
Standard Conformance-by-Construction
with Event-B

Ismail Mendil1(B), Yamine Aït-Ameur1, Neeraj Kumar Singh1, Dominique Méry2,
and Philippe Palanque3

1 INPT-ENSEEIHT/IRIT, University of Toulouse, Toulouse, France
{ismail.mendil,yamine,nsingh}@enseeiht.fr

2 Telecom Nancy, LORIA, Université de Lorraine, Nancy, France
dominique.mery@loria.fr

3 IRIT, Université de Toulouse, Toulouse, France
palanque@irit.fr

Abstract. Checking the conformance of a system design to a standard is a central
activity in the system engineering life cycle, a fortiori when the concerned system
is deemed critical. Standard conformance checking entails ensuring that a system
or a model of a system faithfully meets the requirements of a specification of a
standard improving the robustness and trustworthiness of the system model. In
this paper, we present a formal framework based on the correct-by-construction
Event-B method and related theories for formally checking the conformance of
a formal system model to a formalised standard specification by construction.
This framework facilitates the formalization of standard concepts and rules as an
ontology, as well as the formalization of an engineering domain, using an Event-
B theory consisting of data types and a collection of operators and properties.
Conformance checking is accomplished by annotating the system model with
typing conditions. We address an industrial case study borrowed from the aircraft
cockpit engineering domain to demonstrate the feasibility and strengths of our
approach. The ARINC 661 standard is formalised as an Event-B theory. This
theory formally models and annotates the safety-critical real-world application of
a weather radar system for certification purposes.

Keywords: Standard conformance · Safety properties ·
Correctness-by-construction · Event-B and theories · ARINC 661 · Critical
Interactive Systems

1 Introduction

Checking the standard conformance of a system design is a central activity in the system
engineering life cycle, a fortiori when the concerned system is deemed critical. Standard
compliance checking entails ensuring that a system or a model of a system faithfully
meets the requirements of a standard, in particular domain and certification standards,
improving the robustness and trustworthiness of the system model.

In many cases, conformance of system design models and/or implementation to
a standard is achieved by informal or semi-formal processes like argument-based
c© Springer Nature Switzerland AG 2021

A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 126–146, 2021.
https://doi.org/10.1007/978-3-030-85248-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-85248-1_8

Standard Conformance-by-Construction with Event-B 127

reports produced through model reviews, testing and simulation, experimentation, and
so on [28]. Although, these qualification methods have proven to be valuable for sys-
tem engineering in areas like transportation systems, medical devices, power plants,
etc., formal checking of conformance, as advocated by the DO178-C, is more trust-
worthy and has many advantages, including extensive case coverage and availability of
automatic verification capabilities such as model-checking and theorem proving.

Context of the Work. As part of the French ANR FORMEDICIS1 project, we have stud-
ied the problem of ARINC 661 [8] standard conformance for CIS (Critical Interactive
Systems). ARINC 661 is a standard for the development of flight deck display inter-
faces. In fact, modern cockpit designs increasingly rely on the ARINC 661 standard
series used in several airplane development programs, e.g. Airbus A380, A350, and
A400M, as well as the Boeing 787, 737MAX, KC-46A, and B777X2.

Our Claim is that it is possible to check that a formal design model complies
with domain standards formalised as a theory with data types, operators, axioms and
theorems.

Standard Conformance addressed by our approach consists in transferring, to formal
design models, theorems proved, once and for all, in the theory formalising a domain
standard specification. The conformance is checked by proving the well-definedness
proof obligations generated when using the theory operators. Note that we do not
address the process of building these theories which requires to move from text-based
standard documents to formal theories. Building such theories is out of the scope of this
paper. Such processes have been addressed in [12–14] to link text-based standards with
formalised theories expressed in Isabelle/HOL.

So, the goal of this Paper is to demonstrate how to check the compliance of formal
design models with domain standards expressed as theories. The overall approach is
exemplified on ARINC 661 standard and weather radar system application.

Our Contribution. In this paper, we present a formal framework based on the correct-
by-construction Event-B method and related theories for formally checking, by con-
struction, the conformance of a formal system model to a formalised standard specifi-
cation. This framework formalises engineering standard concepts and rules as an onto-
logical Event-B theory. To demonstrate the feasibility and strengths of our approach,
we report on our experiments, from the FORMEDICIS project, addressing an interac-
tive system available in aircraft cockpits. Relying on domain ontologies as a ground
knowledge model, the ARINC 661 standard is formalised as an Event-B theory which
formally annotates the model of the real-world weather radar system.

Organisation of this Paper. Next section is a brief review related to conformance and
certification and Sect. 3 is devoted to a summary of the Event-B method. Section 4 con-
tains the description of the CIS and the ARINC661 standard. Our framework is pre-
sented in Sects. 5 and 6 and its application is given in Sect. 7. Section 8 provides an
assessment of the approach. Last, Sect. 9 concludes this paper.

1 FORmal MEthods for the Development and the engIneering of Critical Interactive Systems
(CIS) https://anr.fr/Projet-ANR-16-CE25-0007.

2 https://www.aviation-ia.com/activities/cockpit-display-systems-cds-subcommittee.

https://anr.fr/Projet-ANR-16-CE25-0007
https://www.aviation-ia.com/activities/cockpit-display-systems-cds-subcommittee

128 I. Mendil et al.

2 Certification and Conformance

According to ISO, a standard is defined as: Standards are documented agreements con-
taining technical specifications or other precise criteria to be used consistently as rules,
guidelines or definitions of characteristics, to ensure that materials, products, process
and services are fit for their purpose [26].

The use of standards has a number of potential advantages. It plays an important role
for the development of complex systems, including both product-based and process-
based developments. This process is both time-consuming and difficult. Some work
focuses on integrating standards into process development. In [17], the authors propose
a model for standards conformance by introducing lightweight mechanisms. In [9], a
framework based on Natural Language Semantics techniques is presented. It assists in
the processing of legal documents and standards through building a knowledge base
that includes logical representations. In [16], the authors propose a step-by-step process
for conformance checking that includes process modeling and execution. Similarly, [34]
shows how to implement the conformance relation on transition systems. Nair et al. [35]
provide a detailed survey how practitioners deal with safety evidence management for
critical systems and they also draw the conclusion that there is a limited use of safety
evidence in industries based on empirical evaluation.

In recent years, assurance cases have been used in critical domains to establish
system safety by presenting appropriate arguments and evidences [30,39]. The chosen
evidences are always questionable, regardless of how they are established or how much
confidence we have in them. There are several approaches to justifying confidence, such
as eliminative induction [19], quantitative estimation [22], provided as claims in the
assurance case [20]. Wassyng et al. [42,43] propose an Assurance Case Template used
in the development of critical systems and their certification within a domain model.

Regarding Event-B [2] and B [1] methods, Fotso et al. [41] present a specification
of the hybrid ERTMS/ETCS level 3 standard, in which requirements are specified using
SysML/KAOS [32] goal diagrams that are translated into B, and domain-specific prop-
erties are specified by ontologies using the SysML/KAOS domain modeling language,
which is based on OWL [7] and PLIB [27]. Last, we mention the work of [10,11] which
uses the RSL language to model engineering domains.

The interest and motivation of handling domain knowledge has been discussed and
argued in [5]. In this paper, we propose to use the capability of Event-B theories to
improve the explicitation and integration of domain knowledge in design models. A
key advantage of our proposed approach is that the proof of domain properties holding
in the design models is explicit since a Well-Definedness (WD) proof obligation (PO)
is generated. Such WD POs are generated for each theory defined operator, it states
that each parameter belongs to the domain operator. This is particularly relevant for
partial operators. Obviously, the approach exempts from explicitly specifying domain
properties on the model side. Compared to our approach which relies on an ontology
modelling language referenced by formal design models, none of the mentioned work
use a shared modelling language.

Standard Conformance-by-Construction with Event-B 129

3 Event-B

Event-B [2] is a correct-by-construction method based on set theory and first-order
logic. It relies on state-based modelling where a set of events allows for state changes.

3.1 Contexts and Machines (Tables 1b and 1c)

The Context component describes the static properties of a model. It introduces the
definitions, axioms and theorems needed to describe the required concepts using carrier
sets s, constants c, axioms A and theorems Tctx. Machine describes the model behaviour
as a transition system. A set of guarded events is used to modify a set of states using
Before-After Predicates (BAP) to record variable changes. They use variables x, invari-
ants I(x), theorems Tmch(x), variants V (x) and events evt (possibly guarded by G and/or
parameterized by α) as core components.

Refinements. Refinement (not used in this paper) decomposes a machine into a less
abstract one with more design decisions (refined states and events) moving from an
abstract level to a less abstract one (simulation relationship). Gluing invariants relating
abstract and concrete variables ensure property preservation.

Table 1. Global structure of Event-B theories, contexts and machines

Theory Context Machine

THEORY Th CONTEXT Ctx MACHINE M
IMPORT Th1, ... SETS s SEES Ctx
TYPE PARAMETERS E, F , ... CONSTANTS c VARIABLES x
DATATYPES AXIOMS A INVARIANTS I(x)
Type1(E, ...) THEOREMS Tctx THEOREMS Tmch(x)
constructors END VARIANT V (x)
cstr1(p1: T1, ...) EVENTS

OPERATORS EVENT evt
Op1 <nature> (p1: T1, ...) ANY α
well−definedness WD(p1, ...) WHERE G(x,α)
direct definition D1 THEN

AXIOMATIC DEFINITIONS x :| BAP(α,x,x′)
TYPES A1, ... END
OPERATORS ...
AOp2 <nature> (p1: T1, ...): Tr END
well−definedness WD(p1, ...)

AXIOMS A1, ...
THEOREMS T1, ...
END

(a) (b) (c)

Proof Obligations (PO) and Property Verification. Table 2 provides a set of, automati-
cally generated, POs to guarantee Event-B machines consistency.

130 I. Mendil et al.

Table 2. Relevant Proof Obligations

(1) Ctx Theorems (ThmCtx) A(s,c) ⇒ Tctx (For contexts)

(2) Mch Theorems (ThmMch) A(s,c)∧ I(x) ⇒ Tmch(x) (For
machines)

(3) Initialisation (Init) A(s,c)∧G(α)∧BAP(α ,x′) ⇒ I(x′)
(4) Invariant preservation (Inv) A(s,c)∧ I(x)∧G(x,α)∧

BAP(x,α ,x′) ⇒ I(x′)
(4) Event feasibility (Fis) A(s,c)∧ I(x)∧G(x,α)⇒

∃x′ ·BAP(x,α ,x′)
(5) Variant progress (Var) A(s,c)∧ I(x)∧GA(x,α)∧

BAP(x,α ,x′) ⇒ V (x′)<V (x)

Core Well-Definedness (WD). In addition, WD POs are associated to all built-in oper-
ators of the Event-B modelling language. Once proved, these WD conditions are used
as hypotheses to prove further proof obligations.

3.2 Event-B Extensions with Theories

In order to handle more complex and abstract concepts beyond set theory and first-order
logic, an Event-B extension for supporting externally defined mathematical objects has
been proposed in [3,15]. This extension offers the capability to introduce new data types
by defining new types, operators, theorems and associated rewrite and inference rules,
all bundled in so-called theories. Close to proof assistants like Isabelle/HOL [36] or
PVS [37], they are convenient when modelling concepts unavailable in core Event-B.

Theory Description (See Table 1a). Theories define and make available new data types,
operators and theorems. Data types (DATATYPES) are associated with constructors, i.e.
to build inhabitants of the defined type that may be inductive. A theory defines vari-
ous operators further used in Event-B expressions. They may be FOL predicates or
expressions producing actual values (<nature> tag). Operator applications can be used in
other Event-B theories, contexts and/or machines. They enrich the modelling language
as they may occur in axioms, theorems, invariants, guards, assignments, etc.

Operators may be defined either explicitly using an explicit (“direct”) equivalent
definition, in the direct definition clause, (case of a constructive definition), or
defined axiomatically in the AXIOMATIC DEFINITIONS clause (a set of axioms). Last,
a theory defines axioms, completing the definitions, and theorems. Theorems are proved
from the definitions and axioms.

Many theories have been defined for sequences, lists, groups, reals, differential
equations, etc. Theories can be extended (Imports) to define more complex theories
and instantiated (in context) by providing concrete type parameters.

Well-Definedness (WD) in Theories. An important feature provided by Event-B theo-
ries is the possibility to define well-definedness (WD) conditions. Each defined oper-
ator (partially defined) is associated to a condition guaranteeing its correct definition.

Standard Conformance-by-Construction with Event-B 131

When it is applied (in an Event-B expression), this WD condition generates a PO requir-
ing to establish that this condition holds, i.e. the use of the operator is correct. The theory
developer defines these WD conditions for the partially defined operators. All the WD
POs and theorems are proved using the Event-B proof system.

Event-B Proof System and its IDE Rodin. Rodin3 is an open source IDE for modelling
in Event-B. It offers resources for model editing, automatic PO generation, project
management, refinement and proof, model checking, model animation and code gen-
eration. Event-B’s theories extension is available under the form of a plug-in. Theo-
ries are tightly integrated in the proof process. Depending on their definition (direct
or axiomatic), operators definitions are expanded either using their direct definition (if
available) or by enriching the set of axioms (hypotheses in proof sequents) using their
axiomatic definition. Theorems may be imported as hypotheses and used in proofs.
Many provers like predicate provers, SMT solvers, are plugged to Rodin as well. In
addition to the known success of the Event-B and B methods in dealing with com-
plex formal system developments, the choice of Event-B as a ground modelling formal
method is motivated by the provided abstract modelling level. Indeed, it offers first a
built-in mechanism (state and transitions) associated to an inductive proof process for
invariants and second an extension mechanism to define theories with operators associ-
ated to WD conditions that generate POs when applied. These WD POs are fundamental
for our approach to conformance checking. In addition, animators and model checkers
like ProB [33] are useful to validating the defined theories over model instances. Finally,
other techniques could have been used as long as they could check the correctness of
operator applications and they are connected to the Rodin platform.

4 Case Study: ARINC 661 + Multi-purpose Interactive
Application

4.1 ARINC 661 Standard Specification: An Extract

ARINC 661 [8] is the Cockpit Display System (CDS) standard for communication pro-
tocols between interface objects and aircraft systems. It has been used for the devel-
opment of interactive applications in, for instance, Airbus A380 and Boeing B787. In
ARINC 661 specification standard, an interactive application is called a User Appli-
cation (UA) that receives input from the CDS and triggers actions in aircraft systems.
Such input are produced by the flying crew manipulating specific input devices such
as a KCCU (Keyboard Cursor Control Unit). UAs also receive information flow from
aircraft systems that is presented to the flying crew using interactive objects which
behaviour and parameters are described in the standards. The current version of the
standard (called supplement 7 for part 1) describes in about 800 pages a set of defini-
tions and requirements for the CDS and its graphical objects (called widgets).

Communication between the CDS and UA is defined based on the identification
of widgets defined in the Widget Library. Different levels widget states are available.
1) Visibility level indicating whether the widget is visible or not. 2) Inner level spe-
cific states of a widget which represents the core of the widget behavior as well as

3 Rodin Integrated Development Environment http://www.event-b.org/index.html.

http://www.event-b.org/index.html

132 I. Mendil et al.

its functional objectives. Examples of inner states for a CheckButton, are two stable
inner states: Selected and Unselected. 3) Interactivity levels are: enabled or disabled.
An enabled widget is ready to receive input from crew member interaction. Last, 4)
visual level (visual representation) internal behavior of the widget inside the CDS.
Examples are “Normal” and “Focus” denoting different interactions style (e.g. in the
“Focus” state a standard interaction such as spacebar keypress would trigger the wid-
get). Usually, implementations of CDS present different graphical appearances for the
widgets depending on their state. It is important to note that such rendering is outside
the scope of the standard.

4.2 Multi-purpose Interactive Application and Weather Radar System

We demonstrate the relevance of the approach on the formal development of a real-
world case study: the multi-purpose interactive application (MPIA)—See Fig. 1, focus-
ing on one of its sub-parts: the weather radar system (WXR). MPIA consists of three
pages or tabs: WXR (weather radar system and information), GCAS (Ground Collision
Avoidance System) and AIRCOND (setting of AIR CONDitioning). A crew member
navigates and switches to a desired page using the corresponding button on the menu
bar at the bottom. Each page of the MPIA user interface is made of two distinct parts:
an interaction area and the menu bar for selecting one of the three interfaces (bottom of
Fig. 1).

Fig. 1. Tabbed MPIA user interface: WXR, GCAS and AIRCOND

In this paper, we focus on WXR system which is designed to display and modify
the mode of the weather radar system (top of the page) and to modify the orientation of
the tilt angle in the weather radar system (middle of the page). There are three means
for modifying the tilt angle: auto adjustment, auto stabilization, and setting up manually
the tilt angle. WXR user interface provides different interactive widgets (PicturePush-
Buttons, RadioButtons, EditBoxNumeric) in order to trigger commands to the weather
radar system. The information received from the weather radar (e.g. density of clouds
ahead of the aircraft) is not displayed in the WXR page but on another Display Unit
(the Navigation Display). The information area displays the current state of the UA,
by default the right part is blank but shows errors messages, actions in progress or bad
manipulation when necessary. Workspace area controls the corresponding application.

Standard Conformance-by-Construction with Event-B 133

5 Standards Formalised as Ontologies ((1) on Fig. 2)

Ontologies, as explicit knowledge models [21], have been extensively studied in the
literature and applied in several domains spanning semantic web, artificial intelligence,
information systems, system engineering etc. Approaches for designing and formalising
ontologies for these domains have been proposed. Most of them rely on XML-based
formats and pay lot of attention to web knowledge which may limit the scope of models.

The challenge of linking domain knowledge and design models is clearly stated
in [25]. It includes a mathematical analysis of models and meta models, ontolo-
gies, modelling and meta-modelling languages. Design models annotation by domain-
specific knowledge has been studied for state-based methods [5] as well. More recently,
the textbook [6] reviewed many cases of exploiting explicit models of domain knowl-
edge by system models spanning medical [31,40], e-voting [18], distributed sys-
tems etc.

Last, focusing on Event-B, a proposal of simplified ontology description language
was put forward and illustrated on case studies in [23,24].

While [5,23,24] and our approach share the same objective and motivation, the
two approaches are different. In [5,23,24], Event-B contexts are used to formalise
domain knowledge in terms of axioms and theorems. However, our approach relies on
the theory extension of Event-B providing operators endowed with WD conditions and
data types for defining the objects of the knowledge domain. Moreover, they use set-
theoretic operators when our approach advocates the exclusive usage of domain-specific
operators provided by the theory bearing standard properties together with their WD
conditions that need to be discharged when applied in the design model. In addition,
the use of data types allowed us to encode an ontology modelling language as an Event-
B theory providing a unified ontological framework to formalise the various domain
knowledge modules. Consequently, WD POs permits a formalisation and integration
of domain constraints into design models automatically when used by design models
features.

In this paper, we rely on engineering domain ontologies in the view of [4,29,38]
to model domain knowledge as Event-B theories and on typing to annotate Event-
B design models. While [5] use set-theory based contexts where designers explicitly
borrow domain standards constraints in the design model, the approach we develop
here avoids the developer having to explicitly describe these constraints for each design
model.

In the spirit of the OWL [7] ontology modeling language, Listing 1 represents an
extract of the OntologiesTheory generic Event-B theory parameterised by C, P and I
type parameters for classes, properties and Instances, respectively.

134 I. Mendil et al.

THEORY O n t o l o g i e s T h e o r y
TYPE PARAMETERS C , P , I
DATA TYPES Onto logy (C , P , I)
CONSTRUCTORS
consOnto logy (c l a s s e s :P (C) , p r o p e r t i e s :P (P) , i n s t a n c e s :P (I) , c l a s s P r o p e r t i e s :P (C ×

P) ,
c l a s s I n s t a n c e s :P (C× I) , c l a s s A s s o c i a t i o n s :P (C×P×C) , i n s t a n c e P r o p e r t y V a l u e s :P (I×P

× I))
OPERATORS
isWDgetInstancePropertyValues < p r e d i c a t e > (o : Onto logy (C , P , I))

wel l−de f inednes s i s W D C l a s s P r o p e r i t e s (o) ∧ i s W D C l a s s I n s t a n c e s (o) ∧
i s W D C l a s s A s s o c i a t i o n s (o)

d i r e c t d e f i n i t i o n
i n s t a n c e P r o p e r t y V a l u e s (o) ⊆ { i 1 �→ p �→ i 2 | i 1 ∈ I ∧ p ∈ P ∧ i 2∈ I∧ i 1 �→p �→ i 2

∈ i n s t a n c e s (o)× p r o p e r t i e s (o)× i n s t a n c e s (o) ∧ (∃c1 , c2 · c1 ∈ C ∧c2∈C∧
. . .) }

getInstancePropertyValues < exp r e s s i on > (o : Onto logy (C , P , I))
wel l−de f inednes s i s W D g e t I n s t a n c e P r o p e r t y V a l u e s (o)
d i r e c t d e f i n i t i o n i n s t a n c e P r o p e r t y V a l u e s (o)

isWDOntology < p r e d i c a t e > (o : Onto logy (C , P , I))
d i r e c t d e f i n i t i o n i s W D C l a s s P r o p e r t i e s (o) ∧ i s W D C l a s s I n s t a n c e s (o) ∧

i s W D C l a s s A s s o c i a t i o n s (o) ∧ i s W D I n s t a n c e s A s s o c i a t i o n s (o)
CheckOfSubsetOntologyInstances < p r e d i c a t e > (o : Onto logy (C , P , I) , i p v s :P (I×P× I))

wel l−de f inednes s isWDOntology (o)
d i r e c t d e f i n i t i o n

i p v s ⊆ { i 1 �→ p �→ i 2 | i 1 ∈ I ∧ p ∈ P ∧ i 2 ∈ I ∧ i 1 �→ p �→ i 2 ∈
i n s t a n c e s (o) × p r o p e r t i e s (o) × i n s t a n c e s (o) ∧ . . . }

isA < p r e d i c a t e > (o : Onto logy (C , P , I) , c1 : C , c2 : C) · · ·
. . .
THEOREMS
thm1 : ∀o , c1 , c2 , c3 ·o∈Onto logy (C , P , I)∧isWDOntology (o)∧c1 ∈C∧c2∈C∧c3∈C∧

o n t o l o g y C o n t a i n s C l a s s e s (o , { c1 , c2 , c3 })⇒ (isA (o , c1 , c2)∧ i sA (o , c2 , c3)⇒ i sA (o , c1 ,
c3))

END

Listing 1. Ontology Modelling Language

This theory describes a constructor consOntology for ontologies with a set of classes
(classes), properties (properties), instances (instances) and associations of
properties to classes (classProperties), instances to classes (classInstances)
and classes to classes (classAssociations) and property values (instance
PropertyValues). Expression and predicate operators allowing to manipulate classes,
properties and instances are also defined. Predicate operators are used to define WD
conditions. For example, the getInstancePropertyValues operator retrieving all the
properties values is defined under the WD isWDGetInstancePropertyValues. The
two important operators isWDOntology and CheckOfSubsetOntologyInstances
respectively check that an ontology is well built and a subset of instances is conform to
a given ontology. Last, theorems are formalised and proved, e.g. thm1 for transitivity
of IsA relationship.

6 Our Approach

First, standards are formalised as ontology Event-B theories and, second, these theories
should provide data types bundled with a collection of operators to be used by Event-B
system models. Note that conformance is achieved under the closure condition stat-
ing that solely the operators supplied by the theory formalising a standard are used
for state variables changes in design models . The operators WD POs shall be proved.

Standard Conformance-by-Construction with Event-B 135

Obviously, all the theorems entailed by every theory operator also hold for all models
that use theory operators. So, conformance-by-construction is guaranteed since 1) mod-
els type and manipulate state variables using standard data types and operators and 2)
theory safety properties and rules formalising a standard are conveyed by all operators.

Conformance is achieved following the three-step methodology depicted in Fig. 2
Conceptualisation, Instantiation, and Annotation. First, standard concepts and oper-
ators are formalised in theories (2) using OntologiesTheory (see Listing 1) (1).
Second, theories are instantiated for a particular system to design (3), and last
system model is annotated with data types and operators (4) to enforce the con-
straints and rules, expressed as theorems, establishing standard conformance. Note that
OntologiesTheory (1) is formalised once and for all, while standard concepts, rules
and properties (2) are formalised in stable theories evolving with standard updates. In
Fig. 2, Instantiates and Imports links correspond to Event-B built-in constructs
(generic type parameters instantiation is automatically achieved by type synthesis), and
Annotation is implemented by typing model concepts with theories data-types using
the Sees Event-B construct.

Fig. 2. Standard conformance-by-construction framework

Note.
A key requirement to set up
our approach is the exclu-
sive use of data types and
operators provided by the
Event-B theory formalis-
ing the standard specifica-
tion. In fact, this condition
is necessary to ensure that
theorems entailed by oper-
ators are transferred and
then provable in the Event-
B model.

Last, all the develop-
ments and Event-B models discussed in this paper are accessible at https://www.irit.
fr/~Ismail.Mendil/recherches/.

6.1 Domain Standards as Ontology-Based Theories ((2) on Fig. 2)

The first phase consists in formalising the standard as an ontology using
OntologiesThe – ory (see Listing 1). Type parameters C, P and I are instantiated
with the standard objects and properties. Furthermore, rules and conformance criteria
(i.e. WD condition predicate isWDOntology) are formalised as a set of axioms. In a
design model, operators allow the modification of the system state variables. A set of
theorems, stating that all the defined operators entail standard desired requirements and
properties, is also expressed and proved. When these operators are applied in models,
these theorems are used to prove model invariants and thus safety properties.

https://www.irit.fr/~Ismail.Mendil/recherches/
https://www.irit.fr/~Ismail.Mendil/recherches/

136 I. Mendil et al.

6.2 Standard Theory Instantiation ((3) on Fig. 2)

At this level, the classes are filled with instances and the associations between instances
are specified taking into account the WD conditions required by ontology instanti-
ation, i.e. isWDgetInstancePropertyValues. Three components of the ontology
are valued by theory instantiation: instances, classInstances and instance
PropertyValues. The definitions of these components are system-dependent and
represent the elements of the system as instances of the standard classes. The
CheckOfSubsetOntologyInstances operator ensures that system-specific concepts
comply with defined standard ontology.

6.3 Model Annotation for Conformance ((4) on Fig. 2)

Model annotation consists in typing model variable with instance-related ontology com-
ponents, generally instancePropertyValues, to comply with data types originated
from the formalised standard. When state changes are done by theory operators, its
already proven theorems are transferred to models.

In Event-B, this means that the formalised standard requirements and safety proper-
ties expressed as theorems are discharged by deduction as POs of the model. However,
this assertion necessitates that the system-specific model state changes to be realised,
exclusively, with the operators provided by the theory describing the domain standard.
Obviously, since the operators are conditional, their WD POs need to be discharged.

7 Standard Conformance-by-Construction: The Case of ARINC
661

In this section, we showcase the approach of Sect. 6 on a part of ARINC 661 and WXR
user interface. ARINC661Theory is built upon the ontology description theory, which in
turn is used to develop the WXRTheory theory. Last, the two theories are used to model
the WXR user interface as an Event-B machine. Due to space limitation, only an extract
of the models covering relevant elements of the WXR case study is presented.

7.1 ARINC 661 Standard Formalisation ((2) on Fig. 2)

ARINCARINC 661 Concepts. After an in-depth analysis of the ARINC 661, many
concepts are identified and formalised using OntologiesTheory. Table 3 shows some
identified correspondences between ARINC 661 concepts and their formal counter-
parts.

ARINC 661 defines a collection of widgets intended to define the user interfaces.
ARINC661Theory is described in Listing 2. The formalisation follows the structure of
the ARINC 661 widget library and is guided by the ontology description theory. C, P and
I of OntologiesTheory are instantiated by three abstract types: ARINC661Classes,
ARINC661Properties and ARINC661Instances. Constants are defined as well.

Standard Conformance-by-Construction with Event-B 137

Table 3. Correspondence between Event-B formalisation and ARINC 661 standard

ARINC 661 element Reference (page) Event-B formal element

Label 3.3.20 (p114) Label

RadioBox 3.3.34 (p184) RadioBox

CheckButton 3.3.5 (p80) CheckButton

SELECTED, UNSELECTED 3.3.5-1 (p81) SELECTED, UNSELECTED

CheckButtonState 3.3.5-1 (p81) hasCheckButtonState

LabelString 3.3.5-1(p81) hasLabelStringForCheckButton

Textual paragraph 3.3.34 (p185) isWDRadioBox

· · · · · · · · ·

THEORY ARINC661Theory
IMPORT THEORY PROJECTS O n t o l o g i e s T h e o r y
AXIOMATIC DEFINITIONS ARINC661Axiomat isa t ion :
TYPES ARINC661Classes , ARINC66Proper t ies , ARINC661Instances
OPERATORS
ARINC661_BOOL < exp r e s s i on > () : ARINC661Classes
A661_TRUE < exp r e s s i on > () : ARINC661Instances
A661_FALSE < exp r e s s i on > () : ARINC661Instances
A661_EDIT_BOX_NUMERIC_ADMISSIBLE_VALUES< exp r e s s i on > () :P (ARINC661Instances)
CheckButtonState < exp r e s s i on > () : ARINC661Classes
Label < exp r e s s i on > () : ARINC661Classes
RadioBox < exp r e s s i on > () : ARINC661Classes
CheckButton < exp r e s s i on > () : ARINC661Classes
hasChildrenForRadioBox < exp r e s s i on > () : ARINC66Proper t i es
hasCheckButtonState < exp r e s s i on > () : ARINC66Proper t i es
SELECTED < exp r e s s i on > () : ARINC661Instances
UNSELECTED < exp r e s s i on > () : ARINC661Instances
isWDRadioBox < p r e d i c a t e > (o : Onto logy (ARINC661Classes , ARINC66Proper t ies ,

ARINC661Instances)) :
wel l−de f inednes s isWDOntology (o)

isWDARINC661Ontology < p r e d i c a t e > (o : Onto logy (ARINC661Classes , ARINC66Proper t ies
, ARINC661Instances)) :

Listing 2. ARINC 661 theory concept declarations

ARINC 661 Theory Operators. Axiomatic definitions introduce ontology opera-
tors and predicates defining WD conditions. In Listing 4, consARINC661Ontology
operator completes the construction of the ontology, this operator returns a well-
defined ontology provided correct arguments are used. Moreover, CkeckOfSubset
A661Ontology Instances enforces ontology rules on machine variables if supplied
with a well-defined ontology, e.g. isWDRadioBox operator encodes a key safety prop-
erty. It states that only one child widget can be selected in a given RadioBox at a
time4.

4 More details are available in Sect. 3.3.34 page 184 of ARINC 661 standard [8].

138 I. Mendil et al.

consARINC661Ontology < exp r e s s i on > (i i : P (ARINC661Instances) , c i i : P (
ARINC661Classes×

ARINC661Instances) , i p v s :P (ARINC661Instances×ARINC66Proper t i es×
ARINC661Instances)) : Onto logy (ARINC661Classes , ARINC66Proper t ies ,
ARINC661Instances)
wel l−de f inednes s isWDARINC661Ontology (consOnto logy (ARINC661Classes ,

ARINC66Proper t ies , i i , w e l l B u i l t C l a s s P r o p e r t i e s ,
w e l l b u i l t T y p e s E l e m e n t s ∪ c i i , w e l l B u i l t C l a s s A s s o c i a t i o n s , i p v s))

CkeckOfSubsetA661OntologyInstances < p r e d i c a t e > (o : Onto logy (ARINC661Classes ,
ARINC66Proper t ies , ARINC661Instances) , u i : P (ARINC661Instances ×
ARINC66Proper t i es × ARINC661Instances)) :
wel l−de f inednes s isWDOntology (o)

. . .

Listing 3. ARINC 661 theory operator declarations

ARINC 661 Axioms. In Listing 4, ARINC661ClassesDef axiom defines all the ele-
ments of ARINC661Classes. For example, Label is a widget and CheckButtonState
corresponds to SELECTED and UNSELECTED states. Similarly, identified ARINC 661
properties are defined in ARINC66PropertiesDef axiom.

AXIOMS
ARINC661ClassesDef : p a r t i t i o n (ARINC661Classes , { Labe l } ,{ RadioBox } ,{ CheckBut ton } ,{

C h e c k B u t t o n S t a t e } , . . .)
ARINC66PropertiesDef : p a r t i t i o n (ARINC66Proper t ies , { h a s L a b e l S t r i n g F o r L a b e l } ,
{ h a s C h i l d r e n F o r R a d i o B o x } ,{ h a s C h e c k B u t t o n S t a t e } ,{ h a s L a b e l S t r i n g F o r C h e c k B u t t o n

} , . . .)
ARINC661InstancesDef : p a r t i t i o n (ARINC661Instances , { A661_TRUE } ,{ A661_FALSE } ,{SELECTED

} ,
{UNSELECTED} , L a b e l I n s t a n c e s , R a d i o B o x I n s t a n c e s , C h e c k B u t t o n I n s t a n c e s , . . .)
consARINC661OntologyDef : ∀ i i , c i i , i p v s · i i ∈ P (ARINC661Instances) ∧

c i i ∈ P (ARINC661Classes × ARINC661Instances) ∧
i p v s ∈ P (ARINC661Instances × ARINC66Proper t i es × ARINC661Instances) ∧
w e l l b u i l t T y p e s E l e m e n t s ∩ c i i = /0 ∧ i i ⊆ W i d g e t s I n s t a n c e s ⇒

consARINC661Ontology (i i , c i i , i p v s)=consOnto logy (. . .)
isWDRadioBoxDef : ∀o· o ∈ Onto logy (ARINC661Classes , ARINC66Proper t ies ,

ARINC661Instances) ⇒ (isWDRadioBox (o) ⇔ (∀ . . .)
isWDARINC661OntologyDef :

∀o· o ∈ Onto logy (ARINC661Classes , ARINC66Proper t ies , ARINC661Instances) ⇒
(isWDOntology (o)∧isWDRadioBox (o)∧ isWDEditBoxNumeric (o)⇒isWDARINC661Ontology (

o))
CheckOfSubsetA661OntologyInstancesDef : ∀o , i p v s ·o∈Onto logy (ARINC661Classes ,

ARINC66Proper t ies ,
ARINC661Instances)∧ i p v s ∈P (ARINC661Instances×ARINC66Proper t i es×

ARINC661Instances)⇒
(isWDARINC661Ontology (consOnto logy (. . .))⇒CkeckOfSubse tA661Onto logy Ins t ances

(. . .))
. . .

Listing 4. ARINC 661 theory definitions

ARINC 661 Relevant Theorems. The correctness of the ontology is ensured by the-
orems thm1 and thm2. They describe two important properties: classes are related
to already defined properties (thm1) and class associations relate provided classes
and properties (thm2). Their proofs are achieved using intermediate abbreviations and
proved lemmas.

Standard Conformance-by-Construction with Event-B 139

THEOREMS
thm1 : ∀ i i , c i i , i p v s ·

i i ∈ P (ARINC661Instances) ∧ c i i ∈ P (ARINC661Classes × ARINC661Instances) ∧
i p v s ∈ P (ARINC661Instances × ARINC66Proper t i es × ARINC661Instances) ∧
w e l l b u i l t T y p e s E l e m e n t s ∩ c i i = /0 ∧ i i ⊆ W i d g e t s I n s t a n c e s

⇒ i s W D C l a s s P r o p e r i t e s (consARINC661Ontology (i i , c i i , i p v s))
thm2 : ∀ i i , c i i , i p v s ·

i i ∈ P (ARINC661Instances) ∧ c i i ∈ P (ARINC661Classes × ARINC661Instances) ∧
i p v s ∈ P (ARINC661Instances × ARINC66Proper t i es × ARINC661Instances) ∧
w e l l b u i l t T y p e s E l e m e n t s ∩ c i i = /0 ∧ i i ⊆ W i d g e t s I n s t a n c e s

⇒ i s W D C l a s s A s s o c i a t i o n s (consARINC661Ontology (i i , c i i , i p v s))
. . .
END

Listing 5. ARINC 661 theory theorems

Ontology Building Process. The ontology introduced above formalises the concepts
of the ARINC 661 standard. This ontology (theory) has been built for the purpose
of the FORMEDICIS project and to process the different addressed case studies. The
selection of axioms and the formalisation and proofs of theorems have been performed
according to the studied case study. In case of a wide and shared usage, as with any stan-
dard, the designed theory requires consensus among the stakeholders of the ARINC 661
standard.

7.2 System-Specific Concepts Describing WXR Widgets ((3) on Fig. 2)

WXRTheory Concepts Declaration. WXRTheory encompasses constants and opera-
tors dealing with instance information (not defined in ARINC661Theory as instances
are system specific) and allowing to manipulate the user interface. WXRFeature gathers
the instances used by the WXR design model.

THEORY WXRTheory
IMPORT THEORY PROJECTS ARINC661Theory
AXIOMATIC DEFINITIONS WXRUIDesc r ip to inAxiomat i sa i ton :
OPERATORS
A661WXROntology< exp r e s s i on >: Onto logy (ARINC661Classes , ARINC66Proper t ies ,

ARINC661Instances)
WXRInstances < exp r e s s i on > : P (ARINC661Instances)
WXRClassInstances < exp r e s s i on > : P (ARINC661Classes × ARINC661Instances)
WXRInstancePropertyValues< exp r e s s i on >:P (ARINC661Instances×ARINC66Proper t i es×

ARINC66Instances)
MODESELECTIONLabel < exp r e s s i on > : ARINC661Instances
OFFLabel < exp r e s s i on > : ARINC661Instances
OFFCheckButton < exp r e s s i on > : ARINC661Instances
. . .
WXRFeatures< exp r e s s i on >(o : Onto logy (ARINC661Classes , . . . , ARINC661Instances)) :

P (ARINC661Instances × ARINC66Proper t i es × ARINC661Instances)
wel l−de f inednes s isWDARINC661Ontology (o)

Listing 6. WXR theory constant declarations

WXR Concepts Definitions. In Listing 7, ARINC 661 ontological class instances are
used for defining constants of the type P (ARINC661). For example, WXRinstances is
a set of all possible widgets of user interface: WXRLabels, WXRCheckButtons, etc. The
WXRFeatures operator restricts ARINC661 ontology to the instances needed to design
the WXR user interface i.e. none of these instances is outside ARINC 661 theory.

140 I. Mendil et al.

AXIOMS
WXRLabelsDef : p a r t i t i o n (WXRLabels , {MODESELECTIONLabel} , { OFFLabel } , . . .)
WXRcheckButtonsDef : p a r t i t i o n (WXRcheckButtons , { OFFCheckButton } , . . .)
WXRradioBoxesDef : p a r t i t i o n (WXRradioBoxes , { WXRradioBoxModeSelection } , . . .)
WXRInstancesDef : p a r t i t i o n (WXRInstances , WXRLabels , WXRcheckButtons , WXRradioBoxes ,

. . .)
WXRClassInstancesDef : WXRClassIns tances = ({ Labe l } × WXRLabels) ∪ ({ CheckBut ton } ×

WXRcheckButtons) ∪ . . .
iaCheckBttonsDef : i a C h e c k B t t o n s= ({ OFFCheckButton , . . . } ×{ h a s V i s i b l e , h a s E n a b l e }×{

A661_TRUE })∪ ({ OFFCheckButton , . . . } × { h a s C h e c k B u t t o n S t a t e } × {UNSELECTED
}) ∪

({ OFFCheckButton } × { h a s C h e c k B u t t o n S t a t e } × {SELECTED}) ∪
({ OFFCheckButton , . . . } ×{ h a s P a r e n t I d e n t }×{ WXRradioBoxModeSelec t ionWidget Ident })∪

. . .
WXRInstancePropertyValuesDef : WXRIns tancePrope r tyVa lues = i a C h e c k B t t o n s∪ i oRad ioBoxes∪

. . .
A661WXROntologyDef : A661WXROntology = consARINC661Ontology (I n s t a n c e s ,

C l a s s I n s t a n c e s , WXRIns tancePrope r tyVa lues)
WXRFeaturesDef : ∀o · o ∈ Onto logy (ARINC661Classes , ARINC66Proper t ies ,

ARINC661Instances) ∧ isWDARINC661Ontology (o) ⇒ WXRFeatures (o) =
WXRIns tancePrope r tyVa lues

Listing 7. WXR theory constant definitions

WXRTheory Operators. The user interface provides user interactions operators:
choosing a mode selection, switching between the two states of the stabilization and
tilt section feature and finally input a new tilt angle value. Each interaction is modelled
by two operators: a WD predicate and an interactions modelling operators. For exam-
ple, isWDChangeModeSelection and changeModeSelection pair of operators deals
with mode selection change (see Listing 8).

AXIOMATIC DEFINITIONS E v e n t s A f f e c t i n g W i d g e t s A x i o m a t i s a t i o n :
OPERATORS
isWDChangeModeSelection < p r e d i c a t e > (o : Onto logy (ARINC661Classes ,

ARINC66Proper t ies , ARINC661Instances) , u i : P (ARINC661Instances ×
ARINC66Proper t i es × ARINC661Instances) , mode : ARINC661Instances) :

changeModeSelection < exp r e s s i on > (o : Onto logy (ARINC661Classes , ARINC66Proper t ies ,
ARINC661Instances) , u i : P (ARINC661Instances × ARINC66Proper t i es ×
ARINC661Instances) , mode : ARINC661Instances) : P (ARINC661Instances ×
ARINC66Proper t i es × ARINC661Instances)

wel l−de f inednes s isWDChangeModeSelect ion (o , ui , mode)

Listing 8. WXR theory operator declarations

In the AXIOMS clause, several operators are defined (see Listing 9). For example,
changeModeSelection operator is associated to a WD operator isWDChangeMode
Selection stating that crew members may select only specified modes in WXRcheck
Buttons and CkeckOfSubsetA661OntologyInstances ensures that the ui param-
eter complies with ontology rules and constraints. This principle applies to all
operators.

Standard Conformance-by-Construction with Event-B 141

AXIOMS
isWDChangeModeSelectionDef : ∀o , ui , mode · o ∈ Onto logy (ARINC661Classes ,

ARINC66Proper t ies , ARINC661Instances) ∧ u i ∈ P (ARINC661Instances ×
ARINC66Proper t i es × ARINC661Instances) ∧ mode ∈ ARINC661Instances ⇒

(isWDChangeModeSelect ion (o , ui , mode) ⇔ CkeckOfSubse tA661Onto logy Ins t ances
(o , u i) ∧ mode ∈ WXRcheckButtons)

changeModeSelectionDef : ∀o , ui , mode · o ∈ Onto logy (ARINC661Classes ,
ARINC66Proper t ies , ARINC661Instances) ∧ u i ∈ P (ARINC661Instances ×
ARINC66Proper t i es × ARINC661Instances) ∧ mode ∈ ARINC661Instances ⇒

(c hangeModeSe l ec t i on (o , ui , mode)= (u i\{ i �→h a s C h e c k B u t t o n S t a t e �→ UNSELECTED | i �→
h a s C h e c k B u t t o n S t a t e �→ SELECTED ∈ u i ∧

i ∈ (WXRcheckButtons\{mode }) })∪{mode �→h a s C h e c k B u t t o n S t a t e �→SELECTED})
. . .

Listing 9. WXR theory operator definitions
WXRTheory Theorems. In WXRTheory, important safety properties (e.g. theorem WXR
FeaturesSafety) assert that the selection of the buttons under radio boxes are exclu-
sive (⇒ b1 = b2) (Listing 10). All theorems have been proved on the Rodin Platform.

THEOREMS
isWDARINC661Ontology : isWDARINC661Ontology (A661WXROntology)
WXRFeaturesSafety : ∀o , i p v s ·CkeckOfSubse tA661Onto logy Ins t ances (o , i p v s)∧ (i p v s =

WXRFeatures (o)) ⇒ (∀rb , b1 , b2· · · ⇒ b1 = b2)) ∧ . . .
WXRFeaturesCkeckOfSubsetA661OntologyInstances : ∀o , i p v s ·isWDARINC661Ontology (o)
∧ i p v s ∈P (ARINC661Instances × ARINC661Proper t ies × ARINC661Instances) ∧
(i p v s = WXRFeatures (o)) ⇒

c h a n g e M o d e S e l e c t i o n C k e c k O f S u b s e t A 6 6 1 O n t o l o g y I n s t a n c e s (o , i p v s)
changeModeSelectionSafety : . . .
changeModeSelectionCkeckOfSubsetA661OntologyInstances : . . .
. . .
END

Listing 10. WXR theory theorems

7.3 Annotated Event-B Model of WXR Application ((4) on Fig. 2)

Fig. 3. WXR annotated with Event-B concepts

The WXR user interface
is modelled as an Event-B
machine and uses elements
defined in WXRTheory. In
Listing 11, the state of
the user interface is mod-
elled by uiStateVar vari-
able. The event changeMode
Selection models the inter-
action on the mode selection
radio box where only one
check box shall be selected.
The safety properties are
entailed by theorems, WXRFeaturesCkeck
OfSubsetA661OntologyInstancesInst and SafetyInst, establishing at the same time
the conformance of WXR specification to ARINC 661. However, the approach requires
to use the theory operator to update the variable as uiStateVar as prescribed by inv2.

Listing 11 shows an extract of WXR model. In particular, changeModeSelection
Evt event uses changeModeSelection operator to select a mode from the mode selec-
tion radio box, like STDBY (see Fig. 3). Note that this event is guarded with WD

142 I. Mendil et al.

conditions of WXRTheory. In Fig. 3, correspondences between WXR widgets and their
standard formal counterparts are depicted.

MACHINE WXRModel
VARIABLES uiStateVar
INVARIANTS
i nv1 : u i S t a t e V a r ∈ P (ARINC661Instances × ARINC66Proper t i es ×

ARINC661Instances)
inv2 : ∃uiArg · ((uiStateVar =WXRFeatures(A661WXROntology)) ∨

∃m · isWDChangeModeSelection(A661WXROntology,uiArg,m) ∧
uiStateVar = changeModeSelection(A661WXROntology,uiArg,m)) ∨

. . .
S a f e t y I n s t : CkeckOfSubsetA661OntologyInstancesDef (A661WXROntology,uiStateVar)
WXRFea tu re sCkeckOfSubse tA661Onto logy Ins t ances Ins t :

(∀rb , b1 , b2· rb ∈ R a d i o B o x I n s t a n c e s ∧ b1 ∈ C h e c k B u t t o n I n s t a n c e s ∧
b2 ∈ C h e c k B u t t o n I n s t a n c e s ∧ rb �→ h a s C h i l d r e n F o r R a d i o B o x �→ b1 ∈

u i S t a t e V a r ∧
rb �→ h a s C h i l d r e n F o r R a d i o B o x �→ b2 ∈ u i S t a t e V a r ⇒

(b1 �→h a s C h e c k B u t t o n S t a t e �→SELECTED∈u i∧
b2 �→h a s C h e c k B u t t o n S t a t e �→SELECTED∈ u i S t a t e V a r ⇒b1=b2)) ∧ . . .)

EVENTS
INITIALISATION
THEN

a c t 1 : uiStateVar :=WXRFeatures(A661WXROntology)
END
changeModeSelectionEvt
ANY mode
WHERE

grd1 : mode ∈ WXRcheckButtons
grd2 : isWDChangeModeSelection(A661WXROntology,uiStateVar,mode)

THEN
a c t 1 : uiStateVar := changeModeSelection(A661WXROntology,uiStateVar,mode)

END
. . .

END

Listing 11. Event-B machine modelling the WXR user interface

8 Assessment

Achieving Standard Conformance. Provided that the domain knowledge is formalised
as a theory and supplied with data types and operators that preserve the safety properties
prescribed by the standard specification, the models can be proven to entail desired
theorems achieving conformance with the formalised standard.

Enhanced SystemModels. WXR model has been greatly improved as a result of exten-
sive outsourcing of safety properties to the theory level and the use of ontology descrip-
tion theory. The use of a theory validated by experts led to trustworthy models. In addi-
tion, this approach enabled domain-specific (standards) models to be validated, once
and for all, independently of the systems design models.

Reduction of Modelling and Proving Effort. Although the description of the domain-
specific theory, ARINC661Theory, requires a significant amount of modelling effort,
the specification of the models is simplified as a result of the formalisation of inter-
action by theory operators. At theory level, the properties (theorems) are proved once
and for all. The design models rely on the defined data types and operators convey-
ing all desired WD and safety properties expressing the domain constraints encoded in
the theory of the standard. Here, the proving process is eased as, on the one hand, the

Standard Conformance-by-Construction with Event-B 143

WD POs are discharged thanks to WD predicates associated with each operator and, on
the other hand, INV POs are discharged automatically. Indeed, inv1 is a typing invari-
ant and inv2 states that no other operator, except those provided by the theory, is used.
Table ?? shows 88 automatically generated POs for the theories and WXRmodel. Theo-
ries related POs are discharged using a mix of automatic and interactive proofs, whereas
WXRMode POs are discharged by simplifying predicates, instantiating theorems and
using proof tactics. System invariants are proved as theorems in one proof step (modus-
ponens rule), and the invariants representing our working hypothesis (exclusive use of
theory operators) are trivially proved as model events use the operators of WXRTheory
exclusively.

Deploying the Approach in Engineering Contexts. The work presented in this paper
has been conducted in the FORMEDICIS project. As mentioned in Sect. 7.1, the
ARINC 661 standard has been formalised following our understanding of the infor-
mal descriptions of [8]. However, as the obtained theories play the role of a standard,
we believe that this formalisation requires consensus among the stakeholders, engineers
and developers. From the development process point of view, this formalisation and the
proofs of theorems are achieved once and for all. When, design models are produced,
the conformance consists in discharging POs consisting in instantiating the theorems
and using proof tactics. Therefore, we believe that the deployment of the approach, in
its current form, is not a heavy task compared to the benefits of the provided proofs.

Table 4. Proof statistics

Event-B models and theories Proof obligations
OntologiesTheories 21
ARINC661Theory 10
WXRTheory 39
WXRModel 18

Standard Theories Validation. The formal-
isation of standards relies on axiomatised
theories. The quality of these formalisations
consist in checking 1) the consistency of
the axioms and 2) the validation of these
axioms and entailed theorems with respect to
the informal descriptions. Fortunately, formal
methods such as Event-B, Isabelle/HOL or
CoQ come with tools like SMT solvers, ani-
mators and model checkers capable to instantiate such axioms with specific values and
check axiom consistency or testing instances validity.
Enabling Evolution of Standard. Last but not least, the approach enables the non-
destructive standards evolution. Indeed, the neat separation of the common domain
knowledge from system specifics fosters separation of concerns principle and orthog-
onality of evolution principle. In fact, both domain models and system design models
may evolve asynchronously with limited impact on the each other. From a proof per-
spective, only POs caused by the evolution need to discharged.

9 Conclusion

The approach presented in this paper proposes a generic framework for formalising
standard conformance through formal modelling of standards as ontologies. Data types
and operators associated to the modelled features become accessible to system design

144 I. Mendil et al.

models. We have shown how this approach applies to a real-world case study of air-
craft cockpit. This approach is completely formalised using Event-B and relies on three
steps: conceptualisation of the domain standard, instantiation to describe the system
specific features and finally model annotation through typing of state variables and use
of operators for state changes. The approach starts from an already formalised standard.
It does not address the process of deriving these theories from text-based standards. It
exploits the WD conditions POs that raise when applying theory operators.

The work presented in this paper addressed the issue of standard conformance. It
needs to be extended to provide the required safety assurances to meet certification
standards, where assurance cases are used in the development of critical systems. The
formally proved properties and the generated formal artifacts can be used as evidence
in assurance cases, which can aid in the certification process by guiding both the devel-
opment and regulatory evaluation of CIS. Last, from the standardisation point of view,
industry consortium and standardisation bodies shall define formal processes (not stud-
ied in this paper) addressing consensual agreement on the definition and consistence of
the formal theories modelling domain standards i.e. the process consisting in analysing
text-based standards in order to derive domain standard theories and in validating these
derived theories. In addition, this work shall be completed by the study of other type of
domain standards related to temporal properties, real-time scheduling, common criteria
for security etc. and application domains like avionics, transportation systems.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
New York (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press, New York (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., Voisin, L.: Proposals for
mathematical extensions for event-B. Technical report (2009)

4. Aït Ameur, Y., Baron, M., Bellatreche, L., Jean, S., Sardet, E.: Ontologies in engineering:
the OntoDB/OntoQL platform. Soft. Comput. 21(2), 369–389 (2017)

5. Aït Ameur, Y., Méry, D.: Making explicit domain knowledge in formal system development.
Sci. Comput. Program. Elsevier J. 121, 100–127 (2016)

6. Aït Ameur, Y., Nakajima, S., Méry, D.: Implicit and Explicit Semantics Integration in Proof-
Based Developments of Discrete Systems. Springer, Singapore (2021). https://doi.org/10.
1007/978-981-15-5054-6

7. Antoniou, G., van Harmelen, F.: Web ontology language: OWL. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 67–
92. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24750-0_4

8. ARINC: ARINC 661 specification: Cockpit Display System Interfaces to User Systems, Pre-
pared by AEEC, Published by SAE, Melford Blvd., Bowie, Maryland, USA, June 2019

9. Bartolini, C., Giurgiu, A., Lenzini, G., Robaldo, L.: A framework to reason about the
legal compliance of security standards. In: 10th International Workshop on Juris-Informatics
(2016)

10. Bjørner, D.: Manifest domains: analysis and description. Formal Aspects Comput. 29(2),
175–225 (2017)

11. Bjørner, D.: Domain analysis and description principles, techniques, and modelling lan-
guages. ACM Trans. Softw. Eng. Methodol. 28(2), 8:1–8:67 (2019)

https://doi.org/10.1007/978-981-15-5054-6
https://doi.org/10.1007/978-981-15-5054-6
https://doi.org/10.1007/978-3-540-24750-0_4

Standard Conformance-by-Construction with Event-B 145

12. Brucker, A.D., Ait-Sadoune, I., Crisafulli, P., Wolff, B.: Using the Isabelle ontology frame-
work. In: Rabe, F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.) CICM 2018. LNCS
(LNAI), vol. 11006, pp. 23–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96812-4_3

13. Brucker, A.D., Wolff, B.: Isabelle/DOF: design and implementation. In: Ölveczky, P.C.,
Salaün, G. (eds.) SEFM 2019. LNCS, vol. 11724, pp. 275–292. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-30446-1_15

14. Brucker, A.D., Wolff, B.: Using ontologies in formal developments targeting certification.
In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918, pp. 65–82. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34968-4_4

15. Butler, M., Maamria, I.: Practical theory extension in event-B. In: Liu, Z., Woodcock, J.,
Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp. 67–81.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39698-4_5

16. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Introduction to Conformance Check-
ing, pp. 3–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99414-7_1

17. Emmerich, W., Finkelstein, A., Montangero, C., Stevens, R.: Standards compliant soft-
ware development. In: Proceedings of the International Conference on Software Engineering
Workshop on Living with Inconsistency, pp. 1–8. IEEE CS Press (1997)

18. Gibson, J.P., Raffy, J.-L.: Modelling an E-voting domain for the formal development of a
software product line: when the implicit should be made explicit. In: Ait-Ameur, Y., Naka-
jima, S., Méry, D. (eds.) Implicit and Explicit Semantics Integration in Proof-Based Devel-
opments of Discrete Systems, pp. 3–18. Springer, Singapore (2021). https://doi.org/10.1007/
978-981-15-5054-6_1

19. Goodenough, J., Weinstock, C., Klein, A.: Toward a theory of assurance case confidence.
Technical report. CMU/SEI-2012-TR-002, Software Engineering Institute, CMU, Pittsburgh
(2012)

20. Grigorova, S., Maibaum, T.S.E.: Argument evaluation in the context of assurance case con-
fidence modeling. In: 25th IEEE ISSRE Workshops, pp. 485–490. IEEE CS (2014)

21. Gruber, T.R.: Towards principles for the design of ontologies used for knowledge sharing.
In: Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analysis and Knowledge
Representation. Kluwer Academic Publisher’s, Deventer (1993)

22. Guiochet, J., Do Hoang, Q.A., Kaaniche, M.: A model for safety case confidence assessment.
In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9337, pp. 313–327.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24255-2_23

23. Hacid, K., Ait-Ameur, Y.: Strengthening MDE and formal design models by references to
domain ontologies. A model annotation based approach. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 340–357. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47166-2_24

24. Hacid, K., Aït Ameur, Y.: Handling domain knowledge in design and analysis of engineering
models. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 74, 1–21 (2017)

25. Henderson-Sellers, B.: On the Mathematics of Modelling, Metamodelling, Ontologies and
Modelling Languages. Springer Briefs in Computer Science, Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29825-7

26. IEC 62304: Medical Device Software - Software Life Cycle Processes, May 2006
27. ISO: Industrial automation systems and integration - parts library - part 42: Description

methodology: Methodology for structuring parts families. ISO ISO13584-42, International
Organization for Standardization, Geneva, Switzerland (1998)

28. Information technology - Open Systems Interconnection - Conformance testing methodology
and framework - Part 1: General concepts (1991)

https://doi.org/10.1007/978-3-319-96812-4_3
https://doi.org/10.1007/978-3-319-96812-4_3
https://doi.org/10.1007/978-3-030-30446-1_15
https://doi.org/10.1007/978-3-030-34968-4_4
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-319-99414-7_1
https://doi.org/10.1007/978-981-15-5054-6_1
https://doi.org/10.1007/978-981-15-5054-6_1
https://doi.org/10.1007/978-3-319-24255-2_23
https://doi.org/10.1007/978-3-319-47166-2_24
https://doi.org/10.1007/978-3-319-47166-2_24
https://doi.org/10.1007/978-3-642-29825-7

146 I. Mendil et al.

29. Jean, S., Pierra, G., Ait-Ameur, Y.: Domain ontologies: a database-oriented analysis. In: Fil-
ipe, J., Cordeiro, J., Pedrosa, V. (eds.) Web Information Systems and Technologies. LNBIP,
vol. 1, pp. 238–254. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74063-
6_19

30. Kelly, T.: Arguing safety - a systematic approach to managing safety cases. Ph.D. thesis,
University of York, September 1998

31. Singh, N.K., Ait-Ameur, Y., Méry, D.: Formal ontological analysis for medical protocols.
In: Ait-Ameur, Y., Nakajima, S., Méry, D. (eds.) Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems, pp. 83–107. Springer, Singapore (2021).
https://doi.org/10.1007/978-981-15-5054-6_5

32. van Lamsweerde, A.: Requirements Engineering - From System Goals to UML Models to
Software Specifications. Wiley, Hoboken (2009)

33. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45236-2_46

34. Luong, H.-V., Lambolais, T., Courbis, A.-L.: Implementation of the conformance relation
for incremental development of behavioural models. In: Czarnecki, K., Ober, I., Bruel, J.-
M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 356–370. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87875-9_26

35. Nair, S., de la Vara, J.L., Sabetzadeh, M., Falessi, D.: Evidence management for compliance
of critical systems with safety standards: a survey on the state of practice. Inf. Softw. Technol.
60, 1–15 (2015)

36. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-order
Logic. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

37. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Kapur, D.
(ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992). https://doi.
org/10.1007/3-540-55602-8_217

38. Pierra, G.: Context representation in domain ontologies and its use for semantic integration
of data. J. Data Semant. 10, 174–211 (2008)

39. Rushby, J.: The interpretation and evaluation of assurance cases. Technical report. SRI-CSL-
15-01, Computer Science Laboratory, SRI International, Menlo Park, CA, July 2015

40. Singh, N.K., Aït Ameur, Y., Méry, D.: Formal ontology driven model refactoring. In: 23rd
International ICECCS, pp. 136–145. IEEE CS (2018)

41. Tueno Fotso, S.J., Frappier, M., Laleau, R., Mammar, A.: Modeling the Hybrid ERTM-
S/ETCS Level 3 standard using a formal requirements engineering approach. In: Butler, M.,
Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 262–276.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_18

42. Wassyng, A., Joannou, P., Lawford, M., Maibaum, T.S.E., Singh, N.K.: New standards for
trustworthy cyber-physical systems. In: Romanovsky, A., Ishikawa, F. (eds.) Trustworthy
Cyber-Physical Systems Engineering, pp. 337–368. Taylor & Francis Group (2016)

43. Wassyng, A., et al.: Can product-specific assurance case templates be used as medical device
standards? IEEE Des. Test 32(5), 45–55 (2015)

https://doi.org/10.1007/978-3-540-74063-6_19
https://doi.org/10.1007/978-3-540-74063-6_19
https://doi.org/10.1007/978-981-15-5054-6_5
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-540-87875-9_26
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-319-91271-4_18

	Standard Conformance-by-Construction with Event-B
	1 Introduction
	2 Certification and Conformance
	3 Event-B
	3.1 Contexts and Machines (Tables1b and 1c)
	3.2 Event-B Extensions with Theories

	4 Case Study: ARINC 661 + Multi-purpose Interactive Application
	4.1 ARINC 661 Standard Specification: An Extract
	4.2 Multi-purpose Interactive Application and Weather Radar System

	5 Standards Formalised as Ontologies ((1) on Fig.2)
	6 Our Approach
	6.1 Domain Standards as Ontology-Based Theories ((2) on Fig.2)
	6.2 Standard Theory Instantiation ((3) on Fig.2)
	6.3 Model Annotation for Conformance ((4) on Fig.2)

	7 Standard Conformance-by-Construction: The Case of ARINC 661
	7.1 ARINC 661 Standard Formalisation ((2) on Fig.2)
	7.2 System-Specific Concepts Describing WXR Widgets ((3) on Fig.2)
	7.3 Annotated Event-B Model of WXR Application ((4) on Fig.2)

	8 Assessment
	9 Conclusion
	References

