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Abstract In classical regression analysis, the distribution of the error is assumed
to be Gaussian, and Least Squares (LS) estimation method is used for parameter
estimation. In practice, even if the distribution of errors is assumed to be Gaussian,
residuals are not generally Gaussian. If the data set contains outlier (s) or there are
observations that are suspected to be outlier, normality assumption is violated, and
parameter estimateswill be biased.Many statisticians used robustmethod, such as the
M-Estimation Method, which is a generalized version of the Maximum Likelihood
(ML) Estimation method, for parameter estimation when such problems occurred.
However, if the data set has skewness and excess kurtosis, traditional M-Estimators
cannot achieve a good solution. In this study, using the relationship between Pearson
Differential Equation (PDE) and Influence Function (IF), M-Estimation method is
proposed for data sets that follow Pearson Type VI (PVI) distribution. The advan-
tage of this method takes into account the skewness and kurtosis values of the data
set and generates dynamic solutions. Objective, influence, weight functions and tail
properties of the PVI distribution are obtained by using the Probability Density Func-
tion (pdf) of the PVI distribution. For the regression parameter estimates, Iteratively
Re-Weighted Least Squares Estimation Method (IRWLS) is used. In many simula-
tion studies with different scenarios and applications with real data, if the data have
skewness and excess kurtosis, the proposed method has achieved better results than
other M-Estimation methods in terms of Total Absolute Deviation (TAB) and Mean
Square Error (MSE).
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1 Introduction

In the history of statistics, many researchers have analyzed the data assuming Gaus-
sian distribution. Thus, anomalies in the data (heavy-long tail, excess kurtosis, skew-
ness, outlier, etc.) are often ignored by researchers. Such anomalies can be caused by
many reasons. The main reasons are measurement and recording mistakes or mixing
of two or more populations. However, in the data set, an observation (s) belonging
to the data set can act like an abnormal observation. Researchers have difficulty
in analyzing the data set in the presence of such anomalies and they use analysis
methods ‘robust’ to anomalies in order to overcome such situations. Robust statis-
tics is concerned with deviations from the assumed model and the construction of
reliable and sufficiently efficient statistical procedures when these deviations occur.
The term ‘Robust’ was first used by Box (1953). Tukey (1960) observed that even
small perturbations from the assumedmodel cause optimal procedures to rapidly lose
their effectiveness, and Tukey (1962) has led the robust methods used today. Huber
(1964) developed the M-estimator, a flexible and broad class of estimators, which
has an important place in the development of robust statistical methods. Hampel
(1968, 1974) introduced the Influence function, which is one of the most important
tools in measuring the stability of a statistical procedure and has played an important
role in the development of new robust methods. M-Estimators are frequently used in
Theoretical and Applied Statistics, Econometrics and Biostatistics.

In the regression analysis, the anomalies in the data while estimating the parame-
ters can cause to lose the effectiveness of the LS estimation method. In the presence
of such data, parameter estimates made with OLS are will be biased (Hampel 1968).
In robust statistics, traditional M-estimation methods do not consider the skewness
and kurtosis parameters of the data, the PDE contains these values. Thus, the distri-
bution of the data set can be determined uniquely, and the error is minimized while
estimating the regression parameter.

The aim of this study is to construct a new method based on PVI that can be used
instead of conventional M-estimators when data have anomalies. While traditional
M-estimators usually achieve a good solution for symmetric and heavy long-tailed
data, they lose effectivenesswhen anomalies arise. Therefore, in this study, regression
parameter estimates will be estimated by using the weight function of the PVI, which
contains the asymmetry, kurtosis and heavy long tail occurring in the data set. Based
on the similarity between PDE and IF, Objective Function, Influence Function and
Weight Function will be obtained by using the pdf of PVI.

This paper is organized as follows: Sect. 2 outlines the literature review about
Robust Regression and Pearson Distribution System (PDS), Sects. 3 and 4 outlines
the theoretical framework of Robust Regression and PDS, Sect. 5 presents the rela-
tionship between PDE and IF, and also for the proposed method, which based on
PVI, obtained Objective, IF and Weight Function, Sect. 6 presents two real-world
examples and simulation study with different scenarios, also discussion on obtained
results for the proposed method. In the last section, we discuss the advantages and
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disadvantages of the proposed method. This paper also has an Appendix section,
which contains proof of the tail properties of PVI.

2 Literature Review

Robust regression analysis has been studied frequently in the literature, especially
after the 1960s. After Tukey, Huber and Hampel, many researchers have been inter-
ested in robust regression analysis. To summarize briefly, Harvey (1977) suggested
using the minimum absolute deviation estimator as an initial solution in the robust
regression procedure. M-estimators based on the median developed by Hinich and
Talwar (1975) andAndrews (1974)were also used as the initial solution.Hogg (1979)
discussed the robust statistical procedures used to reduce the effects of outliers in the
data set. He examined the estimation processes of regression parameters and focused
on the IRWLS method, which is the method used to estimate regression parameters,
and discussed the asymptotic variance formula. He discussed the data set, which is
reported by Andrews (1974) and analyzed byWood and Gorman (1971). In addition,
he used M-Estimator for analysis of the data sets which ‘Half-life of Plutonium-
241’ by Zeigler and Ferris (1973) and ‘Splines’ by Lenth (1977), and ‘Automated
data reduction’ by Agee and Turner (1978). Wu (1985) discussed commonly used
M-estimators for scale and regression parameters. He compared the Bell/OLS M-
Estimators developed by Bell (1980) and the high breakdown point Bell/RM M-
estimators developed by Siegel (1982) using several real data sets. He discussed the
similarities between Tukey Bisquare M-estimator and the Bell/OLS M-estimators.
Croux and Reusseeuw (1992) developed two robust scale estimates, Sn and Qn .
They focused on breakdown points and computational algorithms for the developed
estimators. They compared these estimators according to calculation time. They
also used these scale estimates while estimating regression parameters. Cantoni and
Ronchetti (2006) have developed a new robust method to be used in skewed and
heavy-tailed data. They proved that when there are deviations from the assumed
model, the method they developed is more efficient than traditional methods. They
demonstrated the efficiency of the method they developed by using “medical back
problems” data obtained from 100 patients in a hospital in Switzerland and many
simulation studies.

Allende et al. (2006) proposed anM-estimationmethod with an asymmetric influ-
ence function based on the G0

A distribution. They used the developed method to
process images obtained from satellite (GPS). Mohebbi et al. (2007) examined the
robust regression methods that are an alternative to LS. They compared Least Abso-
lute Deviation (LAD), Huber and nonparametric regression methods using skewed
data sets. They used MSE and TAB as comparison criteria. Chen (2013) suggested
using the distributed (clustered) IRWLS estimation method, when the data set is
very large. Rasheed et al. (2014) used IRWLS to estimate regression parameters
in the presence of outlier or heteroscedasticity in the data set. They also compared
M-Estimator, LS and Least Trimmed Squares (LTS) methods using different data
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sets. Khalil et al. (2016) proposed a redescending M-estimator. He compared this
estimator with the Hampel, Andrews, Tukey and Qadir M-estimators. In addition
to many simulation studies, they compared the methods using the data set of inter-
national telephone calls from Belgium (Rousseeuw and Leroy 1987) between 1950
and 1973. Sumarni et al. (2017) studied the location parameter of the distribution as
robust using the T distribution, which has a longer tail than the normal distribution
and obtained the Objective, Influence and Weight functions of the T-distribution.
They obtained the asymptotic behavior and Asymptotic Relative Efficiency (ARE)
for location parameter. They examined how ARE changes using different degrees of
freedom.Yulita et al. (2018) compared theweight functions ofHuber, Hampel, Tukey
andWelsch using simple andmultivariate regression analysis. They usedmany simu-
lations and Human Development Index (HDI) data from India East Java Region for
comparison. Considering the literature for PDS, Pearson Differential Equation, first
introduced by Karl Pearson (1895), is a system that generates different probability
distributions according to the different values of the parameters in the PDE. This
system is called the Pearson Distribution Family (PDF) and includes 13 different
distributions with 3 are main types and the 10 transition types. The main types of
PDF:

• Pearson Type I Distribution (PI),
• Pearson Type IV Distribution (PIV),
• Pearson Type VI Distribution (PVI).

PI (Four Parameter Beta Distribution) is a limited distribution from both tails. The
PIV, on the other hand, is a distribution whose roots are complex, but it is unlimited
at both tails. The PVI distribution (Beta Distribution the Second Type) is a heavy
long-tailed distribution (seeAppendix.) limited in one tail (right or left). PVI contains
F, Pareto, Beta and Gamma Distributions according to the values of the parameters
of the distribution. In addition, due to the structure of its parameters, it can be used
easily in many kurtosis and skewness values. Mainly used areas as follows:

• Loss Function (Balkema and Embrechts 2018),
• Examination of Brain Functions (Brascamp et al. 2004),
• Modeling in Epidemic Diseases (Tulupyev et al. 2013),
• Meteorology and Hydrology (Mielke and Johnson 1974),
• Financial Volatility (Moghaddam et al. 2019),
• Income Modeling (Ye et al. 2012),
• Processing of Radar Images (Salazar 2000) and
• Reliability Analysis (Kilany 2016).

3 Robust Regression

The development of robustmethods has led to significant improvements in regression
analysis as in all other statistical methods. Especially when the data contain outliers,
it has become inevitable to use robust methods. It has been difficult for researchers



A Robust Regression Method … 121

to define an observation in the data set as an outlier. Barnett and Lewis (1984) stated
for the outliers as “inconsistent observations for the rest of the data set”. Judge
et al. (1988) called the large values in regression residuals the outliers. According to
Hampel et al. (1986) and Krasker et al. (1983), outliers are divided into two groups as
gross errors andmodel errors. Gross errors are errors due to recording,writing, failure
of measuring equipment, unit change or misinterpretation. Even a small number of
gross errors in the data set cause a tremendous change in traditional LS estimators.
In the presence of such situations, it is of great importance to use robust statistical
methods. Model error may occur due to the structure of the statistical/econometric
model, such as misinterpretation of a variable or removed variable, which is the great
contribution of the model.

In Fig. 1, the observationswithin the black circle are vertical (y-direction) outliers.
The values of these observations xi are close to rest of the data. However, these values
do not follow the linear relationship that most of the data have. The observations
within the red circle are points of “good leverage”. They have the linear relationship
that most of the data but have great xi values. Contrary to its good name, they have a
great influence on the LS estimators. Observations within the green circle are points
of “bad leverage”. They have large xi values and do not fit most of the data set. They
have a tremendous influence on the LS estimators. They could be gross errors.

Fig. 1 Regression outliers
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It is important to use robust methods in cases such as gross errors or model errors
to minimize the effects of these errors. Features that robust regression estimators
should have:

• If there are no outliers in the data and the distribution is normal, it should have a
good performance as LS.

• When the first condition is not met, should have a better performance than the LS.
• Understanding the theory should be at least as easy as the LS method.
• It should be insensitive to trivial perturbations in the data.
• It should be easily calculated (Ryan 2008; Staudte and Sheather 2011).

3.1 Regression M-Estimator

If the distributions of the errors are heavy-tailed or there are outliers in resid-
uals, parameter estimates made by LS will be biased (Hampel et al. 1986). Many
researchers use robust methods to overcome such problems arise. One of the most
popular robust methods is M-Estimators, which is based on ML proposed by Huber
(1964) (Stuart 2011; Andersen 2008).

Consider the linear regression model:

y = Xθ + ε (1)

where y is an n × 1 response vector, θ is an p × 1 unknown regression parameters,
X is an n × 1 explanatory variable matrix and

(
XTX

)−1
is of full rank and ε is an

n × 1 error vector. In the classical LS method minimizing sum of squares:

argmin
θ∈Rp

n∑

i=1

(
yi − xT

i θ
)2

(2)

DifferentiatingEq. (2)with respect to θ and systemof p equations can be obtained:

n∑

i=1

(
yi − xT

i θ
)
xi j = 0 (3)

Solving Eq. (3) with respect to θ:

Oθ =(
XTX

)−1
XTy (4)

In Robust Regression Analysis, we can maximize or minimize the different
functions or distributions of errors instead of minimizing the sum of squares of
errors:
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n∑

i=1

ρ
(
yi − xT

i θ
) = min! (5)

where ρ = − ln f (x) and can be defined as Objective Function. (Susanti and Pratiwi
2014). Differentiating Eq. (5) with respect to θ:

n∑

i=1

ψ
(
yi − xT

i θ
)
xi j = 0 (6)

whereψ(.) is Influence or Score Function. SolvingEq. (6) and obtaining i-th residuals
is ei = yi − xT

i θ̂ , one can rewrite the Objective and Influence Function as follows,
respectively:

min
n∑

i=1

ρ
(ei
s

)
(7)

n∑

i=1

ψ(ri )xi j = 0 (8)

where ri = ei
/
s and s is the estimation of standard deviation (σ ) must be the use for

scale equivariance. Even if there are many different s estimates, theMedian Absolute
Deviation (MAD), which is not affected by outliers, is the most widely used for scale
estimation (Draper and Smith 2014). MAD can be written as:

s = MAD/0.6745 = median|ei − median(ei )|/0.6745 (9)

where 0.6745 is correction constant for the data actually normal (Hogg 1979).
If Eq. (8) can be written as a weighted LS estimation problem:

θ̂ =(
XTWX

)−1
XTWy (10)

where wi = ψ(ri )
/
ri and W = diag{wi , i = 1, ..., n} is a n × n weight matrix

(Huber and Ronchetti 1981). The Weighted Least Squares method is usually used
when solving Eq. (10). However, in order to calculate the weights, the first solution
should be made with an appropriate method (usually LS) and the weights should be
calculated with the weight function of the selected M-Estimators.

In the regression analysis, the distribution of errors is generally assumed to be
Gaussian. If the distribution of the errors is actually normal, MLE and LS methods
are the same. M-Estimators make parameter estimation using a different distribution
or arbitrary function when the error distribution is different from Gaussian (skewed,
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heavy long-tailed, excess kurtosis, etc.). In this respect, LS andM-Estimatormethods
can be said to be MLE estimators (Rousseeuw and Leroy 1987; Andersen 2008). In
this study,Huber andTukeyM-Estimators,which are themost popularM-Estimators,
will be discussed.

3.1.1 Huber M-Estimator

Huber (1964) proposed an M-Estimator that consists of Objective and Influence
Function, which is the most popular robust estimation method. The most important
characteristic of Huber Objective Function is that it acts like Gaussian distribution in
center and Laplace distribution in tails (Hogg 1979). Objective Function, Influence
Function and Weight Function of Huber M-Estimator are given in Table 1.

In Table 1, k is tuning constant and default value is 1.345 for 95% efficiency under
normal distribution. According to the weight function, weights, the observations in
the center of the distribution are equal and 1, while inversely proportional to the
absolute value of the observations as they move away from the center (Fox and
Weisberg 2002: 3). The graphs of Objective, Influence andWeight Function of Huber
M-Estimator can be seen in Fig. 2a.

3.1.2 Tukey’s (Bisquare) M-Estimator

Tukey M-Estimator or Tukey’s Bi-Weight (Bisquare) based on weight function was
first proposed by Beaton ve Tukey (1974). Objective Function, Influence Function
and Weight Function of Tukey M-Estimator are given in Table 2.

Table 1 Objective function, influence function and weight function of Huber M-Estimator

ρ(r) =
{

1
2 r

2 , |r | < k

k|r | − 1
2 k

2 , |r | ≥ k
ψ(r) =

{
r , |r | < k

ksign(r) , |r | ≥ k
w(r) =

{
1 , |r | < k
k
|r | , |r | ≥ k

Objective function Influence function Weight function

Table 2 Objective function, influence function and weight function of Tukey M-Estimator

ρ(r) =

⎧
⎨

⎩

k2
6

{
1 −

[
1 − ( r

k

)2]3
}

, |r | < k

k2
6 , |r | ≥ k

ψ(r) =
⎧
⎨

⎩
r
[
1 − ( r

k

)2]2
, |r | < k

0 , |r | ≥ k

w(r) =
⎧
⎨

⎩

[
1 − ( r

k

)2]2
, |r | < k

0 , |r | ≥ k

Objective function Influence function Weight function
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Fig. 2 a Huber M-estimator and b Tukey M-estimator

As theHuberM-Estimator, TukeyM-Estimator also has a tuning constant k, which
its default value is 4.685 for 95% efficiency under normal distribution. The graphs
of Objective, Influence and Weight Function of Tukey M-Estimator can be seen in
Fig. 2b.

4 Pearson Distribution System

The Pearson Differential Equation (PDE) was first proposed by Karl Pearson (1895):

f ′(x)
f (x)

= d ln f (x)

dx
= x − a

c0 + c1x + c2x2
(11)

The solution of Eq. (11) defines Pearson Distribution Family (PDF), which
consists of 13 different distributions with 3 main types and 10 transitional types.
In Eq. (11), the parameter a is the mode of distribution and the parameters
a, c0, c1, c2, ... can define type of the distribution uniquely. The function C(x) =
c0 + c1x + c2x2 + c3x3 + ..., in the dominator of the differential equation, defining
as a polynomial allows the Method of Moments (MoM) can be used in estimating
the unknown parameters of the differential equation (Şehirlioğlu and Dündar 2014).

If we solve Eq. (11), the consecutive moment equation is:

nc0μ
′
n−1 − {(n + 1)c1 − a}μ′

n − {(n + 2)c2 + 1}μ′
n+1 = 0 (12)

Substituting the values for n = 0,1,2,3 in Eq. (12) for μ
′
1 = 0:
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c0 = − μ2
(
4μ2μ4 − 3μ2

2

)

10μ4μ2 − 12μ2
3 − 18μ3

2

= − σ 2(4β2 − 3β1)

10β2 − 12β1 − 18

c1 = a = − μ3
(
μ4 − 3μ2

3

)

10μ4μ2 − 12μ2
3 − 18μ3

2

= − σ
√

β1(β2 + 3)

10β2 − 12β1 − 18

c2 = − 2μ4μ2 − 3μ2
3 − 6μ3

2

10μ4μ2 − 12μ2
3 − 18μ3

2

= − 2β2 − 3β1 − 6

10β2 − 12β1 − 18

(13)

where β1 = μ2
3

/
μ3
2 (Skewness) and β2 = μ4

/
μ2
2 (Kurtosis) parameters. The roots

of C(x) determine the type of PDS. The three main types of PDS:

• Type I (PI): Roots are real and different signs.
• Tip IV (PIV): Roots are complex.
• Tip VI (PVI): Roots are real and same sign.

Another method that can be used to determine the distribution types is the Kappa
(κ) criterion.The coefficient ofKappa is a statistics obtainedbyusing thediscriminant
of the C(x) function (Elderton 1906; Hald 2008; Fiori and Zenga 2009; Nagahara
2008). The discriminant of the C(x) and κ coefficient (Pearson 1901) can be written
as follows:

� = c21 − 4c0c2 (14)

κ = c21
4c0c2

= β1(β2 + 3)2

4(2β2 − 3β1 − 6)(4β2 − 3β1)
(15)

The distributions according to κ criteria are given in Table 3.
An important case for PDS is the origin of the distribution must be mode point

(a = 0). For this reason, substitution X = x−a in Eq. (11), the PDE can be rewritten
as follows:

d f (X)

dX
= X f (X)

C0 + C1X + C2X2
= (x − a) f (x)

c0 + c1(x − a) + c2(x − a)2
(16)

By solving Eq. (16), one can easily obtain the parameters which mode point
coincides with the origin. The new parameters, which is a = 0, can be written in

Table 3 Main types of PDS

� κ Statistics c0 c1 c2 Roots Type

� > 0 κ < 0 c0 �= 0 c1 �= 0 c2 �= 0 Real Type I

� > 0 κ > 1 c0 �= 0 c1 �= 0 c2 �= 0 Real Type VI

� < 0 0 < κ < 1 c0 �= 0 c1 �= 0 c2 �= 0 Complex Type IV

(Şehirlioğlu and Dündar 2014: 16)
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terms of original parameters as follows:

c2 = C2

2ac2 + c1 = a(2c2 + 1) = C1

c2a
2 + c1a + c0 = c0 + a2(1 + c2) = C0

(17)

4.1 Pearson Type I Distribution (PI)

Pearson Type I Distribution (PI) is one of the main types of PDF. The roots of C(x)
must be different signs and the parameters should be c2 > 0 and c0 < 0. The PI is
also known as Beta Distribution. The pdf of PI:

f (x) = K (r1 − x)m1(x + r2)
m2 , r2 < x < r1 (18)

and

K = 1

B(m1 + 1;m2 + 1)(r1 + r2)
m1+m2+1 (19)

where B(x, y) is a Beta Function, r1 is scale, r2 is location and m1,m2 skew-
ness and kurtosis parameters and K is the constant of normalization to make sure∫

f (x)dx = 1. For the integral constant K , seemore details of Pearson (1895),Naga-
hara (2008) and Elderton (1953). Figure 3 shows pdfs of PI with different skewness
and kurtosis parameters.

4.2 Pearson Type IV Distribution (PIV)

Pearson Type IV Distribution (PIV) is the hardest distribution in PDF. For the
existence of PIV, the roots of C(x) must be complex. The pdf of PIV:

f (x) = K
[
(x + r)2 + s2

]m
ev arctan τ , −∞ < x < ∞ (20)

where K = s−2m−1

exp( vπ
2 )

π/2∫

−π/2
(cos θ)−2m−2 exp(−vθ)dθ

,m = 1/2c2, v = (a+r)/sc2, r = real(r1)

and s = imag(r1). Figure 4 shows pdfs of PIV with different skewness and kurtosis
parameters.
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Fig. 3 Probability density functions of PI with different skewness and kurtosis

Fig. 4 Probability density functions of PIV with different skewness and kurtosis

4.3 Pearson Type VI Distribution (PVI)

Pearson Type VI Distribution (PVI) has the same sign of roots of C(x). For −r2 <

−r1 < 0 right skewed PVI:
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Fig. 5 Probability density functions of PVI with different skewness and kurtosis

f (x) = K (x + r1)
m1(x + r2)

m2 , −r1 < x < ∞ (21)

and

K = 1

B(−m1 − m2 − 1;m1 + 1)(r2 − r1)
m1+m2+1 . (22)

where r1 is scale, r2 is location and m1,m2 skewness and kurtosis parameters. Use
Eq. (16) for the PVI with mode at origin can be written as follows:

f (X) = K ∗(X + R1)
M1(X + R2)

M2 , R1 < R2 < X < ∞ (23)

Figure 5 shows pdfs of PVI with different skewness and kurtosis parameters when
a<0 and a=0.

5 Pearson Differential Equation as a Influence Function

The similarity between the Influence Function (IF) and the PDE, different IFs can be
defined for the dynamic parameters of the PDE. Thus, regression parameter estimates
can be made by using the Weight Function. Dzhun’ (2011) shows the similarity
between IF and PDE as follows:

ψ(x) = dρ(x)

dx
= d[− ln f (x)]

dx
= f ′(x)

f (x)
= x − a

c0 + c1x + c2x2
(24)

Using Eq. (24), different IFs can be easily obtained. (Wiśniewski 2014). The
definition of Weight Function is w(x) = ψ(x)

/
x :
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w(x) = x − a

x
(
c0 + c1x + c2x2

) (25)

The value of the weight function is usually closely related to the mode point of
the distribution. If the data have skewness and excess kurtosis, the Weight Function
should take its maximum value at the mode point. In such cases, Eq. (16) can be used
for coincides to mode point and the origin. IF, where the mode point at the origin:

ψ(X) = X

C0 + C1X + C2X2
(26)

and the Weight Function:

w(X) = 1

C0 + C1X + C2X2
(27)

In this study, we only consider PVI for estimating regression parameters. For this
purpose, Objective, IF and Weight Function will only be obtained for PVI. Consider
Eq. (23), if the constant term removed, the Objective Function of PVI:

f (X) ∝ (X + R1)
M1(X + R2)

M2

ρ(X) = − ln f (X) = −M1 ln(X + R1) − M2 ln(X + R2)
(28)

The Objective Function of PVI provides flexibility in terms of functions that will
be minimized, due to its location, scale, skewness and kurtosis parameters compared
with other robust methods. Based on Eq. (28), the IF and Weight Function of PVI:

ψ(X) = dρ(X)

dX
= d[− ln f (X)]

dX
= − M1

X + R1
− M2

X + R2
(29)

and

w(X) = ψ(X)

X
= M1R2 + M2R1 − (M1 + M2)X

X(X + R1)(X + R2)
(30)

Figure 6 shows Objective, Influence and Weight Functions of PVI with different
skewness and kurtosis parameters.
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Objective Function Influence Function Weight Function 

Fig. 6 Objective, Influence and Weight Functions of PVI

6 Real Data Examples and Simulation Study

6.1 Real Data Examples

In the Real Data example, two different data sets are analyzed for the estimation
method based on the weight function of the proposed PVI function. The first data
set is Education Expenditure, which is commonly used in the robust literature, and
the second data set is Industrial Production Index, Unemployment Rate and CPI
values in Turkey. For the data sets, goodness of fit of the PVI function is applied, and
standard errors of the regression parameters are obtained. Box-plot and histogram of
residuals for data sets are drawn for residuals obtained from LS.

6.1.1 Education Expenditure Data

The data set published by Chatterjee and Price (1977) discussed Education Expen-
ditures in 50 states in the United States. Information about the variables as follows:
Average education expenditure per capita at public school in a state in 1975 (response
variable)

• Number of residents residing in urban areas in 1970 (x1000),
• Per capita personel income in 1973,
• Number of residents under 18 years of age in 1974 (x1000).

In the data set, the value of 31st data of the response variable has been replacedwith
the value 400 instead of 212 due to a recording or transferring error. After that, PVI
parameters were estimated and regression analysis was performed. When Figure 7a
is examined, it can be seen that the 31st and 49th data points have high standardized
residuals (3.69 and 3.22). Anderson-Darling goodness of fit test is applied to the
residuals, and the test value is obtained as 1.046 (p = 0.000), and it is determined
that the distribution of the residuals does not come from normal distribution. Also,
the skewness is 1.10, and kurtosis is 5.30 of residuals obtained from LS.

In Table 4, the PVI method gives similar results with other estimation methods
even at high skewness and kurtosis values. Although Huber and TukeyM-Estimation
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ba

Fig. 7 Box plot and histogram of education expenditure data

Table 4 Result of education expenditure data

Variables

Estimation
method

Results Constant Number of
residents
residing in
urban areas
(x1000)

Per capita
personel
income

Number of
residents under
18 years of age
(x1000)

LS Estimate −452.203 0.001 0.063 1.346

Standard Error 146.891 0.061 0.014 0.375

Huber
M-estimator

Estimate −340.860 0.044 0.053 1.067

Standard error 126.629 0.053 0.012 0.323

Tukey
M-estimator

Estimate −243.762 0.074 0.045 0.820

Standard Error 127.490 0.053 0.012 0.326

PVI Estimate −307.984 0.009 0.061 0.909

Standard error 72.326 0.030 0.007 0.185

methods give very low or 0weight when residuals increase, the PVImethod analyzed
high standardized residuals as a part of the data set and weighed all residuals. Thus,
when making regression diagnostic, when there is an observation that seems to be a
outlier but is known to belong to the data set and even if the skewness and kurtosis
values are high, the PVI method gives results at least as well as other estimation
methods.

6.1.2 Economical Data

For the Economic data set, between January 2015 and February 2020, the values
of 62 month Industrial Production Index (2015 = 100), Unemployment Rate and
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Consumer Price Index (2003 = 100, response) are considered. In this example, by
considering the variables commonly used in economic analysis in Turkey, we have
been focused on the importance of determining the exact distribution of the data.
When Fig. 8a is examined, it can be seen that observations 45th, 46th, 47th, 48th,
49th, 52th and 57th have high standardized residuals. In addition, if the histogram of
the residuals (Fig. 8a) is examined, it is seen that the data are right skewed (β1 = 1.08)
and have excess kurtosis (β2 = 5.04). As a result of the Anderson–Darling test, the
test statistic is 1.782 (p = 0.005) and the distribution of the residuals is not normal.

According to the regression analysis results in Table 5, PVI method gives very
similar results to other methods. Although the skewness and kurtosis values of the
data are high and there are high standardized residuals, the coefficients were obtained
significantly.

ba

Fig. 8 Box plot and histogram of economical data

Table 5 Result of economical data

Variables

Estimation method Results Constant Unemployment rate Industrial production
ındex (2015 = 100)

LS Estimate −29.615 0.256 1.143

Standard error 8.052 0.077 0.338

Huber M-estimator Estimate −28.035 0.250 1.012

Standard error 6.716 0.064 0.282

Tukey M-estimator Estimate −17.680 0.236 0.644

Standard error 4.722 0.045 0.128

PVI Estimate −25.315 0.247 0.781

Standard error 8.383 0.080 0.352
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6.2 Simulation Study

In the simulation study, LS, Huber M-Estimator, Tukey M-Estimator and proposed
method based on PVI are compared with different scenarios. Sample sizes 30, 50,
100 and 500 are used and M=1000 replications are simulated. Data are generated
multivariate linear regression using following model;

y = 2 + 2X1 + 2X2 + 2X3 + 2X4 + 2X5 + ε, Xi ∼ N (0, 1) (31)

Error term is generated 13 different scenarios and 7 distributions with 2 symmet-
rical and 5 asymmetrical distributions. Predetermined scenarios of the error term are
as follows:

Scenario 1. ε ∼ N (0, 1), Standard Normal Distribution (PXIII).
Scenario 2. ε ∼ t (1), (PVII).
Scenario 3. ε ∼ t (10), (PVII).
Scenario 4. ε ∼ Exp(1), (PX).
Scenario 5. ε ∼ Exp(10), (PX).
Scenario 6. ε ∼ Gamma(1, 5), (PIII).
Scenario 7. ε ∼ Gamma(2, 5), (PIII).
Scenario 8. ε ∼ χ2(1), (PIII).
Scenario 9. ε ∼ χ2(5), (PIII).
Scenario 10. ε ∼ F(2, 10), (PVI).
Scenario 11. ε ∼ F(10, 10), (PVI).
Scenario 12. ε ∼ Weibull(1, 1),
Scenario 13. ε ∼ Weibull(2, 2).
In each scenario, residuals are obtained from LS estimation method and we

choose response and explanatory variables, which is suitable for PVI. Initial weights
are calculated for Huber M-Estimator and Tukey M-Estimator using the residuals
obtained fromLS and for the PVImethodmode point must coincide at origin.We use
Iteratively Re-Weighted Least Squares (IRWLS) for estimating regression parame-
ters and calculate Total Absolute Bias (TAB) and Mean Squared Error (MSE) for
comparing estimation methods. The calculating steps of IRWLS as follows (Fox and
Weisberg 2002; Maronna et al. 2006; Hogg 1979):

1. Choose a suitable estimation method (usually LS) and estimate regression
parameters.

θ̂ =(
XTX

)−1
XTy.

2. Calculate residuals using the estimated regression parameter.

e = y − X θ̂ .

3. Estimate robust standard deviation (Usually MAD).
4. Calculate studentized residuals using MAD and use tuning constant if exist.
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ri = ei
/(

ks
√

(1 − hi )
)

5. Choose a weight function from Table 1c, Table 2c or Eq. (30).
6. Estimate new regression parameters using Weighted LS method.

θ̂ =(
X′WX

)−1
X′Wy.

7. Repeat 2–6 until converge:

∥∥∥θ̂ i − θ̂ i−1
∥∥∥

/ ∥∥∥θ̂ i
∥∥∥ < 10−6ori > 30.

While comparing the estimation methods, we can calculate TAB and MSE using
regression parameters as follows (Wiśniewski 2014);

T AB =
5∑

j=0

∣∣∣
∣∣
1

M

M∑

i=1

θ̂i j − θi j

∣∣∣
∣∣

MSE = 1

M

M∑

i=1

(
θ̂i − θ

)T(
θ̂i − θ

)
.

Table 6 shows TAB and MSE values for each estimation method and sample
sizes when the error term follows both symmetric and asymmetrical distribution.
Considering these values, LS method gives the best results when the distribution of
the error term is normal distribution. However, when the distribution of the error term
is Student t distribution,which has heavy and long-tailed than the normal distribution,
Huber and Tukey M-Estimators give better results than both LS and PVI. For some
distributions in simulations, PVI is not suitable in large sample sizes. In every case
of the error term follows asymmetrical distribution, LS, Huber M and Tukey M-
Estimators give worse results than PVI since they do not consider skewness and
excess kurtosis of data set. The PVI weight function ensures a flexible structure
according to the parameters of the distribution.

According to the simulation results, in the presence of skewness and excess
kurtosis in the data, the PVI method has the best TAB and MSE values since the
weight function takes these parameters into account. However, when the distribution
of errors is symmetrical, the PVI method gives worse than other methods.

7 Conclusion

Researchers use many estimation methods in Robust Regression Analysis. The most
important andmostwidely used robust estimationmethod isM-Estimators. However,
traditional M-Estimators do not consider the anomalies (heavy-long tail, skewness
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and kurtosis) found in the data set. In this study, based on the similarity between
PDE and IF, when the distribution of the data follows the PVI distribution, the
performance of the M-Estimator based on the weighting function of the PVI distri-
bution is considered. If the error term has symmetrical distributions, the proposed
method gives worse performance than other methods. However, in cases where the
distribution of the error term is asymmetric (β1 > 0) and excess kurtosis (β2 > 3),
the weight function of the PVI distribution has a better performance than other M-
Estimators since it contains these parameters. Also, due to the heavy and long tails
(see Appendix) of the PVI, it performs well in asymmetrical distributions with light
tails. Asymmetrical distributions used in simulations have a lighter tail than PVI.

The performance of the PVI has been analyzed by performing a simulation study
on 13 scenarios with 7 different distributions with two different real-world data.

Appendix

Tail Properties of a Distribution

The Tail Function of a distribution G can be defined as follows:

G(x) = G(x,∞), x ∈ R

Considering the tail function or pdf, it can be determined whether a distribution
has a Heavy-Tailed, Fat-Tailed or Long-Tailed by considering the following three
conditions (Bryson 1974; Foss et al. 2011).

Condition 1. Heavy-Tailed Distributions

G can be defined as Heavy-Tailed distribution, it must be satisfied;

∫

R
eλxG(dx) = ∞, ∀λ > 0

If the Heavy Tailness has written for pdf;

lim
x→∞ sup g(x)eλx = ∞, ∀λ > 0

Condition 2. Long-Tailed Distributions

G can be defined as Long-Tailed distribution, it must be satisfy;
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lim
x→∞

g(x + λ)

g(x)
= 1, ∀λ > 0

A Long-Tailed distribution is subclass of Heavy-Tailed distributions. By using
Tail Function;

lim
x→∞ G(x + λ) ∼ G(x), ∀λ > 0

Condition 3. Fat-Tailed Distributions

G can be defined as Fat-Tailed distribution, it must be satisfy;

lim
x→∞ P(X > x) ∼ x−λ, ∀λ > 0

where P(X > x) = G(x).
In this study, we investigated tail properties of PVI. Consider Eq. (23);

Proof of Condition 1

By using pdf of PVI and Condition 1, one can easily calculate;

lim
x→∞ eλx f (x) = ∞

Thus PVI is a Heavy Tailed Distribution

Proof of Condition 2

For any λ > 0, we obtain the equation f (x + λ) = (x + r1 + λ)m1(x + r2 + λ)m2 .
By using Condition 2;

lim
x→∞

f (x + λ)

f (x)
= 1

Thus, PVI is a Long-Tailed Distribution.

Proof of Condition 3

The Tail Function of PVI;
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P(X > x) = 1 −
xm1+1

2F1

[
m1 + 1 − m2

m1 + 2
;−x

]

(m1 + 1)B(−m1 − m2 − 1;m2 + 1)

where 2F1

[
a b
c

; z
]
is Gauss Hypergeometric Function. By using the Condition

3;

lim
x→∞ F(x) = −∞

Thus PVI is not a Fat-Tailed Distribution.
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