
PROB2-UI: A Java-Based User Interface
for ProB

Jens Bendisposto(B) , David Geleßus(B), Yumiko Jansing,
Michael Leuschel(B) , Antonia Pütz, Fabian Vu(B) , and Michelle Werth

Institut für Informatik, Universität Düsseldorf, Universitätsstr. 1,
40225 Düsseldorf, Germany

{bendisposto,dagel101,leuschel,fabian.vu}@hhu.de

Abstract. ProB2-UI is a modern JavaFX-based user interface for the
animator, constraint solver, and model checker ProB. We present the
main features of the tool, especially compared to ProB’s previous user
interfaces and other available tools for B, Event-B, and other formalisms.
We also present some of ProB2-UI’s history as well as its uses in the
industry since its release in 2019.

1 Introduction and Motivation

This paper presents ProB2-UI, a JavaFX-based user interface for the animator,
constraint solver, and model checker ProB. The core of ProB is written in SIC-
Stus Prolog and supports formalisms such as B, Event-B, Z, TLA+ and Alloy.
Initially, ProB had a Tcl/Tk interface, first presented in 2003 [28], but with
roots dating back to around 2000. Later the command-line interface probcli
was developed, which is still being heavily used for testing, data validation, and
batch verification. For example, probcli is used for data validation of railway
systems, see [7,27] or Sect. 4 of [3].

Around 2005 we started to integrate ProB into the Rodin tool for Event-B,
requiring integration with Java and the Eclipse user interface. For this purpose,
an interface was added to probcli, allowing Java code to control ProB by
sending commands over a socket. This resulted in the first version of ProB for
Rodin. Its user interface was more intuitive, appealing and modern than ProB
for Tcl/Tk, but did only provide a limited set of features (e.g., it had no state
space visualisation or projection features).

At that moment we had to decide whether to fully focus on Rodin and
Eclipse, or keep ProB and its user interface independent of it. In the end, we
decided to develop a new lightweight Java API allowing end-users to customize
ProB independent of Eclipse. This resulted in the development of the ProB2
Java API, which was available in 2014 (cf. Sect. 2 of [20]). After several unfruitful
attempts at developing a new user interface, we started to work on a JavaFX user
interface in 2016. The first stable version 1.0.0 was released in 2019. ProB2-UI
has been used within our team for a variety of case studies, e.g., for an automotive
case study [29]. It has also already been used for several industrial applications
c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 193–201, 2021.
https://doi.org/10.1007/978-3-030-85248-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_12&domain=pdf
http://orcid.org/0000-0001-5914-1092
http://orcid.org/0000-0002-4595-1518
http://orcid.org/0000-0003-2556-5553
https://doi.org/10.1007/978-3-030-85248-1_12


194 J. Bendisposto et al.

(many confidential). In particular, ProB2-UI was used successfully during the
demonstration of the ETCS hybrid level 3 concepts [13,14] at runtime. Here,
model traces were captured during field tests and could be replayed along with
a visualisation plugin for fine-grained retrospective analysis. Another use was
made for modelling key properties of a CBTC zone controller in [6].

2 Features of PROB2-UI

Figure 1 shows the main window of ProB2-UI. On the right-hand side, you can
see the project view. A project contains a group of (related) models along with
preference settings and configurations for validation and verification tasks. This
lets the user easily re-check these tasks, e.g., after modifying a model, without
having to re-enter the parameters. The project information is stored in a project
file; it contains a list of models and tasks with their status, a list of preference
settings along with visualisation, simulation, and trace files. An overview of the
status of all verification tasks is shown in the “status” tab of the project view.

Project View
for models
and preferences

Console (REPL)
for interactive exploration

Operations View
for interactive
animation

State View
to inspect current
and preceding state

History View
to inspect and
navigating current
animation trace

Replay View
for automatic
trace replay

VisB View
SVG-based visualization
of current state

Fig. 1. Main window of ProB2-UI

Animation. After a model has been loaded, the user can animate the model. In
contrast to simulation, an animator allows the user to interactively select the
execution steps. This is done in the operations view, where ProB has precom-
puted all enabled operations (up to a user-provided limit). By clicking on an
operation, the current state of the model is changed, which can be seen in the
state view. It is also possible to enter some of the operation’s parameters and



ProB2-UI: A Java-Based User Interface for ProB 195

an optional post-condition to execute an operation. This is for example useful
when not all operations were precomputed by ProB.

The state view displays the current and previous state of the model, high-
lighting differences. In addition to variables and constants, the view also shows
predicates such as the properties (aka axioms), invariants, or the guards of opera-
tions. Complex expressions and predicates can be expanded to inspect the values
of individual sub-expressions/predicates.

During the interaction with the model, a trace of all executed operations and
visited states is maintained. One can navigate through this trace in the history
view, e.g., to return to a previous state and then execute an alternate operation.
The history can be saved to a file. The saved trace files are shown in the replay view
on the left-hand side, where they can be replayed by a simple click. These trace files
contain the exact parameter and variable values for each animation step, which
allows replaying the trace exactly even if some operations are not deterministic.

Visualisation. ProB2-UI provides various ways to visualise the currently ani-
mated model. For example, it is possible to visualise the state space, the machine
hierarchy, event hierarchy, formula trees etc. Figure 2 shows a state space pro-
jection [25] of the model from [29] on the right-hand side.

Fig. 2. Graph visualisation window of ProB2-UI with projected state space

The visualisation tool VisB [39] can be used to create interactive visualisa-
tions using SVG images and a glue file. It was previously a ProB2-UI plugin,
but is now available in the regular VisB view, as shown at the bottom of Fig. 1.
In the view, the user can see a visual rendering of the current state and exe-
cute operations by clicking on visual elements (as stipulated in the glue file). A
very recent feature is the export of an animation trace as a stand-alone HTML
file containing the visualisations. This HTML file can, e.g., be sent via email
to domain experts and they can inspect the trace with its states in a regular
browser, without any need for ProB2-UI.



196 J. Bendisposto et al.

Using ProB2-UI’s plugin support, custom visualisations can be implemented
using Java and JavaFX. Developing such a visualisation requires more effort and
knowledge than VisB, but offers greater flexibility via arbitrary GUI elements
and code. Such a visualisation plugin was developed as part of a demonstration
of the ETCS Hybrid Level 3 concept [13,14], and was instrumental in domain
experts understanding the model and discovering issues. More figures and screen-
shots of ProB2-UI can be seen in [13,14] (Fig. 3).

Fig. 3. Figure 3 from [13] with physical train and
train image

Figure 3 of [6] shows another
ProB2-UI visualisation plugin
for an Alstom CBTC system.
The plugin mechanism was also
used to provide custom views
for a domain-specific extension
of B for data validation [15].

Verification. As explained before, a modeller can save verification tasks for each
model, which is particularly useful during development. It is possible to re-check
all verification tasks on an updated model.

ProB2-UI supports various model checking techniques, including exhaustive
model checking [28], LTL model checking [32], and symbolic model checking [22]
(Fig. 4).

Fig. 4. Model checking view

Regarding explicit-state
model checking, one can
choose different search stra-
tegies, e.g., breadth-first,
depth-first, and mixed. Fur-
thermore, one can define the
properties to be checked in
each state. These include
the invariant, deadlock-
freedom, assertions, well-
definedness, and precondi-
tions. It is also possible to provide a goal predicate to specify desired states, or
limit the number of states explored or the time spent. In the case that an error or
a goal is found, the counterexample is shown in the history view of the animator.

Fig. 5. LTL model checking view

LTL model checking
can be used to verify
temporal properties of a
model. Here, the user
can define LTL formu-
las combining state pred-
icates with the standard
LTL operators. In addi-
tion, operators of Past-
LTL are available, as well as operators for fairness, deadlock, determinacy, and
enabledness of operations. Finally, it is possible to declare LTL patterns, which



ProB2-UI: A Java-Based User Interface for ProB 197

can be reused in multiple formulas. Similar to explicit-state model checking,
counterexamples are also stored and can be displayed in the history view.

Simulation. Recently, ProB2-UI has been extended by a simulator called
SimB [38]. It is based on lightweight annotation files that specify how events
activate each other along with timing, priorities, and probabilistic annotations as
well as possible start and end conditions. The user can then perform simulations,
where the model is simulated live in real-time. In combination with the other
views, in particular the VisB view, one can see how the model’s state changes
in real-time. It is also possible to perform Monte Carlo simulations in acceler-
ated time. Based on the simulations, statistical techniques such as hypothesis
testing and estimation can then be applied to validate probabilistic and timing
properties. Every single simulation can be saved as a timed trace, or be replayed
in real-time afterwards (Fig. 5).

Other Features. In addition to the features presented so far, ProB2-UI also
provides an editor to modify the models in the project. Furthermore, there are
three consoles: a B console in which formulas in B or Event-B can be evaluated,
a Groovy console in which one has access to the objects of the ProB2 API, and
a Prolog console to inspect debugging or performance messages of the ProB
kernel. In addition to high-level languages such as B, Event-B, Z, TLA+, Alloy
or CSP, ProB also supports XTL files, which contain a raw Prolog encoding
of the transition system to be checked. Here, the modeller has to implement
the interface to ProB consisting of the predicates start/1 (calculating the
initial states), trans/3 (calculating transitions and resulting states outgoing
from every state), and prop/2 (calculating the properties of every state). We have
used it for teaching, e.g., by encoding the rules of chess in Prolog and illustrate
game-playing algorithms. It is also possible to provide a Prolog interpreter for
another specification language and extend ProB and ProB2-UI in this way.
For example, we have such interpreters for Promela [40], SMV, and Lustre [37]
models.

3 Related Work

In this section, we compare ProB2-UI with other formal methods tools that
come with a graphical user interface. The reader may also consult various recent
studies [8–10,35] about tools and also their usability.

Atelier-B [5] and Rodin [1] have a strong focus on the refinement-based soft-
ware development process of the B method. They both provide a project or
workspace concept, with a convenient way for managing and discharging proof
obligations. As mentioned, ProB can also be run within [1], but with a much-
reduced feature set compared to ProB2-UI. It is also possible to start ProB2-UI
from [1] for a given model. From Atelier-B it is also possible to start ProB Tcl/Tk
for a model, or use ProB as an alternate prover. At the moment, ProB2-UI
is complementary to Atelier-B and Rodin: ProB2-UI focuses on validation and



198 J. Bendisposto et al.

model checking, Atelier-B and Rodin on proof and proof obligations.1 Other
animation tools for B, such as Brama [34], AnimB [30] or JeB [41] provide con-
venient visualisation features, but lack many of the features of ProB2-UI.

The TLA Toolbox is an IDE for the modelling language TLA+ which is
widely used for distributed systems. Both the TLC model checker [42] and the
TLA+ proof system are integrated into the TLA Toolbox [23]. In practice, most
users will use the TLC features, where similar to ProB2-UI, one can save various
model checking configurations. Counterexample traces can be inspected and a
REPL has been added recently to the toolbox. However, at the moment, there are
no interactive animation or visualisation features available. Here, a ProB plugin
for the TLA toolbox was implemented to support animation and visualisation
[12], but it is now superseded by ProB2-UI which can also open TLA+ files.

Overture [26] is an Eclipse-based IDE for the VDM formal method with
a large feature set, particularly as far as simulation is concerned. The Maestro
[36] INTO-CPS tool is an evolution targeting cyber-physical systems, containing
unique features such as three-dimensional rendering of systems. PVSio-Web [31]
for PVS is a tool particularly well-suited for domain-specific visualisations, e.g.,
for medical user interfaces. Many other formal specification languages and tools
come with powerful user interfaces, such as Spin [16] or extensions thereof [33]
for Promela, UPPAAL [2] and PRISM [24] for (probabilistic) timed automata,
Alcoa [18] for Alloy [17], NuSMV [4] for SMV, or FDR4 [11] for CSP.

4 Conclusion

As presented above, ProB2-UI has some special features not available in its
predecessor ProB Tcl/Tk. Still, there are some features of ProB Tcl/Tk that
are not yet implemented in ProB2-UI, such as the LTSmin [19] integration
[21]. Indeed, we have learned that one should not underestimate the time for a
complete rewrite. Catching up with a still-evolving feature set of an existing tool
is hard. Furthermore, it was not easy to achieve a performance as good as ProB
Tcl/Tk. In initial versions of ProB2-UI, both memory usages and runtimes were
considerably higher, and it took a while to identify and correct the bottlenecks.
On the one hand, the Tcl interface of SICStus Prolog is relatively limited, only
supporting simple values such as atoms and numbers, and lists thereof. This
actually forced us to write an efficient UI API design from the start in ProB
Tcl/Tk (e.g., not sending formulas back and forth between Tcl and Prolog). On
the other hand, the Tcl interface of SICStus Prolog has less latency than the
communication via sockets in ProB2. This meant that we had to group requests
in ProB2 in order to improve the performance.

Two recent surveys [10,35] have investigated the formal methods tools used in
the railway sector and have found the B-Method tools (in particular AtelierB
and ProB) to be the most mature and widely used. We hope that ProB2-UI
provides another step forward, in the form of a feature-rich and intuitive user
1 See Sect. 5 of [9]: “Atelier-B and ProB are the right choice for top-down development
of mainly monolithic systems, with complementary verification capabilities”.



ProB2-UI: A Java-Based User Interface for ProB 199

interface, which helps the modeller develop, verify, validate, debug, and under-
stand formal models.

Our tool’s homepage with download links and a video presentation is avail-
able at: https://prob.hhu.de/w/index.php/ProB2-UI.

Acknowledgements. We want to thank Christoph Heinzen who has elaborated the
plugin mechanism in his Master’s thesis. Many more persons were involved in the imple-
mentation of ProB2-UI, notably Dominik Hansen, Jessica Petrasch, Daniel Plagge, and
Sebastian Stock. Thanks also to Olga Iudina for the Russian translations and anony-
mous referees for their useful corrections and suggestions. ProB2-UI is currently being
extended within the DFG funded project IVOIRE.

References

1. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010)

2. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

3. Butler, M., et al.: The first twenty-five years of industrial use of the B-Method. In:
ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 189–209.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2 8

4. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

5. ClearSy, A.B.: User and Reference Manuals. Aix-en-Provence, France (2016).
http://www.atelierb.eu/

6. Comptier, M., Leuschel, M., Mejia, L.-F., Perez, J.M., Mutz, M.: Property-based
modelling and validation of a CBTC zone controller in Event-B. In: Collart-
Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495,
pp. 202–212. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-
6 13

7. Falampin, J., Le-Dang, H., Leuschel, M., Mokrani, M., Plagge, D.: Improving rail-
way data validation with ProB. In: Romanovsky, A., Thomas, M. (eds.) Industrial
Deployment of System Engineering Methods, pp. 27–43. Springer, Berlin, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-33170-1 4

8. Ferrari, A., Mazzanti, F., Basile, D.: Systematic evaluation and usability analysis
of formal tools for system design. CoRR, abs/2101.11303 (2021)

9. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H., Fantechi, A.: Comparing
formal tools for system design: a judgment study. In: Rothermel, G., Bae, D. (eds.)
ICSE 2020: 42nd International Conference on Software Engineering, Seoul, South
Korea, 27 June–19 July, 2020, pp. 62–74. ACM (2020)

10. Ferrari, A., et al.: Survey on formal methods and tools in railways: the ASTRail
approach. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail
2019. LNCS, vol. 11495, pp. 226–241. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-18744-6 15

https://prob.hhu.de/w/index.php/ProB2-UI
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-030-58298-2_8
https://doi.org/10.1007/3-540-45657-0_29
http://www.atelierb.eu/
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-642-33170-1_4
https://doi.org/10.1007/978-3-030-18744-6_15
https://doi.org/10.1007/978-3-030-18744-6_15


200 J. Bendisposto et al.

11. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 13

12. Hansen, D., Bendisposto, J., Leuschel, M.: Integrating ProB into the TLA Toolbox.
In: TLA Workshop (2014)

13. Hansen, D., et al.: Validation and real-life demonstration of ETCS hybrid level
3 principles using a formal B model. Int. J. Softw. Tools Technol. Transf. 22(3),
315–332 (2020)

14. Hansen, D., et al.: Using a formal B model at runtime in a demonstration of the
ETCS hybrid level 3 concept with real trains. Proceedings ABZ 2018, 292–306
(2018)

15. Hansen, D., Schneider, D., Leuschel, M.: Using B and ProB for data validation
projects. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016.
LNCS, vol. 9675, pp. 167–182. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33600-8 10

16. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 1st edition (2011)

17. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11, 256–290 (2002)

18. Jackson, D., Schechter, I., Shlyakhter., I.: Alcoa: the alloy constraint analyzer. In:
Proceedings of the 2000 International Conference on Software Engineering. ICSE
2000 the New Millennium, pp. 730–733 (2000)

19. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

20. Körner, P., Bendisposto, J., Dunkelau, J., Krings, S., Leuschel, M.: Embedding
high-level formal specifications into applications. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 519–535. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8 31

21. Körner, P., Leuschel, M., Meijer, J.: State-of-the-Art model checking for B and
Event-B using ProB and LTSmin. In: Furia, C.A., Winter, K. (eds.) IFM 2018.
LNCS, vol. 11023, pp. 275–295. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98938-9 16

22. Krings, S.: Towards infinite-state symbolic model checking for B and Event-B.
Ph.D. thesis, Heinrich Heine Universität Düsseldorf, August 2017

23. Kuppe, M.A., Lamport, L., Ricketts, D.: The TLA+ toolbox. Electron. Proc. The-
oret. Comput. Sci. 310, 50–62 (2019)

24. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46029-2 13

25. Ladenberger, L., Leuschel, M.: Mastering the visualization of larger state spaces
with projection diagrams. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 153–169. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 10

26. Larsen, P., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The
overture initiative: integrating tools for VDM. ACM SIGSOFT Softw. Eng. Not.
35, 1–6 (2010)

https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-030-30942-8_31
https://doi.org/10.1007/978-3-319-98938-9_16
https://doi.org/10.1007/978-3-319-98938-9_16
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/978-3-319-25423-4_10
https://doi.org/10.1007/978-3-319-25423-4_10


ProB2-UI: A Java-Based User Interface for ProB 201

27. Lecomte, T., Burdy, L., Leuschel, M. :Formally checking large data sets in the
railways. CoRR, abs/1210.6815. Proceedings of DS-Event-B 2012, Kyoto (2012)

28. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805. Springer, Heidelberg (2003).
https://doi.org/10.1007/b13229

29. Leuschel, M., Mutz, M., Werth, M.: Modelling and validating an automotive system
in classical B and Event-B. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020.
LNCS, vol. 12071, pp. 335–350. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-48077-6 27

30. Métayer, C.: AnimB 0.1.1 (2010). http://wiki.event-b.org/index.php/AnimB
31. Oladimeji, P., Masci, P., Curzon, P., Thimbleby, H.: PVSio-web: a tool for rapid

prototyping device user interfaces in PVS. In: Proceedings FMIS, vol. 69 (2013)
32. Plagge, D., Leuschel, M.: Seven at a stroke: LTL model checking for high-level

specifications in B, Z, CSP, and more. Int. J. Softw. Tools Technol. Trans. 12,
9–21 (2007)

33. Ruys, T.C.: Xspin/Project - integrated validation management for Xspin. In:
Dams, D., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680, pp.
108–119. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48234-2 8

34. Servat, T.: BRAMA: a new graphic animation tool for B models. In: Julliand, J.,
Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 274–276. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11955757 28

35. ter Beek, M.H., et al.: adopting formal methods in an industrial setting: the rail-
ways case. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS,
vol. 11800, pp. 762–772. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30942-8 46

36. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: the INTO-
CPS co-simulation framework. Simul. Model. Pract. Theory 92, 45–61 (2019)

37. Vu, F.: Simulation and verification of reactive systems in Lustre with ProB. Mas-
ter’s thesis, Heinrich Heine Universität Düsseldorf, June 2020

38. Vu, F., Leuschel, M., Mashkoor, A.: Validation of formal models by timed proba-
bilistic simulation. In: Raschke, A., Méry, D. (eds.) ABZ 2021. LNCS, vol. 12709,
pp. 81–96. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77543-8 6

39. Werth, M., Leuschel, M.: VisB: a lightweight tool to visualize formal models with
SVG graphics. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol.
12071, pp. 260–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
48077-6 21

40. Winter, D.: Validating promela models with the ProB model chcker. Master’s the-
sis, Institut für Informatik, Universität Düsseldorf (2008)

41. Yang, F., Jacquot, J., Souquières, J.: JeB: safe simulation of Event-B models in
JavaScript. In: Proceedings APSEC, vol. 1, pp. 571–576. IEEE (2013)

42. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
Laurence, Kropf, Thomas (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/b13229
https://doi.org/10.1007/978-3-030-48077-6_27
https://doi.org/10.1007/978-3-030-48077-6_27
http://wiki.event-b.org/index.php/AnimB
https://doi.org/10.1007/3-540-48234-2_8
https://doi.org/10.1007/11955757_28
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-030-77543-8_6
https://doi.org/10.1007/978-3-030-48077-6_21
https://doi.org/10.1007/978-3-030-48077-6_21
https://doi.org/10.1007/3-540-48153-2_6

	ProB2-UI: A Java-Based User Interface for ProB
	1 Introduction and Motivation
	2 Features of ProB2-UI
	3 Related Work
	4 Conclusion
	References




