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Abstract Modern methods and technologies for the manufacture of structures
make it possible to obtain structures of various shapes and sizes. This, in turn,
determines the possibility of using structures of variable thickness in modern
technology and engineering. During operation, they are often subjected to various
loads. Among the loads, periodic loads are of particular interest. On the basis of the
Kirchhoff-Love theory, nonlinear parametric vibrations of an orthotropic vis-
coelastic rectangular plate of variable thickness are investigated without considering
the elastic wave propagation. The mathematical model of the problem is described
by a system of nonlinear integrodifferential equations, where the weakly singular
Koltunov-Rzhanitsyn kernel is used as the relaxation kernel. The resolving equa-
tions of the problem are obtained by the Bubnov-Galerkin method and by a
numerical method based on the use of quadrature formulas. The behavior of an
orthotropic viscoelastic rectangular plate under the action of an external periodic
load is investigated. The graphs obtained with the developed computer program
show the effect on the amplitude-frequency response of the plate on various
physical, mechanical, and geometrical parameters.
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1 Introduction

Thin-walled shell structures of variable thickness made of composite materials are
among the most widespread structures used in many fields of modern technology.
This is due to the great functionality of such structures and the successful combi-
nation of their properties of lightness and strength. Modern technological progress
makes it possible to manufacture structures of various shapes and sizes made of
various materials.

At the same time, during operation, such structures are subjected to various
dynamic loads. Among such loads, periodic loads are of particular interest for
research. On the other hand, difficulties arise in the calculation and design of such
structures, and the determination of their stress-strain state causes both computa-
tional and principal difficulties. Therefore, at present, the development of new
mathematical models, improvement of calculation methods and algorithms is one of
the urgent tasks.

Currently, there are many publications devoted to the construction of various
theories, models and methods to assess the stress-strain state of thin-walled shell
structures of constant and variable thickness under the action of various static and
dynamic loads. A significant contribution to the study of such problems was made
by Bolotin [1], Volmir [2], and over the past decades by Awrejcewicz and Krys’ko
[3], Amabili [4], Grigorenko and Grigorenko [5].

There are a number of articles devoted to the study of vibrations and stability of
plates and shells of variable thickness.

The study in [6] is devoted to the parametric vibrations of plates under the action
of static and periodic loads. A numerical-analytical method for solving the problem
using the Bolotin method was proposed. In that, the plates can have an arbitrary
geometric shape.

In [7], the problem of parametric vibrations of an isotropic cylindrical shell of
variable thickness under the action of a load along its generatrix is considered. An
exact solution is obtained for different ratios of the parameters.

The study in [8] is devoted to the parametric vibrations of conical shells of
variable thickness under static and periodic loads. Using the Galerkin method, the
problem is reduced to solving an equation of the Mathieu type. The influence of
various parameters on the region of dynamic instability was studied.

In [9], free vibrations of composite shells and plates of variable thickness are
investigated. The solutions obtained are compared with analytical and numerical
solutions known in the literature.

The development of a technique for solving the three-dimensional problem of
bending of orthotropic plates of variable thickness is given in [10]. The problem is
reduced to solving two independent problems, described by two independent sys-
tems of two-dimensional infinite equations.

Loja et al. [11] is devoted to the determination of the dynamic instability of
composite plates of variable thickness. To solve the problem, the Bolotin method
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was used. The influence of various geometric parameters, as well as the properties
of the material on the stability of the plate, was studied.

In [12], parametric vibrations of composite plates of variable thickness under
periodic loads were investigated. The mathematical model of the problem is
described by an equation of the Karman type. The finite element method is used to
solve the problem.

The study of free vibrations of shells with a linear change in thickness under
various boundary conditions is given in [13]. The finite element method is used to
solve the problem. The influence of the variability of the thickness, dimensions of
the shell and other parameters on the amplitude-frequency response of its vibrations
was studied.

In [14], the finite element method is used to solve the problem of dynamic
stability of rectangular panels of variable thickness under compressive loads. The
problem is reduced to solving the system of Mathieu-Hill equations.

In [15], on the basis of the classical theory of shells in a nonlinear formulation,
forced vibrations and dynamic stability of cylindrical shells of variable thickness
subjected to mechanical stress are investigated. To derive the resolving equations,
the methods of Galerkin and Runge-Kutta were used.

Analysis of published works shows that insufficient attention was paid to non-
linear parametric vibrations of nonhomogeneous viscoelastic plates and shells of
variable thickness [16–18].

The article investigates nonlinear parametric vibrations of an orthotropic vis-
coelastic rectangular plate of variable thickness without considering elastic wave
propagation.

2 Materials and Methods

Consider an orthotropic viscoelastic plate, rectangular in plan, with sides a and b,
variable thickness h = h(x, y), and with initial imperfections w0 = w0(x, y); the plate
is subjected to acting periodic load P tð Þ ¼ P0 þP1 cosHt (P0;P1 ¼ const; H is the
frequency of an external periodic load) along side a.

We will assume that there are no tangential inertial forces. Then the system of
three equations [16] can be reduced to a system of two equations with two
unknowns.

Following the results of [2], we introduce the stress function U in the middle
surface in accordance with the following formulas:

rx ¼ Nx

h
¼ @2U

@y2
; ry ¼ Ny

h
¼ @2U

@x2
; sxy ¼ Nxy

h
¼ � @2U

@x@y
ð1Þ

The following equation of the Karman type is obtained:
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where d1 ¼ 1
E1
, d2 ¼ 1

E2
, 2d3 ¼ 1

G � l1
E1
� l2

E2
¼ 1

G � 2l1
E1
.

The solution of the system (2) with respect to the deflection w and the stress
function U is found in the form

w x; y; tð Þ ¼
XN
n¼1

XM
m¼1

wnm tð Þwnm x; yð Þ; U x; y; tð Þ ¼
XN
n¼1

XM
m¼1

Unm tð Þvnm x; yð Þ ð3Þ

where wnm = wnm(t) and Unm = Unm(t)—are the unknown time functions; wnm x; yð Þ;
vnm x; yð Þ; n ¼ 1; 2; :::;N; m ¼ 1; 2; :::;M are the coordinate functions that satisfy
the boundary conditions of the problem.

Substituting (3) to (2) and introducing the following dimensionless quantities

w ¼ w
h0

; w0 ¼ w0

h0
; x ¼ x

a
; y ¼ y

b
; t ¼ xt; h ¼ h

h0
; k ¼ a

b
; d ¼ b

h0
;

q ¼ qffiffiffiffiffiffiffiffiffiffi
E1E2

p b
h0

� �4

; h ¼ h
x
; xt;

C tð Þ
x

; d0 ¼ P0

Pcr
; d1 ¼ Pt

Pcr
; D ¼

ffiffiffiffiffiffiffiffiffiffiffi
E1=E2

q
; g ¼ G12ffiffiffiffiffiffiffiffiffiffi

E1E2
p

while retaining the previous notation with respect to the unknowns wnm ¼ wnm tð Þ,
Unm ¼ Unm tð Þ, we obtain the following system
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The solution of the system (3) is found by the numerical method proposed in [19].
This method is based on the use of quadrature formulas and eliminates the singu-
larity in the relaxation kernel. In this case, a weakly singular Koltunov-Rzhanitsyn
kernel of the following form is used as a relaxation kernel [20]:

CðtÞ ¼ Ae�bt � ta�1; A[ 0; b[ 0; 0\a\1 ð5Þ

An efficient computational algorithm was developed and a program in the Delphi
algorithmic language was developed and implemented on a computer. The results
of the study of parametric vibrations of orthotropic viscoelastic plates of variable
thickness without taking into account the propagation of elastic waves at various
physical and geometric parameters are given in the form of graphs.

The thickness variation law is set analytically and, in the general case, can be of
any form. To obtain numerical results, the law of thickness variation is chosen in
the form:

h ¼ 1� a�x; ð6Þ

where a� is the parameter of the change in thickness.

3 Results and Discussion

The influence of the viscoelastic properties of the material on the behavior of the
plate is shown in Fig. 1. The results of the study show that an account for the
viscosity of the plate material leads to a decrease in the vibration amplitude.

Figure 2 shows the influence of the nonhomogeneity parameter D on the
behavior of the viscoelastic plate. The results show that an account for the non-
homogeneous properties of the plate material leads to a decrease in the vibration
amplitude.
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The change in the deflection of a viscoelastic plate as a function of time for
different values of the thickness variability parameter a* is shown in Fig. 3. It is
seen that an increase in this parameter leads to a decrease in the vibration amplitude.

Figure 4 shows the results of studying the parametric vibrations of an ortho-
tropic viscoelastic rectangular plate of variable thickness under various boundary
conditions. The results obtained show that with an increase in the number of fixed
sides of the plate, the vibration amplitude decreases, and the vibration frequency
increases.

Fig. 1 The dependence of the deflection on time: Aij = 0 (1); 2, Aij = 0.05 (2); 3, Aij = 0.1 (3)

Fig. 2 The dependence of the deflection on time: Aij = 0.02, D = 1.1 (1); Aij = 0.02, D = 1.3 (2)

144 M. Mirsaidov et al.



4 Conclusions

The study of parametric vibrations of orthotropic viscoelastic rectangular plates of
variable thickness gave the following results:

1. A mathematical model, a method and an algorithm for solving the problem of
parametric vibrations of orthotropic viscoelastic rectangular plates of variable
thickness without considering the propagation of elastic waves were developed.

2. The proposed method can be used for various viscoelastic thin-walled structures
such as plates, panels and shells of variable thickness.

3. The developed technique allows obtaining the results of the study of parametric
vibrations of an orthotropic viscoelastic plate of variable thickness and for other
laws of thickness variation.

Fig. 3 The dependence of the deflection on time: a* = 0 (1); a* = 0.3 (2); a* = 0.5 (3)

Fig. 4 The dependence of the deflection on time: two opposite sides are simply supported, the
other two are clamped (1); all sides are clamped (2)
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