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Abstract This chapter describes the mechanical behaviour of polymeric and soft
materials through combined computational and experimental studies. Many soft
materials exhibit time-dependent or a very large non-linear strain behaviour known
as viscoelasticity/viscoplasticity and hyper elasticity or viscous-hyper elasticity
respectively. A comparative study using nano-indentation of polymeric materials
has been performed through combined experimental and Finite Element methods.
Several constitutive models are available in the literature to analyse the experimental
response of polymeric materials, however, the correct constitutive models are
required to accurately model the mechanical behaviour of a given material system.
Three widely used hyper elastic models, including the Mooney-Rivlin, Ogden
and Arruda-Boyce models are studied for the analysis using the Finite Element
software ANSYS. Also, due to the time dependent behaviour of soft materials
the viscoelasticity and viscoplasicity behaviour based on the Prony series and
Perzyna/modified time hardening models are discussed. Conventional macroscopic
mechanical tests have been performed on PMMA, epoxy resin and polyurethane
rubber materials using uniaxial tensile testing in conjunction with digital image
correlation (DIC) technique to provide input data for Finite Element modelling of
the indentation process. FE analysis of the indentation tests was then carried out
and the results are compared with experimental data. This study helps to identify
the deformation behaviour and mechanical characteristics of soft materials.
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1 Introduction

Soft biomaterials are produced from a wide range of polymers (Shtil′man 2003).
One of the main advantages of using polymers as a biomaterial is that their chemical
structure and functionality can be easily modified which allows the tailoring of
properties such as mechanical response, bioadherence, etc. (Zadpoor 2015). Many
polymers are therefore extensively used in biomedical applications as implants,
scaffolds, or wound-dressing foams (Shtil′man 2003; Ifkovits and Burdick 2007;
Ulery et al. 2011). However, any chemical and physical changes in the structure of
soft polymeric materials significantly influences their mechanical properties (Piskin
1995; Dutcher and Marangoni 2004). For instance, where soft materials mainly
reside in aqueous environments, chemical degradation can result in material failure
(Piskin 1995; Oyen 2008). Therefore, understanding the mechanical behaviour
is essential and this often needs to take place at very high spatial resolution.
Unlike metals and ceramics, which show predominantly elastic-plastic behaviour,
characterising the mechanical properties of soft polymeric materials is very complex
and challenging (Oyen 2008; Sinha and Briscoe 2009). Most of the soft polymeric
materials exhibit both elastic/hyper elastic and viscoelastic/viscoplastic properties at
different strain rates and temperatures (Alfrey and Doty 1945; Li et al. 2018). Vis-
coelastic/viscoplastic behaviour such as strain rate dependency and time dependent
relaxation requires diverse range of analyses to evaluate mechanical response.

A mathematical framework to determine the stress-strain behaviour of a loaded
material is called a constitutive model (Dorfmann andMuhr 1999; Dean et al. 2011).
A number of existing constitutive models, such as linear, bilinear, hyper elastic,
or viscoelastic/viscoplastic models, can be used to characterise the mechanical
behaviour of soft materials (Gurtin 1973; Dean et al. 2011; Fill et al. 2012).
However, the structure of soft materials such as polymers and elastomers is
complex and the constitutive response can be entirely different compared to the
typical engineering materials (Ogden 1973; Blatz et al. 1974; MacManus et al.
2016). Therefore, obtaining an accurate constitutive model is a key issue in the
better understanding of the mechanical behaviour of polymers, elastomers or soft
biomaterials used in implants, scaffolds, etc. Depending on the structure and
composition, soft materials often exhibit elastic, plastic, viscous (time-dependent)
and hyper elastic behaviours (Ogden 1973; Dorfmann and Muhr 1999; Dean et
al. 2011). For soft materials under small deformation the stress can be considered
proportional to strain and can be fitted to linear elastic models, i.e., (σ = Eε (Gurtin
1973)); typically linear elasticity can be described with two material constants (i.e
Young’s modulus and Poisson’s ratio) (Gurtin 1973). In the case of hyper elastic
soft materials, these show a large deformation when a load is applied which returns
to the original shape after the load is released, and a stress that varies nonlinearly
with respect to strain (Mooney 1940). This hyper elasticity is described by a few
constitutive models to precisely characterise the nonlinear stress-strain data of such
soft materials (which are described in the Sect. 1.4).
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The mechanical properties of soft materials can be determined using conven-
tional methods such as, tensile, compression, or bending tests (Moerman et al.
2009; Nie et al. 2009). But soft materials display large deformation behaviour at
a given applied load, and their surfaces or sub surfaces are often very different
from bulk materials (Mooney 1940). Therefore, in order to locally investigate the
mechanical properties and deformation characteristics of soft materials at small
(micro/nano) scale such as thin films, composites, or nanobiological applications,
the nanoindentation test method is probably the most suitable test method (Li and
Bhushan 2002). However, nanoindentation measurements on soft materials can vary
considerably with applied loading conditions (Li and Bhushan 2002; Zhang et al.
2010). In particular, the time dependent nature of soft materials must be considered
when measuring their properties. Numerous studies have shown the mechanical
characterisation and measurement sensitivity using nanoindentation with varying
load conditions (Li and Bhushan 2002; Fischer-Cripps and Nicholson 2004; Zhang
et al. 2010). Understanding the effect of the test time, and the degree to which
mechanical response is dependent on intrinsic materials properties, is necessary
to fully explain the mechanical behaviour of soft materials using nanoindentation
testing under different loading conditions.

In this chapter an overview of the mechanical properties of soft materials
is presented. The mechanical behaviour of most soft materials displays both
nonlinearity and viscoelasticity as well as viscoplasticity. Therefore, a detailed
understanding of the mechanical properties of soft and elastomeric (rubber-like)
materials is an important part of our investigation. Firstly, as a consequence of effect
of test time, nanoindentation relaxation of polymeric materials such as PMMA and
epoxy resin materials has been studied. In PMMA, Prony series parameters obtained
from nanoindentation experiments were determined using an analytical expression
from the literature and subsequently the parameters were input into the Finite
Element model of nanoindentation in order to validate the experimental results. In
case of epoxy resin, the results of creep testing (variation of the strain versus time)
and also the results of tensile testing at various strain rates were used to determine
the Viscoplastic model parameters (modified time hardening and Perzyna models),
subsequently the parameters were used as input data into the Finite Element model
to verify the experimental parameters.

Secondly, polyurethane rubber is used as a model hyper elastic material. The
Mooney Rivlin, Ogden and Arruda-Boyce models were used for the Finite Element
analysis. Numerical solutions were compared with experimental data which were
utilised to understand the stress strain behaviour of hyper elastic materials. It is
found that different constitutive models are required for the different materials
studied.
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1.1 Structure and Mechanical Response

The mechanical response of biomaterials based on polymeric systems is much more
variable than that of metals or ceramics. A major part of this comes from the
different structures that these largely amorphous materials can adopt and the fact
that these are not as dense and predictable as those of crystalline materials. This
results in different stress-strain behaviour depending on the initial structure and
how it changes during loading; therefore an understanding of the engineering and
true stress-strain response of different materials and how it relates to the structure
is paramount. Figure 8.1a shows the tensile engineering stress-strain curve for a
typical ductile metal. The initial linear behaviour is reversible and is due to elastic
behaviour (the slope gives the Youngs Modulus of the material) and the deviation
from linear behaviour is due to plasticity which is related to the propagation of
mobile defects (dislocations) in the material. The engineering stress continues to
rise after the onset of plastic deformation up to the point when a plastic instability
develops and the test sample cross-section is locally reduced (necking). From this
point the engineering stress which is based on the original cross-sectional area of the
test sample is reduced with increasing strain up to the point of fracture, but the true
stress continues to increase as the load carrying area reduces. In ceramic materials
fracture may occur prior to plastic deformation and only the elastic behaviour is
seen.

In a semi crystalline polymer a similar curve is often observed (Fig. 8.1b). An
initial linear elastic section is followed by a non-linear (plastic) behaviour but the
curve shows a maximum stress and then a plateau of stress at a lower level with
a considerable change in extension and a final increase before failure. In this case
the neck that forms does not continue shrinking until the specimen fails. Rather,
the material in the neck stretches only to a certain “draw ratio” beyond which the
material in the neck stops stretching and new material at the neck shoulders necks
down. The neck then propagates until it spans the full gauge length of the specimen,
a process called drawing. The increase in strain hardening rate needed to sustain the
drawing process in semi crystalline polymers arises from a dramatic transformation
in the material’s microstructure. These materials are initially “spherulitic,” contain-
ing flat lamellar crystalline plates, perhaps 10 nm thick, arranged radially outward

Fig. 8.1 Stress-strain response of (a), ductile metal, (b), semi crystalline polymer and (c),
elastomer
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in a spherical domain. As the induced strain increases, these spherulites are first
deformed in the straining direction. As the strain increases further, the spherulites
are broken apart and the lamellar fragments rearranged with a predominantly axial
molecular orientation to become what is known as the fibrillar microstructure. With
the strong covalent bonds now dominantly lined up in the load-bearing direction,
the material exhibits markedly greater strength and stiffness than in the original
material.

In elastomeric materials (Fig. 8.1c) a non-linear stress-strain curves is also
observed but this is often completely reversible. The behaviour is elastic but the
stiffness depends on the applied strain. The effect of tensile load is to stretch and
align the polymer chains in the loading direction within the movements that are
allowed by their original arrangement, available free space in the structure and
degree of entanglement. This hyper elastic behaviour generally results in a reduction
of stiffness with increasing strain at low loads followed by an increase at high strain
once chain alignment is maximised.

The structure of materials based on polymer chains (and molecular films) is
also more likely to be changed by thermal effects even at temperatures around
room temperature. Most amorphous polymeric materials show a glass transition
temperature where behaviour changes from elastomeric to glassy on cooling. The
value of Tg depends on the mobility of polymer chains and for many polymers
this lies between 170 and 500 K. Some polymers (like PMMA) are used in their
glassy state and are relatively hard and brittle. Other polymers (e.g. polyurethane
elastomers, polyisoprene) are used above Tg and are soft and flexible in nature;
their Tg vales are below room temperature.

In addition, changes in the polymer chain structure by rotation and untangling
can occur even a modest temperature giving a viscous component to the deformation
process. Viscoelastic response is thus key in understanding the behaviour of poly-
meric materials. Elastic materials deform instantaneously when a load is applied,
and “remember” their original configuration, returning there instantaneously when
the load is removed. In solids, the relaxation of the structure at the molecular level
is extremely small and, therefore, their response is essentially elastic. On the other
hand, viscous materials do not show such characteristics, but instead exhibit a time-
dependent behaviour. While under a constant stress, a viscous body strains at a
constant rate, and when this load is removed, the material has “lost” its original
configuration, remaining in the deformed state. In liquids, molecular reorganization
generally occurs very rapidly and structural memory at the molecular level is very
short. The response is essentially viscous unless the testing experiment is very
fast. Viscoelastic materials exhibit certain characteristics of these two behaviours
and show time-dependent behaviour, a “fading memory”, partial recovery, energy
dissipation, etc. This may be linear (stress and strain are proportional) or nonlinear.

Polymers are the most important viscoelastic systems. Above the glass transition
temperature, the response of these materials to a mechanical perturbation involves
several types of molecular motions. For instance, the rearrangement of flexible
chains may be very fast on the length scale of a repeated unit. These movements
imply some type of cooperativity in the conformational transitions that produce
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Fig. 8.2 Typical load-displacement fingerprints for (a) a glassy material (elastic-plastic (b) an
elastic/viscoelastic material (c) an elastic/hyper elastic material (d) an elastic-viscoplastic material

them. Cooperativity occurs even as the relaxation propagates along the chains,
involving a growing number of segments of the backbone as time passes. At very
long times, disentanglements of the chains takes place, and the longest relaxation
time associated with this process shows a strong dependence on both the molecular
weight and the molecular architecture of the system. The disentanglement process
governs the flow in the system. As a consequence of the complexity of the molecular
response, polymer chains exhibit a wide distribution of relaxation times that extend
over several orders of magnitude in the time or frequency domain. At short time
or at high frequency the response is mainly elastic, whereas at long time or low
frequency it is mainly viscous. Obviously, the elastic component of the deformation
is recoverable but the viscous component is not.

These differences in mechanical behaviour lead to differences in response in any
mechanical test including nanoindentation tests which are used when material is
only available in small amounts. A range of different load-displacement responses
are measured (Fig. 8.2) and it is not possible to use a single analysis method to
derive useful comparative data or a mechanistic understanding of the deformation
processes occurring. Careful modelling of the measured data is therefore necessary.

Appropriate constitutive models for deformation are needed for all of the above
cases. Whereas a single value for elastic modulus may be sufficient for crystalline
materials this is not generally the case for polymers. In Sects. 1.3.2, 1.3.3 and
1.4 some of the constitutive models for hyper elastic, viscoelastic and viscoplastic
materials which may be required are described.
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1.2 Conventional Mechanical Testing vs Nanoindentation

For mechanical characterization, traditional mechanical methods such as tensile,
compression, shear or bending tests can provide macro-scale information which
can differ at the nano-scale level since most soft materials are non-homogeneous
materials. Also, these testing methods have some challenges such as complex
gripping geometry and the requirement for specific shapes and sizes of test
samples (Nie et al. 2009). Therefore, in order to locally investigate the mechanical
properties and deformation characteristics of soft materials at micro/nanoscale, the
nanoindentation test method is probably the most common test method.

Nanoindentation is a depth sensing technique in which continuously measures
load, displacement and time providing the mechanical response to the contact
deformation; from this mechanical testing method, parameters such as hardness and
modulus can be calculated (Fischer-Cripps and Nicholson 2004). Nanoindentation
is easy to use, it does not generally require specialised laboratory infrastructure or a
vacuum chamber. Properties such as viscoelasticity, creep, fracture toughness, and
strain hardening effects localised to the contact region can be also extracted from
the analysis of loading-unloading cycles (Ebenstein and Pruitt 2006). In contrast,
the traditional mechanical methods such as tensile, compression, shear and flexural
tests can only provide global deformation information which can differ to that from
the nanoscale level since most soft materials are non-homogeneous (Bradley et al.
2001). Also, these conventional testing methods have some challenges which were
described earlier (Dvir et al. 2011).

In the nanoindentation process, the load is applied through the transducer and
the probe displacement is continuously measured to provide a load-displacement
curve. The displacement is usually measured by capacitance while the force
actuation is provided by force generation due to expansion of a piezoelectric
element, magnetic coils, or electrostatically (Fischer-Cripps and Nicholson 2004).
A schematic representation of nanoindentation is shown in Fig. 8.3, where the tip
mounted directly onto the middle plate of a three-plate capacitor and a normal load
is applied to move the tip downwards. The resulting load-displacement curve serves
as the mechanical fingerprints of the material, from where the mechanical properties
can be determined.

When testing compliant such as biomaterials three typical types of load-
displacement fingerprint are often observed depending on the material tested:

1. Totally elastic or hyper-elastic response in which the loading and unloading
curves are identical (Fig. 8.2c). This is typical of elastomeric materials with very
low elastic moduli where the stresses generated during the indentation cycle are
too small to drive plasticity.

2. Elastic-viscoelastic response in which the loading and unloading curves are offset
from each other by the viscoelastic behaviour during a hold period (Fig. 8.2b).
This is typically observed in non-crosslinked polymers such as PMMA at low
test loads. The deformation is reversible and no visible impression is observed
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Fig. 8.3 Schematic representation of a nanoindenter machine

but the rate of recovery is slow enough that a visible offset between the loading
and unloading curves is observed that disappears when the test is completed.

3. Elastic-viscoplastic response in which a permanent impression is created which
does not recover fully after the test. A load-displacement curve that is similar
to that seen when testing elastic-plastic materials is produced (Fig. 8.2d). This
involves breaking of bonds and is more commonly observed for cross-linked
polymers like epoxy resin systems.

This chapter discusses the analysis of all these types of curves and compares the
results to the widely used conventional nanoindentation analysis method developed
by Oliver and Pharr (Oliver and Pharr 1992) which is introduced in the next section.

1.3 Nanoindentation Theory

Nanoindentation has emerged as a convenient technique to determine the mechani-
cal properties of polymeric materials. Thanks to the recent technological advances
to the transducer sensitivity of nanoindentation equipment, continuous checking and
monitoring of the load and contact depth is permitted throughout the load-unload
cycles. Depth sensing micro-indentation was first conducted by Fröhlich (Fröhlich
et al. 1977) and then used as a method to characterize the surface properties of
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Fig. 8.4 Geometry of indenter tips (a) Berkovich, (b) Vickers

Fig. 8.5 (a) A schematic representation of surface showing the section before and after indenting,
(b) A schematic representation of typical nanoindentation load-displacement curve, also showing
the graphical interpretation of the contact depth (Oliver and Pharr 1992)

materials. Although for conventional macro and micro-scale hardness testing, an
indenter geometry of a four faceted pyramidal Vickers tip (Fig. 8.4b) is mainly used,
when it comes to the nanoscale measurement, the three faceted pyramidal Berkovich
indenter (Fig. 8.4a) is preferred. The Berkovich tip shape was invented by a Russian
scientist (Berkovich 1950) where the area to depth ratio of this indenter geometry is
similar to that of the Vickers indenter.

In the Nano-indentation process, either under displacement or load control mode,
a diamond indenter tip is pushed into the bulk material. During the indentation cycle,
the displacement is monitored with respect to the load. A typical load displacement
curve from nanoindentation experiment is shown in Fig. 8.5b. The Oliver and Pharr
(2010) method is the main used method to analyse the unloading part of load
displacement curves and therefore to determine hardness and elastic modulus. The
hardness H is defined as
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H = Pmax

A
(8.1)

Where Pmax is the maximum applied load, and A is the projected area. The contact
area, A which can be evaluated from the contact depth, hc, at the maximum load of
Pmax, can be expressed as

A = c0hc
2 (8.2)

where c0, is the coefficient and it depends on the indenter tip geometry. For a
Berkovich tip, the value of c0 is about 24.5. As can be seen in Fig. 8.5 the contact
depth, hc, which is the actual contact depth between the indenter and material, is
different from the maximum contact depth, hmax at the maximum applied load, due
to the elastic deformation surrounding the indenter area. The contact depth, hc is
given by

hc = hmax − ε
Pmax

S
(8.3)

where S, is the contact stiffness, and can be extracted from the slope of unloading
curve. ε is a constant, that depends on geometry of indenter. The projected contact
area can be calculated either from the cross-sectional image of the indenter shape
or directly measured from the imprint geometry under the scanning electron
microscope (Briscoe et al. 1998; Pharr et al. 2010). However, determining actual
contact area is highly dependent on contact depth and the cross-sectional shape
along the contact depth (Pharr et al. 2010). In order to consider the bluntness of
the tip Oliver & Pharr proposed an area function which is mainly applicable for a
Berkovich tip and is given as

A = 24.5 hc
2 + c1hc

1 + c2hc
0.5 + c3hc

0.25 . . . (8.4)

Once the contact area, A and stiffness, S are determined, the reduced modulus, Er

can be calculated following the pioneering work of Bulychev, Alekhin, Shorshorov
(BASh) and their co-workers from the analysis of the frictionless contact problem.
This gives

Er = S
√

π

2β
√

A
(8.5)

where β is correction factor (β = 1.034) for a Berkovich indenter tip. The reduced
modulus, Er represents the elastic modulus occurring both in the indenter and the
materials, and the Young’s modulus can be extracted from the given equation
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Er = 1 − νs
2

Es

+ 1 − νi
2

Ei

(8.6)

where νs and νi are the Poission’s ratios of the sample and indenter respectively,
and Es and Ei are the elastic modulus of the sample and indenter respectively.

In summary, it must be noted that the determination of elastic modulus of
polymeric materials using nanoindentation data has been shown to be erroneous.
The Oliver and Pharr method explained earlier is inaccurate and cannot be applied to
the nanoindentation unloading curves obtained for polymeric materials (Tranchida
et al. 2007); due to the effects of pile up, viscoelasticity/viscoplasticity and hydro-
static stress, a clear difference exists between the elastic modulus calculated using
macroscopic tensile testing of polymers and those calculated using nanoindentation,
with indentation modulus normally overestimating the elastic modulus.

1.3.1 Material Pile Up

According to the elastic contact theory (Sneddon 1965), during the indentation,
the “sink-in” behaviour occurs in the region around the indentation. Based on
this behaviour, the projected contact area is calculated from the indentation load
displacement data and therefore Hardness and Modulus of the indented material are
calculated. However, depending on the material under indentation (i.e. occurrence
of plastic deformation), the material at the maximum indentation depth, may sink
in or pile up around the indenter as shown in Fig. 8.6. When pile-up occurs, the
contact depth (hc) is bigger than the maximum indentation depth (hmax). As a result,
the contact area can be underestimated by the theory of nanoindentation and the
mechanical properties extracted by the Oliver and Pharr method are overestimated.
It has been shown that the nanoindentation theory has failed to acceptably calculate
the exact projected contact area for the elastic-plastic indentation, therefore the
contact area can be underestimated significantly depending on the work hardening
and the ratio of modulus to the yield stress (Bolshakov and Pharr 1998).

Fig. 8.6 Pile up and sink in behavior of material at max indentation depth. (Hardiman et al. 2016)
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1.3.2 Viscoelasticity

The difference between indentation modulus and macroscopic tensile modulus
has been related to the viscoelastic (time dependent) behaviour of materials
(VanLandingham et al. 2001; Oyen 2007; Tranchida et al. 2007; King et al. 2013).
In fact, the initial part of unloading curve of load displacement data is affected by
the viscoelastic creep. This results in a ‘nose’ in the load displacement curves and
therefore a negative value for the unloading slope (contact stiffness). For example,
during the nanoindentation unloading curve, the occurrence of a ‘nose’ is seen when
the indentation is conducted on PMMA (Briscoe et al. 1998). In an attempt to reduce
the influence of viscoelastic effects on the unloading part of a nanoindentation test,
adding a constant load hold segment between the loading and unloading segment has
been proposed (Hochstetter et al. 1999). Therefore, determination of the optimum
holding time for each material to adequately reduce the influence of creep on
the initial part of the unloading data is necessary when characterizing the nano-
mechanical behaviour of materials.

Polymers and soft materials exhibit time dependent behaviour such as creep,
stress relaxation, or frequency dependent of dynamic properties (Brinson and
Brinson 2008). These viscoelastic materials show both elastic and time dependent
response, that are primarily responsible for energy loss since they store as well as
dissipate mechanical energy under the deformation, with the response of stress-
relaxation or creep.

Recently, nanoindentation has been considered as a possible way to measure
the viscoelastic properties as well. For example, Cheng et al. (2000) demon-
strated an analytical solution for linearly viscoelastic deformation using flat-punch
indentation. Lu et al. (2003) and Huang et al. (2004) developed methods for
viscoelastic functions of polymers in the time domain and frequency domain
respectively. Odegard et al. (2005) studied the dynamic viscoelastic behaviour of
various polymers. Vanlandingham et al. (2005) determined the relaxation modulus
and creep compliance. Thereafter numerous studies have been performed using
nanoindentation with conical, spherical and Berkovich indentation on polymers and
soft materials (Briscoe et al. 1998; Dean et al. 2011).

As mentioned above, almost all soft biomaterials exhibit time-dependent
behaviour. Apart from typical indentation methods to characterize time-dependent
behaviour, dynamic testing is also widely used, where instead of a trapezoidal load
function, a sinusoidal load is applied for measuring the storage and loss modulus
directly as a function of loading frequency. Dynamic indentation tests have been
shown to be pivotal for both in identification of mechanical properties of soft
materials and assessing their viability. This allows for the continuous evaluation
of the hardness and Young’s modulus of the given material over the depth of
the indentation. Apart from hardness and Young’s modulus measurements, this
method is useful for the experimental determination of the local creep and strain-
rate dependent mechanical properties of materials, as well as the local damping
of viscoelastic materials. Mishuris et al. (Argatov et al. 2013) has provided
useful insights on mechanical properties of biological tissues (articular cartilage)
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Fig. 8.7 Schematic representation of time-dependent behaviour of stress- relaxation (left) and
creep (right)

using dynamic spherical indentation tests at various geometrical parameters of the
indenter.

Considering the complexity of the loading conditions and time-dependent
behaviour, including complicated constitutive response and some explicit analysis
connected with physiological conditions is more likely to be necessary in future
studies of soft biomaterials. The dependency of the stress-strain behaviour of soft
biomaterials with respect to time is largely responsible for the absorption of energy,
where the approach to quantifying the material response is not straightforward
since most of the data analysis is complex due to the viscoelastic models used. For
instance, in the case of a nonlinear viscoelastic model, there is no direct analytical
expression for the indentation behaviour and not always a complete range of the
required material property data at the sample scale. This necessitates the use of
finite element analysis (FEA) modelling approaches with an appropriate materials
response included, such as from a fitted database, or an inverse FEA analysis method
for data optimisation. Therefore, in order to evaluate a more realistic analysis and
materials behaviour both experimental approaches and modelling need to be used
(Fig. 8.7).

Experimental results of indentation tests can be fitted to determine viscoelastic
parameters. A generalized Maxwell model is extensively used to consider the
correlation between nanoindentation load-displacement data and the relaxation
modulus as a function of time (Huang and Lu 2006). Typically, the model is
formulated by Prony series expressions, to characterize the continuous viscoelastic
contribution of the materials in terms of a number of different relaxation processes
with different shear modulus and relaxation time.
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G(t) = G∞ +
N∑

j=1

GJ .e−t/τj (8.7)

where G∞ is the equilibrium shear modulus, Gj is the magnitude of the shear
modulus, and τ j is its relaxation time. Due to its simplicity, this model is widely
used to describe viscoelastic materials such as polymers and many soft biomaterials.

1.3.3 Viscoplasticity

As mentioned in the above section, many soft materials exhibit the time depen-
dent behaviours that include creep, stress relaxation, or frequency dependence of
dynamic properties (Lu et al. 2003; Huang et al. 2004). If these are reversible they
can be regarded as viscoelastic but this is not always the case. Viscoplasticity also
occurs depending on the rate of the applied loading, but the time-dependent material
response is irreversible and accompanied by unrecoverable plastic deformation
(Perzyna 1966; Batra and Kim 1990). A viscoplastic model is required for large
strain deformation. For qualitative analysis, several tests such as hardening, creep, or
stress relaxation at constant elongation are performed to describe the viscoplasticity
(Batra and Kim 1990). To predict the stress-strain curve the viscoplasticity is
generally modelled using Perzyna approach (Simo and Hughes 2006).

Perzyna and Modified Time Hardening Models

In viscoplasticity, the material deformation is rate dependent and undergoes unre-
coverable deformation. The rate-dependent behaviour of polymers and soft mate-
rials in general is widely modelled using a viscoelastic constitutive law (Odegard
et al. 2005). However for viscoplasticity, the Perzyna and Modified time hardening
models can be used for rate dependent behaviour of soft materials (Simo and Hughes
2006). The Perzyna model as a function of plastic strain can be expressed as

ε̇pl = γ

(
σ

σ0
− 1

)1/
m

(8.8)

where εpl is the plastic strain, m is the hardening parameter, γ is the viscosity
parameter, and σ 0 is the static stress. In the Perzyna model, the results of stress-
strain response of polymeric samples under tensile testing at various strain rates are
used to determine the Perzyna parameters (Perzyna 1963a, b, 1966). The model
assumes that the plastic strain rate (έpl) is a function of a hardening/softening
parameter (m), the material viscosity parameter (γ), and the static yield stress (σ 0).
The stress strain rate graph is created and fitted with Perzyna material model of
viscoplasticity to identify the required parameters.
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To identify the modified time hardening parameters, the variation of strain versus
time (creep test) is used in curve fitting and, as a result, Modified Time hardening
parameters (i.e. constants C1 to C4 in Eq. 8.9 are determined.

εr =
C1 × σC2 × tc3+1

(
exp

(
−C4

T

))

C3 + 1
(8.9)

where εr is the strain rate, σ is the stress level where creep test is performed, t is the
time and T is the temperature.

1.3.4 Hydrostatic Stress

When applying nanoindentation testing on materials (in particular polymers), the
stressed material beneath the indenter tip is constrained by the neighbouring
relaxed material (unstressed), this leads to the accumulation of great compressive
hydrostatic stress in the indentation region (Atkins and Tabor 1965), which is why
many researchers believe that the effect of hydrostatic stress state is the main reason
for the difference between modulus of polymers calculated by macroscopic tensile
testing and nanoindentation (Doerner and Nix 1986; Briscoe and Sebastian 1996;
VanLandingham et al. 1999). In the literature an expression (Eq. 8.10) has been
developed in order to calculate the indentation modulus, free from the influence of
hydrostatic stress (Hardiman et al. 2016).

E(0) = E − 2

(
H − H

C

)
(5 − 4ν) (1 − ν) (8.10)

Where E(0) is the elastic modulus, E is the affected indentation modulus by
hydrostatic stress state, ν is the Poisson’s ratio, H is the indentation Hardness and
C is the factor of constraint suggested by (Atkins and Tabor 1965). It has been
shown that taking into consideration the effect of hydrostatic stress by the above
expression can result in a 15% increase in the match between indentation modulus
and macroscopic modulus of polymeric materials.

1.4 General Hyper Elastic Models

Most soft materials such as elastomers exhibit non-linear stress-strain behaviour
known as hyper elasticity, in which the stress-strain behaviour is usually derived
from a strain energy density function. The strain energy density function depends
on properties such as isotropy, incompressibility, initial level of porosity, etc.
(Boyce and Arruda 2000; Horgan and Saccomandi 2002). Numerous constitutive
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models such as Neo-Hookean, Ogden, Mooney-Rivlin, or Arruda Boyce models
based on energy density functions are available in the literature for large strain
deformation (Gent 1996). The Ogden model is older and widely used in finite
element simulations, whereas Neo-Hookean, Mooney-Rivlin or Arruda-Boyce are
mainly used for low, moderate and high strain analyses, respectively (Gent 1996;
Dorfmann and Muhr 1999).

1.4.1 Mooney-Rivlin Model

The Mooney-Rivlin model is one of the most widely used models to predict the
stress-strain behaviour of hyper elastic materials (Mooney 1940). It is based on two
invariants of the left Cauchy-Green deformation tensor, and it works well with the
large strain in uniaxial elongation and shear (Mooney 1940; Rivlin and Saunders
1951). Mooney-Rivlin can be derived from the following relationship between the
strain density function and the stretch ratio

W = C1
(
I 1 − 3

) + C2
(
I 2 − 3

)
(8.11)

Where C1 and C2 are empirical parameters, and I 1 and I 2 are the first and
second deviatoric invariants of the left Cauchy-Green deformation tensor. The
invariants (I 1 = λ1

2 + λ2
2 + λ3

2 and I 2 = λ1
2λ2

2 + λ2
2λ3

2 + λ3
2λ1

2) are
described in terms of principal stretch ratios λ1, λ2 and λ3.

1.4.2 Neo-Hookean Model

The Neo-Hookean model is a hyper elastic material model, which can be used
to predict the stress-strain behaviour of hyper elastic materials at low strains;
this model is very similar to Hooke’s law (Ogden 1997). At the beginning the
Neo-Hookean model’s stress-strain behaviour is linear, but after certain point the
stress-strain behaviour changes to non-linear (Ogden 1997; Gent 2012). A neo-
Hookean model is one of the simplest models that can make good approximation at
relatively small strain analysis (Ogden 1997). It is based on one invariant of the right
Cauchy-Green deformation tensor. The strain density function of an incompressible
Neo-Hookean model material can be expressed as

W = C1
(
I 1 − 3

)
(8.12)

Where C1 is empirical parameter, and I 1 is the first deviatoric component of the
right Cauchy-Green deformation tensor.
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1.4.3 Ogden Model

The Ogden model is a hyper elastic material model, which can be used to predict
the stress-strain behaviour of complex hyper elastic materials at larger strain levels
(Ogden 1973). This model is the most widely used model up to now since it is
capable of modelling stress-strain curves for strains up to 700%, whereas Mooney-
Rivlin is typically best for strains below 100% (Ogden 1973). The strain density
function for the Ogden model can be expressed as

W =
N∑

I=1

μi

αi

(
λ

αi

1 + λ
αi

2 + λ
αi

3 − 3
)

(8.13)

Where λ1, λ2 and λ3 are the principal stretch ratios, whilst μi and αi are the
empirically determined materials parameters.

1.4.4 Arruda-Boyce Model

The Arruda-Boyce model is a hyper elastic material model, which is based on an
eight-chain model in which hyper elastic material is represented by eight identical
polymer chains. This model requires two material parameters (the rubbery chain
modulus and the limiting chain extensibility) and it works well to capture the
collective nature of network deformation (Arruda and Boyce 1993). The strain
density function for an Arruda-Boyce model, using the first five terms of the inverse
Langevin function can be expressed as

W = μ

5∑

I=1

Ci

λ2i−2
m

(
I

i

1 − 3
)

(8.14)

here, μ is the initial rubbery shear modulus, and λm is the initial chain extensibility.
I 1 is the first deviatoric strain invariant.

2 Experimental and Numerical Methodology

2.1 Nanoindentation Test

In this work, depth sensing nanoindentation testing was conducted on viscoelastic
and viscoplastic materials (i.e. PMMA and epoxy resin) using a Hysitron Triboin-
denter fitted with the Berkovich diamond indenter (500 nm tip end radius). An
array of nine indents (3 × 3) was created. The distance between the indent was
maintained 15 μm to avoid the interaction between the indents. To make sure
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that the nanoindentation results are not influenced by errors due to the shape of
indenter, standard fused silica specimen was initially used to calibrate the tip area
function. The tests were performed under displacement control mode using a single
cycle indentation (load-hold-unload) protocol and during each cycle, a 5 s hold
was imposed at the peak displacement. This was done to account for the effect of
creep and viscosity. In addition, before the indentation testing, specimens were held
for 24 h inside the nanoindentation enclosure in order to minimize the effect of
thermal drift and to minimise the offset the specimen temperature with that of the
environment. In this study, Atomic force microscopy (AFM) scans contributed to
identify the occurrence of epoxy resin pile up and therefore the effect of pile up
was corrected using the FEM method. The blunt Berkovich used can be regarded
as a conical indenter with a spherical cap. For displacements less than about 60 nm
the contact can be regarded as dominated by the spherical cap whereas at greater
displacements the contact is dominated by the conical indenter geometry.

Nanomechanical response of hyper elastic material (polyurethane rubber) was
conducted numerically, however the input parameters for the FE model were
calculated experimentally. The numerical tests were performed under displacement
control mode using a single cycle indentation (load-hold-unload) protocol and
during each cycle, a 1 s hold was imposed at the peak displacement. More details
about the methodology of computational nanoindentation on the hyper elastic
material are given in Sect. 3.3.

2.2 Finite Element Modelling of the Nanoindentation

In this study, because of the complexity of the contact problem in soft polymers
(large deformation and the stress-strain relationship with strong nonlinear features),
the ANSYS Finite Element program was used to simulate the nanoindentation
process for the nonlinear elastic materials. For this purpose, a 2D axisymmetric
FE model with a conical indenter (half angle of 70.3

◦
) and a tip radius of 50 or

500 nm was used in order to accurately reproduce the nanoindentation experiment
through the simulation. To build the nanoindentation model in this study, a 4-node
planar element (PLANE182) was used to model the entire areas of the indenter and
the bulk material. The element has axisymmetric modelling functionality and can
be used for the large deformation problems in nanoindentation. In addition, it can
be integrated with CONTA171 and TARGE169 elements to define the surface-to-
surface contact model (bottom surface of the indenter and the top surface of the bulk
material). Since a large localized strain/deformation occurs in the contact region
beneath the indenter, a very fine mesh (2.5 nm × 2.5 nm) was used close to the
contact zone, while a coarser mesh was used outside this region. The appropriate
number of elements and element size were obtained by improving mesh density
using mesh sensitivity study of the load versus displacement curve; therefore the
FE model is mesh independent. Symmetric boundary conditions were applied along
the axis of symmetry (the horizontal direction displacement was set to zero). The
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bottom side of the bulk material is also constrained by a fixed boundary condition.
The height and the width of the model were set to a value of 300 times bigger
than maximum indentation depth to minimize the samples edge and free boundary
effects. The friction coefficient between the tip indenter and the upper surface of
bulk material was set to 0.1(Johnson and Johnson 1987; Mata and Alcala 2004).

The indenter was modelled as deformable body in the ANSYS program, with
its elastic properties the same as diamond (Young’s modulus of 1140 GPa and
Poisson’s ratio of 0.08). The mechanical properties (hyper elastic model param-
eters), determined from macroscopic tension testing were supplied to the Finite
Element code to simulate the nanoindentation testing. The indented sample was
modelled as a hyper elastic material following Mooney Rivlin, Ogden and Arruda
Boyce constitutive laws (Table 8.6), while when it comes to the viscoelastic and
viscoplastic polymeric materials such as PMMA and epoxy resin, the Prony shear
relaxation model and Perzyna/modified time hardening parameters are used in
the FE model of the indented sample respectively. More details about how these
parameters are identified are explained in later Sections (3.1 and 3.2).

To optimize the efficiency and avoid the convergence issues, a displacement
control mode was used for the movement of the indenter. A downward displacement
was applied to the indenter to simulate the indentation process. The corresponding
load was obtained by the reaction force for a given indentation depth. In order
to consider the effect of hyper elasticity and viscous hyper elasticity, the load-
ing procedures of loading-holding- unloading indentation were applied with the
maximum displacement varied from 50 nm to 1000 nm. The indenter reaches the
maximum displacement within 1 s and then is held for 1 s and finally gets back to the
initial place within a second. The analysis of the FE calculated load-displacement
curve provides the contact modulus and hardness of the bulk material following the
procedure based on the Oliver and Pharr method (Oliver and Pharr 1992). In this
method, the contact stiffness (S) is calculated from the initial slope of unloading
curve (Fig. 8.8a). This is related to the contact modulus (Er) using equation:

S = dP

dh
= 2Er

√
Ac√

π
(8.15)

Where, Ac is the contact area at the indentation depth. According to the Oliver and
Pharr method, the contact area is calculated via the area function for the indenter tip
geometry used.

However, since the load-displacement curve in this study is based on Finite
Element simulation, the contact area (Ac) is determined in the FE model from the
last point of contact at maximum load (Fig. 8.8b).
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Fig. 8.8 (a) A typical load-displacement curve obtained from the numerical Nano-indentation test
on sample with purely hyper elastic properties and a sample with combined viscos hyper elasticity
properties showing their contact stiffness which were used to calculate the elastic modulus, (b)
Deformed and un deformed shape of bulk material under indentation showing the contact area
used in Oliver and Pharr method to calculate the elastic modulus

3 Results

3.1 Viscoelasticity

Viscoelasticity which has elastic and viscous components is usually characterized
by relaxation testing. Generally in a relaxation experiment, either a constant
tensile, compressive or shear strain is applied on the material, thereafter stress
relaxation occurs over time. The variation of stress versus time is fitted with
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Fig. 8.9 Variation of load during the holding time and curve fitting using exponential function

Table 8.1 Prony series
parameters of PMMA used in
FE model

Index Relative moduli(i) Relaxation time (i) s G0

1 0.07341 0.8 1.0975
2 0.1475 18.457
3 0.1478 18.683

a number of models (e.g. Prony series model). The nanoindentation process in
polymeric materials such as PMMA involves nonlinear contact mechanics and time
dependent properties (viscoelasticity). A methodology based on combined FEM
and nanoindentation experiments was used for developing an analysis procedure
to characterize the micromechanical behaviour of PMMA. Initially, an FEM based
inverse method is implemented to account for the effect of viscoelasticity (Prony
series) parameters of the bulk polymer. These parameters can be calculated using
the analytical expression derived based on the conical indentation of a homogeneous
linear viscoelastic half space (Baral et al. 2017). The analytical expression used to
calculate the Prony series parameters (Eq. 8.16) is used for fitting the load-time
curve which was obtained during the holding time in (Fig. 8.9), with results in (Table
8.1). These parameters are then reused in the FE model of nanoindentation of bulk
PMMA to predict the experimental load displacement data in Fig. 8.10 (Baral et al.
2017).

F(t)=π tan (β)

1−ν

(a

h

)2 ×
[
G0.h

2
1+2

n∑

i=1

Gi.r
2
1 τi exp

(
− t−t1

τi

)
×

[
h1

r1
+τi exp

(
− h1

r1τi

)
−1

]]

(8.16)
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Fig. 8.10 Comparing numerically and experimentally calculated load displacement curves

Fig. 8.11 Von Mises strain fields (a) at maximum displacement, (b) after complete unloading

Using the above Prony series parameters and the mechanical properties of
PMMA (obtained from macroscopic tensile testing, elastic modulus: 3.00 GPa and
Poisson’s ratio: 0.35) in the FE model indicates that there is a good correlation
between the experimental data and the FE simulation. The agreement between
numerical and experimental result can be used to validate the viscoelasticity
parameters introduced into the FE model. The von Mises strain fields developed
in the 2D FE model of PMMA is shown in Fig. 8.11 providing an insight into the
strain distribution when characterizing the bulk PMMA using the nanoindentation
method.
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3.2 Viscoplasticity

The nanoindentation process on polymeric materials such as epoxy resin involves
nonlinear contact mechanics and strain rate dependent properties (viscoplasticity)
as well as the effect of material pile up. To account for these effects, an FE based
inverse method (combined FEM and nanoindentation experiment) was used for
developing an analysis procedure to characterize the micromechanical behaviour of
bulk epoxy resin. Initially, the FEM based inverse method is implemented to account
for the effect of viscoplasticity of the bulk polymer. To do this, viscoplasticity
parameters are determined using tensile and creep testing (at various strain rates) on
epoxy resin and then these parameters are used in FE models of nanoindentation on
bulk epoxy resin for verification of load displacement data. To correct for the effect
of pile up, rather than estimating the projected contact area using the Oliver and
Pharr method, the FE calculated contact area was used by detecting the last contact
point at maximum load in the FE mesh, resulting in a more accurate measurement
of the indentation modulus of the epoxy resin.

3.2.1 Viscoplasticity Models

In order to analyse the time dependent response of the epoxy resin under nanoin-
dentation, viscoplasticity models were applied in the numerical simulation for
verification using the static properties in Table 8.2. To account for the effect of
viscoplasticity, two methods based on Perzyna and Modified time hardening were
implemented. On the Perzyna model, the results of stress-strain response of the
epoxy resin under the tensile tests at various strain rates were used to determine
the Perzyna parameters. This was done based on the ideas presented by Perzyna
(1963a, b, 1966). The model assumes that the plastic strain rate (έpl) is a function of
a hardening/softening parameter (m), the material viscosity parameter (γ), and the
static yield stress (σ 0). The stress strain rate graph is created and fitted with Perzyna
material model of viscoplasticity (Table 8.3) to identify the required parameters. To
identify the modified time hardening parameters (Table 8.3), the variation of strain
versus time at the stress level of 10 MPa (obtained from a creep test) was determined
and fitted with the Modified Time hardening model.

Table 8.2 Isotropic
elastic-perfectly plastic
properties of bulk epoxy resin
(obtained from macroscopic
tension test) used for the FE
model of nanoindentation

Properties Epoxy resin (isotropic)

E (GPa) 3.78
ν 0.35
G (GPa) 1.48
Yield strength (MPa) 85
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Table 8.3 Viscoplasticity models and calculated parameters of epoxy resin used in FE model

Model Parameters

Perzyna έpl = γ
(

σ
σ0

− 1
)1/

m σ 0 (MPa) m γ

70 0.1505 218.62

Modified time hardening εr=
C1×σC2×tc3+1

(
exp

(
− C4

T

))

C3+1 C1 C2 C3 C4

3.78e-5 1 −0.85 0
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Fig. 8.12 AFM image of a residual impression from an indentation carried out on the bulk epoxy
resin, highlighting locations of line scans, (b) Line scans A, B and C

3.2.2 Comparison with Experiment

An AFM images of the residual impression from an indentation on bulk epoxy resin
and the amounts of pile up around it are shown in Fig. 8.12. The data from the
AFM scans was post-processed using the AFM data analysis software Gwyddion.
The tests were performed under displacement control mode using a single cycle
indentation (load-hold-unload) protocol and during each cycle, a 5 s hold was
imposed at the peak displacement.

When performing indentations on a polymer such an epoxy resin, due to the
effect of pile up (Fig. 8.12), the Oliver and Pharr method underestimates the contact
area. In this study, because of the viscoelastic recovery which the epoxy resin
experiences on reduction of the maximum indentation load; methods of calculating
the projected contact area based on the residual impression (Saha and Nix 2001;
Beegan et al. 2003; Kese and Li 2006; Zhou et al. 2008; Hardiman et al. 2016)
as well as depth-corrected contact area based on the measured pile up profile
(Cao et al. 2006; Zhou et al. 2008; Hardiman et al. 2016) fail to correct the
effect of material pile up on indentation modulus of epoxy resin as the height
of the measured pile-up is a not representative of the state of pile-up under the
indenter at maximum indentation load. In addition, the Oliver and Pharr method
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Fig. 8.13 Force-displacement curve on bulk epoxy resin

does not take into account the effect of viscoplasticity, therefore, in order to correct
the effect of above phenomena (material pile up and viscoplasticity effects) for
the measurement of elastic modulus, FE calculated load displacement curves are
generated and compared with experimentally generated load displacement curves
(Fig. 8.13). Agreement is good but the small difference between experimental load
displacement curves and the computed results from the FE model is probably due to
the effect of surface roughness, adhesion force and indentation process-associated
factors (e.g. sample mounting and fame compliance) which are not considered
in the numerical model. The maximum load reached by all the nanoindentations
experiments on bulk epoxy resin only varies between 280–300 μN indicating
that the resulting data curves for all indentations are relatively consistent and
reproducible due to the careful and uniform process of polishing the sample. The
agreement between numerical and experimental results validates the viscoplasticity
parameters introduced into the FE model. The von Mises stress fields developed in
the 2D FE model of bulk epoxy resin at the maximum indentation depth are shown
in Fig. 8.14 providing an insight into the stress distribution when characterizing the
bulk epoxy resin using the nanoindentation method.

In order to correct the effect of pile up, the ratio of contact area calculated from
the FE model to the contact area calculated from the Oliver and Pharr method (Eq.
8.4) is used and therefore an area correction factor was applied to the experimental
indentation test data (Table 8.4). The elastic modulus of bulk epoxy resin calculated
from the experimentally generated load displacement curves is corrected by the area
correction and reported in Table 8.5. It must be noted that, the elastic modulus
of the bulk epoxy resin has been calculated by averaging data from 4 × 4 (8.16)
indentations using the Oliver and Pharr method and the mean value of modulus was
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Fig. 8.14 Von Mises stress field on 2D axisymmetric FE model of nanoindentation of bulk epoxy
resin

Table 8.4 Ratio of contact area calculated from FEM to the contact area calculated from Oliver
and Pharr method

Epoxy resin Area correction (AFEM

AOP
)

Bulk material 1.08

calculated as 5.22 GPa with a standard deviation of 0.3 GPa. After accounting for
the effect of material pile up (using the area correction in Table 8.4) and the effect of
hydrostatic stress using the relation (Eq. 8.10) which is detailed in (Rodríguez et al.
2012; Hardiman et al. 2016), the remaining difference of about 11.5% between the
indentation modulus of bulk epoxy resin (i.e. 4.21 GPa) and the macroscopic tensile
modulus (i.e. 3.78 GPa) is mainly due to the effect of creep/viscoplasticity. Although
the effect of creep has been considered by addition of a constant displacement hold
segment between the loading and unloading segments (i.e. 5 s hold segment), the
FE analysis of indentation on the bulk epoxy resin at various holding time and/or
displacement rate shows that increasing holding time or reducing strain rate result in
an indentation modulus of the epoxy resin which compares very well with the bulk
tensile modulus. As can be seen in Fig. 8.15, the results can be produced free from
the effect of time dependent deformation behaviour of the epoxy resin by either
increasing holding time (to 500 s) or reducing the displacement rate to 0.002 μm/s.
It was found that nullifying the effects of the viscoplastic deformation can lead to
reductions of the modulus of the order of 10–12%.
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Table 8.5 Experimentally calculated indentation modulus of epoxy resin and the effect of pile up
(using FEM) and hydrostatic stress

Elastic
modulus
(GPa)

Nano-
indentation
Oliver&
Pharr

Pile up effect
(−3.8%)

Hydrostatic
stress effect
(−16%)

Tensile
modulus
(GPa) Difference

Bulk epoxy
resin

5.22 ± 0.3 5.02 4.21 3.78 +11.5%
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Fig. 8.15 Effect of loading rate (at the constant hold time of zero) and holding time (at the constant
loading rate of 0.2 μm/s) on elastic modulus calculated using the FE model of nanoindentation on
bulk epoxy resin, Normalized modulus is the ratio of indentation modulus calculated from the FE
load displacement curve over the macroscopic tensile modulus

3.3 Viscous-Hyper Elastic Materials

Soft materials such as biological tissues can have both the large strain and time
dependent behaviour at once, therefore viscous behaviour needs to be considered
for obtaining the mechanical properties of such soft materials. In order to study
the viscous response of the soft materials using nanoindentation, a viscoelasticity
model and hyper elasticity models were applied simultaneously in the FE model. As
described in earlier sections, the three hyper elastic models, namely Mooney-Rivlin,
Ogden and Arruda-Boyce models were used to determine the nonlinear behaviour.
The viscoelasticity demonstrates the time dependent behaviour that includes creep,
stress relaxation, or frequency-dependent dynamic properties. The viscoelasticity
can be described using a power law variation of stress with respect to time. One
widely used model for this is known as the Prony series model described previously.
The constitutive model for viscous-hyper elasticity is a combination of the hyper
elastic Mooney-Rivlin, Ogden and Arruda Boyce models, and the time dependent
Prony series model.
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3.3.1 Methodology of Tension Testing and Determination
of Viscoelastic/Hyper Elastic Model Parameters

In this study, the parameters of various hyper elastic material models that char-
acterize the soft polymer (bulk specimen in nanoindentation) were obtained from
the uniaxial tension test. The various hyperelastic strain energy functions and
their corresponding uniaxial stress-strain relationships were used in this study for
the curve fitting to find their parameters following the Nelder-Mead optimization
method are listed in Table 8.6.

The tensile test was conducted in conjunction with a video gauge system (DIC
measurement set up) to measure the components of strain and Poisson’s ratio.
Subsequently this information was used to build the stress-strain curve. In order to
use the DIC technique during the tensile testing, a camera was placed perpendicular
to the specimen surface to register digital images of it during the deformation. The
image acquisition was started as soon as the tension test began. The registered
images were processed using an algorithm in the DIC software (VIC 2D) (Solutions
2009) which outputs full field strain measurement with high spatial resolution.
The DIC technique is based on the recognition of geometrical changes in the grey
intensity distribution of the surface speckle patterns before and after deformation.
Therefore in order to make the process work, the specimen surface is marked with
a random speckle pattern (Fig. 8.16). In this work, this was done by alternately
spraying white and coloured paint. The artificial stochastic spot pattern (random
speckle pattern) of the specimen surface is used as the carrier of the surface
displacement/strain information.

In order to evaluate the viscous hyper elasticity response of the polymeric
specimen under nanoindentation, a viscoelasticity model and hyper elasticity model
were combined and applied in the FE model. The hyper elasticity component
was described by Mooney Rivlin, Ogden or Arruda Boyce constitutive laws. The
viscoelasticity which has elastic and viscous parts is usually characterized by
relaxation or creep testing. Generally in relaxation experiments, either a constant
tensile, compressive or shear strain is applied on the material, and the stress variation
is recorded. Therefore, because of the viscous effects in the material stress relaxation

Table 8.6 Hyper elastic strain energy function with their uniaxial stress strain equations

Hyper elastic material model Strain energy (�) uniaxial stress-stretch equations

Mooney-Rivlin (Mooney 1940) Ψ = C10(I1 − 3) + C01(I2 − 3) + C11(I1 − 3)(I2 − 3)
σ = 2C10(λ − λ−1) + 2C01(1 − λ−3)
+ 6C11(λ2 − λ − 1 + λ−2 + λ−3 − λ−4)

Ogden (1972) � = ∑N
i=1

2Ci

αi
2

(
λ

αi
x + λ

αi
y + λ

αi
z − 3

)

σ = ∑N
i=1

2Ci

αi

(
λαi−1 − λ

−αi
/
2−1

)

Arruda-Boyce (1993) � = μ
∑5

i=1
Ci
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L
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Fig. 8.16 Geometry of tensile test specimen marked with random speckle pattern

occurs over the time. The variation of stress with respect to time is fitted with a
number of models (in this study Prony series model was used). In shear relaxation
experiment, the Prony series is:

G(t) = G0 −
N∑

i=1

Gi

(
1 − exp

(−t

τi

))
(8.17)

Where G0, Gi and τ i are the elastic shear modulus, relative modulus and relaxation
time. In this study it is assumed that N =1, G1 =0.33 and τ i =1.

3.3.2 Tensile Testing Results

Obtaining complete stress-strain curves during contact loading is complex in soft
materials due to the inhomogeneity of the stress state, whereas the stress-strain
curves under uniaxial loading can be easily assessed. Therefore, determining the
constitutive parameters from the hyper elastic stress-strain behaviour of rubber
required uniaxial tensile experiments. Figure 8.17 shows a typical stress-strain
response of polyurethane rubber determined at a strain rate of 10 min−1. To build
the stress-strain curve, stress was calculated based on the variation of load obtained
from the load cell of the testing machine divided by the original cross sectional area
of the sample and the strain data was extracted from the DIC. For a representative
tension stress-strain curve up to 120% strain (Fig. 8.17), the DIC calculated strain
field (i.e. longitudinal component of strain) is shown illustrating the localized strains
and the areas on the surface of the sample where damage develops. The polynomial
fit to the tensile stress strain data was used to determine the corresponding variation
of tangent modulus versus strain (Fig. 8.18). Although it is not possible to define
the equivalent Elastic modulus and Poisson’s ratio that characterize the mechanical
performance of this material, an initial value for elastic modulus can be calculated
when the material begins to deform in tension. During the tension test, it was found
that initially strain softening occurs (decrease in the elastic modulus) and later strain
hardening (increase in the elastic modulus) occurs. As it can be seen from Figs. 8.17
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and 8.18, the initial response of the specimen under tensile loading is linear with the
average Elastic modulus and Poisson’s ratio of 62 ± 5 MPa and 0.5 respectively.
This is followed by a drop-in modulus from 62 MPa to less than 10 MPa until
the nominal value of strain is about 0.8, and thereafter hardening behaviour was
observed.

In order to describe the nonlinear mechanical behaviour of the studied material,
three widely used hyper elastic material models including Mooney Rivlin, Ogden
and Arruda-Boyce were used. Figure 8.19 shows the uniaxial stress-strain curve
which was used to fit with the above material models. In this study, the FE software
ANSYS was used to determine the unknown hyper elastic parameters depending
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Fig. 8.19 Fitting the uniaxial test data using different hyperplastic models. (Mooney-Rivlin,
Ogden and Arruda Boyce)

on the chosen model. This fitting approach avoids any material stability issues that
occur when trying to generate optimum fitting parameter for an elastomeric material
using the Ogden model as may be encountered in some dedicated fitting packages
(e.g. hyperfit). The hyper elastic material parameters obtained from the results after
fitting the constitutive models are provided in Table 8.7. As can be seen in Fig. 8.19,
the Mooney-Rivlin model appears to be a better fit with a relatively good match to
experimental data when compared to the Ogden and Arruda-Boyce models. This
indicates that the Mooney-Rivlin method matched to the experimental results of the
specific rubber material we have chosen; this mainly depends on the rubber-material
used since the Ogden model is the best fit choice for the rubber material used in
‘O’ ring seals. However, in this study the numerical simulation of displacement-
controlled nanoindentation using all these above-mentioned hyperelastic models
was analysed. Given the varying fit quality it is interesting to note what effect the
selection of model will have on modelled indentation behaviour.

3.3.3 Finite Element Modelling

For indenting soft materials, the load-displacement behaviour is different from
that of stiff materials, a relatively large displacement is achieved for a given
(small) applied load. Thus, the contact area plays an important role in mechanical
characterisation of soft materials. In the literature, commonly dull tips such as
spherical or flat ended tips are widely used. In order to analyse the mechanical
behaviour of hyper elastic and viscous hyper elastic material under nanoindentation
testing, 2D axisymmetric FE simulations were carried out. This resulted in the
generation of reaction forces (P) versus displacement (h) during the indentation
process. To understanding the effect of the tip, the FE simulation was done using
two different tip radii, namely 50 nm and 500 nm. Also, the contact depth varied
from 50 nm to 1000 nm in each case. The mechanical properties (hyper elastic
model parameters), known from macroscopic tension testing was supplied to the
Finite Element code (ANSYS) to simulate the nanoindentation testing. The FE
modelling of nanoindentation was performed under the displacement control mode
using a single cycle indentation (load-hold-unload) protocol and during each cycle,
a 1 s hold was imposed at the peak displacement. The indented sample was
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modelled as a hyper elastic material following Mooney Rivlin, Ogden and Arruda
Boyce constitutive laws. The FE projected contact area under nanoindentation was
determined from the last contact point at maximum load in the FE mesh.

3.3.4 Model Predictions and Experiment

Figure 8.20, shows the FE calculated load-contact depth (P-h) curves obtained
from the nanoindentation on the specimen with purely hyper elastic and viscous
hyper elastic properties. As can be seen, compared to different purely hyper
elastic material models, the maximum load required to achieve the displacement
of 500 nm is higher when the Mooney Rivlin model is used in the FE model
of the indented sample. Combining viscosity (Prony shear relaxation model) with
the hyper elasticity in the FE model of the indented sample results in lower load
throughout the indentation cycle. In addition, compared with the Ogden and the
Arruda Boyce model, conducting indentation on the sample with Mooney Rivlin
behaviour, results in a steeper slope in the initial part of the unloading curve
indicating an increase in the contact stiffness. The indentation force generated
during nanoindentation with two different tip radii (50 nm and 500 nm) was also
investigated and it is shown that, at the same indentation depth, the larger tip radius
(blunt tip) induces a higher indentation load irrespective of material model used.
This is due this fact that, at a given indentation depth, the larger tip radius deforms
a greater amount of material compared to the smaller radius tip (sharp tip) during
the indentation processes; as a result, higher indentation load is needed to apply
enough pressure on the indenter to penetrate into the specimen to the target contact
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Fig. 8.20 FE calculated load-depth curves of nanoindentation on hyper-elastic and viscos hyper
elastic material model (a) tip radius of 500 nm, (b) tip radius of 50 nm. Mooney Rivlin hyper
elastic = MR-H, Mooney Rivlin viscos hyper elastic = MR-VH, Ogden hyper elastic = O-H,
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depth. Comparing Fig. 8.25 to Fig. 8.26 or Fig. 8.27 to Fig. 8.28, it can be seen
that bigger deforming volumes are also created when using the larger tip radius.
Although, due to limited space, only the FE calculated load contact depth curves
for the maximum applied displacement of 500 nm are shown here (Fig. 8.20), for
different displacements similar load displacement behaviour can be seen. Of course
the magnitude of maximum load at different displacement is also different (Fig.
8.21).

Following the procedure based on the Oliver and Pharr method (described in
Sect. 1.3 and 2.1), the analysis of the FE calculated load-displacement curve
provides an elastic modulus of the material using either the purely hyperelastic
material model or the viscous hyper elastic material model. The effect of indenter
tip geometry and contact depth, on the elastic modulus for the different material
models is shown in Figs. 8.22, 8.23 and Fig. 8.24. Using the Arruda Boyce model
(Fig. 8.22), hyper-elasticity effects are insensitive to the both varied tip radius
and indentation depth. Although viscous effects are sensitive to the variation in
indentation depth, they are insensitive to the varied tip radius for indentation depths
less than 250 nm and become more sensitive when indentation depth increases.

Using the Mooney Rivlin material model (Fig. 8.23) shows that both hyper-
elasticity and viscosity effects are insensitive to the varied tip radius, however, their
effects are sensitive to the varied indentation depth. Comparing the variation of
elastic modulus obtained from the hyper elastic and viscous hyper elastic models
for different indentation depths the elastic modulus obtained from the viscous hyper
elastic model can be replaced by a purely hyper elastic model and vice versa
to calculate the elastic modulus. In addition comparing Fig. 8.23 with Fig. 8.18,
shows that for a small indentation depth (0–250 nm) the elastic modulus obtained
from either a hyper elastic model or a viscous hyper elastic model matches well
with tangent modulus obtained from the initial linear part of tensile stress strain
curve, however, as the indentation depth increases, the FE model of nanoindentation
overestimate the elastic modulus.
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Using the Ogden material model (Fig. 8.24) shows that for indentation depth less
than 250 nm, hyper-elasticity effects are insensitive to the variation in tip radius
but it becomes a bit more sensitive when indentation depth increases. In addition,
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Fig. 8.25 Evolution of von Mises stress distribution during the nanoindentation of viscos hyper
elastic material using combined Prony shear relaxation and Mooney-Rivlin model) with the
indenter tip radius of 50 nm after (a), 1 s, (b) 2 s (c) 3 s

the viscosity effects are insensitive to the variation in tip radius, while they are also
insensitive to the contact depth (for indentation depth less than 500 nm)

In order to understand the effect of indenter tip radius on the mechanics of
nanoindentation of soft polymeric materials with either purely hyper elastic or
viscous hyper elastic properties, FE calculated Von Mises stress distribution are
shown in Figs. 8.25, 8.26, 8.27 and 8.28. As it can be seen in these figures, the
stress fields in nanoindentation testing of specimen is affected by the size of the
indenter. Regardless of the indentation depths and material models, a sharper tip
induces higher stress values. For example for testing a sample with purely hyper
elastic behaviour (Mooney Rivlin model) at the maximum displacement of 500 nm,
a conical indenter tip with 500 nm radius induces maximum stress of 30 MPa as
opposed to 52 MPa when the tip radius is 50 nm. In addition, sharper conical tip
produces a smaller deforming volume compared to a larger tip. Similar comparison
can be made for testing a sample with viscous hyper elastic behaviour (Prony
shear relaxation model combined with Mooney Rivlin). Obviously, because of the
relaxation model used in the FE model in the material of a nanoindented sample,
the maximum stress values are lower compared to the purely hyper elastic model.
In addition, compared to the purely hyper elastic model of an indented sample, the
residual stress after complete unloading, shows the effect of viscoelasticity (Prony
shear relaxation) in the FE model. Regardless of the material models used for the
FE analysis of nanoindentation, the highest stress value is located under the contact
area between the indenter tip and specimen (not at the surface of tested specimen but
deeper under the indenter as might be expected from Hertzian contact theory). The
stress fields of other hyper elastic and viscous hyper elastic material models (Ogden
and Arruda Boyce) are similar to the stress fields of the Mooney Rivlin model, while
the maximum stress values obtained by Ogden and Arruda Boyce are lower.

Figure 8.29 compares the elastic modulus measured experimentally using the
uniaxial tensile test and that reconstructed numerically from nanoindention by
giving the tensile data as input to the FE model of nanoindentation to extract
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Fig. 8.26 Evolution of von Mises stress distribution during the nanoindentation of viscous hyper
elastic material using combined Prony shear relaxation and Mooney-Rivlin model and indenter tip
radius of 500 nm after (a), 1 s, (b) 2 s (c) 3 s

Fig. 8.27 Evolution of von Mises stress distribution during the nanoindentation of pure hyper
elastic material using Mooney-Rivlin model and indenter tip radius of 50 nm after (a), 1 s, (b) 2 s
(c) 3 s

Fig. 8.28 Evolution of von Mises stress distribution during the nanoindentation of pure hyper
elastic material using Mooney-Rivlin model and indenter tip radius of 500 nm after (a), 1 s, (b) 2 s
(c) 3 s

constitutive parameters using various hyperelastic models. From the Fig. 8.29 it
can be observed that the finite element simulations output of averaged modulus
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of different hyperelastic materials using the Mooney Rivlin, Ogden and Arruda-
Boyce model closely matches with the experimental data. The numerical validation
of the experimental results of elastic modulus was appropriately fit over the entire
range of the strain. The Mooney-Rivlin model was found to be suitable to represent
accurately nonlinear mechanical behaviour and shown the excellent agreement with
numerical validation of the experimental results over a wide range of strains. The
average elastic modulus E was about 62 MPa for Mooney-Rivlin. Both the Arruda-
Boyce and Ogden models predicted the lower elastic modulus compared with the
Mooney Rivlin model. The average elastic modulus E was about 17.3 MPa for
Arruda-Boyce model, and the average elastic modulus E was about 28.5 MPa for
Ogden model. Thus the results confirm that the Mooney-Rivlin approach is most
suitable for small strain hyperelasticity whilst the other models are more suitable at
larger strains.

4 Conclusions

The extraction of mechanical behaviour of soft materials using nanoindentation
is performed through combined experimental and numerical simulations. Hyper
elastic constitutive models such as the Mooney Rivlin model, the Ogden model and
the Arruda-Boyce model as well as viscoelastic/viscoplastic models such as Prony
shear relaxation, Perzyna and Modified time hardening models are required for the
FEM. The input parameters can be extracted from the uniaxial tensile test and digital
image correlation (DIC) technique on PMMA, epoxy resin and polyurethane rubber
materials.
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In a rubber-like polymer with hyper elastic properties, the Mooney-Rivlin model
was found to be suitable to represent accurately nonlinear mechanical behaviour and
shows excellent agreement with numerical validation of the experimental results
over a wide range of strains. When it comes to the combined viscoelasticity and
hyperelasticity properties of rubber like materials, it was found that viscosity effects
are sensitive to the varied indentation depth and insensitive to tip radius respectively
when this material model is used.

In polymers like epoxy resin, although atomic force microscopy images of
residual impressions showed regions of material pile-up, the viscoplastic recovery
which occurs following indenter unloading makes the determination of the contact
areas problematic. The use of FEM to predict the projected indentation contact area,
given the viscoplasticity parameters (e.g. Modified time hardening and/or Perzyna)
of epoxy resin, is shown to be useful when extracting the mechanical properties
from the nanoindentation technique. It was also shown that the overestimation of
the elastic modulus calculated by the nanoindentation test method in relation to
the macroscopic conventional test methods (e.g. tensile and/or compressive tests)
is mainly related to the effects of material pile up, viscoplasticity and hydrostatic
stress. It was found that, the FE calculated indentation modulus will be in a good
agreement with macroscopic tensile modulus values provided that the viscoplastic
deformation is allowed to finish prior to unloading. FEA suggested that, this can be
obtained by altering indentation settings (i.e. holding segment and/or strain rate),
therefore the elastic modulus of bulk epoxy resin can be determined, independent of
the viscous effects.

In polymeric materials which only show viscoelasticity properties (e.g. PMMA),
it was found that analytical expression developed in the literature can be successfully
used to determine the Prony series parameters. Using these parameters in an FE
model, resulted similar load displacement data obtained from the experimental
nanoindentation.

Thus, the combined FE and experimental nanoindentation approach used in
this study shows that appropriate constitutive models are needed to characterize
mechanical and deformation behaviour of polymers and therefore, careful modelling
of experimental data is necessary for understanding deformation mechanisms.
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