performance due to unused CPUs. The main difference
of this extension compared to our proposal is that hidden helper threads do
not allow dynamically changing the number of threads, where the OpenMP
standard does not impose any restriction. In addition, our proposal aims to
be more generic, and it allows executing any task rather than restricting these
threads to execute target tasks. This is also the main reason we have not used this
implementation as a comparison counterpart. We are not targeting devices other
than host, and, in addition, we base our fundamental source of improvement on
dynamically changing the number of threads (which is not possible with this
implementation of hidden helper threads).

3 Proposal

We present our design of free agent threads as an addition to the OpenMP spec-
ification to increase the malleability of the programming model. Our proposal
is driven towards making free agent threads as much flexible as possible. They
should be treated as helper threads that can be enabled or disabled, and the
OpenMP runtime will use them whenever possible.

The OpenMP specification distinguishes between implicit task, which is the
task implicitly assigned to any thread participating in a parallel region, and
explicit task, which is the task generated by a task construct. In our proposal,
free agent threads are OpenMP threads that will not be considered when encoun-
tering a parallel region. Their only purpose is to execute explicit tasks.

Free agent threads will neither participate in any team synchronization point,
such as barrier constructs or implicit barriers. They will, however, be part of
the initial thread contention group and will participate in other synchronization
constructs such as critical or atomic.

A task executed in a free agent thread may contain other parallelism-related
constructs, although we have not explored all the possibilities, and further inves-
tigation would be needed. The parallel construct is one of them, and probably
the one that presents more difficulties to compose with free agent threads con-
cerning nesting level, CPU bindings, etc. We believe that this construct should
be initially restricted for tasks executed in free agent threads. A free agent thread
could also encounter a taskgroup or a taskyield construct, or any other con-
struct that causes a task switching point. The only issue here is that the free
agent thread is not guaranteed to exist when the task becomes ready again.
Therefore, all tasks executed in a free agent thread should be considered untied
tasks.

An OpenMP Free Agent Threads Implementation 215

3.1 Considered Aspects in the Design

Free Agent Threads Are Not Organized in Teams. OpenMP threads are
typically grouped in teams. An OpenMP team is a set of one or more threads
created for a specific parallel region, whether the implicit parallel region or a
region generated from a parallel construct. In the case of explicit parallel
regions, the thread that encounters the parallel construct creates the team.
All the threads in that team will participate in the execution of the parallel
region.

During the initial design discussions, we explored the idea of free agent
threads being part of the same team, as in the hidden helper thread imple-
mentation. It certainly has some benefits, like an already defined task scheduler
model and implementation. But, it makes the model too strict for the use cases
that have motivated us for this article. We want to propose a model where free
agent threads are free to steal explicit tasks from any other team, not just the
tasks bound to a specific team or a thread set. Furthermore, the term team is
well defined in the OpenMP specification, and we believe that expanding its
definition for including free agent threads would be confusing.

By not constituting an exclusive team or forming part of any other regular
team, free agent threads will not participate in some team-wide synchronization
constructs, such as barriers. But they acquire some advantages:

– The number of participating free agent threads may be dynamic. Unlike
teams, the free agent threads group is an asynchronous structure. It will be
created during the initialization, but the number of participating free agent
threads might be modified at any time by using a runtime library routine.

– The execution of explicit tasks by free agent threads is not limited to tasks
bound to their team since there is none. Explicit tasks are still bound to the
thread set of the current team and optionally to the free agent threads set.

Free Agent Threads Might Be Dynamically Enabled or Disabled.
There is a necessity for application developers, users, and third-party tools to
have mechanisms to set the initial values or to dynamically change the number
or the state of free agent threads. The runtime must provide tools in the same
way that allows setting or modifying the number of threads.

These mechanisms are detailed in Sect. 3.3, but we distinguish some concepts.
They may be explicitly set using an environment variable, a runtime library
routine, an OMPT entry point, or decided by the implementation. First, the
total number of existing free agent threads is self-explanatory but does not tell
their situation, only that they are known. Then, the global free agent threads
policy is a single value that affects all the existing threads and states whether
they are enabled or disabled. And last, the free agent thread state is a per-
thread value that manages whether a specific free agent thread may execute
some explicit tasks, but only if the global policy allows it.

216 V. Lopez et al.

3.2 The free agent Task Clause

Free agent threads are intended for executing explicit tasks in situations where
the parallel region cannot exploit all the parallelism in the system. The task
construct generates an explicit task from the code for the associated structured
block, with an accordingly created data environment for the task that will be
destroyed when the structured block is completed. Since the task becomes an
independent entity of work, any free agent thread will execute it as long as the
task has been deferred.

Although, until now, tasks were supposed to be executed by any team mem-
ber, so developers may have written code relying on that. Listing 1.1 shows a task
where some data is stored in a private buffer indexed by thread number. The oper-
ation is not protected with a mutual exclusion because the developer expected
only one thread to modify this address. If omp_get_thread_num() returns 0 then
the above assumption is invalidated; if it returns a unique number, the program
will probably incur a memory access violation.

Listing 1.1. Task invoking a team related function.
#pragma omp parallel
{

#pragma omp task
buffer[omp_get_thread_num ()] += f();

}

Another example is shown in Listing 1.2, where at the end of the parallel
region, the participating threads perform a reduction of their respective thread-
private variables. In this example, if a free agent thread would have executed
any task, their accumulated value in counter will not be added to result.

Listing 1.2. Reduction assuming that tasks are executed by threads in the team.
int counter = 0;
#pragma omp threadprivate(counter)
...
#pragma omp parallel
{

#pragma omp taskgroup
#pragma omp task
counter += f();

#pragma omp for schedule(static)
for(int i=0; i<omp_get_num_threads (); ++i)

#pragma omp atomic
result += counter;

}

There may be other programming patterns where developers did not foresee
that threads might execute explicit tasks outside the team. For this reason, we
propose the new clause free_agent(bool-expr) for the task and taskloop
constructs.

Since adding a new clause to many constructs might be time-consuming
for application developers, we also propose an environment variable to set the
default behavior: OMP_FREE_AGENT_TASKS={true,false}.

An OpenMP Free Agent Threads Implementation 217

– In a task or taskloop construct, if a free_agent clause is present and eval-
uates to true, or if the environment variable OMP_FREE_AGENT_TASKS is set to
true and a clause free_agent does not evaluate to false, the generated task
may be executed by any thread in the team or by any free agent thread.

3.3 Proposed Mechanisms to Manage Free Agent Threads

We propose the following OpenMP environment variables to configure the initial
state of free agent threads in an OpenMP program. We also offer a set of runtime
library routines for applications to modify the state at run time. And finally, we
propose a set of entry points in the OMPT callback interface for OMPT tools
to gather information of free agent threads and enable or disable specific ones.

Environment Variables

– OMP_FREE_AGENT_NUM_THREADS: sets the initial number of free agent threads
to use.

– OMP_FREE_AGENT_PROC_BIND: sets the thread affinity policy to be used
for free agent threads. The value of this environment variable might be
true, false, initial, close, or spread. This variable is the equivalent of
OMP_PROC_BIND for free agent threads, except that it is relative to the initial
thread.

– OMP_FREE_AGENT_PLACES: sets the place partition for free agent threads. The
allowed values are the same as in OMP_PLACES.

– OMP_FREE_AGENT_WAIT_POLICY: sets the desired behavior of free agent
threads that are waiting. Possible values are active or passive.

– OMP_FREE_AGENT_POLICY: sets the initial policy for free agent threads. Pos-
sible values are enabled or disabled. If the value is enabled, free agent
threads will be able to execute explicit tasks. If the value is disabled, free
agents must be suspended or even yet not created, and they must not execute
any explicit task.

– OMP_FREE_AGENT_TASKS: sets whether all tasks are considered to have the
free_agent clause.

Runtime Library Routines

– int omp_get_num_free_agent_threads(void): returns the number of
existing free agent threads.

– void omp_set_num_free_agent_threads(int num_threads): affects the
number of free agent threads to be used by the runtime. If num_threads
is greater than the current number of free agent threads, the runtime may
create new ones. If num_threads is less than the current number of free agent
threads, exceeding threads are destroyed or suspended, but they will not count
as existing free agent threads.

– void omp_set_free_agent_policy(omp_free_agent_policy_t policy):
sets the global policy, same as the variable OMP_FREE_AGENT_POLICY.

218 V. Lopez et al.

Entry Points in the OMPT Callback Interface

– int ompt_get_num_free_agent_threads(void): returns the number of
existing free agent threads.

– int ompt_get_free_agent_thread_id(void): returns the internal thread
identifier of the free agent thread. The number must be in the range of 0..n-
1, where n is the number of existing free agent threads.

– void ompt_set_free_agent_thread_state(int free_agent_id,
int state): sets the individual state of the specified free agent thread. The
state argument can be either enabled or disabled.

4 Implementation

We have implemented a subset of the free agent threads proposal in the LLVM
OpenMP runtime [1]. Of the ∼80 kSLOC of the runtime (not counting the library
for target support), our implementation required changing ∼800 SLOC. This
suggests that a complete implementation of our proposal would have reasonable
implementation complexity.

The runtime creates one operating system thread (a pthread in Linux) for
each free agent thread. The number of free agents threads is defined by the envi-
ronment variable OMP_FREE_AGENT_NUM_THREADS. Free agents can be enabled
or disabled, and OMP_FREE_AGENT_POLICY characterizes their initial state. Cre-
ation of the free agent threads happens simultaneously the runtime initializes,
typically upon encountering the first OpenMP construct or OpenMP API call.

The LLVM OpenMP runtime keeps two data structures related to the team
of a parallel region. One corresponds to the proper team of threads, and another
one is named the task team, which exists only if threads of the team create
explicit tasks. There is one queue of explicit tasks ready to be executed for each
thread of the team. When a task team is first created, all the free agent threads
are allowed to execute tasks of that task team. During the finalization of the
parallel region (when all the explicit tasks of that team have been completed),
free agents are not allowed to execute tasks of the finishing task team anymore.

The lifecycle of an enabled free agent thread is a loop for each of the allowed
task teams. Once the free agent thread enters a task team, it executes as many
explicit tasks as possible. It does this by stealing tasks from other (regular)
threads of the task team. While executing an explicit task, a free agent thread is
logically inside the task team, but it does not belong to the team of threads. The
semantics of team-requiring operations such as a call to omp_get_thread_num or
usage of threadprivate variables are for now intentionally left undefined. Once
no more tasks remain in the task team, the free agent thread leaves it. Once all
the allowed teams have been processed, the free agent thread is suspended to
avoid a busy loop.

When a thread of the team creates an explicit task, if there is a suspended
free agent thread, then the runtime will resume it. Free agent threads are also
resumed when they are enabled by the user code and periodically when threads
of the team are executing tasks.

An OpenMP Free Agent Threads Implementation 219

A free agent thread (with free agent thread number n) can create an explicit
task while executing another explicit task. When this happens, the new task
is added to the queue of the corresponding thread number n of the task team
(modulo the number of threads of the team).

In general, the LLVM OpenMP runtime does not defer the execution of
explicit tasks created in inactive parallel regions (regions executed by teams
with only one thread). However, to support detached tasks, the LLVM OpenMP
runtime can defer tasks also in inactive parallel regions. Our implementation
leverages this feature to allow deferring tasks created in such regions when free
agents are available. This enables a scenario where OMP_NUM_THREADS=1 and
OMP_FREE_AGENT_NUM_THREADS ≥ 1.

5 Evaluation

The free agent threads implementation presented in this article has been tested
with applications to evaluate its performance. We expose two different use cases
to demonstrate the potential of free agent threads in different scenarios.

We analyze a pure OpenMP application in the first use case that presents a
load imbalance between two nested parallel regions. Free agent threads execute
explicit tasks encountered in the most loaded parallel regions, thus alleviating
the load balance issue.

The second use case shows a task-based MPI+OpenMP application that
presents a load imbalance among processes. A third-party tool, DLB, can exploit
the free agent threads enable and disable mechanism to modify the number of
productive threads assigned to a process to fix the load imbalance in hybrid
applications.

All the results have been obtained on the MareNostrum 4 supercomputer.
It is composed of compute nodes with two sockets Intel Xeon Platinum 8160
2.1GHz 24-core and 96 GB of main memory. Regarding the software, we used
the Intel compiler (version 17.0.4), a modified LLVM OpenMP runtime (based
on LLVM 11.0.0, OMP version 5.0.20140926), and DLB 3.0. Since we used the
Intel compiler, we have not implemented the free_agent clause, and we assume
that free agent threads can safely execute all tasks.

5.1 Use Case: Fixing Load Imbalance Between Parallel Regions

When an OpenMP thread reaches a task scheduling point, it may suspend the
execution of the current task and switch to a different task bound to the same
team. This task scheduling model allows, among other things, to use threads
that may have already finished their work to execute other pending explicit tasks
encountered in the same team. This model is crucial to avoid load balance issues
when the task creation is not perfectly distributed. Also, it does not necessarily
impact the performance in simpler algorithms such as a single thread creating
all the explicit tasks since all the threads in the team will participate in their
execution. However, threads may only switch to other tasks in the same team.

220 V. Lopez et al.

In cases where the application has nested parallel regions, idle threads in one
parallel region cannot help and execute the tasks of a different parallel region.

The Density Matrix Renormalization Group (DMRG++) is a condensed mat-
ter physics application developed at ORNL used to study the superconductivity
properties of materials. For our study, we used a mini-app [3,6] that captures
the computation core of DMRG++. The code has been slightly modified from
previous versions; the structure of the code used is shown in Listing 1.3.

Listing 1.3. DMRG++ code structure.
for (int it = 0; it < NIts; ++it) {

#pragma omp parallel for num_threads(X)
for (int ipatch = 0; ipatch < npatches; ipatch ++) {

// ...
#pragma omp parallel for schedule(dynamic , 1) num_threads(Y)
for (int jpatch = 0; jpatch < npatches; jpatch ++) {

// ...
#pragma omp taskloop
for (int k = 0; k < k_size; k++) {

// Loop body
}

}
}

}

Figure 1 shows two Paraver [2,17] traces of two different DMRG++ exe-
cutions. The Paraver traces in the figure represent a timeline in which the
X-axis is the elapsed time, the Y-axis the OpenMP threads, and explicit
tasks are shown in blue for each thread that executes them. The first trace
shows an iteration of a DMRG++ execution with two levels of nesting;
4, 4, distributed on 16 logical CPUs. The program has been executed with
OMP PLACES="{0,1,2,3},{4,5,6,7},{24,25,26,27},{28,29,30,31}" to bind
each OpenMP thread to a specific core. It can be appreciated how the load
imbalance of one of the innermost parallel regions causes the threads of the
other team to wait.

Fig. 1. DMRG++ trace execution with a 4,4 nesting running on 16 CPUs, and same
execution running with free agent threads. Both traces are at the same duration time
scale.

An OpenMP Free Agent Threads Implementation 221

The second trace is the same configuration but enabling free agent threads
at the end of the iteration. Those free agent threads are different pthreads, and
Paraver draws them in another row, but they use the same logical CPUs as the
threads that just finished their region. As done with the execution without free
agents, the same OMP_PLACES is used, and the clause OMP FREE AGENT PLACES="
{0,1,2,3,4,5,6,7,24,25,26,27,28,29,30,31}" is used to determine where
the free agents can be executed. This use case shows how free agent threads can
be exploited on otherwise unproductive CPUs to increase the parallelism when
needed.

The performance results of DMRG++ with free agent threads are shown in
Fig. 2. Different nesting configurations have been evaluated with a variable range
of free agent threads and wait policies active and passive. The nomenclature
N × M in the legend represents the OpenMP threads per nesting level: N for
level 1, M for level 2, executed in as many CPUs as needed to bind only one
OpenMP thread to a logical CPU, without considering free agent threads, e.g.,
the configuration “2×4 passive” has been executed with OMP_NUM_THREADS=2,4,
OMP_WAIT_POLICY=passive, and using only eight logical CPUs, regardless of the
number of free agent threads used. The speedup values represent the relative
performance of each case with zero free agent threads, so only the effect of
free agent threads is shown. The number of free agent threads is limited to the
number of threads in the second level. Since free agent threads are running on
the CPUs of the faster parallel region, it would not be efficient to increase the
number of free agent threads to higher values.

Number of free agent threads

S
pe

ed
up

0.90

1.00

1.10

1.20

1.30

1.40

0 2 4 6 8

2x4 active

2x4 passive

4x4 active

4x4 passive

4x8 active

4x8 passive

DMRG++ Speedup with free agent threads

Fig. 2. Speedup of DMRG++ with free agent threads.

As it can be observed in the figure, the runtime can dynamically enable the
free agent threads to increase the number of active threads executing tasks. Thus,
load imbalance between parallel regions may be reduced and improve the overall
performance execution. In this case, we obtain up to a 36% speedup when using
free agent threads on a pure OpenMP application.

222 V. Lopez et al.

5.2 Use Case: Solving Load Imbalance in a Hybrid Application
with DLB as an OMPT Tool

In the second use case, we analyze a more common situation: load imbalance
among processes. However, to efficiently use the free agent threads to solve this
load imbalance, we need a third-party tool responsible for enabling and disabling
the free agent threads of each process.

For this use case, we analyze a kernel extracted from Alya [20], a computa-
tional fluid dynamics (CFD) code optimized for HPC environments developed at
BSC. This kernel presents an iterative pattern of MPI communications followed
by a region of task-based computation with a slight load imbalance, LB = 0.74.
The task-based region also challenges resource balance techniques since the aver-
age task duration is only 200 µs. Figure 3 shows a Paraver trace of a hybrid
MPI+OpenMP execution and a trace of the same configuration with DLB. In
the second trace, DLB runs as an OMPT tool monitoring the OpenMP events
of each MPI process and selectively enabling or disabling free agent threads to
fix the load imbalance with temporary helper threads. The right-hand side of
the figure shows a zoom of a few processes at the end of an iteration. It can be
appreciated how some free agent threads are enabled, acting as helper threads
only when a logical CPU becomes idle after another process reaches an MPI
synchronization call.

Fig. 3. On top, Alya Paraver trace execution running on 48 CPUs. On the bottom,
execution with DLB and free agent threads. Each color represents different MPI ranks.
Both traces are at the same duration time scale.

Figure 4 shows the speedup comparison of the Alya kernel running with 48
MPI ranks, 1 OpenMP thread each, and a variable number of free agent threads.
Due to the fine granularity of the tasks, using more threads than needed causes
a slight performance drop, which may have been caused either by our imple-
mentation or by some scheduling decision in DLB. There is still some future

An OpenMP Free Agent Threads Implementation 223

Number of free agent threads

Ite
ra

ta
tio

n
tim

e
(s

)

S
pe

ed
up

0.000

0.005

0.010

0.015

0.020

0.00

0.50

1.00

1.50

0 1 2 3 4 5 6 7 8

Avg time Speedup

Alya average iteration time

Fig. 4. Time and Speedup of Alya running 48 MPI processes, with DLB and a variable
number of free agent threads.

work in how DLB manages free agent threads, but even with a proof of concept
implementation, the execution was always 10–20% faster.

6 Conclusions and Future Work

In this paper, we have presented a proposal to extend the OpenMP programming
model and execution model. Our proposal intends to relax the rigid fork-join
approach by allowing the OpenMP threads to participate within the parallel
region and outside of it. This approach enables leveraging the assigned process-
ing elements when the OpenMP program has not fork threads yet. For nested
parallelism, we can generalize this statement as free agent threads may partic-
ipate in the execution of work units when the application has not reached the
inner level of parallelism it was designed for.

The free agent threads are designed to execute tasks. We consider tasks
are helpful to guarantee the required malleability of an application. A resource
manager can further exploit this characteristic to balance assigned resources
between processes. As the free agent threads are not directly bound to a parallel
region, their number may increase or decrease during the program execution.
Then, tasking models and dynamic free agent threads are a powerful combination
to maximize the application performance.

In Sect. 5, we have presented the results of two different scenarios: intra-
and inter-process levels. In both cases, we have proved performance benefits by
using a small set of free agent threads. In the intra-process use case, we handle
fixing the imbalance between OpenMP parallel regions, obtaining up to a 36%
speedup. In the inter-process use case, we solve the load imbalance of a hybrid
application using the DLB resource manager, and it obtains up to 20% speedup
compared to the baseline.

224 V. Lopez et al.

As future work, we plan to further develop more use-cases that can potentially
leverage the use of free agent threads. We will also investigate the potential
interaction of such threads with other OpenMP mechanisms, as it could be the
work-sharing construct (with dynamic schedulers) or TLS based data. Finally,
we also plan to study different schedulers and implementation alternatives of
our reference framework, especially when a task executed by a free agent thread
creates more tasks.

Acknowledgements. This work has been done as part of the European Processor Ini-
tiative project. The European Processor Initiative (EPI) (FPA: 800928) has received
funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement EPI-SGA1: 826647. It has also received funding from the Euro-
pean Union’s Horizon 2020/EuroHPC research and innovation programme under grant
agreement No 955606 (DEEP-SEA); and the support of the Spanish Ministry of Science
and Innovation (Computacion de Altas Prestaciones VIII: PID2019-107255GB).

References

1. LLVM OpenMP Runtime. https://openmp.llvm.org. Accessed 18 May 2021
2. Paraver: a flexible performance analysis tool. https://tools.bsc.es/paraver.

Accessed 21 May 2021
3. Alvarez, G.: The density matrix renormalization group for strongly correlated elec-

tron systems: a generic implementation. Comput. Phys. Commun. 180(9), 1572–
1578 (2009)

4. Barcelona Supercomputing Center: OmpSs Specification. https://pm.bsc.es/
ompss. Accessed 04 Nov 2020

5. de Supinski, B.R.: Recent, Current and Future OpenMP Directions: OpenMP
5.1 and More!. https://www.openmp.org/wp-content/uploads/OpenMP SC20-
deSupinski.pdf. Accessed 01 July 2021

6. Criado, J., et al.: Optimization of condensed matter physics application with
OpenMP tasking model. In: Fan, X., de Supinski, B.R., Sinnen, O., Giacaman,
N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 291–305. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-28596-8 20

7. D’Amico, M., Garcia-Gasulla, M., López, V., Jokanovic, A., Sirvent, R., Corbalan,
J.: DROM: Enabling Efficient and Effortless Malleability for Resource Managers,
p. 41 (2018)

8. Duran, A., et al.: OmpSs: a proposal for programming heterogeneous multi-core
architectures. Parallel Process. Lett. 21, 173–193 (2011)

9. Garcia, M., Labarta, J., Corbalan, J.: Hints to improve automatic load balancing
with LeWI for hybrid applications. J. Parallel Distrib. Comput. 74(9), 2781–2794
(2014)

10. Garcia-Gasulla, M., et al.: MPI+ X: task-based parallelisation and dynamic load
balance of finite element assembly. Int. J. Comput. Fluid Dyn. 33(3), 115–136
(2019)

11. Intel Corporation: Intel Cilk++ SDK Programmer’s Guide (2009). https://www.
clear.rice.edu/comp422/resources/Intel Cilk++ Programmers Guide.pdf

12. Intel Corporation: Intel Threading Building Blocks (2011). https://www.inf.ed.ac.
uk/teaching/courses/ppls/TBBtutorial.pdf

https://openmp.llvm.org
https://tools.bsc.es/paraver
https://pm.bsc.es/ompss
https://pm.bsc.es/ompss
https://www.openmp.org/wp-content/uploads/OpenMP_SC20-deSupinski.pdf
https://www.openmp.org/wp-content/uploads/OpenMP_SC20-deSupinski.pdf
https://doi.org/10.1007/978-3-030-28596-8_20
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf
https://www.clear.rice.edu/comp422/resources/Intel_Cilk++_Programmers_Guide.pdf
https://www.inf.ed.ac.uk/teaching/courses/ppls/TBBtutorial.pdf
https://www.inf.ed.ac.uk/teaching/courses/ppls/TBBtutorial.pdf

An OpenMP Free Agent Threads Implementation 225

13. Massachusetts Institute of Technology: OpenCilk Language Exten-
sion Specification Version 1.0 (2021). https://cilk.mit.edu/docs/
OpenCilkLanguageExtensionSpecification.htm

14. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face, Version 3.0 (2008). http://www.openmp.org/

15. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face, Version 4.0 (2013). http://www.openmp.org/

16. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face, Version 5.1 (2020). https://www.openmp.org/wp-content/uploads/OpenMP-
API-Specification-5-1.pdf. Accessed 22 March 2021

17. Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: A tool to visualize and ana-
lyze parallel code. In: Proceedings of WoTUG-18: Transputer and Occam Devel-
opments, vol. 44, pp. 17–31 (1995)

18. Sunderland, D., Olivier, S.L., Hollman, D.S., Evans, N., de Supinski, B.R.: Making
OpenMP Ready for C++ Executors (2019). https://www.osti.gov/biblio/1559921

19. Tian, S., Doerfert, J., Chapman, B.: Concurrent Execution of Deferred OpenMP
Target Tasks with Hidden Helper Threads. Springer (2020)

20. Vázquez, M., Houzeaux, G., Koric, S., et al.: Alya: multiphysics engineering sim-
ulation toward exascale. J. Comput. Sci. 14, 15–27 (2016)

https://cilk.mit.edu/docs/OpenCilkLanguageExtensionSpecification.htm
https://cilk.mit.edu/docs/OpenCilkLanguageExtensionSpecification.htm
http://www.openmp.org/
http://www.openmp.org/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.osti.gov/biblio/1559921

Author Index

Alkan, Melisa 67, 81

Baldassin, Alexandro 3
Banerjee, Arkaprabha 96
Beltran, Vicenç 50
Ben, Mauro Del 67
Bertoni, Colleen 67, 81

Carribault, Patrick 197
Chapman, Barbara 67, 81, 127, 159
Chaudhury, Bhaskar 96
Chesterfield, Jon 159
Criado, Joel 211
Curtis, Tony 127

D’Azevedo, Ed 67, 81
Daley, Christopher 67, 81
de Supinski, Bronis R. 183
Del Ben, Mauro 81
Doerfert, Johannes 67, 81, 142, 159
Duran, Alejandro 183

Farooqi, Muhammad Nufail 18
Ferrer, Roger 211

Gadeschi, Gonzalo Brito 111
Garcia-Gasulla, Marta 211
Gautier, Thierry 197
Georgakoudis, Giorgis 142
Gordon, Mark 67, 81

He, Yun (Helen) 67, 81
Hernandez, Oscar 67, 81, 142
Huber, Joseph 142
Huhn, William 67, 81

Kale, Vivek 67, 81
Kang, Yan 127
Kruse, Michael 67, 81

Kulkarni, Dhruva 67, 81
Kumar, Sidharth 96

Lin, Meifeng 67, 81
Lin, Paul 67, 81
Lopez, Victor 211

Maroñas, Marcos 50
Michalowicz, Benjamin 127

Nandani, Shivani 96
Neth, Brandon 183

Oryspayev, Dossay 67, 81, 127

Peñacoba, Raúl 211
Pereira, Romain 197
Pericàs, Miquel 18
Pham, Buu 67, 81
Pophale, Swaroop 67, 81

Quiñones, Eduardo 35

Raut, Eric 127
Ravikumar, Kiran 67, 81
Roussel, Adrien 197
Royuela, Sara 35
Rudyy, Oleksandr 111

Salamanca, Juan 3
Sanchez, Pablo 170
Sattasathuchana, Tosaporn 67, 81
Schulz, Holger 111
Scogland, Thomas R. W. 183
Shah, Pratvi 96

Teruel, Xavier 50, 211
Tian, Shilei 159
Tyagi, Shantanu 96

Vazquez, Jose Luis 170

Wei, Weile 142
Weinzierl, Tobias 111

Xu, Peng 67, 81

Yang, Charlene 67, 81
Yeung, P. K. 67, 81
Yu, Chenle 35

Zhou, Keren 67, 81

228 Author Index

	Preface
	Organization
	Contents
	Synchronization and Data
	Improving Speculative taskloop in Hardware Transactional Memory
	1 Introduction
	2 Background and Related Work
	2.1 Task-Based Parallelism
	2.2 TLS on Hardware Transactional Memories
	2.3 Speculative taskloop (STL)
	2.4 Lost-Thread Effect
	2.5 LLVM OpenMP Runtime Library

	3 Implementation
	3.1 First Attempt: Use priority Clause
	3.2 Recursive Partition of Iterations
	3.3 Immediate Execution When Deque is Full
	3.4 Removal from Tail of Thread's Deque

	4 Benchmarks, Methodology and Experimental Setup
	5 Experimental Results and Analysis
	6 Conclusions
	References

	Vectorized Barrier and Reduction in LLVM OpenMP Runtime
	1 Introduction
	2 Background and Related Work
	2.1 Types of Barriers in Literature
	2.2 Barriers and Reductions in OpenMP

	3 Low Overhead Barrier and Reduction in OpenMP
	3.1 Vectorized Barrier
	3.2 Vectorized Reduction

	4 Performance Results
	4.1 Intel KNL
	4.2 Fujitsu A64FX

	5 Conclusions
	References

	Tasking Extensions I
	Enhancing OpenMP Tasking Model: Performance and Portability
	1 Introduction
	2 Motivation
	3 The Taskgraph Model
	3.1 The taskgraph Mechanism
	3.2 Syntax of the taskgraph Clause
	3.3 Semantics of the taskgraph Clause
	3.4 Requirements of the taskgraph Region

	4 Projected Results
	4.1 Potential Performance Gain
	4.2 The TDG: A Door for Expanding Portability

	5 Related Work
	6 Conclusion
	References

	OpenMP Taskloop Dependences
	1 Introduction
	2 Tasking Programmability Challenges
	3 Related Work
	4 Taskloop with Dependences
	5 Implementation
	6 Experiment Results
	7 Conclusions and Future Work
	References

	Applications
	Outcomes of OpenMP Hackathon: OpenMP Application Experiences with the Offloading Model (Part I)
	1 Introduction
	2 Platforms Used
	3 Application Experiences
	3.1 BerkeleyGW
	3.2 WDMApp

	References

	Outcomes of OpenMP Hackathon: OpenMP Application Experiences with the Offloading Model (Part II)
	1 Introduction
	2 Application Experiences
	2.1 GAMESS
	2.2 GESTS
	2.3 GridMini

	3 Conclusions
	References

	An Empirical Investigation of OpenMP Based Implementation of Simplex Algorithm
	1 Introduction
	2 Serial Algorithm
	3 Parallel Algorithm
	3.1 Implementation
	3.2 Optimization Strategies
	3.3 Algorithm Analysis

	4 Experimental Results and Observations
	4.1 NETLIB Dataset
	4.2 Variation of the Number of Variables
	4.3 Variation of the Number of Constraints
	4.4 Variation in Matrix Density
	4.5 Discussion

	5 Conclusion
	A Appendix: Serial Algorithm - Working Example
	References

	Task Inefficiency Patterns for a Wave Equation Solver
	1 Introduction
	2 Case Studies
	3 Test Environment
	4 Benchmarking and Task Runtime Modifications
	4.1 Direct Translation of Enclave Tasking to OpenMP (native)
	4.2 Manual Task Postponing (Hold-Back)
	4.3 Manual Backfilling (Backfill)

	5 Evaluation and Conclusion
	References

	Case Studies
	Comparing OpenMP Implementations with Applications Across A64FX Platforms
	1 Introduction
	1.1 The A64FX Processor
	1.2 Paper's Contribution and Organization

	2 List of Applications and Experimental Setup
	2.1 List of Applications
	2.2 Systems and Compilers
	2.3 Runtime Environment
	2.4 Compiler Options

	3 Experimental Results
	3.1 Ookami
	3.2 Fugaku

	4 Related Work
	5 Conclusions and Future Work
	References

	A Case Study of LLVM-Based Analysis for Optimizing SIMD Code Generation
	1 Introduction
	2 Case Study: Porting DCA++ to Wombat
	2.1 Evaluation Environment
	2.2 DCA++
	2.3 Baseline Performance

	3 An LLVM Tool Methodology to Generate Efficient Vectorization
	3.1 OpenMP SIMD
	3.2 Using the Correct Compiler Flags
	3.3 Loop Transformations
	3.4 Results

	4 Automating the Process: The OpenMP Advisor
	5 Related Work
	6 Conclusion
	References

	Heterogenous Computing and Memory
	Experience Report: Writing a Portable GPU Runtime with OpenMP 5.1
	1 Introduction
	2 Background
	2.1 Device Runtime Library
	2.2 Compilation Flow of OpenMP Target Offloading in LLVM/Clang
	2.3 Motivation

	3 Implementation
	3.1 Common Part
	3.2 Target Specific Part

	4 Evaluation
	4.1 Code Comparison
	4.2 Functional Testing
	4.3 Performance Evaluation

	5 Conclusions and Future Work
	References

	FOTV: A Generic Device Offloading Framework for OpenMP
	1 Introduction
	2 Background: OpenMP Offloading Infrastructure
	2.1 Offloading Strategy
	2.2 Advantages and Limitations

	3 Architecture of the FOTV Generic Device Framework
	3.1 The Runtime Library Components
	3.2 The Code Extraction Tool

	4 Device Management API Description
	4.1 DeviceManagement Component
	4.2 TgtRegionBase Component

	5 Case Study: Running OpenCL Kernels as OpenMP Regions
	5.1 The OpenCL Device Requirements

	6 Results
	7 Related Works
	8 Conclusions and Future Works
	References

	Beyond Explicit Transfers: Shared and Managed Memory in OpenMP
	1 Introduction
	2 Current Support in OpenMP
	2.1 Allocators
	2.2 Host Memory
	2.3 Device Memory

	3 Survey
	3.1 OpenCL
	3.2 Level Zero
	3.3 CUDA
	3.4 HIP

	4 Proposed OpenMP Extension
	4.1 Memory Space Accessibility
	4.2 Shared and Managed Memory
	4.3 Memory Location Control

	5 Evaluation
	6 Conclusion
	References

	Tasking Extensions II
	Communication-Aware Task Scheduling Strategy in Hybrid MPI+OpenMP Applications
	1 Introduction
	2 Related Work
	3 Task Scheduling Strategy
	3.1 Interoperation Between MPI and OpenMP Runtimes
	3.2 Manual Policies
	3.3 (Semi-)Automatic Policies
	3.4 Summary

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Evaluation Environment
	4.3 Experimental Results

	5 Conclusion and Future Work
	References

	An OpenMP Free Agent Threads Implementation
	1 Introduction
	2 Related Work
	3 Proposal
	3.1 Considered Aspects in the Design
	3.2 The free_agent Task Clause
	3.3 Proposed Mechanisms to Manage Free Agent Threads

	4 Implementation
	5 Evaluation
	5.1 Use Case: Fixing Load Imbalance Between Parallel Regions
	5.2 Use Case: Solving Load Imbalance in a Hybrid Application with DLB as an OMPT Tool

	6 Conclusions and Future Work
	References

	Author Index

