
Intrepid: A Scriptable and Cloud-Ready
SMT-Based Model Checker

Roberto Bruttomesso(B)

Via Castronno, 48, 21040 Morazzone, VA, Italy

Abstract. Intrepid is an SMT-based model checker that provides a
rich set of APIs for creating, simulating, and verifying state machines
expressed as circuits (just like Simulink or Lustre models). Intrepid may
be further used in its Docker container version to be deployed on a local
or in a cloud-based infrastructure. The container exposes an equivalently
powerful REST API for operating with the model checker. Verification of
safety properties in Intrepid is performed in a bit-precise manner, includ-
ing operations involving integers and floating point arithmetic. Intrepid
features standard verification engines as well as multi-property optimiz-
ing engines which are suitable for automated test generation tasks, such
as MC/DC test generation for avionics.

1 Introduction

Model Checking has been successfully employed for decades in industrial envi-
ronments such as Electronic Design Automation (e.g., equivalence checking for
RTL power reduction [2]) and Control Engineering (e.g., automated test gen-
eration for avionics and automotive [6,13]), or modern re-implementations of
established techniques for network security such as the derivation of attack
graphs [1,16,27,29].

Oftentimes companies do not have the resources, the knowledge, or the inter-
est in building an in-house model checker to use as a backend for a new applica-
tion. Rather, they tend to rely on a free academic tool [7–9,15,17,23,25,30] or to
buy licenses for a commercial product from a third-party company [22]. In either
case the user of the chosen tool is immediately confronted with the task of trans-
lating an instance of her problem into the particular language accepted by the
backend, as well as parsing a counterexample for mapping it back to the original
problem. While in some contexts the translation effort is not an issue, in some
scenarios it represents a major hurdle, especially from a performance and usabil-
ity perspective. This issue is particularly evident in applications that require a
high degree of interaction between the application and the model checker, such
as Automated Test Generation [13] or attack graph generation [1,29].

Intrepid aims to tackle these problems by providing a rich Python-based API
where input models and the verification steps are executable Python scripts1,

A demonstration video is available at https://youtu.be/n-0Y iJqkqY.
1 E.g.: [ctx.mk input(‘i’ + str(i)) for i in range(100)] to create 100 inputs.

c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 202–211, 2021.
https://doi.org/10.1007/978-3-030-85248-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_13&domain=pdf
https://youtu.be/n-0Y_iJqkqY
https://doi.org/10.1007/978-3-030-85248-1_13

The Intrepid Model Checker 203

which can be imported, reused, and extended. Counterexamples can be stored as
Python dictionaries or as pandas dataframe, one of the most popular representa-
tion for tabular data in Python. Intrepid can be thus used as a rapid-prototyping
tool, where the heavy solving tasks are silently delegated to an underlying effi-
cient C++ library. Intrepid can also be started as a server running in a Docker
container, on a local or remote machine. The server exposes a rich REST API
that can be used to construct, simulate, and solve model checking problems.
Under the hood, Intrepid relies on the powerful SMT-solver Z3 [24] for solving
satisfiability queries and for performing quantifier elimination required by the
model checking engines.

Intrepid is distributed as a library for Python-3.8. It can be installed by
issuing the command pip3 install intrepyd2. The REST API relies on the
Docker container robertobruttomesso/intrepid. The Python code is avail-
able at https://github.com/formalmethods/intrepid and can be used under the
liberal BSD-3 license.

2 Constructing Models

In Intrepid models are standard, word-level sequential circuits defined as follows:

circuit : constant | input | latch | circuit op circuit

where constants, inputs, and latches can be of type Boolean, signed or unsigned
integers of size in {8, 16, 32, 64}, floating point of size in {16, 32, 64}, or real (the
only infinite-precision type). op is an arithmetic operator, a comparison relation,
or a Boolean gate, applied to the proper circuit types, essentially following the
typing rules of the SMT-LIB language [3]. Constants, inputs, latches, and opera-
tors can be created using an instance of the Context object. Intrepid’s language
is similar in semantic and expressiveness to the BTOR2 format for hardware
model checking [25].

Figure 1 shows the creation of a circuit representing a clock signal (a signal
that toggles at each time step). The Context is created at line 3 and stored
in variable ctx. At line 6 and 7 the input and a latch1 of type Boolean are
created. At lines 8–10 latch1 is given an initial and a next state: this step is
performed after the latch creation to allow the specification of sequential loops
(i.e., loops that involve at least a latch. Combinational loops are not allowed).
Lines 11–15 perform the creation and initialization of latch2.

Because models are Python scripts, they can be placed into convenient func-
tions or classes inside Python modules. The clock model above, for instance, can
be imported from the intrepyd.components.eda submodule.

2 Notice the “y” in the name of the Python package: the name “intrepid” was already
taken.

https://github.com/formalmethods/intrepid

204 R. Bruttomesso

Fig. 1. The encoding of a clock signal, starting with a random value: (a) the schematic
of the circuit (b) the encoding in Intrepid, clk being the output.

2.1 Translating Industrially-Relevant Models

Intrepid is intended to be used via its API, however, in order to facilitate the
processing of existing industrial models, Intrepid comes with two submodules
intrepyd.lustre2py and intrepyd.iec611312py. The first one translates Lus-
tre models [18], while the second one translates the IEC-61131-3 Structured Text
language models in OpenPLC format, into Intrepid’s scripts. Both translators,
based on the ANTLR parser [26], do not fully support all the aforementioned
languages’ constructs (e.g.: arrays are not supported).

The Lustre frontend has been tested with a subset of the models available
from [20] (see Sect. 4.1). The Structured Text encoder is currently in an earlier
proof-of-concept stage: its main purpose is to demonstrate that the translation
is possible, by providing an initial implementation. It has been tested on an
OpenPLC model3, in turn translated from a Simulink/Stateflow model of an
infusion pump, using the Simulink PLC Coder tool4. The infusion pump model
is part of the CocoSim tool [7] test suite5.

3 Simulating Models

Since models are circuits, they can be simulated for a given number of time
steps. The result of the simulation is a Trace object. For each simulation step
the trace assigns a value to the sub-circuits that are being watched.

Figure 2 shows the simulation of the clock circuit of Fig. 1, conveniently
imported from the eda module. The simulator is created at line 7. Both the
clock output and input are “watched” at lines 8 and 9: watched signals are those
that will show up in the trace. Line 10 creates a new empty trace, and line 11
3 Available at https://bit.ly/3hggxgV.
4 Simulink PLC Coder is a Mathwork’s proprietary tool.
5 Available at https://bit.ly/3qw4osy.

https://bit.ly/3hggxgV
https://bit.ly/3qw4osy

The Intrepid Model Checker 205

Fig. 2. Simulating a clock signal over 10 time steps: (a) the encoding in Intrepid, (b)
the pandas dictionary printed at line 14, (c) the signal values graphs generated at
line 15.

initializes the first value of the input to F. If an input value is not specified
for a time step, the simulator will assign to a “don’t care” value ?. During the
simulation, at line 12, these values are propagated through the circuit, but, if
irrelevant, will not show up at the circuit output: this is exactly the case in
our example. At line 13 the trace is converted in a pandas dataframe, and then
printed and plotted at lines 14 and 15. In the plots, F is mapped to 0, T to 1,
and ? to −1.

4 Model Checking

Model Checking in Intrepid consists in defining reachability targets, i.e.,
Boolean signals for which the tool tries to find a trace. In standard termi-
nology a target is a bad state corresponding to the negation of a safety property,
and a trace is a counterexample that disproves its validity. Safety properties
are the only ones supported by Intrepid. In order to support a wider range of
properties a user could rely on the approach of [11] to create monitor circuits,
by constructing them using Intrepid’s basic APIs. It is important to notice that
Intrepid’s engines attempt to reach multiple targets at once.

Bounded Model Checking and Temporal Induction. Bounded Model
Checking (BMC) is the process of reaching a target by unrolling the circuit
for finite number of steps. The unrolling is performed in a backward man-
ner, from the targets to the inputs. Latches are recursively replaced with their
unrolled next state signal. Optionally, Temporal Induction (TI) can be enabled
to prove target’s unreachability. Intrepid essentially follows the “Zig-zag” app-
roach of [12], as well as its strategy of dynamically adding difference constraints.

206 R. Bruttomesso

Optimizing Bounded Model Checking. Some applications such as Auto-
mated Test Generation require to find traces that satisfy the most number of
targets at once. Since each trace is turned into a test, and each test might need
to undergo manual revision, it is important to produce a small number of traces
that cover all the targets. The Optimizing Bounded Model Checking (OBMC)
engine aims at solving exactly this problem. By relying on the optimization pro-
cedure of Z3 [5], it is possible to simply use the MAX-SMT solver instead of the
default one to find traces that satisfy the maximum number of active targets (a
sample application is presented in Sect. 5.2).

Backward Reachability. Backward Reachability (BR) is inspired to the explo-
ration algorithm behind the MCMT model checker [16], which is adapted for
Intrepid’s circuit-like models. The algorithm keeps a frontier of states to explore,
and a set of blocked states. Blocked states are states that have been already
explored, and therefore do not need to be enumerated again. The frontier is ini-
tialized with the targets to reach. Then the main loop starts. At each iteration
a state S is popped from the frontier: if it intersects the initial states, then some
target is reachable, otherwise the pre-image states of S that are not blocked
already are added to the frontier, and S is added to the blocked states. The loop
exits when the frontier is empty. Backward Reachability relies on Z3’s quantifier
elimination to rule out non-Boolean inputs from the enumerated states.

4.1 A Comparison of the Engines

Table 1 reports an evaluation of the engines on a subset of the benchmarks
from [20]. Overall we run 848 divided in 6 families. Each benchmark contains
either a safe or an unsafe property. The experiments show that BMC solves

Table 1. A comparison on the lustre models from [20]. The tests have been run on
an Intel i7-8565U 1.80 GHz machine, with 32 GB of RAM, running Ubuntu Linux
and Intrepid version 0.10.3. The timeout was set at 60 s. The column “TO” reports
the number of timed-out benchmarks. The column “Best” indicates on how many
benchmarks the tool was the fastest to find the answer. Full raw data is available at
https://bit.ly/3duFd4a. The benchmarks and the scripts to run the tests are available
under the folder benchmarks of the Github repository). Bold-face fonts highlight the
best performing solver per each benchmark family.

Family BMC BMC+TI BR

Safe Unsafe TO Best Safe Unsafe TO Best Safe Unsafe TO Best

Protocol 0 14 22 14 16 14 6 16 15 7 14 0

Simulation 0 58 132 57 68 52 70 68 64 43 83 6

Memory1 0 110 172 108 10 109 163 8 17 10 255 11

Memory2 0 98 84 97 25 96 61 22 35 57 90 15

Misc 0 62 48 54 18 62 30 22 34 62 14 21

Large 0 0 48 0 12 0 36 7 13 0 35 6

Total 0 342 506 330 149 333 366 143 178 179 491 59

https://bit.ly/3duFd4a

The Intrepid Model Checker 207

the most unsafe benchmarks, as expected, while BR solves the most safe ones.
BMC+TI solves the most benchmarks overall (it reports the least number of
timeouts). A comparison with other model-checkers is left as future work.

5 Sample Applications

5.1 Equivalence Checking for Clock-Gating

Sequential clock gating is an important technique used in EDA to reduce the
power consumption of digital circuits [4]. The idea of clock-gating is to reduce
flip-flop value toggles, which is known to be draining a substantial amount of
power, by adding extra logic to the circuit, in such a way that the power used
for the new logic is highly compensated by the reduced toggles.

Fig. 3. An an equivalence checking problem for a power reduction technique called
Stability Condition [14]: (a) the encoding of a register with enable, (b) the schematic
of the problem, where the enable signal en is propagated to the register forth, delayed
by one cycle, and (c) the encoding of the problem in Intrepid.

Figure 3b shows a transformation of a chain of a pair of registers back1-
forth1 into a more power-efficient one back2-forth2. Due to the changes in
the design, clock-gating opportunities must be proven correct: in the schematic
above the pin diff must never evaluate to 1. diff is be passed as a target to
the backward reachability an engine for proving its unreachability.

208 R. Bruttomesso

The SMT-like language of Intrepid allows the definition of clock-gating checks
at the “word level”, thus operating on the original registers as a whole rather
than on their individual flip-flops (in the example we are running the check for
a 16-bits register).

5.2 Automated Test Generation of MC/DC

The avionics standard DO-178C [28] dictates that every Level-A control soft-
ware must be fully covered by a test suite using the Modified Condition/Decision
(MC/DC) coverage metric [10]. Encoding of MC/DC conditions as Boolean or
SMT formulas is a well-studied topic: the interested reader may refer to [6] for a
simple logical formulation of the problem. Essentially the idea is to create reach-
able targets such that their traces correspond to tests that satisfy the coverage.
Intrepid implements a simple ATG algorithm using only 300 LOC of Python
that roughly follows the approach of [13], and is based on repeated calls to the
OBMC engine, as shown in Fig. 4.

Fig. 4. An example of an execution of ATG on a simple combinational circuit (a)
taken from [19]. Each row of the table (b) is an assignment to the inputs representing a
test. Pair of tests show the satisfaction of the MC/DC coverage criterion for a specific
input. For example (0, 1) is a pair of tests that shows MC/DC for In1 (a so-called
independence pair): In1 toggles between the two tests, all the other inputs keep the
same value, and Out toggles. This is a proof that In1 can affect the behavior of the
circuit.

6 A REST API for Model Checking

Intrepid is also available as a Docker container, that can be (downloaded and)
run with docker run -p 8000:8000 -d robertobruttomesso/intrepid6.
6 The docker framework can be obtained from https://www.docker.com/.

https://www.docker.com/

The Intrepid Model Checker 209

The command starts a local server at port 8000 that exposes a rich REST API
that roughly wraps the Python API so far described. The API is still exper-
imental (it lacks for instance a mechanism for authentication), but it is fully
operational for constructing, simulating, solving, and retrieving traces.

Figure 5 shows a sample interaction that creates an and gate using a
command-line tool; similar interactions can be programmed and automated with
popular languages such as Python, Ruby, or Javascript. Beside increasing the
tool’s interoperability with other frameworks and languages, having a container-
ized application with a REST API is a first step towards the embedding of Model
Checking in a cloud environment such as AWS, Azure, or Digital Ocean: these
providers can easily host and orchestrate multiple containers with frameworks
like Docker-compose or Kubernetes.

One application that we envision for this setting is that of solving large
problems that can be partitioned and dispatched to several different engines:
the application described in Sect. 5.1, for instance, can be often tackled by par-
titioning the global equivalence checking problem into thousands of independent
smaller ones, one per each clock gating opportunity discovered, using the notion
of cut-points [21]. However, several challenges needs to be considered, such as
the dispatching of problems and the reconstruction of the results. We leave the
investigation of the feasibility of this research direction for a future work.

Fig. 5. A client-server interaction using the popular command-line tool curl (c> is
the client’s query, s> is the server’s response): lines 1–3 create a new context named
default, lines 5–7 and lines 9–11 create two inputs, and lines 13–15 create an and gate
using them. Further documentation for the REST APIs is available at https://bit.ly/
3bn2h42.

7 Conclusion

We have introduced Intrepid, a scriptable SMT-based Model Checker. We have
presented a sketch of its Python API by applying it to a concrete industrially rel-
evant sample application. Intrepid is additionally shipped as a Docker container,

https://bit.ly/3bn2h42
https://bit.ly/3bn2h42

210 R. Bruttomesso

and it exposes a REST API that enables the deployment of the model checker
on a remote server, a first step towards the employment of Model Checking in a
cloud-based environment.

References

1. Al Ghazo, A.T., et al.: A2G2V: automatic attack graph generation and visualiza-
tion and its applications to computer and SCADA networks. IEEE Trans. Syst.
Man Cybern. Syst. 50(10), 3488–3498 (2020). https://doi.org/10.1109/TSMC.
2019.2915940

2. Babighian, P., Benini, L., Macii, E.: A scalable ODC-based algorithm for RTL
insertion of gated clocks. In: Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition, vol. 1, pp. 500–505 (2004). https://doi.org/10.
1109/DATE.2004.1268895

3. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.6. Technical
report, Department of Computer Science, The University of Iowa (2017). http://
www.smt-lib.org/

4. Benini, L., et al.: Symbolic synthesis of clock-gating logic for power optimization
of control-oriented synchronous networks. In: Proceedings of the European Design
and Test Conference, ED TC 1997, pp. 514–520 (1997). https://doi.org/10.1109/
EDTC.1997.582409

5. Bjørner, N., Phan, A.-D., Fleckenstein, L.: vZ - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 14

6. Bloem, R.P., et al.: Model-based MCDC testing of complex decisions for the Java
card applet firewall. In: VALID Proceedings. Ed. by IARIA, pp. 1–6 (2013)

7. Bourbouh, H., Brat, G., Garoche, P.-L.: CoCoSim: an automated analysis frame-
work for Simulink/Stateflow. In: Model Based Space Systems and Software Engi-
neering - European Space Agency Workshop (MBSE 2020) (2020)

8. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

9. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 29

10. Chilenski, J.J.: An investigation of three forms of the modified condition deci-
sion coverage (MCDC) criterion. Technical report. DOT/FAA/AR-01/18, Boeing
Commercial Airplane Group, April 2001

11. Claessen, K., Eén, N., Sterin, B.: A circuit approach to LTL model check-
ing. In: FMCAD, pp. 53–60 (2013). http://ieeexplore.ieee.org/xpl/freeabsall.jsp?
arnumber=6679391

12. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003). BMC 2003. ISSN: 1571-0661

13. Ferrante, O., Ferrari, A., Marazza, M.: Model based generation of high coverage
test suites for embedded systems. In: 19th IEEE European Test Symposium, ETS,
pp. 1–2 (2014). https://doi.org/10.1109/ETS.2014.6847843

14. Fraer, R., Kamhi, G., Mhameed, M.K.: A new paradigm for synthesis and prop-
agation of clock gating conditions. In: 2008 45th ACM/IEEE Design Automation
Conference, pp. 658–663 (2008)

https://doi.org/10.1109/TSMC.2019.2915940
https://doi.org/10.1109/TSMC.2019.2915940
https://doi.org/10.1109/DATE.2004.1268895
https://doi.org/10.1109/DATE.2004.1268895
http://www.smt-lib.org/
http://www.smt-lib.org/
https://doi.org/10.1109/EDTC.1997.582409
https://doi.org/10.1109/EDTC.1997.582409
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-41540-6_29
http://ieeexplore.ieee.org/xpl/freeabsall.jsp?arnumber=6679391
http://ieeexplore.ieee.org/xpl/freeabsall.jsp?arnumber=6679391
https://doi.org/10.1109/ETS.2014.6847843

The Intrepid Model Checker 211

15. Gacek, A., Backes, J., Whalen, M., Wagner, L., Ghassabani, E.: The JKind model
checker. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982,
pp. 20–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 3
ISBN: 978-3-319-96142-2

16. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1 3

17. Goel, A., Sakallah, K.: AVR: abstractly verifying reachability. In: TACAS 2020.
LNCS, vol. 12078, pp. 413–422. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45190-5 23 ISBN: 978-3-030-45190-5

18. Halbwachs, N., et al.: The synchronous data flow programming language LUSTRE.
In: Proceedings of the IEEE 1991, pp. 1305–1320 (1991)

19. Hayhurst, K.J., et al.: A Practical Tutorial on Modified Condition/Decision Cov-
erage. TM 2001-210876. Langley Research Center. NASA, Hampton, May 2001

20. Kind2 benchmarks. https://github.com/kind2-mc/kind2-benchmarks
21. Kuehlmann, A., Eijk, C.A.J.: Combinational and sequential equivalence checking.

In: Hassoun, S., Sasao, T. (eds.) Logic Synthesis and Verification. SECS, vol. 654,
pp. 343–372. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0817-
5 13

22. Mathworks: Simulink Design Verifier. https://www.mathworks.com/products/
sldesignverifier.html

23. Mattarei, C., et al.: CoSA: integrated verification for agile hardware design. In:
FMCAD. IEEE (2018)

24. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

25. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC and Boolector 3.0.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 587–
595. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 32

26. Parr, T.: The Definitive ANTLR 4 Reference, 2nd edn. Pragmatic Bookshelf,
Raleigh (2013). ISBN: 978-1-93435-699-9. https://www.safaribooksonline.com/
library/view/the-definitive-antlr/9781941222621/

27. Ritchey, R.W., Ammann, P.: Using model checking to analyze network vulnera-
bilities. In: Proceeding of the 2000 IEEE Symposium on Security and Privacy, SP
2000, pp. 156–165 (2000)

28. RTCA: DO-178C: Software Considerations in Airborne Systems and Equipment
Certification

29. Sheyner, O., et al.: Automated generation and analysis of attack graphs. In: Pro-
ceedings of the 2002 IEEE Symposium on Security and Privacy, pp. 273–284 (2002).
https://doi.org/10.1109/SECPRI.2002.1004377

30. Vizel, Y., Gurfinkel, A.: Interpolating property directed reachability. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 260–276. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08867-9 17 ISBN: 978-3-319-08867-9

https://doi.org/10.1007/978-3-319-96142-2_3
https://doi.org/10.1007/978-3-642-14203-1_3
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://github.com/kind2-mc/kind2-benchmarks
https://doi.org/10.1007/978-1-4615-0817-5_13
https://doi.org/10.1007/978-1-4615-0817-5_13
https://www.mathworks.com/products/sldesignverifier.html
https://www.mathworks.com/products/sldesignverifier.html
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-96145-3_32
https://www.safaribooksonline.com/library/view/the-definitive-antlr/9781941222621/
https://www.safaribooksonline.com/library/view/the-definitive-antlr/9781941222621/
https://doi.org/10.1109/SECPRI.2002.1004377
https://doi.org/10.1007/978-3-319-08867-9_17

	Intrepid: A Scriptable and Cloud-Ready SMT-Based Model Checker
	1 Introduction
	2 Constructing Models
	2.1 Translating Industrially-Relevant Models

	3 Simulating Models
	4 Model Checking
	4.1 A Comparison of the Engines

	5 Sample Applications
	5.1 Equivalence Checking for Clock-Gating
	5.2 Automated Test Generation of MC/DC

	6 A REST API for Model Checking
	7 Conclusion
	References

