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Abstract The need for research onmodelling and forecasting financial volatility has
increased noticeably due to its essential role in portfolio and riskmanagement, option
pricing, and dynamic hedging. This paper contributes to the ongoing discussion of
how researchers use regime shifts or structural breaks information to improve forecast
accuracy. To accomplish this, we use the data on renewable energy markets. Thus,
this study examines several models that accommodate regime shifts and investigates
their forecasting performance. First, a subset of competing models (GARCH-class
and stochastic volatility) employ the modified iterative cumulative sum of squares
method to determine the estimation windows. This paper’s novel aspect is that it
studies the forecasting performance of various specifications of stochastic volatility
models under this procedure. Second, we employMarkov switchingGARCHmodels
under alternative distribution assumptions. The rolling window-based forecast anal-
ysis reveals that Markov switching models offer more accurate volatility forecast
results for most cases. Regarding distribution functions’ relevance, the normal distri-
bution followed by Students t , skew Student t , and generalized hyperbolic distribu-
tion commonly dominates the series under investigation in the superior sets under
all considered loss metrics.
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1 Introduction

The studies on modelling and forecasting financial volatility occupy a consider-
able portion of empirical finance literature due to its essential applications in port-
folio and risk management, option pricing, and dynamic hedging. This study mainly
explores the role of regime changes in forecasting the volatility in renewable energy
markets through the moving window approach. Also, there have been somewhat
little research works on modelling and predicting the volatility of renewable energy
markets despite the substantial necessity resulting from renewable energy supporting
policies worldwide. Thus, this investigation also aims to contribute to the limited
literature on renewable energy markets’ volatility prediction analysis. We employ
the three commonly used indices in the renewable energy sector, namely, the Euro-
pean Renewable Energy Index (ERIX), the S&P Global Clean Energy Index (S&P
GCE), and the Wilder Hill Clean Energy Index (ECO).

Past literature documents that ignoring regime changes in volatility models
may overestimate the model coefficients (i.e., persistence), resulting in inaccurate
volatility forecasts (see, among others, Lamoureux and Lastrapes 1990; Nomikos
and Pouliasis 2011). Thus, the models that take structural breaks into account can be
more suitable for predicting renewable energy market volatility.

We employ several models to accommodate structural breaks. First, some models
under consideration employ the modified iterative cumulative sum of squares (ICSS)
algorithm developed by Sansó et al. (2004) to determine the volatility models’ esti-
mation windows. We employ the ICSS method to determine the samples for estima-
tions. This strategy of computing the volatility forecasts is, to some extent, similar
to the approach employed in Rapach and Strauss (2008). However, while Rapach
and Strauss (2008) assume Gaussian distribution for the maximum likelihood func-
tion, we consider, together with Gaussian, some other conditional densities, such as
the asymmetric and symmetric fat-tailed density functions. Another novel aspect is
that we examine the forecasting performance of stochastic volatility models under
this procedure. Second, we employ the Markov switching GARCH models (i.e.,
MS-GARCH,MS-EGARCH, andMS-GJRGARCH) proposed by Haas et al. (2004)
with different distributional assumptions. Besides regime shifts, we have attempted to
accommodate various stylized facts in renewable energy markets such as skewness,
non-normality, asymmetry, and excess kurtosis.

As usually documented, the proper conditional distribution for asset returns is
essential for options valuation and asset pricing (e.g., Hasanov et al. 2018). However,
the role of various conditional densities in out-of-sample forecasting analysis is
still an open question in the literature. One may compute the volatility forecasts
by employing various methods, depending on the variance models and conditional
density functions.

Chuanget al. (2007)mentioned that a distribution functionneeds to comprise some
essential features of asset returns, such as shapes, skewness, and kurtosis. In the liter-
ature, the statisticians have developed several complex distribution functions (e.g.,
Fernandez and Steel 1998; Theodossiou 1998). However, a limited number of works
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focus on stochastic volatility (SV) and GARCH-type and models’ volatility fore-
casting performance using various distribution functions (with the notable exception
of Harvey et al. (1994); Giot and Laurent (2003); Chuang et al. (2007); Hasanov et al.
(2018)). This paper employed the four types of conditional density functions in the
empirical estimations of GARCH-typemodels. These are the Student t (STD), Gaus-
sian (N), skew Student t (SSTD), and generalized hyperbolic distribution (GHYP).
In comparison, we rely on two distributions for SV models, such as Gaussian and
Student t .

In this study, we employ the model confidence set (MCS) test technique proposed
in a study by Hansen et al. (2011) to assess the predicting performance of models
under consideration following the comparatively recent researchworks in this context
(see, among others, Charles and Darné (2017); Laporta et al. (2018); Zhang et al.
(2019); and Hasanov et al. (2020)).

We contribute to a few research questions. First, we examine how one needs
to consider the structural breaks to improve the forecast accuracy for the markets
under consideration. Second, we investigate whether stochastic volatility models’
forecasting performance is improved compared with GARCH-type models when
the breaks in log-returns are considered in both models. Third, we analyze the role
of distributions in volatility prediction performance. Finally, we also study whether
asymmetric models perform better than symmetric models.

We organize the remainder of this study as follows. In Sect. 2, we provide some
information about the data employed in this study. Section 3 comprises the method-
ology, includingmodel specifications, break test, and out-of-sample forecasting anal-
ysis procedure. Section 4 includes forecasting results and provides some discussion.
Finally, Sect. 5 concludes the paper and highlights some practical implications.

2 Data

We rely on the three most widely used stock indices in the renewable energy sector to
represent the renewable energy market. First, in the analysis, we use the Wilder Hill
Clean Energy Index (ECO). These series are constructed as the weighted mean of
the corporate stocks of publicly traded entities whose business operations may have
benefited noticeably from a conventional societal position towards cleaner energy
use and conservation. Second, we selected the European Renewable Energy Index
(ERIX). This index series comprises 10 renewable energy companies’ corporate
stocks in biomass, water, wind, and solar energy in Europe. Finally, we took the
S&P Global Clean Energy Index (S&P GCE). These index series are computed as
the weighted mean of the corporate shares of 30 companies devoted to developing
renewable energy technologies worldwide. The sample periods for all three indices
end on November 30, 2020, and start on January 3, 2005. We retrieve the data on
these renewable energy indices from the Bloomberg database.
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3 Empirical Models

We use some univariate models to predict renewable energy market volatility. We
employ the historical mean (HM), exponentially smoothing (ES), GARCH-class,
Markov-switching GARCH (MS-GARCH), and stochastic volatility models.1 We
take the structural breaks or regime shifts into account by using two ways. First, we
rely on the adjusted ICSSmethod to select the estimation windows for different spec-
ification of SV and GARCH-type conditional variance models. Second, we employ
Markov-switching GARCHmodels under various distribution assumptions to model
and forecast conditional volatility.

3.1 The Stochastic Volatility Models

The main characteristics of the SVmodel are its stochastic and time-varying features
of the variance evolution. Specifically, one assumes that the log-variance of themodel
follows an AR(1) process. Hence, we may specify the following models. Let vector
y = (y1, . . . , yn)

T comprises the demeaned log-return observations of an asset. The
usual SV model assuming normal distribution can be specified as:

yt = xtβ + exp

(
ht
2

)
εt

ht+1 = μ + ϕ(ht − μ) + σηt

εt ∼ N(0, 1)

ηt ∼ N(0, 1)

(1)

Wehave also considered the SVmodelwith the conditional Student’s t distribution
suggested by Harvey et al. (1994).

yt = xtβ + exp

(
ht
2

)
εt

ht+1 = μ + ϕ(ht − μ) + σηt

εt ∼ tν(0, 1)

ηt ∼ N(0, 1)

(2)

where tν is the Student’s t distribution with ν degrees of freedom, unit variance and
zero mean.

We also employ the SV model that accounts for the leverage effect.

1 For a detailed description of the HM and ES models, we refer interested readers to Sadorsky
(2006) and Hasanov et al. (2020).
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yt = xtβ + exp

(
ht
2

)
εt

ht+1 = μ + ϕ(ht − μ) + σηt

εt ∼ N(0, 1)

ηt ∼ N(0, 1)

(3)

where the correlation matrix of (εt , ηt ) is defined as

�ρ =
(
1 ρ

ρ 1

)

In the above SVmodels, εt and ηt are independent. The h denotes the log-variance
process, xt is a vector of regressors, and β is a vector of coefficients. We use the
Greek letters μ, ϕ, and σ to denote the parameters of models.

3.2 The GARCH-Type Models

This study’s first deterministic conditional volatility model is the simple GARCH(1,
1) model proposed by Bollerslev (1986). The GARCH(1, 1) model for a given log-
return series (i.e., rt ) with a mean model, which follows ARMA(p, q) process can be
written as:

rt = μ +
p∑

i=1

φi rt−i + εt +
q∑
j=1

θ jεi− j (4)

εt = σt ∈t , σ
2
t = ω + α1ε

2
t−1 + β1σ

2
t−1 (5)

where ∈t is a series of identically and independently distributed (i.i.d.) random vari-
ables with unit variance and zero mean; σ 2

t denotes the conditional variance, and the
parameters of mean and variance models are as follows: |δ| < 1, ω > 0, α1 ≥ 0,
β1 ≥ 0, and α1 + β1 < 1.

As commonly noted, the financial markets frequently demonstrate evidence of
the asymmetric volatility phenomenon. This implies that research works should
utilize the models that encompass the data’s asymmetry features to examine finan-
cial markets’ volatility. The GJR-GARCH specification suggested in Glosten et al.
(1993) is another GARCH-class of specification that accounts for the phenomenon
of asymmetry. The mean and variance models can be specified as:

rt = μ +
p∑

i=1

φi rt−i + εt +
q∑
j=1

θ jεi− j (6)
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σ 2
t = ω + {α1 + γ1 I (εt−1 > 0)}ε2t−1 + β1σ

2
t−1 (7)

where ω > 0, α1 ≥ 0, α1 + γ1 ≥ 0, β1 ≥ 0, and I (εt−1 > 0) is an indicator variable
that takes one when εt−1 < 0 and obtains zero if the argument is false. One may
capture an asymmetric impact in the log-return series by analyzing the coefficient
estimate of γ1.

To incorporate conditional variances’ asymmetric responses to negative and posi-
tive shocks with a similar absolute value, Nelson (1991) developed the exponential
GARCH (EGARCH) model specified as:

ln
(
σ 2
t

) = ω + α|zt−1| + γ zt−1 + βln
(
σ 2
t−1

)
(8)

where zt−1 = εt−1σ
−1
t−1.

The GARCH and GJR-GARCH models impose non-negative constraints on the
variance equation parameters, while there are no restrictions imposed on the variance
coefficients in the EGARCH model.

This paper considers four conditional distributions in the empirical estimations of
GARCH-type models. These distributions are as follows: the standardized Student t
(STD), standard Gaussian (N), skew standardized Student t (SSTD), and generalized
hyperbolic distribution (GHYP). For a detailed description of the functional forms
of the aforementioned conditional distribution functions, we refer interested readers
to Hasanov et al. (2018) and their paper’s references.

3.3 The SV and GARCH-Type Models with Endogenously
Determined Breaks

To accommodate the possible structural changes in the log-return series, we rely on
the adjusted ICSS procedure developed in the paper by Sansó et al. (2004) to select
the estimation windows for the SV and GARCH-type conditional variance model
specifications. In the initial step, we apply the κ2 test to all existing observations
one through T . Assume we detected one or more breaks through the modified ICSS
procedure. The last break has been found to happen at the time TB . Then all models
considered in this study are estimated using log-return series starting from TB + 1 to
T to get an estimate of σ 2

T+1. Then we again apply the κ2 test to observations from
two through T + 1. The last breakpoint is now found to happen at the time T1B .
In the next step, we estimate all models for log-returns from T1B + 1 to T + 1 to
compute the following estimate of σ 2

T+1. We continue this process until all out-of-
sample forecast period is exhausted. In sum, we rely on the κ2 break detection test
to find the estimation sample so-called the “structural break” model.2

2 In Tables 1, 2 and 3, we use the prefix “SB” to indicate the models with structural breaks.
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If regime shifts or structural changes occur in the log-return series, employing
the whole available log-return series to estimate a model may generate inaccu-
rate forecasts, despite having a lesser variance (Pesaran and Timmermann 2007).
The existing theory in this context advocates that neglecting the structural breaks
or regime shifts may induce upward biases in volatility persistence estimates (for
example, Lamoureux and Lastrapes 1990; Mikosch and Stǎricǎ 2004). Hence, the
observations only over after the break period have been used (i.e., from TB + 1 to
T ) to estimate the models with breaks, given after-break period is sufficient to run
the estimations. Rapach and Strauss (2008) mentioned that a possible shortcoming
of this method is that the observations might be insufficient to estimate the model
coefficients.

3.4 Markov-Switching GARCH Models

In addition to the models described in the previous sections, we also estimate the
MS-GARCH model proposed by Haas et al. (2004), assuming different distribution
assumptions (Student t , Gaussian, and skew Student t). Ardia et al. (2018) specify
the MS-GARCH model as:

rt |(st = k, �t−1) ∼ D
(
0, hk,t , ϑk

)
(9)

where D
(
0, hk,t , ϑk

)
is a distribution (i.e., continuous) function with a mean equal

to zero, and a time-varying conditional volatility hk,t in regime k. Here, a vector,
ϑk , includes additional parameters like skew or tail parameter. The symbol, �t−1,
denotes the available information set. Here, the state variable, st , changes in line with
a first-order homogeneous Markov chain with k states. We rely on three conditional
variance models: the GARCH, the EGARCH, and the GJR-GARCH.

4 Results and Discussion

The coefficient estimates of all considered models3 outlined in Sect. 3 have been
used to produce daily single-step ahead predictions for conditional variances. We
move forward the beginning as well as end dates of the estimation period one day.
We re-estimate the model coefficients, and finally, obtained new parameter estimates
are employed to predict daily single-step variance (i.e., conditional) over the pre-
set out-of-sample period. This process continues until the out-of-sample period has
been completed. The numerous studies in the literature applied a rolling window

3 Since HM estimation relies on non-parametric way of estimating the volatility, we do not have
any parameters to estimate in HM.
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approach of computing out-of-sample predictions. (e.g., Sadorsky 2006; Wen et al.
2016; Charles and Darné 2017; Hasanov et al. 2018; Hasanov et al. 2020).

Following many previous studies, we separate the entire sample for the log-return
series under consideration into two parts: in-sample and out-of-sample. While the
out-of-sample period comprises the last R observations, the in-sample period covers
the initial T observations. In this study, the out-of-sample period R is set to include
500 observations.

As mentioned earlier, we rely on the MCS testing procedure in forecast compar-
ison analysis. We predict the volatility employing the models defined in the previous
section estimated on each of the three renewable energy market returns to apply this
technique. The MCS testing procedure has been shown to offer a robust compar-
ison for the predictions generated from many models simultaneously and generate
a superior set that includes the superior models in forecasting performance with the
given pre-specified confidence level. In this study, we have set the confidence level
for the MCS test to α = 0.90. The software code we have written for the analysis
relies on the R (version 4.0.2) software and the MCS (Catania and Bernardi 2015),
the rugarch (Ghalanos 2016), the stochvol (Hosszejni and Kastner 2016), and the
MSGARCH (Ardia et al. 2019) packages.

In this paper, the MCS test is based on the following loss metrics:

AEt+1 =
∣∣∣Ṽt+1 − V̂t+1

∣∣∣

HMAEt+1 =
∣∣∣∣∣1 − Ṽt+1

V̂t+1

∣∣∣∣∣

HMSEt+1 =
(
1 − Ṽt+1

V̂t+1

)2

QL I K Et+1 = log
(
V̂ 2
t+1

)
+ Ṽ 2

t+1V̂
−2
t+1

where V̂t+1 is the volatility forecasts computed by the estimated models at time t .
And, Ṽt+1 is an actual volatility’s proxy at time t . The squared returns serve as a
proxy (see Sadorsky 2006; Hasanov et al. 2020 among many others).

Table 1 shows that the majority of Markov switching models are in the superior
set M̂0.9 in terms of three loss metrics (i.e., HMAE, HMSE, and QLIKE). Thus,
these three Markov switching models happen to be the most accurate single-period
forecasting models for the ECO series. Moreover, the SB-HM model is also in the
superior set of models M̂0.9 under most of the loss metrics, and, therefore, this is
also considered as a promising model. Under AE1 loss function, the MCS procedure
excludes all other competing models except SB-HM from a superior set of models
(SSM).Themodel confidence set comprises theGARCH-typemodels andSVmodels
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with endogenously determined structural breaks under two out of four loss criteria
(i.e., HMSE and QLIKE).

As one can see from Table 2, under the AE and QLIKE, the MS-EGARCHmodel
with SSTD distribution for the ERIX series shows the highest forecasting perfor-
mance according to the p-values computed by the MCS algorithm. Meanwhile, the
MS-GARCH with Gaussian distribution provides the most accurate forecasts under
HMAE and HMSE loss criteria. The SB-SV model with leverage effects survives in
all SSMs, indicating that this is also a favourable model. The MCS procedure selects
SB-GJR-GARCHwith Student t , and skew Student t distributions in the SSM under
AE, HMSE, and QLIKE loss functions.

The three loss criteria (HMAE, HMSE, and QLIKE) choose the MS-GARCH-N
model as the most promising forecasting model for the SPGCE series. Meanwhile,
the MS-GARCH with SSTD, MS-GARCH with STD, and MS-GJR-GARCH with
N survive in three out of four SSMs, showing that they are also favourable models.
Moreover, the SB-SV-t model for the SPGCE series turned out to be the model with
the highest forecasting performance under the AE criterion, based on the p-values
computed by the MCS test (see Table 3). This model also appears in the superior set
of models M̂0.9 under HMSE and QLIKE loss criteria. The rest of the models under
consideration for the SPGCE index survive when the MCS test relies on HMSE and
QLIKE forecast summary statistics.

We also looked into the importance of distributions in forecasting analysis for
the models under consideration. The findings for the relevance of distributions in
single-step-ahead forecasting are rather mixed. The results show that distribution
specifications employed in rolling estimations of models with the most accurate
forecasting performance are not consistent with the true underlying distribution of
returns. Besides, no dominant distribution is found for themarkets under study,which
increases forecasting performance. In general, the normal distribution followed by
Student t , skew Student t , and generalized hyperbolic distribution commonly domi-
nates for the series under investigation in the model confidence sets under all consid-
ered accuracy criteria. This result is consistent with those found by Chuang et al.
(2007) andHasanov et al. (2018), who find that the distribution function’s complexity
does not consistently outperform the less complex one because of the over-fitting
problem.

It is worth mentioning that most models in SSMs are asymmetric models across
all series and loss metrics. Thus, the renewable energy market participants must not
neglect the stylized facts like regime shifts or structural changes and asymmetrywhen
they perform risk management. Moreover, we analyze whether GARCH-based and
SV models’ forecasting performance, which considers the log-return series’ regime
changes, is improved. The results suggest that SB-GARCH and SB-SVmodels show
a similar forecasting performance across all the markets under consideration.
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5 Conclusion and Implications

In this study, we have addressed several research questions. We investigate how one
needs to use the structural breaks information to improve the forecast accuracy for the
markets under consideration.We find that theMarkov switching GARCHmodels are
the superior one-period forecastingmodels for all markets under investigation.More-
over, we analyze whether stochastic volatility models’ forecasting performance is
improved compared with GARCH-type models when the endogenously determined
breaks in log-returns are considered in both models. The results suggest that both
GARCH-type and SV models show a similar forecasting performance across all the
markets under consideration.

Also, we analyze the relevance of several distribution specifications in volatility
forecasting accuracy analysis. The results indicate no dominant asymmetric and fat-
tailed distribution for the markets under study, which increases forecasting perfor-
mance. In general, the normal distribution followed by Student t , skew Student t , and
generalized hyperbolic distribution commonly dominates for the series under investi-
gation in the model confidence sets under all considered accuracy criteria. Therefore,
renewable energy investors and policymakers must be cautious when employing the
SV andGARCH-typemodels to forecast market volatility. Themodels with complex
distribution functions do not necessarily lead to better forecasting results. Finally,
we also study the relevance of typical renewable energy markets like asymmetry.
The results suggest that most models in superior sets are asymmetric models across
all series and loss measures. Thus, renewable energy markets’ participants must not
neglect the essential stylized facts when they perform risk management.

This paper’s modelling approach helps investors or market participants identify
future renewable energy market fluctuations. The market participants, such as port-
folio managers and international investors, can predict the future renewable energy
market dynamics and design proper portfolio selection and risk management. They
intend to generate a more accurate return and volatility predictions to evaluate the
portfolio risk exposure and update the hedge ratio according to computed predictions.
As Kilian and Park (2009) note, the hedge ratio’s continuous adjustment confirms
the proper dynamic hedging strategies.
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