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Abstract. In the article, one has presented a mathematical description and an
algorithm for prediction of tuyere areas’ parameters and control over the distribu-
tion of blast parameters around a blast furnace based on the application of patterns
of heat transfer between the hot blast and cooling water for tuyere elements. The
algorithm has been designed to align the thermal condition of the tuyere areas of
a blast furnace along the circumference. It entails the calculation of the following
parameters for each tuyere: output and composition of the hearth gas, heat removal
from a tuyere, hot blast blowout velocity from a tuyere, kinetic energy of the hot
blast, total mechanical energy of the blast flow, length of circulation and oxidation
zones, and theoretical combustion temperature. One calculates the mean values of
parameters, the area of oxidation zones, and the relative area of tuyere areas. It has
been shown that, in case of the non-uniform distribution of the hot blast to tuyeres,
to stabilize the thermal state of tuyere areas and to align the gas distribution along
the furnace circumference, one is required to adjust the natural gas flow rate to
each tuyere to maintain the theoretical combustion temperature at a target level.
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1 Introduction

When operating a blast furnace, the actual distribution of the hot blast to tuyeres is far
from uniform: differences in blast flow rate at individual tuyeres, ranging from 5 to 50%,
are observed [1-9]. Uneven distribution of the hot blast to tuyeres leads to different
lengths of tuyere areas. This causes a difference in the speed of material descent in
the individual sections of the furnace and concurrently a distorted gas flow along the
furnace cross section [7—10]. In case of uncontrolled distribution of the blast to tuyeres,
gas temperature in tuyere areas will vary and maintaining the theoretical combustion
temperature within the optimal range will become impossible without the redistribution
of natural gas between tuyeres of the furnace.

Several published papers [2—4, 7-10] describe methods and ways of controlling
blast flow rate through blast furnace tuyeres. However, they are extremely short-lived
and unsustainable due to elevated temperatures and aggressiveness of the hot blast. In

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. A. Radionov and V. R. Gasiyarov (eds.), Proceedings of the 7th International Conference on Industrial Engineering (ICIE 2021),
Lecture Notes in Mechanical Engineering, https://doi.org/10.1007/978-3-030-85233-7_89


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85233-7_89&domain=pdf
https://doi.org/10.1007/978-3-030-85233-7_89

Predictive Algorithm for Tuyere Areas’ Parameters and Control ... 765

recent years, systems for control over the hot blast flow rate to tuyeres, based on the
application of patterns of heat exchange between the blast and cooling water of tuyere
elements, have been developed [9-14].

2 A Mathematical Computational Model and a Calculation
Algorithm

In this paper, authors employed the method of determining the blast flow rate to tuyeres,
based on numerical simulation of the heat power of the flow passing through a tuyere
and the value of heat taking off from this tuyere. Block diagram of the algorithm for
prediction of tuyere areas’ parameters and control over blast parameters distribution
around the blast furnace is shown in Fig. 1.

In numerical simulation, it is assumed that when the blast passes through the tuyere,
part of the heat flow is transferred to the water cooling the tuyere, and to a greater extent,
the higher is the heat power of the passed heat. This assumption is reasonable, since the
design of all tuyere installed in the furnace is the same, the wall thickness of all tuyeres is
the same, the coefficients of heat transfer from blast to tuyere and from tuyere to cooling
water are also constant; the heat transfer coefficient of tuyere walls is assumed constant.

To calculate the blast distribution to each tuyere, one determines the mean value of
the heat flow of the blast passing through tuyeres based on the average performance
indices of a blast furnace as a whole:
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where n is the number of tuyeres, pcs.; Q—ablast flow rate, m?3/min. C—a hot blast heat
capacity, kJ/(m*-K); 13—a hot blast temperature, °C; Cy.;.—a heat capacity of natural
gas, kJ/(m3-K); Vn.g.—a specific natural gas flow rate, m3/t of molten iron; tNG—a
natural gas temperature, °C; P—a furnace production rate; 7—molten iron/day.

When this heat flow passes through a tuyere, part of it is transferred through the
walls of the tuyere to the cooling water and heats the latter. The numerical value of such
heating determines the heat removal from a tuyere:

qp =m - Choo - At, 2

where m is a water flow rate for tuyere cooling, kg/min; Cyyo—a heat capacity of cooling
water, kJ/(kg-K); Ar—a temperature difference of water when passing the tuyere, °C.
The average fraction of heat transferred from the heat flow of the blast going through
the tuyere to the cooling water will be equal to:
oy (m - CH20 - Ay
4qb

It is assumed that the value of « is constant for all tuyeres and is determined by the
averaged performance indices of the blast furnace as a whole. Then the blast flow rate
to the individual ith tuyere is determined from the equation:
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Fig. 1 Block diagram of the algorithm for prediction of tuyere areas’ parameters and control over
blast parameters distribution around the blast furnace

where (m - Cgap - At); is the value of heat remova] from the ith tuyere, kJ/min; Q{B—a
blast flow rate through the ith tuyere, m>/min; Vy g —a set flow rate of natural gas
through the ith tuyere, m3/h.
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From this equation, with a known value of the « coefficient, one calculates the
estimated value of blast flow rate to the ith tuyere:

(m-Cpao - A —a-Vy - Cy - 8-

]
Op « - Cp ip ®)

In the employed calculation algorithm, with known characteristics of the blast at
tuyeres (flow rate, temperature, pressure, humidity, oxygen content in the blast, and
natural gas flow rate) and tuyere diameter, one calculates blast blowout velocity, value
of kinetic energy, and total mechanical energy of the blast flow at each air tuyere. The
values of kinetic and total mechanical energy of the blast flow determine the length of
the circulation zone, the numerical value of which corresponds to the oxygen content in
the gaseous phase of the tuyere area equal to 2% and the length of the oxidation zone of
the tuyere area (corresponds to CO; content in the gaseous phase equal to 2%) [15-19].
Subsequently, one determines the area of the oxidation zone of each tuyere area and the
total area of these zones, related to the cross section of the hearth [20]. Based on the
blast flow rate and the output of hearth gas at the found values of the heat content of
the hearth gas and the known flow rate of natural gas for each tuyere, one calculates
the theoretical combustion temperature in the tuyere areas according to the procedure
presented in the papers [19-21].

With uneven distribution of the blast and supplied natural gas to tuyeres, one has
observed significant variations in the theoretical combustion temperature along the cir-
cumference of the furnace in the tuyere areas. To eliminate the existing unevenness of
tuyere areas’ heating, it is necessary to redistribute the natural gas flow rate to tuyeres,
focusing on the established unevenness of blast distribution.

For this purpose, at the first stage, one sets the value of the theoretical combustion
temperature in the tuyere areas. At each tuyere at a known blast flow rate, one calcu-
lates the natural gas flow rate, which is necessary to stabilize the theoretical combustion
temperature at known temperature, moisture, and oxygen content of the hot blast. Fur-
ther, one calculates the parameters of tuyere areas when the theoretical combustion
temperature has been stabilized at a predetermined level.

A complete list of initial data for calculating the distribution of hot blast over blast
furnace tuyeres is presented in Tables 1, 2, and 3. It includes the design dimensions of the
blast furnace, the technological parameters of blast furnace process, and the parameters
of each tuyere.

Table 4 presents some performance indices of the blast furnace process and calculated
data pertinent to the parameters of individual tuyere areas at blast furnace No. 2 at PAO
MMK (PJSC Magnitogorsk Iron and Steel Works).

The histogram of the measured and required natural gas flow rates for the blast
furnace tuyeres is shown in Fig. 2.

The estimated blast distribution to tuyeres is uneven: the maximum value of blast flow
rate has been observed at tuyeres No 13 and 14 (152 and 148 m?/min, respectively) and
the minimum—at tuyeres No 3 and 6—108 and 102 m3/min, respectively. Calculated
value of tuyere areas’ circulation zone length varies from 1.19 m (tuyere No 6) and
reaches the maximum of 1.69 m at air tuyere No 13. Values of the theoretical combustion
temperature for separate tuyere areas vary from 1958 °C at tuyere No. 6 to 2088 °C at
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Table 1 Blast furnace dimensions

Parameter name Symbol | Unit
Useful volume Vo m3
Diameter of the hearth | Drop m
Number of tuyeres n pcs
Tuyere diameter dg mm
Tuyere projection Hy mm

Table 2 Parameters of individual tuyeres

Parameter name Symbol Unit
Natural gas flow rate VI{/. G m>/min
Water flow rate for tuyere cooling m; kg/min
Temperature difference of water when passing the tuyere Aty °C
The required value of the theoretical combustion temperature Tli °C

Table 3 Blast furnace process parameters

Parameter name | Symbol Unit

Furnace P t of molten iron/day
production rate

Blast flow rate (0] m3/min

Blast pressure Pp atmosphere

Hot blast tp °C

temperature

Blast humidity fB g/m3

Oxygen content | @ %

in blast

Blast losses in the | y %

air path

Specific coke k kg/t of molten iron
consumption

Reactivity of CRI %

coke
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Fig. 2 Histogram of the measured and required natural gas flow rates for the blast furnace tuyeres

tuyere No. 13. Increase in the natural gas flow rate, required to stabilize the theoretical
combustion temperature at a target level of 2050 °C, will contribute to the alignment of
gas distribution around the furnace.

3 Conclusion

Therefore, the distribution of hot blast to the blast furnace tuyeres is uneven, and it
is determined by the blast furnace operation practice and the design of the air supply
ductwork. It has been shown that when the blast is unevenly distributed to the tuyeres,
to stabilize the thermal state in the tuyere areas and to align the gas distribution around
the furnace, one is required to adjust the natural gas flow rate to each tuyere to maintain
the theoretical combustion temperature at a set target level.
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