
Alberto Lluch Lafuente
Anastasia Mavridou (Eds.)

LN
CS

 1
28

63

Formal Methods 
for Industrial 
Critical Systems
26th International Conference, FMICS 2021
Paris, France, August 24–26, 2021
Proceedings



Lecture Notes in Computer Science 12863

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Alberto Lluch Lafuente •

Anastasia Mavridou (Eds.)

Formal Methods
for Industrial
Critical Systems
26th International Conference, FMICS 2021
Paris, France, August 24–26, 2021
Proceedings

123



Editors
Alberto Lluch Lafuente
Technical University of Denmark
Kongens Lyngby, Denmark

Anastasia Mavridou
KBR/NASA Ames Research Center
Moffett Field, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-85247-4 ISBN 978-3-030-85248-1 (eBook)
https://doi.org/10.1007/978-3-030-85248-1

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7405-0818
https://orcid.org/0000-0002-3943-9753
https://doi.org/10.1007/978-3-030-85248-1


Preface

The International Conference on Formal Methods in Industrial Critical Systems
(FMICS) is the ERCIM working group conference on Formal Methods for Industrial
Critical Systems, and it is the key conference in the intersection of industrial appli-
cations and formal methods. The aim of the FMICS 2021 series is to provide a forum
for researchers who are interested in the development and application of formal
methods in industry. FMICS brings together scientists and engineers who are active in
the area of formal methods and interested in exchanging their experiences in the
industrial usage of these methods. FMICS also strives to promote research and
development for the improvement of formal methods and tools for industrial
applications.

This volume contains the papers presented at the 26th International Conference on
Formal Methods in Industrial Critical Systems, which was held during August 24–26,
2021. The symposium was originally planned to be held physically in Paris, France.
However, due to the COVID-19 pandemic and the associated travel restrictions, the
conference was shifted to be completely online.

The conference was organized under the umbrella of QONFEST, alongside with the
32nd International Conference on Concurrency Theory (CONCUR 2021), the 18th
International Conference on Quantitative Evaluation of Systems (QEST 2021), and the
19th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS 2021).

The main program contained three categories of papers: (1) Regular papers pre-
senting fully developed original research work and complete results, (2) short papers
presenting work-in-progress, and (3) tool papers presenting software artefacts. Tool
papers were accompanied by a publicly available video.

FMICS 2021 received 34 abstract submissions, which ultimately resulted in 31
paper submissions. We selected a total of 16 papers (10 regular, 4 tool, and 2 short
papers) for presentation during the conference and inclusion in these proceedings,
resulting in an overall acceptance rate of 51.6% (45.4% for regular papers, 80% for tool
papers, and 66.6% for short papers).

The submissions were reviewed by an international Program Committee (PC) of 27
members from a mix of academia, industry, and government. All submissions went
through a rigorous single-blind review process overseen by the Program Committee
Chairs. Each submission received at least 3 review reports and was actively and
thoroughly discussed by in a forum.

The program of QONFEST 2021 included an FMICS invited keynote by Joe Kiniry
of Galois Inc. and Free & Fair, USA.

We are grateful to all involved in FMICS 2021. We gratefully thank the authors for
submitting and presenting their work at FMICS 2021 and the PC members and sub-
reviewers for their accurate and timely reviewing. We also thank the invited speaker,
session chairs, and attendees, all of whom contributed to making the virtual conference



a success. We are also grateful to the providers of the EasyChair system, which was
used to manage the submissions, to Springer LNCS for sponsoring the Best Paper
Award and for publishing the proceedings, and to the Steering Committee of FMICS
for their trust and support. We thank the General Chair of QONFEST, Benoît Barbot,
for providing the logistics that enabled and facilitated the organization of FMICS.

July 2021 Alberto Lluch Lafuente
Anastasia Mavridou

vi Preface



Organization

FMICS Program Chairs

Alberto Lluch Lafuente Technical University of Denmark, Denmark
Anastasia Mavridou KBR, NASA Ames Research Center, USA

FMICS Program Committee

Erika Abraham RWTH Aachen University, Germany
Massimo Bartoletti University of Cagliari, Italy
Maurice ter Beek ISTI-CNR, Italy
Simon Bliudze Inria, France
Yu-Fang Chen Academia Sinica, Taiwan
Silvia Crafa University of Padova, Italy
Hubert Garavel Inria, France
Diego Garbervetsky University of Buenos Aires and CONICET, Argentina
Ákos Hajdu Facebook Inc., UK
Klaus Havelund NASA Jet Propulsion Laboratory, USA
Anne Haxthausen Technical University of Denmark, Denmark
Fritz Henglein University of Copenhagen/Deon Digital, Denmark
Fuyuki Ishikawa National Institute of Informatics, Japan
Xiaoqing Jin Apple Inc., USA
Joe Kiniry Galois Inc. and Free & Fair, USA
Thierry Lecomte ClearSy, France
Tiziana Margaria CSIS, University of Limerick, and LERO, Ireland
Diego Marmsoler University of Exeter, UK
Radu Mateescu Inria, France
Dejan Nickovic Austrian Institute of Technology, Austria
Corina Pasareanu Carnegie Mellon University and NASA Ames

Research Center, USA
Anna Philippou University of Cyprus, Cyprus
Jaco van de Pol Aarhus University, Denmark
Clara Schneidewind Vienna University of Technology, Austria
Cristina Seceleanu Mälardalen University, Sweden
Carolyn Talcott SRI International, USA
Virginie Wiels ONERA, DTIM, France



Additional Reviewers

Nikos Arechiga
Peter Backeman
Yun-Sheng Chang
Gianfranco Ciardo
Bence Graics
Christian Kalhauge
Georgia Kapitsaki
Tsutomu Kobayashi

Olga Kouchnarenko
Franco Mazzanti
Larisa Safina
Giorgio Oronzo Spagnolo
Kenji Taguchi
Andrea Turrini
Zhenya Zhang

FMICS Steering Committee

Maurice ter Beek ISTI-CNR, Italy
Alessandro Fantechi University of Florence, Italy
Hubert Garavel Inria, France
Tiziana Margaria University of Limerick and LERO, Ireland
Radu Mateescu Inria, France
Jaco van de Pol Aarhus University, Denmark

viii Organization



Haunting Tales of Applied Formal Methods
from Academia and Industry
(Abstract of Invited Talk)

Joe Kiniry

Galois Inc. and Free & Fair
kiniry@galois.com

Abstract. You learn a lot after being a formal methods researcher and practi-
tioner for 25 years. Half of that time was spent in academia, creating formal
processes, methodologies, and tools that I hoped I could secretly impact
engineers. Half of that time has been spent in industry, working at companies to
transition concepts, tools, and technologies in rigorous digital engineering
(RDE) with applied formal methods. These days I work at two companies,
Galois and Free & Fair, leading R&D in RDE that focus on problems in national
security and nationally critical infrastructure. I also work with many of our other
Galois spin-outs, such as Muse (now Sonotype Lift) and Niobium Microsystems
on these same topics. In this talk I’ll tell a small number of stories about these
many years in the field, each of which has, I hope, an actionable nugget of
wisdom for the audience at FMICS.

Biography. Dr. Joe Kiniry is a Principal Scientist at Galois and is the CEO and Chief
Scientist at Free & Fair. Over the past twenty five years he has been everything from a
tenured professor at several universities to a founder and chief scientist or CTO at
several companies. He has been involved in security in some fashion since the early
80s when he hacked and wrote video games on 8 bit computers. These days, his day
job is applying formal methods to hardware security for the DoD and trying to help the
worlds’ elections and democracies be more trustworthy.



Contents

Verification

Verification of Co-simulation Algorithms Subject to Algebraic Loops
and Adaptive Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Simon Thrane Hansen, Cláudio Gomes, Maurizio Palmieri,
Casper Thule, Jaco van de Pol, and Jim Woodcock

Automated Verification of Temporal Properties of Ladder Programs . . . . . . . 21
Cláudio Belo Lourenço, Denis Cousineau, Florian Faissole,
Claude Marché, David Mentré, and Hiroaki Inoue

Spatial Model Checking for Smart Stations: Research Challenges . . . . . . . . . 39
Maurice H. ter Beek, Vincenzo Ciancia, Diego Latella, Mieke Massink,
and Giorgio O. Spagnolo

Program Safety and Education

Parametric Faults in Safety Critical Programs . . . . . . . . . . . . . . . . . . . . . . . 51
Hamid Jahanian

Modular Transformation of Java Exceptions Modulo Errors . . . . . . . . . . . . . 67
Robert Rubbens, Sophie Lathouwers, and Marieke Huisman

On Education and Training in Formal Methods for Industrial
Critical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bernd Westphal

(Event-)B Modeling and Validation

Improving SMT Solver Integrations for the Validation
of B and Event-B Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Joshua Schmidt and Michael Leuschel

Standard Conformance-by-Construction with Event-B . . . . . . . . . . . . . . . . . 126
Ismail Mendil, Yamine Aït-Ameur, Neeraj Kumar Singh,
Dominique Méry, and Philippe Palanque

Formal Analysis

Randomized Reachability Analysis in Uppaal: Fast Error Detection
in Timed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Andrej Kiviriga, Kim Guldstrand Larsen, and Ulrik Nyman



Verifying the Mathematical Library of an UAV Autopilot with Frama-C . . . . 167
Baptiste Pollien, Christophe Garion, Gautier Hattenberger,
Pierre Roux, and Xavier Thirioux

Formal Analysis of the UNISIG Safety Application Intermediate Sub-layer:
Applying Formal Methods to Railway Standard Interfaces . . . . . . . . . . . . . . 174

Davide Basile, Alessandro Fantechi, and Irene Rosadi

Tools

PROB2-UI: A Java-Based User Interface for ProB . . . . . . . . . . . . . . . . . . . . 193
Jens Bendisposto, David Geleßus, Yumiko Jansing, Michael Leuschel,
Antonia Pütz, Fabian Vu, and Michelle Werth

Intrepid: A Scriptable and Cloud-Ready SMT-Based Model Checker . . . . . . . 202
Roberto Bruttomesso

Merit and Blame Assignment with Kind 2 . . . . . . . . . . . . . . . . . . . . . . . . . 212
Daniel Larraz, Mickaël Laurent, and Cesare Tinelli

Test Generation and Probabilistic Verification

PSY-TaLiRo: A Python Toolbox for Search-Based Test Generation
for Cyber-Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Quinn Thibeault, Jacob Anderson, Aniruddh Chandratre,
Giulia Pedrielli, and Georgios Fainekos

Probabilistic Verification for Reliability of a Two-by-Two
Network-on-Chip System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Riley Roberts, Benjamin Lewis, Arnd Hartmanns, Prabal Basu,
Sanghamitra Roy, Koushik Chakraborty, and Zhen Zhang

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

xii Contents



Verification



Verification of Co-simulation Algorithms
Subject to Algebraic Loops and Adaptive

Steps

Simon Thrane Hansen1(B) , Cláudio Gomes1 , Maurizio Palmieri2 ,
Casper Thule1 , Jaco van de Pol3 , and Jim Woodcock1,4

1 DIGIT, Department of Electrical and Computer Engineering, Aarhus University,
Aarhus, Denmark
sth@ece.au.dk

2 DII, Department of Information Engineering, University of Pisa, Pisa, Italy
3 DIGIT, Department of Computer Science, Aarhus University, Aarhus, Denmark

4 Department of Computer Science, University of York, York, UK

Abstract. Simulation-based analyses of cyber-physical systems are
increasingly vital. Co-simulation is one such technique that enables the
coupling of specialized simulation tools through an orchestration algo-
rithm. The orchestrator dictates how each simulation tool should sim-
ulate its corresponding subsystem. Obtaining correct simulation results
requires an implementation-aware orchestration algorithm tailored to the
specific scenario, without the orchestrator knowing each simulation tool’s
implementation. Such an algorithm should stabilize algebraic loops, per-
form time step negotiation, and adhere to each simulation tool’s imple-
mentation. This paper describes an approach and implementation to
prove that a given orchestration algorithm respects all contracts related
to the simulation units’ implementation. The approach has been applied
to an industrial case study and other complex scenarios. The tool and
results are available online.

Keywords: Co-simulation · Model-checking · Cyber-physical systems

1 Introduction

Cyber-physical systems (CPS) are omnipresent and embody physical processes
being controlled by cyber elements. A CPS is typically developed in a distributed
fashion using different tools and techniques. Such systems are becoming increas-
ingly complex [18], which leads to the desire for techniques to assist in the
development of these. One such technique is co-simulation: the study of how

We are grateful to the Poul Due Jensen Foundation, which has supported the estab-
lishment of a new Centre for Digital Twin Technology at Aarhus University. Maurizio
Palmieri is also grateful to the Italian Ministry of Education and Research (MIUR) in
the framework of the CrossLab project (Department of Excellence).

c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 3–20, 2021.
https://doi.org/10.1007/978-3-030-85248-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_1&domain=pdf
http://orcid.org/0000-0002-3796-4319
http://orcid.org/0000-0003-2692-9742
http://orcid.org/0000-0002-6177-0928
http://orcid.org/0000-0001-6606-9236
http://orcid.org/0000-0003-4305-0625
http://orcid.org/0000-0001-7955-2702
https://doi.org/10.1007/978-3-030-85248-1_1


4 S. T. Hansen et al.

to coordinate multiple black-box simulation units (SUs), each responsible for
computing the behavior of a sub-system, in order to compute their combined
behavior, and therefore produce the global behavior of a system, as a discrete
trace (see, e.g., [8,17]).

Co-simulation allows iterative integration of constituents to explore the global
system behavior without violating the constituents’ intellectual property. The
SUs are coupled by an orchestration algorithm that interacts with each SU
through an interface. An example of such an SU is a Functional Mock-up Unit
(FMU) defined by the Functional Mock-up Interface Standard [4] (FMI), which
inspires the notion of an SU in this paper. FMI is a widely adopted standard
used commercially and supported by many tools [7].

The overarching challenge of co-simulation is ensuring correct simulation
results. Previous studies [11,12,19,21] have shown that obtaining a correct co-
simulation result requires an algorithm specifically tailored to the scenario that
respects the SUs’ input approximation functions. Not considering such details
can lead to hard to debug errors in the co-simulation results as highlighted in
[11,19], where it is shown how contracts on the co-simulation algorithm could
be constructed based on the SUs. Obeying such contracts leads to a substantial
reduction of co-simulation errors (see also Sect. 3 for more related work). An even
more challenging class of scenarios to simulate are complex scenarios subject to
either algebraic loops or adaptive steps. Complex scenarios are simulated using
a specific iterative algorithm [14]. The iterative algorithm solves the algebraic
loop (cyclic dependencies between the SUs) and ensures that all SUs agree on a
step; the latter is referred to as step negotiation. Step negotiation permits the
SUs to implement error estimation and refuse certain future state evaluations to
minimize the simulation error while ensuring that the SUs move in lockstep. We
propose an approach that has been implemented as a tool. The tool lets users
verify that their algorithm respects the contracts of the SUs.

Contribution: This paper describes an approach for verifying that a co-simulation
algorithm satisfies the contracts of the scenario. The approach covers complex
scenarios subject to algebraic loops and adaptive steps. It has been implemented
in UPPAAL [3] and has been applied to several case studies, including an indus-
trial case study from Boeing [9] and complex scenarios subject to algebraic loops
and step negotiation.

Structure: The paper starts with introducing co-simulation and the verifi-
cation challenge of co-simulation algorithms in Sect. 2. Section 3 describes
other approaches for obtaining reliable and deterministic co-simulation results.
Section 4 follows with a presentation of the verification technique. Section 5 dis-
cusses a case study and Sect. 6 concludes.

2 Background

Co-simulation is a technique enabling global simulation of a system consisting of
multiple black-box SUs. An SU has its own solver that calculates the behavior



Verification of Co-simulation Algorithms 5

trace of the dynamical system it represents. A dynamical system is a function
from time and space into some often multi-dimensional and continuous space.
Examples include population growth, water flow, and pendulums. The system
interacts with the environment through inputs and outputs [9,17].

2.1 Simulation Units

SUs can be coupled through their inputs and outputs, indicating that the state
of one SU is reliant on the state of another SU at all times - known as a coupling
restriction. However, in practice, the coupling restrictions can only be satisfied at
certain points in time, referred to as communication points. Furthermore, each
SU makes assumptions about the evolution of the input values between the com-
munication points, which can cause accumulable errors in the co-simulation [2].

A scenario is simulated using an orchestrator - an algorithm - that computes
the behavior trace of all SUs trying to satisfy their coupling restrictions by
exchanging values. The orchestrator’s goal is to find the communication points
that minimize the error introduced in the co-simulation and to ensure that the
SUs move in lockstep. Studies [10–12,19,21] have shown that optimal communi-
cation points depend on the implementation of the SUs.

Definition 1 (Simulation Unit). An SU with identifier c is represented by
the tuple

〈Sc, Uc, Yc, setc, getc, stepc〉 ,

where:

– Sc represents the state space.
– Uc and Yc the set of input and output variables, respectively.
– setc : Sc × Uc × VE → Sc and getc : Sc × Yc → VE are functions to set the

inputs and get the outputs, respectively (we abstract the set of values exchanged
between input/output variables as VE . The type of this set is the tuple 〈t,V〉,
where V denotes the value obtained at a given output port and t : R≥0 denotes
the timestamp of c when the value was obtained by an action respecting the
contracts).

– stepc : Sc × R>0 → Sc × R>0 is a function that instructs the SU to compute
its state after a given time duration. If an SU is in state s

(t)
c at time t,

(s(t+h)
c , h) = stepc(s

(t)
c ,H) approximates the state s

(t+h)
c of the corresponding

model at time t + h, where h ≤ H.

Definition 1 is inspired by [5,13] and represents a symbolic version of an
SU. The state of SU A at time t is denoted s

(t)
A . We assume the last value set

on an input/output port can be inspected, for example, the value of input ux

could be ux = 〈t, vx〉, where t is the timestamp when the value vx set on ux was
obtained. The function stepc returns a step size because some SUs implement
error estimation and may conclude that taking a step size of H will result in an
intolerable error meaning the SU takes a smaller step than planned.



6 S. T. Hansen et al.

Definition 2 (Scenario). A scenario is a structure 〈C,L,M,F,R,D〉 where
each identifier c ∈ C is associated with an SU, as defined in Definition 1, and
L(u) = y means that the output y is connected to input u. Let U =

⋃
c∈C Uc and

Y =
⋃

c∈C Yc, then L : U → Y . M ⊆ C denotes the SUs that implement error
estimation. The set of reactive components, R =

⋃
c∈C Rc, where Rc(uc) = true

means the function stepc assumes that the input uc comes from an SU that
has advanced forward relative to SU c. The set of delayed components, D =⋃

c∈C ¬Rc, where Rc(uc) = false means the function stepc assumes that the
input uc comes from an SU that is at the same time as SU c. Finally, the set of
feed-through components, F =

⋃
c∈C Fc, where the input uc ∈ Uc feeds through to

output yc ∈ Yc, that is, (uc, yc) ∈ Fc, when there exists v1, v2 ∈ VE and sc ∈ Sc,
such that getc(setc(sc, uc, v1), yc) �= getc(setc(sc, uc, v2), yc).

The syntax in Fig. 1 is used to graphically present co-simulation scenarios.
The couplings of SUs and feedthrough can introduce algebraic loops like the one
seen in the scenario in Fig. 2a: The port variables in that scenario form a cyclic
dependency, requiring that all their values are being set at the same time. The
set of port variables involved in algebraic loops are the port variables of the
non-trivial SCCs in the step operation graph, constructed based on Definition
15 in [13]. The set algebraicS denotes such variables in scenario S:

algebraicS � {s | for each s ∈ SCCs ∧ s ∈ U ∪ Y },

where SCCs : is the flatten set of all nontrivial SCCs in S.

f
a g

b Delayed

Reactiver

d

Legend

Feedthrough

d

r

SU

Fig. 1. A simple co-simulation scenario (S1).

The input variables involved
in an algebraic loop in the sce-
nario S are:

UalgebraicS
� algebraicS ∩ U

(1)

Using the given definition
of a scenario, we call a co-
simulation scenario either simple or complex.

Definition 3. A scenario S is simple if M = ∅ ∧ algebraicS = ∅.
A scenario is complex if it is not simple. Using Definition 3 we conclude that

the scenario (S1) in Fig. 1 is simple because algebraicS1 = ∅ and none of the SUs
implement error estimation (MS1 = ∅). The scenario (S2) in Fig. 2a is complex
since algebraicS2 = {uf , ug, yf , yg} meaning that all variables are a part of a
cyclic dependency that should be solved using a fixed point. The scenario (S3) in
Fig. 2b is also complex because SU C implements error estimation (MS2 = {C})
and therefore can perform step rejection. Step rejection requires special attention
since the orchestrator should backtrack the simulation and restart the simulation
with a smaller step in case of a step rejection.

The reason for distinguishing between simple and complex scenarios is that
the simulation strategy depends on the scenario type. This is treated in more



Verification of Co-simulation Algorithms 7

f
A

d

gd B

(a) Scenario S2 with an algebraic loop.

z
C

d

gr

May reject step size

D

(b) Scenario S3 needs step negotiation.

Fig. 2. Complex co-simulation scenarios.

detail later in the paper. Next, we give a brief presentation of the contracts from
[9] before describing how they can be used to verify a co-simulation algorithm.

The contracts are described as preconditions of the SU-actions get, set and
step. It should be pointed out that each input and output has a timestamp
referring to when it was last successfully activated by an action.

Definition 4 (Get Action). The precondition of getc(s
(t)
c , yc) is:

∀(u , yc) ∈ Fc =⇒ u = 〈th, 〉 ∧ th = t.
Informally saying that all inputs that feeds through to yc should be set. This

criterion is denoted as the predicate: preGetc : Sc × Yc → B.

Definition 5 (Set Action). The precondition of setc(s
(t)
c , uc, v) depends on

the contract of the input:

– If uc ∈ R then the operation is valid if v = 〈th, 〉 , where th = t + H
– If uc ∈ D then the operation is valid if v = 〈th, 〉 , where th = t.

This informally says that the value set on uc should be obtained at a meaningful
point in time dictated by the input contract. We denote this as the predicate:
preSetc : Sc × Uc × VE → B.

The criterion on a set-action will first have an effect when the SU is stepped.
However, we found that it was easier to catch and correct an incorrect algorithm
by moving this criterion to the set-action.

Definition 6 (Step Computation). The precondition of stepc(s
(t)
c ,H) is sat-

isfied if all the following conditions are fulfilled:

– ∀uc ∈ Uc. uc ∈ D =⇒ uc = 〈th, 〉 ∧ th = t.
– ∀uc ∈ Uc. uc ∈ R =⇒ uc = 〈th, 〉 ∧ th = t + H.

Informally, this is that all inputs should set with a new value since the last time
the SU was stepped. This is denoted as the predicate: preStepc : Sc ×R>0 → B.

Definition 7 (Preconditions of a Scenario). The set of all preconditions
Pre of a scenario is the union of the preconditions for each SU c ∈ C:

Pre =
⋃

c∈C

{
⋃

i∈UC

preSetc( , ui, ),
⋃

i∈YC

preGetc( , yi), preStepc

}

(2)



8 S. T. Hansen et al.

The FMI-standard [4] also describes some contracts on the state-changing
function. The implementation in UPPAAL enforces them, but they are not
treated in this paper.

2.2 Co-simulation Algorithms

A scenario is simulated by a co-simulation algorithm that consists of state-
changing functions, an initialization procedure, and a co-simulation step. This
work concentrates on the co-simulation step, which we refer to as the algorithm
throughout the paper. The other aspects of a co-simulation algorithm can triv-
ially be derived from the method.

The purpose of the co-simulation step is to move all SUs C, and all inputs and
outputs (U ∪Y ), from the initial times t to some future time t+H, where H > 0.
We use function ftime : SC → R≥0 to obtain the current timestamp of an SU.
This makes it possible to define the Hoare-triple of the co-simulation step P :

Hoare(P ) � {∀v ∈ U ∪ Y. v = 〈t, 〉 ∧ ∀c ∈ C. ftime(s(t)c ) = t} P

{∀v ∈ U ∪ Y. v = 〈t + H, 〉 ∧ ∀c ∈ C. ftime(s(t+H)
c ) = t + H}

A co-simulation step P is a sequence of instructions using the SU’s functions
setc, getc, and stepc. Each index i of the sequence P [i] represents an action
in the algorithm, for example, if P is the co-simulation step in Algorithm1
P [0] = stepA(s(0)A , ). Figure 3 shows three different co-simulation steps of the
scenario in Fig. 1.

Algorithm 1

1: (s(H)
A , H) ← stepA(s(0)

A , H)

2: (s(H)
B , H) ← stepB(s(0)

B , H)

3: fv ← getA(s(H)
A , yf )

4: gv ← getB(s(H)
B , yg)

5: s
(H)
B ← setB(s(s)

B , uf , fv)

6: s
(H)
A ← setA(s(H)

A , ug, gv)

Algorithm 2

1: (s(H)
B , H) ← stepB(s(0)

B , H)

2: (s(H)
A , H) ← stepA(s(0)

A , H)

3: gv ← getB(s(H)
B , yg)

4: s
(H)
A ← setA(s(H)

A , ug, gv)

5: fv ← getA(s(H)
A , yf )

6: s
(H)
B ← setB(s(H)

B , uf , fv)

Algorithm 3

1: (s(H)
B , H) ← stepB(s(0)

B , H)

2: gv ← getB(s(H)
B , yg)

3: s
(0)
A ← setA(s(0)

A , ug, gv)

4: fv ← getA(s(0)
A , yf )

5: s
(H)
B ← setB(s(H)

B , uf , fv)

6: (s(H)
A , H) ← stepA(s(0)

A , H)

Fig. 3. Three algorithms conforming to the FMI standard (version 2.0) of the scenario
in Fig. 1.

Although the three algorithms in Fig. 3 consist of the same actions, they
are not equivalent, and simulating with one algorithm instead of one of the
others could drastically change the co-simulation result as shown in [13]. They
showed that by obeying the contracts, the scenario will be simulated correctly.
We assume that the contracts in the scenario are constant through the simula-
tion, which is the case for most commercially used SUs. At the end of Sect. 2.3,
we show which of these algorithms is correct.



Verification of Co-simulation Algorithms 9

A co-simulation step P is executed using a configuration c. The configuration
c � 〈H, guess〉 consists of the parameters of the co-simulation step P . H ∈ R>0

defines the step size, and guess : Ualgebraic → VE is a total function linking all
inputs in Ualgebraic to a guess that tries to satisfy the algebraic loops. Using
the example from Algorithm1, the action at index 0 in P applied with the
configuration 〈1, 〉 is: P [0](c) = stepA(s(0)A , 1). The configuration defines the
step size (1) of the step-action.

The set Configurations denotes all the possible configurations of the co-
simulation step for a given scenario. The execution of a co-simulation step P
is the execution of each action in P . We define such execution of P using con-
figuration c as:

P (c) � for each i ∈ dom(P ). P [i](c) (3)

An execution of P (cj) yields another configuration cj+1 ∈ Configurations where
P (cj) = cj+1. The configuration cj+1 : 〈H1, guess1〉 is obtained from the algo-
rithm P and configuration cj : 〈H, guess〉 by updating H1 to the smallest step
accepted by an SU during the execution of P (cj). And the function guess1 has
the same domain as guess, but the range is updated to the new value of the out-
put coupled to the associated input in the domain of guess after executing P (cj).

guessj+1(u) = value(u, P (cj)) and H1 = minStep(P (cj)) (4)

The execution of a configuration c : 〈H, guess〉 has converged if all SUs accept the
step H, and all algebraic loops are stabilized (all values in the range of guess are
fixed-points). The domain of guess is all the inputs in Ualgebraic for the scenario;
this means that all configurations of the same scenario have the same domain.

Definition 8. Two configurations of the same scenario S cj : 〈H1, guess1〉 ∈
Configurations and cj+1 : 〈H2, guess2〉 ∈ Configurations are convergent if:

cj ≈ cj+1 � H1 = H2 ∧ (∀i ∈ dom(guess). guess1[i] ≈ guess2[i])

Two values v1E : (v1, t1) and v2E : (v2, t2) of type VE converge if:

v1E ≈ v2E � | v1 − v2 | ≤ ε ∧ t1 = t2 (5)

Formally an execution of a co-simulation step P of a configuration cj is stable
or has converged if P (cj) = cj+1 =⇒ cj ≈ cj+1.

A complex scenario is a scenario where not all configurations are stable. Such
a scenario can only be correctly simulated by an algorithm P if a convergent
configuration exists:

∃c ∈ Configurations,∃j ∈ N. P (cj) = cj+1 =⇒ cj ≈ cj+1 (6)

Some measures should be taken to handle cases where no convergent configura-
tion exists.



10 S. T. Hansen et al.

2.3 Correct Co-simulation Algorithms

To optimally simulate a co-simulation scenario using an algorithm P requires
more than a convergent configuration c. The algorithm P should also success-
fully satisfy all the preconditions/contracts. To describe this, we introduce the
sequence C, which is a permutation of the set Pre (cf. Definition 7). The sequence
C is constructed by a function C = contracts(P, Pre) that for each action in P
finds the corresponding precondition pre ∈ Pre and adds it to C such that for
an arbitrary index i in P , C[i] is the precondition of the action P [i].

If an action at index i in P satisfies its precondition C[i] using the configura-
tion c, it is denoted as:

P [i](c) |= C[i] (7)

A co-simulation step P using a configuration c satisfies C if all actions satisfy its
precondition.

P (c) |= C � ∀i ∈ dom(P ). P [i](c) |= C[i] (8)

P (c) |= C means the algorithm respects the scenario’s contracts. Based on pre-
vious studies it is well-known that a non-convergent configuration c does not
respect all the contracts:

cj �≈ cj+1 =⇒ P (cj) �|= C (9)

Therefore we only check the contracts of the scenario if the current configuration
is convergent. We can now describe what it means for an algorithm to be correct
for a given scenario in the following Hoare triple.

Definition 9. An algorithm P and configuration c : 〈H, 〉 is correct if:

P (c) |= C ∧ {∀v ∈ U ∪ Y. v = 〈t, 〉 ∧ ∀c ∈ C. ftime(s(t)c ) = t} P (c)

{∀v ∈ U ∪ Y. v = 〈t + H, 〉 ∧ ∀c ∈ C. ftime(s(t+H)
c ) = t + H}

Meaning all preconditions are satisfied and all SUs and inputs have moved from
time t to time t + H through the execution of P (c).

Using Definition 9 we conclude that Algorithm3 is correct while the others are
incorrect since they break one or more of the defined preconditions. Algorithm1
and 2 violate the precondition of stepb on line 2 by stepping it without having
provided SU b with a value on the reactive input f . These definitions form
the basis for describing the approach and implementation used to verify co-
simulation algorithms in this work.



Verification of Co-simulation Algorithms 11

3 Related Work

The study of semantics and verification of co-simulation algorithms is pre-
sented in [5,9,13]. The paper [13] describes a formalization of an FMI-based
co-simulation scenario where several correctness criteria are placed on the co-
simulation algorithm to generate and verify a co-simulation algorithm. This
paper extends their work by treating co-simulation scenarios subject to alge-
braic loops and adaptive steps. Thule et al. [22] studied how a co-simulation
scenario’s characteristics can be used to choose the correct simulation strategy
for a given co-simulation algorithm. In [14], algorithms of complex scenarios are
described, but this paper lacks the feature to verify the correctness of algorithms
for complex scenarios.

Broman et al. describe in [5] an approach to achieve deterministic co-
simulation results by placing constraints on the co-simulation scenario to avoid
algebraic loops. They also propose a generic master algorithm for handling step
negotiation. However, such generic algorithms do not consider other constraints
on the SUs like reactive inputs or algebraic loops. This paper deals with all these
constraints.

Formal methods have previously been successfully used in the area of co-
simulation [1,6,23]. Amálio et al. [1] study how connections between simulation
units can be formalized. They investigate how different formal tools can detect
algebraic loops to obtain a deterministic co-simulation result. Cavalcanti et al. [6]
claim to provide the first behavioral semantics of FMI. The paper shows how to
prove essential properties of master algorithms, like termination and determin-
ism. It also shows that the example provided in the FMI standard is not a valid
algorithm. The paper [23] by Zeyda et al. formalizes models and proofs about
co-simulation in Isabelle/UTP, illustrated by an industrial case study from the
railway sector. However, their approach does not cover complex scenarios, unlike
ours.

Nyman et al. in [16] examine how UPPAAL can analyze controller-based sys-
tems with FMUs and a master algorithm modeled in UPPAAL. UPPAAL was
used to verify the properties of the controller used in the co-simulation. Palmieri
et al. in [20] have used UPPAAL to provide sound guarantees on the interleaving
between a graphical user interface and a generic FMI master algorithm. Our app-
roach is more generic and relies on a parameterized template approach that can
be applied to arbitrary co-simulation scenarios subject to both step negotiation
and algebraic loops.

4 Verifying Complex Co-simulation Algorithms

This section describes our approach for verifying that a co-simulation algorithm
respects the contracts of the scenario. The paper focuses on complex scenarios
since the approach trivially covers simple scenarios. The section starts with an
introduction of the UPPAAL-implementation. This is followed by some concrete
examples of the approach using the scenarios in Figs. 2b and 8b.



12 S. T. Hansen et al.

4.1 Verifying an Algorithm Using UPPAAL

The approach is implemented in UPPAAL. A co-simulation is formalized as a
collection of timed automata (TA) that formally describe a co-simulation as
an orchestrator and some SUs. Two extra UPPAAL-templates are introduced
to verify algorithms of complex scenarios by performing the search for a correct
configuration. The structure of the UPPAAL model is fixed, however a translator
(available online1) generates a unique model for each scenario and algorithm. The
scenario and algorithm are expressed in a high-level domain-specific language
similar to the algorithms in the paper. The tool can translate and verify all
algorithms described by the grammar in Fig. 4. The tool checks both initialization
procedures and co-simulation steps, but we only show the grammar of the co-
simulation step due to space limitations.

〈cosim-step〉 ::= ‘[’〈cosim-action〉*‘]’
〈SU-action〉 ::= 〈get : SU.Port〉 | 〈set: SU.Port〉 | 〈step: SU 〉 | 〈restore-state: SU 〉 |

〈save-state: SU 〉
〈SU-step-action〉 ::= 〈SU-action〉 | ‘{’ 〈algebraic〉 ‘}’

〈cosim-action〉 ::= 〈SU-action〉 | ‘{’ 〈step-loop〉 ‘}’ | ‘{’ 〈algebraic〉 ‘}’

〈step-loop〉 ::= ‘until-step-accept:’ ‘[’SU*‘]’
‘iterate:’ ‘[’〈SU-step-action〉*‘]’
‘if-retry-needed:’ ‘[’〈restore-state: SU 〉*]’

〈algebraic〉 ::= ‘until-converged:’ ‘[’SU.Port*‘]’
‘iterate:’ ‘[’〈SU-action〉*‘]’
‘if-retry-needed:’ ‘[’〈restore-state: SU 〉*]’

Fig. 4. BNF Grammar for the specification of a co-simulation step

Notice, the tool does not allow nested fixed-point iteration procedures or
step-negotiation inside a nested statement (step-loop or algebraic-loop). This is
because the authors do not know any scenarios that such an algorithm should
simulate. The following section explains the ideas behind the different UPPAAL-
templates before describing how the verification of the algorithm is performed
in UPPAAL.

The Interpreter orchestrates the behavior of the SUs by interpreting the sup-
plied algorithm. It is responsible for executing the orchestration algorithm from
Instantiation to Termination. A correct algorithm ensures that the Interpreter
reaches the Termination state while an incorrect hits a deadlock. The Interpreter
works deterministically by systematically picking an action of the algorithm and
delegate it to one of the other automata using channel synchronization and
shared variables.

1 https://github.com/INTO-CPS-Association/Scenario-Verifier.

https://github.com/INTO-CPS-Association/Scenario-Verifier


Verification of Co-simulation Algorithms 13

The preconditions described in Definitions 4 to 6 are encoded in UPPAAL
as invariant functions of the states in the SU-template as shown in Fig. 5 by
the function preSet, preGet and preDostep. The SU-template describes the
interface (see Definition 1) and life-cycle of an SU. The values exchanged between
the SUs are of the type VE (a status and a timestamp). Thus, the design contains
enough information to check the contracts. However, nothing can be said about
the numerical aspect of the co-simulation.

Fig. 5. Model of an SU in UPPAAL.

A violation of a guard or an invariant function results in a deadlock. A dead-
lock indicates that the algorithm either breaks a precondition or is not complete.
A correct algorithm does not deadlock and reaches the state“Terminated”, which
means that all preconditions/contracts were satisfied and that the algorithm is
complete. A complete algorithm correctly instantiates and informs all SUs that
the simulation has ended. The automata in UPPAAL are designed, so all transi-
tions are guarded except one identity transition in the trap state“Terminated” in
the Interpreter-template. This ensures that all violations of the contracts result
in a deadlock; furthermore, no deadlock can occur if the state “Terminated” is
reached.

We
define the two CTL-formulas: A� not deadlock and A♦MasterA.Terminated
for UPPAAL to verify. The first formula ensures that UPPAAL finds no dead-
lock. The second formula ensures that the Interpreter always reaches the state
“Terminated”, implying that the co-simulation is entirely executed and is not
trapped into an infinite loop, which is not considered by the previous formula.
Since the end time (t + H, where H > 0) of the simulation is greater than the
start time (t), it can be concluded that at least one co-simulation step was suc-
cessfully executed/checked. Moreover, since the contracts are constant over time,
it can be concluded using induction that all future/other steps also satisfy these
contracts. This is the essential argument for describing how the tool verifies that
an algorithm is correct concerning Definition 9.

The method is clarified through a couple of examples. First, looking back
at the incorrect Algorithms 1 and 2, we can see that they violate both of



14 S. T. Hansen et al.

the CTL-formulas since the broken precondition on line 2 is caught by the
guard preDostep and results in a deadlock. Nevertheless, on the other hand,
Algorithms 3 satisfies both CTL-formulas, and therefore also satisfies
Definition 9.

4.2 Verifying Complex Simulation Scenarios in UPPAAL

Complex scenarios are, as previously described, simulated by an algorithm P
that iteratively searches for a correct configuration, not violating any of the
actions’ preconditions. However, as described by Eq. (9) all unsuccessful search
attempts violate some of the preconditions. Therefore, the implementation in
UPPAAL tolerates such violations until a correct configuration is identified.

The approach is to temporarily turn off the preconditions for complex scenar-
ios until a correct/convergent configuration is found (see Definition 8). Then, in
between unsuccessful attempts, the co-simulation is backtracked, and a new search
attempt is initiated where the configuration is updated as described in Sect. 2.2.

If the Interpreter finds a correct configuration, it backtracks the simulation,
turns on the preconditions, and runs an extra iteration of the routine while
checking the preconditions to ensure that the algorithm and configuration respect
the contracts. To avoid state-space explosion and ensure termination, the number
of search attempts is bounded. Thus, if the algorithm does not manage to find
a correct configuration within the bound, the algorithm is considered incorrect.
Since the simulation depends on the nature of the scenario, the next section is
split to describe two different kinds of complex scenarios - step negotiation and
algebraic loops.

Verifying a Step Negotiation Procedure. Step negotiation is a mechanism
for the SUs to agree on the step size. The procedure iteratively searches for a
step using a sequence of SU-actions in each iteration. The step size is shrunken
between unsuccessful iterations. The step negotiation for the scenario in Fig. 2b
is presented in Algorithm 4. UPPAAL verifies that a common step can be found
using a given algorithm. Furthermore, it ensures that all preconditions of the
actions are satisfied using the found step.

UPPAAL first tries to establish a proper step without considering the con-
tracts. UPPAAL confirms this by transforming the supplied algorithm to a simi-
lar one that initially turns off the preconditions while it searches for a step. The
transformation is shown from the original Algorithm 4 to the modified Algorithm
5 that UPPAAL checks. The preconditions are disabled to circumvent the model
from deadlocking on unsuccessful search attempts. For example, if SU C is not
capable of performing a step of the same size as SU D, this would break the pre-
conditions of stepD in line 6 in Algorithm 4. However, violations are tolerated
until the SUs agree on a step due to the backtracking. If a correct step is identi-
fied, the preconditions are turned back on (see line 16) and an extra iteration of the
procedure is performed to verify that all contracts are respected. If a correct step
is not establish within N -tries, the algorithm is declared incorrect, and the verifi-
cation aborts (line 20). UPPAAL non-deterministically picks a maximal positive



Verification of Co-simulation Algorithms 15

step for each SU in M to introduce the non-determinism of a step negotiation. We
assume an SU accepts any step smaller or equal to its maximal step.

Algorithm 4 Step negotiation proce-
dure of scenario in Fig. 2b.
1: SaveSUs � Save the SUs
2: while !Step found do � Step negotiation

3: (s
(s+hD)
D , hD) ← stepD(s

(s)
D , h)

4: gv ← getD(s
(s+hD)
D , yg)

5: s
(s)
C ← setC(s

(s)
C , uG, Gv)

6: (s
(s+hC )
C , hC) ← stepC(s

(s)
C , hD)

7: h ← min(hC , hD) � Minimum step
8: Step found ← h == hC ∧ h == hD

9: if !Step found then � Restore SUs
10: RestoreSUs
11: end if
12: end while

Algorithm 5 Modified Step negotia-
tion procedure of scenario in Fig. 2b.
1: SaveSUs � Save the SUs
2: TurnPreconditionsOff ()
3: (I, isExtra) ← (0, false)
4: while !Step found do
5: Line 3-8 from Algorithm 4
6: if !Step found then
7: I ← I + 1
8: else � Correct step found
9: if !isExtra then � Check contracts

10: TurnPreconditionsOn()
11: isExtra ← true
12: else
13: return(true) � Correct

algorithm
14: end if
15: end if
16: if I == N then � Max attempt
17: return(false) � Invalid algorithm
18: end if
19: RestoreSUs
20: end while

Verifying a Fixed-Point Procedure. The fixed-point procedure solves alge-
braic loops by finding fixed-points on the involved ports. Similar to step negoti-
ation, a fixed-point procedure is an iterative search for a correct configuration.
A fixed-point iteration procedure is shown in Algorithm6.

The UPPAAL-model ensures the correctness of scenarios with algebraic loops
that a fixed-point can be obtained using the algorithm without violating a single
contract. However, the numerical aspect of finding a fixed-point is not included
in our model since we restrict to a symbolic abstraction. However, the tool is
still capable of checking that the contracts of the SUs are respected.

4.3 Debugging Algorithm Errors

When an algorithm is deemed incorrect by UPPAAL, the user needs to determine
why. A model-checker (like UPPAAL) provides counter-examples. However, these
are often hard to understand for a normal user. Therefore, a tool has been
created to visualize the counter-example as an animation. The animation shows
the violation found by UPPAAL. The animation shows which actions have been
applied and which actions are enabled at any given time of the simulation. An
example of the animation is shown in Fig. 8a.

5 Validation

The tool has been used to verify various algorithms and generate counter-
examples for incorrect ones. The examples are publicly available2. The tested
2 https://github.com/SimplisticCode/Co-simulation-Verifier.

https://github.com/SimplisticCode/Co-simulation-Verifier


16 S. T. Hansen et al.

scenarios include an industrial scenario from Boeing [11] of 4 SUs and 8 con-
nections3. We have also tested it with what we believe to be the most common
mistakes when implementing an algorithm to be confident that the tool catches
these mistakes. The tests of the tool include abstract scenarios with multiple
algebraic loops and more than 50 SUs and over 100 connections.

In this section, we show two examples: the first one, already introduced in
Fig. 1, is designed to highlight the numerical errors that can happen when con-
tracts are not satisfied, and the second one showcases an abstract scenario with
all types of contracts described in the current manuscript.

5.1 Motivation Example

Our motivation example was introduced in Fig. 1, and its equations are displayed
in Fig. 6. To highlight the numerical error caused by a mismatch in contracts, we
conducted a series of experiments where the contracts were intentionally violated,
i.e.; we applied the wrong algorithm to the contracts used. We studied this effect
for multiple parameters’ choices and selected two results representing the most
common errors, illustrated in Fig. 7. Each plot shows the analytical solution, the
correct co-simulation, and the incorrect co-simulation. Naturally, even the correct
co-simulation will introduce errors. However, most of the results show an error
caused solely by the contract mismatch, as shown on the left-hand side of Fig. 7.
However, depending on the parameters and initial conditions of the experiment,
some cases show that the mismatch is less important. This makes it very difficult
to assess in practice whether some errors are caused by implementation mistakes
or caused by the co-simulation discretization, and hence motivates our work.
Some work has been carried out in [15] to characterize for which parameter
values and initial conditions, the contracts are essential, but this is outside the
scope of this paper.

 

MSD1 MSD2

M1
Spring +
DamperW

al
l

M2
Spring +
Damper

Spring +
Damper W

al
l

 
 

 

Fig. 6. Structure and equations of motivational example. Legend: xi, vi represent the
position and velocity, respectively; fi represents force, ci, di represent stiffness and
damping parameters, mi represents mass.

3 https://github.com/SimplisticCode/Co-simulation-Verifier/blob/master/Scenario/
examples/industrial casestudy.conf.

https://github.com/SimplisticCode/Co-simulation-Verifier/blob/master/Scenario/examples/industrial_casestudy.conf
https://github.com/SimplisticCode/Co-simulation-Verifier/blob/master/Scenario/examples/industrial_casestudy.conf


Verification of Co-simulation Algorithms 17

Fig. 7. Example results. Except when indicated in each plot, all parameters have
the following default values: mi = ci = 1 and di = 0. The step used in the
co-simulation is 0.1.

5.2 Complex Scenario

The scenario introduced here contains an algebraic loop between some SUs that
may reject a step. The scenario is shown in Fig. 8b, and the algorithm of a valid
co-simulation step is shown in Algorithm6. The scenario is simulated using a

(a) Wrong algorithm of Fig. 8b
highlighted by the animation.

B

dx

r

r

v

f

C
d

gr

z

May reject step size

A

(b) Case study scenario - Loop
within Loop.

Algorithm 6 Co-simulation Step of Fixed-
point Iteration inside Step finding procedure.
1: Save SUs � Save all 3 SUs
2: h ← Hmax

3: while !step found do � Step negotiation
4: while !converged do � FP procedure
5: s

(s)
A ← setA(s(s)

A , uf , fv)

6: s
(s)
B ← setB(s(s)

B , [uv, ug ], [vv, gv ])

7: (s(s+hC )
C , hC), ← stepC(s(s)

C , h)

8: (s(s+hB)
B , hB), ← stepB(s(s)

B , h)

9: (s(s+hA)
A , hA), ← stepA(s(s)

A , h)

10: [va, xv ] ← getA(s(s+hA)
A , [yv, yx])

11: zv ← getB(s(s+hB)
B , yz)

12: s
(s+hC )
C ← setC(s(s+hC )

C , uz, zv)

13: ga ← getC(s(s+hC )
C , yg)

14: s
(s+hB)
B ← setB(s(s+hB)

B , ux, xv)

15: fa ← getB(s(s+hB)
B , yF )

16: conv←CheckConv((ga, va, fa), (gv, vv, fv))
17: if !conv then
18: Restore SUs � Restore all 3 SUs
19: end if
20: (gv, vv, fv) ← (ga, va, fa)
21: end while
22: h ← min(hA, hB , hC)
23: Step found ← h == hA ∧ h == hB ∧ h == hC

24: if !Step found then
25: Restore SUs � Restore all 3 SUs
26: end if
27: end while

Fig. 8. Advanced case study scenario (2b) and Algorithm (6). A counter-example is
shown in 8a.



18 S. T. Hansen et al.

master algorithm consisting of a fixed-point iteration for solving the algebraic
loop inside the step negotiation procedure like Algorithm6.

Algorithm6 is too complex to be analyzed with a simple visual inspection,
showing the necessity of the UPPAAL tool created in this paper. The tool can
analyze the algorithm in few seconds and has been used several times on interme-
diate versions of the algorithm to help the authors obtaining the correct version.

6 Concluding Remarks

This work proposed a model-checking approach to verify that an algorithm for
an FMI-based co-simulation respects all the implementation contracts of the
SUs. The contracts arose from previous work, which demonstrated that imposing
them leads to better co-simulation results in the sense that the error introduced
is caused only by the numerical discretization (as opposed to hard-to-debug con-
tract mismatches, as Fig. 7 showed). In addition, the new approach can handle
complex co-simulation scenarios containing both algebraic loops and step nego-
tiation.

A tool generates a UPPAAL-model from a co-simulation scenario and an
algorithm. The tool enables co-simulation practitioners to verify that their co-
simulation algorithm is tailored to the scenario. Incorrect algorithms are pre-
sented using an animation of the simulation trace to clarify the problems. The
approach inspires the work for synthesizing correct orchestration algorithms [14],
and they together form the Scenario-Verifier.

Acknowledgements. We would like to thank Stefan Hallerstede, Tomas Kulik, Jalil
Boudjadar, and the reviewers for providing valuable input to this paper.

References

1. Amálio, N., Payne, R., Cavalcanti, A., Woodcock, J.: Checking SysML models for
co-simulation. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol.
10009, pp. 450–465. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47846-3 28

2. Arnold, M., Clauß, C., Schierz, T.: Error analysis and error estimates for co-
simulation in FMI for model exchange and co-simulation v2.0. In: Schöps, S., Bar-
tel, A., Günther, M., ter Maten, E.J.W., Müller, P.C. (eds.) Progress in Differential-
Algebraic Equations. DEF, pp. 107–125. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44926-4 6

3. Behrmann, G., et al.: UPPAAL 4.0. In: Third International Conference on Quan-
titative Evaluation of Systems (QEST 2006), pp. 125–126 (2006)

4. Blockwitz, T., et al.: Functional mockup interface 2.0: the standard for tool inde-
pendent exchange of simulation models. In: Proceedings of the 9th International
MODELICA Conference, September 3-5, 2012, Munich, Germany. vol. 76, pp.
173–184. Linköping University Electronic Press (2012). https://doi.org/10.3384/
ecp12076173

https://doi.org/10.1007/978-3-319-47846-3_28
https://doi.org/10.1007/978-3-319-47846-3_28
https://doi.org/10.1007/978-3-662-44926-4_6
https://doi.org/10.1007/978-3-662-44926-4_6
https://doi.org/10.3384/ecp12076173
https://doi.org/10.3384/ecp12076173


Verification of Co-simulation Algorithms 19

5. Broman, D., et al.: Determinate composition of FMUs for co-simulation. In:
Eleventh ACM International Conference on Embedded Software. IEEE Press, Pis-
cataway (2013). Article no. 2

6. Cavalcanti, A., Woodcock, J., Amálio, N.: Behavioural models for FMI co-
simulations. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp.
255–273. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4 15

7. FMI: Functional mock-up interface tools (2014). https://fmi-standard.org/tools/
8. Gomes, C., Broman, D., Vangheluwe, H., Thule, C., Larsen, P.G.: Co-simulation:

a survey. ACM Comput. Surv. 51(3), 49–49 (2018)
9. Gomes, C., Lucio, L., Vangheluwe, H.: Semantics of co-simulation algorithms with

simulator contracts. In: 2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C), pp. 784–
789. IEEE (2019)

10. Gomes, C., et al.: Semantic adaptation for FMI co-simulation with hierarchical
simulators. SIMULATION 95(3), 241–269 (2019)

11. Gomes, C., et al.: HintCO - hint-based configuration of co-simulations. In: Proceed-
ings of the 9th International Conference on Simulation and Modeling Methodolo-
gies, Technologies and Applications, pp. 57–68. Scitepress - Science and Technology
Publications (2019)

12. Gomes, C., Thule, C., Lausdahl, K., Larsen, P.G., Vangheluwe, H.: Demo: sta-
bilization technique in INTO-CPS. In: Mazzara, M., Ober, I., Salaün, G. (eds.)
STAF 2018. LNCS, vol. 11176, pp. 45–51. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-04771-9 4

13. Gomes, C., Thule, C., Lúcio, L., Vangheluwe, H., Larsen, P.G.: Generation of co-
simulation algorithms subject to simulator contracts. In: Camara, J., Steffen, M.
(eds.) SEFM 2019. LNCS, vol. 12226, pp. 34–49. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-57506-9 4

14. Hansen, S.T., Gomes, C., van de Pol, J., Larsen, P.G.: Synthesizing co-simulation
algorithms with step negotiation and algebraic loop handling (2021, to appear)

15. Inci, E.O., et al.: The effect and selection of solution sequence in co-simulation. In:
The Annual Modeling and Simulation Conference, Virginia, USA (2021, to appear)

16. Jensen, P.G., Larsen, K.G., Legay, A., Nyman, U.: Integrating tools: co-simulation
in UPPAAL using FMI-FMU. In: 2017 22nd International Conference on Engineer-
ing of Complex Computer Systems (ICECCS), pp. 11–19. IEEE (2017)

17. Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput.
Model. Dyn. Syst. 6(2), 93–113 (2000)

18. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pp. 363–369 (2008)

19. Oakes, B.J., Gomes, C., Holzinger, F.R., Benedikt, M., Denil, J., Vangheluwe, H.:
Hint-based configuration of co-simulations with algebraic loops. In: Obaidat, M.S.,
Ören, T., Szczerbicka, H. (eds.) SIMULTECH 2019. AISC, vol. 1260, pp. 1–28.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55867-3 1

20. Palmieri, M., Bernardeschi, C., Masci, P.: A framework for FMI-based co-
simulation of human-machine interfaces. Softw. Syst. Model. 19(3), 601–623 (2020).
https://doi.org/10.1007/s10270-019-00754-9

21. Schweizer, B., Li, P., Lu, D.: Explicit and implicit cosimulation methods: stabil-
ity and convergence analysis for different solver coupling approaches. J. Comput.
Nonlinear Dyn. 10(5), 051007 (2015)

https://doi.org/10.1007/978-3-319-46750-4_15
https://fmi-standard.org/tools/
https://doi.org/10.1007/978-3-030-04771-9_4
https://doi.org/10.1007/978-3-030-04771-9_4
https://doi.org/10.1007/978-3-030-57506-9_4
https://doi.org/10.1007/978-3-030-57506-9_4
https://doi.org/10.1007/978-3-030-55867-3_1
https://doi.org/10.1007/s10270-019-00754-9


20 S. T. Hansen et al.

22. Thule, C., Gomes, C., Deantoni, J., Larsen, P.G., Brauer, J., Vangheluwe, H.:
Towards the verification of hybrid co-simulation algorithms. In: Mazzara, M., Ober,
I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 5–20. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04771-9 1

23. Zeyda, F., Ouy, J., Foster, S., Cavalcanti, A.: Formalising cosimulation models. In:
Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 453–468. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-74781-1 31

https://doi.org/10.1007/978-3-030-04771-9_1
https://doi.org/10.1007/978-3-319-74781-1_31


Automated Verification of Temporal
Properties of Ladder Programs

Cláudio Belo Lourenço1 , Denis Cousineau2 , Florian Faissole2 ,
Claude Marché1(B) , David Mentré2 , and Hiroaki Inoue3

1 Université Paris-Saclay, CNRS, Inria, LMF, 91405 Orsay, France
Claude.Marche@inria.fr

2 Mitsubishi Electric R&D Centre Europe, Rennes, France
3 Mitsubishi Electric Corporation, Amagasaki, Japan

Abstract. Programmable Logic Controllers (PLCs) are industrial digi-
tal computers used as automation controllers in manufacturing processes.
The Ladder language is a programming language used to develop PLC
software. Our aim is to prove that a given Ladder program conforms to
an expected temporal behaviour given as a timing chart, describing sce-
narios of execution. We translate the Ladder code and the timing chart
into a program for the Why3 environment, within which the verifica-
tion proceeds by generating verification conditions, to be checked valid
using automated theorem provers. The ultimate goal is two-fold: first, by
obtaining a complete proof, we can verify the conformance of the Ladder
code with respect to the timing chart with a high degree of confidence.
Second, when the proof is not fully completed, we obtain a counterexam-
ple, illustrating a possible execution scenario of the Ladder code which
does not conform to the timing chart.

Keywords: Ladder language for programming · PLCs · Timing
charts · Formal specification · Deductive verification · Why3
environment

1 Introduction

Programmable Logic Controllers (PLCs) are industrial digital computers used
as automation controllers in manufacturing processes, such as assembly lines or
robotic devices. PLCs can simulate the hard-wired relays, timers and sequencers
they have replaced, via software that expresses the computation of outputs from
the values of inputs and internal memory. The Ladder language, also known
as Ladder Logic, is a programming language used to develop PLC software.
This language uses circuit diagrams of relay logic hardware to represent a PLC
program by a graphical diagram. This language was one of the first available for
programming PLCs, and is now standardised in the IEC 61131-3 standard [17].

This work has been partially supported by the bilateral contract ProofInUse-MERCE
between Inria team Toccata and Mitsubishi Electric R&D Centre Europe, Rennes.

c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 21–38, 2021.
https://doi.org/10.1007/978-3-030-85248-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_2&domain=pdf
http://orcid.org/0000-0001-8828-8843
http://orcid.org/0000-0003-4078-3591
http://orcid.org/0000-0001-5792-0658
http://orcid.org/0000-0003-3035-1269
http://orcid.org/0000-0003-4315-0335
https://doi.org/10.1007/978-3-030-85248-1_2


22 C. B. Lourenço et al.

It is one language among other languages for programming PLCs, and is still
widely used and very popular among technicians and electrical engineers.

Because of the widespread usage of PLCs in industry, verifying that a given
Ladder program conforms to its expected behaviour is of critical importance. In
this work, we consider the description of the expected temporal behaviour under
the form of a timing chart, describing scenarios of execution. Our approach con-
sists in automatically translating the Ladder code and the timing chart into a
program written in the WhyML language, which is the input language of the
generic Why3 environment for deductive program verification [6]. In WhyML,
expected behaviours of program are expressed using contracts, which are anno-
tations expressed in formal logic. The Why3 environment offers tools for check-
ing that the WhyML code conforms to these formal contracts. This verification
process is performed using automated theorem provers, so that at the end, if
the back-end proof process succeeds, the conformance of the Ladder code with
respect to the timing chart is verified with a high degree of confidence. Yet, a
complete formal proof is not the only expected feedback from our tool chain:
we also want to obtain useful feedback when the proof does not succeed, our
long-term goal being to build a tool that would be useful to regular Ladder pro-
grammers. More precisely, in such a case of proof failure, we aim at obtaining a
counterexample which must illustrate a possible execution scenario of the Ladder
code which does not conform to the timing chart.

This paper is organised as follows. We start in Sect. 2 by introducing the
basics of Ladder programming, and the way their expected temporal behaviours
are expressed using timing charts. The translation of Ladder code and timing
charts into WhyML programs is described in Sect. 3. Section 4 presents our exper-
iments and their results, both in the case of a complete proof success and in the
case of a proof failure, where a counterexample is generated. We discuss related
work and future work in Sect. 5. For sake of concision some technical details are
omitted, such details are available in an extended research report [4].

2 Introduction to Ladder Programming

A Ladder program (a diagram) takes inputs values (contacts) that correspond
to the fact that physical relays are either wired, not wired, pulsing (rising edge)
or downing (falling edge), and other values stored in the internal memory of
the PLC (Boolean values, integers, floating-point values, strings, etc.). A Ladder
program can output Boolean values to the physical relays of the factory (coils)
or it can call instructions, that may modify the values of the internal memory of
the PLC (devices). Graphically, contacts are located at the left of the diagram.
They can be combined in a serial way (Boolean conjunction) or in a parallel
way (disjunction). Coils and instructions are activated when the combination of
contacts at their left gives a wired value, and they can also be parallelised (in that
case, they are either all activated or all deactivated). A line with contacts, coils
and instructions is called a rung, and a program is composed of several rungs.
Such a Ladder program is executed cyclically in a synchronous way: first inputs



Automated Verification of Temporal Properties of Ladder Programs 23

are read, then the program is executed and eventually outputs are written. One
single execution of the program is called a scan.

Fig. 1. Carriage line control: system description

Running Example. A rather simple example of a PLC controlling a carriage
line is depicted in Fig. 1, with the corresponding Ladder program in Fig. 2. This
example comes from a Mitsubishi Electric training manual for programming
PLCs [14]. To our knowledge, timing charts are generally used to specify pro-
grams of comparable size, e.g. Function Blocks, which are kind of library func-
tions that are shipped together with a PLC and a programming environment.
We illustrate some principles of Ladder Logic on the first rung of this example:
this rung expresses the fact that output Y70 receives the value of the Boolean
formula (X0 ∨ Y70) ∧ (¬ M2), i.e. if the corresponding physical devices are
activated such that the Boolean formula is true, then Y70 is activated, and is
deactivated otherwise.

The program also makes use of the Ladder instructions SET, RST and PLS.
The SET instruction activates its device argument (either an internal memory
device or an output device) when its input is activated, and does nothing other-
wise. For instance, in Fig. 2, Y71 is activated when both the common front (X0
∨ Y70) ∧ (¬ M2) and the internal memory device M1 are activated. The RST
instruction is the opposite: the device argument is deactivated when the input is
activated. The PLS (pulse) instruction activates its device argument on a rising
edge of its input, i.e. when the input has just been activated, then it deactivates
its device argument on the next scan.

The diagram also uses a timer instruction on a special device T0 which is
activated once the timer finishes. When its input is activated, the instruction



24 C. B. Lourenço et al.

Fig. 2. Carriage line control: ladder program

sets the threshold (here 30) of the timer and increments a counter. After 30
consecutive scans in which both the common front and output Y73 are activated,
the device T0 is activated (and it remains activated until the input of the timer
instruction is deactivated).

Specification of Expected Temporal Behaviour. Because of its synchronous
nature, the language hardly lends itself to exhaustive functional specifications.
Since the work made on AutomationML [11] by an industrial and academic con-
sortium, the practice, among PLC designers, is to use the timing chart paradigm,
which describes the expected temporal behaviour of the PLC for a nominal exe-
cution scenario. A timing chart specifies the evolution of outputs over the execu-
tion of scans, according to the evolution of inputs. It is made of a succession of
events, i.e. scans with either changes of inputs that may lead to changes of out-
puts, or endings of timers that lead to changes of outputs. Events are separated
by stable states, i.e. arbitrary-length successions of scans in which the values of
both inputs and outputs are unchanged.

Figure 3 depicts the timing chart specification of the carriage line control
example. Events of the timing chart are depicted as �1, �2, . . . , �11. In the rest of
the paper, we use the notation �(1 ↪→ 2), . . . , �(10 ↪→ 11) to depict stable states.
The initial and final states of the timing chart are respectively depicted by �idle
and �end. The timing chart of Fig. 3 also contains a fixed-duration sequence of
events and stable states (represented by an arrow, between events �5 and �8),
whose duration is 3 s. We call fixed-duration sequence the concerned sequence of
events and stable states. Typically, the Ladder program is executed periodically
every 100 ms, therefore, the fixed-time period of 3 s is made of 30 scans. Here,
the given implementation uses the timer device T0 in order to satisfy this aspect
of the specification.



Automated Verification of Temporal Properties of Ladder Programs 25

Fig. 3. Timing chart specification for the carriage line control

Our main goal is the verification that a Ladder diagram conforms to such
a timing chart specification. A first idea would be to envision the use of
deductive verification techniques, in the wake of our previous work on Ladder
instruction-level verification [7]. However, not all variables used in the Ladder
program of Fig. 2 are addressed by the timing chart. Indeed, internal memory
devices (e.g. M1 and M2) and timers (e.g. T0) are introduced by the developer
in order to make the program satisfy its specification, but do not belong to this
specification. As an example, in the carriage line control program, the M2 device
acts as a termination flag which stops the execution of the PLC as soon as it
is activated. There is no doubt that M2 remains false during execution of the
timing chart scenario. However, deductive verification would lack this informa-
tion to check that outputs satisfy their specification. This kind of issue is at the
heart of our strategy that is to integrate a method for inferring loop invariants.

3 Translation of Ladder Programs to WhyML

Our prototype automatically translates Ladder programs given as XML files
and timing charts given as PlantUML [18] files into WhyML programs. After a
short introduction to the Why3 environment in Sect. 3.1, we describe in Sect. 3.2
how we translate the Ladder program itself, and in Sect. 3.3 how we use this
translation for modeling the successive executions of the program and verifying
that it satisfies the given timing chart.

3.1 The Why3 Environment

Why3 is an environment for deductive program verification, providing the lan-
guage WhyML for specification and programming [6]. A detailed introduction to
Why3 is given in our extended report [4]. Among the recent features of Why3 of



26 C. B. Lourenço et al.

particular interest for our work are the ability to generate loop invariants and to
produce counterexamples when a proof fails [8]. Indeed, the first of these features
had to be improved in order to support our work on Ladder programs, this is a
contribution that some of us made to Why3 [4].

val b : ref bool

val x : ref int

let toy () : unit

requires { 0 <= !x <= 10 }

writes { b, x }

ensures { not !b }

ensures { !x <= 200 }

= b := false;

while (!x < 100) do

b := (!x < 50);

if !b then x := !x + 2

else x := !x + 3;

done;

assert { !x >= 75 }

(a) Toy example of WhyML code

let set (input : bool)

(device : ref bool) : unit

writes { device }

ensures { !device ↔
(input ∨ old !device) }

= if input then device := true

(b) the SET instruction in WhyML

Fig. 4. Examples of WhyML code

We illustrate those features on a toy WhyML program presented in Fig. 4a.
This code involves two global variables, b of type Boolean and x of type inte-
ger (a mathematical, unbounded integer in WhyML). The function toy takes
no arguments, and is equipped with a formal contract involving a pre-condition
(keyword requires) stating that the value of x on function entry is required
to lie between 0 and 10, and two post-conditions (keyword ensures) stating
respectively that at exit, b is false and that x is smaller than 200. The clause
writes expresses which global variables are potentially modified by that func-
tion. Notice the WhyML syntax for mutable variables, inspired by ML, requiring
to write an exclamation mark to access their values. The body of that function
is a simple imperative code involving a while loop and a conditional. This code
ends by an other kind of formal annotation, namely a code assertion stating that
the value of x must be greater or equal to 75 after the loop.

Given such an annotated code, the Why3 core engine generates three ver-
ification conditions (VCs), corresponding to the assertion and the two post-
conditions. When calling provers for attempting to prove these VCs, only the
assertion is proved valid: it directly follows from the negation of the loop con-
dition. None of the post-conditions are proved valid, which is expected in the
classical setting of deductive verification, because for proving properties about
loops one should state appropriate loop invariants. These could be added by



Automated Verification of Temporal Properties of Ladder Programs 27

hand, but to make the process more automatic we rely on the automatic gen-
eration of such invariants. We use a technique based on abstract interpretation,
for which an early prototype existed for Why3 [1], prototype that we extended
in particular to support Boolean variables [4]. The generated loop invariant is
then as follows:

(!b = false ∧ 0 <= !x <= 10) ∨ (!b = true ∧ 2 <= !x <= 51) ∨
(!b = false ∧ 53 <= !x <= 102)

and with this loop invariant, the post-conditions are proved valid.
Assume now that we replace the loop condition with (!x < 300). Still assum-

ing that we ask for generation of a loop invariant, all generated VCs are proved
except the second post-condition. For this VC, Why3 proposes a counterexam-
ple where the values of b and x at loop exit are respectively false and 300.
Indeed, these values satisfy the loop invariant, but with those the post-condition
!x <= 200 is not valid.

3.2 Translation of Ladder Codes

The translation relies on models of Ladder instructions as WhyML functions,
defined by some of the authors in a previous work [7]. For example, Fig. 4b depicts
the function that corresponds to the SET instruction. This function takes two
arguments, first the input of the instruction (whether it should be activated or
not), and second the device on which it may have an effect. Both the code and
the contract of the function state the intended behaviour of the SET function: if
the instruction is activated then the considered device is activated (otherwise its
value does not change). The WhyML functions modeling RST, PLS, and timer
instructions are detailed in the extended research report [4].

Given this formalisation of Ladder instructions, we can now give, in Fig. 5b,
the translation of the full Ladder program of Fig. 2. The translation makes use of
auxiliary variables f1,. . . ,f8 which corresponds to the common fronts depicted
on Fig. 5a.

3.3 The Ladder Loop, and the Encoding of Timing Charts

By definition, timing charts are made of successive events and stable states.
Checking that a program conforms to a timing chart means that, under the
hypotheses on input values, the values of outputs are correct according to the
order of appearance of events and stable states in the timing chart scenario. In
addition, fixed-time duration information (timer-related sequence of events) also
need to be verified. We propose and implement an automatic process that takes
a Ladder diagram and a timing chart specification and returns the corresponding
WhyML formalisation.



28 C. B. Lourenço et al.

(a) Ladder code with common fronts

let f1 = (!x0 || !y70)

&& (not !m2) in

y70 := f1;

let f2 = !x1 && !x3 in

pls (f1 && f2) m1 cc0;

let f3 = !m1 in

set (f1 && f3) y71;

let f4 = !y71 && !x2 in

rst (f1 && f4) y71;

set (f1 && f4) y73;

let f5 = !y73 in

timer_coil (f1 && f5) t0 30;

let f6 = timer_contact t0 in

rst (f1 && f6) y73;

set (f1 && f6) y74;

let f7 = !y74 && !x4 in

rst (f1 && f7) y74;

set (f1 && f7) y72;

let f8 = !y72 && !x3 in

rst (f1 && f8) y72;

m2 := f1 && f8

(b) WhyML encoding

Fig. 5. Encoding of one scan of the Ladder program for the carriage line control

Events and Stable States as Loops. The formalisation is made of a succession
of do-while style loops1 (except for the initial stable state of the timing chart).
The body of each loop corresponds to the WhyML formalisation of one scan
of the Ladder program. Each do-while loop corresponds to a pair made of an
event (the first iteration do) and the following stable state (while). The guard of
the loop corresponds to the assumptions on inputs, i.e. the values taken by the
inputs at the corresponding event and during the following stable states. The
verification conditions on outputs are modelled as loop invariants: the invariant
initialisation corresponds to the event while its preservation corresponds to the
stable state.

The initial state of the timing chart (values of devices before the PLC starts)
is handled in its own way. Basically, all outputs and internal memory devices are
initially deactivated. The initial values of inputs are read at the beginning of the
timing chart. The initial state is formalised as a while loop (and not a do-while
loop) whose guard corresponds to the values of inputs at the initialisation of
the timing chart. Indeed, the initial state of the timing chart is a stable state

1 There are no do-while loops in WhyML, we just mean by do-while style loop
a code piece of the following form with two occurrences of the loop body:
“body; while cond do body done”.



Automated Verification of Temporal Properties of Ladder Programs 29

which does not begin with an event. The invariants to be proved for this loop
correspond to the fact that outputs remain deactivated.

The events last during one scan, while stable states have an arbitrary duration
and end when the next event is reached, i.e. when an input changes or a timer
coils. In order to model this behaviour, the body of each loop iteration is enriched
with an assignment of the concerned input to a random Boolean value, that may
or may not update its value and lead to a new event.

< One scan of the Ladder program from Figure 5b >
x0 := randomb();

while (!x0 && not !x1 && not !x2 && !x3 && !x4) do

invariant { !y70 && not !y71 && not !y72 && not !y73 && not !y74 }

< One scan of the Ladder program from Figure 5b >
x0 := randomb();

done

Fig. 6. WhyML formalisation of event �1 and stable state �(1 ↪→ 2)

The WhyML code of Fig. 6 gives an example of formalisation of an event. It
is for the event �1 and the stable state �(1 ↪→ 2), the latter being terminated
when event �2 is reached, i.e. when x0 is deactivated. The encoding of one scan
(from Fig. 5b) is intentionally duplicated. Deductive verification is unfortunately
not sufficient to directly prove the invariants on outputs. Indeed, as mentioned
in Sect. 2, the specification used to generate the formalisation lacks information
on internal memory devices. To bypass this difficulty, we rely on the invariant
generation plug-in for Why3 (already presented in Sect. 3.1) to generate addi-
tional loop invariants for each while loop of the formalisation. For instance, in
each loop of the formalisation, the inference of the invariant not !m2 would be
needed.

Timer-Related Sequences of Events. One of the most technical points of our work
concerns the formalisation of fixed-duration sequences, e.g. events and stable
states from �5 to �8 in the timing chart of the carriage line control (Fig. 3).

We have to capture the fact that the total duration of this sequence is
exactly 3 s. Since timing charts specifications do not make explicit which timer
device is used to implement this aspect, we cannot, in the general case, guess
which timer device appearing in the code is used for any of the fixed-duration
sequences appearing in the timing chart. That is why we introduce a fresh inter-
nal counter for each fixed-duration sequence of the timing chart, add the duration
constraint in the guard of each loop associated to the concerned stable states and
increment the value of that counter at each loop iteration. The timer is incre-
mented accordingly, therefore, the counter is supposed to reflect the current
value of the timer.

In addition, there are two ways to reach the end of the loops corresponding to
intermediate stable states of the fixed-duration sequences: an input change or the



30 C. B. Lourenço et al.

< One scan of the Ladder program from Figure 5b >
x4 := randomb();

c1 := !c1 + 1;

while (not !x0 && !x1 && !x2 && not !x3 && !x4 && !c1 < 29) do

invariant { !y70 && not !y71 && not !y72 && !y73 && not !y74 }

< One scan of the Ladder program from Figure 5b >
x4 := randomb();

c1 := !c1 + 1;

done;

assume { !c1 < 29 }

Fig. 7. WhyML formalisation of event �5 and stable state �(5 ↪→ 6)

maximal number of scans being reached by the counter. We have to capture the
fact that the termination of intermediate stable states (�(5 ↪→ 6) and �(6 ↪→ 7)
in our example) is due to an input update and not because the maximal number
of scans has been reached. To enforce this property, we insert an assume clause
after the loop end. In our example, we use c1 as a counter associated with the 3 s
fixed-duration sequence. As an illustration, we give the shape of the formalisation
of event �5 and stable state �(5 ↪→ 6), ending with the deactivation of X4 while
the number of elapsed scans of the fixed-duration sequence is not reached yet.
The resulting WhyML code is given in Fig. 7. For stable state �(7 ↪→ 8), i.e. the
last stable state before the end of the fixed-duration sequence, there is only one
way to end the loop (!c1 >= 29) so there is no need for any assume clause.

Note that the condition we use is !c1 < 29 and not !c1 <= 29 (or equiva-
lently !c1 < 30). The reason is technical: at the end of the stable state �(7 ↪→ 8),
the counter reaches the value 29. The timer’s current value is also equal to 29.
The scan for event �8 begins and the current value of the timer is incremented
during its execution (more precisely at rung 5), therefore, its value becomes equal
to 30 and the timer coils.

At this stage, another pitfall remains. As explained previously, we cannot, in
the general case, make explicit the equality between the introduced counter c1
and the current value of the timer in the formalisation of Fig. 7. Nonetheless,
we can benefit from the invariant inference mechanism presented in Sect. 3.1.
Indeed, this invariant generator does not only compute numerical domains for
each variable independently: it makes use of relational domains (provided by the
Apron library [13]) to infer logical relations between variables. In particular, we
successfully obtain the invariant !c1 = t0.current that makes explicit the role
of the introduced counter.

4 Implementation and Experimental Results

Our first goal is to be able to fully automatically prove that a Ladder program like
our running example of in Fig. 2 is conforming to a timing chart. Our secondary
goal is that we want to give back, to the users, meaningful and easy-to-use
information when they try to prove an incorrect implementation.



Automated Verification of Temporal Properties of Ladder Programs 31

In Sect. 4.1, we describe the workflow of the proprietary implementation of
our approach. Then, Sect. 4.2 presents the results obtained when executing the
analysis on a correct carriage line control implementation, i.e., the implementa-
tion of Fig. 2. Finally, in Sect. 4.3, we present the feedback given by our toolbox
when analysing one slight modification of the nominal program that makes the
verification of conformance to the timing chart fail.

4.1 Overview of the Approach

The implemented approach proceeds as follows.

1. The tool takes two inputs: an XML representation of the Ladder program,
and a timing chart specification written in the PlantUML language.

2. It translates the Ladder program as a WhyML program.
3. It derives, from the timing chart the different guard conditions (hypotheses

on input values) and invariants (output values to prove) for formalising the
successive events of the timing chart.

4. Then, for each event,
– Why3 infers a loop invariant for the WhyML loop that models the state

that is associated to the event, thus adding information on values of inter-
nal memory to the information on output values computed in the previous
step.

– Why3 computes the verification conditions that correspond both to the
inferred invariants and the invariants that correspond to the timing chart
specification, and dispatches them to SMT solvers.

5. The previous step is repeated for all events. Note that besides the hypotheses
on the values of inputs and outputs at the start of the event, which are given
by the timing chart, the proving process also needs hypotheses on the values
of internal memory values at the beginning of the event. Those values are
given by the loop invariant inferred for the previous event. Hence we store,
during the process, the inferred invariants for each event in order to use them
as preconditions for the next event.

6. If a proof obligation fails at event n, we build a WhyML program concatenat-
ing all the previous events and the faulty one, with loops enriched with the
consecutively inferred invariants. Provers are called on this WhyML program
and provide counterexamples (see Sect. 4.3).

7. On the contrary, if all events and stable states are proved, we conclude that
the Ladder program satisfies the timing chart specification.

This approach of proving each event, one by one, until a specification violation
is detected, is motivated by the fact that abstract interpretation, in our examples,
is far more time-consuming than proving. In the case a violation is detected, our
approach avoids to launch abstract interpretation for all the events that follow
the one for which the violation has been detected.



32 C. B. Lourenço et al.

Fig. 8. Output of the tool on the nominal carriage line control program

4.2 Results on Correct Code

We apply our approach on the nominal Ladder program described in Fig. 2, for
which we successfully verify the timing chart specification. Figure 8 depicts the
result we obtain when running the analysis. In accordance with our strategy
presented in Sect. 4.1, we consecutively infer invariants and then prove verifica-
tion conditions for each pair (event, stable state), starting from the initial (idle)
state of the timing chart. We observe that abstract interpretation is for now quite
expensive, therefore, the proof time is negligible (6 s) compared to the time for
inference of invariants (137 s).

4.3 Results on Incorrect Code

Let us assume the verification of a proof obligation fails for a faulty event (the
case of a faulty stable state is similar). Our goal is to provide the most relevant
information possible to the Ladder programmer, who may not be used to deduc-
tive verification. For that purpose, we propose an error scenario following the
timing chart until the faulty event, mixing concrete values provided by coun-
terexamples generated by Why3, and abstract domains provided by abstract
interpretation.

Error Scenarios. When a proof obligation fails as assumed above, Why3 is able
to provide a counterexample. Since such a proof obligation comes from the veri-
fication of the concatenation of the consecutive events from the very first one to
the faulty one, the information we get provides the values of the inputs, outputs
and internal devices at the beginning of each event until the faulty one. Due to
the way Why3 handles loops during the computation of verification conditions
for SMT-solvers (that is, the loop invariant is the only known fact for the code
after the loop [4]), we do not have any information on the values the devices
take during the stable states. We think that this lack of information concerning



Automated Verification of Temporal Properties of Ladder Programs 33

Fig. 9. An incorrect version of the carriage line control

values of devices during stable states may be an impediment to the understand-
ing of the cause of the specification violation. That is why we propose to enrich
the counterexample values with the domains of devices values given by abstract
interpretation. This leads to the notion of error scenario that provides:

1. For each event that precedes the faulty one (including the faulty one), the
values of devices before the beginning of the scan of this event, obtained from
the counterexample trace provided by Why3.

2. For each stable state that precedes the faulty event, an over-approximation
of domains of devices values, obtained by abstract interpretation.

In order to convince ourselves that this notion of error scenario should be
useful to Ladder programmers, we implemented different slight modifications of
the carriage line control program, introducing bugs. We present one of them in
this article, another one is described in the extended research report [4]. The
corresponding Ladder diagram is depicted in Fig. 9. The modification compared
to the original code is circled.

The timer setting duration is here set to 40 scans instead of 30. We use our
tool to get the reason of the proof failure, i.e. that Y73 is equal to true while
it should be false. The obtained reason is rather intuitive: event 8 corresponds
to 30 elapsed scans from timer’s start. As the timer has a duration of 40 scans,
it has not ended yet, therefore, Y73 is not reset yet, as highlighted by the error
scenario of Fig. 10a.

The trace shows that the setting value of the timer (here 40) is not reached. In
particular, the current value of the timer evolves between 3 and 29 in the stable



34 C. B. Lourenço et al.

(a) Output of the tool (b) Violation of the timing chart

Fig. 10. Incorrect ladder program: analysis results

state between events 7 and 8, showing that the current event follows three other
events in the fixed-duration sequence. Moreover, at the beginning of the scan of
event 8, the current value of the timer and its associated counter c1 are both
equal to 29, which is exactly the value we expect when leaving the fixed-duration
sequence of events. The timing chart violation is depicted by Fig. 10b.

Qualitative Analysis of the Experiments. As a conclusion, we think that this
notion of error scenario mixing concrete values provided by counterexamples to
VCs, and abstract domains provided by abstract interpretation, should be useful
to Ladder programmers in order to understand why a program does not conform
to a given timing chart specification. A weakness of this approach is that in some
cases, the concrete and abstract values might seem irrelevant. For example, for
a timer counter c, we might have an abstract domain that states that c can
take all the values between, say, 3 and 29 for a state, but the concrete value



Automated Verification of Temporal Properties of Ladder Programs 35

given for the next event might be 4. For that example, it means that the loop
corresponding to the state is executed exactly once in the error scenario, before
executing the next event. In that case, it might be very interesting to use the
concrete values of counterexamples to refine the domain [3;29] into [3;4], and
even make explicit to the programmer that there is exactly one execution of the
program for the considered state.

5 Discussions, Related Work and Future Work

We presented a new method for formally verifying that a given Ladder code
complies with an expected temporal behaviour expressed by a timing chart. By
translating both the Ladder code and the timing chart to a WhyML program,
and making use of the loop invariant generation capability of Why3, we are able
to provide a fully automatic process to achieve such a verification, with a high
level of confidence. Moreover, when this proof-based process fails at some point,
we have a way to propose an error scenario which exposes why the Ladder code
does not conform to the timing chart. Our method is implemented in a proto-
type which we experimented on a case study, demonstrating the effectiveness of
our approach, both for formally proving the correct version and for providing
counterexample scenarios on wrong mutants.

The level of confidence of our approach must be understood in terms of the
trusted code base of the whole process. It first relies on the soundness of the
translation from Ladder code and timing chart, which is described in Sect. 3. It
also relies on the soundness of the VC generation process of Why3, which is not
formally proven correct but validated on numerous applications [6]. Regarding
trust in Why3, it is important to notice that the prototype implementation
of loop invariant generation is not part of the trusted code base, because the
loop invariants generated are later on checked for validity by the VC generation
process. It is indeed fortunate to not have to rely on the soundness of this part of
Why3 implementation, since we had to make significant extensions to it (mostly,
support for Boolean variables, and adaptation of the API for external use) for
the current purpose. The last part of the tool chain that must be trusted is the
back-end SMT solver.

Regarding the generated errors scenarios, we have noticed that they are sat-
isfactory on our case study, but due to the inherent incompleteness of counter-
model generation with SMT solvers, we cannot guarantee that the generated
scenarios are always valid. There are on-going work in the Why3 development
team to increase the trust into the validity of generated counterexamples [3].

Related Work. PLC software verification is a vast domain and numerous works
have been published on that subject. The majority of them use model-checking
to verify functional and temporal properties. In 2014, Ovatman et al. [16] pub-
lished a summary of those techniques. In 2016, Darvas et al. [9] proposed a newer
model-checking based tool and compared with former similar tools. The general
drawback of the model-checking approach is that the verification it provides



36 C. B. Lourenço et al.

cannot be exhaustive, it cannot model any possible number of executions during
the states of a timing chart, contrary to deductive verification. On the other
hand, abstract interpretation has also been used for a long time for verifying
software, in particular microcontroller software [12,15] and PLC software [5] (in
combination with model-checking). Contrary to model-checking, abstract inter-
pretation gives a full guarantee when it detects no error in a program, but it
is dedicated to compute the possible values of variables during the execution
of a program, and is not suited for verifying temporal properties. Finally, in
a previous work [7], some of us used the Why3 deductive verification platform
for detecting run-time errors of Ladder programs. This work only considered
one single execution of Ladder programs and was therefore also not suited for
verifying temporal properties. To our knowledge, the present paper is the first
one to combine abstract interpretation and deductive verification for verifying
temporal properties of Ladder programs.

Outside the context of Ladder, Stouls and Groslambert proposed an approach
for proving temporal properties of C code [19], based on a translation from LTL
formulas into annotations in the ACSL language [2]. These LTL formulas express
temporal properties of sequences of functions calls, which are very different from
our kind of specifications. Their approach is similar to ours in the sense that they
automatically translate temporal properties into annotated code, to be proved
correct using deductive verification. They also identified a need for automati-
cally generating extra intermediate annotations, for which they use their own
variant of abstract interpretation. A successor of this work is the CaFE plug-
in of Frama-C [10], which makes use of the Frama-C plug-in EVA for abstract
interpretation. Unlike us, the approaches above do not provide any facilities for
explaining errors.

Future Work. During our work, we had to improve the loop invariant generation
feature of Why3, in particular the support for Boolean values. Even enough for
our case study, there is clearly room for improvement in this implementation,
required to make the tool chain more efficient. We plan to experiment our method
on examples of Ladder programs that require WhyML translations involving
arrays, and we have to ensure that the loop invariant generation could succeed
when we are mixing all involving data-types: integers, Boolean, arrays, and also
bounded integers in the future.

As mentioned at the end of Sect. 4.3, there is some need for improvement in
the counterexample generation part of the chain. The inherent incompleteness
of the SMT solvers implies that the proposed counterexample might be wrong.
We are planning to incorporate in our tool-chain a recent technique that double-
checks the validity of counterexamples a posteriori [3], which roughly amounts
to symbolically executing the scenario it describes, and detect carefully at which
step its behaviour diverges from what the timing chart allows.

On the error scenario side, as explained in the end of Sect. 4.3, the parts of
a scenario that come from abstract interpretation domains, that correspond to
the possible values of devices during states, could be refined using the concrete
values given by the counterexamples for next events. This way, we might propose



Automated Verification of Temporal Properties of Ladder Programs 37

an even more understandable and useful error scenario to Ladder programmers,
in case an error is detected in their code.

A longer-term goal is to augment the trust in the translation from Ladder to
WhyML. We have some plans for designing a systematic and automatic valida-
tion process to confront our translation against existing test suites for Ladder
programs.

References

1. Baudin, L.: Deductive verification with the help of abstract interpretation. Tech-
nical report, Université Paris-Saclay, November 2017. https://hal.inria.fr/hal-
01634318

2. Baudin, P., et al.: ACSL: ANSI/ISO C specification language, version 1.16 (2020).
https://frama-c.com/html/acsl.html

3. Becker, B., Belo Lourenço, C., Marché, C.: Explaining counterexamples with giant-
step assertion checking. In: Creissac Campos, J., Paskevich, A. (eds.) 6th Work-
shop on Formal Integrated Development Environments (F-IDE 2021). Electronic
Proceedings in Theoretical Computer Science, May 2021. https://hal.inria.fr/hal-
03217393

4. Belo Lourenço, C., Cousineau, D., Faissole, F., Marché, C., Mentré, D., Inoue, H.:
Formal analysis of Ladder programs using deductive verification. Research Report
RR-9402, Inria, April 2021. https://hal.inria.fr/hal-03199464

5. Biallas, S., Kowalewski, S., Stattelmann, S., Schlich, B.: Efficient handling of states
in abstract interpretation of industrial programmable logic controller code. In:
Proceedings of the 12th International Workshop on Discrete Event Systems, pp.
400–405. IFAC, Cachan, France (2014)

6. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s verify this with Why3.
Int. J. Softw. Tools Technol. Transf. (STTT) 17(6), 709–727 (2015). DOI: https://
doi.org/10.1007/s10009-014-0314-5

7. Cousineau, D., Mentré, D., Inoue, H.: Automated deductive verification for ladder
programming. In: Monahan, R., Prevosto, V., Proença, J. (eds.) Proceedings of
the Fifth Workshop on Formal Integrated Development Environment, F-IDE@FM
2019, Porto, Portugal, 7th October 2019. Electronic Proceedings in Theoretical
Computer Science, vol. 310, pp. 7–12 (2019). https://doi.org/10.4204/EPTCS.310.
2

8. Dailler, S., Hauzar, D., Marché, C., Moy, Y.: Instrumenting a weakest precondition
calculus for counterexample generation. J. Log. Algebraic Methods Program. 99,
97–113 (2018). https://doi.org/10.1016/j.jlamp.2018.05.003

9. Darvas, D., Majzik, I., Blanco Viñuela, E.: Formal verification of safety plc based
control software. In: Ábrahám, E., Huisman, M. (eds.) Integrated Formal Meth-
ods. Lecture Notes in Computer Science, vol. 9681, pp. 508–522. Springer (2016).
https://doi.org/10.1007/978-3-319-33693-0 32

10. De Oliveira, S., Prévosto, V., Bardin, S.: Au temps en emporte le C. In: Baelde, D.,
Alglave, J. (eds.) Vingt-sixièmes Journées Francophones des Langages Applicatifs
(JFLA 2015) (2015). https://hal.inria.fr/hal-01099128

11. Drath, R., Luder, A., Peschke, J., Hundt, L.: AutomationML - the glue for seamless
automation engineering. In: ETFA - IEEE International Conference on Emerging
Technologies and Factory Automation, pp. 616–623 (2008). https://doi.org/10.
1109/ETFA.2008.4638461

https://hal.inria.fr/hal-01634318
https://hal.inria.fr/hal-01634318
https://frama-c.com/html/acsl.html
https://hal.inria.fr/hal-03217393
https://hal.inria.fr/hal-03217393
https://hal.inria.fr/hal-03199464
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.4204/EPTCS.310.2
https://doi.org/10.4204/EPTCS.310.2
https://doi.org/10.1016/j.jlamp.2018.05.003
https://doi.org/10.1007/978-3-319-33693-0_32
https://hal.inria.fr/hal-01099128
https://doi.org/10.1109/ETFA.2008.4638461
https://doi.org/10.1109/ETFA.2008.4638461


38 C. B. Lourenço et al.

12. Fehnker, A., Huuck, R., Schlich, B., Tapp, M.: Automatic bug detection in micro-
controller software by static program analysis. In: Nielsen, M., Kučera, A., Mil-
tersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) Theory and Practice of
Computer Science (SOFSEM). Lecture Notes in Computer Science, vol. 5404, pp.
267–278. (2009). https://doi.org/10.1007/978-3-540-95891-8 26

13. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification. pp. 661–
667. Springer (2009)

14. Mitsubishi Electric Corporation: Mitsubishi programmable controllers train-
ing manual – MELSEC iQ-R Series basic course (for GX Works3). https://
dl.mitsubishielectric.com/dl/fa/document/manual/school text/sh081898eng/
sh081898enga.pdf (2016). Accessed 30 March 2021

15. Nguyen, T., Aoki, T., Tomita, T., Endo, J.: Integrating static program analysis
tools for verifying cautions of microcontroller. In: Asia-Pacific Software Engineering
Conference (APSEC), pp. 86–93 (2019). https://doi.org/10.1109/APSEC48747.
2019.00021

16. Ovatman, T., Aral, A., Polat, D., Ünver, A.: An overview of model checking prac-
tices on verification of PLC software. Softw. Syst. Model. 15, 1–24 (2014). https://
doi.org/10.1007/s10270-014-0448-7

17. Ramanathan, R.: The IEC 61131–3 programming languages features for indus-
trial control systems. In: World Automation Congress (WAC), pp. 598–603 (2014).
https://doi.org/10.1109/WAC.2014.6936062

18. Roques, A.: PlantUML standard library. https://plantuml.com/stdlib (2009).
Accessed 24 March 2021

19. Stouls, N., Groslambert, J.: Vérification de propriétés LTL sur des programmes
C par génération d’annotations. Research report (2011). https://hal.inria.fr/inria-
00568947

https://doi.org/10.1007/978-3-540-95891-8_26
https://dl.mitsubishielectric.com/dl/fa/document/manual/school_text/sh081898eng/sh081898enga.pdf
https://dl.mitsubishielectric.com/dl/fa/document/manual/school_text/sh081898eng/sh081898enga.pdf
https://dl.mitsubishielectric.com/dl/fa/document/manual/school_text/sh081898eng/sh081898enga.pdf
https://doi.org/10.1109/APSEC48747.2019.00021
https://doi.org/10.1109/APSEC48747.2019.00021
https://doi.org/10.1007/s10270-014-0448-7
https://doi.org/10.1007/s10270-014-0448-7
https://doi.org/10.1109/WAC.2014.6936062
https://plantuml.com/stdlib
https://hal.inria.fr/inria-00568947
https://hal.inria.fr/inria-00568947


Spatial Model Checking for Smart
Stations

Research Challenges

Maurice H. ter Beek(B) , Vincenzo Ciancia , Diego Latella ,
Mieke Massink , and Giorgio O. Spagnolo

Formal Methods and Tools (FMT) Laboratory, ISTI–CNR, Pisa, Italy
{terbeek,ciancia,latella,massink,spagnolo}@isti.cnr.it

Abstract. In this position paper, we discuss the introduction of spatial
verification techniques in an application scenario from smart stations,
viz. analysing the user experience with respect to the lighting conditions
of station areas. This is a case study in industrial projects. We discuss
three challenging use cases for the application of spatial model checking
in this setting. First, we envision how to use the spatial model checker
VoxLogicA, which can analyse both 2D and 3D voxel-based maps, to
explore the areas that users can visit in a station area and to charac-
terise them with respect to their illumination conditions. This is aimed
at monitoring a smart station. We also ideate statistical spatio-temporal
model checking of the design of energy-saving protocols, exploiting the
modelling of user preferences. Finally, we discuss the idea of quantifying
the impact of design changes, based on the logs of smart stations, to iden-
tify and measure the incidence of undesired events (e.g. non-illuminated
platforms where a train is passing by) before and after each change.

1 Introduction and Outline

Spatial and spatio-temporal model checking have been introduced in [11–13],
and have been used in case studies related to smart transportation [4,10,15] and
medical image analysis [1,5,6]. For instance, in [6] a 10-lines logical specification
was given, which can contour brain tumours in 3D magnetic resonance images
with accuracy in par with the state of the art. Execution of such procedure using
the newly defined spatial model checker VoxLogicA takes about 5 s on a quite
standard desktop computer.

In this paper, we introduce and discuss three research challenges concerning
the introduction of spatial verification techniques in a smart station lighting case
study provided by industrial project partners. We show how the spatial verifica-
tion methods defined so far in the literature can be used, and enhanced, in order
to address such challenges. In Sect. 2, we introduce the context of our case study.
In Sect. 3, we describe three research challenges that we plan to address in that
context. In Sect. 4, we show how spatio-temporal model checking can be used
to address such challenges. In Sect. 5, we provide an outlook on future research
directions.
c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 39–47, 2021.
https://doi.org/10.1007/978-3-030-85248-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_3&domain=pdf
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0003-1314-0574
http://orcid.org/0000-0002-3257-9059
http://orcid.org/0000-0001-5089-002X
http://orcid.org/0000-0002-7771-0882
https://doi.org/10.1007/978-3-030-85248-1_3


40 M. H. ter Beek et al.

2 Industrial Context and Case Study: Station Lighting

In this section, we provide a brief description of the case study from the railway
domain and the industrial project it originates from. Traditionally, railway sta-
tions have a private energy distribution and communication system, mainly to
ensure uninterrupted power supply and security. This isolation has two major
drawbacks. First, it prohibits integration with smart cities which, ideally, exploit
information between different transportation systems (e.g. bike sharing, car shar-
ing, urban transport) in a synergic manner. Second, the station’s system fails to
benefit from modern energy-saving techniques.

STINGRAY (SmarT station INtelliGent RAilwaY) [16] is a regional project,
funded by Regione Toscana, that aims at enhancing the integration of railway
stations into smart cities of the future as well as to study advanced energy-saving
techniques. The overall goals of the project are:

– to deploy a LAN over the station, using powerline and wireless technologies;
– to control and monitor station equipment via Supervisory Control And Data

Acquisition (SCADA), in particular railroad switch heaters as studied in [3];
– to create value-added services for both customers and railway staff, such as

connectivity, monitoring fault prediction service (FPS), video surveillance,
environmental surveying and integration and access to smart city infomobility
services, addressing in particular the energy management service (EMS);

– to optimise existing strategies for managing energy consumption within the
station, in order to avoid wasting energy, as contemplated in this paper.

The case studies of STINGRAY provided by the industrial partners from the
railway domain are station lighting and heating of the railroad switches in ice
conditions. The latter was studied in [3]; in this paper we address the former. The
follow-up project SmaRIERS (Smart Railway Infrastructures: Efficiency, Relia-
bility and Safety), which has just been funded by Regione Toscana, will develop
a monitoring system capable of handling huge amounts of data by combining
Big Data and Analytics with AI in an attempt to increase energy efficiency.

Smart (station) lighting aims at reducing station illumination whenever
(time) and wherever (space) possible, while guaranteeing minimum levels of illu-
mination as requested by current legislation. Along the station platforms there
are a number of LEDs, called (ceiling) lights. Each light is equipped with a data
acquisition module called MADILL (Data Acquisition Module for ILLumina-
tion), which are in turn connected to a C-MAD (Data Acquisition Concentrator
Module). Besides capturing the messages from each MADILL, the C-MAD is
equipped with brightness sensors, and it transfers all collected data with the
publish/subcribe messaging protocol MQTT [2] to a cloud service, which stores
all data and makes it available in XML format by means of an HTTPS REST
interface [17]. The same interface moreover allows to send commands to switch
lights on, off, or dim them—either individually or for groups of lights.

So far, STINGRAY has achieved a 78% energy saving by replacing fluorescent
tubes with LEDs and by using static rules to switch on, off, or dim groups of
lights that are selected based on environmental brightness and railway traffic [23].



Spatial Model Checking for Smart Stations 41

3 Challenges in User-Centric Design of Smart Stations

In this section, we present three relevant user-centric challenges in designing
smart stations with efficient illumination. The questions we contemplate are
related to the design of smart management applications in a spatial setting such
as that of a smart station. We consider user-experience related requirements,
like “passengers should always be able to rely on an illuminated pathway when
getting off or on a train, from the main entrance, to the platform”, or “there
should be an illumination level greater than x on platforms where a train is
about to arrive, even if the train is late”, or “at any time, the areas with an
illumination level less than x should be reachable only from paths controlled by
an automatic gate”. Such requirements are inherently spatial or spatio-temporal,
as they deal with the possibly complex reachability relations and pathways of a
train station.

At the technical/concrete level, mapping space and gathering real-time data
can be challenging operations, whereas at the formal verification/abstract level,
modelling space, and formalising the requirements in a mathematically sound,
and unambiguous way, are the major difficulties.

In this work, we propose a modelling strategy in which space is mapped and
formalised by exploiting previously available maps, in the form of digital images.
This technique works quite well for 2-dimensional maps. For 3-dimensional struc-
tures, we envisage the adoption of 3D meshes; since the technology for spatial
verification of 3D meshes is relatively new (cf. the Conclusion), in this work we
will mostly refer to 2-dimensional examples; however, the reader should keep in
mind the results in [6], where 3D images based on voxels have been used.

Consider the requirements analysis and design phase of a smart manage-
ment protocol (such as smart station lighting). The verification of a user-related
requirement can be divided into the following three main verification challenges.

Challenges

Past: Investigate whether the requirement has actually been violated in a specific
period of time by the pre-existing implementation, and how frequently such
violations have happened.

Present: Monitor an implementation (either the existing one or a new one) to
promptly respond to new violations, and for quality assurance purposes.

Future: Verify that the new design can guarantee the requirement or improve
on the previous situation.

4 Methodology

Below, we show how we intend to address the challenges described in Sect. 3,
using the tool VoxLogicA described in [6]. Our proposal is based on previous
work in the area of spatial model checking for smart cities and smart trans-
portation. To ease the presentation, we divide this work into subsections based
on the analysis methodology, and in each subsection we establish the potential
contribution of such a methodology to the challenges outlined in Sect. 3.



42 M. H. ter Beek et al.

4.1 Spatial Model Checking

First presented in [13], spatial model checking is a method for automatically
checking properties of points in a spatial structure. Abstractly, spatial structures
are so-called Closure Spaces, a generalisation of Topological Spaces. Concretely,
closure spaces can be continuous (e.g. topological, Euclidean spaces). However,
in case studies such spatial structures have mostly been discrete, i.e. graphs. As a
special case, graphs can take the shape of digital images whose nodes/points are
pixels. In such setting, images are considered as (non-directed regular) graphs by
using either 4-adjacency (pixels up, down, left, and right are connected to each
pixel), 8-adjacency (also pixels reachable ‘diagonally’ count) or 27-adjacency in
3D space with voxels (viz. 3D pixels, also with ‘diagonal’ adjacency).

As we are discussing model checking, we first emphasise the logical language
that we employ. This is SLCS, the Spatial Logic of Closure Spaces, a language
interpreted on points of the space, encompassing atomic propositions, Boolean
operators, a modal operator denoting ‘nearness’ (in images or graphs, one-step
reachability), and a binary modal operator denoting conditional reachability via
an arbitrary number of steps. Variants of reachability, and of its dual surrounded,
have been defined in the literature. In [6], the operator ρ (standing for reach),
with two parameters ψ and φ, is defined. Point x satisfies ρψ[φ] (read: “x can
reach ψ passing by φ”) if there is a path starting in x, ending in a point satisfying
ψ, with all its intermediate points satisfying φ. An example user-centric, spatial
requirement of lighting in a smart station is

All areas that are open to the public should be sufficiently illuminated (1)

which indeed could be made more sophisticated, e.g. by adding points of interest,
train timetables, actual train arrival and departure times, etc.

In this example, we aim at considering dimming of light in order to find the
best trade-off between energy saving and providing enough light to users when
needed. For instance, in principle, imagine dynamic policies in which the darkness
caused by a broken lamp could be compensated by temporarily increasing the
intensity of the lights nearby until the broken light is repaired. Spatial model
checking provides means to check such policies. Another example could be that
of designing the illumination system and producing, e.g., a map showing which
areas (of interest to users) do not satisfy requirements that are related to the
spatial distribution of features, which could then be described using SLCS.

In a simple scenario from Sect. 2, data from each MADILL, received via the
C-MAD, can be linked to a spatial distribution of light based on distance by
encoding light attenuation, for instance using the classical, well-known formula
expressing the attenuation at each point x:

attenuation(x) =
1

c1 + c2 × dst(src, x) + c3 × dst(src, x)2

where src is the position of the light source, c1, c2, and c3 depend on the chosen
illumination model, and dst is the Euclidean distance function. Such attenuation
can be computed using VoxLogicA, exploiting its distance transform operation.
More complex lighting simulations could be employed if needed (cf., e.g., [20]).



Spatial Model Checking for Smart Stations 43

This allows one to use the reachability primitive in VoxLogicA to characterise
insufficiently illuminated points that a user may reach, possibly refining the result
by proximity to points of interest and presence/absence of trains at a platform.
This basic design can be used to address the Challenge named Present: monitoring
a smart station to promptly detect illumination failures in a user-centric way.

An illustration of the method is given in Fig. 1. The images were produced
using VoxLogicA. In the figure, which is presented only for illustrative purposes,
the light from different sources is not summed, so the method will need to be
refined in future work. The full computation, starting from the image of the train
station map, takes about 1 s on a desktop computer equipped with an Intel Core
i7 CPU. The specification is quite small, 4 lines of text for the actual description
of properties (cf. Code 1), and some 20 lines including loading, saving, macro
definition, and identification of regions of interest via colour thresholding.

Fig. 1. Illustration of an experiment aimed at identifying poorly illuminated platform
areas. Top-left: Pistoia station. Blue squares: a design with MADILL units, clearly,
insufficient in number. Red squares: some C-MAD units. Green squares: indicate the
platforms open to the public. Top-right: illumination computed using an attenuation
formula with VoxLogicA (overlay is made with an external program). Bottom-left:
by a threshold on the illumination value, areas that are sufficiently illuminated have
been computed (output from VoxLogicA). Bottom-right: the parts of the platforms
that are not sufficiently illuminated are computed using VoxLogicA (shown in white).
(Color figure online)



44 M. H. ter Beek et al.

let platform = grow(grow(platformSeed ,platformArea),cmad|madill)
let attenuation = 1 ./ (1 .+ (0.01 .* dt(madill)) + (0.001 .* (dt(madill)*dt(madill))))
let threshold = attenuation >. 0.3
let nonIllumPlatform = platform \ threshold

Code 1. Part of VoxLogicA specification for our experiment. Explanation. platform:
platform area, computed using a region growing operator starting from a seed, including
the coloured squares overlayed on the image; attenuation: light attenuation formula,
where dt(src) is the distance transform operator, returning an image-like map,
containing at each point the Euclidean distance from src to that point; threshold:
thresholding operation; nonIllumPlatform: final result. The results are shown in Fig. 1.

4.2 Statistical Spatio-Temporal Model Checking

Statistical spatio-temporal model checking was first demonstrated in [15], as
implemented by a toolchain consisting of the spatial model checker Topochecker,
the statistical analysis tool MultiVeStA1 (cf. [18,22,24]), and a custom stochastic
simulator for bike-sharing traffic, taking into account user preferences [14,21].

The simulator produced traces of bike-sharing usage, in the form of an occu-
pancy measure for each station. For each simulation, covering about one day of
bike-sharing traffic, the model checker Topochecker identified and labelled (with
a Boolean value) the bike-sharing stations satisfying specific formulas (e.g. the
stations that eventually become part of a cluster of full docking stations, where it
is no longer possible to leave a bike). MultiVeStA was used to schedule an appro-
priate number of such simulations, in order to compute a probability out of the
Boolean values obtained. Finally, a heat map was produced, where each station
was coloured according to the probability of satisfying each specific formula.

As a first step, with no simulator in place, the same methodology can be used
for the smart station lighting scenario, to address the Challenge named Past.
Past logs produced by C-MAD units can be analysed by linking VoxLogicA with
MultiVeStA to compute the probability that each point of a map of a station
satisfies a specific property. Such analyses can then be refined to, for instance,
specific times of the day, specific situations (e.g. “all days that a disruption on
the line has occurred”, if such data is available), or considering points of interest.

Stochastic simulation can be used to study specific aspects of behaviour of the
stations and/or users, similar to [15], which studies user preferences in a bike-
sharing system, or [19], which presents a high-accuracy passenger-pedestrian
model describing traveller dynamics in stations based on automated fare collec-
tion and train tracking data.

Furthermore, note that spatio-temporal model checking alone (without using
MultiVeStA) could in principle be used to address the Challenge named Future.
A model of the behaviour of the new design for a smart lighting system can
be combined with the spatial map of the station to compute the violation of
spatio-temporal requirements, e.g. using the timetable of the trains to identify
points of interest in space-time. However, in order to produce more realistic data,

1 https://github.com/andrea-vandin/MultiVeStA/wiki.

https://github.com/andrea-vandin/MultiVeStA/wiki


Spatial Model Checking for Smart Stations 45

a (stochastic) simulation approach, possibly based on MultiVeStA, needs to be
used also in this case, so as to take into account the probability of train delays
and disruptions on the line, which need to be computed using a simulation.

5 Conclusion and Outlook

We introduced three research challenges based on an industrial case study on
smart station lighting, explicitly considering user experiences; in particular,
avoiding users ending up transiting or waiting in non-illuminated areas, with the
associated risks (e.g. theft, injury). We envisioned how to tackle these concretely
in the future by applying spatial model-checking techniques and tools. In this
context, the statistical spatio-temporal model-checking framework of [15] could
be of help. A technological advancement in this scenario is given by the recently
defined extension of spatial model-checking techniques to 3D meshes [7]. In con-
junction with statistical spatio-temporal model checking, the methodology can
produce 3D meshes coloured according to heat maps related to spatio-temporal
user-centric requirements, and at the same time demonstrate illumination issues
on past system traces, simulation, or in real time, by classical means of 3D
graphics, e.g. illumination and texturing. This provides a unique analysis and
monitoring methodology, which can be complemented by the development of a
suitable user interface for the analysis tool chain, focused on minimising the cog-
nitive load and interference between different simultaneous tasks of the domain
expert, along the lines of [8]. To make real-time analysis more effective, we plan
to leverage on the on-GPU implementation of VoxLogicA proposed in [9].

Acknowledgments. Supported by the POR FESR 2014–2020 projects STINGRAY
(SmarT station INtelliGent RAilwaY) and SmaRIERS (Smart Railway Infrastruc-
tures: Efficiency, Reliability and Safety), and by the MIUR PRIN 2017FTXR7S project
IT MaTTerS (Methods and Tools for Trustworthy Smart Systems).

References

1. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial
logics and model checking for medical imaging. Int. J. Softw. Tools Technol. Transf.
22(2), 195–217 (2020). https://doi.org/10.1007/s10009-019-00511-9

2. Banks, A., Gupta, R.: MQTT version 3.1.1. OASIS standard, October 2014. http://
docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

3. Basile, D., ter Beek, M.H., Di Giandomenico, F., Fantechi, A., Gnesi, S., Spag-
nolo, G.O.: 30 years of simulation-based quantitative analysis tools: a comparison
experiment between Möbius and Uppaal SMC. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2020. LNCS, vol. 12476, pp. 368–384. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-61362-4 21

4. ter Beek, M.H., Gnesi, S., Knapp, A.: Formal methods for transport systems. Int.
J. Softw. Tools Technol. Transf. 20(3), 355–358 (2018). https://doi.org/10.1007/
s10009-018-0487-4

https://doi.org/10.1007/s10009-019-00511-9
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://doi.org/10.1007/978-3-030-61362-4_21
https://doi.org/10.1007/978-3-030-61362-4_21
https://doi.org/10.1007/s10009-018-0487-4
https://doi.org/10.1007/s10009-018-0487-4


46 M. H. ter Beek et al.

5. Belmonte, G., Broccia, G., Vincenzo, C., Latella, D., Massink, M.: Feasibility of
spatial model checking for nevus segmentation. In: Proceedings of the 9th Interna-
tional Conference on Formal Methods in Software Engineering (FormalieSE 2021),
pp. 1–12. IEEE (2021). https://doi.org/10.1109/FormaliSE52586.2021.00007

6. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Voxlogica: a spatial model
checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 281–298. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17462-0 16

7. Bezhanishvili, N., Ciancia, V., Gabelaia, D., Grilletti, G., Latella, D., Massink, M.:
Geometric model checking of continuous space. http://arxiv.org/abs/2105.06194
[cs.LO], May 2021

8. Broccia, G., Milazzo, P., Ölveczky, P.C.: Formal modeling and analysis of safety-
critical human multitasking. Innov. Syst. Softw. Eng. 15(3–4), 169–190 (2019).
https://doi.org/10.1007/s11334-019-00333-7

9. Bussi, L., Ciancia, V., Gadducci, F.: Towards a spatial model checker on GPU.
In: Peters, K., Willemse, T. (eds.) FORTE 2021. LNCS, vol. 12719, pp. 188–196.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78089-0 12

10. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems. Int. J.
Softw. Tools Technol. Transf. 20(3) (2018). https://doi.org/10.1007/s10009-018-
0483-8

11. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental
spatio-temporal model checker. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9509, pp. 297–311. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-49224-6 24

12. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for
closure spaces. Log. Methods Comput. Sci. 12(4) (2016). https://doi.org/10.2168/
LMCS-12(4:2)2016

13. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 222–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7 18

14. Ciancia, V., Latella, D., Massink, M., Paškauskas, R.: Exploring spatio-temporal
properties of bike-sharing systems. In: Workshops Proceedings of the 9th Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems (SASO 2015), pp.
74–79. IEEE (2015). https://doi.org/10.1109/SASOW.2015.17

15. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 46

16. Di Giandomenico, F., Gnesi, S., Spagnolo, G.O., Fantechi, A.: Smart services for
railways. ERCIM News 117, 34–35 (2019). https://ercim-news.ercim.eu/en117/r-
i/smart-services-for-railways

17. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis, University of California (2000). https://www.ics.uci.edu/
∼fielding/pubs/dissertation/top.htm

18. Gilmore, S., Reijsbergen, D., Vandin, A.: Transient and steady-state statistical
analysis for discrete event simulators. In: Polikarpova, N., Schneider, S.A. (eds.)
IFM 2017. LNCS, vol. 10510, pp. 145–160. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66845-1 10

https://doi.org/10.1109/FormaliSE52586.2021.00007
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/978-3-030-17462-0_16
http://arxiv.org/abs/2105.06194
https://doi.org/10.1007/s11334-019-00333-7
https://doi.org/10.1007/978-3-030-78089-0_12
https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.2168/LMCS-12(4:2)2016
https://doi.org/10.2168/LMCS-12(4:2)2016
https://doi.org/10.1007/978-3-662-44602-7_18
https://doi.org/10.1007/978-3-662-44602-7_18
https://doi.org/10.1109/SASOW.2015.17
https://doi.org/10.1007/978-3-319-47166-2_46
https://ercim-news.ercim.eu/en117/r-i/smart-services-for-railways
https://ercim-news.ercim.eu/en117/r-i/smart-services-for-railways
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://doi.org/10.1007/978-3-319-66845-1_10
https://doi.org/10.1007/978-3-319-66845-1_10


Spatial Model Checking for Smart Stations 47

19. Hänseler, F.S., van den Heuvel, J.P., Cats, O., Daamen, W., Hoogendoorn, S.P.:
A passenger-pedestrian model to assess platform and train usage from automated
data. Transp. Res. Part A: Policy Pract. 132, 948–968 (2020). https://doi.org/10.
1016/j.tra.2019.12.032

20. Lai, X., Dai, M., Rameezdeen, R.: Energy saving based lighting system optimiza-
tion and smart control solutions for rail transportation: evidence from China.
Results Eng. 5, 100096 (2020). https://doi.org/10.1016/j.rineng.2020.100096

21. Massink, M., Paškauskas, R.: Model-based assessment of aspects of user-
satisfaction in bicycle sharing systems. In: Proceedings of the 18th International
Conference on Intelligent Transportation Systems (ITSC 2015), pp. 1363–1370.
IEEE (2015). https://doi.org/10.1109/ITSC.2015.224

22. Sebastio, S., Vandin, A.: MultiVeStA: statistical model checking for discrete event
simulators. In: Proceedings of the 7th International Conference on Performance
Evaluation Methodologies and Tools (ValueTools 2013), pp. 310–315. ACM (2013).
https://doi.org/10.4108/icst.valuetools.2013.254377

23. STINGRAY report: Algoritmi Innovativi. Deliverable D2.3.1, December 2020
24. Vandin, A., Giachini, D., Lamperti, F., Chiaromonte, F.: Automated and dis-

tributed statistical analysis of economic agent-based models. http://arxiv.org/abs/
2102.05405 [econ.GN], February 2021

https://doi.org/10.1016/j.tra.2019.12.032
https://doi.org/10.1016/j.tra.2019.12.032
https://doi.org/10.1016/j.rineng.2020.100096
https://doi.org/10.1109/ITSC.2015.224
https://doi.org/10.4108/icst.valuetools.2013.254377
http://arxiv.org/abs/2102.05405
http://arxiv.org/abs/2102.05405


Program Safety and Education



Parametric Faults in Safety Critical
Programs

Hamid Jahanian(B)

Macquarie University, Sydney, Australia
hamid.jahanian@hdr.mq.edu.au

Abstract. In the process industry, Safety Instrumented Systems (SIS)
are mechanisms that protect against major plant accidents. A typical
SIS consists of hardware components and a software part, the program.
Failure Mode Reasoning (FMR) was originally designed for identifying
failure modes of SIS inputs based on an analysis of its program. In this
paper we introduce an extended version of the method that can be used
as a diagnostic means for identifying systemic faults concerning incorrect
parameters in the program. The proposed method can particularly help
with SIS factory acceptance testing, which is a critical process in vali-
dating the integrity of SIS prior to its installation on site. The original
FMR used the program architecture to reason about failure modes. Here
we use test cases as an additional source of information for reasoning.
We describe the concepts, formalize the method, and demonstrate its
application in an industrial case study.

Keywords: Failure Mode Reasoning · Safety Instrumented Systems

1 Introduction

Plant accidents can have catastrophic consequences. An explosion at a chemical
plant in eastern China in 2019 killed over 70 people and injured more than 600 [1].
Safety Instrumented Systems (SIS) are a critical component of large industrial
plants, whose purpose is to monitor and protect against catastrophic process
failures [10]. A typical SIS includes, among other parts, sensors for measuring the
physical environment and an SIS program. The program takes inputs from the
sensors and implements safety functions that determine whether any corrective
intervention needs to be taken to ensure safe working of the plant.

Failure Mode Reasoning (FMR) was originally developed as a lightweight
formal approach to the analysis of failure modes associated with random faults
at the inputs of an SIS program [12–14]. In this paper we consider a similarly
lightweight approach for identifying systemic faults within the SIS program; in
particular concerning the errors in the setting of parameters. These faults may
arise due to incorrect or inconsistent implementation of the safety requirements
specification document [10], which is used as the benchmark for assessing the
overall safety of the plant. Our primary goal is to provide a method which can
c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 51–66, 2021.
https://doi.org/10.1007/978-3-030-85248-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-85248-1_4


52 H. Jahanian

assist engineers in their safety analyses by implementing, where possible, the
parts of the safety assessment which are too large and complex to be performed
accurately by hand. The method can be utilized in SIS factory acceptance tests,
which are an important part of the SIS validation processes.

Our contributions in this paper are as follows:

1. We formulate the problem using a simple model based on sets and functions,
and define inconsistency of parameters with respect to safety requirements.

2. We propose an algorithm that can automate the fault finding process.
3. We illustrate the implementation of our algorithm on a case study based on

industrial settings.

The philosophy of our approach is inspired by the notion of Morgan’s “infor-
mal methods” [16] (itself based on earlier work by Abrial [2]), that only sufficient
formality to meet the needs of the problem is required to obtain a high return
on impact. We propose a method that can help with real scenarios in industry,
and we employ minimal formalism to prove the soundness of the method.

The rest of this paper is organized as follows: Sect. 2 provides an overview
on FMR and its underlying ideas. Section 3 formalizes the concepts for iden-
tification of incorrect parameters, and proposes an algorithm for automating
the analysis. The algorithm is applied in Sect. 4 to a medium-scale case study
from the power generation industry. Section 5 discusses some aspects of the new
method. Section 6 provides references to other research works in the field, and
Sect. 7 closes the paper with some concluding remarks.

2 Background

We present a quick overview of FMR. Readers can refer to the original works
[12,13] for more details.

SIS programs are designed to meet the safety requirements in terms of pro-
cessing the information received from the sensors and translating those inputs
into safety actions, such as raising alarms or shutting down parts of the plant.
SIS programs are typically developed in graphical editors and in the form of
Function Block Diagrams (FBD) [9]. Figure 1 illustrates a small example of an
FBD. The program takes a single input i, and feeds it separately into two func-
tion blocks (FBs) Gcom and Lcom1, which together check whether the input i
lies between an upper threshold p1 and a lower threshold p2. The final result r
will be 1 if i lies outside the permissible range [p2, p1], and 0 otherwise.

Fig. 1. A small SIS program

1 Gcom: Greater Comparison, Lcom: Less Comparison.



Parametric Faults in Safety Critical Programs 53

Part of the safety assessment of an SIS is to determine when its output r
can be trusted. One reason that r may not be trusted is because the inputs
do not correctly report the state of the plant, perhaps because the sensors have
unknowingly failed. FMR was originally developed to analyze this type of failures
by using the SIS program. In a broad sense, FMR is a technique for analyzing
uncertain deviations at the variables of an SIS program. Suppose x is the current,
known, reported value at variable x, and x′ the desired, correct, yet unknown
value at the same variable. By deviation at x we mean the (potential) difference
between x and x′. Program variables include: parameters (e.g. p1 and p2), inputs
(e.g. i), outputs (e.g. r), and intermediate variables (e.g. x1 and x2).

FMR uses an abstraction to categorize deviations into failure modes. This
considerably simplifies the analysis by eliminating unnecessary numerical com-
putations. We use the set P:= {l,m, h} for failure modes, in which h, l and m rep-
resent higher, lower and matching states2, and we use function mdP : R×R → P

to map numerical deviations to failure modes:3

mdP(x, x′):= x̂:=

⎧
⎨

⎩

h, if x > x′

l, if x < x′

m, if x = x′

An FMR analysis begins with a given deviation at the SIS output. The
objective is to identify the combinations of input faults that can lead to the
given output fault. In doing so, the program is scanned from output to inputs,
in the process of which the failure behavior of individual FBs are analyzed locally
and then combined to model the global failure behavior.

For an output deviation r̂ = h in Fig. 1, the local failure models are:

r̂ = h ⇒ (x̂1 = h ∨ x̂2 = h)

x̂1 = h ⇒ î = h

x̂2 = h ⇒ î = l

By combining these statements we obtain the failure model of the whole program,
which is solely based on input/output failure modes:

r̂ = h ⇒ (̂i = h ∨ î = l) (1)

Statement (1) simply suggests that if output r becomes 1 by fault, that must be
because input i is reading either higher (h) or lower (l) than what it should.

The failure models of individual FBs vary depending on their mathematical
functions. However, for the particular category of monotonic functions a generic
model can be derived:
2 The original works [12–14] use t and f specifically for Boolean variables. In this paper
we use the 0/1 convention for Boolean variables, instead of false/true, and thus h

and l will cover both R and B domains. Also note that m is actually not a failure
and it is only used to express the no-fault states.

3 Here, symbolˆseparates between program variables and failure mode variables. As
an example, x̂ represents the failure modes at variable x.



54 H. Jahanian

Axiom 1. Let f : R → R be a monotonic function. Let x, y ∈ R and y:= f(x).
If f is increasing, i.e. x1 > x2 ⇒ f(x1) ≥ f(x2), then: (ŷ = h∨ ŷ = l) ⇒ x̂ = ŷ.
If f is decreasing, i.e. x1 > x2 ⇒ f(x1) ≤ f(x2), then: ŷ = h ⇒ x̂ = l and
ŷ = l ⇒ x̂ = h.

The original FMR analyzes the random faults at SIS inputs. In this paper,
we study the kind of systemic faults that are caused by incorrect settings of
parameters. Such analyses lead to outcomes such as: r̂ = h ⇒ p̂1 = l. Com-
pared to (1), which expresses all the possible failure modes of inputs, the latter
result solely depends on the faults of parameters and it is minimized to those
parameters that have caused the deviation.

3 Identifying Incorrect Parameters

Let I be the (finite) set of (real-valued) input variables. Let Θ be a (finite) set
of parameters in an SIS program. Let R be the (finite) set of (Boolean-valued)
result variables. Let f ∈ R

|I|→R
|Θ|→B

|R| be the mathematical model of an SIS
program. The safety analysis we study here is a technique to identify faults in the
current setting of parameters. Let T ⊆ R

|I|×B
|R| be a finite set of input/output

test cases. A test case (ι, ρ) ∈ T consists of test input ι, injected at the input of
SIS program; and output ρ, which is the response of the program to input ι in
the absence of faults.

Definition 1. Given are T a test set, θ ∈ R
|Θ| a parameter setting, and f a

model of an SIS program. We say that (ι, ρ) ∈ T is consistent wrt. θ in f if
ρ = f(ι, θ). Conversely we say that (ι, ρ) ∈ T is inconsistent wrt. θ in f if
ρ 	= f(ι, θ).

Definition 2. A parameter setting θ is inconsistent with test set T and SIS
program f if there is some (ι, ρ) ∈ T that is inconsistent wrt. θ in f .

Definition 3. Given are a parameter setting θ, test set T and SIS program f .
Further, let θ be inconsistent wrt. T and f . A subset of parameters P ⊆ Θ are
incorrectly set if there is some θ′ parameter setting such that: (i) θ′ is consistent
wrt. T and f , and (ii) θ′

j 	= θj implies that pj ∈ P .4 If P is also a minimal, then
we say that the parameters in P are a potential cause of inconsistencies in T .

A major class of SIS program architectures is the Disjunctive Normal Form
(DNF), where each conjunctive clause represents a hazardous scenario that
should lead to a 1 at the output of the program, regardless of the states of
other scenarios. We model such programs in the following form:5

r = f(i, p) =
L∨

l=1

fl(il, pl) =
L∨

l=1

K∧

k=1

flk(ilk, plk) (2)

4 Here, θj and θ′
j mean the current and correct settings at parameter pj .

5 In this paper we only formulate the analysis for DNF. Similar approach can be taken
to formulate the CNF-based analysis.



Parametric Faults in Safety Critical Programs 55

where r ∈ B is the output variable, f the model of SIS program, i ∈ R
|I| the

input variables, p ∈ R
|Θ| the parameter variables and flk(ilk, plk) an arbitrary

expression on a subset of inputs ilk ⊆ il ⊆ i and a subset of parameters plk ⊆
pl ⊆ p.

An incorrect parameter may cause a failure at the output of an flk literal,
which can in turn lead to a failure at the final output r. The impact of faulty
parameters on individual flks depends on the function of these literals individ-
ually; and can be determined by using the original FMR. The impact of faulty
flks on r, on the other hand, is always in accordance with DNF architecture, and
is independent from the individual flks. So, let us first examine the propagation
of faults through a generic DNF.

Lemma 1. Let r = f(i, p) be the DNF model of an SIS program as defined in
(2). Let r̂, f̂l and f̂lk represent the failure modes at the outputs of f , fl and flk

respectively. Then:

(r̂ = l ∨ r̂ = h) ⇒
l=L∨

l=1

(f̂l = r̂) (3)

(r̂ = l ∨ r̂ = h) ⇒
l=L∨

l=1

k=K∨

k=1

(f̂lk = r̂) (4)

Proof. We begin with the disjunctive part r = ∨lfl:

r̂ = l ⇒ (r = 0 ∧ r′ = 1) ⇒
j=L∧

j=1

(fj = 0) ∧
l=L∨

l=1

(f ′
l = 1)

⇒
l=L∨

l=1

(f̂l = l)
j=L∧

j=1
j �=l

(fj = 0) ⇒
l=L∨

l=1

(f̂l = l) (5)

r̂ = h ⇒ (r = 1 ∧ r′ = 0) ⇒
l=L∨

l=1

(fl = 1) ∧
j=L∧

j=1

(f ′
l = 0)

⇒
l=L∨

l=1

(f̂l = h)
j=L∧

j=1
j �=l

(f ′
j = 0) ⇒

l=L∨

l=1

(f̂l = h) (6)

(5) and (6) together prove (3). Further, each conjunctive clause in DNF is defined
by fl = ∧kflk. Similar to the disjunctive part, we can say:

f̂l = l ⇒ (fl = 0 ∧ f ′
l = 1) ⇒

k=K∨

k=1

(flk = 0) ∧
j=K∧

j=1

(f ′
lj = 1)

⇒
k=K∨

k=1

(f̂lk = l)
j=K∧

j=1
j �=k

(f ′
lj = 1) ⇒

k=K∨

k=1

(f̂lk = l) (7)



56 H. Jahanian

f̂l = h ⇒ (fl = 1 ∧ f ′
l = 0) ⇒

j=K∧

j=1

(flj = 1) ∧
k=K∨

k=1

(f ′
lk = 0)

⇒
k=K∨

k=1

(f̂lk = h)
j=K∧

j=1
j �=k

(flj = 1) ⇒
k=K∨

k=1

(f̂lk = h) (8)

By substituting (7) in (5) and (8) in (6) we will have:

r̂ = l ⇒
l=L∨

l=1

k=K∨

k=1

(f̂lk = l) (9)

r̂ = h ⇒
l=L∨

l=1

k=K∨

k=1

(f̂lk = h) (10)

which together prove (4).

Lemma 1 shows the minimum condition: if the output of a DNF is deviated
in either l or h direction, at least one flk literal is deviated in the same direction.
We will see later how test cases can help minimize (4); but let us first describe
how a test case is typically used in a real test scenario.

SIS “Factory Acceptance Tests” are often done in a black-box setting, where
only the inputs to and outputs of the system are used to validate its functionality.
In such settings, not only do we need to confirm that the system produces the
expected output, but we also need to ensure that the output is indeed caused by
the given test input. This is the causality condition. Further, the test input ι may
only be a subset of all SIS inputs i. There may remain a number of inputs δ:= i\ι
that are not specified as part of a test case, simply because they are not related to
the hazardous scenario under test. Such inputs should remain unchanged during
the test. To include both the causality condition and the finiteness of test inputs,
we need to agree on a key assumption here.

Assumption 1. Given the SIS program f as defined in (2) and a test case (ι, ρ)
proposed for testing f , we assume that:

– If ρ = 1, there is at least one fl(il, pl) clause in f such that il ⊆ ι and if pl is
correct then fl(ιl, pl) = ρ.

– If ρ = 0 and il ∩ ι 	= ∅, there is at least one flk(ilk, plk) in fl such that ilk ⊆ ι
and if plk is correct then flk(ιlk, plk) = ρ.

Corollary 1. Given the SIS program with DNF architecture defined in (2) and
the test case (ι, ρ), if il ∩ ι = ∅ then pl cannot be incorrect (wrt. to (ι, ρ)).

Assumption 1 is particularly important in identifying the flk literals with
incorrect parameters. If an flk is not a part of a successful response at the
output of program, it obviously cannot be a part of the failure either. This
Assumption also implies a minimum level of consistency between a chosen test



Parametric Faults in Safety Critical Programs 57

case and the implemented program architecture. This is particularly important
in factory acceptance tests in the process industry, where test cases are typically
decided by hand and based on informal requirement specifications; which is very
different to test case generation scenarios in generic software engineering [3].

We can now set out the rules that we will use for simplifying disjunction (4).

Lemma 2. Given are the SIS program with DNF architecture defined in (2) and
the test case (ι, ρ). Let δ be the set of unspecified inputs δ := i \ ι. A literal flk

can only be considered as a potential cause of an output deviation r̂ = l or r̂ = h

if the following conditions are all met: 1) plk 	= ∅; 2) ilk ∩ δ = ∅; 3) flk(ι, θ) 	= ρ;
and 4) if there is a flm such that m 	= k and plm = ∅, then flm(ι, θ) 	= 0.

Proof. Condition 1: flk is a function of inputs ilk and parameters plk. Given that
inputs are specified and the function is correctly implemented (Assumption 1),
the only reason for a deviation at the output of flk would be its parameters.

Condition 2: ilk ∩ δ 	= ∅ would mean that some inputs in flk are unspecified.
Thus, the output of flk cannot be judged as a certain cause of fault or success.

Condition 3: From r̂ = l ∨ r̂ = h it implies that r = ¬ρ. Recall (4) from
Lemma 1. For f̂lk = r̂ to hold, we need to have flk = r = ¬ρ, which requires
flk(ι, θ) 	= ρ.

Condition 4: plm = ∅ and flm(ι, θ) = 0 would together imply that fl(ι, θ) =
∧K

k=1flk(ι, θ) = 0, which means fl is producing its intended output; because it
is set to 0 by a specified input. Thus, no other flm can lead to a fault at the
output of fl or at r.

Lemma 2 helps eliminate those literals in (4) that cannot be true. Once these
literals are eliminated, the remaining sentences can be extended to expressions of
parameter’s failure modes by applying the original FMR. The complete method
is outlined in Algorithm 1.

The algorithm is divided into two separate parts for better clarity. In the
first part the flk literals with potentially incorrect parameters are identified
and labeled. At the end of this part, an entry wlk = 0 in the labels matrix w
indicates that the corresponding f̂lk is ruled out and can be eliminated from
the failure mode expression φ. In the second part, the original FMR is applied
to the remaining flks to compose a failure mode expression with respect to the
parameters. The last step of this part uses basic rules of propositional logic, e.g.
De Morgan’s laws [7] to simplify the resultant φ.

Algorithm 1 produces an understanding of failure modes with respect to one
test case. One would expect that more test cases should help narrow down these
findings even further.

Theorem 1. Given are the SIS program with DNF architecture defined in (2)
and the test set T = {(ιn, ρn) | 1 ≤ n ≤ N}. Let φn be the failure mode expres-
sion produced by Algorithm 1 wrt. test case n. The intersection between all φn

expressions represents the minimal set of potentially incorrect parameters.



58 H. Jahanian

Proof. We proved Lemmas 1 and 2, on which Algorithm 1 is based. Hence, φn

corresponds the potentially incorrect parameters related to test case n. We also
know that all φn expressions should hold at the same time; because there is
only one set of current parameters setting. Therefore, the overall failure mode
expression φ should satisfy all the φns, and thus φ is the intersection of all φns.

Algorithm 1: FMR4SP
Input: SIS program DNF as defined in (2)
Input: Current parameter settings θ
Input: Test case (ι, ρ)
Output: Failure modes disjunction φ
// Identifying suspicious flks:
r̂ := mdP(f(ι, θ), ρ);
forall the elements of w do

wlk := 0; // w is an L × K matrix
end
for l := 1 to L do

for k := 1 to K do
if ilk ∩ (i \ ι) 	= ∅ then continue;
z := flk(ιlk, θlk);
if plk = ∅ then

if z = 0 then
forall the elements of wl do wln := 0;
break; // To next l

else continue; // To next k

else if z = ρ then continue;
wlk := 1; // plk potentially faulty

end
end
// Composing the FMR expression:

φ := ∨l ∨k (f̂lk = r̂);
for l := 1 to L do

for k := 1 to K do
if wlk = 1 then

Use original FMR to convert (f̂lk = r̂) to an expression
depending on p̂lk;

else Remove (f̂lk = r̂) from φ

end
end
Simplify the resultant φ by using logic rules;

4 Case Study

In this section we will demonstrate the implementation of our method in an
industrial case study from a medium-scale power plant project. In this project



Parametric Faults in Safety Critical Programs 59

the SIS was installed to protect a heat recovery steam generator (HRSG) and
its supplementary burner. Simply put, an HRSG is an industrial boiler that uses
recycled heat from another source, e.g. a gas turbine, to generate super-heat
steam, which can then be used in a downstream process, e.g. a steam turbine.
Some HRSGs utilize supplementary burners to expand their capacity.

The SIS we study here performs 30 safety functions for the burner, 11 of
which are shared with the HRSG. For our case study, we analyze a shared safety
function; that of “extreme level of water in boiler”. This function receives read-
ings from level and pressure sensors as its inputs. Pressure measurement is used
to modify the level readings6. The corrected level readings are then compared
to a preset threshold and, if it is determined that the water level is above the
permissible range, a trip will be initiated at the SIS outputs to close the gas
valves. A failure to initiate the trip may lead to catastrophic damages to the
steam turbine and potential risk to the personnel working in the area.

An overview of the SIS program with a focus on drum level safety function
is shown in Fig. 2. The SIS program as a whole receives almost 200 inputs from
sensors, and produces 25 hardwired outputs. The program comprises over 2170
function blocks, with thousands of parameters. Here, we are only interested in
output r and the FBs and parameters that link r to the nominated inputs.

In Fig. 2, parameters are named by pjs and intermediate variables by xjs.
Drum level is measured by inputs i1, i2, i3 ∈ [−380mm, 755mm] and pressure
by i7, i8 ∈ [0MPa, 20MPa]. The other six inputs i4, i5, i6, i9, i10 ∈ B indicate
the detected faults of their corresponding sensors. Each box in the diagram
represents an FB. Details of some of the functions is given below with some
simplifications.

x0 = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x1) x1 = i4 ∨ (¬i4 ∧ x13) ∨ (x19 ∧ x22)
x19 = Abs(i1 − Avg(i1, i2, i3)) > p22 x22 = ¬(i4 ∨ i5 ∨ i6)
x13 = (x16 − p7) > p1 x16 = Corr(x23, x27, p10)
x23 = i1 + p13 x27 = x28 × p19

x28 = Max(p18,Min(p17, x29) x30 =

{
i7, if x31 = 0

i8, if x31 = 1

Here, Abs,Avg,Min and Max calculate the absolute, average, maximum and
minimum values respectively. The correction FB Corr reads the level and pres-
sure sensors and a “distance” parameter (e.g. p10), and it produces the corrected
value of level based on complex thermodynamic formulas and look-up tables.
Also, PT1 and OFF are time delay functions and do not alter the values of
their inputs. Therefore, for the purpose of FMR: x29 = x30 and x31 = i9.

Consider now a factory setup where the SIS program is to be tested and
validated. The test engineers know from the requirements specification that the
burner should trip if any two out of the three level sensors are healthy and their

6 Water drum pressure can vary within a wide range, causing considerable changes to
water density and thus to the level measurement. High pressure drums usually use
pressure readings to compensate the impact of water density on level measurements.



60 H. Jahanian

Fig. 2. SIS program for the burner case study

corrected values read over 260mm. So, the engineers set the pressure measurement
to the arbitrary value of 0.5MPa by injecting i7 = 0.5 and i9 = 0. Then, they
inject and adjust level measurements such that the corrected values of level show
> 260mm on the operator screen. At this point the injected inputs are 243mm;
however, given that the corrected level is above the specified threshold, we expect
to see a 1 at output r. Based on the selected test cases, which are in turn selected
based on the requirement specification, we have encountered the following cases
where the observed and expected outputs do not match:

Test case 1: ([ι11 ι12 ι14 ι15 ι17 ι19], ρ
1) = ([243 243 0 0 0.5 0], 1), r = 0

Test case 2: ([ι22 ι23 ι25 ι26 ι27 ι29], ρ
2) = ([243 243 0 0 0.5 0], 1), r = 0

Test case 3: ([ι31 ι33 ι34 ι36 ι37 ι39], ρ
3) = ([243 243 0 0 0.5 0], 1), r = 0

These test cases constitute an input to Algorithm 1. A second input to Algo-
rithm1 is the current settings of parameters. The current values of those param-
eters that are related to our case study is given here:

θ1 = 270 θ5 = 260 θ9 = 380 θ13 = 380 θ17 = 25 θ21 = 20

θ2 = 15 θ6 = 15 θ10 = 490 θ14 = 380 θ18 = 0 θ22 = 100

θ3 = 270 θ7 = 380 θ11 = 490 θ15 = 380 θ19 = 10

θ4 = 15 θ8 = 380 θ12 = 490 θ16 = 5 θ20 = 2



Parametric Faults in Safety Critical Programs 61

As a last input to Algorithm 1, we need to define the program DNF. We use
Corollary 1 as a basis for an initial screening, in order to reduce the large SIS
program into a smaller version, containing only those parts that are relevant to
a nominated set of inputs. In this SIS program, r is the output of a DNF with
over 450 flk literals; however, as can be seen in Fig. 2, only a small portion of
this DNF is relevant to the drum level inputs. All other clauses can be filtered
out, and the SIS program can be reduced to:

x0 = (¬i4 ∧ x19 ∧ ¬i5 ∧ x20 ∧ ¬i6) ∨ (¬i4 ∧ x19 ∧ ¬i5 ∧ ¬i6 ∧ x21)∨
(¬i4 ∧ ¬i5 ∧ x20 ∧ ¬i6 ∧ x21) ∨ (x19 ∧ ¬i5 ∧ x14) ∨ (¬i4 ∧ x13 ∧ x20)∨
(x19 ∧ ¬i6 ∧ x15) ∨ (¬i4 ∧ x13 ∧ x21) ∨ (x20 ∧ ¬i6 ∧ x15)∨
(¬i5 ∧ x14 ∧ x21) ∨ (x13 ∧ i5) ∨ (x13 ∧ x14) ∨ (x13 ∧ i6) ∨ (x13 ∧ x15)∨
(i5 ∧ i6) ∨ (i5 ∧ x15) ∨ (x14 ∧ i6) ∨ (x14 ∧ x15) ∨ (i4 ∧ i5) ∨ (i4 ∧ x14)∨
(i4 ∧ i6) ∨ (i4 ∧ x15)

≡ ∨21
l=1 ∧5

k=1flk (11)

We now get into the processing part of Algorithm 1, which consists of two
separate loops for identifying the irrelevant literals and composing the failure
mode expression. Effectively, the process begins with a maximal disjunction (see
Lemma 1), which is then reduced to a minimal one by applying the elimination
rules given in Lemma 2. Consider the test case no. 1 where the output deviation
is r̂ = l. The maximal failure mode expression for this test case will be:

φ1 ≡ (̂i4 = l ∨ x̂13 = l ∨ x̂19 = l ∨ î5 = l ∨ x̂14 = l ∨ x̂20 = l∨
î6 = l ∨ x̂15 = l ∨ x̂21 = l) (12)

The first group of literals that can be eliminated from φ1 includes î4, î5 and î6;
because these sentences do not depend on any parameters. Next, x̂19, x̂20, x̂21 and
x̂15 can be eliminated too; because x19, x20, x21 and x15 depend on unspecified
inputs i3 and i6. Therefore, the failure mode expression will be simplified to:

φ1 ≡ (x̂13 = l ∨ x̂14 = l) (13)

We now use the original FMR method to expand x̂13 = l and x̂14 = l with
respect to parameters. This can be done based on the program architecture and
its constituting FBs. x13 is the output of a Gcom FB. Therefore:

x̂13 = l ⇒ (p̂1 = h ∨ x̂10 = l) (14)

Moving backward in the program, from x10 = x16 − p7 we can reason that
x̂10 = l ⇒ (p̂7 = h ∨ x̂16 = l), and thus:

x̂13 = l ⇒ (p̂1 = h ∨ p̂7 = h ∨ x̂16 = l) (15)

Sentence x̂16 = l depends on the Corr FB. As mentioned earlier, this FB uses
complex calculations that cannot be expressed in simple mathematical forms.



62 H. Jahanian

However, thanks to FMR’s abstraction, we do not need to directly deal with
such complexities. We know from the description of Corr [19] that, for almost
the entire operation range, this function has an increasing behavior with respect
to its level and pressure inputs, and a decreasing behavior with respect to its
“distance” parameter. Therefore, based on Axiom 1:

x̂16 = l ⇒ (x̂23 = l ∨ x̂27 = l ∨ p̂10 = h) (16)

By substituting (16) in (15), we will have:

x̂13 = l ⇒ (p̂1 = h ∨ p̂7 = h ∨ p̂10 = h ∨ x̂23 = l ∨ x̂27 = l)
⇒ (p̂1 = h ∨ p̂7 = h ∨ p̂10 = h ∨ p̂13 = l ∨ x̂27 = l) (17)

Variable x27 is the output of a multiplication function. It can be shown that
when the current values of both inputs are greater than zero and the output
fault is x̂27 = l, the input faults will be: x̂28 = l ∨ p̂19 = l ∨ (x̂28 = h ∧ p̂19 = h).
Therefore, (17) can be changed to:

x̂13 = l ⇒ (p̂1 = h ∨ p̂7 = h ∨ p̂10 = h ∨ p̂13 = l∨
x̂28 = l ∨ p̂19 = l ∨ (x̂28 = h ∧ p̂19 = h)) (18)

Variable x28 is the output of a limiter (i.e. min/max) function, which is also
a monotonic function with respect to its input and its parameters. The input
to this function is x29, which is directly linked to SIS inputs, and thus cannot
be faulty. Therefore, the only possible cause for x̂28 = l can be p18 = l and the
cause for x̂28 = h can be p17 = h. As a result:

x̂13 = l ⇒ (p̂1 = h ∨ p̂7 = h ∨ p̂10 = h ∨ p̂13 = l∨
p̂18 = l ∨ p̂19 = l ∨ (p̂17 = h ∧ p̂19 = h)) (19)

Similarly, we can interpret x̂14 = l to an expression on parameters:

x̂14 = l ⇒ (p̂3 = h ∨ p̂8 = h ∨ p̂11 = h ∨ p̂14 = l∨
p̂18 = l ∨ p̂19 = l ∨ (p̂17 = h ∧ p̂19 = h)) (20)

which, together with (19), will lead to:

φ1 ≡ (p̂1 = h ∨ p̂7 = h ∨ p̂10 = h ∨ p̂13 = l∨
p̂3 = h ∨ p̂8 = h ∨ p̂11 = h ∨ p̂14 = l∨
p̂18 = l ∨ p̂19 = l ∨ (p̂17 = h ∧ p̂19 = h)) (21)

Using Algorithm 1 for test cases no. 2 and 3 we will lead to the following
results:

φ2 ≡ (p̂3 = h ∨ p̂8 = h ∨ p̂11 = h ∨ p̂14 = l∨
p̂18 = l ∨ p̂19 = l ∨ (p̂17 = h ∧ p̂19 = h)) (22)

φ3 ≡ (p̂1 = h ∨ p̂7 = h ∨ p̂10 = h ∨ p̂13 = l∨
p̂18 = l ∨ p̂19 = l ∨ (p̂17 = h ∧ p̂19 = h)) (23)



Parametric Faults in Safety Critical Programs 63

As we showed earlier in Theorem,1, φ1, φ2 and φ3 should all hold at the same
time, and thus the final failure expression will be their intersection:

φ ≡ (p̂18 = l ∨ p̂19 = l ∨ (p̂17 = h ∧ p̂19 = h)∨
((p̂1 = h ∨ p̂7 = h ∨ p̂10 = h ∨ p̂13 = l)∧
(p̂3 = h ∨ p̂8 = h ∨ p̂11 = h ∨ p̂14 = l))) (24)

The resultant expression indicates two possibilities of fault: a conjunction of
parameters in the paths of sensors 1 and 2; and parameters set {p17, p18, p19},
which constitute a common cause to all the three sensor paths. We know from
(22) and (23) that the cause of fault in our program cannot be a common cause;
otherwise both tested channels would indicate faults, as they did in (21). Hence,
the final result will be:

φ ≡ ((p̂1 = h ∨ p̂7 = h ∨ p̂10 = h ∨ p̂13 = l)∧
(p̂3 = h ∨ p̂8 = h ∨ p̂11 = h ∨ p̂14 = l)) (25)

Our search for incorrect parameters cannot be adjusted any further. This is
mainly because a group of parameters (e.g. p1, p7, p10, p13) have a cascade impact
on the same variable (in this case x13). However, considering the total number
of parameters, which is in the range of thousands, having to manually recheck
only 8 parameters against the specification is a considerable advantage. Most
importantly, the result does include the actual combination of fault that we had
simulated for the purpose of this case study: p̂1 = h ∧ p̂3 = h. The result also
shows the capability of our method in identifying concurring faults.

5 Discussion

When using FMR for input faults, the objective is to maximize the results, to
include all possible failure causes coming into the system. When fault finding
parameters, we try to minimize the results because we are looking for an existing
fault within the system. In the former scenario we are interested in how the
SIS may fail in the future. In the latter we try to locate an existing, certain
fault. In studying input failure modes, program architecture alone is sufficient
for reasoning; since we look for external faults. When searching for incorrect
parameters, we utilize test cases as an additional source of information; since
we look for internal faults. These functional differences make the two methods
suitable for two different applications: the former is suitable in the early stage of
design when safety engineers analyze the modes and probability of SIS failure.
The latter is helpful in pre-installation factory acceptance testing and, similarly,
in regular validation tests during plant operation.

We introduced a method that can serve in parameter diagnostics scenarios.
Our add-on to the original FMR included the elimination process and the use
of test cases. We also added to the reasoning process of the original FMR by
formulating a generic DNF architecture, which is commonly used in SIS programs
in the process industry.



64 H. Jahanian

Our intention in this paper was not to introduce a tool, but rather to propose
and formalize the method. We are currently working towards incorporating Algo-
rithm1 into our existing FMR tool so that we can utilize it for detecting failure
modes of parameters too. We are also working on generalizing the elimination
phase based on dynamic program slicing [15] and graph reachability [18] in order
to extend the analysis capacity of our method to non-DNF architectures.

In using FMR for parameters, the main objective is to diagnose the fault.
However, the reasoning process can be extended to include estimating boundary
conditions for correct values of parameters. The logic is simple: if φ indicates
that the current setting of a parameter is lower (or higher) than what it should
be, then that parameter should be adjusted to a higher (or lower) value than
what it currently is. A proposed correction for (25), for instance, will be: (θ′

1 <
θ1 ∨ θ′

7 < θ7 ∨ θ′
10 < θ10 ∨ θ′

13 > θ13)∧ (θ′
3 < θ3 ∨ θ′

8 < θ8 ∨ θ′
11 < θ11 ∨ θ′

14 > θ14).
One may however ask whether such rough solutions are of practical help. In our
experience, once the suspicious parameters are located, it is often easier to check
them against the requirement specification, rather than to recalculate them.

6 Related Works

Diagnostics based on systematic inference was extensively studied in the 1980’s.
Some of the frequently cited articles include [5,8,17]. Generally speaking, these
studies were aimed to answer one question: given an observed deviation at the
output of a system, how can we identify the faulty components by reasoning
based on the knowledge of system structure and/or system function? Logic cir-
cuits in particular made an interesting application as they typically consist of
complex yet well-defined logical structures. Unlike inference-based diagnostics,
FMR was primarily designed to target probable input faults, rather than faulty
system components. Moreover, FMR is specialized in analyzing SIS programs,
rather than hardware systems. In searching for faulty parameters we used the
existing FMR platform to solve a diagnostics problem for a specific application
context; i.e. SIS programs.

Finding faulty parameters may also be compared to program debugging, pro-
vided we include the correction steps that the user would take after the incorrect
parameters are identified. Going by the definitions in [11], FMR is a method for
debugging by deduction, where we create a list of possible causes of the bug and
then narrow them down by reasoning. Readers can find a useful historical and
methodological summary of debugging functional programs in [21], which also
proposes its own method based on interpretation. Compared to functional pro-
grams in general [4], debugging an SIS program is a simpler problem to solve.
The functions (i.e. FBs) are developed by technology suppliers and undergo
independent certification processes that are then followed by systematic revision
control and patching processes. For an SIS system integrator (who would be the
main target user of our method) FBs are deemed to be correct, and the main
concerns in developing an SIS application program are selecting, interconnect-
ing, and parameterizing the FBs. The method we presented here is specific to



Parametric Faults in Safety Critical Programs 65

SIS programs, and it uses the advantage of their specific logical structure to gain
benefits in other aspects of debugging, such as speed and scalability.

A well-established approach in debugging is “program slicing”, where a large,
complex program is reduced to a small, yet relevant slice of the program in
order to make the fault finding easier [15,20]. Our Corollary 1 and Lemma 2 in
fact constitute a slicing method specific to DNF programs. It should be noted,
however, that slicing alone is not a fault finding process; and it is only used
to reduce the search area. In the method we presented here the actual fault
reasoning process happens in the second half of Algorithm 1 and by using the
FMR techniques.

As a diagnostic approach, our focus in FMR is on detecting faults; and in
this paper we focused on detecting faults of parameters. Although the outcome
of our fault finding can essentially help with correcting the right parameters
in the right directions, our method is not aimed to provide any calculation or
optimization of exact values for parameters. Calculating the optimum settings
of parameters is rather a design question, for which optimization methods, such
as parameter synthesis [6], may be employed.

7 Conclusion

We formalized the application of FMR for identifying incorrect parameters and
their failure modes. We demonstrated the implementation of the method through
a case study from the process industry.

The case study that we used here illustrated that our method can correctly
narrow down the fault to the smallest possible set of suspicious parameters, given
the architecture of the program and the test cases. While the final results may
not always be limited to certainly faulty parameters, the final set of candidates
is dramatically smaller than the complete set of parameters in the program.
This can substantially reduce the time and effort that safety engineers would
otherwise need to spend on visually reviewing the program. The case study
also showed that our algorithm efficiently operates in scenarios where multiple
incorrect parameters exist in the program.

For future research works, we aim to expand the FMR prototype tool to
include automated identification of incorrect parameters. Other areas for further
research include generalizing the method to non-DNF programs and incorporat-
ing the “prior states”. The latter topic is particularly helpful in programs with
hysteresis elements, in which the validity of an expected output also depends on
the status of SIS output prior to applying a test input. Lastly, we would like to
examine the potential for cross-reasoning between test cases. Currently each test
case is analyzed independently. A cross comparison between the findings of test
cases may provide a better visibility to common cause failure, and help further
narrow down the final results.



66 H. Jahanian

References

1. Wikipedia: 2019 Xiangshui chemical plant explosion. https://en.wikipedia.org/
wiki/2019 Xiangshui chemical plant explosion. Accessed 28 Jun 2021

2. Abrial, J.R., Abrial, J.R.: The B-Book: Assigning Programs to Meanings.
Cambridge University Press, Cambridge (2005)

3. Anand, S., et al.: An orchestrated survey of methodologies for automated software
test case generation. J. Syst. Softw. 86(8), 1978–2001 (2013)

4. Chitil, O.: Functional programming. In: Wah, B.W. (ed.) Encyclopedia of Com-
puter Science and Engineering, pp. 1334–1344. Wiley, Hoboken (2009)

5. Davis, R.: Diagnostic reasoning based on structure and behavior. Artif. Intell.
24(1–3), 347–410 (1984)

6. Dehnert, C., et al.: Prophesy: a probabilistic parameter synthesis tool. In: Inter-
national Conference on Computer Aided Verification, pp. 214–231 (2015)

7. Genesereth, M., Kao, E.: Introduction to Logic. Synthesis Lectures on Computer
Science, vol. 4, no. 1, pp. 1–165. Routledge, London (2013)

8. Genesereth, M.R.: The use of design descriptions in automated diagnosis. Artif.
Intell. 24(1–3), 411–436 (1984)

9. IEC: IEC 61131: Programmable Controllers - Part 3: Programming Languages
(2013)

10. IEC: IEC 61511: Functional Safety-safety Instrumented Systems for the Process
Industry Sector - Part 1: Framework, Definitions, System, Hardware and Applica-
tion Programming Requirements (2016)

11. Glenford, J.M., Tom, B., Corey, S.: Debugging. In: Art of Software Testing, 3rd
edn, pp. 157–174. Wiley, Hobobken (2012)

12. Jahanian, H.: Failure mode reasoning. In: 2019 4th International Conference on
System Reliability and Safety (ICSRS), pp. 295–303. IEEE (2019)

13. Jahanian, H., McIver, A.: Reasoning with failures. In: Lin, S.W., Hou, Z., Mahony,
B. (eds.) ICFEM 2020. LNCS, vol. 12531, pp. 36–52. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63406-3 3

14. Jahanian, H., Parker, D., Zeller, M., McIver, A., Papadopoulos, Y.: Failure mode
reasoning in model based safety analysis. In: Zeller, M., Höfig, K. (eds.) IMBSA
2020. LNCS, vol. 12297, pp. 130–145. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58920-2 9

15. Korel, B., Laski, J.: Dynamic program slicing. Inf. Process. Lett. 29(3), 155–163
(1988)

16. Morgan, C.: (In-)formal methods: the lost art - a users’ manual. In: Liu, Z., Zhang,
Z. (eds.) SETSS 2014. LNCS, vol. 9506, pp. 1–79. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-29628-9 1

17. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

18. Reps, T.: Program analysis via graph reachability. Inf. Softw. Technol. 40(11–12),
701–726 (1998)

19. Siemens: SPPA T3000 Rel 8.2 - Engineering Help. Siemens (2018)
20. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. (4), 352–357 (1984)
21. Whitington, J.: Debugging functional programs by interpretation. Ph.D. thesis,

University of Leicester (2020)

https://en.wikipedia.org/wiki/2019_Xiangshui_chemical_plant_explosion
https://en.wikipedia.org/wiki/2019_Xiangshui_chemical_plant_explosion
https://doi.org/10.1007/978-3-030-63406-3_3
https://doi.org/10.1007/978-3-030-58920-2_9
https://doi.org/10.1007/978-3-030-58920-2_9
https://doi.org/10.1007/978-3-319-29628-9_1
https://doi.org/10.1007/978-3-319-29628-9_1


Modular Transformation of Java
Exceptions Modulo Errors

Robert Rubbens(B) , Sophie Lathouwers , and Marieke Huisman

Formal Methods and Tools, University of Twente, Enschede, The Netherlands
r.b.rubbens@utwente.nl

Abstract. Deductive verifiers are used more and more in both academia
and industry to prevent costly bugs. Their capabilities of verifying con-
current programs are getting better, but they are still lagging behind with
regard to many major programming language features such as exceptions.
To improve the situation, this work presents a semantics of Java excep-
tions which reduces the annotation burden on the user, while still allow-
ing verification of exceptions. This is accomplished by ignoring sources
of errors which are irrelevant to functional verification. Additionally, to
deal with the complex control flow introduced by finally, a transforma-
tion is proposed that simplifies verification of exceptional postconditions
and finally into postconditions and goto. We implement the approach
and evaluate it against several common exception patterns.

Keywords: Deductive verification · Java · VerCors · Exceptions ·
Finally · Errors

1 Introduction

For programs which require high reliability and robustness, such as nuclear power
plant, railroad, or tunnel software, bugs are not acceptable. To ensure that a pro-
gram complies with the highest standards of correctness, deductive verifiers have
been developed. Deductive verifiers implement logics to reason about programs
mathematically, and can ensure adherence to a specification. This guarantee
increases the chance that bugs will be caught before software is deployed.

If we have tools that can verify if a program is free of bugs, why do we still
have bugs? Part of the answer is that industry uses language features that are
often unsupported by deductive verifiers. An example of such a feature is the Java
exceptions mechanism, which is the primary tool to identify and handle failures
of many kinds in Java code. Osman et al. indicate that for four mature Java
projects the proportion of exception-related code remains around 1%, even after
6 years of ongoing development [27]. For code bases like Hadoop and Tomcat,
which contain millions of lines of code, these are significant numbers [4,5]. We do
not know of any efforts to fully verify code bases such as these, but to accomplish
this, support for exceptions is mandatory.

c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 67–84, 2021.
https://doi.org/10.1007/978-3-030-85248-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_5&domain=pdf
http://orcid.org/0000-0002-5638-5945
http://orcid.org/0000-0002-7544-447X
http://orcid.org/0000-0003-4467-072X
https://doi.org/10.1007/978-3-030-85248-1_5


68 R. Rubbens et al.

There are several projects that allow verification of Java, and some sup-
port exceptions. For example, OpenJML [7] can verify sequential Java. Another
example, VerCors [2], can verify concurrent Java, but does not have support for
exceptions at all. Finally, Verifast [19] can verify concurrent Java with excep-
tions, but does not support finally. Therefore, when verifying Java, a choice
must be made. Either sequential Java can be verified with full support for excep-
tions, or concurrent Java can be verified with limited exception support. What
is surprising is that this dichotomy is not necessary: concurrent execution and
exceptional control flow are orthogonal concerns.

In this work, we try to improve the state of the art by implementing full
support for exceptions in VerCors, a verifier of concurrent Java.

Java itself has some facilities for checking at compile time if some exceptions
are handled. Particularly, “checked exceptions” are required to be handled when
they occur. “Unchecked exceptions” are not required to be handled. Exceptions
are intended to make error handling more structured and robust, but there are
signs they currently fail at the latter. According to a study done by Sena et al.
20% of the bugs in 656 Java projects are related to improper exception usage [31].

One way of solving this is only using checked exceptions, as Java requires each
checked exception to be handled. Unfortunately, Java ignores unchecked excep-
tions, so this rule is easily broken. Furthermore, various parts of the standard
library use unchecked exceptions, so it is easy to break this rule accidentally,
and hard to manually ensure only checked exceptions are used. This is where
deductive verifiers can help: verifying exception handling code automatically
could help with reducing bugs related to exception handling, as the verifier can
guarantee that an exception is always handled correctly.

Verifying exceptions poses three problems. First, supporting finally entails
handling complex control flow. To avoid a monolithic implementation, a modu-
lar transformation must be designed that decomposes the control flow as much
as possible. Second, according to The Java Language Specification [14] (JLS),
exceptions can come from many places, not just the throw statement, but also
from e.g. allocating memory. Requiring the user to create annotations for all
these cases is unfeasible. A subset of Java exceptions must be chosen such
that the annotation burden is reduced, while still allowing verification of com-
mon exception patterns. Third, standard library code that throws checked and
unchecked exceptions must be annotated with exceptional specifications.

In this work, we try to resolve the first and second problem, and leave the
third for future work. First, to decompose complex control flow introduced by
exceptions, we transform all control flow in the program into exceptions. The
exceptional control flow is then transformed into goto statements. This approach
splits up the transformation into multiple steps, making it more modular. It
also reduces the number of different kinds of control flow, which simplifies the
semantics in the intermediate stages.

Second, to relieve the user of the annotation burden, we define a subset of
Java exceptions called “exceptions modulo errors”. This view allows exceptions
to originate from throw statements and method calls with throws attributes,



Modular Transformation of Java Exceptions Modulo Errors 69

and ignores exceptions caused by memory allocation failures or other low-level
implementation details. Reducing the annotation burden this way has a cost:
guarantees of verification are weaker because some errors are ignored. However,
since the assumption of exceptions modulo errors is often made in commercial
software development, we argue it is a reasonable simplification.

Contributions. The main contributions of this work are:

– A simplified semantics of exceptions allowing verification of functional prop-
erties which ignores a number of specific errors.

– An evaluation of the simplified semantics with common exception patterns.
– An encoding of exceptional postconditions and finally into postconditions

and goto.
– An implementation of support for exceptions in the VerCors verifier.

The files used for evaluating exceptions modulo errors, as well as instruc-
tions for running jStar, Krakatoa, and VerCors, can be found in the package
accompanying this paper. The package can be found here: [30].

Paper Structure. Section 2 discusses the background on Java verification in
VerCors. Section 3 discusses related work. Section 4 discusses the definition of
exceptions modulo errors. Section 5 discusses how finally complicates Java
verification, and how this can be resolved by transforming all control flow into
exceptional control flow. Section 6 evaluates the approach presented in this work
against common exception patterns. Section 7 reflects on the presented approach.
Section 8 contains the conclusions and future work.

2 Background

This section discusses background necessary to understand how VerCors verifies
Java programs. We first discuss the notion of abrupt termination in Java. Then
we discuss how VerCors verifies Java programs.

2.1 Abrupt Termination

Abrupt termination [22, p. 14] is a grouping term for control flow that does not
go from one statement to the next, like regular control flow. Instead, abrupt
termination is when a statement terminates not because it is completed, but
because it is terminated sooner than normal and control flow is redirected to
another program point. Abrupt termination is sometimes also referred to as
non-local or non-linear control flow.

One example of abrupt termination is the throw statement, as it aborts
execution of the current block and redirects control flow to the nearest catch
block. Other abrupt termination keywords are: break, continue and return.
They all terminate the current block earlier than normal, and redirect control
flow to another program point.



70 R. Rubbens et al.

The labelled break and continue statements are an extra source of com-
plexity as they allow the user to specify which loop to break from or continue.
These constructs can be useful when nested loops are used. Furthermore, labelled
break can also be used within if, switch or labelled blocks.

2.2 VerCors

VerCors is verifier for concurrent software [2]. It can verify programs written
in Java, OpenCL, C, and PVL. VerCors uses separation logic to reason about
concurrent access to data.

It is a deductive verifier, which means it uses a system of proof rules to
establish correctness of the input. When VerCors reports an input program to
be correct, it means it has found a proof using logical inference. For more infor-
mation about deductive verification, we refer the reader to “Deductive Software
Verification: From Pen-and-Paper Proofs to Industrial Tools” by Hähnle and
Huisman [16].

It is also a modular verifier, which means that verification of each method
only depends on the contract of other methods, and not on their implementa-
tion. This also holds for concurrency: threads are verified “thread-modularly”,
which implies that adding another thread does not invalidate the correctness of
previously verified threads.

Figure 1 presents the architecture of VerCors. The general principle is that
an input program is parsed and converted into the internal AST called Common
Object Language (COL). Then various passes are applied to the COL AST
depending on the input language and provided flags. Finally, after applying all
necessary passes, the COL AST is converted into Silver, the input language of
Viper [24]. Viper reports if there are any failed assertions by translating the
input into SMT and calling the Z3 SMT solver [23]. These errors are translated
back by VerCors to the level of the input file. For more details on the architecture
and implementation of VerCors, we refer the reader to “The VerCors Tool Set:
Verification of Parallel and Concurrent Software” by Blom et al. [6].

Fig. 1. The architecture of the VerCors tool.

VerCors exposes deductive logic through pre- and postconditions. These are
added to the program through annotations, after which VerCors verifies the
program if the program adheres to the annotations. Pre- and postconditions are
sometimes transformed into assertions, but the semantics remain unchanged.



Modular Transformation of Java Exceptions Modulo Errors 71

Listing 1. An implementation of a method computing the maximum of two integers.

1 //@ ensures (a > b ? a : b) == \result;

2 //@ signals (ArithmeticException e) a < 0 || b < 0;

3 int max(int a, int b) {

4 if (a < 0 || b < 0) { throw new ArithmeticException (); }

5 return a > b ? a : b; }

The VerCors pre- and postcondition syntax is inspired by JML [21]. In the
example given in Listing 1, the max method is given a contract on line 1 that
specifies that its result has to be equal to the maximum of a or b. Note how
the contract is preceded with //@, indicating that this comment is in fact a
verification annotation. The ensures keyword indicates this is a postcondition.

One example of a more complicated contract is the signals clause, which
first appeared in JML [21]. It is similar to a regular ensures postcondition,
but only holds if a certain type of exception is thrown. In Listing 1 on line 2 a
signals clause specifies that if the method throws an ArithmeticException it
can be assumed that the arguments are negative. Note that the signals clause
does not impose an obligation to throw when a < 0 || b < 0. It only indicates
that if an exception is thrown, the given exceptional postcondition holds.

3 Related Work

There are several tools that support exceptions, each with their own level of
support. The following tools support separation logic: Nagini, Gillian-JS, Verifast
and jStar. These other tools do not: KeY, OpenJML and Krakatoa. Table 1
summarizes the tools discussed in this section.

Nagini. Nagini fully supports exceptions in the Python language, including
the Python equivalents of the statements break, continue, return, try, catch,
and finally. This is done by encoding the control flow into an auxiliary state
variable that indicates the type of control flow. This approach is documented in
the code documentation of Nagini [10].

At first sight it seems that the Python exception model is identical to the
exception model of Java. However, there is one subtle difference: Python does not
allow labelled breaks. As labelled breaks complicate the verification of finally
(explained in Sect. 5), the implementation strategy employed by Nagini is not
directly usable for verifying exceptions in Java and would have to be extended.

Gillian-JS. Gillian-JS [13], formerly known as JaVerT [11], supports exceptions
as defined in ECMAScript 5 Strict mode fully. Strict mode is a restricted version
of JavaScript where pitfalls of original JavaScript are interpreted as errors.



72 R. Rubbens et al.

Table 1. Related work summary

Name Language Separation logic Exceptions

Nagini Python Yes Yes

Gillian-JS JavaScript Yes Yes

Verifast Java Yes Up to finally

jStar Java Yes Trivial finally

KeY Java No Yes

OpenJML Java No Yes

Krakatoa Java No Up to finally

Through private communication with the authors of Gillian-JS we have con-
cluded that Gillian-JS uses the inlining approach. This makes Gillian-JS sus-
ceptible to blow-up of the AST size when nested finally blocks occur, but the
authors of Gillian-JS say they have had no problems with this in practice.

One interesting aspect of Gillian-JS is that internally it keeps track of the
following four pieces of information while processing commands: the current error
variable, the current return value variable, and the nearest break and continue
labels. This could be simplified by using the approach presented in this work,
which, if used, would only need the following two pieces of information: the
current exception variable, and the nearest try-catch-finally block.

Verifast. Verifast [19] almost fully supports Java exceptions. This means break,
return, continue, throw, try, and catch are all supported. These are encoded
directly into SMT. The only language feature missing is finally. As mentioned
in [18], the authors of Verifast are not sure how to encode finally clauses.

jStar. jStar [8] has some support for exceptions. Specifically, it allows use of
the try-finally statement if it can be optimized away trivially. Otherwise jStar
crashes. This optimizing is done by Soot [33], an analysis framework for Java.

Soot can parse Java bytecode into its internal representation Jimple. Then,
it can apply transformations to this internal representation. Soot can also do a
degree of static analysis, which allows it to remove parts of the program if it can
detect that it is never executed. For example, if it can detect that the condition
of an if statement is always true, it will remove the false branch of the if. This
simplified Jimple code is processed by jStar for analysis.

For convenience we have included a test setup with instructions for running
jStar in the package accompanying this paper [30].

KeY. KeY supports sequential Java exceptions. KeY is based on the JavaDL
logic, as described in “The KeY Book” [1]. JavaDL provides axiomatic rules
for dealing with exceptions, return, and labelled break. Support for continue



Modular Transformation of Java Exceptions Modulo Errors 73

is implemented by transforming it into break. Within these axiomatic rules,
control flow is encoded through control flow flags, as described in [32].

Steinhöfel and Wasser present the loop scopes approach that will soon replace
the control flow flags approach [32]. Loop scopes reduce the number of proof
obligations KeY generates in most cases when dealing with abrupt termination in
loops. This is achieved by generalizing the various notions of abrupt termination
into the concept of a loop scope.

OpenJML. OpenJML [7] also supports sequential Java exceptions, as well as
extensive JML support for specifying the behaviour of exceptions. Steinhöfel
and Wasser mention that exceptions and abrupt termination are implemented
in OpenJML by encoding the control flow in goto [32, Sec. 6].

Krakatoa. Krakatoa [22] supports exceptions, but not finally. It achieves this
by compiling Java exceptions into the more limited exception model of WhyML.
By running the latest version of Krakatoa with finally in the input, we have
concluded that it does not support finally. A test setup with instructions to
check this is included in the package accompanying this paper [30].

Krakatoa takes a similar approach to this work by encoding Java exceptions
into the cleaner exception model of WhyML. Also similar to our work, they
use this approach to implement the abrupt termination semantics of continue
and break. Surprisingly, the developers of Krakatoa seem to have missed the
insight that the approach of encoding abrupt termination into exceptions can be
applied to finally. Since Krakatoa uses an architecture based on an interme-
diate representation that is passed through various transformations, we expect
that applying this insight could simplify the implementation of Krakatoa.

4 Semantics of Exceptions

In this section we describe the semantics of exceptions that we have implemented
in VerCors. First we define how we separate error types from error causes. Then,
we describe what the ideal semantics is, and why we have not implemented it.
Finally, we describe the approximation semantics that we have settled on.

4.1 Errors and Sources of Errors

In Java, an exception of a subclass of Error is thrown when a runtime problem
occurs. It is important to separate the error types from the error sources, i.e. the
exception types that are thrown from the events that cause them to be thrown.
We define operations that can cause an Error to be thrown as “sources of errors”.

For example, when allocating a new object, it can occur that the system
is out of memory. In response to this, the allocation terminates abruptly, and
throws an exception of type OutOfMemoryError. In this case, the error type is
OutOfMemoryError. The source of the error is the system running out of memory



74 R. Rubbens et al.

while allocating a new object. Some other Java Error types and their sources are:
OutOfMemoryError caused by loading a new class, and NoClassDefFoundError
if a class that needs to be loaded is absent. Note that a single error type, e.g.
ClassFormatError, can be caused by many sources of errors.

4.2 Ideal Semantics

An ideal static analysis tool would follow the semantics outlined in the JLS
to the letter. Taking this approach would result in a tool that can analyse the
behaviour of a program close to its actual runtime behaviour. Unfortunately,
this is not a useful approach for two reasons.

First, the annotation overhead would be enormous. This is because of
OutOfMemoryError, which occurs when there is no more free memory. Java pro-
grams do many allocations, e.g. incrementing an Integer object allocates a new
Integer. Since deductive verification requires annotating for exceptions, the ideal
semantics would require every method that allocates an object to specify a
contract for OutOfMemoryError. However, this is often a meaningless contract,
because the system would crash in that case, and no recovery is possible. There-
fore, formalizing error sources such as the system being out of memory in a tool
will require many superfluous annotations in programs, to be specified by the user.

Second, some exceptions cannot be verified at compile time. For example,
ClassFormatError can be thrown while loading or linking improperly format-
ted code. VirtualMachineError can be thrown because of bugs in the virtual
machine. Because some errors depend on the runtime environment, static anal-
ysis tools cannot guarantee their absence. Additionally, the design rationale
behind Error types is that regular programs do not recover from them. Para-
phrasing the JLS [15, Sec. 11.1.1]: “Error is the superclass of all the exceptions
from which ordinary programs are not ordinarily expected to recover.”.

4.3 Semantics Modulo Errors

To avoid the problems with the ideal semantics, we define a simplified view of
exceptions where only a subset of the ideal exceptions semantics is included.
We refer to this view of exceptions as “exceptions modulo errors”. In this view,
exceptions can only come from the throw statement and method calls.

Formally, if VerCors does not report any problems when verifying a program
it implies the following guarantee:

Definition 1 (Exception guarantee). Any exception from a throw state-
ment or a method call is handled in a surrounding catch, or the method declares
the exception type in a signals or a throws clause. In addition, during execu-
tion the following errors will not occur:

– NullPointerException when a null reference is dereferenced.
– ArithmeticException when division by zero or modulo zero takes place.
– ArrayIndexOutOfBoundsException for out of bounds array accesses.



Modular Transformation of Java Exceptions Modulo Errors 75

This definition does not guarantee if an exception will be thrown at all.
Therefore it is similar to the notion of partial correctness, which states that a
postcondition of a program only holds if a program terminates at all.

In short, the exception guarantee implies that all exceptions originating from
most common operations, or where the users specify them, are handled through
catch, signals, or throws.

While the exception guarantee reduces the annotation burden on the user,
it must be emphasised that this is a trade-off. In other words, the guarantee is
weaker than what happens in practice. For example, some allocations may fail,
but these are not modelled by the exception guarantee. Therefore, the excep-
tion guarantee will allow some bugs to go unnoticed. We leave annotation and
verification of error sources for future work.

5 The finally Encoding Problem

In the previous section we have introduced the semantics that VerCors uses for
reasoning about exceptions. In this section, we discuss how VerCors implements
this semantics as several program transformations. Specifically, we discuss how
the combination of regular control flow and exceptional control flow in finally
clauses complicates the transformation, and how we resolve this.

Encoding abrupt termination into goto is straightforward if finally is not
present. This is because the description of the semantics as given in the JLS can
be interpreted literally. An overview of the transformation is as follows.

– throw redirects control flow to the nearest handler or exits the method.
– After a catch clause execution continues after the try.
– break redirects control flow to after the nearest loop.
– return redirects control flow to the end of a method.
– When method calls throw an exception, control flow is redirected to the near-

est handler or to the end of the method.
– If try terminates normally execution should continue after the try block.

However, when finally is introduced, a more intricate transformation is
needed. This is because contrary to all other abrupt termination primitives, at
the end of a finally clause, it is not directly clear where to jump to.

Consider the example in Listing 2. The lines indicate how control flow would
progress. The break statements on lines 5 and 7 both redirect control flow to
the finally block, as it must be executed before leaving the inner while loop.
Then, at the end of the finally block, control flow continues to either directly
after the inner, or directly after the outer while loop. The control flow after the
finally splits because the break statements are subtly different. The first break
statement is unlabelled, which means it breaks from the most recently entered
while loop. The second break statement is labelled, which means it breaks from
the while loop that has that label.



76 R. Rubbens et al.

Listing 2. Breaks can introduce ambiguous code paths.

1 L: while (p) {
2 while (q) {
3 try {
4 if (r) {
5 break;
6 } else if (s) {
7 break L;
8 }
9 } finally {

10 /* Ambiguity */
11 }
12 }
13
14 }
15

With the control flow explicitly drawn, reasoning about the control flow is
easy. However, without the lines it is less clear what exactly must happen on
line 10. If break was just executed, control flow needs to jump to after the
while on line 13. If break L was just executed, control flow needs to jump to
after the outer while loop on line 15. Without any further information, there
is an ambiguity on line 10 which can only be resolved by knowing what kind
of statement was previously executed. Hence, we argue that finally is non-
modular in the sense that its semantics can only be determined when taking
into account multiple parts of a method, and not just the finally clause itself.

To encode finally blocks, what “kind” (returning, breaking, or throwing)
of control flow currently applies needs to be encoded. Furthermore, once labelled
breaks are added to the language it becomes even more complicated since which
specific loop is to be broken out of also needs to be tracked.

5.1 Candidate Encodings

Several candidate encodings for finally and the rest of the abrupt termination
primitives are possible. We discuss the three encodings known to us next. These
are: using inlining, using control flow flags, and using exceptions.

While the first and second of these encodings have appeared in some form in
an implementation before this work, we have not yet seen an effort to categorize
and compare the approaches.

Inlining. The first option that comes to mind is to inline all finally blocks in
places where normally control flow would jump to the next place of interest. For
example, before a throwing method call would jump to a handler, the finally
clause could be executed by inlining it right there.



Modular Transformation of Java Exceptions Modulo Errors 77

Listing 3. Before transformation.

try { m1();

m2();

} finally {

try { m3();

m4();

} finally { inner (); } }

Listing 4. After transformation.

m1(); if (exc ) {

m3(); if (exc ) inner ();

m4(); if (exc ) inner (); }

m2(); if (exc ) {

m3(); if (exc ) inner ();

m4(); if (exc ) inner (); }

Fig. 2. Transformation of inlining finally. m1-4 are assumed to be throwing. Pseudo
exception handling syntax is used in Listing 4, where exc evaluates to true if the
previous line threw an exception.

This option is interesting because it is conceptually straightforward. It is also
used in Java compilers [17, p. 3], informally showing that the approach works.
The downside of this encoding is possibly exponential code duplication. Figure 2
shows a practical example of the inlining approach where this exponential dupli-
cation happens. Notice how the call to inner is duplicated four times. This
is because the number of times the inner finally is duplicated is equal to the
product of the number of times it must be inlined in the inner and outer try.

The blow-up caused by inlining was shown to be minimal for regular Java
code by Stephen Freund [12]. However, for Java code containing verification
annotations, it is unknown if this is also the case, as verification annotations can
contain proof steps. Therefore, this cannot be assumed to be the case for verifica-
tion code as well. Moreover, it is bad for the prover backend, as duplicated code
might cause duplicated proof obligations, which will increase the time needed
to prove the program correct. We have performed an informal experiment that
shows this could be the case for VerCors. This experiment is discussed in [29].

Gillian-JS, as discussed in Sect. 3, uses the inlining approach.

Control Flow Flags. The second option is the optimized version of the first
option: finally blocks are not inlined, but instead a flag is set whenever the
mode of control flow changes. For example, when a return is executed, the flag
is set to a constant called MODE RETURN. This flag can then be queried at the end
of a finally clause to determine where next to jump to. There should be values
for each available mode of abrupt termination (i.e. break, return, throw), as
well as a mode for every label that can be broken from.

As far as we can tell this is technically possible, but keeping track of all the
labels and modes available seems error-prone. Furthermore, at the end of every
finally clause there has to be an if statement determining where to jump next.
In a way, this if statements encodes all possible origins of the finally block, and
all possible destinations. This means the if statement is non-modular, as it needs
information from various places in the method. This introduces unnecessary
complexity and increases the chances for bugs.



78 R. Rubbens et al.

Listing 5. Before transformation.

L: while (c) {

... break L; ...

}

Listing 6. After transformation.

try { while (c) {

... throw new L(); ...

} } catch (L e) { }

Fig. 3. Transformation of break to throw and catch.

This approach has been proposed before, but formulated differently, by Fre-
und [12]. He proposes to encode finally into goto by transforming each finally
into a subroutine. Before such a subroutine is called, a unique number is pushed
on the stack. This unique number corresponds to the return address of the sub-
routine, which is recorded in a table. Even though this formulation is different
than ours, the downsides of the control flow flag approach still apply.

Nagini, as discussed in Sect. 3, uses the control flow flag approach.

Exceptions. The third option is to consider abrupt termination from an excep-
tional point of view. When only exceptional control flow is considered, the ques-
tion of where to continue at the end of a finally clause is simplified:

– If an exception is currently being thrown, execution should continue at the
next nearest catch or finally. If there is no such clause, execution should
go to the end of the method.

– Otherwise, execution continues after the try-finally block.

Note that the choice of where to jump after a finally clause becomes more
local: it does not matter how many exceptions or labels are in scope. Only the
next finally or catch clause needs to be known. Homogenizing control flow
into the exceptional model simplifies the choice at the end of a finally clause.

A requirement of this encoding is the requirement for this simplification to
apply: all other abrupt termination must be removed or transformed into excep-
tional control flow. This is extra work, but we argue that it is not difficult. An
example of how break can be encoded as throw can be seen in Fig. 3.

The translation is similar for continue and return:

– For a statement continue L, the body of the while loop that is the target
of the continue must be wrapped in a try { ... } catch (ContinueL e)
{} block. The continue statement is replaced by throw new ContinueL().

– For a statement return, the body of the method must be wrapped in try {
... } catch (Return e) {}. The return statement is replaced by throw
new Return(). For return statements that return a value, the Return excep-
tion type thrown can be augmented with a field to store the value.

Other control-flow related statements, such as throw, if, try, catch
and while are not transformed. Extended forms of try-catch, such as
try-with-resources, can be supported by transforming the statement into



Modular Transformation of Java Exceptions Modulo Errors 79

try-finally, as described in the JLS [15, Sec. 14.20.3.1]. try-with-resources
is currently not supported in VerCors.

After this step, the remaining throw and try-catch-finally statements
can be transformed into goto following the approach outlined at the beginning
of Sect. 5, with two differences:

1. throw is converted into a goto to the nearest finally or catch clause. Throw-
ing methods are handled similarly.

2. At the end of a finally, if the current control flow is exceptional, control flow
must jump to the next nearest catch or finally clause. Otherwise, control
flow must continue after the try-finally.

Because the exceptions approach results in a less error-prone encoding we
have implemented it in VerCors. The encoding is used if finally is present in
a method. If finally is not present, the basic encoding into goto (which was
discussed at the beginning of Sect. 5) is used for a cleaner back-end output. The
implementation can be found via the VerCors homepage [34].

A downside of compiling to exceptions is that information is lost, because all
control flow is exceptional after the transformation. If this information is needed
it can be encoded in the AST. This ensures that synthetic try-catch and throw
can be discerned from authentic ones. Additionally, by adding an extra flag the
current control flow can be identified as synthetic or authentic.

Another downside is that this approach is not suitable for a single-pass archi-
tecture, and only works in verifiers with multiple passes. Therefore the approach
is less flexible and cannot be straightforwardly applied to all verifiers.

A verifier that uses a comparable approach is Krakatoa. We discuss the dif-
ferences with our encoding in Sect. 3.

6 Evaluation

Next, we evaluate if the view of exceptions modulo errors can handle exception
patterns from commercial software. We answer the following research questions:

1. What are common exception patterns that occur in commercial software?
(Discussed in Sect. 6.1)

2. Can VerCors verify common exception patterns? (Discussed in Sect. 6.2)

6.1 Common Exception Patterns in Commercial Software

Methodology. To find common exception patterns that occur in commer-
cial software, we do an informal survey of the literature through a search on
Google Scholar using the keywords “java”, “exceptions”, and “usage”. We look
for research that is at most 5 years old, presents a categorization of exception
patterns, and considers fifteen or more Java projects.



80 R. Rubbens et al.

Table 2. Exception pattern overview.

Used in catch Used in finally

Empty Empty

Log, stack trace Log

if, while, switch, continue, break, return continue, return

throw e, throw new E(), throw new E(e) throw new E()

Nested try Nested try

Results. From this search, four works are selected [3,20,25,28]. We have aggre-
gated the patterns from these works, combining them into common categories.
The complete table, listing each category per paper and the elements of the
categories, is included in the package accompanying this paper [30]. The aggre-
gated categories can be seen in Table 2. Columns “Used in catch” and “Used in
finally” contain patterns that are used in those clauses. “Empty” means the
respective clause is used without any statements.

Discussion. While all four studies categorize the use of exceptions and catch
clauses extensively, they do not discuss the use of finally thoroughly. More
specifically, only Bicalho de Pádua and Purohit et al. include finally in their
measurements [3,28]. Kery et al. and Nakshatri et al. do not include finally [20,
25], because they do their measurements using the Boa tool [9], which does not
support the finally clause. As a result, finally is less represented in the table,
and some patterns could be missing. However, as completeness was not the goal
of this evaluation, this is not a major issue.

6.2 Verification with VerCors

Methodology. To show that VerCors can verify each of the common excep-
tion patterns in Sect. 6.1, an example program containing the pattern has been
created for each pattern in Table 2. This yields 19 example programs. Where
relevant, we added annotations for stronger guarantees, e.g., in some programs
we added assert false to indicate control flow cannot reach that part of the
program. In other programs we added postconditions to indicate what kinds
of normal and exceptional control flow are possible. All of these programs are
included in the package accompanying this paper [30].

Results. VerCors verifies all of the annotated example programs. In Listing 7
we show the test program contained in the file CatchStackTrace.java. With
regard to Table 2, the program corresponds to the “Used in catch” column and
“stack trace” entry. Particularly, in this program there are no further assertions,
as printing the stack trace does not require specific pre- or postconditions.



Modular Transformation of Java Exceptions Modulo Errors 81

Listing 7. Example program CatchStackTrace.java.

1 class CatchStackTrace {

2 void m () {

3 try {

4 throw new Exception ();

5 } catch (Exception e) {

6 e.printStackTrace ();

7 } } }

Discussion. An aspect of Table 2 that was ignored in the evaluation is that
exception patterns can occur simultaneously within a catch or finally. We
are confident this is handled correctly. However, because the purpose of this
evaluation was to determine if common patterns are verifiable, we leave the
aspect of combinations of patterns for future work.

7 Discussion

We will briefly discuss backend requirements and performance.

7.1 Backend Requirements

Our approach imposes two requirements on the backend: support for goto and
support for conditional permissions.

Goto. To encode exceptional control flow within a method, the approach pre-
sented in this work relies on goto. Therefore, if goto would not be available in
the backend, our transformation to goto would not work.

Conditional Permissions. Exceptional postconditions result in conditional
permissions. Permissions are a construct used in separation logic with per-
missions. A permission allows reading or writing from a data location on the
heap. For a more thorough introduction to separation logic, we refer the reader
to [26]. Conditional permissions are permissions that apply if a condition is met.
For example, the postcondition ensures b ==> Perm(x, write) yields a write
permission for x whenever b holds. Exceptional postconditions cause these kinds
of permissions because they are encoded as RuntimeException is thrown ==>

P, where P is an arbitrary postcondition containing permissions.
Conditional permissions are not problematic for separation logic, as they

are well defined. However, they might lead to unclear or verbose specifications
because permissions are only usable once certain conditions have been met.

One way to avoid conditional permissions is through an “exceptional invari-
ant”. This is a user-defined invariant that holds both at entry and exit of a
try-catch block, and at the end of catch clauses. This could simplify the han-
dling of permissions.



82 R. Rubbens et al.

7.2 Performance

During the usage of the implementation, we have not seen performance issues.
However, there might be three causes of performance problems in the future:
bigger encoded output, complex control flow, and conditional permissions.

Bigger Encoded Output. The size of code produced for the backend (the
“encoded output”) increases when exceptions are used. This is mostly due to an
increase of trivial statements. Specifically, more labels, goto, and if statements
for typechecks are emitted. As no complex proof obligations are introduced, we
do not think the increase in encoded output will be problematic.

Complex Control Flow. When using exceptions, many jumps are introduced
that target few destinations, compared to programs without exceptions. This
is because every call that can throw introduces a conditional jump. All these
jumps go to either a catch block, finally, or the end of the method. This
seems unavoidable, as this kind of control flow is the core of exceptions in Java.
If complex control flow causes longer verification times, a different format for
the output encoding can be investigated, for example continuation passing style.

Conditional Permissions. When the proposed transformation is applied,
more conditional permissions are produced compared to programs that do not
use exceptions. We have not seen evidence that this increases verification times.
If conditional permissions become a cause of performance problems, the “excep-
tional invariant” mentioned in the subsection above could also help with this.

8 Conclusion

We presented an approach for supporting exceptional control flow that makes it
easier to support finally. This is achieved by first transforming all occurrences
of abrupt termination into exceptional control flow. This simplifies encoding
finally and leads to a modular transformation that can be split up into several
steps. Moreover, to avoid the annotation burden caused by exceptions as defined
in the JLS, we propose a simplified view called exceptions modulo errors. This
view focuses on the primary sources of exceptions, throw statements and throws
clauses, and disregards exceptions that are ignored in practice, such as out of
memory errors or other low-level details. Finally, we have evaluated the excep-
tions modulo errors semantics, and conclude that exceptions modulo errors can
handle common exception patterns that appear in practice.

Future work will go in several directions. It would be useful to further validate
the view of exceptions modulo errors by doing an empirical study of the catching
and throwing of Error exceptions. This can be combined by researching how to
annotate for Error exceptions, and what kinds of contracts would be specified
in the context of Error exceptions. Possibly the implementation in this work
can also be used to design and implement support for exceptional specifications
of the standard library.



Modular Transformation of Java Exceptions Modulo Errors 83

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification - The KeY Book. LNCS, vol. 10001. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Amighi, A., Blom, S., Huisman, M., Zaharieva-Stojanovski, M.: The VerCors
project: setting up basecamp. In: Proceedings of the Sixth PLPV Workshop. ACM
(2012). https://doi.org/10.1145/2103776.2103785

3. Bicalho de Pádua, G.: Studying and Assisting the Practice of Java and C# Excep-
tion Handling. Masters, Concordia University, February 2018

4. Black Duck Open Hub: The Apache Hadoop Open Source Project on Open Hub:
Languages Page (2018). https://www.openhub.net/p/Hadoop/analyses/latest/
languages summary

5. Black Duck Open Hub: The Apache Tomcat Open Source Project on Open
Hub: Languages Page (2018). https://www.openhub.net/p/tomcat/analyses/
latest/languages summary

6. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verifica-
tion of parallel and concurrent software. In: iFM, vol. 10510, pp. 102–110 (2017).
https://doi.org/10.1007/978-3-319-66845-1 7

7. Cok, D.R.: OpenJML: software verification for Java 7 using JML, OpenJDK, and
Eclipse. EPTCS (2014). https://doi.org/10.4204/EPTCS.149.8

8. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In:
Proceedings of the 23rd ACM SIGPLAN OOPSLA Conference. ACM (2008).
https://doi.org/10.1145/1449764.1449782

9. Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N.: Boa: a language and infrastruc-
ture for analyzing ultra-large-scale software repositories. In: 2013 35th ICSE. IEEE
(2013). https://doi.org/10.1109/icse.2013.6606588

10. Eilers, M.: Shortened github link to code-level documentation of get finally var

method (2021). https://edu.nl/8a9qe
11. Fragoso Santos, J., Maksimović, P., Naudžiünienė, D., Wood, T., Gardner, P.:

JaVerT: JavaScript verification toolchain. In: Proceedings of the ACM Program-
ming Language 2(POPL) (2017). https://doi.org/10.1145/3158138

12. Freund, S.N.: The costs and benefits of Java bytecode subroutines. In: Formal
Underpinnings of Java Workshop at OOPSLA 98 (1998)

13. Gillian Team: Gillian - a multi-language platform for compositional symbolic anal-
ysis (2020). https://gillianplatform.github.io/

14. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java language specification, Java
SE 7th edn. (2000)

15. Gosling, J., et al.: The Java language specification, Java SE 16th edn. (2021)
16. Hähnle, R., Huisman, M.: Deductive Software Verification: From Pen-and-Paper

Proofs to Industrial Tools. Springer (2019)
17. Hamilton, J., Danicic, S.: An evaluation of current java bytecode decompilers. In:

Ninth IEEE SCAM (2009). DOI: 10.1109/SCAM.2009.24
18. Jacobs, B.: Verifast & Java’s “finally” clause (2020). https://groups.google.com/

forum/#!topic/verifast/56uhVmdERwA
19. Jacobs, B., Smans, J., Piessens, F.: A Quick Tour of the VeriFast Program Verifier.

In: Programming Languages and Systems, vol. 6461. Springer (2010). https://doi.
org/10.1007/978-3-642-17164-2 21

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1145/2103776.2103785
https://www.openhub.net/p/Hadoop/analyses/latest/languages_summary
https://www.openhub.net/p/Hadoop/analyses/latest/languages_summary
https://www.openhub.net/p/tomcat/analyses/latest/languages_summary
https://www.openhub.net/p/tomcat/analyses/latest/languages_summary
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.4204/EPTCS.149.8
https://doi.org/10.1145/1449764.1449782
https://doi.org/10.1109/icse.2013.6606588
https://edu.nl/8a9qe
https://doi.org/10.1145/3158138
https://gillianplatform.github.io/
https://groups.google.com/forum/#!topic/verifast/56uhVmdERwA
https://groups.google.com/forum/#!topic/verifast/56uhVmdERwA
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1007/978-3-642-17164-2_21


84 R. Rubbens et al.

20. Kery, M.B., Le Goues, C., Myers, B.A.: Examining programmer practices for locally
handling exceptions. In: Proceedings of the 13th MSR Conference. ACM (2016).
https://doi.org/10.1145/2901739.2903497

21. Leavens, G.T., et al.: JML reference manual (2008). https://www.cs.ucf.edu/
∼leavens/JML/jmlrefman/jmlrefman toc.html

22. Marché, C., Paulin-Mohring, C., Urbain, X.: The Krakatoa tool for certification
of Java/JavaCard programs annotated in JML. Journal of Logic and Algebraic
Programming 58, 89-106 (2004). https://doi.org/10.1016/j.jlap.2003.07.006

23. de Moura, L., Bjørner, N.: Z3: an efficient smt solver. In: TACAS. Springer (2008)
24. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for

permission-based reasoning. In: VMCAI. Springer (2016)
25. Nakshatri, S., Hegde, M., Thandra, S.: Analysis of exception handling patterns

in java projects: an empirical study. In: Proceedings of the 13th MSR Conference
(2016). https://doi.org/10.1145/2901739.2903499

26. O’Hearn, P.: Separation logic. Commun. ACM 62 (2019). https://doi.org/10.1145/
3211968

27. Osman, H., Chiş, A., Schaerer, J., Ghafari, M., Nierstrasz, O.: On the evolution of
exception usage in Java projects. In: 2017 IEEE 24th SANER Conference (2017).
https://doi.org/10.1109/SANER.2017.7884646

28. Purohit, P., Tokekar, V.: An investigation of exception handling practices in.NET
and Java environments. Int. J. Appl. Eng. Res. 13, 2130–2140 (2018)

29. Rubbens, R.: Improving support for Java exceptions and inheritance in VerCors.
Master’s thesis, University of Twente (2020). https://essay.utwente.nl/81338/

30. Rubbens, R.: Modular Transformation of Java Exceptions Modulo Errors: accom-
panying package (2021). https://doi.org/10.4121/14905251

31. Sena, D., Coelho, R., Kulesza, U., Bonifácio, R.: Understanding the exception
handling strategies of Java libraries: an empirical study. In: Proceedings of the
13th MSR Conference. ACM (2016). https://doi.org/10.1145/2901739.2901757

32. Steinhöfel, D., Wasser, N.: A New Invariant Rule for the Analysis of Loops with
Non-standard Control Flows. In: IFM, vol. 10510. Springer (2017). https://doi.
org/10.1007/978-3-319-66845-1 18

33. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot: a
java bytecode optimization framework. CASCON First Decade High Impact Papers
(2010). https://doi.org/10.1145/1925805.1925818

34. VerCors Team: VerCors homepage (2020). https://vercors.ewi.utwente.nl/

https://doi.org/10.1145/2901739.2903497
https://www.cs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_toc.html
https://www.cs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_toc.html
https://doi.org/10.1016/j.jlap.2003.07.006
https://doi.org/10.1145/2901739.2903499
https://doi.org/10.1145/3211968
https://doi.org/10.1145/3211968
https://doi.org/10.1109/SANER.2017.7884646
https://essay.utwente.nl/81338/
https://doi.org/10.4121/14905251
https://doi.org/10.1145/2901739.2901757
https://doi.org/10.1007/978-3-319-66845-1_18
https://doi.org/10.1007/978-3-319-66845-1_18
https://doi.org/10.1145/1925805.1925818
https://vercors.ewi.utwente.nl/


On Education and Training in Formal
Methods for Industrial Critical Systems

Bernd Westphal(B)

Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
westphal@informatik.uni-freiburg.de

Abstract. The 2020 expert survey on formal methods has put one topic
into the focus of the formal methods for industrial critical systems com-
munity: education and training. Of three overall conclusions, the first
one finds the survey to indicate “a consensus about the essential role
of education”. At the same time, survey results and individual expert
statements indicate largely open challenges. In this work, we analyse the
2020 expert survey results from an education and training perspective,
and we discuss the proposal of an integrative approach with respect to
these challenges. A central enabler for the integrated approach is the
modern, inclusive interpretation of formal methods as put forth in the
survey report and a differentiated understanding of roles (or stakehold-
ers) in formal methods for industrial critical systems.

1 Introduction

The ‘2020 Expert Survey on Formal Methods’ [28] reports results from a survey
among a selection of internationally renowned scientists from inside the formal
methods for industrial critical systems (FMICS) community and from outside.
The authors “report on [the experts’] collective vision on the past, present, and
future of formal methods with respect to research, industry, and education”.
Of these three aspects, the expert statements from the survey and the reported
findings [28] put education at the very heart of FMICS. The introduction draws
the somewhat gloomy conclusion that “we cannot lean back” and that “the
transmission of our knowledge to the next generation is not guaranteed” [28].
The situation of FMICS education is characterised as “the formal verification
landscape in higher education is scattered” followed by stating that “at many
universities, formal methods courses are shrinking.”

The aspect of education and training reappears throughout the report, both
explicitly and implicitly, and the results, quotes, and conclusions do not paint
the brightest possible picture If we, for example, jump to the overall conclusion
of [28], we find education and training at the top of a list of three. “The results
of the survey indicate a consensus about the essential role of education to give
the next generations of students a sufficient background and practical experi-
ence in formal methods.” On Question 5.5 (What are the limiting factors for a
wider adoption of formal methods by industry? ), four of the top six answers are
c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 85–103, 2021.
https://doi.org/10.1007/978-3-030-85248-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_6&domain=pdf
http://orcid.org/0000-0002-6824-0567
https://doi.org/10.1007/978-3-030-85248-1_6


86 B. Westphal

“obstacles arising from human factors” and “reflect educational problems”. Of
the answers to Question 6.2 (What is your opinion on the level of importance
currently attributed to teaching of formal methods at universities? ), only 9.3%
of the answers with an opinion see the level as “right” or “too much”. How do
these two observations go together with the successes in formal methods edu-
cation and training that are consistently reported at respective conferences and
workshops (such as FMTea, FMT, etc.) where students reportedly formalise and
analyse the wildest system designs, with the broad availability of reflections and
recommendations on what to do (e.g., [20,50,64]) and what not (e.g., [49]), with
the increasing availability of textbooks ([8,51,53,58], to name only a few), with
the existence of a formal methods teaching committee1, etc.? (Fig. 1)

Parosh Abdulla: “vital”, Erika ´ dnomyaR-naeJ,”thgiewelbissoptsegnorts“:máharbA
Abrial: “fundamental”, Gérard Berry: “above all”, Erik Poll: “biggest challenge”,

Markus Roggenbach: “second challenge”, Jun Sun: “the challenge”.

Fig. 1. High-profile experts on FMICS education and training [28].

In this work, we elaborate on a view that is able to support both observations
and provides us with new starting points to improve education and training in
formal methods for industrial critical systems. The view hinges on the differ-
entiation of terms and roles. Following [28], we need to differentiate meanings
of the term ‘formal method’. The modern, inclusive interpretation (as proposed
in [28] for FMICS) is not always identical to the interpretation that underlies
the above named courses and textbooks, hence they may not necessarily pro-
vide custom-fit education and training in formal methods for industrial critical
systems. Secondly, and this is one of the main contributions of this article, we
advocate for a differentiation of roles so to better understand what custom-fit
education and training in formal methods for industrial critical systems is. We
propose to distinguish two roles which, in a first approximation, differ in that
one focuses on the theoretical and technical side of formal methods and the
other focuses on the application side. The first role largely coincides with the
educational objectives of classical formal methods courses, the new and second
role could be able to fill gaps that the 2020 survey indicates.

The paper is structured as follows. Section 2 recalls some terminology and
Sect. 3 introduces the new roles. Section 4 proposes learning objectives for the
new role and Sect. 5 discusses how the two moves, in terminology and role defi-
nition, open a design space for FMICS education and training. Section 6 reports
experience from an implementation and Sect. 7 concludes.

2 Terminology

The discussion of education and training in formal methods for industrial critical
systems is at times hindered by the fact that there is no universally agreed upon
1 https://www.fmeurope.org/teaching/.

https://www.fmeurope.org/teaching/


On Education and Training in FMICS 87

understanding of the term formal methods. The 2020 expert survey report [28]
alone offers five interpretations: The extensive mathematical one, the extensive
theoretical one, the light- and the heavyweight interpretation, and the modern,
inclusive one. The two first ones (including any use of mathematics in computer
science, and fundamental, theoretical computer science concepts such as gram-
mars and automata, respectively) are considered too wide by Garavel et al. [28]
and we agree from the perspective of FMICS education and training.

The lightweight interpretation refers to “language features [...] for defen-
sive programming [and] related verifications” and the heavyweight one includes
“only those approaches that are fully mathematical and based on proofs”. Gar-
avel et al. [28] propose to consider the heavyweight interpretation alone as too
restrictive for FMICS purposes and offer the following interpretation (to which
the survey participants were obviously able to agree for the scope of the survey):

“Mathematics-based techniques for the specification, development, and
(manual or automated) verification of software and hardware sys-
tems.” [28]

Conceptually, this modern, inclusive interpretation is less new than the name
‘modern’ may suggest. We find similar views, e.g., with Cerone et al. [19], Bjørner
and Havelund [9]2, Gries [12], and Wing [63]. The strong point of these inter-
pretations is their inclusiveness, which has a very modern and useful effect on
education and training: Included are, as Garavel et al. [28] elaborate, “multiple,
diverse artefacts, such as the description of the environment in which the sys-
tem operates, the requirements and properties that the system should satisfy,
the models of the system used during the various design steps, the (hardware or
software) code embedded in the final implementation, etc.” Hence formal meth-
ods (in the modern, inclusive sense) include textual requirements specification
patterns (with a proper formal semantics and analysis method, like FRET [29] or
Hanfor [44]), Decision Tables (cf. [6]), visual formalisms including (proper sub-
sets of) UML languages [54,55] (with a precise, formal semantics and analysis
tools such as USE [17] for structural models and for behavioural models, (for-
mal) variants of Statecharts [34] and sequence diagrams [22,42]), model-based
test generation, etc.

What these examples have in common is that they provide us with common
ground to students and engineers alike: having used, e.g., a visual formalism in
an informal or semi-formal way can be half the way to the formal view that we
aim for in FMICS education and training, and then a stepping stone towards,
e.g., formal methods in the heavyweight interpretation.

3 Roles in Formal Methods for Industrial Critical
Systems: Engineer/Conduct and Engineer/Utilise

If we accept the thought that FMICS education and training is not identical to
classical formal methods courses, then one aspect of distinction is the interpre-
2 “A method is called formal method if and only if its techniques and tools can be

explained in mathematics.” We have adopted this one for our course (cf. Sect. 6).



88 B. Westphal

Table 1. The six top-frequent answers to Question 5.5 (What are the limiting factors
for a wider adoption of formal methods by industry?) [28].

Engineers lack proper training in formal methods 71.5%

Academic tools have limitations and are not professionally maintained 66.9%

Formal methods are not properly integrated in the industrial design life cycle 66.9%

Formal methods have a steep learning curve 63.8%

Developers are reluctant to change their way of working 62.3%

Managers are not aware of formal methods 57.7%

tation of the term ‘formal methods, that, by the 2020 survey [28], is immediately
the modern, inclusive one for the area of formal methods in industrial critical
systems (see Sect. 2). This distinction alone does not yield a concept for FMICS
education and training, first of all because a more inclusive interpretation asks
for more content to be presented.

Yet there is a second, equally important distinction that the 2020 survey [28]
suggests, though it does not have an own section like the first one. Best visi-
ble is the second distinction in Section 5.5, ‘Limiting Factors’ and Section 5.6,
‘Research-Industry Gap’ of [28]. Section 5.5 (cf. Table 1) concludes that “obsta-
cles arising from human factors predominate, as the 1st, 4th, 5th, and 6th
most selected answers3 reflect educational problems, namely a lack of knowl-
edge from managers and developers, and their difficulties to learn and deploy
formal methods.” Sect. 5.6 reports the comment “if you always need the academic
doctor working in formal methods for a real industrial project, then something
is wrong.” Note that in Table 1, we see mentioned the roles engineer, developer,
and manager4, and all three do not sound as if their intention is to denote the
proverbial ‘academic doctor’ (which we may also associate with classical formal
methods courses). So a second distinction between the FMICS education and
training that the experts ask for in Section 5.9, ‘Academic Policies’ (“updat[e]
curricula in ICT professionals at bachelor level”, “teach[...] students on a large
scale”) and classical formal methods teaching can be the professional role that
the education and training aims to develop.

3.1 FMICS Roles and Activities

The survey report does not further elaborate on capabilities and responsibili-
ties of the roles introduced in Sect. 5.5, so we take a step back and propose an
analysis of roles in formal methods for industrial critical systems based on the
literature and our own experience. Keeping students aside for a moment (cf.
Fig. 2), we distinguish the roles scientist and engineer (corresponding to stake-
holders ‘academia’ and ‘industry’, cf. Section 5.8, ‘Dissemination Players’ [28]),
and in addition the role client .

3 Where we would not exclude the 3rd row, as we shall add (cf. Sect. 3.1).
4 Also see Manfred Broy’s individual statement on managers [28].



On Education and Training in FMICS 89

scientists

students

conduct

utilise

engineers clients

Fig. 2. Stakeholders in formal methods for industry critical systems. Solid arrows indi-
cate communication paths, dashed arrows indicate career paths of students.

People in the role scientist may work in academic institutions or research-
oriented institutes (MPI, etc.), develop formal methods and tools, and conduct
case studies. People in this role typically value novelty over consolidation, and
focus on “most difficult and challenging problems” rather than “‘real world’
issues” (cf. Section 4.3, ‘Main Criticisms’ [28]). People in the role engineer work
in the industry or in transfer-oriented institutes (such as Fraunhofer, OFFIS,
etc.) and use formal methods to develop products in branches such as trans-
portation, or formal methods products like Astree [1]. Incentives for engineers
are strongly affected by economic consideration: a typical goal is to develop a
product of the required quality with an adequate amount of effort (cf. [37]).

People in the engineer role may work together and communicate with scien-
tists on case studies. This communication can be different from the communica-
tion within a role group due to different incentives, in particular if domain and
formal methods expertise is diametrical on both sides, and it can be difficult.5

People in the role engineer may also need to communicate with people in the
role client (or product owner). The background of a person in the role client
may be comparable to the engineer (for example, in the automotive industry,
we find people with similar capabilities as client on the side of an OEM and
as engineer on the side of a supplier; the difference lies in their responsibilities)
or vastly different (e.g., electrical or communication engineers as client and sys-
tem or software engineers as engineer). In the latter case, the communication
is in general of a different quality than towards scientist in, e.g., a case study
cooperation and needs explicit consideration in FMICS education and training.

To reflect the evolution of capabilities and responsibilities of engineers in
the area of formal methods over the last 25 years, we propose to consider two
specialisations of role engineer : The role engineer/conduct and the role engi-
neer/utilise. We distinguish these two roles according to the following set of
activities (cf. Fig. 3, from right to left):

– The Construct activity includes the development and investigation of for-
malisms, theories, proof systems, analysis algorithms and data-structures,

5 Woodcock et al. [65] already report “a difficulty in communication between the veri-
fiers and the signalling engineers, [...]” (solved by an ad-hoc solution) in the SACEM
project; a problem that eng./utilise people are supposed to substantially mitigate.



90 B. Westphal

Manage Integrate Utilise Conduct Construct

role engineer/conduct

role engineer/utilise

Fig. 3. Role competencies over a scale of depth of formal methods knowledge.

etc. to enable or support the use of formal methods. This activity needs a
deep understanding of the formal method that is worked on and may com-
monly be associated with research institutions and scientists, although today
it has its place in the industry as well. Note that people who work on such
activities need not necessarily be able to create good, elegant formal models
at appropriate levels of abstraction.

– In the Conduct activity, we see all work where an existing formal method is
applied to formally analyse properties of a formal model. This activity needs
good training with the employed formalism in order to create formal models,
and familiarity with proof methods or tools in order to obtain analysis results.
Note that people who work on such activities need not be able to, e.g., repair
the tools they use, and they need not necessarily know the details of how
the results from their formal analyses contribute to the overall dependability
case [40] for the system under development.

– The Utilise activity is concerned with the product. In this activity, formal
models and analyses are used for a certain purpose and the specification of
a formal analysis (what does the obtained report say about the presence
or absence of which issues with the product) is more important than, e.g.,
the theory and the implementation of the analysis. This activity comple-
ments Conduct , and both can be performed in an integrated way, possibly by
the same person, but we see an increasing demand for a separation [25,27]
because, e.g., small to medium sized enterprises can not afford permanent
positions for Conduct .
When performed separately, Conduct can be offered by a department (or even
an external agency, or ‘dedicated service companies’ [28]) with lower domain
knowledge but expertise in formal methods, and Utilise is the complementary
counterpart with higher domain and lower formal methods knowledge. People
who work on Utilise activities should be able to read and understand formal
models, they need to understand analysis results such as counter-examples
in model-checking with respect to to the product under development, and
they may need to be able to communicate about models and results with
clients. People who work on this activity need not be able to, e.g., overlook
the whole business case of a product under development and take decisions
on which formal methods to use when, but they should be able to support
such decisions.

– The Integrate activity is concerned with the integration of formal methods
into system and software engineering processes (cf. Section 5.2, ‘Technology
Readiness’ [28]). The integration may be on more conceptual levels (such as



On Education and Training in FMICS 91

the process of subcontracting a semantical review for informal requirements
documents) or on more technical levels (e.g., the integration of lightweight
formal methods such as compiler checks or static analyses into continuous
integration tool-chains). People who work on this activity may not be the
ones who decide, which method and which tool to use, but they should be
able to support such decisions.

– The Manage activity is concerned with decisions, e.g., on which methods and
which tools to use, whether to conduct formal methods internally or sub-
contracted, and with putting all other activities into place.

These five activities provide a refined view on the survey results [28]. Engi-
neers (Table 1, 1st row) work on Conduct or Utilise, and would assume the role
eng./conduct or eng./utilise depending on their focus and goals.6 Integration
into industrial life cycles (3rd row) is part of Integrate, developers (4th row)
work on Utilise, and managers (5th row) on Manage, hence we see integrators,
developers and managers in the role eng./utilise rather than eng./conduct .

Note that the concept of roles in the context of formal methods has been
raised before, e.g., in the survey on the state of formal methods in industry
by Woodcock et al. [65]. The results are somewhat inconclusive because the 56
respondents (plus 6 data points from the literature) were asked which roles were
part of the project team and all answers but ‘other’ name standard software
engineering roles with no hint of a formal methods aspect to them. As most
of the eight highlighted projects (including Transputer, Train Control, Airbus,
etc.) seem to have strong contributions from scientists, the question may have
been answered in the understanding of who else, next to the formal methods
people, were part of the project teams.

3.2 Consequences on Education and Training

Table 2. Section 7.2, ‘Future users’ [28]. Of 130
respondents, twelve commented ‘both’.

A large number of mainstream
software engineers

42.3%

A small number of skilled experts 43.8%

Others 13.8%

Our differentiation of two roles
is in line with answers from
the survey. Section 7.2, ‘Future
Users’ reports beliefs on likely
future users of formal methods.
The survey offered the answers
shown in Table 2. We position the
role eng./conduct in the group of

skilled experts (towards the end of higher or more specialised formal meth-
ods skills), and the role eng./utilise in the intersection (‘both’) because the
role clearly needs strong system and software engineering skills as well as for-
mal methods skills, yet the latter not as deep as eng./conduct . Note that role

6 We feel that the ‘formal methods engineer’ proposed in Frank de Boer’s individual
statement [28] is positioned in the intersection yet a bit stronger on eng./conduct ,
while Stefan Kowalewski and Antti Valmari [28] seem to tend to eng./utilise.



92 B. Westphal

eng./utilise is not identical to the ‘mainstream software engineer’ but a bit nar-
rower: many software engineers will not fit the role eng./utilise but still use
“lightweight formal methods, particularly the automated ones, which are hidden
in standard development tools” as the survey report puts it.

Implications for education and training become visible by also considering
career paths of students (cf. Fig. 2). Students can join the academic world, work
as a scientist , and become the proverbial ‘academic doctor’ that we began the
section with. Afterwards they may join the industry and work as eng./utilise or
eng./conduct with some industry-specific training. People who follow this path
can in particular bring a deep understanding of the academic world to the indus-
try and, e.g., resolve misunderstandings caused by the different constellation of
incentives (cf. Section 4.3, ‘Main Criticism’ ).7

The way to the industry via academia may have been the main career path
of engineers who are active in the area of formal methods (cf. Orna Grumberg’s
individual statement [28]), but it may not scale in a way that yields the increased
quantities of people that are qualified for FMICS that the survey experts ask for
(cf. Section 5.9, ‘Academic Policies’ ). Hence there is a need to update education
for career paths that directly lead from higher education institutes to industry
positions that match roles eng./utilise or eng./conduct . Knowledge, that would
otherwise be picked up with the career path over scientist , needs to be pro-
vided as part of the education in order to, e.g., understand the main criticisms
concerning the placement of efforts of academic researchers.

4 Learning Objectives: Eng./Utilise vs. Eng./Conduct

The new differentiation of engineers who are active in the area of formal methods
allows us to revisit learning objectives for eduction and training of the two roles.
We see the role eng./conduct as the target audience of existing, well-developed,
dedicated courses and textbooks on (heavyweight) formal methods as mentioned
in the introduction. Learning objectives of these courses typically include to know
and understand a formalism to its full extent, to be familiar with corresponding
properties, to understand analysis methods and algorithms, and to be able to
create formal models of the structure and behaviour of industrial critical systems
and to apply analysis tools. An often reported assessment of learning success (see
[26], for example) is that students show the ability to create a substantial formal
model of a complex system from a specification and prove certain properties for
the model using at least one of the formal methods introduced in the course.

The role eng./utilise needs different competences and capabilities accord-
ing to Sect. 3, some more and some less compared to classical formal methods
courses. The survey report [28] offers the quote “‘every bachelor in computer sci-
ence/informatics should know about formal methods’ and ‘be trained in applying
[them]’” but what could ‘know about’ mean? Colloquially put, we propose the
top-level learning objective to make the experts opinions and beliefs from the
2020 survey plausible and comprehensible for bachelor students. To us, it sounds
7 See Jan Friso Groote’s individual statement on “change the (industrial) society” [28].



On Education and Training in FMICS 93

Table 3. Formal methods-specific learning objectives [62].

O1 Students have a broad overview of interpretations of the term ‘formal
methods’ in the software engineering context and know examples of such
methods

O2 Students have basic capabilities of using (understanding, analysing, and
(to a certain amount, cf. [23]) creating) formal specifications of
requirements and designs, and apply program verification

O3 Students are able to discuss which and in how far formal methods address
common, well-known problems and issues in the software engineering
process, and are aware of the advantages and limitations of formal
methods

like a major step forward if students get the information and experience that
makes plausible, e.g., the survey finding that 81.5% of the respondents believe
that formal methods together with formal analysis tools definitely can deliver
the promise of better software quality.

We have proposed the learning objectives recalled in Table 3. With learn-
ing objective (O1), we advocate for the presentation of an explicit definition
of ‘formal methods’ (in the modern, inclusive interpretation) and an explicit
elaboration of the common principles of formal methods, and against ‘weav-
ing’ [64], ‘ninja’ [41], ‘hero’ [50] ‘religion’ (sic!) [28] or ‘stop calling it formal
methods’ [28] recommendations. The reason is that when our graduates join a
workplace, they may need to work and communicate with colleagues who have
10, 20, or 30 years of work experience. These colleagues will have finished their
studies around the 2010’s, 2000’s, or 1990’s and may probably have come across
the term ‘formal methods’, maybe in a less modern and inclusive interpretation
or together with a contemporary fashion of (mis)conceptions along the lines of
the Hall/Bowen/Hinchey series of ‘myths’ papers [13,33]. In other words, these
experienced colleagues may be well familiar with the heritage and history of for-
mal methods (also cf. Section 5.1, ‘Impact Evaluation’ ) and bring up the term at
the workplace. The student who has an explicit definition and multiple examples
of the own interpretation should be able to clarify on which interpretation of the
term the own impression is based; then the communication need not fail due to
an unresolved case of different interpretations of the term.

Objective (O2) addresses the aspect that people in role eng./utilise need
to communicate with eng./conduct and client . To this end, eng./utilise should
know examples of formal specifications as used in different activities of system
and software engineering (requirements, designs, programs, etc.). The emphasis
is on understanding the purpose of formalisations in these activities, the ability
to read and understand existing formalisations, and to interpret analysis results
in terms of the product under development. This learning objective also includes
basics of the communication towards non-technical clients.

Learning objective (O3) revisits the previous ones from the perspective of
management activities, including the important message that, quoting Edward



94 B. Westphal

A. Lee’s individual statement: “[The role of formal methods] is not, as is often
stated, to prove a system correct.” [28] Formal methods also do not necessarily
make a design or a requirements set better, but using formal methods can lower
the average risk of systems to fail due to design or requirements issues. Using
formal methods also has costs and benefits, which, as well as advantages and
limitations, need to be discussed in particular engineering contexts and projects
(cf. [14,15]; also see the individual statement of Matthias Güdemann [28]). Note
that the we do not imply that courses that address eng./conduct necessarily do
not address learning objectives (O1)–(O3). We do state that education towards
eng./utilise should address them.

An alternative formulation of the overall learning objective behind (O1)–
(O3) is to provide students with knowledge and competences that can serve a
‘common ground’ and ‘connection points’ at the workplace.8 Here we also see a
strong potential to mitigate some risks as discussed in Section 5.3, ‘Return on
Investment’ : In our experience, providing specialisation training (in a particular
method or tool) is easier, faster, and comes with a lower risk of disappointment
when the audience is familiar with the underlying concepts.

5 Curriculum and Course Construction

Given a set of learning objectives, the next question is how much workload at
which time in the study plan should be used to reach them. Regarding the level of
courses that teach formal methods, the survey answers clearly favour universities
(80.0% master, 79.2% bachelor) over training (70.8% engineering schools, 70.0%
continuing education), and only 31.5% see the doctorate level fit (cf. Section 6.1,
‘Course Level’ ). Our following discussion targets the undergraduate level.

The literature has proposals on how to present formal methods to a broader
audience. One obvious approach is a classical course on formal methods in the
heavyweight interpretation (cf. Fig. 4a). Such a course would build on content
from introductions to system or software engineering and relate formal meth-
ods to that content, yet typically does not have enough workload to address
both, eng./conduct and eng./utilise. Gibson and Méry [31], for example, reports
on how to conceptionally connect a formal methods course in a graduate pro-
gram to software engineering knowledge. Other proposals consider formal meth-
ods education in the broader context of the whole (undergraduate) curriculum.
Wing [64], for example, proposes to spread formal methods education all over
the curriculum (cf. Fig. 4b) and gives suggestions on where to add which aspect.
Mandrioli [49] sketches a curriculum design where a series of formal methods
courses is scheduled in parallel to other courses. For both, it is unclear from the
literature whether they have ever been realised to the extent of the proposal, and
if not, for which reasons. Yet for reflections on curriculum and course design, we
need to keep in mind that there are more aspects and constraints than optimal
didactics. Educational units may be equally reluctant to change as the industry

8 Also see Radu Mateescu’s statement on “‘formal methods culture’” [28].



On Education and Training in FMICS 95

(as perceived by many experts in the survey). So the curriculum-oriented pro-
posals may be much harder to realise than a few courses, or, possibly the easiest
case, to (re-)position a single specialisation course (cf. Fig. 4a). Liu et al. [46] in
contrast, report on a successfully realised curriculum design, yet tailored to the
SOFL (Structured Object-based Formal Language) methodology.

· · ·
SWE

· · ·
FMh

· · ·

(a) Separate.

· · ·
SWE

· · ·

FM

FM

FM

(b) Spread.

· · ·
SWE
· · ·

FMm-h

FMh

· · ·

(c) Diff. Sep.

· · ·
SWE/Fm

· · ·
FMh

· · ·

(d) Integrate.

Fig. 4. Schematic illustrations of four curricula (duration not specified, can be viewed
as only undergraduate, or consecutive B.Sc. and M.Sc.). Flat rectangles represent
courses (or modules), solid and dashed outlines indicate compulsory and elective,
respectively. Labels indicate topics (or content; also inside ovals), and arrows repre-
sent a puts-into-perspective relation (see running text below).

An in-between proposal is to devise one compulsory formal methods course
(which may take the modern, inclusive interpretation) and subsequent speciali-
sations courses (which may address the eng./utilise role), cf. Fig. 4c. Examples
are reported by Larsen [11] (in a graduate program), and Robinson [57]. Similar
ideas of sequences of formal methods courses (cf. Fig. 4c) are found in curricula
for professional education (see Ishikawa et al. [38] and Davies [23], for example),
and summer schools as in [20].

We propose to implement the opposite direction: Integrate the content for
eng./utilise into ‘otherwise completely ordinary’ introductions to systems or
software engineering [7,48,59] (cf. Fig. 4d).9 In the remainder of this section,
we discuss advantages, feasibility, and related work. Integrating formal meth-
ods (in the modern, inclusive interpretation) into an introduction to system or
software engineering comes with the following advantages. Firstly, such courses
come with obvious and natural motivations (also see [47,56]): Subject of the
course is the goal to contribute to the development of a system or software
(in any form, e.g., with requirements, design, programming, quality assurance,
etc.). The system is supposed to have a defined reliability or dependability, and
this goal is not reached ‘for free’ (otherwise, e.g., certain aircraft models would
not be grounded by regulators for the reason of software issues). Secondly, such
courses allow a natural progression from an informal to a formal view. The

9 Also see Stefan Kowalewski, Martin Leucker, and Cesare Tinelli in [28].



96 B. Westphal

typical systems/software engineering course is bound to introduce informal and
semi-formal means to mitigate risks of software issues. An integrated course com-
pletes the picture with a discussion of how formal methods can lower the risk
for system failures if used in, e.g., requirements engineering, design, program-
ming, etc. Notably, the envisioned integration is not at all in contradiction to
the well-known SWEBOK [10] that covers formal methods as a topic of its own
and enriches knowledge areas like requirements engineering or modelling with
pointers to formal approaches.

Specialist courses can immediately connect to the ‘bridgeheads’ that the inte-
grated approach provides and can consider the basics of formal methods and the
engineering context given.10 Even if the specialisation course elaborates on one
of the formalisms that did occur in the introduction to system or software engi-
neering, the overlap will be low and probably tolerated as a ‘recap’ because the
introduction course will spend at most two lectures per formalisms to introduce
the fragment that it needs. This is perfectly in line with the vast majority of
expert answers of which 83.8% are reported in Section 6.3, ‘Course Format’ to
have answered “both: specialist courses taught to a limited number of students,
and gentle introduction to formal methods for a larger number of students.”

How is an integrated course feasible in a curriculum with a fixed workload
and where, by Fig. 4c, we need two courses for a similar sounding goal? We obtain
feasibility from two observations: (1) In education for eng./utilise, we can focus
on lower competence levels of Bloom’s revised taxonomy of educational learn-
ing objectives [4] (apply, analyse (a.k.a. reading formal specifications)), we can
consider simpler or smaller formalisms for examples of writing tasks, and we
can highlight an interface (or input/output) perspective onto formal methods
that abstracts from the algorithms inside. The proposed separate constructions,
in contrast, still sound like education for role eng./conduct and thus different
learning objectives. A main difference is that education for role eng./conduct
needs to establish proficiency in creating formal models of complex systems and
conducting complex analysis tasks. Creating artefacts is of the highest compe-
tence level [4] and takes time to develop. (2) In education for role eng./utilise, we
can exploit the fact that the survey report [28] advocates for the modern, inclu-
sive interpretation of formal methods (cf. Sect. 2). With the modern, inclusive
interpretation, we can use formal variants of Decision Tables (cf. [6]), subsets
of UML languages with a precise, formal semantics and analysis tools (such as
formal state machine or sequence diagram dialects), etc. These formalisms are
already present in many introductions to systems and software engineering in
an informal (neither syntax nor semantics well-defined) or a semi-formal (syntax
only) form. We only need to present a formal semantics to complete the picture.
Still, adding a formal semantics needs time which may not be provided in the
schedule of a classical introduction to systems or software engineering. On sec-
ond sight we can see that the time that we need is usually already there: Popular
software engineering textbooks allocate a lot of time to tell informal meanings

10 We feel that Benjamin Monate’s note on “be modest with formal methods” and
incremental training [28] points into the exact same direction.



On Education and Training in FMICS 97

of oversized fragments of semi-formalisms, with artificial or oversimplified exam-
ples. This telling time we can trade for precise semantics of useful fragments of
formalisms illustrated with scaled-down examples from the industrial practice.

read
modify
write algorithm

interface
mod./small

modern, incl.
heavyweight

Fig. 5. Eng./utilise education focus illustrated on
the axes competence level (left), inside vs. outside
view (middle), formalism.

Figure 5 contrasts our app-
roach to education for role
eng./utilise with classical for-
mal methods courses on three
axes. Classical formal methods
courses aim at writing com-
plex formal models (darker gray
area), which implies the capa-
bilities to modify and read models. For eng./utilise, we focus on the latter
(lighter gray area). Classical formal methods courses present a complete the-
ory and analysis algorithms, the view towards the engineering context is often a
view from the inside to the outside. We focus on the interface from the engineer-
ing perspective. Finally, many classical formal methods courses work with the
heavyweight interpretation, from which it is easy to acquire knowledge on less
heavyweight methods, in particular small fragments thereof. For eng./utilise, we
focus on the latter.

Integrative approaches to formal methods education have been proposed
before but for different purposes. Noble et al. [52] report on a first year course on
software modelling yet allocates one third of the workload to Alloy. This course
design does not provide the overview over formal methods that role eng./utilise
should have. Similar thoughts are found in the high-level reflections [50] of which
the majority of claims and observations are backed by the 2020 survey results.
Overall, [50] does not present a solution but rather an abstract specification of
side-conditions (or principles [20]) that formal methods teaching should satisfy.

6 Exemplary Implementation

We have implemented the integrated approach (cf. Fig. 4d) with the re-design
of an undergraduate introduction to software engineering [62]. A cornerstone is
the explicit introduction of a concept of formal methods using one as-simple-as-
possible (but not trivial) example of a formal method (in the modern, inclusive
interpretation) in the topic area requirements engineering (cf. Table 4).

Essential for role eng./utilise is to see the relation between a formal descrip-
tion and the system under design. The formal description is a model [60] (also
see Edward A. Lee’s statement in [28]) and analysis results obtained on the
model need to be interpreted with respect to the original. A result of a formal
analysis on a model can be true or false, depending on whether the formalisation
is valid. Engineers in the role eng./utilise need to be able to take appropriate
actions or communicate appropriate actions to other engineers. This topic is re-
occurring all over the course, e.g., for design models, program verification [5],
etc. Similarly essential to role eng./utilise are the principles behind dependabil-
ity cases (cf. [40]): A dependability case is a transparent argument of what a



98 B. Westphal

Table 4. High-level course design: role eng./utilise in Software Engineering.

LectureTopic area Key content

2–4 Project management Semi-formal process models

5–9 Requirements engineeringFormal methods concept, validation, interpretation

10–13 Architecture & design Structural and behavioural models, model-checking

14–16 Code quality assurance Testing, program verification (manual and tools)

formal analysis (like a correctness proof) does and does not imply about the
product under construction.11 Formal methods is not, as Lee puts it, “to prove
a system correct.”

As already recommended in the Ten Principles [20], we reinforce the aspects
of concrete syntax, abstract syntax, and semantics. The aspect of concrete syn-
tax needs particular attention for the visual formalisms that enter the discussion
with the modern, inclusive interpretation of formal methods. By complementing
existing software description languages with formal semantics, we cover different
examples for each of the aspects formalism simplicity, concrete syntax, modelled
aspect, constructive vs. reflective view [35], formality, and paper & pencil vs.
tool (see [61] for details). Hereby, we reach (O1) and (O2), satisfy the needs
stated in Section 6.3, ‘Course Format’ [28], and avoid the concerns raised ibid.:
Our approach is not about giving flavours or impressions, but we introduce self-
contained, well-defined formal software description languages and offer meaning-
ful exercises. Regarding examples, we have decided against a running one, against
toy examples (in line with, e.g., Anne Haxthausen [28]), and against games and
puzzles (see [18]). Instead, we follow, e.g., [16,36] (and Section 7.3, ‘Promising
Applications’ [28]) in presenting scaled down versions of examples for formal
methods for industrial critical systems and discuss how and in how far formal
methods are assumed to have contributed to product quality. In addition (and in
line with [28] and also [14,15]), we take care to present each formal method with
examples for which the method is known to work particularly well.12 Regarding
tool use, we follow [32] in valuing concepts over tools. For the formal modelling
languages of which we only present small fragments, it is usually not economic
to learn any tool to solve the exercises. Still, we perfectly agree to the majority
of expert answers in the 2020 survey (cf. Section 6.5, ‘Tool Usage’ ) that tool
experience is important. For behavioural models, we use Uppaal [45] for reasons
also detailed in [2,3]. Even small models of concurrent systems are sufficient
to vividly demonstrate the value of tools. For the same reason, we use, e.g.,
VCC [21] to demonstrate that practical program verification is possible.

11 Also see individual statement of Joseph Sifakis [28].
12 Also see the individual statement of Edward A. Lee [28].



On Education and Training in FMICS 99

Table 5. Section 5.7, ‘Design life-cycle’ [28].

(a) Generate test cases, esp. corner cases 77.7%

(b) Capture and formalise requirements 75.4%

(c) Check whether models are correct 69.2%

(d) Build models of the system 64.6%

(e) Validate the requirements 53.8%

(f) Generate code from models 53.1%

(g) Certify correctness of the final code 45.4%

(h) Monitor deployed software at run time 43.1%

(i) Maintain consistency between models 42.3%

(j) Detect mistakes in handwritten code 39.2%

As a measure for the ade-
quacy of our course design
for the education of role
eng./utilise, we can check
which phases of the design life
cycle that the expert answers
in the 2020 survey consider
most likely to attract for-
mal are touched upon by the
course design. Table 5 recalls
the 10 (of 12) most fre-
quently given answers. Our
course explicitly addresses six
of these ten: (b)–(e), (g), and (j). Mentioned in the lectures are (a) (yet more in
the sense of model-based testing), (f), and (h). The only phase that we leave to
the specialisation courses is phase (i), consistency between models.

Experiences with teaching the course over five seasons so far13 are encour-
aging with respect to to the course goals and student feedback. There are no
indications of overstraining students in the aspects difficulty and workload. In
contrast to reports on classical formal methods courses, we do not have any indi-
cations of ‘mathphobia’ [49], possibly resulting from a combination of our use
of mathematics on a strict as-needed basis and overall lower demands that the
interface view has. We also find few preconceptions (like Hall/Bowen/Hinchey
‘myths’) with the majority of the students. Formal methods are named in the
same breath with ‘(over-)selling’ in the 2020 survey (cf. Section 3.5, ‘Missed
Opportunities’ ) and so do some software engineering textbooks. Our take is that
we do not sell anything at all (also see [43]): We present, where possible with
evidence, available theories and technologies for the development of industrial
critical systems.

7 Conclusion

The 2020 survey report [28] recalls a dilemma with the topic of formal meth-
ods for industrial critical systems: The topic does neither exclusively classify
as ‘cs.LO’ (logic) nor as ‘cs.SE’ (software engineering) but is a well-understood
topic area somewhere in the intersection. It would be surprising if the same
would not hold for education and training in formal methods for industrial
critical systems: It is neither exclusively formal methods teaching nor software
engineering education, hence neither a conference or workshop like FMTea or
SEET can be expected to solve the education and training problems of the
FMICS community that the survey [28] has brought to light in striking clarity.
13 Mainly as undergraduate compulsory course, majority of audience on B. Sc. in C.S.

study plan, 4th semester/2nd year, open to students on M. Sc. and other study plans;
heterogeneous previous knowledge; also offered as graduate block course at NM-
AIST, Tanzania, with very heterogeneous previous knowledge; see [62] for details.



100 B. Westphal

It needs key conferences in the intersection of industrial applications and formal
methods (in Marieke Huisman’s words, “the scientific community”), venues that
bring together ‘providers’ and ‘consumers’ of FMICS education and training, to
improve the situation and come to a positive answer on Pedro Merino’s question
“Are we are still on time?” [28].

In this article, we move from the survey-recommended starting point [19]
towards a concretisation of the discussion. The most striking observation to us
is that the 2020 survey does not only name and pinpoint problems but it also
includes valuable hints on possible solutions. To us, FMICS education differs
from classical formal methods education in two aspects: Firstly, we can work with
the modern, inclusive interpretation of FM (that the survey report has thankfully
established at FMICS), and secondly, we aim to develop a different role, of
which we propose a first definition. These two differences open an intriguing
design space for new course concepts that build on the state of the art of formal
methods teaching and software and system engineering education.

References

1. AbsInt: Astreé software (2020). http://www.absint.com/astree
2. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,

Specification and Verification. Cambridge University Press, Cambridge (2007)
3. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Teaching concurrency: theory

in practice. In: Gibbons et al. [30], pp. 158–175
4. Anderson, L.W., Krathwohl, D.R., et al. (eds.): A Revision of Bloom’s Taxonomy

of Educational Objectives. Longman, New York (2001)
5. Apt, K.R., de Boer, F.S., Olderog, E.: Verification of Sequential and Concurrent

Programs. Texts in Computer Science. Springer, London (2009). https://doi.org/
10.1007/978-1-84882-745-5

6. Balzert, H.: Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engi-
neering, 3rd edn. Spektrum (2009)

7. Bauer, F.L.: Software engineering. In: IFIP Congress, no. 1, pp. 530–538 (1971)
8. Bjørner, D.: Software Engineering: Abstraction and Modelling. EATCS, vol. 1.

Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31288-9
9. Bjørner, D., Havelund, K.: 40 years of formal methods - some obstacles and some

possibilities? In: Jones, C.B., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS,
vol. 8442, pp. 42–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06410-9 4

10. Bourque, P., Fairley, R. (eds.): Guide to the Software Engineering Body of Knowl-
edge, Version 3.0. IEEE (2014)

11. Boute, R.T., Oliveira, J.N. (eds.): Formal Methods in the Teaching Lab, Workshop
Preprints (2006)

12. Bowen, J.P., et al.: An invitation to formal methods. IEEE Comput. 29(4), 16–30
(1996)

13. Bowen, J.P., Hinchey, M.G.: Seven more myths of formal methods. IEEE Softw.
12(4), 34–41 (1995)

14. Bowen, J.P., Hinchey, M.G.: Ten commandments of formal methods. Computer
28(4), 56–63 (1995)

http://www.absint.com/astree
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/3-540-31288-9
https://doi.org/10.1007/978-3-319-06410-9_4
https://doi.org/10.1007/978-3-319-06410-9_4


On Education and Training in FMICS 101

15. Bowen, J.P., Hinchey, M.G.: Ten commandments of formal methods ...ten years
later. Computer 39(1), 40–48 (2006)

16. Brakman, H., Driessen, V., Kavuma, J., Bijvank, L.N., et al.: Supporting formal
method teaching with real-life protocols. In: Boute and Oliveira [11], pp. 59–68

17. Burgueño, L., Vallecillo, A., Gogolla, M.: Teaching UML and OCL models and
their validation to software engineering students: an experience report. Comput.
Sci. Educ. 28(1), 23–41 (2018)

18. Cerone, A., Roggenbach, M. (eds.): Formal Methods - Fun for Everybody, FMFun,
Proceedings. CCIS, vol. 1301. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-71374-4

19. Cerone, A., Roggenbach, M., Davenport, J., Denner, C., Farrell, M., et al.: Root-
ing formal methods within higher education curricula for computer science and
software engineering - a white paper. CoRR abs/2010.05708 (2020)

20. Cerone, A., Roggenbach, M., Schlingloff, B.H., et al.: Teaching formal methods for
software engineering - ten principles. informatica didactica 9 (2011)

21. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., et al. (eds.) TPHOLs. LNCS, vol. 5674, pp. 23–42. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03359-9 2

22. Damm, W., Harel, D.: LSCs: Breathing life into Message Sequence Charts. FMSD
19(1), 45–80 (2001)

23. Davies, J., Simpson, A., Martin, A.P.: Teaching formal methods in context. In:
Dean and Boute [24], pp. 185–202

24. Dean, C.N., Boute, R.T. (eds.): TFM. LNCS, vol. 3294. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30472-2

25. Dietsch, D., Langenfeld, V., Westphal, B.: Formal requirements in an informal
world. In: FORMREQ, pp. 14–20. IEEE (2020)

26. Dongol, B., Petre, L., Smith, G. (eds.): FMTea, LNCS, vol. 11758. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-32441-4

27. Feo Arenis, S., Westphal, B., Dietsch, D., Muñiz, M., Andisha, A.S., Podelski, A.:
Ready for testing: ensuring conformance to industrial standards through formal
verification. Form. Asp. Comput. 28(3), 499–527 (2016)

28. Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 expert survey on formal
methods. In: ter Beek, M.H., Nickovic, D. (eds.) FMICS. LNCS, vol. 12327, pp.
3–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2 1

29. Giannakopoulou, D., Pressburger, T., Mavridou, A., Rhein, J., Schumann, J., Shi,
N.: Formal requirements elicitation with FRET. In: Sabetzadeh, M., Vogelsang,
A., et al. (eds.) REFSQ Workshops. CEUR, vol. 2584. CEUR-WS.org (2020)

30. Gibbons, J., et al. (eds.): TFM, LNCS, vol. 5846. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04912-5

31. Gibson, J.P., Méry, D.: Teaching formal methods: lessons to learn. In: Flynn, S.,
Butterfield, A. (eds.) 2nd Irish Workshop on Formal Methods, Cork, Ireland, 2–3
July 1998. Workshops in Computing, BCS (1998)

32. Glinz, M.: The teacher: “concepts!” the student: “tools!”. Softwaretechnik-Trends
16(1) (1996)

33. Hall, A.: Seven myths of formal methods. IEEE Softw. 7(5), 11–19 (1990)
34. Harel, D.: Statecharts: a visual formalism for complex systems. SCP 8(3), 231–274

(Jun 1987)
35. Harel, D.: Some thoughts on statecharts, 13 years later. In: Grumberg, O. (ed.)

CAV. LNCS, vol. 1254, pp. 226–231. Springer, Cham (1997). https://doi.org/10.
1007/978-3-030-58298-2 1

https://doi.org/10.1007/978-3-030-71374-4
https://doi.org/10.1007/978-3-030-71374-4
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-540-30472-2
https://doi.org/10.1007/978-3-030-32441-4
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-642-04912-5
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1


102 B. Westphal

36. Heitmeyer, C.L.: On the need for practical formal methods. In: Ravn, A.P., Rischel,
H. (eds.) FTRTFT. LNCS, vol. 1486, pp. 18–26. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055332

37. Holloway, C.M.: Why engineers should consider formal methods. In: 16th Digital
Avionics Systems Conference, Proceedings. vol. 1, pp. 1.3–16 (1997)

38. Ishikawa, F., Taguchi, K., Yoshioka, N., Honiden, S.: What top-level software engi-
neers tackle after learning formal methods: experiences from the Top SE project.
In: Gibbons et al. [30], pp. 57–71

39. Istenes, Z. (ed.): Formal Methods in Computer Science Education, FORMED2008,
Budapest, Hungary, 29 March 2008, Proceedings (2008)

40. Jackson, D.: A direct path to dependable software. CACM 52(4) (2009)
41. Kiniry, J.R., Zimmerman, D.M.: Secret ninja formal methods. In: Cuéllar, J.,

Maibaum, T.S.E., et al. (eds.) FM. LNCS, vol. 5014, pp. 214–228. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-68237-0 16

42. Klose, J., Wittke, H.: An automata based interpretation of live sequence charts.
In: Margaria, T., Yi, W. (eds.) TACAS. LNCS, vol. 2031, pp. 512–527. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9 35

43. Lamport, L.: Who builds a house without drawing blueprints? CACM 58(4), 38–41
(2015)

44. Langenfeld, V., Dietsch, D., Westphal, B., Hoenicke, J.: Scalable analysis of real-
time requirements. In: Damian, D., et al. (eds.) RE, pp. 234–244. IEEE (2019)

45. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1), 134–152 (1997)

46. Liu, S., Takahashi, K., Hayashi, T., Nakayama, T.: Teaching formal methods in
the context of software engineering. SIGCSE Bull. 41(2), 17–23 (2009)

47. Loomes, M., Christianson, B., Davey, N.: Formal systems, not methods. In: Dean
and Boute [24], pp. 47–64

48. Ludewig, J., Lichter, H.: Software Engineering, 3rd edn. dpunkt (2013)
49. Mandrioli, D.: Advertising formal methods and organizing their teaching: yes, but

... In: Dean and Boute [24], pp. 214–224
50. Mandrioli, D.: On the heroism of really pursuing formal methods. In: Gnesi, S.,

Plat, N. (eds.) FormaliSE, pp. 1–5. IEEE (2015)
51. Nielson, F., Nielson, H.R.: Formal Methods. Springer, Heidelberg (2019). https://

doi.org/10.1007/978-3-030-05156-3
52. Noble, J., Pearce, D.J., Groves, L.: Introducing alloy in a software modelling course.

In: Istenes [39], pp. 81–90
53. Ölveczky, P.C.: Designing Reliable Distributed Systems - A Formal Methods

Approach Based on Executable Modeling in Maude. Undergraduate Topics
in Computer Science, Springer, London (2017). https://doi.org/10.1007/978-1-
4471-6687-0

54. OMG: OCL, Version 2.4. OMG Document Number formal/2014-02-03 (2014)
55. OMG: UML, Version 2.5.1. OMG Document Number formal/2017-12-05 (2017)
56. Reed, J.N., Sinclair, J.: Motivating study of formal methods in the classroom. In:

Dean and Boute [24], pp. 32–46
57. Robinson, K.: Reflecting on the future: objectives, strategies and experiences. In:

Istenes [39], pp. 15–24
58. Roggenbach, M., Cerone, A.: Formal Methods for Software Engineering. Springer,

Cham (2021, to appear)
59. Sommerville, I.: Software Engineering, 9th edn. Pearson, London (2010)
60. Stachowiak, H.: Allgemeine Modelltheorie. Springer, New York (1973)

https://doi.org/10.1007/BFb0055332
https://doi.org/10.1007/978-3-540-68237-0_16
https://doi.org/10.1007/3-540-45319-9_35
https://doi.org/10.1007/978-3-030-05156-3
https://doi.org/10.1007/978-3-030-05156-3
https://doi.org/10.1007/978-1-4471-6687-0
https://doi.org/10.1007/978-1-4471-6687-0


On Education and Training in FMICS 103

61. Westphal, B.: Teaching software modelling in an undergraduate introduction to
software engineering. In: Burgueño, L., Pretschner, A., Voss, S., et al. (eds.)
EduSymp@MODELS, pp. 690–699. IEEE (2019)

62. Westphal, B.: On complementing an undergraduate software engineering course
with formal methods. In: Daun, M., et al. (eds.) CSEE&T, pp. 1–10. IEEE (2020)

63. Wing, J.M.: A specifier’s introduction to formal methods. IEEE Comput. 23(9),
8–24 (1990)

64. Wing, J.M.: Invited talk: weaving formal methods into the undergraduate computer
science curriculum. In: Rus, T. (ed.) AMAST. LNCS, vol. 1816, pp. 2–9. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45499-3 2

65. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal methods: prac-
tice and experience. ACM Comput. Surv. 41(4), 19:1–19:36 (2009)

https://doi.org/10.1007/3-540-45499-3_2


(Event-)B Modeling and Validation



Improving SMT Solver Integrations for
the Validation of B and Event-B Models

Joshua Schmidt(B) and Michael Leuschel

Institut für Informatik, Universität Düsseldorf,
Universitätsstr. 1, 40225 Düsseldorf, Germany
{joshua.schmidt,michael.leuschel}@hhu.de

Abstract. ProB provides a constraint solver for the B-method writ-
ten in Prolog and optionally can make use of different backends based
on SAT or SMT solving. One such solver integration translates B and
Event-B operators to SMT-LIB using the C interface of the Z3 solver.
This translation uses quantifiers to axiomatise operators when translat-
ing to SMT-LIB, which are not well-handled by Z3. Several relational
constraints such as the transitive closure are not supported since their
translations were too involved.

In this paper, we substantially improve the translation to SMT-LIB by
employing a more constructive rather than axiomatised style using Z3’s
lambda functions. Thereby, we are able to translate more set-theoretic
B and Event-B operators to SMT-LIB, and improve the overall perfor-
mance. We further extend ProB’s interface to Z3 to run different solver
configurations in parallel, e.g., either using the former or new transla-
tion. Empirical results show that the new translation to SMT-LIB and
the parallel integration of different configurations of the Z3 solver have
improved the performance of constraint solving.

1 Introduction

The B-method [2] is a correct-by-construction approach for software development
based on refinement. Its foundation is an expressive formal language rooted in
set-theory, integer arithmetic, and first-order logic. The B language supports
higher order data types such as functions or arbitrarily nested relations, and
is nowadays referred to as classical B. Event-B [3] is the successor of B which
improves the language in several aspects and puts the focus on systems mod-
elling, in particular by extending refinement. In the following we only refer to the
B language which covers predicates and expressions in classical B and Event-B.

ProB [27,28] is an animator, model checker, and constraint solver for the B-
method. The constraint solver is used for many tasks and is the foundation of the
ProB tool. For instance, the constraint solver has to compute the effect of state
changes during animation, find counter examples to proof obligations during dis-
proving, or solve constraints for symbolic model checking or program synthesis.
One key feature of ProB is that it computes all solutions of a constraint. For
instance, this is important for a complete state-space exploration during model
c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 107–125, 2021.
https://doi.org/10.1007/978-3-030-85248-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_7&domain=pdf
http://orcid.org/0000-0001-8842-2993
http://orcid.org/0000-0002-4595-1518
https://doi.org/10.1007/978-3-030-85248-1_7


108 J. Schmidt and M. Leuschel

checking or when computing set comprehensions. This search is performed using
backtracking. The core of ProB is implemented in SICStus Prolog [10] using its
CLP(FD) library for constraint solving over the finite domain integers [11], and
other features such as co-routines for deterministic propagation and constraint
reification. ProB handles integer overflows by custom implementations and sup-
ports constraints over unbounded domains by using symbolic representations. Of
course, ProB might fail to solve constraints over unbounded domains, e.g., due
to a timeout or a virtual timeout (when ProB detects that a domain cannot be
enumerated exhaustively and all solutions are required).

Other prominent constraint solvers such as Z3 [13] implement a CDCL(T)
architecture based on a conflict driven clause learning scheme which combines
SAT and theory solving called Satisfiability Modulo Theories (SMT). In con-
trast to ProB and CLP(FD), SMT solvers are able to learn from contradic-
tions [34,35] and possibly leave dead-end parts of the search tree earlier and more
aggressively by applying backjumping. The SMT-LIB standard [5,6] defines the
input language for SMT solvers.

In prior work, Krings and Leuschel present a high-level translation from B
to SMT-LIB to integrate the Z3 SMT solver into ProB [24]. The authors have
shown that, on the one hand, Z3 is often superior to ProB in disproving for-
mulas especially over unbounded domains. On the other hand, Z3 often fails
to find solutions for satisfiable constraints involving relations or set compre-
hensions. The suggested translation uses existing operators of SMT-LIB or Z3
wherever possible. Yet, for instance, SMT-LIB does not have native support for
set comprehensions, which are frequently used in the B language. The authors
thus suggested translating B set comprehensions to SMT-LIB using a univer-
sal quantification which constrains all members of a set variable. Unfortunately,
this axiomatic translation often leads to complex constraints for which Z3 fails
to find a solution. Other B operators which are not supported by the SMT-LIB
standard are the relational composition, iteration and closure, as well as the gen-
eral or quantified union

⋃
x∈S and intersection

⋂
x∈S of a nested set S. As the

axiomatic translation to SMT-LIB using universal quantifiers was too complex,
the authors decided to not support these operators.

When revising the translation of satisfiable B constraints which can not be
solved by Z3, we noted that the axiomatic translation using universal quantifiers
can be replaced by a more constructive translation using lambda functions which
can considerably improve performance. For instance, the integration of Z3 is able
to solve the constraint f = {1 �→ 2} ∧ g = f �− {2 �→ 3} when using a lambda
function for the translation of the overwrite operator but is not able to do so
when using quantifiers. Z3 supports such lambda functions, even though they
are not part of the latest SMT-LIB standard 2.6. Note that from version 3.0
lambda functions will be part of the SMT-LIB standard as well. Nevertheless,
we observed that the axiomatic translation from B to SMT-LIB has benefits
as well. In order to achieve the best performance, we decided to run several
configurations of the Z3 solver with both translations in parallel.



Improving SMT Solver Integrations 109

This paper has three main contributions. First, we provide a new translation
for most operators from B to SMT-LIB as understood by Z3 as well as a parallel
integration of different Z3 solver configurations in ProB. Second, we provide
a formal description of our translation which was not the case for the former
translation [24] integrated in ProB. Third, we conclude the results with an
empirical evaluation in the field of bounded model checking.

2 Former Z3 Integration

In the following we revise the workflow of the former integration of Z3 in ProB
as well as the high-level translation from B to SMT-LIB presented in [24].

2.1 High-Level Translation

The former high-level translation [24] uses corresponding operators of SMT-LIB
wherever possible. B sets are translated as characteristic functions in SMT-LIB
mapping set elements to either true or false as defined by the array theory [12].
All logical B predicates (∧, ∨, ⇒, ⇔), all integer expressions except of division
(+, −, mod, ∗∗, ≥, >, <, ≤), simple set expressions (∈, ⊂, ⊆, ∪, ∩, −), and
quantifiers (∀, ∃) can be translated to corresponding operators in SMT-LIB.

While B has a strict type system, there is no distinction between sets of pairs,
relations, functions and sequences. For instance, the sequence [−1] is the function
{1 �→ −1}, which is also a relation, which in turn is a set of pairs. All these
datatypes are thus translated as sets of pairs as is defined in B. Unfortunately,
this prevents using certain features of Z3 which would probably be more efficient.
For instance, B sequences could be directly translated as arrays in SMT-LIB
instead of rewriting them to sets of pairs beforehand. Since B set operators can
be called on sequences yielding a relation which is not a sequence anymore, e.g.,
[−1] ∪ {5 �→ 3} = {1 �→ −1, 5 �→ 3}, this translation to arrays could only be
performed if sequences only interoperate with other sequences.

Another difference between B and SMT-LIB is that B implements a con-
cept of well-definedness [4] which is not present in SMT-LIB. Axioms for well-
definedness ensure that certain operators are only applied when they make sense
and that proof rules of classical two-valued logic can be applied. For instance, B
prohibits the division by zero while in SMT-LIB the integer division is a total
function, e.g., (= (div 1 0) (div 1 0) is true in SMT-LIB and not well-defined
in B. Another difference is that B’s integer division rounds towards zero while
SMT-LIB follows Boute’s euclidean definition [8]. B’s integer division a/b is thus
translated to SMT-LIB as follows:

– (ite (or (= (rem a b) 0) (> a 0)) (div a b)
(ite (> b 0) (+ (div a b) 1) (- (div a b) 1)))

For the well-definedness of a/b, we assert that b is not equal to zero. Other
operators with a well-definedness condition are, e.g., B’s function application



110 J. Schmidt and M. Leuschel

or minimum and maximum of a set of integers. For the translation of these
operators, additional well-definedness conditions are added as well.

A frequently used construct of B is the set comprehension which has no direct
counterpart in SMT-LIB. Set comprehensions are thus axiomatised using quan-
tifiers in [24]. In particular, an existentially quantified variable is defined for each
quantified variable of a set comprehension. For instance, the set comprehension
{x | x > 0} is encoded as a fresh existential variable tmp alongside the axiom
∀v.(v ∈ tmp ⇔ v > 0) [24].

Several B set operators which can not be directly translated to SMT-LIB such
as the domain of a relation are rewritten as set comprehensions. For instance,
dom(r) is rewritten to {x | ∃y.(x �→ y ∈ r)}. Yet, the operators min(s), max(s),
and card(s) can not be rewritten as set comprehensions. These operators are
instead translated as identifiers which are axiomatised accordingly. For instance,
the minimum of an integer set min(s) is replaced by an identifier m which is
axiomatised by ∀x.(x : s ⇒ m ≤ x) ∧ ∃x.(x ∈ s ∧ m = x). The maximum of an
integer set is encoded analogously.

Computing the cardinality of a set in SMT-LIB is expensive due to the
employed encoding of sets. Hereby, a total bijection has to be computed map-
ping sets to their cardinalities since no set cardinality constraint is avail-
able in SMT-LIB. For instance, the B predicate c = card(s) is encoded as
∃t.(t ∈ s �� 1 . . c) [24]. The authors refer to such rewritten predicates as nor-
malised B. A normalised predicate is then passed to the actual translator to
SMT-LIB.

B supports user-defined types in the form of deferred sets and enumerated
sets. Such B types are translated to corresponding sorts in SMT-LIB. Deferred
sets are not limited in size, but assumed to be finite and non-empty for proof
and animation in ProB. For enumerated sets, the actual instances are given
which are defined as identifiers in SMT-LIB and axiomatised to be distinct.

The authors point out that several operators such as the relational closure, or
the general union and intersection of a nested set can not be translated effectively
to SMT-LIB using quantifiers [24].

2.2 Workflow

The former integration [24] of Z3 in ProB provides two interfaces. First, full
B predicates can be translated to SMT-LIB and be solved by Z3. As described
in Sect. 2.1, several B operators are not supported by the former translation
to SMT-LIB and thus are filtered before the translation. If a predicate uses
unsupported operators, the result of Z3 can thus only be used if a contradiction
has been found. The second interface intertwines ProB’s constraint solver with
Z3 by setting up constraints simultaneously and sharing intermediate results. In
particular, clauses learned by Z3 are fed to ProB as well, which lifts ProB’s
search capabilities from backtracking to backjumping. Since ProB generally
shows better performance in model finding over B constraints than Z3, the call
to Z3 is delayed after the deterministic propagation phase of ProB [24]. During
this phase, ProB might infer new constraints which are then added to Z3.



Improving SMT Solver Integrations 111

3 New Z3 Integration

In the following we describe the new high-level translation from B to SMT-LIB
as supported by Z3 as well as the new parallel solver integration.

3.1 High-Level Translation

For the formal description of the translation, we provide two semantic functions
for B expressions representing values and predicates representing a truth value.
In particular, E�e�i is the Z3 encoding of the B expression e, and M�p�i is the Z3
encoding of the B predicate p. The following example shows a series of rewriting
steps, applying the rules of E�e�i and M�e�i (shown further below):

– M�x>y ∧ y>x�i =̂ (and E�x>y�i E�y>x�i)
=̂ (and (> E�x�i E�y�i) (> E�y�i E�x�i))
=̂ (and (> x y) (> y x))

B variables such as E�x�i are translated as functions using the same name. That
means, E�x�i =̂ x but as a side effect a function for x has been introduced in
the SMT-LIB model.

The variable i is an environment which stores specific information of a trans-
lation. This comprises a list of translated Z3 expressions and function declara-
tions, a mapping from Z3 expressions to Z3 sorts Φi, e.g., Φi(−1) = Int, and a
mapping from B expressions to B types Ψi, e.g., Ψi(−1) = Z. Furthermore, the
environment stores a mapping from B tuple types to Z3 tuple sort projection
functions Ωi. For instance, Ωi(Ψi(1 �→ 2)) = {“x” : get x, “y” : get y}, where
get x and get y are the projection functions of the Z3 tuple sort correspond-
ing to the B type Ψi(1 �→ 2) which have been defined by Z3 automatically. For
the sake of readability, we use the abbreviations firsti,Φi(c) and secondi,Φi(c)

with c = E�x �→ y�i for the projection functions of the Z3 tuple sort that has
been introduced for the B type Ψi(x �→ y). For instance, firsti,Φi(E�1 �→2�i) =
Ωi(Ψi(1 �→ 2))[“x”] and secondi,Φi(E�1 �→2�i) = Ωi(Ψi(1 �→ 2))[“y”]. Further-
more, we drop the type information of the projection functions if their argument
is given. For instance, (firsti,Φi(c) c) = (firsti c) with c = E�x �→ y�i. Last
but not least, we allow to call the semantic functions on partially defined B
operators, e.g., E�dom(s)�i =̂ (E�dom�i E�s�i).

Tuples. In B, tuples are encoded as nested pairs. Thus, several encodings of
tuples exist and the modeller has to know which one is being used. For instance,
a triple can be represented as either (x �→ (y �→ z)) or ((x �→ y) �→ z). We use
the first left-associative encoding and introduce a unique Z3 sort for each tuple
type occurring in a B predicate when translating to SMT-LIB. B tuples are then
translated using their corresponding Z3 sort’s constructor which is defined as
follows:

– E�(x1, . . . , xn)�i =̂ (tuplei,Φi(E�x1�i),...,Φi(E�xn�i) E�x1�i . . . E�xn�i)

= (tuplei E�x1�i . . . E�xn�i)



112 J. Schmidt and M. Leuschel

The Z3 function tuplei,Φi(E�x1�i),...,Φi(E�xn�i) is the constructor of the Z3 tuple
sort which has been introduced for B tuples of type Ψi(x1 × · · · × xn), where
n ∈ N. For the sake of readability, we drop the type information of the tuple
constructor since the types are implicitly given by the constructor’s arguments.

B provides two projection functions to access the elements of a tuple which
are translated as follows:

– E�prj1(Ψi(x), Ψi(y))(x �→ y)�i =̂ (firsti E�x �→ y�i)
– E�prj2(Ψi(x), Ψi(y))(x �→ y)�i =̂ (secondi E�x �→ y�i)

Set Notation. As described in Sect. 2.2, the former high-level translation
rewrites many set operators to B set comprehensions since they are not directly
supported by SMT-LIB. The set comprehensions themselves are then rewrit-
ten using B quantifiers which can be directly translated to SMT-LIB. However,
using many quantifiers can lead to unnecessarily complex constraints for which
Z3 is not able to find a model. Fortunately, Z3 provides lambda functions which
allow to define a set of variables that are constrained by an expression. In gen-
eral, a lambda function (lambda sorts body) in Z3 returns an expression of
the sort (Array sorts range) where range is the sort of body. For instance,
(lambda ((x Int)) (and (>= x 0) (<= x 2))) is a lambda function that describes
the set of integers {0, 1, 2} as an array that maps integers to either true or false,
i.e., the output has the sort (Array Int Bool). For our translations, we con-
sistently use lambda functions that constrain a single variable by a boolean
expression.

First and foremost, we suggest translating B set comprehensions using Z3’s
lambda function which we define as follows:

– E�{x | p}�i =̂ (lambda ((E�x�i Φi(E�x�i))) M�p�i)
– E�{x1, . . . , xn | p}�i =̂

(lambda ((c Φi(E�x1 × · · · × xn�i)))
(exists ((E�x1�i Φi(E�x1�i)) . . . (E�xn�i Φi(E�xn�i)))

(and M�p�i (= c E�(x1, . . . , xn)�i))))

The first case is a special case for a B set comprehension with a singleton result
variable since no tuple constructor has to be called here.

Although this improved the performance of Z3 regarding model finding for
set comprehensions, we decided to provide specialised translations for most set
operations such as the range of a relation instead of rewriting operators into
set comprehensions. We thus prevent unnecessary uses of existential quanti-
fiers at the top-level of lambda functions, which would always be introduced by
the second translation rule. Furthermore, the general set union and intersection
were not supported by the prior translation since their axiomatisations were too
involved. Both operators can be encoded efficiently using lambda expressions.
We provide the following syntax-directed translation rules for a subset of set
operators:



Improving SMT Solver Integrations 113

– E�m..n�i =̂ (lambda ((k Int)) (and (>= k E�m�i) (<= k E�n�i)))
– E�P(S)�i =̂ (lambda ((x Φi(x))) (subset x E�S�i))
– E�P1(S)�i =̂ (lambda ((x Φi(x))) (and (subset x E�S�i)

(not (= x emptySet))))
– E�id(S)�i =̂ (lambda ((c Φi(c))) (exists ((x Φi(x)))

(and (in x E�S�i) (= c (tuplei x x)))))
– E�S × T �i =̂ (lambda ((c Φi(c)))

(and (in (firsti c) E�S�i) (in (secondi c) E�T �i)))
– E�dom(r)�i =̂ (lambda ((x Φi(x))) (exists ((y Φi(y)))

(in (tuplei x y) E�r�i)))
– E�ran(r)�i =̂ (lambda ((y Φi(y))) (exists ((x Φi(x)))

(in (tuplei x y) E�r�i)))
– E�r−1�i =̂ (lambda ((c Φi(c)))

(in (tuplei (secondi c) (firsti c)) E�r�i))
– E�S � r�i =̂ (lambda ((c Φi(c)))

(and (in c E�r�i) (in (firsti c) E�S�i)))
– E�S �− r�i =̂ (lambda ((c Φi(c)))

(and (in c E�r�i) (not (in (firsti c) E�S�i))))
– E�r � T �i =̂ (lambda ((c Φi(c)))

(and (in c E�r�i) (in (secondi c) E�T �i)))
– E�r �− T �i =̂ (lambda ((c Φi(c)))

(and (in c E�r�i) (not (in (secondi c) E�T �i))))
– E�r1 �− r2�i ≡ E�r2 ∪ (dom(r2) �− r1)�i
– E�r[S]�i =̂ (lambda ((y Φi(y))) (exists ((x Φi(x)))

(and (in x E�S�i) (in (tuplei x y) E�r�i))))
– E�union(S)�i =̂ (lambda ((e Φi(e))) (exists ((sub Φi(sub)))

(and (in sub E�S�i) (in e sub))))
– E�inter(S)�i =̂ (lambda ((e Φi(e))) (forall ((sub Φi(sub)))

(implies (in sub E�S�i) (in e sub))))
– E�λz.(Pred | Expr)�i =̂ (lambda ((c Φi(c))) (exists ((z Φi(z)))

(and M�Pred�i (= c (tuplei z E�Expr�i)))))

Finite Subsets. The finite set operators min, max, and card can not be
expressed efficiently using lambda functions. We thus stick to the axiomatic
translation using universal quantifiers for these operators as defined by Krings
and Leuschel [24] and described in Sect. 2.1. The same applies for the Event-B
operator finite as is formalised in the following.

– E�finite(S)�i ≡ E�∃(b, f).(b ∈ N ∧ f ∈ S → 0 . . b)�i
– E�F(S)�i =̂ (lambda ((x Φi(x))) (and (subset x E�S�i) (E�finite�i x)))
– E�F1(S)�i =̂ (lambda ((x Φi(x))) (and (subset x E�S�i) (E�finite�i x)

(not (= x emptySet))))



114 J. Schmidt and M. Leuschel

Rewriting Cardinality. Since Z3 often lacks performance when solving quanti-
fied formulas [24], we provide special rewriting rules for B cardinality constraints
to equivalent representations which do not lead to quantified formulas in SMT-
LIB. In particular, we provide the following rewriting rules:

– card({x1, . . . , xn}) = n ≡ all different({x1, . . . , xn}), where all different sets
up a pairwise distinction between all elements

– q ∈ 1 . . n → 1 . . n ∧ card(ran(q)) = n ≡ ∧
i∈1. .n−1 q(i) �= q(i + 1)

Furthermore, we replace cardinality constraints of enumerated sets by integer
values. For instance, we can simplify the B constraint s = 1 . . 4 ∧ card(s) >
1 ∧ i = card(s) − 1 to s = 1 . . 4 ∧ i = 3 to prevent sending any cardinality
constraint to Z3. Such formulas might not be written by hand but do often occur
when using an automated translation backend of ProB such as the integration
[18] of TLA+ [26] in B.

Relational Composition, Iteration, and Closure. Some relational B oper-
ators such as the transitive and reflexive closure are more complex to translate
to SMT-LIB and will be discussed in the following. The transitive and reflexive
closure r∗ of a relation r ∈ S↔S can be mathematically defined as

⋃
n∈N

rn, and
the transitive and not reflexive closure r+ as

⋃
n∈N1

rn. Here, the transitive and
reflexive closure is defined by the union of a relation’s iterations for all natural
numbers.

The iteration of a relation r ∈ S ↔ S can be defined recursively using B’s
forward composition. This conforms the formula rn = rn−1; r1, where the base
case is r1 = r. One special case of the relational iteration in B is r0 = id(S), which
is rewritten before the translation. B’s forward composition of two relations p ; q
is defined by the set comprehension {x, y | ∃z.(x �→ z ∈ p ∧ z �→ y ∈ q)} which
can be straightforwardly translated to SMT-LIB using lambda functions:

– (define-fun fcomp ((p Φi(p)) (q Φi(q))) (Array Φi(c) Bool)
(lambda ((c Φi(c))) (exists ((z Φi(z))) (and

(in (tuplei (firsti c) z) p) (in (tuplei z (secondi c)) q)))))
– E�p ; q�i =̂ (fcomp E�p�i E�q�i)

Note that a relational backward composition can be described by a forward
composition, i.e., p ◦ q ≡ q ; p. We are able to define the iteration of a relation r
as a recursive function using the encoding of B’s forward composition in SMT-
LIB as follows:

– (define-fun-rec iterate ((r Φi(r)) (n Int)) Φi(r)
(ite (= n 1) r (fcomp (iterate r (- n 1)) r)))

– E�rn�i =̂ (iterate E�r�i E�n�i)

Due to the employed encoding of sets in SMT-LIB which introduces a sort for
each type of set, e.g., a set of the integers or a set of the booleans, we have to
define the functions iterate and fcomp for each type they are applied to. We



Improving SMT Solver Integrations 115

Fig. 1. A workflow diagram of the new Z3 integration in ProB.

thus define unique names for the different functions differing in the relation’s
type and case split on these types before translating to SMT-LIB.

Let union be a function passing its only argument to the lambda function for
the translation of B’s general union as defined before. The transitive and reflexive
closure of a relation r can now be translated to SMT-LIB straightforwardly:

– E�r∗�i =̂ (union (lambda ((s Φi(s))) (exists ((n Int))
(and (>= n 0) (= s (iterate E�r�i n)))))

B’s transitive and not reflexive closure r+ is translated analogously but using
n ∈ N1.

3.2 New Workflow

The new workflow of ProB’s Z3 interface is supposed to replace the former
interface which sends full predicates to Z3 as described in Sect. 2.2. Note that
ProB also has an interface to Z3 where both solvers share constraints which we
do not consider here. A diagram of the workflow is presented in Fig. 1.

Preprocessing. First, a formula is simplified by ProB as was the case for the
former integration [24] of Z3. For instance, formulas are rewritten to use a subset
of operators such as only using ≤ but not ≥.

We decided to apply a static analysis to check syntactically for contradic-
tions before translating to SMT-LIB. The goal is to prevent that those are no
longer detected by Z3, e.g., after adding quantifiers. For this, we extended the
simplification rules of ProB to more aggressively replace variables by their value
if this value is explicitly given. For instance, the formula s = ∅ ∧ card(s) > 1
can be rewritten to s = ∅ ∧ card(∅) > 1 in a first phase. Afterwards, the cardi-
nality constraint can be replaced by the integer 0 which makes it obvious that
the integer comparison is not satisfied. We thus prevented the translation of a
cardinality constraint to SMT-LIB.



116 J. Schmidt and M. Leuschel

To further extend the static syntax analysis, we decided to abstract a B
formula to a SAT formula as is done by lazy SMT solvers [31] and only translate
a formula to SMT-LIB if its SAT abstraction is satisfiable as can be seen in
Fig. 1. If it is not satisfiable, we have avoided the overhead of translating B to
SMT-LIB and calling the external solvers. For instance, the formula x = y∧x �= y
can be abstracted to A ∧ ¬A where A ≡ x = y. Note that this is not an eager
SMT solving [31] where all semantics are translated to SAT. We are now able
to call a SAT solver to find a solution for an abstracted B formula. For this, we
implemented a SAT solver for propositional B formulas in Prolog as proposed
by Howe and King [21].

Z3 Solver Integration. If the SAT abstraction is satisfiable, we apply both
translations from B to SMT-LIB: the pre-existing one from [24] (Sect. 2.1), as
well as the new one described in Sect. 3.1.

The former integration of Z3 always used the incremental solver where con-
straints can be pushed on the solver stack. While this was required when both
ProB and Z3 run simultaneously, this is not the case for the integration pre-
sented in this paper, where we send full predicates to Z3 only. In particular,
using the incremental solver incurs an additional overhead since constraints are
internalised. We thus decided to run two non-incremental Z3 solvers in paral-
lel with the two different translations, as described above. Unfortunately, Z3’s
incremental solver does not support an existential quantifier at the top-level of a
lambda expression.1 This makes our new translation not applicable for running
ProB and Z3 simultaneously and sharing constraints.

We use the result of the solver which answers first if a solution or a contradic-
tion has been found. The other solvers are then interrupted. If the fastest solver
answers unknown, we do not use this result but wait for another solver. The
solver integration returns unknown if all solvers did so as well, or if a formula
can not be translated to SMT-LIB, e.g., because of a missing implementation.
The return of unknown is not shown in Fig. 1.

Note that it is simple to add an additional Z3 solver configuration to the
workflow. Our implementation is able to create a deep copy of a translation
with all of its referenced Z3 objects. We then just have to create a new solver
object and set the desired options.

Postprocessing of Models. A model found by Z3 is represented in SMT-LIB.
We parse a model and translate it to B as was the case for the former work-
flow integration described in Sect. 2.2. Unfortunately, Z3 often fails to compute
explicit values from lambda functions or quantifiers while it is able to find con-
tradictions. For instance, for the formula s = union({{1}, {2}}), Z3 returns a
model containing the translated lambda function of the general union defined
in Sect. 3.1 while s could be set to {1, 2}. However, Z3 is able to find contradic-
tions using the general union such as for the formula {1} = union({{1}, {2}}).

1 Z3 throws the error “internalization of exists is not supported”.



Improving SMT Solver Integrations 117

We thus extend the translation from SMT-LIB to B and the processing of found
models to compute remaining quantifiers and lambda functions with ProB’s
constraint solver. For instance, the lambda function in above example’s model
returned by Z3 is translated as a set comprehension in B which results in
s = {e | ∃f.(e ∈ f ∧ (f = {1} ∨ f = {2}))}. The ProB constraint solver is
then called to compute an explicit value which results in s = {1, 2}.

4 Empirical Evaluation

In the following we present an empirical evaluation of the new Z3 solver interface
including the new translation from B to SMT-LIB. We split the evaluation in
three categories. First, we focus on the downsides of our employed translation of
selected language constructs which we deem to be responsible for a possibly bad
performance when solving constraints. Second, we present selected constraints
for which the integration of Z3 is superior to ProB regarding constraint solv-
ing. Third, we evaluate the performance of our translation using a variety of
benchmarks from bounded model checking.

4.1 Weaknesses of the Integration of Z3

The weaknesses of the integration of Z3 are mainly caused by the employed
encoding of sets. Most of B’s set theoretic operators are not supported by SMT-
LIB such as computing a power set or the cardinality of a set. As discussed
in Sects. 2.1 and 3.1, this can lead to involved quantified constraints for which
Z3 is not able to find a solution. We thus employ several rewriting rules and a
preprocessing to prevent sending quantified formulas to Z3 if this is not necessary.
The benefit of this preprocessing is discussed in the following.

Finite Sets. The former and new translation from B to SMT-LIB both support
infinite sets. Krings and Leuschel have shown that Z3 is able to solve a variety
of B constraints over infinite domains which ProB is not able to solve especially
when a formula is a contradiction [24]. However, the support of infinite domains
leads to involved translations for finite set constraints such as the minimum,
maximum or the cardinality of a finite set. For instance, the current translation
searches for a total bijection mapping sets to their cardinalities to compute the
cardinality of a set [24]. A total bijection is rewritten using B quantifiers before
the translation to SMT-LIB.

Since Z3 lacks performance when solving quantified formulas, Z3 often fails to
find a solution for translated B constraints using set cardinalities. For instance,
Z3 is not able to solve the translation of q ∈ 1 . . 3 → 1 . . 3 ∧ card(ran(q)) = 3.
With the use of the rewriting rule for the cardinality of range constraints defined
in Sect. 3.1, Z3 is able to solve the constraint in several milliseconds as is ProB.
The rewriting rule replaces the cardinality constraint with q(1) �= q(2) ∧ q(1) �=
q(3) ∧ q(2) �= q(3). Of course, not all cardinality constraints can be replaced by



118 J. Schmidt and M. Leuschel

equivalent constraints and remaining quantifiers are still one of the main culprits
for a possibly bad performance of the presented translation from B to SMT-LIB.

The translation of set constraints to SMT-LIB such as card, max, or min
could be improved by focussing on finite sets only, e.g., as presented by Plagge
and Leuschel [33] for B by translating to Kodkod [36] or by Konnov et al. [22]
for TLA+ [26] by translating to SMT-LIB [5].

Static Contradictions. Translations which result in quantifiers in SMT-LIB
can become too involved to be solved by Z3. In some cases this means that Z3
cannot find obvious contradictions in a formula. For instance, Z3 is not able
to find the contradiction in the formula r ∈ Z �→ Z ∧ r /∈ Z �→ Z. Here, both
partial functions are translated as quantified formulas in SMT-LIB leading Z3
to report unknown. We are able to detect the contradiction by abstracting the
formula to propositional logic and using a SAT solver as described in Sect. 3.2.
In particular, we lift negations from B operations before the abstraction which
results in A ∧ ¬A where A ≡ r ∈ Z �→ Z. It can be seen that no translation to
SMT-LIB is necessary in such cases. Such constraints do often occur in bounded
model checking, where invariants are negated to check for counterexamples.

4.2 Strengths of the Integration of Z3

Weaknesses of ProB are often caused by the use of unbounded integer domains.
One motivating example which speaks in favor of the Z3 constraint solver is
the constraint x > y ∧ y > x. ProB is not able to solve this constraint with
its default CLP(FD) backend since the integer domains of x and y cannot be
narrowed down. Although ProB is able to solve this constraint by using its
additional CHR backend, the example shows a benefit of using Z3 for unbounded
integer domains, in particular for linear integer arithmetic. For example, Z3 is
able to solve the constraint ∀(x, y).(x ∈ Z∧y ∈ Z ⇒ ∃z.(x−z = y)) while ProB
is not. The constraint is taken from the 14th SMT competition for quantified
integer difference logic [38]. Another constraint which can not be disproven by
ProB is ¬((s2 = s0 ∧ s3 = s ∪ {1} ∧ s4 = s2 ∪ {1} ∧ s5 = s3 ∪ {0}) ⇒ s4 = s5),
which stems from a computation that occurred during partial order reduction
for B. Again, both constraints contain unbounded sets of the integers which can
not be enumerated exhaustively by ProB. The constraints further indicate that
this issue affects model finding as well as the disproving of formulas.

We further observed strengths of the integration of Z3 regarding the disprov-
ing of constraints involving infinite relations. For instance, the integration of Z3 is
able to solve the constraint f ∈ N �→N∧x ∈ N∧g = f�−{x �→ x+1}∧¬(g ∈ N �→N)
which can not be solved by ProB. Furthermore, this constraint can only be
solved when using the new translation which uses Z3’s lambda expressions.

The integration of Z3 is also able to solve several constraints faster than is
ProB. Such constraints do not necessarily involve unbounded domains but are
related to the enumeration of domains as performed by ProB. For instance, the
integration of Z3 is able to find a model for the constraint f = λx.(x ∈ 1 . . n |



Improving SMT Solver Integrations 119

Table 1. Bounded model checking (BMC) constraints from TLA+ benchmarks com-
piled by Konnov et al. [22], and B benchmarks compiled by Krings and Leuschel [23,25].
BMC uses a bound of 25 and sets up 26 constraints for each benchmark.

Nr Name ProB ProB-Z3 [24] ProB-Z3-Par

1 Prisoners-4 13/432.591 s 0/733.875 s 0/766.105 s

2 Bakery 3/699.099 s 0/800.109 s 1/796.406 s

3 SimpleTwoPhase 26/0.160 s 26/1.635 s 26/1.989 s

4 Lightbot 2/720.352 s 0/280.375 s 11/493.477 s

5 LargeBranching 26/0.116 s 26/29.633 s 26/40.105 s

6 SearchEvents 3/690.355 s 20/184.992 s 20/185.989 s

7 ABZ16 m4 26/1.061 s 26/3.658 s 26/2.474 s

8 ABZ16 m5 0/1.457 s∗ 26/4.080 s 26/3.105 s

9 ABZ16 m7 0/2.306 s∗ 15/359.713 s 16/369.549 s

10 R3 Sensors 12/456.854 s 2/11.736 s 2/19.906 s

11 R4 Handle 4/362.064 s 1/551.389 s 1/570.001 s

12 R5 Switch 8/550.870 s 3/37.233 s 3/46.487 s

13 R6 Lights 6/606.375 s 3/44.841 s 3/64.622 s

Solved constraints / Runtime s
∗unknown due to the use of deferred sets

x + 1) ∪ {n + 1 �→ (n/2)} ∧ x = f [x] ∧ x �= ∅ ∧ n = 20 in around 0.166 s while
ProB is not able to solve the constraints within 60 s. The reason is that CLP(FD)
enumerates many values before finding a solution which does not seem to be the
case for Z3.

4.3 Symbolic Model Checking

For a more sophisticated performance evaluation we decided to use constraints
from bounded model checking (BMC)2. In particular, we use the monolithic
bounded model checking implementation [25] of ProB which sends a single
formula to a selected constraint solving backend. Hereby, we solve 26 constraints
for each model and compare the amount of constraints that can be solved by a
specific solver, as well as the time needed to decide for the satisfiability of all
constraints. That means, the presented runtimes are the sum of the times needed
to solve all 26 constraints. We use a maximum solver timeout of 30 s for each
constraint and compare the ProB constraint solver, its integration of Z3 using
the former translation [24], as well as the parallel integration of Z3 as described
in Sect. 3.2. We did not investigate the effects of a larger timeout since the results
already show an overall trend. Furthermore, Z3 often answers unknown rather
than exceeding the solver timeout.
2 The benchmarks can be found in the following repository to reproduce the results:

https://github.com/Joshua27/fmics2021 benchmarks.

https://github.com/Joshua27/fmics2021_benchmarks


120 J. Schmidt and M. Leuschel

The evaluated benchmarks can be seen in Table 1. We use two TLA+ [26]
benchmarks compiled by Konnov et al. [22]. The authors used the benchmarks
to evaluate the performance of their symbolic model checker APALACHE for
TLA+ which translates to SMT-LIB. We use the translation from TLA+ to B
[18] to load TLA+ models in ProB. Unfortunately, the integration of Z3 is not
able to solve many constraints of these benchmarks. We thus only use these two
benchmarks which already exhibit this trend. Additionally, we use a set of B
benchmarks compiled by Krings and Leuschel [25]. The benchmarks number 7
to 9 are taken from a submission to the ABZ 2016 case study [30] by Hoang
et al. [20], and the benchmarks 10 to 13 from a submission to the ABZ 2014
landing gear case study [7] by Hansen et al. [17].

The benchmarks were run on a system with an Intel Core I7-8750H CPU
(2.2 GHz) and 16 GB of RAM using ProB version 1.10.2, SICStus Prolog ver-
sion 4.6.0, and Z3 version 4.8.10.

In general, the benchmarks show that the ProB constraint solver is superior
to the integration of Z3. The main reason are cardinality constraints whose
translation to SMT-LIB results in quantified formulas. Unfortunately, quantifiers
often cause Z3 to immediately answer with unknown or to exceed the defined
solver timeout. Yet, this is not the case for the benchmarks number 4, 6, 8 and 9
presented in Table 1. In particular, the 2nd, 4th, and 9th benchmark also show
that the new translation is benificial since more constraints can be solved. ProB
is not able to disprove the constraints for the 8th and 9th benchmark because
of unfixed deferred sets, which is not the case for Z3.

The 4th benchmark shows clear benefits of the integration of Z3 compared to
ProB. Here, ProB exceeds the maximum solver timeout for most constraints.
The constraints use many bounded integer domains, total functions, and function
applications.

Note that all but one constraint of the benchmarks 7 and 8 can be disproven
by static rewriting rules which is the case for both integrations of Z3. These
constraints should thus not be put in relation with SMT solving too much. A
general comparison of the runtimes of the former and new integration of Z3
indicate that the additional static syntax analysis described in Sect. 3.2 does not
add too much overhead.

5 Related Work

Déharbe et al. [14] presented an integration of SMT solvers for B and Event-B
by translating to SMT-LIB. The goal was to support automated theorem provers
by disproving single proof-obligations. The authors presented two translations
which support a subset of the B language. One translation specifically interfaces
an SMT solver and uses its lambda expressions. Sets are translated as charac-
teristic functions as is the case for our implementation, but only basic sets are
supported in this case. In the other translation, sets are translated as uninter-
preted functions which are axiomatised. The axiomatic translation presented by
Krings and Leuschel [24] and described in Sect. 2.1 is similar to this translation,



Improving SMT Solver Integrations 121

but uses Z3’s set theory [12] and characteristic functions instead of uninterpreted
functions. Empirical results by Déharbe et al. have shown that the amount of
proof obligations which can be proven automatically has improved [15]. Krings
and Leuschel have shown that their derived high-level translation improves the
one by Déharbe et al. regarding constraint solving [24].

The mathematical foundations of TLA+ and B have quite a few similar-
ities, and translations between both formalisms exist [18,19]. TLC [39] is an
explicit state model checker for TLA+ that relies on simple domain enumer-
ation. Konnov et al. [22] presented a translation from TLA+ to SMT-LIB to
improve symbolic model checking by interfacing SMT solvers. The translation
only supports finite sets, which avoids many downsides of our translation from B
to SMT-LIB. For instance, the authors suggest translating a set membership as a
disjunction of equalities, which is feasible for finite sets only. Furthermore, quan-
tifiers are unfolded, e.g., an existential quantification is replaced by a disjunction.
In the future, we plan to conduct an empirical comparison with APALACHE’s
SMT solver integration [22], which will require a fair translation of TLA+ con-
straints to B and backwards, and isolating the constraint solving performed by
APALACHE from the symbolic verification algorithms.

El Ghazi and Taghdiri [16] presented a translation from Alloy to SMT-LIB.
Abbazzi et al. [1] presented an integration of SMT solvers in the Alloy ana-
lyzer, as well as an evaluation of different translations from Alloy to SMT-LIB.
The Alloy analyzer usually translates Alloy to Kodkod [36] which applies SAT
solving. Yet, this eager approach to SMT solving can result in large proposi-
tional formulas depending on the size of domains. This possibly leads to a bad
performance. For instance, sets can be translated as bit vectors where one bit is
reserved for each domain element. The authors have shown performance improve-
ments of model finding for Alloy by translating to SMT-LIB. Furthermore, the
translation enables to reason over infinite sets.

Weber [37] presented an SMT solver integration for the HOL4 theorem prover
which supports the first-order subset of the language. The translation to SMT-
LIB employs an axiomatised style for operators that are not supported by SMT-
LIB such as the minimum of a set of integers.

Bride et al. [9] conducted an empirical evaluation and comparison of SMT
solving and constraint logic programming for workflow nets. In particular, they
interface Z3 and SICStus Prolog as is the case for our implementation. Their
results show benefits of SMT solving for unsatisfiable formulas, and benefits
of constraint logic programming for satisfiable ones, which fits also with our
experience.

6 Future Work

In the future, we plan to provide alternative translations for B functions and
sequences using lambda expressions as well. Furthermore, the translation of
B sequences to SMT-LIB can be improved if sequences only interact among
themselves guaranteeing the well-definedness of resulting sequences. This is not



122 J. Schmidt and M. Leuschel

necessarily the case since B sequences are relations and might interact with other
relations which are not sequences as described in Sect. 2.1.

As discussed in Sect. 4.1, the support of infinite sets entails several suboptimal
translations, e.g., for cardinality constraints. If only finite sets are used in a
formula, we are able to translate sets to a more concise representation, e.g.,
using a bit vector encoding. Of course, we then have to provide translations for
all set operators for this new type which requires some implementation effort.

Furthermore, we plan to compile other configurations of the Z3 constraint
solver to run in parallel, e.g., using different solver tactics.

Another future work is to use other SMT solvers to solve SMT-LIB models.
Currently, the new translation presented in this paper uses Z3 specific lambda
functions. Once the SMT-LIB standard officially supports lambda functions we
should be able to interface other SMT solvers as well for the new translation.
Hereby, it is worth to mention that the implementation of an automated trans-
lation which interfaces a solver specific programming API is a tedious and error-
prone task. Mann et al. [29] presented a solver-agnostic programming API for
SMT solving which should be considered for future implementations.

Finally, we currently implement techniques from SMT solving in ProB to
tightly connect the ProB constraint solver with a learning scheme based on the
DPLL(T) algorithm [32]. The goal is to combine the strengths of SMT solving
and constraint logic programming. Furthermore, we can overcome the perfor-
mance drawbacks of the integration of Z3 regarding cardinality constraints when
using ProB as a theory solver in a conflict-driven clause learning scheme.

7 Conclusion

In conclusion, we have presented a formal description and implementation of a
new translation from B to SMT-LIB as well as a parallel SMT solver integration
in ProB. Empirical results have shown that the new translation improves per-
formance and completeness compared to the prior integration in ProB [24] by
utilising Z3’s lambda functions. Furthermore, we were able to identify a bug in Z3
using ProB’s regression tests which occured when using Z3’s lambda function
with a specific solver option.

Unfortunately, the overall performance on large constraints as selected from
bounded model checking is still often bad compared to using only ProB. The
main reason is the use of cardinality constraints which can not be translated to
SMT-LIB concisely for the employed encoding of sets. Nevertheless, the empiri-
cal results have also shown that the new solver integration can solve some con-
straints better than ProB. In the most cases, such constraints contain bounded
or unbounded integer domains and function applications.

Acknowledgements. We would like to thank the reviewers of FMICS’2021 for their
useful feedback.



Improving SMT Solver Integrations 123

References

1. Abbassi, A., Day, N.A., Rayside, D.: Astra version 1.0: evaluating translations from
alloy to SMT-LIB. CoRR, abs/1906.05881 (2019)

2. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

3. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

4. Abrial, J.-R., Mussat, L.: On using conditional definitions in formal theories. In:
Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol.
2272, pp. 242–269. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45648-1 13

5. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). www.SMT-LIB.org

6. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of
Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp.
825–885. IOS Press (2009)

7. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 1

8. Boute, R.: The Euclidean definition of the functions div and mod. ACM Trans.
Program. Lang. Syst. 14, 127–144 (1992)

9. Bride, H., Kouchnarenko, O., Peureux, F., Voiron, G.: Workflow nets verification:
SMT or CLP? In: ter Beek, M.H., Gnesi, S., Knapp, A. (eds.) AVoCS 2016, FMICS
2016. LNCS, vol. 9933, pp. 39–55. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45943-1 3

10. Carlsson, M., Mildner, P.: SICStus prolog-the first 25 years. Theory Pract. Log.
Program. 12(1–2), 35–66 (2012)

11. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845

12. de Moura, L., Bjørner, N.: Generalized, efficient array decision procedures. In: 2009
Formal Methods in Computer-Aided Design, pp. 45–52 (2009)

13. de Moura, L.M., Bjørner, N., Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 2

14. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: SMT solvers for Rodin. In: Der-
rick, et al. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 194–207. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30885-7 14

15. Déharbe, D.: Integration of SMT-solvers in B and Event-B development environ-
ments. Sci. Comput. Program. 78(3), 310–326 (2013). Abstract State Machines,
Alloy, B and Z - Selected Papers from ABZ 2010

16. El Ghazi, A.A., Taghdiri, M.: Relational reasoning via SMT solving. In: Butler, M.,
Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 133–148. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21437-0 12

17. Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J., Leuschel, M.: Valida-
tion of the ABZ landing gear system using ProB. In: Boniol, F., Wiels, V., Ait
Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 433, pp. 66–79. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 5

https://doi.org/10.1007/3-540-45648-1_13
https://doi.org/10.1007/3-540-45648-1_13
www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-07512-9_1
https://doi.org/10.1007/978-3-319-45943-1_3
https://doi.org/10.1007/978-3-319-45943-1_3
https://doi.org/10.1007/BFb0033845
https://doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/10.1007/978-3-642-30885-7_14
https://doi.org/10.1007/978-3-642-21437-0_12
https://doi.org/10.1007/978-3-319-07512-9_5


124 J. Schmidt and M. Leuschel

18. Hansen, D., Leuschel, M.: Translating TLA+ to B for validation with ProB. In: Der-
rick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp.
24–38. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30729-4 3

19. Hansen, D., Leuschel, M.: Translating B to TLA+ for validation with TLC. In: Ait
Ameur, Y., Schewe, K.D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 40–55. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43652-3 4

20. Hoang, T.S., Snook, C., Ladenberger, L., Butler, M.: Validating the requirements
and design of a hemodialysis machine using iUML-B, BMotion Studio, and co-
simulation. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ
2016. LNCS, vol. 9675, pp. 360–375. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33600-8 31

21. Howe, J.M., King, A.: A pearl on SAT solving in Prolog. In: Blume, M., Kobayashi,
N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 165–174. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-12251-4 13

22. Konnov, I., Kukovec, J., Tran, T.-H.: TLA+ model checking made symbolic. Proc.
ACM Program. Lang. 3(OOPSLA), 1–30 (2019)

23. Krings, S.: Towards infinite-state symbolic model checking for B and event-B.
Ph.D. thesis, University of Düsseldorf, Germany (2017)

24. Krings, S., Leuschel, M.: SMT solvers for validation of B and event-B models.
In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 361–375.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 23

25. Krings, S., Leuschel, M.: Proof assisted bounded and unbounded symbolic model
checking of software and system models. Sci. Comput. Prog. 158, 41–63 (2018)

26. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc, Boston
(2002)

27. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

28. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008)

29. Mann, M., Wilson, A., Tinelli, C., Barrett, C.W.: SMT-switch: a solver-agnostic
C++ API for SMT solving. CoRR, abs/2007.01374 (2020)

30. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 329–343. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 29

31. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL mod-
ulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 6452, pp.
36–50. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32275-7 3

32. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

33. Plagge, D., Leuschel, M.: Validating B, Z and TLA+ using ProB and Kodkod. In:
FM 2012. LNCS, vol. 7436, pp. 372–386. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32759-9 31

34. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 131–153. IOS
Press (2009)

https://doi.org/10.1007/978-3-642-30729-4_3
https://doi.org/10.1007/978-3-662-43652-3_4
https://doi.org/10.1007/978-3-319-33600-8_31
https://doi.org/10.1007/978-3-319-33600-8_31
https://doi.org/10.1007/978-3-642-12251-4_13
https://doi.org/10.1007/978-3-319-33693-0_23
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-319-33600-8_29
https://doi.org/10.1007/978-3-540-32275-7_3
https://doi.org/10.1007/978-3-642-32759-9_31
https://doi.org/10.1007/978-3-642-32759-9_31


Improving SMT Solver Integrations 125

35. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In:
Proceedings of the 1996 IEEE/ACM International Conference on Computer-Aided
Design, ICCAD 1996, USA, pp. 220–227. IEEE Computer Society (1997)

36. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 49

37. Weber, T.: SMT solvers: new oracles for the HOL theorem prover. Int. J. Softw.
Tools Technol. Transf. (STTT) 13(5), 419–429 (2011)

38. Weber, T., Conchon, S., Déharbe, D., Heizmann, M., Niemetz, A., Reger, G.: The
SMT competition 2015–2018. J. Satisf. Boolean Model. Comput. 11(1), 221–259
(2019)

39. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/3-540-48153-2_6


Standard Conformance-by-Construction
with Event-B

Ismail Mendil1(B), Yamine Aït-Ameur1, Neeraj Kumar Singh1, Dominique Méry2,
and Philippe Palanque3

1 INPT-ENSEEIHT/IRIT, University of Toulouse, Toulouse, France
{ismail.mendil,yamine,nsingh}@enseeiht.fr

2 Telecom Nancy, LORIA, Université de Lorraine, Nancy, France
dominique.mery@loria.fr

3 IRIT, Université de Toulouse, Toulouse, France
palanque@irit.fr

Abstract. Checking the conformance of a system design to a standard is a central
activity in the system engineering life cycle, a fortiori when the concerned system
is deemed critical. Standard conformance checking entails ensuring that a system
or a model of a system faithfully meets the requirements of a specification of a
standard improving the robustness and trustworthiness of the system model. In
this paper, we present a formal framework based on the correct-by-construction
Event-B method and related theories for formally checking the conformance of
a formal system model to a formalised standard specification by construction.
This framework facilitates the formalization of standard concepts and rules as an
ontology, as well as the formalization of an engineering domain, using an Event-
B theory consisting of data types and a collection of operators and properties.
Conformance checking is accomplished by annotating the system model with
typing conditions. We address an industrial case study borrowed from the aircraft
cockpit engineering domain to demonstrate the feasibility and strengths of our
approach. The ARINC 661 standard is formalised as an Event-B theory. This
theory formally models and annotates the safety-critical real-world application of
a weather radar system for certification purposes.

Keywords: Standard conformance · Safety properties ·
Correctness-by-construction · Event-B and theories · ARINC 661 · Critical
Interactive Systems

1 Introduction

Checking the standard conformance of a system design is a central activity in the system
engineering life cycle, a fortiori when the concerned system is deemed critical. Standard
compliance checking entails ensuring that a system or a model of a system faithfully
meets the requirements of a standard, in particular domain and certification standards,
improving the robustness and trustworthiness of the system model.

In many cases, conformance of system design models and/or implementation to
a standard is achieved by informal or semi-formal processes like argument-based
c© Springer Nature Switzerland AG 2021

A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 126–146, 2021.
https://doi.org/10.1007/978-3-030-85248-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-85248-1_8


Standard Conformance-by-Construction with Event-B 127

reports produced through model reviews, testing and simulation, experimentation, and
so on [28]. Although, these qualification methods have proven to be valuable for sys-
tem engineering in areas like transportation systems, medical devices, power plants,
etc., formal checking of conformance, as advocated by the DO178-C, is more trust-
worthy and has many advantages, including extensive case coverage and availability of
automatic verification capabilities such as model-checking and theorem proving.

Context of the Work. As part of the French ANR FORMEDICIS1 project, we have stud-
ied the problem of ARINC 661 [8] standard conformance for CIS (Critical Interactive
Systems). ARINC 661 is a standard for the development of flight deck display inter-
faces. In fact, modern cockpit designs increasingly rely on the ARINC 661 standard
series used in several airplane development programs, e.g. Airbus A380, A350, and
A400M, as well as the Boeing 787, 737MAX, KC-46A, and B777X2.

Our Claim is that it is possible to check that a formal design model complies
with domain standards formalised as a theory with data types, operators, axioms and
theorems.

Standard Conformance addressed by our approach consists in transferring, to formal
design models, theorems proved, once and for all, in the theory formalising a domain
standard specification. The conformance is checked by proving the well-definedness
proof obligations generated when using the theory operators. Note that we do not
address the process of building these theories which requires to move from text-based
standard documents to formal theories. Building such theories is out of the scope of this
paper. Such processes have been addressed in [12–14] to link text-based standards with
formalised theories expressed in Isabelle/HOL.

So, the goal of this Paper is to demonstrate how to check the compliance of formal
design models with domain standards expressed as theories. The overall approach is
exemplified on ARINC 661 standard and weather radar system application.

Our Contribution. In this paper, we present a formal framework based on the correct-
by-construction Event-B method and related theories for formally checking, by con-
struction, the conformance of a formal system model to a formalised standard specifi-
cation. This framework formalises engineering standard concepts and rules as an onto-
logical Event-B theory. To demonstrate the feasibility and strengths of our approach,
we report on our experiments, from the FORMEDICIS project, addressing an interac-
tive system available in aircraft cockpits. Relying on domain ontologies as a ground
knowledge model, the ARINC 661 standard is formalised as an Event-B theory which
formally annotates the model of the real-world weather radar system.

Organisation of this Paper. Next section is a brief review related to conformance and
certification and Sect. 3 is devoted to a summary of the Event-B method. Section 4 con-
tains the description of the CIS and the ARINC661 standard. Our framework is pre-
sented in Sects. 5 and 6 and its application is given in Sect. 7. Section 8 provides an
assessment of the approach. Last, Sect. 9 concludes this paper.

1 FORmal MEthods for the Development and the engIneering of Critical Interactive Systems
(CIS) https://anr.fr/Projet-ANR-16-CE25-0007.

2 https://www.aviation-ia.com/activities/cockpit-display-systems-cds-subcommittee.

https://anr.fr/Projet-ANR-16-CE25-0007
https://www.aviation-ia.com/activities/cockpit-display-systems-cds-subcommittee


128 I. Mendil et al.

2 Certification and Conformance

According to ISO, a standard is defined as: Standards are documented agreements con-
taining technical specifications or other precise criteria to be used consistently as rules,
guidelines or definitions of characteristics, to ensure that materials, products, process
and services are fit for their purpose [26].

The use of standards has a number of potential advantages. It plays an important role
for the development of complex systems, including both product-based and process-
based developments. This process is both time-consuming and difficult. Some work
focuses on integrating standards into process development. In [17], the authors propose
a model for standards conformance by introducing lightweight mechanisms. In [9], a
framework based on Natural Language Semantics techniques is presented. It assists in
the processing of legal documents and standards through building a knowledge base
that includes logical representations. In [16], the authors propose a step-by-step process
for conformance checking that includes process modeling and execution. Similarly, [34]
shows how to implement the conformance relation on transition systems. Nair et al. [35]
provide a detailed survey how practitioners deal with safety evidence management for
critical systems and they also draw the conclusion that there is a limited use of safety
evidence in industries based on empirical evaluation.

In recent years, assurance cases have been used in critical domains to establish
system safety by presenting appropriate arguments and evidences [30,39]. The chosen
evidences are always questionable, regardless of how they are established or how much
confidence we have in them. There are several approaches to justifying confidence, such
as eliminative induction [19], quantitative estimation [22], provided as claims in the
assurance case [20]. Wassyng et al. [42,43] propose an Assurance Case Template used
in the development of critical systems and their certification within a domain model.

Regarding Event-B [2] and B [1] methods, Fotso et al. [41] present a specification
of the hybrid ERTMS/ETCS level 3 standard, in which requirements are specified using
SysML/KAOS [32] goal diagrams that are translated into B, and domain-specific prop-
erties are specified by ontologies using the SysML/KAOS domain modeling language,
which is based on OWL [7] and PLIB [27]. Last, we mention the work of [10,11] which
uses the RSL language to model engineering domains.

The interest and motivation of handling domain knowledge has been discussed and
argued in [5]. In this paper, we propose to use the capability of Event-B theories to
improve the explicitation and integration of domain knowledge in design models. A
key advantage of our proposed approach is that the proof of domain properties holding
in the design models is explicit since a Well-Definedness (WD) proof obligation (PO)
is generated. Such WD POs are generated for each theory defined operator, it states
that each parameter belongs to the domain operator. This is particularly relevant for
partial operators. Obviously, the approach exempts from explicitly specifying domain
properties on the model side. Compared to our approach which relies on an ontology
modelling language referenced by formal design models, none of the mentioned work
use a shared modelling language.



Standard Conformance-by-Construction with Event-B 129

3 Event-B

Event-B [2] is a correct-by-construction method based on set theory and first-order
logic. It relies on state-based modelling where a set of events allows for state changes.

3.1 Contexts and Machines (Tables 1b and 1c)

The Context component describes the static properties of a model. It introduces the
definitions, axioms and theorems needed to describe the required concepts using carrier
sets s, constants c, axioms A and theorems Tctx. Machine describes the model behaviour
as a transition system. A set of guarded events is used to modify a set of states using
Before-After Predicates (BAP) to record variable changes. They use variables x, invari-
ants I(x), theorems Tmch(x), variants V (x) and events evt (possibly guarded by G and/or
parameterized by α) as core components.

Refinements. Refinement (not used in this paper) decomposes a machine into a less
abstract one with more design decisions (refined states and events) moving from an
abstract level to a less abstract one (simulation relationship). Gluing invariants relating
abstract and concrete variables ensure property preservation.

Table 1. Global structure of Event-B theories, contexts and machines

Theory Context Machine

THEORY Th CONTEXT Ctx MACHINE M
IMPORT Th1, ... SETS s SEES Ctx
TYPE PARAMETERS E, F , ... CONSTANTS c VARIABLES x
DATATYPES AXIOMS A INVARIANTS I(x)
Type1(E, ...) THEOREMS Tctx THEOREMS Tmch(x)
constructors END VARIANT V (x)
cstr1(p1: T1, ...) EVENTS

OPERATORS EVENT evt
Op1 <nature> (p1: T1, ...) ANY α
well−definedness WD(p1, ...) WHERE G(x,α)
direct definition D1 THEN

AXIOMATIC DEFINITIONS x :| BAP(α,x,x′)
TYPES A1, ... END
OPERATORS ...
AOp2 <nature> (p1: T1, ...): Tr END
well−definedness WD(p1, ...)

AXIOMS A1, ...
THEOREMS T1, ...
END

(a) (b) (c)

Proof Obligations (PO) and Property Verification. Table 2 provides a set of, automati-
cally generated, POs to guarantee Event-B machines consistency.



130 I. Mendil et al.

Table 2. Relevant Proof Obligations

(1) Ctx Theorems (ThmCtx) A(s,c) ⇒ Tctx (For contexts)

(2) Mch Theorems (ThmMch) A(s,c)∧ I(x) ⇒ Tmch(x) (For
machines)

(3) Initialisation (Init) A(s,c)∧G(α)∧BAP(α ,x′) ⇒ I(x′)
(4) Invariant preservation (Inv) A(s,c)∧ I(x)∧G(x,α)∧

BAP(x,α ,x′) ⇒ I(x′)
(4) Event feasibility (Fis) A(s,c)∧ I(x)∧G(x,α)⇒

∃x′ ·BAP(x,α ,x′)
(5) Variant progress (Var) A(s,c)∧ I(x)∧GA(x,α)∧

BAP(x,α ,x′) ⇒ V (x′)<V (x)

Core Well-Definedness (WD). In addition, WD POs are associated to all built-in oper-
ators of the Event-B modelling language. Once proved, these WD conditions are used
as hypotheses to prove further proof obligations.

3.2 Event-B Extensions with Theories

In order to handle more complex and abstract concepts beyond set theory and first-order
logic, an Event-B extension for supporting externally defined mathematical objects has
been proposed in [3,15]. This extension offers the capability to introduce new data types
by defining new types, operators, theorems and associated rewrite and inference rules,
all bundled in so-called theories. Close to proof assistants like Isabelle/HOL [36] or
PVS [37], they are convenient when modelling concepts unavailable in core Event-B.

Theory Description (See Table 1a). Theories define and make available new data types,
operators and theorems. Data types (DATATYPES) are associated with constructors, i.e.
to build inhabitants of the defined type that may be inductive. A theory defines vari-
ous operators further used in Event-B expressions. They may be FOL predicates or
expressions producing actual values (<nature> tag). Operator applications can be used in
other Event-B theories, contexts and/or machines. They enrich the modelling language
as they may occur in axioms, theorems, invariants, guards, assignments, etc.

Operators may be defined either explicitly using an explicit (“direct”) equivalent
definition, in the direct definition clause, (case of a constructive definition), or
defined axiomatically in the AXIOMATIC DEFINITIONS clause (a set of axioms). Last,
a theory defines axioms, completing the definitions, and theorems. Theorems are proved
from the definitions and axioms.

Many theories have been defined for sequences, lists, groups, reals, differential
equations, etc. Theories can be extended (Imports) to define more complex theories
and instantiated (in context) by providing concrete type parameters.

Well-Definedness (WD) in Theories. An important feature provided by Event-B theo-
ries is the possibility to define well-definedness (WD) conditions. Each defined oper-
ator (partially defined) is associated to a condition guaranteeing its correct definition.



Standard Conformance-by-Construction with Event-B 131

When it is applied (in an Event-B expression), this WD condition generates a PO requir-
ing to establish that this condition holds, i.e. the use of the operator is correct. The theory
developer defines these WD conditions for the partially defined operators. All the WD
POs and theorems are proved using the Event-B proof system.

Event-B Proof System and its IDE Rodin. Rodin3 is an open source IDE for modelling
in Event-B. It offers resources for model editing, automatic PO generation, project
management, refinement and proof, model checking, model animation and code gen-
eration. Event-B’s theories extension is available under the form of a plug-in. Theo-
ries are tightly integrated in the proof process. Depending on their definition (direct
or axiomatic), operators definitions are expanded either using their direct definition (if
available) or by enriching the set of axioms (hypotheses in proof sequents) using their
axiomatic definition. Theorems may be imported as hypotheses and used in proofs.
Many provers like predicate provers, SMT solvers, are plugged to Rodin as well. In
addition to the known success of the Event-B and B methods in dealing with com-
plex formal system developments, the choice of Event-B as a ground modelling formal
method is motivated by the provided abstract modelling level. Indeed, it offers first a
built-in mechanism (state and transitions) associated to an inductive proof process for
invariants and second an extension mechanism to define theories with operators associ-
ated to WD conditions that generate POs when applied. These WD POs are fundamental
for our approach to conformance checking. In addition, animators and model checkers
like ProB [33] are useful to validating the defined theories over model instances. Finally,
other techniques could have been used as long as they could check the correctness of
operator applications and they are connected to the Rodin platform.

4 Case Study: ARINC 661 + Multi-purpose Interactive
Application

4.1 ARINC 661 Standard Specification: An Extract

ARINC 661 [8] is the Cockpit Display System (CDS) standard for communication pro-
tocols between interface objects and aircraft systems. It has been used for the devel-
opment of interactive applications in, for instance, Airbus A380 and Boeing B787. In
ARINC 661 specification standard, an interactive application is called a User Appli-
cation (UA) that receives input from the CDS and triggers actions in aircraft systems.
Such input are produced by the flying crew manipulating specific input devices such
as a KCCU (Keyboard Cursor Control Unit). UAs also receive information flow from
aircraft systems that is presented to the flying crew using interactive objects which
behaviour and parameters are described in the standards. The current version of the
standard (called supplement 7 for part 1) describes in about 800 pages a set of defini-
tions and requirements for the CDS and its graphical objects (called widgets).

Communication between the CDS and UA is defined based on the identification
of widgets defined in the Widget Library. Different levels widget states are available.
1) Visibility level indicating whether the widget is visible or not. 2) Inner level spe-
cific states of a widget which represents the core of the widget behavior as well as

3 Rodin Integrated Development Environment http://www.event-b.org/index.html.

http://www.event-b.org/index.html


132 I. Mendil et al.

its functional objectives. Examples of inner states for a CheckButton, are two stable
inner states: Selected and Unselected. 3) Interactivity levels are: enabled or disabled.
An enabled widget is ready to receive input from crew member interaction. Last, 4)
visual level (visual representation) internal behavior of the widget inside the CDS.
Examples are “Normal” and “Focus” denoting different interactions style (e.g. in the
“Focus” state a standard interaction such as spacebar keypress would trigger the wid-
get). Usually, implementations of CDS present different graphical appearances for the
widgets depending on their state. It is important to note that such rendering is outside
the scope of the standard.

4.2 Multi-purpose Interactive Application and Weather Radar System

We demonstrate the relevance of the approach on the formal development of a real-
world case study: the multi-purpose interactive application (MPIA)—See Fig. 1, focus-
ing on one of its sub-parts: the weather radar system (WXR). MPIA consists of three
pages or tabs: WXR (weather radar system and information), GCAS (Ground Collision
Avoidance System) and AIRCOND (setting of AIR CONDitioning). A crew member
navigates and switches to a desired page using the corresponding button on the menu
bar at the bottom. Each page of the MPIA user interface is made of two distinct parts:
an interaction area and the menu bar for selecting one of the three interfaces (bottom of
Fig. 1).

Fig. 1. Tabbed MPIA user interface: WXR, GCAS and AIRCOND

In this paper, we focus on WXR system which is designed to display and modify
the mode of the weather radar system (top of the page) and to modify the orientation of
the tilt angle in the weather radar system (middle of the page). There are three means
for modifying the tilt angle: auto adjustment, auto stabilization, and setting up manually
the tilt angle. WXR user interface provides different interactive widgets (PicturePush-
Buttons, RadioButtons, EditBoxNumeric) in order to trigger commands to the weather
radar system. The information received from the weather radar (e.g. density of clouds
ahead of the aircraft) is not displayed in the WXR page but on another Display Unit
(the Navigation Display). The information area displays the current state of the UA,
by default the right part is blank but shows errors messages, actions in progress or bad
manipulation when necessary. Workspace area controls the corresponding application.



Standard Conformance-by-Construction with Event-B 133

5 Standards Formalised as Ontologies ((1) on Fig. 2)

Ontologies, as explicit knowledge models [21], have been extensively studied in the
literature and applied in several domains spanning semantic web, artificial intelligence,
information systems, system engineering etc. Approaches for designing and formalising
ontologies for these domains have been proposed. Most of them rely on XML-based
formats and pay lot of attention to web knowledge which may limit the scope of models.

The challenge of linking domain knowledge and design models is clearly stated
in [25]. It includes a mathematical analysis of models and meta models, ontolo-
gies, modelling and meta-modelling languages. Design models annotation by domain-
specific knowledge has been studied for state-based methods [5] as well. More recently,
the textbook [6] reviewed many cases of exploiting explicit models of domain knowl-
edge by system models spanning medical [31,40], e-voting [18], distributed sys-
tems etc.

Last, focusing on Event-B, a proposal of simplified ontology description language
was put forward and illustrated on case studies in [23,24].

While [5,23,24] and our approach share the same objective and motivation, the
two approaches are different. In [5,23,24], Event-B contexts are used to formalise
domain knowledge in terms of axioms and theorems. However, our approach relies on
the theory extension of Event-B providing operators endowed with WD conditions and
data types for defining the objects of the knowledge domain. Moreover, they use set-
theoretic operators when our approach advocates the exclusive usage of domain-specific
operators provided by the theory bearing standard properties together with their WD
conditions that need to be discharged when applied in the design model. In addition,
the use of data types allowed us to encode an ontology modelling language as an Event-
B theory providing a unified ontological framework to formalise the various domain
knowledge modules. Consequently, WD POs permits a formalisation and integration
of domain constraints into design models automatically when used by design models
features.

In this paper, we rely on engineering domain ontologies in the view of [4,29,38]
to model domain knowledge as Event-B theories and on typing to annotate Event-
B design models. While [5] use set-theory based contexts where designers explicitly
borrow domain standards constraints in the design model, the approach we develop
here avoids the developer having to explicitly describe these constraints for each design
model.

In the spirit of the OWL [7] ontology modeling language, Listing 1 represents an
extract of the OntologiesTheory generic Event-B theory parameterised by C, P and I
type parameters for classes, properties and Instances, respectively.



134 I. Mendil et al.

THEORY O n t o l o g i e s T h e o r y
TYPE PARAMETERS C , P , I
DATA TYPES Onto logy (C , P , I )
CONSTRUCTORS
consOnto logy ( c l a s s e s :P (C) , p r o p e r t i e s :P ( P ) , i n s t a n c e s :P ( I ) , c l a s s P r o p e r t i e s :P (C ×

P ) ,
c l a s s I n s t a n c e s :P (C× I ) , c l a s s A s s o c i a t i o n s :P (C×P×C) , i n s t a n c e P r o p e r t y V a l u e s :P ( I×P

× I ) )
OPERATORS
isWDgetInstancePropertyValues < p r e d i c a t e > ( o : Onto logy (C , P , I ) )

wel l−de f inednes s i s W D C l a s s P r o p e r i t e s ( o ) ∧ i s W D C l a s s I n s t a n c e s ( o ) ∧
i s W D C l a s s A s s o c i a t i o n s ( o )

d i r e c t d e f i n i t i o n
i n s t a n c e P r o p e r t y V a l u e s ( o ) ⊆ { i 1 �→ p �→ i 2 | i 1 ∈ I ∧ p ∈ P ∧ i 2∈ I∧ i 1 �→p �→ i 2

∈ i n s t a n c e s ( o )× p r o p e r t i e s ( o )× i n s t a n c e s ( o ) ∧ ( ∃c1 , c2 · c1 ∈ C ∧c2∈C∧
. . . ) }

getInstancePropertyValues < exp r e s s i on > ( o : Onto logy (C , P , I ) )
wel l−de f inednes s i s W D g e t I n s t a n c e P r o p e r t y V a l u e s ( o )
d i r e c t d e f i n i t i o n i n s t a n c e P r o p e r t y V a l u e s ( o )

isWDOntology < p r e d i c a t e > ( o : Onto logy (C , P , I ) )
d i r e c t d e f i n i t i o n i s W D C l a s s P r o p e r t i e s ( o ) ∧ i s W D C l a s s I n s t a n c e s ( o ) ∧

i s W D C l a s s A s s o c i a t i o n s ( o ) ∧ i s W D I n s t a n c e s A s s o c i a t i o n s ( o )
CheckOfSubsetOntologyInstances < p r e d i c a t e > ( o : Onto logy (C , P , I ) , i p v s :P ( I×P× I ) )

wel l−de f inednes s isWDOntology ( o )
d i r e c t d e f i n i t i o n

i p v s ⊆ { i 1 �→ p �→ i 2 | i 1 ∈ I ∧ p ∈ P ∧ i 2 ∈ I ∧ i 1 �→ p �→ i 2 ∈
i n s t a n c e s ( o ) × p r o p e r t i e s ( o ) × i n s t a n c e s ( o ) ∧ . . . }

isA < p r e d i c a t e > ( o : Onto logy (C , P , I ) , c1 : C , c2 : C) · · ·
. . .
THEOREMS
thm1 : ∀o , c1 , c2 , c3 ·o∈Onto logy (C , P , I )∧isWDOntology ( o )∧c1 ∈C∧c2∈C∧c3∈C∧

o n t o l o g y C o n t a i n s C l a s s e s ( o , { c1 , c2 , c3 } )⇒ ( isA ( o , c1 , c2 )∧ i sA ( o , c2 , c3 )⇒ i sA ( o , c1 ,
c3 ) )

END

Listing 1. Ontology Modelling Language

This theory describes a constructor consOntology for ontologies with a set of classes
(classes), properties (properties), instances (instances) and associations of
properties to classes (classProperties), instances to classes (classInstances)
and classes to classes (classAssociations) and property values (instance
PropertyValues). Expression and predicate operators allowing to manipulate classes,
properties and instances are also defined. Predicate operators are used to define WD
conditions. For example, the getInstancePropertyValues operator retrieving all the
properties values is defined under the WD isWDGetInstancePropertyValues. The
two important operators isWDOntology and CheckOfSubsetOntologyInstances
respectively check that an ontology is well built and a subset of instances is conform to
a given ontology. Last, theorems are formalised and proved, e.g. thm1 for transitivity
of IsA relationship.

6 Our Approach

First, standards are formalised as ontology Event-B theories and, second, these theories
should provide data types bundled with a collection of operators to be used by Event-B
system models. Note that conformance is achieved under the closure condition stat-
ing that solely the operators supplied by the theory formalising a standard are used
for state variables changes in design models . The operators WD POs shall be proved.



Standard Conformance-by-Construction with Event-B 135

Obviously, all the theorems entailed by every theory operator also hold for all models
that use theory operators. So, conformance-by-construction is guaranteed since 1) mod-
els type and manipulate state variables using standard data types and operators and 2)
theory safety properties and rules formalising a standard are conveyed by all operators.

Conformance is achieved following the three-step methodology depicted in Fig. 2
Conceptualisation, Instantiation, and Annotation. First, standard concepts and oper-
ators are formalised in theories (2) using OntologiesTheory (see Listing 1) (1).
Second, theories are instantiated for a particular system to design (3), and last
system model is annotated with data types and operators (4) to enforce the con-
straints and rules, expressed as theorems, establishing standard conformance. Note that
OntologiesTheory (1) is formalised once and for all, while standard concepts, rules
and properties (2) are formalised in stable theories evolving with standard updates. In
Fig. 2, Instantiates and Imports links correspond to Event-B built-in constructs
(generic type parameters instantiation is automatically achieved by type synthesis), and
Annotation is implemented by typing model concepts with theories data-types using
the Sees Event-B construct.

Fig. 2. Standard conformance-by-construction framework

Note.
A key requirement to set up
our approach is the exclu-
sive use of data types and
operators provided by the
Event-B theory formalis-
ing the standard specifica-
tion. In fact, this condition
is necessary to ensure that
theorems entailed by oper-
ators are transferred and
then provable in the Event-
B model.

Last, all the develop-
ments and Event-B models discussed in this paper are accessible at https://www.irit.
fr/~Ismail.Mendil/recherches/.

6.1 Domain Standards as Ontology-Based Theories ((2) on Fig. 2)

The first phase consists in formalising the standard as an ontology using
OntologiesThe – ory (see Listing 1). Type parameters C, P and I are instantiated
with the standard objects and properties. Furthermore, rules and conformance criteria
(i.e. WD condition predicate isWDOntology) are formalised as a set of axioms. In a
design model, operators allow the modification of the system state variables. A set of
theorems, stating that all the defined operators entail standard desired requirements and
properties, is also expressed and proved. When these operators are applied in models,
these theorems are used to prove model invariants and thus safety properties.

https://www.irit.fr/~Ismail.Mendil/recherches/
https://www.irit.fr/~Ismail.Mendil/recherches/


136 I. Mendil et al.

6.2 Standard Theory Instantiation ((3) on Fig. 2)

At this level, the classes are filled with instances and the associations between instances
are specified taking into account the WD conditions required by ontology instanti-
ation, i.e. isWDgetInstancePropertyValues. Three components of the ontology
are valued by theory instantiation: instances, classInstances and instance
PropertyValues. The definitions of these components are system-dependent and
represent the elements of the system as instances of the standard classes. The
CheckOfSubsetOntologyInstances operator ensures that system-specific concepts
comply with defined standard ontology.

6.3 Model Annotation for Conformance ((4) on Fig. 2)

Model annotation consists in typing model variable with instance-related ontology com-
ponents, generally instancePropertyValues, to comply with data types originated
from the formalised standard. When state changes are done by theory operators, its
already proven theorems are transferred to models.

In Event-B, this means that the formalised standard requirements and safety proper-
ties expressed as theorems are discharged by deduction as POs of the model. However,
this assertion necessitates that the system-specific model state changes to be realised,
exclusively, with the operators provided by the theory describing the domain standard.
Obviously, since the operators are conditional, their WD POs need to be discharged.

7 Standard Conformance-by-Construction: The Case of ARINC
661

In this section, we showcase the approach of Sect. 6 on a part of ARINC 661 and WXR
user interface. ARINC661Theory is built upon the ontology description theory, which in
turn is used to develop the WXRTheory theory. Last, the two theories are used to model
the WXR user interface as an Event-B machine. Due to space limitation, only an extract
of the models covering relevant elements of the WXR case study is presented.

7.1 ARINC 661 Standard Formalisation ((2) on Fig. 2)

ARINCARINC 661 Concepts. After an in-depth analysis of the ARINC 661, many
concepts are identified and formalised using OntologiesTheory. Table 3 shows some
identified correspondences between ARINC 661 concepts and their formal counter-
parts.

ARINC 661 defines a collection of widgets intended to define the user interfaces.
ARINC661Theory is described in Listing 2. The formalisation follows the structure of
the ARINC 661 widget library and is guided by the ontology description theory. C, P and
I of OntologiesTheory are instantiated by three abstract types: ARINC661Classes,
ARINC661Properties and ARINC661Instances. Constants are defined as well.



Standard Conformance-by-Construction with Event-B 137

Table 3. Correspondence between Event-B formalisation and ARINC 661 standard

ARINC 661 element Reference (page) Event-B formal element

Label 3.3.20 (p114) Label

RadioBox 3.3.34 (p184) RadioBox

CheckButton 3.3.5 (p80) CheckButton

SELECTED, UNSELECTED 3.3.5-1 (p81) SELECTED, UNSELECTED

CheckButtonState 3.3.5-1 (p81) hasCheckButtonState

LabelString 3.3.5-1(p81) hasLabelStringForCheckButton

Textual paragraph 3.3.34 (p185) isWDRadioBox

· · · · · · · · ·

THEORY ARINC661Theory
IMPORT THEORY PROJECTS O n t o l o g i e s T h e o r y
AXIOMATIC DEFINITIONS ARINC661Axiomat isa t ion :
TYPES ARINC661Classes , ARINC66Proper t ies , ARINC661Instances
OPERATORS
ARINC661_BOOL < exp r e s s i on > ( ) : ARINC661Classes
A661_TRUE < exp r e s s i on > ( ) : ARINC661Instances
A661_FALSE < exp r e s s i on > ( ) : ARINC661Instances
A661_EDIT_BOX_NUMERIC_ADMISSIBLE_VALUES< exp r e s s i on > ( ) :P ( ARINC661Instances )
CheckButtonState < exp r e s s i on > ( ) : ARINC661Classes
Label < exp r e s s i on > ( ) : ARINC661Classes
RadioBox < exp r e s s i on > ( ) : ARINC661Classes
CheckButton < exp r e s s i on > ( ) : ARINC661Classes
hasChildrenForRadioBox < exp r e s s i on > ( ) : ARINC66Proper t i es
hasCheckButtonState < exp r e s s i on > ( ) : ARINC66Proper t i es
SELECTED < exp r e s s i on > ( ) : ARINC661Instances
UNSELECTED < exp r e s s i on > ( ) : ARINC661Instances
isWDRadioBox < p r e d i c a t e > ( o : Onto logy ( ARINC661Classes , ARINC66Proper t ies ,

ARINC661Instances ) ) :
wel l−de f inednes s isWDOntology ( o )

isWDARINC661Ontology < p r e d i c a t e > ( o : Onto logy ( ARINC661Classes , ARINC66Proper t ies
, ARINC661Instances ) ) :

Listing 2. ARINC 661 theory concept declarations

ARINC 661 Theory Operators. Axiomatic definitions introduce ontology opera-
tors and predicates defining WD conditions. In Listing 4, consARINC661Ontology
operator completes the construction of the ontology, this operator returns a well-
defined ontology provided correct arguments are used. Moreover, CkeckOfSubset
A661Ontology Instances enforces ontology rules on machine variables if supplied
with a well-defined ontology, e.g. isWDRadioBox operator encodes a key safety prop-
erty. It states that only one child widget can be selected in a given RadioBox at a
time4.

4 More details are available in Sect. 3.3.34 page 184 of ARINC 661 standard [8].



138 I. Mendil et al.

consARINC661Ontology < exp r e s s i on > ( i i : P ( ARINC661Instances ) , c i i : P (
ARINC661Classes×

ARINC661Instances ) , i p v s :P ( ARINC661Instances×ARINC66Proper t i es×
ARINC661Instances ) ) : Onto logy ( ARINC661Classes , ARINC66Proper t ies ,
ARINC661Instances )
wel l−de f inednes s isWDARINC661Ontology ( consOnto logy ( ARINC661Classes ,

ARINC66Proper t ies , i i , w e l l B u i l t C l a s s P r o p e r t i e s ,
w e l l b u i l t T y p e s E l e m e n t s ∪ c i i , w e l l B u i l t C l a s s A s s o c i a t i o n s , i p v s ) )

CkeckOfSubsetA661OntologyInstances < p r e d i c a t e > ( o : Onto logy ( ARINC661Classes ,
ARINC66Proper t ies , ARINC661Instances ) , u i : P ( ARINC661Instances ×
ARINC66Proper t i es × ARINC661Instances ) ) :
wel l−de f inednes s isWDOntology ( o )

. . .

Listing 3. ARINC 661 theory operator declarations

ARINC 661 Axioms. In Listing 4, ARINC661ClassesDef axiom defines all the ele-
ments of ARINC661Classes. For example, Label is a widget and CheckButtonState
corresponds to SELECTED and UNSELECTED states. Similarly, identified ARINC 661
properties are defined in ARINC66PropertiesDef axiom.

AXIOMS
ARINC661ClassesDef : p a r t i t i o n ( ARINC661Classes , { Labe l } ,{ RadioBox } ,{ CheckBut ton } ,{

C h e c k B u t t o n S t a t e } , . . . )
ARINC66PropertiesDef : p a r t i t i o n ( ARINC66Proper t ies , { h a s L a b e l S t r i n g F o r L a b e l } ,
{ h a s C h i l d r e n F o r R a d i o B o x } ,{ h a s C h e c k B u t t o n S t a t e } ,{ h a s L a b e l S t r i n g F o r C h e c k B u t t o n

} , . . . )
ARINC661InstancesDef : p a r t i t i o n ( ARINC661Instances , { A661_TRUE } ,{ A661_FALSE } ,{SELECTED

} ,
{UNSELECTED} , L a b e l I n s t a n c e s , R a d i o B o x I n s t a n c e s , C h e c k B u t t o n I n s t a n c e s , . . . )
consARINC661OntologyDef : ∀ i i , c i i , i p v s · i i ∈ P ( ARINC661Instances ) ∧

c i i ∈ P ( ARINC661Classes × ARINC661Instances ) ∧
i p v s ∈ P ( ARINC661Instances × ARINC66Proper t i es × ARINC661Instances ) ∧
w e l l b u i l t T y p e s E l e m e n t s ∩ c i i = /0 ∧ i i ⊆ W i d g e t s I n s t a n c e s ⇒

consARINC661Ontology ( i i , c i i , i p v s )=consOnto logy ( . . . )
isWDRadioBoxDef : ∀o· o ∈ Onto logy ( ARINC661Classes , ARINC66Proper t ies ,

ARINC661Instances ) ⇒ ( isWDRadioBox ( o ) ⇔ ( ∀ . . . )
isWDARINC661OntologyDef :

∀o· o ∈ Onto logy ( ARINC661Classes , ARINC66Proper t ies , ARINC661Instances ) ⇒
( isWDOntology ( o )∧isWDRadioBox ( o )∧ isWDEditBoxNumeric ( o )⇒isWDARINC661Ontology (

o ) )
CheckOfSubsetA661OntologyInstancesDef : ∀o , i p v s ·o∈Onto logy ( ARINC661Classes ,

ARINC66Proper t ies ,
ARINC661Instances )∧ i p v s ∈P ( ARINC661Instances×ARINC66Proper t i es×

ARINC661Instances )⇒
( isWDARINC661Ontology ( consOnto logy ( . . . ) )⇒CkeckOfSubse tA661Onto logy Ins t ances

( . . . ) )
. . .

Listing 4. ARINC 661 theory definitions

ARINC 661 Relevant Theorems. The correctness of the ontology is ensured by the-
orems thm1 and thm2. They describe two important properties: classes are related
to already defined properties (thm1) and class associations relate provided classes
and properties (thm2). Their proofs are achieved using intermediate abbreviations and
proved lemmas.



Standard Conformance-by-Construction with Event-B 139

THEOREMS
thm1 : ∀ i i , c i i , i p v s ·

i i ∈ P ( ARINC661Instances ) ∧ c i i ∈ P ( ARINC661Classes × ARINC661Instances ) ∧
i p v s ∈ P ( ARINC661Instances × ARINC66Proper t i es × ARINC661Instances ) ∧
w e l l b u i l t T y p e s E l e m e n t s ∩ c i i = /0 ∧ i i ⊆ W i d g e t s I n s t a n c e s

⇒ i s W D C l a s s P r o p e r i t e s ( consARINC661Ontology ( i i , c i i , i p v s ) )
thm2 : ∀ i i , c i i , i p v s ·

i i ∈ P ( ARINC661Instances ) ∧ c i i ∈ P ( ARINC661Classes × ARINC661Instances ) ∧
i p v s ∈ P ( ARINC661Instances × ARINC66Proper t i es × ARINC661Instances ) ∧
w e l l b u i l t T y p e s E l e m e n t s ∩ c i i = /0 ∧ i i ⊆ W i d g e t s I n s t a n c e s

⇒ i s W D C l a s s A s s o c i a t i o n s ( consARINC661Ontology ( i i , c i i , i p v s ) )
. . .
END

Listing 5. ARINC 661 theory theorems

Ontology Building Process. The ontology introduced above formalises the concepts
of the ARINC 661 standard. This ontology (theory) has been built for the purpose
of the FORMEDICIS project and to process the different addressed case studies. The
selection of axioms and the formalisation and proofs of theorems have been performed
according to the studied case study. In case of a wide and shared usage, as with any stan-
dard, the designed theory requires consensus among the stakeholders of the ARINC 661
standard.

7.2 System-Specific Concepts Describing WXR Widgets ((3) on Fig. 2)

WXRTheory Concepts Declaration. WXRTheory encompasses constants and opera-
tors dealing with instance information (not defined in ARINC661Theory as instances
are system specific) and allowing to manipulate the user interface. WXRFeature gathers
the instances used by the WXR design model.

THEORY WXRTheory
IMPORT THEORY PROJECTS ARINC661Theory
AXIOMATIC DEFINITIONS WXRUIDesc r ip to inAxiomat i sa i ton :
OPERATORS
A661WXROntology< exp r e s s i on >: Onto logy ( ARINC661Classes , ARINC66Proper t ies ,

ARINC661Instances )
WXRInstances < exp r e s s i on > : P ( ARINC661Instances )
WXRClassInstances < exp r e s s i on > : P ( ARINC661Classes × ARINC661Instances )
WXRInstancePropertyValues< exp r e s s i on >:P ( ARINC661Instances×ARINC66Proper t i es×

ARINC66Instances )
MODESELECTIONLabel < exp r e s s i on > : ARINC661Instances
OFFLabel < exp r e s s i on > : ARINC661Instances
OFFCheckButton < exp r e s s i on > : ARINC661Instances
. . .
WXRFeatures< exp r e s s i on >( o : Onto logy ( ARINC661Classes , . . . , ARINC661Instances ) ) :

P ( ARINC661Instances × ARINC66Proper t i es × ARINC661Instances )
wel l−de f inednes s isWDARINC661Ontology ( o )

Listing 6. WXR theory constant declarations

WXR Concepts Definitions. In Listing 7, ARINC 661 ontological class instances are
used for defining constants of the type P (ARINC661). For example, WXRinstances is
a set of all possible widgets of user interface: WXRLabels, WXRCheckButtons, etc. The
WXRFeatures operator restricts ARINC661 ontology to the instances needed to design
the WXR user interface i.e. none of these instances is outside ARINC 661 theory.



140 I. Mendil et al.

AXIOMS
WXRLabelsDef : p a r t i t i o n ( WXRLabels , {MODESELECTIONLabel} , { OFFLabel } , . . . )
WXRcheckButtonsDef : p a r t i t i o n ( WXRcheckButtons , { OFFCheckButton } , . . . )
WXRradioBoxesDef : p a r t i t i o n ( WXRradioBoxes , { WXRradioBoxModeSelection } , . . . )
WXRInstancesDef : p a r t i t i o n ( WXRInstances , WXRLabels , WXRcheckButtons , WXRradioBoxes ,

. . . )
WXRClassInstancesDef : WXRClassIns tances = ( { Labe l } × WXRLabels ) ∪ ( { CheckBut ton } ×

WXRcheckButtons ) ∪ . . .
iaCheckBttonsDef : i a C h e c k B t t o n s= ( { OFFCheckButton , . . . } ×{ h a s V i s i b l e , h a s E n a b l e }×{

A661_TRUE } )∪ ( { OFFCheckButton , . . . } × { h a s C h e c k B u t t o n S t a t e } × {UNSELECTED
} ) ∪

( { OFFCheckButton } × { h a s C h e c k B u t t o n S t a t e } × {SELECTED} ) ∪
( { OFFCheckButton , . . . } ×{ h a s P a r e n t I d e n t }×{ WXRradioBoxModeSelec t ionWidget Ident } )∪

. . .
WXRInstancePropertyValuesDef : WXRIns tancePrope r tyVa lues = i a C h e c k B t t o n s∪ i oRad ioBoxes∪

. . .
A661WXROntologyDef : A661WXROntology = consARINC661Ontology ( I n s t a n c e s ,

C l a s s I n s t a n c e s , WXRIns tancePrope r tyVa lues )
WXRFeaturesDef : ∀o · o ∈ Onto logy ( ARINC661Classes , ARINC66Proper t ies ,

ARINC661Instances ) ∧ isWDARINC661Ontology ( o ) ⇒ WXRFeatures ( o ) =
WXRIns tancePrope r tyVa lues

Listing 7. WXR theory constant definitions

WXRTheory Operators. The user interface provides user interactions operators:
choosing a mode selection, switching between the two states of the stabilization and
tilt section feature and finally input a new tilt angle value. Each interaction is modelled
by two operators: a WD predicate and an interactions modelling operators. For exam-
ple, isWDChangeModeSelection and changeModeSelection pair of operators deals
with mode selection change (see Listing 8).

AXIOMATIC DEFINITIONS E v e n t s A f f e c t i n g W i d g e t s A x i o m a t i s a t i o n :
OPERATORS
isWDChangeModeSelection < p r e d i c a t e > ( o : Onto logy ( ARINC661Classes ,

ARINC66Proper t ies , ARINC661Instances ) , u i : P ( ARINC661Instances ×
ARINC66Proper t i es × ARINC661Instances ) , mode : ARINC661Instances ) :

changeModeSelection < exp r e s s i on > ( o : Onto logy ( ARINC661Classes , ARINC66Proper t ies ,
ARINC661Instances ) , u i : P ( ARINC661Instances × ARINC66Proper t i es ×
ARINC661Instances ) , mode : ARINC661Instances ) : P ( ARINC661Instances ×
ARINC66Proper t i es × ARINC661Instances )

wel l−de f inednes s isWDChangeModeSelect ion ( o , ui , mode )

Listing 8. WXR theory operator declarations

In the AXIOMS clause, several operators are defined (see Listing 9). For example,
changeModeSelection operator is associated to a WD operator isWDChangeMode
Selection stating that crew members may select only specified modes in WXRcheck
Buttons and CkeckOfSubsetA661OntologyInstances ensures that the ui param-
eter complies with ontology rules and constraints. This principle applies to all
operators.



Standard Conformance-by-Construction with Event-B 141

AXIOMS
isWDChangeModeSelectionDef : ∀o , ui , mode · o ∈ Onto logy ( ARINC661Classes ,

ARINC66Proper t ies , ARINC661Instances ) ∧ u i ∈ P ( ARINC661Instances ×
ARINC66Proper t i es × ARINC661Instances ) ∧ mode ∈ ARINC661Instances ⇒

( isWDChangeModeSelect ion ( o , ui , mode ) ⇔ CkeckOfSubse tA661Onto logy Ins t ances
( o , u i ) ∧ mode ∈ WXRcheckButtons )

changeModeSelectionDef : ∀o , ui , mode · o ∈ Onto logy ( ARINC661Classes ,
ARINC66Proper t ies , ARINC661Instances ) ∧ u i ∈ P ( ARINC661Instances ×
ARINC66Proper t i es × ARINC661Instances ) ∧ mode ∈ ARINC661Instances ⇒

( c hangeModeSe l ec t i on ( o , ui , mode )= ( u i\{ i �→h a s C h e c k B u t t o n S t a t e �→ UNSELECTED | i �→
h a s C h e c k B u t t o n S t a t e �→ SELECTED ∈ u i ∧

i ∈ ( WXRcheckButtons\{mode } ) } )∪{mode �→h a s C h e c k B u t t o n S t a t e �→SELECTED} )
. . .

Listing 9. WXR theory operator definitions
WXRTheory Theorems. In WXRTheory, important safety properties (e.g. theorem WXR
FeaturesSafety) assert that the selection of the buttons under radio boxes are exclu-
sive (⇒ b1 = b2) (Listing 10). All theorems have been proved on the Rodin Platform.

THEOREMS
isWDARINC661Ontology : isWDARINC661Ontology ( A661WXROntology )
WXRFeaturesSafety : ∀o , i p v s ·CkeckOfSubse tA661Onto logy Ins t ances ( o , i p v s )∧ ( i p v s =

WXRFeatures ( o ) ) ⇒ (∀rb , b1 , b2· · · ⇒ b1 = b2 ) ) ∧ . . .
WXRFeaturesCkeckOfSubsetA661OntologyInstances : ∀o , i p v s ·isWDARINC661Ontology ( o )
∧ i p v s ∈P ( ARINC661Instances × ARINC661Proper t ies × ARINC661Instances ) ∧
( i p v s = WXRFeatures ( o ) ) ⇒

c h a n g e M o d e S e l e c t i o n C k e c k O f S u b s e t A 6 6 1 O n t o l o g y I n s t a n c e s ( o , i p v s )
changeModeSelectionSafety : . . .
changeModeSelectionCkeckOfSubsetA661OntologyInstances : . . .
. . .
END

Listing 10. WXR theory theorems

7.3 Annotated Event-B Model of WXR Application ((4) on Fig. 2)

Fig. 3. WXR annotated with Event-B concepts

The WXR user interface
is modelled as an Event-B
machine and uses elements
defined in WXRTheory. In
Listing 11, the state of
the user interface is mod-
elled by uiStateVar vari-
able. The event changeMode
Selection models the inter-
action on the mode selection
radio box where only one
check box shall be selected.
The safety properties are
entailed by theorems, WXRFeaturesCkeck
OfSubsetA661OntologyInstancesInst and SafetyInst, establishing at the same time
the conformance of WXR specification to ARINC 661. However, the approach requires
to use the theory operator to update the variable as uiStateVar as prescribed by inv2.

Listing 11 shows an extract of WXR model. In particular, changeModeSelection
Evt event uses changeModeSelection operator to select a mode from the mode selec-
tion radio box, like STDBY (see Fig. 3). Note that this event is guarded with WD



142 I. Mendil et al.

conditions of WXRTheory. In Fig. 3, correspondences between WXR widgets and their
standard formal counterparts are depicted.

MACHINE WXRModel
VARIABLES uiStateVar
INVARIANTS
i nv1 : u i S t a t e V a r ∈ P ( ARINC661Instances × ARINC66Proper t i es ×

ARINC661Instances )
inv2 : ∃uiArg · ((uiStateVar =WXRFeatures(A661WXROntology)) ∨

∃m · isWDChangeModeSelection(A661WXROntology,uiArg,m) ∧
uiStateVar = changeModeSelection(A661WXROntology,uiArg,m)) ∨

. . .
S a f e t y I n s t : CkeckOfSubsetA661OntologyInstancesDef (A661WXROntology,uiStateVar)
WXRFea tu re sCkeckOfSubse tA661Onto logy Ins t ances Ins t :

(∀rb , b1 , b2· rb ∈ R a d i o B o x I n s t a n c e s ∧ b1 ∈ C h e c k B u t t o n I n s t a n c e s ∧
b2 ∈ C h e c k B u t t o n I n s t a n c e s ∧ rb �→ h a s C h i l d r e n F o r R a d i o B o x �→ b1 ∈

u i S t a t e V a r ∧
rb �→ h a s C h i l d r e n F o r R a d i o B o x �→ b2 ∈ u i S t a t e V a r ⇒

( b1 �→h a s C h e c k B u t t o n S t a t e �→SELECTED∈u i∧
b2 �→h a s C h e c k B u t t o n S t a t e �→SELECTED∈ u i S t a t e V a r ⇒b1=b2 ) ) ∧ . . . )

EVENTS
INITIALISATION
THEN

a c t 1 : uiStateVar :=WXRFeatures(A661WXROntology)
END
changeModeSelectionEvt
ANY mode
WHERE

grd1 : mode ∈ WXRcheckButtons
grd2 : isWDChangeModeSelection(A661WXROntology,uiStateVar,mode)

THEN
a c t 1 : uiStateVar := changeModeSelection(A661WXROntology,uiStateVar,mode)

END
. . .

END

Listing 11. Event-B machine modelling the WXR user interface

8 Assessment

Achieving Standard Conformance. Provided that the domain knowledge is formalised
as a theory and supplied with data types and operators that preserve the safety properties
prescribed by the standard specification, the models can be proven to entail desired
theorems achieving conformance with the formalised standard.

Enhanced SystemModels. WXR model has been greatly improved as a result of exten-
sive outsourcing of safety properties to the theory level and the use of ontology descrip-
tion theory. The use of a theory validated by experts led to trustworthy models. In addi-
tion, this approach enabled domain-specific (standards) models to be validated, once
and for all, independently of the systems design models.

Reduction of Modelling and Proving Effort. Although the description of the domain-
specific theory, ARINC661Theory, requires a significant amount of modelling effort,
the specification of the models is simplified as a result of the formalisation of inter-
action by theory operators. At theory level, the properties (theorems) are proved once
and for all. The design models rely on the defined data types and operators convey-
ing all desired WD and safety properties expressing the domain constraints encoded in
the theory of the standard. Here, the proving process is eased as, on the one hand, the



Standard Conformance-by-Construction with Event-B 143

WD POs are discharged thanks to WD predicates associated with each operator and, on
the other hand, INV POs are discharged automatically. Indeed, inv1 is a typing invari-
ant and inv2 states that no other operator, except those provided by the theory, is used.
Table ?? shows 88 automatically generated POs for the theories and WXRmodel. Theo-
ries related POs are discharged using a mix of automatic and interactive proofs, whereas
WXRMode POs are discharged by simplifying predicates, instantiating theorems and
using proof tactics. System invariants are proved as theorems in one proof step (modus-
ponens rule), and the invariants representing our working hypothesis (exclusive use of
theory operators) are trivially proved as model events use the operators of WXRTheory
exclusively.

Deploying the Approach in Engineering Contexts. The work presented in this paper
has been conducted in the FORMEDICIS project. As mentioned in Sect. 7.1, the
ARINC 661 standard has been formalised following our understanding of the infor-
mal descriptions of [8]. However, as the obtained theories play the role of a standard,
we believe that this formalisation requires consensus among the stakeholders, engineers
and developers. From the development process point of view, this formalisation and the
proofs of theorems are achieved once and for all. When, design models are produced,
the conformance consists in discharging POs consisting in instantiating the theorems
and using proof tactics. Therefore, we believe that the deployment of the approach, in
its current form, is not a heavy task compared to the benefits of the provided proofs.

Table 4. Proof statistics

Event-B models and theories Proof obligations
OntologiesTheories 21
ARINC661Theory 10
WXRTheory 39
WXRModel 18

Standard Theories Validation. The formal-
isation of standards relies on axiomatised
theories. The quality of these formalisations
consist in checking 1) the consistency of
the axioms and 2) the validation of these
axioms and entailed theorems with respect to
the informal descriptions. Fortunately, formal
methods such as Event-B, Isabelle/HOL or
CoQ come with tools like SMT solvers, ani-
mators and model checkers capable to instantiate such axioms with specific values and
check axiom consistency or testing instances validity.
Enabling Evolution of Standard. Last but not least, the approach enables the non-
destructive standards evolution. Indeed, the neat separation of the common domain
knowledge from system specifics fosters separation of concerns principle and orthog-
onality of evolution principle. In fact, both domain models and system design models
may evolve asynchronously with limited impact on the each other. From a proof per-
spective, only POs caused by the evolution need to discharged.

9 Conclusion

The approach presented in this paper proposes a generic framework for formalising
standard conformance through formal modelling of standards as ontologies. Data types
and operators associated to the modelled features become accessible to system design



144 I. Mendil et al.

models. We have shown how this approach applies to a real-world case study of air-
craft cockpit. This approach is completely formalised using Event-B and relies on three
steps: conceptualisation of the domain standard, instantiation to describe the system
specific features and finally model annotation through typing of state variables and use
of operators for state changes. The approach starts from an already formalised standard.
It does not address the process of deriving these theories from text-based standards. It
exploits the WD conditions POs that raise when applying theory operators.

The work presented in this paper addressed the issue of standard conformance. It
needs to be extended to provide the required safety assurances to meet certification
standards, where assurance cases are used in the development of critical systems. The
formally proved properties and the generated formal artifacts can be used as evidence
in assurance cases, which can aid in the certification process by guiding both the devel-
opment and regulatory evaluation of CIS. Last, from the standardisation point of view,
industry consortium and standardisation bodies shall define formal processes (not stud-
ied in this paper) addressing consensual agreement on the definition and consistence of
the formal theories modelling domain standards i.e. the process consisting in analysing
text-based standards in order to derive domain standard theories and in validating these
derived theories. In addition, this work shall be completed by the study of other type of
domain standards related to temporal properties, real-time scheduling, common criteria
for security etc. and application domains like avionics, transportation systems.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
New York (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press, New York (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., Voisin, L.: Proposals for
mathematical extensions for event-B. Technical report (2009)

4. Aït Ameur, Y., Baron, M., Bellatreche, L., Jean, S., Sardet, E.: Ontologies in engineering:
the OntoDB/OntoQL platform. Soft. Comput. 21(2), 369–389 (2017)

5. Aït Ameur, Y., Méry, D.: Making explicit domain knowledge in formal system development.
Sci. Comput. Program. Elsevier J. 121, 100–127 (2016)

6. Aït Ameur, Y., Nakajima, S., Méry, D.: Implicit and Explicit Semantics Integration in Proof-
Based Developments of Discrete Systems. Springer, Singapore (2021). https://doi.org/10.
1007/978-981-15-5054-6

7. Antoniou, G., van Harmelen, F.: Web ontology language: OWL. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 67–
92. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24750-0_4

8. ARINC: ARINC 661 specification: Cockpit Display System Interfaces to User Systems, Pre-
pared by AEEC, Published by SAE, Melford Blvd., Bowie, Maryland, USA, June 2019

9. Bartolini, C., Giurgiu, A., Lenzini, G., Robaldo, L.: A framework to reason about the
legal compliance of security standards. In: 10th International Workshop on Juris-Informatics
(2016)

10. Bjørner, D.: Manifest domains: analysis and description. Formal Aspects Comput. 29(2),
175–225 (2017)

11. Bjørner, D.: Domain analysis and description principles, techniques, and modelling lan-
guages. ACM Trans. Softw. Eng. Methodol. 28(2), 8:1–8:67 (2019)

https://doi.org/10.1007/978-981-15-5054-6
https://doi.org/10.1007/978-981-15-5054-6
https://doi.org/10.1007/978-3-540-24750-0_4


Standard Conformance-by-Construction with Event-B 145

12. Brucker, A.D., Ait-Sadoune, I., Crisafulli, P., Wolff, B.: Using the Isabelle ontology frame-
work. In: Rabe, F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.) CICM 2018. LNCS
(LNAI), vol. 11006, pp. 23–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96812-4_3

13. Brucker, A.D., Wolff, B.: Isabelle/DOF: design and implementation. In: Ölveczky, P.C.,
Salaün, G. (eds.) SEFM 2019. LNCS, vol. 11724, pp. 275–292. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-30446-1_15

14. Brucker, A.D., Wolff, B.: Using ontologies in formal developments targeting certification.
In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918, pp. 65–82. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34968-4_4

15. Butler, M., Maamria, I.: Practical theory extension in event-B. In: Liu, Z., Woodcock, J.,
Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp. 67–81.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39698-4_5

16. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Introduction to Conformance Check-
ing, pp. 3–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99414-7_1

17. Emmerich, W., Finkelstein, A., Montangero, C., Stevens, R.: Standards compliant soft-
ware development. In: Proceedings of the International Conference on Software Engineering
Workshop on Living with Inconsistency, pp. 1–8. IEEE CS Press (1997)

18. Gibson, J.P., Raffy, J.-L.: Modelling an E-voting domain for the formal development of a
software product line: when the implicit should be made explicit. In: Ait-Ameur, Y., Naka-
jima, S., Méry, D. (eds.) Implicit and Explicit Semantics Integration in Proof-Based Devel-
opments of Discrete Systems, pp. 3–18. Springer, Singapore (2021). https://doi.org/10.1007/
978-981-15-5054-6_1

19. Goodenough, J., Weinstock, C., Klein, A.: Toward a theory of assurance case confidence.
Technical report. CMU/SEI-2012-TR-002, Software Engineering Institute, CMU, Pittsburgh
(2012)

20. Grigorova, S., Maibaum, T.S.E.: Argument evaluation in the context of assurance case con-
fidence modeling. In: 25th IEEE ISSRE Workshops, pp. 485–490. IEEE CS (2014)

21. Gruber, T.R.: Towards principles for the design of ontologies used for knowledge sharing.
In: Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analysis and Knowledge
Representation. Kluwer Academic Publisher’s, Deventer (1993)

22. Guiochet, J., Do Hoang, Q.A., Kaaniche, M.: A model for safety case confidence assessment.
In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9337, pp. 313–327.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24255-2_23

23. Hacid, K., Ait-Ameur, Y.: Strengthening MDE and formal design models by references to
domain ontologies. A model annotation based approach. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 340–357. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47166-2_24

24. Hacid, K., Aït Ameur, Y.: Handling domain knowledge in design and analysis of engineering
models. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 74, 1–21 (2017)

25. Henderson-Sellers, B.: On the Mathematics of Modelling, Metamodelling, Ontologies and
Modelling Languages. Springer Briefs in Computer Science, Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29825-7

26. IEC 62304: Medical Device Software - Software Life Cycle Processes, May 2006
27. ISO: Industrial automation systems and integration - parts library - part 42: Description

methodology: Methodology for structuring parts families. ISO ISO13584-42, International
Organization for Standardization, Geneva, Switzerland (1998)

28. Information technology - Open Systems Interconnection - Conformance testing methodology
and framework - Part 1: General concepts (1991)

https://doi.org/10.1007/978-3-319-96812-4_3
https://doi.org/10.1007/978-3-319-96812-4_3
https://doi.org/10.1007/978-3-030-30446-1_15
https://doi.org/10.1007/978-3-030-34968-4_4
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-319-99414-7_1
https://doi.org/10.1007/978-981-15-5054-6_1
https://doi.org/10.1007/978-981-15-5054-6_1
https://doi.org/10.1007/978-3-319-24255-2_23
https://doi.org/10.1007/978-3-319-47166-2_24
https://doi.org/10.1007/978-3-319-47166-2_24
https://doi.org/10.1007/978-3-642-29825-7


146 I. Mendil et al.

29. Jean, S., Pierra, G., Ait-Ameur, Y.: Domain ontologies: a database-oriented analysis. In: Fil-
ipe, J., Cordeiro, J., Pedrosa, V. (eds.) Web Information Systems and Technologies. LNBIP,
vol. 1, pp. 238–254. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74063-
6_19

30. Kelly, T.: Arguing safety - a systematic approach to managing safety cases. Ph.D. thesis,
University of York, September 1998

31. Singh, N.K., Ait-Ameur, Y., Méry, D.: Formal ontological analysis for medical protocols.
In: Ait-Ameur, Y., Nakajima, S., Méry, D. (eds.) Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems, pp. 83–107. Springer, Singapore (2021).
https://doi.org/10.1007/978-981-15-5054-6_5

32. van Lamsweerde, A.: Requirements Engineering - From System Goals to UML Models to
Software Specifications. Wiley, Hoboken (2009)

33. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45236-2_46

34. Luong, H.-V., Lambolais, T., Courbis, A.-L.: Implementation of the conformance relation
for incremental development of behavioural models. In: Czarnecki, K., Ober, I., Bruel, J.-
M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 356–370. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87875-9_26

35. Nair, S., de la Vara, J.L., Sabetzadeh, M., Falessi, D.: Evidence management for compliance
of critical systems with safety standards: a survey on the state of practice. Inf. Softw. Technol.
60, 1–15 (2015)

36. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-order
Logic. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

37. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Kapur, D.
(ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992). https://doi.
org/10.1007/3-540-55602-8_217

38. Pierra, G.: Context representation in domain ontologies and its use for semantic integration
of data. J. Data Semant. 10, 174–211 (2008)

39. Rushby, J.: The interpretation and evaluation of assurance cases. Technical report. SRI-CSL-
15-01, Computer Science Laboratory, SRI International, Menlo Park, CA, July 2015

40. Singh, N.K., Aït Ameur, Y., Méry, D.: Formal ontology driven model refactoring. In: 23rd
International ICECCS, pp. 136–145. IEEE CS (2018)

41. Tueno Fotso, S.J., Frappier, M., Laleau, R., Mammar, A.: Modeling the Hybrid ERTM-
S/ETCS Level 3 standard using a formal requirements engineering approach. In: Butler, M.,
Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 262–276.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_18

42. Wassyng, A., Joannou, P., Lawford, M., Maibaum, T.S.E., Singh, N.K.: New standards for
trustworthy cyber-physical systems. In: Romanovsky, A., Ishikawa, F. (eds.) Trustworthy
Cyber-Physical Systems Engineering, pp. 337–368. Taylor & Francis Group (2016)

43. Wassyng, A., et al.: Can product-specific assurance case templates be used as medical device
standards? IEEE Des. Test 32(5), 45–55 (2015)

https://doi.org/10.1007/978-3-540-74063-6_19
https://doi.org/10.1007/978-3-540-74063-6_19
https://doi.org/10.1007/978-981-15-5054-6_5
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-540-87875-9_26
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-319-91271-4_18


Formal Analysis



Randomized Reachability Analysis
in Uppaal: Fast Error Detection

in Timed Systems

Andrej Kiviriga(B), Kim Guldstrand Larsen, and Ulrik Nyman

Aalborg University, Selma Lagerløfs Vej 300, 9220 Aalborg, Denmark
{kiviriga,kgl,ulrik}@cs.aau.dk

Abstract. We introduce Randomized Reachability Analysis – an effi-
cient and highly scalable method for detection of “rare event” states,
such as errors. Due to the under-approximate nature of the method, it
excels at quick falsification of models and can greatly improve the model-
based development process: using lightweight randomized methods early
in the development for the discovery of bugs, followed by expensive sym-
bolic verification only at the very end. We show the scalability of our
method on a number of Timed Automata and Stopwatch Automata mod-
els of varying sizes and origin. Among them, we revisit the schedulability
problem from the Herschel-Planck industrial case study, where our new
method finds the deadline violation three orders of magnitude faster:
some cases could previously be analyzed by statistical model checking
(SMC) in 23 h and can now be checked in 23 s. Moreover, a deadline viola-
tion is discovered in a number of cases that where previously intractable.
We have implemented the Randomized Reachability Analysis – and made
it available – in the tool Uppaal.

Keywords: Model-checking · Randomized · State-space explosion ·
Schedulability analysis · Timed automata · Stopwatch automata

1 Introduction

Formal verification of system designs in the form of model checking requires that
reliable formal models of a system are created. Apart form the ability to verify
formal queries, many model checking tools also give the modeller access to a
simulator in order to understand the model behavior. Throughout the process of
developing the models, a number of sanity queries can be used in the same way
as unit tests in software development. Verifying these queries repeatedly between
each addition to the model can be prohibitively time consuming, especially for

Supported by the ERC Advanced Grant Project: LASSO: Learning, Analysis, Synthesis
and Optimization of Cyber-Physical Systems, and by the Villum Investigator project
S4OS: Synthesis of Safe, Small, Secure and Optimal Strategies for Cyber-Physical Sys-
tems.

c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 149–166, 2021.
https://doi.org/10.1007/978-3-030-85248-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-85248-1_9


150 A. Kiviriga et al.

complex systems that often grow large and become difficult to analyze. In this
paper we present a solution to this problem.

The main contribution of this paper is the implementation of randomized
reachability analysis in the tool Uppaal. Randomized reachability analysis is a
non-exhaustive efficient technique for the detection of “rare event” states, such as
errors. The work is a continuation of [13] where similar randomized analysis was
applied to refinement checking. The method can analyse Timed Automata and
Stopwatch Automata models with the features already supported by Uppaal.
The randomized approach is based on repeated exploration of the model by
means of random walks and was inspired by [10]. It explores the state-space in
a light and under-approximate manner; hence, it can only perform conclusive
verification when a single trace can demonstrate a property. However, our ran-
domized method excels at reachability checking and in many cases outperforms
existing model-checking techniques by up to several orders of magnitude. The
benefits are especially notable in large systems where traditional model-checking
is often intractable due to the state-space explosion problem. Randomized reach-
ability analysis is particularly useful for an efficient development process: running
cheap, randomized methods early in the development to discover violations and
performing an expensive and exhaustive verification at the very end. Random-
ized reachability analysis supports the search for shorter traces which improves
the usability of discovered traces in debugging the model. We have implemented
randomized reachability analysis – and made it available – in the tool Uppaal [1].

Timed Automata models can also be used in the domain of schedulability,
which deals with resource management of multiple applications ranging from
warehouse automation to advanced flight control systems. Viewing these sys-
tems as a collection of tasks, schedulability analysis allows to optimize usage of
resources, such as processor load, and to ensure that tasks finish before their
deadline. A traditional approach in preemptive priority-based scheduling is that
of the worst-case response time (WCRT) analysis [5,12]. It involves estimating
worst case scenarios for both the execution time of a task and the blocking time
a task may have to spend waiting for a shared resource. Apart from certain
applicability limitations, classical response time analysis is known to be over-
approximate which may lead to pessimistic conclusions in that a task may miss
its deadline, even if in practice such a scenario could be unrealizable. Model-
based approach is a prominent alternative for verification of schedulability [2–
4,16] as it considers such parameters as offsets, release times, exact scheduling
policies, etc. Due to this, the model-based approach is able to provide a more
exact schedulability analysis.

We continue the effort in using a model-based approach and the model checker
Uppaal to perform a Stopwatch Automata based schedulability analysis of sys-
tems [6]. Specifically, we re-revisit the industrial case study of the ESA Herschel-
Planck satellite system [8,16]. The Danish company Terma A/S [19] developed the
control software and performed the WCRT analysis for the system. The case we
analyse consists of 32 individual tasks being executed on a single processor with
the policy of fixed priority preemptive scheduling. In addition, a combination of



Randomized Reachability Analysis in Uppaal 151

priority ceiling and priority inheritance protocols is used, which in essence makes
the priorities dynamic. Preemptive scheduling is encoded in the model with the
help of stopwatches which allow to track the progress of each task and stop it when
the task is preempted. InUppaal, existing symbolic reachability analysis for mod-
els with stopwatches is over-approximate, which may provide spurious traces. In
such models, our randomized reachability analysis allows to obtain exact, non-
spurious traces to target states.

In the previous work of [16] the schedulability of Herschel-Planck was “suc-
cessfully” concluded, but with an unrealistic assumption of each task having a
fixed execution time (ET). To improve on this, the analysis of [8] was carried out
with each of the tasks given a non-deterministic execution time in the interval of
[WCET,BCET]. Unfortunately, interval based execution times, preemption and
shared resources that impose dependencies between tasks, makes schedulability
of systems like Herschel-Planck undecidable [9].

Even in the presence of unschedulability, two model-checking (MC) tech-
niques were used in [8] to either verify or disprove schedulability for certain
intervals of possible task execution times. First, the symbolic, zone-based, MC
was used. Even though for stopwatch automata it is implemented as an over-
approximation in Uppaal which still suffices for checking of safety properties,
e.g. if the deadline violation can never be reached. However, this technique can-
not be used to disprove schedulability of the system as resulting traces may
possibly be spurious. Second, the statistical model-checking (SMC) technique
was used to provide concrete counterexamples witnessing unschedulability of
the model in cases where symbolic MC finds a potential deadline violation and
cannot conclude on schedulability. The idea of SMC [15,20] is to run multiple
sample traces from a model and then use the traces for statistical analysis which,
among all, estimates the probability of a property to be satisfied on a random
run of a model. The probability estimate comes with some degree of confidence
that can be set by the user among a number of other statistical parameters. Sev-
eral SMC algorithms that require stochastic semantics of the model have been
implemented in Uppaal SMC [7].

Table 1. Summary of schedulability of Herschel-Planck system.

f = BCET
WCET

0–71% 72–80% 81–86% 87–90% 90–100%

Symbolic MC: maybe maybe maybe n/a Safe

Statistical MC: Unsafe maybe maybe maybe maybe

Randomized MC: Unsafe Unsafe maybe maybe maybe

Our contribution to the Herschel-Planck case study is to use our proposed
under-approximate randomized reachability analysis techniques in hope to wit-
ness unschedulability in places where previously not possible. The summary of



152 A. Kiviriga et al.

(un)schedulability of Herschel-Planck that includes the new results is shown in
Table 1. Symbolic MC finds no deadline violation with over-approximate analysis
and is able to conclude schedulability for BCET

WCET
≥ 90%. SMC find a witness of

unschedulability for BCET
WCET

≤ 71%. Finally, our randomized reachability methods
are able to further “breach the wall” of undecidable problem by discovering con-
crete traces proving unschedulability for BCET

WCET
≤ 80%. Moreover, for the same

BCET
WCET

, randomized reachability finds the deadline violation by three orders of
magnitude faster than SMC: the case that took 23 h for SMC now only takes
23 s with randomized methods.

To further verify the proposed efficient development process, we look at sev-
eral different models of the Gossiping Girls problem made by the Master’s thesis
students – future model developers – and explore the potential of our randomized
method. We also perform experiments on a range of other (timed and stopwatch
automata) models and compare the performance of our randomized reachabil-
ity analysis in “rare event” detection to that of existing verification techniques
of Uppaal: Breadth First Search (BFS), Depth First Search (DFS), Random
Depth First Search (RDFS) and SMC. The results are extremely encouraging
- randomized reachability methods perform up to several orders of magnitude
faster and scale significantly better with increasing model sizes. Furthermore,
randomized reachability uses constant memory w.r.t. the size of the model and
typically requires only up to 25 MB of memory. This is a notable improvement in
comparison to the symbolic verification of upscaled and industrial sized models.
Each of the experiments in this study was given 16 GB of memory.

The main contributions of the paper are:

– A new randomized reachability analysis technique implemented in Uppaal
– Detection of “rare event” states up to several orders of magnitude faster than

with other existing model-checking techniques
– Possibility to analyze previously intractable models, including particular set-

tings for the Herschel-Planck case study
– Searching for shorter or faster traces with randomized reachability analysis.

The rest of the paper is structured as follows: In Sect. 2 we describe the
different randomized methods we tried in this study. Section 3 presents the new
results on the Herschel-Planck industrial case study and Sect. 4 provides more
experimental results on other schedulability models. Section 5 demonstrates the
efficiency of our randomized method applied on student models of the Gossiping
Girls problem and Sect. 6 gives the results on other upscaled models. Finally,
Sects. 7 and 8 give conclusions and future work.

2 Randomized Reachability Analysis

The purpose of the randomized methods is to explore the state-space quickly and
be less affected by the state-space explosion. The method is based on a repeated
execution of concrete-state based random walks through the system. Each ran-
dom walk is quick and lightweight as it avoids expensive computations of sym-
bolic zone-based abstractions and does not store any information about already



Randomized Reachability Analysis in Uppaal 153

visited states in memory. The flaw of such analysis is its under-approximate
nature of exploration which does not allow to conclude on reachability if the tar-
get state has never been found. However, the results of [13] hint that randomized
reachability analysis has a potential to provide substantial performance improve-
ments in comparison to existing model-checking techniques.

An already existing method of SMC tries to give valid statistical predictions
based on stochastic semantics. SMC is very similar to the randomized method as
it performs cheap, non-exhaustive simulations of the model. In cases where sym-
bolic model-checking techniques of Uppaal are expensive or even inconclusive
(for stopwatch automata), SMC is often used as a remedy to provide concrete
traces to target states. The stochastic semantics SMC operates on allows for a
model to mimic the behavior of a real system; however, this may not be efficient
for detection of “rare event” states. Consider the timed automaton model in
Fig. 1 with the Goal location representing the target state we want to discover.
The guard x<=1 on the edge leading to Goal requires clock x to be at most of
1 time unit. According to stochastic semantics, at the starting location Init
SMC would select a delay uniformly in range [0, 1000], which is bounded by the
invariant x<=1000. This leaves a probability of 1

1000 to discover Goal in 1 step;
Alternatively, the “loop” edge is taken which resets clock x with the update x=0
thus resetting all the progress back to the initial state.

Fig. 1. Timed Automaton model with a Goal target state.

We aim to improve the efficiency of detecting “rare event” states with our
new randomized method by experimenting with several different randomized
heuristics and examining their efficiency through extensive experimental eval-
uation. A heuristic in this case dictates how a random walk is performed, i.e.

Table 2. Randomized reachability analysis heuristics.

Acronym Name Origin Status

SEM Semantic exploration New Only experiments

RET Random Enabled Transition [13] Implemented in Uppaal

RLC Random Least Coverage New Only experiments

RLC-A
Random Least Coverage

Accumulative
New Only experiments



154 A. Kiviriga et al.

how delays and transitions are chosen. The summary of the heuristics and their
status is given in Table 2. We now explain each heuristic in detail.

SEM. An intuitive heuristic we tried, denoted as SEM, is based on the natural
semantic exploration of the system. A meaningful delay, i.e. a delay that leads to
an enabled transition, is selected uniformly at random and then a transition is
picked uniformly from those available after the chosen delay has been made. In
the model from Fig. 1, SEM would choose a delay uniformly from two ranges –
[0, 1] and [901, 1000], thus having a probability of 1

100 to reach Goal in 1 step.
Overall, we believe this heuristic will struggle the most in systems where certain
specific delays are required to reach a target state, e.g. delaying exactly the lower
or upper bound of the transition’s availability range.

Differently from SEM, the heuristics we describe further (RET, RLC and
RLC-A) require selecting a target transition first. The exact delay is then chosen
only from that target transition’s range of available delays. Selecting transition
first makes exploration of the state-space more uniform and removes a bias
towards transitions with larger availability range. The mechanism for choosing
delays is common between the heuristics presented below and will be described
later in this section.

RET. As a continuation of our work on randomized techniques from [13] we
implement them in Uppaal for both Timed and Stopwatch Automata. The
study proposed two different heuristics for selecting a target transition. A heuris-
tic denoted as RET (Random Enabled Transition) selects one of the eventu-
ally enabled transitions, i.e. transitions that are either currently enabled or will
become such after a delay, uniformly at random. This means that at each step
each transition is equally likely to be selected. When used in the model from
Fig. 1, RET would first choose one of the two transitions at random, having a
probability of 1

2 to reach the Goal location in 1 step.

RLC, RLC-A. Here we introduce a heuristic denoted as RLC that chooses a
transition with the least coverage for the sending edge. If there is more than one
such transition, RLC picks one uniformly at random. In systems that are cyclic
or contain multiple loops, RLC provides a more uniform exploration of the state-
space which may be useful for some models. Consider the model from Fig. 2 that
uses two integer variables i and j. The only initially available edge is the bottom
loop edge at the Init location which increments the variable i by 1 upon each
traversal. Once i==2, the leftmost loop edge can be taken, resulting in a reset of
i and increment of j (i=0,j++). Crucially, if the variable i is incremented above
the value 2, the leftmost loop edge becomes permanently unavailable. Hence, to
reach Goal the leftmost edge has to be taken as soon as it becomes available
and at least 7 times (j>=7) in one run. Since the coverage of the leftmost edge
is always lower, the probability for RLC heuristic to discover Goal in 1 random
walk is 100% while for RET it is less than 1%. The coverage counters, however,
are reset at the start of a random walk, making each subsequent run independent
of the previous one. We also experiment with a similar heuristic that does not



Randomized Reachability Analysis in Uppaal 155

reset the coverage counters and instead keeps them shared among all of the
random walks. We denote such accumulative heuristic as RLC-A.

Fig. 2. Timed Automaton model of a difficult case for RET heuristic.

Other Randomized Methods Investigated. A number of tokenized heuris-
tics, inspired by [14], have been attempted with the intent of storing a small,
fixed number of tokens in a clever way to increase the likelihood of reaching the
target state faster. Unfortunately, as no considerable improvements have been
observed we decided to exclude these heuristics and leave them as future work.

We have also tried using traces of symbolic MC of Uppaal from verification
of the Herschel-Planck model to guide the random walks towards the target
state. However, even with the RDFS search strategy, all of the symbolic traces
have appeared to be spurious due to the over-approximate analysis of stopwatch
automata. Hence, we could not gain any useful results with this approach.

To reduce resource demands for the most expensive operation in a random
walk – computation of eventually enabled transitions – an alternative heuristic
to RET was used in [13] denoted as RCF (Random Channel First). Instead of
computing all eventually enabled transitions, RCF first randomly picks a chan-
nel and only computes transitions labeled with that channel. However, during
implementation of these techniques in Uppaal it became clear that the RCF
does not give performance advantages over RET due to the differences in the
underlying data structures of Uppaal and Java prototype from [13]. Therefore,
we got rid of the RCF heuristic.

Choosing Delay. A naive way of choosing delays – uniformly at random from
a given range – is likely to not be very efficient. While in some systems that are
either small or not sensitive to specific delay values reaching target state can be
doable, in more complex models such a strategy may not be optimal. In [13] we
experimented with a few different strategies for choosing delay values, such as
(1) uniformly at random, (2) based on predefined probability distribution and 3)
based in changing (adapting) delay probability distributions. The experiments
have shown the first strategy to be the least efficient, whereas the third one has
shown the most potential. Hence, we reuse the third strategy here with slight
modifications for RET, RLC and RLC-A heuristics.

The idea behind the adaptive delay choice algorithm is the following: the
delays are drawn in accordance to some predefined delay probability distri-
bution which changes on each unsuccessful random walk. Such distribution
in this case defines probability for lower bound (LB), upper bound (UB) or
the values in between the bounds to be chosen. For example, a distribution of



156 A. Kiviriga et al.

40% LB/40% UB means that it is equally probable that either LB or UB will be
selected as a delay, while leaving 20% chance for intermediate delay to be chosen
uniformly at random from the range that excludes the bounds. Table 3 shows
the sequence delay probability distributions used in this study. Upon reaching
the last distribution in the sequence, the next random walk starts from the first
one.

Table 3. Delay probability distributions used for RET, RLC and RLC-A.

Sequence 1 2 3 4 5 6 7 8 9 10 11

Lower bound 60% 70% 80% 90% 100% 0% 10% 20% 30% 40% 40%

Uniform 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 20%

Upper bound 40% 30% 20% 10% 0% 100% 90% 80% 70% 60% 40%

Previously, the cycle of delay probability distributions did not leave any room
for intermediate time delays, considering only LB or UB values. The downside is
that for some systems it means that parts of the state-space become unreachable
by the algorithm; however, experiments have shown this strategy to be surpris-
ingly efficient. To eliminate the flaw of intermediate delay values never being
chosen, here we add a 40% LB/40% UB probability distribution, leaving 20%
chance to select an intermediate time value. As the result, a target state, if one
exists, will be eventually found in any system.

Random Walk Depth. To explore the state-space gradually and reduce the
risk of a random walk being stuck in an isolated part of the state-space with no
target state, we increase the random walk depth dynamically as the exploration
continues. Specifically, the first batch of random walks at most can perform 24

steps. After the full cycle of delay probability distributions is completed, the
random walks in the next cycle have their maximum allowed depth doubled, but
no further than 218 steps. Should one have some apriori knowledge of the system,
it is also possible to manually set the maximum allowed depth in Uppaal that
is a constant value used for all of the conducted random walks.

Shorter or Faster Trace. Since our techniques cannot disprove reachabil-
ity of a target state due to under-approximate analysis, searching for errors in
large systems, where symbolic techniques struggle, is one of the main expected
applications. To aid developer in analyzing error traces and fixing systems, we
implement an option to search for an optimal trace being the either shortest, in
the size of steps, or the fastest, in the amount of total delay. With either one of
these options selected, the algorithm searches for the initial trace and afterwards
restricts all subsequent random walks to the current smallest amount of steps or
delay discovered. Every randomized heuristic can be used with the shortest or
fastest option and we refer to those by appending “-S” or “-F”, e.g. RET-S.

In symbolic model-checking, searching for an optimal trace requires an
exhaustive exploration of the state-space. Thus, for larger systems, it often



Randomized Reachability Analysis in Uppaal 157

drastically increases time and memory demands up to an extent where it becomes
impractical. As opposed to that, our randomized techniques do not require more
memory as the old trace is being discarded as soon as the new, more optimal
one is discovered. On the down side, being a non-exhaustive technique the ran-
domized search cannot guarantee that any discovered trace is indeed the most
optimal, endlessly continuing the search. In Uppaal we let the user provide
timeout value (in seconds) which is defaulted to 300 s.

3 New Results on Herschel-Planck

According to previous results on Herschel-Planck model [8], symbolic MC con-
firmed schedulability for f = BCET

WCET ≥ 90%. However, symbolic MC cannot be
used for disproving schedulability due to over-approximate analysis of automata
with stopwatches, used to encode preemption. Thus, SMC was used to gener-
ate concrete counterexamples, disproving schedulability for f ≤ 71%. For the
rest of f ∈ (71%, 90%) both symbolic and statistical MC were inconclusive
due to either over-approximation or burden in computation time, respectively.
All of the models used in the experiments are made available at:
http://people.cs.aau.dk/∼ulrik/submissions/874325/FMICS2021.zip.

Table 4. Average time to detect non-schedulability in Herschel-Planck (in seconds).
SMC search is limited to 160, 640 or 1280 cycles of 250ms.

f (%) SMC (160) SMC (640) SMC (1280) SEM RET RLC RLC-A

68 3378.82 3656.0 2626.11 nf 14.1 14.35 14.48

69 6087.64 3258.13 3565.49 nf 15.91 14.32 13.7

70 19408.04 16875.89 24322.69 nf 17.59 14.47 14.77

71 85837.23 nf nf nf 22.54 16.56 16.75

72 nf nf nf nf 27.81 18.42 18.96

73 nf nf nf nf 31.56 20.66 20.68

74 nf nf nf nf 52.53 38.08 40.31

75 nf nf nf nf 72.16 61.98 68.35

76 nf nf nf nf 83.12 328.03 327.32

77 nf nf nf nf 375.08 nf nf

78 nf nf nf nf 1155.50 nf nf

79 nf nf nf nf 2009.01 nf nf

80 nf nf nf nf 11194.43 nf nf

81 nf nf nf nf nf nf nf

http://people.cs.aau.dk/~ulrik/submissions/874325/FMICS2021.zip


158 A. Kiviriga et al.

Table 5. Trace length comparison.

f (%) RET RET-S Timeout
68 6882 560 1 h
69 7619 568 1 h
70 8285 572 1 h
71 10411 570 1 h
72 12394 571 1 h
73 15937 578 1 h
74 26605 1549 1 h
75 41003 1546 1 h
76 40154 1529 1 h
77 97258 1536 1 h
78 119939 1540 5 h
79 129387 1536 5 h
80 145493 6455 20 h

In our experiments we compare SMC to
our randomized reachability analysis tech-
niques in attempt to detect non-schedulability
in Herschel-Planck model for varying exe-
cution times in the interval of [f · WCET,
WCET]. The results are shown in Table 4 with
each test case given 48 h. As the f value gets
higher we see the expected growth in compu-
tational demands with f = 71% requiring just
under 24 h for SMC to disprove schedulability,
confirming results of [8]. On the other hand,
3 out of 4 of our randomized heuristics were
able to detect an error for the same setting
of f = 71% in less than 23 s, improving on
performance of SMC by three orders of mag-
nitude. Furthermore, RET heuristic appeared
to give the best results, witnessing unschedu-
lability for values of f up to and including 80%. We have also tried running
longer experiments of up to 7 days for f = 81%, but no errors were discovered
which hints at possibility of the Herschel-Planck system being schedulable for
f > 80%. The SEM heuristic turned out to be the least efficient one, failing to
discover any errors, which is likely due to the exponentially small probability of
hitting the “right” time windows with chosen delays. Overall, these experiments
showcase the strength of randomized reachability analysis being fit as a part of
an efficient development process that speeds up falsification of models.

Once a trace leading to an error is discovered, it might be in the interest of
a developer to analyze it to find the cause for the error. The trace, however, can
be arbitrarily long, especially for larger systems, making its analysis difficult
in practice. In our next experiment we look at the average length of traces

Fig. 3. 10 runs of RET-S for Herschel-Planck with f = 75%.



Randomized Reachability Analysis in Uppaal 159

found for Herschel-Planck system and compare RET heuristic from experiments
in Table 4 against the version of RET with the shortest trace option enabled
- RET-S. In order for non-exhaustive exploration of RET-S to terminate, we
specify the Timeout value and increase it w.r.t. to the average time required by
RET to find an error. The results are shown in Table 5. With the given timeout,
RET-S shortens the length of the trace by a factor of 12 at minimum. Note that
for f ∈ [75%, 79%] the length of the shortest discovered trace is approximately
the same – just under 1600 – while the effort to discover such trace is roughly
proportional to the average time to detect the first trace (as shown in Table 4).

The exact value of the timeout has to be decided on by the user which
may not be an easy parameter to estimate in the setting of randomized and
unpredictable exploration. To better understand how RET-S behaves, we plot
10 runs of RET-S for Herschel-Planck system with f = 75% in Fig. 3. In average
it took 263.14 s to find a trace of sub 1600 steps, while the longest run took 970 s.

4 More Schedulability

As already stated, application of symbolic techniques to stopwatch models may
provide spurious traces due to over-approximate analysis of Uppaal. If the target
state in these models is potentially reachable, we can use SMC to generate
concrete and exact traces witnessing the reachability of the goal state. However,
SMC can only be applied to systems with broadcast channels as required by
stochastic semantics SMC operates on. In stopwatch models that use handshake
channels, our randomized methods become the only solution that can perform
a more exact reachability analysis.

Table 6. Average time to find target state in stopwatch automata models. Symbolic
MC techniques provide potentially spurious traces.

Model #loc BFS DFS RDFS SMC SEM RET RLC RLC-A

IMAOptim-0 88 0.09 0.1 0.07 0.04 0.07 0.1 0.1 0.08

IMAOptim-1 88 0.21 0.2 0.08 0.05 0.05 0.08 0.08 0.06

IMAOptim-2 88 0.21 0.26 0.09 0.06 0.08 0.11 0.11 0.1

md5-jop 594 0.25 10.8 6.53 n/a 0.15 0.18 0.18 0.12

md5-hvmimp 476 0.41 0.85 0.49 n/a 0.1 0.14 0.14 0.09

md5-hvmexp 11901 oom oom oom n/a 14.17 19.85 20.18 8.71

MP-jop 371 0.39 0.14 0.12 n/a 0.08 0.12 0.12 0.09

MP-hvmimp 371 0.35 0.14 0.12 n/a 0.08 0.12 0.12 0.09

MP-hvmexp 4388 oom oom oom n/a 13.49 22.95 21.99 8.59

simplerts-opt 409 oom oom oom n/a 2.43 1.48 nf nf

We consider more schedulability systems modelled as stopwatch automata.
Table 6 shows experiments for two different sets of schedulability problems:



160 A. Kiviriga et al.

ARINC-653 partition scheduling of integrated modular avionics systems [11]
(denoted as IMAOptim) and schedulability of Java bytecode systems, originat-
ing from TetaSARTS project [21], that are encoded as networks of automata
and represent the original layered structure of Java bytecode systems. Our ran-
domized methods discover the target state within 20 s even for a huge system
with almost 12 thousands of locations, where other techniques are either not
applicable or run out of memory.

5 Gossiping Girls

As claimed earlier, the randomized reachability analysis can serve as a useful
tool particularly for an efficient development process. It can be used early in
the development, as well as in late stages, for a quick falsification of models, i.e.
discovery of errors or checking if another “rare event” state is actually reachable
in practice.

To test the efficiency of our randomized methods and challenge them with
different model development styles, we look at models of the same problem
created by different developers. Specifically, we consider the Gossiping Girls
problem, where a number of girls n each know a distinct secret and wish to share
it with the rest of the girls. They can do so by calling each other and exchanging
either only their initial or all of currently known secrets. The girls are organized
as a total graph, allowing them to talk with each other concurrently, but with a
maximum of 2 girls per call. Some variations of the problem have specific time
constraints on the duration of the call or exhibit a different secret exchange
pattern, but all with the same final goal of all the girls discovering all of the
secrets. This is a combinatorial problem with each girl having a string of n bits
which can at most take 2n values. For a total of n girls this amounts to a string
of n2 with at most 2n

2
values. This makes it an incredibly hard combinatorial

problem which, when scaled up, quickly exposes the limits of symbolic model-
checking due to the state-space explosion problem.

We have gathered 10 models of the Gossiping Girls problem made by Mas-
ter’s thesis students as the final assignment for the course on model-checking at
Aalborg University in Denmark. These students represent potential future model
developers and we use their model to further experiment on applicability of the
randomized methods. The implementation details vary from model to model,
including timing constraints and secret exchange patterns. We leave the models
unchanged and only scale them up to a certain amount of nodes to challenge
both symbolic and randomized methods.



Randomized Reachability Analysis in Uppaal 161

We first experiment on the models scaled up to 8 girls and look for a state
with of all the girls having exchanged their secrets, while bounded by a certain
global time constraint. The results are shown in Table 7 where each cell represent
the average time for each found trace within 2 h. For 9 out of 10 of the models
our randomized heuristic RET shows a massive improvement in performance
compared to symbolic methods, whereas in 1 model the performance is on the
same level. Since the problem is time constrained, the worst performance is that
of SEM heuristic which fails to find our target state due to an inefficient way
of selecting delays. Importantly, for some models some of the RDFS runs were
“lucky” to discover the target state almost immediately, while other “unlucky”
tries instead ran out of memory (oom). The oom attempts of RDFS contribute
to the performance by noticeably dragging up the average time to find the goal
state. Another important factor is memory: unlike symbolic methods, that are
given 16 GB of memory, our randomized techniques do not run out of memory
as its usage is constant w.r.t to the size of the model and amounts to at most
14 MB for any of the heuristics for this set of experiments.

Table 7. Gossiping Girls with 8 nodes. Each cell represent avg. time for each found
trace within 2 h. Searching for a state with all secrets shared within a certain time.

Model BFS DFS RDFS SEM RET RLC RLC-A

Gosgirls-1 oom oom 697.13 nf 0.39 6949.95 nf

Gosgirls-2 oom oom 0.02 nf 0.04 0.04 0.04

Gosgirls-3 oom oom 44.49 nf 0.02 0.02 0.09

Gosgirls-4 oom oom 28.35 nf 0.03 0.03 nf

Gosgirls-5 oom oom 229.98 nf 0.02 0.02 0.02

Gosgirls-6 oom oom 64.00 nf 3.71 167.44 1530.99

Gosgirls-7 oom oom 55.61 nf 0.17 15.16 15.6

Gosgirls-8 oom oom 13.96 nf 0.04 0.03 0.03

Gosgirls-9 oom oom 2.08 nf 0.08 0.07 0.08

Gosgirls-10 oom oom 598.64 nf 0.24 1.72 nf

Discovery of the state where all the secrets are known is arguably an easy
target as such state will eventually always appear as we traverse the state-space.
This also explains why RDFS was sometimes “lucky” to detect the searched
state before it ran out of memory. We now experiment with searching for a
particular configuration of secrets in models with 6 girls and show results in
Table 8. Concretely, we divide the 6 girls into two clusters of 2 and 4 girls, and
search for a state where each girl knows all the secrets of the other girls in the
same cluster, but none from the other cluster. Such a state occurs less often
in the state-space and is easy to miss, making it a more challenging problem;
Hence, only 6 girls are considered. Unlike in previous experiments, the most
efficient symbolic search strategy is different for each individual model due to



162 A. Kiviriga et al.

Table 8. Gossiping Girls with 6 nodes. Each cell represent avg. time for each found
trace within 2 h. Searching for a particular configuration of secrets known.

Model BFS DFS RDFS SEM RET RLC RLC-A

Gosgirls-1 16.98 oom oom 2.17 1.35 1.60 0.23

Gosgirls-2 0.04 oom 360.43 0.04 0.04 0.04 0.04

Gosgirls-3 77.96 oom oom nf 1.44 0.19 0.10

Gosgirls-4 oom oom oom nf 0.03 0.02 nf

Gosgirls-5 oom oom oom nf 0.02 0.02 0.02

Gosgirls-6 oom 244.66 2596.62 5.92 7.10 nf nf

Gosgirls-7 oom oom oom nf 0.14 75.44 141.20

Gosgirls-8 32.63 oom oom nf 0.11 3.24 505.99

Gosgirls-9 oom oom 199.77 0.10 13.04 3.65 2.07

Gosgirls-10 oom oom 209.36 nf 0.02 0.03 0.04

the variance in model implementations. The randomized methods appear largely
superior in almost all cases, with the RET heuristic being the most consistent
and efficient across all the models. Note that even for 6 girls in a lot of cases
symbolic techniques still run out of memory, whereas our random methods use
less than 15 MB.

6 Scalability Experiments

We further investigate the efficiency of our randomized methods on a set of
standard Uppaal timed automata models. The models are scaled up in order to
challenge both symbolic and randomized techniques and the results are provided
in Table 9. The results are truly impressive – randomized methods perform up to
4 orders of magnitude faster and scale significantly better.

Even though the SEM heuristic shows the best performance of many models,
its inefficient way of selecting delays causes it to completely miss target states
on some models as demonstrated by all of the experiments in this study. Due to
under-approximation, it is possible to construct “evil” examples for any heuristic,
rendering it inefficient. We then make all of the heuristics available in Uppaal.



Randomized Reachability Analysis in Uppaal 163

Table 9. Average time to find target state in Timed Automata.

Model BFS DFS RDFS SEM RET RLC RLC-A

csma-cd-20N 20.2 oom 0.02 0.03 0.07 0.06 0.21

csma-cd-22N 37.48 oom oom 0.03 0.08 0.08 0.31

csma-cd-25N 91.0 oom oom 0.05 0.09 0.1 0.55

csma-cd-30N 313.54 oom oom 0.05 0.12 0.19 1.43

csma-cd-50N oom oom oom 0.46 0.84 1.19 15.29

Fischer-10N 0.9 22.84 4.3 0.04 0.05 1.21 nf

Fischer-15N 8.35 6037.63 9038.96 0.09 0.09 5.06 nf

Fischer-20N 72.61 oom oom 0.3 0.28 17.28 nf

Fischer-25N 452.45 oom oom 0.64 0.73 36.93 nf

Fischer-50N oom oom 90.01 21.78 23.79 233.67 nf

FischerME-10N 7.15 0.14 0.02 0.01 0.02 0.01 0.02

FischerME-15N oom 11.45 0.05 0.04 0.04 0.03 0.16

FischerME-20N oom 970.33 0.4 0.11 0.09 0.05 0.04

FischerME-25N oom oom 83.29 0.25 0.21 0.08 0.07

FischerME-50N oom oom 174.32 14.87 15.26 0.49 4.04

LE-Chan-3N 0.03 0.35 0.04 0.01 0.01 0.01 0.01

LE-Chan-4N oom oom 107.7 0.95 0.54 4.36 0.07

LE-Chan-5N oom oom 1167.41 53.21 31.38 102.08 nf

LE-Hops-3N 0.02 0.02 0.02 0.01 0.01 0.01 0.01

LE-Hops-4N oom oom oom 49.40 14.57 428.96 1588.33

LE-Hops-5N oom oom 1108.15 63.44 35.15 36.49 49.00

Milner-N100 0.45 0.16 2.72 nf 0.11 0.11 0.12

Milner-N500 44.44 10.56 1619.75 nf 1.19 1.2 1.43

Milner-N1000 488.41 110.35 36455.73 nf 4.44 4.45 4.59

Train-200N oom 5.64 6.06 5.91 5.4 16699.98 nf

Train-300N oom 28.19 30.28 25.62 26.53 nf nf

Train-400N oom 85.22 90.66 67.91 70.87 nf nf

Train-500N oom 210.89 223.13 181.99 188.9 nf nf

Train-1000N nf 3461.17 3542.08 2192.12 2541.57 nf nf

Train-2000N nf 71286.92 oom 19229.02 23233.21 nf nf

7 Conclusion

We have presented a new method of randomized reachability analysis in the
domain of model-based verification. The method excels at detection of “rare
event” states, such as errors, by means of quick and lightweight random walks
through the system. Randomized reachability analysis explores the state-space in
an under-approximate manner and can only conclude on reachability if the target
state is discovered. However, in many cases this method significantly outperforms
other existing techniques at reachability checking. Randomized reachability anal-
ysis is therefore a very useful addition to the process of model development: it
provides an efficient way of checking models for potential bugs or violations dur-
ing the development and can be followed by exhaustive and expensive symbolic
verification at the very end. The randomized method also supports the search



164 A. Kiviriga et al.

for either shorter or faster trace to the target state, which improves the process
of debugging the model. The randomized reachability analysis is implemented
and made available for use in the model checker Uppaal.

To validate the efficiency of our method, we have performed extensive exper-
iments on models of varying size and origin. The results are extremely encourag-
ing: randomized reachability analysis discovers “rare event” states up to several
orders of magnitude faster. In particular, a case that could previously be ana-
lyzed by SMC in 23 h now only takes 23 s. Moreover, our randomized methods
discover traces to target states in cases that were previously intractable by any
of the existing techniques either due to state-space explosion or inconclusiveness
in verification of stopwatch models.

8 Future Work

Further investigations into tokenized, coverage-based and guided methods can
be done to improve the efficiency of the method. Some combinations of static
analysis of the models with either fixed or dynamic look-ahead for the random
walk could result in better performance of the method.

One future goal is to perform a more thorough and independent user evalua-
tion of the benefits of the randomized reachability analysis. This could indicate
the need for more parameters to be manually set by the user, such as custom
delay probability distribution, or could highlight other areas for improvement of
randomized methods.

Automatic sanity checks is another improvement that can noticeably enhance
the user experience and aid during model development. An implementation [17]
for Uppaal of such sanity checks has been undertaken as a master thesis project
[18] in the Formal Methods & Tools group at University of Twente. This report
demonstrates the usefulness of such sanity checks and highlights the need for
quick feedback to the tool user. Our randomized method is highly suitable for
this purpose.

References

1. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems, SFM-
RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30080-9 7

2. Boudjadar, A., et al.: Statistical and exact schedulability analysis of hierarchical
scheduling systems. Sci. Comput. Program. 127, 103–130 (2016). https://doi.org/
10.1016/j.scico.2016.05.008

3. Boudjadar, A., et al.: A reconfigurable framework for compositional schedulability
and power analysis of hierarchical scheduling systems with frequency scaling. Sci.
Comput. Program. 113(3), 236–260 (2015). https://doi.org/10.1016/j.scico.2015.
10.003

https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1016/j.scico.2016.05.008
https://doi.org/10.1016/j.scico.2016.05.008
https://doi.org/10.1016/j.scico.2015.10.003
https://doi.org/10.1016/j.scico.2015.10.003


Randomized Reachability Analysis in Uppaal 165

4. Brekling, A., Hansen, M.R., Madsen, J.: MoVES—A framework for modelling and
verifying embedded systems. In: 2009 International Conference on Microelectronics
- ICM, pp. 149–152 (2009). https://doi.org/10.1109/ICM.2009.5418667

5. Burns, A.: Preemptive Priority-Based Scheduling: An Appropriate Engineering
Approach, pp. 225–248. Prentice-Hall Inc., Hoboken (1995)

6. David, A., Illum, J., Larsen, K.G., Skou, A.: Model-based framework for schedu-
lability analysis using Uppaal 4.1. Model-Based Des. Embed. Syst. 1(1), 93–119
(2009)

7. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

8. David, A., Larsen, K.G., Legay, A., Mikucionis, M.: Schedulability of Herschel-
Planck revisited using statistical model checking. In: Margaria, T., Steffen, B.
(eds.) Leveraging Applications of Formal Methods, Verification and Validation,
ISoLA 2012. LNCS, vol. 7610, pp. 293–307. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34032-1 28

9. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: schedulabil-
ity, decidability and undecidability. Inf. Comput. 205(8), 1149–1172 (2007).
https://doi.org/10.1016/j.ic.2007.01.009, https://www.sciencedirect.com/science/
article/pii/S0890540107000089

10. Grosu, R., Smolka, S.A.: Monte Carlo model checking. In: Halbwachs, N., Zuck,
L.D. (eds.) Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31980-1 18

11. Han, P., Zhai, Z., Nielsen, B., Nyman, U.: Model-based optimization of ARINC-
653 partition scheduling. Int. J. Softw. Tools Technol. Transf. (2021). https://doi.
org/10.1007/s10009-020-00597-6

12. Joseph, M., Pandya, P.: Finding response times in a real-time system. Comput. J.
29(5), 390–395 (1986). https://doi.org/10.1093/comjnl/29.5.390

13. Kiviriga, A., Larsen, K.G., Nyman, U.: Randomized refinement checking of timed
I/O automata. In: Pang, J., Zhang, L. (eds.) Dependable Software Engineering.
Theories, Tools, and Applications, SETTA 2020. LNCS, vol. 12153, pp. 70–88.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62822-2 5

14. Larsen, K., Peled, D., Sedwards, S.: Memory-efficient tactics for randomized LTL
model checking. In: Paskevich, A., Wies, T. (eds.) Verified Software. Theories,
Tools, and Experiments, VSTTE 2017. LNCS, vol. 10712, pp. 152–169. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-72308-2 10

15. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H., et al. (eds.) Runtime Verification, RV 2010. LNCS, vol. 6418, pp.
122–135. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-
9 11

16. Mikučionis, M., et al.: Schedulability analysis using Uppaal: Herschel-Planck case
study. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Meth-
ods, Verification, and Validation, ISoLA 2010. LNCS, vol. 6416, pp. 175–190.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16561-0 21

17. Onis, R.: UrPal. https://github.com/utwente-fmt/UrPal. Accessed 18 May 2021
18. Onis, R.: Does your model make sense?: Automatic verification of timed systems

(2018). http://essay.utwente.nl/77031/
19. Palm, S.: Herschel-Planck ACC ASW: sizing, timing and schedulability analysis.

Technical report, Terma A/S (2006)

https://doi.org/10.1109/ICM.2009.5418667
https://doi.org/10.1007/978-3-642-34032-1_28
https://doi.org/10.1007/978-3-642-34032-1_28
https://doi.org/10.1016/j.ic.2007.01.009
https://www.sciencedirect.com/science/article/pii/S0890540107000089
https://www.sciencedirect.com/science/article/pii/S0890540107000089
https://doi.org/10.1007/978-3-540-31980-1_18
https://doi.org/10.1007/978-3-540-31980-1_18
https://doi.org/10.1007/s10009-020-00597-6
https://doi.org/10.1007/s10009-020-00597-6
https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1007/978-3-030-62822-2_5
https://doi.org/10.1007/978-3-319-72308-2_10
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-642-16561-0_21
https://github.com/utwente-fmt/UrPal
http://essay.utwente.nl/77031/


166 A. Kiviriga et al.

20. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) Computer Aided Verification,
CAV 2004. LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-27813-9 16

21. Søe Luckow, K., Bøgholm, T., Thomsen, B.: A Flexible Schedulability Analysis
Tool for SCJ Programs. http://people.cs.aau.dk/∼boegholm/tetasarts/. Accessed
07 May 2021

https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
http://people.cs.aau.dk/~boegholm/tetasarts/


Verifying the Mathematical Library of an
UAV Autopilot with Frama-C

Baptiste Pollien1(B), Christophe Garion1, Gautier Hattenberger2,
Pierre Roux3, and Xavier Thirioux1

1 ISAE-SUPAERO, Université de Toulouse, Toulouse, France
baptiste.pollien@isae-supaero.fr

2 ENAC, Toulouse, France
3 ONERA, Toulouse, France

Abstract. Ensuring safety of critical systems is crucial and is often
attained by extensive testing of the system. Formal methods are now
commonly accepted as powerful tools to obtain guarantees on such sys-
tems, even if it is generally not possible to formally prove the safety
and correctness of the whole system. This paper presents an ongoing
work on the formal verification of the Paparazzi UAV autopilot using
the Frama-C verification platform. We focus on a Paparazzi mathemati-
cal library providing different UAV state representations and associated
conversion functions and manage to prove the absence of runtime errors
in the library and some interesting functional properties on floating-point
conversion functions.

Keywords: Proof of program · Critical systems · Deductive methods ·
Abstract interpretation

1 Introduction

Formal methods are verification techniques based on mathematics which facili-
tate the formal verification of properties of hardware, software or models. They
are nowadays widely accepted as an efficient complement to testing, particularly
for critical systems, see for instance the DO-330 supplement to DO-178C. There
are many formal methods and they can be distinguished by the properties they
can help to verify, the efforts required to specify the system in order to use the
verification tools, or their automation level. For instance, abstract interpretation
is often used to prove the absence of runtime errors and is an automatic tool.
Deductive verification is another tool that can be used to prove more complex
properties, like correctness of a program given a formal specification, and gen-
erally uses automated solvers, though sometimes needs to use a proof assistant
and requires human intervention.

This work is supported by the Defense Innovation Agency (AID) of the French Ministry
of Defense (research project CONCORDE N 2019 65 0090004707501).

c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 167–173, 2021.
https://doi.org/10.1007/978-3-030-85248-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_10&domain=pdf
https://wiki.paparazziuav.org/wiki/Main_Page
https://doi.org/10.1007/978-3-030-85248-1_10


168 B. Pollien et al.

The goal of this ongoing project is to review different formal verification
techniques to define an analysis process taking advantage of these tools in order
to verify properties of an UAV autopilot. This analysis process is applied on the
Paparazzi autopilot developed at ENAC and implemented in the C programming
language [6,9].

Frama-C [7] is a C code analysis tool facilitating formal verification. Verifica-
tion with Frama-C require the addition of annotations in the C code as special
comments to specify the expected properties: definition of contracts for func-
tions (preconditions, postconditions and frame specification (i.e., all the memory
elements that will be modified during the execution of the function), and the
definition of invariants and variants for loops and assertions. Frama-C has many
plugins but three were of particular interest: WP (Weakest Precondition) which
uses the weakest preconditions calculus, RTE (RunTime Errors) that automat-
ically add assertions to verify the absence of runtime errors, and EVA (Evolved
Value Analysis) using abstract interpretation to compute sets of possible values
for each variable of the program.

Verification of the Paparazzi autopilot is currently done using the Frama-C
platform (version 23.0 Vanadium) and mainly automatic provers1. We focused
on verifying a mathematical library presented in Sect. 2. Section 3 details the
analysis concerning the absence of runtime errors. The second part of the anal-
ysis covers the verification of functional properties for some state representation
transformation functions. Section 4 details the verification process using only
automatic provers. As automatic provers were not able to prove some of these
functions, Sect. 5 presents how we proved such functions using the interactive
prover Coq [12]. Finally, Sect. 6 gives a conclusion and some perspectives.

2 The Paparazzi Autopilot

Paparazzi [6] is an open-source autopilot under GPL license developed at ENAC
since 2003. Paparazzi supports various types of drones and permits the control
of several of them simultaneously. Paparazzi has also various built-in modes and
offers the ability to create personalized flight plans. The mathematical library
studied here provides functions converting different representations of vector
rotations as rotation matrices, Euler angles, or quaternions. It also defines ele-
mentary operations on these representations. This library is written in the C
programming language and each function is available in three versions: one using
double values, another one with float values and the last one using int values
to represent fixed point values.

3 Proving the Absence of Runtime Errors

The studied library defines C structures for the different representations (rota-
tion matrices, quaternions, vectors, etc.). The library functions take only pointers
1 Complete specified code of Paparazzi, tools versions, and installation instructions

are available on https://gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c/-/tree/
fmics-2021.

http://wiki.paparazziuav.org/wiki/Main_Page
https://gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c/-/tree/fmics-2021
https://gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c/-/tree/fmics-2021


Verifying the Mathematical Library of an UAV Autopilot with Frama-C 169

on such structures as inputs and always return pointers. Preconditions ensuring
the validity of pointers have been added in the contracts as the functions are
not designed to work with invalid pointers. It has also been necessary to specify
which variables will be modified during the execution of the function. Finally,
invariants on for loop have been added to help the provers to ensure the absence
of runtime errors.

The WP plugin of Frama-C offers different models of arithmetic that take
into account more or less precisely C semantics. The verification of the int
flavor of the functions was made using 32-bits integer arithmetic with overflows.
When using the RTE plugin to verify the absence of runtime errors, assertions
are automatically added to check that there is no overflow for each arithmetical
operation. To verify this, each function was manually analyzed to determine
the maximum possible value for the different variables. When bounds of the
variables have been determined, they were added as preconditions in the function
contracts. Unfortunately, WP associated with automatic provers is not able to
verify these new contracts. Even if the complete memory separation of structures
used in a function is specified as precondition, the solvers are unable to prove
that the modification of a field in a structure does not change any other part of
the memory.

To overcome this problem, we decided to associate the EVA plugin to WP.
EVA has no issue dealing with pointers nor aliasing and is able to compute
accurate intervals of possible values for each variable. The result is then passed
to WP by Frama-C, which makes it easier to conclude some proofs. This WP
limitation when pointers are extensively used as input and output parameters
was also found by Vassil Todorov during his PhD thesis [13]. He also used a
static analysis tool using abstract interpretation, Astrée [3], to solve the same
problem. To conclude, the association of EVA and WP enables the verification
of absence of runtime errors for the functions using int values.

WP has also an arithmetical model real for real arithmetic. We decided to
use this model for the verification of the library functions working on floating-
point values. Using the same precondition used for the int version of the func-
tions, and such a model permits us to verify the absence of division by zero and
that real variables do not take the NaN value. To perform these verifications,
it was only necessary to add as preconditions the fact that each pointer refers
to a valid address. The absence of these two kind of runtime errors as well as
the termination of the functions have been proven, using WP and EVA, for the
float and double versions of the library. Unfortunately, our verification does
not offer any guarantee on the risk of floating-point overflow or on rounding
errors. Moreover, the properties proven for the real model can only serve as
an hint, but not a guarantee, that they hold for floating-point values. However,
this model was particularly useful to verify functional properties as presented
in Sect. 4. Indeed, even if the model is semantically incorrect and we cannot get
functional guarantees during execution, it permits at least to verify that the code
is correct in the mathematical sense.



170 B. Pollien et al.

4 Functional Verification Using Automatic Provers

The goal of functional verification is to ensure properties about the behavior of
functions. We will first focus here on the function float rmat of quat to explain
the process used. This function takes a normalized quaternion as input and
returns the corresponding rotation matrix.

In order to specify the functional properties of such a function, types and
predicates have been defined in the logic provided by ACSL [1], the language
used to express Frama-C annotations. We defined types for matrices and quater-
nions, as well as elementary algebraic operations. We specified lemmas and
then verified them to ensure that these operations are correct (e.g., we ver-
ified that matrix transposition is idempotent). Then, a logical function that
converts a quaternion to a rotation matrix has been defined independently of
the C code from the library. This function is based on the mathematical equa-
tion that expresses the conversion of a quaternion to a rotation matrix [5,8].
In the following, we will note rmat of quat the function that represents this
conversion. rmat of quat’s semantics is expressed in ACSL as a mathematical,
model-based specification. This function takes as parameter a unitary quater-
nion q and returns a rotation matrix. Frama-C is able to verify automati-
cally that for any given unitary quaternion q, the rotation matrix computed
by rmat of quat corresponds to the same rotation as described by the quater-
nion. Verification of this property has required to verify the following lemma:
∀q ∈ H, v ∈ R

3, q(0, v)q∗ = (0, rmat of quat(q).v). This lemma states that
given a quaternion q and a vector v, applying the rotation with the quaternion
q on vector v is equivalent to applying the rotation matrix obtained from q by
rmat of quat on v.

The contract for the function float rmat of quat has then been established
using these ACSL functions. Assuming that the quaternion passed as parameter
is normalized, we wanted to verify two functional properties. The first one is that
the returned matrix does indeed correspond to the conversion of the quaternion
passed as a parameter: our post-condition verifies that the rotation matrix gen-
erated by the C code is equal to the rotation matrix generated by our logical
function rmat of quat. As presented in the previous section, we use the WP
real model for the verification of this property, thus ignoring the differences
in the results between the C version and the mathematical version which could
have been introduced by rounding errors. The second verified property is that
the generated matrix is indeed a rotation matrix, i.e. the transpose of the matrix
is its inverse, and its determinant is equal to 1.

Despite the use of the real arithmetic model, WP could not verify this con-
tract. It was therefore necessary to manually review the code. We noticed that
the C code used a constant M SQRT2 to represent

√
2. By analyzing the calcu-

lations done in the code, we realized that the constant M SQRT2 was every time
multiplied by itself. We therefore suggested a code modification that replaces
M SQRT2 * M SQRT2 by 2. This modification does not change the number of mul-
tiplications in the C code but permits to reduce the rounding errors propagated

https://gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c/-/blob/fmics-2021/sw/airborne/math/pprz_algebra_float.h#L639


Verifying the Mathematical Library of an UAV Autopilot with Frama-C 171

by the function. With this code change and the arithmetic model real, WP
verifies the contract of the function float rmat of quat.

5 Functional Verification Using Interactive Provers

The same verification has been attempted for the inverse function
float quat of rmat that converts a rotation matrix into a quaternion. There are
different equations to perform this conversion in the literature but we use the
four formulae using Shepperd’s method [10,11]. These equations are directly
deduced from the formula that converts a quaternion into a rotation matrix
and are defined according to the diagonal values of the rotation matrix: one
is defined when the trace is strictly positive, the three other ones are defined
when the trace is negative and correspond to the possible choices for the great-
est element of the diagonal of the matrix. We defined each of these formulae
by an ACSL logical function. When defining postconditions of C functions, we
uses ACSL behavior feature to specify one sub-contract per Shepperd’s case,
specifying as preconditions in the sub-contract the conditions for which the cor-
responding Shepperd’s function is defined. For instance, we defined a behavior
that requires as precondition that the trace of the input matrix is positive. These
behaviors then ensure, as postconditions, that the quaternion computed by the
C function is equal to the quaternion computed using the corresponding logical
function. Another feature offered by Frama-C is the possibility to verify that the
behaviors are disjoint and complete. I.e. for every input matrix, there is one and
only one behavior such that its preconditions are fulfilled by the matrix. With
this contract, we were able to verify that the function returns a quaternion that
corresponds to the same rotation as the matrix used as input.

Let us denote by quat of rmat the mathematical function that returns the
quaternion corresponding to a given rotation matrix. Let us consider here the
case where the rotation matrix used as input has a positive trace. Verifying that
quat of rmat is correct in this case is equivalent to verifying that the property
described on the following lemma holds: ∀R∀q ||q|| = 1 ∧ Tr(R) > 0 → (R =
rmat of quat(q) ↔ q = quat of rmat(R)). This lemma can be read as follows:
for all rotation matrices R with a positive trace and for all unitary quaternions
q, R represents the rotation matrix obtained from rmat of quat(q), if and only
if the function quat of rmat will return q when applied to R. It has then been
translated into an ACSL lemma, as well as the similar equations resulting from
the three other cases.

Unfortunately, Frama-C is not able to prove these lemmas using only auto-
matic SMT solvers, even after extending the timeout value considerably. The
proof requires specific transformations, such as factorization, that the solvers
might not be able to find. We therefore had to use the interactive mode of
WP. This mode generates incomplete proof scripts for each unproven goal. The
scripts contain all the definitions and lemmas that have already been proved by
Frama-C and the solvers. The theorem corresponding to an unproven goal needs
to be verified with some interactive prover where in our case, we use Coq [12].

https://gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c/-/blob/fmics-2021/sw/airborne/math/pprz_algebra_float.h#L965


172 B. Pollien et al.

The implication that if R is obtained from rmat of quat(q), then the function
quat of rmat will return q has been verified with Coq for the four lemmas. The
reverse implication has not been proved yet. However, by considering the verifi-
cation of the function rmat of quat, this proof is sufficient to guarantee that the
result of the function quat of rmat describe the same rotation than the input
matrix.

We also wanted to verify the function implementing the conversion from the
Euler representation of a rotation to a rotation matrix. In the library, there are
two functions, float rmat of eulers 321 and float rmat of eulers 312, that imple-
ment this conversion. These two functions differ on the order of Euler angles
(given the (�z, �y, �x) axis for the 321 function and given the (�z, �x, �y) axis for the
312 function). The contracts defined for these functions ensure that the matrix
must be special orthogonal, i.e., a rotation matrix. In order to verify these con-
tracts, we started using only automatic SMT solvers. The first problem we faced
was that the code for the conversion uses the cosf and sinf trigonometric func-
tions from the C standard library. Frama-C equips these built-in functions with
contracts, but these contracts do not provide enough information. We decided
to add an hypothesis in the contract stating that the result of these functions
was equal to the result obtained with the corresponding mathematical trigono-
metric function of ACSL (defined by \cos and \sin). This hypothesis might not
be correct. However, as we use the real model, this hypothesis permits to use
properties of trigonometric functions (for instance ∀a ∈ R, cos a2 + sin a2 = 1).

Unfortunately, Frama-C was not able to prove the postcondition of the con-
version functions, even with this hypothesis and WP tactics. WP tactics are a
feature offered by WP that applies basic transformations on the goals to simplify
them in order to discharge the solvers (for instance, definitions can be unfolded
or goals splitted into subgoals). Even by using tactics, there were remaining
unproven subgoals. Instead of using Coq to verify the whole postcondition, we
decided to define generic lemmas in ACSL which correspond to the subgoals
unproven by SMT solvers and verify them in Coq. Such a lemma is for instance
∀a, b, c ∈ R sin a2 ∗ cos b2 + (sin a ∗ sin b ∗ cos c − sin c ∗ cos a)2 + (cos c ∗ cos a +
sin a ∗ sin b ∗ sin c)2 = 1, which can easily be proved by hand using factorization
and properties of trigonometric functions.

6 Conclusion

We have presented in this paper an ongoing work on formal verification of a
mathematical library of the open-source autopilot Paparazzi. We have mainly
focused on the verification of the absence of runtime errors, but also have proven
interesting properties of rather complex functions.

In future work, we plan on completing the proof remaining presented in
Sect. 5. Some functional properties of other functions from the same mathemat-
ical library of Paparazzi should also be verified. We want especially to focus on
verifying rounding errors, and therefore do not use WP real model but rather
using a model that represents accurately the floating-point numbers. We should

https://gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c/-/blob/fmics-2021/sw/airborne/math/pprz_algebra_float.h#L618
https://gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c/-/blob/fmics-2021/sw/airborne/math/pprz_algebra_float.h#L626


Verifying the Mathematical Library of an UAV Autopilot with Frama-C 173

also compare our approach to autoactive proofs, where interactive provers are not
used, but SMT solvers are guided by assertions inserted by developers to help
the provers [2,4]. Finally, we plan to tackle formal verification of the Paparazzi
flight plan generator.

References

1. Baudin, P., Filliâtre, J., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language (2008)

2. Blanchard, A., Loulergue, F., Kosmatov, N.: Towards full proof automation in
Frama-C using auto-active verification. In: Badger, J., Rozier, K. (eds.) NASA For-
mal Methods, NFM 2019. LNCS, vol. 11460, pp. 88–105. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-20652-9 6

3. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Why does
Astrée scale up? Formal Methods in System Design 35(3), 229–264 (2009)

4. Dross, C., Moy, Y.: Auto-active proof of red-black trees in SPARK. In: Barrett,
C., Davies, M., Kahsai, T. (eds.) NASA Formal Methods, NFM 2017. LNCS,
vol. 10227, pp. 68–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57288-8 5

5. Grubin, C.: Derivation of the quaternion scheme via the Euler axis and angle. J.
Spacecraft Rockets 7(10), 1261–1263 (1970). https://doi.org/10.2514/3.30149

6. Hattenberger, G., Bronz, M., Gorraz, M.: Using the Paparazzi UAV system for
scientific research. In: International Micro Air Vehicle Conference and Competi-
tion 2014, IMAV 2014, Delft, Netherlands, pp. 247–252 (2014). https://doi.org/
10.4233/uuid:b38fbdb7-e6bd-440d-93be-f7dd1457be60, https://hal-enac.archives-
ouvertes.fr/hal-01059642

7. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
C: a software analysis perspective. Formal Aspects Comput. 27, 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

8. Klumpp, A.R.: Singularity-free extraction of a quaternion from a direction-cosine
matrix. J. Spacecraft Rockets 13(12), 754–755 (1976). https://doi.org/10.2514/3.
27947

9. Paparazzi UAV Team: Paparazzi - the free autopilot (2021). https://paparazzi-
uav.readthedocs.io/en/latest/

10. Sarabandi, S., Thomas, F.: Accurate computation of quaternions from rotation
matrices. In: Lenarcic, J., Parenti-Castelli, V. (eds.) Advances in Robot Kinematics
2018, ARK 2018. SPAR, vol. 8, pp. 39–46. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-93188-3 5

11. Shepperd, S.W.: Quaternion from rotation matrix. J. Guidance Control 1(3), 223–
224 (1978). https://doi.org/10.2514/3.55767b

12. The Coq Development Team: The Coq Proof Assistant, version 8.8.0 (2018).
https://doi.org/10.5281/zenodo.1219885, https://hal.inria.fr/hal-01954564

13. Todorov, V.: Automotive embedded software design using formal methods.
Ph.D. thesis, Université Paris-Saclay (2020). https://tel.archives-ouvertes.fr/tel-
03082647

https://doi.org/10.1007/978-3-030-20652-9_6
https://doi.org/10.1007/978-3-319-57288-8_5
https://doi.org/10.1007/978-3-319-57288-8_5
https://doi.org/10.2514/3.30149
https://doi.org/10.4233/uuid:b38fbdb7-e6bd-440d-93be-f7dd1457be60
https://doi.org/10.4233/uuid:b38fbdb7-e6bd-440d-93be-f7dd1457be60
https://hal-enac.archives-ouvertes.fr/hal-01059642
https://hal-enac.archives-ouvertes.fr/hal-01059642
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.2514/3.27947
https://doi.org/10.2514/3.27947
https://paparazzi-uav.readthedocs.io/en/latest/
https://paparazzi-uav.readthedocs.io/en/latest/
https://doi.org/10.1007/978-3-319-93188-3_5
https://doi.org/10.1007/978-3-319-93188-3_5
https://doi.org/10.2514/3.55767b
https://doi.org/10.5281/zenodo.1219885
https://hal.inria.fr/hal-01954564
https://tel.archives-ouvertes.fr/tel-03082647
https://tel.archives-ouvertes.fr/tel-03082647


Formal Analysis of the UNISIG Safety
Application Intermediate Sub-layer

Applying Formal Methods to Railway Standard Interfaces

Davide Basile1(B) , Alessandro Fantechi1,2 , and Irene Rosadi2

1 ISTI–CNR, Pisa, Italy
davide.basile@isti.cnr.it

2 University of Florence, Florence, Italy

Abstract. The combined use of standard interfaces and formal meth-
ods is currently under investigation by Shift2Rail, a joint undertaking
between railway stakeholders and the EU. Standard interfaces are use-
ful to increase market competition and standardization whilst reducing
long-term life cycle costs. Formal methods are needed to achieve interop-
erability and safety of standard interfaces and are one of the targets of the
4SECURail project funded by Shift2Rail. This paper presents the mod-
elling and analysis of the selected case study of the 4SECURail project:
the Safe Application Intermediate sub-layer of the UNISIG RBC/RBC
Safe Communication Interface. The adopted formal method is Statisti-
cal Model Checking of a network of Stochastic Priced Timed Automata,
as provided by the Uppaal SMC tool. The main contributions are: (i)
rigorous complete and publicly available models of an official interface
specification already in operation, (ii) identification of safety and inter-
operability issues in the original specification using Statistical Model
Checking, (iii) quantification of costs for learning the adopted formal
method and developing the carried out analysis.

1 Introduction

Despite the large number of successful applications of formal methods in the
railway domain [14], no universally accepted technology has emerged. Indeed, if
applicable standards (e.g. CENELEC EN 50128 for the development of software
for railway control and protection systems) mention formal methods as highly
recommended practices [13], they do not provide clear guidelines on how to use
them in a cost-effective way. The absence of a clear idea of which benefits can
result from the adoption of formal methods is one of the aspects that act as an
obstacle to the widespread use of formal methods [16,17]. This is witnessed also
by the current efforts undertaken by Shift2Rail.

The Shift2Rail Joint Undertaking was established in 2014 under Horizon
2020 R&I program for pursuing research and innovation activities in the railway
domain. As mentioned in the technology demonstrator TD2.7 “Formal methods
and standardisation for smart signalling systems”, Shift2Rail “has identified the

c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 174–190, 2021.
https://doi.org/10.1007/978-3-030-85248-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_11&domain=pdf
http://orcid.org/0000-0002-7196-6609
http://orcid.org/0000-0002-2930-6367
https://doi.org/10.1007/978-3-030-85248-1_11


Formal Analysis of the UNISIG Safety Application Intermediate Sub-layer 175

use of formal methods and standard interfaces as two key concepts to enable
reducing the time it takes to develop and deliver railway signalling systems, and
to reduce costs for procurement, development and maintenance. Formal meth-
ods are needed to ensure correct behaviour, interoperability and safety, and
standard interfaces are needed to increase market competition and standardiza-
tion, reducing long-term life cycle costs” [24]. One of the two workstreams of
the 4SECURail (FORmal Methods and CSIRT for the RAILway sector) project
deals with investigating the benefits of a formal method approach to the specifi-
cation of standard interfaces. Moreover, 4SECURail aims to perform a costs and
benefits analysis for the adoption of formal methods in the railway environment.

In this paper we present recent efforts in the context of the 4SECURail
project. We present the formal modelling and analysis of the selected case study
of the project that is the UNISIG Subset-098 - RBC/RBC (Radio Block Centre)
Safe Communication Interface [25], and in particular the Safe Application Inter-
mediate (SAI) sub-layer, concerning the protection against specific threats iden-
tified by CENELEC standards [12]. We exploit formal methods to build a fully
defined mathematical model, in particular a network of Stochastic Priced Timed
Automata. We verify the specified protection mechanisms against safety require-
ments identified by CENELEC standards, that are formalized using temporal
logics. Our model enhances the existing standard interface with unambiguous,
fine-grained modelling of the natural language requirements. The model can be
exploited as starting point for other model-based activities such as model-based
development or model-based testing. The identified benefits are also represented
by a series of issues that emerged from the formal verification, mostly due to
undefined or ambiguous aspects, tampering both safety and interoperability of
the system. We also traced the costs in terms of man-hours needed to learn for-
mal methods and to develop the model and analysis presented. Such data can be
validated against publicly available documents and regulations [27]. All models
and logs of experiments are publicly available at [22].

Related Work. A subset of authors have experience in applying Uppaal to study
the upcoming ERTMS/ETCS Level 3 specification in the context of the Shift2Rail
ASTRail project in [2,3,5,6]. Whilst those papers are exploring new require-
ments of an envisioned system, here we verify an official specification (dated 2012)
already realised. Concerning the Shift2Rail 4SECURail project, in [4] the design
of a formal methods demonstrator is discussed, which is based upon behavioural
UML models. Here we provide a further contribution by adopting Uppaal SMC.
In [19] the handover in Communication Based Train Control systems is analysed
with Uppaal SMC and a novel method of probability evaluation. Similar to our
work, they consider probabilistic failures (with probability weights set to 10−5),
assuming the presence of probabilistic communication failures. They analyse the
scenarios of handover request and border point crossing from the front and rear
end of a train, to show that the overall probability of a successful handover is high
(0.99985). In [9] the RBC/RBC handover is analysed using run-time monitoring
algorithms enforcing modal sequence charts. They report a concrete accident sce-
nario where two trains collided. The accident was due to incorrect interactions



176 D. Basile et al.

between interlocking and RBC, where basically the trains movement authority
were independently generated by both the RBC (using Level 3) and the track cir-
cuits (using Level 2), thus unfortunately allocating the same track portion to two
different trains. Compared to these papers, we study the current ERTMS/ETCS
Level 2 handover. We do not focus on the exchange of application messages (e.g.
crossing the border), but on a lower level, ensuring protection against threats due
to open radio communications. Moreover, we do not focus on providing a precise
evaluation of the probability of the handover to fail, nor to provide run-time mon-
itors. We provide a qualitative analysis of the requirements in [25], identifying
both safety and interoperability issues in the current operating specification. We
use SMC to scale to the real-world case study size of our model, and probabili-
ties of communications errors are inflated to drive the simulations toward faulty
scenarios to analyse the protections.

Structure of the Paper. Uppaal SMC and the case study are briefly introduced
in Sect. 2. The model and the analysis are in, respectively, Sect. 3 and Sect. 4.
Section 5 concludes the paper.

2 Background

Statistical Model Checking and UPPAAL. Statistical Model Checking [1,20]
(SMC) is concerned with running a controlled number of (probabilistically dis-
tributed) simulations of a system model to obtain a statistical evaluation (with
a predefined level of statistical confidence) of some formula ϕ. The Monte Carlo
estimation with Chernoff-Hoeffding bound executes N = �(ln(2)− ln(α))/(2ε2)�
simulations ρi, i ∈ 1...N , to provide the interval [p′ − ε, p′ + ε] with confidence
1 − α, where p′ = (#{ρi |ρi |=ϕ})/N , i.e., Pr(|p′ − p| ≤ ε) ≥ 1 − α where p is the
unknown value of ϕ being estimated statistically [20]. SMC offers advantages
over exhaustive (probabilistic) model checking. Most importantly: SMC scales
better, since there is no need to generate and possibly explore the full state space
of the model under scrutiny, thus avoiding the combinatorial state-space explo-
sion problem typical of model checking. Indeed, the parameter N is independent
from the size of the state-space. Moreover, the required simulations can easily
run in parallel. This comes at a price: contrary to exhaustive model checking,
exact results are out of reach, especially for formulae evaluated with very low
probability, called rare events. Another advantage of SMC is its uptake in indus-
try: compared to model checking, SMC is very simple to implement, understand
and use, due to the widespread adoption of Monte Carlo simulation.

Uppaal SMC [11] extends Uppaal [7], a well-known toolbox for the verifica-
tion of real-time systems modelled by (extended) timed automata. Uppaal SMC
models are network of Stochastic Priced Timed Automata: Timed Automata are
finite state automata enhanced with real-time modelling through clock variables;
their stochastic extension replaces non-determinism with probabilistic choices
and time delays with probability distributions (uniform for bounded time and



Formal Analysis of the UNISIG Safety Application Intermediate Sub-layer 177

exponential for unbounded time). These automata may communicate via (broad-
cast) channels and shared variables. Uppaal SMC allows to check (quantitative)
properties over simulation runs of a Uppaal SMC model. These properties must
be expressed in a dialect of the Metric Interval Temporal Logic (MITL) [8]. In
particular, all formulae ϕi evaluated in Sect. 4 follow a specific form, which is the
probability that the configuration identified by the propositional formula conf
is reached before bound units of time, written Pr[<=bound](<>conf).

RBC/RBC Safe Communication Interface. The selected case study is the
RBC/RBC handover interface as specified by UNISIG Subset-098 − RBC/RBC
Safe Communication Interface in [25], which provides a public standardized inter-
face that specifies the requirements for the handover protocol between neighbour-
ing RBCs in natural language.

Each RBC supervises all the trains moving within its responsibility area.
The handover procedure is used to manage the interchange of train supervision
between two neighbouring RBCs. This protocol is based on a layered structure.
The higher layer corresponds to an application process that addresses high-
level functionalities, such as the generation and the reception of information to
communicate with peer RBC entities, or the re-establishment of the safe con-
nection when it is lost due to errors in lower layers. This layer communicates
with an underlying layer, the Safety Functional Module (SFM) which specifies
the requirements related to the safety of the communications. The SFM layer
consists of two distinct sub-layers, the SAI (Safe Application Intermediate) sub-
layer and the Euroradio SL (Euroradio Safety Layer), and their combination
provides a safe protection strategy for the open transmission system. The SAI
layer provides adequate protection against the threats identified by CENELEC
and specified in the EN 50159 European Standard [12], specifically: repetition
(a message already sent is sent again in the message stream); deletion (a mes-
sage is removed from the message stream); insertion (an additional message is
implanted in the message stream) and re-sequencing (the ordering of messages in
a stream is changed). The Euroradio SL protects the system against corruption,
masquerade and insertion threats. The SAI sub-layer protection is achieved with
a sequence number for deletion, re-sequencing and repetition threats. Basically,
it consists of inserting a consecutive number to each message and computing the
difference between such numbers. The delay defence technique is achieved with
the TTS (Triple Time Stamp) procedure, consisting in storing in each message
three timestamps information for checking that the transmission delay is within
a computed offset. An alternative delay defense technique in [25], namely, the
execution cycle, is not addressed in our model. Due to lack of space, we refer
to [12,20,25] for more details on, respectively, SMC, Subset-098 and EN 50159.

3 The Model

We now discuss the model of the case study. Due to lack of space, some aspects
will not be detailed. The model is defined through template automata. Each
template automaton may have a set of parameters and local declarations of



178 D. Basile et al.

constants, variables, user functions and clocks. Global declarations are instead
accessible from all the templates and can include clocks, constants, variables,
functions and channels. The templates are parameterised with an identifier id
to identify which device each template belongs to, i.e. the Initiator or the Respon-
der device. The system is defined as a network of processes that interact with
each other in parallel; a process is instantiated from a template where all its
parameters, if any, are set. The synchronizations between different processes of
the system are obtained through broadcast channels, which are required to per-
form statistical model checking. All the safety service primitives specified in the
requirements are modelled as arrays of channels where the indexing allows to
identify the synchronized process. Since Uppaal channel synchronization does
not support value passing, this is encoded with the use of global shared variables.
State invariants are used to ensure that the communications through shared vari-
ables used for the value-passing are atomic. This implies that signals are always
received and never lost, overcoming the undetected loss of messages.

The system is composed of two communicating devices, an Initiator device
that sends the request to establish a connection and a Responder device that
receives the connection request. When referring to the partner device, we con-
sider the Responder device as the partner of the Initiator device, and vice versa.
In Fig. 1, the overall architecture of the system is shown. Only one component
(i.e. the initiator or the responder) is displayed whilst the other is specular.
Each device is modelled using three modules: the SAI User, the SAI and the
Euroradio SL modules. The SAI User and SAI modules are adjacent and can
communicate with each other. The same applies also to the SAI and Eurora-
dio SL modules. Both the Initiator and the Responder devices are composed of
all these three modules. Finally, the Euroradio SL modules of both devices can
receive failure notifications from the Communication System module, a compo-
nent of the system that abstracts both the Euroradio SL lower layers and the
physical transmission system. In particular, this component models the occur-
rence of a disruptive connection release communicated to both the Initiator and
the Responder devices, as specified in the requirements.

The communications between adjacent modules of the same device are mod-
elled using channels synchronizations. Instead, the two partner devices interact
asynchronously using two queues of messages. Their interactions are affected
by stochastic delays, simulating the transmission delays that characterize the
radio communications. Uppaal does not natively support asynchronous com-
munication through queues, which are implemented in the model using arrays.
Probabilistic failures are used to simulate communication errors and are imple-
mented by functions modifying data in the arrays (e.g., removing, swapping ele-
ments). These injected faults are not to be confused with the low-level channels
synchronizations that are guaranteed by invariants to be received.

While both the SAI User module and the Euroradio module functionalities
are implemented through single templates, the SAI module is split into multiple
sub-modules to reduce the complexity of each of them. Indeed, the responsi-
bilities of both the SAI User and the Euroradio modules were abstracted away



Formal Analysis of the UNISIG Safety Application Intermediate Sub-layer 179

Fig. 1. The model architecture, the partner device is specular to the one displayed

and only the interface with the SAI is implemented. They are the external enti-
ties interacting with the SAI module target of our model, whose functionalities
are instead completely modelled. The SAI module is divided into different sub-
modules. The TTS technique is implemented in the TTS initialisation and the
TTS update procedure modules. The following list shows the templates that
make up a single device:

The SAI User template abstracts the SAI User module behaviour, implement-
ing the triggering of a connection and periodically sending Application mes-
sages. It is instantiated specifying the SAI id parameter and the initiator
parameter;

The Euroradio SL Env template abstracts the Euroradio SL module
behaviour implementing the stochastically delayed message exchange with
the partner device. It is instantiated by specifying the id parameter and the
receiver parameter;

The SAI Conn Ini/SAI Conn Res templates model the connection estab-
lishment according to the role of the device. The templates are instantiated
specifying the id parameter corresponding to the device they belong to;

The SAI TTS Init Ini/SAI TTS Init Res templates model the TTS ini-
tialisation, depending on the role of the device. They exchange messages to
estimate the minimum and maximum offset delay of messages. Their param-
eter is the same as SAI Conn Ini/SAI Conn Res;

The SAI Update Req templates implement the offset estimations update
requests, to update the minimum and maximum offset delay. Its parameters
are the same as the SAI Sender template;

The SAI Update Answ template models the TTS update procedure by send-
ing the offset estimations update answers to SAI Update Req. Its parameters
are the same as the SAI Sender template;

The SAI Sender template models the SAI defence techniques, by inserting
into each message the three timestamps of TTS and the sequence number,



180 D. Basile et al.

Fig. 2. The SAI Receiver template

implementing the message sending procedure. It is instantiated with the id
and the initiator parameters identifying its device and role;

The SAI Receiver templates implement the check procedure for all the incom-
ing messages. It has the same parameters as the SAI Sender.

We discuss in details the template implementing the check of messages for the
protections and the fault injection implementing the various CENELEC threats.

SAI Receiver. The SAI Receiver template implements the protection against the
repetition, deletion, resequencing and delay threats that can occur in a trans-
mission system, commanding itself the connection release if certain unsafe con-
ditions are met, and it is shown in Fig. 2. It performs functionalities related
to the protection against delay, by checking the timestamps of messages. In
state Connected, if a data message from the partner device is received (i.e.
Sa DATA indication[id]?), the last received ts and last msg ts variables
are updated. Then, the sequence number difference (referred to as sn diff)
between the sequence number received in the message and the last sequence
number stored in the last sn variable is computed. Also the freshness of the



Formal Analysis of the UNISIG Safety Application Intermediate Sub-layer 181

received message (referred to as T diff) is computed as the difference between
the timestamp at the message reception (the last msg ts value just updated)
and the estimation of the message time transmission in term of the SAI Receiver
clock, i.e. the sum of the last received timestamp (the last received ts value
just updated) and the minimum offset estimation computed by the Receiver
device during the TTS initialization, with the extra delay subtracted. The
sn diff computed values determine the SAI Receiver behaviour according to
the three outgoing transitions from state CheckDataMsg. If sn diff==1 and 0
≤ T diff ≤ T max for an Application Message (i.e. a message to the SAI User),
the received data message is not affected by sequencing errors and the transmis-
sion delay is acceptable. Assuming that also the conditions for no delay errors
occur, the SAI Receiver notifies its adjacent SAI User of the correct message
reception through the SAI DATA indication, moves first to the Correct loca-
tion and then to the ValidateMsg location. Here, according to the message
type field of the received message, the SAI Receiver can forward a signal to the
SAI Update Answ or the SAI Update Req templates respectively when concern-
ing offset update request or offset update answer messages. Otherwise, in case
of an Application message, the Connected location is entered without further
actions. If sn diff < 0, the message is discarded (location DiscardMsg) with-
out notifying the SAI User. If sn diff ≥ 0 and the previous conditions are not
verified (i.e. sn diff �= 1 or the transmission delay is not acceptable, i.e. either
T diff < 0 or T diff > T max), the SAI Receiver notifies the SAI User, updates
its error counter and then enters the Error location. Here, if the maximum num-
ber of either successive errors N max succ err or lost messages N max lost msg
is reached, the SAI Receiver immediately sends a safe connection release (i.e.
tau safe conn release) to the SAI Sender, which in turn sends a discon-
nect request to the peer entity, and from location DisconnectIndication a
SAI DISCONNECT indication is sent to the SAI User to command the release
of the connection. Instead, if the maximum number of successive errors is not
reached and the received message is a repetition of the last accepted message
(i.e. sn diff==0), or its transmission delay is not acceptable, the message is
discarded. Anyway, the message can be validated if both its transmission delay
and the number of lost messages are acceptable (i.e. 0 ≤ T diff ≤ T max and
1 < sn diff ≤ N max lost msg).

Moreover, from state Connected the SAI Receiver synchronizes with the
Sa DISCONNECT indication signal from the Euroradio SL Env. When a discon-
nect indication is received, the SAI Receiver forwards the communication to
the SAI User before entering the Disconnected location and also all the other
SAI templates of the same device that by synchronizing through the channel
SAI DISCONNECT indication move to the Disconnected locations.

Fault Injector. The Fault Injector template shown in Fig. 3 models all the pos-
sible threats that can affect the communication system. This template acts as a
fault injector in the signal queue of the two communicating devices, determin-
ing the occurrence of communication errors or simulating transmission problems
that could lead to unacceptable delays. This could also be considered as a model



182 D. Basile et al.

of an external attacker artificially injecting failures [12]. This template provides a
minimum waiting time to model the probability of occurrence. Two probabilistic
branches decide whether the attempt to perform a fault injection is successful or
not. By fine-tuning the fault and noFault weights associated with the proba-
bilistic branches, the probability of the desired fault occurrence can be adjusted.

Fig. 3. The Fault Injector template

Only if the signal queue of the non-
deterministically chosen device to per-
form the fault injection is not empty,
all the devices are connected and the
attempt is successful, a probabilistic
branching decides which threat to per-
form. The possible threats are: dele-
tion threat (the first signal of the queue
is removed), repetition threat (the first
signal is repeated if the queue is not
full, otherwise no repetition is per-
formed), resequencing threat (the first
signal is shifted of one or two positions
inside the queue, if at least another
signal is present, otherwise no re-
sequencing is performed), and trans-
mission delay threat (the msgDelay
variable of the selected device is
updated with the msgDelayInjected
value).

The transmission delay is based on
the update of the msgDelay variable,
which defines the rate for the exponential distribution of the edge performing
the signal dequeue. The injected rate is lower than the standard rate assigned
to msgDelay, and during the sampling of the exact delay, the smaller the rate
is specified, the longer the delay is preferred. Hence, with the injected rate it
is possible to simulate a longer transmission delay, increasing the probability to
exceed the validity time for the incoming messages.

4 The Analysis

In this section we discuss the analysis of the model and the issues found. As
required by Subset-039 [26] (ref. 4.2.1.2) only one RBC/RBC communication
between a pair of RBCs must be active at one time. Thus, we focus on analysing
a single pair of communicating devices. The specification suggests which parame-
ters values to use with particular systems (for example highly-available systems),
whereas the definition of other parameters is left to the specific application set-
tings. Our experiments consider a high probability of fault injection success, and
diminishing the rates allows to model longer delays. This allows to observe faults
with fewer simulations, thus quickly verifying the defence techniques against such



Formal Analysis of the UNISIG Safety Application Intermediate Sub-layer 183

faults. Finally, the configuration of certain parameters is done according to the
need for a stable connection where both the probability of the SAI User to send a
disconnection request, the Communication System to perform a disruptive con-
nection release and the Euroradio SL Env to fail are very low. We remark that
the purpose of our analysis is not the accurate quantification of measures such
as performance or reliability. This would require a realistic, less extreme set-up
of parameters with lower fault probabilities and time-expensive verification. We
address the qualitative verification of the protection mechanisms. Nonetheless,
threats for open systems [12] are also considering attackers artificially injecting
faults into the communication system.

All the verified properties are related to the probability estimation of the
occurrence of a specific hazard. If the probability of occurrence of the hazards is
close to zero (i.e. p′ = 0, see Sect. 2) the model satisfies its safety requirements
with a certain degree of confidence (1−α) dictated by the parameters of the sta-
tistical model checker (probability of false negatives α = 0.0005 and probability
uncertainty ε = 0.005). We recall that all evaluated formulae are of the form:

ϕi = Pr[<=bound](<>conf i).

We set msg freq=8 time units (i.e. the period in which SAI User attempts to
send a new Application message) and bound=1000 (i.e. trace length), thus allow-
ing to perform faster simulations but still inclusive of a non-negligible message
exchange. With this formula “template” only the logical conditions are left to
be specified thus making easier the formalisation of the properties also for users
not expert in temporal logics. In the following we only provide the specific con-
figuration conditions conf i of each formula indexed by i, and for improving
readability we use the names of the templates, even though the names of the
corresponding instantiations have been used in Uppaal.

Model Checking. We start by checking some properties that the model should
meet and that are not related to the specification. Only for these formulae, we set
α and ε to 0.05 to have a faster evaluation (N = 738, see Sect. 2). Firstly, since
the queue of messages is bounded, an excessive message delay could cause the
queue to be filled if the size of the queue is not properly set. To ensure that this
event does not occur, we measure the probability that there exists a full queue
within 1000 time units using conf 1 = exists(id: id t) isQueueFull(id)).
The probability is evaluated to be close to zero (based on α and ε).

The next formula concerns the connection procedure, and in particular the
parameter T conn max that is the maximum waiting time between two connec-
tion requests. The requirements specify that during the TTS initialization pro-
cedure, a T start max maximum waiting time for the incoming offset messages
from the Responder device is provided. Thus it is important to issue new connec-
tion requests only if the TTS initialization procedure has exceeded its time limit.
If this is not the case, a specific location ConnectionFailure is entered by the
SAI TTS Init Ini. Thus we set T conn max = c∗T start max and we experimen-
tally find the threshold value for the constant c beyond which the probability to
enter the ConnectionFailure location is not close to zero. This is evaluated with



184 D. Basile et al.

the formula conf 2=SAI TTS Init Ini.ConnectionFailure performing several
experiments at the varying of the constant c. The degradation of the model
occurs for c≤3, hence we set c=4. Concerning the possibility of undetected mes-
sage loss, we recall that we used state invariants to ensure that all synchronous
signals are received. Finally, we verify the high probability of fault injection that
happens when the Fault Injector template enters the DoFault location with the
formula conf 3=Fault Injector.DoFault. The evaluation of ϕ3 is evaluated
with a value close to one, thus meaning that at least one fault is always injected
in each simulation of the system.

Verifying Safety. We now discuss the verification of the safety properties related
to the effectiveness of the defence techniques described in the specification and
implemented in our model. The hazards are modelled as “bad” configurations
(expressed by conf) of the system and have been identified by a manual review
of the model based on the requirements. We followed a schematic methodology
where first the probability of occurrence for a particular threat, among those
specified in the requirements, is evaluated. Then we evaluate the probability that
the system does not behave as expected when that particular threat occurs. This
second probability evaluation makes sense only if the first probability evaluation
is non-negligible (i.e. p′ > 0.1), thus meaning that the system is actually verified
when the threat has a non-negligible probability to occur. Note that identifying
the severity of each hazard is out of scope.

The first two analysed hazards concern the probability of either receiving a
correct message that is considered erroneous or treating a message affected by
some communication errors as a correct message. The ϕ4 formula checks if the
SAI Receiver of both the Initiator and the Responder devices receives a correct
message, i.e. the configuration where the sequence number difference with the
previous message is 1 (sn diff==1) and its delay is acceptable (T diff ≥ 0 &&
T diff ≤ T max), and the system treats it as an error, i.e. the SAI Receiver
template enters the Error the DiscardMsg location. Formula ϕ5 checks if the
SAI Receiver of both the Initiator and the Responder devices receives an erro-
neous Application Message, i.e. the sequence number difference with the pre-
vious message is not 1 (sn diff!=1) or its delay is unacceptable (T diff < 0
|| T diff > T max), and the system considers it as a correct message, i.e. the
SAI Receiver enters the Correct location. Note that this location is necessary
to distinguish the correct messages from the messages that are validated despite
the sequence number difference with the previously accepted message is different
from 1. Both ϕ4 and ϕ5 are evaluated with a value close to zero.

Concerning the threats that can occur in a communication system, we mea-
sure the probability of occurrence of six possible hazards caused by the CEN-
ELEC threats (formulae/subformulae with even id numbers), and we measure the
probability of the corresponding protection to fail (with odd id numbers). Due
to lack of space, we do not fully report the formulae. All the formulae are pred-
icating over locations and variables of the SAI Receiver (see Fig. 2). All threats
probabilities were evaluated with a non-negligible probability of occurrence, con-
firming the fault injection. The corresponding probabilities of protection failure



Formal Analysis of the UNISIG Safety Application Intermediate Sub-layer 185

were all evaluated with values close to zero. Concerning the resequencing threat
we found two hazards. Condition conf 6 checks if a message earlier than the
last accepted one is received (sn diff < 0); and conf 7 checks if under this con-
dition the SAI Receiver does not discard this message (does not visit the loca-
tion DiscardMsg). Another condition conf 8 checks if a message with the same
sequence number of the last accepted one is received, and conf 9 checks if it is
validated (location ValidateMsg). For the resequencing threat we found one haz-
ard, and another one is obtained by combination with the delay threat. Condi-
tion conf 10 (resp. conf 12) is satisfied if a message arrives with both an accept-
able (resp. unacceptable) delay and with a sequence number difference between
2 and N max lost msg. Condition conf 11 checks if under conf 10 the message
is discarded or accepted (resp. locations DiscardMsg or Correct), whilst con-
dition conf 13 checks if under conf 12 the error location is not entered by the
SAI Receiver. Note that for entering such location, it is required that both the
delay is unacceptable and sn diff is positive (see Fig. 2), thus the necessity of
mixing the two threats. For the deletion threat condition conf 14 checks if a mes-
sage with a sequence number difference greater than N max lost msg is received,
and conf 15 checks if it is discarded or validated. In this case it was also required
the possibility of tolerating one communication error. Finally, for the delay threat
we have one hazard: condition conf 16 checks if a message with a correct sequence
number (sn diff=1) but with an unacceptable delay is received, and conf 17
checks if it is valid (location ValidateMsg).

We verified three additional safety properties for further validation of the
model. Condition cond 18 is used for ensuring that the TTS initialization is
completed before receiving any application message. Condition cond 19 verifies
that only correct messages are forwarded from the SAI to the user, and condi-
tion cond 20 verifies if the SAI module correctly commands the release of the
connection when reaching the maximum number of successive errors during the
message exchange with the partner device. These last three formulae are evalu-
ated in scenarios where the system can reach unsafe configurations due to the
fault injection of communication errors, and are all satisfied. The results pre-
sented so far meet our expectations, augmenting our confidence that both the
model and the adopted defence techniques are correct.

Issues Detected. We report the most relevant issues discovered with the anal-
ysis, which have been confirmed by our industrial partners in the 4SECURail
project. Whilst some issues were already known and are due to negotiations
among the UNISIG members for compatibility with their legacy solutions, oth-
ers are new and will possibly lead to request for changes of the Subset-098.

Zero-Crossing. The first problem we met concerns the implementation of both
the sequence number defence and TTS technique. Indeed, in the Subset-098
specification, for both protection techniques (sequence number and TTS) it is
not specified how to behave in the presence of zero-crossing (i.e., overflow of the
assigned bytes), and the specification only considers the case without overflow.
We only detail the sequence number problem in the following. Through the



186 D. Basile et al.

formula ϕ21, we verify if the above unsafe scenario is reachable for the SN max
parameter (bound of the sequence number) set to a lower value, e.g. 100.

Condition conf 21 checks if the SAI Receiver enters either the Error loca-
tion or the DiscardMsg location when receiving an incoming message (sig
!=empty sig) with sequence number 0 (sig.msg.sn==0) and its last accepted
message had sequence number last sn[id]==SN max. This formula refers to the
scenario in which the Sender device performs the zero-crossing of the sequence
number. Even if the message stream is correct, the Receiver device behaves as if
a communication error occurred, an undesired scenario. The formula is evaluated
(where both the probability of false negatives α and the probability uncertainty
ε are set to 0.05) with p′ = 0.847987. An example of mitigation of this sequence
number zero-crossing problem is to force the release of the safe connection from
the SAI module when the maximum value for the sequence number is reached.
We refer to domain experts for more efficient solutions to this problem. Note
that without bounding the maximum number of consecutive lost messages, when
approaching the zero-crossing it is not possible to distinguish between the recep-
tion of an earlier message or the loss of consecutive messages. The Subset-098
leaves this aspect of the protection open, which could potentially lead to unsafe
scenarios in case of communication errors.

TTS Initialisation. We identified an undefined scenario of the system that could
lead to possible unsafe configurations if no specific actions are implemented.
Briefly, if during the TTS initialisation a specific notification message (i.e. Off-
setStart) sent to the Responder device is lost, the Responder is stuck until a
new connection request arrives from the Initiator. In the Subset-098, there is
no mention of this scenario: it is not included in the SAI initial procedures at
the error handling section (ref. 5.4.10.1.3 [25]) as no TTS initialization for the
Responder is started yet. Moreover, no communication with the SAI User can be
assumed, as the interactions between the SAI and the SAI User modules of the
Responder device start after the successful TTS initialization. In our model, in
this scenario the failed connection procedure is interrupted to restart a new one
from the beginning. Obviously, this implies that the Initiator must send again
a connection request. Another possible solution would be for the Responder to
answer again to the connection request.

TTS Offset Update. Another undefined aspect concerns the type fields of the off-
set update messages. It is only mentioned in ref. 5.4.8.7.3 and Figure 21 of [25]
that two messages are exchanged. Since the two communicating devices can both
start the update procedure and the two distinct update procedures can overlap, it
could be the case that one device, after sending a request for offset update, cannot
discern whether the received message is an answer to the previous request or a new
request of the same type. In our model, we re-used the TTS initialization message
type fields to distinguish the two types of update messages, and in particular the
OffsetStart for the update request message and the OffsetAnsw1 for the update
answer message. These implementation choices were made necessary to model a
working offset update procedure despite the lack of details in the specification.
The fact that different suppliers could implement these aspects independently



Formal Analysis of the UNISIG Safety Application Intermediate Sub-layer 187

could compromise the interoperability of their RBCs. Moreover, the Subset-098
[25] does not specify the actions to perform in case the timestamps of the offset
update answer and request messages (used for relating them) do not correspond,
a condition necessary to update the offset estimation. We identified two possible
behaviours for the SAI module in this case: either it reissues a new request without
waiting, or it can wait for the right answer, and reissues a new request only at the
expiration of the timer. We opted for the second case. Indeed, the first case could
cause a loop where the answering device keeps sending answer messages but they
arrive when another request has already been sent, so the timestamps would not
correspond again. The subset leaves both implementations possible, whilst only
the second case should be allowed for avoiding unnecessary disconnections with
errors.

Error Tolerance. Finally, we discuss the configuration choice of the maximum
number of successive errors (N max succ err) parameter, which [25] specified to
have values either 1 or 2 (thus allowing a maximum tolerance of one error). By
analysing the model, we noted that a transmission delay causes a rejection of
the message, thus incrementing the error counter and triggering a subsequent
sequence number error due to the discarding of the previous message. This means
that the ability of the system to tolerate the occurrence of one communication
error is tied to the type of the error being detected: if the error is a transmission
delay, then the system is no longer able to accept the next incoming message as
correct, even if the tolerance is set to do so.

The formal verification step helped in identifying the problems reported in
this section, thus resulting very useful. It has been used to check the correctness
of the model by debugging modelling errors during its development, as well as
to formally validate the requirements of the system defined in the specification
and discovering corner cases where both protections are ineffective.

Quantifying the Learning and Development Efforts. We provide a rough
but indicative estimation of the costs for training and development. We consid-
ered the effort in terms of CFU (Crediti Formativi Universitari, corresponding
to ECTS − European Credit Transfer and Accumulation System − credits)
sustained by the third author for developing her Master thesis (containing the
presented results) under the supervision of the first two authors. The training in
formal methods has been provided during the Software Dependability university
course in Florence University, provided by the second author, where the basis for
the modelling aspects and the logic required to understand the model checking
algorithm have been studied, which are almost 7 CFU [15].

Concerning the work presented in this paper, it can be quantified in the 24
CFU of the Master thesis. There is no clear division between the modelling and
the verification phases because since the beginning of the modelling phase, a con-
stant activity of verification of the model was made. Indeed, useful counterexam-
ples from the verification allowed to debug modelling errors in the first model
prototypes. Considering that each CFU conventionally corresponds to 25 work-
ing hours, we can estimate an effort of 775 working hours to reach the result we
described in this paper, starting from no knowledge of formal methods, which we



188 D. Basile et al.

report to adhere to the actual effort. Thus, an indicative division of the work-
ing hours required for each activity is: Learning - 169 h, Modelling and Verifica-
tion - 606 h. These data can be validated by consulting the online regulations of
the Degree Course [27] and the Master thesis [23]. Finally, assuming a fresh and
already trained graduate as the third author, a fitting payment (in Italy) could be
a professionalising grant (assegno professionalizzante [10]). In this specific case,
she/he would have an annual gross cost of 21343 euro (as per the time of writing
this paper), with a cost per hour of 15.56 euro, which roughly gives us a gross cost
of 9400 euro for producing both the artifacts and the analysis described in this
paper.

5 Conclusion

We have formalised and analysed an existing industrial specification already in
operation: the UNISIG Subset-098 [25], and in particular the Safety Application
Intermediate sub-layer, whose goal is to protect the system from the CENELEC
50159 [12] threats of open transmission systems. The analysis has discovered
corner cases where the protections are not effective, due to unspecified scenarios
or ambiguous requirements. We discussed simple mitigations to such issues, not
detailed in the specification. Since different interpretations of these undefined
aspects could be given as well by different suppliers (especially for newcomers,
rather than the original members of the consortium that issued these subsets),
this could lead to non-interoperability between RBCs developed and provided
by different suppliers. This appears to be the current situation for this standard
interface, as reported in [21], where interoperability issues during the handover
procedure were encountered in the Milano-Bologna line containing three RBCs
produced by different suppliers (Alstom and Ansaldo) using the same require-
ments analysed in this paper. Finally, considering that formal methods are still
a subject of study in the field of railway industrial applications [14,18], as wit-
nessed by several Shift2Rail projects, this paper represents a further contribution
to evaluate the usefulness in terms of costs of learning and development, as well
as benefits deriving from the adoption of formal methods in this domain. The
model and analysis for the various scenarios are publicly available in [22].

We argue that the benefits derived from the work described in this paper are
not only limited to the identified safety and interoperability issues. Indeed, the
provided formal model and the safety properties analysed can enrich the existing
documentation. By simply tuning the parameters to realistic, less extreme values
it is possible to have evaluations of other dependability aspects of the system
such as performance, reliability. The presented model could also be the starting
point for other model-based development approaches, e.g., by translating the SAI
models into state machines (e.g., RT-UML) for code generation or model-based
testing. A subset of the authors already provided a translation from RT-UML
machines to Uppaal models in [2]. As future work it could also be of interest
to enrich the model with full formalisation of the other layers as well as the
execution cycle protection technique.



Formal Analysis of the UNISIG Safety Application Intermediate Sub-layer 189

Acknowledgements. This work has been partially funded by the H2020 Shift2Rail
4SECURail project, grant agreement No 881775 in the context of the open call S2R-
OC-IP2-01-2019, programme H2020-S2RJU-2019.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018). https://doi.org/10.1145/3158668

2. Basile, D., ter Beek, M.H., Ciancia, V.: Statistical model checking of a moving
block railway signalling scenario with Uppaal SMC. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2018. LNCS, vol. 11245, pp. 372–391. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03421-4 24

3. Basile, D., Fantechi, A., Rucher, L., Mandò, G.: Statistical model checking of
hazards in an autonomous tramway positioning system. In: Collart-Dutilleul, S.,
Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 41–58.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6 3

4. Basile, D., et al.: Designing a demonstrator of formal methods for railways infras-
tructure managers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol.
12478, pp. 467–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61467-6 30

5. Basile, D., ter Beek, M.H., Ferrari, A., Legay, A.: Modelling and analysing ERTMS
L3 moving block railway signalling with simulink and Uppaal SMC. In: Larsen,
K.G., Willemse, T. (eds.) FMICS 2019. LNCS, vol. 11687, pp. 1–21. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-27008-7 1

6. Basile, D., ter Beek, M.H., Legay, A.: Strategy synthesis for autonomous driv-
ing in a moving block railway system with Uppaal Stratego. In: Gotsman, A.,
Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 3–21. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-50086-3 1

7. Behrmann, G., et al.: Uppaal 4.0. In: Proceedings of the 3rd International Confer-
ence on the Quantitative Evaluation of SysTems (QEST 2006), pp. 125–126. IEEE
(2006). https://doi.org/10.1109/QEST.2006.59

8. Bulychev, P., David, A., Larsen, K.G., Legay, A., Li, G., Poulsen, D.B.: Rewrite-
based statistical model checking of WMTL. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 260–275. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35632-2 25

9. Chai, M., Wang, H., Tang, T., Liu, H.: Runtime verification of train control systems
with parameterized modal live sequence charts. J. Syst. Softw. 177, 110962 (2021).
https://doi.org/10.1016/j.jss.2021.110962

10. CNR: Assegni di ricerca. https://www.urp.cnr.it/page.php?level=15&pg=1522
11. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC

tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.
org/10.1007/s10009-014-0361-y

12. European Committee for Electrotechnical Standardization: CENELEC EN 50159
- Railway applications - Communication, signalling and processing systems -
Safety-related communication in transmission systems (2010). https://standards.
globalspec.com/std/14256321/EN50159

13. European Committee for Electrotechnical Standardization: CENELEC EN 50128
- Railway applications - Communication, signalling and processing systems -
Software for railway control and protection systems (2020). https://standards.
globalspec.com/std/14317747/EN2050128

https://doi.org/10.1145/3158668
https://doi.org/10.1007/978-3-030-03421-4_24
https://doi.org/10.1007/978-3-030-03421-4_24
https://doi.org/10.1007/978-3-030-18744-6_3
https://doi.org/10.1007/978-3-030-61467-6_30
https://doi.org/10.1007/978-3-030-61467-6_30
https://doi.org/10.1007/978-3-030-27008-7_1
https://doi.org/10.1007/978-3-030-50086-3_1
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/978-3-642-35632-2_25
https://doi.org/10.1007/978-3-642-35632-2_25
https://doi.org/10.1016/j.jss.2021.110962
https://www.urp.cnr.it/page.php?level=15&pg=1522
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://standards.globalspec.com/std/14256321/EN50159
https://standards.globalspec.com/std/14256321/EN50159
https://standards.globalspec.com/std/14317747/EN2050128
https://standards.globalspec.com/std/14317747/EN2050128


190 D. Basile et al.

14. Fantechi, A.: Twenty-five years of formal methods and railways: what next? In:
Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05032-4 13

15. Fantechi, A.: Software Dependability course. University of Florence. https://www.
unifi.it/p-ins2-2018-502809-0.html

16. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H., Fantechi, A.: Comparing
formal tools for system design: a judgment study. In: Proceedings of the 42nd
International Conference on Software Engineering (ICSE), pp. 62–74. ACM (2020).
https://doi.org/10.1145/3377811.3380373

17. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H.: Systematic evaluation and
usability analysis of formal tools for system design. arXiv:2101.11303 [cs.SE]
(2021). https://arxiv.org/abs/2101.11303

18. Garavel, H., Beek, M.H., Pol, J.: The 2020 expert survey on formal methods. In:
ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 3–69.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2 1

19. Huang, J., Lv, J., Feng, Y., Luo, Z., Liu, H., Chai, M.: A novel method on prob-
ability evaluation of ZC handover scenario based on SMC. In: Qian, J., Liu, H.,
Cao, J., Zhou, D. (eds.) ICRRI, vol. 1335, pp. 319–333. Springer, Singapore (2020).
https://doi.org/10.1007/978-981-33-4929-2 22

20. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statis-
tical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 23

21. Morselli, S.: Il nuovo servizio ferroviario ad Alta Velocità “Frecciarossa”: analisi
delle performance. Master’s thesis, University of Bologna (2009). http://amslaurea.
unibo.it/435/

22. Rosadi, I.: Repository for reproducing the experiments (2021). https://github.com/
IreneRosadi/UppaalModels

23. Rosadi, I.: Analysing a safe communication protocol in the railway signaling
domain with Timed Automata and Statistical Model Checking. Master’s thesis,
University of Florence (2021)

24. Shift2Rail: Annual Work Plan and Budget (2021). https://shift2rail.org/about-
shift2rail/reference-documents/annual-work-plan-and-budget/

25. UNISIG: RBC-RBC safe communication interface, Subset-098, v3.0.0 (2012).
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs tsi annex
a - mandatory specifications/set of specifications 3 etcs b3 r2 gsm-r b1/
index063 - subset-098 v300.pdf

26. UNISIG: FIS for the RBC/RBC handover, Subset-039, v3.2.0 (2015). https://www.
era.europa.eu/sites/default/files/filesystem/ertms/ccs tsi annex a - mandatory
specifications/set of specifications 3 etcs b3 r2 gsm-r b1/index012 - subset-039
v320.pdf

27. University of Florence: Regulations of the M.Sc. degree. https://www.
informaticamagistrale.unifi.it/vp-165-regulations.html

https://doi.org/10.1007/978-3-319-05032-4_13
https://www.unifi.it/p-ins2-2018-502809-0.html
https://www.unifi.it/p-ins2-2018-502809-0.html
https://doi.org/10.1145/3377811.3380373
http://arxiv.org/abs/2101.11303
https://arxiv.org/abs/2101.11303
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-981-33-4929-2_22
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
http://amslaurea.unibo.it/435/
http://amslaurea.unibo.it/435/
https://github.com/IreneRosadi/UppaalModels
https://github.com/IreneRosadi/UppaalModels
https://shift2rail.org/about-shift2rail/reference-documents/annual-work-plan-and-budget/
https://shift2rail.org/about-shift2rail/reference-documents/annual-work-plan-and-budget/
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index063_-_subset-098_v300.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index063_-_subset-098_v300.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index063_-_subset-098_v300.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index012_-_subset-039_v320.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index012_-_subset-039_v320.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index012_-_subset-039_v320.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index012_-_subset-039_v320.pdf
https://www.informaticamagistrale.unifi.it/vp-165-regulations.html
https://www.informaticamagistrale.unifi.it/vp-165-regulations.html


Tools



PROB2-UI: A Java-Based User Interface
for ProB

Jens Bendisposto(B) , David Geleßus(B), Yumiko Jansing,
Michael Leuschel(B) , Antonia Pütz, Fabian Vu(B) , and Michelle Werth

Institut für Informatik, Universität Düsseldorf, Universitätsstr. 1,
40225 Düsseldorf, Germany

{bendisposto,dagel101,leuschel,fabian.vu}@hhu.de

Abstract. ProB2-UI is a modern JavaFX-based user interface for the
animator, constraint solver, and model checker ProB. We present the
main features of the tool, especially compared to ProB’s previous user
interfaces and other available tools for B, Event-B, and other formalisms.
We also present some of ProB2-UI’s history as well as its uses in the
industry since its release in 2019.

1 Introduction and Motivation

This paper presents ProB2-UI, a JavaFX-based user interface for the animator,
constraint solver, and model checker ProB. The core of ProB is written in SIC-
Stus Prolog and supports formalisms such as B, Event-B, Z, TLA+ and Alloy.
Initially, ProB had a Tcl/Tk interface, first presented in 2003 [28], but with
roots dating back to around 2000. Later the command-line interface probcli
was developed, which is still being heavily used for testing, data validation, and
batch verification. For example, probcli is used for data validation of railway
systems, see [7,27] or Sect. 4 of [3].

Around 2005 we started to integrate ProB into the Rodin tool for Event-B,
requiring integration with Java and the Eclipse user interface. For this purpose,
an interface was added to probcli, allowing Java code to control ProB by
sending commands over a socket. This resulted in the first version of ProB for
Rodin. Its user interface was more intuitive, appealing and modern than ProB
for Tcl/Tk, but did only provide a limited set of features (e.g., it had no state
space visualisation or projection features).

At that moment we had to decide whether to fully focus on Rodin and
Eclipse, or keep ProB and its user interface independent of it. In the end, we
decided to develop a new lightweight Java API allowing end-users to customize
ProB independent of Eclipse. This resulted in the development of the ProB2
Java API, which was available in 2014 (cf. Sect. 2 of [20]). After several unfruitful
attempts at developing a new user interface, we started to work on a JavaFX user
interface in 2016. The first stable version 1.0.0 was released in 2019. ProB2-UI
has been used within our team for a variety of case studies, e.g., for an automotive
case study [29]. It has also already been used for several industrial applications
c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 193–201, 2021.
https://doi.org/10.1007/978-3-030-85248-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_12&domain=pdf
http://orcid.org/0000-0001-5914-1092
http://orcid.org/0000-0002-4595-1518
http://orcid.org/0000-0003-2556-5553
https://doi.org/10.1007/978-3-030-85248-1_12


194 J. Bendisposto et al.

(many confidential). In particular, ProB2-UI was used successfully during the
demonstration of the ETCS hybrid level 3 concepts [13,14] at runtime. Here,
model traces were captured during field tests and could be replayed along with
a visualisation plugin for fine-grained retrospective analysis. Another use was
made for modelling key properties of a CBTC zone controller in [6].

2 Features of PROB2-UI

Figure 1 shows the main window of ProB2-UI. On the right-hand side, you can
see the project view. A project contains a group of (related) models along with
preference settings and configurations for validation and verification tasks. This
lets the user easily re-check these tasks, e.g., after modifying a model, without
having to re-enter the parameters. The project information is stored in a project
file; it contains a list of models and tasks with their status, a list of preference
settings along with visualisation, simulation, and trace files. An overview of the
status of all verification tasks is shown in the “status” tab of the project view.

Project View
for models
and preferences

Console (REPL)
for interactive exploration

Operations View
for interactive
animation

State View
to inspect current
and preceding state

History View
to inspect and
navigating current
animation trace

Replay View
for automatic
trace replay

VisB View
SVG-based visualization
of current state

Fig. 1. Main window of ProB2-UI

Animation. After a model has been loaded, the user can animate the model. In
contrast to simulation, an animator allows the user to interactively select the
execution steps. This is done in the operations view, where ProB has precom-
puted all enabled operations (up to a user-provided limit). By clicking on an
operation, the current state of the model is changed, which can be seen in the
state view. It is also possible to enter some of the operation’s parameters and



ProB2-UI: A Java-Based User Interface for ProB 195

an optional post-condition to execute an operation. This is for example useful
when not all operations were precomputed by ProB.

The state view displays the current and previous state of the model, high-
lighting differences. In addition to variables and constants, the view also shows
predicates such as the properties (aka axioms), invariants, or the guards of opera-
tions. Complex expressions and predicates can be expanded to inspect the values
of individual sub-expressions/predicates.

During the interaction with the model, a trace of all executed operations and
visited states is maintained. One can navigate through this trace in the history
view, e.g., to return to a previous state and then execute an alternate operation.
The history can be saved to a file. The saved trace files are shown in the replay view
on the left-hand side, where they can be replayed by a simple click. These trace files
contain the exact parameter and variable values for each animation step, which
allows replaying the trace exactly even if some operations are not deterministic.

Visualisation. ProB2-UI provides various ways to visualise the currently ani-
mated model. For example, it is possible to visualise the state space, the machine
hierarchy, event hierarchy, formula trees etc. Figure 2 shows a state space pro-
jection [25] of the model from [29] on the right-hand side.

Fig. 2. Graph visualisation window of ProB2-UI with projected state space

The visualisation tool VisB [39] can be used to create interactive visualisa-
tions using SVG images and a glue file. It was previously a ProB2-UI plugin,
but is now available in the regular VisB view, as shown at the bottom of Fig. 1.
In the view, the user can see a visual rendering of the current state and exe-
cute operations by clicking on visual elements (as stipulated in the glue file). A
very recent feature is the export of an animation trace as a stand-alone HTML
file containing the visualisations. This HTML file can, e.g., be sent via email
to domain experts and they can inspect the trace with its states in a regular
browser, without any need for ProB2-UI.



196 J. Bendisposto et al.

Using ProB2-UI’s plugin support, custom visualisations can be implemented
using Java and JavaFX. Developing such a visualisation requires more effort and
knowledge than VisB, but offers greater flexibility via arbitrary GUI elements
and code. Such a visualisation plugin was developed as part of a demonstration
of the ETCS Hybrid Level 3 concept [13,14], and was instrumental in domain
experts understanding the model and discovering issues. More figures and screen-
shots of ProB2-UI can be seen in [13,14] (Fig. 3).

Fig. 3. Figure 3 from [13] with physical train and
train image

Figure 3 of [6] shows another
ProB2-UI visualisation plugin
for an Alstom CBTC system.
The plugin mechanism was also
used to provide custom views
for a domain-specific extension
of B for data validation [15].

Verification. As explained before, a modeller can save verification tasks for each
model, which is particularly useful during development. It is possible to re-check
all verification tasks on an updated model.

ProB2-UI supports various model checking techniques, including exhaustive
model checking [28], LTL model checking [32], and symbolic model checking [22]
(Fig. 4).

Fig. 4. Model checking view

Regarding explicit-state
model checking, one can
choose different search stra-
tegies, e.g., breadth-first,
depth-first, and mixed. Fur-
thermore, one can define the
properties to be checked in
each state. These include
the invariant, deadlock-
freedom, assertions, well-
definedness, and precondi-
tions. It is also possible to provide a goal predicate to specify desired states, or
limit the number of states explored or the time spent. In the case that an error or
a goal is found, the counterexample is shown in the history view of the animator.

Fig. 5. LTL model checking view

LTL model checking
can be used to verify
temporal properties of a
model. Here, the user
can define LTL formu-
las combining state pred-
icates with the standard
LTL operators. In addi-
tion, operators of Past-
LTL are available, as well as operators for fairness, deadlock, determinacy, and
enabledness of operations. Finally, it is possible to declare LTL patterns, which



ProB2-UI: A Java-Based User Interface for ProB 197

can be reused in multiple formulas. Similar to explicit-state model checking,
counterexamples are also stored and can be displayed in the history view.

Simulation. Recently, ProB2-UI has been extended by a simulator called
SimB [38]. It is based on lightweight annotation files that specify how events
activate each other along with timing, priorities, and probabilistic annotations as
well as possible start and end conditions. The user can then perform simulations,
where the model is simulated live in real-time. In combination with the other
views, in particular the VisB view, one can see how the model’s state changes
in real-time. It is also possible to perform Monte Carlo simulations in acceler-
ated time. Based on the simulations, statistical techniques such as hypothesis
testing and estimation can then be applied to validate probabilistic and timing
properties. Every single simulation can be saved as a timed trace, or be replayed
in real-time afterwards (Fig. 5).

Other Features. In addition to the features presented so far, ProB2-UI also
provides an editor to modify the models in the project. Furthermore, there are
three consoles: a B console in which formulas in B or Event-B can be evaluated,
a Groovy console in which one has access to the objects of the ProB2 API, and
a Prolog console to inspect debugging or performance messages of the ProB
kernel. In addition to high-level languages such as B, Event-B, Z, TLA+, Alloy
or CSP, ProB also supports XTL files, which contain a raw Prolog encoding
of the transition system to be checked. Here, the modeller has to implement
the interface to ProB consisting of the predicates start/1 (calculating the
initial states), trans/3 (calculating transitions and resulting states outgoing
from every state), and prop/2 (calculating the properties of every state). We have
used it for teaching, e.g., by encoding the rules of chess in Prolog and illustrate
game-playing algorithms. It is also possible to provide a Prolog interpreter for
another specification language and extend ProB and ProB2-UI in this way.
For example, we have such interpreters for Promela [40], SMV, and Lustre [37]
models.

3 Related Work

In this section, we compare ProB2-UI with other formal methods tools that
come with a graphical user interface. The reader may also consult various recent
studies [8–10,35] about tools and also their usability.

Atelier-B [5] and Rodin [1] have a strong focus on the refinement-based soft-
ware development process of the B method. They both provide a project or
workspace concept, with a convenient way for managing and discharging proof
obligations. As mentioned, ProB can also be run within [1], but with a much-
reduced feature set compared to ProB2-UI. It is also possible to start ProB2-UI
from [1] for a given model. From Atelier-B it is also possible to start ProB Tcl/Tk
for a model, or use ProB as an alternate prover. At the moment, ProB2-UI
is complementary to Atelier-B and Rodin: ProB2-UI focuses on validation and



198 J. Bendisposto et al.

model checking, Atelier-B and Rodin on proof and proof obligations.1 Other
animation tools for B, such as Brama [34], AnimB [30] or JeB [41] provide con-
venient visualisation features, but lack many of the features of ProB2-UI.

The TLA Toolbox is an IDE for the modelling language TLA+ which is
widely used for distributed systems. Both the TLC model checker [42] and the
TLA+ proof system are integrated into the TLA Toolbox [23]. In practice, most
users will use the TLC features, where similar to ProB2-UI, one can save various
model checking configurations. Counterexample traces can be inspected and a
REPL has been added recently to the toolbox. However, at the moment, there are
no interactive animation or visualisation features available. Here, a ProB plugin
for the TLA toolbox was implemented to support animation and visualisation
[12], but it is now superseded by ProB2-UI which can also open TLA+ files.

Overture [26] is an Eclipse-based IDE for the VDM formal method with
a large feature set, particularly as far as simulation is concerned. The Maestro
[36] INTO-CPS tool is an evolution targeting cyber-physical systems, containing
unique features such as three-dimensional rendering of systems. PVSio-Web [31]
for PVS is a tool particularly well-suited for domain-specific visualisations, e.g.,
for medical user interfaces. Many other formal specification languages and tools
come with powerful user interfaces, such as Spin [16] or extensions thereof [33]
for Promela, UPPAAL [2] and PRISM [24] for (probabilistic) timed automata,
Alcoa [18] for Alloy [17], NuSMV [4] for SMV, or FDR4 [11] for CSP.

4 Conclusion

As presented above, ProB2-UI has some special features not available in its
predecessor ProB Tcl/Tk. Still, there are some features of ProB Tcl/Tk that
are not yet implemented in ProB2-UI, such as the LTSmin [19] integration
[21]. Indeed, we have learned that one should not underestimate the time for a
complete rewrite. Catching up with a still-evolving feature set of an existing tool
is hard. Furthermore, it was not easy to achieve a performance as good as ProB
Tcl/Tk. In initial versions of ProB2-UI, both memory usages and runtimes were
considerably higher, and it took a while to identify and correct the bottlenecks.
On the one hand, the Tcl interface of SICStus Prolog is relatively limited, only
supporting simple values such as atoms and numbers, and lists thereof. This
actually forced us to write an efficient UI API design from the start in ProB
Tcl/Tk (e.g., not sending formulas back and forth between Tcl and Prolog). On
the other hand, the Tcl interface of SICStus Prolog has less latency than the
communication via sockets in ProB2. This meant that we had to group requests
in ProB2 in order to improve the performance.

Two recent surveys [10,35] have investigated the formal methods tools used in
the railway sector and have found the B-Method tools (in particular AtelierB
and ProB) to be the most mature and widely used. We hope that ProB2-UI
provides another step forward, in the form of a feature-rich and intuitive user
1 See Sect. 5 of [9]: “Atelier-B and ProB are the right choice for top-down development
of mainly monolithic systems, with complementary verification capabilities”.



ProB2-UI: A Java-Based User Interface for ProB 199

interface, which helps the modeller develop, verify, validate, debug, and under-
stand formal models.

Our tool’s homepage with download links and a video presentation is avail-
able at: https://prob.hhu.de/w/index.php/ProB2-UI.

Acknowledgements. We want to thank Christoph Heinzen who has elaborated the
plugin mechanism in his Master’s thesis. Many more persons were involved in the imple-
mentation of ProB2-UI, notably Dominik Hansen, Jessica Petrasch, Daniel Plagge, and
Sebastian Stock. Thanks also to Olga Iudina for the Russian translations and anony-
mous referees for their useful corrections and suggestions. ProB2-UI is currently being
extended within the DFG funded project IVOIRE.

References

1. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010)

2. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

3. Butler, M., et al.: The first twenty-five years of industrial use of the B-Method. In:
ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 189–209.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2 8

4. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

5. ClearSy, A.B.: User and Reference Manuals. Aix-en-Provence, France (2016).
http://www.atelierb.eu/

6. Comptier, M., Leuschel, M., Mejia, L.-F., Perez, J.M., Mutz, M.: Property-based
modelling and validation of a CBTC zone controller in Event-B. In: Collart-
Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495,
pp. 202–212. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-
6 13

7. Falampin, J., Le-Dang, H., Leuschel, M., Mokrani, M., Plagge, D.: Improving rail-
way data validation with ProB. In: Romanovsky, A., Thomas, M. (eds.) Industrial
Deployment of System Engineering Methods, pp. 27–43. Springer, Berlin, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-33170-1 4

8. Ferrari, A., Mazzanti, F., Basile, D.: Systematic evaluation and usability analysis
of formal tools for system design. CoRR, abs/2101.11303 (2021)

9. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H., Fantechi, A.: Comparing
formal tools for system design: a judgment study. In: Rothermel, G., Bae, D. (eds.)
ICSE 2020: 42nd International Conference on Software Engineering, Seoul, South
Korea, 27 June–19 July, 2020, pp. 62–74. ACM (2020)

10. Ferrari, A., et al.: Survey on formal methods and tools in railways: the ASTRail
approach. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail
2019. LNCS, vol. 11495, pp. 226–241. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-18744-6 15

https://prob.hhu.de/w/index.php/ProB2-UI
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-030-58298-2_8
https://doi.org/10.1007/3-540-45657-0_29
http://www.atelierb.eu/
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-642-33170-1_4
https://doi.org/10.1007/978-3-030-18744-6_15
https://doi.org/10.1007/978-3-030-18744-6_15


200 J. Bendisposto et al.

11. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 13

12. Hansen, D., Bendisposto, J., Leuschel, M.: Integrating ProB into the TLA Toolbox.
In: TLA Workshop (2014)

13. Hansen, D., et al.: Validation and real-life demonstration of ETCS hybrid level
3 principles using a formal B model. Int. J. Softw. Tools Technol. Transf. 22(3),
315–332 (2020)

14. Hansen, D., et al.: Using a formal B model at runtime in a demonstration of the
ETCS hybrid level 3 concept with real trains. Proceedings ABZ 2018, 292–306
(2018)

15. Hansen, D., Schneider, D., Leuschel, M.: Using B and ProB for data validation
projects. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016.
LNCS, vol. 9675, pp. 167–182. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33600-8 10

16. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 1st edition (2011)

17. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11, 256–290 (2002)

18. Jackson, D., Schechter, I., Shlyakhter., I.: Alcoa: the alloy constraint analyzer. In:
Proceedings of the 2000 International Conference on Software Engineering. ICSE
2000 the New Millennium, pp. 730–733 (2000)

19. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

20. Körner, P., Bendisposto, J., Dunkelau, J., Krings, S., Leuschel, M.: Embedding
high-level formal specifications into applications. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 519–535. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8 31

21. Körner, P., Leuschel, M., Meijer, J.: State-of-the-Art model checking for B and
Event-B using ProB and LTSmin. In: Furia, C.A., Winter, K. (eds.) IFM 2018.
LNCS, vol. 11023, pp. 275–295. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98938-9 16

22. Krings, S.: Towards infinite-state symbolic model checking for B and Event-B.
Ph.D. thesis, Heinrich Heine Universität Düsseldorf, August 2017

23. Kuppe, M.A., Lamport, L., Ricketts, D.: The TLA+ toolbox. Electron. Proc. The-
oret. Comput. Sci. 310, 50–62 (2019)

24. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46029-2 13

25. Ladenberger, L., Leuschel, M.: Mastering the visualization of larger state spaces
with projection diagrams. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 153–169. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 10

26. Larsen, P., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The
overture initiative: integrating tools for VDM. ACM SIGSOFT Softw. Eng. Not.
35, 1–6 (2010)

https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-030-30942-8_31
https://doi.org/10.1007/978-3-319-98938-9_16
https://doi.org/10.1007/978-3-319-98938-9_16
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/978-3-319-25423-4_10
https://doi.org/10.1007/978-3-319-25423-4_10


ProB2-UI: A Java-Based User Interface for ProB 201

27. Lecomte, T., Burdy, L., Leuschel, M. :Formally checking large data sets in the
railways. CoRR, abs/1210.6815. Proceedings of DS-Event-B 2012, Kyoto (2012)

28. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805. Springer, Heidelberg (2003).
https://doi.org/10.1007/b13229

29. Leuschel, M., Mutz, M., Werth, M.: Modelling and validating an automotive system
in classical B and Event-B. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020.
LNCS, vol. 12071, pp. 335–350. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-48077-6 27

30. Métayer, C.: AnimB 0.1.1 (2010). http://wiki.event-b.org/index.php/AnimB
31. Oladimeji, P., Masci, P., Curzon, P., Thimbleby, H.: PVSio-web: a tool for rapid

prototyping device user interfaces in PVS. In: Proceedings FMIS, vol. 69 (2013)
32. Plagge, D., Leuschel, M.: Seven at a stroke: LTL model checking for high-level

specifications in B, Z, CSP, and more. Int. J. Softw. Tools Technol. Trans. 12,
9–21 (2007)

33. Ruys, T.C.: Xspin/Project - integrated validation management for Xspin. In:
Dams, D., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680, pp.
108–119. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48234-2 8

34. Servat, T.: BRAMA: a new graphic animation tool for B models. In: Julliand, J.,
Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 274–276. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11955757 28

35. ter Beek, M.H., et al.: adopting formal methods in an industrial setting: the rail-
ways case. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS,
vol. 11800, pp. 762–772. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30942-8 46

36. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: the INTO-
CPS co-simulation framework. Simul. Model. Pract. Theory 92, 45–61 (2019)

37. Vu, F.: Simulation and verification of reactive systems in Lustre with ProB. Mas-
ter’s thesis, Heinrich Heine Universität Düsseldorf, June 2020

38. Vu, F., Leuschel, M., Mashkoor, A.: Validation of formal models by timed proba-
bilistic simulation. In: Raschke, A., Méry, D. (eds.) ABZ 2021. LNCS, vol. 12709,
pp. 81–96. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77543-8 6

39. Werth, M., Leuschel, M.: VisB: a lightweight tool to visualize formal models with
SVG graphics. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol.
12071, pp. 260–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
48077-6 21

40. Winter, D.: Validating promela models with the ProB model chcker. Master’s the-
sis, Institut für Informatik, Universität Düsseldorf (2008)

41. Yang, F., Jacquot, J., Souquières, J.: JeB: safe simulation of Event-B models in
JavaScript. In: Proceedings APSEC, vol. 1, pp. 571–576. IEEE (2013)

42. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
Laurence, Kropf, Thomas (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/b13229
https://doi.org/10.1007/978-3-030-48077-6_27
https://doi.org/10.1007/978-3-030-48077-6_27
http://wiki.event-b.org/index.php/AnimB
https://doi.org/10.1007/3-540-48234-2_8
https://doi.org/10.1007/11955757_28
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-030-77543-8_6
https://doi.org/10.1007/978-3-030-48077-6_21
https://doi.org/10.1007/978-3-030-48077-6_21
https://doi.org/10.1007/3-540-48153-2_6


Intrepid: A Scriptable and Cloud-Ready
SMT-Based Model Checker

Roberto Bruttomesso(B)

Via Castronno, 48, 21040 Morazzone, VA, Italy

Abstract. Intrepid is an SMT-based model checker that provides a
rich set of APIs for creating, simulating, and verifying state machines
expressed as circuits (just like Simulink or Lustre models). Intrepid may
be further used in its Docker container version to be deployed on a local
or in a cloud-based infrastructure. The container exposes an equivalently
powerful REST API for operating with the model checker. Verification of
safety properties in Intrepid is performed in a bit-precise manner, includ-
ing operations involving integers and floating point arithmetic. Intrepid
features standard verification engines as well as multi-property optimiz-
ing engines which are suitable for automated test generation tasks, such
as MC/DC test generation for avionics.

1 Introduction

Model Checking has been successfully employed for decades in industrial envi-
ronments such as Electronic Design Automation (e.g., equivalence checking for
RTL power reduction [2]) and Control Engineering (e.g., automated test gen-
eration for avionics and automotive [6,13]), or modern re-implementations of
established techniques for network security such as the derivation of attack
graphs [1,16,27,29].

Oftentimes companies do not have the resources, the knowledge, or the inter-
est in building an in-house model checker to use as a backend for a new applica-
tion. Rather, they tend to rely on a free academic tool [7–9,15,17,23,25,30] or to
buy licenses for a commercial product from a third-party company [22]. In either
case the user of the chosen tool is immediately confronted with the task of trans-
lating an instance of her problem into the particular language accepted by the
backend, as well as parsing a counterexample for mapping it back to the original
problem. While in some contexts the translation effort is not an issue, in some
scenarios it represents a major hurdle, especially from a performance and usabil-
ity perspective. This issue is particularly evident in applications that require a
high degree of interaction between the application and the model checker, such
as Automated Test Generation [13] or attack graph generation [1,29].

Intrepid aims to tackle these problems by providing a rich Python-based API
where input models and the verification steps are executable Python scripts1,

A demonstration video is available at https://youtu.be/n-0Y iJqkqY.
1 E.g.: [ctx.mk input(‘i’ + str(i)) for i in range(100)] to create 100 inputs.

c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 202–211, 2021.
https://doi.org/10.1007/978-3-030-85248-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_13&domain=pdf
https://youtu.be/n-0Y_iJqkqY
https://doi.org/10.1007/978-3-030-85248-1_13


The Intrepid Model Checker 203

which can be imported, reused, and extended. Counterexamples can be stored as
Python dictionaries or as pandas dataframe, one of the most popular representa-
tion for tabular data in Python. Intrepid can be thus used as a rapid-prototyping
tool, where the heavy solving tasks are silently delegated to an underlying effi-
cient C++ library. Intrepid can also be started as a server running in a Docker
container, on a local or remote machine. The server exposes a rich REST API
that can be used to construct, simulate, and solve model checking problems.
Under the hood, Intrepid relies on the powerful SMT-solver Z3 [24] for solving
satisfiability queries and for performing quantifier elimination required by the
model checking engines.

Intrepid is distributed as a library for Python-3.8. It can be installed by
issuing the command pip3 install intrepyd2. The REST API relies on the
Docker container robertobruttomesso/intrepid. The Python code is avail-
able at https://github.com/formalmethods/intrepid and can be used under the
liberal BSD-3 license.

2 Constructing Models

In Intrepid models are standard, word-level sequential circuits defined as follows:

circuit : constant | input | latch | circuit op circuit

where constants, inputs, and latches can be of type Boolean, signed or unsigned
integers of size in {8, 16, 32, 64}, floating point of size in {16, 32, 64}, or real (the
only infinite-precision type). op is an arithmetic operator, a comparison relation,
or a Boolean gate, applied to the proper circuit types, essentially following the
typing rules of the SMT-LIB language [3]. Constants, inputs, latches, and opera-
tors can be created using an instance of the Context object. Intrepid’s language
is similar in semantic and expressiveness to the BTOR2 format for hardware
model checking [25].

Figure 1 shows the creation of a circuit representing a clock signal (a signal
that toggles at each time step). The Context is created at line 3 and stored
in variable ctx. At line 6 and 7 the input and a latch1 of type Boolean are
created. At lines 8–10 latch1 is given an initial and a next state: this step is
performed after the latch creation to allow the specification of sequential loops
(i.e., loops that involve at least a latch. Combinational loops are not allowed).
Lines 11–15 perform the creation and initialization of latch2.

Because models are Python scripts, they can be placed into convenient func-
tions or classes inside Python modules. The clock model above, for instance, can
be imported from the intrepyd.components.eda submodule.

2 Notice the “y” in the name of the Python package: the name “intrepid” was already
taken.

https://github.com/formalmethods/intrepid


204 R. Bruttomesso

Fig. 1. The encoding of a clock signal, starting with a random value: (a) the schematic
of the circuit (b) the encoding in Intrepid, clk being the output.

2.1 Translating Industrially-Relevant Models

Intrepid is intended to be used via its API, however, in order to facilitate the
processing of existing industrial models, Intrepid comes with two submodules
intrepyd.lustre2py and intrepyd.iec611312py. The first one translates Lus-
tre models [18], while the second one translates the IEC-61131-3 Structured Text
language models in OpenPLC format, into Intrepid’s scripts. Both translators,
based on the ANTLR parser [26], do not fully support all the aforementioned
languages’ constructs (e.g.: arrays are not supported).

The Lustre frontend has been tested with a subset of the models available
from [20] (see Sect. 4.1). The Structured Text encoder is currently in an earlier
proof-of-concept stage: its main purpose is to demonstrate that the translation
is possible, by providing an initial implementation. It has been tested on an
OpenPLC model3, in turn translated from a Simulink/Stateflow model of an
infusion pump, using the Simulink PLC Coder tool4. The infusion pump model
is part of the CocoSim tool [7] test suite5.

3 Simulating Models

Since models are circuits, they can be simulated for a given number of time
steps. The result of the simulation is a Trace object. For each simulation step
the trace assigns a value to the sub-circuits that are being watched.

Figure 2 shows the simulation of the clock circuit of Fig. 1, conveniently
imported from the eda module. The simulator is created at line 7. Both the
clock output and input are “watched” at lines 8 and 9: watched signals are those
that will show up in the trace. Line 10 creates a new empty trace, and line 11
3 Available at https://bit.ly/3hggxgV.
4 Simulink PLC Coder is a Mathwork’s proprietary tool.
5 Available at https://bit.ly/3qw4osy.

https://bit.ly/3hggxgV
https://bit.ly/3qw4osy


The Intrepid Model Checker 205

Fig. 2. Simulating a clock signal over 10 time steps: (a) the encoding in Intrepid, (b)
the pandas dictionary printed at line 14, (c) the signal values graphs generated at
line 15.

initializes the first value of the input to F. If an input value is not specified
for a time step, the simulator will assign to a “don’t care” value ?. During the
simulation, at line 12, these values are propagated through the circuit, but, if
irrelevant, will not show up at the circuit output: this is exactly the case in
our example. At line 13 the trace is converted in a pandas dataframe, and then
printed and plotted at lines 14 and 15. In the plots, F is mapped to 0, T to 1,
and ? to −1.

4 Model Checking

Model Checking in Intrepid consists in defining reachability targets, i.e.,
Boolean signals for which the tool tries to find a trace. In standard termi-
nology a target is a bad state corresponding to the negation of a safety property,
and a trace is a counterexample that disproves its validity. Safety properties
are the only ones supported by Intrepid. In order to support a wider range of
properties a user could rely on the approach of [11] to create monitor circuits,
by constructing them using Intrepid’s basic APIs. It is important to notice that
Intrepid’s engines attempt to reach multiple targets at once.

Bounded Model Checking and Temporal Induction. Bounded Model
Checking (BMC) is the process of reaching a target by unrolling the circuit
for finite number of steps. The unrolling is performed in a backward man-
ner, from the targets to the inputs. Latches are recursively replaced with their
unrolled next state signal. Optionally, Temporal Induction (TI) can be enabled
to prove target’s unreachability. Intrepid essentially follows the “Zig-zag” app-
roach of [12], as well as its strategy of dynamically adding difference constraints.



206 R. Bruttomesso

Optimizing Bounded Model Checking. Some applications such as Auto-
mated Test Generation require to find traces that satisfy the most number of
targets at once. Since each trace is turned into a test, and each test might need
to undergo manual revision, it is important to produce a small number of traces
that cover all the targets. The Optimizing Bounded Model Checking (OBMC)
engine aims at solving exactly this problem. By relying on the optimization pro-
cedure of Z3 [5], it is possible to simply use the MAX-SMT solver instead of the
default one to find traces that satisfy the maximum number of active targets (a
sample application is presented in Sect. 5.2).

Backward Reachability. Backward Reachability (BR) is inspired to the explo-
ration algorithm behind the MCMT model checker [16], which is adapted for
Intrepid’s circuit-like models. The algorithm keeps a frontier of states to explore,
and a set of blocked states. Blocked states are states that have been already
explored, and therefore do not need to be enumerated again. The frontier is ini-
tialized with the targets to reach. Then the main loop starts. At each iteration
a state S is popped from the frontier: if it intersects the initial states, then some
target is reachable, otherwise the pre-image states of S that are not blocked
already are added to the frontier, and S is added to the blocked states. The loop
exits when the frontier is empty. Backward Reachability relies on Z3’s quantifier
elimination to rule out non-Boolean inputs from the enumerated states.

4.1 A Comparison of the Engines

Table 1 reports an evaluation of the engines on a subset of the benchmarks
from [20]. Overall we run 848 divided in 6 families. Each benchmark contains
either a safe or an unsafe property. The experiments show that BMC solves

Table 1. A comparison on the lustre models from [20]. The tests have been run on
an Intel i7-8565U 1.80 GHz machine, with 32GB of RAM, running Ubuntu Linux
and Intrepid version 0.10.3. The timeout was set at 60 s. The column “TO” reports
the number of timed-out benchmarks. The column “Best” indicates on how many
benchmarks the tool was the fastest to find the answer. Full raw data is available at
https://bit.ly/3duFd4a. The benchmarks and the scripts to run the tests are available
under the folder benchmarks of the Github repository). Bold-face fonts highlight the
best performing solver per each benchmark family.

Family BMC BMC+TI BR

Safe Unsafe TO Best Safe Unsafe TO Best Safe Unsafe TO Best

Protocol 0 14 22 14 16 14 6 16 15 7 14 0

Simulation 0 58 132 57 68 52 70 68 64 43 83 6

Memory1 0 110 172 108 10 109 163 8 17 10 255 11

Memory2 0 98 84 97 25 96 61 22 35 57 90 15

Misc 0 62 48 54 18 62 30 22 34 62 14 21

Large 0 0 48 0 12 0 36 7 13 0 35 6

Total 0 342 506 330 149 333 366 143 178 179 491 59

https://bit.ly/3duFd4a


The Intrepid Model Checker 207

the most unsafe benchmarks, as expected, while BR solves the most safe ones.
BMC+TI solves the most benchmarks overall (it reports the least number of
timeouts). A comparison with other model-checkers is left as future work.

5 Sample Applications

5.1 Equivalence Checking for Clock-Gating

Sequential clock gating is an important technique used in EDA to reduce the
power consumption of digital circuits [4]. The idea of clock-gating is to reduce
flip-flop value toggles, which is known to be draining a substantial amount of
power, by adding extra logic to the circuit, in such a way that the power used
for the new logic is highly compensated by the reduced toggles.

Fig. 3. An an equivalence checking problem for a power reduction technique called
Stability Condition [14]: (a) the encoding of a register with enable, (b) the schematic
of the problem, where the enable signal en is propagated to the register forth, delayed
by one cycle, and (c) the encoding of the problem in Intrepid.

Figure 3b shows a transformation of a chain of a pair of registers back1-
forth1 into a more power-efficient one back2-forth2. Due to the changes in
the design, clock-gating opportunities must be proven correct: in the schematic
above the pin diff must never evaluate to 1. diff is be passed as a target to
the backward reachability an engine for proving its unreachability.



208 R. Bruttomesso

The SMT-like language of Intrepid allows the definition of clock-gating checks
at the “word level”, thus operating on the original registers as a whole rather
than on their individual flip-flops (in the example we are running the check for
a 16-bits register).

5.2 Automated Test Generation of MC/DC

The avionics standard DO-178C [28] dictates that every Level-A control soft-
ware must be fully covered by a test suite using the Modified Condition/Decision
(MC/DC) coverage metric [10]. Encoding of MC/DC conditions as Boolean or
SMT formulas is a well-studied topic: the interested reader may refer to [6] for a
simple logical formulation of the problem. Essentially the idea is to create reach-
able targets such that their traces correspond to tests that satisfy the coverage.
Intrepid implements a simple ATG algorithm using only 300 LOC of Python
that roughly follows the approach of [13], and is based on repeated calls to the
OBMC engine, as shown in Fig. 4.

Fig. 4. An example of an execution of ATG on a simple combinational circuit (a)
taken from [19]. Each row of the table (b) is an assignment to the inputs representing a
test. Pair of tests show the satisfaction of the MC/DC coverage criterion for a specific
input. For example (0, 1) is a pair of tests that shows MC/DC for In1 (a so-called
independence pair): In1 toggles between the two tests, all the other inputs keep the
same value, and Out toggles. This is a proof that In1 can affect the behavior of the
circuit.

6 A REST API for Model Checking

Intrepid is also available as a Docker container, that can be (downloaded and)
run with docker run -p 8000:8000 -d robertobruttomesso/intrepid6.
6 The docker framework can be obtained from https://www.docker.com/.

https://www.docker.com/


The Intrepid Model Checker 209

The command starts a local server at port 8000 that exposes a rich REST API
that roughly wraps the Python API so far described. The API is still exper-
imental (it lacks for instance a mechanism for authentication), but it is fully
operational for constructing, simulating, solving, and retrieving traces.

Figure 5 shows a sample interaction that creates an and gate using a
command-line tool; similar interactions can be programmed and automated with
popular languages such as Python, Ruby, or Javascript. Beside increasing the
tool’s interoperability with other frameworks and languages, having a container-
ized application with a REST API is a first step towards the embedding of Model
Checking in a cloud environment such as AWS, Azure, or Digital Ocean: these
providers can easily host and orchestrate multiple containers with frameworks
like Docker-compose or Kubernetes.

One application that we envision for this setting is that of solving large
problems that can be partitioned and dispatched to several different engines:
the application described in Sect. 5.1, for instance, can be often tackled by par-
titioning the global equivalence checking problem into thousands of independent
smaller ones, one per each clock gating opportunity discovered, using the notion
of cut-points [21]. However, several challenges needs to be considered, such as
the dispatching of problems and the reconstruction of the results. We leave the
investigation of the feasibility of this research direction for a future work.

Fig. 5. A client-server interaction using the popular command-line tool curl (c> is
the client’s query, s> is the server’s response): lines 1–3 create a new context named
default, lines 5–7 and lines 9–11 create two inputs, and lines 13–15 create an and gate
using them. Further documentation for the REST APIs is available at https://bit.ly/
3bn2h42.

7 Conclusion

We have introduced Intrepid, a scriptable SMT-based Model Checker. We have
presented a sketch of its Python API by applying it to a concrete industrially rel-
evant sample application. Intrepid is additionally shipped as a Docker container,

https://bit.ly/3bn2h42
https://bit.ly/3bn2h42


210 R. Bruttomesso

and it exposes a REST API that enables the deployment of the model checker
on a remote server, a first step towards the employment of Model Checking in a
cloud-based environment.

References

1. Al Ghazo, A.T., et al.: A2G2V: automatic attack graph generation and visualiza-
tion and its applications to computer and SCADA networks. IEEE Trans. Syst.
Man Cybern. Syst. 50(10), 3488–3498 (2020). https://doi.org/10.1109/TSMC.
2019.2915940

2. Babighian, P., Benini, L., Macii, E.: A scalable ODC-based algorithm for RTL
insertion of gated clocks. In: Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition, vol. 1, pp. 500–505 (2004). https://doi.org/10.
1109/DATE.2004.1268895

3. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.6. Technical
report, Department of Computer Science, The University of Iowa (2017). http://
www.smt-lib.org/

4. Benini, L., et al.: Symbolic synthesis of clock-gating logic for power optimization
of control-oriented synchronous networks. In: Proceedings of the European Design
and Test Conference, ED TC 1997, pp. 514–520 (1997). https://doi.org/10.1109/
EDTC.1997.582409

5. Bjørner, N., Phan, A.-D., Fleckenstein, L.: vZ - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 14

6. Bloem, R.P., et al.: Model-based MCDC testing of complex decisions for the Java
card applet firewall. In: VALID Proceedings. Ed. by IARIA, pp. 1–6 (2013)

7. Bourbouh, H., Brat, G., Garoche, P.-L.: CoCoSim: an automated analysis frame-
work for Simulink/Stateflow. In: Model Based Space Systems and Software Engi-
neering - European Space Agency Workshop (MBSE 2020) (2020)

8. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

9. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 29

10. Chilenski, J.J.: An investigation of three forms of the modified condition deci-
sion coverage (MCDC) criterion. Technical report. DOT/FAA/AR-01/18, Boeing
Commercial Airplane Group, April 2001

11. Claessen, K., Eén, N., Sterin, B.: A circuit approach to LTL model check-
ing. In: FMCAD, pp. 53–60 (2013). http://ieeexplore.ieee.org/xpl/freeabsall.jsp?
arnumber=6679391

12. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003). BMC 2003. ISSN: 1571-0661

13. Ferrante, O., Ferrari, A., Marazza, M.: Model based generation of high coverage
test suites for embedded systems. In: 19th IEEE European Test Symposium, ETS,
pp. 1–2 (2014). https://doi.org/10.1109/ETS.2014.6847843

14. Fraer, R., Kamhi, G., Mhameed, M.K.: A new paradigm for synthesis and prop-
agation of clock gating conditions. In: 2008 45th ACM/IEEE Design Automation
Conference, pp. 658–663 (2008)

https://doi.org/10.1109/TSMC.2019.2915940
https://doi.org/10.1109/TSMC.2019.2915940
https://doi.org/10.1109/DATE.2004.1268895
https://doi.org/10.1109/DATE.2004.1268895
http://www.smt-lib.org/
http://www.smt-lib.org/
https://doi.org/10.1109/EDTC.1997.582409
https://doi.org/10.1109/EDTC.1997.582409
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-41540-6_29
http://ieeexplore.ieee.org/xpl/freeabsall.jsp?arnumber=6679391
http://ieeexplore.ieee.org/xpl/freeabsall.jsp?arnumber=6679391
https://doi.org/10.1109/ETS.2014.6847843


The Intrepid Model Checker 211

15. Gacek, A., Backes, J., Whalen, M., Wagner, L., Ghassabani, E.: The JKind model
checker. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982,
pp. 20–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 3
ISBN: 978-3-319-96142-2

16. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1 3

17. Goel, A., Sakallah, K.: AVR: abstractly verifying reachability. In: TACAS 2020.
LNCS, vol. 12078, pp. 413–422. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45190-5 23 ISBN: 978-3-030-45190-5

18. Halbwachs, N., et al.: The synchronous data flow programming language LUSTRE.
In: Proceedings of the IEEE 1991, pp. 1305–1320 (1991)

19. Hayhurst, K.J., et al.: A Practical Tutorial on Modified Condition/Decision Cov-
erage. TM 2001-210876. Langley Research Center. NASA, Hampton, May 2001

20. Kind2 benchmarks. https://github.com/kind2-mc/kind2-benchmarks
21. Kuehlmann, A., Eijk, C.A.J.: Combinational and sequential equivalence checking.

In: Hassoun, S., Sasao, T. (eds.) Logic Synthesis and Verification. SECS, vol. 654,
pp. 343–372. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0817-
5 13

22. Mathworks: Simulink Design Verifier. https://www.mathworks.com/products/
sldesignverifier.html

23. Mattarei, C., et al.: CoSA: integrated verification for agile hardware design. In:
FMCAD. IEEE (2018)

24. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

25. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC and Boolector 3.0.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 587–
595. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 32

26. Parr, T.: The Definitive ANTLR 4 Reference, 2nd edn. Pragmatic Bookshelf,
Raleigh (2013). ISBN: 978-1-93435-699-9. https://www.safaribooksonline.com/
library/view/the-definitive-antlr/9781941222621/

27. Ritchey, R.W., Ammann, P.: Using model checking to analyze network vulnera-
bilities. In: Proceeding of the 2000 IEEE Symposium on Security and Privacy, SP
2000, pp. 156–165 (2000)

28. RTCA: DO-178C: Software Considerations in Airborne Systems and Equipment
Certification

29. Sheyner, O., et al.: Automated generation and analysis of attack graphs. In: Pro-
ceedings of the 2002 IEEE Symposium on Security and Privacy, pp. 273–284 (2002).
https://doi.org/10.1109/SECPRI.2002.1004377

30. Vizel, Y., Gurfinkel, A.: Interpolating property directed reachability. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 260–276. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08867-9 17 ISBN: 978-3-319-08867-9

https://doi.org/10.1007/978-3-319-96142-2_3
https://doi.org/10.1007/978-3-642-14203-1_3
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://github.com/kind2-mc/kind2-benchmarks
https://doi.org/10.1007/978-1-4615-0817-5_13
https://doi.org/10.1007/978-1-4615-0817-5_13
https://www.mathworks.com/products/sldesignverifier.html
https://www.mathworks.com/products/sldesignverifier.html
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-96145-3_32
https://www.safaribooksonline.com/library/view/the-definitive-antlr/9781941222621/
https://www.safaribooksonline.com/library/view/the-definitive-antlr/9781941222621/
https://doi.org/10.1109/SECPRI.2002.1004377
https://doi.org/10.1007/978-3-319-08867-9_17


Merit and Blame Assignment with Kind 2

Daniel Larraz1(B), Mickaël Laurent1,2, and Cesare Tinelli1

1 Department of Computer Science, The University of Iowa, Iowa City, USA
daniel-larraz@uiowa.edu

2 IRIF, CNRS—Université de Paris, Paris, France

Abstract. We introduce two new major features of the open-source model
checker Kind 2 which provide traceability information between specification and
design elements such as assumptions, guarantees, or other behavioral constraints
in synchronous reactive system models. This new version of Kind 2 can iden-
tify minimal sets of design elements, known as Minimal Inductive Validity Cores,
which are sufficient to prove a given set of safety properties, and also determine
the set of MUST elements, design elements that are necessary to prove the given
properties. In addition, Kind 2 is able to find minimal sets of design constraints,
known as Minimal Cut Sets, whose violation leads the system to an unsafe state.
We illustrate with an example how to use the computed information for tracking
the safety impact of model changes, and for analyzing the tolerance and resilience
of a system against faults.

Keywords: SMT-based model checking · Inductive validity cores ·
Traceability · MUST-set generation · Minimal Cut Sets

1 Introduction

KIND 2 [6] is an open-source1 SMT-based model checker for safety properties of finite-
and infinite-state synchronous reactive systems. It takes as input models written in an
extension of the Lustre language [11]. The extension allows the specification of assume-
guarantee-style contracts for the modeled system and its components which enables
modular and compositional reasoning and considerably increases scalability. KIND 2’s
contract language [5] is expressive enough to allow one to represent any (LTL) regular
safety property by recasting it in terms of invariant properties. KIND 2 runs concurrently
several model checking engines which cooperate to prove or disprove contracts and
properties. In particular, it combines two induction-based model checking techniques,
k-induction [16] and IC3 [4], with various auxiliary invariant generation methods.

One clear strength of model checkers is their ability to return precise error traces
witnessing the violation of a given safety property. In addition to being invaluable to
help identify and correct bugs, error traces also represent a checkable unsafety certifi-
cate. Similarly, some model checkers are able to return some form of corroborating
evidence when they declare a safety property to be satisfied by a system under analysis.

Work partially funded by DARPA grant #N66001-18-C-4006 and by GE Global Research.
1 KIND 2 is distributed under the Apache 2.0 License at http://kind.cs.uiowa.edu.

c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 212–220, 2021.
https://doi.org/10.1007/978-3-030-85248-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_14&domain=pdf
http://kind.cs.uiowa.edu
https://doi.org/10.1007/978-3-030-85248-1_14


Merit and Blame Assignment with Kind 2 213

For instance, KIND 2 can produce an independently checkable proof certificate for the
properties that it claims to have proven [14]. However, these certificates, in the form of
a k-inductive invariant, give limited user-level insight on what elements of the system
model contribute to the satisfaction of the properties.

Contributions. We describe two new diagnostic features of KIND 2 that provide more
insights on verified properties: (1) the identification of minimal sets of model elements
that are sufficient to prove a given set of safety properties, as well as the subset of
design elements that are necessary to prove the given properties; (2) the computation
of minimal sets of design constraints whose violation leads the system to falsify one of
more of the given properties.

Although these two pieces of information are closely related, each of them can be
naturally mapped to a typical use case in model-based software development: respec-
tively, merit assignment and blame assignment. With the former the focus is on assess-
ing the quality of a system specification, tracking the safety impact of model changes,
and assisting in the synthesis of optimal implementations. With the latter, the goal is to
determine the tolerance and resilience of a system against faults or cyber-attacks.

In general, proof-based traceability information can be used to perform a variety of
engineering analyses, including vacuity detection [12]; coverage analysis [7,9]; impact
analysis [15], design optimization; and robustness analysis [17,18]. Identifying which
model elements are required for a proof, and assessing the relative importance of differ-
ent model elements is critical to determine the quality of the overall model (includ-
ing its assume-guarantee specification), determining when and where to implement
changes, identifying components that need to be reverified, and measure the tolerance
and resilience of the system against faults and attacks.

2 Running Example

We will use a simple model to illustrate the concepts and the functionality of KIND 2
introduced in this paper. Suppose we want to design a component for an airplane that
controls the pitch motion of the aircraft, and suppose one of the system requirements
is that the aircraft should not ascend beyond a certain altitude. The controller must
read the current altitude of the aircraft from a sensor, and modify the next position
of the aircraft’s nose accordingly. Moreover, we want the system to be fault-tolerant
to sensor failures. One way to improve system fault-tolerance is to introduce some
redundancy. In particular, we can equip the system with three different altimeters so
the controller receives three independent altitude values. Then the controller, with the
help of a dedicated component, a triplex voter, takes the average of the two altitude
values that are closest to each other—as they are more likely to be close to the actual
altitude. For simplicity, we will ignore other relevant signals that should be considered
in a real setting to control the elevation of the aircraft.

Following a model-based design, we model an abstraction of the system’s environ-
ment to which the aircraft’s controller will react. We also model the fact that the system
relies on possibly imperfect readings of the current altitude by the sensors to decide the
next pitch value. Finally, we provide a specification for the controller’s behavior so that
it satisfies the system requirement of interest.



214 D. Larraz et al.

1 node SystemModel (const TH, UB, ERR: real; alt1, alt2, alt3: real)
2 returns (act alt: real);
3 (∗@contract
4 assume ”C1” TH > 0.0; assume ”C2” UB > 0.0; assume ”C3” ERR >= 0.0;
5 assume ”S1” abs(0.0 −> pre act alt − alt1) <= ERR;
6 assume ”S2” abs(0.0 −> pre act alt − alt2) <= ERR;
7 assume ”S3” abs(0.0 −> pre act alt − alt3) <= ERR;
8 guarantee ”R1” act alt <= TH;
9 ∗)

10 var pitch, alt: real;
11 let
12 alt = TriplexVoter(alt1, alt2, alt3);
13 pitch = Controller(TH, UB, ERR, alt);
14 act alt = Environment(UB, pitch);
15 tel
16

17 node imported Controller (const TH, UB, ERR: real; alt: real) returns (pitch: real);
18 (∗@contract
19 const LIMIT: real = TH − (UB + ERR);
20 guarantee ”L1” alt > LIMIT => pitch < 0.0;
21 ∗)

Fig. 1. System model and subcomponents. Operators −>, abs and => are respectively the ini-
tialization operator, the absolute value function, and Boolean implication.

Our model is described in Fig. 1 in KIND 2’s input language where system compo-
nents are called nodes. The main component, SystemModel, is an observer node that
represents the full system consisting in this case of just three subcomponents: one node
modeling the controller, one modeling a triplex voter, and another one modeling the
environment. The observer has three inputs: alt1, alt2, and alt3, representing the alti-
tude values from each altimeter, and an output act alt, representing the current altitude
of the aircraft, which we are modeling as a product of the environment in response to
the pitch value generated by the controller.

KIND 2 allows the user to specify contracts for individual nodes, either as special
Lustre comments added directly inside the node declaration, or as the instantiation of
an external stand-alone contract that can be imported in the body of other contracts.
The contract of SystemModel, included directly in the node, specifies assumptions on
the altitude values provided by the sensors and on a number of symbolic constants (TH,
UB and ERR) which act in effect as model parameters. The contract assumes at line 4
that those constants are positive, or non-negative for ERR. The assumptions at lines 5–7
account for fact that, while the altitude value produced by each altimeter is not 100%
accurate in actual settings, its error is bounded by a constant (ERR)2. The contract

2 The initialization operator −> is used to specify initial state values. Operationally, a node has
a cyclic behavior: at each tick t of an abstract global clock it reads the value of each input
stream at time t, and instantaneously computes the value of each output stream at time t. For
streams x and y, the value (x −> y)(t) for stream x -> y equals x(t) for t = 0 and y(t) for t > 0.



Merit and Blame Assignment with Kind 2 215

1 node TriplexVoter (alt1,alt2,alt3: real) returns (r: real);
2 var ad12,ad13,ad23,m,avg1,avg2,avg3: real;
3 let
4 (ad12, ad13, ad23) = (abs(alt1 − alt2), abs(alt1 − alt3), abs(alt2 − alt3));
5 m = min(ad12, min(ad13, ad23));
6 (avg1, avg2, avg3) = (alt1 + alt2) / 2.0, (alt1 + alt3) / 2.0, (alt2 + alt3) / 2.0));
7 r = if m = ad12 then avg1 else if m = ad13 then avg2 else avg3;
8 tel

Fig. 2. Low-level specification of the Triplex voter.

1 node imported Environment (const UB: real; pitch: real) returns (alt: real);
2 (∗@contract
3 guarantee ”E1” (alt = 0.0) −> true;
4 guarantee ”E2” alt >= 0.0;
5 guarantee ”E3” true −> (pitch < 0.0 => alt <= pre alt);
6 guarantee ”E4” true −> (pitch < 0.0 => alt >= pre alt − UB);
7 guarantee ”E5” true −> (pitch > 0.0 => alt >= pre alt);
8 guarantee ”E6” true −> (pitch > 0.0 => alt <= pre alt + UB);
9 guarantee ”E7” true −> (pitch = 0.0 => alt = pre alt);

10 ∗)

Fig. 3. Contract specification for the Environment component of SystemModel.

includes a guarantee (line 8) that formalizes the requirement that aircraft maintain its
altitude below a certain threshold TH at all times. The body of SystemModel is simply
the parallel composition of a triplex voter, that takes the sensor values and computes an
estimated altitude for the controller as explained above, the controller component, and
the environment node.

A full specification for the TriplexVoter is given in Fig. 2. We do not specify the
body of the Controller and the Environment nodes in our model because their details
are not important for our purposes. Instead, we abstract their dynamics with an assume-
guarantee contract that captures the relevant behavior. In the Controller’s case, we
model the guarantee that the controller will produce a negative pitch value whenever
the sensor altitude indicates that the aircraft is getting too close to the threshold value
TH—with “too close” meaning that the difference between the current altitude and the
threshold is smaller than UB + ERR where UB represents an upper bound on the change
in altitude from one execution step to the next (see below).

The declaration of the Environment component and its contract are shown sepa-
rately in Fig. 3. With alt representing the actual altitude of the aircraft, the contract’s
guarantees capture salient constraints on the physics of our model by specifying that a
positive pitch value (which has the effect of raising the nose of the aircraft and lowering
its tail) makes the aircraft ascend, a negative value makes it descend, and a zero value
keeps it at the same altitude.3 The contract also states that the actual altitude starts at

3 We are ignoring here that, in reality, the altitude also depends on aircraft speed.



216 D. Larraz et al.

zero, is alway non-negative, and does not change by more than a constant value (UB)
in one sampling frame, where a sampling frame is identified with one execution step of
the synchronous model (one global clock tick) for simplicity. The latter constraint on
the altitude change rate captures physical limitations on the speed of the aircraft.

KIND 2 can easily prove that property (guarantee) R1 of SystemModel is invariant.
However, a few interesting questions arise: (1) Is property R1 satisfied because of the
conditions we imposed on the behavior of Controller, or does the property trivially
hold due to the stated assumptions over the environment and the sensors? (2) Are all
the assumptions over the environment and the sensors in fact necessary to prove the
satisfaction of property R1? (3) How resilient is the system against the failure of one or
more assumptions? We present in the following the new features of KIND 2 that help us
answer these questions. A demo video associated to this paper can be found here [1].

3 The New Features

The first of the two new features offered by KIND 2 consists in identifying which parts
of the input model were used to construct an inductive proof of invariance for R1.
The new functionality relies on the concept of inductive validity core introduced by
Ghassabani et al. [8]. Generally speaking, given a set of model elements M and an
invariant property P, an inductive validity core (IVC) for P is a subset of M that is
enough to prove P invariant. Kind 2 allows the user to choose among four sets of model
elements: assumptions/guarantees, node calls, equations in node definitions4, and asser-
tions5. In our running example, we consider P=R1 and M= S1 ∪C2 ∪E3 ∪{L1} where
S1 = {S1,S2,S3}, C2 = {C1,C2,C3}, and E3 = {E1,E2,E3,E4,E5,E6,E7}. In partic-
ular, note that M is an IVC, although not a very interesting one. In practice, for complex
enough models, smaller IVCs exist. In particular is often possible to compute efficiently
a smaller IVC that contains few or no irrelevant elements. We can ensure that the ele-
ments of an IVC for a property P are necessary by requiring it to be minimal, that is,
to have no proper subset that is also IVC for P. KIND 2 offers the option to compute a
small but possibly non-minimal IVC, a minimal IVC (MIVC), or all minimal IVCs.

IVCs for Coverage and Change Impact Analysis. If a property P of a system S has
multiple MIVCs, inspecting all of them provides insights on the different ways S sat-
isfies P. Moreover, given all the MIVCs for P, it is possible to partition all the model
elements into three sets [15]: a MUST set of elements which are required for proving
P in every case, a MAY set of elements which are optional, and a set of elements that
are irrelevant. This categorization provides complete traceability between specification
and design elements, and can be used for coverage analysis [9] and tracking the safety
impact of model changes. For instance, a change to one of the elements in the MAY set
for P will not affect the satisfaction of P but will definitely impact some other property
Q if it occurs in the MUST set for Q.

IVCs for Fault-Tolerance or Cyber-resiliency Analysis. Another use of IVCs, is in
the analysis of a system’s tolerance to faults [18] or resiliency to cyber-attacks [17].

4 Note that a node is Lustre is defined declaratively by a set of equations.
5 In Lustre, assertions are (unchecked) assumptions on a node’s input.



Merit and Blame Assignment with Kind 2 217

For instance, an empty MUST set for a system S and its invariant P indicates that the
property is satisfied by S in various ways, making the system fault tolerant or resilient
against cyber-attacks as far as property P is concerned. In contrast, a large MUST set
suggest a more brittle system, with multiple points of failure or a big attack surface.

Quantifying a System’s Resilience. To help quantify the resilience of a system, KIND 2
also supports the computation of minimal cut sets (aka, minimal correction sets) for an
invariance property. Given a set of model elements M and an invariant property P, a cut
set C for P is a subset of M such that P is no longer invariant for M\C. A minimal cut set
(MCS) for P is a cut set none of whose proper subsets is a cut set for P. A smallest cut
set is an MCS of minimum cardinality. KIND 2 provides options to compute a (single)
smallest cut set, all the MCSs, and all the MCSs up to a given cardinality bound. In
the context of fault or security analyses, the cardinality of an MCS for a property P
represents the number of design elements that must fail or be compromised for P to be
violated. The smaller the MCS, or the higher the number of MCSs of small cardinality,
the greater the probability that the property can be violated.

Running Example. If we ask KIND 2 to generate an IVC for the invariant R1 of the
system presented in Sect. 2, KIND 2 generates a IVC with 9 elements: assumptions S1,
S2, S3, and C1 from SystemModel’s contract, the (only) guarantee L1 in Controller’s
contract, and all guarantees in the contract of Environment except for E2, E4, and E5.
This tells us already that E2, E4, and E5 are not necessary to satisfy property R1 and
is enough to answer the second of the questions listed at the end of Sect. 2. Moreover,
since the guarantee L1 of Controller is part of the IVC, it is likely that the controller’s
behavior is relevant for the satisfaction of R1. However, we can not be sure because the
generated IVC is not necessarily minimal.

To confirm that L1 is indeed necessary we can ask KIND 2 to identify a true MIVC,
a more expensive task computationally. When we do that, KIND 2 returns the same
set. This confirms the necessity of the guarantee L1 but only for the specific proof of
R1’s invariance found by KIND 2. It might still be the case that the guarantee is not
required in general, that is, there may be other proofs that do not use L1, which would
be confirmed by the discovery of a different MIVC that does not contain it. In other
words, at this point we do not know whether L1 is a must element for R1. To determine
that, we can ask KIND 2 to compute the MUST set for property R1 in addition to the
MIVC. In that case, KIND 2 will return the same set as the MUST set, which confirms
that all the included elements are required and the excluded ones are irrelevant.

Note that the last result also means that assumptions S1, S2, and S3 are always nec-
essary, and thus, property R1 requires all three sensors to behave accordingly to their
specification. Put differently, the analysis shows that the introduced redundancy mecha-
nism does not actually make the system more fault tolerant. After reviewing the model,
however, one can conclude that to benefit from the triplex voter we must decrease
the safety limit value LIMIT in the controller’s contract. Specifically, it is enough to
decrease it as follows, doubling the error bound value:

1 const LIMIT: real = TH − (UB + 2.0 ∗ ERR);

After this change, KIND 2 stops classifying assumptions S1, S2, and S3 as MUST
elements. It computes a new MIVC of 8 elements which differs from the one computed



218 D. Larraz et al.

for the previous version of the model for the absence of S3. To confirm that this MIVC
is not the only solution, we can ask KIND 2 to compute all the MIVCs instead of a
single one. This makes KIND 2 show two additional MIVCs that are symmetric to the
computed MIVC: one set that contains S1 and S3 rather than S1 and S2, and another
one that contains S2 and S3 instead S1 and S2. In alternative, we could ask KIND 2
to compute all the MCSs for the revised model. In that case, KIND 2 will find the
following MCSs: {E1}, {E3}, {E6}, {E7}, {C1}, {L1}, {S1,S2}, {S1,S3}, {S2,S3}.
This confirms that the system can now tolerate the failure of one of its three altimeters.

The exercise above illustrates how the new traceability feature in KIND 2 could be
used to detect a subtle flaw in our enhanced model that prevented it from making the
system fault-tolerant despite the triplication of the altitude sensors. We stress how a
simple safety analysis, verifying the invariance of R1 would not help detect such flaw.

4 Implementation Details

KIND 2 is written in OCaml. All logical reasoning done by KIND 2 eventually reduces
to queries to an external SMT solver. The implementation of the new features required
around 2.8 KLOC. The computation of a small IVC for a property P is based on algo-
rithm IVC UC by Ghassabani et al. [8]. It consists of three main steps: (i) reducing
the value of k for the k-inductive proof of property P (obtained by finding a k-inductive
strengthening Q= Q1 ∧ ·· ·∧Qn of P); (ii) reducing the number of conjuncts in invari-
ant Q by removing those not needed in the proof; (iii) computing an UNSAT core over
the model constraints in the same query to the backend SMT solver that checks that
Q is a k-inductive strengthening of P. The computation of a single MIVC is based on
algorithm IVC UCBF, also by Ghassabani et al. [8]. The main idea is to generate a
small IVC first, and then minimize it using a brute-force approach that removes one
model element at a time and (model) checks that the property P still holds.

To compute all MIVCs we adapted algorithm UMIVC by Berryhill and Veneris [3]
which in turn is a generalization of previous work [2,10]. It basically explores in an
efficient way the power set of model elements. The algorithm implemented in KIND 2
can be seen as an instantiation of UMIVC where all MCSs of cardinality 1 are pre-
computed. The major difference with UMIVC is that our algorithm is able to identify
the MUST set from the generated set of MCSs, which can be use to check for early
termination of the algorithm and to enhance the minimization of the intermediate IVCs
generated during the process.

The problem of finding one cut set for a system S and a property P with at most k
model elements is reduced to a model checking problem. Every violation of property P
in this problem leads to a cut set. KIND 2 keeps solving this model checking problem
using smaller and smaller bounds until there is no more violations. When that happens,
it can extract a cut set of minimal cardinality. KIND 2 is also able to find all possible
MCSs with cardinality smaller than a given bound by incrementally adding constraints
that block the previous solutions. When there are no more minimal sets within the cur-
rent cardinality bound, it increases that bound by one and repeats the process. It ends
this process when the cardinality bound equals the number of model elements consid-
ered, having computed at that point all possible MCSs.



Merit and Blame Assignment with Kind 2 219

We refer the interested reader to a related technical report [13] for further imple-
mentation details and experimental results.

References

1. Demo video. https://doi.org/10.5281/zenodo.5070546. Accessed 5 July 2021
2. Bendı́k, J., Ghassabani, E., Whalen, M., Černá, I.: Online enumeration of all minimal induc-

tive validity cores. In: Johnsen, E.B., Schaefer, I. (eds.) SEFM 2018. LNCS, vol. 10886, pp.
189–204. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92970-5 12

3. Berryhill, R., Veneris, A.G.: Chasing minimal inductive validity cores in hardware model
checking. In: Barrett, C.W., Yang, J. (eds.) 2019 Formal Methods in Computer Aided Design,
FMCAD 2019, San Jose, CA, USA, 22–25 October 2019. pp. 19–27. IEEE (2019). https://
doi.org/10.23919/FMCAD.2019.8894268

4. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-18275-4 7

5. Champion, A., Gurfinkel, A., Kahsai, T., Tinelli, C.: CoCoSpec: a mode-aware contract lan-
guage for reactive systems. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763,
pp. 347–366. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8 24

6. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The KIND 2 model checker. In: Chaud-
huri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6 29

7. Chockler, H., Kroening, D., Purandare, M.: Coverage in interpolation-based model checking.
In: Sapatnekar, S.S. (ed.) Proceedings of the 47th Design Automation Conference, DAC
2010, Anaheim, California, USA, 13–18 July 2010. pp. 182–187. ACM (2010). https://doi.
org/10.1145/1837274.1837320

8. Ghassabani, E., Gacek, A., Whalen, M.W.: Efficient generation of inductive validity cores
for safety properties. In: Zimmermann, T., Cleland-Huang, J., Su, Z. (eds.) Proceedings of
the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2016, Seattle, WA, USA, 13–18 November 2016. ,p. 314–325. ACM (2016). https://doi.
org/10.1145/2950290.2950346

9. Ghassabani, E., Gacek, A., Whalen, M.W., Heimdahl, M.P.E., Wagner, L.G.: Proof-based
coverage metrics for formal verification. In: Rosu, G., Penta, M.D., Nguyen, T.N. (eds.) Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2017, Urbana, IL, USA, 30 October–03 November 2017, pp. 194–199. IEEE
Computer Society (2017). https://doi.org/10.1109/ASE.2017.8115632

10. Ghassabani, E., Whalen, M.W., Gacek, A.: Efficient generation of all minimal inductive
validity cores. In: Stewart, D., Weissenbacher, G. (eds.) 2017 Formal Methods in Computer
Aided Design, FMCAD 2017, Vienna, Austria, 2–6 October 2017, pp. 31–38. IEEE (2017).
https://doi.org/10.23919/FMCAD.2017.8102238

11. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying real-time systems by
means of the synchronous data-flow language LUSTRE. IEEE Trans. Software Eng. 18(9),
785–793 (1992). https://doi.org/10.1109/32.159839

12. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Int. J. Softw.
Tools Technol. Transf. 4(2), 224–233 (2003). https://doi.org/10.1007/s100090100062

13. Larraz, D., Laurent, M., Tinelli, C.: Merit and blame assignment with kind 2. CoRR
abs/2105.06575 (2021). https://arxiv.org/abs/2105.06575

https://doi.org/10.5281/zenodo.5070546
https://doi.org/10.1007/978-3-319-92970-5_12
https://doi.org/10.23919/FMCAD.2019.8894268
https://doi.org/10.23919/FMCAD.2019.8894268
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-319-41591-8_24
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1145/1837274.1837320
https://doi.org/10.1145/1837274.1837320
https://doi.org/10.1145/2950290.2950346
https://doi.org/10.1145/2950290.2950346
https://doi.org/10.1109/ASE.2017.8115632
https://doi.org/10.23919/FMCAD.2017.8102238
https://doi.org/10.1109/32.159839
https://doi.org/10.1007/s100090100062
https://arxiv.org/abs/2105.06575


220 D. Larraz et al.

14. Mebsout, A., Tinelli, C.: Proof certificates for SMT-based model checkers for infinite-state
systems. In: Piskac, R., Talupur, M. (eds.) 2016 Formal Methods in Computer-Aided Design,
FMCAD 2016, Mountain View, CA, USA, 3–6 October 2016, pp. 117–124. IEEE (2016).
https://doi.org/10.1109/FMCAD.2016.7886669

15. Murugesan, A., Whalen, M.W., Ghassabani, E., Heimdahl, M.P.E.: Complete traceability
for requirements in satisfaction arguments. In: 24th IEEE International Requirements Engi-
neering Conference, RE 2016, Beijing, China, 12–16 September 2016, pp. 359–364. IEEE
Computer Society (2016). https://doi.org/10.1109/RE.2016.35

16. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-
solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 127–144.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40922-X 8

17. Siu, K., et al.: Architectural and behavioral analysis for cyber security. In: 2019 IEEE/AIAA
38th Digital Avionics Systems Conference (DASC), pp. 1–10. IEEE (2019)

18. Stewart, D., Liu, J.J., Whalen, M.W., Cofer, D., Peterson, M.: Safety annex for the architec-
ture analysis and design language (2020)

https://doi.org/10.1109/FMCAD.2016.7886669
https://doi.org/10.1109/RE.2016.35
https://doi.org/10.1007/3-540-40922-X_8


Test Generation and Probabilistic
Verification



PSY-TaLiRo: A Python Toolbox
for Search-Based Test Generation

for Cyber-Physical Systems

Quinn Thibeault(B), Jacob Anderson, Aniruddh Chandratre, Giulia Pedrielli,
and Georgios Fainekos

Arizona State University, Tempe, AZ 85281, USA
qthibeau@asu.edu

Abstract. In this paper, we present the Python package PSY-TaLiRo
which is a toolbox for temporal logic robustness guided falsification of
Cyber-Physical Systems (CPS). PSY-TaLiRo is a completely modular
toolbox supporting multiple temporal logic offline monitors as well as
optimization engines for test case generation. Among the benefits of
PSY-TaLiRo is that it supports search-based test generation for many
different types of systems under test. All PSY-TaLiRo modules can be
fully modified by the users to support new optimization and robustness
computation engines as well as any System under Test (SUT).

Keywords: Falsification · Cyber-Physical Systems · Search-based test
generation

1 Introduction

Requirements falsification for Cyber-Physical Systems (CPS) has gained promi-
nence in recent years as a practical way to test and debug industrial complex-
ity models and systems [18,22,24,27]. Since the automotive industry was an
early adopter of the falsification technology [16], many of the benchmark CPS
models driving the research were MATLAB/Simulink models [8,14,15,23]. As a
result, some of the academic falsification tools are MATLAB tools: Breach [10],
S-TaLiRo [5], and ARIsTEO [18]. Other academic falsification tools that partic-
ipate in the ARCH falsification competition [11] are FalStar [28] (Java/Scala),
zlscheck [3] (OCaml with Zelus models), and falsify [4] (ChainerRL [1] Python
Library for reinforcement learning calling MATLAB functions).

However, as the autonomy and robotics research communities (and even
industry) increasingly adopt Python as the preferred language for prototyping,
there is a need for a falsification toolbox natively in Python. An all Python/C++
falsification framework would resolve any computational inefficiencies and com-
patibility issues of calling Python from MATLAB and/or vice versa. A native
Python toolbox also helps to resolve incompatibilities which can be encountered

c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 223–231, 2021.
https://doi.org/10.1007/978-3-030-85248-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-85248-1_15


224 Q. Thibeault et al.

when attempting to merge modules written in Python into other software ecosys-
tems (for example, using MATLAB to call an optimizer written in Python that
calls a Simulink model). The PSY-TaLiRo (or Ψ -TaLiRo) toolbox, which stands
for Python SYstems’ TemporAl LogIc RObustness, addresses exactly this need.
It is a fully modular and extensible toolbox for temporal logic guided falsification
which mirrors the S-TaLiRo [5] structure. Namely, the users can easily call dif-
ferent temporal logic robustness computation engines (e.g., TLTk [9], RTAMT
[20]), optimizers (SciPy), and Systems under Test (SUT) while still offering a
common interface and specification language syntax. PSY-TaLiRo supports mul-
tiple libraries to compute temporal logic robustness, referred to as robustness
computation backends, out of the box without any additional effort. When using
the RTAMT robustness computation engine, PSY-TaLiRo supports all major
operating systems.

In summary, PSY-TaLiRo makes the following contributions:

1. it is an open source fully modular toolbox in Python,
2. it provides a common syntax for the temporal logic monitors, and
3. it enables testing of Software and Hardware in the loop systems.

With PSY-TaLiRo, users will be able to quickly compare different optimization
and robustness computation engines without any other changes to the test setup.
Currently, the PSY-TaLiRo toolbox supports only basic functionality including
defining and executing models, optimizers, and specifications. Future goals for the
toolbox are to support the more advanced features of S-TaLiRo, including param-
eter mining and time varying control points for input signal parameterization.

This toolbox is open-source and publicly available at:

https://gitlab.com/sbtg/pystaliro

Additional materials, examples, and a quick-start guide can be found on the
documentation site available at:

https://sbtg.gitlab.io/pystaliro

2 Architecture

The toolbox is organized into several modules: the SUT, the specification, the
optimizers, and the options (see Fig. 1). Each module defines a Protocol inter-
face as defined in [17] or Abstract Base Class (ABC) which may be imple-
mented or extended respectively to create specialized implementations for a par-
ticular domain. A Python protocol is used to define the expected shape of an
object but implementations are not required to be sub-classes, while an ABC
requires sub-classing to implement. The life-cycle of a test is started by providing
a specification, a SUT, an optimizer and options object to the toolbox entry-
point. Using the SUT and the specification, the toolbox generates an objective

https://gitlab.com/sbtg/pystaliro
https://sbtg.gitlab.io/pystaliro


PSY-TaLiRo 225

Fig. 1. Component diagram of PSY-TaLiRo architecture

function that accepts a 1-D sequence of inputs and returns a robustness value.
The generated objective function and the options object are then passed as
parameters to the optimizer. The optimizer executes the objective function sev-
eral times, generating and storing the input sample and the output robustness
for each execution. When a sample is provided to the objective function, it is
decomposed into a sequence of static parameters and a sequence of signals that
are used as inputs to the system model. The output of the system model is passed
to the specification, which evaluates the result and produces a robustness value,
which is returned to the optimizer. When the optimizer terminates its execution,
a Result object is returned for every execution of the optimizer in case multiple
experiments are performed.

Type Checking. Optional static type checking was introduced to the Python
language in version 3.6 as type annotations defined in [21]. The benefit of static
type checking is that multiple classes of errors can be caught before the program
is executed by using a static type checker which traces the types of values through
a program to ensure consistency. Python supports incremental typing, where a
code-base can gradually add more type annotations over time instead of requiring
the entire project to be typed immediately. PSY-TaLiRo makes extensive use of
type annotations in both the internal and public APIs. Internally, annotations
help ensure consistency between modules, reduce the difficulty of reasoning about
functionality, and make it easier to implement additional features. For users, the
annotations indicate the proper usage of the API for constructing system tests
and a static type checker can provide immediate feedback.



226 Q. Thibeault et al.

3 Interface

The PSY-TaLiRo toolbox provides a function staliro which serves as an entry-
point to the package. The staliro function accepts four required parameters -
a specification, a SUT, an optimizer, an options object, and one optional param-
eter – an optimizer-specific options structure. Calling this function returns a
sequence of Result objects that store the values generated by the optimizer
at each iteration and the corresponding robustness value. The entry-point also
implements basic validation logic for its inputs and outputs, ensuring the types
of each component and their return values are correct before moving on to the
next stage of the test.

3.1 System Under Test (SUT)

A SUT must provide the domain-specific information required to execute or sim-
ulate a system. It can be a simulation model e.g., (Python, MATLAB/Simulink,
etc.), software-in-the-loop (SiL) (e.g., PX4, Webots, etc.), or even hardware-
in-the-loop (HiL). A SUT is responsible for accepting inputs generated by the
optimizer and returning the output trajectory of the execution along with the
timestamps. The inputs generated by the optimizer are: static parameters, sig-
nal interpolators, and the simulation time interval. Static parameters are time-
invariant inputs to the system which are often used to represent initial condi-
tions. The simulation time interval dictates the range of time for which signals
will be generated and the simulation should be executed. Signal interpolators
are further described in the Interpolation section below.

Currently, PSY-TaLiRo provides two ways to run a SUT: a Blackbox class
and an ODE integrator. The Blackbox class provides the most general way to
execute a SUT because it makes no assumptions about the underlying architec-
ture of the system it represents. To construct a Blackbox, a user needs to provide
a function that accepts a vector of static parameters and/or initial conditions
X, a sequence of time values T , and an array of signal values U correspond-
ing to each time value. The Blackbox function must return the time values and
corresponding output/state trajectory of the SUT. In contrast, an ODE model
assumes the underlying system is represented as an ordinary differential equa-
tion and attempts to simulate the system by solving an initial-value problem.
To construct an ODE model, a user must provide a function that accepts a
time t, and the state at and the values of the input signal at t, and returns the
derivatives of the system dynamics at time t.

Interpolation. In addition to time-invariant inputs to the SUT, PSY-TaLiRo
also supports time-varying inputs referred to as signals. To generate a signal for
a model, a SignalOptions object is created and included in the test options. A
SignalOptions object defines an interval for the value of the signal as well as a
number of control points which dictates how many values the optimizer should
generate over the simulation interval. The optimizer-generated control points and
a set of equally-spaced time values are provided to an InterpolatorFactory



PSY-TaLiRo 227

also defined in the SignalOptions to create an interpolator which can generate
a signal value for any time in the simulation time interval. The generated inter-
polators are then passed to the model under test. Currently, the PSY-TaLiRo
toolbox provides factories for PChip, Piecewise Linear, and Piecewise con-
stant interpolators. Should a user want to implement a custom interpolator,
defining a class that implements the InterpolatorFactory and providing it to
the SignalOptions object is sufficient.

3.2 Specifications

The PSY-TaLiRo toolbox supports multiple robustness computation libraries,
referred to as backends by providing a uniform interface implemented as
the Specification class. The Specification interface defines the evaluate
method, which accepts the time and signal values from the SUT and returns the
robustness value. It is important to note that even though PSY-TaLiRo currently
supports TLTk [9] and RTAMT [20], PSY-TaLiRo’s modular architecture allows
the user to utilize any other robustness computation engine, or, in general, any
other reward or cost function. By implementing the Specification interface, a
user can define and use any specification language or analysis logic they choose.

To construct a specification, a user must provide a system requirement writ-
ten in STL, a dictionary structure specifying the requirement data. When the
TLTk library is selected, the Specification class is responsible for parsing the
discrete time STL requirement into a corresponding TLTk object representa-
tion. ANTLRv4 is used to generate a Python parser from a discrete time Signal
Temporal Logic (STL) grammar [6]. When the RTAMT library is selected, no
processing is done to the requirement and the both discrete and continuous time
requirements are supported.

Table 1 provides an overview of the supported common operators and syntax
between the two backends. Beyond the common syntax, each robustness com-
putation backend has different capabilities and the user is advised to read the
respective documentation. For example, TLTk supports parallel computation for
scaling up to very large signals and distance based robustness [12] for less con-
servative robustness estimates. On the other hand, RTAMT supports past-time
operators and dense time semantics.

Table 1. Common TLTk [9] and RTAMT [20] syntax supported in PSY-TaLiRo.

Specification constructs Syntax

Next* next, X

Eventually eventually, F

Globally always, G

Until until, U

Time constraints on operator OP OP[ ... , ... ]

Predicates varName (<= | >=) float
*Only supported in discrete time STL



228 Q. Thibeault et al.

3.3 Optimizers

An optimizer in the PSY-TaLiRo toolbox is defined as a protocol that imple-
ments a method named optimize, which accepts an objective function, an options
object, and an optional object with additional configuration options that are
specific to the optimizer. The optimizer is also responsible for maintaining the
history of samples and robustness values generated during execution and pack-
aging them into a Result object when completed. Common optimizer behavior
is configured using the options object and specific optimizer behavior is config-
ured using the optimizer-specific options object. PSY-TaLiRo also defines two
search behaviors: falsification and minimization. Under falsification, the opti-
mizer stops when the first negative robustness value is found, while minimization
allows the optimizer to continue searching for lower robustness values until the
execution budget is exhausted. The PSY-TaLiRo toolbox provides a Uniform
Random Sampling optimizer and it also includes wrappers for Dual Annealing
and Basinhopping [26] optimizers implemented in the SciPy [25] package. PSY-
TaLiRo also provides support for the PartX family of optimization algorithms
[7] which comes with probabilistic guarantees on the absence or presence of fal-
sifying behaviors.

3.4 Options

To customize the behavior of the toolbox, an options object must be created
and provided to the staliro function. Constructing a minimally valid options
object can be accomplished by providing either the static parameters or sig-
nals keyword argument to the constructor. The static parameters attribute
defines a sequence of intervals which represent the bounds of the input variables
that do not change with respect to time. The signals attribute represents the
opposite: a sequence of signal options objects which define system inputs that
vary with time. Other important attributes are iterations which defines the
optimizer execution budget, runs which specifies the number of times to execute
the optimizer, and interval which specifies the interval of time for which the
system should run.

4 Examples

PSY-TaLiRo includes as Python demo an instance of the AircraftODE bench-
mark [19] as well as the test setup scripts for the Python version of the F16
GCAS benchmark problem [13]. In the following, we review how PSY-TaLiRo
can interface with SUT external to Python using the Blackbox template.

4.1 MATLAB/Simulink

The Simulink toolbox that is provided as a part of the MATLAB software pack-
age is useful for representing complex systems using block diagrams. MATLAB



PSY-TaLiRo 229

additionally provides a Python library to enable access to the MATLAB engine
from a Python application. A PSY-TaLiRo test using a Simulink model is imple-
mented by defining a Blackbox function which uses the MATLAB Python library
to pass the parameters and signal values to the Simulink simulation engine. The
data returned by Simulink can then be parsed into native Python data types by
the Blackbox function before returning from the simulate method.

There are a few considerations when implementing a Blackbox that requires
the MATLAB Python library. Since the simulate method of the Blackbox is
called many times by the optimizer, it is very inefficient to start a new instance
of the MATLAB engine every time. There will also be an unavoidable time
cost when interfacing with MATLAB due to the inter-process communication
between the Python interpreter and the MATLAB engine. Finally, any exception
that is raised during a simulation will halt the entire execution of the test, so
care must be taken to ensure that any errors produced during a simulation are
properly handled.

4.2 PX4

The strategies used to implement a Blackbox model that can interface with the
MATLAB/Simulink engine can also be applied for communication with more
complex systems such as the PX4 autopilot stack [2]. The PX4 is a commercial-
grade autopilot software package used to control small aircraft like quad-rotors,
and is capable of both SiL and HiL execution using one of several publicly
available simulators. A successful integration of the PSY-TaLiRo toolbox and
PX4 simulation environment was accomplished by using Docker to containerize
the simulator and custom ground-control software to create and upload missions
to the simulated drone. Some examples of requirements that were tested using
the PX4 were to avoid exclusion zones when executing a mission, and another
was to achieve a takeoff altitude within a threshold before landing.

5 Conclusions

We have presented the open-source Python toolbox PSY-TaLiRo (Ψ -TaLiRo).
PSY-TaLiRo implements search-based test generation for falsifying temporal
logic requirements over Cyber-Physical Systems (CPS). The toolbox is fully
modular and extensible in order to accommodate different algorithms for opti-
mization and temporal logic robustness (or arbitrary cost functions). Hence,
PSY-TaLiRo can provide test automation support for CPS (and in particular
autonomous systems) which are natively developed in Python.

Acknowledgements. This research was partially supported by DARPA (ARCOS
FA8750-20-C-0507, AMP N6600120C4020) and NSF 1932068.



230 Q. Thibeault et al.

References

1. The ChainerRL Library. https://github.com/chainer/chainerrl
2. Open source autopilot for drones - px4 autopilot. https://px4.io
3. zlscheck: A random testing tool for Zelus. https://github.com/ismailbennani/

zlscheck
4. Akazaki, T., Liu, S., Yamagata, Y., Duan, Y., Hao, J.: Falsification of cyber-

physical systems using deep reinforcement learning. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 456–465. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95582-7 27

5. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

6. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

7. Cao, Y., Thibeault, Q., Chandratre, A., Castillo-Effen, M., Fainekos, G., Pedrielli,
G.: Work-in-progress: towards assurance case evidence generation through search
based testing. In: International Conference on Embedded Software (EMSOFT)
(2021, to appear)

8. Chutinan, A., Butts, K.R.: Dynamic analysis of hybrid system models for design
validation. Technical report, Ford Motor Company (2002)

9. Cralley, J., Spantidi, O., Hoxha, B., Fainekos, G.: TLTk: a toolbox for paral-
lel robustness computation of temporal logic specifications. In: Deshmukh, J.,
Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 404–416. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-60508-7 22

10. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

11. Ernst, G., et al.: ARCH-COMP 2020 category report: falsification. In: 7th Interna-
tional Workshop on Applied Verification of Continuous and Hybrid Systems. EPiC
Series in Computing, vol. 74, pp. 140–152 (2020). https://doi.org/10.29007/trr1

12. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009)

13. Heidlauf, P., Collins, A., Bolender, M., Bak, S.: Verification challenges in f-16
ground collision avoidance and other automated maneuvers. In: 5th International
Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH),
vol. 54, pp. 208–217 (2018)

14. Hoxha, B., Abbas, H., Fainekos, G.: Using S-TaLiRo on industrial size automo-
tive models. In: Frehse, G., Althoff, M. (eds.) ARCH14-15. 1st and 2nd Inter-
national Workshop on Applied veRification for Continuous and Hybrid Systems.
EPiC Series in Computing, vol. 34, pp. 113–119. EasyChair (2015)

15. Jin, X., Kapinski, J., Deshmukh, J.V., Ueda, K., Butts, K.: Powertrain control ver-
ification benchmark. In: 17th International Conference on Hybrid Systems: Com-
putation and Control (2014)

https://github.com/chainer/chainerrl
https://px4.io
https://github.com/ismailbennani/zlscheck
https://github.com/ismailbennani/zlscheck
https://doi.org/10.1007/978-3-319-95582-7_27
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-030-60508-7_22
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.29007/trr1


PSY-TaLiRo 231

16. Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.: Simulation-based
approaches for verification of embedded control systems: an overview of traditional
and advanced modeling, testing, and verification techniques. IEEE Control Syst.
Mag. 36(6), 45–64 (2016)

17. Levkivskyi, I., Lehtosalo, J., Langa, �L.: Protocols: structural subtyping (static duck
typing). PEP 544, Python Foundation (2017). https://www.python.org/dev/peps/
pep-0544/

18. Menghi, C., Nejati, S., Briand, L.C., Parache, Y.I.: Approximation-refinement test-
ing of compute-intensive cyber-physical models: an approach based on system iden-
tification. In: ACM/IEEE 42nd International Conference on Software Engineering
(ICSE) (2020)

19. Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas,
G.J.: Monte-Carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, pp. 211–220. ACM Press (2010)

20. Nickovic, D., Yamaguchi, T.: RTAMT: Online robustness monitors from STL
(2020)

21. van Rossum, G., Lehtosalo, J., Langa, �L.: Type hints. PEP 484, Python Foundation
(2014). https://www.python.org/dev/peps/pep-0484/

22. Sankaranarayanan, S., Kumar, S.A., Cameron, F., Bequette, B.W., Fainekos, G.,
Maahs, D.: Model-based falsification of an artificial pancreas control system. ACM
SIGBED Rev. (Special Issue on Medical Cyber Physical Systems workshop (Med-
icalCPS 2016)) 14(2), 24–33 (2017)

23. Strathmann, T., Oehlerking, J.: Verifying properties of an electro-mechanical brak-
ing system. In: Frehse, G., Althoff, M. (eds.) ARCH14-15. 1st and 2nd Inter-
national Workshop on Applied veRification for Continuous and Hybrid Systems.
EPiC Series in Computing, vol. 34, pp. 49–56. EasyChair (2015)

24. Tuncali, C.E., Hoxha, B., Ding, G., Fainekos, G., Sankaranarayanan, S.: Experi-
ence report: application of falsification methods on the UxAS system. In: Dutle,
A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 452–459.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5 30

25. Virtanen, P., et al.: SciPy 1.0 contributors: SciPy 1.0: fundamental algorithms for
scientific computing in Python. Nature Methods 17, 261–272 (2020). https://doi.
org/10.1038/s41592-019-0686-2

26. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest
energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys.
Chem. A 101(28), 5111–5116 (1997). https://doi.org/10.1021/jp970984n

27. Yamaguchi, T., Kaga, T., Donzé, A., Seshia, S.A.: Combining requirement mining,
software model checking and simulation-based verification for industrial automo-
tive systems. In: 16th Conference on Formal Methods in Computer-Aided Design
(2016)

28. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsification
of hybrid systems guided by Monte Carlo tree search. IEEE Trans. Comput.-Aided
Des. Integr. Circ. Syst. 37(11), 2894–2905 (2018)

https://www.python.org/dev/peps/pep-0544/
https://www.python.org/dev/peps/pep-0544/
https://www.python.org/dev/peps/pep-0484/
https://doi.org/10.1007/978-3-319-77935-5_30
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1021/jp970984n


Probabilistic Verification for Reliability of
a Two-by-Two Network-on-Chip System

Riley Roberts1(B) , Benjamin Lewis1(B) , Arnd Hartmanns2 ,
Prabal Basu3 , Sanghamitra Roy1 , Koushik Chakraborty1 ,

and Zhen Zhang1(B)

1 Utah State University, Logan, UT, USA
{riley.roberts,benjamin.lewis}@aggiemail.usu.edu,

{sanghamitra.roy,koushik.chakraborty,zhen.zhang}@usu.edu
2 University of Twente, Enschede, The Netherlands

a.hartmanns@utwente.nl
3 Cadence Design Systems, San Jose, CA, USA

bprabal@cadence.com

Abstract. Modern network-on-chip (NoC) systems face reliability
issues due to process and environmental variations. The power supply
noise (PSN) in the power delivery network of a NoC plays a key role in
determining reliability. PSN leads to voltage droop, which can cause tim-
ing errors in the NoC. This paper makes a novel contribution towards for-
mally analyzing PSN in NoC systems. We present a probabilistic model
checking approach to analyze key features of PSN at the behavioral level
in a 2× 2 mesh NoC with a uniform random traffic load. To tackle state
explosion, we apply incremental abstraction techniques, including a novel
probabilistic choice abstraction, based on observations of NoC behavior.
The Modest Toolset is used for probabilistic modeling and verifica-
tion. Results are obtained for several flit injection patterns to reveal their
impacts on PSN. Our analysis finds an optimal flit pattern generation
with zero probability of PSN events and suggests spreading flits rather
than releasing them in consecutive cycles in order to minimize PSN.

Keywords: Probabilistic model checking · Network-on-chip · Formal
methods · Abstraction

1 Introduction

As the complexity advances in designing reliable distributed many-core systems,
network-on-chip (NoC) has become the de-facto standard for on-chip commu-
nication. In general, their architecture composes of topologically homogeneous
routers operating synchronously in a decentralized manner, and communication
is governed by a predefined routing protocol. While sharing similarity with con-
ventional computer networks, a NoC design faces unique reliability challenges,
such as process variation, the variation in the transistor attributes (oxide thick-
ness, width, etc.) due to the imperfection in the manufacturing process and
c© Springer Nature Switzerland AG 2021
A. Lluch Lafuente and A. Mavridou (Eds.): FMICS 2021, LNCS 12863, pp. 232–248, 2021.
https://doi.org/10.1007/978-3-030-85248-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85248-1_16&domain=pdf
http://orcid.org/0000-0002-8676-3767
http://orcid.org/0000-0003-2968-0233
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0002-4860-1089
http://orcid.org/0000-0002-3927-1612
http://orcid.org/0000-0003-0228-2737
http://orcid.org/0000-0002-8269-9489
https://doi.org/10.1007/978-3-030-85248-1_16


Probabilistic Verification for Reliability of a 2 × 2 NoC System 233

environmental variation, which refers to the change in the supply voltage and
temperature that can influence the performance of the transistor devices. Precise
evaluation of the NoC early in the design flow is paramount to establish rigorous
reliability and performance guarantees. NoC reliability analysis has to capture
and quantify the design’s inherent distributive and reactive characteristics.

Existing literature lacks probabilistic verification of the NoC. NoC formal
verification has focused primarily on functional correctness [1–4], checking per-
formance [5–7], and security [8,9]. Advances in probabilistic verification have
produced mature tools such as the Modest Toolset [10], which includes the
mcsta probabilistic model checker and the modes statistical model checker [11],
Storm [12], and PRISM [13]. However, these existing works in the formal verifi-
cation of probabilistic systems have not focused on the NoC domain.

Building on the previous success in the probabilistic verification of a NoC cen-
tral router [14], we present probabilistic verification of the power supply noise
for a 2 × 2 mesh NoC system under uniform random traffic loads. We cumula-
tively apply abstraction techniques to tackle state space explosion for a 2 × 2
mesh NoC model. This includes a novel abstraction technique based on changing
probabilistic choices derived from critical observations under design constraint
assumptions. Verification results show significant scalability of our abstraction
techniques, which reduce the state space growth from exponential to polyno-
mial. They reveal extremely low power supply noise (PSN) related activity in
the 2×2 NoC under an every other clock cycle flit injection pattern, while show-
ing relatively high PSN under a burst style flit injection. This indicates the large
impact design decisions have on PSN. Additionally, we report on an efficient
flit generation pattern that incurs zero probability for PSN events and make
recommendations for flit generation patterns to minimize PSN.

2 Motivation

PSN in the power delivery network of a NoC is created by simultaneous switch-
ing of logic devices, causing a drop in the effective power supply voltage. PSN
is composed of two major components: (a) resistive noise—the product of the
current drawn and the lumped resistance of the circuit (i× r); and (b) inductive
noise—proportional to the rate of change of current through the inductance of
the power grid (Δi

Δt ). The latter plays a central role [15] for a NoC.
A high inductive noise is responsible for the intermittent peaks in the cycle-

wise noise profile of a NoC. It has been substantially growing with technology
scaling. In an 8×8 NoC, it has been shown that the peak PSN can increase from
40% of the supply voltage at the 32-nm technology node to about 80% at the
14-nm technology node, while running a uniform-random synthetic traffic pat-
tern [15]. Such a droop can radically degrade the delay of various on-chip circuit
components causing timing errors in the pipe-stages of the NoC routers. Hence,
PSN worsens the reliability and performance of the on-chip communication. The
impact of technology on PSN is discussed in detail in [15].

Existing approaches to mitigate PSN are a far cry from a truly reliable NoC
design paradigm that can be deployed in mission-critical systems, as they do



234 R. Roberts et al.

not guarantee the worst-case peak PSN [15,16]. These works do not provide any
bounds on the temporal PSN profile for a router, given an application execution.
Hence, temporal high peak PSNs may still exacerbate the NoC reliability across
different operating conditions. To address this critical reliability challenge, we
show that probabilistic verification can offer precise bounds on the performance
and reliability of the NoC.

3 Concrete Formal Model for NoC

This work analyzes the synchronous 2× 2 mesh NoC shown in Fig. 1. All formal
models described in this paper are available on Github1. There are four symmet-
ric routers, each with three channels: one in the horizontal X direction, one in
the vertical Y direction, and a local channel. Each channel has a buffer with the
capacity of storing four network flits. Each router has an arbiter which resolves
conflicts, i.e., multiple input flits competing for the same output direction, and
forwards the winning flit in one clock cycle. The arbiter uses round-robin proto-
col to resolve multiple simultaneous requests to ensure fairness in each direction.
The NoC uses X-Y routing, where a flit is first routed in the X direction until it
is at the destination router or in the same column as the destination. It is then
routed in the Y direction to the destination. For example, in Fig. 1, if router 0
were to receive a flit destined for router 3 on the local channel, the flit would be
sent first in the X direction to router 1, then in the Y direction to router 3.

Fig. 1. Architecture of the 2 × 2 NoC model.

When a new flit is generated in each router’s local channel, its destination
is uniformly randomly selected among the other three routers. The routers then
route all flits simultaneously. First, a flit’s next forwarding direction is deter-
mined by the X-Y routing protocol by comparing its destination and the current
router. The arbiter then forwards the flit to the neighboring router and resolves

1 https://github.com/formal-verification-research/Modest-Probabilistic-Models-for-
NoC.

https://github.com/formal-verification-research/Modest-Probabilistic-Models-for-NoC
https://github.com/formal-verification-research/Modest-Probabilistic-Models-for-NoC


Probabilistic Verification for Reliability of a 2 × 2 NoC System 235

conflicts if they arise. We use a priority queue in the arbiter to implement the
round-robin scheduling mechanism in order to maintain fairness when resolving
conflicts. Figure 2 illustrates how the priority queue works. When two channels
conflict, the one closer to the front of the priority queue is serviced by the arbiter
and the other is marked as unserviced. A channel that fails to send due to the
receiving buffer being full is also marked as unserviced. At the end of the cur-
rent clock cycle, the priority queue updates by shifting all unserviced channels
to the front and pushing those serviced to the end, while maintaining their rel-
ative ordering. We use the high-level formal modeling language Modest [10] to
specify the probabilistic NoC model in Fig. 1.

Data types of the concrete NoC model are shown in Listing 1.1. The buffers
are modeled as a FIFO queue with a capacity of four. Each channel is modeled as
a datatype containing a buffer, the channel’s priority, the forwarding direction
for the front flit of the queue, the ID of the channel, and a Boolean variable
indicating whether the channel was serviced or not. Each router is modeled as
a datatype with an array of three channels, the order of which determines the
priority, and two counters unserviced and totalUnserviced that keep track of
the number of unserviced channels and are used by the arbiter. The NoC model
has an array of four routers.

Listing 1.1. Channel and router datatypes.

datatype channel = {int direction ,

int id , bool serviced , int priority ,

queue buffer };

datatype router = {int unserviced ,

int totalUnserviced , channel [] channelArray };

All formal models described in this work have been formulated at a higher
behavioral level. Therefore, it is necessary to map circuit-level behavior charac-
terizing PSN onto the same behavioral level as these models, in order to quanti-
tatively check PSN-related properties. The two components of PSN are modeled
as follows. Resistive noise is measured by accumulating the clock cycles with
high router activity, i.e., all three buffers: X direction, Y direction, and local,
in a router are able to forward flits. This is represented by a variable resis-
tiveNoise, which increments every time a router encounters a cycle with high
activity. Inductive noise is measured by accumulating cycles with high rate of
change of current drawn. This directly corresponds to cycles where a router
switches between forwarding all flits to forwarding no flits and vice versa. Rep-
resented by the variable inductiveNoise, it increments on the cycles of abrupt
change in router activity. Left unbounded, these variables would accumulate to
infinity, adding to state explosion. However, we forcibly stop the execution of the
models after a predetermined number of clock cycles to avoid state explosion of
other variables, which in turn places a limit on the accumulation of these new
variables.

The relation between the two PSN components, resistiveNoise and induc-
tiveNoise, and their associated real-world applications is discussed in [15,17].
We rely on the analysis presented there as the foundation. The purpose of



236 R. Roberts et al.

specifying and checking these properties is to understand the likelihood of PSN
at a behavioral level under a given routing protocol. The intermittent peaks in
the cycle-wise noise profile of the NoC is strongly correlated to the NoC router
activities. Hence, understanding PSN behaviorally can help with the design of
routing protocols and other higher-level NoC designs independent of the physical
hardware implementation of the NoC.

Fig. 2. Three priority queue examples.

4 Need for Abstraction

The state spaces of all probabilistic formal models presented in this work are
large discrete-time Markov chains (DTMC), and they are analyzed by the tools
in the Modest Toolset, namely, mcsta and modes. The concrete model pre-
sented in the previous section incurs an exponential state space growth as the
number of considered clock cycles increases. This is due to the combinations of
flits in all twelve buffers in the model. To address this issue, we investigate sev-
eral abstraction techniques. These abstraction techniques are performed cumu-
latively : results labeled using the name of one technique are the results of that
technique applied on top of all previous abstractions.

4.1 Predicate Abstraction to Simplify Complex Data Structures

Predicate abstraction is applied first to the concrete model. It works by formu-
lating predicates that capture critical decision points in the concrete model, and
then transforming the model to include only predicate variables. In our model,
the predicate abstraction converts all complex data structures into predicate
variables. For example, the two predicate variables in Listing 1.2 are defined
as the two possible forwarding directions of the front flit in the local channel
buffer of router 0. Performing predicate abstraction in this manner significantly
simplifies the complex data structures in the concrete model, and it also pre-
serves the properties resistiveNoise and inductiveNoise, since router and arbiter
activity remain unchanged after abstraction. Note that predicate abstraction is
only applied to simplify complex data structures in our concrete model to turn
them into predicate variables, instead of the entire concrete model. Therefore,



Probabilistic Verification for Reliability of a 2 × 2 NoC System 237

it does not introduce nondeterministic behavior as a result. Unfortunately, the
predicate abstracted model still incurs significant state space explosion with 7
or more clock cycles.

Listing 1.2. Example predicate variables after predicate abstraction.

bool r0L1;//noc [0]. channel[local ]. direction ==east

bool r0L2;//noc [0]. channel[local ]. direction == south

4.2 Probabilistic Choice Abstraction

Next, we present a novel probabilistic choice abstraction technique that builds
on the previous predicate abstraction. The idea comes from the following obser-
vation. The flit’s destination is selected by a uniform random distribution when
it is input into the local buffer of each router, but the destination information
is not checked until the flit enters the router, where it is used to decide the flit
forwarding direction. This implies that, when generating states, enumeration of
all possible values for the destination variable does not need to happen at its
initial assignment, but can be delayed until the location where its value is first
checked. Furthermore, the destination variable is not in use beyond this point.
Consequently, this variable can be entirely replaced by a probabilistic choice
when its value is evaluated, i.e., when the router decides the flit’s direction,
while preserving the model behavior. The noteworthy state reduction comes
from delaying the enumeration of all of the possible values until it is evaluated.
For the purpose of this work, the abstraction was applied manually to the model,
but we plan to automate the process in our future work.

Fig. 3. Probabilistic choice abstraction



238 R. Roberts et al.

Figure 3 compares state graphs for an illustrative model before and after
applying probabilistic choice abstraction. The left one is the fully expanded
state space of a concrete model, which determines the update of z by comparing
two uniform random integer variables x ∈ [1, 3] and y ∈ [1, 2]. This results in six
unique states when the clock reaches 2. Variables x and y are only compared at
this row, but not evaluated in any of the six states in the middle row, and are not
used after the comparison. Thus, we can apply probabilistic choice abstraction
by replacing x and y with a probabilistic choice with explicit probabilities as the
state graph on the right illustrates. The abstract model creates only five states
and preserves the behavior of the observable variables z and clk.

Figure 3 is similar to our predicate-abstracted NoC model. In this figure, the
observable variables are z and clk. Variables x and y are just used to deter-
mine the behavior of z. Similarly in our model, the observable variables are
resistiveNoise, inductiveNoise and clock. All other variables are used to deter-
mine the update behavior of resistiveNoise and inductiveNoise in between clock
cycles. The destinations of the flits are the only probabilistically updated vari-
ables in the model. Using this abstraction, we are able to remove the destination
variables from the state space, and replace them with a probabilistic choice.
This abstraction preserves the behavioral activities of the flits, which determine
resistiveNoise and inductiveNoise. We have experimentally observed that for
as many cycles as the concrete and abstract models can run, the behaviors of
resistiveNoise and inductiveNoise are identical across the concrete, predicate
abstract, and probabilistic choice abstract models.

Applying probabilistic choice abstraction to non-observable and probabilis-
tically updated variables, such as x and y in Fig. 3, causes states of the concrete
model to merge into abstract states, altering the branching structure of the state
graph. However, we expect that the probability of reaching each target abstract
state is equivalent to the sum of probabilities of reaching its corresponding con-
crete states, therefore, preserving trace distribution equivalence. We are working
on developing theories and correctness proofs for this abstraction technique.

Probabilistic choice abstraction can be directly applied to a formal model
without first generating the state graph of the concrete model. This idea is
applied to the NoC model in the following way. Any flit coming from the local
channel in router 0 can be destined for router 1, 2, or 3 as shown in Fig. 1. Given
that the NoC uses X-Y routing and uniform random distribution of destinations,
if the destination is router 1 or 3, the flit is forwarded east with probability 2

3 .
If the destination is router 2, the flit is forwarded south with probability 1

3 . Any
incoming flit coming from the east buffer of router 0 must have been generated in
router 1 and is destined for either router 0 or router 2 with equal probability 1

2 .
Similarly, any incoming flit in the south buffer of router 0 is generated by either
router 2 or 3, and can only be destined for this router. Due to the symmetric
nature of the NoC, this same pattern is true for all routers. Because the exact
destination of the flit is no longer required knowledge, the buffers can be further
abstracted as detailed in the next section.



Probabilistic Verification for Reliability of a 2 × 2 NoC System 239

4.3 Boolean Queue Abstraction

With three buffers in each router, there are a total of six possible orders that
determine the priority in servicing each buffer in the case of conflict. Our analysis
indicates that, for the 2 × 2 NoC with X-Y routing, the north/south buffer can
never be in conflict with the local buffer. Therefore, the model only needs to
keep track of the local and north/south buffers priority relative to the east/west
buffer but not to each other. This allows us to abstract the six possible orders
into four, further reducing the state space.

Further, because all buffers operate as FIFOs, an empty buffer element can
only exist either after a non-empty element if the buffer is neither full nor empty,
or at the front of the buffer if it is empty. Rather than keeping track of the buffer’s
contents, we only need to store the length of flit occupancy in a buffer, i.e., the
number of non-empty elements. This length is represented as a bounded integer
ranging between 0 and 4. In general, a buffer storing maximally n Boolean
variables incurs 2n states, but only n + 1 states if its occupancy is recorded.
In order to maintain correct behavior through this abstraction, the four arbiter
processes were synchronized on one action, rather than run sequentially.

Figure 4 depicts the decision procedure in a router after Boolean queue
abstraction. It first checks for a possible conflict by testing if the east/west buffer
is empty. If it is not empty (i.e., ewLen �= 0), the decision procedure goes into one
of four branches, depending on whether the two Boolean variables localPriority

for the local buffer and nsPriority for the north/south buffer have priority over
the east/west buffer. The router then makes a decision based on the Boolean
lock variables. If the local buffer tried to send in the north/south direction, but
could not due to a conflict or a full buffer, the lock variable localLns would
become true, ensuring that the flit is sent in the same direction next cycle. The
probabilistic decisions have probability values marked on the edges. The router
then tries to service the buffers in the order listed in the figure. If a buffer fails to
win the conflict resolution in sending a flit, it is locked in the same direction and
its priority is advanced. Accumulation of resistiveNoise is labeled by RNoise++

when all three buffers send their flits in a cycle. Figure 4 depicts branches 1 and
2 of the four branches. Branch 3 is identical to branch 1, except the order of
buffer updates changes from “local, ns, ew” to “ns, ew, local”. Similarly, branch
4 changes branch 2’s order from “ew, local, ns” to “local, ew, ns”.

5 Results

Assuming uniform random flit destination generation at each router, we report
verification results for flit injection at the rate of one flit every two clock cycles
first, followed by a bursty mode injection. We then report findings of an optimal
flit injection pattern that minimizes PSN. All results presented in this section
were generated on a machine with an AMD Ryzen Threadripper 12-core 3.5 GHz
Processor and 132 GB memory, running Ubuntu Linux v18.04.3.

We consider the following two transient probabilistic properties: (1) the prob-
ability that the number of resistiveNoise is lower-bounded by a constant K ∈ Z

+



240 R. Roberts et al.

Fig. 4. Decision procedure for the router model after Boolean queue abstraction.



Probabilistic Verification for Reliability of a 2 × 2 NoC System 241

within n cycles; and (2) the probability that the total number of inductiveNoise
is lower-bounded by a constant K ∈ Z

+ within n cycles. High router activity,
characterized by property (1), is a key indicator of local congestion in the net-
work, and a highly congested network leads to high PSN due to an unbalanced
power density [17]. Property (2) reflects an abrupt load change in a router that
causes a large inductive drop in the power delivery network [15].

5.1 Every Other Cycle Flit Injection

The operation of the NoC, namely, flit injection/ejection into/from a router, is
synchronous with a global clock. We first consider flits to be injected into the
network once in every two consecutive clock cycles, which we refer to as the
“every other clock cycle flit injection” pattern.

State Reduction from Abstraction. Figure 5 illustrates the impact of apply-
ing the aforementioned abstraction techniques on state growth. The exponen-
tial cycle-wise growth of the concrete model dramatically reduces to a polyno-
mial growth after Boolean queue abstraction, with other abstraction methods
in between. Note that state growth for the presented abstraction techniques are
cumulative: probabilistic choice abstraction is applied after predicate abstrac-
tion, and it is the base for Boolean queue abstraction. The exponential state
growth of the concrete model is due to the probabilistic input. Every other clock
cycle, four new flits are generated each with three different possible destinations.
This means that if variable x were to increase every other clock cycle, the states,
due to just this combination, would be 34x. This analysis is confirmed by cal-
culating the R2 values of regression of the state space growth of the different
abstractions. The closer the R2 value is to 1, the better the regression is as an
approximation. The R2 value for the exponential regression is closer to 1 than the
polynomial regression for the concrete and predicate abstract models, and the
R2 value for polynomial regression is closer to 1 than the exponential regression
for both probabilistic choice abstraction and Boolean queue abstraction.

In addition, we also performed exponential and polynomial regression on the
state growth of the probabilistic choice and Boolean queue abstractions using
only the values from the first ten clock cycles, in order to see how accurately each
regression would predict the values from the next 5 clock cycles. The polynomial
regression was a more accurate prediction of the values for the next five clock
cycles than the exponential regression. Figure 5 also illustrates the effectiveness
of the cumulative abstraction steps detailed in Sect. 4. No property verification
results could be obtained on the concrete model regarding the resistiveNoise
property, as it is impossible for at least one resistiveNoise to occur within the
4 to 5 clock cycles before state explosion occurs. The same reasoning applies to
the inductiveNoise property.

We keep an integer variable clk as a cycle counter, which contributes to the
state growth. On the other hand, by gradually increasing its upper bound, state
space generation is manageable. This is because state generation only needs to
represent model behaviors up to the upper bound of clk.



242 R. Roberts et al.

Fig. 5. State count comparison.

Probabilistic Model Checking (PMC). We used mcsta, an explicit-state
probabilistic model checker, to calculate the probabilities of resistiveNoise and
inductiveNoise occurring within a given bounded number of clock cycles using
the final Boolean queue abstraction model. The results are shown in Fig. 6. The
more abstract models perform an increasing amount of “work”—calculating,
communicating, and updating transient and state variables—on every transi-
tion. Thus, as state space explosion is alleviated, the runtime for state space
exploration rises. An attempt to run the Boolean queue abstraction model for
35 clock cycles ran for 22 h and generated 150.5 million states. When mcsta
attempted to merge these states, it failed due to a segmentation fault indicating
an out-of-memory error.

Due to the inability of the concrete model to produce any verification results,
it is impossible to compare it’s results with that of the abstract models. Compar-
ing the resistiveNoise property checking results between the probabilistic choice
delay and Boolean queue abstract models, a difference of 1E-7, i.e., a 0.15%
difference, starts to manifest after 20 clock cycles. It is possible that this dif-
ference is due to floating-point error in the transition probabilities, which can
be complicated due to the probabilistic behavior of all four arbiters being com-
pounded. These small rounding errors can then accumulate over several clock
cycles. With fewer state transitions in the Boolean queue abstracted model, it
is possible that the floating-point errors accrue at a different pace. The concrete
model is too large to model check for this many cycles, and a manual calculation
would be infeasible due to the scale and complexity of this model. Therefore, we
are unable to reconcile this difference at this point. We are currently working on
automating the probabilistic choice abstraction and expect that it will provide



Probabilistic Verification for Reliability of a 2 × 2 NoC System 243

insight into whether this difference could have been caused by an error in the
manual abstraction of the models, as this process was quite arduous, with the
final model being several thousand lines long.

Binary decision diagrams (BDDs) have been highly successful in hardware
verification [18]. We thus also explored the use of BDD-based symbolic model
checking for our NoC models by exporting them to the Jani model interchange
format [19] and applying the Storm model checker’s hybrid and dd engines.
Unfortunately, with both supported BDD libraries—Cudd and Sylvan [20]—
Storm quickly ran out of memory. This may be due to probabilistic models
requiring multi-terminal BDDs to store probability values, which often does not
lead to a memory-efficient representation.

Fig. 6. Probabilities for resistiveNoise and inductiveNoise in every other cycle input
configuration

Statistical Model Checking (SMC). Since our models represent DTMC,
we can also apply the Monte Carlo simulation-based statistical model checking
technique. In contrast to PMC, it avoids state space explosion entirely, but
only delivers statistical guarantees and is problematic for rare events. However,
because we could only apply PMC to a relatively few number of clock cycles,
we applied SMC to a larger number of cycles in order to analyze the longer-
term behavior of the models. We checked the resistiveNoise property using SMC
with modes. Running 10000 simulations, modes reported 643 had at least one
optimal run, while 345 had at least one noise run, after 10000 clock cycles. These
values correspond to statistical probabilities of 0.0643 and 0.0345 respectively.



244 R. Roberts et al.

5.2 Burst Flit Injection

To more accurately model flit injection patterns in real-world applications and
measure their impact on PSN, we gathered verification results for a bursty mode
packet injection, where for every 10 cycles, the first 3 consecutive cycles each
have a flit injected, followed by 7 idle cycles in all four routers. A surprising
observation is that this input pattern drastically increases the scalability to allow
verification for significantly longer clock cycles. Our analysis indicates that the
NoC empties out flits completely within the 7 idle cycles before it receives the
next burst of 3 flits. Other than the priority orderings, the NoC has completely
reset itself to the initial condition by the end of the idle cycles. Consequently, the
number of reachable states is significantly reduced, compared to the every other
cycle injection pattern. This reduction leads to the generation of the entire state
space for the 2 × 2 NoC model whereas the clock variable clk is no longer used
to forcibly stop the model checking after a certain number of cycles as in the
every other cycle packet injection pattern. A simple 0 to 9 counter was added to
maintain the 10-cycle injection pattern. Consequently, we made clk a transient
variable in order to continue to check properties in relation to clock cycles. A
transient variable is only “live” during the assignments execution when taking
a transition, which excludes it from the state vector. In this way, clock cycle
progress becomes a reward annotation to certain transitions instead of being
encoded in the structure of an expanded state space. We can then formalize
properties (1) and (2) as reward-bounded reachability queries:

(1) P=?(�[accumulate(clk)�N ] resistiveNoise � K)

(2) P=?(�[accumulate(clk)�N ] inductiveNoise � K)

Probabilistic model checking of the bursty mode with mcsta scales to hun-
dreds of clock cycles. In order to prevent the infinite accumulation of resis-
tiveNoise, it is upper bounded by 20, resulting in a total of 16,581,401 reachable
states explored in about 3.5 h. Similarly, inductiveNoise is upper-bounded by
8, resulting in 10,251,017 states generated in 2.16 h. A smaller upper bound is
required due to the addition of helper variables for accurately tracking the high-
to-low and low-to-high activities for inductiveNoise. The helper variables are
required because the behavior of the previous cycle, not just the current, need
to be known in order to determine if an inductiveNoise event has occurred.

This input configuration results in only 3 flits every 10 cycles for each arbiter
to service in a router, as opposed to 5 for the every-other-cycle injection. How-
ever, the ability of each arbiter to receive flits during consecutive cycles has a
major impact on the PSN behavior of the NoC. The likelihood of having both
resistiveNoise and inductiveNoise increases significantly. Figure 7 shows the plots
of the cumulative distribution function (CDF) for resistiveNoise being greater
than or equal to 1, 5, 10, and 20, and the CDF for inductiveNoise being greater
than or equal to 1, 5, and 8. Comparing these resistiveNoise and inductiveNoise
probabilities with that of the every other cycle injection shows that PSN is much



Probabilistic Verification for Reliability of a 2 × 2 NoC System 245

more likely with bursty style injection, within the same number of clock cycles,
despite fewer packets entering the NoC every 10 cycles.

5.3 Minimizing PSN with Flit Generation Pattern

We parameterized the bursty mode model so that it could accept a burst lasting
any number of cycles, followed by any number of idle cycles. Under our memory
constraints, we were able to model check bursts lasting 1, 2, or 3 cycles long, with
the requirement that the number of idle cycles must be at least twice as long
as the number of cycles in the burst. When testing various burst configurations,
we made a critical observation that the input configuration of 1 flit every 3
cycles incurred zero probability of a resistiveNoise event, and, by extension,
zero probability of an inductiveNoise event. This is of particular note, because
1 every 3 flit injection results in more flits being injected over time than 3 every
10 injection, but with no occurrence of high-PSN events. Additionally, 1 every
3 flit injection allows considerable number of cycles to be verified compared to
every other cycle flit generation and yet it still incurred zero probability of PSN.

Fig. 7. CDF for resistiveNoise and inductiveNoise in burst of three input configuration

5.4 Results Summary and Discussion

The experiments on every other cycle injection suggest that applying PMC on
the Boolean queue abstract model is the only viable option to verify PSN-related
probabilistic properties at longer cycles with reasonable accuracy, given the rar-
ity of the properties. Verification results indicate extremely low probabilities
in observing a resistiveNoise event within 30 clock cycles. Since inductiveNoise
accumulates cycles with high-to-low or low-to-high activities, rare occurrences of
resistiveNoise consequently lead to extremely low probabilities in inductiveNoise
verification. On the other hand, PMC on the 3 every 10 burst flit injection scales



246 R. Roberts et al.

it to allow much longer cycles and results in considerably higher PSN due to sig-
nificantly increased resistiveNoise and inductiveNoise probabilities. Under our
memory constraints, 1 of every 3 flit injection is the most effective packet injec-
tion pattern that minimizes PSN probability to zero.

The drastically different PSN behaviors can be explained by analyzing local
buffer and arbiter activities of each router. Since the entire NoC only includes
four corner routers, each flit has a relatively short distance to its destination
router, which reduces the number of buffers it has to visit. Therefore, it is unlikely
that all three buffers can contain a flit at the same time, a condition necessary
for a resistiveNoise cycle to occur. In addition, with X-Y routing, flits tend to
exit the NoC quickly without filling up buffers in a way that is conducive to
resistiveNoise. For the burst mode flit injection, because all three buffers in a
router simultaneously start three cycles of burst of flits, it is more likely to incur
high router activities and switching between high and low router activities. The
burst mode is more prone to cycles of high activity when the NoC has consecutive
cycles of flit injection, because it does not have cycles to clear out the buffers
before another injection. This causes more traffic in the buffers during the burst,
leading to more cycles of high router activity overall, despite the seven cycles of
idle behavior. An optimal compromise is to have 1 flit every 3 cycles where the
occurrence of the high PSN events we are tracking reduces to none.

Our findings indicate that spreading flits over a small number of cycles, rather
than releasing them in consecutive ones, drastically reduces PSN. In this work,
we assume each router generates flits. In real NoC design, network flits are gen-
erated and scheduled externally. Traditional techniques (e.g., IcoNoClast [15])
enhance the router microarchitecture to delay the flit traversal within a NoC,
thus effectively curbing the maximum noise of the communication fabric. How-
ever, such schemes incur additional design complexity and hardware overheads
that are prohibitive for low-power edge applications. Based on our PMC analy-
sis, we set a more cost-effective approach to tackling the communication noise in
the low-power domains. Our findings suggest that while scheduling network flits,
the scheduler should try to insert empty cycles to separate flits in succession in
order to minimize PSN. We leave the design decisions on how to best implement
inserting these empty cycles, e.g. inserting busy waits, to further research.

6 Conclusion

This paper describes our experience in formally modeling a 2 × 2 NoC system
and applying probabilistic verification to quantitatively verify the frequency of
PSN. Probabilistic model checking using mcsta was used to evaluate the prop-
erties. The concrete model incurs severe state explosion that prevents property
checking. Several abstraction techniques, including a novel probabilistic choice
abstraction, are applied to alleviate the rapid state-space explosion and allow for
successful verification. Results indicate that bursty flit injection in consecutive
cycles yields high likelihood of PSN-causing behavior, while spreading flits over
a small number of cycles achieves PSN reduction. This shows that flit injection



Probabilistic Verification for Reliability of a 2 × 2 NoC System 247

patterns affect PSN drastically, and that by using certain flit injection patterns,
such as 1 flit every 3 cycles, more flits can be injected while also minimizing
PSN. While the presented PSN probability verification results cannot be directly
applied to larger NoCs, due to exclusion of edge and central routers in a 2 × 2
NoC, the abstraction methods, including the novel probabilistic choice abstrac-
tion, are independent of the NoC size and therefore are applicable to larger
NoC models. For further work, we will extend the PSN analysis to larger NoCs,
analyze different flit generation rates, and investigate expected long-run proba-
bilities for PSN. In order to scale probabilistic model checking to larger NoCs, we
plan to pursue probabilistic assume-guarantee reasoning to combat state explo-
sion. Additionally, we plan to work on a formal proof for the probabilistic choice
abstraction. Finally, we plan to investigate methods to make the use of BDDs
more successful in analyzing this NoC.

Acknowledgments. Arnd Hartmanns was supported by NWO VENI grant
639.021.754. Riley Roberts, Benjamin Lewis, Koushik Chakraborty, and Sanghamitra
Roy were supported in part by National Science Foundation (NSF) grants CAREER-
1253024, CNS-1421022, and CNS-1421068. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not neces-
sarily reflect the views of the NSF. Riley Roberts and Benjamin Lewis were supported
in part by donations from Adobe Systems.

References

1. Verbeek, F., Schmaltz, J.: A decision procedure for deadlock-free routing in worm-
hole networks. IEEE Trans. Parallel Distrib. Syst. 25(8), 1935–1944 (2014)

2. Zhang, Z., Serwe, W., Wu, J., Yoneda, T., Zheng, H., Myers, C.: Formal analysis of
a fault-tolerant routing algorithm for a network-on-chip. In: Lang, F., Flammini, F.
(eds.) FMICS 2014. LNCS, vol. 8718, pp. 48–62. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10702-8 4

3. Salamat, R., Khayambashi, M., Ebrahimi, M., Bagherzadeh, N.: A resilient routing
algorithm with formal reliability analysis for partially connected 3D-NoCs. IEEE
Trans. Comput. 65(11), 3265–3279 (2016)

4. Zhang, Z., Serwe, W., Wu, J., Yoneda, T., Zheng, H., Myers, C.: An improved
fault-tolerant routing algorithm for a Network-on-Chip derived with formal anal-
ysis. Sci. Comput. Program. 118, 24–39 (2016). Formal Methods for Industrial
Critical Systems (FMICS 2014). http://www.sciencedirect.com/science/article/
pii/S0167642316000125

5. Zaman, A., Hasan, O.: Formal verification of circuit-switched Network on Chip
(NoC) architectures using SPIN. In: 2014 International Symposium on System-on-
Chip, SoC 2014, Tampere, Finland, 28–29 October 2014, pp. 1–8 (2014)

6. Chen, Y.-R., Su, W.-T., Hsiung, P.-A., Lan, Y.-C., Hu, Y.-H., Chen, S.-J.: Formal
modeling and verification for Network-on-Chip. In: 2010 International Conference
on Green Circuits and Systems (ICGCS), pp. 299–304 (2010)

7. Holcomb, D.: Formal verification and synthesis for quality-of-service in on-chip
networks. Ph.D. dissertation, EECS Department, University of California, Berke-
ley, December 2013. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-
2013-228.html

https://doi.org/10.1007/978-3-319-10702-8_4
https://doi.org/10.1007/978-3-319-10702-8_4
http://www.sciencedirect.com/science/article/pii/S0167642316000125
http://www.sciencedirect.com/science/article/pii/S0167642316000125
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-228.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-228.html


248 R. Roberts et al.

8. Wassel, H.M.G., et al.: Networks on chip with provable security properties. IEEE
Micro 34(3), 57–68 (2014)

9. Sepúlveda, J., Aboul-Hassan, D., Sigl, G., Becker, B., Sauer, M.: Towards the
formal verification of security properties of a Network-on-Chip router. In: 23rd
IEEE European Test Symposium, ETS 2018, Bremen, Germany, 28 May–1 June
2018, pp. 1–6 (2018)

10. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

11. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89963-3 20

12. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A STORM is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

14. Lewis, B., et al.: Probabilistic verification for reliable Network-on-Chip system
design. In: Larsen, K.G., Willemse, T. (eds.) FMICS 2019. LNCS, vol. 11687, pp.
110–126. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27008-7 7

15. Basu, P., Shridevi, R.J., Chakraborty, K., Roy, S.: IcoNoClast: tackling voltage
noise in the NoC power supply through flow-control and routing algorithms. IEEE
Trans. VLSI Syst. 25(7), 2035–2044 (2017)

16. Shridevi, R.J., Ancajas, D.M., Chakraborty, K., Roy, S.: Tackling voltage emer-
gencies in NoC through timing error resilience. In: ISLPED, pp. 104–109 (2015)

17. Dahir, N., Mak, T.S.T., Xia, F., Yakovlev, A.: Modeling and tools for power supply
variations analysis in Networks-on-Chip. TC 63(3), 679–690 (2014)

18. Chaki, S., Gurfinkel, A.: BDD-based symbolic model checking. In: Clarke, E., Hen-
zinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 219–245.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 8

19. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

20. van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for decision diagrams.
STTT 19(6), 675–696 (2017). https://doi.org/10.1007/s10009-016-0433-2

https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-030-27008-7_7
https://doi.org/10.1007/978-3-319-10575-8_8
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/s10009-016-0433-2


Author Index

Aït-Ameur, Yamine 126
Anderson, Jacob 223

Basile, Davide 174
Basu, Prabal 232
Bendisposto, Jens 193
Bruttomesso, Roberto 202

Chakraborty, Koushik 232
Chandratre, Aniruddh 223
Ciancia, Vincenzo 39
Cousineau, Denis 21

Fainekos, Georgios 223
Faissole, Florian 21
Fantechi, Alessandro 174

Garion, Christophe 167
Geleßus, David 193
Gomes, Cláudio 3

Hansen, Simon Thrane 3
Hartmanns, Arnd 232
Hattenberger, Gautier 167
Huisman, Marieke 67

Inoue, Hiroaki 21

Jahanian, Hamid 51
Jansing, Yumiko 193

Kiviriga, Andrej 149

Larraz, Daniel 212
Larsen, Kim Guldstrand 149
Latella, Diego 39
Lathouwers, Sophie 67
Laurent, Mickaël 212
Leuschel, Michael 107, 193

Lewis, Benjamin 232
Lourenço, Cláudio Belo 21

Marché, Claude 21
Massink, Mieke 39
Mendil, Ismail 126
Mentré, David 21
Méry, Dominique 126

Nyman, Ulrik 149

Palanque, Philippe 126
Palmieri, Maurizio 3
Pedrielli, Giulia 223
Pollien, Baptiste 167
Pütz, Antonia 193

Roberts, Riley 232
Rosadi, Irene 174
Roux, Pierre 167
Roy, Sanghamitra 232
Rubbens, Robert 67

Schmidt, Joshua 107
Singh, Neeraj Kumar 126
Spagnolo, Giorgio O. 39

ter Beek, Maurice H. 39
Thibeault, Quinn 223
Thirioux, Xavier 167
Thule, Casper 3
Tinelli, Cesare 212

van de Pol, Jaco 3
Vu, Fabian 193

Werth, Michelle 193
Westphal, Bernd 85
Woodcock, Jim 3

Zhang, Zhen 232


	Preface
	Organization
	Haunting Tales of Applied Formal Methods from Academia and Industry (Abstract of Invited Talk)
	Contents
	Verification
	Verification of Co-simulation Algorithms Subject to Algebraic Loops and Adaptive Steps
	1 Introduction
	2 Background
	2.1 Simulation Units
	2.2 Co-simulation Algorithms
	2.3 Correct Co-simulation Algorithms

	3 Related Work
	4 Verifying Complex Co-simulation Algorithms
	4.1 Verifying an Algorithm Using UPPAAL
	4.2 Verifying Complex Simulation Scenarios in UPPAAL
	4.3 Debugging Algorithm Errors

	5 Validation
	5.1 Motivation Example
	5.2 Complex Scenario

	6 Concluding Remarks
	References

	Automated Verification of Temporal Properties of Ladder Programs
	1 Introduction
	2 Introduction to Ladder Programming
	3 Translation of Ladder Programs to WhyML
	3.1 The Why3 Environment
	3.2 Translation of Ladder Codes
	3.3 The Ladder Loop, and the Encoding of Timing Charts

	4 Implementation and Experimental Results
	4.1 Overview of the Approach
	4.2 Results on Correct Code
	4.3 Results on Incorrect Code

	5 Discussions, Related Work and Future Work
	References

	Spatial Model Checking for Smart Stations
	1 Introduction and Outline
	2 Industrial Context and Case Study: Station Lighting
	3 Challenges in User-Centric Design of Smart Stations
	4 Methodology
	4.1 Spatial Model Checking
	4.2 Statistical Spatio-Temporal Model Checking

	5 Conclusion and Outlook
	References

	Program Safety and Education
	Parametric Faults in Safety Critical Programs
	1 Introduction
	2 Background
	3 Identifying Incorrect Parameters
	4 Case Study
	5 Discussion
	6 Related Works
	7 Conclusion
	References

	Modular Transformation of Java Exceptions Modulo Errors
	1 Introduction
	2 Background
	2.1 Abrupt Termination
	2.2 VerCors

	3 Related Work
	4 Semantics of Exceptions
	4.1 Errors and Sources of Errors
	4.2 Ideal Semantics
	4.3 Semantics Modulo Errors

	5 The finally Encoding Problem
	5.1 Candidate Encodings

	6 Evaluation
	6.1 Common Exception Patterns in Commercial Software
	6.2 Verification with VerCors

	7 Discussion
	7.1 Backend Requirements
	7.2 Performance

	8 Conclusion
	References

	On Education and Training in Formal Methods for Industrial Critical Systems
	1 Introduction
	2 Terminology
	3 Roles in Formal Methods for Industrial Critical Systems: [Engineer] and [Engineer]
	3.1 FMICS Roles and Activities
	3.2 Consequences on Education and Training

	4 Learning Objectives:  vs. 
	5 Curriculum and Course Construction
	6 Exemplary Implementation
	7 Conclusion
	References

	(Event-)B Modeling and Validation
	Improving SMT Solver Integrations for the Validation of B and Event-B Models
	1 Introduction
	2 Former Z3 Integration
	2.1 High-Level Translation
	2.2 Workflow

	3 New Z3 Integration
	3.1 High-Level Translation
	3.2 New Workflow

	4 Empirical Evaluation
	4.1 Weaknesses of the Integration of Z3
	4.2 Strengths of the Integration of Z3
	4.3 Symbolic Model Checking

	5 Related Work
	6 Future Work
	7 Conclusion
	References

	Standard Conformance-by-Construction with Event-B
	1 Introduction
	2 Certification and Conformance
	3 Event-B
	3.1 Contexts and Machines (Tables1b and 1c)
	3.2 Event-B Extensions with Theories

	4 Case Study: ARINC 661 + Multi-purpose Interactive Application
	4.1 ARINC 661 Standard Specification: An Extract
	4.2 Multi-purpose Interactive Application and Weather Radar System

	5 Standards Formalised as Ontologies ((1) on Fig.2)
	6 Our Approach
	6.1 Domain Standards as Ontology-Based Theories ((2) on Fig.2)
	6.2 Standard Theory Instantiation ((3) on Fig.2)
	6.3 Model Annotation for Conformance ((4) on Fig.2)

	7 Standard Conformance-by-Construction: The Case of ARINC 661
	7.1 ARINC 661 Standard Formalisation ((2) on Fig.2)
	7.2 System-Specific Concepts Describing WXR Widgets ((3) on Fig.2)
	7.3 Annotated Event-B Model of WXR Application ((4) on Fig.2)

	8 Assessment
	9 Conclusion
	References

	Formal Analysis
	Randomized Reachability Analysis in Uppaal: Fast Error Detection in Timed Systems
	1 Introduction
	2 Randomized Reachability Analysis
	3 New Results on Herschel-Planck
	4 More Schedulability
	5 Gossiping Girls
	6 Scalability Experiments
	7 Conclusion
	8 Future Work
	References

	Verifying the Mathematical Library of an UAV Autopilot with Frama-C
	1 Introduction
	2 The Paparazzi Autopilot
	3 Proving the Absence of Runtime Errors
	4 Functional Verification Using Automatic Provers
	5 Functional Verification Using Interactive Provers
	6 Conclusion
	References

	Formal Analysis of the UNISIG Safety Application Intermediate Sub-layer
	1 Introduction
	2 Background
	3 The Model
	4 The Analysis
	5 Conclusion
	References

	Tools
	ProB2-UI: A Java-Based User Interface for ProB
	1 Introduction and Motivation
	2 Features of ProB2-UI
	3 Related Work
	4 Conclusion
	References

	Intrepid: A Scriptable and Cloud-Ready SMT-Based Model Checker
	1 Introduction
	2 Constructing Models
	2.1 Translating Industrially-Relevant Models

	3 Simulating Models
	4 Model Checking
	4.1 A Comparison of the Engines

	5 Sample Applications
	5.1 Equivalence Checking for Clock-Gating
	5.2 Automated Test Generation of MC/DC

	6 A REST API for Model Checking
	7 Conclusion
	References

	Merit and Blame Assignment with Kind 2
	1 Introduction
	2 Running Example
	3 The New Features
	4 Implementation Details
	References

	Test Generation and Probabilistic Verification
	PSY-TaLiRo: A Python Toolbox for Search-Based Test Generation for Cyber-Physical Systems
	1 Introduction
	2 Architecture
	3 Interface
	3.1 System Under Test (SUT)
	3.2 Specifications
	3.3 Optimizers
	3.4 Options

	4 Examples
	4.1 MATLAB/Simulink
	4.2 PX4

	5 Conclusions
	References

	Probabilistic Verification for Reliability of a Two-by-Two Network-on-Chip System
	1 Introduction
	2 Motivation
	3 Concrete Formal Model for NoC
	4 Need for Abstraction
	4.1 Predicate Abstraction to Simplify Complex Data Structures
	4.2 Probabilistic Choice Abstraction
	4.3 Boolean Queue Abstraction

	5 Results
	5.1 Every Other Cycle Flit Injection
	5.2 Burst Flit Injection
	5.3 Minimizing PSN with Flit Generation Pattern
	5.4 Results Summary and Discussion

	6 Conclusion
	References

	Author Index



