
DSMC Evaluation Stages: Fostering
Robust and Safe Behavior in Deep

Reinforcement Learning

Timo P. Gros(B), Daniel Höller, Jörg Hoffmann, Michaela Klauck,
Hendrik Meerkamp, and Verena Wolf

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
{timopgros,hoeller,hoffmann,klauck,meerkamp,wolf}@cs.uni-saarland.de

Abstract. Neural networks (NN) are gaining importance in sequential
decision-making. Deep reinforcement learning (DRL), in particular, is
extremely successful in learning action policies in complex and dynamic
environments. Despite this success however, DRL technology is not with-
out its failures, especially in safety-critical applications: (i) the training
objective maximizes average rewards, which may disregard rare but criti-
cal situations and hence lack local robustness; (ii) optimization objectives
targeting safety typically yield degenerated reward structures which for
DRL to work must be replaced with proxy objectives. Here we introduce
methodology that can help to address both deficiencies. We incorporate
evaluation stages (ES) into DRL, leveraging recent work on deep statis-
tical model checking (DSMC) which verifies NN policies in MDPs. Our
ES apply DSMC at regular intervals to determine state space regions
with weak performance. We adapt the subsequent DRL training priori-
ties based on the outcome, (i) focusing DRL on critical situations, and
(ii) allowing to foster arbitrary objectives. We run case studies in Race-
track, an abstraction of autonomous driving that requires navigating a
map without crashing into a wall. Our results show that DSMC-based
ES can significantly improve both (i) and (ii).

1 Introduction

In recent years, neural networks (NN), especially deep neural networks, have
accomplished major successes across many computer science domains, like image
classification [25], natural language processing [21], and game-playing [41]. The
latter was especially accomplished by combining reinforcement learning (RL)
and deep neural networks, so called deep reinforcement learning (DRL). DRL
was used successfully for sequential decision-making, e.g., mastering Atari games
[28,29], playing the games Go and Chess [40–42], or solving the Rubik’s cube [1],

Authors are listed alphabetically. This work was partially supported by the German
Research Foundation (DFG) under grant No. 389792660, as part of TRR 248, see
https://perspicuous-computing.science, and by the European Regional Development
Fund (ERDF).

The original version of this chapter was revised: an error in the algorithm
on page 206 were corrected. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-85172-9 25

c© Springer Nature Switzerland AG 2021, corrected publication 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 197–216, 2021.
https://doi.org/10.1007/978-3-030-85172-9 11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_11&domain=pdf
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-85172-9_25
https://doi.org/10.1007/978-3-030-85172-9_11

198 T. P. Gros et al.

and is beginning to be used in real-world (motivated) examples, such as vehicle
routing [30], robotics [17], and autonomous driving [36].

Despite this success however, DRL technology is not without fail, especially
in safety-critical applications. While neural network action policies achieve good
performance in many sequential decision-making processes, that performance
pertains to average rewards as optimized by DRL training. That objective how-
ever may average out poor local behavior, and thus disregard rare but critical
situations (e.g. a child running in front of a car). In other words, we do not
get system-level guarantees, even in the ideal case where the learned policy is
near-optimal with respect to its training objective. We refer to this deficiency as
a lack of local robustness. Dedicated exploration strategies have been developed
to ensure inclusion of rare experiences during training [11,12]. These focus on
reducing the variance of the accumulated reward, e.g. by importance sampling,
but they are not flexible enough to enforce desirable behavior robustly across
the whole state space.

This problem is exacerbated by the fact that optimization objectives specifi-
cally targeting safety typically yield degenerated reward structures. This is true
in particular for the natural objective to maximize the probability of reaching a
goal condition – without getting stuck in an unsafe (terminal) state. That objec-
tive yields reward 1 in goal states and 0 elsewhere, an extremely sparse reward
structure not suited for (D)RL training in large state spaces (a widely known fact,
see e.g. [3,18,24,35,38]). Hence, for (D)RL training to be able to identify a use-
ful policy, proxy objectives are used, such as discounted cumulative reward giving
positive feedback for goal states and (highly) negative feedback for unsafe states.1

In summary, two deficiencies of current DRL methods in safety-critical sys-
tems are that (i) training for average reward lacks local robustness, and (ii)
safety objectives like goal probability cannot be used for effective training. Let
us illustrate these points in an example, taken from the Racetrack benchmark
which we will also use in our case studies later on. Racetrack is a commonly
used benchmark for Markov decision process (MDP) solution algorithms in AI
[6,8,33,44]. The challenge is to navigate to a goal line on a discrete map with-
out crashing into a wall, where actions accelerate/decelerate the car. Racetrack
is thus a simple (but highly extensible [5]) abstraction of autonomous driving.
Consider Fig. 1, which measures the performance of a NN policy trained with
DRL, using a discounted reward structure with +100 reward for goal states and
−50 reward for crashes.

Figure 1 (a) evaluates policy performance according to the reward structure
it is trained on; whereas Fig. 1 (b) evaluates goal probability, which is the objec-
tive we ideally want to optimize. Both heat maps visualize performance when

1 One can combine such a proxy with the goal probability objective, though multiple
objectives are difficult to achieve with a one-dimensional reward signal and standard
backpropagation algorithms for neural nets [26]; anyway, training objective vs. ideal
objective are still not identical here. Reward shaping is an alternative option that can
in principle preserve the optimal policy [31], but this is not always possible, and manual
work is needed for individual learning tasks (substantial work sometimes, see e.g. [46]).

DSMC Evaluation Stages 199

(a) (b) (c)

Fig. 1. Example performance measures of a DRL policy on a Racetrack example map.
(Color figure online)

starting the policy from each map cell. We clearly see deficiency (i) from the high
variance in colors, in particular black and red areas with (very) low expected
reward (a) /goal probability (b). Regarding deficiency (ii), while expected reward
correlates with goal probability, crashes are “more tolerable” in the reward struc-
ture than for goal probability (if we set high negative rewards for crashes then
the policy learns to drive in circles). This is difficult to see in the heat maps
as the reward scale in (a) cannot be directly compared to the probability scale
in (b). Figure 1 (c) hence complements this picture by average goal probability
in the critical areas of the map, as achieved by the standard DRL method deep
Q-network, vs. EPRG which is one of the new methods we introduce here. EPRG

takes goal probability into account directly, which clearly pays off.
We address deficiencies (i) and (ii) through incorporating evaluation stages

(ES) into DRL, conducted at regular intervals during training (i.e., periodically
after a given number of training episodes) to determine state space regions with
weak performance. The “performance” evaluation here is flexible, and can be
done either (i) with respect to the training objective, or (ii) with respect to the
true objective (for example: goal probability in EPRG above) in case a proxy
objective is used for training.

To design such flexible ES, we leverage recent work on deep statistical model
checking (DSMC) [15], an approach to explicitly examine properties of NN action
policies. The approach assumes that the NN policy resolves the nondetermin-
ism in an MDP, resulting in a Markov chain which is analyzed by statistical
model checking [10]. This provides flexible methodology for evaluating policy
performance starting from individual states.

The target of an evaluation stage being to identify “weak regions”, the ques-
tion arises which individual states to apply DSMC to. Our answer to this ques-
tion, at present, is based on the assumption that the possible initial states for
the problem at hand (the states from which policy execution may start) can be
partitioned into a feasibly small set of state-space regions. In Racetrack, regions
are identified by the location of the car. The approach we propose is to sample a
single representative state s from each region, and evaluate s through DSMC.2

2 The benefit of our proposed ES thus hinges, in particular, on how meaningful these
representative states are for policy performance. While this is a limitation, partition-
ing by physical location like in Racetrack could be a canonical candidate in many
scenarios.

200 T. P. Gros et al.

Upon termination of an ES, we adapt the subsequent DRL training priori-
ties based on the outcome. Specifically, we introduce two alternative methods,
of which one adapts the probabilities with which new training experiences are
generated, and the other adapts the probabilities with which the accumulated
training experiences are taken into consideration within individual learning steps.
Overall, this approach results in an iterative feedback loop between DRL train-
ing and DSMC model checking. It addresses (i) through focusing the DRL on
critical situations, and addresses (ii) as DSMC can evaluate arbitrary temporal
properties.

We implement this approach on top of deep Q-learning [6,29], and we run
experiments in case studies from Racetrack. The results show that DSMC-based
ES can indeed (i) make policy reward more robust across complex maps, and
(ii) improve goal probability when using a discounted-reward proxy for DRL
training.

In summary, our contributions are as follows:
– We introduce evaluation stages as an idea to improve local robustness and

goal-probability training in DRL.
– We design and implement two variants of this approach, adapting a state-of-

the-art DRL algorithm.
– We evaluate the approach in Racetrack and show that it can indeed have

beneficial effects regarding deficiencies (i) and (ii).

Related Work: Recent work of Hasenbeig et al. [20] proposes a method to include
a property encoded as an LTL formula and to synthesize policies that maximize
the probability of that LTL property. However, while this allows to specify com-
plex tasks, it addresses neither of our two deficiencies.

Further, our work relates to the area of safe reinforcement learning. Several
works investigate the usage of shields [2,4,22] or permissive schedulers [23] to
restrict the agent from entering unsafe states, even during training. However,
these approaches can only be applied if a shield/permissive scheduler was com-
puted beforehand, which is a model-based task. In contrast, our approach is
model-free; it does not need to compute a shield or permissive scheduler before-
hand, and does not restrict the action (and thus also state-) space. Instead, the
task is learned entirely through self-play and Monte Carlo-based evaluation runs.
Moreover, our approach is also applicable in more general scenarios, when there
are not just safe and unsafe states but more fine-grained state distinctions.

2 Background

We briefly introduce the necessary background on Markov decision processes,
deep Q-learning, and deep statistical model checking.

2.1 Markov Decision Processes

The underlying model of both DSMC and DRL is that of a (state-discrete)
Markov decision process in discrete time. Let D(S) denote the set of probability
distributions over S for any non-empty set S.

DSMC Evaluation Stages 201

Definition 1 (Markov Decision Process). A Markov decision process
(MDP) is a tuple M = 〈S,A, T , μ〉 consisting of a finite set of states S, a finite
set of actions A, a partial transition probability function T : S × A ⇀ D(S),
and an initial distribution μ ∈ D(S). We say that an action a ∈ A is applicable
in state s ∈ S if T (s, a) is defined. We denote by A(s) ⊆ A the set of actions
applicable in s.

MDPs are typically associated with a reward structure r, specifying numerical
rewards that are obtained when following a transition, i.e., r : S × A × S → R.
In the following, we call the support of μ the set of initial states I, i.e., I =
{s ∈ S | μ(s) > 0}.

Usually, an MDP’s behavior is considered jointly with an entity resolving the
otherwise non-deterministic choices in a state. Given a state, a so-called action
policy (or scheduler, or adversary) determines which of the applicable actions to
apply.

Definition 2 (Action Policy). A(history-independent) action policy is a func-
tion π : S × A → [0, 1] such that π(s, ·) is a probability distribution on A and, for
all s ∈ S, π(s, a) > 0 implies that a ∈ A(s).

We remark that history-independent action policies are often also called mem-
oryless because their decisions depend only on the given state and not on the
history of formerly visited states. We call an action policy deterministic if in
each state s, π selects an action with probability one. We then simply write π(s)
for the corresponding action.

In the sequel, for a given MDP M and action policy π, we will write
S0, S1, S2, . . . for the states visited at times t = 0, 1, 2, Let At be the action
selected by policy π in state St and Rt+1 = r(St, At, St+1) the reward obtained
when transitioning from St to St+1 with action At. Note that – as we are dealing
with finite-state MDPs – the probability measure associated with these random
variables is well defined and {St}t∈N0 is a Markov chain with state space S
induced by policy π. For further details we refer to Puterman [34].

The induced Markov chain can be analyzed using statistical model checking
[39,47]. For statistical model checking of MDPs, different approaches have been
proposed to handle nondeterminism [7,10].

2.2 Deep Q-learning

In the following, let

Gt =
T∑

k=t+1

γk−t−1Rk (1)

denote the discounted, accumulated reward, also called return, from time t on,
where γ ∈ [0, 1] is a discount factor, and T is the final time step [44]. The discount
factor determines the importance between short and long term rewards; if γ = 0,
the discounted return will be equal to the reward accumulated in one step only,

202 T. P. Gros et al.

if γ = 1 all future rewards will be worth the same, and if γ ∈ (0, 1) the long
term rewards will be less important than the short term ones.

Q-learning is a well known algorithm to approximate action policies that
maximize said accumulated reward [6]. For a fixed policy π, the so-called action-
value or q-value qπ(s, a) at time t is defined as the expected return Gt that is
achieved by taking an action a ∈ A(s) in state s and following the policy π
afterwards, i.e.,

qπ(s, a) = Eπ

[
Gt

∣∣St = s,At = a
]

= Eπ

[∞∑

k=0

γkRt+k+1

∣∣∣∣∣St = s,At = a

]
. (2)

Policy π is optimal, if it maximizes the expected return. We write q∗(s, a)
for the corresponding optimal action-value. Intuitively, the optimal action-value
q∗(s, a) is equal to the expected sum of the reward that we receive when taking
action a from state s, and the (discounted) highest optimal action-value that we
receive afterwards. For optimal π, the Bellman optimality equation [44] gives

q∗(s, a) = Eπ

[
Rt+1 + γ · max

a′
q∗ (St+1, a

′)
∣∣∣St = s,At = a

]
. (3)

Vice versa, one can evidently obtain the optimal policy if the optimal action
values are known by selecting π(s) = argmaxa∈A(s) q∗(s, a).

By estimating the optimal q-values, one can obtain (an approximation of) an
optimal policy. During tabular Q-learning, the action values are approximated
separately for each state-action pair [6]. In the case of large state spaces, deep
Q-learning can be used to replace the Q-table by a neural network (NN) as a
function approximator [29]. NNs can learn low-dimensional feature representa-
tions and express complex non-linear relationships. Deep reinforcement learning
is based on training deep neural networks to approximate optimal policies. Here,
we consider a neural network with weights θ estimating the Q-value function as a
deep Q-network (DQN) [28]. We denote this Q-value approximation by Qθ(s, a)
and optimize the network w.r.t. the target

yθ(s, a) = Eθ

[
Rt+1 + γ · max

a′
Qθ(St+1, a

′) | St = s,At = a
]
, (4)

where the expectation is taken over trajectories induced by the policy represented
by the parameters θ. The corresponding loss function in iteration i of the learning
process is

L(θi) = Eθi

[
(yθ′(St, At) − Qθi

(St, At))
2
]
. (5)

Here, the so-called fixed target means that in Eq. (5) θ′ does not depend on
the current iteration’s weights of the (so called local) neural network θi but on
weights that were stored in earlier iterations (so called target network), to avoid
an unstable training procedure [29]. We approximate ∇L(θi) and optimize the
loss function by stochastic gradient descent.

In contrast to Mnih et al. [29], we do not update the target network after a
fixed number of learning stochastic gradient descend update steps, but perform

DSMC Evaluation Stages 203

a soft update instead, i.e., whenever we update the local network in iteration
i, the weights of the target network are given by θ′ = (1 − τ) · θi + τ · θ′ with
τ ∈ (0, 1) [13,43].

Stochastic gradient descent assumes independent and identically distributed
samples. However, when directly learning from self-play, this assumption is dis-
rupted as the next state depends on the current decision. To mitigate this prob-
lem, we do not directly learn from observations, but store them in an experience
replay buffer [29]. Whenever a learning step is performed, we uniformly sample
from this replay buffer to consider (approximately) uncorrelated tuples. Thus,
the loss is given by

L(θi) = E(s,a,r,s′)∼U(D)

[(
r + γ · max

a′
Qθ′(s′, a′) − Qθi

(s, a)
)2

]
. (6)

We generate our experience tuples by exploring the state space epsilon-greedily,
i.e., during the Monte Carlo simulation we follow the policy that is implied
by the current network weights with a chance of (1 − ε) and otherwise choose
a random action. We start with a high exploration coefficient ε = εstart and
exponentially decay it, i.e., for every iteration set ε = ε · εdecay with εdecay < 1,
until a certain threshold εend is met. Afterwards, we constantly use ε = εend.
Common termination criteria for the learning process are fixing the number of
episodes or using a threshold on the expected return achieved by the current
policy. The overall algorithm is displayed in Sect. 3 (Algorithm 1), together with
the extensions and changes we will introduce.

A common improvement to the DQN algorithm sketched above, which we
will also consider in this paper, is the so-called prioritized replay buffer [37]. Not
all samples are equally useful to improve the policy. In particular, those samples
with a relatively small individual loss do not contribute to the learning process as
much as those with a high loss. Thus, the idea of prioritized experience replay is
to sample from the aforementioned replay buffer with a probability that reflects
the loss. Specifically, the priority δ of a sample (s, a, s′, r) in iteration i is given
by

δ =
((

Qθ′(s, a) −
(
r + γ · max

a′
Qθi

(s′, a′)
))

+ εp

)α

, (7)

where εp is a hyperparameter to ensure that all samples have non-zero probabil-
ity, and α is used to control the amount of prioritization. α = 0 means that there
is no prioritization, α = 1 means full prioritization, α ∈ (0, 1) defines a balance.
In Eq. (6), instead of sampling uniformly, the probability at which a sample is
picked from the buffer is then proportional to its priority, i.e. we divide the sam-
ples’ priority by the sum of all priorities. In the following, we will abbreviate
DQN with such prioritized experience replay as DQNPR.

2.3 Deep Statistical Model Checking

Deep Statistical Model Checking. [15] is a method to analyze a NN-represented
policy π taking action decisions (resolving the nondeterminism) in an MDP M.

204 T. P. Gros et al.

Namely, the induced Markov chain C is examined by statistical model checking.
Given an MDP M, DSMC assumes that the policy π has been trained based on
M completely prior to the analysis without influencing the training process at
all. This approach is promising in terms of scalability as the analysis of C merely
requires to evaluate the NN on input states: there is no need for other deeper
and more complex NN analyses. Gros et al. [15] implemented this approach for
the statistical model checker modes [10] in the Modest Toolset [19].

3 RL with Evaluation Stages

We now introduce our approach of RL with evaluation stages, addressing the
DRL deficiencies discussed in the introduction: (i) training for average reward
lacks local robustness; (ii) safety objectives like goal probability cannot be used
for effective training. We next discuss a basic design decision, then describe our
two alternative methods, and then specify how they are realized on top of deep
Q-learning.

3.1 Initial State Partitioning and Notations

Recall that I denotes the initial states of the MDP, i.e., the support of the
initial distribution μ. As already mentioned, an important premise of our work
is that I can be partitioned into a manageable number of regions. We denote that
partition by P = {J1, J2, . . . , Jk} where the regions are non-empty Ji �= ∅, cover
the set of all initial states

⋃
i∈1,2,...,k Ji = I, and are disjoint Ji ∩Jj = ∅ for i �= j.

During the evaluation stages, we consider one representative si ∈ Ji from each
region. The underlying assumption is that the representatives are sufficiently
meaningful to identify important deficiencies in policy behavior.3

The evaluation stages may consider arbitrary optimization objectives in prin-
ciple, and use arbitrary methods to measure the objective values of the states si.
Here we compute E using DSMC, measuring expected reward or goal probabil-
ity. We denote the outcome of evaluation as an evaluation function, a function
E : P → [0, 1] mapping each region Ji to the evaluation value of its representative
state si. For optimization objectives that are not probabilities, we assume here
a normalization step into the interval [0, 1], with 0 being the worst value and 1
the best. In particular, for expected rewards, the natural method we use in our
experiments is to set E(rmin) = 0 and E(rmax) = 1 and interpolate linearly in
between.

We also use the representative states to define an initial probability distri-
bution over the regions Ji:

β(Pi) = μ(si)/
k∑

j=1

μ(sj) (8)

3 In our Racetrack case studies, we use the map cells as the basis of P – i.e., states
sharing the same physical location. We believe that this partitioning method may
work for many application scenarios involving physical space. Alternatively, one may,
for example, partition state-variable ranges into intervals.

DSMC Evaluation Stages 205

3.2 Evaluation-Based Initial Distribution (EID)

Given the initial distribution μ of the MDP, with the insights gained through
the DSMC evaluation stages, we can adapt the initial distribution to guide the
training process after an evaluation stage. Recall that β is the initial distribution
of a region in the original MDP. The probability to start in a region Ji for the
EID method is then given by

p(Ji) =
(1 − E(Ji)) · β(Ji)∑

j

(1 − E(Jj)) · β(Jj)
, (9)

i.e., we shift the initial distribution for the regions such that we start with a
higher probability in areas with low quality and vice versa. Once region Ji is
selected, we uniformly sample a starting state from Ji.

The idea of EID is that by generating experiences from regions with poor
behavior, we improve the robustness of the policy as the NN will learn to select
the most appropriate actions in these regions.

3.3 Evaluation-Based Prioritized Replay (EPR)

As discussed, the principle of prioritized experience replay buffers is to sample
states according to their loss, i.e., we more often sample states where the loss is
high and less often where the loss is low (see Eq. (7)). Here, our idea is to base
the priorities on the outcome of the evaluation instead.

The samples (s, a, r, s′) in the replay buffer may be arbitrary and, in particu-
lar, may not contain possible initial states. Yet the evaluation is done for initial
states only. To be able to judge individual transition samples, we evaluate each
sample in terms of the initial state s0 ∈ I from which it was generated, i.e., from
which the respective training episode started. This arrangement is meaningful as
improving the policy for s0 necessarily involves further training on its successor
states. For each transition sample, we store the partition Ji of the initial state
s0 in the replay buffer. The replay priority δ is then set to

δ = (1 − E(Ji) + εp)α, (10)

where s0 ∈ Ji is the initial state of the training episode, and εp and α have
the same functionality as in Eq. (7). After every evaluation stage, we update the
priorities of the replay buffer according to Eq. (10). The probability of picking
experience (s, a, r, s′) during training from the buffer is then proportional to the
above replay priority.

3.4 Deep Q-learning with Evaluation Stages

EID is applicable to any (deep) reinforcement learning algorithm, and EPR to
any such algorithm using a replay buffer. Here, we implement both methods on
top of deep Q-learning [29]. Algorithm 1 shows pseudocode for deep Q-learning

206 T. P. Gros et al.

Algorithm 1. Deep Q-learning with Evaluation Stages
1: for episodes i = 0 to M − 1 do
2: sample s0 ∈ I from μ // [DQN, DQNPR, EPR]
3: sample s0 ∈ I according to Equation (9) // [EID]
4: for steps t = 0 to T − 1 do
5: with probability ε select random action at ∈ A(st)
6: otherwise with probability 1 − ε select at = argmaxa∈A(st)

Qθ(s, a)
7: execute at; observe rt+1 and st+1

8: compute δ =

⎧
⎪⎨

⎪⎩

constant // [DQN, EID]

Equation (7) // [DQNPR]

Equation (10) // [EPR]

9: store (st, at, rt+1, st+1, δ) in replay buffer D
10: every C steps do
11: sample a minibatch of samples (sj , aj , rj+1, sj+1, δ) from D w.r.t. δ

12: set target yj =

{
rj+1 sj+1 is terminal state

rj+1 + γ · maxa′ Qθ′(sj+1, a
′) else

13: perform a gradient descent step on loss (yj − Qθ(sj , aj))
2

14: soft-update the network weights θ′ = (1 − τ) · θ + τ · θ′

15: end every
16: end for
17: if i > P then // [EID, EPR]
18: every L episodes do // [EID, EPR]
19: compute and store E(Ji) for all Ji ∈ P // [EID, EPR]
20: end every // [EID, EPR]
21: end if // [EID, EPR]
22: end for

with soft updates (denoted DQN) and its previously discussed variant DQNPR,
as well as the extensions for EID and EPR.

The unmarked lines in Algorithm 1 are inherited from the original algorithm
and are applied in all versions. Lines that are marked differently are only applied
in the versions they are marked with, e.g., line 2 is part of DQN, DQNPR and
EPR but not of EID. The colored lines mark the extensions of EID (line 3, blue)
and the extensions of both EID and EPR (lines 17–21, green). The DSMC-based
evaluation stages are inserted after a threshold P of pre-training episodes was
met (line 17), and then are repeated every L episodes (line 18). Thus, the total
number of training episodes M is given by M = P + N · L where N is the
number of performed evaluation stages. The priority δ (marked in orange, line
8) depends on the algorithm:

– Both original deep Q-learning DQN and EID sample uniformly from the
replay buffer, so δ is set to a constant value.

– For DQNPR [37], δ is initialized with the maximal temporal difference loss
observed throughout the training procedure, and updated in every learning
step according to Eq. (7).

– EPR sets the priority to a constant prior to the first ES, and afterwards
according to Eq. (10).

DSMC Evaluation Stages 207

4 Case Studies

We next describe the Racetrack benchmark, which we use to evaluate our app-
roach.

4.1 Racetrack

Racetrack originally is a pen and paper game, adopted as a benchmark in the
AI community [6,9,27,32,33], particularly for reinforcement learning [5,14,16].
The task is to steer a car on a map towards the goal line without crashing into
walls. The map is given by a two-dimensional grid, where each map cell either is
free, part of the goal line, or a wall. We assume that initially the car may start
on any free map cell with velocity 0 with equal probability (i.e., μ is uniform
and I is the set of all non-wall positions with zero velocity).

Figure 2 shows the three maps that we consider in the following. Barto-big
(Fig. 2a) was originally introduced by Barto et al. [6]. We designed the other
two maps, Maze (Fig. 2b) and River (Fig. 2c), as examples with a more localized
structure highlighting the problem of local robustness.

The position and velocity of the car each is a pair of integers, for the x- and
y-dimension. In each step, the agent can accelerate the car by at most one unit in
each dimension, i.e., the agent can add an element of {−1, 0, 1} to each of x and
y, resulting in nine different actions. The ground is slippery, meaning that the
action might fail, in which case the acceleration/deceleration does not happen
and the car’s velocity remains unchanged. Each action application fails with a
fixed probability that we will refer to as noise.

(a) Barto-big (b) Maze (c) River

Fig. 2. Three Racetrack maps, where the goal line is marked in green and wall cells
are colored gray. (Color figure online)

The velocity after applying an action defines the car’s new position. The car
then moves in a straight line from the old position to the new position. If that
line intersects with a wall cell, the car crashes and the game is lost. If that line

208 T. P. Gros et al.

intersects with a goal cell, the game is won. In both cases, the game terminates.
We use the following simple reward function:

r

(
s

(ax ,ay)−−−−−→ s′
)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

100 if s′ = �
−50 if s′ = ⊥
−5 if s′ = s

0 otherwise

(11)

This reward function is positive if the game was won (�), negative if the game
was lost (⊥), and slightly negative if the state did not change (incentivizing
the agent to not stand still); otherwise no reward signal is given. The incentive
to reach the goal as quickly as possible is given through the discount factor γ
that is chosen to be smaller than 1, making short-term rewards more important
than long-term ones (see Eq. (2)). This reward function encodes the objective to
reach the goal as quickly as possible and to not crash into a wall; the concrete
values were found experimentally optimizing the performance of the vanilla DQN
algorithm.

We remark that one can view the above reward structure as a proxy for
the probability to reach the goal. We will consider both perspectives in our
experiments, as described next.

4.2 Experiments Setup

The policies (also: agents) in our experiments are trained using the different
variants of Algorithm 1. Specifically we run DQN and DQNPR, as well as two
variants each of our DSMC-based algorithms EID and EPR. The latter variants
arise from two different optimization objectives for the evaluation stages in EID
and EPR: the expected discounted accumulated reward, which is the same as
DRL is trained upon; vs. the probability to reach the goal, as an idealized eval-
uation objective not suited for training. We denote our algorithms using these
objectives with EIDR and EPRR for the former, and with EIDG and EPRG for
the latter.

For the evaluation stages we use DSMC with an error bound P (error >
εerr) < κ, where εerr = 0.05 and κ = 0.05, i.e., with a confidence of 95% that
the error is at most 0.05 [15]. Our partition P of the initial states I in Racetrack
considers each map cell with zero velocity to be a region on its own. For our
comparison to be as fair as possible, DQN and DQNPR use the same number of
training episodes as the DSMC-based methods, i.e., M = P +L·N (cf. Sect. 3.4).

We use a high noise level, namely 50%, for the Barto-big (Fig. 2a) and river
maps (Fig. 2b), to make the decision-making problems challenging. The maze
map (Fig. 2c), with its long and narrow paths, is already challenging with much
less uncertainty, so we set the noise to 10% there.

All compared approaches use the same neural network structure. We con-
sider multilayer perceptrons (MLPs), aka. feed-forward networks, with a ReLu
activation function for every single neuron. We specifically consider the same

DSMC Evaluation Stages 209

NN structure as [15], with input and output layers fixed by Racetrack, and two
hidden layers with 64 neurons each.

As deep reinforcement learning is known to be sensitive to different random
seeds (affecting the exploration of the state space), we perform multiple trainings
and report about the average result. Moreover, we fix the random seeds across
algorithms in individual runs, so that the first P episodes are equal. The detailed
hyperparameter settings can be found in Appendix A.

5 Results

We now analyze whether the inclusion of evaluation stages in the EID and EPR
algorithms can improve (i) local robustness and (ii) goal probability performance,
compared to the standard algorithms DQN and DQNPR. We first set the evalu-
ation objective to be identical to the expected-reward training objective (EIDR

and EPRR) and analyze whether local robustness is improved; second, we set the
evaluation objective to be the goal probability instead (EIDG and EPRG) and
analyze whether the policy’s performance for that objective (both on average
and local) improves by applying DSMC analysis after training.

5.1 Local Robustness (Deficiency (i))

Consider the heat maps in Fig. 3. For each cell on the map, we plot the expected
cumulative discounted reward – the return – when starting from that map cell
with zero velocity. In other words, the heat maps have one colored entry for
every initial state s0 ∈ I. We compute the return value for each s0 using DSMC,
with εerr = 0.01 and κ = 0.01, i.e., with a confidence of 99% that the error is at
most 0.01.

(a) DQN (b) DQNPR

(c) EIDR (d) EPRR

Fig. 3. Return per map cell on the River map. (Color figure online)

210 T. P. Gros et al.

Clearly, the intended improvement of local robustness is achieved by EIDR

and EPRR compared to DQN and DQNPR: the return of the algorithms with
evaluation stages is much better in specific areas of the map. This pertains
foremost to the bottom end of the map, far away from the goal at the top; and
to the “dead-end street” colored red in (a) and (b), where there is no direct
connection to the nearest goal and the agents have to temporarily increase the
distance to the goal. While the return of EIDR and EPRR may also seem low in
these critical parts, recall that the noise level here is 50% so it is not possible to
navigate through this map without a high crash risk.

(a) Return variance (b) Return average

Fig. 4. Variance and average of return on all maps.

Figure 4a summarizes these findings, for all maps, in terms of the variance of
the return across the map (the variance of return per map cell).

On the Maze and River maps, the variance of EIDR and EPRR is much smaller
than that of DQN and DQNPR, confirming their improved local robustness. The
variance reduction reaches up to about 50% compared to DQN/DQNPR. Among
the methods based on DSMC, EPRR slightly outperforms EIDR. On Barto-big,
the variance of DQN is comparable to that of EIDR and EPRR, which is due to
the simpler structure of that map, while for the other two maps the variance is
reduced by including DSMC evaluation stages.

Figure 4b shows that, on the Maze and River maps, the improved local robust-
ness also results in somewhat improved average return for EIDR and EPRR. This
shows that evaluation stages can also help with overall performance when chal-
lenging local sub-tasks are frequent.

Finally, consider Fig. 5, which confirms that the advantages observed above
are indeed due to more intense training in critical parts of the map. We show,
for each map cell, the number of times reinforcement learning considered a state
where the car was positioned in that cell. The training intensity of DQN is spread
fairly homogenously across the map (positions in the dead-end street are seen
more often merely because, in any run traversing those, the car needs to turn
around). In contrast, EPRR has a clear focus on the critical parts of the map
(which can be seen nicely when comparing Figs. 5c and 5d to Figs. 3a and 3b).

DSMC Evaluation Stages 211

(a) DQN (b) DQNPR

(c) EIDR (d) EPRR

Fig. 5. Number of times each cell was encountered during training on the River map.

5.2 Fostering Goal Probability (Deficiency (ii))

We now turn to deficiency (ii), goal probability performance when training on
expected reward. As discussed above, the reward structure is such that goal-
reaching is rewarded, but also punishes crashes into the wall. We now show that,
indeed, goal-reaching performance can be improved by introducing evaluation
stages. EIDG and EPRG improve the learning signal w.r.t. this objective. In
what follows, we compute the goal probability for each map cell – for each initial
state s0 ∈ I – using DSMC, again with εerr = 0.01 and κ = 0.01, i.e., with a
confidence of 99% that the error is at most 0.01.

(a) Across entire map (b) Selected regions (as in Figure 7)

Fig. 6. Average goal probability when training on expected reward, without (DQN and
DQNPR) vs. with (EIDG and EPRG) goal-probability evaluation stages.

Figure 6 shows the corresponding results, (a) for all maps across the entire
map, and (b) exemplarily for the Maze map, only for the critical regions. In
Fig. 6a, we see that, again, on the Maze and River maps our proposed methods
significantly increase the average goal probability. In Barto-big, this does not
happen due to the simpler structure of that map.

212 T. P. Gros et al.

(a) Maze.
(b) River.

Fig. 7. Selected regions (yellow) of the Maze and River maps, as used in Fig. 6b. (Color
figure online)

As one would expect, the improvement is higher in critical areas of the maps.
To illustrate this, Fig. 6b shows average goal probability for selected regions of
the Maze and River maps, as shown in Fig. 7. These regions are the “dead-end
streets” which the policy will need to back out from.

6 Conclusion and Future Work

Despite its enormous successes, deep reinforcement learning suffers from impor-
tant deficiencies in safety-critical systems. Apart from the general inscrutability
of neural networks, these include that (i) training on average performance mea-
sures lacks local robustness, and that (ii) safety-related objectives like goal prob-
ability are sparse and hence not themselves suited for training. We propose to
address (i) and (ii) through the incorporation of evaluation stages, which focus
the reinforcement learning process on areas of the state space where performance
according to an evaluation objective is poor. We observe that such evaluation
stages can be readily implemented based on a recently introduced tool for deep
statistical model checking [15]. Our experiments on Racetrack, a frequently used
benchmark for AI sequential decision-making algorithms [6,9,27,32,33], confirm
that this approach can work.

On the algorithmic side, there are various possibilities still to extend our
framework, in particular by combining it with other/additional deep reinforce-
ment learning algorithms. Double Q-learning [45], for example, may be promis-
ing given the lackluster performance of DQNPR in our experiments. Further,
the implementation of our framework on top of policy-based approaches is of
interest.

Apart from that, an important direction for future work is the broader empir-
ical exploration of our approach. A straightforward possibility are extensions of
Racetrack to include obstacles, traffic, fuel, etc. on a roadmap towards more
realistic abstractions of autonomous driving as outlined by [5]. But our app-
roach is of course not limited to Racetrack, and may in principle be applicable

DSMC Evaluation Stages 213

in arbitrary contexts where deep reinforcement learning is used. We believe that
safety-critical cyber-physical systems should be the prime target, seeing as (i)
and (ii) are key in that context, and seeing as the initial state partition required
by our approach can be naturally obtained by (coarse discretizations of) physical
location. In this context, a particular question to address will be the partition
granularity trade-off, between the amount of information available during eval-
uation stages, and the overhead for conducting them.

A Hyperparameters

References

1. Agostinelli, F., McAleer, S., Shmakov, A., Baldi, P.: Solving the Rubik’s cube with
deep reinforcement learning and search. Nat. Mach. Intell. 1, 356–363 (2019)

2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Thirty-Second AAAI Conference on Arti-
ficial Intelligence (2018)

3. Amit, R., Meir, R., Ciosek, K.: Discount factor as a regularizer in reinforcement
learning. In: International Conference on Machine Learning, pp. 269–278. PMLR
(2020)

214 T. P. Gros et al.

4. Avni, G., Bloem, R., Chatterjee, K., Henzinger, T.A., Könighofer, B., Pranger,
S.: Run-time optimization for learned controllers through quantitative games. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 630–649. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 36

5. Baier, C., et al.: Lab conditions for research on explainable automated decisions.
In: Heintz, F., Milano, M., O’Sullivan, B. (eds.) TAILOR 2020. LNCS (LNAI),
vol. 12641, pp. 83–90. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
73959-1 8

6. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic
programming. Artif. Intell. 72(1–2), 81–138 (1995)

7. Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and statistical model check-
ing for modestly nondeterministic models. In: Schmitt, J.B. (ed.) MMB&DFT
2012. LNCS, vol. 7201, pp. 249–252. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28540-0 20

8. Bonet, B., Geffner, H.: GPT: a tool for planning with uncertainty and partial
information. In: Proceedings of the IJCAI Workshop on Planning with Uncertainty
and Incomplete Information, pp. 82–87 (2001)

9. Bonet, B., Geffner, H.: Labeled RTDP: improving the convergence of real-time
dynamic programming. In: Proceedings of the International Conference on Auto-
mated Planning and Scheduling, pp. 12–21 (2003)

10. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89963-3 20

11. Ciosek, K., Whiteson, S.: Offer: off-environment reinforcement learning. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

12. Frank, J., Mannor, S., Precup, D.: Reinforcement learning in the presence of rare
events. In: Proceedings of the 25th International Conference on Machine Learning,
pp. 336–343 (2008)

13. Fujita, Y., Nagarajan, P., Kataoka, T., Ishikawa, T.: ChainerRL: a deep reinforce-
ment learning library. J. Mach. Learn. Res. 22(77), 1–14 (2021)

14. Gros, T.P., Groß, D., Gumhold, S., Hoffmann, J., Klauck, M., Steinmetz, M.: Trace-
Vis: towards visualization for deep statistical model checking. In: Proceedings of
the 9th International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation. From Verification to Explanation (2020)

15. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep sta-
tistical model checking. In: Proceedings of the 40th International Conference on
Formal Techniques for Distributed Objects, Components, and Systems (FORTE
2020) (2020). https://doi.org/10.1007/978-3-030-50086-3 6

16. Gros, T.P., Höller, D., Hoffmann, J., Wolf, V.: Tracking the race between deep
reinforcement learning and imitation learning. In: Gribaudo, M., Jansen, D.N.,
Remke, A. (eds.) QEST 2020. LNCS, vol. 12289, pp. 11–17. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59854-9 2

17. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. In: 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3389–3396. IEEE (2017)

18. Hare, J.: Dealing with sparse rewards in reinforcement learning. arXiv preprint
arXiv:1910.09281 (2019)

https://doi.org/10.1007/978-3-030-25540-4_36
https://doi.org/10.1007/978-3-030-73959-1_8
https://doi.org/10.1007/978-3-030-73959-1_8
https://doi.org/10.1007/978-3-642-28540-0_20
https://doi.org/10.1007/978-3-642-28540-0_20
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-030-50086-3_6
https://doi.org/10.1007/978-3-030-59854-9_2
http://arxiv.org/abs/1910.09281

DSMC Evaluation Stages 215

19. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

20. Hasanbeig, M., Abate, A., Kroening, D.: Logically-constrained reinforcement learn-
ing. arXiv preprint arXiv:1801.08099 (2018)

21. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

22. Jansen, N., Könighofer, B., Junges, S., Serban, A., Bloem, R.: Safe Reinforcement
Learning Using Probabilistic Shields (2020)

23. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.-P.: Safety-constrained
reinforcement learning for MDPs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 130–146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 8

24. Knox, W.B., Stone, P.: Reinforcement learning from human reward: discounting in
episodic tasks. In: 2012 IEEE RO-MAN: The 21st IEEE International Symposium
on Robot and Human Interactive Communication, pp. 878–885 (2012). https://
doi.org/10.1109/ROMAN.2012.6343862

25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NIPS, pp. 1097–1105 (2012)

26. Liu, C., Xu, X., Hu, D.: Multiobjective reinforcement learning: a comprehensive
overview. IEEE Trans. Syst. Man Cybern. Syst. 45(3), 385–398 (2014)

27. McMahan, H.B., Gordon, G.J.: Fast exact planning in Markov decision processes.
In: Proceedings of the International Conference on Automated Planning and
Scheduling, pp. 151–160 (2005)

28. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013). Accessed 15 Sept 2020

29. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518, 529–533 (2015)

30. Nazari, M., Oroojlooy, A., Snyder, L., Takac, M.: Reinforcement learning for solv-
ing the vehicle routing problem. In: Bengio, S., Wallach, H., Larochelle, H., Grau-
man, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 31, pp. 9839–9849. Curran Associates, Inc. (2018)

31. Ng, A.Y., Harada, D., Russell, S.J.: Policy invariance under reward transforma-
tions: theory and application to reward shaping. In: Proceedings of the 16th Inter-
national Conference on Machine Learning (ICML 1999), pp. 278–287 (1999)

32. Pineda, L.E., Lu, Y., Zilberstein, S., Goldman, C.V.: Fault-tolerant planning under
uncertainty. In: Twenty-Third International Joint Conference on Artificial Intelli-
gence, pp. 2350–2356 (2013)

33. Pineda, L.E., Zilberstein, S.: Planning under uncertainty using reduced models:
revisiting determinization. In: Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 24 (2014)

34. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. Wiley, New York (1994)

35. Riedmiller, M., et al.: Learning by playing solving sparse reward tasks from scratch.
In: International Conference on Machine Learning, pp. 4344–4353. PMLR (2018)

36. Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning
framework for autonomous driving. Electron. Imaging 2017(19), 70–76 (2017)

https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
http://arxiv.org/abs/1801.08099
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1109/ROMAN.2012.6343862
https://doi.org/10.1109/ROMAN.2012.6343862
http://arxiv.org/abs/1312.5602

216 T. P. Gros et al.

37. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. In:
Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Represen-
tations, ICLR (2016)

38. Schwartz, A.: A reinforcement learning method for maximizing undiscounted
rewards. In: Proceedings of the Tenth International Conference on Machine Learn-
ing, vol. 298, pp. 298–305 (1993)

39. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: International Conference on Computer Aided Verification, pp. 266–280
(2005)

40. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

41. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

42. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676), 354–359 (2017)

43. Stooke, A., Abbeel, P.: rlpyt: a research code base for deep reinforcement learning
in Pytorch. arXiv preprint arXiv:1909.01500 (2019)

44. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, Adaptive
Computation and Machine Learning, 2nd edn. The MIT Press, Cambridge (2018)

45. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
30 (2016)

46. Vinyals, O., et al.: Grandmaster level in StarCraft II using multi-agent reinforce-
ment learning. Nature 575, 350–354 (2019)

47. Younes, H.L.S., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical
probabilistic model checking: an empirical study. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 46–60. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24730-2 4

http://arxiv.org/abs/1909.01500
https://doi.org/10.1007/978-3-540-24730-2_4
https://doi.org/10.1007/978-3-540-24730-2_4

	DSMC Evaluation Stages: Fostering Robust and Safe Behavior in Deep Reinforcement Learning
	1 Introduction
	2 Background
	2.1 Markov Decision Processes
	2.2 Deep Q-learning
	2.3 Deep Statistical Model Checking

	3 RL with Evaluation Stages
	3.1 Initial State Partitioning and Notations
	3.2 Evaluation-Based Initial Distribution (EID)
	3.3 Evaluation-Based Prioritized Replay (EPR)
	3.4 Deep Q-learning with Evaluation Stages

	4 Case Studies
	4.1 Racetrack
	4.2 Experiments Setup

	5 Results
	5.1 Local Robustness (Deficiency (i))
	5.2 Fostering Goal Probability (Deficiency (ii))

	6 Conclusion and Future Work
	A Hyperparameters
	References

