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Abstract The Arctic and the Antarctic areas are characterized by extreme wind
loads that exceed the standardized by SP. These areas are characterized by a sig-
nificant distance from material and raw material bases and road transport arteries.
Under these circumstances, the problem of perception of extreme wind loads must
be solved with a minimum consumption of building material. One of the ways to
minimize the consumption of building materials is to use an innovative approach to
regulate stress in building structures The software package SCAD++ is used for the
calculation. 1. Metal columns—column I-beam 23К1 GOST 26020-83, I-beam
wide-flange 26SH1 GOST 26020-83, I-beam wide-flange 23SH1, I-beam norma
23B1. Covering load due to its own weight—0.15 t/m2. Snow load—0.19 t/m2.
Wind load: upwind side 0.87 t/m2, leeward side—0.55 t/m2. Change in the value of
displacement along the x-axis in the first version of the wind load and an increase in
the tension of steel ropes from 1 to 25 t. Due to the tension of the ropes, it is
possible to reduce the horizontal movement from 24.171 to 20.84 mm, the differ-
ence was 3.31, the movement decreased by 14%.

Keywords Active control structures � Actuators and smart structures � Active �
Active control � Control algorithms � Structural control � Steel � Steel constructions

1 Introduction

The Arctic and the Antarctic areas are characterized by extreme wind loads that
exceed the standardized by SP [1, 2]. These areas are characterized by a significant
distance from material and raw material bases and road transport arteries [3]. Under
these circumstances, the problem of perception of extreme wind loads must [3–6]
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be solved with a minimum consumption of building material [7–9]. One of the ways
to minimize the consumption of building materials [10] is to use an innovative
approach to regulate stress in building structures [11–13]. In this work the survey of
the effectiveness of applying this approach to the design of a modular building
located in the Antarctic conditions [14] with the following characteristics was
conducted [15]:

• Length—54 m.
• Width—from 18 to 30 m.
• Number of storeys—2, the height of the first and second floor is 3390 and

3110 mm respectively.
• The height of the building is 8.31 m.
• The building is installed on piles buried below the freezing depth.
• According to the constructive solution, the frame of the building was adopted as

a frame-braced one [16].
• The appointment of the building is a scientific laboratory, with office, communal

and residential premises.

The solution to the problem of voltage regulation is assumed in the nodes of
building structures using puffs [5, 13, 17–20].

2 Methods

The software package SCAD++ is used for the calculation [21].
Structural elements:
1. Metal columns—column I-beam 23К1 GOST 26020-83 (Figs. 1, 2, 3, 4, 5, 6

and 7).

Fig. 1 Column I-beam 23К1
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Covering load due to its own weight—0.15 t/m2. Snow load—0.19 t/m2. Wind
load: upwind side 0.87 t/m2, leeward side—0.55 t/m2.

Before the calculation, the following load combinations cases were compiled
(Fig. 8).

Fig. 2 I-beam wide-flange
26SH1 GOST 26020-83

Fig. 3 I-beam wide-flange
23SH1
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Fig. 4 I-beam norma 23B1

Fig. 5 Self-weight loading scheme. Coating load—0.15 t/m2
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3 Results and Discussion

Change in the value of displacement along the x-axis in the first version of the
wind load and an increase in the tension of steel ropes from 1 to 25 t [22] (Figs. 9,
10 and 11).

In Fig. 13 the columns in which the internal forces were checked are marked in
red (Fig. 12).

Fig. 6 Wind load scheme option 1

Fig. 7 Wind load scheme option 2
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Fig. 8 Load combinations

Fig. 9 Wind load direction

Fig. 10 Rope tension scheme

Fig. 11 Node location
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4 Conclusions

See Tables 1 and 2.

Fig. 12 Columns in which the internal forces were compared

Fig. 13 Color display of efforts N t
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