
Queue Response Times with Server Speed
Controlled by Measured Utilizations

Murray Woodside(B)

Carleton University, Ottawa, Canada
cmw@sce.carleton.ca

Abstract. Because CPUs use speed control to conserve energy their response
times may be greater at low loads, than if they were operating at full speed, giv-
ing a flatter response curve against load and trading off longer response time at
light loads for energy savings. When conservative control is applied to average
utilizations and the averaging time is too long, a different and somewhat “toxic”
response-time curve results instead. A numerical investigation was undertaken
of open and closed single-server queues with server speed controlled by feed-
back of CPU utilization measures, which is a common approach for CPUs. With
higher target utilizations and longer averaging times for the measured utiliza-
tion, an undesirable non-monotonic pattern (rising response time, then falling,
finally rising again) emerges. This gives unstable behaviour and could disrupt
autoscaling strategies that assume monotonically increasing response times. Rec-
ommendations have been found for controller parameters, to avoid non-monotonic
response times. It is concluded that speed control based on measured utilizations
has limited usefulness if performance is a concern, which is in line with industry
recommendations. Better speed governors are needed.

Keywords: Performance management · Performance model · Controlled queue

1 Introduction

Modern computer processors have a controllable clock, which can be set by a strat-
egy implemented in the operating system to speed up or slow down the processor, and
save energy at lower speeds. The classical queuing models for processor performance
need to be adapted because they assume a known constant service rate. This note inves-
tigates the response times for a commonly used feedback control strategy and finds
that the response time may follow a desirable flattened pattern, or a highly undesirable
non-monotonic zig-zag shape which could reduce the effectiveness of some adaptive
mechanisms, depending on the speed control parameters. While standard settings may
favour the former, more aggressive power-saving will move the parameters towards
the non-monotonic behaviour and may cause unexpected system instability, and dis-
rupt adaptive application management. The purpose of this work is to understand the
phenomenon and to characterize the parameters that give the desirable and undesirable
patterns.

© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 295–309, 2021.
https://doi.org/10.1007/978-3-030-85172-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-85172-9_16

296 M. Woodside

Speed control has been studied in many different ways, but not for feedback of
performance measures. For a general stochastic workload, optimal stochastic control
provides policies for the optimal speed as a function of the queue state, as in the work of
Lu et al. [10] to optimize a combination of power and response time. These authors also
give references to other research in this direction. While this gives an optimal solution to
the problem considered here, feedback of queue state is not commonly used in practice,
as described below. The purpose here is not to find the ideal control but to model the
effect of policies that are used in practice.

Optimal policies have also been found for problems in which the system is more nar-
rowly specified. For example, in [9] Li et al. consider controlling processing speed,mem-
ory latency and memory bandwidth on multiple processors to minimize the makespan
of a predefined parallel processing job across the cores of a processor. In [13], Rao et al.
consider controlling the overheating effect of completing a given total computation in
minimum time, leading to an optimal profile of speed values over time. In [12], Mutap-
cic et al. determine optimal speed values for heterogeneous co-located processors that
share a heat sink. In [7] speed control is used to help achieve task deadlines, and also to
deliver video frames on time for video streaming (to compensate for the variation in the
processing to be done per frame).

The technology of power management is described by Gough, Steiner and Saunders
[6]. Processors offer a set of clock speeds (called P-states by Intel [8]) which can be
set by the operating system. Linux has a set of standard speed-control policies called
governors [5]. Many governors have been implemented (a list of 117 of them with short
descriptions is given in [14]), but three are notable:

• “performance” [3, 6], which runs at maximum speed when the CPU is busy and
switches to minimum when it is idle,

• “conservative” [3] which steps the speed up and down based on average utilization,
• “schedutil” [3], an evolved version similar to “conservative” which uses moving-
average load measures formed by the scheduler, related to utilization.

Here the “conservative” governor is modeled, since it represents the strongest effort
to save power. These controllers are for Linux; similar controllers are used by theAndroid
[1] and Windows [11, 6] operating systems. Processors are also capable of short-term
additional speed (called “turbo” operation)which cannot be sustained due to overheating;
this work does not consider non-sustainable speeds.

A CPU with the “conservative” governor is modeled below as a single server with
open and closed Markovian workloads and control via a speed reduction factor S that
can be set in the range Smin < S < 1.0. The controller measures the server utilization U
over an interval and then raises S by a step if U is too high, or lowers it if U is too low.
No previous study of queues with this family of speed control policy could be found,
which motivates this report.

A Naive Motivating Observation
Suppose a queue has a target value of utilization ofU* and a service rate Sμwith Smin <

S < 1.0. Figure 1 shows the two response-time functions for the extreme values of S, and
two paths that might be enforced by speed control. A-AA-C-D is a desirable case which

Queue Response Times with Server Speed 297

maintains a constant response time over a wide range of loads. However a controller
might instead give a curve like A-B-C-D, if it enforced the principles:

• maintain Smin as long as the utilization is below U*
• raise the speed to prevent the utilization from exceeding U* if possible

An adaptive system controller that scales up servers depending onRmight be trapped
in the segmentAB and deploy unnecessary extra servers, rather than exploit the improved
response available around C.

Fig. 1. Naive idea of possible response curves

In real systems the speed is controlled in steps at discrete control instants, and the
control is based on past measured utilizations rather than on exact knowledge. This
introduces both a control delay and statistical estimation errors. A Markov model with
these features is developed below, with numerical solutions. In Sect. 4 the naive view
above is formalized as an idealized “perfect knowledge” (PK) approximation to R(λ).
Both the approximation and the Markov model have the zigzag form seen in Fig. 1.

An Experiment
A simple experiment shows that actual controllers have been adjusted to give desirable
flattening, but also confirms the existence of non-monotonic response time functions.
A closed concurrent workload with 300 programs was run in parallel on a laptop under
the “power saving” power management option which controls the processor speed to
a target utilization. The average response times shown in Table 1 initially rise, drop
between throughputs of 5000/s and 8700/s, and then rise again. The measured values
are accurate to about 2% so the dip is statistically significant, although small.

298 M. Woodside

Table 1. Measured response times on a microsoft windows personal computer

Think time between
operations (sec)

Throughput
(responses/sec)

Mean response time R
(sec)

Confidence interval
for R (±)

0 22561 0.01330 0.00031

0.025 8754 0.00927 0.00024

0.05 5024 0.00971 0.00015

0.075 3547 0.00957 0.00028

0.15 1881 0.00950 0.00027

2 The Model

We consider a single server with one class of customers with arrival rate λ and exponen-
tially distributed service demand of mean μ−1. Its speed factor S gives a mean service
rate of Sμ, and takes values S(1), … S(smax) indexed by an integer “speed index” s, with
S(1) = Smin and S(smax) = 1. A utilization estimate U

∧

is formed by averaging over a
measurement interval of length � sec, and is compared to lower and upper thresholds
U− and U+, which bracket the target value U*. The control law adjusts the speed index
s according to:

• if U
∧

< U−, decrease s by one, stopping at the minimum value 1,
• if U

∧

> U+, increase s by one, stopping at the maximum value smax.

To make the solution numerically practical a discrete-time version was adopted
with a time-step of length δ. In each time-step there is an arrival with probability λδ

and a departure (if the server is busy) with probability μδ. For small values of δ this
approximates Poisson arrivals at rate λ and exponential service at rate μ. To make the
state space finite the state n was truncated at N and arrivals in state n = N are lost.

The decision interval was taken as a multiple Kδ of the time-step δ. The utilization
is measured by counting the number b of the K steps that have a busy server, and is
compared to lower and upper target values KU−, KU+. For the decision, if s0 is the
previous index, the new value snew = snew(s0, b) is given by:

Speed-Control Algorithm:

Because s changes only at decision points, the model can be decomposed into two
Markov Chain models, a transient chain one to model the states between decision points,
and the other embedded at the decision points, to model the transitions in s

Queue Response Times with Server Speed 299

(1) The lower level Discrete-Time Markov Chain (DTMC) [2] models the transient
behaviour of the queue state and the accumulated busy time over one interval
between decision points. It has:

– smax submodels, one for each value of s,
– each with a state (n, b) at substep k, where n ∈ [0, ...,N] is the number of

customers in the queue and b ∈ [0, ...,K] is the accumulated busy time of the
server,

– an initial state (n0, 0), where n0 is the value of n at the decision point that begins
the interval.

The lower-level DTMC is solved for each combination of s and n0 to determine the
probability p(n, b; k, n0, s) for state (n, b) at substep k of the interval. The model
equations and solution method are conventional [2]; the important result is the final
probability p(n, b;K, n0, s), and the mean number of customers over the transient,
denoted as n(n0, s)

(2) The upper level DTMC models the joint state (n, s) of the queue and the speed
controller, embedded immediately after the decision points for the control algo-
rithm. It has transition probabilities A(n0, s0; n, s) for a transition from state (n0,
s0) immediately after a decision, to the successor state (n, s) immediately after the
next decision K substeps later. The steady-state probabilities of this DTMC are
denoted π(n, s).

.
The transition probabilities A for the upper level model are found from the solutions

of the lower level model. Let B(s; s0, b) be the set of utilization measures b such that
the speed-control algorithm above gives snew(s0, b) = s. Then

A(n0, s0; n, s) =
∑

b∈B(s,s0,b)
p(n, b;K, n0, s) (1)

The upper-level DTMC with (N + 1)smax states was solved for the steady-state
probabilities π(n, s) for the number in queue and the speed level, after a decision point.
The equations and the solution are conventional [2]. The steady state mean number in the
queue is found by combining the results for the transients, conditioned on the initial state,
giving the overall mean number in the queue n and overall mean arrival rate (without

the lost arrivals) of λ:

n =
∑

n0,s0

n(n0, s0)π(n0, s0)

λ =
∑

n0,s0

λ(n0, s0)π(n0, s0)

The mean response time for the given arrival rate, service rate, speed factor steps
and utilization thresholds is then given by:

R = n /λ (2)

300 M. Woodside

3 The Solution

Toexplore the formof the solution, themajor parameterswere varied across their possible
range of values. The service rate μ was normalized to 1/sec, and.

• U0 = λ/μ (the high-speed utilization) was varied from 0.1 to 0.9;
• the target server utilization U* was varied from 0.3 to 0.9;
• the steps in speed were set to the values [0.4, 0.6, 0.8, 1.0] and
• the control interval � took values [1, 10, 30, 100, 300] sec.

Other parameters were:

• the utilization thresholds U− = 0.9 U* and U+ = min(1.1U*, 0.95).
• the time-step δ = 0.2 s. in the lower-level model
• a limit of 60 queue states, giving a limit of N = 59 customers

Some results giving a broad picture of the solution are shown in Fig. 2. The computed
response times are plotted as circles, and the boundary cases of the maximum-speed and
minimum-speed response times are plotted as solid curves for reference.

The smaller is�, the closer R stays to the high-speed asymptote. For higher� larger
U* gives larger response times, and the response curves are almost flat. For � = 100
and 300 the zigzag shape predicted in Fig. 1 emerges and has a very pronounced peak.
The “desirable” flat response pattern is obtained for cases with � ≤ 30 and pronounced
“undesirable” peaking is obtained for cases with larger � and for U* > 0.5.

The cause of the undesirable peaking can be traced to two factors that are both linked
to�, the control delay. For small� the control delay (which is at least�) is small but the
estimation accuracy is low, while for large � the accuracy is better but the control delay
is large. Clearly the effect of a large control delay overwhelms the system. Consider
this scenario: a combination of stochastic load fluctuations and estimation errors puts
the server into a low-speed state which leads to a long unstable transient increase in the
queue until the end of the next estimation/control period.

In uncontrolled queueing systems, heavier loads always lead to longer response
times, and many adaptive scaling algorithms for computer systems are based on this.
The survey in [4] found that the largest number of reported autoscalers use this kind
of simple feedback loop. We can imagine a scaling algorithm based on response time,
which increases the capacity of a heavily loaded system that is operating to the right of
the peak. This would give increased response times as the load on each CPU is reduced,
and therefore it would scale up further until it crosses the peak into the less economical
regime to the left, and then be stuck there.

Worse, the value of� is difficult to tune.� is the ratio of the measurement interval to
the mean service time of CPU requests, which varies with the program being executed,
so a CPU could be driven randomly between the desirable pattern in parts (a)–(c) and
the less desirable pattern in parts (d) and (e).

Queue Response Times with Server Speed 301

(a) Δ = 1 sec (μΔ= 1) (b) Δ = 10 sec (μΔ= 10)

(c) Δ = 30 sec (μΔ= 30) (d) Δ = 100 sec (μΔ= 100)

(e) Δ = 300 sec (μΔ= 300)

Low-speed High-speed
(μ = 0.4) (μ = 1)
Response Response

Results for
all U*

Fig. 2. Exact (numerical) response times

Two practical recommendations emerge from Fig. 2. First, ifU* is set to a mid-range
value such as 0.5 it tends to give a wide plateau at near-constant response time, for a
wide range of �. Second, if � is set at a moderately small value such as 10 times the
mean service time (� = 10 in Fig. 5)) the response time is attractively flat, while a long
averaging time (300 times the mean service time) gives unstable behaviour and possibly
very long responses (at the peak). However the longer averaging time also gives lower
control overhead and (as shown below) lower average power.

4 An Idealized “Perfect Knowledge” (PK) Analysis

An idealized analytic model was created by assuming that:

1. the controller has perfect knowledge of λ, μ, and U over the next interval (U
∧

= U)

302 M. Woodside

2. the thresholds are equal (U− = U+ = U ∗) and
3. the estimation interval � and the size of the steps in values of S approach zero,

Define U0 = λ/μ and S* = U0/U*, which is the speed factor which would make U
=U* if it is feasible. Then the PK control law uses S*, constrained to the range (Smin, 1):

S = f (U0) = max
(
Smin,min

(
1.0,U0/U

∗)) (3)

We will assume a queueing discipline for which the response time has an analytic
solution of the form:

R(λ, μ) = C/(Sμ − λ) = C/(f (U0)μ−λ) (4)

for some constant C; these disciplines include processor sharing (with C = 1),
which is an approximation to real time-slicing disciplines, and M/G/1, in either case
with Poisson arrivals and general service processes [2]. Using Eq. (4) this can be written
as:

PK approximation:RPK (μ, λ) = min(R1(μ, λ),max(R2(μ, λ),R3(μ, λ))) (5)

where

• R1(μ, λ) is the response time with S = Smin: R1(μ, λ) = C/(Sminμ − λ)

• R3(μ, λ) is the response time with S = 1: R3(μ, λ) = C/(μ − λ)

• R2(μ, λ)is the response time with S = S*: R2(μ, λ) = CU ∗/(λ(1 − U ∗)

Since U0/U* is monotonically increasing in λ, R is unique for each λ and there are
three regimes in which RPK (μ, λ) equals R1(μ, λ),R2(μ, λ),R3(μ, λ) in turn. They are
separated by two thresholds λ1 and λ2 in the arrival rate, which define the points where
U0/U* reaches its limits of Smin and 1. If U0/U* is always greater than Smin, λ1 is zero,
and if it is always less than 1, λ2 is set to infinity. This is summarized in the following
table (Table 2).

Table 2. Definition of the PK-approximation

Regime Condition on λ S given by Response time R(λ, μ)
given by

AB: low speed λ ≤ λ1=μU*Smin S = Smin R1 = C/(Sminμ − λ)

BC: controlled speed �1 < λ ≤ λ2=μU* S = S* = U0/U*
= Smin +
(λ–λ1)/(μU*)

R2 = C/(Sμ − λ)

CD: high speed λ > λ2 S = 1 R3 = C/(μ − λ)

For an M/M/1 queue (for which C = 1) with nominal service rate μ = 1.0 and Smin
= 0.3, the response time approximations for varying λ and some different settings of the

Queue Response Times with Server Speed 303

(a) Response times (b) Speed Factor

U* = 0.9

0.7
0.6

0.3

0.8

U* = 0.3

0.6

0.8
0.9

0.7

0.4
0.5

Fig. 3. The PK-Approximation response time and speed control factor for an open single server
queue with various utilization targets, with Smin = 0.3

target utilization U* are shown in Fig. 3(a). They strongly resemble Fig. 1. Figure 3(b)
shows the speed control settings. Since the power used increases with S it is evident that
the higher U* is set, the less power is used.

In the limit as μ� → 0, Û will be either zero (if the server is idle) or 1 (if it is busy)
and the control will switch between Smin for Û = 0. and S = 1 forU = 1

∧

; thus whenever
there is a customer the server will run at maximum speed and:

Zero − averaging − interval asymptote : R(μ, λ) = R3(μ, λ) (6)

This corresponds to the “performance” governor in Linux [5].
The accuracy of the PK approximation is quite good for some situations and poor in

others. Figure 4 compares it to the numerical exact results. Formoderate target utilization
(U*= 0.5) it is quite accurate for a wide rage of values of the normalized estimation time
μ�. For a higher value (U* = 0.8) it is however quite poor. The hump in the response
time curve corresponds in positioning and amplitude for intermediate values of μ�, but
is more pronounced in the exact results for large U* a large μ�.

In general the exact response time is below the approximation (sometimes much
below) for low loads and above it for high loads. This is due to the estimation errors in
Û ; when the ideal speed is near a boundary (Smin or Smax) the estimation errors tend
to diffuse the speed away from the boundary. The exaggerated hump for large μ� is
probably due to the larger control delay which allows the queue to build up when the
system accidentally (due to estimation error) enters a state with low speed and high load.
For long averaging times (μ� = 100 and 300) the mean relative absolute error (MRAE)
was 9.5%. Over all cases the MRAE was 33%, and it was particularly high for short
averaging and large U*.

A Usable “Plateau” Approximation
For moderate values of U* up to about 0.5 the flattening in the response time curve
can be described by a simpler “plateau approximation” with a constant response in the
middle range between the curves for Smin and for S = 1. Figures 4(a) and 4(b) show it as
a bold line BC placed halfway between the response time at zero load (R = 1/(μ Smin))

304 M. Woodside

(a) U* = 0.5 (b) U* = 0.8

PK
Approximation

Exact values for D

Δμ = 300
Δμ = 100

Δμ = 30
B C

Δμ = 10

Δμ = 1
A

R = peak = 1/[(µSmin)(1-U*)]
R = Plateau = (∗ min))(∗)
R = slowest service time =

1/()
CB

A

D

Fig. 4. The plateau approximation ABCD for response time

and the response time at the peak of the PK approximation, which can be shown from
Eq. (7) and (8) to be R = 1/[(μ Smin)(1 – U*)]. The plateau is approximated by their
average, given by.

Plateau : RP(μ, λ) = (
2 − U ∗Smin)

)
/2μSmin

(
1 − U ∗)

Combining this with the low and high-speed boundary curves the entire plateau
approximation is given by

Plateau approximation : R(μ, λ) = min(R1(μ, λ), max (R2(μ, λ),RP(μ, λ)) (7)

(whereR1 andR2 are given by Eq. (4)), and is shown as the curve ABCD in Figs. 4(a)
and 4(b). For the cases studied that have target utilization U* ≤ 0.5 and normalized
estimation interval μ� ≤ 100, the MRAE was 11.8%.

To summarize the various possible cases, approximate values can be computed, with
average errors around 10% in these situations:

• for very small μ� by using the high-speed response time,
• for moderate μ� and U* by the Plateau approximation Eq. (7), and
• for large μ� by the PK approximation, Eq. (5).

For moderate μ� and large U* a useful approximation has not been found.

5 Effectiveness of Utilization Control and Power Saving

The controller is driven by utilization values and a natural question is, how close does
it stay to the target U*? Figure 6 shows utilization results for the same queue with U*
= {0.3, 0.4, 0.5, 0.6 0.7, 0.8, 0.9}. Following the bottom dashed curve for U* = 0.3
we can see that it does not dwell at U = 0.3 for any substantial interval of arrival rates,
unless μ� is at least 100. Thus, the utilization is not well controlled.

Queue Response Times with Server Speed 305

(a) μΔ = 1.0 (b) μΔ = 10 (c) μΔ = 30

(d) μΔ = 100 (e) μΔ = 300

Control at value U* =
0.6 is achieved over
this range of through-
puts

U* = 0.9

U* = 0.3

U* = 0.9

U* = 0.3

U* = 0.9

U* = 0.3

U* = 0.9

U* = 0.3

U* = 0.9

U* =

Fig. 5. Utilizations for the same cases as in Fig. 2. Values of U* increase from bottom to top,
from 0.3 to 0.9 in steps of 0.1.

Figure 5shows that only for μ� = 300 is there substantial success in achieving the
target utilization over a range of throughputs. For � = 100 there is some success, and
for shorter averaging times very little.

How effective is this form of speed control at reducing power? The SPECPower
benchmarkmeasures power consumption as a function of processing speed, as illustrated
in Fig. 6. These results will be used, normalized to the maximum speed taken as S = 1,
to estimate the power consumption based on S. For the processor in Fig. 7, taking a line
from the point at zero ops (assumed to correspond to S = 0) to the maximum reported
speed (S = 1) gives as a rough approximation:

Power = 11.6 + 33.1S (8)

Using Eq. (8) and the mean value of S found from the model solution gives the power
levels shown in Fig. 7. The dashed lines curves are for values ofU* in the range 0.3–0.9
as before, increasing from top to bottom; the solid lines are for S = 1. The available
power savings are negligible at high loads, about 20% at U0 = 0.5 and about 50% at U0
= 0.2, compared to the solid line. Notice that as long as the power function is linear and
increasing, the conclusion that one condition uses less power than another is unaffected
by the particular values of the coefficients in Eq. (8).

306 M. Woodside

44.7
40.2

35.8
31.4 28.1 25 22.6 20.4 18.4 16

11.6

0
10
20
30
40
50

0 100,000 200,000 300,000 400,000 500,000 600,000

Po
w

er
 [W

]

Throughput [ssj ops]

Power versus Throughput

Fig. 6. Power versus throughput for Fujitsu Server PRIMERGY TX1320 M2 [15]

(a) μΔ = 1.0 (b) μΔ = 10 (c) μΔ = 30

(d) μΔ = 100 (e) μΔ = 300

U*

U*

Fig. 7. Average power in watts, for the cases shown in Fig. 2, using the power approximation in
Eq. (8). Values of U* increase from top to bottom.

6 Control of Finite-Population Queues

Afinite-population model may be preferred since a processor usually has a finite number
of processes or threads that may request to be scheduled. A corresponding PK approxi-
mation can be constructed using the well-known solution of theM/M/1//N queue, giving
the solutions displayed in Fig. 8. To compare the approximation for the closed and open
cases the same example was analyzed with a finite population of 60 customers, and
0.3 < S < 1.0. The arrival rate r for each customer not at the server ranged from 0 to

Queue Response Times with Server Speed 307

0.03 which gave a similar range of throughput values from 0 to 1, as in the open cases
examined above.

Controlled segments for
target utilization values
U* (top to bottom) 0.9

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Fig. 8. Approximate “perfect knowledge” response time curves for a closed queue with 60
customers

As the arrival rate increases the response time follows the upper (minimum-speed)
bound up to the point where its target utilizationU* is reached, then follows the descend-
ing curve for that U* until it reaches the lower (high-speed) bound. The curves have the
same zig-zag shape as those for the open system shown in Fig. 2(a).

TheMarkovmodel for this system follows that of Sect. 3 except for amodified arrival
process with rate (N − n)r arrivals/sec in queue state n. Some numerical solutions for
four-level control, corresponding to the open arrivals case in Fig. 2, are displayed in
Fig. 9. The results are very similar.

(a) Δ = 30 sec (b) Δ = 100 sec (c) Δ = 300 sec

Fig. 9. Some speed-controlled response times for a closed M/M/1//N queue with N = 60

7 Conclusions

Speed-controlled processors can in some circumstances provide nearly constant response
time over a wide range of throughputs, represented by the “plateau” approximation in
Sect. 6. However with a power-saving strategy such as the “conservative” governor for

308 M. Woodside

Linux, the response time increases steeply beyond this controlled range and perfor-
mance collapses with little warning. If the power-management parameters are not ideal,
pathological behaviour can set in, in the form of the non-monotonic (humped) response
curves found for large normalized averaging times (μ�) and large target utilizations
(U*). The ideal settings for a particular workload may not be obtainable, or be stable
over time, since they depend on the application-dependent CPU service times. Large
target utilizations are common in practice and they make the plateau range smaller and
the non-monotonic behaviour more severe.

These attributes of speed control raise challenges for performance management,
particularly for autoscaling. Autoscalers are overwhelmingly based on an assumption
that response time increaseswith increasing throughput, and the non-monotonic response
curve could trap the node at a capacity well below what is achievable. Autoscaling based
on a target utilization has less of this problem but could give reduced capacity because
the speed control slows down the processor to raise the utilization (and save power).

These results also reveal challenges for performance modeling. The exact response
time calculation is not tractable for practical solvers. The PK and plateau approximations
may be useful but have limited accuracy in important cases. A known problem is the
effect of speed control on themeasurement ofCPUdemands for operations; the controller
state must be known while measuring. Calibration of models from performance tests or
from measurements made “in the wild” will be affected. This affects the usefulness of
the models for capacity planning or deployment planning.

Most of these challenges can be offset by always using the “performance” governor,
which uses minimum power with zero requests and switches immediately to maximum
powerwhen any task is scheduled. The response time is close to that formaximumpower.
This is the least power-efficient governor, but there seem to be compelling reasons to
prefer it.

A natural conclusion is that only the “performance” governor has a useful future in
performance-sensitive applications. In coming to this conclusion, the present research
substantiates the usual recommendations regarding the choice of governor. It does not
provide the best saving of power, suggesting thatmore stable controllers would be useful.
The modeling approach taken here may be useful to evaluate other strategies.

Acknowledgements. Thanks to Wenbo Zhu for pointing out this problem where it arose in
some measurements he made. This research was supported NSERC, the Natural Sciences and
Engineering Research Council of Canada, by Discovery Grant RGPIN 06274-2016.

References

1. Anonymous: CPU governors explained, 27 June 2012. https://forum.xda-developers.com/sho
wthread.php?t=1736168. Accessed 4 Jan 2020

2. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications, Wiley (2006)

3. Brodowski, D.: Linux CPUFreq governors. https://www.kernel.org/doc/Documentation/cpu-
freq/governors.txt

4. Chen, T., Bahsoon, R., Yao, X.: A survey and taxonomy of self-aware and self-adaptive cloud
autoscaling systems. ACM Comput. Surv. 51(3), 1–40 (2018). Article 61

https://forum.xda-developers.com/showthread.php%3Ft%3D1736168
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

Queue Response Times with Server Speed 309

5. Doleželová, M., Heves, J., East, J., Domingo, D., Landmann, R., Reed, J.: Power man-
agement guide for RedHat enterprise Linux 6, section 3.2: using CPUFREQ GOV-
ERNORS. https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/
power_management_guide/cpufreq_governors. Accessed 4 Jan 2020

6. Gough, C., Steiner, I., Saunders, W.: Energy efficient servers, chapter 2 CPU power man-
agement, pp. 21–70, and chapter 8 characterization and optimization, pp. 269–306, Apress
(2015)

7. Jadoon, J.K.: Evaluation of power management strategies on actual multiprocessor platforms,
Doctoral thesis, Universite de Nice – Sophia Antipolis, March 2013

8. Kidd, T.: Power management states: P-states, C-states, and package C-states,
April 2014. http://software.intel.com/en-us/articles/power-management-states-p-states-c-sta
tes-and-package-c-states. Accessed Apr 2019

9. Li, B., León, E.A., Cameron,K.W.: COS: a parallel performancemodel for dynamic variations
in processor speed, memory speed, and thread concurrency. In: Proceedings of HPDC 2017,
the 26th International Symposium on High-Performance Parallel and Distributed Computing,
Washington, pp. 155–166, June 2017

10. Lu, Y., Sharma, M., Squillante, M.S., Zhang, B.: Stochastic optimal dynamic control of
Gi/Gi/1 queues with time-varying workloads. Probab. Eng. Inf. Sci. 30, 470–491 (2016)

11. Microsoft: Processor power management options, 10 April 2017. https://docs.microsoft.
com/en-us/windows-hardware/customize/power-settings/configure-processor-power-man
agement-options. Accessed Apr 2019

12. Mutapcic, A., Boyd, S., Murali, S., Atienza, D., De Micheli, G., Gupta, R.: Processor speed
control with thermal constraints. IEEE Trans. Circuits Syst. 56(9), 1994–2008 (2009)

13. Rao,R.,Vrudhula, S., Chakrabarti, C., Chang,N.:An optimal analytical solution for processor
speed control with thermal constraints. In: Proceedings of International Symposium on Low
Power Electronics and Design (ISLPED 2006), Tergensee, Germany, pp. 292–297, October
2006

14. Saber (psuedonym): Collective guide of CPU governors, I/O schedulers and other kernel vari-
ables, 8 March 2015. https://forum.xda-developers.com/t/ref-guide-most-up-to-date-guide-
on-cpu-governors-i-o-schedulers-and-more.3048957/

15. Standard Performance Evaluation Corporation: SPECpower_ssj2008: Fujitsu FUJITSU
Server PRIMERGY TX1320 M2, 25 November 2015. https://www.spec.org/power_ssj2008/
results/res2015q4/power_ssj2008-20151110-00704.html. Accessed 7 Dec 2018

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/power_management_guide/cpufreq_governors
http://software.intel.com/en-us/articles/power-management-states-p-states-c-states-and-package-c-states
https://docs.microsoft.com/en-us/windows-hardware/customize/power-settings/configure-processor-power-management-options
https://forum.xda-developers.com/t/ref-guide-most-up-to-date-guide-on-cpu-governors-i-o-schedulers-and-more.3048957/
https://www.spec.org/power_ssj2008/results/res2015q4/power_ssj2008-20151110-00704.html

	Queue Response Times with Server Speed Controlled by Measured Utilizations
	1 Introduction
	2 The Model
	3 The Solution
	4 An Idealized “Perfect Knowledge” (PK) Analysis
	5 Effectiveness of Utilization Control and Power Saving
	6 Control of Finite-Population Queues
	7 Conclusions
	References

