
Verification of Co-simulation Algorithms
Subject to Algebraic Loops and Adaptive

Steps

Simon Thrane Hansen1(B) , Cláudio Gomes1 , Maurizio Palmieri2 ,
Casper Thule1 , Jaco van de Pol3 , and Jim Woodcock1,4

1 DIGIT, Department of Electrical and Computer Engineering, Aarhus University,
Aarhus, Denmark
sth@ece.au.dk

2 DII, Department of Information Engineering, University of Pisa, Pisa, Italy
3 DIGIT, Department of Computer Science, Aarhus University, Aarhus, Denmark

4 Department of Computer Science, University of York, York, UK

Abstract. Simulation-based analyses of cyber-physical systems are
increasingly vital. Co-simulation is one such technique that enables the
coupling of specialized simulation tools through an orchestration algo-
rithm. The orchestrator dictates how each simulation tool should sim-
ulate its corresponding subsystem. Obtaining correct simulation results
requires an implementation-aware orchestration algorithm tailored to the
specific scenario, without the orchestrator knowing each simulation tool’s
implementation. Such an algorithm should stabilize algebraic loops, per-
form time step negotiation, and adhere to each simulation tool’s imple-
mentation. This paper describes an approach and implementation to
prove that a given orchestration algorithm respects all contracts related
to the simulation units’ implementation. The approach has been applied
to an industrial case study and other complex scenarios. The tool and
results are available online.

Keywords: Co-simulation · Model-checking · Cyber-physical systems

1 Introduction

Cyber-physical systems (CPS) are omnipresent and embody physical processes
being controlled by cyber elements. A CPS is typically developed in a distributed
fashion using different tools and techniques. Such systems are becoming increas-
ingly complex [18], which leads to the desire for techniques to assist in the
development of these. One such technique is co-simulation: the study of how

We are grateful to the Poul Due Jensen Foundation, which has supported the estab-
lishment of a new Centre for Digital Twin Technology at Aarhus University. Maurizio
Palmieri is also grateful to the Italian Ministry of Education and Research (MIUR) in
the framework of the CrossLab project (Department of Excellence).

c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 3–20, 2021.
https://doi.org/10.1007/978-3-030-85248-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_1&domain=pdf
http://orcid.org/0000-0002-3796-4319
http://orcid.org/0000-0003-2692-9742
http://orcid.org/0000-0002-6177-0928
http://orcid.org/0000-0001-6606-9236
http://orcid.org/0000-0003-4305-0625
http://orcid.org/0000-0001-7955-2702
https://doi.org/10.1007/978-3-030-85248-1_1


4 S. T. Hansen et al.

to coordinate multiple black-box simulation units (SUs), each responsible for
computing the behavior of a sub-system, in order to compute their combined
behavior, and therefore produce the global behavior of a system, as a discrete
trace (see, e.g., [8,17]).

Co-simulation allows iterative integration of constituents to explore the global
system behavior without violating the constituents’ intellectual property. The
SUs are coupled by an orchestration algorithm that interacts with each SU
through an interface. An example of such an SU is a Functional Mock-up Unit
(FMU) defined by the Functional Mock-up Interface Standard [4] (FMI), which
inspires the notion of an SU in this paper. FMI is a widely adopted standard
used commercially and supported by many tools [7].

The overarching challenge of co-simulation is ensuring correct simulation
results. Previous studies [11,12,19,21] have shown that obtaining a correct co-
simulation result requires an algorithm specifically tailored to the scenario that
respects the SUs’ input approximation functions. Not considering such details
can lead to hard to debug errors in the co-simulation results as highlighted in
[11,19], where it is shown how contracts on the co-simulation algorithm could
be constructed based on the SUs. Obeying such contracts leads to a substantial
reduction of co-simulation errors (see also Sect. 3 for more related work). An even
more challenging class of scenarios to simulate are complex scenarios subject to
either algebraic loops or adaptive steps. Complex scenarios are simulated using
a specific iterative algorithm [14]. The iterative algorithm solves the algebraic
loop (cyclic dependencies between the SUs) and ensures that all SUs agree on a
step; the latter is referred to as step negotiation. Step negotiation permits the
SUs to implement error estimation and refuse certain future state evaluations to
minimize the simulation error while ensuring that the SUs move in lockstep. We
propose an approach that has been implemented as a tool. The tool lets users
verify that their algorithm respects the contracts of the SUs.

Contribution: This paper describes an approach for verifying that a co-simulation
algorithm satisfies the contracts of the scenario. The approach covers complex
scenarios subject to algebraic loops and adaptive steps. It has been implemented
in UPPAAL [3] and has been applied to several case studies, including an indus-
trial case study from Boeing [9] and complex scenarios subject to algebraic loops
and step negotiation.

Structure: The paper starts with introducing co-simulation and the verifi-
cation challenge of co-simulation algorithms in Sect. 2. Section 3 describes
other approaches for obtaining reliable and deterministic co-simulation results.
Section 4 follows with a presentation of the verification technique. Section 5 dis-
cusses a case study and Sect. 6 concludes.

2 Background

Co-simulation is a technique enabling global simulation of a system consisting of
multiple black-box SUs. An SU has its own solver that calculates the behavior



Verification of Co-simulation Algorithms 5

trace of the dynamical system it represents. A dynamical system is a function
from time and space into some often multi-dimensional and continuous space.
Examples include population growth, water flow, and pendulums. The system
interacts with the environment through inputs and outputs [9,17].

2.1 Simulation Units

SUs can be coupled through their inputs and outputs, indicating that the state
of one SU is reliant on the state of another SU at all times - known as a coupling
restriction. However, in practice, the coupling restrictions can only be satisfied at
certain points in time, referred to as communication points. Furthermore, each
SU makes assumptions about the evolution of the input values between the com-
munication points, which can cause accumulable errors in the co-simulation [2].

A scenario is simulated using an orchestrator - an algorithm - that computes
the behavior trace of all SUs trying to satisfy their coupling restrictions by
exchanging values. The orchestrator’s goal is to find the communication points
that minimize the error introduced in the co-simulation and to ensure that the
SUs move in lockstep. Studies [10–12,19,21] have shown that optimal communi-
cation points depend on the implementation of the SUs.

Definition 1 (Simulation Unit). An SU with identifier c is represented by
the tuple

〈Sc, Uc, Yc, setc, getc, stepc〉 ,

where:

– Sc represents the state space.
– Uc and Yc the set of input and output variables, respectively.
– setc : Sc × Uc × VE → Sc and getc : Sc × Yc → VE are functions to set the

inputs and get the outputs, respectively (we abstract the set of values exchanged
between input/output variables as VE . The type of this set is the tuple 〈t,V〉,
where V denotes the value obtained at a given output port and t : R≥0 denotes
the timestamp of c when the value was obtained by an action respecting the
contracts).

– stepc : Sc × R>0 → Sc × R>0 is a function that instructs the SU to compute
its state after a given time duration. If an SU is in state s

(t)
c at time t,

(s(t+h)
c , h) = stepc(s

(t)
c ,H) approximates the state s

(t+h)
c of the corresponding

model at time t + h, where h ≤ H.

Definition 1 is inspired by [5,13] and represents a symbolic version of an
SU. The state of SU A at time t is denoted s

(t)
A . We assume the last value set

on an input/output port can be inspected, for example, the value of input ux

could be ux = 〈t, vx〉, where t is the timestamp when the value vx set on ux was
obtained. The function stepc returns a step size because some SUs implement
error estimation and may conclude that taking a step size of H will result in an
intolerable error meaning the SU takes a smaller step than planned.



6 S. T. Hansen et al.

Definition 2 (Scenario). A scenario is a structure 〈C,L,M,F,R,D〉 where
each identifier c ∈ C is associated with an SU, as defined in Definition 1, and
L(u) = y means that the output y is connected to input u. Let U =

⋃
c∈C Uc and

Y =
⋃

c∈C Yc, then L : U → Y . M ⊆ C denotes the SUs that implement error
estimation. The set of reactive components, R =

⋃
c∈C Rc, where Rc(uc) = true

means the function stepc assumes that the input uc comes from an SU that
has advanced forward relative to SU c. The set of delayed components, D =⋃

c∈C ¬Rc, where Rc(uc) = false means the function stepc assumes that the
input uc comes from an SU that is at the same time as SU c. Finally, the set of
feed-through components, F =

⋃
c∈C Fc, where the input uc ∈ Uc feeds through to

output yc ∈ Yc, that is, (uc, yc) ∈ Fc, when there exists v1, v2 ∈ VE and sc ∈ Sc,
such that getc(setc(sc, uc, v1), yc) �= getc(setc(sc, uc, v2), yc).

The syntax in Fig. 1 is used to graphically present co-simulation scenarios.
The couplings of SUs and feedthrough can introduce algebraic loops like the one
seen in the scenario in Fig. 2a: The port variables in that scenario form a cyclic
dependency, requiring that all their values are being set at the same time. The
set of port variables involved in algebraic loops are the port variables of the
non-trivial SCCs in the step operation graph, constructed based on Definition
15 in [13]. The set algebraicS denotes such variables in scenario S:

algebraicS � {s | for each s ∈ SCCs ∧ s ∈ U ∪ Y },

where SCCs : is the flatten set of all nontrivial SCCs in S.

f
a g

b Delayed

Reactiver

d

Legend

Feedthrough

d

r

SU

Fig. 1. A simple co-simulation scenario (S1).

The input variables involved
in an algebraic loop in the sce-
nario S are:

UalgebraicS
� algebraicS ∩ U

(1)

Using the given definition
of a scenario, we call a co-
simulation scenario either simple or complex.

Definition 3. A scenario S is simple if M = ∅ ∧ algebraicS = ∅.
A scenario is complex if it is not simple. Using Definition 3 we conclude that

the scenario (S1) in Fig. 1 is simple because algebraicS1 = ∅ and none of the SUs
implement error estimation (MS1 = ∅). The scenario (S2) in Fig. 2a is complex
since algebraicS2 = {uf , ug, yf , yg} meaning that all variables are a part of a
cyclic dependency that should be solved using a fixed point. The scenario (S3) in
Fig. 2b is also complex because SU C implements error estimation (MS2 = {C})
and therefore can perform step rejection. Step rejection requires special attention
since the orchestrator should backtrack the simulation and restart the simulation
with a smaller step in case of a step rejection.

The reason for distinguishing between simple and complex scenarios is that
the simulation strategy depends on the scenario type. This is treated in more



Verification of Co-simulation Algorithms 7

f
A

d

gd B

(a) Scenario S2 with an algebraic loop.

z
C

d

gr

May reject step size

D

(b) Scenario S3 needs step negotiation.

Fig. 2. Complex co-simulation scenarios.

detail later in the paper. Next, we give a brief presentation of the contracts from
[9] before describing how they can be used to verify a co-simulation algorithm.

The contracts are described as preconditions of the SU-actions get, set and
step. It should be pointed out that each input and output has a timestamp
referring to when it was last successfully activated by an action.

Definition 4 (Get Action). The precondition of getc(s
(t)
c , yc) is:

∀(u , yc) ∈ Fc =⇒ u = 〈th, 〉 ∧ th = t.
Informally saying that all inputs that feeds through to yc should be set. This

criterion is denoted as the predicate: preGetc : Sc × Yc → B.

Definition 5 (Set Action). The precondition of setc(s
(t)
c , uc, v) depends on

the contract of the input:

– If uc ∈ R then the operation is valid if v = 〈th, 〉 , where th = t + H
– If uc ∈ D then the operation is valid if v = 〈th, 〉 , where th = t.

This informally says that the value set on uc should be obtained at a meaningful
point in time dictated by the input contract. We denote this as the predicate:
preSetc : Sc × Uc × VE → B.

The criterion on a set-action will first have an effect when the SU is stepped.
However, we found that it was easier to catch and correct an incorrect algorithm
by moving this criterion to the set-action.

Definition 6 (Step Computation). The precondition of stepc(s
(t)
c ,H) is sat-

isfied if all the following conditions are fulfilled:

– ∀uc ∈ Uc. uc ∈ D =⇒ uc = 〈th, 〉 ∧ th = t.
– ∀uc ∈ Uc. uc ∈ R =⇒ uc = 〈th, 〉 ∧ th = t + H.

Informally, this is that all inputs should set with a new value since the last time
the SU was stepped. This is denoted as the predicate: preStepc : Sc ×R>0 → B.

Definition 7 (Preconditions of a Scenario). The set of all preconditions
Pre of a scenario is the union of the preconditions for each SU c ∈ C:

Pre =
⋃

c∈C

{
⋃

i∈UC

preSetc( , ui, ),
⋃

i∈YC

preGetc( , yi), preStepc

}

(2)



8 S. T. Hansen et al.

The FMI-standard [4] also describes some contracts on the state-changing
function. The implementation in UPPAAL enforces them, but they are not
treated in this paper.

2.2 Co-simulation Algorithms

A scenario is simulated by a co-simulation algorithm that consists of state-
changing functions, an initialization procedure, and a co-simulation step. This
work concentrates on the co-simulation step, which we refer to as the algorithm
throughout the paper. The other aspects of a co-simulation algorithm can triv-
ially be derived from the method.

The purpose of the co-simulation step is to move all SUs C, and all inputs and
outputs (U ∪Y ), from the initial times t to some future time t+H, where H > 0.
We use function ftime : SC → R≥0 to obtain the current timestamp of an SU.
This makes it possible to define the Hoare-triple of the co-simulation step P :

Hoare(P ) � {∀v ∈ U ∪ Y. v = 〈t, 〉 ∧ ∀c ∈ C. ftime(s(t)c ) = t} P

{∀v ∈ U ∪ Y. v = 〈t + H, 〉 ∧ ∀c ∈ C. ftime(s(t+H)
c ) = t + H}

A co-simulation step P is a sequence of instructions using the SU’s functions
setc, getc, and stepc. Each index i of the sequence P [i] represents an action
in the algorithm, for example, if P is the co-simulation step in Algorithm1
P [0] = stepA(s(0)A , ). Figure 3 shows three different co-simulation steps of the
scenario in Fig. 1.

Algorithm 1

1: (s(H)
A , H) ← stepA(s(0)

A , H)

2: (s(H)
B , H) ← stepB(s(0)

B , H)

3: fv ← getA(s(H)
A , yf )

4: gv ← getB(s(H)
B , yg)

5: s
(H)
B ← setB(s(s)

B , uf , fv)

6: s
(H)
A ← setA(s(H)

A , ug, gv)

Algorithm 2

1: (s(H)
B , H) ← stepB(s(0)

B , H)

2: (s(H)
A , H) ← stepA(s(0)

A , H)

3: gv ← getB(s(H)
B , yg)

4: s
(H)
A ← setA(s(H)

A , ug, gv)

5: fv ← getA(s(H)
A , yf )

6: s
(H)
B ← setB(s(H)

B , uf , fv)

Algorithm 3

1: (s(H)
B , H) ← stepB(s(0)

B , H)

2: gv ← getB(s(H)
B , yg)

3: s
(0)
A ← setA(s(0)

A , ug, gv)

4: fv ← getA(s(0)
A , yf )

5: s
(H)
B ← setB(s(H)

B , uf , fv)

6: (s(H)
A , H) ← stepA(s(0)

A , H)

Fig. 3. Three algorithms conforming to the FMI standard (version 2.0) of the scenario
in Fig. 1.

Although the three algorithms in Fig. 3 consist of the same actions, they
are not equivalent, and simulating with one algorithm instead of one of the
others could drastically change the co-simulation result as shown in [13]. They
showed that by obeying the contracts, the scenario will be simulated correctly.
We assume that the contracts in the scenario are constant through the simula-
tion, which is the case for most commercially used SUs. At the end of Sect. 2.3,
we show which of these algorithms is correct.



Verification of Co-simulation Algorithms 9

A co-simulation step P is executed using a configuration c. The configuration
c � 〈H, guess〉 consists of the parameters of the co-simulation step P . H ∈ R>0

defines the step size, and guess : Ualgebraic → VE is a total function linking all
inputs in Ualgebraic to a guess that tries to satisfy the algebraic loops. Using
the example from Algorithm1, the action at index 0 in P applied with the
configuration 〈1, 〉 is: P [0](c) = stepA(s(0)A , 1). The configuration defines the
step size (1) of the step-action.

The set Configurations denotes all the possible configurations of the co-
simulation step for a given scenario. The execution of a co-simulation step P
is the execution of each action in P . We define such execution of P using con-
figuration c as:

P (c) � for each i ∈ dom(P ). P [i](c) (3)

An execution of P (cj) yields another configuration cj+1 ∈ Configurations where
P (cj) = cj+1. The configuration cj+1 : 〈H1, guess1〉 is obtained from the algo-
rithm P and configuration cj : 〈H, guess〉 by updating H1 to the smallest step
accepted by an SU during the execution of P (cj). And the function guess1 has
the same domain as guess, but the range is updated to the new value of the out-
put coupled to the associated input in the domain of guess after executing P (cj).

guessj+1(u) = value(u, P (cj)) and H1 = minStep(P (cj)) (4)

The execution of a configuration c : 〈H, guess〉 has converged if all SUs accept the
step H, and all algebraic loops are stabilized (all values in the range of guess are
fixed-points). The domain of guess is all the inputs in Ualgebraic for the scenario;
this means that all configurations of the same scenario have the same domain.

Definition 8. Two configurations of the same scenario S cj : 〈H1, guess1〉 ∈
Configurations and cj+1 : 〈H2, guess2〉 ∈ Configurations are convergent if:

cj ≈ cj+1 � H1 = H2 ∧ (∀i ∈ dom(guess). guess1[i] ≈ guess2[i])

Two values v1E : (v1, t1) and v2E : (v2, t2) of type VE converge if:

v1E ≈ v2E � | v1 − v2 | ≤ ε ∧ t1 = t2 (5)

Formally an execution of a co-simulation step P of a configuration cj is stable
or has converged if P (cj) = cj+1 =⇒ cj ≈ cj+1.

A complex scenario is a scenario where not all configurations are stable. Such
a scenario can only be correctly simulated by an algorithm P if a convergent
configuration exists:

∃c ∈ Configurations,∃j ∈ N. P (cj) = cj+1 =⇒ cj ≈ cj+1 (6)

Some measures should be taken to handle cases where no convergent configura-
tion exists.



10 S. T. Hansen et al.

2.3 Correct Co-simulation Algorithms

To optimally simulate a co-simulation scenario using an algorithm P requires
more than a convergent configuration c. The algorithm P should also success-
fully satisfy all the preconditions/contracts. To describe this, we introduce the
sequence C, which is a permutation of the set Pre (cf. Definition 7). The sequence
C is constructed by a function C = contracts(P, Pre) that for each action in P
finds the corresponding precondition pre ∈ Pre and adds it to C such that for
an arbitrary index i in P , C[i] is the precondition of the action P [i].

If an action at index i in P satisfies its precondition C[i] using the configura-
tion c, it is denoted as:

P [i](c) |= C[i] (7)

A co-simulation step P using a configuration c satisfies C if all actions satisfy its
precondition.

P (c) |= C � ∀i ∈ dom(P ). P [i](c) |= C[i] (8)

P (c) |= C means the algorithm respects the scenario’s contracts. Based on pre-
vious studies it is well-known that a non-convergent configuration c does not
respect all the contracts:

cj �≈ cj+1 =⇒ P (cj) �|= C (9)

Therefore we only check the contracts of the scenario if the current configuration
is convergent. We can now describe what it means for an algorithm to be correct
for a given scenario in the following Hoare triple.

Definition 9. An algorithm P and configuration c : 〈H, 〉 is correct if:

P (c) |= C ∧ {∀v ∈ U ∪ Y. v = 〈t, 〉 ∧ ∀c ∈ C. ftime(s(t)c ) = t} P (c)

{∀v ∈ U ∪ Y. v = 〈t + H, 〉 ∧ ∀c ∈ C. ftime(s(t+H)
c ) = t + H}

Meaning all preconditions are satisfied and all SUs and inputs have moved from
time t to time t + H through the execution of P (c).

Using Definition 9 we conclude that Algorithm3 is correct while the others are
incorrect since they break one or more of the defined preconditions. Algorithm1
and 2 violate the precondition of stepb on line 2 by stepping it without having
provided SU b with a value on the reactive input f . These definitions form
the basis for describing the approach and implementation used to verify co-
simulation algorithms in this work.



Verification of Co-simulation Algorithms 11

3 Related Work

The study of semantics and verification of co-simulation algorithms is pre-
sented in [5,9,13]. The paper [13] describes a formalization of an FMI-based
co-simulation scenario where several correctness criteria are placed on the co-
simulation algorithm to generate and verify a co-simulation algorithm. This
paper extends their work by treating co-simulation scenarios subject to alge-
braic loops and adaptive steps. Thule et al. [22] studied how a co-simulation
scenario’s characteristics can be used to choose the correct simulation strategy
for a given co-simulation algorithm. In [14], algorithms of complex scenarios are
described, but this paper lacks the feature to verify the correctness of algorithms
for complex scenarios.

Broman et al. describe in [5] an approach to achieve deterministic co-
simulation results by placing constraints on the co-simulation scenario to avoid
algebraic loops. They also propose a generic master algorithm for handling step
negotiation. However, such generic algorithms do not consider other constraints
on the SUs like reactive inputs or algebraic loops. This paper deals with all these
constraints.

Formal methods have previously been successfully used in the area of co-
simulation [1,6,23]. Amálio et al. [1] study how connections between simulation
units can be formalized. They investigate how different formal tools can detect
algebraic loops to obtain a deterministic co-simulation result. Cavalcanti et al. [6]
claim to provide the first behavioral semantics of FMI. The paper shows how to
prove essential properties of master algorithms, like termination and determin-
ism. It also shows that the example provided in the FMI standard is not a valid
algorithm. The paper [23] by Zeyda et al. formalizes models and proofs about
co-simulation in Isabelle/UTP, illustrated by an industrial case study from the
railway sector. However, their approach does not cover complex scenarios, unlike
ours.

Nyman et al. in [16] examine how UPPAAL can analyze controller-based sys-
tems with FMUs and a master algorithm modeled in UPPAAL. UPPAAL was
used to verify the properties of the controller used in the co-simulation. Palmieri
et al. in [20] have used UPPAAL to provide sound guarantees on the interleaving
between a graphical user interface and a generic FMI master algorithm. Our app-
roach is more generic and relies on a parameterized template approach that can
be applied to arbitrary co-simulation scenarios subject to both step negotiation
and algebraic loops.

4 Verifying Complex Co-simulation Algorithms

This section describes our approach for verifying that a co-simulation algorithm
respects the contracts of the scenario. The paper focuses on complex scenarios
since the approach trivially covers simple scenarios. The section starts with an
introduction of the UPPAAL-implementation. This is followed by some concrete
examples of the approach using the scenarios in Figs. 2b and 8b.



12 S. T. Hansen et al.

4.1 Verifying an Algorithm Using UPPAAL

The approach is implemented in UPPAAL. A co-simulation is formalized as a
collection of timed automata (TA) that formally describe a co-simulation as
an orchestrator and some SUs. Two extra UPPAAL-templates are introduced
to verify algorithms of complex scenarios by performing the search for a correct
configuration. The structure of the UPPAAL model is fixed, however a translator
(available online1) generates a unique model for each scenario and algorithm. The
scenario and algorithm are expressed in a high-level domain-specific language
similar to the algorithms in the paper. The tool can translate and verify all
algorithms described by the grammar in Fig. 4. The tool checks both initialization
procedures and co-simulation steps, but we only show the grammar of the co-
simulation step due to space limitations.

〈cosim-step〉 ::= ‘[’〈cosim-action〉*‘]’
〈SU-action〉 ::= 〈get : SU.Port〉 | 〈set: SU.Port〉 | 〈step: SU 〉 | 〈restore-state: SU 〉 |

〈save-state: SU 〉
〈SU-step-action〉 ::= 〈SU-action〉 | ‘{’ 〈algebraic〉 ‘}’

〈cosim-action〉 ::= 〈SU-action〉 | ‘{’ 〈step-loop〉 ‘}’ | ‘{’ 〈algebraic〉 ‘}’

〈step-loop〉 ::= ‘until-step-accept:’ ‘[’SU*‘]’
‘iterate:’ ‘[’〈SU-step-action〉*‘]’
‘if-retry-needed:’ ‘[’〈restore-state: SU 〉*]’

〈algebraic〉 ::= ‘until-converged:’ ‘[’SU.Port*‘]’
‘iterate:’ ‘[’〈SU-action〉*‘]’
‘if-retry-needed:’ ‘[’〈restore-state: SU 〉*]’

Fig. 4. BNF Grammar for the specification of a co-simulation step

Notice, the tool does not allow nested fixed-point iteration procedures or
step-negotiation inside a nested statement (step-loop or algebraic-loop). This is
because the authors do not know any scenarios that such an algorithm should
simulate. The following section explains the ideas behind the different UPPAAL-
templates before describing how the verification of the algorithm is performed
in UPPAAL.

The Interpreter orchestrates the behavior of the SUs by interpreting the sup-
plied algorithm. It is responsible for executing the orchestration algorithm from
Instantiation to Termination. A correct algorithm ensures that the Interpreter
reaches the Termination state while an incorrect hits a deadlock. The Interpreter
works deterministically by systematically picking an action of the algorithm and
delegate it to one of the other automata using channel synchronization and
shared variables.

1 https://github.com/INTO-CPS-Association/Scenario-Verifier.

https://github.com/INTO-CPS-Association/Scenario-Verifier


Verification of Co-simulation Algorithms 13

The preconditions described in Definitions 4 to 6 are encoded in UPPAAL
as invariant functions of the states in the SU-template as shown in Fig. 5 by
the function preSet, preGet and preDostep. The SU-template describes the
interface (see Definition 1) and life-cycle of an SU. The values exchanged between
the SUs are of the type VE (a status and a timestamp). Thus, the design contains
enough information to check the contracts. However, nothing can be said about
the numerical aspect of the co-simulation.

Fig. 5. Model of an SU in UPPAAL.

A violation of a guard or an invariant function results in a deadlock. A dead-
lock indicates that the algorithm either breaks a precondition or is not complete.
A correct algorithm does not deadlock and reaches the state“Terminated”, which
means that all preconditions/contracts were satisfied and that the algorithm is
complete. A complete algorithm correctly instantiates and informs all SUs that
the simulation has ended. The automata in UPPAAL are designed, so all transi-
tions are guarded except one identity transition in the trap state“Terminated” in
the Interpreter-template. This ensures that all violations of the contracts result
in a deadlock; furthermore, no deadlock can occur if the state “Terminated” is
reached.

We
define the two CTL-formulas: A� not deadlock and A♦MasterA.Terminated
for UPPAAL to verify. The first formula ensures that UPPAAL finds no dead-
lock. The second formula ensures that the Interpreter always reaches the state
“Terminated”, implying that the co-simulation is entirely executed and is not
trapped into an infinite loop, which is not considered by the previous formula.
Since the end time (t + H, where H > 0) of the simulation is greater than the
start time (t), it can be concluded that at least one co-simulation step was suc-
cessfully executed/checked. Moreover, since the contracts are constant over time,
it can be concluded using induction that all future/other steps also satisfy these
contracts. This is the essential argument for describing how the tool verifies that
an algorithm is correct concerning Definition 9.

The method is clarified through a couple of examples. First, looking back
at the incorrect Algorithms 1 and 2, we can see that they violate both of



14 S. T. Hansen et al.

the CTL-formulas since the broken precondition on line 2 is caught by the
guard preDostep and results in a deadlock. Nevertheless, on the other hand,
Algorithms 3 satisfies both CTL-formulas, and therefore also satisfies
Definition 9.

4.2 Verifying Complex Simulation Scenarios in UPPAAL

Complex scenarios are, as previously described, simulated by an algorithm P
that iteratively searches for a correct configuration, not violating any of the
actions’ preconditions. However, as described by Eq. (9) all unsuccessful search
attempts violate some of the preconditions. Therefore, the implementation in
UPPAAL tolerates such violations until a correct configuration is identified.

The approach is to temporarily turn off the preconditions for complex scenar-
ios until a correct/convergent configuration is found (see Definition 8). Then, in
between unsuccessful attempts, the co-simulation is backtracked, and a new search
attempt is initiated where the configuration is updated as described in Sect. 2.2.

If the Interpreter finds a correct configuration, it backtracks the simulation,
turns on the preconditions, and runs an extra iteration of the routine while
checking the preconditions to ensure that the algorithm and configuration respect
the contracts. To avoid state-space explosion and ensure termination, the number
of search attempts is bounded. Thus, if the algorithm does not manage to find
a correct configuration within the bound, the algorithm is considered incorrect.
Since the simulation depends on the nature of the scenario, the next section is
split to describe two different kinds of complex scenarios - step negotiation and
algebraic loops.

Verifying a Step Negotiation Procedure. Step negotiation is a mechanism
for the SUs to agree on the step size. The procedure iteratively searches for a
step using a sequence of SU-actions in each iteration. The step size is shrunken
between unsuccessful iterations. The step negotiation for the scenario in Fig. 2b
is presented in Algorithm 4. UPPAAL verifies that a common step can be found
using a given algorithm. Furthermore, it ensures that all preconditions of the
actions are satisfied using the found step.

UPPAAL first tries to establish a proper step without considering the con-
tracts. UPPAAL confirms this by transforming the supplied algorithm to a simi-
lar one that initially turns off the preconditions while it searches for a step. The
transformation is shown from the original Algorithm 4 to the modified Algorithm
5 that UPPAAL checks. The preconditions are disabled to circumvent the model
from deadlocking on unsuccessful search attempts. For example, if SU C is not
capable of performing a step of the same size as SU D, this would break the pre-
conditions of stepD in line 6 in Algorithm 4. However, violations are tolerated
until the SUs agree on a step due to the backtracking. If a correct step is identi-
fied, the preconditions are turned back on (see line 16) and an extra iteration of the
procedure is performed to verify that all contracts are respected. If a correct step
is not establish within N -tries, the algorithm is declared incorrect, and the verifi-
cation aborts (line 20). UPPAAL non-deterministically picks a maximal positive



Verification of Co-simulation Algorithms 15

step for each SU in M to introduce the non-determinism of a step negotiation. We
assume an SU accepts any step smaller or equal to its maximal step.

Algorithm 4 Step negotiation proce-
dure of scenario in Fig. 2b.
1: SaveSUs � Save the SUs
2: while !Step found do � Step negotiation

3: (s
(s+hD)
D , hD) ← stepD(s

(s)
D , h)

4: gv ← getD(s
(s+hD)
D , yg)

5: s
(s)
C ← setC(s

(s)
C , uG, Gv)

6: (s
(s+hC )
C , hC) ← stepC(s

(s)
C , hD)

7: h ← min(hC , hD) � Minimum step
8: Step found ← h == hC ∧ h == hD

9: if !Step found then � Restore SUs
10: RestoreSUs
11: end if
12: end while

Algorithm 5 Modified Step negotia-
tion procedure of scenario in Fig. 2b.
1: SaveSUs � Save the SUs
2: TurnPreconditionsOff ()
3: (I, isExtra) ← (0, false)
4: while !Step found do
5: Line 3-8 from Algorithm 4
6: if !Step found then
7: I ← I + 1
8: else � Correct step found
9: if !isExtra then � Check contracts

10: TurnPreconditionsOn()
11: isExtra ← true
12: else
13: return(true) � Correct

algorithm
14: end if
15: end if
16: if I == N then � Max attempt
17: return(false) � Invalid algorithm
18: end if
19: RestoreSUs
20: end while

Verifying a Fixed-Point Procedure. The fixed-point procedure solves alge-
braic loops by finding fixed-points on the involved ports. Similar to step negoti-
ation, a fixed-point procedure is an iterative search for a correct configuration.
A fixed-point iteration procedure is shown in Algorithm6.

The UPPAAL-model ensures the correctness of scenarios with algebraic loops
that a fixed-point can be obtained using the algorithm without violating a single
contract. However, the numerical aspect of finding a fixed-point is not included
in our model since we restrict to a symbolic abstraction. However, the tool is
still capable of checking that the contracts of the SUs are respected.

4.3 Debugging Algorithm Errors

When an algorithm is deemed incorrect by UPPAAL, the user needs to determine
why. A model-checker (like UPPAAL) provides counter-examples. However, these
are often hard to understand for a normal user. Therefore, a tool has been
created to visualize the counter-example as an animation. The animation shows
the violation found by UPPAAL. The animation shows which actions have been
applied and which actions are enabled at any given time of the simulation. An
example of the animation is shown in Fig. 8a.

5 Validation

The tool has been used to verify various algorithms and generate counter-
examples for incorrect ones. The examples are publicly available2. The tested
2 https://github.com/SimplisticCode/Co-simulation-Verifier.

https://github.com/SimplisticCode/Co-simulation-Verifier


16 S. T. Hansen et al.

scenarios include an industrial scenario from Boeing [11] of 4 SUs and 8 con-
nections3. We have also tested it with what we believe to be the most common
mistakes when implementing an algorithm to be confident that the tool catches
these mistakes. The tests of the tool include abstract scenarios with multiple
algebraic loops and more than 50 SUs and over 100 connections.

In this section, we show two examples: the first one, already introduced in
Fig. 1, is designed to highlight the numerical errors that can happen when con-
tracts are not satisfied, and the second one showcases an abstract scenario with
all types of contracts described in the current manuscript.

5.1 Motivation Example

Our motivation example was introduced in Fig. 1, and its equations are displayed
in Fig. 6. To highlight the numerical error caused by a mismatch in contracts, we
conducted a series of experiments where the contracts were intentionally violated,
i.e.; we applied the wrong algorithm to the contracts used. We studied this effect
for multiple parameters’ choices and selected two results representing the most
common errors, illustrated in Fig. 7. Each plot shows the analytical solution, the
correct co-simulation, and the incorrect co-simulation. Naturally, even the correct
co-simulation will introduce errors. However, most of the results show an error
caused solely by the contract mismatch, as shown on the left-hand side of Fig. 7.
However, depending on the parameters and initial conditions of the experiment,
some cases show that the mismatch is less important. This makes it very difficult
to assess in practice whether some errors are caused by implementation mistakes
or caused by the co-simulation discretization, and hence motivates our work.
Some work has been carried out in [15] to characterize for which parameter
values and initial conditions, the contracts are essential, but this is outside the
scope of this paper.

 

MSD1 MSD2

M1
Spring +
DamperW

al
l

M2
Spring +
Damper

Spring +
Damper W

al
l

 
 

 

Fig. 6. Structure and equations of motivational example. Legend: xi, vi represent the
position and velocity, respectively; fi represents force, ci, di represent stiffness and
damping parameters, mi represents mass.

3 https://github.com/SimplisticCode/Co-simulation-Verifier/blob/master/Scenario/
examples/industrial casestudy.conf.

https://github.com/SimplisticCode/Co-simulation-Verifier/blob/master/Scenario/examples/industrial_casestudy.conf
https://github.com/SimplisticCode/Co-simulation-Verifier/blob/master/Scenario/examples/industrial_casestudy.conf


Verification of Co-simulation Algorithms 17

Fig. 7. Example results. Except when indicated in each plot, all parameters have
the following default values: mi = ci = 1 and di = 0. The step used in the
co-simulation is 0.1.

5.2 Complex Scenario

The scenario introduced here contains an algebraic loop between some SUs that
may reject a step. The scenario is shown in Fig. 8b, and the algorithm of a valid
co-simulation step is shown in Algorithm6. The scenario is simulated using a

(a) Wrong algorithm of Fig. 8b
highlighted by the animation.

B

dx

r

r

v

f

C
d

gr

z

May reject step size

A

(b) Case study scenario - Loop
within Loop.

Algorithm 6 Co-simulation Step of Fixed-
point Iteration inside Step finding procedure.
1: Save SUs � Save all 3 SUs
2: h ← Hmax

3: while !step found do � Step negotiation
4: while !converged do � FP procedure
5: s

(s)
A ← setA(s(s)

A , uf , fv)

6: s
(s)
B ← setB(s(s)

B , [uv, ug ], [vv, gv ])

7: (s(s+hC )
C , hC), ← stepC(s(s)

C , h)

8: (s(s+hB)
B , hB), ← stepB(s(s)

B , h)

9: (s(s+hA)
A , hA), ← stepA(s(s)

A , h)

10: [va, xv ] ← getA(s(s+hA)
A , [yv, yx])

11: zv ← getB(s(s+hB)
B , yz)

12: s
(s+hC )
C ← setC(s(s+hC )

C , uz, zv)

13: ga ← getC(s(s+hC )
C , yg)

14: s
(s+hB)
B ← setB(s(s+hB)

B , ux, xv)

15: fa ← getB(s(s+hB)
B , yF )

16: conv←CheckConv((ga, va, fa), (gv, vv, fv))
17: if !conv then
18: Restore SUs � Restore all 3 SUs
19: end if
20: (gv, vv, fv) ← (ga, va, fa)
21: end while
22: h ← min(hA, hB , hC)
23: Step found ← h == hA ∧ h == hB ∧ h == hC

24: if !Step found then
25: Restore SUs � Restore all 3 SUs
26: end if
27: end while

Fig. 8. Advanced case study scenario (2b) and Algorithm (6). A counter-example is
shown in 8a.



18 S. T. Hansen et al.

master algorithm consisting of a fixed-point iteration for solving the algebraic
loop inside the step negotiation procedure like Algorithm6.

Algorithm6 is too complex to be analyzed with a simple visual inspection,
showing the necessity of the UPPAAL tool created in this paper. The tool can
analyze the algorithm in few seconds and has been used several times on interme-
diate versions of the algorithm to help the authors obtaining the correct version.

6 Concluding Remarks

This work proposed a model-checking approach to verify that an algorithm for
an FMI-based co-simulation respects all the implementation contracts of the
SUs. The contracts arose from previous work, which demonstrated that imposing
them leads to better co-simulation results in the sense that the error introduced
is caused only by the numerical discretization (as opposed to hard-to-debug con-
tract mismatches, as Fig. 7 showed). In addition, the new approach can handle
complex co-simulation scenarios containing both algebraic loops and step nego-
tiation.

A tool generates a UPPAAL-model from a co-simulation scenario and an
algorithm. The tool enables co-simulation practitioners to verify that their co-
simulation algorithm is tailored to the scenario. Incorrect algorithms are pre-
sented using an animation of the simulation trace to clarify the problems. The
approach inspires the work for synthesizing correct orchestration algorithms [14],
and they together form the Scenario-Verifier.

Acknowledgements. We would like to thank Stefan Hallerstede, Tomas Kulik, Jalil
Boudjadar, and the reviewers for providing valuable input to this paper.

References

1. Amálio, N., Payne, R., Cavalcanti, A., Woodcock, J.: Checking SysML models for
co-simulation. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol.
10009, pp. 450–465. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47846-3 28

2. Arnold, M., Clauß, C., Schierz, T.: Error analysis and error estimates for co-
simulation in FMI for model exchange and co-simulation v2.0. In: Schöps, S., Bar-
tel, A., Günther, M., ter Maten, E.J.W., Müller, P.C. (eds.) Progress in Differential-
Algebraic Equations. DEF, pp. 107–125. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44926-4 6

3. Behrmann, G., et al.: UPPAAL 4.0. In: Third International Conference on Quan-
titative Evaluation of Systems (QEST 2006), pp. 125–126 (2006)

4. Blockwitz, T., et al.: Functional mockup interface 2.0: the standard for tool inde-
pendent exchange of simulation models. In: Proceedings of the 9th International
MODELICA Conference, September 3-5, 2012, Munich, Germany. vol. 76, pp.
173–184. Linköping University Electronic Press (2012). https://doi.org/10.3384/
ecp12076173

https://doi.org/10.1007/978-3-319-47846-3_28
https://doi.org/10.1007/978-3-319-47846-3_28
https://doi.org/10.1007/978-3-662-44926-4_6
https://doi.org/10.1007/978-3-662-44926-4_6
https://doi.org/10.3384/ecp12076173
https://doi.org/10.3384/ecp12076173


Verification of Co-simulation Algorithms 19

5. Broman, D., et al.: Determinate composition of FMUs for co-simulation. In:
Eleventh ACM International Conference on Embedded Software. IEEE Press, Pis-
cataway (2013). Article no. 2

6. Cavalcanti, A., Woodcock, J., Amálio, N.: Behavioural models for FMI co-
simulations. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp.
255–273. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4 15

7. FMI: Functional mock-up interface tools (2014). https://fmi-standard.org/tools/
8. Gomes, C., Broman, D., Vangheluwe, H., Thule, C., Larsen, P.G.: Co-simulation:

a survey. ACM Comput. Surv. 51(3), 49–49 (2018)
9. Gomes, C., Lucio, L., Vangheluwe, H.: Semantics of co-simulation algorithms with

simulator contracts. In: 2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C), pp. 784–
789. IEEE (2019)

10. Gomes, C., et al.: Semantic adaptation for FMI co-simulation with hierarchical
simulators. SIMULATION 95(3), 241–269 (2019)

11. Gomes, C., et al.: HintCO - hint-based configuration of co-simulations. In: Proceed-
ings of the 9th International Conference on Simulation and Modeling Methodolo-
gies, Technologies and Applications, pp. 57–68. Scitepress - Science and Technology
Publications (2019)

12. Gomes, C., Thule, C., Lausdahl, K., Larsen, P.G., Vangheluwe, H.: Demo: sta-
bilization technique in INTO-CPS. In: Mazzara, M., Ober, I., Salaün, G. (eds.)
STAF 2018. LNCS, vol. 11176, pp. 45–51. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-04771-9 4

13. Gomes, C., Thule, C., Lúcio, L., Vangheluwe, H., Larsen, P.G.: Generation of co-
simulation algorithms subject to simulator contracts. In: Camara, J., Steffen, M.
(eds.) SEFM 2019. LNCS, vol. 12226, pp. 34–49. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-57506-9 4

14. Hansen, S.T., Gomes, C., van de Pol, J., Larsen, P.G.: Synthesizing co-simulation
algorithms with step negotiation and algebraic loop handling (2021, to appear)

15. Inci, E.O., et al.: The effect and selection of solution sequence in co-simulation. In:
The Annual Modeling and Simulation Conference, Virginia, USA (2021, to appear)

16. Jensen, P.G., Larsen, K.G., Legay, A., Nyman, U.: Integrating tools: co-simulation
in UPPAAL using FMI-FMU. In: 2017 22nd International Conference on Engineer-
ing of Complex Computer Systems (ICECCS), pp. 11–19. IEEE (2017)

17. Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput.
Model. Dyn. Syst. 6(2), 93–113 (2000)

18. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pp. 363–369 (2008)

19. Oakes, B.J., Gomes, C., Holzinger, F.R., Benedikt, M., Denil, J., Vangheluwe, H.:
Hint-based configuration of co-simulations with algebraic loops. In: Obaidat, M.S.,
Ören, T., Szczerbicka, H. (eds.) SIMULTECH 2019. AISC, vol. 1260, pp. 1–28.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55867-3 1

20. Palmieri, M., Bernardeschi, C., Masci, P.: A framework for FMI-based co-
simulation of human-machine interfaces. Softw. Syst. Model. 19(3), 601–623 (2020).
https://doi.org/10.1007/s10270-019-00754-9

21. Schweizer, B., Li, P., Lu, D.: Explicit and implicit cosimulation methods: stabil-
ity and convergence analysis for different solver coupling approaches. J. Comput.
Nonlinear Dyn. 10(5), 051007 (2015)

https://doi.org/10.1007/978-3-319-46750-4_15
https://fmi-standard.org/tools/
https://doi.org/10.1007/978-3-030-04771-9_4
https://doi.org/10.1007/978-3-030-04771-9_4
https://doi.org/10.1007/978-3-030-57506-9_4
https://doi.org/10.1007/978-3-030-57506-9_4
https://doi.org/10.1007/978-3-030-55867-3_1
https://doi.org/10.1007/s10270-019-00754-9


20 S. T. Hansen et al.

22. Thule, C., Gomes, C., Deantoni, J., Larsen, P.G., Brauer, J., Vangheluwe, H.:
Towards the verification of hybrid co-simulation algorithms. In: Mazzara, M., Ober,
I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 5–20. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04771-9 1

23. Zeyda, F., Ouy, J., Foster, S., Cavalcanti, A.: Formalising cosimulation models. In:
Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 453–468. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-74781-1 31

https://doi.org/10.1007/978-3-030-04771-9_1
https://doi.org/10.1007/978-3-319-74781-1_31

	Verification of Co-simulation Algorithms Subject to Algebraic Loops and Adaptive Steps
	1 Introduction
	2 Background
	2.1 Simulation Units
	2.2 Co-simulation Algorithms
	2.3 Correct Co-simulation Algorithms

	3 Related Work
	4 Verifying Complex Co-simulation Algorithms
	4.1 Verifying an Algorithm Using UPPAAL
	4.2 Verifying Complex Simulation Scenarios in UPPAAL
	4.3 Debugging Algorithm Errors

	5 Validation
	5.1 Motivation Example
	5.2 Complex Scenario

	6 Concluding Remarks
	References




