
Alessandro Abate
Andrea Marin (Eds.)

LN
CS

 1
28

46

Quantitative Evaluation
of Systems
18th International Conference, QEST 2021
Paris, France, August 23–27, 2021
Proceedings

Lecture Notes in Computer Science 12846

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alessandro Abate • Andrea Marin (Eds.)

Quantitative Evaluation
of Systems
18th International Conference, QEST 2021
Paris, France, August 23–27, 2021
Proceedings

123

Editors
Alessandro Abate
University of Oxford
Oxford, UK

Andrea Marin
Ca’ Foscari University of Venice
Venice, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-85171-2 ISBN 978-3-030-85172-9 (eBook)
https://doi.org/10.1007/978-3-030-85172-9

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021, corrected publication 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5627-9093
https://doi.org/10.1007/978-3-030-85172-9

Preface

It gives us great pleasure to open these proceedings of the 18th International Confer-
ence on Quantitative Evaluation of SysTems. QEST 2021 was hosted within QONF-
EST 2021, and held virtually during August 23–27, 2021. The event was co-located
with CONCUR, FORMATS, FMICS, and other workshops.

The QEST conference series has a long and rich history, as can be seen at https://
www.qest.org. Most recently, it was held in Vienna (Austria, in virtual mode),
Glasgow (UK), Beijing (China), Berlin (Germany), and Quebec City (Canada). Further
information on QEST 2021 can be found on the conference webpage at https://www.
qest.org/qest2021/.

The 34 members of the International Program Committee (PC) helped to provide at
least three reviews for each of the 47 submitted contributions. Based on the reviews and
PC discussions, 23 high-quality papers - two of them as short contributions and two
of them as tool papers - were accepted to be presented during the conference. The
overall acceptance rate for the conference was thus just below 50%. The contributions
were bundled into eight thematic sessions, covering the following topics in verification
and evaluation: Probabilistic Model Checking, Learning and Verification, Abstractions
and Aggregations, Stochastic Models, Quantitative Models and Metamodels, Queueing
Systems, Simulation, and Performance Evaluation. These contributions appear as
papers in the ensuing proceedings.

The program chairs plan to edit a special issue of the journal ACM TOMACS,
where the authors of selected papers will be invited to contribute significantly revised
and extended versions of their manuscripts containing new results.

QEST 2021 did not host a poster session (as is common for the conferences in the
series) due to difficulty of interaction and limited time in the virtual format, but Best
Paper awards were presented, according to QEST policies and tradition.

A highlight of QEST 2021 was the presence of two high-profile invited speakers,
amongst those of QONFEST:

– Boudewijn Haverkort from Tilburg University the Netherlands, giving a lecture on
the topic of “Performance Evaluation: Model or Problem Driven?”.

– François Baccelli from Inria, France, and the University of Texas at Austin, USA,
contributing with a seminar on the topic of “Stochastic Geometry based Perfor-
mance Analysis of Wireless Networks”.

Short contributions on the topics of the two keynotes appear in these proceedings.
Another highlight of QEST 2021 was the introduction of an optional Repeatability

Artifact Evaluation process for accepted papers, providing to authors feedback on their
shared codebase associated to the submitted article. This initiative was much in line
with similar ones at cognate verification conferences, and was aimed at increasing the
open sharing of reproducible scientific software-generated results. A total of 14 papers
participated in the repeatability evaluation (this was obligatory for tool papers), 12 of

https://www.qest.org
https://www.qest.org
https://www.qest.org/qest2021/
https://www.qest.org/qest2021/

which were finally found to be repeatable (up to different degrees of completeness). A
special badge marks them in the ensuing proceedings. The repeatability evaluation
committee was co-chaired by Arnd Hartmanns and David Safranek.

A few words of acknowledgment are due. First and foremost, thanks to the authors
for entrusting their best work to QEST 2021. The review process clearly showed that
the conference was able to put the bar for acceptance really high, which makes us very
proud. Our thanks go to the QEST steering committee and previous conference chairs
for their help and feedback on the organization process. We were also particularly
pleased with the interest in the repeatability evaluation, and thank the repeatability
evaluation committee and chairs (Arnd Hartmanns and David Safranek) for the truly
exemplar work, and all the authors who participated in this exercise, which was novel
for QEST. Sincere thanks to the local organizing committee (in particular, Benoit
Barbot for the administration of QONFEST), to the steering committee of the QEST
conference series (in particular its chair, Enrico Vicario), and to Marco Paolieri for the
conference website and for the event publicity.

Finally, we wish to thank all the PC members and additional reviewers for their
hard work in ensuring the quality of the contributions to QEST 2021, and to all the
participants for contributing to this memorable event.

August 2021 Alessandro Abate
Andrea Marin

vi Preface

Organization

Program Committee Co-chairs

Alessandro Abate University of Oxford, UK
Andrea Marin Ca’ Foscari University of Venice, Italy

Program Committee

Ebru Aydin Gol Middle East Technical University, Turkey
Luca Bortolussi University of Trieste, Italy
Davide Bresolin University of Padua, Italy
Peter Buchholz TU Dortmund, Germany
Laura Carnevali University of Florence, Italy
Giuliano Casale Imperial College London, UK
Pedro R. D’Argenio Universidad Nacional de Córdoba and CONICET,

Argentina
Susanna Donatelli University of Turin, Italy
Maryam Elahi Mount Royal University, Canada
Marco Gribaudo Politecnico of Milan, Italy
Ichiro Hasuo National Institute of Informatics, Japan
András Horváth University of Turin, Italy
David N. Jansen Chinese Academy of Sciences, China
Nils Jansen Radboud University, The Netherlands
Peter Kemper William & Mary College, USA
William Knottenbelt Imperial College London, UK
Jan Kretinsky Technical University of Munich, Germany
Gethin Norman University of Glasgow, UK
Meeko Oishi University of New Mexico, USA
Marco Paolieri University of Southern California, USA
Dave Parker University of Birmingham, UK
Tuan Phung-Duc University of Tsukuba, Japan
Elizabeth Polgreen University of Edinburgh, UK
Sylvie Putot LIX, Ecole Polytechnique, France
Anne Remke University of Muenster, Germany
Sabina Rossi University Ca’ Foscari Venice, Italy
Miklos Telek Budapest University of Technology and Economics,

Hungary
Ufuk Topcu University of Texas at Austin, USA
Mirco Tribastone IMT School for Advanced Studies Lucca, Italy
Benny Van Houdt University of Antwerp, Belgium
Verena Wolf Saarland University, Germany

Katinka Wolter FU Berlin, Germany
Lijun Zhang Chinese Academy of Science, China
Paolo Zuliani Newcastle University, UK

Repeatability/Artifact Evaluation Committee

Arnd Hartmanns (Chair) University of Twente, The Netherlands
David Safranek (Chair) Masaryk University, Czech Republic
Elvio Gilberto Amparore University of Turin, Italy
James Fox University of Oxford, UK
Anastasis Georgoulas University College London, UK
Mirco Giacobbe University of Oxford, UK
Matej Hajnal Masaryk University, Czech Republic
Mohammadhosein

Hasanbeig
University of Oxford, UK

Pushpak Jagtap KTH Royal Institute of Technology, Sweden
Sebastian Junges University of California, Berkeley, USA
Bram Kohlen University of Twente, The Netherlands
Luca Laurenti TU Delft, The Netherlands
Riccardo Pinciroli Gran Sasso Science Institute, Italy
Fedor Shmarov University of Manchester, UK
Simone Silvetti Esteco SpA, Italy
Matej Trojak Masaryk University, Czech Republic

Additional Reviewers

Amparore, Elvio
Azeem, Muqsit
Bacci, Edoardo
Backenköhler, Michael
Badings, Thom
Bharadwaj, Sudarshanan
Budde, Carlos E.
Cairoli, Francesca
Carbone, Ginevra
Cubuktepe, Murat
Degiovanni, Renzo
Delahaye, Benoit
Eisentraut, Julia
Fu, Jie
Gros, Timo
Grossmann, Gerrit
Groß, Dennis

Horvath, Illes
Incerto, Emilio
Junges, Sebastian
Krüger, Thilo
Linard, Alexis
Liu, Depeng
Menzel, Verena
Meszaros, Andras
Mohr, Stefanie
Niehage, Mathis
Ortiz, Kendric
Peng, Guang
Piazza, Carla
Pilch, Carina
Pinchinat, Sophie
Priore, Shawn
Putruele, Luciano

viii Organization

Ramírez-Cruz, Yunior
Randone, Francesca
Roy, Diptarko
Savas, Yagiz
Schmidl, Christoph
Sedwards, Sean

Sivaramakrishnan, Vignesh
Thorpe, Adam
Trubiani, Catia
Vandin, Andrea
Yu, Yue

Organization ix

Stochastic Geometry Based Performance
Analysis of Wireless Networks

(Abstract of Keynote)

François Baccelli

Inria Paris, France, and UT Austin, USA
francois.baccelli@inria.fr

Extended Abstract

Stochastic Geometry is commonly used for analyzing spectrum sharing in large
wireless networks. In this approach, network elements, such as users and base stations,
are represented as point processes in the Euclidean plane, and interference fields as
spatial shot-noise processes. The analytical machinery of stochastic geometry and basic
formulas of information theory can then be combined to predict important spatial
statistics of such networks.

The talk will first exemplify this approach by showing how to derive the distri-
bution of the Shannon rates obtained by users in two fundamental models, the Poisson
dipole model, which is a mathematical abstraction for a large device to device network,
and the Poisson-Voronoi model which is an abstraction for a large cellular network. A
few variants of these now classical models will be also discussed, like multi-tier
cellular networks, or networks leveraging beam-forming.

The talk will then exemplify how to introduce birth-and-death type dynamics in this
stochastic geometry framework. This will be illustrated through recent results on the
simplest model in this class. In this model, users arrive according to a Poisson rain
process on the Euclidean plane and leave with a stochastic intensity proportional to
their instantaneous Shannon rate.

Contents

Keynote Speaker

Performance Evaluation: Model-Driven or Problem-Driven? 3
Boudewijn R. Haverkort

Probabilistic Model Checking

A Modest Approach to Dynamic Heuristic Search in Probabilistic Model
Checking . 15

Michaela Klauck and Holger Hermanns

Tweaking the Odds in Probabilistic Timed Automata. 39
Arnd Hartmanns, Joost-Pieter Katoen, Bram Kohlen, and Jip Spel

Quantifying Software Reliability via Model-Counting 59
Samuel Teuber and Alexander Weigl

Quantitative Models and Metamodels: Analysis and Validation

Compositional Safe Approximation of Response Time Distribution
of Complex Workflows . 83

Laura Carnevali, Marco Paolieri, Riccardo Reali, and Enrico Vicario

Transient Analysis of Hierarchical Semi-Markov Process Models
with Tool Support in Stateflow . 105

Stefan Kaalen, Mattias Nyberg, and Olle Mattsson

Evaluating the Effectiveness of Metamodeling in Emulating
Quantitative Models . 127

Michael Rausch and William H. Sanders

Queueing Systems

Network Calculus for Bounding Delays in Feedforward Networks of FIFO
Queueing Systems. 149

Alexander Scheffler and Steffen Bondorf

SEH: Size Estimate Hedging for Single-Server Queues 168
Maryam Akbari-Moghaddam and Douglas G. Down

An Approximate Bribe Queueing Model for Bid Advising
in Cloud Spot Markets. 186

Bogdan Ghiț and Asser Tantawi

Learning and Verification

DSMC Evaluation Stages: Fostering Robust and Safe Behavior
in Deep Reinforcement Learning. 197

Timo P. Gros, Daniel Höller, Jörg Hoffmann, Michaela Klauck,
Hendrik Meerkamp, and Verena Wolf

Active and Sparse Methods in Smoothed Model Checking 217
Paul Piho and Jane Hillston

Safe Learning for Near-Optimal Scheduling . 235
Damien Busatto-Gaston, Debraj Chakraborty, Shibashis Guha,
Guillermo A. Pérez, and Jean-François Raskin

Simulation

Symbolic Simulation of Railway Timetables Under Consideration
of Stochastic Dependencies . 257

Rebecca Haehn, Erika Ábrahám, and Nils Nießen

Simulation of N-Dimensional Second-Order Fluid Models with Different
Absorbing, Reflecting and Mixed Barriers . 276

Marco Gribaudo, Mauro Iacono, and Daniele Manini

Performance Evaluation

Queue Response Times with Server Speed Controlled
by Measured Utilizations . 295

Murray Woodside

Service Demand Distribution Estimation for Microservices Using
Markovian Arrival Processes . 310

Runan Wang, Giuliano Casale, and Antonio Filieri

Performance Analysis of Work Stealing Strategies in Large Scale
Multi-threaded Computing . 329

Grzegorz Kielanski and Benny Van Houdt

xiv Contents

Abstractions and Aggregations

Abstraction-Guided Truncations for Stationary Distributions
of Markov Population Models . 351

Michael Backenköhler, Luca Bortolussi, Gerrit Großmann,
and Verena Wolf

Reasoning About Proportional Lumpability . 372
Carla Piazza and Sabina Rossi

Lumpability for Uncertain Continuous-Time Markov Chains 391
Luca Cardelli, Radu Grosu, Kim G. Larsen, Mirco Tribastone,
Max Tschaikowski, and Andrea Vandin

Stochastic Models

Accurate Approximate Diagnosis of (Controllable) Stochastic Systems. 413
Engel Lefaucheux

Optimizing Reachability Probabilities for a Restricted Class of Stochastic
Hybrid Automata via Flowpipe-Construction . 435

Carina Pilch, Stefan Schupp, and Anne Remke

Attack Trees vs. Fault Trees: Two Sides of the Same Coin
from Different Currencies. 457

Carlos E. Budde, Christina Kolb, and Mariëlle Stoelinga

Correction to: DSMC Evaluation Stages: Fostering Robust and Safe
Behavior in Deep Reinforcement Learning . C1

Timo P. Gros, Daniel Höller, Jörg Hoffmann, Michaela Klauck,
Hendrik Meerkamp, and Verena Wolf

Author Index . 469

Contents xv

Keynote Speaker

Performance Evaluation: Model-Driven
or Problem-Driven?

Boudewijn R. Haverkort(B)

Tilburg School of Humanities and Digital Sciences, Tilburg University,
Tilburg, The Netherlands

b.r.h.m.haverkort@tilburguniversity.edu

Abstract. In this paper I address the divide that has emerged between
the field of performance evaluation and the field of computer and com-
munication system design. After looking back briefly on the history of
the field, I subsequently reflect on the reasons why the field of perfor-
mance evaluation has become so isolated. I then continue with a set of
eight recommendations, based on my experience in performing projects
with industry, that will help in reconnecting, and that will result in a
better uptake of the newest techniques and tools in the field of design of
computer and communication systems. Following these recommendations
will probably push scientists a little out of their comfort zone, however,
I feel the potential extra reward of seeing our work truly applied is more
than worth it.

Keywords: Computer systems · Communication systems · Digital
twin · Performance evaluation · Model-driven design · Modeling and
simulation · System design

1 Introduction

Going back as far as the mid 1960’s, a large variety of performance evaluation
techniques have been proposed and used to address design and dimensioning
questions for computer and communication systems. In the 1970’s a number of
workshops on the topic of computer performance evaluation started to emerge,
that over the years evolved into successful conference series that last until today,
such as IEEE Mascots [17], ACM Sigmetrics [1] and also QEST [20]. In the
same field, Performance Evaluation has been a well-acclaimed journal since the
beginning of the 1980’s. However, when we carefully investigate the situation in
the 1970’s, we observe that many of the researchers active in the then emerging
field of performance evaluation, were actually also active in the field of com-
puter and communication system design. Indeed, very often their key focus was
system design, for which they used the state-of-the-art performance evaluation
techniques of that time, or even developed these techniques themselves. Classical
examples in this context are the work on time-sharing systems in the 1960 by
Alan Scherr [9], the work on closed queuing networks, mean-value analysis and
c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 3–11, 2021.
https://doi.org/10.1007/978-3-030-85172-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-85172-9_1

4 B. R. Haverkort

polling models, that evolved from the work on local area networks and the IBM
token ring [5,22], or the work on packet-switching and time-sharing systems [15].

In the 1970’s, also the classical textbooks on operating systems still used and
devoted considerable time on system performance evaluation, cf. [4,6]. However,
later books on operating systems, like Silberschatz and Galvin [23] (widely used
in the 1990’s) or Tanenbaum and Bos [25], do not bring any modelling aspects
anymore, not even on such topics as (disk) scheduling or memory management.

A similar remark can be made for books on communication systems. Classical
books of the early 1990’s on data and communication networks, like Bertsekas
and Gallager [3] and Walrand [27], do still contain a lot of material on perfor-
mance evaluation (simple queues, Little’s law, queuing network, Markov chains,
etc.). Also when ATM network became popular, queuing models were being pre-
sented as important tools in the design of such systems, cf. [18]. However, in the
1996 edition of Tanenbaum’s widely used textbook on computer networks [24],
there is only one subsection devoted to performance issues, largely in a quali-
tative way, with focus on measurement and implementation issues. In the now
widely used textbook by Kurose and Ross [16], some quantitative issues (delays,
round-trip times, etc.) are addressed, but queuing models and the like are not
addressed at all.

A similar remark can be made for computer architecture. Even though the
widely used textbook by Hennessy and Patterson [13] has “quantitative” in its
title, almost no performance evaluation models are used in it; Sect. 7.8 (only
10 pages) presents the M/M/1 and the M/M/m queue in a fairly isolated way,
almost at the end of the book.

We can only conclude that the methods and tools that have been developed
in the recent past, let alone the ones we are developing these days, are not being
considered important enough by the above mentioned system-oriented scholars,
to present them as useful (design) tools in their scholarly books. But, if “our
methods and tools” (such as can be found in [12]) are not, or only to very limited
extent, being addressed, we should ask ourselves: What has happened, what has
gone wrong? Why is it that methods and techniques considered important and
valuable by us, do not receive the uptake in scholarly books, let alone in industrial
practice? In what follows I will try to shed some light on this issue, and bring
some recommendations that might improve the situation.

2 On the Insularity of Quantitative Methods

The observations that I shared in the previous section are, in fact, not new. Some
35 years ago, Domenico Ferrari, a computer science professor at Berkeley and
author of a well-known textbook on computer systems performance evaluation
[10], already pointed to the “insularity of performance evaluation”, in his (maybe
forgotten) paper [11]. To a large extent, his considerations still apply. Ferrari
puts forwards a number of reasons that might be the cause why performance
evaluation has developed too much independently from computer systems and
computer network design and engineering. He observes that (i) young computer

Performance Evaluation: Model-Driven or Problem-Driven? 5

scientists are often not enough skilled (taught) in performance evaluation, hence,
no surprise that such methods are not used; (ii) that the field of computer
system design is still very young, yet the need for proper design methods would
require a much more reflective attitude towards system design than to go for
just quick wins as most engineers would do; (iii) that computer systems are too
complex to allow for an all-encompassing mathematics-based design theory, as
we have for pure mechanical or electronics systems; and, finally, (iv) that many
computer scientists see computer system design more as an art than as science
and engineering.

Looking back on these considerations, the only observation that appears to be
valid today is the third one. Indeed, computer systems, especially the ones that
we design and work with today, with millions of lines of code, distributed over
multiple computing nodes, etc., are of a complexity that goes beyond anything
else made by humans. And although that level of complexity was less apparent
in the mid 1980’s, yet, at that time already, the field of performance evaluation
appeared to have lost contact with the field of computer system design. And the
complexity and sheer size of systems has increased at exponential pace since then.
Are we ever going to reconnect? Is there any hope that we find the right models,
at the right level of abstraction to appeal to system designers and engineers, yet,
at the same time allow for in-depth analysis and design trade-offs?

Ferrari also points to a few advantages of the insularity of performance eval-
uation. He claims that the field itself, especially the work focusing on advanced
queuing network models and algorithms, has developed tremendously fast, actu-
ally faster due to the independence from specific problems that needed to be
addressed. He, sort of, argues that the researchers, for instance those working
on algorithms for product-from queuing networks, could develop their field so
quickly because they were not bothered by solving practical design problems.
This observation might actually be true, focus is good to attain deep scientific
insights, yet, one might wonder what the long-term advantage of such a strategy
really is. The question that really matters to me is whether these deep insights
and specialized algorithms are of use in the design process of computer and com-
munication systems, the field that initiated the work on that type of models. We
did solve the models right (in the sense of ‘correctly’), but the true question is,
whether we solved the right models?

Ferrari does spend considerable time on discussing the disadvantages of the
lost connection between performance evaluation and computer system design.
For one, he sees that the field (of performance evaluation) often does not have
available the required techniques or tools, or only does make these techniques
available at a point in time when system designers already struggle with other
challenges. Although things have changed tremendously in this respect, with
all the state-of-the-art tooling that is currently available, I do think the con-
ditions under which these tools can be used, that is, the modelling conditions
and restrictions, often hamper practical application for non-experts. Secondly,
Ferrari observed that some members of the performance evaluation community
are more “mathematicians in disguise”; their work has value, but probably less

6 B. R. Haverkort

so in the context of performance evaluation. I fully recognize this; in my role
as editor for Performance Evaluation [19], I have handled many papers that
could not be considered performance evaluation papers, but rather papers on
queuing theory or Markov chain theory; nice as contribution to journals such as
Queuing Systems or Applied Probability, but, if you ask me, not for Performance
Evaluation.

In the last section of his paper, Ferrari pleads to focus more strongly on
what he calls applied performance evaluation, in which the field much more co-
operates and co-evolves with the engineering and design disciplines for computer
and communication systems. He also stresses the importance of the connection to
system measurements (his field of specialty), with which I fully agree. Many com-
puter scientist have lost the connection with experimental work, something to
reconsider, as argued firmly by Walter Tichy [26]. But how can all this achieved?

3 Observations and Recommendations

Following the observations and plea of Ferrari, but also based on my experience in
applying advanced modelling and analysis techniques, including performance and
reliability evaluation techniques and (timeless) formal description techniques,
in an industrial context, I would like to make a number of recommendations
as well. Please do get me right here; these are experiences that I gathered,
based on the many projects that I was involved in with Dutch high-tech systems
industries [8], and based on various European and national projects with industry
involvement. I have no “formal proof of correctness” for my observations and
recommendations, nor are all my observation fully in line with each other. I just
like to share what I experienced and hope you can use these observations to your
benefit.

1. Do cooperate with true system designers, working in true system design
departments of companies. Getting involved with them and their projects, and
keeping connection with them is probably more difficult than with scientists
working in research labs (although that type of lab seems to be disappearing),
however, the return-on-investment is very high. You really get to know what
bothers them in their work (in a technical sense), what quantitative concerns
they have to deal with, in the end helping you in finding real challenging
research topics, both from an application point of view, and from a scientific
point of view. Reality is complex enough to provide interesting cases! In the
end, seeing your work actually being used in practice is most rewarding.

2. Do not start with pushing your modelling method or your tool, but do start
with their problem, hence, the title of this paper. Too often, researchers
take the capabilities of their modelling tool as the starting point. Very often,
however, the actual problem does not directly fit the tool. Your tool or tech-
nique might be of use, but most probably, a different method or tool is more
appropriate. Yet, also in that context there are interesting research challenges
ahead. Trying to push your tool scares people away. If you only have a ham-
mer, everything looks like a nail.

Performance Evaluation: Model-Driven or Problem-Driven? 7

3. In industrial practice, professional tools are being used, with professional
support, connecting to company-wide software suites. Companies do not want
to make their design processes dependent on software form a university
research group; they want an integrated design and engineering approach,
connecting analysis tools to compilers, documentation, version management,
etc., as well as a 24/7-telephone number for support. Hence, to increase the
uptake of a new method, make sure that your method is being applied “under
the hood” from within a professional tool-chain that is being used already.
This can be as simple as providing an excel-based user-interface.

4. If there is no way to connect easily to an existing tool already in use, domain-
specific languages (DSL’s) have shown to be a low threshold means to
provide access to an advanced performance evaluation or model checking tool.
The possibility to express a problem in a language that is close to the problem
world the designer or engineer is working in, really helps in practical uptake
of a new method. Tools based on the Eclipse modeling framework provide
ample means to quickly develop and implement DSL’s, and connect them to
underlying specialist tools, cf. [2].

5. Keep it simple, in both input and output. Often, our advanced techniques
and tools have many options that are not easy to use, especially not for novice
users. Being able to shield such options, helps in making people use the tools
and techniques. This also is true for the output of tools. I have noticed that
simple “traffic-light style” output or Pareto-curves showing trade-offs work
very well in practice, better than detailed tables or elaborate graphs. In the
end, if we want our methods and techniques to be used, we should listen to
what is needed (call it market-pull), and not try to push technology we think
is needed or more accurate. Do not forget that the model input, especially
many of the system parameters involved, are often just rough estimates; the
result of a quantitative analysis based on such input therefore cannot be the
exact values being computed, but rather the trend one can observe, or the
comparison between multiple scenarios.

6. I have also experienced that there often is great appreciation for very simple
analytical models and computations, that allow for fast trade-off analysis.
Do use them, learn to appreciate them, even if you know they are crude, or if
you know not all conditions to apply them have been met. For many design
trade-offs, these are good enough. Allen Scherr, pioneer in the development of
time-sharing systems and of the application of simple queuing models in the
1960’s, was a great advocate of simple easy-to-use models. In a nice interview
[9] he claims: “blind, imitative simulation models are by and large a waste of
time and money. To put it in a more diplomatic way, the return on investment
isn’t nearly as high as it is on a simpler, analytic-type models”. We sometimes
appear to be so much in love with our models, that we continue to refine,
polish and “improve” them; however, it is questionable whether anyone is in
need for these improvements, besides ourselves. Smart and simple engineering
rules, supported by (our) deep insight, is probably what is more in demand.

7. Often, there is confusion about whether the quantitative results are obtained
using discrete-event simulation, numerical analysis or truly analytical. For

8 B. R. Haverkort

one, note that in different fields of science and engineering, the term “simu-
lation” means different things: is it discrete-event simulation, does it refer to
the numerical computations for solving differential equations, or does it refer
to a relation between state-transition systems? Based on these different back-
grounds, a lot of confusion can arise as to how accurate results are. Results
from a discrete-event simulation are, in fact, statistics, whereas solving dif-
ferential equations numerically leads to exact results (within given bounds
of accuracy). And even here, theoreticians would not call the latter results
exact! Hence, it is important to stress the notion of uncertainty in the
results, stemming either from parameter uncertainty, from statistical effects,
or from simplifying assumptions in the model itself. In this regard, engineers
are often interested in the robustness of their solution under slight parameter
changes; allowing for easy to do sensitivity analysis is deemed very useful.

8. Finally, for true applicability of new methods and techniques, the ability to
scale to truly realistic-size problems is of utmost importance. Discrete-event
simulation, especially at modern-day computer speeds, does overcome many
of the practical problems encountered when applying performance evalua-
tion techniques to real systems. Of course, a discrete-event simulation is and
remains to be a statistical experiment, however, accepting that and carefully
dealing with that is often easier than trying to deal with modeling limitations
of “more advanced” numerical or analytical techniques.

4 Towards Digital Twins

As a short but possibly prolific aside, I would like to briefly touch upon the
new developments around the notion of a digital twin, which is currently widely
embraced by the high-tech industry. A full formal theory about digital twins does
not yet exist; informally, a digital twin is a virtual (digital) representation that
serves as the real-time digital counterpart of a physical object or process (definition
fromWikipedia).Adigital twin typically encompasses a computerizedmodel, from
which important quantities related to performance, energy-use, reliability and the
like can be extracted, using simulations or analytical or numerical techniques. But
a digital twin is more than just a static model. The idea is that a digital twin will
accompany a real system throughout its lifetime, meaning that it is connected to
the real system, so that system parameters can be monitored continuously and
fed back into the model, and that the model can be used to investigate adjusted
system settings when needed. Often, the digital twin is developed as part of the sys-
tem design process. When a real system is delivered, an appropriate digital twin
is being delivered as well, allowing the customer to exercise “what-if”-questions
before changes in system setting are performed. Furthermore, by connecting mul-
tiple digital twins, forms of (federated) learning can be applied, that give manufac-
turers better understanding of true system operations, and allow for better (pre-
ventive) maintenance strategies. Although still in a development phase, it appears
that the notion of a digital twin allows for many of the recommendations I made
above to be followed, thus giving the performance evaluation community ample

Performance Evaluation: Model-Driven or Problem-Driven? 9

means to connect more firmly to real system designers and engineers; the digital
twin can be seen as a shared object that facilitates communication (between aca-
demic researcher, industrial designer or engineer and system applier) and connec-
tion (between methods, tools, techniques, measurements). In the recently started
Digital Twin program we try to do just that [7].

5 Epilogue

To summarize, I like to stress that the performance evaluation community has
done great things over the last 50 years, however, a disconnect from the field of
the design of systems continuous to exist, as has been pointed at already 35 years
ago. A different way of working, starting closer to what is really needed in system
design, could be very beneficial for the performance evaluation community, in
order to enable a better uptake of their methods and techniques, their results, in
the real world of computer and communication system design. This requires to
set the problems faced in system design, by true system designers and engineers,
in a more central position, instead of the models being developed; we need to go
from model-based to problem-based! In the end, seeing our methods and tools
being used in real practice would be much more rewarding than only having
more papers on ever-more conferences. The observations and recommendations
I shared might be of use to change focus. The new notion of digital twins might
be helpful in this process of change as well. And when doing so, I also expect
that more students will be interested in the topics we teach in performance
evaluation classes; they might be more willing to go through the math, if they
see that the methods and techniques being taught are truly used in practice,
just as mechanical engineering students are willing to dive into finite-element
methods, because they know that these methods are actually being used when
a new engine is designed.

I would like to finish with a comment on academic appreciation. One might
hear a concern that the more applied work that I advocate here is less suitable
for publication in top journals or conferences, hence, does not help individual
scientists in their academic career. I firmly disagree with this observation, as well
as with the line of thinking that lies underneath it. First of all, it would be very
strange to think that real-world problems are too simple to base good scientific
work upon. Work that is practically applicable is not necessarily scientifically less
appealing! Secondly, in all fields of engineering, the applicability of the methods
and tools being developed to real-life problems is considered normal, so why
would that be different in the field of computer and communication system
performance evaluation? Third, I regard it as a serious task for senior faculty to
properly value the applied type of work as described above, also in the context
of selection and promotion committees. Scientific quality cannot be evaluated
by just counting publications or pointing to an h-index. Instead, it is about
investigating what really has been achieved, under which circumstances, and
what impact is made on the field, theoretically or practically. Making impact
is, at least in the Netherlands, the third formal task of a university, next to
education and research, hence, it should be valued properly as well.

10 B. R. Haverkort

Acknowledgements. First of all, I would like to thank all the lecturers and fellow
scientists that I have been privileged to work with and to learn from over the last 35
years. It is this cooperation and interaction that makes science move forward! Secondly,
I would like to thank the program committee chairs for QEST’2021, Alessandro Abate
and Andrea Marin, for inviting me as keynote speaker, as well as for their constructive
criticism on an earlier version of this paper.

References

1. ACM Special Interest Group for Computer Performance Evaluation. https://www.
sigmetrics.org/, https://dblp.org/db/conf/sigmetrics/index.html. Accessed 5 July
2021

2. van den Berg, F.G.B.: Automated performance evaluation of service-oriented
systems. Ph.D. thesis, University of Twente. https://research.utwente.nl/en/
publications/automated-performance-evaluation-of-service-oriented-systems
(2017). Accessed 5 July 2021

3. Bertsekas, D.P., Gallager, R.G.: Data Networks, 2nd edn. Prentice-Hall, Upper
Saddle River (1992)

4. Brinch Hansen, P.: Operating System Principles. Prentice-Hall, Englewood Cliffs
(1973)

5. Bux, W.: Modeling token ring networks-a survey. In: Herzog, U., Paterok, M.
(eds.) Messung, Modellierung und Bewertung von Rechensystemen. Informatik-
Fachberichte, vol. 154, pp. 192-221. Springer, Heidelberg (1987). https://doi.org/
10.1007/978-3-642-73016-0 13

6. Coffmann, E.G., Denning, P.J.: Operating Systems Theory. Prentice-Hall, Engle-
wood Cliffs (1973)

7. Digital Twin Research. https://www.digital-twin-research.nl/. Accessed 5 July
2021

8. Embedded Systems Institute: I served as scientific director during 2009–2013.
https://esi.nl/. Accessed 5 July 2021

9. Frenkel, A.K.: Allan L. Scherr, big blue’s time-sharing pioneer. Commun. ACM
30(10), 824–828 (1987)

10. Ferrari, D.: Computer Systems Performance Evaluation. Prentice Hall, Upper Sad-
dle River (1978)

11. Ferrari, D.: Considerations on the insularity of performance evaluation. IEEE
Transactions on Software Engineering 12(2), 21–32 (1986)

12. Haverkort, B.R.: Performance Evaluation of Computer Communication Systems:
A Model-Based Approach. Wiley, Hoboken (1998)

13. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-
roach, 3rd edn. Morgan Kaufman, Burlington (2003)

14. Journal of Applied Probability. Cambridge University Press. https://www.
cambridge.org/core/journals/journal-of-applied-probability. Accessed 5 July 2021

15. Kleinrock, L.: Queueing Systems, Volume II: Computer Applications. Prentice-
Hall, Upper Saddle River (1987)

16. Kurose, J.F., Ross, K.: Computer Networking: A Top-Down Approach, 7th edn.
Pearson, London (2017)

17. IEEE Modeling and Simulation of Computer and Telecommunication Systems.
https://dblp.org/db/conf/mascots/index.html. Accessed 5 July 2021

18. Onvural, R.O.: Asynchronous Transfer Mode Networks. Artech House, Norwood
(1994)

https://www.sigmetrics.org/
https://www.sigmetrics.org/
https://dblp.org/db/conf/sigmetrics/index.html
https://research.utwente.nl/en/publications/automated-performance-evaluation-of-service-oriented-systems
https://research.utwente.nl/en/publications/automated-performance-evaluation-of-service-oriented-systems
https://doi.org/10.1007/978-3-642-73016-0_13
https://doi.org/10.1007/978-3-642-73016-0_13
https://www.digital-twin-research.nl/
https://esi.nl/
https://www.cambridge.org/core/journals/journal-of-applied-probability
https://www.cambridge.org/core/journals/journal-of-applied-probability
https://dblp.org/db/conf/mascots/index.html

Performance Evaluation: Model-Driven or Problem-Driven? 11

19. PerformanceEvaluation.Elsevier. https://www.journals.elsevier.com/performance-
evaluation. Accessed 5 July 2021

20. Quantitative Evaluation of Systems. https://www.qest.org/, https://dblp.org/db/
conf/qest/index.html. Accessed 5 July 2021

21. Queueing Systems: Theory and Applications. Springer. https://www.springer.
com/journal/11134. Accessed 5 July 2021

22. Reiser, M., Lavenberg, S.S.: Mean-value analysis of closed multi-chain queuing
networks. Journal of the ACM 27(2), 313–322 (1980)

23. Silberschatz, A., Galvin, P.B.: Operating System Concepts, 4th edn. Addison-
Wesley, Readin (1994)

24. Tanenbaum, A.S.: Computer Networks, 3rd edn. Prentice-Hall, Hoboken (1996)
25. Tanenbaum, A.S., Bos, H.: Modern Operating Systems. Pearson, London (2014)
26. Tichy, W.T.: Should computer scientists experiment more? IEEE Computer 31(5),

32–40 (1998)
27. Walrand, J.: Communication Networks: A First Course. Aksen Associates Incor-

porated Publishers, Stamford (1991)

https://www.journals.elsevier.com/performance-evaluation
https://www.journals.elsevier.com/performance-evaluation
https://www.qest.org/
https://dblp.org/db/conf/qest/index.html
https://dblp.org/db/conf/qest/index.html
https://www.springer.com/journal/11134
https://www.springer.com/journal/11134

Probabilistic Model Checking

A Modest Approach to Dynamic Heuristic Search
in Probabilistic Model Checking

Michaela Klauck1(B) and Holger Hermanns1,2

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 Institute of Intelligent Software, Guangzhou, China

{klauck,hermanns}@cs.uni-saarland.de

Abstract. This paper presents Modysh, a probabilistic model checker
which harvests and extends non-exhaustive explorationmethods originally
developed in the AI planning context. Its core functionality is based on
enhancements of the heuristic search methods labeled real-time dynamic
programming and find-revise-eliminate-traps and is capable of handling
efficiently maximal and minimal reachability properties, expected reward
properties as well as bounded properties on general MDPs. Modysh is
integrated in the infrastructure of the Modest Toolset and extends the
property types supported by it. We discuss the algorithmic particularities
in detail and evaluate the competitiveness of Modysh in comparison
to state-of-the-art model checkers in a large case study rooted in the
well-established Quantitative Verification Benchmark Set. This study
demonstrates that Modysh is especially attractive to use on very large
benchmark instances which are not solvable by any other tool.

1 Introduction

Markov decision processes (MDPs) are the base model for probabilistic model
checking. A variety of probabilistic model checkers are being developed, and are
supported by orchestrated initiatives like the QComp competition [13,18] and
the quantitative verification benchmark set QVBS [24]. While in probabilistic
model checking MDPs often reflect concurrency phenomena, they have a longer
tradition in the context of sequential decision making under uncertainty [6,27].

Depending on themodelling context,MDPs are usually decoratedwith rewards
or costs. The term reward is traditionally used if the goal is to maximize the
earnings. In the dual context of costs, the spendings are usually to be minimized,
under the assumption that decisions in the MDP are controllable. Instead, in a
setting where the MDP results from concurrent interleavings it can also be natural
to ask for the maximal cost lurking or the minimal reward obtainable, since here
the decisions need to be assumed as being uncontrollable. Typical properties of
interest in this context include (max, min) reach probabilities w.r.t. a set of goal

This work has received support by the ERC Advanced Investigators Grant 695614
POWVER, by the DFG Grant 389792660 as part of TRR 248 CPEC, and by the
Key-Area Research and Development Grant 2018B010107004 of Guangdong Province.
c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 15–38, 2021.
https://doi.org/10.1007/978-3-030-85172-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_2&domain=pdf
http://orcid.org/0000-0002-6353-227X
http://orcid.org/0000-0002-2766-9615
https://powver.org
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-85172-9_2

16 M. Klauck, H. Hermanns

states as well as (max, min) expected rewards (costs) which are accumulated until
reaching a goal state. These properties can also include bounds on the number
of steps until reaching a goal or enforce a certain reward (cost) amount to be
accumulated on the way to the goal. Iterative methods like value iteration are
the standard solution to calculate results for these property types. In its basic
form, value estimates for each state in the state space are updated synchronously
based on the values of their successors until convergence is reached [6].

Heuristic search methods [4,8,9,21] try to compute such optimal values based
on only a small fraction of the states, sufficient to answer the considered property.
These methods exploit state-wise estimates of the optimal value, for only a subset
of the state space. The order in which values are updated is made dependent on
their current value estimates, in an approach called asynchronous value iteration.

This paper presents a probabilistic model checker that harvests modified
versions of asynchronous value iteration based on heuristic search. The core
components are the labeled real-time dynamic programming (LRTDP) [8] and
find-revise-eliminate-traps (FRET) [31] procedures. LRTDP tries to find the
optimal values by continually updating the current best solution of the state
value estimates on single exploration paths. Only one state’s value is updated at
each step. FRET is needed to guarantee convergence of LRTDP to the optimal
value in special MDP structures. It eliminates cycles to guide LRTDP to the
correct solution. While contributions to this research line are manyfold (see
Sect. 5), they are quite fragmented w.r.t. assumptions on property types and
model characteristics. We instead take care to support most of the established
property types, from reach probabilities to reward expectations (but no long-run
averages), also including bounded versions, on general MDP structures efficiently.

As a result, our tool Modysh considerably enlarges the property types
supported by heuristic methods. The new elements and their integration are
described in detail in this paper. A large empirical evaluation shows that Modysh
is competitive relative to state-of-the-art model checkers and is able to solve
benchmark instances which are too large to be solved by other tools. Modysh is
shipped as an extension component to the Modest Toolset [22] inside which it
can be considered as an alternative to mcsta [16,19,23], which is an explicit-state
probabilistic model checker based on traditional value iteration. The toolset is
available for Windows, Linux and Mac OS. Integrating Modysh into it brings
the benefit that the same input languages and operating systems are supported,
and it opens the Modest Toolset for property types not supported thus far.

Outline. In Sect. 2 we review the theoretical background. Sect. 3 introduces
heuristic search approaches and discusses how LRTDP and FRET can be extended
and modified such that they are applicable to general MDP structures and
properties. Sect. 4 presents a large empirical evaluation demonstrating that
Modysh is competitive, outperforming state-of-the-art model checkers especially
on very large state spaces with a parallel structure. We conclude with a short
discussion of our achievements.

https://www.modestchecker.net/

Dynamic Heuristic Search in Probabilistic Model Checking 17

2 Theoretical Background

Before looking into the details of the heuristic search techniques implemented in
Modysh, we introduce the theoretical background. A probability distribution
over a (countably in-)finite set X is a function μ : X → [0, 1] s.t.

∑
x∈X μ(x) = 1.

We denote by D(X) the set of all probability distributions over X.
A Markov Decision Process (MDP) is a tuple M = 〈S,A,P,R, s0,S∗〉 con-

sisting of a finite set of states S, a finite set of actions A, the partial transition
probability function P : S × A → D(S), a reward function R : S × A × S → R

+
0

assigning a reward (or cost) value to each triple of state, action, state, a single
initial state s0 ∈ S, and a set of absorbing goal states S∗ ⊆ S.

An action a ∈ A is applicable in a state s ∈ S if P(s, a) is defined. In this case
we denote by P(s, a, t) the probability μ(t) of state t according to P(s, a) = μ.
We denote by A(s) ⊆ A the set of all actions that are applicable in s. We restrict
to MDPs where for each state s, A(s) is nonempty, which is no restriction as per
the following. A state s is called terminal if |A(s)| = 1 and for this a ∈ A(s) it
holds that P(s, a, s) = 1 and R(s, a, s) = 0. All goal states g are assumed to be
terminal, which forces to stay in g forever without accumulating further reward.
Terminal states not contained in S∗ are called dead-ends.

For a given MDP M, a function π : S → A with π(s) ∈ A(s) for each state s
is called a (memoryless) policy, used to determine the next action to take for any
given state. We later extend this when focussing on specific, bounded properties.
The accumulated reward over an infinite sequence of states ζ = (si)i∈N, called path,
induced by a policy π through M is defined by ρ(ζ) =

∑∞
i=0 R(si, π(si), si+1).

For the finite prefixes τ of such a path, called finite paths, the reward summation
constituting ρ(τ) is truncated accordingly. We let Paths(M) denote the set of all
paths through M rooted in its initial state s0. Each policy π induces a probability
space on the set of infinite paths through M in the usual way [25] and this in
turn induces well-defined probability measures for each of the finite paths τ ,
and similarly for the accumulated reward measures ρ(τ). States from which
S∗ can not be reached with positive probability regardless of the policy π are
called sink states and collected in S⊥. This set can be precomputed by a simple
fixpoint computation (checking for each state the LTL property �¬goal where
goal identifies all states in S∗) in the underlying graph. This graph G over S is
spanned by the edge set E = {(s, t) | ∃a ∈ A : P(s, a, t) > 0}.

The subgraph Gπ induced by policy π is obtained by restricting the edge set
of G to {(s, t) | P(s, π(s), t) > 0}. π is almost-sure if the probability of reaching
S∗ it induces is 1 regardless of the initial state. If instead that probability is
guaranteed to be positive, π is called proper. A cycle is a path in G starting and
ending in the same state. A strongly connected component (SCC) in G is a subset
of states V such that ∀(s, t) ∈ V × V a path from s to t exists. A bottom SCC
(BSCC) B is a SCC of maximal size from which only states in B are reachable.

Measures of Interest. We denote by Pπ the probability measure induced by π
and by Eπ the expectation of the accumulated reward ρ w.r.t. measurable sets
of paths starting in s0. We define the extremal values Pmax(Π) = supπ Pπ(Π)
and Pmin(Π) = infπ Pπ(Π), as well as Emax(Π) = supπ Eπ(Π) and Emin(Π) =

18 M. Klauck, H. Hermanns

infπ Eπ(Π), for measurable Π ∈ Paths(M) and π ∈ Π. We consider the following
property types, echoing what JANI supports [12,28], with opt ∈ {max,min}:
– MaxProb and MinProb: Popt(SU U S∗) = P opt({τ ∈ Paths(M) | ∃s ∈ S∗ :

τ = (si)∞i=0∧s = sj ∧∀k < j : sk /∈ S∗∧sk ∈ SU }) is the max/min probability
of eventually reaching a goal state and all states visited before being in SU .
Popt(SU U S∗) will be abbreviated as Popt(
 S∗).

– maximal/minimal expected rewards: Eopt(SU U S∗) = Eopt({τ ∈ Paths(M) |
∃s ∈ S∗ : τ = (si)∞i=0 ∧ s = sj ∧ ∀k < j : sk /∈ S∗ ∧ sk ∈ SU }) is the maximal
or minimal reward expectation of eventually reaching a goal state. Note that
reward ∞ is accumulated for non-almost-sure policies.

– step bounded properties: Popt(SU U[l,u] S∗) is the maximal or minimal prob-
ability of reaching a goal state in [l, u] steps defined as P opt(Π[l,u]) where
Π[l,u] is the set of paths that reach a goal state in [l, u] steps while only
passing through SU . Similar for step bounded expected reward properties.

– reward bounded properties: If a reward structure is defined, Popt(SU U[l,u] S∗)
is the extremal probability of reaching a goal state with accumulated reward
in [l, u] defined as P opt(Π[l,u]) where Π[l,u] is the set of paths having a prefix τ
with accumulated reward in [l, u] containing a goal state and only passing
through SU before. Similar for reward bounded expected reward properties.
Bounds with open intervals are also supported (for all bounded properties).

3 Dynamic Heuristic Search

Value Iteration. The problems discussed above are in practice often solved using
value iteration. This is a variant of dynamic programming where a value is
assigned to each state by a value function V : S → R which specifies the current
approximation of the value of this state. The value function is placed in an
iterative procedure updating the states’ values depending on the values of their
successors. These values are refined until convergence to the least fixpoint. In
many situations this fixpoint V ∗ = limn→∞ Vn corresponds to the optimal
value one is looking for, from which the optimal policy can be extracted. Usually,
the value function is calculated greedily via the Bellman function [5] (similar
for maximum): Vi+1(s) = mina

∑
s′∈S P(s, a, s′) · (R(s, a, s′) + Vi(s′)) (1) where

a value of 1 is assigned to goal states and 0 to dead-ends. A value function is
admissible if it is an optimistic estimate of the correct final value. This means, if we
try to minimize, the value function V is admissible if always V (s) ≤ V ∗(s),∀s ∈ S.
If we instead maximize, a value function with V (s) ≥ V ∗(s),∀s ∈ S is admissible.
A greedy policy is always defined w.r.t. a value function V . For each state the
greedy policy always picks the action leading to the successor state with the
best value according to the value function. This action may not be unique which
means there can be multiple greedy policies. A greedy graph GV of graph G with
respect to value function V is the superposition of all Gπ induced by any greedy
policy π w.r.t. V , so it is the combined reachability graph of all greedy policies.

Heuristic Search. The approach we generally pursue is based on the heuristic
search algorithm LRTDP [8], a heuristic search dynamic programming optimiza-

Dynamic Heuristic Search in Probabilistic Model Checking 19

tion of standard value iteration. To find an optimal policy, up to a prespecified
accuracy ε, starting in an initial state, it attempts to avoid exploring the entire
state space and delivers the requested values for the initial state only, instead
of for all states as in standard value iteration. It constantly keeps updating a
current best solution, a partial value function providing the current state value
estimates. In each round only a single state is selected for an update. These
updates are obtained by repeatedly sampling trials, i. e., executions starting in
the initial state, and ending once a state is reached for which an update does not
change the value estimate by more than ε. While doing so, the optimal policy is
constructed incrementally by extending a partial policy step by step. A partial
policy π will be called closed for a state s ∈ S, if π(t) is defined for every state
t /∈ (S⊥ ∪S∗) that is reachable (with positive probability) from s by following π.

Traps.A trap [30, p. 171 ff.] is a BSCC not containing a goal state. In our approach
traps are defined on the greedy graph GV induced on G by value function V .
We distinguish permanent traps which are also BSCCs of G, i. e., there is no
non-greedy policy which would lead out of the trap. In contrast, transient traps
are SCCs, but not BSCCs of G, so there is a policy leading out of the trap.

Convenience MDPs. The planning literature has identified a number of model
classes with convenient properties and initially arbitrary rewards in R. A Stochas-
tic Shortest Path (SSP) MDP [6] is an MDP admitting (i) at least one almost-sure
policy and (ii) inducing expected accumulated reward ∞ for each not almost-sure
policy π. The latter corresponds to Gπ containing no reachable cycle on which
(in the MDP) the accumulated reward does not increase. Assuming the former,
the latter can trivially be enforced by restricting to models with reward function
confined to positive values (possibly except at goal states). As an apparent re-
laxation, Bertsekas [7] later introduced condition (i′) and (ii′) which replace
the role of almost-sure policies by proper policies in (i), respectively (ii), but
showed them to be (pairwise) equivalent. In a Generalized Stochastic Shortest
Path (GSSP) MDP [30] the first condition (i) is kept while the second condition
is further relaxed by instead assuming that (ii′′) for each policy and state the
expected sum of negative rewards is bounded from below. This relaxation in
particular supports zero-reward cycles, while it precludes cycles with alternations
of positive and negative rewards that cancel out. Condition (ii′′) can trivially be
enforced by restricting to models with a reward function confined to non-negative
values, as we do. Our contribution relinquishes condition (i) and (i′) of SSP and
GSSP, i. e., we do not rely on the existence of almost-sure or proper policies.

Algorithm Overview. We introduce our algorithmic contributions in the sequel
one-by-one. All modifications, adaptions and extensions made to the original
versions are marked in blue. If existing, the original version of modified lines
is stated in comments of the form �. . .. The base algorithm expects as inputs
the state s of the MDP for which to evaluate the property, the result precision
ε and uses flags dependent on the property class to be evaluated. max-rew is
True if a maximal expected reward property is evaluated, otherwise it is False,
analogously for min-rew. We do not use explicit flags for indicating (max or min)
reachability probabilities because there are no code fragments specific to these

20 M. Klauck, H. Hermanns

property types. We assume that the initial and current value function, V0 and Vi,
are always globally accessible.

In fact, the original algorithmic contributions have been made without a
specific focus on reachability probabilities, which as long as zero reward values
are supported, can actually be cast into reward accumulations. We here make an
explicit distinction between these cases for the purpose of better explanability
and for the purpose of more direct and hence faster implementation in Modysh.

3.1 Reachability Properties

For reachability properties max-rew and min-rew are set to False. We first concen-
trate on calculating MinProb, i. e., Pmin(SU U S∗). We detail our modifications
to the original version of the algorithm in order to enable that condition (i′)
and thus (i) can be dropped . Afterwards we turn to MaxProb and show how
FRET-LRTDP can be modified to solve these kind of properties on general
MDPs, too. Kolobov et al. [31] already provided a reduction to show that FRET
in combination with LRTDP is applicable to general MaxProb properties, even if
condition (i′) is violated. We will give an alternative proof, based on the proof for
MinProb, demonstrating that our implementation is also valid for general MDP
types as defined above, not only for problems having at least one proper policy.

We denote by V π : S �→ [0, 1] the goal-reachability probabilities induced by π.
Goal states S∗ have probability value 1 while sinks and other states enforced to
be avoided have probability value 0. This corresponds to the fact that if a partial
policy π is closed for s, V π constitutes the least fixpoint of Equation (2).

V π(s) =

⎧
⎪⎨

⎪⎩

1 if s ∈ S∗,
0 if s ∈ S⊥ ∪ SU \ S∗,
∑

s′∈S P(s, π(s), s′) · V π(s′) otherwise.
(2)

Minimum Reach Probability. For MinProb properties the objective is to find the
minimal probability to reach a state in S∗ if initialized in s0 and while avoiding
the complement of SU . We are ultimately interested in the value

V ∗(s0) = min
π:π closed for s0

V π(s0). (3)

An admissible initialization for this case is a valuation of 0, except for goal states
which get a value of 1. Using a reward function defined as R(s, a, s′) = 1 if
s /∈ S∗ ∧ s′ ∈ S∗ and 0 otherwise and then applying the Bellman equation (1)
of synchronous value iteration will iteratively fill the partial policy bottom up.
Spelled out for our case, this amounts to replacing the third line of (2) by

min
a∈A(s)

∑

s′∈S
P(s, a, s′) · V π(s′) otherwise. (4)

which echoes the greedy nature of the computation. However, giving up syn-
chronicity in favor of a heuristic approach is the key to efficiency. The base
algorithm for this case we call GLRTDP, a generalization of LRTDP [8, Alg. 4].
The pseudocode is shown in Alg. 1. The algorithm iteratively selects only a
single state for a Bellman update in each round. It continually updates a current
best solution, a partial function providing the current state value estimates and

Dynamic Heuristic Search in Probabilistic Model Checking 21

repeatedly runs trials (line 4), sample executions of the MDP, starting from the
initial state, and ending once a state is reached for which an update does not
change the value by more than ε, i. e., ε-consistency is reached (line 13, lines
17-27 are not relevant here). To determine which successor state to follow after
state s, GLRTDP considers an action a ∈ A(s) greedy w.r.t. the current value
function (line 14), i. e., one that minimizes Equation (4) for s (cf. Alg. 2, line
2 and 4) [8, Alg. 2], and then selects a successor state (line 16). Picking the
next state randomly from the set of successors of the greedy action (cf. Alg. 2,
line 9) instead of taking the probability into account is an optimization leading
to better performance as noted in probabilistic Fast Downward [36]. The
entire exploration procedure is systematic, i. e., does not starve relevant states
if the heuristic function used is admissible. A state, which has not converged
so far, will not stay in the greedy graph forever without its value being revised.
Therefore, it is guaranteed to converge to an optimal solution. After each trial,
those states are labeled as solved whose values and those of their descendants
have reached ε-consistency (cf. Alg. 3) [8, Alg. 3]. Trials are terminated at solved
states. GLRTDP terminates the value update procedure as soon as the initial
state is solved (cf. Alg. 1 line 3, 8, and 31).

Alg. 1 General Labeled Real-Time Dynamic
Programming (GLRTDP)

1: proc GLRTDP(s: State; ε: float)
2: max-rew, min-rew = True, if max., resp.

min. reward property is calculated
3: while ¬Solved(s) do
4: GLRTDP-trial(s, ε)

5: proc GLRTDP-trial(s: State, ε: float)
6: visited := Empty-Stack
7:
8: while ¬Solved(s) do
9: visited.Push(s)

10: vold = V (s)
11: Update(s)
12: vnew = V (s)
13: if Is-cons(vold, vnew, ε) then break

� original condition Is-goal(s)
14: a := Greedy-action(s)
15: if a 	= NULL then
16: s := Pick-next(a, s)
17: if max-rew

&& visited.Contains(s) then
18: if Elim-cycle-max-rew() then
19: V (init-node) = ∞
20: Solved(init-node) = True
21: return
22: else
23: if min-rew

&& visited.Contains(s) then
24: if Elim-cycle-min-rew then
25: s := Merged-node(s)
26: else
27: break
28:
29: while visited 	= Empty-Stack do
30: s := visited.Pop()
31: if ¬Check-solved(s, ε) then
32: break

Alg. 2 Subroutines of GLRTDP and FRET
1: proc Greedy-action(s: State)
2: return argMinMaxa∈A(s) QValue(a, s)

3: proc QValue(a: action, s: State)
4: return∑

s′ P (s, a, s′) · (R(s, a, s′) + V (s′))

5: proc Update(s: State)
6: a = Greedy-action(s)
7: V (s) = QValue(a, s)

8: proc Pick-next(a: action, s: State)
9: pick s′ randomly from all successors with

P (s, a, s′) > 0
� originally with probability P (s, a, s′)

10: return s′

11: proc Is-cons(sold , snew , ε: float)
12: if abs(sold − snew) ≤ ε ||

sold = ∞ && snew = ∞ then
13: return True
14: return False

22 M. Klauck, H. Hermanns

This is possible because a value remains ε-consistent if its descendants’ and its
own value do not change by more than ε anymore (Alg. 3). This is because V (s)
can only change by more than ε if the greedy graph starting in s changes or the
value of a descendant changes by more than ε. The graph can only change if the
value of a state within the graph changes. Updating states outside the greedy
graph will never make them part of it, because by the monotonicity property,
updates according to the Bellman function can only make the states less attractive.
Thus, a state’s value can only change by more than ε if a descendant changes by
more than ε but then it can not have been marked as solved before.

This algorithm converges faster than classical value iteration because not all
states need to be converged or even updated. The termination criterion is similar
to ε convergence in simple value iteration. If a cycle (zero-reward cycle in MDPs
with rewards) occurs in a policy, it needs to be handled during the construction
of trials in GLRTDP to guarantee convergence to an optimal value function. In
the MinProb case permanent and transient traps have to be treated as dead-ends
because in the worst case it is possible to always take an edge back to a state in
the cycle instead of leaving the loop, i. e., Pmin of eventually reaching the goal is 0.
This is done indirectly by the termination criteria and the check before adding a
new state (line 13 Alg. 1 and line 37 in Alg. 3). Because of the initialization with
0, values of trap states will lead to a cut immediately, because they never change
their value in an update and stay ε-consistent, i. e., the cycle is not explored
further and the algorithm concentrates on other branches.

To sum up, when calculating MinProb over an MDP, GLRTDP presented
in Alg. 1 with an admissible initialization for this case and Check-Solved() as
in Alg. 3 can be used. We will explain in the following why the combination
of GLRTDP solves MinProb properties on general MDP structures correctly by
converging to the optimal fixpoint. A formal proof can be found in Appendix A.

All greedy policies inspected by GLRTDP at some point end in a goal state
or a dead-end state. This could be a real dead-end, i. e., a sink state with only
a self-loop or a trap. Because of the initialization their value is already 0. In
addition, we tag these states, do not explore them further and propagate their
value back through the graph. Cycling forever is not possible because eventually
all such cycles in greedy policies are eliminated. Having this, we can state that
at some point no more states are left to explore in GLRTDP because all relevant
traps are eliminated or a goal or a sink has been found. Then GLRTDP runs until
the state values of the current greedy policy is converged up to ε. Even if the
greedy policy is not the same in every iteration, at some point it will stay within
a set of states which are part of finitely many policies. The values of these states
converged close enough to the optimal ones such that the algorithm concentrates
on these policies. The value function used in GLRTDP is initialized admissibly
and therefore can only monotonically increase and approach the optimal result
(fixpoint) from below. When this point is reached, the whole procedure terminates.
This fixpoint has to be the only one and therefore has to be optimal because it
has already been shown that the Bellman equation only has one fixpoint [7].

Dynamic Heuristic Search in Probabilistic Model Checking 23

Alg. 3 Check-solved Procedure used in
GLRTDP
1: proc Check-solved(s: State; ε: float)
2: rv := True
3: open := Empty-Stack
4: closed := Empty-Stack
5:
6: if ¬Solved(s) then open.Push(s)
7:
8: while open 	= Empty-Stack do
9: s := open.Pop()

10: closed.Push(s)
11:
12: if Dead-end(s) || Goal(s) then continue
13:
14: a := Greedy-action(s)
15: if max-rew || min-rew then
16: check-∞-loop = False
17: for each s′ s.t. P(s, a, s′) > 0 do
18: if closed.Contains(s′) then
19: check-∞-loop = True
20: if max-rew && check-∞-loop then
21: if Elim-cycle-max-rew() then
22: V (init-node) = ∞
23: Solved(init-node) = True
24: return True
25: else
26: if min-rew && check-∞-loop then
27: if Elim-cycle-min-rew then
28: return False
29:
30: vold = V (s)
31: Update(s)
32: vnew = V (s)
33: if not Is-cons(vold, vnew, ε) then
34: rv = False
35: continue
36: for each s′ s.t P(s, a, s′) > 0 do
37: if ¬Solved(s′) &&

¬In(s′, open ∪ closed) then
38: open.Push(s′)
39:
40: if rv then
41: for each s ∈ closed do
42: Solved(s) := True
43: else
44: for s ∈ closed do
45: Update(s)
46: return rv

Alg. 4 Find, Revise, Eliminate Traps
(FRET) (M is the graph of the MDP)

1: proc FRET(M, s, V0)
2: Vi := V0
3: V ′

i := GLRTDP(s, ε)
� originally Find-and-Revise(M, Vi)

4: (Vi+1, elim-trap) :=
Eliminate-Traps(M, V ′

i)
5: while elim-trap do
6: Vi := Vi+1
7: V ′

i := GLRTDP(s, ε)
� originally Find-and-Revise(M, Vi)

8: (Vi+1, elim-trap) :=
Eliminate-Traps(M, V ′

i)

Alg. 5 Eliminate-Traps (for MaxProb)

1: proc Eliminate-Traps(M, V)
2: elim-trap := False
3: Vnext := V
4: GV := {SV , AV } ← Vs greedy graph
5: SCC := Tarjan(GV)
6: CSet := ∅
7:
8: for each SComp C = {SC , AC} ∈ SCC

do
9: if �(si, sj) ∈ AG : (si ∈ SC , sj /∈ SC)

&& (�g ∈ G : g ∈ SC) then
10: CSet := CSet ∪ {C}
11:
12: for each C = {SC , AC} ∈ CSet do
13: if �a ∈ A, s ∈ SC , s′ /∈ SC :

T (s, a, s′) > 0 then
14: for each s ∈ SC do
15: Vnext (s) := 0

16: MergeSCC (C)
17: elim-trap := True
18: else
19: Ae := {a ∈ A|∃s ∈ SC ; s′ /∈ SC :

T (s, a, s′) > 0}
20: m := maxs∈SC,a∈AeQV (s, a)
21: for each s ∈ SC do
22: Vnext (s) = m

23: MergeSCC (C)
24: elim-trap := True
25: return (Vnext , elim-trap)

Maximum Reach Probability. For MaxProb properties, Pmax(SU U S∗), the
objective is to find the maximal probability to reach a state in S∗ if initialized
in s0 while avoiding SU . An admissible initialization is 1 except for states from
which only dead-end states can be reached, which get a value of 0. Pmax can be
calculated by changing the initialization and replacing the occurrences of min by
max in equations (3) and (4). In Modysh, we use a combination of GLRTDP
(Alg. 1, max-rew=min-rew=False) and a modified version of FRET (Alg. 4 and
5), adapted from the originals [31, Alg. 1] to calculate MaxProb. The combination
is needed to guarantee convergence of GLRTDP for MaxProb [30,31]. In FRET
iterations of GLRTDP followed by a call to Eliminate-Traps() to eliminate

24 M. Klauck, H. Hermanns

zero-reward cycles are performed. In the original version, any Find-and-Revise
algorithm is foreseen, we fix GLRTDP (Alg. 4, line 3 and 7) in our implementation.
The call to Eliminate-Traps() (line 4 and 8) is needed if facing zero-reward
cycles, because these may induce convergence of GLRTDP-trials to a non-optimal
value by always choosing an action that loops on the cycle and thus the goal is
never reached (line 14, 16 in Alg. 1). The trap elimination procedure changes
the value function computed in the last iteration of GLRTDP and the graph it
is working on, thus guaranteeing progress in its next call (Alg. 4, line 8). This is
achieved by finding and eliminating traps (cf. Alg. 5). States which are part of a
trap are merged into a single new state replacing all trap states.

In contrast to MinProb, where traps are handled directly during the trial
construction, permanent and transient traps have to be handled differently here.
All SCCs in the current greedy policy are collected using Tarjan’s Algorithm
[37] (Alg. 5, line 5) and it has to be checked if these SCCs are traps (line 8).
First, permanent traps (line 13) are dead-ends from which the goal can never be
reached. Therefore, all states’ values in this SCC can be set to 0 (line 15) and the
states of the SCC can be merged into one. If the SCC is a transient trap (line
19), it has to be left to reach the goal eventually. From all states in the SCC it is
possible to take the exit with the highest probability value to reach the goal (line
20). Therefore, we merge these states and set the resulting state to this value
(line 21). In the next GLRTDP trial this will change the greedy policy, i. e., the
cycle is eliminated from the greedy graph. The algorithm terminates if the policy
of the last GLRTDP run does not contain a trap anymore.

While the original version of FRET [31] considers in each trap elimination step
all actionsthatareoptimalaccordingtothecurrentvalue function,our implementa-
tion uses an optimization of Tarjan’s algorithm (line 5), called FRET-π [36],
considering in the subgraph of the state space inspected during trap elimination
only those state transitions chosen into the current greedy policy.

To sum up, when calculating MaxProb over an MDP we call FRET, Alg. 4,
with GLRTDP, Alg. 1, with an admissible initialization for this case. The trap
elimination procedure in FRET is instantiated with Alg. 5. A formal proof of
the correctness of this approach for general MDPs in the style of the proof for
MinProb can be found in Appendix B.

3.2 Expected Reward Properties

Expected reward properties Eopt(SU U S∗), ask for the minimal or maximal
(referred to by opt) expected accumulated reward when reaching a goal state.
For the reachability properties considered thus far, we have been able to ignore
the reward function of the MDP or more precisely, assumed it to be 0 except for
actions leading to goal states. The calculation of Eopt proceeds very much in the
same way. Iteratively a variation of the Bellman function updates is performed
as presented in Eq. 1, where contrary to the Popt-case (2) rewards are gained by
taking a transition. The conceptual variation is that goal states initially get a
value of 0 and states s ∈ S⊥ ∪ SU \ S∗ a value of ∞.

Dynamic Heuristic Search in Probabilistic Model Checking 25

Reward maximization. For Emax max-rew is set to True. A trivial admissible
initialization is 0 for goal states and ∞ for all others. Because initializing non-
goal states with ∞, i. e., the largest possible overapproximation, increases the
runtime extremely, we approach an admissible initialization for non-dead-end
states from below by starting with a smaller maxValue, obtained by exponential
search. Dead-ends directly get a value of ∞. We execute full GLRTDP runs,
as long as one of the final state values after termination is larger than the last
maxValue, because if this happens, the initialization has not been admissible.
In each iteration the new maxValue is set to the largest state value increased
by 1 and multiplied by 2, which leads to the fastest solution we found in our
experiments. Cycles again require a special treatment. Before adding the next
state to the current trial (line 16, Alg. 1 and line 38, Alg. 3) it has to be checked
if this state closes a SCC in the current greedy graph (independent of the reward
accumulated in the SCC) (Elim-cycle-max-rew(): line 18, Alg. 1 and line 21 et
seq., Alg. 3). If this is the case, the maximal expected reward for this property
can directly be set to ∞ because in the worst case always this loop could be
taken, i. e., the goal would never be reached.
Reward minimization. For Emin min-rew is set to True and the value function
is initialized admissibly with ∞ for dead-ends and with 0 for all other states.
Similar to the Emax case, when adding the next state to the current trial, it
has to be checked if it closes a zero-reward SCC which has to be eliminated
because it has to be left immediately to reach the goal with minimal reward
(Elim-cycle-min-rew() in line 24, Alg. 1 and line 27, Alg. 3).

Correctness and optimality proofs for these property types are very similar
to the proofs for MaxProb and MinProb spelled out in the appendices.

3.3 Bounded Properties

Reachability and expected reward properties can be extended by step or reward
bounds. Popt(SU U[l,u] S∗) is the extremal probability of reaching a goal state in
[l, u] steps or with accumulated reward in [l, u] . Notably, and in contrast to the
other properties considered thus far, for such bounded properties, memoryless
policies can be outperformed by policies that are aware of the history regarding
their past evolution, namely with respect to the number of steps taken or reward
accumulated thus far. So, formally, we here work with a definition of policies that
deviates form the one in Sect. 2 in that a policy can remember how many steps
have already been made or what reward has been accumulated.

Let us first look at step-bounded properties. For those, in standard value
iteration, updating all state values synchronously makes it possible to iterate only t
times for properties with upper bound t [17] and then to extract a step-dependent
policy. In heuristic search algorithms like FRET-LRTDP this is not possible
because only the current greedy path is updated. In this case, a straightforward
remedy is to encode a step counter in each state and consider all states for which
the bounds regarding these counters are exceeded as dead-end. Formally, one
works in a derived MDP where states are enriched with counters and where states
differing in counter value are different and thus also the policy decision might

26 M. Klauck, H. Hermanns

differ for them (implying history awareness with respect to the original MDP).
States which fulfill the reachability property and whose bound-counter lies
in the target interval are considered goal states. In our implementation we use the
same variants of GLRTDP in combination with FRET like for the unbounded
cases above and only add the bound and step counter to the state as described.
For reward-bounded properties the basic strategy is the same, except that the
counters are now replaced by real-valued variables. If the reward of the current
policy exceeds the bound, the current state is considered as a dead-end. In either
case (step or reward bounds), the derived MDP can be constructed in such a way
that it is guaranteed to be finite-state (which is one of our early assumptions).
Expected reward properties with bounds can be solved in a similar way. Since
the overall procedures stay the same when adding bounds, the correctness and
optimality proofs follow the respective same strategy.

Modysh is the only tool of the Modest Toolset which fully supports all
variants of bounds w.r.t. step/reward bounds and interval types. All other tools
do not treat step bounds at all and only support inclusive upper bounds.

4 Empirical Evaluation

Fig. 1. Number of benchmark instances
supported by tools per property type.
(upper bars: QComp, lower: additional)

Prototypical predecessor versions of
Modysh with less functionality, im-
plemented on a different, less perfor-
mant code base and with strategies
closer to the original version of FRET-
LRTDP took part in QComp 2019
and 2020 [13,18], where the approach
already showed promising results in
comparison to other state-of-the-art
model checkers. Since then, the new
implementation approach presented in
this work and several other optimiza-
tions implied a decrease in runtime of
Modysh by a factor of nearly 1/3.

The benchmark set of QComp com-
prises, appart from other model types,
36 MDP instances. For evaluation pur-
poses, we reran the experiments from
QComp 2020 default often ε-correct
track, i. e., with a precision of ε = 10−3 and a timeout of 30 min, on an Intel
Core i7-4790 CPU 3.60GHz with 32 GB RAM. With this setup we are able to
show plots which are directly comparable to the evaluation of QComp and the
performance improvements of Modysh are clearly visible. In addition, we added
58 additional benchmark instances from the quantitative verification benchmark
set QVBS [24] to our case study to enlarge the number of MDP benchmarks and
thereby also the number of minimum reach and bounded properties. Furthermore,

Dynamic Heuristic Search in Probabilistic Model Checking 27

we wanted to test the tools on both smaller benchmarks, because many tools time
out on the difficult QComp instances, as well as on considerably larger instances
than in QComp, to demonstrate the capabilities and benefits of Modysh of only
inspecting a fraction of the state space. Therefore, we scaled the models for the
israeli-jalfon, philosophers-mdp, pnueli-zuck, rabin and wlan benchmarks up by
parallelizing up to 100 automata for all of them except for wlan, for which 10
processes were already enough such that only Modysh was able to solve it. The
QVBS contains only smaller instances of these benchmarks. For israeli-jalfon,
the largest instance results in a state space size of (2100) − 1, i. e., 1.268 · 1030.
For 100 dining philosophers the state space grows into the order of 1099 and for
100 parallel processes in pnueli-zuck and rabin it is in the order of 10100 and
10105, respectively. 10 parallel senders in wlan result in a size of around 7 · 108
states. The number of benchmark instances supported by each tool per property
type are listed in Figure 1. Since QComp 2020, Modysh added functionality for
bounded properties and some special minimum reach cases.

Not all participating tools of QComp 2020 support MDP benchmarks. There-
fore, we were not able to consider modes [11], STAMINA [34] and DFTRES
[35]. But we added new results for Probabilistic Fast Downward [36], which
took part in QComp 2019 but not in 2020. In addition, ePMC [20], mcsta
[16,19,23] of the Modest Toolset [22], PET [10], Prism [33] and Storm [14]
are part of our evaluation. We contacted the authors of all tools and asked for
the newest version, i. e., improvements in other tools are also taken into account.

Fig. 2. Quantile plots for default tool versions in often ε-correct track.

In the quantile plots in Fig. 2 a point (x, y) indicates that the runtime of the
xth fastest instance of the tool was y seconds. This allows comparing the overall
performance of the tools. The benchmark instances are ordered independently for
each tool depending on its runtime. The count of correctly solved benchmarks c
(no timeout or error) and of supported instances s is given in the label as c/s.
Modysh improved the runtime for many of the QComp instances (Fig. 2, left,
contrastable with Fig. 4 bottom right in [13]) in comparison to QComp 2020
such that it is now among the best three tools for a large number of instances.
The strength of Modysh is impressively demonstrated by the results on the

28 M. Klauck, H. Hermanns

additional benchmark set on the right of Fig. 2. It clearly outperforms the other
tools on the extremely large scaled benchmarks because only a small fraction of
the state space needs to be visited. Modysh is able to solve 7 benchmarks in less
than 30s for which all other tools time out or do not have enough memory. For 5
other models only one other tool is able to solve them. For the largest instances
of philosophers, pnueli-zuck, rabin and wlan only a few thousand states have to
be visited in Modysh and only 1.7 · 103 for israeli-jalfon. All these benchmarks
have in common that they consist of the parallelization of automata of symmetric
structure. The results on both benchmark sets show that Modysh is clearly able
to compete with state-of-the-art model checkers and on certain MDP structures
it is even able to quickly solve instances which no other tool is able to handle.

Fig. 3. Scatter plots (row 1: QComp, 2: additional benchmarks).

More detailed results can be inspected in Fig. 3 showing scatter plots com-
paring individual benchmark instances between two tools or a tool and the
best of all other tools. A point (x, y) indicates a runtime of x seconds for the
tool on the x-axis and a runtime of y seconds for the tool on the y-axis. This
means, if the point lies above the diagonal line, the tool on the x-axis was

Dynamic Heuristic Search in Probabilistic Model Checking 29

the fastest. If the point lies above the dotted line, it was more than ten times
faster. "TO", "ERR" and "INC" mean timeout, error, e. g., out of memory, and
incorrect result, respectively. "n/a" means that the tool is unable to handle the
benchmark instance. The number of benchmark instances on which the tool on
the x-axis outperformed the tool(s) on the y-axis is given in parenthesis in the
label. By the evaluation setup, the upper left plot is a direct update of [13,
Fig. 8, middle]. We see that Modysh is able to compete with the other tools
especially on the additional benchmark set for which the results are depicted in
the lower row. It solves way more instances and property types than probabilistic
Fast Downward (right column), which is based on the same algorithms. It
also supports more properties than mcsta (upper row, middle), i. e., improves
the range of the Modest Toolset and shows better performances on many
instances, especially where mcsta (lower row, middle) or various other tools
(lower row, left) are not able to deliver results at all. This demonstrates the
potential of the methods implemented in Modysh because first, it improves
the model checking performance of the Modest Toolset in comparison to
mcsta on the same code base. Second, integrating these techniques specifically
in Storm looks promising. If Modysh was dominated by a competitor, e. g., on
the QComp benchmarks (upper left), it was often outperformed by Storm. From
QComp 2020 it is already known that Storm’s code base is highly efficient and
the performance is currently out of reach for other model checkers on most of the
benchmarks. Implementing our approach in Storm would boost its performance
even more.

Interactive result tables which enable a direct runtime comparison across
benchmark instances are available online for the QComp benchmarks and for the
additional QVBS benchmarks. Furthermore,anartifactenablingthereproduction
of all empirical results reported in this paper is available online [29].

5 Related Work

As already described in Sect. 3, our algorithms are generalizations of well-known
approaches used in the planning community for the purpose of cost-optimal
planning. Of course, ideas behind heuristic search have already been used in
model checking. We highlight the parallels but also the differences to our work.
Probabilistic Planning and Heuristic Search. A variant of FRET-LRTDP is
available in the probabilistic version of Fast Downward [26] which is one of
the classical progression planning systems based on heuristic search. It has been
extended by Steinmetz et al. [36] for goal probability analysis, i. e., computing
the maximal probability to reach a goal. That extension also encompasses several
heuristic search algorithms like LRTDP with FRET-π.

The original LRTDP work by Bonet et al. [8] is tailored to SSP assuming
conditions (i′) and (ii′), the second version of Bertsekas [7], with strictly positive
action rewards (except at goal states). Kolobov et al. [30,31] instead uses (i) and
(ii′′) when discussing GSSP problems. They showed that several MDP problems,
including MaxProb, can be reduced to this problem class [30,31] and that the

https://depend.cs.uni-saarland.de/~klauck/results-qcomp-benchmarks/table_often-epsilon-correct.html
https://depend.cs.uni-saarland.de/~klauck/results-additional-benchmarks/table_often-epsilon-correct.html
https://depend.cs.uni-saarland.de/~klauck/results-additional-benchmarks/table_often-epsilon-correct.html
http://doi.org/10.5281/zenodo.4922360

30 M. Klauck, H. Hermanns

respective properties can be solved using FRET with LRTDP. We do not need
to assume any of these, but restrict to non-negative reward structures.
Probabilistic Model Checking. This is not the first work to explore probabilistic
planning and heuristic search approaches for probabilistic model checking. For
instance, heuristic search dynamic programming methods have been applied to
MDPs, but for generating probabilistic counterexamples [1]. Closer to our work,
Kretinsky et al. developed heuristics for initializing policies in policy iteration
such that the computation time to solve long-run average reward properties on
MDPs is reduced [32], with specific treatments of SSCs and maximal end compo-
nents similar to the approach of Modysh. The PAC tool [3] uses asynchronous
bounded value iteration techniques interleaved with guided simulation phases
with permanent and transient trap elimination for statistical model checking for
reachability analysis on stochastic games. A combination of Bounded Real-Time
Dynamic Programming (BRTDP) and Monte Carlo Tree Search has been devised
with objectives similar to ours [2]. Technical differences aside, this approach has
only been applied to solve MaxProb properties.

Machine learning techniques have been exploited [10] to verify reachability
properties on MDPs using (1) BRTDP and (2) delayed Q-learning for MDPs
with limited information. The techniques are also applicable to arbitrary MDP
structures due to special treatments of end components and are implemented in
PET (aka. Prism-TUM), which is part of our evaluation in Sect. 4. In parts,
the approach is close to ours for simple reachability properties, but restricted to
that, and uses BRTDP instead of FRET-LRTDP. The paper explicitly mentions
that so far no attempts have been made to adapt these methods in the context
of probabilistic verification. With Modysh we completely fill this gap.

As became clear in our empirical evaluation, heuristic search can be especially
attractive for handling excessively large models. An entirely different approach
to attack such problems is the use of external storage to slowly but exhaustively
model check problem sizes that otherwise do not fit in memory [23].

6 Conclusion

We introduced a heuristic approach to probabilistic model checking all established
property types, except long-run averages, on general MDP structures based on
LRTDP combined with FRET. The approach is implemented in Modysh. We re-
ported on a large empirical evaluation that has demonstrated the competitiveness
of Modysh relative to other state-of-the-art model checking tools. On very large
state spaces our tool outperforms its competitors, demonstrating that planning
techniques can indeed be used to enhance the performance and capabilities of
model checkers.

As a next step we are looking into performance optimizations by exploring
the trade-offs between memory usage and runtime. In addition, other heuristics
known to work well in the planning community might be worth to implement.
Extending the approach to work on other automata types seems also promising.

Dynamic Heuristic Search in Probabilistic Model Checking 31

A Proof for MinProb

As announced in Sect. 3.1, this appendix provides a proof that GLRTDP solves
MinProb properties on general MDP structures correctly by converging to the
optimal fixpoint.
To show convergence to the optimal value function from below in case of an
admissible initialization, we can argue along the invariant

∀k, σ : Vk(s) ≤ P σ
s (
G), where σ s.t. P σ

s (
G) = V ∗(s)

stating that the value function in every iteration is always at most the value
under the optimal policy. This means that an initially admissible value function
always stays admissible. This is true for the admissible initialization when k = 0,
because then V0(s) = 1 if s ∈ G and 0 otherwise. For all other iterations it holds
that Vk+1(s) :=

∑
s′ P (s, a, s′) · Vk(s′) for some action a and we can derive that

∑

s′
P (s, a, s′) · Vk(s′) ≤

∑

s′
P (s, a, s′) · min

σ
P σ

s′(
G)

≤
∑

s′
min

σ
(P (s, a, s′) · P σ

s′(
G)) ≤ min
σ

∑

s′
P (s, a, s′) · P σ

s′(
G).

The second inequality holds because σopt is memoryless and independent of s′.
Now assume σopt is such that P

σopt
s (
G) is minimal for all s. Then for action

a = greedy(s, Vk) we have for any action b, and in particular for b = σopt(s),
∑

s′
P (s, a, s′) · Vk(s′) ≤

∑

s′
P (s, b, s′) · Vk(s′).

Moreover Vk(s′) ≤ P
σopt

s′ (
G), which allows us to derive
∑

s′
P (s, a, s′) · Vk(s′) ≤

∑

s′
P (s, σopt(s), s′) · P

σopt

s′ (
G) = P σopt
s (
G).

Claim: If Vk is a fixpoint for k → ∞ then P σ(
G) = V∞(s0)∀σ greedy in V. (5)
Since V ∗(s) := minσ P σ

s (
G) this means V ∗(s0) ≤ V∞(s0) and with the result
from above (∀k : Vk ≤ V ∗) we can conclude V ∗(s0) = V∞(s0).
It remains to show that (5) holds: Let σk := greedy(Vk), i. e., a greedy policy
with respect to the value function Vk and Sk = {s|P σk

s0
(
s) > 0}, i. e., all states

reachable with this greedy policy, then max(residual(Sk)) ≤ δk and for k → ∞
it holds that δk → 0.
To show that δk will approach 0 it is enough to argue about the states which
will be updated an infinite number of times, i. e., in the end, about the states on
optimal policies. These are the states in S∞ =

⋂
i≥0

⋃
k≥i Sk.

Let K be such that ∀k ≥ K :
⋃

i≥k Si = S∞, i. e. a step from which on we only
consider states which will be infinitely often visited when running GLRTDP
infinitely long. Assume we are in a step j + 1 ≥ K. Let s ∈ S∞. We have to
distinguish two cases:

32 M. Klauck, H. Hermanns

– If s has not been updated then Vj+1(s) = Vj(s).
– If s is the updated state then Vj+1(s) = minα

∑
s′ P (s, α, s′) · Vj(s′)

But this is the same as for simple synchronous value iteration, for which con-
vergence against the optimal fixpoint is proven. For our asynchronous case in
GLRTDP we nevertheless have to guarantee fairness among the states in S∞,
i. e., we have to make sure that they are updated infinitely often. This is the case
because each possible trial of S∞ (there are finitely many trials) appears infinitely
often, i. e. the states in this trial are updated infinitely often (by construction of
GLRTDP when choosing the next greedy action). All other states not in S∞ can
be ignored because they will not influence the greedy policy and optimal values
because they are already too large:

For any s ∈ S \S∞ it holds that V∞(s) = VK(s) ≤ V ∗(s) and for any s ∈ S∞
by definition of S∞ and K we know that an action leading again to a state
in S∞ will be chosen, i. e., an a ∈ σ∞: V∞(s) ≤ ∑

s′∈S∞ P (s, σ∞, s′) · V∞(s′)
but for every action we choose the greedy one and for any k ≥ K it holds that
Vk(s) ≤ ∑

s′∈S P (s, a, s′) ·Vk(s′) ≤ V∞(s), i. e., the action in σ∞ must have been
the greedy action not leading to S \S∞. This means that V∞ defines an optimal
strategy on S∞ for s0 ∈ S∞ which is also an optimal strategy on S because no
state s′ ∈ S \ S∞ is visited even with V∞(s′) < V ∗(s′). In addition the initial
state lies in S∞ by construction, i. e., Pmin(
G) = V σopt(s0) reaches the fixpoint
and is updated infinitely often.

In summary, when running GLRTDP in an infinite number of iterations, the
value function for states in S∞ will approach the optimal values of the minimal
probability to reach the goal from below, will never get larger than the optimal
value and the difference between V and V ∗ always becomes strictly smaller for
these states. In addition, we can at some point stop updating the value function
for parts of the state space because these values will not have an influence on
the correct optimal result for the initial state. In our implementation GLRTDP
is designed in such a way that it stops when the values on the optimal policy
only change by less than ε, which is the same convergence criterion as for simple
value iteration.

B Proof for MaxProb

Taking up our promise from Sect. 3.1, in the following we will first give an
intuition about why the presented combination of GLRTDP and FRET solves
MaxProb properties on general MDP structures correctly, not only on problems
having at least one almost-sure policy as proven in [31], by converging to the
optimal fixpoint. Afterwards we sketch a more formal proof.

All greedy policies inspected by GLRTDP at some point end in a goal state
or a dead-end state. This could be a real dead-end, i. e., a sink state with only
a self-loop or a permanent trap which has been transformed to a dead-end by
the cycle elimination of FRET. If it is a permanent trap identified by FRET, the
values of all states in it are set to 0. Otherwise, when the sink state is discovered
for the first time its value is also directly set to 0. This means we tag these

Dynamic Heuristic Search in Probabilistic Model Checking 33

states, do not explore them further and propagate their value back through the
graph. Cycling forever is not possible because FRET eventually eliminates all
such cycles in greedy policies. With this, we can state that at some point no more
states are left to explore in the current GLRTDP trial because all relevant traps
are eliminated or a goal or a sink has been found. Then GLRTDP runs until
the state values of the current greedy policies are converged up to ε. Even if the
greedy policy is not the same in every iteration, at some point it will stay within
a set of greedy states which are part of finitely many greedy policies. The values
of these states will have converged close enough to the optimal ones such that
the algorithm concentrates on these optimal policies. The value function used in
GLRTDP is initialized admissibly and therefore can only monotonically decrease
and approach the optimal fixpoint from above. When this point is reached (up to
ε), the entire procedure (GLRTDP + FRET) terminates. This fixpoint must be
the optimal one because the Bellman equation only admits a single fixpoint [7].

To show convergence to the optimal value function from above in case of an
admissible initialization, we can argue along the invariant

∀k, σ : Vk(s) ≥ P σ
s (
G), where σ s.t. P σ

s (
G) = V ∗(s)

stating that the value function in every iteration is always greater or equal
than the optimal value under the optimal policy. This means that an initially
admissible value function always stays admissible. This is true for the admissible
initialization when k = 0, because then V0(s) = 0 if s ∈ S⊥ and 1 otherwise. For
all other iterations it holds that

Vk+1(s) :=
∑

s′
P (s, a, s′) · Vk(s′)

for some action a and we can derive that
∑

s′
P (s, a, s′) · Vk(s′) ≥

∑

s′
P (s, a, s′) · max

σ
P σ

s′(
G)

≥
∑

s′
max

σ
(P (s, a, s′) · P σ

s′(
G)) ≥ max
σ

∑

s′
P (s, a, s′) · P σ

s′(
G)

The second inequality holds because σopt is memoryless and independent of s′.
Now assume σopt is such that P

σopt
s (
G) is maximal for all s. Then for action

a = greedy(s, Vk) we have for any action b, and in particular for b = σopt(s),
∑

s′
P (s, a, s′) · Vk(s′) ≥

∑

s′
P (s, b, s′) · Vk(s′).

Moreover Vk(s′) ≥ P
σopt

s′ (
G) and hence
∑

s′
P (s, a, s′) · Vk(s′) ≥

∑

s′
P (s, σopt(s), s′) · P

σopt

s′ (
G) = P σopt
s (
G).

Claim: If Vk is a fixpoint for k → ∞ then P σ(
G) = V∞(s0) ∀σ greedy in V. (6)
Since V ∗(s) := maxσ P σ

s (
G) this means V ∗(s0) ≥ V∞(s0) and with the result
from above (∀k : Vk ≥ V ∗) we can conclude V ∗(s0) = V∞(s0).

34 M. Klauck, H. Hermanns

It remains to show that (6) holds: Let σk := greedy(Vk), i. e., a greedy policy
with respect to the value function Vk and Sk = {s|P σk

s0
(
s) > 0}, i. e., all states

reachable with this greedy policy, then max(residual(Sk)) ≤ δk and for k → ∞
it holds that δk → 0.
To show that δk will approach 0 it is enough to argue about the states which
will be updated an infinite number of times, i. e., in the end, about the states on
optimal policies. These are the states in S∞ =

⋂
i≥0

⋃
k≥i Sk.

Let K be such that ∀k ≥ K :
⋃

i≥k Si = S∞, i. e. a step from which on we only
consider states which will be infinitely often visited when running FRET-LRTDP
infinitely long. Assume we are in a step j + 1 ≥ K. Let s ∈ S∞. We have to
distinguish two cases:

– If s has not been updated then Vj+1(s) = Vj(s).
– If s is the updated state then Vj+1(s) = maxα

∑
s′ P (s, α, s′) · Vj(s′)

This is the same as for simple synchronous value iteration, for which convergence
against the optimal fixpoint is proven. For our asynchronous case in GLRTDP we
are left with the duty to guarantee fairness among the states in S∞, i. e., we have
to make sure that they are updated infinitely often. This is the case because each
possible trial of S∞ (there are finitely many trials) appears infinitely often, i. e.,
the states in this trial are updated infinitely often (by construction of GLRTDP
when choosing the next greedy action). All other states not in S∞ can be ignored
because they will not influence the greedy policy and optimal values because
they are already too large:

For any s ∈ S \S∞ it holds that V∞(s) = VK(s) ≥ V ∗(s) and for any s ∈ S∞
by definition of S∞ and K we know that an action leading again to a state
in S∞ will be chosen, i. e., an a ∈ σ∞: V∞(s) ≥ ∑

s′∈S∞ P (s, σ∞, s′) · V∞(s′)
but for every action we choose the greedy one and for any k ≥ K it holds that
Vk(s) ≥ ∑

s′∈S P (s, a, s′) ·Vk(s′) ≥ V∞(s), i. e., the action in σ∞ must have been
the greedy action not leading to S \ S∞.

This means that V∞ defines an optimal strategy on S∞ for s0 ∈ S∞ which is
also an optimal strategy on S because no state s′ ∈ S \ S∞ is visited even with
V∞(s′) > V ∗(s′).

In addition the initial state lies in S∞ by construction, i. e., Pmax(
G) =
V σopt(s0) reaches the fixpoint and is updated infinitely often.

Altogether, this shows that when running FRET-LRTDP over an infinite
number of iterations, the value function for states in S∞ will approach the optimal
values of the maximal probability to reach the goal from above, will never get
smaller than the optimal value and the difference between V and V ∗ always
becomes strictly smaller for these states. In addition, we can at some point stop
updating the value function for parts of the state space because these values
will not have an influence on the correct optimal result for the initial state. In
our implementation FRET-LRTDP is designed in such a way that it stops when
the values on the optimal policy only change by less than ε, which is the same
convergence criterion as for simple value iteration.

Dynamic Heuristic Search in Probabilistic Model Checking 35

References

1. Aljazzar, H., Leue, S.: Generation of counterexamples for model checking of Markov
decision processes. In: QEST 2009, Sixth International Conference on the Quan-
titative Evaluation of Systems, Budapest, Hungary, 13-16 September 2009. pp.
197–206. IEEE Computer Society (2009). https://doi.org/10.1109/QEST.2009.10,
https://ieeexplore.ieee.org/xpl/conhome/5290656/proceeding

2. Ashok, P., Brázdil, T., Kretínský, J., Slámecka, O.: Monte carlo tree search for veri-
fying reachability in Markov decision processes. In: Margaria, T., Steffen, B. (eds.)
Leveraging Applications of Formal Methods, Verification and Validation. Verifi-
cation - 8th International Symposium, ISoLA 2018, Limassol, Cyprus, November
5-9, 2018, Proceedings, Part II. Lecture Notes in Computer Science, vol. 11245,
pp. 322–335. Springer (2018). https://doi.org/10.1007/978-3-030-03421-4_21

3. Ashok, P., Kretínský, J., Weininger, M.: PAC statistical model checking for Markov
decision processes and stochastic games. In: Dillig and Tasiran [15], pp. 497–519.
https://doi.org/10.1007/978-3-030-25540-4_29

4. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic
programming. Artif. Intell. 72(1-2), 81–138 (1995). https://doi.org/10.1016/0004-
3702(94)00011-O

5. Bellman, R.: A Markovian decision process. Journal of mathematics and mechanics
6(5), 679–684 (1957)

6. Bertsekas, D.P.: Dynamic Programming and Optimal Control, Vol. 1. Athena Sci-
entific (1995)

7. Bertsekas, D.P.: Dynamic Programming and Optimal Control, Vol. 2. Athena Sci-
entific (1995)

8. Bonet, B., Geffner, H.: Labeled RTDP: improving the convergence of real-time
dynamic programming. In: Giunchiglia, E., Muscettola, N., Nau, D.S. (eds.) Pro-
ceedings of the Thirteenth International Conference on Automated Planning and
Scheduling (ICAPS 2003), June 9-13, 2003, Trento, Italy. pp. 12–21. AAAI (2003),
http://www.aaai.org/Library/ICAPS/2003/icaps03-002.php

9. Bonet, B., Geffner, H.: Learning depth-first search: A unified approach to heuris-
tic search in deterministic and non-deterministic settings, and its application to
MDPs. In: Long, D., Smith, S.F., Borrajo, D., McCluskey, L. (eds.) Proceedings of
the Sixteenth International Conference on Automated Planning and Scheduling,
ICAPS 2006, Cumbria, UK, June 6-10, 2006. pp. 142–151. AAAI (2006), http://
www.aaai.org/Library/ICAPS/2006/icaps06-015.php

10. Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretínský, J., Kwiatkowska,
M.Z., Parker, D., Ujma, M.: Verification of Markov decision processes using learn-
ing algorithms. In: Cassez, F., Raskin, J. (eds.) Automated Technology for Verifi-
cation and Analysis - 12th International Symposium, ATVA 2014, Sydney, NSW,
Australia, November 3-7, 2014, Proceedings. Lecture Notes in Computer Science,
vol. 8837, pp. 98–114. Springer (2014). https://doi.org/10.1007/978-3-319-11936-
6_8, https://doi.org/10.1007/978-3-319-11936-6

11. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical
model checker for nondeterminism and rare events. Int. J. Softw. Tools Technol.
Transf. 22(6), 759–780 (2020). https://doi.org/10.1007/s10009-020-00563-2

12. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: Quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems - 23rd Interna-
tional Conference, TACAS 2017, Held as Part of the European Joint Conferences

https://doi.org/10.1109/QEST.2009.10
https://ieeexplore.ieee.org/xpl/conhome/5290656/proceeding
https://doi.org/10.1007/978-3-030-03421-4_21
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1016/0004-3702(94)00011-O
http://www.aaai.org/Library/ICAPS/2003/icaps03-002.php
http://www.aaai.org/Library/ICAPS/2006/icaps06-015.php
http://www.aaai.org/Library/ICAPS/2006/icaps06-015.php
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6
https://doi.org/10.1007/s10009-020-00563-2

36 M. Klauck, H. Hermanns

on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10206, pp.
151–168 (2017). https://doi.org/10.1007/978-3-662-54580-5_9

13. Budde, C.E., Hartmanns, A., Klauck, M., Kretinsky, J., Parker, D., Quatmann, T.,
Turrini, A., Zhang, Z.: On Correctness, Precision, and Performance in Quantitative
Verification (QComp 2020 Competition Report). In: Proceedings of the 9th Inter-
national Symposium On Leveraging Applications of Formal Methods, Verification
and Validation. Software Verification Tools (2020). https://doi.org/10.1007/978-
3-030-83723-5_15

14. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: A modern proba-
bilistic model checker. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Ver-
ification - 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10427,
pp. 592–600. Springer (2017). https://doi.org/10.1007/978-3-319-63390-9_31

15. Dillig, I., Tasiran, S. (eds.): Computer Aided Verification - 31st International Con-
ference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part
I, Lecture Notes in Computer Science, vol. 11561. Springer (2019). https://doi.
org/10.1007/978-3-030-25540-4

16. Hahn, E.M., Hartmanns, A.: A comparison of time- and reward-bounded prob-
abilistic model checking techniques. In: Fränzle, M., Kapur, D., Zhan, N. (eds.)
Dependable Software Engineering: Theories, Tools, and Applications - Second
International Symposium, SETTA 2016, Beijing, China, November 9-11, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 9984, pp. 85–100 (2016).
https://doi.org/10.1007/978-3-319-47677-3_6

17. Hahn, E.M., Hartmanns, A.: Efficient algorithms for time- and cost-bounded prob-
abilistic model checking. CoRR abs/1605.05551 (2016), http://arxiv.org/abs/
1605.05551

18. Hahn, E.M., Hartmanns, A., Hensel, C., Klauck, M., Klein, J., Kretínský, J.,
Parker, D., Quatmann, T., Ruijters, E., Steinmetz, M.: The 2019 comparison
of tools for the analysis of quantitative formal models - (QComp 2019 compe-
tition report). In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 25 Years of TACAS:
TOOLympics, Held as Part of ETAPS 2019, Prague, Czech Republic, April 6-11,
2019, Proceedings, Part III. Lecture Notes in Computer Science, vol. 11429, pp.
69–92. Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_5

19. Hahn, E.M., Hartmanns, A., Hermanns, H.: Reachability and reward checking for
stochastic timed automata. Electron. Commun. Eur. Assoc. Softw. Sci. Technol.
70 (2014). https://doi.org/10.14279/tuj.eceasst.70.968

20. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: A web-based
probabilistic model checker. In: Jones, C.B., Pihlajasaari, P., Sun, J. (eds.) FM
2014: Formal Methods - 19th International Symposium, Singapore, May 12-16,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8442, pp. 312–317.
Springer (2014). https://doi.org/10.1007/978-3-319-06410-9_22, https://doi.org/
10.1007/978-3-319-06410-9

21. Hansen, E.A., Zilberstein, S.: Lao*: A heuristic search algorithm that finds solu-
tions with loops. Artif. Intell. 129(1-2), 35–62 (2001). https://doi.org/10.1016/
S0004-3702(01)00106-0

22. Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment for
quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems - 20th International

https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-030-25540-4
https://doi.org/10.1007/978-3-030-25540-4
https://doi.org/10.1007/978-3-319-47677-3_6
http://arxiv.org/abs/1605.05551
http://arxiv.org/abs/1605.05551
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.14279/tuj.eceasst.70.968
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9
https://doi.org/10.1007/978-3-319-06410-9
https://doi.org/10.1016/S0004-3702(01)00106-0
https://doi.org/10.1016/S0004-3702(01)00106-0

Dynamic Heuristic Search in Probabilistic Model Checking 37

Conference, TACAS 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014.
Proceedings. Lecture Notes in Computer Science, vol. 8413, pp. 593–598. Springer
(2014). https://doi.org/10.1007/978-3-642-54862-8_51

23. Hartmanns, A., Hermanns, H.: Explicit model checking of very large MDP using
partitioning and secondary storage. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
Automated Technology for Verification and Analysis - 13th International Sympo-
sium, ATVA 2015, Shanghai, China, October 12-15, 2015, Proceedings. Lecture
Notes in Computer Science, vol. 9364, pp. 131–147. Springer (2015). https://doi.
org/10.1007/978-3-319-24953-7_10

24. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The Quan-
titative Verification Benchmark Set. In: Vojnar, T., Zhang, L. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 25th International Con-
ference, TACAS 2019, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 11427, pp. 344–350.
Springer (2019). https://doi.org/10.1007/978-3-030-17462-0_20

25. Hatefi-Ardakani, H.: Finite horizon analysis of Markov automata. Ph.D. the-
sis, Saarland University, Germany (2017), http://scidok.sulb.uni-saarland.de/
volltexte/2017/6743/

26. Helmert, M.: The fast downward planning system. CoRR abs/1109.6051 (2011),
http://arxiv.org/abs/1109.6051

27. Izadi, M.T.: Sequential decision making under uncertainty. In: Zucker, J., Saitta, L.
(eds.) Abstraction, Reformulation and Approximation, 6th International Sympo-
sium, SARA 2005, Airth Castle, Scotland, UK, July 26-29, 2005, Proceedings. Lec-
ture Notes in Computer Science, vol. 3607, pp. 360–361. Springer (2005). https://
doi.org/10.1007/11527862_33

28. The JANI specification. http://www.jani-spec.org/, accessed on 25/06/2021
29. Klauck, M., Hermanns, H.: Artifact accompanying the paper "A Modest Approach

to Dynamic Heuristic Search in Probabilistic Model Checking" (2021), available at
http://doi.org/10.5281/zenodo.4922360

30. Kolobov, A.: Scalable methods and expressive models for planning under uncer-
tainty. Ph.D. thesis, University of Washington (2013)

31. Kolobov, A., Mausam, Weld, D.S., Geffner, H.: Heuristic search for generalized
stochastic shortest path mdps. In: Bacchus, F., Domshlak, C., Edelkamp, S.,
Helmert, M. (eds.) Proceedings of the 21st International Conference on Automated
Planning and Scheduling, ICAPS 2011, Freiburg, Germany June 11-16, 2011. AAAI
(2011), http://aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/view/2682

32. Kretínský, J., Meggendorfer, T.: Efficient strategy iteration for mean payoff in
Markov decision processes. In: D’Souza, D., Kumar, K.N. (eds.) Automated Tech-
nology for Verification and Analysis - 15th International Symposium, ATVA 2017,
Pune, India, October 3-6, 2017, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 10482, pp. 380–399. Springer (2017). https://doi.org/10.1007/978-3-319-
68167-2_25, https://doi.org/10.1007/978-3-319-68167-2

33. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 585–
591. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1_47, https://doi.
org/10.1007/978-3-642-22110-1

https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-319-24953-7_10
https://doi.org/10.1007/978-3-319-24953-7_10
https://doi.org/10.1007/978-3-030-17462-0_20
http://scidok.sulb.uni-saarland.de/volltexte/2017/6743/
http://scidok.sulb.uni-saarland.de/volltexte/2017/6743/
http://arxiv.org/abs/1109.6051
https://doi.org/10.1007/11527862_33
https://doi.org/10.1007/11527862_33
http://www.jani-spec.org/
http://doi.org/10.5281/zenodo.4922360
http://aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/view/2682
https://doi.org/10.1007/978-3-319-68167-2_25
https://doi.org/10.1007/978-3-319-68167-2_25
https://doi.org/10.1007/978-3-319-68167-2
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1
https://doi.org/10.1007/978-3-642-22110-1

38 M. Klauck, H. Hermanns

34. Neupane, T., Myers, C.J., Madsen, C., Zheng, H., Zhang, Z.: STAMINA: stochastic
approximate model-checker for infinite-state analysis. In: Dillig and Tasiran [15],
pp. 540–549. https://doi.org/10.1007/978-3-030-25540-4_31

35. Ruijters, E., Reijsbergen, D., de Boer, P., Stoelinga, M.: Rare event simulation for
dynamic fault trees. Reliab. Eng. Syst. Saf. 186, 220–231 (2019). https://doi.org/
10.1016/j.ress.2019.02.004

36. Steinmetz, M., Hoffmann, J., Buffet, O.: Goal probability analysis in probabilistic
planning: Exploring and enhancing the state of the art. J. Artif. Intell. Res. 57,
229–271 (2016). https://doi.org/10.1613/jair.5153

37. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972). https://doi.org/10.1137/0201010

https://doi.org/10.1007/978-3-030-25540-4_31
https://doi.org/10.1016/j.ress.2019.02.004
https://doi.org/10.1016/j.ress.2019.02.004
https://doi.org/10.1613/jair.5153
https://doi.org/10.1137/0201010

Tweaking the Odds in Probabilistic
Timed Automata

Arnd Hartmanns1(B) , Joost-Pieter Katoen1,2 , Bram Kohlen1 ,
and Jip Spel2

1 University of Twente, Enschede, The Netherlands
a.hartmanns@utwente.nl

2 RWTH Aachen University, Aachen, Germany

Abstract. We consider probabilistic timed automata (PTA) in which
probabilities can be parameters, i.e. symbolic constants. They are use-
ful to model randomised real-time systems where exact probabilities are
unknown, or where the probability values should be optimised. We prove
that existing techniques to transform probabilistic timed automata into
equivalent finite-state Markov decision processes (MDPs) remain correct
in the parametric setting, using a systematic proof pattern. We imple-
mented two of these parameter-preserving transformations—using digi-
tal clocks and backwards reachability—in the Modest Toolset. Using
Storm’s parameter space partitioning approach, parameter values can
be efficiently synthesized in the resulting parametric MDPs. We use sev-
eral case studies from the literature of varying state and parameter space
sizes to experimentally evaluate the performance and scalability of this
novel analysis trajectory for parametric PTA.

1 Introduction

Probabilistic timed automata (PTA) [25,45] combine the features of timed
automata (TA) [2], to capture hard continuous real-time behaviour with
nondeterministic time and choices, with those of Markov decision processes
(MDP) [50], to model discrete random decisions. PTA are well-equipped for the
study of randomised algorithms interacting with an environment where actions
with uncertain outcomes complete after (upper- and lower-bounded) delays.
They have been fruitfully applied to verify performance and reliability aspects
of communication protocols and networked systems, see e.g. [22–24,39].

Building a PTA model requires knowledge of the precise probabilities of all
random events. While unproblematic for a randomised algorithm such as the
binary exponential backoff procedure in a CSMA/CA wireless network by itself,
uncertainty about the operating environment often means that we do not know,
say, the precise probability p of message loss once we decide to send. In such cases,
we may turn the verification question around: Instead of computing whether the
probability of an eventual successful transmission is above the required threshold

This work was funded by DFG RTG 2236 “UnRAVeL”, DFG grant 433044889
PASIWY, NWO grant OCENW.KLEIN.311, and NWO VENI grant 639.021.754.

c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 39–58, 2021.
https://doi.org/10.1007/978-3-030-85172-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_3&domain=pdf
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0003-2908-8838
http://orcid.org/0000-0002-9113-2791
https://doi.org/10.1007/978-3-030-85172-9_3

40 A. Hartmanns et al.

given a concrete p, we determine the set of values of p for which the requirement
is satisfied. We can then judge whether the network’s setup or protocols are
sufficiently robust for the intended environments.

In this paper, we focus on parametric PTA (pPTA), where the probabil-
ities of some events are unknown and specified as polynomials over a finite
set of parameters like p above. We consider the analysis of (time-bounded)
probabilistic reachability properties, i.e. statements of the form “is the max-
imum/minimum probability of eventually/within t time units reaching a goal
location above/below v ∈ (0, 1)?”, but instead of a yes/no answer we want to
compute an (approximation of) the set of parameter valuations under which the
property is satisfied.

Several approaches have been developed over the past two decades to verify
PTA with known probabilities. Most approaches compute a finite abstraction
of the continuous-time behaviour, turning the PTA into an equivalent MDP on
which the property of interest can be verified using standard MDP model check-
ing [10,11]. This includes using the region graph [45], backwards reachability [46],
and digital clocks [34,44]. The latter two are implemented in the Prism [43] tool
while the Modest Toolset’s [28] mcsta model checker uses digital clocks.
The stochastic games approach [42], implemented in Prism, employs games
in place of MDP to iteratively refine the abstraction up to the desired preci-
sion. Uppaal smc [21] applies statistical model checking (SMC) [1] to possibly
non-deterministic PTA by interpreting nondeterminism probabilistically. It thus
delivers some probability between minimum and maximum. Using extensions
of lightweight scheduler sampling [47] to PTA [20,31], the Modest Toolset’s
modes simulator [15] can deliver upper (lower) bounds on min. (max.) via SMC.

Our contribution is to extend the reach of model checking to pPTA:
we lift the PTA-to-MDP abstraction techniques to pPTA, then apply parameter
space partitioning [14,51] on the resulting MDP to approximate the set of satisfy-
ing valuations. We prove that the abstractions remain correct in the parametric
setting (Sect. 3), provide an implementation using digital clocks and backwards
reachability in the Modest Toolset followed by parameter space partitioning
in Storm [33] (Sect. 4), and use it to experimentally evaluate the performance
and scalability of our approach (Sect. 5). For the evaluation, we extend all suit-
able PTA from the Quantitative Verification Benchmark Set (QVBS) [30] with
parameters, and additionally study pPTA models of the AODV wireless routing
protocol [39]. The latter solves a critical open problem the previous study of
the protocol, which had to resort to “testing” by model checking a finite set of
selected values for probabilities that are actually unknown.

Related Work. [41] provide a tool to model-check interval PTA. An interval PTA
is a special case of pPTA in which no parameter occurs at multiple states. We
are not aware of any other work tackling the problem of model-checking pPTA.
Instead of parametrising the probabilities, however, one may parametrise the
delays [3]. Where the guard of an edge in a TA with clock c may be the clock
constraint c ≥ 3, it may be c ≥ 2 · p in such a constraint-parametric TA (cpTA)
with p a parameter. For this model, even basic problems like the existence of a
parameter valuation under which a goal state is reachable are undecidable [3,4],

Tweaking the Odds in Probabilistic Timed Automata 41

except in restricted cases such as bounded integer values [37] or L/U TA [35].
Research on cpTA remains active to this day; recent work, for example, proposes
a semi-algorithm for liveness [5]. The inverse method for cpTA [6] extends one
parameter valuation v0 to a set of valuations V ⊇ { v0 } such that all v ∈ V satisfy
the same given reachability properties. In its adaptation to cpPTA [8], all v ∈ V
must result in the same reachability probabilities. Parametric interval proba-
bilistic timed automata [7] combine cpPTA with interval Markov chains [36],
i.e. compared to cpPTA, the concrete probabilities are replaced by intervals of
possible probabilities. In contrast to parametric probabilities, intervals cannot
express dependencies between the probabilities of different events (such as one
event being twice as likely as another). For this model, research currently remains
focused on the question of consistency [7].

2 Preliminaries

We now introduce TA, PTA, and pPTA in order, highlighting the differences.

2.1 Timed Automata

A timed automaton [2] is a labelled transition system (LTS) [12] extended with
a finite set X of clocks taking non-negative real values and all increasing at rate
1 over time. A clock valuation is a function v : X → R≥0. We denote the set
of all clock valuations by R

X
≥0. For v ∈ R

X
≥0 and t ∈ R≥0, the valuation v + t

is defined by (v + t)(x) = v(x) + t for all x ∈ X . For X ⊆ X , v[X := 0] is
the clock valuation where v[X := 0](x) = 0 if x ∈ X and v[X := 0](x) = v(x)
otherwise. Finally, 0 is the zero valuation, i.e. 0(x) = 0 for all x ∈ X . The set
CC(X) of clock constraints over X contains all expressions defined by

X ::= x < c | x ≤ c | x > c | x ≥ c | X ∧ X
where x ∈ X and c ∈ N. To keep the presentation simple, w.l.o.g. we omit
diagonal and disjunctive clock constraints. Valuation v satisfies clock constraint
X , denoted v |= X , iff the expression X evaluates to true after replacing each
x ∈ X with v(x). The semantics of clock constraint X is the zone ζX := {v ∈
R

X
≥0 | v |= X}. Let Zones(X) denote the set of zones over the constraints X .

Definition 1. A timed automaton (TA) is a tuple B = (Loc, �0,Act ,X , ↪→,
inv) where Loc, Act and X are finite sets of locations, actions, and clocks,
respectively, with initial location �0 ∈ Loc, the transition relation is

↪→ ⊆ Loc × CC(X) × Act × 2X × Loc,

and inv : Loc → CC(X) assigns an invariant to each location.

An edge from � to �′ is a tuple (�, g, a,X, �′) ∈ ↪→ where guard g must be satisfied
in order to take the edge, and X contains the clocks to be reset. We assume that
every edge is uniquely identified by its source location and action.

42 A. Hartmanns et al.

Fig. 1. TA B Fig. 2. PTA A Fig. 3. pPTA P

Example 1. Figure 1 shows TA B with four locations (labelled by the location
name and its invariant) and two clocks x and y. Initially, the system is in location
init. It can remain there as long as x ≤ 2∧y ≤ 24; after one time unit, the edges
to done and lost become enabled. In lost, the system remains as long as x ≤ 8.
The edge back to init is enabled when x = 8; when taken, clock x is reset. If 18
time units passed, and we are (still or again) in init, the edge to fail is enabled.

Formally, the semantics of a TA is defined in terms of a timed transition system
where transitions are labelled with either an action or a time duration.

Definition 2. The semantics of a TA B is the timed transition system
�B�ts = (S, s0,Act ′,→) where S = {(�, v) ∈ Loc×R

X
≥0 | v |= inv(�)} is the set of

states with initial state s0 = (�0,0), the action labels are in Act ′ = Act ∪ R≥0,
and the transition relation → is the smallest relation satisfying inference rules

(�, g, a,X, �′) ∈ ↪→ v |= g v[X := 0] |= inv(�′)

(�, v)
a−→ (�′, v[X := 0])

v + d |= inv(�) d ∈ R≥0

(�, v)
d−→ (�, v + d)

We refer to transitions due to the left inference rule as jumps with action a and
to the others as delays of duration d. Observe that �B�ts has uncountably many
states in general. Infinite paths of �B�ts are of the form s0

a0−→ s1
a1−→ s2 · · ·

with the si ∈ S and ai ∈ Act ′. Finite paths are defined similarly. Let PathsB
inf

(PathsB
fin) denote the set of all infinite (finite) paths of �B�ts. W.l.o.g. we can

assume that the first transition of a path is a delay and that delays and jumps
alternate. �B�ts may contain non-divergent paths [45], i.e. paths along which
infinitely many jumps happen in a finite amount of time.

Definition 3. The path π ∈ PathsB
inf is divergent if the sum of the durations

of its delays—its elapsed time—is ∞.

2.2 Probabilistic Timed Automata

A probability distribution over a countable set X is a function μ : X → [0, 1] ⊆
R with

∑
x∈X μ(x) = 1. Let Distr(X) denote the set of distributions on X.

Probabilistic timed automata [25,45] extend TA with probabilistic transitions.

Tweaking the Odds in Probabilistic Timed Automata 43

Definition 4. A probabilistic timed automaton (PTA) is a tuple A = (Loc,
�0,Act ,X , prob, inv) as in Definition 1 except that prob : Loc×CC(X)×Act →
Distr(2X × Loc) is the probabilistic transition function.

If prob(�, g, a)(X, �′) > 0 then (�, g, a,X, �′) is an edge of the PTA.

Example 2. Consider TA B and PTA A from Fig. 2. Whereas B has two send
edges (one for successful, one for failed transmissions), A has one probabilistic
edge, where the probability of successful transmission is 0.9.

A TA is a PTA with probability 1 for all edges. We use MDP for their semantics:

Definition 5. A Markov decision process (MDP) M is a timed transition
system with probabilistic transition function prob : S × Act ′ → Distr(S).

If prob(s, a, μ) with μ(s′) = p, we write prob(s, a, s′) = p. Finite and infinite
paths for MDPs are defined as for timed transition systems, with the difference
that for path s0

a0−→ s1
a1−→ s2 · · · we require that prob(si, ai, si+1) > 0. To be

able to reason about the probabilities of certain events in (timed) MDPs, we use
schedulers. A scheduler maps finite paths to an available duration if the path
has an even number of transitions and to an available action in Act otherwise.

Definition 6. A (history-dependent) scheduler for a timed MDP M is a func-
tion σ : PathsM

fin → (Act � R≥0) where, for π̂ = s0
a0−→ s1 . . .

an−1−−−→ sn, we have
σ(π̂) ∈ Act if n is odd and σ(π̂) ∈ R≥0 otherwise.

Applying scheduler σ to MDP M yields the Markov chain Mσ. For a fixed
scheduler σ and state s, a probability measure PrM

σ

s can be defined over the
infinite paths starting in s induced by σ using the standard cylinder set con-
struction (see e.g. [12, Ch. 10]). We restrict to almost-sure divergent schedulers,
which are those schedulers σ where

PrM
σ

s {π ∈ PathsMσ
inf | π is divergent } = 1.

Let Scheddiv(M) denote the set of almost-sure divergent schedulers of M.
The notions of (almost-sure divergent) schedulers can be lifted to PTA A in
a straightforward manner by considering the corresponding notion on the dense-
time semantics of a PTA, which is an uncountably large MDP:

Definition 7. The dense-time semantics of a PTA A is the MDP

�A�dense = (S, s0,Act ′, prob′)

where S, s0, and Act ′ are as in Definition 2, and if prob(l, g, a, ·, ·) is defined,
then prob′((�, v), a, (�′, v′)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

X⊆X :
v′=v[X:=0]

prob(�, g, a,X, �′) if a ∈ Act ∧ v |= g

1 if a ∈ R≥0 ∧ � = �′ ∧ v′ = v + a |= inv(�)
0 otherwise.

44 A. Hartmanns et al.

We assume PTA to be well-formed : if prob′((�, v), a, (�′, v′)) > 0 then v′ |=
inv(�′), for all reachable (�, v). We lift the notion of a scheduler to PTA A using
the above semantics, i.e. Sched(A) := Sched(�A�dense) and Aσ := �A�σ

dense.

2.3 Parametric Probabilistic Timed Automata

Let V be a set of n real-valued parameters (or variables) p1, . . . , pn. Let Q(V)
denote the set of multivariate polynomials over V . We write p ∈ f if parameter p
occurs in polynomial f . A parameter instantiation is a function u : V → R. The
parameter space for V is the hyper-rectangle over the lower/upper bounds for
the parameter in V . A polynomial f can be interpreted as a function f : Rn → R

where f(u) is obtained by substitution, i.e. in f(u) each occurrence of pi in f
is replaced by u(pi). To make it clear where substitution occurs, we write f [u]
instead of f(u) from now on. Let DistrQ(V)(X) denote the set of parametric prob-
ability distributions over X induced by the polynomials in Q(V), i.e. of functions
μ : X → Q(V) such that

∑
x∈X μ(x)[u] = 1 for all u within the parameter space.

A parametric PTA is a PTA in which the transitions use parametric distributions
to select the clocks to reset and the successor location.

Definition 8. A parametric PTA (pPTA) is a tuple P = (Loc, �0,Act ,X ,V,
prob, inv) where Loc, �0, Act,X and inv are as in Definition 1, V is a finite set
of parameters, and the parametric probabilistic transition function is

prob : Loc × CC(X) × Act → DistrQ(V)(2X × Loc).

Applying a parameter instantiation u to the pPTA P yields the PTA P[u] by
replacing each f ∈ Q(V) in the function prob of P by f [u]; we write the resulting
function as prob[u]. Observe that prob[u](�, g, a,X, �′) = prob(�, g, a,X, �′)[u] for
all �, �′ ∈ Loc, guard g, a ∈ Act, X ⊆ X .

Example 3. Consider pPTA P in Fig. 3 where the probability of successful trans-
mission is p. Applying instantiation u = { p �→ 0.9 } to P yields PTA A of Fig. 2.

A region R ⊆ R
n is a fragment of the parameter space1. A region R is graph-

preserving for pPTA P if for all u ∈ R and polynomials f in prob of P f [u] > 0,
that is, none of the edges contains a probability 0. A region is thus graph-
preserving if all its valuations induce the same topology. We define parametric
MDPs as an extension of MDPs and use them for the semantics of pPTA.

Example 4. Consider pPTA P again. Region R = [0.1, 0.9] is graph-preserving
while [0, 0.9] is not. For both, all probability distributions in P are well-defined.

Definition 9. A parametric MDP (pMDP) M is an MDP over a finite set
V of variables, and prob : S × Act ′ → DistrQ(V)(S).

1 Parameter regions should not be confused with the regions of clock valuations as in
the classic region graph construction for a (P)TA.

Tweaking the Odds in Probabilistic Timed Automata 45

Definition 10. The semantics of a pPTA P over V is the pMDP �P�dense
over V defined analogously to Definition 7.

The definition of prob′ includes sums of polynomials, which remain polynomi-
als. Since the transition functions are equivalent, i.e. we have prob′[u] = prob′′

for �P�dense[u] = (S, s0,Act , V, prob′[u]) and �P[u]�dense = (S, s0,Act , V, prob′′),
parameter instantiation and the dense-time semantics commute.

Properties. We consider time-bounded and unbounded reachability properties
on PTAs, i.e. the probability of eventually or within a time bound reaching a
target set T ⊆ Loc × Zones(X). Specification ϕ = P≤λ(♦T) asserts that the
probability of eventually reaching T from the initial state (�0,0) is at most λ,
where λ ∈ Q ∩ [0, 1]. That is, for PTA A,

A |= P∼λ(♦T) iff for all σ ∈ Sched(A) we have PrA
σ

(♦T) ∼ λ,

where PrA
σ

(♦T) is the probability mass of all infinite paths in A that start in
(�0,0) and visit some pair (�, ζ) ∈ T . To support time-bounded reachability,
we assume that each PTA A has a clock z ∈ X , which does not occur in any
invariant or guard of A and is never reset. We then check that z does not exceed
bound n ∈ N. We reduce this to the unbounded case and focus on that in the
remainder of this paper:

A |= P∼λ(♦≤n T) iff A |= P∼λ(♦T≤n)

where T≤n := {(�, ζ ∩ ζz≤n) | (�, ζ) ∈ T}. The definition for strict bounds < is
analogous. Negation is defined by

A |= ¬P∼λ(♦T) iff A |= P(¬ ∼)λ(♦T)

and similar for P∼λ(♦≤n T). These notions are lifted to pPTA by considering
properties relative to ranges of parameter values, i.e. regions.

Definition 11. Given region R and pPTA P, let

P, R |= P∼λ(♦T) iff ∀σ ∈ Sched(P[u]), u ∈ R. PrP[u]σ (♦T) ∼ λ (1)

P, R |= ¬P∼λ(♦T) iff ∀σ ∈ Sched(P[u]), u ∈ R. PrP[u]σ (♦T) (¬ ∼) λ. (2)

We call a region accepting (rejecting), denoted Ra (Rr), if 1 (2) holds. If a region
is neither accepting nor rejecting, it is called inconsistent (denoted Ri).

Example 5. Reconsider P from Fig. 3. Let ϕ = P≥0.75(♦{(done, ζtrue)}). Region
Rr := [0.2, 0.4] is rejecting; Ra := [0.6, 0.8] is accepting, and Ri := [0.4, 0.6] is
inconsistent, as property ϕ is violated for p = 0.4 but satisfied for p = 0.6.

Furthermore, we define the minimal probability in pPTA P of eventually reaching
a state in T on region R as follows:

PrP,R
min (♦T) = min{PrP[u]σ (♦T) | ∀u ∈ R, σ ∈ Sched(P)}.

The maximal probability is defined analogously. The definition can be applied to
PTA A with any region, as there are no parameters; we then omit R: PrAmin(♦T).

46 A. Hartmanns et al.

2.4 Problem Statement

This paper focuses on parameter space partitioning [14,51] for pPTA. The key
idea is to partition a graph-preserving parameter space into accepting and reject-
ing regions w.r.t. a property ϕ. As obtaining a complete partitioning is practi-
cally infeasible, the aim is to cover at least c% of the parameter space.

Approximate synthesis problem for pPTA. Given pPTA P, specification ϕ,
percentage c and region R, partition R into regions Ra, Rr, and Ri such
that P, Ra |= ϕ and P, Rr |= ¬ϕ where Ra ∪ Rr covers at least c% of R.

To solve this problem, we consider techniques to obtain a finite-state pMDP
for the semantics of the pPTA in the next section. We then solve the approxi-
mate synthesis on the resulting pMDP. Note that this is a computationally hard
problem: finding parameter values for a pMDP that satisfy a reachability prop-
erty is ETR-complete [38]2. To check whether a region is accepting or rejecting,
we apply parameter lifting [51] on this pMDP. Parameter lifting first drops all
dependencies between parameters in a pMDP. It then transforms the pMDP
into a 2-player stochastic game to obtain upper and lower bounds for the given
property ϕ. It applies to finite-state pMDPs and graph-preserving regions. In
Sect. 5 we experimentally show this approach’s feasibility.

3 PPTA to pMDP Methods

The main question is now whether existing techniques that verify PTA by obtain-
ing finite-state MDPs carry over to the parametric setting. We will answer this
question affirmatively for the digital clocks and backwards reachability tech-
niques. The correctness criterion is, as we will show, that they preserve reach-
ability probabilities as defined on the dense-time semantics. The presentation
below is along the lines of [49] adapted to the case with parameters.

3.1 Digital Clocks

The digital clocks approach for TA [9,34] and its adaptation to PTA [44] only
consider integer clock valuations, i.e. valuations in N

X , and delays of 1 time unit.
By capping the clock valuation for clock x to kx + 1, where kx is the maximal
constant to which x is compared in the PTA, digital clocks give rise to a finite
MDP. To that end, let (v ⊕ t)(x) = min{v(x) + t,kx + 1} for each x ∈ X . The
digital clock approach requires the PTA to be closed, i.e. all clock constraints
must only contain non-strict comparisons such as x ≤ c and x ≥ c.

Definition 12. The digital clocks semantics of a closed pPTA P is the
pMDP �P�dc = (S, s0,Act ′, V, prob′) with S = { (�, v) ∈ Loc×N

X | v |= inv(�) }
and s0, Act ′, and prob′ are as in Definition 7 (restricted to S), except that for
time delays we use

prob′((�, v), a, (�′, v′)) = 1 if a = 1 ∧ � = �′ ∧ v′ = v ⊕ 1 |= inv(�′).
2 Existential Theory of the Reals. ETR problems are between NP and PSPACE, and

ETR-hard problems are as hard as finding the roots of a multi-variate polynomial.

Tweaking the Odds in Probabilistic Timed Automata 47

Correctness. To prove the correctness of the digital clocks semantics for pPTA
we first show that parameter instantiation and digital clocks semantics commute.

Lemma 1. For pPTA P and parameter valuation u: �P[u]�dc = �P�dc[u].

Proof. By Definition 12, we need to prove that the transition functions are equiv-
alent, i.e. prob′((�, v), a, (�′, v′))[u] = prob′[u]((�, v), a, (�′, v′)). From Definition 7
this follows for all cases except a = 1 ∧ � = �′ ∧ v′ = v ⊕ 1 |= inv(�′). For this
case, prob′((�, v), a, (�′, v′)) = 1. As no parameters occur in this case, equivalence
follows trivially. Therefore the transition functions are equivalent. ��
Furthermore, similar as for PTA, the following lemma holds:

Lemma 2. For any closed pPTA P, closed target T , and region R, we have

PrP,R
min (♦T) = Pr

�P�dc,R
min (♦T) and PrP,R

max(♦T) = Pr�P�dc,R
max (♦T).

Proof. For minimal reachability, take an arbitrary but fixed u ∈ R. Then P[u]
is a PTA. Thus, PrP[u]

min (♦T) = Pr
�P[u]�dc
min (♦T) [44]. Using Lemma 1, we conclude

Pr
P[u]
min (♦T) = Pr

�P�dc[u]
min (♦T). Maximal reachability is proven analogously.

This yields the following result on preserving rejecting and accepting regions:

Theorem 1 (correctness of digital clocks). For region R, closed target T
and closed pPTA P:

P, R |= P∼λ(♦T) ⇐⇒ �P�dc, R |= P∼λ(♦T).
P, R |= ¬P∼λ(♦T) ⇐⇒ �P�dc, R |= ¬P∼λ(♦T)

Proof. We show the case of preserving an accepting region for � ∈ {<,≤}:

P, R |= P�λ(♦T) Def. 11⇔ ∀u ∈ R. P[u] |= P�λ(♦T)

⇔ PrP,R
max(♦T) � λ

Lem. 2⇔ Pr�P�dc,R
max (♦T) � λ

⇔ ∀u ∈ R. �P�dc[u] |= P�λ(♦T)

Def. 11⇔ �P�dc, R |= P�λ(♦T).

The proofs for preserving rejecting regions for � and accepting/rejecting regions
for �∈ {>,≥} are analogous using PrP,R

min(♦T) rather than PrP,R
max(♦T).

From Theorem 1 it follows that accepting/rejecting regions are preserved under
the digital clocks semantics. Therefore, the inconsistent regions are preserved,
too. Note that region R does not need to be closed. This is only necessary for
clock constraints, and they are not influenced by parameters in our setting.

Complexity. An upper bound on the number of states in the digital clocks seman-
tics is |Loc| · ∏

x∈X (kx+1). This means that the runtime for parameter region
verification as used in Theorem 1 is exponential in the number of clocks. In
Sect. 5, we will report on the practical feasibility of digital clocks for pPTA.

48 A. Hartmanns et al.

3.2 Backwards Reachability

To tackle the state space explosion of digital clocks, we consider backwards reach-
ability [46]. Instead of using explicit states (i.e. pairs of locations and valuations),
it computes a finite set of symbolic states—all that can reach the target T .

As in [46], a symbolic state is a pair (�, ζ) ∈ Loc × Zones(X). For a set of
symbolic states U ⊆ Loc × Zones(X), let ζ�

U =
⋃{ζ | (�, ζ) ∈ U} be all zones in

U that are paired with location �. To determine the reachable symbolic states,
we use time (tpreU) and discrete (dpre) predecessor operations. Let V be the set
of symbolic states explored so far; initially V = {T}. Then tpreU determines the
symbolic states that can reach a state in V by delays, all the while staying in U;
dpre are those that can do so via jumps.

Definition 13. Given a pPTA P = (Loc, �0,Act ,X ,V, prob, inv), sets of sym-
bolic states U and V , let:

tpreU(V) := {(�,↙ζ�
U ∩ζinv(�)

(ζ�
V) ∩ ζinv(�))}

where ↙ζ′ (ζ) := {v | ∃t ≥ 0. (v + t |= ζ ∧ ∀t′ ≤ t. (v + t′ |= ζ ∪ ζ ′))} which
denotes the zone that can reach ζ by delays while staying in ζ ′.

The function dpre is adopted from [46] and is omitted here. Backwards reach-
ability iteratively applies tpreU and dpre to V until it reaches a fixed point. It
returns an initial symbolic state z0, a set Z of symbolic states, and a probability
function prob′ on symbolic states that is based on the probability function prob
of P. For more details, we refer the interested reader to the MaxU algorithm
in [46]. Most important for us is the fact that we input a pPTA and a set of
symbolic target states and that it returns a pMDP.

Definition 14. For the initial symbolic state z0, set Z of symbolic states and
probability function prob′, the backwards reachability semantics of P =
(Loc, �0,Act ,X ,V, prob, inv) is the pMDP �P�br(T) = (Z, z0,Act , V, prob′).

Correctness. To prove the correctness of the backwards reachability semantics of
a pPTA, we first show that parameter instantiation and the semantics commute
similarly to the case for digital clocks.

Lemma 3. For pPTA P, target T , and valuation u: �P�br(T)[u] = �P[u]�br(T).

The proof is analogous to the proof of Lemma 1.
Let T C = Loc × Zones(X)\T and let AT be the set of symbolic states from

which there exists a scheduler that almost surely never reaches T , then:

Lemma 4. For pPTA P, region R, and target T , with �true�=Loc×Zones(X):

PrP,R
max(♦T) = Pr

�P�br(T),R
max (♦tpre�true�(T)).

PrP,R
min (♦T) = 1 − Pr

�P�br(T),R
max (♦tpreT C (AT)).

Tweaking the Odds in Probabilistic Timed Automata 49

The proof for maximal probabilities is analogous to that of Lemma 2, using
Lemma 3 and that PrAmax(♦T) = Pr

�A�br(T)
max (♦tpre�true�(T)) for PTA A [46]. The

proof cannot generally be applied to minimal probabilities since the backwards
reachability semantics only preserves upper-bounded properties. Therefore, we
have to convert lower-bounded properties to such. The idea behind the conver-
sion is the following: Instead of calculating whether we reach T , we calculate the
opposite, i.e. whether we never reach T . This is achieved by ending up in AT .
However, before reaching AT , we must not visit T beforehand. This is encoded in
the semantics by MaxU ; paths through T cannot reach AT . For the correctness
of this conversion we refer to [40,46].

Theorem 2 (correctness of backwards reachability). Given a region R,
target T , and pPTA P, we have

P, R |= P�λ(♦T) ⇐⇒ �P�br(T), R |= P�λ(♦tpre�true�(T)).

P, R |= P�λ(♦T) ⇐⇒ �P�br(T), R |= P�1−λ(♦tpreT C (AT))

The proof is analogous to that of Theorem 1 using Lemma 4 instead of Lemma 2.
From Theorem 2 it follows that accepting regions are preserved under the

backwards reachability semantics. The proof for rejecting regions is analogous.
Therefore, the inconsistent regions are preserved, too.

Complexity. In the worst case, running the algorithm on a PTA P generates an
MDP in which the set of symbolic states is the set Loc × Zones(X), which is
doubly exponential in the number of clocks for PTA [46]. This is the same for
pPTA as parameters do not affect the size of the result. However, case stud-
ies have shown that for PTA the state space is significantly smaller than the
worst case [46]. It is claimed that the algorithm is feasible for most practical
applications. In Sect. 5, we will report on the practical feasibility of backwards
reachability for pPTA.

3.3 Other Methods

Digital clocks are only compatible with a limited class of pPTAs and backwards
reachability only calculates reachability properties. However, other methods are
established for model checking PTAs that do not restrict the PTA and properties.
We briefly discuss whether these techniques can be applied to pPTA.

Region Graph. In the region graph [45], clock equivalence classes are considered.
All clock valuations that satisfy the same constraints are grouped and used
to build a clock region. This is equivalent to the symbolic states of backwards
reachability, where the clock regions are minimal in the most basic variant.
This leads to a relatively large state space, although this problem is tackled by
other variants, like probabilistic time-abstract bisimulation [17]. The algorithm
is applicable to pPTA and the proof is similar to that of digital clocks and

50 A. Hartmanns et al.

Fig. 4. Our toolchain for pPTA parameter space partitioning

backwards reachability: The substitution of parameters before/after obtaining
the region graph semantics is equivalent and minimal/maximal reachability is
preserved, which means accepting and rejecting regions are preserved.

Forwards Reachability. As for backwards reachability, forwards reachability [45]
only considers relevant symbolic states. However, this method performs a for-
ward search from the initial state to the target states. The complexity of forwards
reachability is exponential in the number of clocks. However, the forwards algo-
rithm is generally faster than its backwards equivalent [46], but it only provides
upper (lower) bounds on the maximal (minimal) probability [22]. This makes
forward reachability unsuited for parameter synthesis as regions may be falsely
classified as accepting/rejecting. For example, we might have a region that is
inconsistent for some upper bounded property. This means that there are both
valuations that satisfy and violate the property. As forwards reachability gives
bounds on the probability, it might push this probability beyond the bound of
the property, resulting in a rejecting region where this is not the case.

Stochastic Games. The stochastic game abstraction [42] transforms the PTA
into a 2-player stochastic game. It is usually faster than both digital clocks and
backwards reachability in practice [42]. We conjecture that the method can be
directly applied on pPTA, resulting in parametric stochastic games. However,
as parameter synthesis is not implemented for this type of model in Storm or
other tools, we would currently not be able to obtain an implementation in the
same manner as for the MDP-based approaches.

4 Implementation

We implemented a parameter synthesis pipeline for pPTA by combining the
Modest Toolset and the Storm model checker as outlined in Fig. 4. The
former has long had support for PTA model checking via digital clocks [27]. Since
digital clocks are a syntax-level transformation, the toolset’s moconv converter
can turn closed PTA models specified in the Modest modelling language [13,26]
or the Jani model interchange format [16] into digital clocks MDP, in either of

Tweaking the Odds in Probabilistic Timed Automata 51

these languages. The implementation is agnostic to the presence of parameters
and thus readily works for pPTA, too, exporting pMDP models. Models are
usually specified compositionally as a network of multiple pPTA extended with
discrete (Boolean and bounded integer) variables. The conversion preserves this
high-level structure without a blowup in (syntactical) model size. By exporting to
Jani, the compositional pMDP can be read back by Storm, which implements
parameter space partitioning to deliver the desired set of regions. The actual
state space exploration—flattening the composition of variable-extended pMDP
into one large pMDP—is performed by Storm in this setup.

For this work, we added an implementation of backwards reachability for
maximum probabilities to the Modest Toolset for PTA and pPTA. As shown
in the upper branch in Fig. 4, we first turn the compositional pPTA into a
single automaton where only clock variables remain. To this we apply backwards
reachability using our own implementation of difference-bound matrices. The
resulting flat pMDP is then exported to a Jani file, which is usually much larger
than the original input. Again, this file can be subsequently be read and regions
computed via Storm. For minimum probabilities, backwards reachability would
generate non-convex zones, for which we do not have an implementation yet.

5 Evaluation

To evaluate the feasibility of our approach as well as the relative scalability and
performance of the two methods, we performed an experimental comparison
using our implementation on parametric adaptations of existing PTA bench-
marks as well as of the industrial AODV case study.

Table 1. Model characteristics

model params clocks max.kx

AODV(-n) 1-5 2 4

BRP 1-2 4 16-1657

RM 3 2 5

RH 1 2 5

ZC 1 2 20

FW 1 1 1670

Benchmarks. As we provide the first
tool support for pPTA, there are
no existing pPTA benchmarks for
us to use. We thus turned existing
PTA models into pPTA. Among the
9 PTA models in QVBS [30], 5 could
be parametrised in a sensible way:
those of the bounded retransmission
protocol (BRP) [27,32], the repu-
diation protocol with honest (RH)
and malicious receiver (RM) [48],
the Zeroconf protocol (ZC) [18], and the IEEE 1394 Firewire protocol (FW) [54].
We consider two variants of BRP: one with equal and one with different loss prob-
abilities for the data and acknowledgement channels. Furthermore, we vary the
constants used in the clock constraints to obtain one “small” (S) and one “large”
(L) variant of BRP. In RH, we make the probability that a certain message is
the last one parametric, and in RM additionally the probability to decode a mes-
sage. The original repudiation pPTA are not closed and thus only suitable for
backwards reachability. We created non-strict (nstr in Fig. 7) variants of these

52 A. Hartmanns et al.

Fig. 5. Runtime up to state space exploration (left) and number of states (right)

Fig. 6. Parameter space partitioning time (s), 90% (left), 99% (right) coverage

models to enable a comparison. We use two parameters in ZC: the probability
to correctly receive a message and the probability that an occupied IP-address
is selected. In FW, the parameter is the probability to select between the slow
and the fast path.

Additionally, we consider the probabilistic version of the AODV routing pro-
tocol [39], which so far had been analysed for selected concrete message loss
probabilities only. It comes in two variants, one with routing error (AODV) and
one without (AODV-n). For each node, we make the probability to lose an incom-
ing message parametric. By using the same parameter across different subsets of
nodes, excluding symmetric cases, we obtain 5 models with 1 (all probabilities
are p vs. 1 − p) to 5 (every node has its own parameter pi) parameters. Table 1
summarises the characteristics of our benchmarks.

Tweaking the Odds in Probabilistic Timed Automata 53

Fig. 7. Runtime for parameter space partitioning with 90% coverage

Setup. We did all experiments on an Intel Core i5-8300H (2.3–4.0 GHz) system
with 8 GB of memory running 64-bit Ubuntu 20.04. The timeout was one hour.

Results. In Fig. 5, we compare digital clocks and backwards reachability in terms
of the runtime (left) without the parameter space partitioning phase and the
number of states of the pMDP (right). Note that for digital clocks, the run-
time for the syntactical conversion is negligible. In these scatter plots, a point
(x, y) indicates that digital clocks took x seconds or caused x states compared
to y seconds/states for backwards reachability, for one specific combination of
benchmark, variant (where applicable), and property to check. The dotted lines
indicate differences of a factor of 10 and 100. Figure 6 similarly shows the runtime
for parameter space partitioning for 90 and 99% coverage.

We observe that digital clocks generate larger state spaces than backwards
reachability, just like it does for PTA [46]. We note that the number of transi-
tions per state, however, is often larger with backwards reachability. Ultimately,
performance also depends on the topology of the state space, and backwards
reachability needs to perform a sometimes expensive symbolic reachability com-
putation, explaining why digital clocks still often manage to be faster as far as
obtaining the flat pMDP is concerned (Fig. 5 left). In Fig. 6, however, we can see
that backwards reachability is mostly faster in the partitioning phase.

Figure 7 plots the partitioning runtime for those benchmarks where we can
vary the number of parameters or the property time bound. On top, we indicate
the respective benchmark and property being checked (in case multiple are avail-
able). We observe an exponential increase in runtime as we increase the number
of parameters for AODV; AODV-n showed similar behaviour. A similar pattern
occurs for BRP. Runtime increases mostly linearly with the time bound.

54 A. Hartmanns et al.

Another important observation is the difference between digital clocks and
backwards reachability for property P4 of BRP with 2 parameters. Not only
did backwards reachability produce a state space that is orders of magnitude
smaller, but it was also able to completely remove a parameter by realising that
it does not influence the probability for this particular property. This is due
to the symbolic backwards exploration generating a property-dependent pMDP
since it starts from the property’s target set. Digital clocks, on the other hand,
syntactically preserve all behaviour, and Storm then explores all states reach-
able from the initial state, including states that do not influence the probability
for property P4. One parameter however happens to only occur on transitions
out of such states in this very case. Consequently, on the backward reachabil-
ity pMDP for P4, Storm generates a partitioning within a millisecond while
it takes much longer on the digital clocks pMDP for the small BRP model (S).
For the large BRP model (L), Storm generates a partitioning with backwards
reachability within milliseconds while it runs out of memory when building the
state space for digital clocks.

6 Conclusion

We presented an approach to tackle the approximate synthesis problem for para-
metric PTA, that is, to partition the parameter space into accepting and rejecting
regions for a given property such that c% of the parameter space is covered. The
idea is to first obtain a finite pMDP that is equivalent to the pPTA for the prop-
erty at hand, and to then apply parameter space partitioning on the pMDP. In
the application to AODV, a real-world case study [39], our experiments showed
encouraging results, thereby highlighting the usefulness of parametric PTA, our
approach, and its implementation.

Beyond this Paper. In this paper, we focused on unbounded and time-bounded
probabilistic reachability. The overall approach, however, also works with
expected accumulated reachability reward properties when we use digital clocks
for the abstraction step [40]. In our case studies, we did not include lower-
bounded reachability properties, as those refer to minimal probabilities and are
thus affected by divergence. We did not take divergence into account in this
paper, but solutions are available in the form of fairness and end-component anal-
ysis [40,52]. While backwards reachability calculates probabilities under diver-
gence out of the box, it generates non-convex zones for minimum probabilities,
for which we do not (yet) have an efficient implementation. The digital clock and
backwards reachability approach can also be used to other parameter synthesis
questions for pPTA such as feasibility checking (“does there exist a parameter
valuation for which a specification holds?”). The resulting pMDPs can then be
analysed using quadratic programming [19].

Outlook. Now that a toolchain for pPTA exists, we would like to study more
pPTA case studies; the authors would be happy to assist application experts

Tweaking the Odds in Probabilistic Timed Automata 55

(e.g. in wireless networks [39]) in modelling and by tuning the tools. Interesting
future directions to extend our work are to combine parametrised probabilities
with parameters in clock constraints (likely focusing on decidable subclasses as
mentioned in Sect. 1), and to consider pPTA in which transition probabilities can
depend on clocks [53]. Currently, the stochastic games abstraction is the most
competitive technique for PTA. However, parameter space partitioning is not
available for parametric stochastic games in Storm or related tools. Developing
this would enable the use of the stochastic games abstraction for pPTA.

Data Availability. The tools used and data generated in our experimental eval-
uation are archived at DOI 10.4121/14910426 [29].

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018). https://doi.org/10.1145/3158668

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601. ACM (1993). https://doi.org/10.1145/167088.167242

4. André, É.: What’s decidable about parametric timed automata? Int. J. Softw. Tools
Technol. Transf. 21(2), 203–219 (2019). https://doi.org/10.1007/s10009-017-0467-
0

5. André, É., Arias, J., Petrucci, L., Pol, J.: Iterative bounded synthesis for effi-
cient cycle detection in parametric timed automata. In: TACAS 2021. LNCS, vol.
12651, pp. 311–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72016-2 17

6. André, É., Chatain, T., Fribourg, L., Encrenaz, E.: An inverse method for paramet-
ric timed automata. Int. J. Found. Comput. Sci. 20(5), 819–836 (2009). https://
doi.org/10.1142/S0129054109006905

7. André, É., Delahaye, B., Fournier, P.: Consistency in parametric interval proba-
bilistic timed automata. J. Log. Algebraic Methods Program. 110, 100459 (2020).
https://doi.org/10.1016/j.jlamp.2019.04.007

8. André, É., Fribourg, L., Sproston, J.: An extension of the inverse method to
probabilistic timed automata. Formal Methods Syst. Des. 42(2), 119–145 (2013).
https://doi.org/10.1007/s10703-012-0169-x

9. Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata
and digital circuits. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998.
LNCS, vol. 1466, pp. 470–484. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055642

10. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of
Model Checking, pp. 963–999. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-10575-8 28

11. Baier, C., Hermanns, H., Katoen, J.-P.: The 10,000 facets of MDP model checking.
In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol.
10000, pp. 420–451. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-
91908-9 21

http://doi.org/10.4121/14910426
https://doi.org/10.1145/3158668
https://doi.org/10.1145/167088.167242
https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.1007/978-3-030-72016-2_17
https://doi.org/10.1007/978-3-030-72016-2_17
https://doi.org/10.1142/S0129054109006905
https://doi.org/10.1142/S0129054109006905
https://doi.org/10.1016/j.jlamp.2019.04.007
https://doi.org/10.1007/s10703-012-0169-x
https://doi.org/10.1007/BFb0055642
https://doi.org/10.1007/BFb0055642
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-91908-9_21
https://doi.org/10.1007/978-3-319-91908-9_21

56 A. Hartmanns et al.

12. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

13. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: a
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Software Eng. 32(10), 812–830 (2006). https://doi.org/10.1109/TSE.2006.104

14. Brim, L., Češka, M., Dražan, S., Šafránek, D.: Exploring parameter space of
stochastic biochemical systems using quantitative model checking. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 107–123. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 7

15. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical
model checker for nondeterminism and rare events. Int. J. Softw. Tools Technol.
Transf. 22(6), 759–780 (2020). https://doi.org/10.1007/s10009-020-00563-2

16. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

17. Chen, T., Han, T., Katoen, J.: Time-abstracting bisimulation for probabilistic
timed automata. In: Second IEEE/IFIP International Symposium on Theoretical
Aspects of Software Engineering, TASE 2008, 17–19 June, 2008, Nanjing, China,
pp. 177–184. IEEE Computer Society (2008). https://doi.org/10.1109/TASE.2008.
29

18. Cheshire, S., Aboba, B., Guttman, E.: Dynamic configuration of ipv4 link-local
addresses. RFC 3927, 1–33 (2005)

19. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Topcu, U.: Synthesis in
pMDPs: a tale of 1001 parameters. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 160–176. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 10

20. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation
of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman,
M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 99–114. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-33693-0 7

21. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.
org/10.1007/s10009-014-0361-y

22. Daws, C., Kwiatkowska, M.Z., Norman, G.: Automatic verification of the IEEE
1394 root contention protocol with KRONOS and PRISM. Int. J. Softw. Tools
Technol. Transf. 5(2–3), 221–236 (2004)

23. Dombrowski, C., Junges, S., Katoen, J., Gross, J.: Model-checking assisted protocol
design for ultra-reliable low-latency wireless networks. In: SRDS, pp. 307–316.
IEEE Computer Society (2016)

24. Fruth, M.: Probabilistic model checking of contention resolution in the IEEE
802.15.4 low-rate wireless personal area network protocol. In: ISoLA, pp. 290–297.
IEEE Computer Society (2006)

25. Gregersen, H., Jensen, H.E.: Formal Design of Reliable Real Time Systems. Mas-
ter’s thesis, Department of Mathematics and Computer Science, Aalborg Univer-
sity (1995)

26. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

27. Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed
automata. In: QEST, pp. 187–196. IEEE (2009)

https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1007/978-3-642-39799-8_7
https://doi.org/10.1007/s10009-020-00563-2
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1109/TASE.2008.29
https://doi.org/10.1109/TASE.2008.29
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-319-33693-0_7
https://doi.org/10.1007/978-3-319-33693-0_7
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10703-012-0167-z

Tweaking the Odds in Probabilistic Timed Automata 57

28. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

29. Hartmanns, A., Katoen, J.P., Kohlen, B., Spel, J.: Tweaking the odds in proba-
bilistic timed automata (artifact). 4TU.Centre for Research Data (2021). https://
doi.org/10.4121/14910426

30. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0 20

31. Hartmanns, A., Sedwards, S., D’Argenio, P.R.: Efficient simulation-based verifi-
cation of probabilistic timed automata. In: WSC, pp. 1419–1430. IEEE (2017).
https://doi.org/10.1109/WSC.2017.8247885

32. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a data link pro-
tocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp.
127–165. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58085-9 75

33. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker storm. CoRR abs/2002.07080 (2020)

34. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55719-9 103

35. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. J. Log. Algebraic Methods Program. 52–53, 183–220
(2002). https://doi.org/10.1016/S1567-8326(02)00037-1

36. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS, pp. 266–277. IEEE Computer Society (1991). https://doi.org/10.1109/
LICS.1991.151651

37. Jovanovic, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time
systems. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015). https://doi.org/10.1109/
TSE.2014.2357445

38. Junges, S., Katoen, J., Pérez, G.A., Winkler, T.: The complexity of reachability in
parametric Markov decision processes. J. Comput. Syst. Sci. 119, 183–210 (2021)

39. Kamali, M., Katoen, J.-P.: Probabilistic model checking of AODV. In: Gribaudo,
M., Jansen, D.N., Remke, A. (eds.) QEST 2020. LNCS, vol. 12289, pp. 54–73.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59854-9 6

40. Kohlen, B.: Parameter synthesis in probabilistic timed automata. Master’s thesis,
RWTH Aachen University, Aachen (2020). https://publications.rwth-aachen.de/
record/811856

41. Krause, C., Giese, H.: Model checking probabilistic real-time properties for service-
oriented systems with service level agreements. INFINITY. EPTCS, vol. 73, pp.
64–78 (2011)

42. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic games for verification of
probabilistic timed automata. In: Ouaknine, J., Vaandrager, F.W. (eds.) FOR-
MATS 2009. LNCS, vol. 5813, pp. 212–227. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04368-0 17

43. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.4121/14910426
https://doi.org/10.4121/14910426
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1109/WSC.2017.8247885
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/3-540-55719-9_103
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1109/LICS.1991.151651
https://doi.org/10.1109/LICS.1991.151651
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.1007/978-3-030-59854-9_6
https://publications.rwth-aachen.de/record/811856
https://publications.rwth-aachen.de/record/811856
https://doi.org/10.1007/978-3-642-04368-0_17
https://doi.org/10.1007/978-3-642-04368-0_17
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

58 A. Hartmanns et al.

44. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods Syst. Des.
29(1), 33–78 (2006). https://doi.org/10.1007/s10703-006-0005-2

45. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002). https://doi.org/10.1016/S0304-3975(01)00046-9

46. Kwiatkowska, M.Z., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007)

47. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision
processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1 23

48. Markowitch, O., Roggeman, Y.: Probabilistic non-repudiation without trusted
third party. In: Proceedings 2nd Workshop on Security in Communication Net-
works (1999)

49. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Formal Methods Syst. Des. 43(2), 164–190 (2013)

50. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Mathematical Statistics: Applied Prob-
ability and Statistics, John Wiley & Sons Inc., New York (1994)

51. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

52. Sproston, J.: Strict divergence for probabilistic timed automata. In: Bravetti, M.,
Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 620–636. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-04081-8 41

53. Sproston, J.: Probabilistic timed automata with clock-dependent probabilities.
Fundam. Informaticae 178(1–2), 101–138 (2021)

54. Stoelinga, M., Vaandrager, F.: Root contention in IEEE 1394. In: Katoen, J.-P.
(ed.) ARTS 1999. LNCS, vol. 1601, pp. 53–74. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48778-6 4

https://doi.org/10.1007/s10703-006-0005-2
https://doi.org/10.1016/S0304-3975(01)00046-9
https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-642-04081-8_41
https://doi.org/10.1007/3-540-48778-6_4
https://doi.org/10.1007/3-540-48778-6_4

Quantifying Software Reliability
via Model-Counting

Samuel Teuber(B) and Alexander Weigl

Karlsruhe Institute of Technology (KIT), Karslruhe, Germany
samuel@samweb.org, weigl@kit.edu

Abstract. Critical software should be verified. But how to handle the
situation when a proof for the functional correctness could not be estab-
lished? In this case, an assessment of the software is required to estimate
the risk of using the software.

In this paper, we contribute to the assessment of critical software
with a formal approach to measure the reliability of the software against
its functional specification. We support bounded C-programs precisely
where the functional specification is given as assumptions and assertions
within the source code. We count and categorize the various program
runs to compute the reliability as the ratio of failing program runs (vio-
lating an assertion) to all terminating runs. Our approach consists of
a preparing program translation, the reduction of C-program into SAT
instances via software-bounded model-checker (cbmc), and precise or
approximate model-counting providing a reliable assessment. We evalu-
ate our prototype implementation on over 24 examples with different
model-counters. We show the feasibility of our pipeline and benefits
against competitors.

Keywords: Software verification · Software reliability · Model
counting

1 Introduction

Formal verified safety, defined as the absence of catastrophic consequences [1],
yields a high guarantee on the well-functioning of critical software. But proving
safety is a hard and tedious process due to the necessary formalization, verifica-
tion and (possibly) bug fixing for a given software system. In cases where proof
cannot be established, other techniques for the reliability assessment of the soft-
ware are required. To this end, we want to quantitatively estimate the risk of
usage of an assessed software. Traditionally, safety is a qualitative property that
a software might or might not fulfill, whereas reliability is often a quantitative,
measurable property, e.g., the likelihood of failure or the failure rate. Quantita-
tive analysis is, however, also a valuable addition to formal safety verification.
For example, quantitative analyses are useful to assess the strictness of (input)

S. Teuber—This work was supported by funding of the Helmholtz Association (HGF)
through the Competence Center for Applied Security Technology (KASTEL).

c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 59–79, 2021.
https://doi.org/10.1007/978-3-030-85172-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_4&domain=pdf
http://orcid.org/0000-0001-7945-9110
http://orcid.org/0000-0001-8446-4598
https://doi.org/10.1007/978-3-030-85172-9_4

60 S. Teuber and A. Weigl

assumptions imposed for proving software properties. Those are just some rea-
sons why quantitative and probabilistic software analysis has been identified
as an interesting research topic (e.g., [16,23]). In particular, [7,8,13] presented
approaches to combine quantitative analysis with symbolic execution.

Contribution. In this work we present a formal approach for the quantification
of the violation or adherence to a functional specification through exact and
approximate model counting. The approach processes C-programs, where the
program specification is given via assertions and assumptions in the procedure
bodies. The first step in the approach is a behavior-preserving program trans-
lation, which makes the violation or adherence of specification in program runs
countable. Afterwards, we use cbmc [5] to convert the transformed C-program
into multiple CNF formulae. By using cbmc, our approach is limited to C-
programs with a bounded execution and bounded data domain. However, by
leveraging cbmc’s bit precise semantic, we have wider and more precise support
of C-programming language in comparison to previous work. Each model of the
CNF formulae represents a possible program run, which we count precisely or
approximately with tools like ganak [17] or ApproxMC [3,15,18]. We present
a sophisticated evaluation of our prototype in comparison to its competitor [6]
which shows advantages of the bit-precise support and non-determinism. The
prototype is publicly available.1

#define TOP2BITS(x) ((x & (3 << 30)) >>
30)

int sqrt(int x) {
assume(x>=0);
int input = x;
int a = 0, r = 0, e = 0;
for (int i = 0; i < 32; i++) {

r = (r << 2) + TOP2BITS(x);
x <<= 2; a <<= 1;
e = (a << 1) + 1;
if (r >= e) { r -= e; a++; }

}
int lower = (a>>16);
unsigned int upper = lower+1;
assert(lower*lower<=input

&& upper*upper>input);
return lower;

}

Fig. 1. Variation of square root algorithm
in [20]

Example. Consider the example in
Fig. 1 which computes the square root
of a non-negative integer in the upper
half of variable a. The algorithm was
later modified to return the actual
integer square root lower. Note, this
modification is flawed which will be
discussed in more detail below. There
are multiple aspects of this program
which can be quantified. Firstly, we
can compute the number of inputs x
for which above mentioned flaw leads
to an assertion miss (violation of the
assertion condition) before the return-
statement. Secondly, we can compute
the number of inputs x for which
the assume-statement fails. While the
number of assertion misses is a measure stating to what degree the program
at hand is flawed, the number of assumption misses describes how tight the
assumptions are under which we try to guarantee correct behavior. In Fig. 1,
for example, our assumptions exclude half of the possible input space (namely
any negative value). Depending on the use case, this might be considered a very
strong assumption which might not match reality.
1 https://github.com/samysweb/counterSharp.

https://github.com/samysweb/counterSharp

Quantifying Software Reliability via Model-Counting 61

Overview. The formal foundations of our approach, including the definition of
reliability, is in Sect. 2. In Fig. 4, we begin building the pipeline, which contains
the program transformation, model-counting, and the correctness (Sect. 3). The
comparison with [6] and runtime statistics is given in the evaluation (Sect. 4).

2 Foundations of the Pipeline

Fig. 2. In test1 the failure only
depends on the input. Differently,
in test2 the failure depends on
input and non-determinism.

Traditionally, reliability of a program is quan-
tified via the number of inputs for which there
exists a program path leading to failure in
comparison to the number of inputs for which
no such program path exists (as seen for exam-
ple in [7]). However, this definition draws an
incomplete image of the software’s reliability
for nondeterministic programs.

For example, consider the code in Fig. 2:
Both functions are prone to a division by zero
failure which is caught by an assertion. The
functions differ, because only in test1 this
failure is solely dependent on the input where
the division by zero failure must happen for
exactly one input value (specifically for x set

to 0). Meanwhile, the division by zero failure may happen for any input of the
function test2 in Fig. 2 while it must happen for a negative input value for
x. We use this semantic of must and may failures in the following analysis. A
failure must occur for an input if an assertion miss occurs for every program
path. A failure may occur for an input if there is both, a program path leading
to an assertion miss and a program path leading to an assertion hit.

Fig. 3. Partitions M?, H?, E∀, E∃, and S∀
of a programs input space I

Partitions of the Input Space. For-
mally, we consider a program as a
relation P ⊆ S2 between start state
s ∈ S and the final state s′ ∈ S. We
denote this relationship with s

P−→ s′.
We distinguish between the input val-
ues i ∈ I and output o ∈ O of a pro-
gram: The input values i = s �I are
part of the start state, whereas the
output values o = s′ �O are part of final state. s�Σ denotes the projection to
the variables given from the set Σ. This formalization allows choosing arbitrary
values of the non-input variables (e.g., global or local variables) in the start state
of a program. Thus, for a given input i, there might be multiple possible start
states. And given a single start state s, there might be a set of reachable final
states s′.

In combination, given an input value i ∈ I, the reachable output values are
denoted by O(i) = {o | s�I= i ∧ s

P−→ s′ ∧ o = s′�O} ⊆ O . Moreover, we

62 S. Teuber and A. Weigl

introduce the function check : S → {�,�,○}, which can determine whether the
program executed normally (�), adhering all reached assumptions and asser-
tions), or abnormally terminated denoting the first violation of an assertion (�)
or an assumption (○) given the final state s′. We lift check to a set of states, i.e.,
check(O(i)) ⊆ {�,�,○} denotes with the possible outcomes for a given input.
Later, in Sect. 3.1 we weave the functionality of check into the given C-program.

With the definition of check we can partition the input space I of a pro-
gram into following parts (Fig. 3) under an additional assumption: the given
assume-statements within program are only referring to the input variables of
the program. The partitions are defined as follows:

M? = {i | check(O(i)) = {○}} (1)

H? = {i | ○ /∈ check(O(i))} (2)

E∀ = {i | check(O(i)) = {�}} (3)

E∃ = {i | check(O(i)) = {�,�}} (4)

S∀ = {i | check(O(i)) = {�}} (5)

In terms of notation, we denote assumption related variables with ? and assertion
related variables with !. M represents misses and H represents hits, whereas E
represents error and S represents success. Finally, r is used for ratios. Thus,
M? describes the partition of invalid input values according to our assumptions.
There can not occur any other observations for these inputs. H? on the other
hand represents all input values which correspond to our assumptions. This
can further be split into E∀, E∃ and S∀. E∀ represents the input values that
always lead to an error, where E∃ are the input values, where sometimes an
error occurred. S∀ are the input values that always adhere to the assumptions
and assertions in the program, regardless of the value of the non-input variables
in the start state.

Besides M? and H? the model counting approach enables us to measure the
following to metrics: H! = S∀ + E∃ and M! = E∀ + E∃

Through suitable subtraction using H? we can then compute E∀, E∃ and S∀.
It remains a design choice which input partitions of Fig. 3 are treated as error
or success. Note, for deterministic programs the partition E∃ is empty, leading
to simpler calculation and less model-counting calls. Depending on the use case
we might then be interested in ratios describing how many of the inputs show a
particular behavior. To this end, we define the following, exemplary, ratios:

rm
? =

M?

I rf
∀ =

S∀
H?

re
∀ =

E∀
H?

(6)

3 Pipeline

Figure 4 shows the three pipeline steps of our approach. Firstly, we weave
the observation of the check function into the given original C-program,

Quantifying Software Reliability via Model-Counting 63

Fig. 4. Overview on the quantification
pipeline for the computation of hit and
misses of assumption and assertion within
the original program.

by transforming the program flow
in such a way that a violation of
an assumption or an assertion are
explicitly stored in the program state
(Sect. 3.1). Also, a violation of either
an assumption or an assertion leads to
an early termination. The C-program
input consists of an entry routine and
the (transitively) required routines.
Secondly, we use cbmc, a bounded
model-checker for C-programs, for the
transformation of the program into
multiple CNF formulae (Sect. 3.2)
where we have one CNF formula for each measured quantity. Thirdly, we run
model-counting tools, like ApproxMC or ganak, on the CNF formulae and
thus obtain required metrics (Sect. 3.3) to calculate the reliability.

3.1 Transformation: Make Violation Countable

The goal of the program transformation is to make the assumption or asser-
tion violations explicit in the program state by using dedicated fresh variables.
Therefore, the violations become countable by Model Counters. An example of
the transformation is presented in Fig. 5. Note, we use the constants true and
false for convenience reason, although they are not defined in standardized C.

Restrictions on C-Programs. The allowed C-subset is restricted by cbmc, which
allows both basic datatypes (int, float, char etc.) and complex datatypes (e.g.,
arrays and structures). Subroutine calls are limited to stand-alone calls and calls
assigned to a variable (i.e., no nested subroutine calls and no calls directly within
a return-statement). Such calls can easily be transformed into non-nested, non-
return calls by introducing appropriate local variables – even automatically if
desired. While complex datatypes are supported, they cannot be used as input
variables for model counting directly, but must be constructed within the func-
tion under evaluation explicitly (e.g., by passing an array’s elements into the
function explicitly and then constructing the array within the function). We
assume that assume-statements solely express conditions imposed on the pro-
gram’s input (and not program internal behavior) and are thus positioned at
the beginning of the program before any assertion statements.

Transformation. In the example in Fig. 5, the transformation is applied to the
entry function test. Required sub-routines are considered for transformation
accordingly.

The first step introduces two global variables initialized by false (am and
as) which store whether an assertion or assumption was missed in global pro-
gram state (Line 1). This implies that assume- and assert-statements actually
have to modify this variable after checking their specific criterion. Therefore,

64 S. Teuber and A. Weigl

1

2 int subroutine(int y) {
3

4 assert(y<0);
5 return -y;
6

7

8 }
9

10 int test(int x, int y)
11 {
12

13 assume(x>0);
14 int z = 0;
15 if (y < 0) {
16 z += subroutine(y);
17

18 return z;
19

20

21

22

23

24

25 }
26 assert(z>=0);
27 return z+x;
28

29 }

1 char am = false; char as = false;
2 int subroutine(int y) {
3 int rv;
4 if (!(y < 0)) { as = true; goto end; }
5 rv = -y;
6 end:
7 return rv;
8 }
9

10 int test(int x, int y)
11 {
12 int rv;
13 if (!(x > 0)) { am = true; goto end; }
14 int z = 0;
15 if (y < 0) {
16 z += subroutine(y);
17 if (as || am) goto end;
18 rv = z;
19 end:
20 assert(am || as); //assertion hit
21 assert(!as);//assertion miss
22 assert(am); //assumption hit
23 assert(!am);//assumption miss
24 return rv;
25 }
26 if (!(z >= 0)) { as = true; goto end; }
27 rv = z + x;
28 goto end;
29 }

Fig. 5. Left is the original program, and right the program transformation as described
in Sect. 3.1

such statements are transformed into an if-statement with their negated origi-
nal condition. Missing a condition sets the corresponding variable (am/as) and
initiates a jump to the end of the current function. This transformation can be
observed in Lines 13 and 26. Note that the same transformation also takes place
in subroutines as can be seen in Line 4. In order to support sub-routine calls,
every such call triggers a check for assertion- or assumption misses afterwards.
If a sub-routine call has violated an assertion, the callee routine directly jumps
to its end. This behavior occurs recursively leading to an early termination of
the program – similar to exception handling in modern programming languages.

We then unify all return-statements of a routine into a single, labeled return
(e.g., Line 18) targeted by multiple goto-statements which replace the return
statements in the old program and direct the program flow to the one remaining
return statement (e.g., Line 27). Line 18 shows the first return-statement of a
routine is kept and labeled with end, while all other return-statements (e.g.,
Line 27) are replaced by goto-statements. A new value variable rv is introduced
which stores the return value across this jump (Lines 12 and 3). If no return-
statement exists within a subroutine, we introduce a labeled dummy return-
statement at the end of the routine.

Finally, the four assert-statements in Lines 20 to 23 (with conditions as
explained later in Sect. 3.2) are added just before the return-statement of the
entry routine. Only one of these assert-statements is inserted for the conversion

Quantifying Software Reliability via Model-Counting 65

to the CNF formulae in order to generate specific formulae for counting the
assumption/assertion hits and misses.

In the remainder of this paper, if we talk about assertion, we mean the
assertion given as the specification in the original program, whereas the notion
of an assert-statement refers to (one of) the four assertions in the transformed
program (Lines 20 to 23).

3.2 Conversion into CNF

For the conversions of C-programs into CNF formulae we use cbmc. cbmc con-
verts the transformed program p and a specification ψ into a CNF formula
φ = π ∧ ¬ψ where π is a CNF representation of the unrolled program (w.r.t. a
certain loop iteration or recursion depth). Formula φ is then satisfiable iff there
exists a program path in p leading to a violation of the given specification ψ.
Using cbmc with its builtin bit precise semantic, we generate four formulae with
varying specification (assert-statements) before the final return-statement: am,
!am, am || as and !as. Additionally we generate a fifth formula which allows
to compute the number of inputs for which the bounds of cbmc were insufficient.
The last assert-statement, for instance, is transformed into a formula asserting
that as is true and can thus be used to count the number of models which
produce an assertion miss (and thus to compute M!). Note, that enabling only
the required assert-statement allows cbmc to reduce the size the generated CNF
formula by slicing which improves performance of the model-counters.

3.3 Model Counting in the Pipeline

Preliminaries. For our approach we make use of model counting under pro-
jection. Given a CNF formula φ over the signature Σ, |models(φ�Δ)| denotes
the number of satisfying assignments (models) of φ projected on the variables
Δ ⊆ Σ, where the formula φ �Δ denotes the projection of φ on Δ. There-
fore, φ �Δ is the strongest formula over Δ which is entailed by φ [12, Logi-
cal Foundations] and states the same constraints on the atoms in Δ as φ. We
define modelsΔ(φ) = models(φ �Δ). For our use case, we distinguish between
exact and approximative model-counters. Exact (e.g., sharpSAT [22]) or prob-
abilistic exact (e.g., ganak [17]) model counters compute the exact number
of models t with a certain probability δ ≤ 1. Additionally, approximative or
(δ, ε) model counters (e.g., ApproxMC [3,12,15,18]), return an estimated count
c̃ with the guarantee of a relative error ε and a maximum uncertainty of δ:
Pr(c̃ ∈ [t/(1 + ε), (1 − ε)t]) ≥ 1 − δ

The parameters ε and δ are given by the user. We further elaborate on model
counting in Appendix A.

Measuring the Reliability. In Sect. 3.2 we obtain formulae which are satisfi-
able iff there is a start state leading the encoded program to violate the encoded
specification. As noted earlier, we encode the inverse of the specification we are

66 S. Teuber and A. Weigl

interested in and can thus quantify the number of inputs adhering to the spec-
ification at hand by using projected model counting with Δ containing exactly
the propositional variables corresponding to the program input (a more detailed
argument for the correctness of this approach is available in Sect. 3.4). Given the
measured counts ψm

? , ψh
? , ψm

! , ψh
! (respectively assumption miss and hit, asser-

tion miss and hit), the computation for the case of exact results is relatively
straight forward:

M? = ψm
? E∀ = ψh

? − ψh
!

H? = ψh
? E∃ = ψh

? − E∀ − S∀ =

S∀ = ψh
? − ψm

! = ψh
! + ψm

! − ψh
?

For the case of approximate model counting using ApproxMC, each of the
given counts are burdened with an uncertainty (δ, ε). Note, that these uncertain-
ties are further propagated when we compute our ratios in (6). As the ratio rm

?

only depends of the count M?, its error (δ, ε) is just propagated towards rm
? . For

the ratios re
∀, and rf

∀ the (δ, ε) error of each approximated count are multiplied,
i.e., the error bound is (1 + ε)2 with certainty of (1 − δ)2. We clearly see that
the ratios’ become less precise.

We consider two numerical examples (for details see Sect. 4) to explore the
error bounds.2 Let us assume ApproxMC’s standard parameters δ = 0.2 and
ε = 0.8. First, consider the case of rangesum03. For this benchmark the following
values represent the correct model counts: H? = 296, M! = 264, H! = 296 − 264.
By computing the bounds (see Appendix A) we obtain the following error bounds
with a probability of 0.64 each:

For re
∀ : − 2.23 ≤ ψh

? − ψh
!

ψh
?

≤ 0.69 For rf
∀ : 0.99 . . . ≤ ψh

? − ψm
!

ψh
?

≤ 0.99 . . .

We see a strong asymmetry between the error bounds for re
∀ and those for

rf
∀ caused by the strong asymmetry of ψh

! and ψm
! . Note that for determinis-

tic benchmarks the ratios can be computed through one minus the other ratio
respectively. As a second case, consider the benchmark usqrt-broken for which
the correct values are given by: H? = 232, M! = 231 and H! = 231. Here, the
split between assertion misses and assertion hits is essentially even. We obtain
the following (equal) error bounds both for re

∀ and rf
∀ : −0.62 ≤ ψh

? −φ

ψh
?

≤ 0.89 for

φ ∈ {
ψh
! , ψm

!

}
.

Note that, firstly, for cases where ψm
! and ψh

! are expected or found to be of
similar magnitude, a stricter value for ε should be considered. Secondly, in all
cases it is worthwhile to examine, both, the ratios and all the absolute numbers:
While a success ratio rf

∀ ≥ 0.99 seems good, it might still be the case that a
large number of inputs yield an assertion miss if the input space I and H? are
sufficiently large (as seen for case rangesum03 in Sect. 4).

2 For conciseness, we mostly round the given bounds to two decimal places.

Quantifying Software Reliability via Model-Counting 67

3.4 Correctness of the Pipeline

The pipeline we described in Sect. 3 is correct. By correctness, we mean that
we get correct counts ψm

? , ψh
? , ψm

! and ψh
! for M?,H?,M! and H! when running

the pipeline with an exact model counter. The correctness depends on three
elementary properties: First, the program transformation preserves the behavior
of the original program. Of course, a new program flow is established, but in
cases without a violation of an assumption or assertion the transformed program
behaves equally. Secondly, every hit or miss of an assumption or assertion is
captured faithfully by a violated assert-statement (Lines 20 to 23). Thirdly, every
(projected) model of the generated CNF formulae is indeed a representative for a
violating or valid program path. In the Appendix B we elaborate the correctness
deeply.

4 Evaluation

In order to evaluate our approach, we ran our prototypically-implemented pipe-
line on a number of C-programs from various benchmark families with the objec-
tive of showing its strengths, weaknesses and limits. Our experiments aimed to
answer the following questions:

(Q1) Does our pipeline admit the quantification of more complex programs in
comparison to [6]?

(Q2) How large can programs and input spaces become for given resource limits?
(Q3) Where does our bit-precise semantic help in obtaining more precise results

and where is it too costly in comparison to [6]?
(Q4) Can our pipeline accurately quantify non-deterministic program behavior?

Implementation. For our experiments we implemented counterSharp3 as a
tool which transforms input C-programs into countable CNF formulae using
cbmc. We apply the transformation (Sect. 3.1) on the input C-program’s
abstract syntax tree. Afterwards, the modified abstract syntax tree is converted
back into C-code which is automatically passed to cbmc producing a total of
five CNF formulae: Four checking for assertion/assumption hits and misses and
another formulae to check for how many inputs (if any) the given bound is
insufficient (i.e., for which inputs there are paths which need a deeper unroll of
loops). The formulae provided by cbmc are adjusted to contain model counting
projection instructions. We extract the propositional variables which represent
the inputs variables in the C-program. Finally, our tool returns the five formulae
containing projection instructions, which can then be processed by a suitable
model counter of the user’s choice. This approach both leaves the freedom to
make use of other model counters and allows the trivial parallelization of this
last quantification step. Our tool is publicly available.4

3 counterSharp counts (thus sharp) counterexamples (thus counter) for a given
specification.

4 https://github.com/samysweb/counterSharp.

https://github.com/samysweb/counterSharp

68 S. Teuber and A. Weigl

Experiment Setup. All experiments were run on a 4 core Intel Core i5-6500
processor and 16 GB of RAM. counterSharp was run with a timeout of 15 min.
while the model counters had 5 min per instance. In order to achieve a fair
comparison, the tool by [6] was given a timeout of 40 min to account for the
multiple model counter runs in the case of counterSharp. All runs had a
restricted memory of 2 GB. The execution of the tools was monitored using
the runlim utility [2]. All scripts and raw results are available online [21]. The
stated performance data is given as the median of 5 runs. ApproxMC was used
in default configuration (though we used activated sparse hashing) and varying
seeds across the runs, analogue for ganak.

In the remaining, we compare varying setups: The setup dim denotes the
analyzer of [6]. The setup cS-gan consists of counterSharp with ganak
for model counting for determinstic programs. The runtime is given as the
time of counterSharp c added by the minimum runtime of (parallel) count-
ing assertion hits gH! and misses gM! : c + min (gH! , gM!). Analogue, coun-
terSharp with ApproxMC (cS-app), where the runtime is given as c +
max (aH! , aM!). Both setups cS-gan and cS-app simulate a run of coun-
terSharp followed by a parallel run of ganak or ApproxMC to compute
assertion hit/miss counts. Additionally, we defined two setups used for non-
deterministic cases named cSn-gan and cSn-app, where the runtime is given
as c+max(min(gH? , gM?), gH! , gM!) and c+max(aH? , aM? , aH! , aM!). Here, includ-
ing extra counts to obtain reliable results for assumption hits, assertion hits and
assertion misses—a necessity because of the possible overlap between assertion
misses and hits in the case of non-determinism. ganak can stop this compu-
tation once one of the two counters for assumption hits and misses returns,
as the complement can be computed through subtraction. On the other hand,
ApproxMC has to count both due to approximation errors (hence the max).

Fig. 6. Benchmark count up down
for input size 1000

Benchmarks by [6]. In a first step we com-
pared cS-gan and cs-app directly with
dim using the benchmark set presented in
their original work where each benchmark
provided a version with I of size 10 and
1000. The comparison in the first part of
Table 1 clearly shows that neither cS-gan
nor cS-app can win against dim on the
paper’s original benchmark set. Indeed, it
seems dim is very well suited to answer quantification questions on their bench-
mark set. To illustrate the reasons for its success, it is worth having a look at
the considered benchmarks. One of the benchmarks where cS-app is particu-
larly bad in comparison to dim is the count up down benchmark in Fig. 6. It is
clear that a bounded model checker approach is worse at solving instances like
this one due to the large number of loop unrolls necessary. An abstract interpre-
tation approach like dim, seems to handle this kind of task a lot better—and
independent of the loop size. This difference becomes even clearer for the case
of the benchmark Mono3 1 which contains a loop repeated one million times.

Quantifying Software Reliability via Model-Counting 69

Table 1. Evaluation of dim [6], cS-gan, cS-app, cSn-gan, cSn-app on the appli-
cable benchmarks: Runtimes in seconds (median of 5 runs). (MO = out-of-memory,
TO = timeout)

Deterministic Benchmarks: Comparison to dim[6]

Benchmark Source dim cS-gan cS-app

Input Size 10 1000 10 1000 10 1000

time exact time exact time exact time exact time exact time exact

bwd loop1a [6] 0.51 � 0.55 � 1.68 � 2.82 � 4.98 � 8.68 ≈
bwd loop2 [6] 0.67 � 0.41 ≈ 1.76 � 1.35 � 2.67 � 4.24 ≈
count up down [6] 0.54 � 0.27 � 1.16 � 8.75 � 1.19 � 142.45 ≈
example1a [6] 0.64 � 0.46 � 1.59 � 1.83 � 5.18 � 10.02 ≈
example7a [6] 0.54 � 0.82 � 1.07 � TO – 1.76 � TO –

gsv2008 [6] 0.43 � 0.62 � 1.6 � 8.89 � 3.03 � 79.41 ≈
hhk2008 [6] 0.44 � 0.68 � 0.96 � TO – 1.56 � TO –

Log [6] 0.57 ≈ 0.69 ≈ 1.45 � TO – 1.90 � TO –

Mono3 1 [6] 0.48 ≈ 0.74 ≈ TO – TO – TO – TO –

Waldkirch [6] 0.4 � 0.37 � 1.35 � 8.17 � 1.56 � 146.56 ≈
Complex benchmarks

Benchmark Source dim cS-gan cS-app

reason for failure time exact time exact

floor-broken [20] float TO – 11.13 ≈
floor [20] float 1.07 � 8.47 �
overflow crafted incorrect (overflow) 1.41 � 1.69 ≈
Problem10 16 [19]/[10] timeout TO – 723.73 ≈
Problem13 4 [19]/[10] timeout TO – TO –

rangesum03 [19]/[4] arrays 0.51 � 2.0 ≈
rangesum05 [19]/[4] arrays TO – TO –

usqrt-broken [20] bit arithmetic TO – 17.06 �
usqrt [20] bit arithmetic TO – 105.83 �

Nondeterministic Benchmarksa: Comparison to dim[6]

Benchmark Source dim cSn-gan cSn-app

time time time

bwd loop10-2 [6] 0.39 MO MO

bwd loop10 [6] 0.65 MO MO

bwd loop7-2 [6] 0.55 230.11 6.41

bwd loop7 [6] 0.88 6.36 6.41

example7b-2 [6] 0.45 TO TO

example7b [6] 0.17 4.18 3.63

for bounded-2 [6] 0.25 MO 135.51

for bounded-1 [6] 0.67 2.91 2.17

nondet crafted 0.87 TO 1.83
aExactness classification is not applicable for nondeterministic programs.

As a matter of fact, every time cS-gan or cS-app take more than 15 s or time
out on the benchmark set in the first part of Table 1, it is due to a benchmark
which requires an unrolling of a loop with depth larger or equal to 500.

The only exception to this rule is the benchmark gsv2008 which takes longer
than 15 s for a run with unroll depth 101. Conversely, nearly all benchmarks exe-

70 S. Teuber and A. Weigl

cuted within 15 s require a less deep loop-unrolling. It thus seems that loop depth
is the main bottleneck for our approach on this benchmark set. At the same time,
the program logic of all benchmarks in the set is comparatively simple: subtrac-
tion and addition paired with while, for or if-statements. Towards answering
(Q3) we observe that the approach proposed by Dimovski and Legay [6] works
very well on this type of benchmark. However, the question remains whether
more complex benchmarks might require a more precise semantic than the one
available in dim.

Complex Programs. To this end, we looked at a number of other benchmarks
from the SV-Competition [19] as well as the C-Snippets [20] code repository. We
collected a number of benchmarks which allowed some form of quantification
through input variables and either had a wider range of interesting, represen-
tative program constructs (such as arrays, floats, or bit arithmetic) or repre-
sented suitable candidates to test the scalability of our approach. These bench-
marks were manually modified to allow quantification on them (addition of suit-
able assertion- and assumption-statements) and to compare different sizes (e.g.,
comparison of 3 element and 5 element array input). Additionally, we crafted
one benchmark showing behavior we were particularly interested in. All of the
instances mentioned in the second part of Table 1 show behavior which cannot
be analyzed by dim: The tool was either unable to analyze the programs due
to the use of arrays and bit arithmetic, ran into a timeout due to instance size
or even produced wrong results due to the neglection of overflows. We discuss
these benchmarks as well as why we believe they are difficult and what our
results show.

The first two benchmarks in the table represent a broken and correct algo-
rithm to compute the floor function of a floating point number. For the experi-
ment we assumed a positive, non-infinite, non-NaN 128 bit long double input
which the program is supposed to round down into another long double num-
ber using bit arithmetic. The final assertion checks whether the computed num-
ber is smaller than the original number. We added a broken version of the pro-
gram which, according to cS-app, breaks the specification for approx. 1.5 ∗ 295

of the 2127 positive inputs. The cS-app tool also returns that 2127 inputs comply
to the specification. Here we see the reason why it is necessary to compute both
counts (assertion miss and assertion hit): The ratio between assertion hits and
misses is approx. 1.75 ∗ 10−10 and thus the entirety of assertion misses well lies
within the error bounds of the assertion hit measurement. Therefore, it seems
good advice to always inspect the numbers and their relations manually in order
to spot such approximation errors during data interpretation.

The float instances are followed by the only instance which dim was able
to compute faster than our tools and which is a crafted benchmark. However,
dim returns faulty results due to an integer overflow which remains undetected in
polyhedra: The benchmarks assumes an input x strictly larger than INT MIN/2.
If x is negative, |INT MIN/2| is subtracted while |INT MIN/2| is added if x
is positive. The final assertion requires that x be negative. dim returns that the
assertion is met by one third of the inputs (i.e., by all inputs which are nega-

Quantifying Software Reliability via Model-Counting 71

tive) and this is of course what a polyhedra tool would have to return due to
its abstract domain. However, closer examination shows that the addition in the
positive case leads to an overflow for any number larger than |INT MIN/2|.
Thus, the assertion is actually hit for two thirds of all inputs (i.e., all negative
inputs and all sufficiently large positive inputs). This benchmark was of course
crafted to show the drawbacks in the use of polyhedra for quantification. While
one might argue that this is an unfair comparison, we merely want to draw atten-
tion to the fact that such mistakes are not uncommon in programming and can
be better quantified with a tool with bit-precise semantic, like counterSharp.

The following two benchmarks stem from the RERS Challenge 2018 [10] and
concern the reachability problem for linear time logic (LTL) formulae. For each
instance a number of error states are defined which should not be reached. The
states reached by the program depend on the input variables. Prob10 is then run
for 16 time steps converting the program in a way that it takes 16 char variables
as inputs, while Prob13 was only supposed to be run for 4 time steps. As only
values from 1 to 5 (instance 10) or 1 to 10 (instance 13) are allowed, suitable
input restrictions were introduced for both dim and cS-*. The original RERS
challenge had 3 problem levels of which Prob10 was level small and Prob13
was level medium. Prob10 consists of approx. 1.3k LoC while Prob13 contains
around 114k LoC. While cS-app works relatively well on the small instance,
counterSharp runs into a timeout for the medium size instance when trying
to construct the CNF formulae. On the other hand, cS-gan cannot compute
either of the two benchmarks. This is probably due to the fact that the number
of clauses (and variables) in the instance are at least one order of magnitude
larger than the numbers in other benchmarks solvable by cS-gan. It turned
out that dim seems to be unable to solve both instances due to a memout. We
believe the reason for this is the scale of the benchmark instances which is much
larger than instances previously considered in the evaluation of dim.5

The following two rangesum examples implement the computation of a range-
sum for an array of size 3 and 5. This benchmark can, again, only be evaluated
for the cS-* tools as it requires the ability to handle arrays. We modified the
benchmark in such a way that the elements inside the array are given as input
parameters to the main function thus allowing an easy quantification across all
possible array values. Both, cS-app and cS-gan are able to quickly solve the
3 element instance. We also see that cS-gan is particularly efficient in cases
where one of the two counts (here the assertion hits) can be computed partic-
ularly fast, as the complementary count (which in this case would have timed
out) can be computed exactly. At the same time, both tools still fail to solve the
5 element instance. This can be explained by the vastly larger input space for
an array of 5 integer elements which considers an input space 264 times larger
than the input space for 3 elements.

5 Given the choice of a relatively low memout initially, we reran dim on Problem 10
with 8 GB of memory available. However, the program ran into a timeout after 2400 s
using 4.5 GB of memory.

72 S. Teuber and A. Weigl

The final two benchmarks stem from Fig. 1 which represents the computation
of an integer square root. As we already mentioned in the introduction, the
code in the listing is flawed (this corresponds to usqrt-broken). Namely, the
shift in Line 12 is a signed right shift which introduced flawed results for any
input x larger than 230. Indeed, cS-app correctly returns in all 5 runs that the
assertion succeeds (resp. fails) for 230 (resp. also 230) inputs while 231 inputs
already miss the assumption. For the case of the fixed version (usqrt) the main
challenge for cS-app (or its underlying SAT solver to be precise) is showing the
unsatisfiability of the assertion miss formula which takes 104.93s in comparison
to 3.01s for counting all 231 assertion hits.

Concerning questions (Q1) and (Q2) we see that there is a category of bench-
marks which the tool by Dimovski and Legay [6] fails to analyze and in all fairness
was probably never meant to analyze given the polyhedral domain approach. On
the other hand our tools cS-gan and cS-app are able to solve a number of
these (in our opinion) interesting benchmarks. In particular our tools admit
the quantification of larger programs (e.g., Problem 10) and more complex pro-
grams (i.e., arrays or advanced arithmetic). Concerning (Q3) we showed how a
bit precise semantic helps in correctly quantifying overflow errors.

Non-deterministic Programs. Turning to the question of non-deterministic pro-
grams (Q4), we can observe in the last part of Table 1 that all benchmarks
considered are solved the fastest by dim. We observe, once again, that the cases
where cSn-gan or cSn-app yield a timeout or memout are cases with very
deep loops with the notable exception of the benchmark nondet which does not
involve loops. While dim is the fastest tool, it turns out that cSn-gan and
cSn-app can sometimes produce more precise results than the approximate
result yielded by dim. In particular, the benchmark nondet which corresponds
to the code in test2 in Fig. 2 demonstrates this behavior. As previously dis-
cussed, the assertion can fail for any input due to the non-deterministic value
of y, but it must fail for any negative input x. Accordingly, cSn-app reports
a possible assertion miss for 232 cases and a possible assertion hit for 231 cases.
This corresponds to a probability of success between 0 and 50% and a probability
of violation between 50 and 100% for a uniform input distribution. While dim is
faster in reporting its result, it reports that both success and violation probabil-
ity lie within the range 0 to 100% which is a lot less precise than cSn-app. The
reason for this behavior is quite likely the multiplication in the program which
is difficult to handle for the polyhedra abstract domain. Equally, the complexity
of the formula due to multiplication might be a reason why the exact counter
cSn-gan fails to quantify the benchmark. Concerning (Q4) we find that our
tools admit the accurate quantification of non-deterministic benchmarks. Just
as for deterministic benchmarks our approach is limited by loop depth. Once
again certain cases can profit from the bit precise semantic allowing for a more
precise quantification (as in the case of nondet).

Analysis of Bottlenecks. cbmc and the program transformation take most of
the required time for instances with a small input space. As the input space

Quantifying Software Reliability via Model-Counting 73

size grows, the counting step either becomes infeasible (especially for ganak)
or requires a lot more computation time in comparison to cbmc (especially for
ApproxMC). Since counting can take significant amounts of time and ganak
and ApproxMC showed drastic variations in performance on some bench-
marks (e.g. Waldkirch where ganak solves the instance a magnitude faster than
ApproxMC or float where the opposite behavior can be observed), an approach
using a portfolio of model counters could reduce computation time.

5 Related Work

Klebanov et al. [11] present the idea of using CBMC to generate CNF formulae
for model counting to compute the information leakage of a program.

Geldenhuys et al. [8] proposed an approach using symbolic execution for
the extraction of path probabilities. To this end, a classic symbolic execution
methodology is modified such that it computes probabilities instead of path
conditions: At every branching point the algorithm computes the likelihood of
descending into the subprocedures at hand under the assumption of a uniform
distribution of input variables using the polytope utility LattE [14]. Path prob-
abilities are then computed through multiplication of branch probabilities. Lui
and Zhang [13] propose a similar approach which does not use formula slicing
or memoization. Filieri et al. [7] applies symbolic execution on Java-programs to
extract path conditions for every possible execution path. The paths are then
labeled as success, failure or “gray” paths with unknown success status. The
number of models for these path conditions are, again, counted with LattE,
though they may be constrained by usage profiles describing an input distribu-
tion. This allows to compute the probability of failure (failure paths) and the
confidence in the result (gray paths) under the given usage profile. The app-
roach furthermore supports multi-threading. In contrast, our approach differs in
both: the programming language under evaluation and the counting technique
approach allowing more complex behavior than the linear constraints described
by polytopes.

The approach of Dimovski and Legay [6] allows the computation of assertion
hit and miss probabilities under a uniform input distribution for programs writ-
ten in a subset of C. The approach uses abstract interpretation to describe the
program behavior using the polyhedra domain, which encodes linear constraints
between program variables. In a first step, a forward analysis of the program is
performed computing an invariant which must hold after the program execution.
The forward analysis is based on intervals which have to be defined for the input
variables of interest. The forward analysis works by applying sound (but over-
approximating) transfer functions on the specified input domain. Afterwards,
in a backward pass, conditions specifying an assertion hit/miss are propagated
backward using appropriate transfer functions. This approach produces two over-
approximating linear constraint preconditions: One for assertion hits and one
for assertion misses. The number of inputs corresponding to the precondition at
hand are then again computed using LattE [14]. Both results (assertion hit and

74 S. Teuber and A. Weigl

miss) represent an upper-bound for the number of inputs leading to the speci-
fied behavior. By calculating the complement of each count, the tool can further
provide a lower bound for each of the two cases. Additionally, the analyzer pro-
vides a semantic that also allows a quantification of non-deterministic programs.
While the tool of [6] is similar, it only supports a more restrictive subset of the
C programming language in comparison to our approach: The subset supports
no complex data types and only integers as basic data types while our work
supports both arrays and floats. Additionally, the use of non-linear operators as
well as bit operators is greatly restricted. As our tool relies on bounded model
checking and SAT model counting, we can avoid this limitation by making use
of a bit-precise semantic which also takes overflows into account. On the other
hand, our tool has stricter limitations on the loops that can be evaluated as the
bounded model checker must unroll such loops up to a sufficient depth for exact
results, while Dimovski and Legay [6] can analyze such loops in considerably less
time using abstract interpretation if the loop conditions are sufficiently simple.

6 Conclusion

In this work we presented a formal approach allowing the precise quantification
of software properties given as assumptions and assertions. The resulting pipeline
contains three steps: (1) program transformation, (2) conversion into CNF for-
mulae and (3) model counting. We implemented the pipeline prototypically and
undertook an extensive, qualitative evaluation of the prototype. We show that
our quantification approach is both, feasible, even a program with 1300 LoC was
still analyzable with the given resources, and useful, sometimes yielding results
beyond the precision of previous approaches. We further introduced a seman-
tic allowing the quantitative analysis of non-deterministic programs and showed
that the pipeline is capable of analyzing such instances, too. In our compari-
son to the tool in [6], we showed strengths and weaknesses of both approaches:
While their approach works very well on programs with high loop depth, our
approach allows the quantification of programs using more complex arithmetical
operations such as bit operators or multiplication. Equally, we presented a case
in which the bit precise semantic helps in returning more precise results for the
quantification of non-deterministic programs.

To summarize, we believe that a SAT counting based approach is an inter-
esting addition to the tool set available for software quantification. While some
benchmarks also remain out of reach for our approach (either due to the input
space explosion with growth in input variables or due to the sheer problem size)
and approximation errors need to be considered when analyzing, the capabilities
of our approach will scale with advances in model counting in the same way the
capabilities of bounded model checkers grow with the advances in SAT solving.

Future Work. The current pipeline can only serve as an estimator of proba-
bility of failure for the case of a uniform input distribution. An extension to
non-uniform input distributions could further increase the utility of the tool.

Quantifying Software Reliability via Model-Counting 75

To this end, we identify a need for projected weighted model counters (approx-
imate or exact). Additionally, cbmc allows the use of complex data types such
as structs. However, the current setup only allows basic data types as input
variables. A methodology allowing a quantification over a set of complex data
structure instances as input might be an interesting addition to the tool in its
current form.

A Model Counting

Model counting is the counting of satisfying assignments (models) of a given
(propositional) formula. We use model counting to quantify the number of inputs
for which a given variable corresponds to our specification. This section gives
a brief overview over the notions of model counting and recent advances in the
field before it explains how we harness propositional model counting techniques
in our pipeline.

Preliminaries. Assuming a CNF formula φ over the signature Σ, an assignment
is the interpretation of the propositional atoms I : Σ → {t, f}. There are 2|Σ|

possible assignments for the variables in φ. We can then define models (φ) :=
{I | I |= φ} as the set of all assignments satisfying φ. A model counter thus
computes the cardinality |models (φ)|. In our case, we are only interested in
the assignments of the program’s input variables. For this we need the projec-
tion on propositional formulae. Let Δ ⊆ Σ be a signature, then φ�Δ denotes
the strongest formula over Δ which is entailed by φ [12, Logical Foundations].
Note, φ�Δ states the same constraints on the atoms in Δ as φ. We denote with
modelsΔ(φ) := {I�Δ| I |= φ�Δ} the set of Δ-models of the Δ-projection of φ.
There exist exact and approximative model-counters.

Exact Model Counting. In our work we use the probabilistic exact model counter
ganak [17] which is freely available and represents an improved version of sharp-
SAT [22]. For a given parameter δ the model counter returns the exact model
count with probability 1 − δ. In practice the tool returned exact results for all
benchmarks considered by [17] when setting δ = 0.05. The model counter also
recently won a first place in the Model Counting Competition 2020 [9] as part
of a portfolio.

Approximate Model Counting. Alternatively, we can use the approximate model
counter ApproxMC [3,12,15,18] which uses a probably approximate correct (or
PAC) algorithm. This means the algorithm provides a theoretical guarantee on
the relation between the correct model count ψ and the result of ApproxMC
ψA which can be configured by some (ε, δ):

Pr
[

ψ

1 + ε
≤ ψA ≤ (1 + ε)ψ

]
≥ 1 − δ (7)

76 S. Teuber and A. Weigl

It is worth noting that two runs of ApproxMC can be considered independent
random variables as the correctness of the result depends on the random variables
within the algorithm and not its input value.

Bounds for Ratios. For the ratios re
∀, and rf

∀ we obtain error bounds through
the following corollary:

Corollary 1. Let φ1, φ2 be two model counts measured according to (7) and let
further φ∗

1, φ
∗
2 be the correct model counts, then:

Pr

[

1 − (1 + ε)2
φ∗
2

φ∗
1

≤ φ1 − φ2

φ1
≤ 1 − φ∗

2

(1 + ε)2 φ∗
1

]

≥ (1 − δ)2

For both ratios φ1 in Corollary 1 corresponds to ψh
? (consequently φ∗

1 represents
H?). φ2 then either corresponds to ψh

! or ψm
! respectively yielding the measure-

ment for re
∀ or rf

∀ (hence φ∗
2 represents H! or M!). We clearly see that the ratios’

error bounds become less precise in comparison to the single measure case.

B Correctness of the pipeline

In this section we will argue why the pipeline we described in Sect. 3 is cor-
rect. By correctness, we mean that we get correct counts ψm

? , ψh
? , ψm

! and ψh
! for

M?,H?,M! and H! when running the pipeline with an exact model counter. The
correctness depends on three elementary properties: First, the program transfor-
mation preserves the behavior of the original program. Of course, a new program
flow is established, but in cases without a violation of an assumption or asser-
tion the transformed program behaves equally. Secondly, every hit or miss of
an assumption or assertion is captured faithfully by a violated assert-statement
(Lines 20 to 23). Thirdly, every (projected) model of the generated CNF formulae
is indeed a representative for a violating or valid program path.

Program Transformation Preserves Behavior. We need to consider that unifying
return statements, and early execution abortion do not alter the program flow
unfaithfully, especially, no program behavior is introduced which violates an
assumption or assertion.

Considering the unifying of return statements: When in the old program
a return statement is reached, the sub-routine is immediately returned to the
callee. In the transformed program, we store the return value if necessary, and
jump to the last remaining return statement under the end-label. This takes an
extra step, but this step does not modify the value of any program variable.

The early abortion is triggered only when an assumption or assertion viola-
tion occurs, as the variables am and as are not in the original program. Therefore,
for any input without a specification violation, the transformed program behaves
exactly the same, terminating with am and as equal to false.

Quantifying Software Reliability via Model-Counting 77

Capturing Hits and Misses. We need to consider four cases (assumption/assert
hit/miss), but due to symmetry reason, we only argue in the two critical cases:
the violation of an assumption or assertion. Please reconsider, that we encode
the required property with a negation into the program, because a negation on
the property is added by cbmc. As a summary, we count the inputs which violate
an assert-statement.

Let us consider the case of assumption misses (M?). As previously explained,
the resulting program should contain exactly one assert-statement which is vio-
lated iff the given input violates one of the specified assumptions. This assert-
statement (see Line 23 in Fig. 5) checks the program variable am. The program
execution, just as in the original program, begins with the subroutine under
consideration and the checks of the assumptions. If at least one assumption
is violated for a specific input, the variable am becomes true, and the pro-
gram is aborted early. For the entry routine, we directly jump to the assert-
statement which will be violated. Therefore, any violation of user-defined asser-
tion is ignored in the further program flow.

Next, we consider the case of assumption hit (H?) with an occurring assertion
miss (M!). The original (and transformed) program starts again in the entry
function, but as the assumptions are met, the remaining body is executed (am
stays false for the complete remaining execution). Afterwards, if an assertion
in is violated somewhere during the program execution, the variable as becomes
and stays true, and also the program flow of the current routine and its callees is
aborted recursively until one of the assert-statements (Lines 20 to 23) is reached.
In detail, only the assert-statements in Line 21 (assertion miss) and in Line 22
(assumption hit) are violated. If no assertion had been violated, the assert-
statement in Line 20 would be violated.

Model-Counting. Our projected model counter computes the number of distin-
guishable assignments projected to a variable set Δ which satisfy the given for-
mula. If we want to obtain correct results for our metrics, we thus need to choose
our formulae and projection set in such a way that the model counter returns
correct counts. Our bounded model checker cbmc returns formulae which are
satisfiable iff a specified assert-statement can be missed for some program path
(within the defined bound). The formula returned by cbmc contains proposi-
tional variables for all bits of our program’s input. We thus choose exactly those
input representatives as set Δ. If we are able to construct a program containing
exactly one assert-statement which is missed iff the given input has a program
path that implies an assertion hit, we can then compute H! by constructing this
program and subsequently passing the transformed program to cbmc and later
on to the model counter projecting on the input variables. Correspondingly, we
can compute M!,H? and M? if we can construct a program containing exactly
one assert-statement which is missed iff the conditions for the corresponding
variable are met.

78 S. Teuber and A. Weigl

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. Inst. Syst. Res. 0114, 10 (2001). https://
doi.org/10.1016/S0005-1098(00)00082-0, http://drum.lib.umd.edu/handle/1903/
5952

2. Biere, A.: runlim. Website (2016). http://fmv.jku.at/runlim
3. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approx-

imate counting for probabilistic inference: from linear to logarithmic SAT calls.
In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July
2016, pp. 3569–3576. IJCAI/AAAI Press (2016). http://www.ijcai.org/Abstract/
16/503

4. Chen, Y.-F., Hong, C.-D., Sinha, N., Wang, B.-Y.: Commutativity of reducers. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 131–146. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 9

5. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

6. Dimovski, A.S., Legay, A.: Computing program reliability using forward-backward
precondition analysis and model counting. In: FASE 2020. LNCS, vol. 12076, pp.
182–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45234-6 9

7. Filieri, A., Pasareanu, C.S., Visser, W.: Reliability analysis in symbolic PathFinder.
In: Proceedings - International Conference on Software Engineering, pp. 622–631
(2013). https://doi.org/10.1109/ICSE.2013.6606608

8. Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic execution. In: Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis,
pp. 166–176. ACM (2012). https://doi.org/10.1145/2338965.2336773

9. Hechter, M., Fichter, J.K.: Model Counting Competition 2020. Website (2020).
https://mccompetition.org/. Accessed 5 Dec 2020

10. Jasper, M., Mues, M., Schlüter, M., Steffen, B., Howar, F.: RERS 2018: CTL,
LTL, and reachability. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol.
11245, pp. 433–447. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03421-4 27

11. Klebanov, V., Manthey, N., Muise, C.: SAT-based analysis and quantification of
information flow in programs. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio,
P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 177–192. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40196-1 16

12. Klebanov, V., Weigl, A., Weisbarth, J.: Sound probabilistic #SAT with projection.
In: Electronic Proceedings in Theoretical Computer Science, EPTCS, vol. 227, pp.
15–29 (2016). https://doi.org/10.4204/EPTCS.227.2

13. Liu, S., Zhang, J.: Program analysis: From qualitative analysis to quantitative
analysis. In: Proceedings - International Conference on Software Engineering, pp.
956–959 (2011). https://doi.org/10.1145/1985793.1985957

14. Loera, J.A.D., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point count-
ing in rational convex polytopes. J. Symb. Comput. 38(4), 1273–1302 (2004).
https://doi.org/10.1016/j.jsc.2003.04.003

https://doi.org/10.1016/S0005-1098(00)00082-0
https://doi.org/10.1016/S0005-1098(00)00082-0
http://drum.lib.umd.edu/handle/1903/5952
http://drum.lib.umd.edu/handle/1903/5952
http://fmv.jku.at/runlim
http://www.ijcai.org/Abstract/16/503
http://www.ijcai.org/Abstract/16/503
https://doi.org/10.1007/978-3-662-46681-0_9
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-030-45234-6_9
https://doi.org/10.1109/ICSE.2013.6606608
https://doi.org/10.1145/2338965.2336773
https://mccompetition.org/
https://doi.org/10.1007/978-3-030-03421-4_27
https://doi.org/10.1007/978-3-030-03421-4_27
https://doi.org/10.1007/978-3-642-40196-1_16
https://doi.org/10.4204/EPTCS.227.2
https://doi.org/10.1145/1985793.1985957
https://doi.org/10.1016/j.jsc.2003.04.003

Quantifying Software Reliability via Model-Counting 79

15. Meel, K.S., Akshay, S.: Sparse hashing for scalable approximate model counting:
theory and practice. In: Hermanns, H., Zhang, L., Kobayashi, N., Miller, D. (eds.)
LICS 2020: 35th Annual ACM/IEEE Symposium on Logic in Computer Science,
Saarbrücken, Germany, 8–11 July 2020, pp. 728–741. ACM (2020). https://doi.
org/10.1145/3373718.3394809

16. Orso, A., Rothermel, G.: Software testing: a research travelogue (2000–2014). In:
Future of Software Engineering, FOSE 2014 - Proceedings, pp. 117–132 (2014).
https://doi.org/10.1145/2593882.2593885

17. Sharma, S., Roy, S., Soos, M., Meel, K.S.: GANAK: a scalable probabilistic exact
model counter. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16
August 2019, pp. 1169–1176. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/
163

18. Soos, M., Meel, K.S.: BIRD: engineering an efficient CNF-XOR SAT solver and its
applications to approximate model counting. In: The Thirty-Third AAAI Confer-
ence on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, 27 January–1 February 2019, pp. 1592–1599. AAAI Press (2019). https://
doi.org/10.1609/aaai.v33i01.33011592

19. SoSy-Lab LMU: SV-Benchmarks (2020). https://github.com/sosy-lab/sv-
benchmarks

20. Stout, B.: C Snippets (2009). http://web.archive.org/web/20101204075132/c.
snippets.org/

21. Teuber, S., Weigl, A.: Evaluated artifact for “quantifying software reliability via
model-counting” (2021). https://doi.org/10.5445/IR/1000134169

22. Thurley, M.: sharpSAT – counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424–429. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 38

23. Visser, W., Bjørner, N., Shankar, N.: Software engineering and automated deduc-
tion. In: Herbsleb, J.D., Dwyer, M.B. (eds.) Proceedings of the on Future of Soft-
ware Engineering, FOSE 2014, Hyderabad, India, 31 May–7 June 2014, pp. 155–
166. ACM (2014). https://doi.org/10.1145/2593882.2593899

https://doi.org/10.1145/3373718.3394809
https://doi.org/10.1145/3373718.3394809
https://doi.org/10.1145/2593882.2593885
https://doi.org/10.24963/ijcai.2019/163
https://doi.org/10.24963/ijcai.2019/163
https://doi.org/10.1609/aaai.v33i01.33011592
https://doi.org/10.1609/aaai.v33i01.33011592
https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks
http://web.archive.org/web/20101204075132/c.snippets.org/
http://web.archive.org/web/20101204075132/c.snippets.org/
https://doi.org/10.5445/IR/1000134169
https://doi.org/10.1007/11814948_38
https://doi.org/10.1145/2593882.2593899

Quantitative Models and Metamodels:
Analysis and Validation

Compositional Safe Approximation
of Response Time Distribution

of Complex Workflows

Laura Carnevali1, Marco Paolieri2, Riccardo Reali1(B), and Enrico Vicario1

1 Department of Information Engineering, University of Florence, Florence, Italy
{laura.carnevali,riccardo.reali,enrico.vicario}@unifi.it

2 Department of Computer Science, University of Southern California,
Los Angeles, USA
paolieri@usc.edu

Abstract. We propose a compositional technique for efficient evaluation
of the cumulative distribution function of the response time of complex
workflows, consisting of activities with generally distributed stochastic
durations composed through sequence, choice/merge, split/join, and rep-
etition blocks, with unbalanced split and join constructs that break the
structure of well-formed nesting. Workflows are specified using a formal-
ism defined in terms of stochastic Petri nets, that permits decomposition
of the model into a hierarchy of sub-workflows with positively correlated
response times, which guarantees a stochastically ordered approximation
of the end-to-end response time when intermediate results are approxi-
mated by stochastically ordered distributions and when dependencies are
simplified by replicating activities appearing in multiple sub-workflows.
This opens the way to an efficient hierarchical solution that manages
complex models by recursive application of Markov regenerative analy-
sis and numerical composition of monovariate distributions.

Keywords: Stochastic workflow · Response time distribution ·
Structured model · Compositional evaluation · Stochastic ordering

1 Introduction

A workflow is an orchestration of concurrent and sequential activities, mainly
shaped by constructs of split/join, choice/merge, and sequence, occasionally
including dependencies that break well-formed nesting and repetitions that pro-
duce transient cycles [29]. This abstraction fits a large variety of material and
digital processes, in multiple contexts such as supply chain management [18],
administration [1], composite web services [12], cloud “functions as a service” [33].

When the model is associated with a measure of probability, quantitative
evaluation may provide measures of interest for different stages of development
and operation [28,8,14,7], supporting the achievement of a tradeoff between
some of them, such as the average response time, the subtask dispersion, and
the energy consumption [26]. In particular, the Cumulative Distribution Func-
tion (CDF) of the end-to-end response time is relevant for the evaluation of the
c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 83–104, 2021.
https://doi.org/10.1007/978-3-030-85172-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-85172-9_5

84 L. Carnevali et al.

expected reward under a Service Level Agreement (SLA) with soft deadlines and
penalty functions [16,27]. In this case, a stochastically ordered approximation of
the CDF produces a safe approximation of the expected reward.

However, practical feasibility faces a difficult combination of recurring com-
plexities: activity durations follow general (i.e., non-Exponential) probability
distributions (GEN), often supported within firm bounds enforced by design or
by contract, which cast the problem in the class of non-Markovian processes [11];
the interleaving of actions in concurrent sub-workflows leads to explosion of the
state space and complex dependencies due to the overlap among concurrent
activities with GEN duration [6].

Compositional solution can address both complexities by avoiding explicit rep-
resentation of interleavings, limiting state space explosion and simplifying the
structure of underlying stochastic processes of individual components [6]. In [36],
mean time and standard deviation of the completion time of aworkflowof activities
with GEN duration composed by fork/join, sequence, and repetition are derived
through an efficient bottom-up calculus, which is extended in [22] for the special
case ofContinuousPhase (CPH) durations. In [2], the completion time of an acyclic
attack tree with CPH delays is evaluated by repeatedly composing CPH distribu-
tions in a bottom-up approach, with possible approximation to compress their rep-
resentation to maintain a bounded number of phases. In [10], the response time of
an acyclic workflow obtained by well-formed nesting of activities with GEN dura-
tions is evaluated in a two-step approach, first applying Markov regenerative anal-
ysis to nested sub-workflows identified so as to have a limited degree of concurrency,
and then repeatedly composing the resulting monovariate distributions bottom-
up to obtain the workflow response time.

In this paper, we propose a compositional technique for efficient evaluation of
the response time CDF of complex workflows consisting of activities with GEN
durations composed through sequence, choice/merge, split/join, and repetition
blocks, with unbalanced split and join constructs that may break the structure
of well-formed nesting. Workflows are specified using a higher level formalism
defined in terms of stochastic Petri nets, that permits decomposition of the model
into a hierarchy of sub-workflows with positively correlated response times. This
guarantees a stochastically ordered approximation of the end-to-end response
time when completion times of intermediate sub-workflows are approximated by
a stochastically ordered fitting distribution and when activities shared among
multiple sub-workflows are replicated as independent random variables so as to
reduce dependencies. These approximations allow an efficient hierarchical solu-
tion approach that manages complex models by recursive application of Markov
regenerative analysis and numerical composition of monovariate distributions.

The rest of the paper is organized in four sections, addressing: specification
of models and their representation as a structure tree (Sect. 2); decomposition
of models into a hierarchy of sub-workflows identified in the structure tree by
heuristics trading approximation for complexity, and re-composition of the end-
to-end response time distribution (Sect. 3); results of numerical experimentation
(Sect. 4); and conclusions (Sect. 5). Theorem proofs and other details are deferred
to the Appendix (Sect. 6).

Compositional Safe Approximation of Response Time of Complex Workflows 85

2 Modeling Workflows with Structured STPNs

We specify workflows with stochastic activity durations using a formalism that
constrains expressivity of a class of stochastic Petri nets (Sects. 2.1 and 2.2)
so as to ensure positive correlation among their response times and to enable
derivation of a structured representation of the model (Sect. 2.3).

2.1 Stochastic Time Petri Nets (STPNs)

Stochastic Time Petri Nets (STPNs) model concurrent timed systems: transi-
tions represent the execution of activities, tokens within places account for the
system logical state, and directed arcs from input places to transitions, and from
transitions to output places, define precedence relations among activities [15].
A transition is enabled if each of its input places contains at least one token;
at newly enabling, a transition samples a time-to-fire from a CDF with support
between an Earliest Firing Time (EFT) and a Latest Firing Time (LFT); upon
firing, it removes a token from each input place and adds one token to each
output place. The choice among transitions with equal time-to-fire is solved by
a random switch determined by probabilistic weights.

As shown in Fig. 1a, places are represented as circles, tokens as dots inside
places, immediate (IMM) transitions (i.e., with zero time-to-fire) as thin bars
(e.g., as1), deterministic (DET) transitions (i.e., with nonzero deterministic
time-to-fire) as gray bars (e.g., z1), EXP transitions as white bars (e.g., v1), and
other GEN transition as black bars (e.g., q). Where necessary, labels indicate
rates, firing intervals [EFT,LFT], CDF types (e.g., uniform or expolynomial).

2.2 STPN Blocks

Workflows with stochastic durations can be specified using a fragment of the
expressivity of STPNs, which is sufficient to represent a variety of workflow con-

Fig. 1. (a) Workflow STPN and (b) its structure tree (composite blocks in blue). (Color
figure online)

86 L. Carnevali et al.

trol patterns [29,37] while making explicit a structure of composition enabling effi-
cient timed analysis. To this end, we specify workflows by recursive composition of
blocks, each defined as an STPN with a single initial place and a single final place.
The execution of a block starts when a token is added to the initial place, and it
eventually terminates, with probability 1 (w.p.1), when a token reaches the final
place. Blocks compose elementary STPN transitions through nested constructs of
concurrent (split/join) and sequential (sequence, choice/merge, repeat) behavior,
or by acyclic compositions that break well-formed nesting through unbalanced fork
and join operations (simple split, simple join):

Block := Act | Seq{Block1, . . . ,Blockn} | AND{Block1, . . . ,Blockn}
| XOR{Block1, . . . ,Blockn, p1, . . . , pn} | Repeat{Block, p}
| DAG{Block1, . . . ,Blockn} (1)

Act is an elementary activity represented by an STPN with a single transition
with GEN duration connecting the initial and final places (e.g., Q in Fig. 1a).

Seq{Block1, . . . ,Blockn} is the sequence of n blocks Block1, . . ., Blockn

(e.g., Z in Fig. 1a).

XOR{Block1, . . . ,Blockn, p1, . . . , pn} is made of an initial immediate ran-
dom exclusive choice, with probabilities p1, . . . , pn, among n alternative blocks
Block1, . . ., Blockn, each connected to a final IMM simple merge transition
(e.g., V in Fig. 1a). XOR is said to be balanced, meaning that all the concurrent
paths started at the initial split are terminated at the final join.

AND{Block1, . . . ,Blockn} is a balanced split-join made of an initial IMM
parallel split transition that forks execution along n concurrent blocks Block1,
. . ., Blockn and a final IMM synchronization transition that terminates the
block (e.g., U in Fig. 1a).

Repeat{Block, p} is a structured cycle that executes a body Block and then
repeats with constant probability p > 0 or terminates with probability 1 − p
(e.g., {T} in Fig. 1a).

DAG{Block1, . . . ,Blockn} is the composition of blocks Block1, . . .,
Blockn in a Directed Acyclic Graph (DAG) with single initial and final places,
with blocks of simple split [29], made of an IMM transition with a single input
place and multiple output places, and simple join, made of an IMM transition
with multiple input places and a single output place. Note that, since simple
split and simple join are not necessarily balanced, a DAG can break well-formed
nesting of concurrent blocks. A DAG is termed minimal if it cannot be reduced
by composition operators Seq, XOR or AND (e.g., in Fig. 1a, Q, R, S, T , U ,
and V are composed in a minimal DAG with initial and final places Start, End,
by means of simple splits as1, as2, and simple joins aj1, aj2, aj3).

By definition, each model specified as a composition of blocks can be trans-
lated into a unique STPN. Conversely, blocks do not cover all the expressivity
of STPNs. In particular, since choices are expressed only by IMM transitions

Compositional Safe Approximation of Response Time of Complex Workflows 87

within balanced XOR or Repeat blocks, a model cannot represent a race selec-
tion where a choice is determined by values sampled by concurrent activities,
e.g., early preemption of a timed activity that may occur in a timeout mecha-
nism. As a positive consequence, this restriction also rules out anomalies where
the early completion of some intermediate step can result in a longer workflow
duration, providing the basis to prove positive correlation among completion
times of different intermediate points in the workflow.

2.3 Structure Tree

Based on the grammar of Eq. (1), a workflow can be decomposed as a structure
tree S = 〈N,E, n0〉: N is the set of nodes (blocks); E is the set of directed
edges (connecting each block with its component blocks); n0 is the root node.
In Fig. 1b, a block is represented as a box labeled with the block name; the box
is labeled also with the activity name (for Act blocks) or block type (for Seq,
AND, XOR, Repeat blocks), or contains places and transitions connecting
the component blocks (for DAG blocks). Hierarchical graphs with single-entry
single-exit blocks are inspired by program structure trees [17] and process struc-
ture trees [34]: similarly, we ensure that the structure tree is unique and robust
with respect to local changes (i.e., modifying a sub-workflow in the STPN affects
only its subtree in the structure tree) by using maximal blocks (e.g., SEQ blocks
with as many components as possible) and by matching DAG blocks with lowest
priority (i.e., Seq or AND are used instead of DAG nodes, if possible).

3 Compositional Evaluation of Workflows Response Time

We evaluate the end-to-end response time CDF of a workflow by composition
of the results of separate analyses of a hierarchy of sub-workflows. In so doing,
we repeatedly apply both straight numerical combination of monovariate CDFs
(Sect. 6.2 in the Appendix) and Markov regenerative transient analysis (Sect. 3.1)
so as to leverage their different strengths. Numerical combination turns out to
be efficient in the composition of independent sub-workflows through well-nested
operators (AND, XOR, Seq, Repeat), but it is not feasible for sub-workflows
with common dependencies (DAG). Markov regenerative analysis suffers from
the degree of concurrency among activities with GEN durations, and its efficient
implementation requires that sub-workflow durations be represented in analytic
form, which may require approximated fitting of numerical results.

The structure tree is used to aggregate model components and to select solu-
tion techniques according to heuristics that trade approximation for complex-
ity (Sects. 3.3 and 3.2) while ensuring that the final result is a stochastic upper
bound of the exact CDF of the end-to-end workflow response time (Sect. 3.4).

3.1 Regenerative Transient Analysis

The structure of a workflow naturally leads to concurrent execution of multiple
activities, which in most practical cases are generally distributed (GEN), often

88 L. Carnevali et al.

within a bounded support. In this setting, the marking process {M(t), t � 0 } of
the STPN representing a sub-workflow is a Markov Regenerative Process (MRP)
if a new regeneration point (i.e., a time instant where the Markov property is
satisfied) is eventually reached w.p.1 from any state [20]. In this case, tran-
sient probabilities Pij(t) of each marking j and initial regeneration i (including
the enabling time of each GEN transition [25]) can be evaluated by numer-
ical integration of Generalized Markov Renewal equations Pij(t) = Lij(t) +∑

k∈R
∫ t

0
dGik(u)Pkj(t − u) for all i in the set of reachable regenerations R and

for all j in the set of markings M, where the global kernel Gik(t) := P{X1 =
k, T1 � t | X0 = i} characterizes the next regeneration point T1 � 0 and regen-
eration X1 ∈ R, while the local kernel Lij(t) := P{M(t) = j, T1 > t | X0 = i}
defines transient probabilities of the process until the next regeneration point.

In turn, kernels can be evaluated numerically if at most one GEN transition is
enabled in each state [6], or if multiple GEN transitions are enabled concurrently
but the number of firings between regeneration points is bounded [5]. For this
larger class of MRPs, kernels can be evaluated using stochastic state classes [15],
which encode the marking, joint Probability Density Function (PDF), and sup-
port of the times-to-fire of enabled transitions after each sequence of firings
between any two regeneration points. This joint PDF is continuous, with piece-
wise representation over Difference Bounds Matrix (DBM) zones [9], and can
be evaluated in closed-form by the ORIS tool (or the Sirio Java library) [24]
provided that each transition has expolynomial PDF [32].

The complexity of regenerative transient analysis of an STPN can be efficiently
estimated by nondeterministic analysis of the underlying TPN, which is sufficient
to identify the set of feasible behaviors of the model while avoiding the complexity
of evaluation of their measure of probability. This is obtained by enumeration of
a state class graph, encoding the continuous set of executions of the STPN into a
discrete representation [4,35]: each vertex is a state class S = 〈m,D〉 including a
marking m and a DBM zone D [13], i.e., a continuous set of values for the times-
to-fire of enabled transitions. For each transition t that can fire first, the graph
includes a directed edge (S, t, S′) from S to the state class S′ = 〈m′,D′〉 with
marking m′ after the firing and the zone D′ of reachable times-to-fire. The graph
is finite under fairly general conditions (requiring that the number of reachable
markings be finite and the earliest and latest firing times of transitions be rational
values [35]), it permits detection of regeneration points (as classes where each GEN
transition is newly enabled, disabled, or enabled since a deterministic time), and
it makes explicit the number of transitions between regeneration points and the
degree of concurrency among GEN timers.

3.2 Complexity Heuristics

Complexity Factors. Regenerative transient analysis incurs different factors
of complexity in the enumeration of stochastic state classes, derivation of the
local and global kernels, and solution of the Markov renewal equations:
– The results of [30] show that the number of stochastic state classes depends

on the number of concurrently enabled GEN transitions, the number of firings

Compositional Safe Approximation of Response Time of Complex Workflows 89

after which a GEN transition is persistent (i.e., continuously enabled), and
the number of expmonomial terms of the PDFs of the GEN transitions.
In our approach, the number of stochastic state classes is kept limited by
decomposing a workflow into sub-workflows that are separately analyzed.

– The results of [30] also show that the number of DBM zones and the number
of expmonomial terms of the joint PDF of each stochastic state class depend
on the same factors as the number of stochastic state classes. In particular,
at each firing, the number of DBM zones increases polynomially with the
number of persistent transitions, the number of expmonomial terms increases
linearly with the polynomial degree of the joint PDF, and, in turn, if the ana-
lytical form of the joint PDF contains no EXP factor, the polynomial degree
increases linearly with number of fired/disabled transitions.
In our approach, the factors of complexity of stochastic state classes are kept
limited not only by decomposing a workflow into sub-workflows, but also by
approximating the numerical form of the response time distribution of a sub-
workflow with a piecewise PDF made of EXP terms (the approximation is
needed when a sub-workflow is analyzed in isolation, either through regener-
ative transient analysis or through numerical analysis, and then regenerative
transient analysis of a higher-level sub-workflow has to be performed).

– According to [15], the derivation of the kernels and the solution of the Markov
renewal equations have linear complexity in the number of stochastic state
classes and in the number of DBM zones and expmonomial terms of the joint
PDF of each stochastic state class. Moreover, the derivation of the kernels and
the solution of the Markov renewal equations also have linear and quadratic
complexity, respectively, in the number of time points, i.e., the number of
times the time step is contained in the analysis time limit. In our approach,
the derivation of the local kernel is limited to the evaluation of Lif (t), where
i is the initial regeneration and f is the final absorbing marking.

Complexity Measures. To estimate the complexity of regenerative transient
analysis of an STPN, we use the state class graph of the underlying TPN to
compute the maximum number c of GEN transitions concurrently enabled in
a state class (concurrency degree) and the maximum length r of paths of a
regeneration epoch (epoch length), i.e., paths between regenerative state classes.
However, the state class graph may be huge for complex blocks with high values
of c and r, and would not tell how much of the complexity depends on the
structure of the block itself and how much on the blocks it contains, which instead
is relevant to decide how to decompose the block. To cope with both aspects, for
each block b, we compute upper bounds C and R on c and r, respectively, and
we also compute the concurrency degree c̄ and the epoch length r̄ of a simplified
block b̄, obtained by replacing each composite block of b with an (elementary)
activity block. To this end, we perform a bottom-up visit of the structure tree:

– At the bottom level, we perform nondeterministic analysis of the TPN of each
composite block, computing the tuple 〈c, r, tmin, tmax〉, where tmin and tmax

are the minimum and the maximum execution time of the block, respectively,

90 L. Carnevali et al.

and can be derived as the minimum and the maximum duration, respectively,
of paths between the initial and the final state class [35].

– At the next higher level, we perform nondeterministic analysis of the TPN of
the simplified block b̄, obtained by replacing each composite block b′ of b
with an activity block with duration interval equal to the min-max exe-
cution interval of b′ (computed at the previous step). Evaluation of the
complexity measures on the resulting state class graph Γ̄ yields the tuple
〈c̄, r̄, tmin, tmax〉. Upper bounds on c and r are C = maxS∈Ω{∑

t∈ES
Ct} and

R = maxρ∈Ψr
{∑

e∈Gρ
Re}, respectively, where Ω is the set of state classes

of Γ̄ , ES is the set of transitions enabled in state class S, Ct is the concur-
rency degree upper bound of the block corresponding to transition t (1 for
activity blocks), Ψr is the set of paths of Γ̄ between regenerative state classes,
Gρ is the set of edges of path ρ, and Re is the epoch length upper bound of
the block corresponding to the transition of edge e (1 for activity blocks).

– Evaluation is repeated until the tuple 〈c̄, r̄, C,R, tmin, tmax〉 is computed for
each composite block of the structure tree (thus also for the root block).

Then, we define the complexity heuristics: a block b (a simplified block b̄) is
easy to analyze if both C and R (c̄ and r̄) are not larger than some thresholds
Θc and Θr, respectively, and complex otherwise, e.g., for the workflow STPN
of Fig. 1, R is infinite, due to the concurrency between the Repeat block T
and blocks S, U, and V (in fact, for the simplified STPN obtained replacing T
and V with an activity block each, we have c̄ = 3 and r̄ = 7). The goal of our
compositional analysis is to reduce the workflow complexity, e.g., by analyzing
block T in isolation and replacing it with a transition approximating its duration.

3.3 Analysis Heuristics

In the evaluation of the response time CDF Φb(t) of a block b, we consider four
actions, each introducing a different approximation.

Action 1 (Numerical Analysis): If b is well-structured, i.e., neither it is a
DAG or Repeat block nor it contains DAG or Repeat blocks (e.g., U in Fig. 1),
evaluate Φb(t) by numerical analysis.

Action 2 (Regenerative Transient Analysis): If the execution time CDF of
each activity block in b is expressed in analytical form (e.g., T in Fig. 1), evaluate
Φb(t) through regenerative transient analysis of the STPN of b, otherwise (i.e.,
if b has some activity CDF expressed in numerical form, e.g., the workflow of
Fig. 1 after the response time CDF of T is evaluated separately) replace each
numerical CDF with the analytical form of a stochastic upper bound CDF (by
Lemma 2), and evaluate a stochastic upper bound on Φb(t) through regenerative
transient analysis of the STPN of the resulting block (by Lemma 3).

Action 3 (Inner Block Analysis): Evaluate the response time CDF of a
composite block c (see Fig. 6a) contained in block b (through some action α1),
replace c with an activity block having the computed CDF as execution time

Compositional Safe Approximation of Response Time of Complex Workflows 91

CDF (see Fig. 6b), and compute the response time CDF of the obtained block
b′ (through some action α2). Note that α1 and α2 may yield Φb(t) (e.g., if both
are action 1) or a stochastic upper bound on Φb(t) (e.g., if α1 is action 1 and α2

is action 2).

Action 4 (Inner Block Replication): If b is a DAG block, replicate some
predecessors of a block to evaluate its response time independently of the rest
of the DAG (replicated blocks are identical). Specifically, let G = (V,E, vI , vF)
be the DAG where V is the set of vertices (i.e., blocks of b) plus (fictitious)
zero-duration initial vertex vI and final vertex vF (not shown in Fig. 1), and E
is the set of edges (i.e., precedence relations between blocks): identify vertex v ∈
V \{vI , vF } (e.g., block T in Fig. 1); let the set K of vertices in V \{vI , vF } that
are predecessors both of v and of some node u ∈ V not predecessor of v (i.e., K =
{R}); replicate the vertices in K and the edges to/from nodes in K (i.e., add R′

to V ; add vI → R′ and R′ → T to E); evaluate the response time CDF of v (by
some action, see Fig. 6c) and replace it with an activity block with the computed
CDF as execution time CDF (see Fig. 6d); and, evaluate the response time CDF
of the obtained block (by some action), which is a stochastic upper bound on
the response time CDF Φb(t) of the original block b (by Lemma 4).

We define analysis heuristics to visit the structure tree and repeatedly select
an action until a safe approximation of the workflow response time is evaluated.
To exploit our complexity heuristics, which characterizes both the complexity of
the structure of a workflow and the complexity of the blocks that it contains, we
consider three analysis heuristics that perform a top-down visit of the structure
tree. Nevertheless, the approach is open to the definition of different heuristics.

Overall, if a block is, or can be reduced to, a well-structured composition
of independent sub-workflows, then numerical analysis guarantees efficient and
accurate evaluation. Conversely, Repeat blocks can be evaluated in isolation
through regenerative transient analysis when their parallel composition with
other blocks prevents the occurrence of regenerations. Finally, DAG blocks,
representing dependent sub-workflows, can be evaluated through regenerative
transient analysis, operating some simplification if the DAG is too complex to
analyze (i.e., analyzing some block or some sub-workflow in isolation).

Specifically, analysis heuristics 1 operates as follows on a visited block b:

1. If b is well-structured, then select action 1 (numerical analysis).
2. If b is a Seq or an AND or an XOR block, and contains DAG or Repeat

blocks at some hierarchy level, then select action 3 (inner block analysis) as
many times as the number of composite blocks of b (which are replaced with
an activity block each) and then select action 1 (numerical analysis).

3. If b is a Repeat block, use the analysis heuristics to select the next action:
(a) if b is easy to analyze, select action 2 (regenerative transient analysis);
(b) otherwise, select action 3 (inner block analysis) to compute (through some

action) the response time CDF of the block repeated by the loop.
4. If b is a DAG block, use the analysis heuristics to select the next action:

92 L. Carnevali et al.

(a) if both b and the simplified block b̄ are easy to analyze, then select action 2
(regenerative transient analysis);

(b) otherwise, until block b becomes easy to analyze, repeatedly select action 4
(inner block replication), each time analyzing in isolation one of the sub-
workflows AND-joined by the final IMM transition of b.

For instance, the DAG in Fig. 1 is too complex to analyze: heuristics 1 performs
regenerative transient analysis of the sub-workflow {Q,R, T} (by replicating R),
and then performs regenerative transient analysis of the obtained block.

To evaluate how approximating intermediate numerical CDFs impacts result
accuracy and computational complexity with respect to decoupling dependent
sub-workflows, we consider analysis heuristics 2, a variant of heuristics 1 that
manages complex DAG blocks (point 4a) by repeatedly performing first action 3
(inner block analysis, replacing complex composite blocks with activity blocks),
and then action 4, until the DAG is easy to analyze.

Finally, to show the efficacy of numerical analysis in the evaluation of well-
structured workflows, we consider analysis heuristics 3, another variant of
heuristics 1 that performs regenerative transient analysis in cases where heuris-
tics 1 would perform numerical analysis.

3.4 Approximation Safety

We now ensure that our compositional analysis method is safe when workflows
are used to guarantee soft deadlines of SLAs. Our proofs (in the Appendix)
hinge on the idea of stochastic order and on the following lemma on the order
of independent replication of positively correlated random variables (r.v.s) [3].

Definition 1 (Stochastic order). Given two random vectors X1 and X2, we
say that “X1 is smaller than X2” (X1 �st X2), if E[f(X1)] � E[f(X2)] for all
monotone nondecreasing functions f . For scalar X1 and X2 with CDFs F1(x)
and F2(x), respectively, this is equivalent to F1(x) � F2(x) for all x.

Lemma 1 (Order of independent replicas under positive correlation).
Let X = (X1, . . . , Xn) be a vector of positively correlated r.v.s, i.e., Cov[f(X),
g(X)] � 0 holds for all monotone nondecreasing f, g : Rn → R. Then, X �st X,
where X is a vector of independent r.v.s with Xi ∼ Xi for all i.

In our regenerative analysis, numerical CDFs are replaced with analytical
stochastic upper bound CDFs (which guarantee stochastic order for each known
point of the numerical CDFs). The next lemma proves that such bound can be
a piecewise CDF combining a shifted truncated EXP (body) and a shifted EXP
(tail). The approximant accuracy could be improved by considering multiple
pieces for the body (e.g., to better approximate multimodel CDFs).

Lemma 2 (Stochastic upper bound CDF). Given a r.v. X with numerical
CDF F (x) with x ∈ D = {a, a + δ, . . . , a + (L − 1) δ}, a ∈ R�0, δ ∈ R>0, and
L ∈ N, let X̂ be the r.v. with CDF F̂ (x) s.t. F̂ (x) = 0 ∀x < d, F̂ (x) = 0.75 (1−

Compositional Safe Approximation of Response Time of Complex Workflows 93

e−λb (x−d))/(1 − e−λb(q3−d)) ∀x ∈ [d, q3], F̂ (x) = 0.25(1 − e−λt(x−q3)) + 0.75
∀x ∈ [q3,∞), where d is equal to a if F (x) starts with downward concavity
and equal to the abscissa of the intersection of the x-axis with the line tangent
to the inflection point of F (x) if F (x) starts with upward concavity, q3 is the
third quartile of X, λb is the minimum of the values that maximize F̂ (x) and
satisfy F̂ (x) � F (x) ∀x ∈ D ∩ [d, q3], and λt is the minimum of the values that
maximize F̂ (x) and satisfy F̂ (x) � F (x) ∀x ∈ D ∩ (q3,∞). Then, X̂ �st X.

In our inner block analysis, a node n in the structure tree is replaced with an
activity block with duration stochastically larger than the response time of n.
The next lemma proves that, after this approximation, the response time of the
obtained workflow is stochastically larger than the actual response time.

Lemma 3 (Stochastic order of inner block analysis). Let S = (N,E, n0)
be the structure tree of a workflow with root node n0 ∈ N , and let T (n) be the
response time of the subtree rooted in n ∈ N . If n is replaced with n′ s.t. T (n) �st

T (n′), yielding the new structure tree S′ = (N ′, E′, n′
0), then T (n0) �st T (n′

0).

In our inner block replication, ancestors of a vertex v are replicated in a DAG
block to evaluate the response time of v independently of the rest of the DAG.
The next lemma proves that, also after this approximation, the response time of
the obtained workflow is stochastically larger than the actual response time.

Lemma 4 (Stochastic order of inner block replication). Given a DAG
block G = (V,E, vI , vF) and a vertex v ∈ V , let T (v) be the response time of v,
let K be the set of vertices in V \{vI , vF } that are predecessors both of v and of
some node u ∈ V not predecessor of v, let F be the set of edges in E to/from a
node in K, and let G′ = (V ′, E′, v′

I , v
′
F) be the DAG s.t. V ′ includes all vertices

in V plus a new node k′ with T (k′) ∼ T (k) ∀ k ∈ K, and E′ includes all edges in
E plus an edge to/from each new node k′ for each edge to/from the corresponding
node k ∈ K. Then, T (v′

F) �st T (vF).

4 Experimentation

In this section, we answer the following questions on our proposed approach:

Q1. Is the approach feasible for the considered concurrency structures?
Q2. Is the approach accurate with respect to a simulated ground truth?
Q3. Does the approach obtain accurate results in reasonable times?

To this end, we consider eight models combining four structures that gradually
increase the workflow complexity, evaluating how the approximation of inter-
mediate numerical results and the replication of dependent events affect result
accuracy and computational complexity. For each model, we compare a ground
truth with the results of our analysis heuristics and simulation. For our complex-
ity heuristics, we consider thresholds Θc = 3 and Θr = 10 on the concurrency
degree and the epoch length, respectively, and we consider activity durations
with uniform CDF over [0, 1]. Experiments are performed using a single core of
an Intel Xeon Gold 5120 CPU (2.20 GHz) equipped with 32 GB of RAM.

94 L. Carnevali et al.

4.1 Experimentation Models

Figure 2 shows the four structures used to build the experimentation models:

Simple DAG (Fig. 2a) has concurrency degree 3 and epoch length 8. Thus, it
can be efficiently analyzed by regenerative transient analysis.

Complex DAG (Fig. 2b) has concurrency degree 5. It cannot be analyzed as a
whole and needs to be decomposed by one of the analysis heuristics.

Complex AND (Fig. 2c) is a well-structured tree, with two instances of simple
DAG as leaves. Once the latter are analyzed by regenerative transient analysis,
the resulting tree can be analyzed numerically (analysis heuristics 1 and 2), or,
given that it has concurrency degree 4, regenerative transient analysis can be
applied to blocks A and F, and then to the resulting model (analysis heuristics 3).

Nested Repetitions (Fig. 2d) has two nested Repeat blocks, with an instance
of (simple or complex) DAG and of complex AND as leaves: once the latter are

Fig. 2. Structure elements used to compose experimentation models.

Compositional Safe Approximation of Response Time of Complex Workflows 95

analyzed in isolation, the resulting model has concurrency degree 1 and path
length 3, and can be analyzed by regenerative transient analysis (all heuristics).

Figure 3 shows the models obtained combining the structure elements of
Fig. 2.

Models 1a and 2b (Fig. 3a) are well-structured trees with two instances of
(simple and complex, respectively) DAG and an instance of complex AND as
leaves: once the latter composite blocks are analyzed, the resulting tree can be
analyzed numerically (analysis heuristics 1 and 2), or, given that it has concur-
rency degree 4, regenerative transient analysis can be applied first to blocks A
and K, and then to the resulting model (analysis heuristics 3).

Models 2a and 2b (Fig. 3b) are well-structured trees with an instance of (sim-
ple and complex, respectively) DAG and of Nested Repetitions as leaves: as for
models 1 and 2, once the latter composite blocks are analyzed, the resulting
tree can be analyzed numerically (analysis heuristics 1 and 2), or, given that it

Fig. 3. Four models used for experimentation. Each model combines some of the struc-
tures defined in Fig. 2 and is tested in a simple variant, using instances of Simple DAG,
and a complex variant, using instances of Complex DAG.

96 L. Carnevali et al.

has concurrency degree 4, regenerative transient analysis can be applied first to
blocks A and H, and then to the resulting model (analysis heuristics 3).

Models 3a and 3b (Fig. 3c) consist of a top DAG made of an instance of
(simple and complex, respectively) DAG, one of Nested Repetitions, and two
well-structured sub-trees. Once the instance of Nested Repetitions is evaluated,
the model is still too complex and must be decomposed.

Models 4a and 4b (Fig. 3d) are variants of models 3a and 3b, respectively, with
more complex well-structured trees. Once the instance of Nested Repetitions is
evaluated, the model is still too complex and must be decomposed.

4.2 Experimentation Results

For each workflow of Fig. 3, a ground truth is computed by performing simulation
of the corresponding STPN through the SIRIO library of the ORIS tool [24,31],
increasing the number of simulation runs by 100 000 at a time until the Jensen-
Shannon (JS) divergence [21,23] between the PDFs of the last two computed
response time CDFs is lower than 0.0001, which occurs for 500 000 runs. The JS
divergence between two PDFs fa and fb is DJS (fa || fb) := 0.5DKL (fa ||Z) +
0.5DKL (fb ||Z), where Z(t) := 0.5 (fa(t) + fb(t)) ∀ t ∈ Ω is the random vari-
able that averages the input variables, Ω is a set of equidistant time points
covering the support of fa and fb, and DKL (· || ·) is the Kullback-Leibler (KL)
divergence [21,23] defined as DKL (fa || fb) =

∑
t∈Ω fa (t) · log (fb (t) /fa (t)).

Table 1 reports the computation times and the JS divergence from the ground
truth achieved by the analysis heuristics 1, 2, and 3, and by a simulation having
computation times comparable with times of heuristics 1, and Fig. 4 shows the
response time PDFs used to compute the JS divergence. For models 1a, 1b,
2a and 2b, heuristics 1 outperforms heuristics 3 in terms of both accuracy and
complexity, achieving JS divergence lower by one or two orders of magnitude

Table 1. For each model of Fig. 3, computation time and JS divergence from the
ground truth (GT) of simulation (S), analysis heuristics 1 (H1), 2 (H2), 3 (H3). For
each model, green cells indicate the best (i.e., lowest) values of computation time and
JS divergence, while red cells indicate the worst (i.e., largest) values.

Computation Times JS divergence from the GT
Model

GT S H1 H2 H3 S H1 H2 H3
1a 2027.1 s 1.5 s 1.5 s 1.5 s 32.7 s 0.196 91 0.000 27 0.000 27 0.033 26

1b 2711.3 s 1.0 s 1.0 s 13.8 s 10.6 s 0.190 46 0.000 84 0.003 15 0.036 81

2a 2028.7 s 0.9 s 0.8 s 0.8 s 3.2 s 0.193 85 0.003 63 0.003 63 0.060 11

2b 2723.3 s 1.4 s 1.2 s 13.9 s 3.2 s 0.184 64 0.006 62 0.009 43 0.043 10

3a 1566.8 s 2.2 s 1.9 s 3.8 s 2.4 s 0.041 05 0.026 89 0.025 69 0.082 92

3b 2232.2 s 4.2 s 3.9 s 16.8 s 2.5 s 0.081 02 0.026 60 0.025 48 0.081 73

4a 1803.9 s 1.8 s 1.7 s 72.6 s 5.9 s 0.194 71 0.019 72 0.037 30 0.075 77

4b 2534.5 s 2.6 s 2.6 s 72.0 s 6.0 s 0.202 84 0.021 98 0.039 41 0.076 71

Compositional Safe Approximation of Response Time of Complex Workflows 97

Fig. 4. Response time PDFs of the workflow models of Fig. 3.

98 L. Carnevali et al.

and computation times lower by one order of magnitude, proving the efficacy of
analyzing well-structured trees through numerical analysis rather than through
regenerative transient analysis. This gain is less evident for models 3a, 3b, 4a and
4b, which replace large part of high-level well-nested structures of models 1a, 1b,
2a and 2b with DAG blocks.

Heuristics 1 and 2 (differing in the way complex DAG blocks are managed)
achieve the same accuracy and computation time on models 1a and 2a, because
these models include simple DAG blocks. For the remaining models, heuristics 1
achieves comparable or slightly lower accuracy and significantly lower compu-
tation time, indicating that, as expected, replicating dependent events yields
less complex models to analyze with respect to evaluating blocks in isolation
and approximating intermediate numerical results. Moreover, for the considered
model structures and stochastic parameters, event replication does not introduce
more approximation than analytical fitting of intermediate numerical results.

With respect to simulation having computation time comparable to that of
heuristics 1, all analysis heuristics achieve better accuracy with JS divergence
lower by at least one order of magnitude, and up to three orders for heuristics 1.
Note that simulation could be optimized to improve both result accuracy and
computational complexity, while the analysis is in any case guaranteed to provide
a stochastic upper bound on the workflow response time CDF.

Overall, the evaluation shows that the proposed approach is feasible for com-
plex workflows, and achieves sufficient accuracy in reasonable time with respect
to the ground truth. In particular, analysis heuristics 1 achieves JS divergence
with order of magnitude between 10−4 and 10−2, in at most 3.9 s.

5 Conclusions

We proposed a compositional approach to efficiently compute a stochastic upper
bound on the response time CDF of complex workflows. The workflow is specified
using structured STPNs to enable hierarchical decomposition into sub-workflows,
exploiting heuristics that apply either numerical analysis (if feasible) or regen-
erative transient analysis, taking into account different tradeoffs between solu-
tion accuracy and complexity. When evaluated on a suite of synthetic models
of increasing complexity, the approach achieves sufficient accuracy in a limited
computation time with respect to a ground truth obtained by simulation.

The approach is open to many extensions: the model could be extended
with other constructs and dependencies among the execution times of activities,
possibly affecting not well-formed nesting; performance could be improved by
optimizing regenerative transient analysis based on the specific class of models
and the specific reward to evaluate; other solution techniques could be integrated
to analyze some block; to fit numerical distributions, other analytical approxi-
mants could be considered in the class of expolynomial functions, or in the class
of piecewise CPHs over bounded supports [19]; and, applicability could be tested
in various relevant domains where the evaluation of deadlines missed within a
given time requires the computation of the response time CDF.

Compositional Safe Approximation of Response Time of Complex Workflows 99

6 Appendix

We recall syntax and semantics of STPNs (Sect. 6.1) and numerical analysis of
well-structured workflows (Sect. 6.2), and we report theorem proofs (Sect. 6.3)
and a graphical representation of analysis heuristics (Sect. 6.4).

6.1 Formal Syntax and Semantics of STPNs

Syntax. An STPN is a tuple 〈P, T,A−, A+, EFT,LFT, F,W,Z〉 where: P
and T are disjoint sets of places and transitions, respectively; A− ⊆ P × T
and A+ ⊆ T × P are pre-condition and post-condition relations, respectively;
EFT and LFT associate each transition t ∈ T with an earliest firing time
EFT (t) ∈ Q�0 and a latest firing time LFT (t) ∈ Q�0 ∪ {∞} such that
EFT (t) � LFT (t); F , W , and Z associate each transition t ∈ T with a Cumu-
lative Distribution Function (CDF) Ft for its duration τ(t) ∈ [EFT (t), LFT (t)]
(i.e., Ft(x) = P{τ(t) � x}, with Ft(x) = 0 for x < EFT (t) and Ft(x) = 1 for
x > LFT (t)), a weight W (t) ∈ R>0, and a priority Z(t) ∈ N, respectively.

As usual in stochastic Petri nets, a transition t is called immediate (IMM)
if EFT (t) = LFT (t) = 0 and timed otherwise; a timed transition t is called
exponential (EXP) if Ft(x) = 1 − exp(−λx) for some rate λ ∈ R>0, or gen-
eral (GEN) otherwise. For each GEN transition t, we assume that Ft can be
expressed as the integral function of a probability density function (PDF) ft,
i.e., Ft(x) =

∫ x

0
ft(y) dy. Similarly, an IMM transition t ∈ T is associated with

a generalized PDF represented by the Dirac impulse function ft(y) = δ(y − y)
with y = EFT (t) = LFT (t). A place p ∈ P is called an input or output place
for a transition t ∈ T if (p, t) ∈ A− or (t, p) ∈ A+, respectively.

Semantics. The state of an STPN is a pair s = 〈m, τ〉, where m : P → N is a
marking assigning a number of tokens to each place and τ : T → R�0 associates
each transition with a time-to-fire. A transition is enabled by a marking if each
of its input places contains at least one token. The next transition t to fire
in a state s is selected from the set E of enabled transitions having time-to-fire
equal to zero and maximum priority with probability W (t)/

∑
ti∈E W (ti). When

t fires, s is replaced with s′ = 〈m′, τ ′〉, where: m′ is derived from m by removing
a token from each input place of t, yielding an intermediate marking mtmp, and
adding a token to each output place of t; τ ′ is derived from τ by: i) reducing the
time-to-fire of each persistent transition (i.e., enabled by m, mtmp and m′) by the
time elapsed in s; ii) sampling the time-to-fire of each newly-enabled transition tn
(i.e., enabled by m′ but not by mtmp) according to Ftn

; and, iii) removing the
time-to-fire of each disabled transition (i.e., enabled by m but not by m′).

6.2 Numerical Analysis of Well-Structured Workflows

We derive the numerical form of the response time CDF of a block by combining
bottom-up the numerical forms of the response time CDFs of the blocks that

100 L. Carnevali et al.

it contains, provided that the block has a well-formed structure, i.e., it is not a
DAG block and it does not contain DAG blocks, and that it does not contain
REPEAT blocks. Specifically, given n blocks b1, . . . , bn with response time CDF
Φ1(t), . . . , Φn(t) and PDF φ1(t), . . . , φn(t), respectively:

– the response time CDF Φseq(t) of a SEQ block made of b1, . . . , bn is derived
by performing subsequent convolutions of φ1(t), . . . , φn(t) ∀ t ∈ [0, tmax]:

Φseq(t) = Φ1,n(t)

Φ1,i(t) =
∫ t

0

∫ τ

0

φ1,i−1(x)φi(τ − x) dx dτ ∀ i ∈ {2, . . . , n}

φ1,i−1(t) =
d

dt
Φ1,i−1(t) ∀ i ∈ {2, . . . , n − 1}, φ1,1(t) = φ1(t)

(2)

– the response time CDF Φand(t) of an AND block made of b1, . . . , bn is the CDF
of the maximum among the response times of b1, . . . , bn, which is derived as
the product of Φ1(t), . . . , Φn(t) ∀ t ∈ [0, tmax] due to the fact that the response
times of b1, . . . , bn are independent random variables:

Φand(t) = Φ1(t) · . . . · Φn(t) (3)

– the response time CDF Φxor(t) of an XOR block made of b1, . . . , bn is derived
as the weighted sum of Φ1(t), . . . , Φn(t) ∀ t ∈ [0, tmax]:

Φxor(t) = p1 Φ1(t) + . . . + pn Φn(t) (4)

6.3 Theorem Proofs

Proof of Lemma 2. By construction, F̂ (x) � F (x) ∀x ∈ D ∩ [d,∞), and F̂ (x) = 0
∀x < d. Starting from the point with abscissa a, the PDF of F (x) may be either
increasing or decreasing: If the PDF is increasing, then it will reach a maximum
point that comprises an inflection point for the CDF F (x), where the concavity
changes from upward to downward (see Fig. 5b). By construction, the tangent
line to the inflection point intersects the x-axis in a point whose abscissa d is
larger than a, otherwise the CDF should have downward concavity before the
inflection point, which contradicts the hypothesis. Otherwise (i.e., if the PDF is
decreasing), F (x) has downward concavity (see Fig. 5a), d is selected equal to a,
and stochastic order is verified for ∀x ∈ D ∩ [a,∞). Therefore, X̂ �st X. �
Proof of Lemma 3. The duration of the sub-workflow associated with any node m
(SEQ, AND, XOR, REPEAT, DAG) is a monotone nondecreasing function of
the durations of the sub-workflows associated with its children; respectively, the
sum (SEQ), max (AND), random mixture (XOR), series (REPEAT), max over
all paths from the initial to the final node (DAG). By definition of stochastic
order, if a child n is replaced with n′ s.t. T (n) �st T (n′), then T (m) �st T (m′)
for the new node m′. By recursion, T (n0) �st T (n′

0) for the new root n′
0. �

Compositional Safe Approximation of Response Time of Complex Workflows 101

Fig. 5. Stochastic upper bound CDF: concavity of approximated CDF.

Proof of Lemma 4. Since DAG edges denote AND-join dependencies, the response
time of a vertex v is T (v) = D(v)+max(T (k1), . . . , T (kn))where D(v) is the dura-
tion of the block associated with v and T (k1), . . . , T (kn) are the response times of
its predecessors. By visiting the vertices of G in topological order, we can evaluate
the response time T (vF) of the DAG as an expression combining nonnegative block
durations D(v) ∀v ∈ V through monotone nondecreasing operators (i.e., summa-
tion and maximum). The intermediate values of this expression obtained during
the visit are the response times T (·) of the nodes of G, which, by construction, are
positively correlated. In the evaluation of T (v′

F) in G′, the random variable T (k)
of each node k ∈ K is replaced with the independent replica T (k′) ∼ T (k). Then,
by Lemma 1, we obtain T (v′

F) �st T (vF). �

6.4 Analysis Actions

Figure 6 illustrates the application of the sequence of actions 3 and 4 on the
structure tree presented in Fig. 1b. In particular, in Fig. 6a, a red and a green box
identify two sub-structures on which actions 3 and 4 are applied, respectively:

– Action 3: is applied as follows: some action (depending on the considered
analysis heuristic) is used to evaluate the response time of the sub-structure
in the red box, which is then replaced with an activity block Tnew associated
with the evaluated response time CDF (see Fig. 6b).

– Action 4 evaluates the sub-structure in the green box independently of the rest
of the DAG: the blocks that are shared with the rest of the DAG (i.e., block
R) are replicated (i.e., block Rbis is added), also adding two fictitious zero-
duration nodes vI and vF (see Fig. 6c); then, this sub-structure is evaluated
though some action (depending on the considered analysis heuristic); finally,
the sub-structure is replaced with an activity block QRTnew associated with
the evaluated response time CDF (see Fig. 6d).

102 L. Carnevali et al.

Fig. 6. A graphical representation for actions 3 and 4. (a) The structure tree presented
in Fig. 1b, where the red and the green boxes indicate the sub-structures subject to
actions 3 and 4, respectively. (b) The structure tree after the application of action
3, which replaces the sub-structure in the red box with an activity block. (c) The
structure tree after the replication of block R during action 4. (d) The structure tree
after the execution of action 4, which replaces the sub-structure in the green box with
an activity block. (Color figure online)

References

1. Van der Aalst, W.M.: The application of Petri nets to workflow management. J.
Circ. Syst. Comput. 8(01), 21–66 (1998)

Compositional Safe Approximation of Response Time of Complex Workflows 103

2. Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis
of attacks. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp.
285–305. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54792-
8_16

3. Baccelli, F., Makowski, A.M.: Multidimensional stochastic ordering and associated
random variables. Oper. Res. 37(3), 478–487 (1989)

4. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991)

5. Biagi, M., Carnevali, L., Paolieri, M., Papini, T., Vicario, E.: Exploiting non-
deterministic analysis in the integration of transient solution techniques for Markov
regenerative processes. In: Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS,
vol. 10503, pp. 20–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66335-7_2

6. Bobbio, A., Telek, M.: Markov regenerative SPN with non-overlapping activity
cycles. In: Proceedings of International Computer Performance and Dependability
Symposium, pp. 124–133 (1995)

7. Bruneo, D., Distefano, S., Longo, F., Scarpa, M.: QoS assessment of WS-BPEL
processes through non-Markovian stochastic Petri nets. In: Proceedings of IPDPS,
pp. 1–12. IEEE (2010)

8. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-aware replanning of
composite web services. In: Proceedings of IEEE International Conference on Web
Services, pp. 121–129. IEEE (2005)

9. Carnevali, L., Grassi, L., Vicario, E.: State-density functions over DBM domains
in the analysis of non-Markovian models. IEEE Trans. Soft. Eng. 35(2), 178–194
(2009)

10. Carnevali, L., Reali, R., Vicario, E.: Compositional evaluation of stochastic work-
flows for response time analysis of composite web services. In: Proceedings of the
ACM/SPEC International Conference on Performance Engineering, pp. 177–188
(2021)

11. Ciardo, G., German, R., Lindemann, C.: A characterization of the stochastic pro-
cess underlying a stochastic Petri net. IEEE Trans. Soft. Eng. 20(7), 506–515
(1994)

12. Curbera, F., et al.: Business process execution language for web services (2002)
13. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.

In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8_17

14. Gias, A.U., van Hoorn, A., Zhu, L., Casale, G., Düllmann, T.F., Wurster, M.:
Performance engineering for microservices and serverless applications: the radon
approach. In: Companion of the ACM/SPEC International Conference on Perfor-
mance Engineering, pp. 46–49 (2020)

15. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian
models using stochastic state classes. Perf. Eval. 69(7–8), 315–335 (2012)

16. Jensen, E.D., Locke, C.D., Tokuda, H.: A time-driven scheduling model for real-
time operating systems. In: Rtss, vol. 85, pp. 112–122 (1985)

17. Johnson, R., Pearson, D., Pingali, K.: The program structure tree: computing
control regions in linear time. In: ACM Conference on Programming Language
Design and Implementation (PLDI), pp. 171–185. ACM (1994)

18. de Kok, T.G., Fransoo, J.C.: Planning supply chain operations: definition and
comparison of planning concepts. Handb. Oper. Res. Manage. Sci. 11, 597–675
(2003)

https://doi.org/10.1007/978-3-642-54792-8_16
https://doi.org/10.1007/978-3-642-54792-8_16
https://doi.org/10.1007/978-3-319-66335-7_2
https://doi.org/10.1007/978-3-319-66335-7_2
https://doi.org/10.1007/3-540-52148-8_17

104 L. Carnevali et al.

19. Korenčiak, L., Krčál, J., Řehák, V.: Dealing with zero density using piecewise
phase-type approximation. In: Horváth, A., Wolter, K. (eds.) EPEW 2014. LNCS,
vol. 8721, pp. 119–134. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10885-8_9

20. Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Chapman & Hall
(1995)

21. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf.
Theory 37(1), 145–151 (1991)

22. Liu, Y., Zheng, Z., Zhang, J.: Markov model of web services for their performance
based on phase-type expansion. In: Proceedings of DASC-PICOM-CBDCOM-
CYBERSCITECH, pp. 699–704. IEEE (2019)

23. Nielsen, F.: On a generalization of the Jensen-Shannon divergence and the
JS-symmetrization of distances relying on abstract means. arXiv preprint
arXiv:1904.04017 (2019)

24. Paolieri, M., Biagi, M., Carnevali, L., Vicario, E.: The ORIS tool: quantitative
evaluation of non-Markovian systems. IEEE Trans. Soft. Eng. 47, 1211–1225 (2021)

25. Paolieri, M., Horváth, A., Vicario, E.: Probabilistic model checking of regenerative
concurrent systems. IEEE Trans. Softw. Eng. 42(2), 153–169 (2016)

26. Pesu, T., Kettunen, J., Knottenbelt, W.J., Wolter, K.: Three-way optimisation of
response time, subtask dispersion and energy consumption in split-merge systems.
In: Proceedings of VALUETOOLS 2017, pp. 244–251. ACM (2017)

27. Rahman, J., Lama, P.: Predicting the end-to-end tail latency of containerized
microservices in the cloud. In: 2019 IEEE International Conference on Cloud Engi-
neering (IC2E), pp. 200–210. IEEE (2019)

28. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-
Markovian stochastic Petri nets. Inf. Syst. 54, 1–14 (2015)

29. Russell, N., Ter Hofstede, A.H., Van Der Aalst, W.M., Mulyar, N.: Workflow
control-flow patterns: a revised view. BPM Center Report BPM-06-22, pp. 06–
22. BPMcenter.org (2006)

30. Sassoli, L., Vicario, E.: Close form derivation of state-density functions over DBM
domains in the analysis of non-Markovian models. In: Proceedings of International
Conference on Quantitative Evaluation of Systems. pp. 59–68. IEEE (2007)

31. SIRIO Library (2020). https://github.com/oris-tool/sirio
32. Trivedi, K.S., Sahner, R.: Sharpe at the age of twenty two. ACM SIGMETRICS

Perform. Eval. Rev. 36(4), 52–57 (2009)
33. Van Eyk, E., Iosup, A., Abad, C.L., Grohmann, J., Eismann, S.: A SPEC RG

cloud group’s vision on the performance challenges of FaaS cloud architectures.
In: Companion of the 2018 ACM/SPEC International Conference on Performance
Engineering, pp. 21–24 (2018)

34. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data
Knowl. Eng. 68(9), 793–818 (2009)

35. Vicario, E.: Static analysis and dynamic steering of time-dependent systems. IEEE
Trans. Softw. Eng. 27(8), 728–748 (2001)

36. Zhang, Y., Zheng, Z., Lyu, M.R.: WSPred: a time-aware personalized QoS predic-
tion framework for Web services. In: IEEE International Symposium on Software
Reliability Engineering, pp. 210–219. IEEE (2011)

37. Zheng, Z., Trivedi, K.S., Qiu, K., Xia, R.: Semi-Markov models of composite web
services for their performance, reliability and bottlenecks. IEEE Trans. Serv. Com-
put. 10(3), 448–460 (2015)

https://doi.org/10.1007/978-3-319-10885-8_9
https://doi.org/10.1007/978-3-319-10885-8_9
http://arxiv.org/abs/1904.04017
https://github.com/oris-tool/sirio

Transient Analysis of Hierarchical
Semi-Markov Process Models with Tool

Support in Stateflow

Stefan Kaalen(B) , Mattias Nyberg, and Olle Mattsson

Department of Machine Design, KTH Royal Institute of Technology,
Stockholm, Sweden

{kaalen,matny,ollemat}@kth.se

Abstract. Semi-Markov process (SMP) models can not always accu-
rately model real-world systems. To help the situation the paper pro-
poses an hierarchical extension to SMP-models, called Hierarchical SMP-
models (HSMP-models) and as the first contribution present an algo-
rithm for performing transient analysis of HSMP-models where the CDF
of each transition is an expolynomial. As the second contribution, a
numerical method is presented for HSMP-models with an underlying
stochastic process not satisfying bounded regeneration. The third, and
final, contribution is tool support based on Stateflow for transient analy-
sis of HSMP-models. Furthermore, an industrial case study for transient
analysis of HSMP-models with unbounded regeneration representing a
battery management system is presented.

1 Introduction

As the complexity of safety-critical systems increases, the need for model-based
transient analysis, such as quantifying the reliability and availability, becomes
increasingly important [1–3]. However, even for relatively simple systems, tran-
sient analysis can be difficult.

Solutions for performing these analyses have been presented for different
families of models. One of the most influential being Markov processes, which
has a long history of use in transient analysis of systems [4]. However, real-world
systems can often not realistically be modeled to satisfy the Markov property [5,
6]. Semi-Markov Processes (SMPs), introduced in [7] and [8], generalizes Markov
process and thereby allow for more realistic models of real-world systems. In
SMPs the Markov property holds only directly after a transition has occurred.
For the subclass of SMPs where the Cumulative Distribution Function (CDF) of
each transition time is expolynomial, methods for performing analytical transient
analysis has been presented by e.g. [9]. The problem of accurately modeling real-
world systems does however remain also for SMPs [2,10], which can also be seen

The authors acknowledge the following agencies and projects for general and financial
support: the European H2020 - ECSEL PRYSTINE project and Vinnova FFI, through
the AVerT project, and the Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP) funded by Knut and Alice Wallenberg Foundation.

c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 105–126, 2021.
https://doi.org/10.1007/978-3-030-85172-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_6&domain=pdf
http://orcid.org/0000-0001-7972-8843
https://doi.org/10.1007/978-3-030-85172-9_6

106 S. Kaalen et al.

in the case study of the present paper. The main problem is the lack of support
for hierarchy, i.e. states containing internal SMPs, and parallelism.

As a step in the direction of increasing the amount of real-world systems
that can be realistically modeled and analyzed, the present paper focuses on
a hierarchical extension of SMP-models. This class of models will be referred
to as Hierarchical Semi-Markov Process (HSMP) models and as the first con-
tribution, an algorithm for performing transient analyses for the subclass of
HSMP-models where the CDF of each transition is expolynomial is presented.
The results extends the previous work in [11,12] with the addition of hierarchy.

The underlying process of HSMP-models is a subclass of a Markov Regenera-
tive Processes MRGPs [2], which unlike SMPs only satisfy the Markov property
directly after each transition into a subset of states known as regeneration states.
For HSMP-models, this corresponds to the states that are not internal states of a
super-state. MRGPs can be partitioned into those for which the maximum number
of transitions that can occur between entering two regeneration states is bounded,
referred to as having bounded regeneration, and the rest having unbounded regen-
eration. Performing transient analysis of HSMP-models is straight-forward using
the proposed algorithm when bounded regeneration holds. As the second contri-
bution, a method for utilizing the algorithm also when the model of interest has
unbounded regeneration is presented. The problem of performing transient anal-
ysis of MRGPs with unbounded regeneration has also been approached in [13].
However the method in [13], unlike the method proposed here, has a complex-
ity that directly correlates with the expected number of transitions between two
regeneration points. This complexity implies that the method in [13] can become
intractable when the number of expected transitions is high.

There are other modeling languages capable of modeling processes with the
same underlying processes as HSMP-models. One such language is stochastic
petri nets [14,15], used in the process of performing transient analysis in [13].
However, HSMP-models, are built upon Statecharts developed in [16] which has
a much wider spread within industry, as is evident by their central role in the
standard Unified Modeling Language (UML) [17]. Furthermore, many indus-
trial tools have adopted Statecharts. One prominent example is Stateflow [18], a
product within Matlab [19]. Matlab has more than 5 million users worldwide [20]
and Matlab is widely used in industry around the world, an example being the
automotive industry [21]. Therefore, to make the theory presented in the present
paper easily accessible by industry, as the third contribution, the Matlab tool
SMP-tool presented in [11,12] is extended with support for transient analysis of
HSMP-models modeled in Stateflow.

Several previous approaches have been presented to model and analyze sys-
tems specified with stochastic extensions of Statecharts [22–24]. However, the
analyses are either based on simulations, which may take an unfeasible long
time when proving high levels of reliability, or only allow for modeling where
each transition CDF has an exponential or fixed delay distribution.

The paper is outlined as follows. In Sect. 2, some preliminaries about SMPs,
the Laplace-Stieltjes transform (L-S transform), and expolynomials are pre-
sented. In Sect. 3, the first contribution, i.e. the algorithm for transient anal-
ysis of HSMP-models is presented together with the definition of HSMP-models.

Transient Analysis of Hierarchical Semi-Markov Process Models 107

In Sect. 4, the second contribution, i.e. the method for utilizing the algorithm
on HSMP-models with unbounded regeneration is presented. Finally, in Sect. 5
the third contribution, i.e. expanding the Matlab tool SMP-tool with support
for transient analysis of HSMP-models, is presented and applied to a case study
based on a real industrial system for electric trucks provided by the heavy-vehicle
manufacturer Scania.

2 Preliminaries

2.1 Semi-Markov Process

Semi-Markov Processes (SMPs) will here be defined following [10]. Consider a
system that evolves randomly over time and which at each point of time is in
a state belonging to a countable state space S. Moreover, let {Xn, n ∈ N0} be
the discrete-time stochastic process where Xn describes the state of the system
directly after n state transitions has occurred. We let Un denote the sojourn
time in state Xn, i.e. the time that is spent in state Xn before transitioning into
state Xn+1. Furthermore, assume that the first state of the stochastic process
X0 is entered at time t = 0. Consider now the continuous-time stochastic process
{Z(t), t ≥ 0}, with state space S, where Z(t) = XN(t) and

N(t) =

{
0 if U0 > t

sup{n ∈ N+ : U0 + ... + Un−1 ≤ t} if U0 ≤ t ,

i.e. where Z(t) describes the state of the system at time t. Note that Z(t) is
right-continuous. The process {Z(t), t ≥ 0} is a Semi-Markov Process if

P (Xn+1 = j, Un ≤ t | Xn = i, Un−1, ..., X0, U0) = P (Xn+1 = j, Un ≤ t | Xn = i).

Let the matrix Q(t) be the semi-Markov kernel associated with an SMP
{Z(t), t ≥ 0}. The elements of the semi-Markov kernel [2] are given by

Qij(t) = P (Xn+1 = j, Un ≤ t | Xn = i) , i, j ∈ S, n ≥ 0 . (1)

Note that we allow transitions from a state to itself represented by non-zero
elements on the diagonal. An SMP is characterized by its semi-Markov kernel
and its initial distribution p0 = (P (Z(0) = i)), i ∈ S.

SMPs are often modelled as state transition diagrams [2]. Following [11],
consider such models and let each transition have one source state and several
possible target states with an associated probability vector. Furthermore, assign
each transition a timer with a CDF. When a state i is entered, the timers of each
transition with i as source state starts counting down from a time given by the
corresponding CDF. As the first timer reaches zero, the corresponding transition
is taken. Let Ti be the set of all transitions with i as source state. Moreover, let
Tij denote the set of all transitions with i as source state and j as possible target
state. Furthermore, let Fk(t) denote the CDF of transition k ∈ Ti and let pk(j)

108 S. Kaalen et al.

denote the probability that transition k has state j as target. Assuming that
no two transitions from the same state can occur at the same time instant, the
semi-Markov kernel of an SMP can, following [11], be found through the relation

Qij(t) =
∑

k∈Tij

pk(j)
∫ t

0

⎛
⎝ ∏

l∈Ti\{k}
(1 − Fl(u))

⎞
⎠ dFk(u) . (2)

The above integral, and every integral on the form
∫ b

a
f(t)dg(t) should be inter-

preted as a Lebesgue-Stieltjes integral on the interval [a, b] unless otherwise
stated.

Transient analysis of SMPs will now be presented following among others
[25]. The Stieltjes convolution of two matrix-valued functions A(t) and B(t) of
dimension m × m is given by C(t) where Cij(t) =

∑m
k=1 Aik(t) � Bkj(t) and

Aik(t) � Bkj(t) =

{∫ t

0
Aik(t − y)dBkj(y) if t ≥ 0

0 if t < 0 .

Consider a matrix-valued function A(t). The Stieltjes-convolution inverse of A(t)
is given by (I − A)(−1)(t) =

∑∞
n=0 A

(n)(t), where A(n)(t) = A(n−1)(t) � A(t),
for n > 0, and A(0)(t) = Θ(t), where Θ(t) is the diagonal matrix with the
Heaviside step function, Θ(t), on its diagonal. Moreover, let H(t) be a diagonal
matrix where each element on the diagonal is the sum of the corresponding row
of Q(t). At time t ≥ 0 it holds that

Pij(t) =
∑
k∈S

[
(I − Q(t))(−1)

]
ik

� (I − H(t))kj , (3)

where Pij(t) is the probability of being in state j at time t given that state i is
the initial state.

2.2 Laplace-Stieltjes Transform

The Laplace-Stieltjes (L-S) transform [26] of a function g(t) is defined by

L∗{g(t)} =
∫ ∞

−∞
e−st dg(t) = lim

R1→∞
lim

R2→∞

∫
(−R1,R2)

e−st dg(t) where s ∈ C ,

whenever this Lebesgue-Stieltjes integral exists.

2.3 Expolynomials

Define expolynomial as a sum of terms on the form Θ(t − b)tuαT eAtβ, where b
is a non-negative real number, u is a non-negative integer, A is an N ×N -matrix
of real numbers where N is some positive integer, and α and β are real column
vectors of length N . The definition differ somewhat from the definition in e.g.
[27] in order to more align with the phase-type distribution. Expolynomials are,
as proven by Proposition 1 in Appendix A, closed under Stieltjes convolution.

Transient Analysis of Hierarchical Semi-Markov Process Models 109

3 Transient Analysis of Hierarchical Semi-Markov
Processes

The first contribution, i.e. the algorithm for transient analysis of HSMP-models
will here be presented. But first, the concept of HSMP-models, which is essen-
tially a subclass of StoCharts presented in [22], will be formalized. The greatest
restriction of HSMP-models compared to StoCharts is that HSMP-models does
not allow for parallelism as StoCharts do with the “AND”-types of their nodes.

3.1 HSMP-models

Let P(A) denote the power set of a set A, i.e. the set of all subsets of A.

Definition 1. A Hierarchical Semi-Markov Process (HSMP)-model is a tuple
(S, Sdown, p0, F ,T , ch) where

– S is a finite, non-empty set of states.
– Sdown ⊆ S is a set of states (representing system failure).
– p0 is a probability vector representing the initial distribution of the states in

S.
– F is a set of Cumulative Distribution Functions (CDFs), F (t), each satisfying

limt→0− F (t) = 0.
– T ⊆ S × F × (S → [0, 1]) is a set of transitions, each containing a source

state, a CDF, and a probability vector.
– ch : S → P(S) associates each state with a possible empty set of children

states such that S is organized as a tree.

An example of an HSMP-model is illustrated in Fig. 1a. For the remainder of
the paper, the following notation will be used for a given HSMP-model, H =
(S,Sdown,p0,F , T , ch):

– S0 is the set of all possible initial states of H, i.e. all states corresponding to
a nonzero element in p0.

– chin(i) ⊆ ch(i) is the set of all internal initial states of state i, i.e. all children
states of state i ∈ S that are possible target states of at least one transition
with source not in ch(i).

Inspired by [16], we say that state j is an external state of a state i if j /∈
(ch(i) ∪ {i}). Moreover, a state i is a super-state if ch(i) �= ∅.

The semantics of HSMP-models, influenced by [22], is similar to that of SMP
modeled with timers as described in Sect. 2.1; when a state i is entered, one timer
for each of the transitions with i as source state starts counting down from a
time given by their CDFs and the first to reach zero triggers the corresponding
transition. The target state of the transition is then chosen according to its
probability vector. Where HSMP-models differ from SMP-models is that the
timers of a super-state j starts counting down when any state in ch(j) is entered,
they then keep counting down without resetting until one reaches zero, causing

110 S. Kaalen et al.

the corresponding transition, or until a state k /∈ ch(j) is reached by a transition
from a state in ch(j). Each time-point when a state i, which is not a child state
of any super-state of an HSMP-model, is entered, is a regeneration point, i.e.
the Markov property holds in these time points. The underlying process of an
HSMP-model is thereby a MRGP [2].

For the algorithm, it is assumed that there is only one level of hierarchy, i.e.
if a state j ∈ ch(i) for some state i then ch(j) = ∅. Note that this, together
with the tree structure of the states in an HSMP-model, assures that no two
super-states can share the same child state. How to generalize to more levels of
hierarchy is discussed later in Sect. 3.3. Furthermore, it is assumed that no state
i ∈ Sdown ∪S0 satisfies i ∈ ch(j) for any state j ∈ S, an assumption without loss
of generality for the task of computing the reliability. Without loss of generality,
it is further assumed that: (1) each state i ∈ Sdown ∪ S0 satisfies ch(i) = ∅, (2)
there are no transitions with a super-state as possible target state, (3) no super-
state has more than one internal initial state, i.e. for all the transitions from
states not in a super-state i, the probability of a state j ∈ ch(i) being the target
state is zero except possibly for the internal initial state, and (4) no transition
has a state i ∈ Sdown as source state. If any of these four assumptions does not
hold, the HSMP-model can with small effort be transformed to an HSMP-model
satisfying these conditions. More discussion about this is provided in Sect. 3.3.

3.2 Algorithm for Transient Analysis of HSMP-models

As in Sec. 2.1, let Ti denote the set of all transitions with a state i as source
state. The following algorithm is focused on computing the reliability. How-
ever, the same algorithm can with small adjustments be used for computing
the availability as is discussed in Sect. 3.3. The reliability is the probability that
no down-state has been reached after a certain system life-time. The reliability
of HSMP-models where all transitions have expolynomial distributions can be
found utilizing Algorithm1. The algorithm contains four enumerated steps, all
described below.

Step 1. In this case, all transitions in Ti have exponential CDFs. It follows
directly from the memoryless property of the exponential distribution that each
of the transitions in Ti can be replaced by | ch(i)| new transitions which is each
identical to the original transition with the only difference that each of the new
transitions has a unique element in ch(i) as source. After performing this proce-
dure for all transitions Ti, state i can be removed without affecting the reliability
since i will no longer be the source (or possible target) of any transition.

Step 2. The goal of this step is to transform H in such a way that ch(i) = ∅
without affecting the reliability. It is done as follows.

Firstly, all transitions with a state j /∈ ch(i) as source and with the internal
initial state j ∈ ch(i) of state i as a possible target is substituted for a transition

Transient Analysis of Hierarchical Semi-Markov Process Models 111

Algorithm 1: Transient analysis of HSMP-models
Input: An HSMP-model H =(S, Sdown, p0, T , F , ch) and a vector τ of points

in time.
Output: Reliability of H for the time-points τ .

foreach i ∈ S do
if ch(i) �= ∅ then

if All transitions in Ti have exponential distributions then
1 Flatten out i by moving all transitions in Ti to the inner states.

else
2 Flatten out i by translating the transitions with a state j ∈ ch(i) as

source (possible target) state to transitions with i as source
(possible target) state.

end

end

end
3 Find the semi-Markov kernel in the L-S domain of H.
4 Calculate the system failure distribution in the L-S domain, fT (s), of H and

inverse Laplace transform fT (s)/s in order to find the reliability, R(t), of H for
the time points τ .

with same source state and transition timer but where the possible target state
j has been changed to i with the same probability of occurring.

Secondly, consider the HSMP-model Hi made up by all states in ch(i) in
union with all states that can be reached by one transition from a state in ch(i),
all transitions from H for which the source state is in ch(i), and with the internal
initial state j of i as the initial state. Figure 1b illustrates H2 for the HSMP-
model illustrated in Fig. 1a. Let Si denote the state space of Hi. For Hi, find
the probability, P i

jl(t), of having reached state l as a function of the time for
each state l �= ch(i). Let Qi(t) denote the semi-Markov kernel of Hi and Hi(t)
denote the diagonal matrix where each diagonal element contains the sum of the
corresponding row in Qi(t). The quantities can utilizing Eq. (3) be expressed
through

P i
jl(t) =

∑
m∈Si

[(
I − Qi(t)

)(−1)
]

jm
�

(
I − Hi(t)

)
ml

. (4)

Once this expression is found for all states l ∈ (Si\ ch(i)) of Hi we again consider
H. All transitions with a state belonging to ch(i) as source are now removed
and new transitions, one for each l ∈ (Si\ ch(i)) are instead added with i as
source state and l as only possible target state. Each of these new transitions
are assigned (possibly defective [28]) CDFs according to their target state l
given by P i

jl(t). Note that this may result in an HSMP-model H with several
transitions from state i that have the same possible target states.

It now holds that no internal state j ∈ ch(i) of i is the source state of
any transition with a state l /∈ ch(i) as possible target state. Furthermore, no

112 S. Kaalen et al.

internal state j ∈ ch(i) of i is a possible target state of any transition with a
state l /∈ ch(i) as source state. Therefore all internal states j ∈ ch(i) of i can
be removed together with the transitions between them without affecting the
reliability.

A simple HSMP-model is illustrated before and after applying steps 1–2 in
Fig. 1a 1c. The new CDF F2,1 is yielded from applying step 2 of the algorithm
and depend on F3,4, F4,3, and F4.1.

Fig. 1. a) An HSMP-model to be analyzed where Fi,j denotes the CDF of the corre-
sponding timer. It is assumed that F2,5 is not an exponential. b) SMP utilized to find
F2,1 needed for the flattened model. c) Model of the resulting HSMP-model yielded by
applying steps 1–2 of Algorithm1 to the HSMP-model in Fig. 1a.

Solving Eq. (4) analytically is in general a difficult task given the infinite sum
of convolutions the Stieltjes convolution inverse induces. One specific situation
is when P i

jl not only can be found analytically but the expolynomial shape is
also preserved. One case where this holds is when all transitions with a state
k ∈ ch(i) as source has a CDF given by an exponential distribution. In this case,
each searched element P i

jl is simply the CDF of the time to absorption of the
Markov process Hi and is thereby by the definition in [29] easily represented as
a phase-type distribution.

Finding Transient Probability Under Bounded Regeneration. We con-
sider another case where P i

jl both can be found analytically and preserves the
expolynomial shape. The case is equivalent to what is referred to as bounded
regeneration in [30] and that terminology will be imported here. Let ti denote
the possibly infinite maximal time that can be spent in one visit of state i before
leaving. Bounded regeneration occurs when the maximum number of transitions
Ni that can occur between states in ch(i) in the time ti without entering a state
m /∈ ch(i) is finite. Following [31] and [5], it holds for the Stieltjes convolution
inverse part of Eq. (4) that (I − Qi(t))(−1) =

∑∞
m=0 Q

i(t)(m) . Now, bounded
regeneration with the limit Ni in state i directly implies that the maximum
number of transitions that can occur in Hi within the time ti is Ni + 1, i.e. Ni

transitions between the states in ch(i) and thereafter one transition leaving the
set ch(i). This in turn directly implies that Qi(t)(m) = 0 for all m ≥ Ni + 2
and for all t < ti. It now follows directly from Proposition 1 that P i

jl(t) is a

Transient Analysis of Hierarchical Semi-Markov Process Models 113

sum of expolynomial expressions which can be found following the derivations
in Appendix A. For the case when state i does not satisfy the restriction of
bounded regeneration, the reader is referred to Sect. 4 where a numerical method
is utilized to find P i

jl(t).

Step 3. Since there are no remaining super states in H after steps 1 and 2,
each time a transition occurs constitutes a regeneration point and H is thereby
a SMP. In step 3 the goal is to find all elements qij(s) of the L-S transform of
the semi-Markov kernel, Q(t), for H. The matrix Q(t) is equivalent to the global
kernel of the underlying MRGP. Let Tij denote the subset of Ti with transitions
having j as a possible target state. Moreover, let Fk(t) and pk denote the CDF
and the target state probability vector of the transition k for any k ∈ T . By
applying the L-S transform on Eq. (2) and utilizing Leibniz’s integral rule and
Th. 6.1.7 in [42] it now holds for all non-zero elements of qij(s) that

qij(s) =
∑

k∈Tij

pk(j)
∫ ∞

0−
e−st

∏
l∈(Ti)\{k}

(1 − Fl(t))dFk(t) . (5)

In the case of bounded regeneration, qij(s) can be found symbolically for all
states i, j ∈ S in the manner that is presented in Appendix B. If bounded
regeneration is not fulfilled, the reader is referred to Sect. 4 where a numerical
method for finding all element of qij(s) is presented.

Step 4. Following Eq. (3), the L-S transform, fT (s) of the system failure distri-
bution, i.e. the probability that a down-state has occurred as a function of the
time, is given by fT (s) =

∑
i∈S0

∑
j∈Sdown p0(i)((I − q(s))−1)ij . For the case

when all super-states of H has bounded regeneration, fT (s) is found completely
symbolically. Utilizing the relation that fT (s) = L�{FT (t)} = sL{FT (t)}, the
reliability for τ can be computed from fT (s) by first finding the system failure
probability, FT (t), using a numerical inverse Laplace transform of fT (s)/s and
then utilizing R(t) = 1 − FT (t).

3.3 Discussion

When there are several levels of hierarchy, the algorithm can be generalized in the
following way assuming that all of the super-states, that are themselves children
of a state, satisfy either bounded regeneration or only have children states with
exponential CDFs. Steps 1 and 2 are performed first for the super-states furthest
away from the root for each branch in the tree of states. This will result in some
of the leaves of the tree being deleted, creating a set of new set of super-states
furthest away from the root. For this new tree again, perform steps 1 and 2 of
Algorithm 1. Repeat this procedure until there are no more super-states when
steps 3 and 4 will be applied.

114 S. Kaalen et al.

In the end of Sect. 3.1, four assumptions was mentioned for which it was
stated that an HSMP-model that does not satisfy these assumptions can be
transformed into one that does. The perhaps most intricate of these transfor-
mations is for the case when a super-state i has several internal initial states
j, k, ..., l. For these models, step 2 of the algorithm is done a little differently;
instead of flattening state i into one state it will be flattened into several states
ij , ik, ..., il. To get the CDFs of each of the new transitions that will be created
for each of the source states j, k, ..., l, the HSMP-model Him

where m ∈ {j, k, ...l}
is considered where a unique internal initial state of i is chosen for each m. Fur-
thermore, each transition with an internal initial state n of i as possible target
state will be transformed so that the new possible target state with the same
probability will be the one of the state ij , ik, ..., il for which state m were chosen.

For the HSMP-models considered, the reliability and availability are equiva-
lent. However, if there exists down-states being source states of transitions, the
availability is given by applying the algorithm directly while the reliability is
given by first eliminating all transitions with a down-state as source state and
then applying the algorithm.

4 Transient Analysis of HSMP-models with Unbounded
Regeneration

The case when at least one super-state of an HSMP-model, H = (S,Sdown,
p0,F , T , ch), has unbounded regeneration is now considered. The solution
requires that the integral in Eq. (5) can be solved numerically. One straight-
forward case is when all super-states of the HSMP-model is the source of at
least one transition m satisfying that Fm(t) = 1 for some time t < ∞. In this
case the integral in Eq. (5) is always over a finite interval for Hi. Step 1 of the
algorithm is performed in the same manner as for HSMP-models of bounded
generation. As for the step 2, problems arise in finding the elements P k

jl(t) from
Eq. (4). This problem is worked around by instead of trying to find a sym-
bolic expression of P k

jl(t), a symbolic expression is found for its L-S transform
pk

jl(s) = L�{P k
jl(t)}. Applying the transform on Eq. (4) yields

pk
jl(s) =

∑
m∈Sk

[
(I − qk(s))−1

]
jm

(I − hk(s))ml . (6)

Note that in Eq. (6), the Stieltjes convolution and Stieltjes convolution inverse
of Eq. (4) has been transformed into a product and a matrix inverse respec-
tively. Since all CDFs in F have expolynomial distributions, so will all CDFs
of Fk ⊆ F . It follows from this that both Qk(t) and Hk(t) has expolynomial
expressions which in turn implies that qk(s) and hk(s) can be found symboli-
cally. A symbolical expression of pk

jl(s) can thereby be found from Eq. (6). Note
that the CDFs of the transitions with k as source being added to H in step
2 will be unknown but the L-S transforms of the these CDFs will be known
symbolically.

Transient Analysis of Hierarchical Semi-Markov Process Models 115

We now remember that the goal of step 3 of Algorithm 1 is to find all elements
qij(s) for H. Recall Eq. (5) presenting how qij(s) depends on the transitions of
H. The problem with solving Eq. (5) analytically is that the CDF of some
elements in H is unknown. However, since the L-S transform of these CDFs are
known, a numerical inverse Laplace transform can be utilized to find the values
of these CDFs for some specified values in time. Since this is the case, when
the integral cannot be found analytically, numerical integration can be used to
numerically compute a symbolic expression of qij(s). To enable the numerical
integration, each term in each of the elements Fk(t) can, by the product rule
[39], be transformed into two parts. The first part contains only a heaviside step
function, for which the integral can be solved analytically, and the second part
is differentiable implying that its derivative can be found in the same manner as
for the CDFs. Once all elements qij(s) has been found, step 4 of the algorithm
is performed as explained in Sect. 3.

Fig. 2. a) A Simple model with unbounded regeneration used for evaluation. b) His-
togram over for how many of the model variants of the model in 2a, a certain relative
error of the transient probability after 45000 h were reached when using the solution
method presented in Sect. 4.

4.1 Evaluation of Numerical Performance

Since the method presented earlier in this section utilizes numerical steps, an
evaluation of the result of the algorithm will here be presented in order to indicate
its performance. A computer with a 2.60 GHz, 6 core CPU and 16 GB RAM
running Windows 10 Enterprise has been used for all computing analyses in this
and upcoming sections. The evaluation is done by applying the numerical method
to several variants of a simple model and comparing the results with the results
achieved through simulation. The model is visualized in Fig. 2a. The model has
been chosen since it is a minimal HSMP-model with unbounded regeneration.
The values of the parameters x, y, z, and v are varied through the different
variants of the model. The parameter for the transition from state S1 to state
S4 is unchanged through the variants since it does not affect the approximations
made in performing the transient analysis. For each of the varied parameters,
three possible values are chosen and the model is analyzed for all combinations
of parameter values resulting in a total of 81 model variants. The values chosen
for each of the parameters are x ∈ {5 · 10−1, 10−2, 10−3}, y ∈ {150, 25, 10},
z ∈ {10, 10−1, 5 · 10−2}, and v ∈ {200, 15, 2} with units h or h−1 depending on

116 S. Kaalen et al.

the distributions. The possible values of the parameters have been chosen such
that a down-state is reached in most of the simulations. For each of the variants
of the model, the probability of having reached the down state S3 after 45000 h
is computed. The numerical method were performed as it is implemented in
SMP-tool 2.0 which is discussed in Sect. 5 and the analysis took a total time of
7 min. For the simulation, each variant of the model were simulated 106 times
and it took a total time of 17 h.

For three of the model variants, S3 were not reached for any of the simu-
lations given the low probability of it occurring. These variants were therefore
removed. Let Fnum

T (45000) denote the system failure probability at time 45000 h
yielded by the numerical method and let F sim

T (45000) denote the corresponding
quantity yielded from the simulation approach. The result of how many of the
model variants had what relative error, |F sim

T (45000) − Fnum
T (45000)|/F sim

T (45000),
is presented in the histogram illustrated in Fig. 2b. For most of the model vari-
ants, the confidence interval of the simulations were small and for the very few
for which this was not the case, varying the result of the simulations in their
confidence intervals still only slightly affects Fig. 2b. The histogram shows that
for most of the model variants, the relative error were well below 0.01. Further-
more, the relative error were below 1 for all the variants. What may be even
more interesting is that further analysis suggest that the reason for the higher
relative error for a few of the model variants is that the result from the simulation
had not yet stabilized rather than the numerical method achieving an incorrect
result. Given this, the numerical method validated here proved accurate for each
of the 78 variants of the model. The simulations took 17 h to finalize

5 Tool Support and Case Study

The third contribution, tool support for transient analysis of HSMP-models will
here be presented and applied to an industrial case study.

5.1 Tool Support

The tool named SMP-tool has in an earlier version previously been presented
in [12] and [11] as a tool for performing steady-state, transient, and sensitivity
analyses of SMPs. In SMP-tool 2.0 [32], support for transient analyses of HSMP-
models both with bounded and unbounded regeneration following Sect. 3 and 4
has been added. Stateflow, within the Matlab and more specifically Simulink
product family, provides a graphical language for state transition diagrams [18]
and is widely used within the automotive industry [33]. Based on this, the tool
support given by SMP-tool is based on Stateflow models. However, in order to
include all stochastic behavior of HSMP-model, the models used by SMP-tool
do while they are specified in Stateflow differ some from the models that can be
analyzed directly in Stateflow.

SMP-tool allow the user to specify which inversion method that is used for the
numerical inverse Laplace transform utilized in step 4 and in case of unbounded

Transient Analysis of Hierarchical Semi-Markov Process Models 117

regeneration also in step 3 of Algorithm 1, the default method being the CME
[34] method. As for the numerical integral solutions found in step 3 in the case of
unbounded regeneration, the numerical method used is the trapezoidal method
implemented the Matlab function “trapz()”. Furthermore, the step-length of
each integral is set as 0.1h as default but may be changed by the user. The main
user interface for creating models is Stateflow and will be discussed further in
Sect. 5.2.

Fig. 3. HSMP-model of BMS case study including nine states in total, four of which
contained in the super-state S3.

5.2 Case Study

The case study is based on a real industrial system from the heavy-vehicles
manufacturer Scania and concerns a Battery Management System (BMS) in
electric trucks and is visualized as an HSMP-model with unbounded regeneration
modeled in Stateflow in Fig. 3. Model parameters have been chosen according to
the real system but some have been adjusted for confidentiality reasons. Each
arrow from a state represents a transition and is labeled by the CDF associated
to the transition. Moreover, when there are several possible destination states,
this is modeled by adding a junction (circle) from which several arrows origins,
each of these arrows are labeled by the probability that the transition takes the
corresponding route.

In the battery, there can be a fluid leakage corresponding to states S2 and
S7. Fluid leakage is diagnosed periodically with a certain diagnostic coverage
causing either a transition back to itself or to S1 if the fault is discovered and

118 S. Kaalen et al.

repaired. When a fluid leakage is left unattended, eventually it will lead to a short
circuit of the battery corresponding to state S4 and S8. As long as the safety
mechanism, which is a pyro-fuse, is enabled, corresponding to not being in state
S3, the current will be shut down quickly when a short circuit happens. After
this the truck will be repaired in a workshop before heading out on the road fully
functioning again corresponding to state S1. However, if the safety mechanism is
disabled as a fluid leakage leads to short circuit, this will eventually lead to the
battery venting harmful gas and possibly cause a fire corresponding to state S5.
The status of the safety mechanism is diagnosed at every start of the vehicle and
assuming that the vehicle is driven an average of 8 h at the time, this is modeled
by a uniform distribution from state S3 to state S1. The model illustrates a
typical use case for when an HSMP-model is superior to an SMP. With only an
SMP model, the timer for when the vehicle will next time be turned off could
not keep counting down while these other events in the vehicle occur.

5.3 Analysis Results

The result of performing a transient analysis for the time-points 10 h, 100 h,
1000 h, 10000 h, and 45000 h, the last being the assumed life-time of the vehicle,
is visualized with screenshots from SMP-tool in Fig. 4. The figure shows the result
both from utilizing the algorithm in Sect. 3 including the method of Sect. 4, and
from using simulation by making random draws to simulate one lifetime of BMS
and then repeating 107 times. Finding the result took 38 s utilizing the algorithm
with the default relative error set for the numerical inverse Laplace transforms
and 67 min utilizing the simulation approach. From Fig. 4b it can be deduced that
the chosen number of simulations were too low in order to find a stable value of
the transient analysis for the first four time-points since no error had occurred at
those times for any of the simulations. Looking at the life-time of the system, the
relative error of the proposed algorithm, assuming that the simulation result is
the correct value, is given by |1.03 ·10−6 −8.00 ·10−7|/8.00 ·10−7 = 0.29. For the
purpose of safety- and dependability-analysis, it is most often the magnitude
and not the error that is of greatest important, implying that the proposed
algorithm found an accurate enough result in a fraction of the time needed for
the simulation. Furthermore, the result from the proposed algorithm is well inside
the 95% confidence interval of the simulation visualized by its lower and upper
confidence bounds in Fig. 4b. Note that the confidence interval is present for each
time point but since no system failures had yet occurred, the lower confidence
bound is 0 for some of the time-points. While this is merely the result of one
example it indicates that the proposed algorithm can provide an answer with
satisfying accuracy for real-world systems.

Transient Analysis of Hierarchical Semi-Markov Process Models 119

Fig. 4. a) Screenshot from SMP-tool for the result of transient analysis of BMS using
the proposed algorithm. b) Screenshot from SMP-tool for the result of transient analysis
of BMS using simulation.

6 Related Work

There are several tools capable of analyzing models with underlying non semi-
Markov processes, such as ORIS [35], SHARPE [9], TimeNET [36], and Great-
SPN [37]. However, along with SMP-tool, ORIS is the only one which can per-
form non-simulation based transient analysis of processes that do not satisfy the
enabling restriction [35], i.e. where there can be several transitions with non-
exponential CDFs enabled at the same time. The related work will therefore
focus on the ORIS tool.

The ORIS tool allow for transient analysis of stochastic Time Petri Nets
(sTPN) with unbounded regeneration through the regenerative engine and the
forward engine in ORIS Tool 2.3.0 [35]. We compare these two ORIS engines
with SMP-tool by applying them to the case study presented in Sect. 5.2. An
sTPN-model corresponding to the HSMP-model in Fig. 3 is illustrated in Fig. 5.
The error allowed was set to 10−6, implying a maximum relative error of about
1, in order to capture the correct magnitude of the probability of reaching the
down-state. For the forward engine, the tool was still enumerating stochastic
state classes after 12 h. The computation was at that point aborted. For the
regenerative engine, using a discretization step of 10 h, the probability of reaching
the down-state after 45000 h was found to be 1.02 · 10−6 with computation time
18 s. The result shows that the tools were comparable both when it comes to
analysis time and the analysis result. However, the performance of the ORIS
Tool depends on the discretization step both considering the analysis result and
analysis time.

Following the description in [13], ORIS Tool works by what in the modeling
framework of HSMP-models could be described as approximating the model of
unbounded regeneration as having bounded regeneration; after a number of tran-
sitions within hierarchical state, as the probability of more transitions occurring
becomes low enough in relation to the chosen error bound, it is assumed that no

120 S. Kaalen et al.

Fig. 5. BMS modeled as a timed stochastic petri net in ORIS tool.

more transition can occur within the hierarchical state. This implies that when
the expected number of transitions within an hierarchical state is high, the anal-
ysis time of ORIS can become intractable. In contrast, SMP-tool approximates
the model of unbounded regeneration directly, without treating it as having
bounded regeneration and therefore lacks the same issue with the number of
transitions made. To exemplify this, both SMP-tool and the regenerative engine
of ORIS have been applied to the variant of the model in Fig. 2a with x = 1,
y = 103, z = 5 ·10−3, and v = 1. In 12 s, SMP-tool managed to compute that the
probability of reaching the down-state after 45000 h is 0.55, which corresponds
well to the result of 0.56 yielded by simulating the model 1000 times. The same
model were remodeled into an sTPN and analyzed with discretization step 5000
and error 0.1. The regenerative engine had still not found a result after 12 h
when the computation were interrupted.

7 Conclusions and Future Work

When developing safety-critical systems, model-based transient analysis of reli-
ability and availability is of utmost importance. Furthermore, it is imperative
to make modeling and analysis easily accessible by the industry through tool
support. This is with advantage achieved by basing the tools on what is already
used in the industry. Examples are the modeling language Statecharts, which is
a part of UML, and the tool Stateflow, which is a part of Matlab.

In order to achieve this result, the present paper has made the following
contributions. As the first contribution an algorithm for transient analysis of
HSMP-models, a stochastic extension of Statecharts, has been presented with a
method for applying the algorithm for the subclass of models having bounded
regeneration. Moreover, since it is important to be able to model as many real-
world systems as possible, as the second contribution, a method for applying the
algorithm for models with unbounded regeneration has been presented. Finally,
as the third contribution, the Matlab app SMP-tool has been extended with
support for HSMP-models. SMP-tool has also successfully been applied to an
industrial case study provided by the heavy-vehicle manufacturer Scania.

Future work includes generalizing the approach and tool to support also
parallel hierarchical states.

Transient Analysis of Hierarchical Semi-Markov Process Models 121

Appendix

A Convolution of Expolynomials

Proposition 1. Expolynomials are closed under Stieltjes convolution.

Proof. Consider two expolynomial expressions G1(t) = Θ(t − b)tuαeAtβ and
G2(t) = Θ(t − b′)tu

′
α′eA

′tβ′. By performing a Jordan decomposition of the
square matrices A and A′ into UJU−1 and U ′J ′U ′−1 where J is the Jordan nor-
mal (canonical) form, it following [38] holds that G1(t) = Θ(t− b)tuαUeJtU−1β
and G2(t) = Θ(t − b′)tu

′
α′U ′eJ

′tU ′−1β′. Furthermore it holds that all Jordan
blocks created by a decomposition of a matrix B, satisfies Ji = Iiλi + Ni

where λi is an eigenvalue of B, I is a unit matrix, and Ni has value one on
each element directly above the diagonal and zero everywhere else. Now follow-
ing [38], it holds that eJt is a block diagonal matrix with eJ1t, eJ2t, ..., eJmt

on the diagonal and that eJit = eλit
(
Ii + tNi + . . . + tmi−1Nmi−1

i /(mi − 1)!
)
,

where mi is the size of the square matrix Ji. Utilizing this result, it holds that
G1(t) and G2(t) can be rewritten as G1(t) =

∑
m∈M Θ(t − b)tumcmeamt and

G2(t) =
∑

n∈M′ Θ(t − b′)tu
′
nc′

nea′
nt, for some real numbers cm, c′

n, am and a′
n,

for some non-negative integers um and u′
m, for some sets M = {1, 2, ..., N} and

M′ = {1, 2, ..., N ′}, and for some nonnegative integers N and N ′

We will now consider the Stieltjes convolution of two expolynomial terms on
the scalar form K1(t) = Θ(t − b)tuceat and K2(t) = Θ(t − b′)tu

′
c′ea′t. Utilizing

the product rule [39] it holds that

(K1 � K2)(t) =

∫
[0,t]

Θ(t − v − b)(t − v)ucea(t−v)d
(
Θ(v − b′)vu′

c′
nea

′v
)

= Θ(t − b′)Θ(t − b′ − b)(t − b′)ucea(t−b′)b′u′
c′
nea

′b′

+ Θ(t − b − b′)
∫
[b′,t−b]

(t − v)ucea(t−v)u′vu′−1c′
nea

′vdv

+ Θ(t − b − b′)
∫
[b′,t−b]

(t − v)ucea(t−v)vu′
c′
na′ea

′vdv .

Now utilizing the binomial theorem it holds

(K1 � K2)(t) = Θ(t − b′ − b)
u∑

k=0

(
u

k

)
tk(−b′)u−kceate−ab′

b′u′
c′
nea

′b′

+ Θ(t − b − b′)
u∑

l=0

(
u

l

)
tn−l(−1)lceatu′c′

n

∫
[b′,t−b]

vl+u′−1e(a
′−a)vdv

+ Θ(t − b − b′)
u∑

m=0

(
u

m

)
tn−m(−1)mceatc′

na′
∫
[b′,t−b]

vu′+me(a
′−a)vdv .

Now, it holds for any non-negative integer n and for any non-zero real number a that

∫
xneax dx =

eax

an+1

n∑
k=0

(−1)k(ax)n−k n!

(n − k)!
.

Utilizing this result for the remaining two integrals in the convolution of K1(t) and
K2(t) finally yields that Proposition 1 holds and yields an expression for (K1 � K2)(t).

122 S. Kaalen et al.

B Semi-Markov Kernel of Expolynomials

In order to find the shape of qij(s) when each transition has an expolyno-
mial CDF, some propositions are needed. The proof of Proposition 2 is straight-
forward and based upon substitution.

Proposition 2. Let m%n denote m modulo n and let �x� denote the ceil-
ing function. The product f(t) of two expolynomial expressions

∑
m∈M Θ(t −

bm)tumαT
meAmtβm and

∑
n∈M′ Θ(t−b′

n)tu
′
nα′T

n eA
′
ntβ′

n where M = {1, 2, ..., N}
and M′ = {1, 2, ..., N ′} satisfies

f(t) =
∑

m∈M∗
Θ(t − b∗

m)tu
∗
mα∗T

m eA
∗
mtβ∗

m ,

where u∗
m = um%N +u′

�m/N	, α∗T
m = αT

m%N ⊗α′T
�m/N	, A

∗
m = Am%N ⊕A′

�m/N	,
β∗

m = βm%N ⊗ β′
�m/N	, and ⊗ and ⊕ denote the kronecker product and kro-

necker sum respectively[40].

Proposition 3. Consider any expolynomial
∑

m∈M Θ(t − bm)tumαT
meAmtβm

where bm ∈ R+, um ∈ {0, 1, 2, ...}, αT
m ∈ R

1×pm , Am ∈ R
pm×pm , βm ∈ R

pm×1,
pm ∈ {1, 2, ...}, and M = {1, 2, ..., N} for some N ∈ N0. It holds that

L
{ ∑

m∈M
Θ(t − bm)tumαT

meAmtβm

}

=
∑

m∈M

um∑
v=0

um!

(um − v)!
bum−v
m αT

me−bm(sI−Am)(sI − Am)−(v+1)βm .

Proof. By use of well known properties of the Laplace transform presented in
among others [41], it holds for any expolynomial that

L
{ ∑

m∈M
Θ(t − bm)tumαT

meAmtβm

}
=

∑
m∈M

αT
mL{Θ(t − bm)tum}(s∗)βm

∣∣∣
s∗=(sI−Am)

=
∑

m∈M
e−bms∗αT

mL
{
(t + bm)um

}
(s∗)βm

∣∣∣
s∗=(sI−Am)

=
∑

m∈M

um∑
v=0

(
um

v

)
bum−v
m e−bms∗αT

m

(
v!

sv+1
∗

)
βm

∣∣∣
s∗=(sI−Am)

=
∑

m∈M

um∑
v=0

um!
(um − v)!

bum−v
m αT

me−bm(sI−Am)(sI − Am)−(v+1)βm .
��

Transient Analysis of Hierarchical Semi-Markov Process Models 123

Computing the L-S Transform of the Semi-Markov Kernel. The expres-
sion for an element qij(s) of q(s) for an SMP can now be found by applying the
L-S transform on Eq. (2):

qij(s) =
∫ ∞

−∞
e−std

⎡
⎣ ∑

k∈Tij

⎛
⎝pk(j)

∫ t

0

∏
l∈Ti\{k}

(1 − Fl(u)) dFk(u)

⎞
⎠

⎤
⎦

=
∑

k∈Tij

pk(j)
∫ ∞

−∞
e−st

∏
l∈Ti\{k}

(1 − Fl(t)) dFk(t) ,

Write the CDF of a transition as Fk(t) =
∑

m∈M Θ(t − bkm)tukmαT
kmeAkmtβkm

where M = {1, 2, ..., Nk}. Without loss of generality we assume that bkm ≥ 0
for each k ∈ T , and m ∈ M. Each element qij(s) of q(s) now takes the form

qij(s) =
∑

k∈Tij

pk(j)
∫ ∞

−∞
e−st

∏
l∈Ti\{k}

(
1 −

∑
m∈M

Θ(t − blm)tulmαT
lmeAlmtβlm

)

d

(∑
n∈M′

Θ(t − b′
kn)tu

′
knα′T

kneA
′
kntβ′

kn

)
,

where M = {1, 2, ..., Nl} and M′ = {1, 2, ..., Nk}. Now, for each m ∈ M and
l ∈ Ti\{k} define b∗

lm = −blm, u∗
lm = −ulm, α∗T

lm = −αT
lm, A∗

lm = −Alm, and
β∗

lm = −βlm. The element qij(s) can now be rewritten as

qij(s) =
∑

k∈Tij

pk(j)
∫ ∞

−∞
e−st

∏
l∈Ti\{k}

(∑
m∈M∗

Θ(t − b∗
lm)tu

∗
lmα∗T

lmeA
∗
lmtβ∗

lm

)

d

(∑
n∈M′

Θ(t − b′
kn)tu

′
knα′T

kneA
′
kntβ′

kn

)
,

where for each l ∈ Ti\{k}, M∗ = {1, ..., N∗
l = Nl +1}, b∗

l(n+1) = −∞, u∗
l(n+1) =

0, α∗T
l(n+1) = 1, A∗

l(n+1) = 0, and β∗
l(n+1) = −1 . By the theorems in [42] of the

Lebegue-Stieltjes integral, qij(s) satisfies

qij(s) =
∑

k∈Tij

pk(j)
∑

n∈M′
e−sb′

kn

∏
l∈Ti\{k}

(∑
m∈M∗

Θ(b′
kn − b∗

lm)b′u∗
lm

kn α∗T
lmeA

∗
lmb′

knβ∗
lm

)
b
′u′

kn

kn α′T
kneA

′
knb′

knβ′
kn

+
∑

k∈Tij

pk(j)
∫ ∞

−∞
e−st

∏
l∈Ti\{k}

(∑
m∈M∗

Θ(t − b∗
lm)tu

∗
lmα∗T

lmeA
∗
lmtβ∗

lm

)∑
n∈M�

Θ(t − b�
kn)tu

�
knα�T

kneA
�
kntβ�

kndt ,

124 S. Kaalen et al.

where M� = {1, 2, ..., N�
k = 2Nk} and where where for each n ∈ {1, 2, ..., Nk}

b�
n = b′

n, u�
n = u′

n, α�T
n = α′T

n , A�
n = A′

n, and β�
n = Anβ′

n, and where for each
n ∈ {Nk + 1, ..., N�

k } b�
n = b′

n−ck
, u�

n = u′
n−ck−1, α�T

n = α′T
n−ck

, A�
n = A′

n−ck
,

and β�
n = β′

n−ck
un−ck

. Note that since b′
kn ≥ 0 for each k ∈ T and n ∈ M,

it follows directly that b�
kn ≥ 0 for each k ∈ T and n ∈ M�. Now let h denote

|Ti\{k}| and let l1, l2, ..., lh denote the elements in Ti\{k}. By Proposition 2
qij(s) now satisfies

qij(s) =
∑

k∈Tij

pk(j)
∑

n∈M′
e−sb′

km

∏
l∈Ti\{k}

(∑
m∈M∗

Θ(b′
kn − b∗

lm)b′u∗
lm

kn α∗T
lmeA

∗
lmb′

knβ∗
lm

)
b
′u′

kn

kn α′T
kneA

′
knb′

knβ′
kn

+
∑

k∈Tij

pk(j)
∫ ∞

−∞
e−st

∑
m∈M†

Θ(t − b†
m)tu

†
mα†T

m eA
†
mtβ†

mdt ,

where M† = {1, 2, ...,
∏

l∈Ti\{k}(N
∗
l + 1)N�

k } and

b†
m = max(b�

k,m%N�
k
, b∗

l1�m/N�
k�, b∗

l2�m/N�
k N∗

l1�
, ..., b∗

lh�m/N�
k

∏h−1
γ=1 N∗

lγ �)

u†
m = u�

k,m%N�
k

+ u∗
l1�m/N�

k� + u∗
l2�m/N�

k N∗
l1�

+ ... + u∗
lh�m/N�

k

∏h−1
γ=1 N∗

lγ �
α†T

m = α�T
k,m%N�

k
⊗ α∗T

l1�m/N�
k� ⊗ α∗T

l2�m/N�
k N∗

l1�
⊗ ... ⊗ α∗T

lh�m/N�
k

∏h−1
γ=1 N∗

lγ �
A†

m = A�
k,m%N�

k
⊕ A∗

l1�m/N�
k� ⊕ A∗

l2�m/N�
k N∗

l1�
⊕ ... ⊕ A∗

lh�m/N�
k

∏h−1
γ=1 N∗

lγ �
β†

m = β�
k,m%N�

k
⊗ β∗

l1�m/N�
k� ⊗ β∗

l2�m/N�
k N∗

l1�
⊗ ... ⊗ β∗

lh�m/N�
k

∏h−1
γ=1 N∗

lγ �.

Finally, utilizing Proposition 3 yields

qij(s) =
∑

k∈Kij

pk(j)
∑

n∈M′
e−sb′

kn

∏
l∈Ti\{k}

(∑
m∈M∗

Θ(b′
kn − b∗

lm)b′u∗
lm

kn α∗T
lmeA

∗
lmb′

knβ∗
lm

)
b
′u′

kn

kn α′T
kneA

′
knb′

knβ′
kn

+
∑

k∈Tij

pk(j)
∑

m∈M†

u†
m∑

v=0

u†
m!

(u†
m − v)!

b
†u†

m−v
m e−b†

msα†T
m eb†

mA†
m(sI − A†

m)−(v+1)β†
m .

(7)

To summerize, utilizing the definitions of the parameters, which can be found as
described above, Eq. (7) finally give the expression of the semi-Markov kernel of
any SMP where each transition has an expolynomial CDF.

References

1. Rausand, M., Høyland, A.: System Reliability Theory: Models, Statistical Meth-
ods, and Applications, 2nd edn. Wiley, Hoboken (2004)

Transient Analysis of Hierarchical Semi-Markov Process Models 125

2. Trivedi, K.S., Bobbio, A.: Reliability and Availability Engineering: Modeling, Anal-
ysis, and Applications. Cambridge University Press, Cambridge (2017)

3. Limnios, N., Oprişan, G.: Semi-Markov Processes and Reliability. Springer, New
York (2001). https://doi.org/10.1007/978-1-4612-0161-8

4. International Electrotechnical Commission: Functional Safety of Electri-
cal/Electronic/Programmable Electronic Safety-related Systems (IEC61508)
(2010)

5. Limnios, N.: Dependability analysis of semi-Markov systems. Reliab. Eng. Syst.
Saf. 55, 203–207 (1997)

6. Marsan, M.A.: Stochastic petri nets: an elementary introduction. In: Rozenberg,
G. (ed.) APN 1988. LNCS, vol. 424, pp. 1–29. Springer, Heidelberg (1990). https://
doi.org/10.1007/3-540-52494-0 23

7. Levy, P.: Processus semi-Markoviens. In: Proceedings of the International Congress
of Mathematicians, Amsterdam, pp. 416–426 (1954)

8. Smith, W.: Regenerative stochastic processes. Proc. R. Soc. Lond. Ser. A Math.
Phys. Sci. 232(1188), 6–31 (1955)

9. Trivedi, K.S., Sahner, R.: SHARPE at the age of twenty two. SIGMETRICS Per-
form. Eval. Rev. 36(4), 52–57 (2009)

10. Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems, 3rd edn. Taylor &
Francis Group, LLC, Boca Raton (2017)

11. Kaalen, S., Nyberg, M.: Branching transitions for semi-Markov processes with
application to safety-critical systems. In: Zeller, M., Höfig, K. (eds.) IMBSA 2020.
LNCS, vol. 12297, pp. 68–82. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-58920-2 5

12. Kaalen, S., et al.: Tool-supported dependability analysis of semi-markov processes
with application to autonomous driving. In: 4th International Conference on Sys-
tem Reliability and Safety (ICSRS), pp. 126–135 (2019)

13. Horvath, A., et al.: Transient analysis of non-Markovian models using stochastic
state classes. Perform. Eval. 68, 315–335 (2012)

14. Petri, C.A.: Communication with automata, Ph.D. thesis (1966)
15. Vicario, E.: Using stochastic state classes in quantitative evaluation of dense-time

reactive systems. IEEE Trans. Softw. Eng. 26(5), 703–719 (2009)
16. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-

gram. 8, 231–274 (1987)
17. UML homepage. https://www.uml.org/. Accessed 2 July 2021
18. Stateflow Homepage. https://se.mathworks.com/products/stateflow.html.

Accessed 2 July 2021
19. Matlab homepage. https://se.mathworks.com/products/matlab.html. Accessed 2

July 2021
20. Matlab company page. https://se.mathworks.com/company.html. Accessed 2 July

2021
21. Matlab Company Factsheet. https://se.mathworks.com/content/dam/

mathworks/handout/2020-company-factsheet-8-5x11-8282v20.pdf. Accessed
26 Apr 2021

22. Janssen, D.N.: Extensions of Statecharts with probability, time, and stochastic
timing. Ph.D. thesis (2003)

23. Lindemann, C., et al.: Performance analysis of time-enhanced UML diagrams based
on stochastic processes. In: Proceedings of the 3rd International Workshop on
Software and Performance (WOSP), pp. 25–34 (2002)

https://doi.org/10.1007/978-1-4612-0161-8
https://doi.org/10.1007/3-540-52494-0_23
https://doi.org/10.1007/3-540-52494-0_23
https://doi.org/10.1007/978-3-030-58920-2_5
https://doi.org/10.1007/978-3-030-58920-2_5
https://www.uml.org/
https://se.mathworks.com/products/stateflow.html
https://se.mathworks.com/products/matlab.html
https://se.mathworks.com/company.html
https://se.mathworks.com/content/dam/mathworks/handout/2020-company-factsheet-8-5x11-8282v20.pdf
https://se.mathworks.com/content/dam/mathworks/handout/2020-company-factsheet-8-5x11-8282v20.pdf

126 S. Kaalen et al.

24. Hermanns, H., et al.: From StoCharts to MoDeST: a comparative reliability anal-
ysis of train radio communications. In: Proceedings of the 5th International Work-
shop on Software and Performance (WOSP), pp. 13–23 (2005)

25. Pyke, R.: Markov renewal processes with finitely many states. Ann. Math. Stat.
32(4), 1243–1259 (1961)

26. Grimmet, G., Stirzaker, D.: Probability and Random Processes, 3rd edn. Oxford
University Press Inc., Oxford (2001)

27. Horváth, A., et al.: Transient analysis of generalised semi-Markov processes using
transient stochastic state classes. In: International Conference on the Quantitative
Evaluation of Systems (QEST), Williamsburg (2010)

28. Beaumont, G.P.: Probability and random variables. International Publishers in
Science and Technology, West Sussex (2005)

29. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. Dover Publications, Inc., New York (1981)

30. Biagi, M., Carnevali, L., Paolieri, M., Papini, T., Vicario, E.: Exploiting non-
deterministic analysis in the integration of transient solution techniques for Markov
regenerative processes. In: Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS,
vol. 10503, pp. 20–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66335-7 2

31. Çinlar, E.: Introduction to Stochastic Processes. Dover Publications Inc., New York
(1975)

32. SMP-tool homepage. https://www.kth.se/itm/smptool. Accessed 2 July 2021
33. Matlab automotive solutions page. https://se.mathworks.com/solutions/

automotive.html. Accessed 2 July 2021
34. Horváth, I., et al.: An optimal inverse Laplace transform method without positive

and negative overshoot - an integral based interpretation. Electron. Notes Theoret.
Comput. Sci. 337, 87–104 (2018)

35. Paolieri, M., et al.: The ORIS tool: quantitative evaluation of non-Markovian sys-
tems. IEEE Trans. Softw. Eng. 47(6), 1211–1225 (2019)

36. Zimmermann, A.: Modelling and performance evaluation with TimeNET 4.4. In:
Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 300–303.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7 19

37. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years
of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and
Reliability Modeling and Evaluation. SSRE, pp. 227–254. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30599-8 9

38. Notes on the Matrix Exponential. http://www.ctr.maths.lu.se/media11/
MATM14/2012vt12/exp .pdf. Accessed 25 Mar 2021

39. Adams, R.A., Essex, C.: Calculus: A Complete Course, 8th edn. Pearson Canada
Inc., Toronto (2014)

40. Liesen, J., Mehrmann, V.: Linear Algebra. Springer, Cham (2015)
41. Oberhettinger, F., Badii, L.: Tables of Laplace Transforms. Springer, Heidelberg

(1973). https://doi.org/10.1007/978-3-642-65645-3
42. Carter, M., van Brunt, B.: The Lebesgue-Stieltjes Integral: A Practical Introduc-

tion. Springer, New York (2000). https://doi.org/10.1007/978-1-4612-1174-7

https://doi.org/10.1007/978-3-319-66335-7_2
https://doi.org/10.1007/978-3-319-66335-7_2
https://www.kth.se/itm/smptool
https://se.mathworks.com/solutions/automotive.html
https://se.mathworks.com/solutions/automotive.html
https://doi.org/10.1007/978-3-319-66335-7_19
https://doi.org/10.1007/978-3-319-30599-8_9
http://www.ctr.maths.lu.se/media11/MATM14/2012vt12/exp_.pdf
http://www.ctr.maths.lu.se/media11/MATM14/2012vt12/exp_.pdf
https://doi.org/10.1007/978-3-642-65645-3
https://doi.org/10.1007/978-1-4612-1174-7

Evaluating the Effectiveness
of Metamodeling in Emulating

Quantitative Models

Michael Rausch1(B) and William H. Sanders2

1 University of Illinois at Urbana-Champaign, Urbana, IL, USA
mjrausc2@illinois.edu

2 Carnegie Mellon University, Pittsburgh, PA, USA
sanders@cmu.edu

Abstract. It is often prohibitively time-consuming to do sensitivity anal-
ysis, uncertainty quantification, and optimization with complex state-
based quantitative models because each model execution or solution takes
so long to complete, and many such executions are necessary to complete
the analysis. One way to approach this problem is to use metamodels
that emulate the behavior of the base model but run much faster. These
metamodels may be automatically constructed using machine learning
techniques, and then the relevant analysis may be conducted on the fast-
running metamodel in place of the slow-running model.

In this work, we evaluate the effectiveness of several different types
of metamodels in emulating seven publicly available PRISM and Möbius
models. In our evaluation, we found that the metamodels are reasonably
accurate and are several thousand times faster than the corresponding
models they emulate. Furthermore, we find that stacking-based meta-
models are significantly more accurate than state-of-the-practice meta-
models. We show that metamodeling is a powerful and practical tool
for modelers interested in understanding the behavior of their models,
because it makes feasible analysis techniques that would otherwise take
too long to run on the original models.

Keywords: Metamodels · Surrogate models · Emulators · Security
models · Reliability models · Sensitivity analysis · Uncertainty
quantification · Optimization

1 Introduction

Many realistic state-based quantitative models have a large number of input
variables. The precise values of the input variables are often unknown in prac-
tice. Alternatively, some of the input variable values may be under the direct
control of the modeler, and the modeler must choose values that will maximize
the system’s performance or utility. Sensitivity analysis (SA) and uncertainty
quantification (UQ) can help a modeler understand and manage the resulting

c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 127–145, 2021.
https://doi.org/10.1007/978-3-030-85172-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-85172-9_7

128 M. Rausch and W. H. Sanders

uncertainties, while optimization can help a modeler determine which combi-
nation of input variable values may be best to achieve a particular goal. SA,
UQ, and optimization techniques are all of vital importance to modelers. How-
ever, applying SA, UQ, or optimization techniques directly to the model can be
impractical for models with long execution times, since the techniques usually
mandate that the model be solved for many different combinations of values for
the input parameters.

Alternatively, a modeler can perform SA, UQ, or optimization indirectly
through the use of a metamodel. A metamodel is a model of a model. The meta-
model (usually imperfectly) emulates the behavior of the model (which we shall
refer to as the base model in this paper). The metamodel generally runs signifi-
cantly faster than the base model, trading a great gain in speed for slightly less
accuracy. It is unnecessary to construct metamodels manually; metamodels can
be constructed automatically using machine learning techniques. Once a meta-
model has been built, SA, UQ, or optimization techniques can be applied to it as
a “stand-in” for the base model and completed in a reasonable amount of time.
Using metamodels, modelers can indirectly perform SA, UQ, and optimization on
models that run so slowly that it would be impractical to evaluate them directly.

In recent work, a stacking-based metamodel architecture was applied to the
analysis of a botnet simulation model [9] and an Advanced Metering Infrastruc-
ture (AMI) simulation model [10]. The resulting metamodels ran hundreds to
thousands of times faster than the original base models and were more accurate
than traditional metamodels in emulating their behavior. While the results were
impressive, it was unknown whether the approach would generalize and produce
similarly good results for other models. If the metamodeling techniques were
shown to work on a wider variety of test cases, modelers would gain greater
confidence in the efficacy of metamodels for quantitative modeling.

In this work, we use seven previously published models (six PRISM models
and one Möbius model) as test cases to evaluate the speed and accuracy of meta-
models built via machine learning. We evaluate state-of-the-practice metamodel
architectures, the recently proposed stacking-based metamodel architecture, and
several variants. We show that the metamodels we built run thousands of times
faster than the corresponding base models, and all are reasonably accurate. In
addition, based on the results of our experiments, we give advice on which meta-
model architectures to use for those who wish to apply the techniques to their
own models. Our work gives confidence that metamodels can be a useful tool
for performing SA, UQ, and optimization on models with many uncertain input
parameters that would normally take too long to execute.

The rest of this paper is organized as follows. In Sect. 2, we describe the seven
models we use as test cases. In Sect. 3, we briefly explain the metamodeling
approach in general, the current state-of-the-practice, the recently developed
stacking-based approach, and variants to the stacking-based approach. In Sect. 4,
we show the speed and accuracy of the metamodels on the test case models.
We discuss key insights, use cases, and limitations in Sect. 5. We briefly review
related work in Sect. 6, and conclude in Sect. 7. The appendix contains details
of the initial conditions of our test case models.

SA and UQ of Simulation Models through Stacked Metamodels 129

2 Test Cases

We evaluate seven different test cases. We used the botnet model that was previ-
ously used as a test case in a metamodeling investigation [9], plus six published
PRISM [4] models that, to the best of our knowledge, have never been used as
subjects of metamodeling. We examined the publicly available PRISM case stud-
ies1. Since we are especially interested in the use of metamodeling for sensitivity
analysis, uncertainty quantification, and optimization, which are commonly used
when a model has many uncertain input variables, we selected case studies that
had many model input variables. We also tried to select models that were non-
trivial. We chose to use published models, rather than create synthetic models,
to help evaluate the real-world effectiveness of the metamodeling techniques.
We are also pleased that these models cover a variety of domains: cybersecurity,
reliability, chemistry, and biology. We shall briefly describe each test case in turn.

– Botnet The Botnet model is a Möbius model that is described in detail in
[12] and was used as the sole test case in [9]. The model can be used to study
the growth of a botnet over the course of a week given certain conditions, such
as the probability that an uninfected computer will become infected, and the
rate of removal of bots from the net. The values of eleven input variables are
uncertain in this model. The input variables, and the values that they assume
in our evaluation, can be found in the Appendix in Table 7.

– Circadian The Circadian Clock model2, based on the abstract model found
in [1] and [15], is a CTMC PRISM model. Given rates for transcription, trans-
lation, binding, release, and degradation, for activator and repressor genes and
mRNA the model calculates the amount of activator protein at a given time.
There are 17 input variables in this model. The input variables, and the range
of values that they assume in our evaluation, can be found in the Appendix
in Table 8.

– Cluster The Workstation Cluster model3 is a PRISM model taken from
[3]. It can be used to calculate the quality of service (QoS) of a workstation
cluster arranged in a star topology. The components of the cluster fail and are
repaired at specific rates. The values of thirteen input variables are uncertain
in this model. The majority of these uncertain input variables are various
failure and repair rates. The input variables, and the range of values that
they assume in our evaluation, can be found in the Appendix in Table 9.

– Cyclin The Cyclin model4 is a CTMC PRISM model based on a formal spec-
ification from [5]. It models cell cycle control in eukaryotes, given a specific
quantity of various molecules and various base reaction rates. This model
contains 14 input variables. The input variables, and the range of values that
they assume in our evaluation, can be found in the Appendix in Table 10.

1 Available here: https://www.prismmodelchecker.org/casestudies/.
2 Model code here: https://www.prismmodelchecker.org/tutorial/circadian.php.
3 Model code here: https://www.prismmodelchecker.org/casestudies/cluster.php.
4 Model code here: https://www.prismmodelchecker.org/casestudies/cyclin.php.

https://www.prismmodelchecker.org/casestudies/
https://www.prismmodelchecker.org/tutorial/circadian.php
https://www.prismmodelchecker.org/casestudies/cluster.php
https://www.prismmodelchecker.org/casestudies/cyclin.php

130 M. Rausch and W. H. Sanders

– Embedded The Embedded System model5 is a CTMC PRISM model of
an embedded control system based on a model description from [7]. The
embedded system consists of three sensors, a sensor input processor, a main
processor, an output processor, two actuators, and a bus that connects the
processors. The components have a probability of failing, either permanently
or in a transient manner. Some failures can be repaired by a system reboot.
This model can be used to calculate reliability and availability metrics. There
are six input variables in this model. The input variables, and the range of
values that they assume in our evaluation, can be found in the Appendix in
Table 11.

– Kanban The Kanban Manufacturing System model6 is a CTMC PRISM
model based on a model found in [2]. The model can be used to estimate the
throughput of a manufacturing system. There are fourteen input variables in
this model. The input variables, and the range of values that they assume in
our evaluation, can be found in the Appendix in Table 12.

– Molecules The Simple Molecular Reactions model7 is a CTMC PRISM
model. Given a particular amount of Na, Cl, and K, various reaction rates, and
length of time, it can calculate the expected percentage of Na/K molecules.
There are nine input variables in this model. The input variables, and the
range of values that they assume in our evaluation, can be found in the
Appendix in Table 13.

3 Approach

A metamodel or emulator or model surrogate is a model of a model. Recall
that we refer to the model that the metamodel emulates as the base model. The
metamodel will attempt to produce the same output as the base model, given the
same vector of input variable values. In general, a metamodel will not emulate
the base model perfectly, but will run much faster than the base model. It is
possible to construct metamodels using machine learning (ML) by following this
general process:

1. Collect training and testing data by generating a number of different inputs,
running the base model with those inputs, and recording each input vector
and the corresponding modeling result.

2. Train a machine learning regressor to emulate the base model using the train-
ing data.

3. Test the trained regressor with the testing data. This is done by running each
test input vector through the metamodel and observing the difference between
the metamodel output and the previously-recorded base model output.

5 Model code here: https://www.prismmodelchecker.org/casestudies/embedded.php.
6 Model code here: https://www.prismmodelchecker.org/casestudies/kanban.php.
7 Model code here: https://www.prismmodelchecker.org/casestudies/molecules.php.

https://www.prismmodelchecker.org/casestudies/embedded.php
https://www.prismmodelchecker.org/casestudies/kanban.php
https://www.prismmodelchecker.org/casestudies/molecules.php

SA and UQ of Simulation Models through Stacked Metamodels 131

In this work, we generated all training and testing data inputs uniformly
at random for ease of analysis and coding, though it is possible to use more
sophisticated sampling methods (such as Latin Hypercube Sampling or Sobol
Sequence Sampling) to collect the training data, which may produce slightly
more accurate metamodels [9].

The choice of the kind of regressor to train is important. For example, some-
one may create a metamodel by training a random forest, multilayer perceptron,
Gaussian Process regressor, or something more exotic. Some types of regressors
may be substantially more accurate than others, and it is difficult to know a
priori which will perform well. In much of the related work, the author chose
regressors based on intuition, familiarity and comfort with a particular technique,
or certain properties of the data. In other papers, the authors evaluate several
different regressor types, and chose the best-performing regressor (the Best of
Many approach). In recent work [9,10], a stacking-based metamodel approach
was shown to significantly outperform the Best of Many approach. However, it
was only shown to work on two test cases, and no variants of the metamodel
architecture were explored.

In the remainder of the section, we shall briefly review the stacking-based
metamodel approach for SA and UQ introduced in [9], and then describe the
variants of the architecture that we developed and evaluate in this paper.

3.1 Stacking Review and Variants

In machine learning, an ensemble is a collection of learning algorithms that are
used together with the goal of creating a stronger overall learner than any of the
constituent learning algorithms alone. One of the simplest ensemble techniques
one could imagine is to create a voting committee of heterogeneous regressors
(for example, one multilayer perceptron, one random forest, one KNN regressor,
etc.), each trained separately on the training data. The output of the committee
would be the average of the regressor predictions. However, better performance
could be achieved if the predictions of more accurate regressors were given more
weight in the vote than inaccurate regressors. In particular, it may be that
one regressor may perform relatively well in one region of the input space, and
relatively poorly in another region of the input space. The appropriate weighting
is not obvious, but could be learned using a separate regressor or committee of
regressors. This is the core idea of stacking. With stacking, the predictions of
the regressors in the first committee are appended to the training data, and
then a second committee of regressors is trained with the augmented training
datasets [16]. The stacking approach was successfully used to win Kaggle ML
competitions [11].

To build a stacked metamodel, one would first train multiple regressors with
the training dataset, to form the first level committee. Next, every regressor in
the first level committee would be run with every input vector from the training
dataset to obtain the corresponding regressor prediction for that input vector,
and then the regressor prediction would be appended to the input vector as
another feature. At the end of the process, the modeler will have an augmented

132 M. Rausch and W. H. Sanders

Fig. 1. Overview of the metamodel architecture.

training dataset that contains all of the original input vectors, but each input
vector will include additional features: the predictions of the first level regressors.
The augmented dataset would then be used train another set of regressors to
form the second level committee. The regressors in the second level will have
the benefit of additional information in their training dataset to help them make
better predictions: the “recommendations” of the first level regressors.

See Fig. 1 for a diagram of the flow of execution in the metamodel architec-
ture. Once the metamodel has been built, it may be executed. To execute the
metamodel, an input vector is given to each regressor in the first level commit-
tee, and each regressor calculates its prediction. We have experimentally found
that it is useful to filter predictions from inaccurate regressors (later in this
section we discuss details of the filter), but predictions from accurate regressors
are appended to the input vector. This augmented input vector is then given to
each of the regressors in the second level committee, which in turn make their
predictions. The predictions are filtered again, and the predictions that make it
through the filter are averaged to calculate the final metamodel prediction.

In general, one may choose any set of regressors as members of the two
committees. However, one must of course choose a specific set of regressors.
This is an important choice, since the overall accuracy of the metamodel heavily
depends on which regressors are members of the two committees. Only one kind
of committee was evaluated in [9] and [10]. We go further than those works by
evaluating five different committees with a variety of properties.

Similarly, appropriate filters can help improve the performance of the meta-
model. In general, one may use the predictions of each regressor in the commit-
tee, regardless of the accuracy of the regressor. However, we have experimentally
found that it can be useful to filter predictions from inaccurate regressors. Only
one kind of filter was evaluated in [9] and [10], however, filtering can be accom-
plished in a variety of ways. We build upon previous work by evaluating variants
on two different types of filters.

We shall describe the different committee and filter types we evaluate in this
work.

SA and UQ of Simulation Models through Stacked Metamodels 133

Committees. We evaluate five different committees in this work. We hypothe-
size that larger committees would outperform smaller committees, and commit-
tees with more heterogeneity would outperform those with less, and wish to test
the hypothesis. To that end, we evaluate committees of different sizes, and with
varying degrees of heterogeneity in membership. We evaluate a large committee
with many heterogeneous regressors (Committee 0), a couple of small committees
with relatively homogeneous members (Committees 1 and 2, which only contain
different kinds of random forests and multilayer perceptrons, respectively, as
members), a medium-sized committee with heterogeneous members (Committee
3), and a small committee with heterogeneous members (Committee 4). What
follows is a description of each committee. A summary of the properties of the
committees can be found in Table 1.

0. Committee 0: The regressors in this committee are the same as the regressors
used in the committees in [9]. It is also the largest committee we evaluate, with
25 members. The members are 1 random forest regressor, 8 different multi-
layer perceptrons (each with a different combination of solvers and activation
functions), 4 different Gradient Boosting Regressors (each with a different
loss function), a RidgeCV regressor, 10 different KNN regressors (each vary
by the number of neighbors and whether the neighbor votes are weighted
uniformly or by distance), a Gaussian Process regressor, and a stochastic
gradient descent regressor. Hyperparameter tuning is less of an issue in this
large committee compared to the smaller committees, because one can simply
include many variants of the same “base” algorithm with different hyperpa-
rameters without being particularly concerned with finding the “best” set of
hyperparameters. In effect, the stacking algorithm will indirectly perform the
work of finding the “best” set of hyperparameters in the given set for the
modeler in the course of its normal operation.

1. Committee 1: All of the regressors in this committee are variants of the ran-
dom forest architecture with different hyperparameters. There are 4 regressors
in this committee, and each varies by the number of trees in the forest (either
10 or 100) and by the criterion used (either mean squared error or mean
absolute error).

2. Committee 2: All of the regressors in this committee are variants of the mul-
tilayer perceptron architecture with different hyperparameters. There are 6
regressors in this committee, and each has a unique combination of solver
(either adam, sgd, or lbfgs) and activation function (either logistic or tanh).

3. Committee 3: This committee is our representative example of a commit-
tee with a moderate number of regressors. There are six regressors in this
committee: one random forest, one multilayer perceptron, one support vector
machine, one Gaussian process regressor, one KNN regressor, one Gradient
Boosting regressor, and one stochastic gradient descent regressor.

4. Committee 4: This committee is our representative example of a small com-
mittee of just three regressors, each having a different architecture. This com-
mittee contains a random forest, a multilayer perceptron, and an Gaussian
process regressor.

134 M. Rausch and W. H. Sanders

Table 1. Properties of committees.

Committee index Regressor mix
(heterogeneous or
homogeneous)

Size of committee
(# members)

0 Heterogeneous Largest (25)

1 Homogeneous Small (4)

2 Homogeneous Moderate (6)

3 Heterogeneous Moderate (6)

4 Heterogeneous Small (3)

Filters. We evaluate two different types of filters in this work: Top k and Within
n Percent. The Top k filter only allows the predictions from the k most accurate
regressors to pass through. In this work we consider k = {1, 2, 3}. The Within
n Percent filter will allow predictions from all regressors through as long as the
regressor’s error is no worse than n percent worse than the best performing
regressor. In this work we consider n = {10%, 25%, 50%, 100%}. With this filter,
it is not known a priori how many regressors will be filtered - theoretically, all
of the regressor predictions could be filtered (except the predictions from the
best regressor), or all of them could pass through the filter. As a control, we
also construct metamodels with no filters. The Within 25% filter was used in
the architecture of the metamodel found in [9].

4 Evaluation of Accuracy and Speed

In this evaluation, we first determine the most effective combination of committee
and filter to use for the metamodel, and rank the committees and filter types
by their effectiveness. Then, we calculate the accuracy of the metamodel on
each of the test cases. We also investigate by how much the accuracy of the
metamodels increase with more training data. Finally, we evaluate speed of the
metamodel compared to the base models, as well as the time it takes to train
the metamodels.

Before we begin the evaluation, it is important to explain how the accuracy
of the metamodels is calculated. For each of the test case base models we created
a dataset of one thousand randomly generated input vectors and executed the
base model with those vectors to obtain the corresponding outputs to create
a “ground truth” test dataset. The test dataset was distinct from the training
dataset. The trained metamodel is executed with all of the input vectors from the
test dataset, and the metamodel prediction for each input vector is recorded. We
then calculate the absolute error for each vector by taking the absolute value of
the difference between the metamodel’s prediction and the ground truth model
output. We sum all of the absolute errors and then divide by the number of
input vectors in the test dataset to obtain the mean absolute error. Finally, to
facilitate comparison between the different test cases (whose outputs have very

SA and UQ of Simulation Models through Stacked Metamodels 135

Table 2. Most accurate committee/filter combination for each test case. Note: Descrip-
tion of committee by given index found in Sect. 3.

Base model Committee index Filter index

Botnet 0 Within n Percent, n = 50%

Circadian 1 No filter

Cluster 0 Within n Percent, n = 25%

Cyclin 1 Within n Percent, n = 25%

Embedded 0 Within n Percent, n = 10%

Kanban 0 Within n Percent, n = 50%

Molecules 0 Within n Percent, n = 10%

different ranges of values), we normalize the errors by dividing the mean absolute
error by the range of the base model’s outputs in the test dataset.

We wrote the code to build the metamodels in Python with the aid of the
scikit-learn package [8].

4.1 Accuracy Given Different Committee Compositions and Filters

As we described in Sect. 3, we evaluate five different committee types and eight
different filters, so there are a total of 8 × 5 = 40 different combinations of
committee and filter. The most accurate stacked metamodel committee/filter
combination for each test case we consider is given in Table 2. We see that Com-
mittee 0, the largest and most diverse of the committees, is the best performing
committee for five of the seven test cases, and that Committee 1, which is com-
posed of four different random forest regressors, is the best performing committee
for the remaining two test cases. The best performing filters were all variants of
the Within n Percent filter, with the exception of the Circadian test case, where
not having a filter outperformed all of the other filters.

It would be useful to know which committee/filter combination works best in
general. Table 2 shows that the best committee/filter combination for one base
model will not be the best combination for another base model. One may of
course try all forty combinations and select the best for their particular model.
It does not take long to train a metamodel, so it is feasible to try many different
variants. However, it is illuminating to know which committee and filter combi-
nations work well across many different kinds of models. To determine this, we
ranked each committee/filter combination for each of our seven test cases from 1
to 40, from most accurate to least. We then calculated the average rank for each
committee/filter combination by summing all of the individual ranks and then
dividing by the number of test cases. The committee/filter combination with the
lowest average rank would be the most accurate metamodel across the test cases.
When we performed that calculation, we found that Committee 0 (the largest
and most heterogeneous committee) paired with the Within n Percent, n=10%
filter was the most accurate combination across all of the test case models.

136 M. Rausch and W. H. Sanders

It would also be illuminative to rank the committees (each paired with the
filter that maximizes its performance) and filters (each paired with the committee
that maximizes its performance) across the test models, respectively. We shall
describe the process to determine the rank of a committee. A similar process
can be used to rank a filter. To rank the committees, we first calculate the
average rank of each combination of the 40 combinations of committee/filter
as described in the paragraph above, and then sort this list from the smallest
value to the largest. We then start at the top of this list and if we see an entry
with a committee we have seen before, we delete that entry. When we reach
the end of the list we will have a ranked list of committees. By ranking in this
way, we compare each committee when paired with the filter that maximizes its
performance.

The ranking of the committees and filters can be found in Table 3. From
the table it is clear that the stacking approach benefits from having committees
with many heterogeneous members. Committees with more homogeneity (e.g.
Committees 1 and 2) and small committees (e.g. Committee 4) do not perform as
well in general (though, as we saw previously in Table 2, they may perform better
than the alternatives on specific models). The results validate the intuition that
an ensemble with many diverse members will outperform an smaller ensemble
with fewer, more homogeneous members.

Table 3 also provides striking results for the filter. Clearly, the Within n
Percent filter dramatically outperformed the Top k filter. In fact, the Top k filter
was worse than having no filter at all. It is interesting that the more restrictive
Within n Percent filters outperformed the less restrictive filters of the same type,
while the less restrictive Top k filters outperformed the more restrictive. We
hypothesize that the Top k filters were too restrictive to allow for the diversity
necessary for a well-performing ensemble.

4.2 Metamodel Accuracy: Naive vs. Best of Many vs. Stacked

Up to this point, we have only evaluated the accuracy of different variants of the
stacked metamodel relative to one another. It is also important to know (a) the
accuracy of the stacked metamodel compared to other metamodels, and (b) the
absolute accuracy of the model.

First, it is important to know whether sophisticated ML techniques perform
better than very naive methods. To help make this comparison, we created a
Naive metamodel, which consists of a regressor that predicts that the output
will be the average of the outputs in the training data, regardless of the input.
More sophisticated metamodels must show that they are substantially better
than this naive metamodel to demonstrate utility.

Table 4 reports the errors of the Naive, Best of Many, and Stacked meta-
models. The errors we report are the mean absolute error normalized by the
range of observed test values. We normalize the errors to make it possible to
compare the accuracy of the metamodels across test cases. We chose to use the
stacked metamodel architecture that was most suited for each individual test
case (e.g. the metamodel variants listed in Table 2), rather than use the same

SA and UQ of Simulation Models through Stacked Metamodels 137

Table 3. Committees and filters ranked by accuracy. Description of committee by
given index found in Sect. 3.

Rank Committee Committee

Index Description

1 0 Large

2 3 Medium

3 1 4 RF

4 4 MLP, RF, GPR

5 2 6 MLP

Rank Filter

Description

1 Within n Percent, n = 10%

2 Within n Percent, n = 25%

3 Within n Percent, n = 50%

4 No filter

5 Within n Percent, n = 100%

6 Top k, k = 3

7 Top k, k = 2

8 Top k, k = 1

committee/filter combination for every test case. All metamodels were trained
with a datasets that contained 1000 random inputs each.

By examining the table we see that the Best of Many and Stacked metamodels
always substantially outperform the Naive metamodel, as we had hoped. Further,
for five of the seven test cases, the stacked metamodel was more than 5% more
accurate than the Best of Many metamodel, and it was never less accurate. The
stacked metamodels were, on average, 8.2% more accurate than the base models.
These numbers demonstrate the effectiveness of the stacked approach compared
to the current state-of-the-practice Best of Many approach, and validates its
general applicability.

It is obvious that if a metamodel is not accurate enough it will not be a prac-
tical tool for modelers. However, it is difficult to know how accurate a metamodel
must be to be a good emulator. One of the primary challenges in determining
an acceptable accuracy threshold is that a modeler may use metamodels for dif-
ferent reasons, and different use cases may require more accuracy than others.
We believe that the stacked metamodels are likely accurate enough to be useful
for a variety of applications given the errors reported in Table 4, perhaps with
the exception of the Circadian test case. We leave to future work an investiga-
tion to determine the acceptable accuracy threshold for a variety of common
applications of metamodels.

4.3 Accuracy Given Different Training Sample Dataset Sizes

It can be time consuming to collect the training data because the base model
runs slowly. To be time efficient it would be best to collect as little training data
as possible while maintaining reasonable metamodel accuracy. For this reason
we investigated the impact of the size of the training set on the accuracy of
the metamodel. We trained stacked metamodels with Committee 0 (the largest
and most heterogeneous committee) and the Within n percent, n = 10% filter
with datasets that contained 250, 500, 750, and 1000 input vectors, respectively,

138 M. Rausch and W. H. Sanders

Table 4. Average metamodel prediction error. The error is the mean absolute error
normalized by the range of test values.

Metamodel
type

Naive metamodel
error

Best of many
metamodel
error

Stacked
metamodel
error

Error reduction
stacked vs. best
of many

Botnet 0.00161 0.00111 0.00100 10.4%

Circadian 0.08461 0.05658 0.05648 0.2%

Cluster 0.03322 0.01181 0.01141 3.4%

Cyclin 0.14129 0.02369 0.02111 10.9%

Embedded 0.03726 0.00459 0.00432 5.9%

Kanban 0.17832 0.02798 0.02508 10.3%

Molecules 0.06610 0.03899 0.03262 16.3%

Table 5. Mean absolute error normalized by range of stacked metamodel trained with
training datasets of different sizes.

Metamodel
type

250 training
samples

500 training
samples

750 training
samples

1000 training
samples

Botnet 0.03817 0.03227 0.01816 0.01626

Circadian 0.07011 0.064872 0.06065 0.05707

Cluster 0.02151 0.01631 0.01562 0.01349

Cyclin 0.05285 0.04281 0.03048 0.02606

Embedded 0.02445 0.01547 0.01271 0.01126

Kanban 0.03956 0.03222 0.02956 0.02555

Molecules 0.05672 0.05688 0.05072 0.04750

and evaluated their accuracy. The results of our investigation are contained in
Table 5. As expected, the metamodels trained with more training data are more
accurate than those that were trained with less. However, it is encouraging to
see that even those metamodels that were trained with just 250 training samples
are often reasonably accurate compared to the metamodels trained with 1000
training samples.

4.4 Speed Comparison

We performed these speed experiments on an Ubuntu VM running on a laptop
with an Intel i7-7500U processor and 8 GB of RAM. For each test case, both
the base model and the metamodel were run with the same 200 randomly gen-
erated inputs, and the time it took to execute with those inputs was recorded.
In addition, we recorded the time it took to train the metamodel for each case.
We used the same committee/filter combination for each metamodel in these
experiments to make it easier to compare across test cases. Committee 0 paired
with the Within n Percent, n = 10% filter was the combination we chose, for two
reasons. First, we had previously determined that combination was, on average,

SA and UQ of Simulation Models through Stacked Metamodels 139

Table 6. Base model vs. metamodel execution speed comparison and metamodel train-
ing time (all in seconds).

Name Base model
execution (seconds)

Metamodel
execution (seconds)

Metamodel training
(seconds)

Botnet 1115.5 0.3 137.4

Circadian 18291.6 0.5 204.7

Cluster 2034.9 0.6 66.4

Cyclin 2668.2 0.5 76.9

Embedded 684.7 0.2 60.6

Kanban 5737.6 0.3 64.5

Molecules 3714.5 1.1 67.1

the most accurate across all the test cases. Second, Committee 0 is the largest
committee, so it will likely take longer to train compared to the other commit-
tees, so it can be considered a “worst-case” training time. More members will
take longer to train, since each member of the committee is trained separately in
sequence. None of the code used in these experiments was parallelized, though
regressor training could be easily parallelized.

Table 6 shows that the metamodel runs faster than the base model by several
orders of magnitude, thousands of times faster. On average it took an hour and
twenty minutes to run the base model with the dataset containing 200 inputs,
while it took the metamodels on average half a second to run the same dataset.
The metamodels are almost ten thousand times faster than their corresponding
base model on average. The table also shows that training the metamodel with
the training dataset can be done reasonably quickly.

5 Discussion and Recommendations

Our analysis can help modelers who are interested in using metamodeling for
their own models. At a high level, it appears that reasonably accurate metamod-
els can be created for a variety of different kinds of models using a variety of
different machine learning algorithms. Even relatively slow running complicated
ensemble methods run thousands of times faster than the base model, making
feasible analyses that would otherwise be unfeasible if performed directly on
the base model. We recommend that modelers consider the use of metamodels
to help with analyses involving slow-running models that have many uncertain
input variables.

A stacking-based ensemble approach appears to produce more accurate meta-
models than approaches that use a single regressor, even if that regressor is the
best among many candidate regressors. Our analysis of the seven test cases shows
that the best stacking metamodels were never worse than those metamodels pro-
duced by using the Best of Many approach, and were often significantly better.

140 M. Rausch and W. H. Sanders

The accuracy of the metamodel was impacted by the size and heterogeneity of
the constituent committees: more accurate metamodels had larger and more het-
erogeneous committees, while less accurate metamodels had smaller and more
homogeneous committees. Judicious use of filters can increase the accuracy of
the metamodel, with relatively restrictive versions of the Within n Percent filter
being the best we evaluated. Our evaluation shows that it does not take long
to train a metamodel if one already has the training dataset, so it is possible
to try a number of different metamodel variants to see which would work best
for that particular dataset. We recommend that modelers using metamodeling
should (1) use stacking rather than the more common Best of Many approach,
(2) use committees that are large and heterogeneous in their stacked metamod-
els, (3) use a filter to remove predictions of under performing regressors, and (4)
take advantage of how quickly metamodels can be trained by trying a number
of different metamodel variants to find one that works particularly well for the
dataset.

We found that the accuracy of the metamodel depends in part on the size
of the training dataset: the larger the training dataset, the more accurate the
metamodel. However, the stacked metamodels were reasonably accurate even
with little training data. This is encouraging, because our original motivation
for using metamodels was as a replacement for models that run slowly. Col-
lecting training data can be the most time consuming stage of the ML-based
metamodeling, so it is encouraging that metamodels do not require onerously
large training datasets to be accurate. We recommend that modelers obtain as
much training data as is practical, but to not be discouraged if only a small
training dataset can be obtained.

A modeler should be aware of the limitation of the approach. If the model
being considered runs too slowly it may not be feasible to collect enough training
data to build a reasonably accurate metamodel. However, if the model being
considered runs quickly, it would be better to do the analysis (whether SA,
UQ, optimization, or something else) directly on the model instead of doing the
analysis indirectly with the use of a metamodel, because metamodels usually
don’t perfectly emulate the base model and can introduce errors into the analysis.
For this reason, in some cases it may be beneficial to do a hybrid approach
in which a broad metamodel-based analysis is paired with (and perhaps even
guides) a more limited and narrowly focused analysis on the base model.

6 Related Work

To the best of our knowledge, no other published research exists that evaluates
the effectiveness (accuracy and speed) of metamodeling on multiple state-based
quantitative models. We also know of no other work that evaluates as many
different kinds of metamodels.

As mentioned previously, the stacking metamodel approach applied to quan-
titative state-based models was first demonstrated in [9] and [10], though only
one test case was used in each of those papers, and only one committee/filter

SA and UQ of Simulation Models through Stacked Metamodels 141

combination was considered. We, however, demonstrate the effectiveness of our
approach with numerous test cases and a variety of committee/filter combina-
tions. Many other kinds of metamodel approaches were used before stacking
was introduced as a means to build a metamodel; consult [6] and [14] for a
broad overview of the topic of metamodeling in general. Eisenhower et al. per-
formed a metamodel-based analysis of a building energy model with hundreds
of parameters, though the metamodel was a simple support vector machine with
a Gaussian kernel, not an ensemble. Our work demonstrates that an ensemble
can significantly outperform a single regressor. The approach shown in [13] uses
multiple metamodels, but not as an ensemble, and [17] uses an ensemble but
with a recursive arithmetic average method to combine the predictions of mul-
tiple regressors, while we use stacking. Stacking has been shown to be effective
in winning machine learning competitions [11].

7 Conclusion

We have evaluated the effectiveness of metamodeling on seven real-world pub-
lished models. We showed that the metamodels we created can be quite accurate
in emulating the behavior of the base model, and run almost ten thousand times
faster on average. Since the metamodels are so fast relative to the base model,
analyses that could take too long to complete on the base model directly (such
as sensitivity analysis, uncertainty quantification, and optimization) can be done
indirectly with the aid of the metamodel instead in a reasonable amount of time.
Metamodels can be constructed automatically with the aid of machine learning,
minimizing the manual efforts of the modeler. We evaluated a variety of meta-
models, and found that stacked metamodels performed better than the more
commonly used Best of Many metamodels. Of the stacked metamodels, those
that had larger and more diverse committees were more accurate than those that
had smaller and more homogeneous committees. Appropriate filters, particularly
the Within n Percent filters increase metamodel accuracy. We believe that ML
metamodels, like those shown in this work, are an underused and relatively-
unknown tool in the modeler’s toolbox. We hope that our descriptions and eval-
uations will encourage their future use in exploring slow-running state-based
quantitative models with many uncertain input variables. Future work should
evaluate models with dozens or hundreds of input variables to evaluate the scal-
ability of the approach.

Acknowledgements. The authors would like to thank Jenny Applequist and the
reviewers for their feedback on the paper. This material is based upon work supported
by the Maryland Procurement Office under Contract No. H98230-18-D-0007. Any opin-
ions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the Maryland Procurement
Office.

142 M. Rausch and W. H. Sanders

A Appendix: Values of Input Variables for Test Case
Models

In this appendix we list the input variables for each of the seven models we use
as test cases in our evaluation, along with the corresponding domain. When the
domain was not specified by the original authors, we estimated it, informed by
the original paper and subject matter expertise.

Table 7. List of inputs used in the Botnet test case.

Variable name Domain

ProbConnectToPeers [0.25, 1]

ProbPropagationBot [0.05, 0.15]

ProbInstallInitialInfection [0.05, 0.15]

Prob2ndInjctnSuccessful [0.25, 1]

RateConnectBotToPeers [0.0166, 6]

RateOfAttack [0.0166, 6]

RateSecondaryInjection [0.0166, 6]

RateBotSleeps [0.05, 0.15]

RateBotWakens [0.0005, 0.0015]

RateActiveBotRemoved [0.05, 0.15]

RateInactiveBotRemoved [0.00005, 0.00015]

Table 8. List of inputs used in the Circadian test case.

Variable name Domain

T [0, 200]

transc da [45, 55]

transc da a [450, 550]

transc dr [0.009, 0.011]

transc dr a [45, 55]

transl a [45, 55]

transl r [4.5, 5.5]

bind a [0.9, 1.1]

bind r [0.9, 1.1]

deactivate [1.8, 2.2]

rel a [45, 55]

rel r [90, 110]

deg a [0.9, 1.1]

deg c [0.9, 1.1]

deg r [0.18, 0.22]

deg ma [9, 11]

deg mr [0.45, 0.55]

SA and UQ of Simulation Models through Stacked Metamodels 143

Table 9. List of inputs used in the Cluster test case.

Variable name Domain

ws fail [0.0002, 0.02]

switch fail [0.000025, 0.0025]

line fail [0.00002, 0.002]

startLeft [5, 15]

startRight [5, 15]

startToLeft [5, 15]

startToRight [5, 15]

startLine [5, 15]

repairLeft [1, 3]

repairRight [1, 3]

repairToLeft [0.125, 0.375]

repairToRight [0.125, 0.375]

repairLine [0.0625, 0.1875]

Table 10. List of inputs used in the Cyclin test case.

Variable name Domain

N [2, 4]

t [0, 60]

k [0, 4]

R1 [0.0045, 0.055]

R2 [0.0009, 0.0011]

R3 [0.0027, 0.0033]

R4 [0.45, 0.55]

R5 [0.27, 0.33]

R6 [0.0045, 0.0055]

R7 [0.0081, 0.0099]

R8 [0.0081, 0.0099]

R9 [0.009, 0.011]

R10 [0.0153, 0.0187]

R11 [0.018, 0.022]

144 M. Rausch and W. H. Sanders

Table 11. List of inputs used in the Embedded test case.

Variable name Domain

lambda p [1/(2 * 365 * 24 * 60 * 60), 1/(30 * 24 * 60 * 60)]

lambda s [1/(90 * 24 * 60 * 60), 1/(7 * 24 * 60 * 60)]

lambda a [1/(4 * 30 * 24 * 60 * 60), 1/(7 * 24 * 60 * 60)]

tau [1/90, 1/30]

delta f [1/(2 * 24 * 60), 1/(8 * 60 * 60)]

delta r [1/(5 * 60), 1]

Table 12. List of inputs used in the Kanban test case.

Variable name Domain

t [1, 5]

in1 [0.5, 1.5]

out4 [0.45, 1.35]

synch123 [0.2, 0.6]

synch234 [0.25, 0.75]

back [0.15, 0.45]

redo1 [0.18, 0.54]

redo2 [0.21, 0.63]

redo3 [0.195, 0.585]

redo4 [0.165, 0.495]

ok1 [0.42, 1.26]

ok2 [0.46, 1.38]

ok3 [0.455, 1.365]

ok4 [0.385, 1.155]

Table 13. List of inputs used in the Molecules test case.

Variable name Domain

T [0, 0.003]

i [0, 10]

N1 [10, 100]

N2 [10, 100]

N3 [10, 100]

e1rate [90, 110]

e2rate [9, 11]

e3rate [27, 33]

e4rate [18, 22]

SA and UQ of Simulation Models through Stacked Metamodels 145

References

1. Barkai, N., Leibler, S.: Biological rhythms: circadian clocks limited by noise. Nature
403, 267–268 (2000)

2. Ciardo, G., Tilgner, M.: On the use of Kronecker operators for the solution of gen-
eralized stocastic Petri nets. ICASE Report 96–35, Institute for Computer Appli-
cations in Science and Engineering (1996)

3. Haverkort, B., Hermanns, H., Katoen, J.P.: On the use of model checking tech-
niques for dependability evaluation. In: Proceedings of 19th IEEE Symposium
on Reliable Distributed Systems (SRDS 2000), Erlangen, Germany, pp. 228–237,
October 2000

4. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46029-2 13

5. Lecca, P., Priami, C.: Cell cycle control in eukaryotes: a BioSpi model. In: Proceed-
ings of Workshop on Concurrent Models in Molecular Biology (BioConcur 2003).
Electronic Notes in Theoretical Computer Science (2003)

6. Liu, H., Ong, Y.S., Cai, J.: A survey of adaptive sampling for global metamodeling
in support of simulation-based complex engineering design. Struct. Multidiscip.
Optim. 57(1), 393–416 (2018)

7. Muppala, J., Ciardo, G., Trivedi, K.: Stochastic reward nets for reliability predic-
tion. Commun. Reliab. Maintain. Serviceabil. 1(2), 9–20 (1994)

8. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

9. Rausch, M., Sanders, W.H.: Sensitivity analysis and uncertainty quantification
of statde-based discrete-event simulation models through a stacked ensemble of
metamodels. In: Gribaudo, M., Jansen, D.N., Remke, A. (eds.) QEST 2020. LNCS,
vol. 12289, pp. 276–293. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-59854-9 20

10. Rausch, M., Sanders, W.H.: Stacked metamodels for sensitivity analysis and uncer-
tainty quantification of AMI models. In: Proceedings of the 2020 IEEE Interna-
tional Conference on Communications, Control, and Computing Technologies for
Smart Grids (SmartGridComm), pp. 1–7 (2020)

11. Risdal, M.: Stacking made easy: an introduction to StackNet by competitions
grandmaster Marios Michailidis (KazAnova). http://blog.kaggle.com/2017/06/
15/stacking-made-easy-an-introduction-to-stacknet-by-competitions-grandmaster-
marios-michailidis-kazanova/. Accessed 13 Dec 2019

12. Ruitenbeek, E.V., Sanders, W.H.: Modeling peer-to-peer botnets. In: Proceedings
of 2008 Fifth International Conference on Quantitative Evaluation of Systems, pp.
307–316, September 2008

13. Tenne, Y.: An optimization algorithm employing multiple metamodels and opti-
mizers. Int. J. Autom. Comput. 10(3), 227–241 (2013)

14. Viana, F., Gogu, C., Haftka, R.: Making the most out of surrogate models: tricks of
the trade. In: Proceedings of the ASME Design Engineering Technical Conference,
vol. 1, pp. 587–598 (2010)

15. Vilar, J., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in
genetic oscillators. Proc. Natl. Acad. Sci. U.S.A. 99(9), 5988–5992 (2002)

16. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)
17. Zhou, X.J., Ma, Y.Z., Li, X.F.: Ensemble of surrogates with recursive arithmetic

average. Struct. Multidiscip. Optim. 44(5), 651–671 (2011)

https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/978-3-030-59854-9_20
https://doi.org/10.1007/978-3-030-59854-9_20
http://blog.kaggle.com/2017/06/15/stacking-made-easy-an-introduction-to-stacknet-by-competitions-grandmaster-marios-michailidis-kazanova/
http://blog.kaggle.com/2017/06/15/stacking-made-easy-an-introduction-to-stacknet-by-competitions-grandmaster-marios-michailidis-kazanova/
http://blog.kaggle.com/2017/06/15/stacking-made-easy-an-introduction-to-stacknet-by-competitions-grandmaster-marios-michailidis-kazanova/

Queueing Systems

Network Calculus for Bounding Delays
in Feedforward Networks of FIFO

Queueing Systems

Alexander Scheffler(B) and Steffen Bondorf

Distributed and Networks Systems Group, Faulty of Mathematics,
Ruhr University Bochum, Bochum, Germany

alexander.scheffler@rub.de

Abstract. Networks for safety-critical operation must guarantee deter-
ministic bounds on the end-to-end delay of data transmission despite
the usually many data flows that all share the available data forwarding
resources. Queueing is inevitable and the queueing delay becomes the
important impact factor for communication delays. Network Calculus
can calculate verifiable delay bounds in networks of such queues and the
tighter the bounds are, the less over-provisioning is required when they
are used for the design of safety-critical networked systems.

Tightening delay bounds is an important objective of Network Cal-
culus research. In this paper, we focus on the improvement of the over-
all analysis algorithm bounding delays in feedforward networks. FIFO
queueing is widespread in practice, yet, considering it to model the frac-
tion any data flow gets of the forwarding resource turned out to be
complex with Network Calculus. The currently only analysis with prac-
tically usable performance was developed for tandem topologies. On the
other hand, there are sophisticated algorithms for the feedforward anal-
ysis without considering the FIFO property. Here, big gains in tightness
were achieved by properly extending the algorithms for tandem topolo-
gies. We aim at bringing these gains to the FIFO analysis – and the
FIFO analysis to feedforward networks. We provide a thorough integra-
tion of both – theoretically and with novel tool support. Our new analysis
shows a considerable tightness improvement over the feedforward anal-
ysis without FIFO considerations as well as a straightforward extension
of the FIFO analysis.

1 Introduction

Overview. Guaranteed performance in safety-critical networked systems is
often achieved by expensive overprovisioning. A formal verification methodology
that derives accurate performance metrics, even for high network utilizations, is
essential for identifying inefficient designs. Network Calculus (NC) can compute
bounds on the end-to-end delay of data flows crossing a network of deterministic
queueing systems. The more characteristics of the real system we can consider in
the model and the analysis, the tighter the NC bounds. Therefore, tightening NC
delay bounds is usually achieved in at least one of multiple different ways: i) with
c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 149–167, 2021.
https://doi.org/10.1007/978-3-030-85172-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-85172-9_8

150 A. Scheffler and S. Bondorf

more detailed system models (availability of the forwarding resource at servers
and the demand thereof by data flows), ii) creation of more sophisticated models
capturing the resource allocation among different flows queued at a server or iii)
advancing NC algorithms that convert these models into a network analysis.

The second research topic in NC, modeling of resource sharing, has seen quite
some treatment in the context of Time-Sensitive Networking (TSN) lately [32–
34]. These results focus on resource sharing for complex FIFO per-class schemes,
computing residual service and delay bounds at individual servers. The network
analysis is enabled by a simple NC result. The bound on data put into a server
by a flow is described by a function. The bound after crossing a server can be
computed by shifting this function by the respective server’s delay bound. This
new bound on the flow’s data to forward is then used for computations at the
subsequent server on its path. While this enables for a feedforward (FF) network
analysis, the computed delay bounds will lack tightness.

For iii), more advanced models for resource sharing across sequences of
servers, so-called tandems, exist in NC. Additionally, there are algorithms to
convert them into the analysis of feedforward networks – already revealing some
potential sources of overestimation on the bounds that should be avoided. For
the analysis of FIFO queueing systems, the Least Upper Delay Bounds (LUDB)
[1,3] was developed as the currently only algorithm that extends single-server
FIFO queueing results in a non-trivial, tightness-impeding way and still shows
practically usable performance. Competing analysis approaches that convert the
entire network into a mixed-integer linear program (MILP) [11,14] can compute
better delay bounds but lack computational performance. LUDB was, however,
developed as a tandem analysis only. In this paper, we aim at bringing the ideas
behind the LUDB tandem analysis to feedforward networks. We make use of the
knowledge that has been created since LUDB was developed, but for the anal-
ysis that does not make use of the FIFO property at all [4,7]. Tailoring these
results to consider the unique properties of LUDB and FIFO analysis gives us the
tightest delay bounds in networks without abandoning the classic NC for MILP
optimization. We provide a novel method called LUDB-FF based on [6] and
benchmark our delay bounds against those of available tools and approaches:
the Tandem Matching Analysis that does not consider FIFO [4], the LUDB
tandem tool extended to a network analysis by the simple curve-shift used in
TSN research, and the current state of feedforward analysis tool support in [6].
LUDB-FF delay bounds outperform these three alternatives considerably across
different network sizes and utilizations as we show in our numerical evaluation.

Background and Problem Statement. Commonly taken assumptions in
NC are that there are no cyclic dependencies between flows (feedforward prop-
erty), the data within flows remains unchanged by forwarding (i.e., it remains
FIFO per individual data flow), the amount of data remains unchanged, and
data in a server’s queue is forwarded in FIFO order. There is work that alle-
viates these assumptions, e.g., on data scaling [30], non-FIFO systems [28] and
cyclic dependencies [10]. But most research on NC had been dedicated to dif-
ferent assumptions on how multiple flows may multiplex into a common server’s

Network Calculus for Bounding Delays 151

queue. The two main streams of research are on arbitrary multiplexing that
assumes anything can happen and FIFO multiplexing that allows for end-to-end
FIFO assumptions. The task of an NC analysis translates to the questions how to
derive the least (non-zero) residual forwarding service for a flow of interest (foi)
given its crossflow interference. Arbitrary multiplexing turns out to be a conve-
nient assumption. Without any further knowledge, the foi only receives service
after its crossflows have been fully served – the computation only depends on the
crossflows and is independent of the foi’s actually sent data. While this gives a
valid bound for FIFO multiplexing, too, bounds can of course be improved when
accounting for the FIFO property of the system. This becomes complex as the
foi and its crossflows are interdependent. Put simple, without knowing the data
sent by the foi, we cannot derive the FIFO residual service. Partially restoring
the convenience of arbitrary multiplexing, an NC result exists that computes a
residual service curve with a free parameter θ that captures the FIFO effects
between foi and crossflows. The θ can be set later, depending on the foi and
thus deferring the decision. It allows for reusing the NC analysis formula to test
differently shaped, alternative foi configurations. However, the analysis of a net-
work of FIFO queueing systems usually creates a multitude of interdependent θ
parameters. Setting them to obtain the best FIFO delay bound remains a highly
complex task as before, just encoded differently. Moreover, complexity in the
network analysis is increased by analysis aspects such as maximum aggregation
of flows that reduces the amount of θ parameters. We provide a thorough inte-
gration of LUDB into the NC feedforward analysis that considers these aspects
for best delay bounds.

Paper Outline. This paper is organized as follows: Section 2 surveys related
work and provides NC background. Section 3 contributes LUDB-FF, our exten-
sion of the LUDB FIFO analysis to a modern feedforward network analysis.
Numerical results are presented in Sect. 4 and Sect. 5 concludes the paper and
outlines potential future research directions based on LUDB-FF.

2 Network Calculus Basics and Related Work

2.1 Network Calculus Ressource Models

Extensive depictions of the algebraic Network Calculus (NC) can be found in [9,
12]. We restrict our presentation to briefly listing the basics used in our paper.

Definition 1 (Arrival Curve). Let A be the function cumulatively counting
the data created by a flow f . By convention, ∀t ≤ 0 : A(t) = 0. Then we call α
an arrival curve for f iff

∀ 0 ≤ d ≤ t : A(t) − A(t − d) ≤ α(d). (1)

Definition 2 (Service Curve). Suppose A is the input to server s and A′ is
cumulatively counting output from s. We say that β is a service curve for S iff

∀t ≥ 0 : A′(t) ≥ inf
0≤s≤t

{A(t − s) + β(s)} =: A ⊗ β(t). (2)

152 A. Scheffler and S. Bondorf

Theorem 1 (Performance Bounds). Consider a server s that offers a ser-
vice curve β. Assume flow f has arrival curve α. Then we get the following
bounds:

Output Bound: α′(t) = α � β(t) := sup
u≥0

{α(t + u) − β(u)} (3)

Delay Bound: hdev(α, β) = inf{d ≥ 0 : (α � β)(−d) ≤ 0} (4)

where α′ is a bound on A′, the output from s (see Definition 2), and the hori-
zontal deviation hdev between arrival curve and service curve bounds the delay
experienced by f at s.

Commonly found shapes of NC curves are token buckets γσ,ρ(d) = ρ·d+σ for
arrival curves and rate latencies βT,R(d) = R · max{0, d − T} for service curves,
both from the set of pseudoaffine functions [15]. Note that σ, ρ, T,R are positive
rationals including 0. T is called the latency of curve βT,R.

2.2 Network Calculus Analyses and Tool Support

The oldest analysis in NC that can compute bounds in FIFO systems is the so-
called Total Flow Analysis (TFA) [19]. Although it is known to be inferior to more
modern analyseswhen analyzing entire networks, it is still widely used today due to
its simplicity. Foremost, the idea to shift arrival curves bounding the data put into a
server by the server’s delay bound is known fromTFAand still used in papers focus-
ing on modeling single servers, e.g., in Time-Sensitive Networking research [33].
The Separated Flow Analysis (SFA) [9] has superseeded TFA in modern analysis
algorithms. Whereas TFA aggregates all data flows at a server, SFA computes a
lower bound on the residual service a flow gets.

Theorem 2 (FIFO Residual Service Curve). Consider a server s that
offers a service curve β. Assume flows f1 and f2 multiplex in the queue of server
s. Let α1 and α2 be the arrival curves of the two flows, respectively. Assuming
FIFO multiplexing, the residual (or left-over l.o.) service curve denoting a lower
bound on the forwarding of f1 is:

βl.o.
f1

(t, θ) = [β(t) − α2(t − θ)]↑ · 1{t>θ} =: β �θ α2,∀θ ≥ 0 (5)

1{condition} is the indicator function (1 if the condition is true, 0 otherwise) and
[g(x)]↑ = max{0, sup0≤z≤x g(z)}.

By aggregation of all flows, TFA does not compute the residual service and
hence, it is not creating any free θ parameter. The Separated Flow Analysis
(SFA) computes the per-server, per-flow residual service. It therefore needs to
set the θ parameter locally at every server (see Appendix A). This analysis,
setting the parameter as suggested in [20], is implemented in the open-source
NetworkCalculus.org Deterministic Network Calculator (NCorg DNC) [6]1 and
note that a general overview on NC-tools can be found for example in [35].
1 Available at http://dnc.networkcalculus.org.

http://dnc.networkcalculus.org

Network Calculus for Bounding Delays 153

Fixing the θ parameter for an analysis also allows for a closed-form calcu-
lation of a residual service on sequences of servers (tandems) [20]. Yet, it was
shown that this is not optimal for bounding end-to-end delays. The Least Upper
Delay Bound Analysis (LUDB) was derived to allow for a more advanced setting
of θ parameters on tandems [1,3] that considers interdependencies between sub-
sequent servers of a tandem. A reference implementation called DElay BOund
Rating AlgoritHm (DEBORAH) [2] exists2. For instance, LUDB was used in
network-on-chip analysis [16,23,24] and sensor network analysis [31]. Still, all
these network analyses are in effect tandem analyses.

A branch of NC that prevents setting θ parameters is the optimization-based
analysis. Results for tandems [13] and for feedforward analysis [14] exist. Unfor-
tunately, they do not scale well and current efforts try to replace optimization
constraints with knowledge from some of the above analyses [11]. Scalability
results in larger feedforward networks are currently not available, neither is a
tool.

In this paper, we take the most advanced NC analysis to set the θs, the LUDB,
whose design and tool support was focused on the analysis of tandems. We
have implemented the LUDB tandem analysis and combined it with the arrival
bounding backtracking scheme in the feedforward analysis [8] to derive residual
curves instead of delays bounds directly. Our efforts to bring this approach to the
analysis of feedforward networks results in a new method, LUDB-FF, that beats
all alternatives (arbitrary and FIFO) for feedforward analysis by considerable
margins.

2.3 The LUDB Analysis and the DEBORAH Tool

Since LUDB [1,3] is one of the integral parts of LUDB-FF, we delve into its
delay bound computation and the challenges for an application to feedforward
networks. On tandems, the LUDB aims at implementing two main principles of
the NC analysis: Pay Bursts Only Once (PBOO) [9] and Pay Multiplexing Only
Once (PMOO) [29]. Both aim at the fact that flows do not wait at a subsequent
server on a tandem for their worst-case burstiness to build up (again). PBOO
targets implementation of this property for the foi, PMOO additionally for its
crossflows. Neither is implemented in TFA, constituting its inferiority to modern
analyses. SFA implements the former principle only whereas LUDB implements
the former fully as well as the latter one for specific types of interference pat-
terns. Intuitively, the PMOO can be implemented by first combining servers into
single systems and then subtracting crossflows. This is easily possible for nested
tandems3 but not for non-nested ones. Non-nested tandems need to be cut into
a sequence of nested tandems, see Fig. 1.

Also note that LUDB is restricted to a specific set of arrival and (input)
service curves, namely token bucket and rate latency curves respectively. LUDB

2 Available at http://cng1.iet.unipi.it/wiki/index.php/Deborah.
3 A tandem has nested interference iff for every pair of flows either both flows do not

have common servers or the path of one flow is included in the other flow’s path.

http://cng1.iet.unipi.it/wiki/index.php/Deborah

154 A. Scheffler and S. Bondorf

Fig. 1. Converting the non-nested tandem (a) into a sequence of nested subtandems
by cutting between servers s1 and s2 (b). Note, that an arrival curve for the cut flow
f1 after the cutting location, αf1 , needs to be computed.

describes the residual service curves and delay bounds symbolically. The non-
linearity of the objective function “bound the delay" is tackled by splitting the
problem into linear pieces (simplexes), defining linear programs (LPs). This
results in O(m!) LPs to solve for nested tandems with m crossflows. For each
LP, the optimal objective value gives one valid delay bound. The least delay
bound from the many created LPs is the LUDB result. Even though the LUDB
uses optimization as the later NC approaches and it is similarly faced with a
potentially vast number of LPs, its first reference implementation DEBORAH
[2] already showed practically useable performance on tandems. Therefore, we
opt to extend LUDB to a tightest possible network analysis. The complementary
approach, trading off tightness of the comprehensive optimization analysis for
tractable network analysis can be found in [11].

3 Bringing the LUDB Analysis to Feedforward Networks

This section’s contribution is LUDB-FF, the extension of the LUDB tandem
analysis to an analysis of feedforward networks that considers all the complexities
arising from this step such as the tradeoffs between flow aggregation [1,7] and
flow segregation [5] within the analysis as well as the differentiation between
delay and output bounding during the analysis procedure. It was shown that
the majority of the feedforward analysis effort stems from bounding the arrivals
of crosstraffic at their respective location of interference with the foi [7]. A generic
arrival bounding procedure for the arbitrary multiplexing analysis was presented
in [4]. It is a backtracking scheme with multiplexing-specific pruning that we
adapt to FIFO multiplexing and the LUDB to create LUDB-FF. As a comparison
that does not invest heavily in arrival bounding, we combined the LUDB tool
DEBORAH with the TFA output bounding from delay. We implemented both
analyses as extensions to the NCorg DNC4.

4 The DEBORAH tool is licensed under GPL while the NCorg DNC is licensed
under LGPL. Thus, we cannot redistribute DEBORAH and we opted for a new
implementation in the NCorg DNC.

Network Calculus for Bounding Delays 155

Section 3.1 presents the arrival bounding procedure stripped from arbitrary
multiplexing assumptions and adapted to FIFO, Sect. 3.2 details the LUDB-FF
and Sect. 3.3 presents the aforementioned straightforward DEBORAH integra-
tion into the DNC.

3.1 Arrival Bounding Procedure for FIFO

For the arrival bounding, we have adapted the method presented in [4], see
the algorithmic description Algorithm 1. The difference compared to arbitrary
multiplexing is as follows: with arbitrary multiplexing assumptions it is possible
to take into account the foi when bounding the crossflows in the sense that we do
not have to take into account the interference with foi (again). For an illustration
of the analysis proceedings, take this sample application to Fig. 2:

Fig. 2. Feedforward Sample Network.

We aim to bound the delay of the flow of interest (foi), subject to its crossflow
interference. We require a bound on the arrivals of f1 and f2 at server s2, hence
we set F = {f1, f2} and s = s2. From the flows in F we compute one arrival
curve per incoming link and sum them up. In our example, all flows in F take
the same link, namely l = (s3, s2). I.e., we bound the two flows in aggregate.
With getDivergingServer we backtrack from the source of this link (dest =
s3) to the server where the flows diverge (start = s4). At the found server
the arrival curve will be computed recursively. With this information, a FIFO
analysis on the path start � dest is started – resulting in a residual service curve
for the aggregate of flows f1 and f2, subtracting interference of f3. The true (in
Algorithm 1) indicates that this is done in an output minimizing instead of delay
bound minimizing way. Last, LUDB-FF computes the output of f1 and f2, their
arrivals at server s2, by the deconvolution-based output bound computation
(Theorem 1).

3.2 Parameter θ and Residual Service Computation of LUDB-FF

Working with NC curves allows for an algebraic NC feedforward analysis (see
Sect. 2). The DEBORAH tool for tandems, in contrast, directly returns the delay
bound without revealing the actual LP computing it or the setting of θs found

156 A. Scheffler and S. Bondorf

Algorithm 1. Arrival Bounding Algorithm
Input (F, s) Flows to bound at server s
Output αs

F Output arrival curve at s for flows F

1: procedure computeArrivalCurve(F, s)
2: αs

F ← γ0,0

3: for l ∈ IngoingLinks(s) do
4: Fl ← F ∩ Flows(l)
5: if Fl �= ∅ then
6: dest ← Source(l)
7: start ← getDivergingServer(Fl, dest)
8: αstart

Fl
← computeArrivalCurve(Fl, start)

9: βl.o.
Fl

← computeServiceCurve(Fl, α
start
Fl

, start � dest, true)
10: αs

F ← αs
F + αstart

Fl
� βl.o.

Fl

11: end if
12: end for
13: return αs

F

14: end procedure

by solving the LPs5. Both can be worthwhile for future research and we will
grant access to them. For instance, it opens a pathway to machine learning
(ML) by providing θ settings to learn from an ML-assisted NC analysis like [21].
Our design decision to increase modularity also allows for use of existing LP
solvers. We opted for IBM CPLEX whereas DEBORAH has a custom internal
solver implementation. From the θ solution vector, we can easily compute the
residual service curve for further use in the NCorg DNC, see Algorithm 1. Last,
the tight integration into the DNC tool lets LUDB-FF benefit from more recent
features in the arrival bounding such as caching of intermediate results [4] and
parallelization [27].

Before we present the details of our LUDB-FF analysis, we detail the nota-
tion. Figure 2 serves as visualizing sample network. Set the path p := s4 � s2
from server 4 to 2, i.e., (4, 3, 2). Path(f2)|p = p since f2 crosses the entire path
p. p1 ⊆ p2 holds if p1 is a subpath of p2, e.g., (4, 3) ⊆ p. Px := Paths(Fx)|p =
∪fx∈Fx

Path(fx)|p is the set of all subpaths on p for flows in Fx. For simplicity we
assume that a flow does not rejoin a given path otherwise, for sake of notation,
we just split it up and give it two distinct identifiers. For a nested tandem, a
crossflow with path p has level 1 (l = 1) if there is no other crossflow whose path
entirely includes p. With βl.o.

f we denote the residual service curve for flow f .
First, we define a simple, local bound on the θ parameter.

5 DEBORAH works with the pseudoaffine curve framework. Although it outputs vari-
ables si that relate to the variables θi from the FIFO residual service curve in
Theorem 2, it is not trivial to infer θi from si: for a crossflow indexed with i, we can
compute θi = hdev(αi, βi)+si from its residual service curve βi and the si. However,
this requires to additionally create a tree-structure that captures the relative paths
of crossflows to the foi on the analyzed tandem, the so-called nesting tree, first.

Network Calculus for Bounding Delays 157

Definition 3 (Lower bound on θ). Given an arrival curve αf := γσ,ρ and
residual service curve βl.o.

f , we define θf (β
l.o.
f , αf) := inf{t ≥ 0 : βl.o.

f (t) ≥ σ}.
This can be seen as the θ setting which results in a residual service curve with
lowest latency and is thus output minimizing – however only locally as the
following Lemma shows. Also note that θf (β

l.o.
f , αf) = hdev(αf , βl.o.

f).
Next, we make use of a bound on the output derived in [1] which holds for

nested tandems that we transform into the corresponding residual service curve.

Lemma 1 (Output Bound for FIFO βl.o. [1]). Consider a nested tandem T
with crossflows Fx and a foi. Further assume w.l.o.g. that all flows in Fx have
distinct paths. Then the following residual service curve minimizes6 the output
bound on a foi

[⊗
i∈I

βTi,Ri

]
⊗

⎡
⎣ ⊗

f∈Fx|l=1

[βl.o.
f (t) − α

Source(f)
f (t − θf)]↑ · 1{t>θf}

⎤
⎦ (6)

with I = {i ∈ T : �f ∈ Fx : Path(f) ∩ i �= ∅} and θf = θf (β
l.o.
f , α

Source(f)
f). βl.o.

f

is the residual service curve of crossflow f computed by LUDB—for this a nested
tandem analysis with foi=f and crossflows {fx ∈ Fx : Path(fx) � Path(f)} has
to be executed. Assume foi has arrival curve γσ,ρ. The respective output bound
is then given by γσ′,ρ′ with ρ′ = ρ and

σ′ = σ +

⎛
⎝ ∑

f∈Fx|l=1

θf +
∑
i∈I

Ti

⎞
⎠ · ρ (7)

Now we give the algorithm to compute the residual service curve for the flows
of interest. The LUDB-FF delay analysis for the foi is initialized by calling
computeServiceCurve({foi}, αfoi,Path(foi), false).

The algorithm first finds the crossflows on path p and aggregates them based
on their subpaths on p. It then either does a nested or non-nested analysis while
also distinguishing different cases to tighten the bounds.

NestedAnalysis Ffoi, Ffoi ∪Fx, APx
, αFfoi , p, o, agg For the nested analy-

sis where we want to find the best output bound we make use of Lemma 1 which
gives us the respective residual service curve for the flows of interest. For the
delay bound case it is important to aggregate the flows of interest with cross-
flows that also have p as subpath (in this case agg holds) – from the respective
residual service curve we have to subtract those crossflows again but do so such
that the delay bound stays the same (as with the crossflow aggregate). In detail:

– Case (Output bound) We proceed as discussed in Lemma 1.
– Case (Delay bound) Here we need to differentiate whether agg holds or not,

i.e., whether there are crossflows having the same path p as subpath (see also

6 For the resulting output bound γσ′,ρ′ = min
θ1,...,θ|Fx|

(
γσ,ρ � βl.o.

foi (θ1, ..., θ|Fx|)
)

holds.

158 A. Scheffler and S. Bondorf

Algorithm 2. Compute Service Curve Algorithm (LUDB-FF)

Input (F, α
Source(p)
F , p, o) Flows for which to compute the (aggregate) residual

service on path p either optimizing for the output (o) or delay bound
Output Residual service curve for flow aggregate F
Note Fall denotes all flows of the network

1: procedure computeServiceCurve(F, α
Source(p)
F , p, o)

2: Fx ← {f ∈ Fall : Path(f) ∩ p �= ∅}\F
3: Px ← Paths(Fx)|p
4: nested ← determine if F ∪ Fx forms a nested (tandem) interference on p
5: agg ← determine if Px ∩ p �= ∅ holds
6: if nested then
7: APx ← ∅
8: for px ∈ Px do
9: αpx ← computeArrivalCurve({f ∈ Fx : Path(f)|p = px},

Source(px))
10: APx ← APx ∪ αpx

11: end for
12: return NestedAnalysis(F, F ∪ Fx, APx , α

Source(p)
F , p, o, agg)

13: else
14: return NonNestedAnalysis(F, F ∪ Fx, α

Source(p)
F , p, o, agg)

15: end if
16: end procedure

Algorithm 2). In case there are none, we compute the LUDB with foi = Ffoi
and crossflows Fx. If there are certain crossflows with this property, first define
Fxfoi := {f ∈ Fx : Path(f)|p = p}. We set foi = Ffoi ∪ Fxfoi and crossflows
Fx\foi and compute the LUDB. From the returned service curve βl.o.

foi we need

to subtract Fxfoi , i.e., βl.o.
Ffoi

:=
[
βl.o.
foi (t) − αFxfoi

(t − θFxfoi
)
]↑

· 1{t>θFxfoi
} with

θFxfoi
= θFxfoi

(βl.o.
foi , αfoi). Note that hdev(αfoi, β

l.o.
foi) = hdev(αFfoi , β

l.o.
Ffoi

).

NonNestedAnalysis Ffoi, Ffoi ∪ Fx, αFfoi , p, o, agg The non-nested tan-
dem gets cut at specific servers to get a nested one. Only reduced sets of cuts [3]
will be considered and are denoted by S, i.e., once a set of cuts is found which
will result in a nested tandem no further cuts will be added to this set of cuts.
For example for the network in Fig. 1a we could either cut before server s2 or s3,
i.e., S = {{2}, {3}}. For each possibility we need to compute the output arrival
bounds of the crossflows at the cuts. In case agg holds we propose not to cut
the crossflows which go through the entire path p to further tighten the bounds.
We choose a set of cuts which either yields the lowest delay bound or the lowest
output bound depending on o. Moreover, note that in contrast to the Nested-
Analysis we have not computed the arrival curves for the crossflow-aggregates
because due to the cutting, arrival curves have to be computed at each cut we
consider. More precisely:

– Case (not agg: foi can’t be aggregated with crossflows) For a C ∈ S with
C = {c1, c2, ..., cm} we define c0 := Source(p), cm+1 := Sink(p) and assume

Network Calculus for Bounding Delays 159

w.l.o.g. ci−1 < ci∀ i ∈ {1, ...,m + 1}. Then, for each ci ∈ C ∪ {cm+1} we
consider for every px ∈ Paths(Fx)|ci−1�ci the crossflow-aggregate Fpx

:=
{f ∈ Fx : Path(f)|ci−1�ci = px} for which we compute the arrival curve at
Source(px), i.e., αFpx

:= computeArrivalCurve(Fpx
,Source(px)). In other

words, for each subtandem defined by the path ci−1 � ci we compute the
aggregate arrival bounds for crossflows having the same path px within this
subtandem. For each aggregate within a subtandem we create a dedicated flow
and add it to F ′

x (this set is related to the current cut set C). Choose foi = Ffoi
and crossflows F ′

x and do a nested analysis, i.e., NestedAnalysis(Ffoi, Ffoi∪
F ′

x, AF ′
x
, αFfoi , p, o, false).

– Case (agg: foi can be aggregated with crossflows) Let Fxp
:= {f ∈ Fx :

Path(f)|p = p}. In this case we first only consider the crossflow subset Fxr
:=

Fx\FxP
and compute AF ′

xr
analog to the previous case. Next, we compute the

arrival curve, α
Source(P)
Fxp

, for FxP
at Source(P) and do a nested analysis, i.e.,

NestedAnalysis(Ffoi, Ffoi ∪ F ′
xr

∪ Fxp
, AF ′

xr
∪ α

Source(P)
Fxp

, αFfoi , p, o, true).

After considering all C ∈ S we pick the service curve βl.o.
Ffoi,C

which either has
the minimal latency (if o holds) or delay bound hdev(αFfoi , β

l.o.
Ffoi,C

).
Apart from the extension to FIFO feedforward networks, the novelty of

LUDB-FF lies in the use of residual service curves during the arrival bounding
process and the differentiation of several cases to tighten the bounds, revealing
the interplay of flow aggregation, delay and output bounding. The latter brought
about the insight to not cut crossflows in the non-nested analysis that cross the
entire analyzed tandem of servers (instead of always cutting all crossflows as [3]
proposes).

3.3 DEBORAH-Integration by TFA’s Output from Delay

Since there is the DEBORAH tool which implements the LUDB on tandems we
can, in principle, use its delay bounds to compute the output bound required in
a feedforward analysis:

Theorem 3. (Output From Delay [19]) Consider a server s that offers a service
curve β. Assume flow f with arrival curve α traverses the server and experiences
a delay bounded by d. Then α′(t) = α(t + d) is an output bound for flow f .

We pair this idea with the arrival bounding procedure described by Algo-
rithm 1. In order to make this work, the following adaptions have to be applied.
After line 7 in Algorithm 1, we compute Fp as the set of flows that have
p := start � dest as subpath. More formally, Fp = {f ∈ F : Path(f)|p = p}.
Similarly, we compute αstart

Fp
= computeArrivalCurve(Fp, start) and then call

DEBORAH to retrieve the delay bound dp
Fp

– note that DEBORAH demands
that the crossflows with the same subpath in p have to be aggregated before as
well as the aggregate for the foi, Fp. From dp

Fp
we compute the arrival curve for

Fp at s by using Theorem 3, i.e., αs
Fp
(t) = αstart

Fp
(t + dp

Fp
) which holds for Fl at

s as well since Fl ⊆ Fp.

160 A. Scheffler and S. Bondorf

Regarding tightness of the bounds it must be noted that Theorem 3 gives a
rather coarse bound in general. More importantly, note that in case Fl �= Fp,
more flows than actually present are considered, thus worsening the bounds
and potentially violating the stability constraint. This constraint signifies that
the long-term service must exceed arrivals, more formally for each server i,∑

j∈Flows(i) ρj ≤ Ri has to hold. Overall, we call this analysis DEBORAH-
Integration. It provides us with a competitor that implements LUDB on
tandems, developed into a feedforward analysis with a well-known and often
applied output bounding computation.

4 Numerical Evaluation

Setup. For our numerical evaluation, we use a subset of the publicly available
networks from [4] that are part of the NCorg DNC. They have been created
to mimic Internet topologies, following the General Linear Preference (GLP)
model [17]. The networks have been created to test the Tandem Matching Anal-
ysis (TMA) analysis that does not make use of the FIFO multiplexing assump-
tion but assumes worst case multiplexing in the analyzed flow’s point of view,
called arbitrary multiplexing. TMA results are therefore valid for FIFO queueing
systems, too, and we aim at giving some insight into the inherent untightness of
delay bounds this lack of the FIFO assumption causes.

Secondly, we adapted the GLP networks to be more in line with existing
evaluations of FIFO multiplexing NC analyses. In the original networks, the
flow arrival curves and server service curves were fixed. The server utilization
varies between the servers, as this is caused solely by the presence of flows. These
are routed on the shortest path between randomly chosen source servers and sink
servers, such that their amount varies between servers. The difference between
such arbitrary multiplexing analyses and FIFO analyses is known to become
significant with increasing network utilization. We assume the same holds to at
least some degree between different FIFO analyses, too. Therefore, we have set
equal utilization at every server in the network by fixing the flow arrival curves
α and adapting servers’ service curves β according to the desired utilization u:

α(d) = γσ,ρ(d) = γ5,5(d) = 5d + 5 (8)

β(d) = β0,Ri
(d) = Ri · d with Ri =

∑
j∈Flows(i) ρj

u
(9)

Our dataset for our evaluation includes the aforementioned GLP networks
with size 20, 40, 100 and 200 devices. Note, that a transformation of the network
takes place that transforms the devices’ output ports to server [18], i.e., we
assume output queueing like in TSN for example. Overall, our dataset consists
of 5040 data flows across the four networks sizes. For these four sizes, we created
networks with homogeneous utilizations of 70%, 90% and 99%. In the resulting
twelve network configurations each data flow’s end-to-end delay bound was then
computed with the NCorg DNC’s most advanced FIFO analysis SFA-FIFO (see

Network Calculus for Bounding Delays 161

Fig. 3. Cumulative distribution of relative delay bounds w.r.t. SFA-FIFO, i.e.,
delayother

SFA-FIFO [%], for different network sizes and utilizations.

Appendix A), with the simple extension of the DEBORAH analysis DEBORAH-
Integration, with the arbitrary multiplexing TMA, and with our new LUDB-FF.
Our full data set is available online7.

The measure of interest in our evaluation is the deviation of some analysis’
per-flow delay bounds from a reference analysis, the baseline. I.e., for every
analyzed flow in one specific configuration, we compute

delayother
baseline =

delayother − delaybaseline

delaybaseline . (10)

We present results relative to SFA-FIFO delay bounds, i.e., to the currently
available tool support, first. Revealing that our LUDB-FF is performing best, we
will switch to it as the new de-facto reference for NC FIFO analysis benchmarks.

Observations. We first depict the relative delay bound w.r.t. SFA-FIFO across
different network sizes and utilizations, shown in Fig. 3. The low fraction of
DEBORAH-Integration shown in the various configuration is immediately visi-
ble. Due to the problems of this approach to extend DEBORAH to an analysis
for feedforward networks (violation of the stability constraint even at actual
utilizations below 1, see Sect. 3.3), the majority of delay bounds computed by
DEBORAH-Integration were infinite. For example, in the network of 20 devices,
7 https://github.com/alexscheffler/dataset-qest2021.

https://github.com/alexscheffler/dataset-qest2021

162 A. Scheffler and S. Bondorf

set to a server utilization of u = 70%, only about 8.55% of the flows had
finite DEBORAH-Integration delay bounds. Increasing the utilization further
reduces the amount of analyzable flows – for example, with u = 99% the frac-
tion decreases to only about 5.26%. This trend intensifies in larger networks
where DEBORAH-Integration is seldom applicable. In the smaller networks, we
can see that a fraction of the actually finite delay bounds outperforms SFA-
FIFO, yet, in particular in Fig. 3a, many are not. This is due to applying the
commonly found computation of output arrival curves from arrival curves and
server delays (Theorem 3). On the other hand, it also shows that the LUDB
approach to optimize the free θ parameters over several servers indeed has the
potential to outperform SFA-FIFO that sets each server’s θ locally. If finite
DEBORAH-Integration could be computed, then they were smaller than those
of TMA. Yet, in theory, this need not be the case. We tested this with a smaller
utilization of only 50% and indeed found TMA some delay bounds that were
smaller than the respective flow’s SFA-FIFO one.

The TMA that does not make use of the knowledge about FIFO multiplex-
ing in favor of easier computations and performs worst overall. Already in the
smallest network size with lowest utilization in our evaluation, its delay bounds
are one order of magnitude larger than those flows’ SFA-FIFO delay bound. The
gap increases rapidly with increasing network size and utilization.

Our new LUDB-FF in contrast almost always beats the alternative analyses.
When it comes to DEBORAH-Integration it must be noted that LUDB-FF’s
delay bounds are never worse. The maximum improvement over SFA-FIFO tends
to decrease with the network size, while staying at over 50%, and increases with
the utilization per network size. Our extensive evaluation also reveals that there
are some considerable exceptions that require further investigation, though. In
Fig. 3a, there are two flows where SFA-FIFO slightly outperforms LUDB-FF and
in the configurations partially not shown in Fig. 3, we can further report:

– n = 100, u = 70%: 11 instances
– n = 100, u = 90%: 4 instances
– n = 100, u = 99%: 0 instances

– n = 200, u = 70%: 9 instances
– n = 200, u = 90%: 1 instance
– n = 200, u = 99%: 1 instance

In particular in the network with 100 devices, we can see the dependence on
the utilization. By successively increasing the utilization, some flows drop from
the list where SFA-FIFO outperforms LUDB-FF. Interestingly, we can observe a
different trend in the network with 200 devices. At utilizations of 90% and 99%,
the same flow constitutes the single instance. Yet, it was not in the set of flows
at utilizations 70%. These observations show that there is potential for further
improvement of LUDB-FF. In particular since SFA-FIFO means that we make a
cut at each server, it could be studied if additional cuts in the LUDB-FF method
can improve the bounds. However, this would then come with additional costs
since it is not clear in which cases this can be beneficial. But overall, we only
observed 28 instances across our 15120 analyzed flows, i.e., 0.1852% of delay
bounds that could be improved by SFA-FIFO.

Network Calculus for Bounding Delays 163

Fig. 4. Absolute delay bounds computed by different DNC analyses for different net-
work sizes and utilizations.

Secondly, Fig. 4 presents the absolute delay bounds as computed by the analy-
ses in two sample network configurations: size 200 devices and utilizations of 90%
and 99%. We omitted DEBORAH-Integration bounds due to their low number
– for example for the networks of size 200 and the studied utilizations, for more
than 99% of the flows we obtain infinite bounds. Representative observations of
interest are that in Fig. 4a and Fig. 4b those flows where the TMA delay bound
outperforms SFA-FIFO or where our LUDB-FF delay bound is outperformed
must be on the far left end. I.e., the bounds are actually low, meaning that the
fraction of the feedforward network crossed by those flows with an impact must
be small. Gains by our competitors are thus relatively small. Another observa-
tion to be taken in Fig. 4 is that with increasing utilization, TMA delay bounds
not only become larger but they increase by different factors – despite a uniform
utilization at servers. This is visualized by large oscillations of the lines con-
necting TMA data points. In contrast, the two FIFO analyses SFA-FIFO and
LUDB-FF are considerably more resilient to increasing utilization of a network.
I.e., ranking alternative network designs w.r.t. some flows’ delay bounds would
yield vastly different results if TMA was used.

Given that our new LUDB-FF analysis shows most promising results, we set
it as the new baseline for a comparison to the other main alternatives TMA
and SFA-FIFO. Table 1 provides statistics about how much these other alterna-
tives overestimate worst-case delay bounds w.r.t. LUDB-FF. As already obvious
from our evaluation, using TMA instead of a FIFO analysis results in vast over-
estimation of delay bounds across all analyzed network sizes and utilizations.
SFA-FIFO, in comparison, is more precise than TMA but the delay bound of
some potentially important data flows might still be overestimated more than
100%.

164 A. Scheffler and S. Bondorf

Table 1. Statistics on the relative delay bound to LUDB-FF [%]

GLP n Util u TMA SFA-FIFO
Max Mean Max Mean

20 70 997.92 348.20 208.66 72.43
90 5568.44 1507.54 264.40 83.0
99 19710.72 5752.82 293.23 95.30

40 70 866.76 428.37 107.90 20.67
90 12297.87 3120.43 120.58 25.97
99 200199.03 35041.52 136.81 34.86

100 70 1112.25 478.40 109.51 14.58
90 1987.59 1115.57 113.81 18.47
99 9018.02 4084.48 122.06 26.06

200 70 1289.94 537.57 108.09 15.90
90 2169.07 1234.69 124.04 19.61
99 11460.48 4850.10 133.83 26.43

5 Conclusion

In this paper we present LUDB-FF, an advanced Network Calculus analysis for
deriving delay bounds in networks of FIFO queueing systems. LUDB-FF com-
bines the ideas manifested in the so-called Least Upper Delay Bound analysis
with the NC framework for feedforward analysis that was developed for use with
analyses not considering FIFO but arbitrary multiplexing. We thoroughly inves-
tigated the potential gains in delay bound tightness by flow aggregation [1,7]
during the complex analysis proceedings. For this many cases have to be taken
care of w.r.t. on how to proceed in the analysis in order to compute the tightest-
possible bounds, e.g., when during the analysis a non-nested interference on a
tandem occurs, it is advisable to not cut crossflows that travel along the entire
tandem’s path which has not been discussed before. We implemented our find-
ings into the open-source NCorg DNC tool that only provided support for the
FIFO analysis with SFA-FIFO until now. Our numerical evaluation shows that
LUDB-FF outperforms alternative approaches to bound flow delays in feed-
forward networks of FIFO queueing systems, namely SFA-FIFO, a straightfor-
ward extension of the reference tool for LUDB that can only work with tandem
networks, as well as the state-of-the-art arbitrary multiplexing analysis TMA.
On a set of Internet-like topologies of different sizes and utilizations, we show
that LUDB-FF almost always beats the currently best tool-supported competing
analysis SFA-FIFO by a margin of up to 75%.

Network Calculus for Bounding Delays 165

Opportunities for Future Research. With LUDB-FF we have created the
foundation to investigate improvements known from the analysis of arbitrary
multiplexing networks in networks of FIFO queueing systems as are, for example,
defined in modern standards like IEEE Time-Sensitive Networking. We also hope
to leverage newer advances such as finite modeling of curve domains [22,25] as
well as GPGPU computing [26] and machine learning [21] in the future.

A SFA-FIFO

SFA-FIFO is the simple hop-by-hop analysis where we set every occurring FIFO
parameter given some (output) arrival curve αf and (residual) service curve
βl.o.

f to θ(βl.o.
f , αf) (see Definition 3). Algorithm 3 below shows the details of the

approach where 1, ..., n represents the server indices on the path p and Flows(i)
with i ∈ {1, ..., n} denotes all flows that cross server i.

Algorithm 3. Compute Service Curve Algorithm (SFA-FIFO)

Input (F, α
Source(p)
F , p) Flows for which to compute the (aggregate) residual

service on path p := 1, ..., n
Output Residual service curve for flow aggregate F

1: procedure computeServiceCurve(F, α
Source(p)
F , p)

2: βl.o. ← δ0
3: for i = 1 to n do
4: F i ← Flows(i)
5: Fx ← F i\F
6: αi

Fx
← computeArrivalCurve(Fx, i)

7: βl.o.,i
F (t) ← [

βi(t) − αF (t − θ(βi, αi
Fx

))
]↑ · 1{t>θ(βi,αi

Fx
)}

8: βl.o. ← βl.o. ⊗ βl.o.,i
F

9: end for
10: return βl.o.

11: end procedure

References

1. Bisti, L., Lenzini, L., Mingozzi, E., Stea, G.: Estimating the worst-case delay in
FIFO tandems using network calculus. In: Proceedings of the ICST ValueTools
(2008)

2. Bisti, L., Lenzini, L., Mingozzi, E., Stea, G.: DEBORAH: a tool for worst-case
analysis of FIFO tandems. In: Proceedings of the ISoLA (2010)

3. Bisti, L., Lenzini, L., Mingozzi, E., Stea, G.: Numerical analysis of worst-case end-
to-end delay bounds in FIFO tandem networks. Real-Time Syst. 48(5), 527–569
(2012)

166 A. Scheffler and S. Bondorf

4. Bondorf, S., Nikolaus, P., Schmitt, J.B.: Quality and cost of deterministic network
calculus - design and evaluation of an accurate and fast analysis. In: Proceedings
of the ACM on Measurement and Analysis of Computing Systems (POMACS),
vol. 1, no. 1 (2017)

5. Bondorf, S., Nikolaus, P., Schmitt, J.B.: Catching corner cases in network calculus
- flow segregation can improve accuracy. In: Proceedings of the GI/ITG MMB
(2018)

6. Bondorf, S., Schmitt, J.B.: The DiscoDNC v2 - a comprehensive tool for determin-
istic network calculus. In: Proceedings of the EAI ValueTools (2014)

7. Bondorf, S., Schmitt, J.B.: Boosting sensor network calculus by thoroughly bound-
ing cross-traffic. In: Proceedings of the IEEE INFOCOM (2015)

8. Bondorf, S., Schmitt, J.B.: Calculating accurate end-to-end delay bounds - you
better know your cross-traffic. In: Proceedings of the EAI ValueTools (2015)

9. Le Boudec, J.Y., Thiran, P.: Network Calculus: A Theory of Deterministic Queuing
Systems for the Internet. Springer-Verlag, Berlin (2001)

10. Bouillard, A.: Stability and performance bounds in cyclic networks using network
calculus. In: Proceedings of the FORMATS (2019)

11. Bouillard, A.: Trade-off between accuracy and tractability of network calculus in
FIFO networks (2020). arxiv:2010.09263

12. Bouillard, A., Boyer, M., Le Corronc, E.: Deterministic Network Calculus: From
Theory to Practical Implementation. Wiley, Hoboken (2018)

13. Bouillard, A., Stea, G.: Exact worst-case delay for FIFO-multiplexing tandems. In:
Proceedings of the EAI ValueTools (2012)

14. Bouillard, A., Stea, G.: Exact worst-case delay in FIFO-multiplexing feed-forward
networks. IEEE/ACM Trans. Netw. 23(5), 1387–1400 (2015)

15. Bouillard, A., Thierry, É.: An algorithmic toolbox for network calculus. Discret.
Event Dyn. Syst. 18(1), 3–49 (2008)

16. Boyer, M., Graillat, A., Dupont de Dinechin, B., Migge, J.: Bounding the delays
of the MPPA network-on-chip with network calculus: models and benchmarks.
Perform. Eval. 143, 102124 (2020)

17. Bu, T., Towsley, D.: On distinguishing between internet power law topology gen-
erators. In: Proceedings of the IEEE INFOCOM (2002)

18. Cattelan, B., Bondorf, S.: Iterative design space exploration for networks requiring
performance guarantees. In: Proceedings of the IEEE/AIAA DASC (2017)

19. Cruz, R.L.: A calculus for network delay, part I: network elements in isolation.
IEEE Trans. Inf. Theory 37(1), 114–131 (1991)

20. Fidler, M.: Extending the network calculus pay bursts only once principle to aggre-
gate scheduling. In: Proceedings of the QoS-IP (2003)

21. Geyer, F., Bondorf, S.: DeepTMA: Predicting effective contention models for net-
work calculus using graph neural networks. In: Proceedings of the IEEE INFOCOM
(2019)

22. Guan, N., Yi, W.: Finitary real-time calculus: efficient performance analysis of
distributed embedded systems. In: Proceedings of the IEEE RTSS (2013)

23. Jafari, F., Jantsch, A., Lu, Z.: Weighted round robin configuration for worst-
case delay optimization in network-on-chip. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 24(12), 3387–3400 (2015)

24. Jafari, F., Lu, Z., Jantsch, A.: Least upper delay bound for VBR flows in networks-
on-chip with virtual channels. ACM Trans. Des. Autom. Electron. Syst. 20(3), 1–33
(2015)

25. Lampka, K., Bondorf, S., Schmitt, J.B., Guan, N., Yi, W.: Generalized finitary
real-time calculus. In: Proceedings of the IEEE INFOCOM (2017)

http://arxiv.org/abs/2010.09263

Network Calculus for Bounding Delays 167

26. Luangsomboon, N., Hesse, R., Liebeherr, J.: Fast min-plus convolution and decon-
volution on GPUs. In: Proceedings of the EAI ValueTools (2017)

27. Scheffler, A., Fögen, M., Bondorf, S.: The deterministic network calculus analysis:
reliability insights and performance improvements. In: Proceedings of the IEEE
CAMAD (2018)

28. Schmitt, J.B., Gollan, N., Bondorf, S., Martinovic, I.: Pay bursts only once holds
for (some) non-FIFO systems. In: Proceedings of the IEEE INFOCOM (2011)

29. Schmitt, J.B., Zdarsky, F.A., Martinovic, I.: Improving performance bounds in
feed-forward networks by paying multiplexing only once. In: Proceedings of the
GI/ITG MMB (2008)

30. Schmitt, J.B., Zdarsky, F.A., Thiele, L.: A comprehensive worst-case calculus for
wireless sensor networks with in-network processing. In: Proceedings of the IEEE
RTSS (2007)

31. She, H., Lu, Z., Jantsch, A., Zhou, D., Zheng, L.R.: Performance analysis of flow-
based traffic splitting strategy on cluster-mesh sensor networks. Int. J. Distrib.
Sens. Netw. 8(3), 232937 (2012)

32. Zhao, L., Pop, P., Craciunas, S.S.: Worst-case latency analysis for IEEE 802.1qbv
time sensitive networks using network calculus. IEEE Access 6, 41803–41815 (2018)

33. Zhao, L., Pop, P., Zheng, Z., Daigmorte, H., Boyer, M.: Latency analysis of multiple
classes of AVB traffic in TSN with standard credit behavior using network calculus.
IEEE Trans. Ind. Electron. 68(10), 10291–10302 (2021). https://doi.org/10.1109/
TIE.2020.3021638

34. Zhao, L., Pop, P., Zheng, Z., Li, Q.: Timing analysis of avb traffic in tsn networks
using network calculus. In: IEEE RTAS (2018)

35. Zhou, B., Howenstine, I., Limprapaipong, S., Cheng, L.: A survey on network cal-
culus tools for network infrastructure in real-time systems. IEEE Access 8, 223588–
223605 (2020)

https://doi.org/10.1109/TIE.2020.3021638
https://doi.org/10.1109/TIE.2020.3021638

SEH: Size Estimate Hedging
for Single-Server Queues

Maryam Akbari-Moghaddam(B) and Douglas G. Down

Department of Computing and Software, McMaster University,
Hamilton, ON, Canada

{akbarimm,downd}@mcmaster.ca

Abstract. For a single server system, Shortest Remaining Processing
Time (SRPT) is an optimal size-based policy. In this paper, we dis-
cuss scheduling a single-server system when exact information about the
jobs’ processing times is not available. When the SRPT policy uses esti-
mated processing times, the underestimation of large jobs can signifi-
cantly degrade performance. We propose a simple heuristic, Size Esti-
mate Hedging (SEH), that only uses estimated processing times for
scheduling decisions. A job’s priority is increased dynamically accord-
ing to an SRPT rule until it is determined that it is underestimated,
at which time the priority is frozen. Numerical results suggest that SEH
has desirable performance for estimation error variance that is consistent
with what is seen in practice.

Keywords: Estimated job sizes · M/G/1 · Gittins’ index policy · Size
estimate hedging

1 Introduction

Over the past decades, there has been significant study on the scheduling of
jobs in single-server queues. When preemption is allowed and processing times
are known to the scheduler, the Shortest Remaining Processing Time (SRPT)
policy is optimal in the sense that, regardless of the processing time distribution,
it minimizes the number of jobs in the system at each point in time and hence,
minimizes the mean sojourn time (MST) [23,24]. However, scheduling policies
such as SRPT are rarely deployed in practical settings. A key disadvantage is
that the assumption of knowing the exact job processing times prior to schedul-
ing is not always practical to make. However, it is often possible to estimate the
job processing times and use this approximate information for scheduling. The
Shortest Estimated Remaining Processing Time (SERPT) policy is a version of
SRPT that employs the job processing time estimates as if they were error-free
and thus, schedules jobs based on their estimated remaining times. Motivated
by the fact that estimates can often be obtained through machine learning tech-
niques, Mitzenmacher [18] studies the potential benefits of using such estimates
for simple scheduling policies. For this purpose, a price for misprediction, the
c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 168–185, 2021.
https://doi.org/10.1007/978-3-030-85172-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_9&domain=pdf
http://orcid.org/0000-0001-9485-3394
http://orcid.org/0000-0003-0881-831X
https://doi.org/10.1007/978-3-030-85172-9_9

SEH: Size Estimate Hedging for Single-Server Queues 169

ratio between a job’s expected sojourn time using its estimated processing time
and the job’s expected sojourn time when the job processing time is known is
introduced, and a bound on this price is given. The results in [18] suggest that
näıve policies work well, and even a weak predictor can yield significant improve-
ments under policies such as SERPT. However, this insight is only made when
the job processing times have relatively low variance. As discussed below, when
job processing times have high variance, underestimating even a single very large
job can severely affect the smaller jobs’ sojourn times.

The work in [18] has the optimistic viewpoint that it is possible to obtain
improved performance by utilizing processing time estimates in a simple man-
ner. The more pessimistic view is that when job processing times are estimated,
estimation errors naturally arise, and they can degrade a scheduling policy’s
performance, if the policy was designed to exploit exact knowledge of job pro-
cessing times [15]. The SERPT policy may have poor performance when the job
processing times have high variance and large jobs are underestimated. Consider
a situation where a job with a processing time of 1000 enters the system and is
underestimated by 10%. The moment the job has been processed for 900 units
(its estimated processing time), the server assumes that this job’s estimated
remaining processing time is zero, and until it completes, the job will block the
jobs already in the queue as well as any new arrivals. This situation becomes
more severe when both the actual job processing time and the level of underes-
timation increase. However, when the job processing times are generated from
lower variance distributions, the underestimation of large jobs will not cause
severe performance degradation [16].

The Shortest Estimated Processing Time (SEPT) policy is a version of
the Shortest Processing Time (SPT) policy that skips updating the estimated
remaining processing times and prioritizes jobs based only on their estimated
processing times. Experimental results show that SEPT has impressive perfor-
mance in the presence of estimated job processing times, as well as being easier
to implement than SERPT [8].

In this paper, we will discuss the problem of single-server scheduling when
only estimates of the job processing times are available. In Sect. 2, we discuss the
existing literature for scheduling policies that handle inexact job processing time
information. Most of the existing literature analyzes and introduces size-based
policies when the estimation error is relatively small, restricting applicability of
the results. Furthermore, many simulation-based examinations only consider cer-
tain workload classes and are not validated over a range of job processing times
and estimation error distributions. We propose a scheduling policy that exhibits
desirable performance over a wide range of job processing time distributions,
estimation error distributions, and workloads.

The Gittins’ Index policy [10], a dynamic priority-based policy, is optimal
in minimizing the MST in an M/G/1 queue [1]. When there are job processing
time estimates, the Gittins’ Index policy utilizes information about job estimated
processing time, and the job processing time and estimation error distributions
to decide which job should be processed next. The assumption of knowing these

170 M. Akbari-Moghaddam and D. G. Down

distributions before scheduling may be problematic in real environments. Fur-
thermore, scheduling jobs using the Gittins’ Index policy introduces computa-
tional overhead that may be prohibitive. While there are significant barriers to
implementing the Gittins’ Index policy, our proposed policy is motivated by the
form of the Gittins’ Index policy.

We make the following contributions: While the SEPT policy performs well in
the presence of estimated job processing times [8], we first introduce a heuristic
that combines the merits of SERPT and SEPT. Secondly, we specify the Gittins’
Index policy given multiplicative estimation errors and restricted to knowing
only the estimation error distribution. We show that our proposed policy, which
we call the Size Estimate Hedging (SEH) policy, has performance close to the
Gittins’ Index policy. Similar to SERPT and SEPT, the SEH policy only uses the
job processing time estimates to prioritize the jobs. Finally, we provide numerical
results obtained by running a wide range of simulations for both synthetic and
real workloads. The key observations suggest that SEH outperforms SERPT
except in scenarios where the job processing time variance is extremely low.
SEH outperforms SEPT whether the variance of the job processing times is high
or low. With the presence of better estimated processing times in the system (low
variance in the estimation errors), SEH outperforms SEPT and has performance
close to the optimal policy (SRPT) if the estimation errors are removed. On the
other hand, we observe that when the estimation errors have high variance, there
is little value in using the estimated processing times. We also notice that the
system load does not significantly affect the relative performance of the policies
under evaluation. The SEH policy treats underestimated and overestimated jobs
fairly, in contrast with other policies that tend to favor only one class of jobs.
When the job processing time variance is high, the SEH and SEPT policies obtain
a near-optimal mean slowdown value of 1, indicating that underestimated large
jobs do not delay small jobs. In terms of mean slowdown, SEH outperforms
SEPT across all levels of job processing time variance.

The rest of the paper is organized as follows. Section 2 presents the existing
literature in scheduling single-server queues with estimated job processing times.
Section 3 defines our SEH policy and discusses its relationship to a Gittins’ Index
approach. Our simulation experiments are described in detail in Sect. 4. We
provide the results of our simulations in Sect. 5 and conclude and discuss future
directions in Sect. 6.

2 Related Work

Scheduling policies and their performance evaluation in a preemptive M/G/1
queue have been a subject of interest for some time. Size-based policies are
known to perform better than size-oblivious policies with respect to sojourn
times. In fact, the SRPT policy is optimal in minimizing the MST [23]. However,
size-based policies have a considerable disadvantage: When the exact processing
times are not known to the system before scheduling, which is often the case
in practical settings, their performance may significantly degrade. Dell’Amico et

SEH: Size Estimate Hedging for Single-Server Queues 171

al. [9] study the performance of SRPT with estimated job processing times and
demonstrate the consequences of job processing time underestimations under
different settings. Studies in Harchol-Balter et al. [13] and Chang et al. [4] dis-
cuss the effect of inexact processing time information in size-based policies for
web servers and MapReduce systems, respectively. Our paper assumes that the
processing time is not available to the scheduler until the job is fully processed,
but that processing time estimations are available. The related literature for this
setting is reviewed in the following paragraph.

Lu et al. [15] were the first to study this setting. They show that size-based
policies only benefit the performance when the correlation between a job’s real
and estimated processing time is high. The results in Wierman and Nuyens [27],
Bender et al. [3], and Becchetti et al. [2] are obtained by making assumptions that
may be problematic in practice. A strict upper bound on the estimation error
is assumed in [27]. On the other hand, [2] and [3] define specific job processing
time classes and schedule the jobs based on their processing time class, which
can be problematic for very small or very large jobs. This setting is also known as
semi-clairvoyant scheduling. In this work, we do not assume any bounds on the
estimation error or assign jobs to particular processing time classes. Consistent
with this body of work, we do find that SEH is not recommended for systems
with large estimation error variance. However, we do find that it performs well
for levels of estimation error variance that are typically found in practice.

When the job processing time distribution is available, the Gittins’ Index
policy [10] assigns a score to each job based on the processing time it has received
so far, and the scheduler chooses the job with the highest score to process at
each point in time. This policy is proven to be optimal for minimizing the MST
in a single-server queue when the job processing time distribution is known [1].
This policy is specified in the next section.

3 Size Estimate Hedging: A Simple Dynamic Priority
Scheduling Policy

3.1 Model

Consider an M/G/1 queue where preemption is allowed and we are interested
in minimizing the MST. We assume that a job’s processing time is not known
upon arrival; however, an estimated processing time is provided to the scheduler.
We concentrate on a multiplicative error model where the error distribution is
independent of the job processing time distribution. The estimated processing
time Ŝ of a job is defined as Ŝ = SX where S is the job processing time and X is
the job processing time estimation error. We assume that the value of Ŝ is known
upon each job’s arrival and is denoted by ŝ. The choice of a multiplicative error
model results in having an absolute error proportional to the job processing time
S, thus avoiding situations where the estimation errors tend to be worse for small
jobs than for large jobs. Furthermore, Dell’Amico et al. [9] and Pastorelli et al.
[19] suggest that a multiplicative error model is a better reflection of reality. To

172 M. Akbari-Moghaddam and D. G. Down

define our scheduling policies, we also require the notion of a quantum of service.
The job with the highest priority is processed for a quantum of service Δ until
either it completes or a new job arrives. At that point, priorities are recomputed.

3.2 Gittins’ Index Approach

The Gittins’ Index Policy is an appropriate technique for determining scheduling
policies when the job processing time and estimation error distributions are
known. For a waiting job i, an index G(ai) is calculated, where ai is the elapsed
processing time. At each time epoch, the Gittins’ Index policy processes the
job with the highest index G(a) among all of the present waiting jobs [10]. The
Gittins’ rule takes the job’s elapsed processing time into account and calculates
the optimal quantum of service Δ∗(a) that it should receive.

The associated efficiency function J(a,Δ), a,Δ ≥ 0 of a job with processing
time S, elapsed processing time a and quantum of service Δ is defined as

J(a,Δ) =
P (S − a ≤ Δ|S > a)

E[min{S − a,Δ}|S > a]
. (1)

The numerator is the probability that the job will be completed within a
quantum of service Δ, and the denominator is the expected remaining processing
time a job with elapsed processing time a and quantum of service Δ will require
to be completed.

The server (preemptively) processes the job with the highest index at each
decision epoch. Decisions are made when (i) a new job arrives to the queue,
(ii) the current job under processing completes, or (iii) the current job receives
its optimal quantum of service and does not complete. If there are multiple jobs
that have the same highest index and all have zero optimal quanta of service, the
processor will be shared among them as long as this situation does not change.
If there is only one job with the highest index and zero optimal quantum of
service, its index should be updated throughout its processing [1].

Although the Gittins’ Index policy is optimal in terms of minimizing the
mean sojourn time in an M/G/1 queue [1], the assumption of knowing the
job size and estimation error distributions might not always be practical to
make. Furthermore, forming the Gittins’ Index policy’s efficiency function has
significant computational overhead. As a result, this policy may be a problematic
choice for real environments where the scheduling speed is important. However,
examining the form of optimal policies has helped us in the construction of a
simple heuristic. In particular, the notion of defining a policy in terms of an
index allows us to make precise our notion of combining the relative merits of
SRPT and SEPT.

3.3 Motivation

When a job enters the system under SERPT, there is no basis on which to
assume that the estimated processing time, ŝ, is incorrect. However, when the

SEH: Size Estimate Hedging for Single-Server Queues 173

elapsed processing time reaches ŝ, we are certain that the job processing time
has been underestimated. In addition, Dell’Amico et al. [8] show that SEPT
performs well when dealing with estimated processing times and in the presence
of estimation errors, in particular severe underestimates. So, we would like to
combine these two policies. A convenient way to do this is to introduce a Gittins’-
like score function, where a higher score indicates a higher priority. We will be
aggressive and use the score function for SERPT until the point that we know a
job is underestimated and then freeze the score, which is similar to what SEPT’s
constant score function does (see (4) below). In this way, instead of switching
to SEPT’s score function, we would like to give credit for the jobs’ cumulative
elapsed processing times.

The score functions for SRPT, SERPT, and SEPT are provided in (2), (3),
and (4), respectively.

G(a, s) =
1

s − a
, (2)

G(a, ŝ) =

{
1

ŝ−a , ŝ > a,

∞, ŝ ≤ a,
(3)

G(a, ŝ) =
1
ŝ
. (4)

We note that (2) and (3) have an increasing score function, and (4) always
assigns a constant score for a particular job.

3.4 The SEH Policy

Combining the score functions for SERPT and SEPT, we now define our policy.
As discussed in the previous section, we would like to transition between SERPT
when we cannot determine if a job processing time is underestimated to a fixed
priority like SEPT when it is determined that underestimation has occurred.
One consequence of using this policy is that any underestimated small job can
still receive a “high” score and be processed, while underestimated large jobs will
have a much lower score and do not interfere, even with underestimated small
jobs. Furthermore, not needing to know the job processing time and estimation
error distribution, the SEH Policy does not have much overhead. Thus, it can
schedule the jobs at a speed comparable to the SEPT policy.

We introduce the score function of our SEH policy as

G(a, ŝ) =

{
1

ŝ−a(1− a
2ŝ)

, 0 ≤ a < ŝ,
2
ŝ , a ≥ ŝ,

(5)

where the scheduling decisions are only made at arrivals and departures.
With the score function in (5), a job’s score will increase up to the point that

it receives processing equal to its estimated processing time and then receives a
constant score of 2

ŝ until it completes. The choice of 2 was made after some exper-
imentation, it would be worthwhile to explore the sensitivity of the performance
to this choice.

174 M. Akbari-Moghaddam and D. G. Down

3.5 Gittins’ Index Vs. SEH

In this section, we show that the form of our policy is consistent with the Git-
tins’ index in the setting that we only know the error estimate distribution.
In particular, we have no a priori or learned knowledge of the processing time
distribution.

With our estimation model in mind, (1) can be rewritten as

J(a,Δ, ŝ) =
P (ŝ

X − a ≤ Δ| ŝ
X > a)

E[min{ ŝ
X − a,Δ}| ŝ

X > a]
. (6)

The Gittins’ index G(a, ŝ), a ≥ 0, is defined by

G(a, ŝ) = sup
Δ≥0

J(a,Δ, ŝ).

The optimal quantum of service is denoted as

Δ∗(a, ŝ) = sup{Δ ≥ 0|G(a, ŝ) = J(a,Δ, ŝ)}.

Suppose that the lower and upper limits on the estimation error distribution
are l and u, respectively (l may be zero and u may be ∞). After some calculation,
the Gittins’ index can then be written as

G(a, ŝ) =

{
1

ŝ−aE[X|X≤ ŝ
a]

, ŝ
a < u,

1
ŝ−aE[X] , otherwise,

(7)

where Δ∗ = ŝ
l − a. For instance, the Gittins’ index for a Log − N(μ, σ2) error

distribution is
G(a, ŝ) =

1
ŝ − aeμ+g(a,ŝ)

, (8)

where

g(a, ŝ) =
σ2φ[ln(

ŝ
a)−μ−σ2

σ]

2φ[ln(
ŝ
a)−μ

σ]
,

and φ is the cumulative distribution function of the Log − N(0, σ2) distribu-
tion. Note that for the Log-Normal distribution as the job processing time error
distribution, the second case in (7) cannot happen. For the remainder of the
paper, we will refer to this policy as the Gittins’ Index policy. We recognize that
this is a slight abuse of terminology, as we are ignoring the job processing time
distribution.

Taking the score in (8) into account, for any job with an estimated processing
time ŝ, the score calculated with the Gittins’ Index policy continuously increases
until the job completes. Figure 1(a) shows this score for a job with an estimated
processing time of 20 and an estimation error generated from a Log − N(0, σ2)
distribution as a function of its elapsed processing time. We observe that for
larger values of elapsed processing time, the slope of the score is decreasing.

SEH: Size Estimate Hedging for Single-Server Queues 175

Fig. 1. Job score as a function of the elapsed processing time

Figure 1(b) shows the score calculated with the SEH policy for a job with an
estimated processing time of 20 as a function of its elapsed processing time. The
score shown in Fig. 1(a) is consistent with the score function having decreasing
slope at some point beyond the point at which the elapsed processing time
reaches the estimated processing time, as in Fig. 1(b). Of course, the change in
slope for SEH is more severe, but we will see in our numerical experiments that
the performance of the two policies is quite close. SEH has less computational
overhead and more importantly, does not require knowledge of the estimation
error distribution.

4 Evaluation Methodology

4.1 Policies Under Evaluation

In this section, we introduce the size-based scheduling policies considered for
evaluation. As our baseline policy, we consider the SRPT policy when the exact
job processing times, given by s, are known before scheduling. The SRPT policy
is an “ideal” policy since it assumes that there are no errors in estimating the
processing time.

– SERPT policy—The SERPT policy is a version of SRPT that uses the
estimates of job processing times as if they were the true processing times.

– SEPT policy—The SPT policy skips the SRPT policy’s updating of remain-
ing processing times and only schedules jobs based on their estimated pro-
cessing time.

– SEH and Gittins’ Index policy—Our proposed SEH policy and the Git-
tins’ Index policy are explained in detail in Sect. 3.4 and Sect. 3.5, respectively.

All these policies fit into the “scoring” framework, and they assign scores
to each job and process the jobs in the queue in the descending order of their
scores. Moreover, preemption is allowed, and a newly-arrived job can preempt

176 M. Akbari-Moghaddam and D. G. Down

Table 1. Parameter settings

Parameter Definition Default

jobs The number of departed jobs 10, 000

k Shape for Weibull job processing time distribution 0.25

σ σ in the Log-Normal error distribution 0.5

ρ System load 0.9

the current job if it has a higher score. The score functions in (2), (3), (4), (5),
and (7) show how we calculate the scores for the SRPT, SERPT, SEPT, SEH,
and Gittins’ Index policy, respectively.

4.2 Performance Metrics

We evaluate the policies defined in Sect. 4.1 with respect to two performance
metrics: MST and Mean Slowdown. When the job processing times have large
variance, the sojourn times for small jobs and large jobs differ significantly.
Thus, we use the per job slowdown, the ratio between a job’s sojourn time and
its processing time [26].

4.3 Simulation Parameters

We would like to evaluate the policies over a wide range of job processing time
and error distributions. To generate this range of distributions, we fix the form
of the distribution and vary the parameters. We use the same settings that
Dell’Amico et al. [9] use in their work. Table 1 provides the default parameter
values that we use in our simulation study. We now provide details of our sim-
ulation model. Note that our policy fits into the SOAP framework of Scully et
al. [25], however as we are also evaluating mean slowdown, we chose simulation
for evaluation.

Job Processing Time Distribution—We consider an M/G/1 queue where
the processing time is generated according to a Weibull distribution. This allows
us to model high variance processing time distributions, which better reflect the
reality of computer systems (see [7,12] for example). In general, the choice of a
Weibull distribution gives us the flexibility to model a range of scenarios. The
shape parameter k in the Weibull distribution allows us to evaluate both high
variance (smaller k) and low variance (larger k) processing time distributions.

Considering that the job processing time distribution plays a significant
role in the scheduling policies’ performance and size-based policies show dif-
ferent behaviors with high variance job processing time distributions, we choose
k = 0.25 as our default shape for the Weibull job processing time distribution.
With this choice for k, the scheduling policies’ performance is highly influenced

SEH: Size Estimate Hedging for Single-Server Queues 177

by a few very large jobs that constitute a substantial percentage of the system’s
overall workload. We vary k between 0.25 and 2, considering specific values of
0.25, 0.375, 0.5, 0.75, 1, and 2. We show that the SEH policy performs best in
the presence of high variance job processing time distributions.

Job Processing Time Error Distribution—We have chosen the Log-Normal
distribution as our error distribution so that a job has an equal probability of
being overestimated or underestimated. The Gittins’ index for this estimation
error distribution is shown in (8). The σ parameter controls the correlation
between the actual and estimated processing time, as well as the estimation error
variance. By increasing the σ value, the correlation coefficient becomes smaller,
and the estimation error variance increases, resulting in the occurrence of more
large underestimations/overestimations (more imprecise processing times). We
choose σ = 0.5 as the default value that corresponds to a median relative error
factor of 1.40. We vary σ between 0.25 and 1 with specific values of 0.25, 0.375,
0.5, 0.75, and 1 to better illustrate the effect of σ on the evaluated performance.

System Load—Following Lu et al. [15], we consider ρ = 0.9 as the default load
value and vary ρ between 0.5 (lightly loaded) and 0.95 (heavily loaded) with
increments of 0.05 and an additional system load of 0.99.

Number of Jobs—The number of jobs in each simulation run is 10, 000 and
a simulation run ends when the first 10, 000 jobs that arrived to the system are
completed. We fix the confidence level at 95%, and for each simulation setting, we
continue to perform simulation runs until the width of the confidence interval is
within 5% of the estimated value. For low variance processing time distributions
(larger k), 30 simulation runs suffice; however, more simulation runs are required
for high variance processing time distributions (smaller k).

5 Simulation Results

In this section, we evaluate the performance of the policies in Sect. 4.1 by running
experiments on both synthetic and real workloads. We run different simulations
by generating synthetic workloads based on different job processing time and
error parameters and we analyze these parameters’ effect on the performance of
each of the policies.

For evaluating our results in practical environments, we consider a real trace
from a Facebook Hadoop cluster in 2010 [5] and show that the policies’ perfor-
mance is consistent with the results we obtained with synthetic workloads. The
key observations, validated both on synthetic and real workloads, are highlighted
as follows:

– The Gittins’ Index policy outperforms SERPT for all the evaluated values of
k and σ. We show the same observation with our proposed SEH policy except
for values of k that correspond to very low job processing time variance.

178 M. Akbari-Moghaddam and D. G. Down

– The Gittins’ Index and SEH policies outperform SEPT with lower values of σ
(better estimated processing times) and have an MST near the optimal MST
obtained without any estimation errors.

– SEH performs well in reducing both the MST of overestimated jobs and under-
estimated jobs.

– The load parameter does not have a significant effect on the relative values
of the MST obtained with the evaluated policies.

– The Gittins’ Index, SEH and SEPT policies have a near-optimal mean slow-
down of 1 when the estimated processing times have high variance.

– The SEH performs best across all values of k in terms of minimizing the mean
slowdown.

In what follows, we discuss the numerical results and how they support these
key observations.

Synthetic Workloads—We first note that the job processing time k parameter
and the estimation error σ parameter have the greatest impact on the policies’
performance. Thus, we focus on varying these parameters. We show that the
Gittins’ Index policy outperforms SERPT across all evaluated values of k and σ
and our SEH policy outperforms SERPT except for the values of k and σ that
correspond to distributions with extremely low variance. For the scenarios where
we do not state the parameter values explicitly, the parameters in Table 1 (see
Sect. 4.3) are considered.

Figure 2 captures the impact of job processing time variance and displays
the MST of the Gittins’ Index, SEH, SERPT, and SEPT policies normalized
against the MST obtained with SRPT with σ having the default value of 0.5.
We observe that for a high variance job processing time distribution (k = 0.25),
SERPT performs very poorly compared to the other policies due to the presence
of large, underestimated jobs. We note that the SERPT policy performs well if
the variance of the processing times is sufficiently low. Based on Fig. 2, we notice
that the gap between SEPT and the Gittins’ Index policy grows slightly when
the job processing time variance is lower. The gap between SEH and the Gittins’
Index policy also grows but not to the same degree as SEPT. For k > 0.75, the
performance of the Gittins’ Index policy, SEH, and SERPT are quite close. In
fact, we observe that our SEH policy performs very close to the Gittins’ Index
policy across all values of k. Furthermore, we notice that as the variance in
processing times gets smaller, the gap between what is achievable by the policy
under evaluation and what is achievable if there were no errors is larger than for
the high variance scenarios.

The shape parameter k affects the job processing time variance and the
scheduling policies’ performance the most, especially when the job processing
time distribution has high variance. We can be optimistic about using estimates
if the variance is low, but we have to be careful in choosing the scheduling policy
if the job processing time variance is high. The literature focuses on high variance
workloads, and we will continue evaluating the policies on such workloads. In
Fig. 3, we display the normalized MST of the policies against the MST of the

SEH: Size Estimate Hedging for Single-Server Queues 179

Fig. 2. Impact of k on the MST

SRPT policy under varying σ, ρ = 0.9, and the default k = 0.25. We notice
that the Gittins’ Index, SEH, and SEPT policies are relatively insensitive to
the σ value, while the gap between these three policies and SERPT increases
with increasing σ. In fact, the Gittins’ Index and SEH policies outperform SEPT
with σ ≤ 0.5 and have an MST near the optimal MST obtained without any
estimation errors. We conclude that the impact of the Gittins’ Index policy and
SEH becomes more prominent when the estimates improve.

In Fig. 3, we observe that while choosing a more aggressive policy like the
Gittins’ Index and SEH policies is a good choice under lower values of σ, SEPT
is preferred when σ = 1. The reason is that lower values of k (here, k = 0.25),
cause more large jobs in the system. Furthermore, for values of σ ≥ 1, the esti-
mation errors have high variance and thus the estimated processing times can
be very imprecise. We notice that both SEH and the Gittins’ Index policy suffer
from a slight promotion of severely underestimated jobs that leads to temporary
blockage for the other jobs. What has happened in this case is that the estimates
of the processing times have degraded to the point that they are not useful. In
particular, one should instead base scheduling decisions on the processing time
distribution, so for example in scenarios with high variance in both process-
ing times and estimation errors, a policy which ignores the estimates, such as
Least Attained Service (LAS) would be warranted. The LAS scheduling policy
[21], also known as Shortest Elapsed Time [6] and Foreground-Background [14],
preemptively prioritizes the job(s) that have been processed the least. If more
than one job has received the least amount of processing time, the jobs will share
the processor in a processor-sharing mode. Analytic results in [22,28] show that
LAS minimizes MST when the job processing time distribution has a decreasing
hazard rate and there are no processing time estimates available.

180 M. Akbari-Moghaddam and D. G. Down

Fig. 3. Impact of σ on the MST

Table 2. Policies evaluation under σ = 1 and σ = 2

Policy σ = 1 σ = 2

MST/ MST(SRPT) Mean Slowdown MST/ MST(SRPT) Mean Slowdown

Gittins’ Index 1.45 1.26 2.68 6.78

SEH 1.44 1.22 2.71 6.87

SEPT 1.41 1.16 2.54 4.71

LAS 1.81 1.27 1.81 1.27

SRPT 1 1.06 1 1.06

These observations are consistent with the results in Table 2 which considers
the same settings as in Fig. 3 when σ = 1 and σ = 2. SERPT has poor per-
formance compared the other policies under σ ≥ 1 and thus is not included.
Pastorelli et al. [19] show that lower values of σ (σ < 1) are what one sees in
practice. It would be interesting to look at the optimal Gittins’ Index policy
that includes both the job processing time and estimation error distributions,
as it would capture this effect. Although doing so can help develop policies that
are effective even at high values of σ, deriving the Gittins’ index would be quite
complicated with this extra condition, but it could give insight into designing
simpler policies.

Figure 4(a), Fig. 4(b), and Fig. 4(c) show the result of simulations with the
default values in Table 1 and varying the system load between 0.5 and 0.99 for all
jobs, only the overestimated jobs, and only the underestimated jobs, respectively.
If we concentrate only on one class of jobs (overestimated or underestimated),
the policy that minimizes the MST the most can be different. We observe that
the Gittins’ Index and SEH policies perform best in minimizing the overall MST
given different system loads. The Gittins’ Index policy performs best in reducing
the MST of underestimated jobs and the SEH policy has desirable performance
in reducing the MST of all jobs, the overestimated jobs, and the underestimated
jobs. Figure 4(a) shows that the load parameter does not have a significant effect
on the MST since the ratio between the MST of each policy and the MST of
SRPT remains almost unchanged.

The mean slowdown is the other metric we consider to evaluate the perfor-
mance of the policies. High values of mean slowdown indicate that some jobs

SEH: Size Estimate Hedging for Single-Server Queues 181

Fig. 4. Impact of ρ on the MST

spend a disproportionate amount of time waiting. In Fig. 5, we show the mean
slowdown for different values of k with ρ = 0.9 and a σ value of 0.5. The mean
slowdown of SERPT is not included since it is several orders of magnitude higher
for k ≤ 0.5. We see that the Gittins’ Index, SEH, and SEPT policies have similar
performance. All policies have a near-optimal mean slowdown of 1 for high vari-
ance job processing time distributions (smaller k). The reason is that the very
small jobs (that make up the majority of the jobs) are processed the moment
they enter the system, and no large job blocks them. We also observe that SEH
performs best across all values of k in terms of minimizing the mean slowdown.

We conclude our experiments with synthetic workloads by indicating that
the Gittins’ Index and SEH policies perform better than SERPT under differ-
ent parameter settings. The only exception is extreme situations like the low
variance job processing time distributions (larger k) where SERPT outperforms
SEH and works analogously to the Gittins’ Index policy.

182 M. Akbari-Moghaddam and D. G. Down

Fig. 5. Impact of k on the mean slowdown

Real Workloads—We consider a Facebook Hadoop cluster trace from 2010 [5]
and show that the results with this workload look very similar to those with syn-
thetic workloads generated with k = 0.25. The trace consists of 24, 443 jobs. We
assume each job’s processing time is the sum of its input, intermediate output, and
final output bytes. The job processing times of this workload have high variance,
and thus, we run hundreds of simulations to reach the desired confidence interval
(as described in Sect. 4.3). We vary the error estimation distribution’s σ parameter
to evaluate different scenarios of estimated processing time precision. To maintain
the default settings in Table 1, we define the processing speed in bytes per second.
The arrival rate λ is chosen to yield the desired ρ = 0.9. A simulation run ends
when the last job in the workload arrives at the system and we calculate the MST
of the jobs that are fully processed among the first 10, 000 jobs that entered the
system. Figure 6 shows the MST normalized against the optimal MST obtained
with SRPT with varying σ between 0.25 and 1. We observe that the Gittins’ Index
and SEH policies perform best across all values of σ.

Fig. 6. MST of the Facebook Hadoop workload

In Fig. 7, we display the mean slowdown obtained with the policies under eval-
uation. Similar to Fig. 5, we have not included the mean slowdown of SERPT
since it is several orders of magnitude higher. We observe that for σ ≤ 0.5, where
the estimates are better, the SEH policy has lower mean slowdown than the Git-
tins’ Index and SEPT policies, however, SEPT starts to outperform the Gittins’
Index and SEH policies when σ increases, consistent with our observations for
synthetic workloads.

SEH: Size Estimate Hedging for Single-Server Queues 183

Fig. 7. Mean slowdown of the Facebook Hadoop workload

6 Conclusion and Future Work

The SRPT policy, which is optimal for scheduling in single-server systems, may
have problematic performance when job processing times are estimated. This
work has considered the problem of scheduling with the presence of job process-
ing time estimates. A multiplicative error model is used to produce estimation
errors proportional to the job processing times. We have introduced a novel
heuristic that combines the merits of SERPT and SEPT and requires minimal
calculation overhead and no information about the job processing time and esti-
mation error distributions. We have shown that this policy is consistent with a
Gittins’-like view of the problem. Our numerical results demonstrate that the
SEH policy has desirable performance in minimizing both the MST and mean
slowdown of the system when there is low variance in the estimation error distri-
bution. It outperforms SERPT except in scenarios where the job processing time
variance is extremely low. Examining the SEH policy under other error models
as well as analytic bounds as to how far it is from optimal could be investigated
in future work. It would also be useful to examine how well policies designed
for worst case performance would perform with respect to the performance met-
rics considered in this paper. The work of Purohit et al. [20] is an intriguing
candidate, as it runs two policies in parallel to provide worst case performance
guarantees, even when there are large estimation errors.

Not much work has been done in the area of multi-server scheduling in the
presence of estimation errors. One major reason is that determining optimal
policies for multi-server queues is much more challenging compared to the single-
server case. Mailach and Down [17] suggest that when SRPT is used in a multi-
server system, the estimation error affects the system’s performance to a lesser
degree than in a single-server system. Grosof et al. [11] prove that multi-server
SRPT is asymptotically optimal when an M/G/k system is heavily loaded. Our
work only evaluates the performance of SEH in a single-server framework so we
leave the extension and evaluation of this policy in multi-server queues for future
investigation.

Acknowledgment. The authors would like to thank Ziv Scully for useful discussions
on the limitations of the SEH policy.

184 M. Akbari-Moghaddam and D. G. Down

References

1. Aalto, S., Ayesta, U., Righter, R.: On the Gittins index in the M/G/1 queue.
Queueing Syst. 63(1–4), 437 (2009)

2. Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Pruhs, K.: Semi-clairvoyant
scheduling. Theor. Comput. Sci. 324(2–3), 325–335 (2004)

3. Bender, M.A., Muthukrishnan, S., Rajaraman, R.: Improved algorithms for stretch
scheduling. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 762–771 (2002)

4. Chang, H., Kodialam, M., Kompella, R.R., Lakshman, T., Lee, M., Mukherjee, S.:
Scheduling in mapreduce-like systems for fast completion time. In: 2011 Proceed-
ings IEEE INFOCOM, pp. 3074–3082. IEEE (2011)

5. Chen, Y., Alspaugh, S., Katz, R.: Interactive analytical processing in big
data systems: A cross-industry study of mapreduce workloads. arXiv preprint
arXiv:1208.4174 (2012)

6. Coffman, E.G., Denning, P.J.: Operating Systems Theory, vol. 973. prentice-Hall
Englewood Cliffs, Hoboken (1973)

7. Crovella, M.E., Taqqu, M.S., Bestavros, A.: Heavy-tailed probability distributions
in the World Wide Web. Pract. Guide Heavy Tils 1, 3–26 (1998)

8. Dell’Amico, M.: Scheduling with inexact job sizes: The merits of shortest processing
time first. arXiv preprint arXiv:1907.04824 (2019)

9. Dell’Amico, M., Carra, D., Michiardi, P.: PSBS: practical size-based scheduling.
IEEE Trans. Comput. 65(7), 2199–2212 (2015)

10. Gittins, J.C.: Bandit processes and dynamic allocation indices. J. Roy. Stat. Soc.
Ser. B (Methodol.) 41(2), 148–164 (1979)

11. Grosof, I., Scully, Z., Harchol-Balter, M.: SRPT for multiserver systems. Perform.
Eval. 127, 154–175 (2018)

12. Harchol-Balter, M.: The effect of heavy-tailed job size distributions on computer
system design. In: Proceedings of the ASA-IMS Conference on Applications of
Heavy Tailed Distributions in Economics, Engineering and Statistics (1999)

13. Harchol-Balter, M., Schroeder, B., Bansal, N., Agrawal, M.: Size-based scheduling
to improve web performance. ACM Trans. Comput. Syst. (TOCS) 21(2), 207–233
(2003)

14. Kleinrock, L.: Queueing Systems: vol. 1, Theory (1975)
15. Lu, D., Sheng, H., Dinda, P.: Size-based scheduling policies with inaccurate

scheduling information. In: The IEEE Computer Society’s 12th Annual Inter-
national Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems, 2004. (MASCOTS 2004). Proceedings, pp. 31–38.
IEEE (2004)

16. Mailach, R.: Robustness to estimation errors for size-aware scheduling. Ph.D. the-
sis, McMaster University, Department of Computing and Software, Canada (2017)

17. Mailach, R., Down, D.G.: Scheduling jobs with estimation errors for multi-server
systems. In: 2017 29th International Teletraffic Congress (ITC 29), vol. 1, pp. 10–
18. IEEE (2017)

18. Mitzenmacher, M.: Scheduling with predictions and the price of misprediction.
arXiv preprint arXiv:1902.00732 (2019)

19. Pastorelli, M., Barbuzzi, A., Carra, D., Dell’Amico, M., Michiardi, P.: HFSP: size-
based scheduling for Hadoop. In: 2013 IEEE International Conference on Big Data,
pp. 51–59. IEEE (2013)

http://arxiv.org/abs/1208.4174
http://arxiv.org/abs/1907.04824
http://arxiv.org/abs/1902.00732

SEH: Size Estimate Hedging for Single-Server Queues 185

20. Purohit, M., Svitkina, Z., Kumar, R.: Improving online algorithms via ML pre-
dictions. In: Advances in Neural Information Processing Systems, pp. 9661–9670
(2018)

21. Rai, I.A., Urvoy-Keller, G., Biersack, E.W.: Analysis of LAS scheduling for job size
distributions with high variance. In: Proceedings of the 2003 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems, pp.
218–228 (2003)

22. Righter, R., Shanthikumar, J.G.: Scheduling multiclass single server queueing sys-
tems to stochastically maximize the number of successful departures. Probab. Eng.
Inf. Sci. 3(3), 323–333 (1989)

23. Schrage, L.: Letter to the editor-a proof of the optimality of the shortest remaining
processing time discipline. Oper. Res. 16(3), 687–690 (1968)

24. Schrage, L.E., Miller, L.W.: The queue M/G/1 with the shortest remaining pro-
cessing time discipline. Oper. Res. 14(4), 670–684 (1966)

25. Scully, Z., Harchol-Balter, M., Scheller-Wolf, A.: Soap: one clean analysis of all
age-based scheduling policies. Proc. ACM Measurement Anal. Comput. Syst. 2(1),
1–30 (2018)

26. Wierman, A.: Fairness and scheduling in single server queues. Surv. Oper. Res.
Manag. Sci. 16(1), 39–48 (2011)

27. Wierman, A., Nuyens, M.: Scheduling despite inexact job-size information. In:
Proceedings of the 2008 ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, pp. 25–36 (2008)

28. Yashkov, S.: Processor-sharing queues: some progress in analysis. Queueing Syst.
2(1), 1–17 (1987)

An Approximate Bribe Queueing Model
for Bid Advising in Cloud Spot Markets

Bogdan Ghit,1(B) and Asser Tantawi2

1 Databricks Inc., Amsterdam, The Netherlands
bogdan.ghit@databricks.com

2 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
tantawi@us.ibm.com

Abstract. We consider the scheduling system of a container cloud spot
market where the user specifies the requested number of containers and
their resource requirements, along with a bid value. Jobs are preemp-
tively ordered based on their bid values as the available capacity, which
is excess capacity made available for the spot market, may vary over
time. Due to this variation, the number of allocated containers to a job
may vary during its lifetime, resulting in users experiencing periods of
degraded performance, potentially leading to job slowdown. We want to
model and analyze such a scheduling system starting from first princi-
ples, inspired by the M/M/1 bribe queue. Thus, we introduce a simple,
empirical queueing model which parametrically relates job slowdown to
bid values given load and bid distribution. We demonstrate the accuracy
of our approximation and parameter estimation through simulation.

1 Introduction

Cloud providers make excess resource capacity available at discounted prices
through a so called spot market [5,10,17]. The unit of sale is typically a Virtual
Machine (VM) instance, but variations may also include containers or collection
of VM instances in case of a container or batch service, respectively. Users submit
their bids for such resource units which have a time-varying price per unit that
is controlled by the provider. When the price goes above the user bid, the user
loses the corresponding resources. Such a market is attractive to users because
spot instance have relatively low prices. However, a major drawback of the spot
market is that users need to deal with potential unit revocations [1], which are
difficult to anticipate. For both the service provider and users, there is a crucial
need for a prediction tool to provide (1) revenue estimates as a function of price
and (2) quality of service as a function of bid, respectively.

We consider an enhanced management of excess resource capacity through
a scheduling system, where a user specifies a bid value, which acts as a priority
level. As the available capacity shrinks or higher priority jobs are submitted, the

This work was done while B. Ghit was an intern at the IBM T.J. Watson Research
Center.

c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 186–194, 2021.
https://doi.org/10.1007/978-3-030-85172-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_10&domain=pdf
http://orcid.org/0000-0002-2530-8736
http://orcid.org/0000-0001-6598-8863
https://doi.org/10.1007/978-3-030-85172-9_10

Bid Advising in Cloud Spot Markets 187

scheduler reclaims resources from lower priority running jobs, by preempting
them and putting them back in the queue. From a modeling point of view, we
consider a preemptive priority scheduler of jobs using containers. At job sub-
mission time, the user specifies the requested number of containers and their
resource requirements, along with a bid value. The number of allocated contain-
ers may vary during the lifetime of a job, anywhere from zero to the requested
number. The tasks of a job are managed by a task scheduler and run on the
allocated containers. The job continues to execute, with potential degraded per-
formance, as the number of allocated containers varies. The deallocation of a
container causes the currently running task(s) on the container to be aborted.
If the number allocated goes down to zero, the job is put back in the queue.

We seek to obtain a simple and empirical expression for the job slowdown
as a function of bid value. To this end, we propose a parametric approximate
expression inspired by the M/M/1 bribing queue [9]. We are also concerned with
the dynamic estimation of parameters in order to adapt the queueing model and
provide accurate performance predictions in the face of time-varying workloads.
We achieve this by employing an extended Kalman filter [12] on the slowdown
and bid values measured over a period of time. We validate the accuracy of our
approximation through simulation experiments.

The main contributions of this paper are: (1) a simple, empirical, parametric
closed-form approximate expression for the job slowdown as a function of bid
value for scheduling jobs in a container cloud spot market, and (2) a methodol-
ogy, based on filtering techniques, for dynamically estimating the model param-
eters at runtime based on measurements.

2 Problem Description

We consider a container cloud spot market, enhanced with a job scheduler, pro-
viding differentiated performance based on bids. As the market price fluctuates,
a job may wait in the queue and/or be preempted during its life time. Partial
preemption is possible if only a fraction of the containers that a job needs are
de-allocated. This is in contrast with a typical spot market (without queueing
and only for single instances (containers)), where jobs are either rejected or
completely aborted.

We assume a parallel job model such as data analytics applications in a real
environment with multiple resources. A job is decomposed into multiple tasks
that run on units of the available capacity called compute slots. Without loss
of generality, we refer to a compute slot as a container, which is the unit of
allocation. Typically, a worker runs in a container and is responsible for the
execution of the tasks assigned to it by the task scheduler. We use the terms
worker and container interchangeably throughout the paper. In this paper we
are not concerned with the task graph of the job, nor the scheduling of individual
tasks. Rather, we remain at the job level and consider the job, as a whole, and its
allocated workers. We assume that running workers are always busy executing
tasks. Because the number of tasks is typically much larger than the allocated

188 B. Ghit, and A. Tantawi

Fig. 1. An overview of our queueing system.

containers, jobs are often multi-waved, thereby running only a fraction of their
tasks at a time.

Figure 1 depicts the scheduling of jobs in this environment. Jobs arrive inde-
pendently according to some stochastic process. A job comes with a bid value
and the jobs are ordered based on their bid values, so that lower bid values are
in the back of the queue. A job requests some number of containers to run its
tasks. Jobs and containers are drawn as rectangles and circles within the rect-
angles, respectively. The system has a certain container capacity, represented as
squares. A circle within a square represents a worker assigned to a container. Jobs
wait in the queue until they are allocated at least one container. At such a time
they move to the in service area. They remain in service until they complete and
depart from the system. While in service, the number of allocated containers may
grow and shrink, depending on container availability and preemption. Allocated
and unallocated containers are drawn as hollow and solid circles, respectively.
Preempted tasks may need to be re-executed. If all the containers of a job are
deallocated, the job goes back to the waiting queue.

A job could be in one of three states, as far as its container allocation is con-
cerned: waiting, executing, or partially executing. A job is in a waiting state if
all its requested containers are not allocated yet (all solid circles). Alternatively,
a job is in an executing state if all of its requested containers are allocated (all
hollow circles). And, a partially executing job is one with a non-zero (and non-
one) fraction of its requested containers are allocated. Such a job is progressing
with a degraded performance. Thus, jobs in the in service area are either exe-
cuting or partially executing. In general, containers may not be the same size
in terms of their allocated resources (CPU and memory). However, in the case
of homogeneous containers, we may only have at most one job in the partially
executing state.

3 Modeling and Analysis

We seek a functional relationship between job slowdown and bid. In addition to
the bid value, the job slowdown depends on many factors such as the current load

Bid Advising in Cloud Spot Markets 189

in the system, the resource requirements of the job, the number of containers
allocated to run the job, and the bid values of other jobs. To assess the relation-
ship between the job slowdown and the bid value, given such factors, we need
to develop an analytic model which can be used to predict either the slowdown
given a bid value, or the bid value which would result in a given slowdown. Both
predictions could be valuable to users to set the expectation for job performance
and to advise setting a bid value, respectively.

3.1 Definitions and Assumptions

Let job arrivals constitute a Poisson process with rate λ and let X be the random
variable representing the job bid value. Without loss of generality, we assume that
the bid value is in the set X = [0, 1]. The probability distribution function of X
is denoted by B(x) = Pr[X ≤ x], x ∈ X which is continuous and differentiable.

A job leaves the system after completing all of its work, which we denote by
W . Jobs request homogeneous workers that have the same amount of resources.
We further assume that it is always possible to divide the remaining work among
the running workers, with no running (allocated) worker staying idle. The service
time R of a job is the duration over which the running workers execute all the
work needed. Thus, if a job is allocated all requested workers the service time
is given by R = W/K, where K denotes the number of workers. This analysis
is for the preemptive-resume case.1 Let μ = 1/R be the service rate, where R is
the average job service time. We assume homogeneous slots, i.e. equal amount
of resources per slot, and that one worker fits exactly into one slot. Thus, the
offered load is given by ρ = λK/Nμ < 1, where K is the average number of
workers per job and N is the system capacity.

We denote the average response time of a job with bribe value x by T (x). We
further define the job slowdown as the ratio of the average response time T (x)
and the average service time 1/μ, denoted by S(x) = T (x)/(1/μ).2

3.2 Bribery Queueing Model

The simplest case for our queueing system is when K is fixed at K = 1, W is
exponentially distributed, and N = 1, resulting in the M/M/1 bribing3 queue [9].
For such a model, the slowdown of a job with bribe value x is given by:

S(x) =
1

(1 − ρ(1 − B(x)))2
. (1)

1 Note that in the case of exponential service time, the preemptive-repeat and
preemptive-resume cases result in similar expressions for the average response time.

2 Note that we define the slowdown as the ratio of two average values, and not the
average of a ratio of two values. The latter alternative definition would have (1)
resulted in a more complex derivation and conditional expression on the service
time and, more importantly, (2) necessitated a priori knowledge of job service time,
which may not be available in practice.

3 We will use the words bribe and bid interchangeably throughout this paper.

190 B. Ghit, and A. Tantawi

Let S be the random variable representing the slowdown across all jobs. The
bribe value which yields a given slowdown of s ∈ S is obtained by inverting
Eq. 1, as

x(s) = B−1

(
1 − 1 − 1/

√
s

ρ

)
. (2)

Our queueing system, described in Sect. 2, along with other modern job mod-
els in data centers and clouds, are quite challenging to analyze [6]. Though
simplistic and limiting, the single-server bribing queue has an appealingly con-
cise expression. We seek an approximate expression for our generalized model
by introducing a parameter vector, Θ, consisting of two model parameters,
Θ = [θ0, θ1], which act as scale and shape parameters, respectively, such that
0 ≤ θ0 < 1 and θ1 > 0. First, θ0 acts as a (virtual) replacement for the server
utilization, ρ, which may not be available to an external observer. Second, θ1
captures the variation in the expression due to the model features described
previously. Hence, we extend Eq. 1 and write a closed-form approximate expres-
sion for the job slowdown as a function of B, the bid distribution, and Θ, the
parameter vector, in addition to x, the bid value, as

S(x;B,Θ) =
1

[1 − θ0(1 − B(x))θ1]2
. (3)

The bid which results in a given job slowdown may be obtained by inverting the
above equation, similar to Eq. 2.

3.3 Parameter Estimation

This section addresses the issue of dynamically estimating the parameters in
our model of the scheduling system. The model has bid values as input and
corresponding slowdown values as output. There are two sets of parameters:
(1) bidding parameters which characterize the bid distribution, B(x), and (2)
model parameters which characterize the queueing model, i.e. the relationship
between a bid value x and its corresponding slowdown value S(x). In practice,
one is not given such a distribution or parameter values. Thus, we need to have
a dynamic estimator which derives them dynamically, based on observations
of the job bid sequence {x0, x1, · · · , xi} and corresponding attained slowdown
sequence {s0, s1, · · · , si}, i � 0. Based on such sequences, the estimator builds
a model and keeps updating the two sets of parameters dynamically. The model
produced by the estimator may be used to predict a slowdown S̃(x) for a given
bid value x, or a bid value x̃ for a desired slowdown value s.

Our design for such a dynamic estimator is depicted in Fig. 2. We separate
the estimation process into two independent processes: one for estimating the
bidding parameters and another for estimating the model parameters. Firstly, we
use the job bid sequence {x0, x1, · · · , xi} to derive a bid distribution. Then, using
the latter, along with the attained slowdown sequence {s0, s1, · · · , si}, we use a
filter to estimate the model parameters dynamically. Both the bid distribution
and parameter values could then be used for prediction.

Bid Advising in Cloud Spot Markets 191

Fig. 2. Our framework for dynamic estimation and prediction.

We select a probability distribution for the bid distribution from the first and
second moments of the distribution. In general, given the first few moments of
a probability distribution over a finite range, the maximum-entropy distribution
may be obtained using Lagrange multipliers [3], which may be approximated
by the Beta distribution [13]. We characterize the bid distribution with two
parameters: α and β, associated with the first and second moments of X. Let r̃
and s̃2 be the sample average and sample variance of the observed bid values over
a given time interval. Thus, using the method of moments [4], we can estimate
the parameters α̃ and β̃, as α̃ = r̃

(
r̃(1−r̃)

s̃2 − 1
)

and β̃ = (1 − r̃)
(

r̃(1−r̃)
s̃2 − 1

)
,

respectively.
As changes occur in the system, such as the nature of workload, load intensity,

and cluster configuration, the model parameters change accordingly. Hence, we
need a method by which an estimate of the parameter vector Θ̃ is obtained.
In particular, we employ a system where the state vector corresponds to the
parameter vector, Θ̃, the observation corresponds to the measured slowdown,
and the system environment includes the bid value. The system transfer function
is given by the model functional expression which relates the input to the output,
which is non-linear. We employ an extended Kalman filter technique [19,20] to
linearize the transfer function by taking first derivatives.

We set the state evolution matrix F to the identity matrix and the (evolution)
covariance matrix Q to a fraction f of the squared values of the initial state
variables. For the (system) covariance matrix R, we use an approximation based
on the 95% confidence interval of the t-distribution divided by a factor γ which
is a fraction of the actual measurement window in relation to one which yields
steady state measurements. We set f = 5% and γ = 0.5.

4 Simulations

To validate the job slowdown approximation given by Eq. 3, we simulate a system
with 12 slots over 4,000 s in steady state. Jobs arrive as a Poisson process with
an average rate of 3.2 jobs/s. The job service time is Gamma distributed with
average 1 s and variance 0.5 s2. The requested number of slots per job is uniformly
distributed between 1 and 5 slots. This constitute an offered load of 80%. As

192 B. Ghit, and A. Tantawi

Fig. 3. The average job slowdown versus the bid value with the prediction model and
simulations for different bid distributions.

Fig. 4. Estimates of bid distribution parameters for different bid distributions.

for the bid distribution, we consider three cases: linearly decreasing,4 uniform,
and linearly increasing. The density functions b(x) are 2(1 − x), 1, and 2x,
respectively, x ∈ [0, 1]. And, the distribution functions B(x) are x(2−x), x, and
x2, respectively.

We divide the bid range into 20 bins, each with a width of 0.05, and we
calculate the average job slowdown for each such bin. The data points are used
in a regression analysis of Eq. 3, solving for [θ̃0, θ̃1] that minimizes the mean
squared error (mse) between the model and simulation values of the average
slowdown. Figure 3 depicts the average slowdown as a function of bid using the
model and simulation for three bid distributions. We observe that our model
anticipates with high accuracy the simulation results for the entire range of bid
values, irrespective of the shape of the bid distribution. The estimates for the
three bid distributions were θ̃0 = 0.64 and θ̃1 = 2.44, with mse = 3.47 ∗ 10−03,
θ̃0 = 0.62 and θ̃1 = 2.26, with mse = 2.56 ∗ 10−02 and θ̃0 = 0.62 and θ̃1 = 2.27,
with mse = 3.21 ∗ 10−02, respectively.

Figure 4 shows the estimates of the three bid distributions. Because our esti-
mator uses samples of the bid distribution, parameters α and β fluctuate around
their values, governed by α/β = 0.5, 1, and 2, respectively.

4 In practice, users may favor bidding low.

Bid Advising in Cloud Spot Markets 193

Fig. 5. Estimates of model parameters for different bid distributions.

Figure 5 shows the model parameters over time for the three bid distributions.
We observe that θ̃1 has a catalyzing effect and drops to lower values when θ̃0 is
overestimated thus adjusting the prediction model.

5 Related Work

Since Amazon EC2 released its spot markets in 2009, a sizable body of research
analyzed the operation of such systems in the cloud. The characterization and
prediction of spot prices of the AWS spot markets [1] inspired the design of user
bidding strategies that optimize cost while also achieving uninterrupted service.
Such strategies can be derived either by means of statistical analysis of historical
spot prices [8,18] or through more advanced modeling techniques such as Markov
chains [2,16].

Modeling and predicting the performance of multi-task MapReduce-based
applications has been studied in various settings [7,15]. Common approaches
build an estimator by choosing a relationship between an output variable that
needs to be predicted and several system properties that can be measured and
used for prediction. To provide good predictions, the estimator employs machine
learning techniques and needs large amounts of training data based on low-level
application performance characteristics [11,14].

6 Conclusion

We presented a simple, empirical, parametric approximate expression for the job
slowdown as a function of bid value for job scheduling in container cloud spot
markets. The approximate expression extends the M/M/1 bribing queue using
two parameters. Further, we provided a methodology for the dynamic estima-
tion of the parameters using the method of moments matching and extended
Kalman filtering, a control-theoretic approach. We validated our approximation
and prediction methodology using simulation experiments. We incorporated our
approximate model in a spot advisor that is employed to either (1) set an expec-
tation for the performance of a job given a particular bid value or (2) suggest a
minimum bid value required to attain a given service level.

194 B. Ghit, and A. Tantawi

References

1. Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: Deconstructing
Amazon EC2 spot instance pricing. ACM Trans. Econ. Comput. 1(3), 16:1–16:20
(2013)

2. Chohan, N., Castillo, C., Spreitzer, M., Steinder, M., Tantawi, A.N., Krintz, C.:
See spot run: using spot instances for MapReduce workflows. USENIX HotCloud
(2010)

3. Dowson, D., Wragg, A.: Maximum-entropy distributions having prescribed first
and second moments (corresp.). IEEE Trans. Inf. Theor. 19(5), 689–693 (1973)

4. Forbes, C., Evans, M., Hastings, N., Peacock, B.: Statistical Distributions. Wiley,
Hoboken (2011)

5. Ghit, B., Epema, D.: Better safe than sorry: grappling with failures of in-memory
data analytics frameworks. In: ACM HPDC (2017)

6. Harchol-Balter, M.: Open problems in queueing theory inspired by datacenter com-
puting. Queueing Syst. 97(1), 3–37 (2021). https://doi.org/10.1007/s11134-020-
09684-6

7. Herodotou, H., et al.: Starfish: a self-tuning system for big data analytics. In:
CIDR, vol. 11, no. 2011, pp. 261–272 (2011)

8. Javadi, B., Thulasiramy, R.K., Buyya, R.: Statistical modeling of spot instance
prices in public cloud environments. In: 2011 Fourth IEEE International Conference
on IEEE Utility and Cloud Computing (UCC), pp. 219–228. IEEE (2011)

9. Kleinrock, L.: Optimum bribing for queue position. Oper. Res. 15(2), 304–318
(1967)

10. Liu, H.: Cutting MapReduce cost with spot market. HotCloud (2011)
11. Shi, J., Zou, J., Lu, J., Cao, Z., Li, S., Wang, C.: MRTuner: a toolkit to enable

holistic optimization for mapreduce jobs. In: VLDB Endowment, vol. 7, no. 13, pp.
1319–1330 (2014)

12. Simon, D.J.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear
Approaches. Wiley, Hoboken (2006)

13. Unuvar, M., Doganata, Y., Tantawi, A.: Configuring cloud admission policies under
dynamic demand. In: 2013 IEEE 21st International Symposium on Modeling, Anal-
ysis Simulation of Computer and Telecommunication Systems (MASCOTS), pp.
313–317, August 2013

14. Venkataraman, S., Yang, Z., Franklin, M.J., Recht, B., Stoica, I.: Ernest: effi-
cient performance prediction for large-scale advanced analytics. In: USENIX NSDI
(2016)

15. Verma, A., Cherkasova, L., Campbell, R.H.: ARIA: automatic resource inference
and allocation for MapReduce environments. In: ACM ICAC (2011)

16. Zafer, M., Song, Y., Lee, K.-W.: Optimal bids for spot VMs in a cloud for deadline
constrained jobs. In: IEEE CLOUD (2012)

17. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R.H., Stoica, I.: Improving
MapReduce performance in heterogeneous environments. In: USENIX OSDI (2008)

18. Zheng, L., Joe-Wong, C., Tan, C.W., Chiang, M., Wang, X.: How to bid the cloud.
ACM SIGCOMM Comput. Commun. Rev. 45(4), 71–84 (2015)

19. Zheng, T., Woodside, M., Litoiu, M.: Performance model estimation and tracking
using optimal filters. IEEE Trans. Softw. Eng. 34(3), 391–406 (2008)

20. Zheng, T., Yang, J., Woodside, M., Litoiu, M., Iszlai, G.: Tracking time-varying
parameters in software systems with extended Kalman filters. In: IBM Press Centre
for Advanced Studies on Collaborative Research (2005)

https://doi.org/10.1007/s11134-020-09684-6
https://doi.org/10.1007/s11134-020-09684-6

Learning and Verification

DSMC Evaluation Stages: Fostering
Robust and Safe Behavior in Deep

Reinforcement Learning

Timo P. Gros(B), Daniel Höller, Jörg Hoffmann, Michaela Klauck,
Hendrik Meerkamp, and Verena Wolf

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
{timopgros,hoeller,hoffmann,klauck,meerkamp,wolf}@cs.uni-saarland.de

Abstract. Neural networks (NN) are gaining importance in sequential
decision-making. Deep reinforcement learning (DRL), in particular, is
extremely successful in learning action policies in complex and dynamic
environments. Despite this success however, DRL technology is not with-
out its failures, especially in safety-critical applications: (i) the training
objective maximizes average rewards, which may disregard rare but criti-
cal situations and hence lack local robustness; (ii) optimization objectives
targeting safety typically yield degenerated reward structures which for
DRL to work must be replaced with proxy objectives. Here we introduce
methodology that can help to address both deficiencies. We incorporate
evaluation stages (ES) into DRL, leveraging recent work on deep statis-
tical model checking (DSMC) which verifies NN policies in MDPs. Our
ES apply DSMC at regular intervals to determine state space regions
with weak performance. We adapt the subsequent DRL training priori-
ties based on the outcome, (i) focusing DRL on critical situations, and
(ii) allowing to foster arbitrary objectives. We run case studies in Race-
track, an abstraction of autonomous driving that requires navigating a
map without crashing into a wall. Our results show that DSMC-based
ES can significantly improve both (i) and (ii).

1 Introduction

In recent years, neural networks (NN), especially deep neural networks, have
accomplished major successes across many computer science domains, like image
classification [25], natural language processing [21], and game-playing [41]. The
latter was especially accomplished by combining reinforcement learning (RL)
and deep neural networks, so called deep reinforcement learning (DRL). DRL
was used successfully for sequential decision-making, e.g., mastering Atari games
[28,29], playing the games Go and Chess [40–42], or solving the Rubik’s cube [1],

Authors are listed alphabetically. This work was partially supported by the German
Research Foundation (DFG) under grant No. 389792660, as part of TRR 248, see
https://perspicuous-computing.science, and by the European Regional Development
Fund (ERDF).

The original version of this chapter was revised: an error in the algorithm
on page 206 were corrected. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-85172-9 25

c© Springer Nature Switzerland AG 2021, corrected publication 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 197–216, 2021.
https://doi.org/10.1007/978-3-030-85172-9 11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_11&domain=pdf
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-85172-9_25
https://doi.org/10.1007/978-3-030-85172-9_11

198 T. P. Gros et al.

and is beginning to be used in real-world (motivated) examples, such as vehicle
routing [30], robotics [17], and autonomous driving [36].

Despite this success however, DRL technology is not without fail, especially
in safety-critical applications. While neural network action policies achieve good
performance in many sequential decision-making processes, that performance
pertains to average rewards as optimized by DRL training. That objective how-
ever may average out poor local behavior, and thus disregard rare but critical
situations (e.g. a child running in front of a car). In other words, we do not
get system-level guarantees, even in the ideal case where the learned policy is
near-optimal with respect to its training objective. We refer to this deficiency as
a lack of local robustness. Dedicated exploration strategies have been developed
to ensure inclusion of rare experiences during training [11,12]. These focus on
reducing the variance of the accumulated reward, e.g. by importance sampling,
but they are not flexible enough to enforce desirable behavior robustly across
the whole state space.

This problem is exacerbated by the fact that optimization objectives specifi-
cally targeting safety typically yield degenerated reward structures. This is true
in particular for the natural objective to maximize the probability of reaching a
goal condition – without getting stuck in an unsafe (terminal) state. That objec-
tive yields reward 1 in goal states and 0 elsewhere, an extremely sparse reward
structure not suited for (D)RL training in large state spaces (a widely known fact,
see e.g. [3,18,24,35,38]). Hence, for (D)RL training to be able to identify a use-
ful policy, proxy objectives are used, such as discounted cumulative reward giving
positive feedback for goal states and (highly) negative feedback for unsafe states.1

In summary, two deficiencies of current DRL methods in safety-critical sys-
tems are that (i) training for average reward lacks local robustness, and (ii)
safety objectives like goal probability cannot be used for effective training. Let
us illustrate these points in an example, taken from the Racetrack benchmark
which we will also use in our case studies later on. Racetrack is a commonly
used benchmark for Markov decision process (MDP) solution algorithms in AI
[6,8,33,44]. The challenge is to navigate to a goal line on a discrete map with-
out crashing into a wall, where actions accelerate/decelerate the car. Racetrack
is thus a simple (but highly extensible [5]) abstraction of autonomous driving.
Consider Fig. 1, which measures the performance of a NN policy trained with
DRL, using a discounted reward structure with +100 reward for goal states and
−50 reward for crashes.

Figure 1 (a) evaluates policy performance according to the reward structure
it is trained on; whereas Fig. 1 (b) evaluates goal probability, which is the objec-
tive we ideally want to optimize. Both heat maps visualize performance when

1 One can combine such a proxy with the goal probability objective, though multiple
objectives are difficult to achieve with a one-dimensional reward signal and standard
backpropagation algorithms for neural nets [26]; anyway, training objective vs. ideal
objective are still not identical here. Reward shaping is an alternative option that can
in principle preserve the optimal policy [31], but this is not always possible, and manual
work is needed for individual learning tasks (substantial work sometimes, see e.g. [46]).

DSMC Evaluation Stages 199

(a) (b) (c)

Fig. 1. Example performance measures of a DRL policy on a Racetrack example map.
(Color figure online)

starting the policy from each map cell. We clearly see deficiency (i) from the high
variance in colors, in particular black and red areas with (very) low expected
reward (a) /goal probability (b). Regarding deficiency (ii), while expected reward
correlates with goal probability, crashes are “more tolerable” in the reward struc-
ture than for goal probability (if we set high negative rewards for crashes then
the policy learns to drive in circles). This is difficult to see in the heat maps
as the reward scale in (a) cannot be directly compared to the probability scale
in (b). Figure 1 (c) hence complements this picture by average goal probability
in the critical areas of the map, as achieved by the standard DRL method deep
Q-network, vs. EPRG which is one of the new methods we introduce here. EPRG

takes goal probability into account directly, which clearly pays off.
We address deficiencies (i) and (ii) through incorporating evaluation stages

(ES) into DRL, conducted at regular intervals during training (i.e., periodically
after a given number of training episodes) to determine state space regions with
weak performance. The “performance” evaluation here is flexible, and can be
done either (i) with respect to the training objective, or (ii) with respect to the
true objective (for example: goal probability in EPRG above) in case a proxy
objective is used for training.

To design such flexible ES, we leverage recent work on deep statistical model
checking (DSMC) [15], an approach to explicitly examine properties of NN action
policies. The approach assumes that the NN policy resolves the nondetermin-
ism in an MDP, resulting in a Markov chain which is analyzed by statistical
model checking [10]. This provides flexible methodology for evaluating policy
performance starting from individual states.

The target of an evaluation stage being to identify “weak regions”, the ques-
tion arises which individual states to apply DSMC to. Our answer to this ques-
tion, at present, is based on the assumption that the possible initial states for
the problem at hand (the states from which policy execution may start) can be
partitioned into a feasibly small set of state-space regions. In Racetrack, regions
are identified by the location of the car. The approach we propose is to sample a
single representative state s from each region, and evaluate s through DSMC.2

2 The benefit of our proposed ES thus hinges, in particular, on how meaningful these
representative states are for policy performance. While this is a limitation, partition-
ing by physical location like in Racetrack could be a canonical candidate in many
scenarios.

200 T. P. Gros et al.

Upon termination of an ES, we adapt the subsequent DRL training priori-
ties based on the outcome. Specifically, we introduce two alternative methods,
of which one adapts the probabilities with which new training experiences are
generated, and the other adapts the probabilities with which the accumulated
training experiences are taken into consideration within individual learning steps.
Overall, this approach results in an iterative feedback loop between DRL train-
ing and DSMC model checking. It addresses (i) through focusing the DRL on
critical situations, and addresses (ii) as DSMC can evaluate arbitrary temporal
properties.

We implement this approach on top of deep Q-learning [6,29], and we run
experiments in case studies from Racetrack. The results show that DSMC-based
ES can indeed (i) make policy reward more robust across complex maps, and
(ii) improve goal probability when using a discounted-reward proxy for DRL
training.

In summary, our contributions are as follows:
– We introduce evaluation stages as an idea to improve local robustness and

goal-probability training in DRL.
– We design and implement two variants of this approach, adapting a state-of-

the-art DRL algorithm.
– We evaluate the approach in Racetrack and show that it can indeed have

beneficial effects regarding deficiencies (i) and (ii).

Related Work: Recent work of Hasenbeig et al. [20] proposes a method to include
a property encoded as an LTL formula and to synthesize policies that maximize
the probability of that LTL property. However, while this allows to specify com-
plex tasks, it addresses neither of our two deficiencies.

Further, our work relates to the area of safe reinforcement learning. Several
works investigate the usage of shields [2,4,22] or permissive schedulers [23] to
restrict the agent from entering unsafe states, even during training. However,
these approaches can only be applied if a shield/permissive scheduler was com-
puted beforehand, which is a model-based task. In contrast, our approach is
model-free; it does not need to compute a shield or permissive scheduler before-
hand, and does not restrict the action (and thus also state-) space. Instead, the
task is learned entirely through self-play and Monte Carlo-based evaluation runs.
Moreover, our approach is also applicable in more general scenarios, when there
are not just safe and unsafe states but more fine-grained state distinctions.

2 Background

We briefly introduce the necessary background on Markov decision processes,
deep Q-learning, and deep statistical model checking.

2.1 Markov Decision Processes

The underlying model of both DSMC and DRL is that of a (state-discrete)
Markov decision process in discrete time. Let D(S) denote the set of probability
distributions over S for any non-empty set S.

DSMC Evaluation Stages 201

Definition 1 (Markov Decision Process). A Markov decision process
(MDP) is a tuple M = 〈S,A, T , μ〉 consisting of a finite set of states S, a finite
set of actions A, a partial transition probability function T : S × A ⇀ D(S),
and an initial distribution μ ∈ D(S). We say that an action a ∈ A is applicable
in state s ∈ S if T (s, a) is defined. We denote by A(s) ⊆ A the set of actions
applicable in s.

MDPs are typically associated with a reward structure r, specifying numerical
rewards that are obtained when following a transition, i.e., r : S × A × S → R.
In the following, we call the support of μ the set of initial states I, i.e., I =
{s ∈ S | μ(s) > 0}.

Usually, an MDP’s behavior is considered jointly with an entity resolving the
otherwise non-deterministic choices in a state. Given a state, a so-called action
policy (or scheduler, or adversary) determines which of the applicable actions to
apply.

Definition 2 (Action Policy). A(history-independent) action policy is a func-
tion π : S × A → [0, 1] such that π(s, ·) is a probability distribution on A and, for
all s ∈ S, π(s, a) > 0 implies that a ∈ A(s).

We remark that history-independent action policies are often also called mem-
oryless because their decisions depend only on the given state and not on the
history of formerly visited states. We call an action policy deterministic if in
each state s, π selects an action with probability one. We then simply write π(s)
for the corresponding action.

In the sequel, for a given MDP M and action policy π, we will write
S0, S1, S2, . . . for the states visited at times t = 0, 1, 2, Let At be the action
selected by policy π in state St and Rt+1 = r(St, At, St+1) the reward obtained
when transitioning from St to St+1 with action At. Note that – as we are dealing
with finite-state MDPs – the probability measure associated with these random
variables is well defined and {St}t∈N0 is a Markov chain with state space S
induced by policy π. For further details we refer to Puterman [34].

The induced Markov chain can be analyzed using statistical model checking
[39,47]. For statistical model checking of MDPs, different approaches have been
proposed to handle nondeterminism [7,10].

2.2 Deep Q-learning

In the following, let

Gt =
T∑

k=t+1

γk−t−1Rk (1)

denote the discounted, accumulated reward, also called return, from time t on,
where γ ∈ [0, 1] is a discount factor, and T is the final time step [44]. The discount
factor determines the importance between short and long term rewards; if γ = 0,
the discounted return will be equal to the reward accumulated in one step only,

202 T. P. Gros et al.

if γ = 1 all future rewards will be worth the same, and if γ ∈ (0, 1) the long
term rewards will be less important than the short term ones.

Q-learning is a well known algorithm to approximate action policies that
maximize said accumulated reward [6]. For a fixed policy π, the so-called action-
value or q-value qπ(s, a) at time t is defined as the expected return Gt that is
achieved by taking an action a ∈ A(s) in state s and following the policy π
afterwards, i.e.,

qπ(s, a) = Eπ

[
Gt

∣∣St = s,At = a
]

= Eπ

[∞∑

k=0

γkRt+k+1

∣∣∣∣∣St = s,At = a

]
. (2)

Policy π is optimal, if it maximizes the expected return. We write q∗(s, a)
for the corresponding optimal action-value. Intuitively, the optimal action-value
q∗(s, a) is equal to the expected sum of the reward that we receive when taking
action a from state s, and the (discounted) highest optimal action-value that we
receive afterwards. For optimal π, the Bellman optimality equation [44] gives

q∗(s, a) = Eπ

[
Rt+1 + γ · max

a′
q∗ (St+1, a

′)
∣∣∣St = s,At = a

]
. (3)

Vice versa, one can evidently obtain the optimal policy if the optimal action
values are known by selecting π(s) = argmaxa∈A(s) q∗(s, a).

By estimating the optimal q-values, one can obtain (an approximation of) an
optimal policy. During tabular Q-learning, the action values are approximated
separately for each state-action pair [6]. In the case of large state spaces, deep
Q-learning can be used to replace the Q-table by a neural network (NN) as a
function approximator [29]. NNs can learn low-dimensional feature representa-
tions and express complex non-linear relationships. Deep reinforcement learning
is based on training deep neural networks to approximate optimal policies. Here,
we consider a neural network with weights θ estimating the Q-value function as a
deep Q-network (DQN) [28]. We denote this Q-value approximation by Qθ(s, a)
and optimize the network w.r.t. the target

yθ(s, a) = Eθ

[
Rt+1 + γ · max

a′
Qθ(St+1, a

′) | St = s,At = a
]
, (4)

where the expectation is taken over trajectories induced by the policy represented
by the parameters θ. The corresponding loss function in iteration i of the learning
process is

L(θi) = Eθi

[
(yθ′(St, At) − Qθi

(St, At))
2
]
. (5)

Here, the so-called fixed target means that in Eq. (5) θ′ does not depend on
the current iteration’s weights of the (so called local) neural network θi but on
weights that were stored in earlier iterations (so called target network), to avoid
an unstable training procedure [29]. We approximate ∇L(θi) and optimize the
loss function by stochastic gradient descent.

In contrast to Mnih et al. [29], we do not update the target network after a
fixed number of learning stochastic gradient descend update steps, but perform

DSMC Evaluation Stages 203

a soft update instead, i.e., whenever we update the local network in iteration
i, the weights of the target network are given by θ′ = (1 − τ) · θi + τ · θ′ with
τ ∈ (0, 1) [13,43].

Stochastic gradient descent assumes independent and identically distributed
samples. However, when directly learning from self-play, this assumption is dis-
rupted as the next state depends on the current decision. To mitigate this prob-
lem, we do not directly learn from observations, but store them in an experience
replay buffer [29]. Whenever a learning step is performed, we uniformly sample
from this replay buffer to consider (approximately) uncorrelated tuples. Thus,
the loss is given by

L(θi) = E(s,a,r,s′)∼U(D)

[(
r + γ · max

a′
Qθ′(s′, a′) − Qθi

(s, a)
)2

]
. (6)

We generate our experience tuples by exploring the state space epsilon-greedily,
i.e., during the Monte Carlo simulation we follow the policy that is implied
by the current network weights with a chance of (1 − ε) and otherwise choose
a random action. We start with a high exploration coefficient ε = εstart and
exponentially decay it, i.e., for every iteration set ε = ε · εdecay with εdecay < 1,
until a certain threshold εend is met. Afterwards, we constantly use ε = εend.
Common termination criteria for the learning process are fixing the number of
episodes or using a threshold on the expected return achieved by the current
policy. The overall algorithm is displayed in Sect. 3 (Algorithm 1), together with
the extensions and changes we will introduce.

A common improvement to the DQN algorithm sketched above, which we
will also consider in this paper, is the so-called prioritized replay buffer [37]. Not
all samples are equally useful to improve the policy. In particular, those samples
with a relatively small individual loss do not contribute to the learning process as
much as those with a high loss. Thus, the idea of prioritized experience replay is
to sample from the aforementioned replay buffer with a probability that reflects
the loss. Specifically, the priority δ of a sample (s, a, s′, r) in iteration i is given
by

δ =
((

Qθ′(s, a) −
(
r + γ · max

a′
Qθi

(s′, a′)
))

+ εp

)α

, (7)

where εp is a hyperparameter to ensure that all samples have non-zero probabil-
ity, and α is used to control the amount of prioritization. α = 0 means that there
is no prioritization, α = 1 means full prioritization, α ∈ (0, 1) defines a balance.
In Eq. (6), instead of sampling uniformly, the probability at which a sample is
picked from the buffer is then proportional to its priority, i.e. we divide the sam-
ples’ priority by the sum of all priorities. In the following, we will abbreviate
DQN with such prioritized experience replay as DQNPR.

2.3 Deep Statistical Model Checking

Deep Statistical Model Checking. [15] is a method to analyze a NN-represented
policy π taking action decisions (resolving the nondeterminism) in an MDP M.

204 T. P. Gros et al.

Namely, the induced Markov chain C is examined by statistical model checking.
Given an MDP M, DSMC assumes that the policy π has been trained based on
M completely prior to the analysis without influencing the training process at
all. This approach is promising in terms of scalability as the analysis of C merely
requires to evaluate the NN on input states: there is no need for other deeper
and more complex NN analyses. Gros et al. [15] implemented this approach for
the statistical model checker modes [10] in the Modest Toolset [19].

3 RL with Evaluation Stages

We now introduce our approach of RL with evaluation stages, addressing the
DRL deficiencies discussed in the introduction: (i) training for average reward
lacks local robustness; (ii) safety objectives like goal probability cannot be used
for effective training. We next discuss a basic design decision, then describe our
two alternative methods, and then specify how they are realized on top of deep
Q-learning.

3.1 Initial State Partitioning and Notations

Recall that I denotes the initial states of the MDP, i.e., the support of the
initial distribution μ. As already mentioned, an important premise of our work
is that I can be partitioned into a manageable number of regions. We denote that
partition by P = {J1, J2, . . . , Jk} where the regions are non-empty Ji �= ∅, cover
the set of all initial states

⋃
i∈1,2,...,k Ji = I, and are disjoint Ji ∩Jj = ∅ for i �= j.

During the evaluation stages, we consider one representative si ∈ Ji from each
region. The underlying assumption is that the representatives are sufficiently
meaningful to identify important deficiencies in policy behavior.3

The evaluation stages may consider arbitrary optimization objectives in prin-
ciple, and use arbitrary methods to measure the objective values of the states si.
Here we compute E using DSMC, measuring expected reward or goal probabil-
ity. We denote the outcome of evaluation as an evaluation function, a function
E : P → [0, 1] mapping each region Ji to the evaluation value of its representative
state si. For optimization objectives that are not probabilities, we assume here
a normalization step into the interval [0, 1], with 0 being the worst value and 1
the best. In particular, for expected rewards, the natural method we use in our
experiments is to set E(rmin) = 0 and E(rmax) = 1 and interpolate linearly in
between.

We also use the representative states to define an initial probability distri-
bution over the regions Ji:

β(Pi) = μ(si)/
k∑

j=1

μ(sj) (8)

3 In our Racetrack case studies, we use the map cells as the basis of P – i.e., states
sharing the same physical location. We believe that this partitioning method may
work for many application scenarios involving physical space. Alternatively, one may,
for example, partition state-variable ranges into intervals.

DSMC Evaluation Stages 205

3.2 Evaluation-Based Initial Distribution (EID)

Given the initial distribution μ of the MDP, with the insights gained through
the DSMC evaluation stages, we can adapt the initial distribution to guide the
training process after an evaluation stage. Recall that β is the initial distribution
of a region in the original MDP. The probability to start in a region Ji for the
EID method is then given by

p(Ji) =
(1 − E(Ji)) · β(Ji)∑

j

(1 − E(Jj)) · β(Jj)
, (9)

i.e., we shift the initial distribution for the regions such that we start with a
higher probability in areas with low quality and vice versa. Once region Ji is
selected, we uniformly sample a starting state from Ji.

The idea of EID is that by generating experiences from regions with poor
behavior, we improve the robustness of the policy as the NN will learn to select
the most appropriate actions in these regions.

3.3 Evaluation-Based Prioritized Replay (EPR)

As discussed, the principle of prioritized experience replay buffers is to sample
states according to their loss, i.e., we more often sample states where the loss is
high and less often where the loss is low (see Eq. (7)). Here, our idea is to base
the priorities on the outcome of the evaluation instead.

The samples (s, a, r, s′) in the replay buffer may be arbitrary and, in particu-
lar, may not contain possible initial states. Yet the evaluation is done for initial
states only. To be able to judge individual transition samples, we evaluate each
sample in terms of the initial state s0 ∈ I from which it was generated, i.e., from
which the respective training episode started. This arrangement is meaningful as
improving the policy for s0 necessarily involves further training on its successor
states. For each transition sample, we store the partition Ji of the initial state
s0 in the replay buffer. The replay priority δ is then set to

δ = (1 − E(Ji) + εp)α, (10)

where s0 ∈ Ji is the initial state of the training episode, and εp and α have
the same functionality as in Eq. (7). After every evaluation stage, we update the
priorities of the replay buffer according to Eq. (10). The probability of picking
experience (s, a, r, s′) during training from the buffer is then proportional to the
above replay priority.

3.4 Deep Q-learning with Evaluation Stages

EID is applicable to any (deep) reinforcement learning algorithm, and EPR to
any such algorithm using a replay buffer. Here, we implement both methods on
top of deep Q-learning [29]. Algorithm 1 shows pseudocode for deep Q-learning

206 T. P. Gros et al.

Algorithm 1. Deep Q-learning with Evaluation Stages
1: for episodes i = 0 to M − 1 do
2: sample s0 ∈ I from μ // [DQN, DQNPR, EPR]
3: sample s0 ∈ I according to Equation (9) // [EID]
4: for steps t = 0 to T − 1 do
5: with probability ε select random action at ∈ A(st)
6: otherwise with probability 1 − ε select at = argmaxa∈A(st)

Qθ(s, a)
7: execute at; observe rt+1 and st+1

8: compute δ =

⎧
⎪⎨

⎪⎩

constant // [DQN, EID]

Equation (7) // [DQNPR]

Equation (10) // [EPR]

9: store (st, at, rt+1, st+1, δ) in replay buffer D
10: every C steps do
11: sample a minibatch of samples (sj , aj , rj+1, sj+1, δ) from D w.r.t. δ

12: set target yj =

{
rj+1 sj+1 is terminal state

rj+1 + γ · maxa′ Qθ′(sj+1, a
′) else

13: perform a gradient descent step on loss (yj − Qθ(sj , aj))
2

14: soft-update the network weights θ′ = (1 − τ) · θ + τ · θ′

15: end every
16: end for
17: if i > P then // [EID, EPR]
18: every L episodes do // [EID, EPR]
19: compute and store E(Ji) for all Ji ∈ P // [EID, EPR]
20: end every // [EID, EPR]
21: end if // [EID, EPR]
22: end for

with soft updates (denoted DQN) and its previously discussed variant DQNPR,
as well as the extensions for EID and EPR.

The unmarked lines in Algorithm 1 are inherited from the original algorithm
and are applied in all versions. Lines that are marked differently are only applied
in the versions they are marked with, e.g., line 2 is part of DQN, DQNPR and
EPR but not of EID. The colored lines mark the extensions of EID (line 3, blue)
and the extensions of both EID and EPR (lines 17–21, green). The DSMC-based
evaluation stages are inserted after a threshold P of pre-training episodes was
met (line 17), and then are repeated every L episodes (line 18). Thus, the total
number of training episodes M is given by M = P + N · L where N is the
number of performed evaluation stages. The priority δ (marked in orange, line
8) depends on the algorithm:

– Both original deep Q-learning DQN and EID sample uniformly from the
replay buffer, so δ is set to a constant value.

– For DQNPR [37], δ is initialized with the maximal temporal difference loss
observed throughout the training procedure, and updated in every learning
step according to Eq. (7).

– EPR sets the priority to a constant prior to the first ES, and afterwards
according to Eq. (10).

DSMC Evaluation Stages 207

4 Case Studies

We next describe the Racetrack benchmark, which we use to evaluate our app-
roach.

4.1 Racetrack

Racetrack originally is a pen and paper game, adopted as a benchmark in the
AI community [6,9,27,32,33], particularly for reinforcement learning [5,14,16].
The task is to steer a car on a map towards the goal line without crashing into
walls. The map is given by a two-dimensional grid, where each map cell either is
free, part of the goal line, or a wall. We assume that initially the car may start
on any free map cell with velocity 0 with equal probability (i.e., μ is uniform
and I is the set of all non-wall positions with zero velocity).

Figure 2 shows the three maps that we consider in the following. Barto-big
(Fig. 2a) was originally introduced by Barto et al. [6]. We designed the other
two maps, Maze (Fig. 2b) and River (Fig. 2c), as examples with a more localized
structure highlighting the problem of local robustness.

The position and velocity of the car each is a pair of integers, for the x- and
y-dimension. In each step, the agent can accelerate the car by at most one unit in
each dimension, i.e., the agent can add an element of {−1, 0, 1} to each of x and
y, resulting in nine different actions. The ground is slippery, meaning that the
action might fail, in which case the acceleration/deceleration does not happen
and the car’s velocity remains unchanged. Each action application fails with a
fixed probability that we will refer to as noise.

(a) Barto-big (b) Maze (c) River

Fig. 2. Three Racetrack maps, where the goal line is marked in green and wall cells
are colored gray. (Color figure online)

The velocity after applying an action defines the car’s new position. The car
then moves in a straight line from the old position to the new position. If that
line intersects with a wall cell, the car crashes and the game is lost. If that line

208 T. P. Gros et al.

intersects with a goal cell, the game is won. In both cases, the game terminates.
We use the following simple reward function:

r

(
s

(ax ,ay)−−−−−→ s′
)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

100 if s′ = �
−50 if s′ = ⊥
−5 if s′ = s

0 otherwise

(11)

This reward function is positive if the game was won (�), negative if the game
was lost (⊥), and slightly negative if the state did not change (incentivizing
the agent to not stand still); otherwise no reward signal is given. The incentive
to reach the goal as quickly as possible is given through the discount factor γ
that is chosen to be smaller than 1, making short-term rewards more important
than long-term ones (see Eq. (2)). This reward function encodes the objective to
reach the goal as quickly as possible and to not crash into a wall; the concrete
values were found experimentally optimizing the performance of the vanilla DQN
algorithm.

We remark that one can view the above reward structure as a proxy for
the probability to reach the goal. We will consider both perspectives in our
experiments, as described next.

4.2 Experiments Setup

The policies (also: agents) in our experiments are trained using the different
variants of Algorithm 1. Specifically we run DQN and DQNPR, as well as two
variants each of our DSMC-based algorithms EID and EPR. The latter variants
arise from two different optimization objectives for the evaluation stages in EID
and EPR: the expected discounted accumulated reward, which is the same as
DRL is trained upon; vs. the probability to reach the goal, as an idealized eval-
uation objective not suited for training. We denote our algorithms using these
objectives with EIDR and EPRR for the former, and with EIDG and EPRG for
the latter.

For the evaluation stages we use DSMC with an error bound P (error >
εerr) < κ, where εerr = 0.05 and κ = 0.05, i.e., with a confidence of 95% that
the error is at most 0.05 [15]. Our partition P of the initial states I in Racetrack
considers each map cell with zero velocity to be a region on its own. For our
comparison to be as fair as possible, DQN and DQNPR use the same number of
training episodes as the DSMC-based methods, i.e., M = P +L·N (cf. Sect. 3.4).

We use a high noise level, namely 50%, for the Barto-big (Fig. 2a) and river
maps (Fig. 2b), to make the decision-making problems challenging. The maze
map (Fig. 2c), with its long and narrow paths, is already challenging with much
less uncertainty, so we set the noise to 10% there.

All compared approaches use the same neural network structure. We con-
sider multilayer perceptrons (MLPs), aka. feed-forward networks, with a ReLu
activation function for every single neuron. We specifically consider the same

DSMC Evaluation Stages 209

NN structure as [15], with input and output layers fixed by Racetrack, and two
hidden layers with 64 neurons each.

As deep reinforcement learning is known to be sensitive to different random
seeds (affecting the exploration of the state space), we perform multiple trainings
and report about the average result. Moreover, we fix the random seeds across
algorithms in individual runs, so that the first P episodes are equal. The detailed
hyperparameter settings can be found in Appendix A.

5 Results

We now analyze whether the inclusion of evaluation stages in the EID and EPR
algorithms can improve (i) local robustness and (ii) goal probability performance,
compared to the standard algorithms DQN and DQNPR. We first set the evalu-
ation objective to be identical to the expected-reward training objective (EIDR

and EPRR) and analyze whether local robustness is improved; second, we set the
evaluation objective to be the goal probability instead (EIDG and EPRG) and
analyze whether the policy’s performance for that objective (both on average
and local) improves by applying DSMC analysis after training.

5.1 Local Robustness (Deficiency (i))

Consider the heat maps in Fig. 3. For each cell on the map, we plot the expected
cumulative discounted reward – the return – when starting from that map cell
with zero velocity. In other words, the heat maps have one colored entry for
every initial state s0 ∈ I. We compute the return value for each s0 using DSMC,
with εerr = 0.01 and κ = 0.01, i.e., with a confidence of 99% that the error is at
most 0.01.

(a) DQN (b) DQNPR

(c) EIDR (d) EPRR

Fig. 3. Return per map cell on the River map. (Color figure online)

210 T. P. Gros et al.

Clearly, the intended improvement of local robustness is achieved by EIDR

and EPRR compared to DQN and DQNPR: the return of the algorithms with
evaluation stages is much better in specific areas of the map. This pertains
foremost to the bottom end of the map, far away from the goal at the top; and
to the “dead-end street” colored red in (a) and (b), where there is no direct
connection to the nearest goal and the agents have to temporarily increase the
distance to the goal. While the return of EIDR and EPRR may also seem low in
these critical parts, recall that the noise level here is 50% so it is not possible to
navigate through this map without a high crash risk.

(a) Return variance (b) Return average

Fig. 4. Variance and average of return on all maps.

Figure 4a summarizes these findings, for all maps, in terms of the variance of
the return across the map (the variance of return per map cell).

On the Maze and River maps, the variance of EIDR and EPRR is much smaller
than that of DQN and DQNPR, confirming their improved local robustness. The
variance reduction reaches up to about 50% compared to DQN/DQNPR. Among
the methods based on DSMC, EPRR slightly outperforms EIDR. On Barto-big,
the variance of DQN is comparable to that of EIDR and EPRR, which is due to
the simpler structure of that map, while for the other two maps the variance is
reduced by including DSMC evaluation stages.

Figure 4b shows that, on the Maze and River maps, the improved local robust-
ness also results in somewhat improved average return for EIDR and EPRR. This
shows that evaluation stages can also help with overall performance when chal-
lenging local sub-tasks are frequent.

Finally, consider Fig. 5, which confirms that the advantages observed above
are indeed due to more intense training in critical parts of the map. We show,
for each map cell, the number of times reinforcement learning considered a state
where the car was positioned in that cell. The training intensity of DQN is spread
fairly homogenously across the map (positions in the dead-end street are seen
more often merely because, in any run traversing those, the car needs to turn
around). In contrast, EPRR has a clear focus on the critical parts of the map
(which can be seen nicely when comparing Figs. 5c and 5d to Figs. 3a and 3b).

DSMC Evaluation Stages 211

(a) DQN (b) DQNPR

(c) EIDR (d) EPRR

Fig. 5. Number of times each cell was encountered during training on the River map.

5.2 Fostering Goal Probability (Deficiency (ii))

We now turn to deficiency (ii), goal probability performance when training on
expected reward. As discussed above, the reward structure is such that goal-
reaching is rewarded, but also punishes crashes into the wall. We now show that,
indeed, goal-reaching performance can be improved by introducing evaluation
stages. EIDG and EPRG improve the learning signal w.r.t. this objective. In
what follows, we compute the goal probability for each map cell – for each initial
state s0 ∈ I – using DSMC, again with εerr = 0.01 and κ = 0.01, i.e., with a
confidence of 99% that the error is at most 0.01.

(a) Across entire map (b) Selected regions (as in Figure 7)

Fig. 6. Average goal probability when training on expected reward, without (DQN and
DQNPR) vs. with (EIDG and EPRG) goal-probability evaluation stages.

Figure 6 shows the corresponding results, (a) for all maps across the entire
map, and (b) exemplarily for the Maze map, only for the critical regions. In
Fig. 6a, we see that, again, on the Maze and River maps our proposed methods
significantly increase the average goal probability. In Barto-big, this does not
happen due to the simpler structure of that map.

212 T. P. Gros et al.

(a) Maze.
(b) River.

Fig. 7. Selected regions (yellow) of the Maze and River maps, as used in Fig. 6b. (Color
figure online)

As one would expect, the improvement is higher in critical areas of the maps.
To illustrate this, Fig. 6b shows average goal probability for selected regions of
the Maze and River maps, as shown in Fig. 7. These regions are the “dead-end
streets” which the policy will need to back out from.

6 Conclusion and Future Work

Despite its enormous successes, deep reinforcement learning suffers from impor-
tant deficiencies in safety-critical systems. Apart from the general inscrutability
of neural networks, these include that (i) training on average performance mea-
sures lacks local robustness, and that (ii) safety-related objectives like goal prob-
ability are sparse and hence not themselves suited for training. We propose to
address (i) and (ii) through the incorporation of evaluation stages, which focus
the reinforcement learning process on areas of the state space where performance
according to an evaluation objective is poor. We observe that such evaluation
stages can be readily implemented based on a recently introduced tool for deep
statistical model checking [15]. Our experiments on Racetrack, a frequently used
benchmark for AI sequential decision-making algorithms [6,9,27,32,33], confirm
that this approach can work.

On the algorithmic side, there are various possibilities still to extend our
framework, in particular by combining it with other/additional deep reinforce-
ment learning algorithms. Double Q-learning [45], for example, may be promis-
ing given the lackluster performance of DQNPR in our experiments. Further,
the implementation of our framework on top of policy-based approaches is of
interest.

Apart from that, an important direction for future work is the broader empir-
ical exploration of our approach. A straightforward possibility are extensions of
Racetrack to include obstacles, traffic, fuel, etc. on a roadmap towards more
realistic abstractions of autonomous driving as outlined by [5]. But our app-
roach is of course not limited to Racetrack, and may in principle be applicable

DSMC Evaluation Stages 213

in arbitrary contexts where deep reinforcement learning is used. We believe that
safety-critical cyber-physical systems should be the prime target, seeing as (i)
and (ii) are key in that context, and seeing as the initial state partition required
by our approach can be naturally obtained by (coarse discretizations of) physical
location. In this context, a particular question to address will be the partition
granularity trade-off, between the amount of information available during eval-
uation stages, and the overhead for conducting them.

A Hyperparameters

References

1. Agostinelli, F., McAleer, S., Shmakov, A., Baldi, P.: Solving the Rubik’s cube with
deep reinforcement learning and search. Nat. Mach. Intell. 1, 356–363 (2019)

2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Thirty-Second AAAI Conference on Arti-
ficial Intelligence (2018)

3. Amit, R., Meir, R., Ciosek, K.: Discount factor as a regularizer in reinforcement
learning. In: International Conference on Machine Learning, pp. 269–278. PMLR
(2020)

214 T. P. Gros et al.

4. Avni, G., Bloem, R., Chatterjee, K., Henzinger, T.A., Könighofer, B., Pranger,
S.: Run-time optimization for learned controllers through quantitative games. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 630–649. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 36

5. Baier, C., et al.: Lab conditions for research on explainable automated decisions.
In: Heintz, F., Milano, M., O’Sullivan, B. (eds.) TAILOR 2020. LNCS (LNAI),
vol. 12641, pp. 83–90. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
73959-1 8

6. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic
programming. Artif. Intell. 72(1–2), 81–138 (1995)

7. Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and statistical model check-
ing for modestly nondeterministic models. In: Schmitt, J.B. (ed.) MMB&DFT
2012. LNCS, vol. 7201, pp. 249–252. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28540-0 20

8. Bonet, B., Geffner, H.: GPT: a tool for planning with uncertainty and partial
information. In: Proceedings of the IJCAI Workshop on Planning with Uncertainty
and Incomplete Information, pp. 82–87 (2001)

9. Bonet, B., Geffner, H.: Labeled RTDP: improving the convergence of real-time
dynamic programming. In: Proceedings of the International Conference on Auto-
mated Planning and Scheduling, pp. 12–21 (2003)

10. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89963-3 20

11. Ciosek, K., Whiteson, S.: Offer: off-environment reinforcement learning. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

12. Frank, J., Mannor, S., Precup, D.: Reinforcement learning in the presence of rare
events. In: Proceedings of the 25th International Conference on Machine Learning,
pp. 336–343 (2008)

13. Fujita, Y., Nagarajan, P., Kataoka, T., Ishikawa, T.: ChainerRL: a deep reinforce-
ment learning library. J. Mach. Learn. Res. 22(77), 1–14 (2021)

14. Gros, T.P., Groß, D., Gumhold, S., Hoffmann, J., Klauck, M., Steinmetz, M.: Trace-
Vis: towards visualization for deep statistical model checking. In: Proceedings of
the 9th International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation. From Verification to Explanation (2020)

15. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep sta-
tistical model checking. In: Proceedings of the 40th International Conference on
Formal Techniques for Distributed Objects, Components, and Systems (FORTE
2020) (2020). https://doi.org/10.1007/978-3-030-50086-3 6

16. Gros, T.P., Höller, D., Hoffmann, J., Wolf, V.: Tracking the race between deep
reinforcement learning and imitation learning. In: Gribaudo, M., Jansen, D.N.,
Remke, A. (eds.) QEST 2020. LNCS, vol. 12289, pp. 11–17. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59854-9 2

17. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. In: 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3389–3396. IEEE (2017)

18. Hare, J.: Dealing with sparse rewards in reinforcement learning. arXiv preprint
arXiv:1910.09281 (2019)

https://doi.org/10.1007/978-3-030-25540-4_36
https://doi.org/10.1007/978-3-030-73959-1_8
https://doi.org/10.1007/978-3-030-73959-1_8
https://doi.org/10.1007/978-3-642-28540-0_20
https://doi.org/10.1007/978-3-642-28540-0_20
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-030-50086-3_6
https://doi.org/10.1007/978-3-030-59854-9_2
http://arxiv.org/abs/1910.09281

DSMC Evaluation Stages 215

19. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

20. Hasanbeig, M., Abate, A., Kroening, D.: Logically-constrained reinforcement learn-
ing. arXiv preprint arXiv:1801.08099 (2018)

21. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

22. Jansen, N., Könighofer, B., Junges, S., Serban, A., Bloem, R.: Safe Reinforcement
Learning Using Probabilistic Shields (2020)

23. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.-P.: Safety-constrained
reinforcement learning for MDPs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 130–146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 8

24. Knox, W.B., Stone, P.: Reinforcement learning from human reward: discounting in
episodic tasks. In: 2012 IEEE RO-MAN: The 21st IEEE International Symposium
on Robot and Human Interactive Communication, pp. 878–885 (2012). https://
doi.org/10.1109/ROMAN.2012.6343862

25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NIPS, pp. 1097–1105 (2012)

26. Liu, C., Xu, X., Hu, D.: Multiobjective reinforcement learning: a comprehensive
overview. IEEE Trans. Syst. Man Cybern. Syst. 45(3), 385–398 (2014)

27. McMahan, H.B., Gordon, G.J.: Fast exact planning in Markov decision processes.
In: Proceedings of the International Conference on Automated Planning and
Scheduling, pp. 151–160 (2005)

28. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013). Accessed 15 Sept 2020

29. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518, 529–533 (2015)

30. Nazari, M., Oroojlooy, A., Snyder, L., Takac, M.: Reinforcement learning for solv-
ing the vehicle routing problem. In: Bengio, S., Wallach, H., Larochelle, H., Grau-
man, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 31, pp. 9839–9849. Curran Associates, Inc. (2018)

31. Ng, A.Y., Harada, D., Russell, S.J.: Policy invariance under reward transforma-
tions: theory and application to reward shaping. In: Proceedings of the 16th Inter-
national Conference on Machine Learning (ICML 1999), pp. 278–287 (1999)

32. Pineda, L.E., Lu, Y., Zilberstein, S., Goldman, C.V.: Fault-tolerant planning under
uncertainty. In: Twenty-Third International Joint Conference on Artificial Intelli-
gence, pp. 2350–2356 (2013)

33. Pineda, L.E., Zilberstein, S.: Planning under uncertainty using reduced models:
revisiting determinization. In: Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 24 (2014)

34. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. Wiley, New York (1994)

35. Riedmiller, M., et al.: Learning by playing solving sparse reward tasks from scratch.
In: International Conference on Machine Learning, pp. 4344–4353. PMLR (2018)

36. Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning
framework for autonomous driving. Electron. Imaging 2017(19), 70–76 (2017)

https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
http://arxiv.org/abs/1801.08099
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1109/ROMAN.2012.6343862
https://doi.org/10.1109/ROMAN.2012.6343862
http://arxiv.org/abs/1312.5602

216 T. P. Gros et al.

37. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. In:
Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Represen-
tations, ICLR (2016)

38. Schwartz, A.: A reinforcement learning method for maximizing undiscounted
rewards. In: Proceedings of the Tenth International Conference on Machine Learn-
ing, vol. 298, pp. 298–305 (1993)

39. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: International Conference on Computer Aided Verification, pp. 266–280
(2005)

40. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

41. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

42. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676), 354–359 (2017)

43. Stooke, A., Abbeel, P.: rlpyt: a research code base for deep reinforcement learning
in Pytorch. arXiv preprint arXiv:1909.01500 (2019)

44. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, Adaptive
Computation and Machine Learning, 2nd edn. The MIT Press, Cambridge (2018)

45. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
30 (2016)

46. Vinyals, O., et al.: Grandmaster level in StarCraft II using multi-agent reinforce-
ment learning. Nature 575, 350–354 (2019)

47. Younes, H.L.S., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical
probabilistic model checking: an empirical study. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 46–60. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24730-2 4

http://arxiv.org/abs/1909.01500
https://doi.org/10.1007/978-3-540-24730-2_4
https://doi.org/10.1007/978-3-540-24730-2_4

Active and Sparse Methods in Smoothed
Model Checking

Paul Piho(B) and Jane Hillston

University of Edinburgh, Edinburgh, UK
paul.piho@ed.ac.uk

Abstract. Smoothed model checking based on Gaussian process clas-
sification provides a powerful approach for statistical model checking
of parametric continuous time Markov chain models. The method con-
structs a model for the functional dependence of satisfaction probabil-
ity on the Markov chain parameters. This is done via Gaussian process
inference methods from a limited number of observations for different
parameter combinations. In this work we incorporate sparse variational
methods and active learning into the smoothed model checking setting.
We use these methods to improve the scalability of smoothed model
checking. In particular, we see that active learning-based ideas for iter-
atively querying the simulation model for observations can be used to
steer the model-checking to more informative areas of the parameter
space and thus improve sample efficiency. We demonstrate that online
extensions of sparse variational Gaussian process inference algorithms
provide a scalable method for implementing active learning approaches
for smoothed model checking.

1 Introduction

Stochastic modelling coupled with verification of logical properties via model
checking has provided useful insights into the behaviour of the stochastic mod-
els from epidemiology, systems biology and networked computer systems. A large
number of interesting models in these fields are too complex for the application
of exact model checking methods [13]. To improve the scalability of model check-
ing there has been significant work on statistical model checking that aims to
estimate the satisfaction probability of logical properties based on independently
sampled trajectories of a stochastic model [3].

This paper considers statistical model checking in the context of parametrised
continuous time Markov chain models. Statistical model checking methods have
generally considered single parametrisations of a model. Based on a large number
of independent sample trajectories, one can estimate the probability of the model
satisfying a specified logical property defined over individual sample trajectories.
In order to gain insight across the entire parameter space associated with a
model, it can be necessary to repeat the estimation procedures with different
parametrisations to cover the whole space, which leads to poor scalability.

c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 217–234, 2021.
https://doi.org/10.1007/978-3-030-85172-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-85172-9_12

218 P. Piho and J. Hillston

As an alternative, a model checking approach based on Gaussian process
classification, named smoothed model checking, was proposed in [6]. The main
result of that paper was to show that under mild conditions the function which
maps parameter values to satisfaction probabilities is smooth. Thus the problem
can be solved as a Gaussian process classification problem where the aim is to
estimate the function describing the satisfaction probability over the parame-
ter space. Model checking results, returning a label true or false, of individual
simulation trajectories are used as the training data to infer how the satisfac-
tion probability depends on the model parameters. This method can be used
to greatly reduce the number of simulation trajectories needed to estimate the
satisfaction probability in exchange for some accuracy.

There are two aspects that limit the speed of such model checking procedures.
Firstly, the computational cost of gathering the individual trajectories and sec-
ondly, the cost of (approximate) Gaussian process inference itself. Both benefit
from keeping the number of gathered trajectories as low as possible while min-
imising the impact a smaller set of training data has on the accuracy of the meth-
ods. In order to keep the gathered sample size small we propose a method based
on active learning. In particular, we make the observation that the parameter
space of models is usually constrained to physically reasonable ranges. However,
even when constrained to such ranges there can be large parts of the parame-
ter space where the probability of satisfying a formula undergoes little change.
Adaptively identifying parts of the parameter space where the satisfaction prob-
ability changes in order to decide where to concentrate the computational effort
leads to improved algorithms for smoothed model checking.

The main contribution of this paper is considering smoothed model checking
in a sparse online setting and proposing active learning strategies for query-
ing the parameter space of a model. We make use of state of the art sparse
variational Gaussian process inference methods and streaming variational infer-
ence with inducing points [8]. This combination of sparse inference methods and
active learning improves the scalability of smoothed model checking in two ways.
The use of sparse inference methods reduces the complexity of the underlying
Gaussian process inference, while active learning query methods improve the
sample efficiency by concentrating the model checking efforts to the parts of the
parameter space where the satisfaction probability undergoes most change.

2 Related Work

A wealth of literature exists on statistical model checking of stochastic systems.
The use of statistical methods in the domain of formal verification is motivated
by the fact that in order to perform statistical model checking it is only necessary
to be able to simulate the model. Thus these methods can be used for systems
where exact verification methods are infeasible including black-box systems [14].
In its classical formulation, this involves hypothesis testing [20] with respect to
the desired (or undesired) property based on independent trials, or in this case,
stochastic simulations.

Active and Sparse Methods in Smoothed Model Checking 219

In addition to the frequentist approaches based on hypothesis testing, there
have been Bayesian approaches [12] to estimate the satisfaction probability of a
given logical formula. Our work follows the approach presented in [6] where the
dependence of the satisfaction probability on model parameters is modelled as
a Gaussian process classification problem.

The problem of deciding where to concentrate the model checking efforts is
closely related to optimal experimental design. Experimental design problems
are commonly treated as optimisation problems where the goal is to allocate
resources in a way that allows the experimental goals to be reached more rapidly
and thus with smaller costs [19]. This idea is also known in the machine learning
literature as active learning [22]. The idea is to design learning algorithms that
interactively query an oracle to label new data points.

In the context of model checking, active learning was used in [7] to solve a
threshold synthesis problem which is closely related to the model checking prob-
lem considered in this paper. That approach used a base grid on the parameter
space for initial estimation. The estimates were then refined around values where
the satisfaction probability was close to a defined threshold. However, the thresh-
old for synthesis has to be defined a priori making the introduced active step
not applicable when we are interested in the satisfaction probability. We further
address the scalability of the ideas presented by the authors of [7] by considering
sparse approximation results for Gaussian process based model checking.

Finally, Bayesian optimisation is another example of active learning. Bayesian
optimisation methods refine the posterior distribution over the black-box objec-
tive function based on function evaluations. An example relevant to model check-
ing was given in [4] where Bayesian optimisation was used to optimise parameters
of stochastic models to maximise robustness of the given logical specification.

3 Background

3.1 Continuous Time Markov Chains

Stochastic models are widely used to model a variety of phenomena in natu-
ral and engineered systems. We focus on a type of stochastic model commonly
used in biological modelling, epidemiology and performance evaluation domains.
Specifically, we consider continuous time Markov chain models (CTMCs). To
define a CTMC we start by noting that it is a continuous-time stochastic pro-
cess and thus defined as an indexed collection of random variables {X}t∈R≥0 .
We consider CTMCs defined over a finite state space S with an |S| × |S| matrix
Q whose entries q(i, j) satisfy

1. 0 ≤ −q(i, i) < ∞ , 2. 0 ≤ q(i, j) for i �= j , 3.
∑

j q(i, j) = 0 .

A CTMC is then defined by the following: for time indices t1 < t2 . . . < tn+1

and states i1, i2, . . . , in+1 we have

P(Xtn+1 = in+1|Xtn
= in, . . . ,Xt1 = i1) = p(in+1; tn+1|in; tn)

220 P. Piho and J. Hillston

where p(j; t|i; s) is the solution to the following Kolmogorov forward equation

∂

∂t
p(j; t|i; s) =

∑

k

p(k; t|i; s)q(k, j), on (s,∞) with p(j; s|i; s) = δij

with δij being the Kronecker delta taking the value 1 if i and j are equal and the
value 0 otherwise. By convention the sample trajectories of CTMCs are taken
to be right-continuous.

In the rest of the paper we consider parametrised models Mx and assume
that the model M for a fixed parametrisation x ∈ R

k defines a CTMC. Thus,
the model M specifies a function mapping parameters x to generator matrix Q
of the underlying CTMC. A commonly studied special class of CTMC models
are population CTMCs where each state of the CTMC corresponds to a vector
of counts. These counts are used to model the aggregate counts of groups of
indistinguishable agents in a system. In biological modelling and epidemiology
such models are often defined as chemical reaction networks (CRN).

Example 1. Let us consider the following susceptible-infected-recovered (SIR)
model defined as a CRN

S + I
kI−→ I + I I

kR−−→ R

where S gives the number of susceptible, I the infected and R the recovered
individuals in the system. The first type of transition corresponds to infected
and susceptible individuals interacting, resulting in the number of infected indi-
viduals increasing and the number of susceptible decreasing. The second type of
transition corresponds to recovery of an infected individual and results in the
number of infected decreasing and the number of recovered increasing. The states
of the underlying CTMC keep track of the counts of different individuals in the
system. For the example let us set the initial conditions to (95, 5, 0)—at time 0
there are 95 susceptible, 5 infected and 0 recovered individuals in the system.
The parameters kI and kR give the infection and recovery rates respectively. We
revisit this example throughout the paper to illustrate the presented concepts.

3.2 Smoothed Model Checking

Smoothed model checking was introduced in [6] as a scalable method for statis-
tical model checking where Gaussian process classification methods were used to
infer the functional dependence between a parametrisation of a model and the
satisfaction probability given a logical specification.

As described in Sect. 3.1, suppose we have a model Mx parametrised by
vector of values x ∈ R

d such that the model M for a fixed parametrisation x
defines a CTMC. Additionally assume we have a logical property ϕ we want to
check against. The logical properties we consider here are defined as a mapping
from the time trajectories over the states of Mx to {0, 1} corresponding to
whether the property holds for a given sample trajectory of Mx or not. One way
to define such mappings would be, for example, to specify the properties in metric

Active and Sparse Methods in Smoothed Model Checking 221

interval temporal logic (MiTL) [15] or signal temporal logic (STL) [10] and map
the paths satisfying the properties to 1 and those not satisfying the properties to
0. Through sampling multiple trajectories for the same parametrisation we gain
an estimate of the satisfaction probability corresponding to the parametrisation.

With that in mind, a logical property ϕ with respect to Mx can be seen to
give rise to a Bernoulli random variable. The binary outcomes of the random
variable correspond to whether or not a randomly sampled trajectory of Mx

satisfies the property ϕ. We introduce the notation fϕ(x) for the parameter of
the said Bernoulli random variable given the model parameters x. In particular,
samples from the distribution Bernoulli(fϕ(x)) model whether a randomly sam-
pled trajectory of Mx satisfies ϕ—for a parameter value x the logical property
is said to be satisfied with probability fϕ(x).

A naive approach for estimating fϕ(x) at a given parametrisation x is to
gather a large number N of sample trajectories and give simple Monte Carlo
estimates for the fϕ(x) by dividing the number of trajectories where the property
holds by the total number of sampled trajectories N . An accurate estimate
requires a large number of samples. However, having such an estimate at a set
of given parametrisations does not provide us with a rigorous way to estimate
the satisfaction function at a nearby point.

In [6] the authors considered population CTMCs. It was shown that the
introduced satisfaction probability fϕ(x) is a smooth function of x under the
following conditions: the transition rates of the CTMC Mx depend smoothly
on the parameters x; and the transition rates depend polynomially on the state
vector X of the CTMC.

The result was exploited by treating the estimation of the satisfaction func-
tion fϕ(x) as a Gaussian process classification problem. The main benefit of
this approach is that, based on sampled model checking results, we can recon-
struct an approximation for the functional dependence between the parameters
and satisfaction probability. This makes it easy to make predictions about the
satisfaction probability at previously unseen parametrisations.

Simulating Mx we gather a finite set of observations D = {(xi, yi)|i =
1, · · · , n} where xi are the parametrisations of the model and yi correspond
to model checking output over single trajectories. For classification problems, a
Gaussian process prior with mean m and kernel k is placed over a latent function

gϕ(x) ∼ GP(m(x), k(x,x′)) .

Here, let us consider the standard squared exponential kernel defined by

k(x,x′) = a2 exp
(

−|x − x′|2
2l

)

where a2 is the amplitude and � is the length scale parameter governing how far
two distinct points have to be in order to be considered uncorrelated.

The function gϕ is then squashed through the standard logistic or probit
transformation σ so that the composition σ(gϕ(x)) takes values between 0 and 1.
The quantity σ(gϕ(x)) is interpreted as the probability that ϕ holds given model

222 P. Piho and J. Hillston

Fig. 1. Left is the baseline satisfaction probability surface. Satisfaction probability
estimated for parameters on a regular 20 × 20. At each parameter the estimate is based
on 3000 SSA trajectories. Right is the smoothed model checking satisfaction probability
surface. Training data is constructed from a set of 10 SSA trajectories at parameter
points on a regular 15 × 15 grid.

parametrisation x and thus estimates the probability fϕ(x) that a simulation
trajectory for parameters x satisfies the property ϕ.

The general aim of Gaussian process inference is to find the distribution
p(gϕ(x∗)|D) over the values gϕ at some test point x∗ given the set of training
observations D. This distribution is then used to produce a probabilistic predic-
tion at parameter x∗ of σ(gϕ(x∗)) ≈ fϕ(x∗). We present details of inference in
the next section. This section is ended by returning to the running SIR example.

Example 2. The property we consider is the following: there always exists an
infected agent in the population in the time interval (0.0, 100.0) and in the
time interval (100.0, 120.0) the number of infected becomes 0. Constraining the
parameters to the ranges kI ∈ [0.005, 0.3] and kR ∈ [0.005, 0.3] gives satisfaction
probabilities as depicted in Fig. 1. There each estimate on the 20 × 20 grid is
calculated based on 3000 stochastic simulation algorithm (SSA) sample runs of
the model. For comparison, Fig. 1 also gives the results of the smoothed model
checking where 10 sample trajectories are drawn for each parameter on the
12 × 12 grid. The smoothed model checking approximation for the model check-
ing problem shows good agreement with the baseline surface and is much faster
to perform.

3.3 Variational Inference with Inducing Points

In order to infer the latent Gaussian process gϕ based on training data D we
have to deal with two problems. Firstly the inference is analytically intractable
due to the non-Gaussian likelihood model provided by Bernoulli observations. To
counter this there exists a wealth of approximate inference schemes like Laplace
approximation, expectation propagation [11,16], and variational inference meth-
ods [23]. Here we consider variational inference. The second problem is that the
methods for inference in Gaussian process models have cubic complexity in the

Active and Sparse Methods in Smoothed Model Checking 223

number of training cases. To address that, there exist sparse approximations
based on inducing variables. Sparse variational methods [9,23] are popular meth-
ods for reducing the complexity of Gaussian process inference by constructing an
approximation based on a small set of inducing points that are typically selected
from training data. In this section we detail the inference procedure.

Variational inference methods choose a parametric class of variational dis-
tributions for the posterior and minimising the KL-divergence between the real
posterior and the approximate posterior. To accommodate large training data
sets we work with sparse variational methods. We start by defining the prior
distribution

p(gϕ,u) = N
([

gϕ

u

] ∣
∣
∣
∣
∣
0,

[
Knn Knm

KT
nm Kmm

])

where gϕ is a vector of n latent function values [gϕ(x1), · · · , gϕ(xn)]. Similarly,
u is a vector of m latent function values [gϕ(z1), · · · , gϕ(zm)] evaluated at cho-
sen inducing points zi. The matrices Knn, Knm and Kmm are defined by the
kernel function. In particular, the (i, j)-th element of the matrix Knn is given
by k(xi,xj). Similarly, Knm gives the kernel matrix between the training points
x and the inducing points z and Kmm gives the kernel matrix between the loca-
tions of inducing points. We then fit the variational posterior at those points
rather than the whole set of training data points. The assumption we are mak-
ing is that p(gϕ(x∗)|gϕ,u) = p(gϕ(x∗)|u). That is, the inducing values u are a
sufficient statistic for a function value at a test point x∗.

Under this assumption we make predictions at a test point x∗ as follows:

p(gϕ(x∗)|y) =
∫

p(gϕ(x∗),u|y)du =
∫

p(gϕ(x∗)|u)p(u|y)du .

Thus, we need posterior distribution p(u|y) at the inducing points. Here, as
mentioned, we consider variational approximations where p(u|y) is approximated
by a multivariate Gaussian q(u) making the expression for p(gϕ(x∗)|y) tractable.
Finding the parameters of q(u) is done by minimising the KL divergence between
the approximate posterior q(u) and true posterior p(u|y). In particular, we have

DKL(q(u), p(u|y)) =
∫

q(u) log
q(u)

p(u|y)
du = −〈

log
p(y,u)
q(u)

〉
q(u)

+ log p(y) (1)

where 〈·〉q(u) denotes the expectation with respect to distribution q(u). The
term log p(y) is known as the log marginal likelihood. In the following we use
the well-known Jensen’s inequality1 to derive a lower bound for the log marginal
likelihood. As log function is concave we get the following:

log p(y) = log
∫

p(y,u)du = log
〈p(y,u)

q(u)

〉

q(u)
≥

〈
log

p(y,u)
q(u)

〉

q(u)

= 〈log p(y|u)〉q(u) − DKL(q(u), p(u)) . (2)

1 For a concave function f and a random variable X we have the following well-known
inequality: f〈X〉 ≥ 〈f(X)〉.

224 P. Piho and J. Hillston

The right-hand side of the inequality 2 is known as the evidence-based lower
bound or ELBO. Now note that the first term in the expression for KL-divergence
in Eq. 1 is exactly the derived ELBO. As the KL-divergence is always non-
negative and ELBO serves as a lower bound for the log marginal likelihood p(y),
then maximising the ELBO minimises the KL-divergence between the approxi-
mate and true posteriors q(u) and p(u|y).

Choosing our approximating family of variational distribution to be multi-
variate Gaussian makes the KL term in ELBO easy to evaluate. The integral in
the expectation term 〈log p(y|u)〉q(u) can be computed via numerical approxima-
tion schemes making it possible to use ELBO as a utility function for optimising
the parameters of the approximate posterior q(u) via gradient ascent. When q(u)
is chosen to be a multivariate Gaussian these parameters are the mean μ and
covariance matrix Σ. With the approximation p(u|y) ≈ q(u) the predictions are
given by the integral

p(gϕ(x∗)|y) ≈
∫

p(gϕ(x∗)|u)q(u)du .

This can be shown [18] to be a probability density function of a Normal distri-
bution with the following mean μ and variance σ2

μ∗ = k(x∗,u)K−1
mmμ

σ2
∗ = k(x∗,x∗) − k(x∗,u)K−1

mm [Kmm − Σ]−1 [
k(x∗,u)K−1

mm

]T
.

Note that the terms in ELBO depend on the chosen kernel and in particu-
lar the kernel hyperparameters. As mentioned, the ELBO is maximised directly
via gradient ascent with respect to the parameters of the variational distribu-
tion. The kernel hyperparameter can be tuned in the same fashion. A common
approximate technique we use in this paper is to interleave the optimisation
steps in the variational distribution parameters with optimisation steps in the
hyperparameters.

We have made the assumption that the posterior distribution is fitted at
a selection of inducing points z such that number of inducing points is much
smaller than the whole training data set. There exists a variety of possible meth-
ods to select the inducing points. For simplicity in this paper we use a regular
grid over the parameter space as our inducing points.

3.4 Active Learning

Active learning methods in machine learning are a family of methods which
may query data instances to be labelled for training by an oracle [21]. The
fundamental question asked by active learning research is whether or not these
methods can achieve higher accuracy than passive methods with fewer labelled
examples. This is closely related to the established area of optimal experimental
design, where the goal is to allocate experimental resources in a way that reduces
uncertainty about a quantity or function of interest [19,22].

Active and Sparse Methods in Smoothed Model Checking 225

In the case of Gaussian process classification problems like smoothed model
checking, an active learning procedure can be set up as follows. An active learner
consists of a classifier learning algorithm A and a query function Q. The query
function is used to select an unlabelled sample u from the pool of unlabelled
samples U . This sample is then labelled by an oracle. In the case of stochastic
model checking, the pool of unlabelled samples U corresponds to a subset of the
possible parametrisations for the model. An oracle is implemented by running the
stochastic simulation for the selected parametrisation and then model checking
the resulting trajectory.

The above describes a pool-based active learner. Common formulations of
such pool-based learners select a single unlabelled sample at each iteration to be
sampled. However, in many applications it is more natural to acquire labels for
multiple training instances at once. In particular, the query function Q selects
a subset U ⊂ U . We see in the next section that the sparse inference methods
can be extended to a setting where batches of training data become available
over time making it natural to decide on a query function that selects batches
of queries. The main difficulty of selecting a batch of queries instead of a single
query is that the instances in the subset U need to be both informative and
diverse in order to make the best use of the available labelling resources.

4 Active Model Checking

The shape and properties of the functional dependence of satisfaction for a logical
specification with respect to parameters are generally not known a priori and
can exhibit a variety of properties. For example, in the running example much of
the sampling was performed in completely flat regions of the parameter space.
Thus the key challenge addressed in this section is where to sample to make the
posterior estimates as informative as possible about the underlying mechanics.
We aim to decide on the regions where the satisfaction probability surface is not
flat and concentrate most of our model checking effort there. To that end we
introduce the main contribution of this paper—active sparse model checking.

The general outline of the procedure is given by Algorithm 1. The first step,
given by the procedure generate initial data, is to simulate the initial data set
Dold via stochastic simulation of the CTMC model M for a sample of the param-
eter space X and checking whether or not the individual trajectories satisfy the
property ϕ or not. The initial set of parameter samples can, for example, be a
regular grid or sampled uniformly from the parameter space.

In general the inducing points are then chosen based on the results Dold

and adjusted as new data is seen. However, for simplicity we are going to set
the inducing points so that they form a regular grid over the parameter space
and keep them fixed throughout the active iterations. The posterior at inducing
points zv is then initialised as a multivariate Gaussian q(v) = N (0, I)) with 0
mean and identity covariance matrix. Each iteration of the model checking loop
will first update the variational posterior q(v) via update variational . The details
of how this is done in a sparse streaming setting are given in Sect. 4.1. Secondly,

226 P. Piho and J. Hillston

Algorithm 1. Active smoothed model checking
1: procedure Model checking(model M, property ϕ, parameter space X)
2: Dold ← generate initial data(M, ϕ, X)
3: Dnew ← Dold

4: zu ← inducing points(Dold)
5: zv ← zu
6: q(v) ← initialise posterior(v)
7: while true do
8: q(v) ← update variational(q(u),v, Dnew , Dold)
9: Dold ← Dold ∪ Dnew

10: Dnew ← query new(q(v), M, ϕ, X)
11: end while
12: return q(v)
13: end procedure

each iteration uses the fitted approximate posterior to query new points in the
parameter space to perform model checking through the query new procedure.
The proposed query functions are discussed in Sect. 4.2.

There are two issues to be resolved before the procedure can be implemented.
First is that the direct use of ELBO as introduced in Sect. 3.3 does not suffice
in the online setting where new data becomes available in batches. Second is
the challenge of choosing an appropriate query function that is going to suggest
more points in the parameter space at which to gather more model checking
data. These will be addressed in the following sections.

4.1 Streaming Setting

In order to incorporate active learning ideas into the Gaussian process based
model checking approach we need to address the problem that not all of the
training data is available a priori. For our purposes it is important to be able
to conduct inference in a streaming setting where data is gradually added to
the model. A naive approach would refit a Gaussian process from scratch every
time a new batch of data arrives. However, with potentially large data sets this
becomes infeasible. To perform sparse variational inference in a scalable way the
method needs to avoid revisiting previously considered data points. In particular,
we consider the method proposed in [8] that derives a correction to ELBO that
allows us to incorporate streaming data incrementally into the posterior estimate.

The main question is how to update the variational approximation to the
posterior at time step n, denoted qold(u), to form an approximation at the time
step n + 1, denoted qnew (v). In the following we note the variational posteriors
qold and qnew at gϕ and inducing values u and v, respectively, are approximations
to the true posteriors given observations yold and ynew . It was shown in [8] that
the lower bound of log p(ynew |yold) becomes

Active and Sparse Methods in Smoothed Model Checking 227

∫

qnew (gϕ,v) log p(ynew |gϕ,v)d(gϕ,v) − DKL(qnew (v), p(v))

−DKL(qnew (u), qold (u)) + DKL(qnew (u), p(u)) .

The above can be interpreted as follows: the first two terms give the ELBO under
the assumption that the new data seen at iteration n + 1 is the whole data set;
the final two terms take into account the old likelihood through the approximate
posteriors at old inducing points and the prior p(u). This allows us to implement
an online version of the smoothed model checking where the observation data
arrives in batches.

4.2 Query Strategies

As discussed in Sect. 3.4, in order to implement an active learning method for
model checking we need to decide which new parameters are tested based on the
existing information. In the following we consider two query strategies for active
model checking.

Predictive Variance. The first approach is a commonly used experimental
design strategy which aims to minimise the predictive variance. Recall that in
smoothed model checking for a property ϕ we fit a latent Gaussian process gϕ.
The posterior satisfaction probability for parameter x∗ given the GP gϕ is then
calculated via

p(y∗ = 1|D,x∗) =
∫

σ(gϕ(x∗))p(gϕ(x∗)|D)dgϕ(x∗) .

The above can also be seen as the expectation of σ(gϕ(x∗) with respect to the
distribution gϕ(x∗), denoted E [σ(gϕ(x∗)]. Similarly, we can consider the variance
of this estimate

E
[
σ(gϕ(x∗)2

] − E [σ(gϕ(x∗)]
2

.

Our aim is then to iteratively train the Gaussian process model so that predictive
variance over the parameter space is minimised.

Before giving the outline of the proposed procedure we address the issue of
redundancy in the query points. As pointed out in Sect. 3.4, simply taking a set
of points with the highest predictive variance leads to querying parameters that
are clustered together. We can overcome this problem by clustering the pool of
unlabelled samples U from which the query choice is made. In particular, the
points with the highest predictive variance are chosen from a pool of samples
where the redundancy is already reduced. Informally, this leads to the following
basic outline of the procedure:

1. Sample an initial set of training points or parametrisations x of the model
(via uniform or Latin hypercube sampling or taking points on a regular grid)
and conduct model checking based on sampled trajectories. These points are
used to fit the first iteration of the Gaussian process model.

228 P. Piho and J. Hillston

2. For the next iteration we randomly sample another set of points U and cluster
them via regular kmeans clustering algorithm. From the set of cluster centres
Uk the query function Q selects a set of points for model checking. The query
function is simply defined by taking the subset U∗ of cluster centres Uk where
the predictive variance, as defined above, is the highest. This concentrates the
sampling to points where the model is most uncertain about its prediction.

3. The points in U∗ are labelled by simulating the model for the parametrisa-
tions in U∗ and checking the resulting trajectories against the logic specifica-
tion ϕ. The results are incorporated into the Gaussian process model via the
streaming method discussed in Sect. 4.1.

4. Repeat points 2 and 3 until a set computational budget is exhausted.

Predictive Gradient. The second strategy we consider is based on the predic-
tive mean ḡϕ(x) of the Gaussian process. Our aim is to concentrate the sampling
at the locations where the predictive mean undergoes the most rapid change.
This requires gradients of the predictive mean.

We recall from Sect. 3.3 that for a variational posterior q(u) with mean μ
and covariance Σ, the posterior mean at a point x is given by

ḡϕ(x) = k(x, zu)K−1
mmμ

def= k(x, zu)α .

Only the first part, the kernel function, depends on x. Thus, in order to get the
derivative of the predictive mean we need to differentiate k(x, zu). Recall that
in this paper we chose to work with the squared exponential kernel given by

k(x, zui
) = exp

(

−|x − zui
|2

2�

)

.

We have used zui
to denote a single inducing point in the set of inducing points

zu. Thus, the derivative of k(x, zui
) with respect to x is given by

dk(x, zui
)

dx
= −x − zui

�
exp

(

−|x − zui
|2

2�

)

= −x − zui

�
k(x, zui

) . (3)

Equation 3 is given for a single inducing point zui
. In order to compute the

derivative of the posterior mean we need to concatenate this derivative for all m
inducing points. Thus, we get

dḡϕ(x)
dx

= −�−1

⎡

⎣
x − zu1

· · ·
x − zum

⎤

⎦ (k(x, zu) α)

where denotes element-wise multiplication. Given this we can proceed as in
the case of the predictive variance. The only change is that instead of considering
the predictive variance for each sampled set of parameters we calculate the norm
of dḡϕ(x)

dx and define the query function to choose a subset U∗ of cluster centres
Uk with the highest norms.

Active and Sparse Methods in Smoothed Model Checking 229

Fig. 2. Mean satisfaction probability surface for sparse smoothed model checking.
Inducing points are set as a regular 7 × 7 grid. Training data is constructed from a
set of 10 SSA trajectories at parameter points on a 15 × 15 grid.

4.3 Implementation

The prototype implementation in written in the Julia programming language
and makes use of the tools provided as part of Julia Gaussian Processes reposi-
tories [1] to set up the Gaussian process models. The variational inference-based
fitting which maximises the ELBO with respect to parameters of the posterior
distributions as well as the kernel hyperparameters was implemented for all of
the sparse methods. For the standard smoothed model checking we use the U-
Check tool [5] available on GitHub [2]. The CTMC models are defined as CRNs
with tools provided as part of the SciML ecosystem for scientific simulations [17].
The simulations were carried out on a laptop with Intel i7-10750H CPU.

4.4 Results

In this section we evaluate the proposed active learning methods for model check-
ing on the running SIR example. The methods are compared to the baseline naive
stochastic simulation-based model checking and smoothed model checking with-
out the sparse approximation and the active step. We present several metrics
for comparing the smoothed model checking results with the empirical mean
based on stochastic simulation. The first is the mean and standard deviation
of the difference between the mean probability predicted by the fitted Gaussian
processes and the empirical mean from the stochastic simulation results at each
of the points on the 20× 20 grid. Secondly, we consider the maximum difference
between the predicted mean probability and the naive empirical mean. Finally,

we give the root-mean-square error (RMSE)
√

1
N

∑(
ḡϕ(xi) − f̄ϕ(xi)

)2 where
ḡϕ(xi) is the predicted mean satisfaction probability for parametrisation xi. We
denote by f̄ϕ(xi) the empirical estimate of the satisfaction probability at xi given
3000 sample trajectories.

In the active learning experiments we start with a 12×12 grid followed by an
active iteration where an additional 81 parameter points are chosen to refine the

230 P. Piho and J. Hillston

Table 1. Comparison of accuracy for smoothed model checking and the sparse and
active learning extensions. All of the smoothed model checking methods are assigned
the same computational budget of 225 parameter values with training data constructed
from 10 SSA trajectories of the SIR model at each parametrisation. For smoothed MC
and sparse smoothed MC the parameters are considered on a regular grid.

Method Error mean/var Maximum RMSE

Smoothed MC (U-Check) (0.044, 0.042) 0.166 0.666

Sparse smoothed MC (0.042, 0.036) 0.147 0.6

Active sparse smoothed MC

Predictive variance (0.033, 0.029) 0.131 0.479

Predictive gradient (0.03,0.026) 0.14 0.436

Random sampling (0.049, 0.039) 0.149 0.681

Table 2. Comparison of computation times (in seconds) for smoothed model checking
and the sparse and active learning extensions. The hyperparameter tuning time is
included in the inference column.

Method SSA Inference Active query Total

Naive statistical MC 191.5 N/A N/A 191.5

Smoothed MC (U-Check tool) 0.21 16.8 N/A 17.0

Sparse smoothed MC 0.48 4.1 N/A 4.5

Active sparse smoothed MC

Predictive variance 0.57 5.7 0.003 6.2

Predictive gradient 0.55 3.1 0.2 3.9

Random sampling 0.60 2.9 0.00 3.5

approximation for a total of 225 training points. At each parameter point the
model checking is conducted for 10 sample trajectories. The inducing points are
initialised by choosing a regular 7× 7 grid and kept constant for the remainder
of the fitting procedure. Similarly we present the results for sparse smoothed
model checking for a 15 × 15 grid with the 7× 7 grid of inducing points, as well
as smoothed model checking where inducing points are not chosen.

Figure 2 gives the mean satisfaction probability surface based on the fitted
sparse Gaussian process. Figure 3 presents the evolution of the predictive mean
surface through two active learning iterations. All figures are accompanied by
the scatter plots showing where the samples were drawn.

The results for accuracy are summarised in Tables 1 and 2. Table 1 gives the
comparisons for each point on the 20 × 20 grid where the naive model checking
was conducted and satisfaction probability estimates exceeding 0.02. This is done
to concentrate the analysis to the parts of the parameter space where the surface
is not completely flat. As expected, the main benefit of the sparse methods comes
from significant reductions in computation costs. Surprisingly however, the stan-

Active and Sparse Methods in Smoothed Model Checking 231

(a) First iteration.

(b) Second iteration. Predictive variance-based query func-
tion.

(c) Second iteration. Predictive mean gradient-based query
function.

Fig. 3. Mean satisfaction probability surfaces for the active and sparse smoothed model
checking methods with 2 iterations. The first iteration of the active learning-based
methods fits the Gaussian process inference model based on 10 model checking results
for each parameter on a regular 12 × 12 grid. The active step is then used to exhaust
the total computational budget of 225 parameters and refine the approximation.

dard sparse method without active step performs better than the method pro-
vided by the U-Check tool with respect to the error metrics considered. The rea-
sons for this may be the differences in the recovered hyperparameters—notably,
amplitude ≈2.7 for U-Check versus ≈4.5 for the sparse methods. These differ-
ences can be attributed to different methods for tuning the hyperparameters as
well as the sparsity assumption. Note that the active methods with predictive

232 P. Piho and J. Hillston

variance and gradient-based query functions provide further improvements in
the approximation compared to sparse model checking without an active step.

When it comes to computation time, it has to be noted that one of the down-
sides of directly optimising the variational posterior parameters with respect to
ELBO by gradient ascent means that choosing a step size for the optimiser is
not always trivial. The step size affects the rate of convergence and can have
significant effects on the computation times. Hence work into the computational
robustness of the variational inference methods in the context of model checking
as well as comparisons with other approximate inference methods like sparse
expectation propagation are a direction of further research.

5 Conclusions

In this paper we applied sparse approximation and active learning to smoothed
model checking. By leveraging existing sparse approximations, we improved scal-
ability of the inference algorithms for Gaussian process classification correspond-
ing to the smoothed model checking problem. Additionally, we showed that by
concentrating the sampling to high variance or high predictive gradient areas
of the parameter space, we improved the resulting approximation compared to
sparse models with uniform or grid-based sampling of model parameters. When
compared to the standard smoothed model checking approach with no inducing
point approximation and no active step, our method significantly speeds up the
inference procedure while attempting to reduce errors inherent in sparse approx-
imations. This aligns with the pre-existing results from active learning literature
which aim to construct learning algorithms that actively query for observations
in order to improve accuracy while keeping the number of observations needed
to a minimum.

As further work, we aim to refine our query methods and make a comparison
with other existing methods in the active learning literature. Secondly, we plan
to link the choice of inducing points to the active query methods more directly.
In particular, we will test if the inducing points, and perhaps the underlying
kernel parameters, can be effectively reconfigured through active iterations. This
would further improve the approximation to the satisfaction probability surface
at parts of the parameter space where satisfaction probability undergoes change.
Finally we will consider alternative kernel functions. The kernel function chosen
in this paper is a standard first approach in many settings but is best suited
for modelling very smooth functions—not necessarily the case with satisfaction
probability surfaces for parametric CTMCs.

References

1. Gaussian processes for machine learning in Julia. https://github.com/Julia
GaussianProcesses. Accessed 07 May 2021

2. U-check tool. https://github.com/dmilios/U-check. Accessed 05 July 2021

https://github.com/JuliaGaussianProcesses
https://github.com/JuliaGaussianProcesses
https://github.com/dmilios/U-check

Active and Sparse Methods in Smoothed Model Checking 233

3. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1-6:39 (2018)

4. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic
models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25
(2015)

5. Bortolussi, L., Milios, D., Sanguinetti, G.: U-check: model checking and parameter
synthesis under uncertainty. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015.
LNCS, vol. 9259, pp. 89–104. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-22264-6 6

6. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

7. Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear tem-
poral properties of stochastic models. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 396–413. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 23

8. Bui, T.D., Nguyen, C.V., Turner, R.E.: Streaming sparse Gaussian process approx-
imations. In: Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, pp. 3299–3307 (2017)

9. Csato, L., Opper, M.: Sparse online Gaussian processes. Neural Comput. 14, 641–
668 (2002)

10. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

11. Hernandez-Lobato, D., Hernandez-Lobato, J.M.: Scalable Gaussian process classi-
fication via expectation propagation. In: Gretton, A., Robert, C.C. (eds.) Proceed-
ings of the 19th International Conference on Artificial Intelligence and Statistics
(2016). Proceedings of Machine Learning Research, vol. 51, pp. 168–176. PMLR

12. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
Bayesian approach to model checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03845-7 15

13. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

14. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statis-
tical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 23

15. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

16. Minka, T.P.: Expectation propagation for approximate Bayesian inference. In:
Breese, J.S., Koller, D. (eds.) UAI: Proceedings of the 17th Conference in Uncer-
tainty in Artificial Intelligence, pp. 362–369. Morgan Kaufmann (2001)

17. Rackauckas, C., Nie, Q.: Differential equations.jl-a performant and feature-rich
ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5(1)
(2017)

18. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning.
Adaptive Computation and Machine Learning. MIT Press, Cambridge (2006)

https://doi.org/10.1007/978-3-319-22264-6_6
https://doi.org/10.1007/978-3-319-22264-6_6
https://doi.org/10.1007/978-3-319-89963-3_23
https://doi.org/10.1007/978-3-319-89963-3_23
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-03845-7_15
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12

234 P. Piho and J. Hillston

19. Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer
Experiments. Springer Series in Statistics, Springer, New York (2003). https://doi.
org/10.1007/978-1-4757-3799-8

20. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
9 16

21. Settles, B.: From theories to queries. In: Active Learning and Experimental Design
workshop, In conjunction with AISTATS. JMLR Proceedings, vol. 16, pp. 1–18.
JMLR.org (2011). http://proceedings.mlr.press/v16/settles11a/settles11a.pdf

22. Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning, Morgan & Claypool Publishers (2012). https://doi.org/10.
2200/S00429ED1V01Y201207AIM018

23. Titsias, M.K.: Variational learning of inducing variables in sparse gaussian pro-
cesses. In: Dyk, D.A.V., Welling, M. (eds.) Proceedings of the Twelfth International
Conference on Artificial Intelligence and Statistics, AISTATS. JMLR Proceedings,
vol. 5, pp. 567–574 (2009)

https://doi.org/10.1007/978-1-4757-3799-8
https://doi.org/10.1007/978-1-4757-3799-8
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
http://proceedings.mlr.press/v16/settles11a/settles11a.pdf
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.2200/S00429ED1V01Y201207AIM018

Safe Learning for Near-Optimal
Scheduling

Damien Busatto-Gaston1 , Debraj Chakraborty1 , Shibashis Guha2(B) ,
Guillermo A. Pérez3 , and Jean-François Raskin1

1 Université libre de Bruxelles, Brussels, Belgium
2 Tata Institute of Fundamental Research, Mumbai, India

shibashis@tifr.res.in
3 University of Antwerp – Flanders Make, Antwerp, Belgium

Abstract. In this paper, we investigate the combination of synthesis,
model-based learning, and online sampling techniques to obtain safe
and near-optimal schedulers for a preemptible task scheduling problem.
Our algorithms can handle Markov decision processes (MDPs) that have
1020 states and beyond which cannot be handled with state-of-the art
probabilistic model-checkers. We provide probably approximately correct
(PAC) guarantees for learning the model. Additionally, we extend Monte-
Carlo tree search with advice, computed using safety games or obtained
using the earliest-deadline-first scheduler, to safely explore the learned
model online. Finally, we implemented and compared our algorithms
empirically against shielded deep Q-learning on large task systems.

Keywords: Model-based learning · Monte-Carlo tree search · Task
scheduling

1 Introduction

In this paper, we show how to combine synthesis, model-based learning, and
online sampling techniques to solve a scheduling problem featuring both hard and
soft constraints. We investigate solutions to this problem both from a theoretical
and from a more pragmatic point of view. On the theoretical side, we show how
safety guarantees (as understood in formal verification) can be combined with
guarantees offered by the probably approximately correct (PAC) learning frame-
work [23]. On the pragmatic side, we show how safety guarantees obtained from
automatic synthesis can be combined with Monte-Carlo tree search (MCTS) [20]
to offer a scalable and practical solution to solve the scheduling problem at hand.

The scheduling problem that we consider is defined as follows. A task system
is composed of a set of n preemptible tasks (τi)i∈[n] partitioned into a set F of

This work was supported by the ARC “Non-Zero Sum Game Graphs” project
(Fédération Wallonie-Bruxelles), the EOS “Verilearn” project (F.R.S.-FNRS & FWO),
and the FWO “SAILor” project (G030020N).

c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 235–254, 2021.
https://doi.org/10.1007/978-3-030-85172-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_13&domain=pdf
http://orcid.org/0000-0002-7266-0927
http://orcid.org/0000-0003-0978-4457
http://orcid.org/0000-0002-9814-6651
http://orcid.org/0000-0002-1200-4952
http://orcid.org/0000-0002-3673-1097
https://doi.org/10.1007/978-3-030-85172-9_13

236 D. Busatto-Gaston et al.

soft tasks and a set H of hard tasks. Time is assumed to be discrete and measured
e.g. in CPU ticks. Each task τi generates an infinite number of instances τi,j ,
called jobs, with j = 1, 2, . . . Jobs generated by both hard and soft tasks are
equipped with deadlines, which are relative to the respective arrival times of
the jobs in the system. The computation time requirements of the jobs follow a
discrete probability distribution, and are unknown to the scheduler but upper
bounded by their relative deadline. Jobs generated by hard tasks must complete
before their respective deadlines. For jobs generated by soft tasks, deadline misses
result in a penalty/cost. The tasks are assumed to be independent and generated
stochastically: the occurrence of a new job of one task does not depend on the
occurrences of jobs of other tasks, and both the inter-arrival and computation
times of jobs are independent random variables. The scheduling problem consists
in finding a scheduler, i.e. a function that associates, to all CPU ticks, a task
that must run at that moment; in order to: (i) avoid deadline misses by hard
tasks; and (ii) minimise the mean cost of deadline misses by soft tasks.

In [13], we modelled the semantics of the task system using a Markov decision
process (MDP) and posed the problem of computing an optimal and safe sched-
uler. However, that work assumes that the distribution of all tasks is known a
priori which may be unrealistic. Here, we investigate learning techniques to build
algorithms that can schedule safely and optimally a set of hard and soft tasks if
only the deadlines and the domains of the distributions describing the tasks of
the system are known a priori and not the exact distributions. This is a more
realistic assumption. Our motivation was also to investigate the joint applica-
tion of both synthesis techniques coming from the field of formal verification and
learning techniques on an understandable yet challenging setting.

Contributions. First, we show the distributions underlying a task system with
only soft tasks are efficiently PAC learnable: by executing the task system for a
polynomial number of steps, enough samples can be collected to infer ε-accurate
approximations of the distributions with high probability (Theorem 1).

Then, we consider the general case of systems with both hard and soft
tasks. Here, safe PAC learning is not always possible, and we identify two
algorithmically-checkable sufficient conditions for task systems to be safely learn-
able (Theorems 2 and 3). These crucially depend on the underlying MDP being
a single maximal end-component, as is the case in our setting (Lemma 2). Subse-
quently, we can use robustness results on MDPs to compute or learn near-optimal
safe strategies from the learnt models (Theorem 4).

Third, in order to evaluate the relevance of our algorithms, we present exper-
iments of a prototype implementation. These empirically validate the efficient
PAC guarantees. Unfortunately, the learnt models are often too large for the
probabilistic model-checking tools. In contrast, the MCTS-based algorithm scales
to larger examples: e.g. we learn safe scheduling strategies for systems with more
than 1020 states. Our experiments also show that a strategy obtained using deep
Q-learning [2,18] by assigning high costs to missing deadlines of hard tasks does
not respect safety, even if one learns for a long period of time and the deadline-
miss costs of hard tasks are very high (cf. [1]).

Safe Learning for Near-Optimal Scheduling 237

Related Works. In [13], we introduced the scheduling problem considered here
but made the assumption that the underlying distributions of the tasks are
known. We drop this assumption here and provide learning algorithms. In [1], the
framework to combine safety via shielding and model-free reinforcement learning
is introduced and applied to several examples using table-based Q-learning as
well as deep RL. In [3], shield synthesis is studied for long-run objective guaran-
tees instead of safety requirements. Unlike our work, the transition probabilities
on MDPs in both [1] and [3] are assumed to be known. We observe that [1]
and [3] do not provide model-based learning and PAC guarantees. While some
pre-shielding literature does consider unknown MDPs (see, e.g. [12]), we are not
aware of PAC-learning works that focus on scheduling problems.

In [16], we studied a framework to mix reactive synthesis and model-based
reinforcement learning for mean-payoff with PAC guarantees. There, the learning
algorithm estimates the probabilities on the transitions of the MDP. In our
approach, we do not estimate these probabilities directly from the MDP, but
learn probabilities for the individual tasks in the task system. The efficient PAC
guarantees that we have obtained for the model-based part cannot be obtained
from that framework. Finally, in [8] we introduced a first combination of shielding
with model-predictive control using MCTS, but did not consider learning.

2 Preliminaries

We denote by N the set of natural numbers; by Q, the set of rational numbers; and
by Q≥0 the set {q ∈ Q | q ≥ 0} of all non-negative rational numbers. Given n ∈
N, we denote by [n] the set {1, . . . , n}. Given a finite set A, a (rational) probability
distribution over A is a function p : A → [0, 1] ∩Q such that

∑
a∈A p(a) = 1. We

call A the domain of p, and denote it by Dom(p). We denote the set of probability
distributions on A by D(A). The support of the probability distribution p on A
is Supp(p) = {a ∈ A | p(a) > 0}. A distribution is called Dirac if |Supp(p)| = 1.
For a probability distribution p, the minimum probability assigned by p to the
elements in Supp(p) is πp

min = min
a∈Supp(p)

(p(a)). We say two distributions p and p′

are structurally identical if Supp(p) = Supp(p′). Given two structurally identical
distributions p and p′, for 0 < ε < 1, we say that p is ε-close to p′, denoted p ∼ε p′,
if Supp(p) = Supp(p′), and for all a ∈ Supp(p), we have that |p(a) − p′(a)| ≤ ε.

Scheduling Problem. An instance of the scheduling problem studied in [13]
consists of a task system Υ = ((τi)i∈[n], F,H), where (τi)i∈[n] are n preemptible
tasks partitioned into hard and soft tasks H and F respectively. The latter
need to be scheduled on a single processor. Formally, the work of [13] relies on
a probabilistic model for the computation times of the jobs and for the delay
between the arrival of two successive jobs of the same task. For all i ∈ [n],
task τi is defined as a tuple 〈Ci,Di,Ai〉, where: (i) Ci is a discrete probability
distribution on the (finitely many) possible computation times of the jobs gen-
erated by τi; (ii) Di ∈ IN is the deadline of all jobs generated by τi which is
relative to their arrival time; and (iii) Ai is a discrete probability distribution

238 D. Busatto-Gaston et al.

on the (finitely many) possible inter-arrival times of the jobs generated by τi.
We denote by πΥ

max the maximum probability appearing in the definition of Υ ,
that is, across all the distributions Ci and Ai, for all i ∈ [n]. It is assumed that
max(Dom(Ci)) ≤ Di ≤ min(Dom(Ai)) for all i ∈ [n]; hence, at any point in time,
there is at most one job per task in the system. Also note that when a new job of
some task arrives at the system, the deadline for the previous job of this task is
already over. Finally, we assume that the task system is schedulable for the hard
tasks, meaning that it is possible to guarantee that jobs associated to hard tasks
never miss their deadlines. On the other hand, the full set of tasks may not be
schedulable, so that jobs associated with soft tasks may be allowed to miss their
deadlines. The potential degradation in the quality when a soft task misses its
deadline is modelled by a cost function cost : F → Q≥0 that associates to each
soft task τj a cost c(j) that is incurred every time a job of τj misses its deadline.
As a final observation, we recall the earliest deadline first (EDF) algorithm that
always gives execution time to the job closest to its deadline. EDF is an opti-
mal scheduling algorithm in the following sense: if a task system is schedulable
(without any misses at all) then EDF will yield such a feasible schedule [6]. In
general, applying EDF on both the hard and soft tasks may cause hard tasks
to miss deadlines, as the entire task system may not be schedulable. However,
one may apply EDF on hard tasks only, and allow for soft tasks whenever no
hard task is available. This version of EDF ensures that all jobs of hard tasks
are scheduled in time, but does not guarantee optimality with respect to cost.

Given a task system Υ = ((τi)i∈[n], F,H) with n tasks, the structure of Υ
is ((struct(τi))i∈[n], F,H) where struct(〈C,D,A〉) = (〈Dom(C),D,Dom(A)〉). We
denote by Cmax and Amax resp. the maximum computation time, and the max-
imum inter-arrival time of a task in Υ . Formally, Cmax = max(

⋃
i∈[n] Dom(Ci)),

and Amax = max(
⋃

i∈[n] Dom(Ai)). Note that Amax ≥ Cmax. We also let D =
maxi∈[n](|Dom(Ai)|). We denote by |Υ | the number of tasks in the task system Υ .
Consider two task systems Υ1 = ((τ1

i)i∈[n], F,H), and Υ2 = ((τ2
i)i∈[n], F,H), with

|Υ1| = |Υ2|, τ j
i = 〈Cj

i ,Dj
i ,Aj

i 〉 for all i ∈ [n] and j ∈ [2]. The two task systems Υ1

and Υ2 are said to be ε-close, denoted Υ1 ≈ε Υ2, if (i) struct(Υ 1) = struct(Υ 2),
(ii) for all i ∈ [n], we have A1

i ∼ε A2
i , and (iii) for all i ∈ [n], we have C1

i ∼ε C2
i .

Markov Decision Processes. Let us now introduce Markov Decision Process
(MDP) as they form the basis of the formal model of [13], which we recall later.
A finite Markov decision process is a tuple Γ = 〈V,E,L, (V�, V�), A, δ, cost〉,
where: (i) A is a finite set of actions; (ii) 〈V,E〉 is a finite directed graph and
L is an edge-labelling function (we denote by E(v) the set of outgoing edges
from vertex v); (iii) the set of vertices V is partitioned into V� and V�; (iv) the
graph is bipartite i.e. E ⊆ (V� × V�) ∪ (V� × V�), and the labelling function
is s.t. L(v, v′) ∈ A if v ∈ V�, and L(v, v′) ∈ Q if v ∈ V�; and (v) δ assigns to
each vertex v ∈ V� a rational probability distribution on E(v). For all edges
e, we let cost(e) = L(e) if L(e) ∈ Q, and cost(e) = 0 otherwise. We further
assume that, for all v ∈ V�, for all e, e′ in E(v): L(e) = L(e′) implies e = e′,
i.e. an action identifies uniquely an outgoing edge. Given v ∈ V�, and a ∈ A, we
define Post(v, a) = {v′ ∈ V� | (v, v′) ∈ E and L(v, v′) = a} ∪ {v′′ ∈ V� | ∃v′ :

Safe Learning for Near-Optimal Scheduling 239

(v, v′) ∈ E,L(v, v′) = a and δ(v′, v′′) > 0}. For all vertices v ∈ V�, we denote by
A(v), the set of actions {a ∈ A | Post(v, a) ∩ V� �= ∅}. The size of an MDP Γ ,
denoted |Γ |, is the sum of the number of vertices and the number of edges, that
is, |V | + |E|. An MDP Γ = 〈V,E,L, (V�, V�), A, δ, cost〉 is said to structurally
identical to another MDP Γ ′ = 〈V,E,L′, (V�, V�), A, δ′, cost〉 if for all v ∈ V�,
we have that Supp(δ(v)) = Supp(δ′(v)). For two structurally identical MDPs Γ
and Γ ′ with distribution assignment functions δ and δ′ respectively, we say that
Γ is ε-approximate to Γ ′, denoted Γ ≈ε Γ ′, if for all v ∈ V�: δ(v) ∼ε δ′(v).

An MDP Γ can be interpreted as a game GΓ between two players: � and �,
who own the vertices in V� and V� respectively. A play in an MDP is a path in
its underlying graph 〈V,E,A∪Q〉. We say that a prefix π(n) of a play π belongs
to player i ∈ {�,�}, iff its last vertex Last(π(n)) is in Vi. The set of prefixes that
belong to player i is denoted by Prefsi(GΓ). A play is obtained by the interaction
of the players: if the current play prefix π(n) belongs to �, she plays by picking
an edge e ∈ E(Last(π(n))) (or, equivalently, an action that labels a necessarily
unique edge from Last(π(n))). Otherwise, when π(n) belongs to �, the next edge
e ∈ E(Last(π(n))) is chosen randomly according to δ(Last(π(n))). In both cases,
the plays prefix is extended by e and the game goes ad infinitum.

A (deterministic) strategy of � is a function σ� : Prefs�(G) → E, such that
σ�(ρ) ∈ E(Last(ρ)) for all prefixes. A strategy σ� is memoryless if for all finite
prefixes ρ1 and ρ2 ∈ Prefs(G): Last(ρ1) = Last(ρ2) implies σ�(ρ1) = σ�(ρ2). For
memoryless strategies, we will abuse notations and assume that such strategies
σ are of the form σ : V� → E (i.e., the strategy associates the edge to play
to the current vertex and not to the full prefix played so far). From now on,
we will consider memoryless deterministic strategies unless otherwise stated.
Let Γ = 〈V,E,L, (V�, V�), A, δ, cost〉 be an MDP, and let σ� be a memoryless
strategy. Then, assuming that � plays according to σ�, we can express the
behaviour of Γ as a Markov chain Γ [σ�], where the probability distributions
reflect the stochastic choices of � (see [13] for the details).

End Components. An end-component (EC) M = (T,A′), with T ⊆ V and
A′ : T ∩ V� → 2A, is a sub-MDP of Γ such that: for all v ∈ T ∩ V�, A′(v) is a
subset of the actions available to � from v; for all a ∈ A′(v), Post(v, a) ⊆ T ; and,
it’s underlying graph is strongly connected. A maximal end-component (MEC)
is an EC that is not included in any other EC.

MDP for the Scheduling Problem. Given a system Υ = {τ1, τ2, . . . , τn} of
tasks, we describe below the modelling of the scheduling problem by an MDP
ΓΥ = 〈V,E,L, (V�, V�), A, δ, cost〉 as it appears in [13]. The two players � and� correspond respectively to the Scheduler and the task generator (TaskGen)
respectively. Since there is at most one job per task that is active at all times,
vertices encode the following information about each task τi: (i) a distribution ci

over the job’s possible remaining computation times (rct); (ii) the time di up to
its deadline; and (iii) a distribution ai over the possible times up to the next
arrival of a new job. We also tag vertices with either � or � to remember their
respective owners and we have a vertex ⊥ that is reached when a hard task misses
a deadline. For a vertex v =

(
(c1, d1, a1) . . . (cn, dn, an),Δ

)
, for Δ ∈ {�,�}, let

240 D. Busatto-Gaston et al.

active(v) = {i | ci(0) �= 1 and di > 0} be the tasks that have an active job in v;
dlmiss(v) = {i | ci(0) = 0 and di = 0}, those that have missed a deadline in v.

Possible Moves. The possible actions of Scheduler are to schedule an active
task or to idle the CPU. We model this by having, from all vertices v ∈ V�
one transition labelled by some element from active(v), or by ε. The moves of
TaskGen consist in selecting, for each task one possible action out of four: either
(i) nothing (ε); or (ii) to finish the current job without submitting a new one
(fin); or (iii) to submit a new job while the previous one is already finished
(sub); or (iv) to submit a new job and kill the previous one, in the case of a soft
task (killANDsub), which will incur a cost.

We consider the following example from [13].

(1,2,3)
([1:.4,2:.6],2,3)

(1,1,2)
([0:.4,1:.6],1,2)

(0, 1, 2)
([1:.4,2:.6],1,2)

(1,1,2)
([1:.4,2:.6],1,2)

s h ε

(1,1,2)
(0, 1, 2)

(1,1,2)
(1,1,2)

(0, 1, 2)
([1:.4,2:.6],1,2)

(1,1,2)
([1:.4,2:.6],1,2)

(ε, fin) .4 (ε, ε) .6 (fin, ε) (ε, ε)

(0, 0, 1)
(0, 0, 1)

(0, 0, 1)
(0, 0, 1)

(0, 0, 0)
(0, 0, 0)

h

(fin, ε)

ε

(sub, sub)

(0, 0, 1)
(1,0,1)

(0, 0, 1)
(1,0,1)

(0, 0, 0)
(1,0,0)

h
s ε

(fin, ε)

ε

(sub, killANDsub)
cost=10

s ε

(1,0,1)
([1:.4,2:.6],0,1)

⊥

εs h

ε

ε

Fig. 1. MDP excerpt for Example 1. Bold tasks are active, those in italics have missed
a deadline.

Example 1. Consider a system with one hard task τh = 〈Ch, 2,Ah〉 s.t. Ch(1) = 1
and Ah(3) = 1; one soft task τs = 〈Cs, 2,As〉 s.t. Cs(1) = 0.4, Cs(2) = 0.6, and
As(3) = 1; and the cost function c s.t. c(τs) = 10. Figure 1 presents an excerpt of
the MDP ΓΥ built from the set of tasks τ = {τh, τs} of Example 1. A distribution
p with support {x1, x2, . . . , xn} is denoted by [x1 : p(x1), x2 : p(x2), . . . ;xn :
p(xn)]. When p is s.t. p(x) = 1 for some x, we simply denote p by x. Vertices
from V� and V� are depicted by rectangles and rounded rectangles respectively.
Each vertex is labelled by (ch, dh, ah) on the top, and (cs, ds, as) below.

A strategy to avoid missing a deadline of τh consists in first scheduling τs,
then τh. One then reaches the left-hand part of the graph from which � can
avoid ⊥ whatever � does. Other safe strategies are possible: the first step of the
algorithm in [13] is to compute all the safe nodes (i.e. those from which � can
ensure to avoid ⊥), and then find an optimal one w.r.t to missed-deadline costs.

Safe Learning for Near-Optimal Scheduling 241

There are two optimal memoryless strategies, one in which Scheduler first
chooses to execute τh, then τs; and another where τs is scheduled for 1 time
unit, and then preempted to let τh execute. Since the time difference between
the arrival of two consecutive jobs of the soft task τs is 3 and the cost of missing
a deadline is 10, for both of these optimal strategies, the soft task’s deadline is
missed with probability 0.6 over this time duration of 3, and hence the mean-cost
is 2. There is another safe schedule that is not optimal which only grants τh is
CPU access, and never schedules τs, thus giving a mean-cost of 10

3 . ��

Expected Mean-Cost. Let us first associate a value, called the mean-cost
MC(π) to all plays π in an MDP Γ = 〈V,E,L, (V�, V�), A, δ, cost〉. First, for
a prefix ρ = e0e1 . . . en−1, we define MC(ρ) = 1

n

∑i=n−1
i=0 cost(ei) (recall that

cost(e) = 0 when L(e) is an action). Then, for a play π = e0e1 . . ., we have
MC(π) = lim supn→∞ MC(π(n)). Observe that MC is a measurable function. A
strategy σ� is optimal for the mean-cost from some initial vertex vinit ∈ V� if
E

Γ [σ�]
vinit (MC) = infσ′

�
E

Γ [σ′
�
]

vinit (MC). Such optimal strategy always exists, and it is
well-known that there is always one which is memoryless. Moreover, this problem
can be solved in polynomial time through linear programming [11] or in practice
using value iteration (as implemented, for example, in the tool Storm [9]). We
denote by E

Γ
vinit

(MC) the optimal value infσ�
E

Γ [σ�]
vinit (MC).

Safety Synthesis. Given an MDP Γ = 〈V,E,L, (V�, V�), A, δ, cost〉, an initial
vertex vinit ∈ V , and a strategy σ�, we define the set of possible outcomes in the
Markov chain Γ [σ�] as the set of paths vinit = v0v1v2 . . . in Γ [σ�] s.t., for all i ≥
0, there is non-null probability to go from vi to vi+1 in Γ [σ�]. Let VOutsΓ [σ�](vinit) ⊆
V denote the set of vertices visited in the set of possible outcomes OutsΓ [σ�](vinit).

Given Γ with vertices V , initial vertex vinit ∈ V , and a set Vbad ⊆ V of bad
vertices, the safety synthesis problem is to decide whether � has a strategy σ�
ensuring to visit the safe vertices only, i.e.: VOutsΓ [σ�](vinit) ∩ Vbad = ∅. If this is
the case, we call such a strategy safe. The safety synthesis problem is decidable
in polynomial time for MDPs (see, e.g., safety games in [22]). Moreover, if a safe
strategy exists, then there is a memoryless safe strategy. Henceforth, we will
consider safe strategies that are memoryless only. We say that a vertex v is safe
iff � has a safe strategy from v, and that an edge e = (v, v′) ∈ E ∩ (V� × V�)
is safe iff there is a safe strategy σ� s.t. σ�(v) = v′. So, the safe edges safe(v)
from some node v correspond to the choices that � can safely make from v. The
set of safe edges exactly correspond to the set of safe actions that � can make
from v. Then, we let the safe region of Γ be the MDP Γ safe obtained from Γ by
applying the following transformations: (i) remove from Γ all unsafe edges; (ii)
remove from Γ all vertices and edges that are not reachable from vinit.

Most General Safe Scheduler. Consider a task system Υ that is schedulable
for the hard tasks. Then, Scheduler has a winning strategy to avoid ⊥ in ΓΥ . We

242 D. Busatto-Gaston et al.

say a non-deterministic strategy in ΓΥ is the most general safe scheduler (MGS)
for the hard tasks if from any vertex of Scheduler it allows all safe edges1.

3 Model-Based Learning

We now investigate the case of model-based learning of task systems. First, we
consider the simpler case of task systems with only soft tasks. We show that
those systems are always efficiently PAC learnable. Second, we consider learning
task systems with both hard and soft tasks. In that case, we study two conditions
for learnability. The first condition allows us to identify task systems that are
safely PAC learnable, i.e. learnable while enforcing safety for the hard tasks.
The second condition is stronger and allows us to identify task systems that are
safely and efficiently PAC learnable.

Learning Setting. We consider a setting in which we are given the structure of
a task system Υ = ((τi)i∈I , F,H) to schedule. While the structure is known, the
actual distributions that describe the behaviour of the tasks are unknown and
need to be learnt to behave optimally or near optimally. The learning must be
done only by observing the jobs that arrive along time. When the task system
contains some hard tasks (H �= ∅), all deadlines of such tasks must be enforced.

For learning the inter-arrival time distribution of a task, a sample corresponds
to observing the time difference between the arrivals of two consecutive jobs of
that task. For learning the computation time distribution, a sample corresponds
to observing the CPU time a job of the task has been assigned up to completion.
Thus if a job does not finish execution before its deadline, we do not obtain a
valid sample for the computation time. Given a class of task systems, we say:

– the class is probably approximately correct (PAC) learnable if there is an algo-
rithm L such that for all task systems Υ in this class, for all ε, γ ∈ (0, 1): given
struct(Υ), the algorithm L can execute the task system Υ , and can compute
ΥM such that Υ ≈ε ΥM , with probability at least 1 − γ.

– the class is safely PAC learnable if it is PAC learnable, and L can ensure
safety for the hard tasks while computing ΥM .

– the class is (safely) efficiently PAC learnable if it is (safely) PAC learnable,
and there is a polynomial q in the size of the task system, in 1/ε, and in 1/γ,
s.t. L obtains enough samples to compute ΥM in a time bounded by q.

Note that our notion of efficient PAC learning is stronger than the definition
used in classical PAC learning terminology [23] since we take into account the
time that is needed to get samples and not only the number of samples needed.

Learning Discrete Finite Distributions. To learn an unknown discrete dis-
tribution p defined on a finite domain Dom(p), we collect i.i.d. samples from that
distribution and infer a model of it. Formally, given a sequence S = (sj)j∈J of

1 The existence of a most general safe scheduler follows from the existence of a unique
most general (a.k.a. maximally permissive) strategy for safety objectives [19].

Safe Learning for Near-Optimal Scheduling 243

samples drawn i.i.d. from the distribution p, we denote by p(S) : Dom(p) → [0, 1],
the function that maps every element a ∈ Dom(p) to its relative frequency in S.
Using Hoeffding’s inequality, it is easy to prove the following.

Lemma 1. For all finite discrete distributions p with |Dom(p)| = r, for all
ε, γ ∈ (0, 1) such that πp

min > ε, if S is a sequence of at least r · � 1
2ε2 (ln 2r − ln γ)�

i.i.d. samples drawn from p, then p ∼ε p(S) with probability at least 1 − γ.

We say that we “PAC learn” a distribution p if for all ε, γ ∈ (0, 1) such that
πp
min > ε, by drawing a sequence S of i.i.d. samples from p, we have p ∼ε p(S)

with probability at least 1 − γ. Given a task system Υ , if we can learn the
distributions corresponding to all the tasks in Υ , and hence a model ΥM , such
that each learnt distribution in ΥM is structurally identical to its corresponding
distribution in Υ , the corresponding MDP are structurally identical.

Efficient PAC Learning. Let Υ = ((τi)i∈I , F, ∅) be a task system with soft
tasks only, and let ε, γ ∈ (0, 1). We assume that for all distributions p occurring
in the models of the tasks in Υ : πp

min > ε. To learn a model ΥM which is ε-close to
Υ with probability at least 1 − γ, we apply Lemma 1 in the following algorithm:

1. for all tasks i = 1, 2, · · · ∈ F , repeat the following learning phase:
Always schedule task τi when a job of this task is active. Collect the samples
S(Ai) of Ai and S(Ci) of Ci as observed. Collect enough samples to apply
Lemma 1 and obtain the desired accuracy as fixed by ε and γ.

2. the models of inter-arrival time distribution and computation time distribu-
tion for task τi are p(S(Ai)) and p(S(Ci)) respectively.

Theorem 1. There is an algorithm s.t. for all task systems Υ = ((τi)i∈I , F,H)
with H = ∅, for all ε, γ ∈ (0, 1), it learns ΥM s.t. ΥM ≈ε Υ with probability at
least 1 − γ after executing Υ for |F | · Amax · D · � 1

2ε2 (ln 4D|F | − ln γ)� steps.

Safe Learning with Hard Tasks. We turn to task systems Υ = ((τi)i∈I , F,H)
with both hard and soft tasks. The learning algorithm must ensure that all the
jobs of hard tasks meet their deadlines while learning the task distributions. The
soft-task-only algorithm is clearly not valid for that more general case. Recall
we have assumed schedulability of the task system for the hard tasks2. This is a
necessary condition for safe learning but it is not a sufficient condition. Indeed,
to apply Lemma 1, we need enough samples for all tasks i ∈ H ∪ F .

First, we note that when executing any safe schedule for the hard tasks, we
will observe enough samples for the hard tasks. Indeed, under a safe schedule for
the hard tasks, any job of a hard task that enters the system will be executed
to completion before its deadline. We then observe the value of the inter-arrival
and computation times for all the jobs of hard tasks that enter the system.
Unfortunately, this is not necessarily the case for soft tasks when they execute
in the presence of hard tasks. Indeed, it is in general not possible to schedule
all the jobs of soft tasks up to completion. We thus need stronger conditions in
order to be able to learn the distributions of the soft tasks while ensuring safety.
2 Note that safety synthesis already identifies task systems that violate this condition.

244 D. Busatto-Gaston et al.

PAC Guarantees for Safe Learning. Our condition to ensure safe PAC
learnability relies on properties of the safe region Γ safe

Υ in the MDP ΓΥ associated
to the task system Υ . First, note that Γ safe

Υ is guaranteed to be non-empty as the
task system Υ is guaranteed to be schedulable for its hard tasks by hypothesis.
Our condition will exploit the following property of its structure:

Lemma 2. Let Υ = ((τi)i∈I , F,H) be a task system and let Γ safe
Υ be the safe

region of its MDP. Then Γ safe
Υ is a single maximal end-component (MEC).

Good for Sampling. The safe region Γ safe
Υ of the task system Υ =

((τi)i∈I , F,H) is good for sampling if for all soft tasks i ∈ F , there exists a
vertex vi ∈ Γ safe

Υ such that: (i) a new job of task i enters the system in vi; and
(ii) there exists a strategy σi of Scheduler that is compatible with the set of
safe schedules for the hard tasks so that from vi, under schedule σi, the new job
associated to task τi is guaranteed to reach completion before its deadline.

There is an algorithm that executes in polynomial time in the size of Γ safe
Υ

and which decides if Γ safe
Υ is good for sampling. Also, remember that only the

knowledge of the structure of the task system is needed to compute Γ safe
Υ .

Given a task system Γ safe
Υ that is good for sampling, given any ε, γ ∈ (0, 1),

we safely learn a model ΥM which is ε-close to Υ with probability at least 1 − γ
(PAC guarantees) by applying the following algorithm:

1. Choose any safe strategy σH for the hard tasks, and apply it until enough sam-
ples (S(Ai),S(Ci)) for each i ∈ H have been collected according to Lemma 1.
The models for tasks i ∈ H are p(S(Ai)) and p(S(Ci)).

2. Then for each i ∈ F , apply the following phases:
(a) from the current vertex v, schedule some task uniformly at random among

the set of tasks that correspond to the safe edges in safe(v) up to reaching
some vi (while choosing tasks that do not violate safety uniformly at
random, we reach some vi with probability 1.3 The existence of a vi is
guaranteed by the hypothesis that Γ safe

Υ is good for sampling).
(b) from vi, apply the schedule σi as defined by the second condition in the

good for sampling condition. This way we are guaranteed to observe the
computation time requested by the new job of task i that entered the
system in vertex vi, no matter how TaskGen behaves. At the completion
of this job of task i, we have collected a valid sample of task i.

(c) go back to (a) until enough samples (S(Ai),S(Ci)) have been collected for
soft task i according to Lemma 1.

Theorem 2. There is an algorithm s.t. for all task systems Υ = ((τi)i∈I , F,H)
with a safe region Γ safe

Υ that is good for sampling, for all ε, γ ∈ (0, 1), the algo-
rithm learns a model ΥM such that ΥM ≈ε Υ with probability at least 1 − γ.

In the algorithm above, to obtain one sample of a soft task, we need to reach
a particular vertex vi from which we can safely schedule a new job for the task
3 This follows from the fact that there is a single MEC in the MDP by Lemma 2.

Safe Learning for Near-Optimal Scheduling 245

i up to completion. As the underlying MDP Γ safe
Υ can be large (exponential

in the description of the task system), we cannot bound by a polynomial the
time needed to get the next sample in the learning algorithm. So, this algorithm
does not guarantee efficient PAC learning. We develop in the next paragraph a
stronger condition to guarantee efficient PAC learning.

Good for Efficient Sampling. The safe region Γ safe
Υ of the task system

Υ = ((τi)i∈I , F,H) is good for efficient sampling if there exists K ∈ N which
is bounded polynomially in the size of Υ = ((τi)i∈I , F,H), and if, for all soft
tasks i ∈ F the two following conditions hold:

1. let V safe� be the set of Scheduler vertices in Γ safe
Υ . There is a non-empty subset

Safei ⊆ V safe� of vertices from which there is a strategy σi for Scheduler to
schedule safely the tasks H ∪ {i} (i.e. all hard tasks and the task i); and

2. for all v ∈ V safe� , i ∈ F , there is a uniform memoryless strategy σ�Safei
s.t.:

(a) σ�Safei
is compatible with the safe strategies (for the hard tasks) of Γ safe

Υ ;
(b) when σ�Safei

is executed from any v ∈ V safe� , then the set Safei is reached
within K steps. By Lemma 2, since Γ safe

Υ has a single MEC, we have that
Safei is reachable from every v ∈ V safe� .

Here again, the condition can be efficiently decided: there is a polynomial-time
algorithm in the size of Γ safe

Υ that decides if Γ safe
Υ is good for efficient sampling.

Given a task system Γ safe
Υ that is good for efficient sampling, given ε, γ ∈

(0, 1), we safely and efficiently learn a model ΥM which is ε-close of Υ with
probability at least than 1 − γ (efficient PAC guarantees) by applying:

1. Choose any safe strategy σH for the hard tasks, and apply this strategy until
enough samples (S(Ai),S(Ci)) for each i ∈ H have been collected according
to Lemma 1. The models for tasks i ∈ H are p(S(Ai)) and p(S(Ci)).

2. Then for each i ∈ F , apply the following phase:
(a) from the current vertex v, play σ�Safei

to reach the set Safei.
(b) from the current vertex in Safei, apply the schedule σi as defined above.

This way we are guaranteed to observe the computation time requested
by all the jobs of task i that enter the system.

(c) go to (b) until enough samples (S(Ai),S(Ci)) are collected for task i as
per Lemma 1. The models for task i are given by p(S(Ai)) and p(S(Ci)).

For a task system Υ , let T = Amax ·D · � 1
2ε2 (ln 4D|Υ | − ln γ)�. The properties

of the learning algorithm above are used to prove the following theorem:

Theorem 3. There is an algorithm s.t. for all systems Υ = ((τi)i∈I , F,H) with
safe region Γ safe

Υ that is good for efficient sampling, for all ε, γ ∈ (0, 1), it learns
ΥM s.t. ΥM ≈ε Υ with probability at least than 1 − γ after scheduling Υ for
T + |F | · (T + K) steps.

Using the Learnt Model. Given a system Υ of tasks, and parameters ε, γ ∈
(0, 1), once we have learnt a model ΥM such that ΥM ≈ε Υ , we construct the
MDP Γ safe

Υ M . From Γ safe
Υ M , we can compute an optimal scheduling strategy that

246 D. Busatto-Gaston et al.

minimises the expected mean-cost of missing deadlines of soft tasks. Such an
algorithm is given in [13]. Then, we execute the actual task system Υ under
schedule σ. However, since σ has been computed using the model ΥM , it might
not be optimal in the original, unknown taks system Υ . Nevertheless, we can
bound the difference between the optimal values obtained in Γ safe

Υ M and Γ safe
Υ .

The following lemma relates the model that is learnt with the approximate
distribution that we have in the MDP corresponding to the learnt model. Given
ε ∈ (0, 1), let s = min{1, πΥ

max + ε} and η = s2n − (s − ε)2n, where n = |Υ |.
Lemma 3 (From [16]). Let Υ be a task system, let ε, γ ∈ (0, 1), let ΥM be the
learnt model such that ΥM ≈ε Υ with probability at least 1 − γ. Then we have
that ΓΥ M ≈η ΓΥ with probability at least 1 − γ.

A strategy σ is said to be (uniformly) expectation-optimal if for all v ∈ V�,
we have E

Γ [σ]
v (MC) = infτ E

Γ [τ]
v (MC). The following Lemma captures the idea

that some expectation-optimal strategies for MDPs whose transition functions
have the same support as that of Γ are ‘robust’.

Lemma 4 (From [7, Theorem 5]). Consider β ∈ (0, 1), and MDPs Γ and
Γ ′ such that Γ ≈ηβ Γ ′ with ηβ ≤ β·πmin

8|V�| , where πmin is the minimum probability
appearing in Γ . For all memoryless deterministic expectation-optimal strategies
σ in Γ ′, for all v ∈ V�, it holds that

∣
∣
∣E

Γ [σ]
v (MC) − infτ E

Γ [τ]
v (MC)

∣
∣
∣ ≤ β.

The proof of the above lemma uses Thm. 6 in [21] and Thm. 5 in [7]. Using both
Lemma 3 and Lemma 4, we obtain the following guarantees on the quality of
the scheduler that our model-based learning algorithm outputs:

Theorem 4. Given a task system Υ (with min probability πmin) and β ∈ (0, 1).
Let γ, ε ∈ (0, 1) be s.t. ε ≤ βπmin

8|V�|+βπmin
. Let ΥM be s.t. ΥM ≈ε Υ with probabil-

ity at least 1 − γ, and let σ be a memoryless deterministic expectation-optimal
strategy of ΓΥ M . Then, with probability at least 1 − γ, the expected mean-cost of
playing σ in ΓΥ is s.t. for all v ∈ V�:

∣
∣
∣E

ΓΥ [σ]
v (MC) − infτ E

ΓΥ [τ]
v (MC)

∣
∣
∣ ≤ β.

4 Monte Carlo Tree Search with Advice

When the model of the task system is known, or once it has been learned using
techniques developed in Sect. 3, our goal is to compute a (near) optimal strategy
while ensuring safe scheduling of hard-tasks with certainty.

The challenge is the sizes of the MDPs that are too large for exact model-
checking techniques (see Sect. 5). To overcome this problem, we resort to a reced-
ing horizon framework [14], that bases its decisions on a finite-depth unfolding
of the MDP from the current state. In particular, we advocate the use of Monte
Carlo Tree Search (MCTS) algorithms [4], that are a popular method for sam-
pling the finite-depth unfolding while avoiding an exponential dependency on the
horizon. MCTS algorithms aim at discovering and exploring the “most relevant”
parts of the unfolding, and they approximate the value of actions in intermediary

Safe Learning for Near-Optimal Scheduling 247

nodes using a fixed number of trajectories obtained by simulations. The MCTS
algorithm builds an exploration tree incrementally. At every step of the algo-
rithm, the selection phase selects a path in the current tree, possibly extending
it by adding a new node. It is followed by a simulation phase, that extends this
trajectory further, until the fixed horizon is reached. Finally, a back-propagation
phase updates the exploration tree based on this new trajectory. A reader looking
for a more detailed introduction to MCTS is referred to [5].

MCTS has been successfully applied to large state-spaces. For example, it is
an important building block of the AlphaGo algorithm [20] that has obtained
super-human performances in the game of Go. Such level of performances cannot
be obtained with the plain MCTS algorithm. In Go, the simulation and selection
phases are guided by a board scoring function that has been learned using neural-
networks techniques and self-play. For our scheduling problem, we also need a
solution to this guidance problem and, equally importantly, we must augment
the MCTS algorithm in a way that ensures safe scheduling of hard tasks.

Symbolic Advice. In a recent previous work [5], we have introduced the notion
of (symbolic) advice that provides a generic and formal solution to systemati-
cally incorporate domain knowledge in the MCTS algorithm. For our scheduling
problem, we use selection advice that prunes parts of the MDP on-the-fly in
order to ensure that only safe schedulers are explored. We have considered two
possibilities. First, we consider the most general safe scheduler (MGS scheduler)
as defined in page 7 to restrict the selection phase to safe scheduling decisions
only. Second, we consider the earliest deadline first (EDF) scheduling strategy
for hard tasks defined in page 4, that only allows soft tasks when there are no
available hard tasks, and restricts to the hard tasks with the earliest deadline
otherwise. EDF is guaranteed safe as the set of hard tasks is assumed schedula-
ble. The MGS advice allows for maximal exploration as it leaves open all possible
safe scheduling solutions, while the EDF advice can be applied on larger task
systems as it does not require any precomputations. These advice are also appli-
cable during the simulation phases.

Fig. 2. Learning distributions for a sys-
tem with 6 soft tasks.

Fig. 3. Model-based learning for 1
hard, 2 soft tasks

248 D. Busatto-Gaston et al.

5 Experimental Results

In this section, we first report experimental results on model-based learning
and observe that the models are learnt efficiently with only a small number of
samples. Our MCTS based algorithms can then be applied on the learnt models
that are very close to the original ones.4 We compare the performance of our
MCTS-based algorithms with a state-of-the-art deep Q-learning implementation
from OpenAI [10] on a set of benchmarks of task systems of various sizes. The
experimental results show that our MCTS-based algorithms perform better in
practice than safe reinforcement learning (RL)[3].

Models With Only Soft Tasks. In Fig. 2, we show that the distributions
of a task system with soft tasks can be learnt efficiently with a small number
of samples, corroborating our theory in Sect. 3. This is not the case in general
for arbitrary MDPs where in order to collect samples, one may need to reach
some specific states of the MDP, and it may take a considerable amount of
time to reach such states. However, in this case of systems with only soft tasks,
the number of samples increases linearly with time. As a representative task
system, we display the learning curve for a system with six soft tasks in Fig. 2.
Here “exe” and “arr” refer to the distributions of the computation times and the
inter-arrival times respectively. The left y-axis is the max-norm distance between
the probabilities in the actual distributions and the learnt distributions across
all soft tasks. The x-axis is the number of time steps over which the system
is executed. For learning the computation time distribution, the soft tasks are
scheduled in a round robin manner. Once a job of a soft task is scheduled, it is
executed until completion without being preempted. A sample for learning the
computation time distribution of a soft task thus corresponds to a job of the
task that is scheduled to execute until completion. Since the system has only
soft tasks, a job can always be executed to finish its execution without safety
being violated. On the other hand, the samples for learning the inter-arrival
time distribution for each task correspond to all the jobs of the task that arrive
in the system. Thus over a time duration, for each task, the number of samples
collected for learning the inter-arrival time distribution is larger than the number
of samples collected for learning the computation time distribution. The number
of samples of both kinds increases linearly with time. The y-axis on the right
corresponds to the number of samples collected over a duration of time when the
system executes. The plot “Exe samples” corresponds to the number of samples
collected per task for learning the computation time distributions. Since the
tasks are executed in a round robin manner, the tasks have an equal number of
samples for learning their computation time distributions. On the other hand,
for learning inter-arrival time distributions, a task with larger inter-arrival time
produces fewer samples than a task with smaller inter-arrival time. The plot
“Arr samples” corresponds to the minimum of the number of jobs, over all the

4 Here we do not learn to the point where our PAC guarantees hold. Rather, we are
interested in how fast the learnt model converges to the real model in practice.

Safe Learning for Near-Optimal Scheduling 249

tasks, that arrived in the system. Each point in the graphs is obtained as a result
of averaging over 50 simulations.

Safe Model-Based Learning. For safe model-based learning of systems with
both hard and soft tasks, first, we verify that the task system satisfies the good
for efficient sampling condition, and hence admits safe efficient PAC learning. We
consider a small representative task system, and report the value of the optimal
expected mean-cost strategy as computed by Storm on the learnt model as
a function of the number of steps for which the system is executed (training
steps). This converges quickly to the optimal expected value of the actual task
system, roughly equal to 0.06 (see Fig. 3). We also note that the expected value
computed by Storm is not necessarily monotonic as it is computed on the learnt
model and this model changes over time with the samples that it receives, and
the expected value may also sometimes be smaller than the value on the actual
model. The results show that this approach is effective in terms of the quality
of learning and the number of samples required.

MCTS. In the above approach, the main bottleneck towards scalability is the
extraction of an optimal strategy from the learnt model using probabilistic
model-checkers like Storm. This is because the underlying MDP grows expo-
nentially with the number of tasks. Therefore we advocate the use of receding
horizon techniques instead, that optimize the cost based on the next h steps for
some horizon h. In our examples, the unfoldings have approximately 2h states,
so we use MCTS to explore them in a scalable way.

Deep Q-Learning. One of the most successful model-free learning algorithm
is the Q-learning algorithm, due to Watkins and Dayan [24]. It aims at learning
(near) optimal strategies in a (partially unknown) MDP for the discounted sum
objective. In our scheduling problem, we search for (near) optimal strategies for
the mean-cost and not for the discounted sum, as we want to minimise the limit
average of the cost of missing deadlines of soft tasks. However, if the discount
factor is close to 1, both values coincide [17,21]. In our experiments, we use an
implementation of deep Q-learning available in the OpenAI repository [10]. We
make use of shielding [1,3,8], a technique that restricts actions in the learning
process so that only those actions that are safe for the hard tasks can be used.

Experimental Setup for MCTS and Deep Q-Learning. We compare some
variants of model-based learning augmented with MCTS and some variants of
deep Q-learning in the context of scheduling. The first option is to set a very
high penalty on missing the deadline of a hard task, and then to apply either
MCTS or deep Q-learning. However, safety is not guaranteed in this case, and
we report on whether a violation was observed or not. We call this variant unsafe
MCTS and unsafe deep Q-learning respectively as a consequence. The second
option is to enforce safety in MCTS and deep Q-learning by computing the most
general safe scheduler for hard tasks, and then using the MGS advice for MCTS
or the MGS shield for deep Q-learning. The third option is to use the earliest-
deadline-first (EDF) scheme on hard tasks instead of MGS as an advice or a
shield. Note that the second and the third options are required to ensure safety,

250 D. Busatto-Gaston et al.

and thus are applicable to systems that have at least one hard task, and hence
are not applicable (NA) to systems with only soft tasks.

Table 1. Comparison of MCTS and reinforcement learning.

Task size Storm

output

MCTS

unsafe

MCTS

MGS

MCTS

EDF

Deep-Q

unsafe

Deep-Q

MGS

Deep-Q

EDF

4S 105 0.38 0.52 NA NA 0.56 NA NA

5S 106 T.O 0 NA NA 0.13 NA NA

10S 1018 T.O 0 NA NA 0.96 NA NA

simple 102 0 0.72 0 0 1.08 0.1 0

1H, 2S 104 0.07 0.67 0.14 0.28 0.24 0.11 0.22

1H, 3S 105 0.28 1.13 0.45 0.49 ∞ 0.47 0.47

2H, 1S 104 0 0.92 0 0.2 ∞ 0.02 0.3

2H, 5S 1010 T.O. 3.44 1.93 2.14 ∞ 2.39 2.48

3H, 6S 1014 T.O. 4.17 2.88 2.97 ∞ 3.42 3.47

2H, 10S 1022 T.O. 0.3 0.03 0.03 ∞ 1.42 1.6

4H, 12S 1030 T.O. 2.1 1.2 1.3 ∞ 2.68 2.87

Experimental Results. In the first column of Table 1, we describe the task
systems that we consider. A description 2H, 5S refers to a task system with two
hard tasks and five soft tasks, while 4S refers to a task system with four soft tasks
and no hard tasks. The simple system refers to a 1H, 2S task system where all the
arrival time distributions are Dirac. The output of Storm for the smaller task
systems is given in the third column. We report sizes of the MDPs, computed
with Storm whenever possible. Otherwise we report an approximation of the
size of the state space obtained by taking the product of (ci + 1)(ai + 1) over
the set of tasks, where ci and ai are the greatest elements in the support of the
distributions Ci and Ai. Recall that the size of the state space is exponential in
the number of tasks in the system. In the columns where safety is not guaranteed,
∞ denotes an observed violation (a missed deadline for a hard task).

For MCTS, at every step we explore 500 nodes of the unfolding of horizon
30, and the value of each node is initialized using 100 uniform simulations. This
computation takes 1–4 min in our Python implementation for different bench-
marks, running on a standard laptop. It is reasonable to believe that a substantial
speedup could be obtained with well-optimised code and parallelism. For deep
Q-learning, we train each task system for 10000 steps. The implementation of
deep-Q learning in the OepnAI respository uses the Adam optimizer [15]. The
size of the replay buffer is set to 2000. The learning rate used is 10−3. The prob-
ability ε of taking a random action is initially set to 1. This parameter reduces
over the training steps, and becomes equal to 0.02 at the end of the training.
The network used is a multi-layer perceptron which, by default, uses two fully
connected hidden layers, each with 64 nodes. Since we are interested in mean-
cost objective, the discount factor γ is set to 1. We observed that reducing the
value of γ leads to poorer results. The values reported for both MCTS and deep
Q-learning are obtained as an average cost over 600 steps.

Safe Learning for Near-Optimal Scheduling 251

Conclusions. While deep Q-learning provides good results for small task sys-
tems with 3–4 tasks with several thousands of states, this method does not
perform well for the benchmarks with large number of tasks. We trained the
task system with 10 soft tasks with deep Q-learning for several million steps,
but the state space was found to be too large to learn a good strategy, and the
resulting output produced a cost that is much higher than that observed with
MCTS.

Overall, our experimental results show that MCTS consistently provides bet-
ter results, in particular when the task systems are large, with huge state spaces.
This can be explained by the fact that MCTS optimizes locally using informa-
tion about multiple possible “futures” while deep Q-learning rather optimizes
globally using information about the uniquely observed trace. We observe that
the performance of MCTS with EDF advice is only slightly worse than MCTS
with MGS advice. EDF guarantees safety and does not require computing the
most general safe strategy, therefore it forms a good heuristic for systems with
many hard tasks, where MGS computation becomes too expensive.

In future work, we consider using Deep-Q learning in either a selection advice
for MCTS or as a complement to simulations when evaluating new states.

Appendix

A Proof of Theorem 1

There is a learning algorithm such that for all task systems Υ = ((τi)i∈I , F,H)
with H = ∅, for all ε, γ ∈ (0, 1), the algorithm learns a model ΥM such that
ΥM ≈ε Υ with probability at least 1 − γ after executing Υ for |F | · Amax · D ·
� 1
2ε2 (ln 4D|F | − ln γ)� steps.

Proof. Using Lemma 1, given ε, γ′ ∈ (0, 1), for every distribution p of the task
system, a sequence S of D · � 1

2ε2 (ln 2D − ln γ′)� i.i.d. samples suffices to have
p(S) ∼ε p with probability at least 1 − γ′. Since in the task system Υ , there are
2|F | distributions, with probability at least 1 − 2|F |γ′, we have that the learnt
model ΥM ≈ε Υ . Thus for γ′ = γ

2|F | , and using 2 exp(−2mε2) ≤ γ
2|F |D , we have

that for each distribution, a sequence of D ·� 1
2ε2 (ln 4D|F |− ln γ)� samples suffices

so that ΥM ≈ε Υ with probability at least 1 − γ.
Since samples for computation time distribution and inter-arrival time dis-

tribution for each soft task can be collected simultaneously, and observing each
sample takes a maximum of Amax time steps, and we collect samples for each
soft task by scheduling one soft task after another, the result follows. ��

B Proof of Lemma 2

Let Υ = ((τi)i∈I , F,H) be a task system and let Γ safe
Υ be the safe region of its

MDP. Then Γ safe
Υ is a single MEC.

252 D. Busatto-Gaston et al.

Proof. We first assume that the task system Υ = ((τi)i∈I , F,H) is schedulable.
Otherwise, Γ safe

Υ is empty and the Lemma is trivially true. Let V and E be the
set of vertices and the set of edges of Γ safe

Υ respectively. First, observe that, since
we want to prove that the whole MDP Γ safe

Υ corresponds to an MEC, we only
need to show that its underlying graph (V,E) is strongly connected. Indeed,
since (V,E) contains all vertices and edges from Γ safe

Υ , it is necessarily maximal,
and all choices of actions from any vertex will always lead to a vertex in V .

In order to show the strongly connected property, we fix a vertex v ∈ V , and
show that there exists a path in Γ safe

Υ from v to vinit. Since all vertices in V are,
by construction of Γ safe

Υ , reachable from the initial vertex vinit, this entails that
all vertices v′ are also reachable from v, hence, the graph is strongly connected.

Let us first assume that v ∈ V�, i.e., v is a vertex where Scheduler has to
take a decision. Let vinit = v0, v

′
0, v1, v

′
1, · · · , v′

n−1, vn = v be the path π leading
to v, where all vertices vj belong to Scheduler, and all v′

j are are vertices that
belong to TaskGen.

Then, from path π, we extract, for all tasks τi the sequence of actual inter-
arrival times σi = ti(1), ti(2), . . . , ti(ki) defined as follows: for all 1 ≤ j ≤
ki, ti(j) ∈ Supp(Ai) is the time elapsed (in CPU ticks) between the arrival
of the j − 1th job the jth job of task i along π (assuming the initial release
occurring in the initial state vinit is the 0-th release). In other words, letting
T i(j) =

∑j
k=1 ti(k), the jth job of τi is released along π on the transition between

v′
T i(j−1) and vT i(j). Observe thus that all tasks i ∈ [n] are in the same state in

vertex vinit and in vertex vT i(j), i.e. the time to the deadline, and the probability
distributions on the next arrival and computation times are the same in vinit and
vT i(j). However, the vertices vT i(j) can be different for all the different tasks,
since they depend on the sequence of job releases of τi along π. Nevertheless, we
claim that π can be extended, by repeating the sequence of arrivals of all the tasks
along π, in order to reach a vertex where all tasks have just submitted a job (i.e.
vinit). To this aim, we first extend, for all tasks i ∈ [i], σi into σ′

i = σi, t
i(ki + 1),

where ti(ki +1) ∈ Supp(Ai) ensures that the ki +1 arrival of a τi occurs after v.
For all i ∈ [n], let Δi denote

∑ki+1
j=1 ti(j), i.e. Δi is the total number of CPU

ticks needed to reach the first state after v where task i has just submitted
a job (following the sequence of arrival σ′

i defined above). Further, let Δ =
lcm(Δi)i∈[n]. Now, let π′ be a path in Γ safe

Υ that respects the following properties:

1. π is a prefix of π′;
2. π′ has a length of Δ CPU ticks;
3. π′ ends in a � vertex v′; and
4. for all tasks i ∈ [n]: τi submits a job at time t along π′ iff it submits a job at

time t mod Δi along π.

Observe that, in the definition of π′, we do not constrain the decisions of Sched-
uler after the prefix π. First, let us explain why such a path exists. Observe
that the sequence of task arrival times is legal, since it consists, for all tasks i, in
repeating Δ/Δi times the sequence σ′

i of inter-arrival times which is legal since it
is extracted from path π (remember that nothing that Scheduler player does can

Safe Learning for Near-Optimal Scheduling 253

restrict the times at which TaskGen introduces new jobs in the system). Then,
since Υ is schedulable, we have the guarantee that all � vertices in Γ safe

Υ have at
least one outgoing edge. This is sufficient to ensure that π′ indeed exists. Finally,
we observe π′ visits v (since π is a prefix of π′), and that the last vertex v′ of π′

is a � vertex obtained just after all tasks have submitted a job, by construction.
Thus v′ = vinit, and we conclude that, from all v ∈ V� which is reachable from
vinit, one can find a path in Γ safe

Υ that leads back to vinit.
This reasoning can be extended to account for the nodes v ∈ V�: one can

simply select any successor v ∈ V� of v, and apply the above reasoning from v
to find a path going back to vinit. ��

C Proof of Theorem 2

There is a learning algorithm such that for all task systems Υ = ((τi)i∈I , F,H)
with a safe region Γ safe

Υ that is good for sampling, for all ε, γ ∈ (0, 1), the algo-
rithm learns a model ΥM such that ΥM ≈ε Υ with probability at least 1 − γ.

Proof. For the hard tasks, as mentioned above, we can learn the distributions by
applying the safe strategy σH to collect enough samples (S(Ai),S(Ci)) for each
i ∈ H.

We assume an order on the set of soft tasks. First for all τi for i ∈ F , since
Γ safe

Υ is good for sampling, we note that the set Vi of vertices vi (as defined in the
definition of good for sampling condition) is non-empty. Recall from Lemma 2
that Γ safe

Υ has a single MEC. Thus from every vertex of Γ safe
Υ , Scheduler by

playing uniformly at random reaches some vi ∈ Vi with probability 1, and hence
can visit the vertices of Vi infinitely often with probability 1. Now given ε and γ,
using Theorem 1, we can compute an m, the number of samples corresponding
to each distribution required for safe PAC learning of the task system. Since by
playing uniformly at random, Scheduler has a strategy to visit the vertices of
Vi infinitely often with probability 1, it is thus possible to visit these vertices at
least m times with arbitrarily high probability.

Also after we safely PAC learn the distributions for task τi, since there is a
single MEC in Γ safe

Υ , there exists a uniform memoryless strategy to visit a vertex
vi+1 corresponding to task τi+1 with probability 1. Hence the result. ��

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: AAAI, pp. 2669–2678. AAAI Press (2018)

2. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforce-
ment learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)

3. Avni, G., Bloem, R., Chatterjee, K., Henzinger, T.A., Könighofer, B., Pranger,
S.: Run-time optimization for learned controllers through quantitative games. In:
CAV, pp. 630–649 (2019)

254 D. Busatto-Gaston et al.

4. Browne, C., et al.: A survey of Monte Carlo tree search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–43 (2012). https://doi.org/10.1109/TCIAIG.
2012.2186810

5. Busatto-Gaston, D., Chakraborty, D., Raskin, J.: Monte carlo tree search guided
by symbolic advice for MDPs. In: CONCUR, pp. 40:1–40:24 (2020). https://doi.
org/10.4230/LIPIcs.CONCUR.2020.40

6. Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications, vol. 24. Springer, Boston (2011). https://doi.org/
10.1007/978-1-4614-0676-1

7. Chatterjee, K.: Robustness of structurally equivalent concurrent parity games. In:
FOSSACS, pp. 270–285 (2012)

8. Chatterjee, K., Novotný, P., Pérez, G.A., Raskin, J.F., Zikelic, D.: Optimizing
expectation with guarantees in pomdps. In: AAAI, pp. 3725–3732 (2017)

9. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: CAV (2017)

10. Dhariwal, P., et al.: Openai baselines (2017). https://github.com/openai/baselines
11. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, New York

(1997). https://doi.org/10.1007/978-1-4612-4054-9
12. Fu, J., Topcu, U.: Probably approximately correct MDP learning and con-

trol with temporal logic constraints. In: Fox, D., Kavraki, L.E., Kurniawati, H.
(eds.) Robotics: Science and Systems X, University of California, Berkeley, USA,
July 12–16, 2014 (2014). https://doi.org/10.15607/RSS.2014.X.039, http://www.
roboticsproceedings.org/rss10/p39.html

13. Geeraerts, G., Guha, S., Raskin, J.F.: Safe and optimal scheduling for hard and
soft tasks. In: FSTTCS. LIPIcs, vol. 122, pp. 36:1–36:22 (2018)

14. Kearns, M.J., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. Mach. Learn. 49(2–3), 193–208 (2002).
https://doi.org/10.1023/A:1017932429737

15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
16. Kret́ınský, J., Pérez, G.A., Raskin, J.F.: Learning-based mean-payoff optimization

in an unknown MDP under omega-regular constraints. In: CONCUR. LIPIcs (2018)
17. Mertens, J.F., Neyman, A.: Stochastic games. Int. J. Game Theory 10(2), 53–66

(1981)
18. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature

518(7540), 529–533 (2015)
19. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event

processes. SIAM J. Control Opt. 25(1), 206–230 (1987)
20. Silver, D., et al.: Mastering the game of go with deep neural networks and tree

search. Nature 529(7587), 484–489 (2016). https://doi.org/10.1038/nature16961
21. Solan, E.: Continuity of the value of competitive Markov decision processes. J.

Theoret. Prob. 16, 831–845 (2003)
22. Thomas, W.: On the synthesis of strategies in infinite games. In: STACS, pp. 1–13

(1995)
23. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
24. Watkins, C.J.C.H., Dayan, P.: Technical note Q-learning. Mach. Learn. 8, 279–292

(1992)

https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.4230/LIPIcs.CONCUR.2020.40
https://doi.org/10.4230/LIPIcs.CONCUR.2020.40
https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1007/978-1-4614-0676-1
https://github.com/openai/baselines
https://doi.org/10.1007/978-1-4612-4054-9
https://doi.org/10.15607/RSS.2014.X.039
http://www.roboticsproceedings.org/rss10/p39.html
http://www.roboticsproceedings.org/rss10/p39.html
https://doi.org/10.1023/A:1017932429737
https://doi.org/10.1038/nature16961

Simulation

Symbolic Simulation of Railway
Timetables Under Consideration

of Stochastic Dependencies

Rebecca Haehn(B), Erika Ábrahám, and Nils Nießen

RWTH Aachen University, Aachen, Germany
{haehn,abraham}@cs.rwth-aachen.de, niessen@via.rwth-aachen.de

Abstract. In this paper we propose an exact symbolic simulation
method to compute the impact of delays in railway systems. We use
macroscopic railway infrastructure models and model primary delays of
trains in a timetable by discrete probability distributions. Our method is
capable of computing exact probabilistic quantities like delay probability
distributions and expected delays for timetable trains, or expected capac-
ity usage of infrastructure elements within a given finite time window. In
turn, these quantities allow us to examine timetable robustness and to
identify problematic infrastructure elements. We evaluate our approach
on realistic case studies and discuss possible further improvements.

Keywords: Simulation · Railway timetables · Delay propagation

1 Introduction

To manage increasing railway traffic, besides infrastructure extensions, it is
highly important to optimally exploit the existing infrastructures’ utilization.
On the one hand, a high number of passenger and freight trains should be able
to use the infrastructure but, on the other hand, a high level of service quality
should be maintained. From a certain view, these two objectives are negatively
correlated: the level of customer satisfaction strongly depends on the trains’
punctuality, but increasing traffic comes with increasing delays.

Simulation can be used to estimate delay propagation. The systems Rail-
Sys [4,15] and OpenTrack [3,12] use detailed microscopic models [14] and syn-
chronous simulation, meaning that they simulate all train rides simultaneously
in a single run. In contrast, the system MOSES/WiZug [16] is based on macro-
scopic models with fewer details [14]. This system operates in an asynchronous
way, simulating the train rides sequentially one after the other, starting with
the trains that have the highest priority. It is applied specifically for rail freight
transportation. Meanwhile, the system LUKS [1,10] uses microscopic models
and a combination of asynchronous and synchronous train ride simulations.

This research is funded by the German Research Council (DFG) – Research Training
Group UnRAVeL (RTG 2236).

c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 257–275, 2021.
https://doi.org/10.1007/978-3-030-85172-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-85172-9_14

258 R. Haehn et al.

All the above systems implement Monte Carlo simulation. They model pri-
mary delays (i.e. delays that are not caused by other delays) as random variables,
compute a large number of simulations for different random primary delay values
and compute probability estimations statistically from the simulation outcomes.
Instead of a Monte Carlo simulation, the approach presented in [5] and imple-
mented in the system OnTime [2,7] uses an analytical procedure to compute
delay propagations based on mesoscopic models and activity graphs. In [8], we
used macroscopic models to compute probability distributions for delays, but
completely neglecting stochastic dependencies. All these works give useful esti-
mations, but none of them can compute exact probability distributions for the
train delays under consideration of stochastic dependencies.

In this paper, we propose the (to our best knowledge) first method to solve
this problem. We use macroscopic railway models and model primary delays
as discrete random variables. Instead of the sequential simulation of individual
delay scenarios as in Monte Carlo approaches, we simulate all possible scenarios
simultaneously. Thereby we do not represent each delay scenario separately, but
we take up the symbolic simulation idea from [8] and define local, partial sce-
narios to cover a set of global scenarios symbolically. However, in contrast to [8]
where we neglected stochastic dependencies, in this work, we add a mechanism
to store all relevant information about the stochastic dependencies and replace
our approximative answers from [8] by exact answers in the presented approach.
Based on the analysis outcome, we are able to examine timetables’ robustness
by evaluating performance indicators like expected values for train arrival times
and infrastructure capacity usage, but also to identify problematic infrastruc-
ture elements with high expected delay increment. In the presented approach
we abstract from the actual delay distributions and compute the results para-
metric of the distributions. This makes it possible to consider different delay
distributions without having to execute the algorithm repeatedly.

Theoretically, we could formalize our system as a discrete-time Markov chain
(DTMC) [13] and use a probabilistic model checker like PRISM [11] or Storm
[9] for the analysis. However, the DTMC model size would be exponential in the
number of trains. For example, for a typical number of 100 trains in a timetable
there would be 2100 reachable states even without considering delay propagation.
Thus the state space would be too large for any meaningful input. The hardness
of the problem is reflected by the fact that besides our previous work [8], currently
there exists only one further formal approach in the OnTime tool [7] to solve such
problems symbolically, but also these methods can provide only approximative
answers.

Outline. We describe our models in Sect. 2 and our symbolic simulation approach
in Sect. 3. An experimental evaluation can be found in Sect. 4. We conclude the
paper in Sect. 5.

2 Railway Systems

A railway system consists of an infrastructure network and trains moving
through it according to a timetable. Similar to [8], in this work, we model railway

Symbolic Simulation of Railway Timetables 259

systems on a macroscopic level, i.e. we neglect certain details like signals and
exact routes inside stations.

We use R to denote the set of all real numbers, N (N>0) for the non-negative
(positive) integers, [x, y] for intervals in R, and [x..y] for intervals in N.

2.1 Modeling Railway Infrastructure Networks

We use directed graphs to model railway infrastructure networks, where the ver-
tices model the infrastructure’s operation control points and the (directed) edges
model unidirectional tracks connecting them. In addition, a capacity function c
assigns to each infrastructure element its number of parallel tracks available. We
assume that all tracks of an infrastructure element are equivalent in the sense
that they could replace each other. There are also bidirectional tracks that can
be used in both directions. We model bidirectional connections by two edges,
one in each direction, both with the total bidirectional capacity, and assure that
at each time point and each track, only one of the directions is used. To do so,
we remember these edges in B ⊆ E and “couple” them by a function b : B → B.

Definition 1. An infrastructure network is a tuple I = (V,E, c,B, b) with a
finite set V of vertices, a set E ⊆ V ×V of (directed) edges, a capacity function
c : (V ∪ E) → N>0, a bidirectional edge set B ⊆ E and a coupling function
b : B → B such that for all e ∈ B and b(e) = e′ we have b(e′) = e and
c(e) = c(e′). An infrastructure element x ∈ V ∪ E is either a vertex or an edge.

Let in the following I = (V,E, c,B, b) be an infrastructure network and T =
[tmin, tmax] ⊆ R a time window with tmin, tmax ∈ N, tmin < tmax.

Definition 2. A timed path is a finite sequence π = (v1(a1 �→ d1), . . . , vk(ak �→
dk)) such that for all i, i′ ∈ [1..k]: (i) vi ∈ V and if i < k then (vi, vi+1) ∈ E, (ii)
ai ≤ di and if i < k then di ≤ ai+1 for arrival and departure times ai, di ∈ T,
and (iii) i �= i′ implies vi �= vi′

(loop-free).
A train (ride) z = (type, π) specifies a train type (e.g. freight train) from a

finite ordered domain and a timed path π. A railway timetable T = {z1, . . . , zn}
is a finite ordered set of trains. We call i the identity of train zi.

Assume in the following a timetable T = {z1, . . . , zn} with zi = (typei, πi) and
πi = (v1

i (a1
i �→ d1i), . . . , v

ki
i (aki

i �→ dki
i)) for i ∈ [1..n]. T is executable if it doesn’t

exceed the available capacities in the absence of delays.

Definition 3. Let occT : (T × (V ∪ E)) → 2[1..n] with
occT (t, v) = {i ∈ [1..n] | ∃j ∈ [1..ki].v

j
i = v ∧ aj

i ≤ t ≤ dj
i + δ} and

occT (t, (v, v′)) = {i ∈ [1..n] | ∃j ∈ [1..ki−1].vj
i =v∧vj+1

i =v′∧dj
i ≤ t ≤ aj+1

i +δ}
for each t ∈ T, v ∈ V and (v, v′) ∈ E, where δ ∈ N is a safety distance (number
of time units each track is blocked for safety reasons after a train has left it). T
is executable iff for all t ∈ T: (i) ∀x ∈ V ∪ (E\B). |occT (t, x)| ≤ c(x) and (ii)
∀e ∈ B. |occT (t, e) ∪ occT (t, b(e))| ≤ c(e).

260 R. Haehn et al.

In the following we assume that the timetables we consider are executable.
Despite this assumption, in reality delays occur. We differentiate between pri-
mary and secondary delays. Primary delays are directly caused by varying and
uncertain factors like signal failures, defects on the train or many passengers who
take longer than planned to board a train. Secondary delays of a train arise when
the train needs to wait because the capacity of the next needed infrastructure
element is fully occupied by other trains. We assume that trains can stop at all
infrastructure elements when the next infrastructure element is fully occupied.

2.2 Modeling Primary Delays

We model the duration of primary delays by discrete random variables, one for
each train and each infrastructure element used by the train.

Definition 4. For each i ∈ [1..n], j ∈ [1..ki] and j′ ∈ [1..ki−1], we define

stochastically independent discrete random variables p
vj

i and p
(vj′

i ,vj′+1
i)

i with
sample space N. Let P be the set of all these random variables. For each px

i ∈ P
we denote the probability that px

i has the value Δ ∈ N as P(px
i = Δ) ∈ [0, 1]

and its finite support as D(px
i) = {Δ ∈ N|P(px

i = Δ) > 0}. It holds that∑
Δ∈D(px

i)
P(px

i = Δ) = 1 for each px
i ∈ P .

Each random variable px
i ∈ P represents the number of time units by which

the delay of train zi increases at infrastructure element x without the cause
being another train. Technically, we need additional random variables pentry

i to
represent the system entry delay of each train zi for i ∈ [1..n], i.e. the time
by which the trains’ arrival at its first vertex is delayed. We leave this out of
the definition to simplify the presentation of our approach in Sect. 3. In the
implementation in Sect. 4 we consider these random variables.

The probability distribution of each random variable may depend for example
on the types of the trains, the specific infrastructure element and the time of the
day. Note that P(px

i = 0) = 1 excludes primary delay of zi at x. These random
variables are stochastically independent. Our algorithm can be used to examine
the impact of different probability distributions, e.g. based on past measurements
[18,19].

A partial scenario puts restrictions on random values but does not necessarily
fix their values, in contrast to a complete scenario that fixes all (stochastically
independent) primary delays. In our symbolic simulation in Sect. 3, we will use
partial scenarios as symbolic representations for sets of complete scenarios.

Definition 5. A random inclusion s for px
i ∈P has the form px

i � D for some
D ⊆ D(px

i), D �= ∅; we define P(s) =
∑

Δ∈D P(px
i = Δ). A scenario S is a set

that contains exactly one random inclusion for each random variable. Let S be
the set of all scenarios. For S ∈ S and (px

i � D) ∈ S we define S(px
i) = D, and

set P(S) = Πs∈SP(s). We call S complete iff |S(px
i)| = 1 for each px

i ∈ P .
We say that S ∈ S refines S′ ∈ S (written S S′) iff S(px

i) ⊆ S′(px
i) for

all px
i ∈ P ; we also say that S′ contains S. We call S and S′ compatible iff

Symbolic Simulation of Railway Timetables 261

S(px
i) ∩ S′(px

i) �= ∅ for all px
i ∈ P . For two compatible scenarios S and S′ we

define S � S′ as the scenario {px
i � (S(px

i) ∩ S′(px
i)) | px

i ∈ P}.
A scenario S is a symbolic representation of all complete scenarios contained

in it; it is easy to see that P(S) is the sum of the probabilities of all those
represented complete scenarios. We sometimes also write px

i = Δ for px
i � {Δ},

silently skip trivial random inclusions px
i � D(px

i) and write ∅ for the maximal
scenario with only trivial constraints.

Example 1. Let P = {p1, p2}, with D(p1) = {0, 1} and D(p2) = {0, 1, 2, 3}.
The scenario {p2 = 0} contains the complete scenario {p1 = 0, p2 = 0} and
{p1 = 1, p2 = 0}; these are also contained in the scenario {p2 � {0, 3}}. The
set {p1 � ∅} is not a scenario, because it excludes all random values for p1. An
example for incompatible scenarios are {p2 = 0} and {p2 � {1, 2}}.

2.3 Timetable Execution

Having fixed all probabilistic decisions by a complete scenario, the secondary
delays are uniquely determined. Considering different scenarios and their prob-
abilities, the timetable can be thoroughly analysed. For example, infrastructure
elements can be identified where delays strongly increase with high probability.
One could also try to identify trains that are especially problematic, i.e. expected
to cause high secondary delays. Note that it is practically intractable to execute
all

∏
p∈P |D(p)| different scenarios as this would take too long. To solve this

problem, we will introduce symbolic simulation in the next section.
In the following we describe how to compute the secondary delays for a given

scenario; we say that we execute the timetable under the given scenario. We
assume that trains are not cancelled and re-routing is not applied to deal with
delays. Therefore, the number of trains is fixed, as well as their physical paths.
However, the arrival and departure times may change. Note that we neglect when
different trains in the timetable are physically identical. This could be taken into
account by modeling the train rides of each physical train during the considered
time window as one consecutive train. For easier presentation of the algorithms
we impose loop-freeness, but it would be straightforward to store the index of
an infrastructure element instead of just the element itself in train rides and
relax Definition 2 to allow paths with loops and thus enabling the sequential
connection of train rides.

Assume a complete scenario S for the timetable T = {z1, . . . , zn} with
zi = (typei, πi) and πi = (v1

i (a1
i �→ d1i), . . . , v

ki
i (aki

i �→ dki
i)) for i ∈ [1..n].

The execution of T under S is basically a timetable as well, but with potentially
postponed arrival and departure times. The time distances between these arrival
and departure times have to not only account for the driving and halting times
in T but also for the delay values Δx

i with S(px
i) = {Δx

i } for all px
i ∈ P . We

expect that a train drives as soon as it can. That is never earlier than planned
in the original timetable. Additionally, the planned driving, respectively halting
times and the delay defined in S have to be considered. Apart from that a train
drives as soon as the next infrastructure element on its path is available.

262 R. Haehn et al.

Even if T is executable, due to delays it might happen at some time point that
more trains want to use an infrastructure element than its capacity allows. In
such cases we need a conflict resolution mechanism to determine unambiguously
when an infrastructure element is available for a certain train. In our formal def-
initions we use an abstract mechanism that can be instantiated by any concrete
priority ordering.

Remark 1. In practice, the priority of a train depends on various factors. In our
implementation, we prioritize trains according to the train type, the planned
arrival time and the train identity. More precisely, assume two trains zi and zj

that want to enter an infrastructure element x at the same time, with planned
arrival times ai resp. aj at x (where the arrival time at an edge is interpreted as
the departure time at its source vertex). Then zi has a higher priority than zj

to arrive at x if:

• typei < typej (e.g. in Germany ICEs are prioritized over freight trains), or
• typei = typej and ai < aj , or
• typei = typej and ai = aj and i < j.

This ordering could be exchanged by any other locally computable criterion,
however, it is currently not implemented to perform global delay resolution, e.g.
not letting a train drive because it would further delay a train with a higher
priority that is scheduled to arrive at a later time point.

We note that timetables often already account for possible delays and con-
tain some longer than necessary halting times such that these could be reduced
to a certain degree if needed to decrease a train’s delay. There might also be
the option for trains to drive slightly faster than planned in the timetable to
make up for delays. To simplify the presentation, our approach presented in the
following section does not support these optimizations. However, their inclusion
is straightforward and we did integrate them in our implementation. There we
assume that halting times can be reduced to three minutes for passenger trains
and ten minutes for freight trains, while driving times can be reduced by 5%,
i.e. multiplied with 0.95.

3 Symbolic Simulation

For a better understanding of the concept, in the following we also neglect bidi-
rectional edges. Their inclusion is really easy and in the implementation we
considered them to safely avoid capacity over-approximation.

Executions of complete scenarios can be computed by simulation. Computing
executions for all complete scenarios would allow exact probability computations
for delays. However, due to the large number of complete scenarios, this approach
is not practical. Instead, we propose a symbolic approach, based on possibly
partial scenarios.

Firstly, we reduce the analysis over a continuous time horizon to the analysis
over finitely many discrete time points. We do so by considering only relevant
time points, which are collected in the course of the analysis. These are the

Symbolic Simulation of Railway Timetables 263

time points in the timetable extended by the time points where some delayed
train is supposed to move to its next infrastructure element. By considering only
relevant time points we avoid visiting time points at which no train can change
its infrastructure element.

We store for all trains and all relevant time points where they might reside
together with the scenario under which it happens. That means, we compute the
train’s position under all possible stochastic dependencies, but try to keep the
corresponding (symbolic) scenarios as coarse as possible to cover as many cases
as we can as long as they all lead to the same train status, but as fine as needed
to keep the computations exact also for future movements.

In the following, we call a tuple (i, S, t) of a train identity i, a scenario S
and the time point t of the train’s next planned movement (i.e. infrastructure
element change) a train instance. Note that, since we do not cancel trains, each
train must be represented for every complete scenario, so for every complete
scenario each train has to be represented by exactly one of its train instances.
Initially, each train has a single instance with the coarsest scenario S = ∅ (when
skipping trivial inclusions); we split train instances into refined parts if the train’s
movement is affected by other train instances with different scenarios or its own
primary delay. As we will see later, some additional splits might also be necessary
due to the restrictions of the scenario representation (Definition 5) we chose.

3.1 Initialization

Our algorithm receives the following input:

• I = (V,E, c): infrastructure network (neglecting bidirectional track informa-
tion);

• δ ∈ N: safety distance;
• T = {z1, . . . , zn}: timetable for the time window T = [tmin, tmax];
• P ⊆ {px

i | i ∈ [1..n], x ∈ V ∪ E}: set of random variables according to
Definition 4 (implicitly carrying also their probability distributions).

As global variables, we use the following sets:

• times: ascendingly ordered set of the time points t ∈ T at which some trains
want to change infrastructure element; this sequence is naturally partial and
gets extended during computations, but we assure that initially and after each
processed time instance, no train can change infrastructure element before the
smallest time point in times;

• for each infrastructure element x ∈ V ∪ E:
• occupy[x]: set of train instances occupying x at the current time point;
• block[x]: set of train instances that left x but are still blocking it at the

current time point due to the safety distance, here the time point encodes
the end time of blocking1;

1 Actually, in block[x] we do not need all details stored in the train instances; all what
we need is a unique representation of a track-blocking until a certain time point.
We store the train instances here to have a unique data type for the global sets
occupy[x], block[x] and req[x].

264 R. Haehn et al.

Algorithm 1. Initialization

1: procedure Initialize()
2: V ← V ∪ {source, target}; c(source) ← ∞; c(target) ← ∞; times ← ∅;
3: for each v ∈ V do
4: E ← E ∪ {(source, v), (v, target)}; c((source, v)) ← ∞; c((v, target)) ← ∞;

5: for each x ∈ (V ∪ E) do occupy[x] ← ∅; block[x] ← ∅; req[x] ← ∅; cap[x] ← ∅;

6: for each i ∈ {1, . . . , n} do
7: times ← times ∪ {a1

i };
8: occupy[(source, v1

i)] ← occupy[(source, v1
i)] ∪ {(i, ∅, a1

i)};

• req[x]: set of train instances that want to move to x at the current time
point;

• cap[x]: set of scenarios with the corresponding number of trains occupying
or blocking x in these scenarios at the current time point.

These variables are initialized in Algorithm 1. Initially there are no trains on
the actual infrastructure, also no trains block the infrastructure yet. Each train
resides at a virtual edge with infinite capacity that leads from a virtual vertex
source to the train’s initial vertex. This is necessary, because it might not be
possible for each train to start at the planned time, if its initial vertex is fully
occupied. In reality, physical trains do not leave the infrastructure, but will move
on to new rides. To model trains moving on, we also connect each vertex to a
virtual node target and let trains with completed rides move onto these virtual
edges with infinite capacity.

3.2 Algorithm

We can now describe our symbolic algorithm to compute exact probabilistic
information about delays. As mentioned before, we compute the timetable exe-
cutions iteratively over the time, considering only time values at which some
train wants to move. For each such time value t we iterate first over the vertices,
then over the edges2 and collect for each infrastructure element the trains that
want to arrive at the respective infrastructure element at t. Since we store train
instances (in contrast to global configurations), in order to determine which train
instances are allowed to move within the current free capacities, we need to check
compatibilities between the scenarios of train instances. If two train instances
have different but compatible scenarios then they “exist” together in the com-
monly contained stochastic cases, but not in the remaining ones contained only
in one of the scenarios. In order to maintain the representation of each complete
scenario exactly once for each train, we “split” train instances when needed. We
first demonstrate this symbolic concept on a small example.
2 In contrast to edges, arrival and departure times might be equal for vertices, i.e. the

train might not want to stop at the given vertex but move on directly to the next
infrastructure element. Processing vertices first allows us to implement entering the
vertex first and entering the outgoing edge afterwards for the same time point.

Symbolic Simulation of Railway Timetables 265

Example 2. Consider the following part of a network with two vertices v1 and
v2 having capacities c(v1) = c(v2) = 3 and a bidirectional edge e = (v1, v2) with
capacity c(e) = 1 between them. Assume two train rides

z1 = (v1(0 �→ 1), v2(2 �→ 3))
z2 = (v2(0 �→ 0), v1(1 �→ 2))

where z1 has higher priority. We assume primary delays only upon start with
random values 0 or 1, with probabilities P(p1 = 0) = 0.9, P(p1 = 1) = 0.1 for
z1 in vertex v1, and P(p2 = 0) = 0.8, P(p2 = 1) = 0.2 for z2 in v2. Below we
illustrate the working of our algorithm for the first two iterations, where for each
relevant time point, we first specify the state after updating movement into the
vertices, then the state after updating movements onto the edges.

v1 v2

(source, v1) v1 (v1, v2) v2 (source, v2)
initially

(1, {p1 = 0}, 0)
(1, {p1 = 1}, 1)

(2, {p2 = 0}, 0)
(2, {p2 = 1}, 1)

t = 0 after entering vertices
(1, {p1 = 1}, 1) (1, {p1 = 0}, 1) (2, {p2 = 0}, 0) (2, {p2 = 1}, 1)

t = 0 after entering edges
(1, {p1 = 1}, 1) (1, {p1 = 0}, 1) (2, {p2 = 0}, 1) (2, {p2 = 1}, 1)

t = 1 after entering vertices
(1, {p1 = 0}, 1)
(1, {p1 = 1}, 2)
(2, {p2 = 0}, 2)

(2, {p2 = 1}, 1)

t = 1 after entering edges

(1, {p1 = 1}, 2)
(2, {p2 = 0}, 2)

(1, {p1 = 0}, 2)

(2,

{
p1 = 1,

p2 = 1

}

, 2)
(2,

{
p1 = 0
p2 = 1

}

, 1)

The trains can move undisturbed through the network, as planned in the
timetable, if there are sufficient capacities. When a train is delayed, it might
affect other trains though. This can be seen for time t = 1, where two trains
need to use the bidirectional edge between v1 and v2. As z1 has the higher
priority and the edge is initially available, z1 can use the edge. Since the edge
has only capacity 1, the train z2 can now only use the edge, if z1 does not, i.e.
in the scenarios, in which the instance of z1 currently at the edge does not exist.
This requires to split the train instance of z2 at v2 into two instances, one that
can use the edge and one that has to wait for z1 to leave the edge. For both
instances we store the scenarios in which the respective instance exists.

In contrast to this approach the simulation algorithm in [8] considers only
probabilities and not scenarios. When executing the same example with the algo-
rithm in [8], we would only store the probabilities of the train instances, but not

266 R. Haehn et al.

Algorithm 2. Symbolic simulation

1: procedure Simulate()
2: Initialize(); let time point t ← tmin;
3: while t ≤ tmax ∧ times 	= ∅ do
4: t ← times.getSmallest(); times ← times \ {t};
5: for each x ∈ V ∪ E do // first vertices then edges
6: Requests(t, x); // update req[x]
7: Occupation(t, x); // update cap[x]
8: while req[x] 	= ∅ do // requests have to be sorted (highest priority first)
9: r ← req[x].pop(); Update(t, x, r); // update occupy and block

Algorithm 3. Collecting requests

1: procedure Requests(t ∈ T, x ∈ V ∪ E)
2: req[x] ← ∅;
3: for each y ∈ pre(x) do // either incoming edges or source vertex of x
4: for each (i, S, t′) ∈ occupy[y] do
5: if t′ ≤ t then req[x] ← req[x] ∪ {(i, S, t′)};

their scenarios. For example, instead of storing the train instance (1, {p1 = 0}, 0),
in [8] we only store (1, 0.9, 0) for the initial train instance on the edge from source
to v1. Without knowing the stochastic context, the capacities are computed in
[8] assuming that all train instances potentially staying in an infrastructure ele-
ment are indeed there with their given probabilities, i.e., without considering the
compatibilities of their scenarios.

The main Simulate method is presented in Algorithm 2. After calling the
initialization method, we declare a local variable t to store the next time point
to be processed in line 2. The loop in lines 3–9 processes all relevant time points
from the set times in ascending order. We need to consider only these time points,
because for all other time values either Algorithm 3 would return no requests
for all infrastructure elements or all collected requests could not be scheduled
anyway, as they could not be scheduled previously and since then no capacity
became available.

After getting the next (smallest) relevant time point in line 4, we process first
all vertices and then all edges in the loop in lines 5–9. It is necessary to process
the vertices first, as it is a common occurrence that a train does not halt at a
vertex and thus has the same arrival and departure time there. This means that
the train is supposed to arrive at its next infrastructure element at the same time
if it is available. By processing the vertices first, it is possible for train instances
to move to a vertex and the following edge on their path in the same time step.
In line 6 we first collect for each infrastructure element x ∈ V ∪ E all train
instances that want to move to this element at the current time point; the result
is stored in the sets req[x]. This update is implemented in the Requests method
(Algorithm 3). Next we call the Occupation method (Algorithm 4) to compute

Symbolic Simulation of Railway Timetables 267

Algorithm 4. Computing the occupation of an infrastructure element

1: procedure Occupation(t ∈ T, x ∈ V ∪ E)
2: block[x] ← {(·, ·, t′) ∈ block[x] | t′ ≥ t};
3: trains ← occupy[x] ∪ block[x];
4: cap[x] ← Split(∅, 0, trains, x);

5: procedure Split(S ∈ S, #z ∈ N, trains ⊆ [1..n] × S × T, x ∈ V ∪ E)
6: if trains = ∅ or #z = c(x) then return {(S, #z)};

7: choose (·, S′, ·) ∈ trains and remove it from trains;
8: let set cap′ ← ∅;
9: if S and S′ are compatible then

10: cap′ ← {(S � S′, #z + 1)};
11: cap′ ← cap′ ∪ {(S′′, #z) | S′′ ∈ ScenarioDiff(S, {S′})};
12: else cap′ ← {(S, #z)};

13: return
⋃

(S′′,#z′′)∈cap′ Split(S′′, #z′′, trains, x);

Algorithm 5. Updating a train instance’s position

1: procedure Update(t ∈ T, x ∈ V ∪ E, r = (i, S, t∗) ∈ [1..n] × S × T)
2: let set S ← ∅;
3: if c(x) = ∞ ∨ |{j|(j, ·, ·) ∈ occupy[x] ∪ block[x] ∪ req[x]}| < c(x) then S ← {S}
4: else S ← Available(x, r);

5: for each S′ ∈ S do
6: for each t′ ∈ D(px

i) do
7: occupy[x] ← occupy[x] ∪ {(i, S′ � {px

i = t′}, t + t′ + t′′)};
8: times ← times ∪ {t + t′ + t′′}; // t′′ is waiting/driving time

9: block[pre(i, x)] ← block[pre(i, x)] ∪ {(i, S′, t + δ)}; times ← times ∪ {t + δ};

10: occupy[pre(i, x)] ← occupy[pre(i, x)] \ {(i, S, t∗)};
11: for each S′ ∈ ScenarioDiff(S, S) do
12: occupy[pre(i, x)] ← occupy[pre(i, x)] ∪ {(i, S′, t∗)};

for each infrastructure element its currently free capacities (or rather the number
of trains occupying or blocking it) under all relevant scenarios. Note that it is
not always necessary to call Occupation here, however, for simplicity we omit
the corresponding case distinctions. Finally, we iterate over the train instances
that want to move to a new infrastructure element in descending priority order,
and compute whether there is sufficient capacity left in the relevant scenario by
calling the Update method (Algorithm 5). Below we describe all sub-algorithms
in more detail.

After Simulate terminates, we can collect all instances of a train to extract
stochastic information of interest like e.g. expected arrival time at its last station
or expected delay. Now we profit from the computationally expensive work to
maintain exact computations and represent each train in each complete scenario
by exactly one train instance, such that the probabilities of the trains instances’
scenarios give us precise analysis results. Furthermore, we can derive information

268 R. Haehn et al.

Algorithm 6. Computing the availability of an infrastructure element

1: procedure Available(x ∈ V ∪ E, r = (i, S, t) ∈ [1..n] × S × T)
2: let set of sets S ← ∅; let set cap′ ← ∅;
3: for each (S′, #z) ∈ cap[x] do
4: if #z = c(x) or S′ is not compatible with S then
5: cap′ ← cap′ ∪ (S′, #z); continue;

6: S ← S ∪ {(S′ � S)}; // r moves to x
7: if S′ � S then cap′ ← cap′ ∪ (S′, #z + 1); // update cap[x]
8: else cap′ ← cap′ ∪ {(S′ � S, #z + 1)};
9: cap′ ← cap′ ∪ {(S′′, #z) | S′′ ∈ ScenarioDiff(S′, {S})};

10: cap[x] ← cap′; return S

Algorithm 7. Computing the difference of a scenario and a set of scenari

1: procedure ScenarioDiff(S ∈ S, S ′ ∈ 2S)
2: for each S′ ∈ S ′ do
3: if S � S′ then return ∅;
4: else if S is not compatible with S′ then S ′ ← S ′ \ {S′};

5: if S = ∅ then return {S};

6: choose S′ ∈ S ′ and p ∈ P with S(p) 	⊆ S′(p); // note: S(p) ∩ S′(p) 	= ∅
7: S+ ← S � {p � (S(p) ∩ S′(p))};
8: S− ← S � {p � (S(p) \ S′(p))};
9: return ScenarioDiff(S−, S \ {S′}) ∪ ScenarioDiff(S+, S);

for infrastructure elements like e.g. expected capacity usage or delay increment
of trains. We plan as future work to also visualize these data in a GUI, even
though it is not yet supported currently by our tool.

Requests (Algorithm 3). This method is called for each time point t and infras-
tructure element x. First we initialize the request set req[x] for x to the empty
set in line 2. Then we iterate over all predecessors y of x, which are all incoming
edges for a vertex resp. the source vertex for an edge, from where train instances
can move to x. The current train instances on the predecessor element y are col-
lected in the set occupy[y]. These train instances carry the train identity, their
respective scenario and the time point at which they want to move to the next
element. We recognize those train instances that currently want to move to x on
the fact that the latter time instance is not in the future; exactly these instances
are collected in req[x] in line 5.

Occupation (Algorithm 4). This method takes as input a time point t and
an infrastructure element x, and computes the number of trains occupying or
blocking x in all relevant scenarios. It starts in line 2 with updating the blocking
set by removing all blocking entries that are “timed out”, i.e. where the end of
blocking lies in the past. To simplify notation, note that by “·” we refer to data
components that are currently not needed and thus not named. Next we store

Symbolic Simulation of Railway Timetables 269

those train instances that are occupying or blocking x at time t in the local set
trains in line 3. As these train instances determine the available capacities in x
at t, we pass on this set to the Split method in line 4 to compute the number of
all occupying/blocking trains in the different scenari, and store this information
in cap[x].

Split (Algorithm 4). This method takes as input a scenario S, a non-negative
integer #z, a set trains of train instances, and an infrastructure element x.
The method recursively splits S into incompatible sub-scenarios such that in all
stochastic cases covered by a sub-scenario the same train instances from trains
“exist”; the number of these train instances is counted for each sub-scenario, and
the set of all these scenario-integer pairs is returned. Thus calling Split from
Occupation with the scenario ∅ and trains containing all occupiers/blockers
of x, it will split the scenario space into sub-spaces in which the same train
instances from trains “exist” and occupy/block x and thus the used capacity
can be uniquely determined.

At the beginning, we start with the information that #z train instances
occupy/block an infrastructure element x at a time point t in scenario S, and
additional train instances in trains might increase the capacity usage when their
scenarios are compatible with S. If trains is empty or the capacity is already fully
used (line 6) then the current result {(S,#z)} is final and returned. Otherwise,
in line 7 we process a train instance with scenario S′ from trains. The splits will
be stored in the local set cap′ (line 8). In line 9 we check whether our chosen
train instance “exists” in S; if not then we recursively call Split to examine
the remaining other train instances. Otherwise, if the considered scenario S is
compatible with the train instance’s scenario S′ then we split S into a part in
which our selected train instance with scenario S′ exists (line 10) and other sub-
scenarios in which the train does not exist. Note that the first split is easy to
compute as S � S′, but the latter might need multiple splits and is computed
with the help of the ScenarioDiff method.

Update (Algorithm 5). This method takes as input a time t, an infrastructure
element x and a train instance r that wants to move to x at t, determines
whether capacities allow this and if yes models the movement. In case of infinite
capacity or if the number of train identities that might want to use x is below the
capacity, we know that the train can move (line 3). Otherwise, with the help of
the Available method we compute a set of scenarios in which the movement is
possible (line 4). For each of these scenarios (line 5) and each possible delay of r
in x (line 6), we update the occupier set (line 7) and the relevant time points (line
8) and model the blocking time on the previous infrastructure element (line 9)
to represent r’s move to x. Finally, for those sub-scenarios for which a movement
is not possible, we add back corresponding train instances to the occupier set of
the previous infrastructure element (lines 11–12). Note that if x is a vertex then
in order to identify the respective predecessor we need to store this information
somewhere; to ease notation, we did not do so in this method description but
our implementation of course stores this information in the corresponding data
types.

270 R. Haehn et al.

Available (Algorithm 6). This method computes and returns all scenarios in
which the request of a train instance r to move to the infrastructure element x
at the current time point can be scheduled based on the remaining capacities.
The computation uses the information in cap[x], which contains the number of
occupiers/blockers of x at t for all relevant scenarios. It iterates over these sce-
narios (line 3), checks whether a movement is possible in the examined scenario
S′ and if yes it stores the scenario in which the movement is possible (line 6) and
updates cap[x] to increase the stored capacity usage (lines 7–9); if the movement
is possible in the whole scenario S′ then the number of users is increased (line 8),
otherwise we need to split S′ into a part where the train instance can move (line
8) and where it is not possible (line 9). Note that the remaining bookkeeping for
occupy, times and block is done in the Update method.

ScenarioDiff (Algorithm 7). This method computes the “difference” of a sce-
nario S and a set S of scenarios. To do so, we “split” S into a set S ′ of scenarios
that together represent all complete scenarios from S that are not represented
by any scenario from S. If S is contained in one of the “subtracted” scenarios
then the result is empty (line 4), and if one of the “subtracted” scenarios is
not compatible with S then we can omit it (line 4). Otherwise, we choose one
“subtracted” scenario S′ and a suitable random variable and split S into an
S′-compatible part S+ (line 7) and a S′-disjoint part S− (line 8) and make a
recursive call to accommodate further refinements.

In summary, we made three simplifying assumptions, all of which could be
relaxed without any major changes in the algorithms:

• a train ride is loop-free;
• a physical train path is modeled as several train rides;
• safety distance is a constant value.

An assumption, which is not easy to relax is the modeling of delays by dis-
crete probability distributions. In future work we will also consider continuous
distributions to allow more precise modeling.

4 Experimental Results

We implemented the algorithm presented in Sect. 3 in C++. To represent proba-
bilities we use high-precision floating point values since computations with exact
representations of real numbers are much slower, but floating points could be
easily replaced by exact arithmetic computations. All experiments were run on
a computer with a 1.80 GHz × 8 Intel Core i7 CPU and 16 GB of RAM. As
input we used some real-world railway infrastructure networks that have been
generated from confidential infrastructure data in XML form, provided by DB
Netz AG (German Railways). The second, respectively third, column in Table 1
lists the number of vertices, respectively edges in the infrastructure networks. I1
is a sub-network of I2.

Symbolic Simulation of Railway Timetables 271

Table 1. Railway systems - infrastructure network
and timetable properties

Input |V | |E| T |T | Runtime [s]
Symb. [8]

1: I1, T1 1195 2532 [240, 300] 90 66.2 5.4
2: I1, T2 1195 2532 [480, 300] 172 149.7 5.9
3: I2, T3 2646 5622 [240, 300] 201 161.2 12.1

Time was modeled in the
unit of minutes using high-
precision floating point val-
ues. A day is modeled by
[0; 1440] with 0 representing
12:00 am. Additionally, unlike
in the algorithms above, for
the evaluation we do not sim-
ulate each time value where some change may occur, but group them to consec-
utive time values that are at least one second apart. This reduces the amount of
computations, in particular of unnecessary checks whether something changes,
significantly. The execution of the algorithm is sped up by about factor 10 by
this measure. The imprecisions caused by this are not expected to be significant
as we are concerned with long planning horizons and not real-time dispatching.
This is also not a restriction in the implementation, it would also be possible to
simulate every time value where something might happen. We consider different
time intervals, specified in Table 1, column four.

For the infrastructure networks and the respective time window, different
executable timetables were considered. The number of trains in those timetables
is listed in Table 1, column five. The timetables are based on the DB data, but
had to be slightly modified to in order to match the network’s level of detail.

Due to the currently limited scalability, we consider primary delays only at
the start of train rides. The discretized probability distribution for the system
entry delay pentry

i of each train i ∈ [1..n] is based on the delay distribution

P(X ≤ t) = F (t) =

{
0, if t < 0
1−p · e−λt, if t ≥ 0

suggested in [17], with p ∈ [0; 1] the share of delayed trains and λ ∈ R the
reciprocal of the average delay of delayed trains, for random variable X. For
p and λ we use the values suggested by the DB guidelines [6], depending on
the train’s type. We then select three to four values representing [0;∞), split
into varyingly wide intervals and assign those the probability corresponding to
the interval they represent. Compared to these system entry delays the primary
delays during the train rides are lower and also four to ten times less likely
[6]. Also the number of train instances would grow exponentially in the number
of infrastructure elements on the train paths, even without considering trains
influencing each other, as for each train its number of instances would at least
double at every infrastructure element. Thus we decided to consider only system
entry delays in our experiments. Technically, the implementation can be easily
extended to consider primary delays during the train ride. We set the safety
distance δ between two consecutive trains to 2.0 min.

The only relevant difference between the algorithm we presented above and
the implementation is that in the implementation we consider primary delays
only at initial vertices. We argued above that this is a reasonable restric-
tion. Additionally, the implementation allows in contrast to the algorithm to

272 R. Haehn et al.

consider only time values that are at least a second apart. This exchange between
computation speed and precision is optional though.

Fig. 1. Number of train instances over time for
symbolic in blue and for Algorithm [8] in green, both
for the first (I1, T1) and third input (I2, T3) (Color
figure online)

We compare the algo-
rithm we presented in this
paper, in the following called
symbolic, with the one pre-
sented in [8]. The time win-
dow extends the timetable
with 20 min, to accom-
modate delays. The run-
ning times for symbolic are
given in the second to last
column of Table 1, respec-
tively the last column for
Algorithm [8], which needed
less than 10% of those times.
The difference in computa-
tional effort is due to the
more complex computations
caused by using scenarios
instead of just probabilities
for each train instance. In the following we visualize some results only for selected
inputs for more clarity.

The number of train instances the simulation computes, depicted exem-
plary for two of the inputs in Fig. 1, is for all three considered examples lower
for symbolic. This is somewhat surprising as we expected the exactness of
symbolic to come at the cost of more train instances, however, seemingly the
approximation of [8] causes an even stronger increment of the number of train
instances, at least for smaller time windows.

In general neglecting the stochastic dependencies in the simulation had a
larger effect than we expected. This is clearly visible in Fig. 3, where we show
for the second input the expected number of trains that reached their target
and the trains that should reach their target according to the timetable T2. The
approach presented in this paper is much closer to the actual timetable, despite
both approaches using the same delay distributions.

Another indication for this are the numbers of trains that arrive at their
target with a certain delay, shown in Fig. 2. There we can see that, as one
would expect, most trains arrive in time or only marginally late for the approach
presented in this paper. The exact number is even cut off to properly see the
remaining values and would be at 140 for 1 min delay. For Algorithm [8] this
peak is much lower and there are lots of trains being delayed for 30 min and
more, a peak of about 50 that is again cut off. A possible explanation for this
is that interactions between trains repeatedly cause the simulation of spurious
delays when neglecting stochastic dependencies. By spurious delays we mean
delays that only occur in the simulation, due to the simplifying inaccuracy to
ignore stochastic dependencies. This holds especially for freight trains, because
they have low priorities.

Symbolic Simulation of Railway Timetables 273

≥

Fig. 2. Number of trains that arrive at their target with a certain expected delay for
symbolic in blue and for Algorithm [8] in green, for the second input (I1, T2) (Color
figure online)

Fig. 3. Number of trains expected to have reached
their target over time for symbolic in blue and for
Algorithm [8] in green, for the second input (I1, T2)
(Color figure online)

This would explain that,
for example, for the first
input we compute an aver-
age delay of 3 min and
42 s when reaching the tar-
get, but without considering
stochastic dependencies the
computed average delay is
over 16 min, for the same
initial delay distributions.
This is visualized for one
specific train in Fig. 4, there
we show the delay distribu-
tion with which this train
reaches its target. In the
left picture, we can see that
symbolic computes differ-
ent train instances that

arrive with approximately the same delay. This does not happen in Algorithm
[8]. These train instances have different scenario representations, which makes it
possible to examine which trains caused a certain delay.

In contrast to Monte Carlo simulations, our algorithm is exact (up to floating-
point computations) for the given model. While Monte Carlo simulations usually
compute about 50 to 100 timetable executions with random values for the pri-
mary delays, our algorithm considers all possible scenarios. With more than
3|T | complete scenarios, a Monte Carlo simulation may give some idea about
the timetables properties, but the result depends on the random scenarios con-
sidered. Most of the software tools using Monte Carlo simulation that were
mentioned in the introduction though use a more detailed model than we do

274 R. Haehn et al.

Fig. 4. Probability distribution for a sample train’s delay when reaching its target (in
T2), left for the computed train instances, right discretized to minutes

in this paper, which increases their precision compared to this approach. Unfor-
tunately, we can not compare this implementation with the systems mentioned
in the introduction as those are commercial tools for which we do not have a
license.

Another advantage of this algorithm over other simulation approaches is that
we store the scenarios for which specific delays occur. This allows us to not only
examine the properties that could also be analysed using Algorithm [8], but to
examine the causes for delays.

5 Conclusion

In this paper we presented an exact symbolic simulation approach for railway
timetables that takes stochastic dependencies into account. Our experimental
results show that the proposed method clearly improves on [8], where stochastic
dependencies were neglected. However, our approach is computationally expen-
sive and needs improvement for better scalability. Besides parallelization, ongo-
ing work aims at a major reduction of the number of train instances by merging
suitable cases. We target reduction while maintaining exact results, as well as
over-approximative reductions embedded in a CEGAR (counterexample-guided
abstraction refinement) framework. We are also working on a formal proof of cor-
rectness for the presented approach. Another work thread aims at rigorous result
evaluation and visualization to help to identify problematic issues in timetables.

References

1. LUKS (2021). https://www.via-con.de/en/development/luks/. Accessed 28 Apr
2021

2. OnTime (2021). https://www.trafit.ch/en/ontime. Accessed 28 Apr 2021
3. OpenTrack Railway Technology (2021). http://www.opentrack.ch/opentrack/

opentrack e/opentrack e.html. Accessed 28 Apr 2021
4. RailSys (2021). https://www.rmcon-int.de/railsys-en/. Accessed 28 April 2021

https://www.via-con.de/en/development/luks/
https://www.trafit.ch/en/ontime
http://www.opentrack.ch/opentrack/opentrack_e/opentrack_e.html
http://www.opentrack.ch/opentrack/opentrack_e/opentrack_e.html
https://www.rmcon-int.de/railsys-en/

Symbolic Simulation of Railway Timetables 275

5. Büker, T., Seybold, B.: Stochastic modelling of delay propagation in large networks.
J. Rail Transp. Plann. Manag. 2(1), 34–50 (2012). https://doi.org/10.1016/j.jrtpm.
2012.10.001

6. DB Netz AG: Fahrwegkapazität. In: Richtlinie 405 / DB Netz, Deutsche Bahn
Gruppe. DB Netz, Deutsche Bahn Gruppe, [Frankfurt am Main] (2008)

7. Franke, B., Seybold, B., Büker, T., Graffagnino, T., Labermeier, H.: Ontime –
network-wide analysis of timetable stability. In: 5th International Seminar on Rail-
way Operations Modelling and Analysis (2013)

8. Haehn, R., Ábrahám, E., Nießen, N.: Probabilistic simulation of a railway
timetable. In: Huisman, D., Zaroliagis, C.D. (eds.) 20th Symposium on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020). https://doi.
org/10.4230/OASIcs.ATMOS.2020.16. https://drops.dagstuhl.de/opus/volltexte/
2020/13152

9. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic
model checker storm. CoRR abs/2002.07080 (2020). https://arxiv.org/abs/2002.
07080

10. Janecek, D., Weymann, F.: Luks - analysis of lines and junctions. In: Proceedings of
the 12th World Conference on Transport Research (WCTR 2010), Lisbon, Portugal
(2010)

11. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

12. Nash, A., Huerlimann, D.: Railroad simulation using OpenTrack. Comput. Rail.
IX, 45–54 (2004). https://doi.org/10.2495/CR040051

13. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic
Mathematics, Cambridge University Press, Cambridge (1997). https://doi.org/10.
1017/CBO9780511810633

14. Radtke, A.: Infrastructure Modelling. Eurailpress, Hamburg (2014)
15. Radtke, A., Bendfeldt, J.: Handling of railway operation problems with RailSys. In:

Proceedings of the 5th World Congress on Rail Research (WCRR 2001), Cologne,
Germany (2001)

16. Schneider, W., Nießen, N., Oetting, A.: MOSES/WiZug: Strategic modelling and
simulation tool for rail freight transportation. In: Proceedings of the European
Transport Conference, Straßbourg (2003)

17. Schwanhäusser, W.: Die Bemessung der Pufferzeiten im Fahrplangefüge der Eisen-
bahn. Verkehrswissenschaftliches Institut Aachen: Veröffentlichungen, Verkehr-
swiss. Inst. d. Rhein.-Westfäl. Techn. Hochsch. (1974)

18. Yuan, J.: Stochastic modelling of train delays and delay propagation in stations,
vol. 2006. Eburon Uitgeverij BV (2006)

19. Yuan, J., Medeossi, G.: Statistical analysis of Train Delays and Movements. Eurail-
press, Hamburg (2014)

https://doi.org/10.1016/j.jrtpm.2012.10.001
https://doi.org/10.1016/j.jrtpm.2012.10.001
https://doi.org/10.4230/OASIcs.ATMOS.2020.16
https://doi.org/10.4230/OASIcs.ATMOS.2020.16
https://drops.dagstuhl.de/opus/volltexte/2020/13152
https://drops.dagstuhl.de/opus/volltexte/2020/13152
https://arxiv.org/abs/2002.07080
https://arxiv.org/abs/2002.07080
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.2495/CR040051
https://doi.org/10.1017/CBO9780511810633
https://doi.org/10.1017/CBO9780511810633

Simulation of N-Dimensional
Second-Order Fluid Models with Different
Absorbing, Reflecting and Mixed Barriers

Marco Gribaudo1, Mauro Iacono2(B), and Daniele Manini3

1 Dipartimento di Elettronica, Informatica e Bioingegneria, Politecnico di Milano,
via Ponzio 5, 20133 Milan, Italy

2 Dipartimento di Matematica e Fisica, Università degli Studi della Campania,
“L. Vanvitelli”, viale Lincoln 5, 81100 Caserta, Italy

mauro.iacono@unicampania.it
3 Dipartimento di Informatica, Università di Torino,

corso Svizzera 185, 10123 Turin, Italy

Abstract. Simulation of second-order fluid models requires specific
techniques due to the continuous randomness of the considered processes.
Things become particularly difficult when considering several dimen-
sions, where correlation occurs, and classical concepts like absorption
and reflection require specific extensions. In this work, we will focus on
three different types of behaviors, with two correlations structures: either
independence or total correlation. For the considered scenario, we will
describe how to produce suitable traces of the underlying continuous
stochastic process.

Keywords: Second-order fluid models · Simulation · Absorbing and
reflecting barrier

1 Introduction

Second order fluid models provide an interesting tool to describe systems with
continuous components that vary in a random way. While in first order fluid mod-
els continuous components of the system evolve in a deterministic way, charac-
terized by a given rate, second order models add variance to include randomness.
Second order models have been used in performance evaluation several times,
but rarely considering correlation among different continuous components. This
has limited the effectiveness and applicability of the models, and they have rarely
been fully exploited. In particular, fluid models can be used to describe systems
with a random continuous stream of objects, such as cyber-physical systems and
peer-to-peer file transfers. Such streams, in most of the cases, are characterized
at least by two continuous variables: the “source” and the “destination”. These
variables are strongly correlated, and this correlation poses challenges for both
analytical and simulation purposes.
c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 276–292, 2021.
https://doi.org/10.1007/978-3-030-85172-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-85172-9_15

Simulation of N-Dimensional Second-Order Fluid Models 277

In first order fluid models correlation between inputs and outputs is governed
by rate adaption: flux speeds are varied to make sure that inputs and outputs
match when buffers are either empty or full. In second order models this is
achieved using boundary conditions which correlate the various streams. Such
conditions become more complex when considering several continuous variables.

Although second order fluid models have been mainly studied analytically
in literature, the underlying equations become very easily impossible to solve
from a numerical point of view. For this reason Monte-Carlo simulation can
be an interesting alternative to exploit the modeling power of such tools, while
maintaining the ability to compute results with reasonable amounts of time and
resources. Simulation of models with a single reflecting barrier has been studied
in [1]. Here we extend those results to simulate processes with different types of
barriers in n-dimensions.

To summarize, in this work, we focus on three different types of boundary
behaviors, with two correlations structures: either independence or total corre-
lation. The main contribution of this work is a technique to produce suitable
traces of the underlying continuous stochastic process.

The paper is organized as follows: related work is discussed in Sect. 2, then we
formalize the considered class of models and focus on their analysis when there is
a single continuous variable in Sect. 3. We next extend the results to consider a
higher number of fluid variables in Sect. 4, and we conclude the paper in Sect. 5.

2 Related Work

The differential equations that describe a fluid model are hard to solve and the
symbolic solution of the equations can be obtained only for trivial cases. In the
case of transient analysis the system has an initial state which can be exploited
as considered in [2–5], to mention a few, while in the case of stationary analysis
the equations that describe a fluid model are Ordinary Differential Equations
(ODEs) without initial condition. Indeed this problem has been solved for first
order models by the analysis of first passage time probabilities, see for instance
[6–11] and the references therein. The key of these solutions lies in the matrix
characterisation of the distribution of the phase visited at the end of a busy
period of the fluid queue.

The problem remains open for second order models (also known as modulated
diffusion processes), where the solution is obtained from a set of boundary equa-
tions, ODEs and a normalising condition. For example, in case of fluid level inde-
pendent transition and fluid drift, the solution of the ODE is obtained by com-
puting eigenvalues and eigenvectors of a matrix [12]. Usually those approaches
are very sensitive to the computation of the eigenvalues and may lead to severe
numerical errors. An alternative approach using modal decomposition is pro-
posed in [13], where authors develop a numerically stable algorithm for a general
fluid-flow model to examine the impact of variance in the case of homogeneous
on-off sources, in the infinite and finite buffer case. Second order models are
introduced in [12,14]. In these works the authors consider a white noise factor

278 M. Gribaudo et al.

which represents the variability of the traffic during the transmission periods.
The fluid level is described by a reflected Brownian motion modulated by a
continuous time Markov chain (CTMC). When the CTMC is in state i, the
fluid level is modelled by a reflected Brownian motion with drift ri and variance
parameter σ2

i . The authors of [15] provide a stability analysis of such models
when the modulating process is general stationary and ergodic (not necessar-
ily Markovian). Another notable example is reported in [16] where the authors
present a simple approximate compositional method for analysing a network of
fluid queues with Markov-modulated input processes at equilibrium. Fluid mod-
els have been successfully applied to several interesting practical examples, such
as in [17], where the effect of a power-save mode on the battery life of a device
subject to stochastically determined charging and discharging periods is studied.

Second order models can have two different types of boundaries: absorb-
ing or reflecting [18]. A special approximation method is proposed in [19] for
approximating the absorbing boundary based on the solution of the system with
reflecting boundary.

In [20] authors address the problem of performing steady state solution of mod-
ulating diffusion processes using neither discretisation nor singular value decom-
position. The approach is similar to the one used in [21,22] for first order models
and is focused on the boundary behaviours. Moreover, the authors applied second
order fluid models to multimedia systems performance evaluation in [23].

In this paper the focus is on the application of a simulation-based approach to
models in which the upper and lower boundary of each state can be either absorb-
ing or reflecting. An important impulse towards the research work described in
this paper is due to the work of J. Michael Harrison, which extensively studied
Brownian motion based analysis of stochastic flow systems problems [24]. The
author uses the notion of barrier in solving tandem queues in heavy traffic with
diffusion approximation [25]; in this contribution we study the implementation
of a suitable simulation oriented approach encompassing barriers based on those
methods, aiming at second order fluid models.

3 Simulation of First and Second Order Fluid Models
with Reflecting and Absorbing Barriers

From a simulation point of view, the type of second order fluid model we are
interested in can be defined by the following tuple:

M = (S, s0,X,x0,Q, R, V,B) , (1)

where S = {s1, . . . , sN} is a set of N states in which the system can operate,
and s0 ∈ S is the one in which the system begins its evolution. X = {x1, . . . , xC}
is a set of C continuous variables, whose initial value is defined by vector
x0 = |x01, . . . , x0C |. Q = |. . . qij . . . | is an infinitesimal generator, with qij ≥ 0
for i �= j, and qii = −

∑
j �=i qij . The system stays in a state si for an expo-

nentially distributed time, with rate −qii, then it jumps to state sj with prob-
ability qij

−qii
. R = {r1, . . . , rN} is a set of N vectors of C components each,

Simulation of N-Dimensional Second-Order Fluid Models 279

and V = {Σ1, . . . ,ΣN} is a set of N matrices of size C × C. When the sys-
tem is in a state si ∈ S, the fluid components evolve according to the average
defined by ri, with covariance matrix Σi, as it will be better clarified in Sect. 4.
B = {b1, . . . , bK} is a set of K boundary conditions/action specifications that
are used either to perform rate adaption (for first order models) or to define
boundary behavior (for second order models). Before entering in more details
with the description of the elements of B, we need to define the state of the
model. At a given time t > 0, the state Z(t) of the model is defined by the
following tuple:

Z(t) = (s(t),x(t)) . (2)

In particular, s(t) ∈ S is the discrete component of the state of the model,
and describes the current operation mode of the system. We call s(t) discrete,
because it remains constant for finite time instants, and changes to different
values with jumps, according to both the infinitesimal generator Q and the
boundary actions B. x(t) is the continuous component of the state, and it is a C
component vector. This part is called continuous component of the state, since
it continuously varies with time. The initial state of the system is thus defined
as:

Z(0) = (s0,x0) . (3)

With the state definition in Eq. 3, we could describe the elements of the
boundary action set B. In particular, we define:

bk = (sk,uk, dk, ak, pk) , (4)

where uk is a C component vector, and dk is a real constant. The boundary
action bk is triggered at time t, if:

s(t) = sk ∧ x(t) · uk = dk , (5)

where x(t) ·uk is the conventional dot product of two vectors (i.e. x(t) ·uk =∑
i xi(t) · uki). Component ak = {jump,reflect} defines the type of action

that must be performed when the boundary action is triggered, and pk is a
parameter required by the corresponding behavior. With the jump action, the
system changes state, moving from s(t−) = sk to s(t+) = pk. In this case, pk ∈ S
describes the destination of the jump, and t− and t+ denote time just before
and after the state change. Note that, without loss of generality, jump actions
can be used to model both rate adaption in first order models and absorbing
behaviors in second order models. The reflect action, specific for second order
models, defines the reflecting barrier specific to second order fluid models. In
this case, pk is a C component vector that defines the reflection direction, as it
will be clarified in Sect. 4.

In this work we focus on producing a trace of the considered process. The
key difference with conventional discrete event systems is that the continuous
component of the state, x(t), evolves with time. In general, we are interested in
simulating the transient evolution of the model, producing a trace Z(tl), sampled
in L different time points tl ∈ {0, t1, . . . , tL} with 0 < t1 < . . . < tL. Considering

280 M. Gribaudo et al.

the changes of state due to the infinitesimal generator Q is straightforward and
can be done with conventional techniques: for this reason, we will not focus on
this aspect of the simulation, and, without loss of generality, we will restrict our
analysis to a time frame T , such that for any tl ≤ T we have s(t) = si.

To perform the simulation of the continuous part of the model and compute
x(tl),∀tl ≤ T , we need essentially to be able to perform two tasks:

1. starting from x(tl), determine x(tl+1) for any tl < tl+1 ≤ T ;
2. determine if a barrier k exists that was hit by the continuous component of the

model during any considered time interval tl < tl+1, that is, if ∃t, tl ≤ t < tl+1

such that x(t) · uk = dk.

In the rest of this section, we will first consider this problem for first order
models, then for second order models, revisiting known results in the proposed
framework. To also simplify the discussion, we will focus on a single barrier,
that is on K = 1. Extension to K > 1 is straightforward and already analyzed
in literature (see, for example, [26]) for first order models, while it is a research
topic for second order models, and will be postponed to future work.

3.1 Simulation of First Order Fluid Models

In first order models the fluid level grows linearly according to the deterministic
rate ri. Since we focus on a single continuous variable, if x(t) denotes the fluid
level at time t and t′ is a time instant such that t′ > t, then:

x(t′) = x(t) + ri · (t′ − t) , (6)

provided that the continuous variable does not reach a boundary in the (t, t′)
interval. The evolution of the process is thus deterministic in time, once the
initial state and the time intervals have been set. We can then move from time
tl to time tl+1 with a very simple recurrence equation:

x(tl+1) = x(tl) + ri · (tl+1 − tl) . (7)

Conversely, we can determine that the boundary is crossed if we have that:

(uk · x(tl) − dl)) · (uk · x(tl+1) − dl)) < 0 , (8)

which essentially checks whether the two values of the continuous variable are
on the same side (same sign of the differences with respect to dl), or on the
opposite one (different signs) of the barrier.

3.2 Simulation of Brownian Motion for Second Order Models

In case of second order models, it has been proven (see, for example, [1]) that
the model evolves following a Brownian motion characterized by a given drift ri

and a given variance σi. In these models, we have that:

x(t′) = x(t) + N
(
ri · (t′ − t), σ2

i · (t′ − t)
)
, (9)

Simulation of N-Dimensional Second-Order Fluid Models 281

where N(μ, σ) is a sample from a normal distribution characterized by average
μ and variance σ2. In other words, the fluid level change in the (t, t′) interval is
normally distributed with mean ri · (t′ − t) and variance σ2

i · (t′ − t). Note that
Eq. (9) is valid if the continuous variable does not reach a boundary in the (t, t′)
interval. In other words, the value of the continuous variable x(tl+1), starting
from x(tl) can be computed as:

x(tl+1) = x(tl) + ri · (tl+1 − tl) + σi · N(0, 1) ·
√

(tl+1 − tl), (10)

with N(0, 1) being a sample from the standard normal distribution, char-
acterized by zero mean and unitary variance. Determining if the continuous
variable crosses a boundary in a second order model requires a little bit more
of care, and the way in which it can be performed is tightly connected to the
type of barrier (i.e., absorbing or reflecting) being considered. To approach the
problem, we start considering the meaning of a barrier in a first order system,
and its interpretation in second order models.

3.3 Considering Boundaries

Fig. 1. Boundary in a simple first order fluid model, shown as a Fluid Petri Net (with
rate β > α): a) and b) two versions of the same process; c) the corresponding
simulation model.

To better explain the importance of boundary conditions, let us focus on
the two examples shown in Fig. 1a) and 1b) by means of a Fluid Petri Net [27].
Case a) shows a process in which we have a continuous input at rate α, and a
continuous output at rate β (e.g., a stable producer/consumer system). Case b)
presents instead a case in which we only have a continuous output at rate β − α
(e.g., a pool depletion system). Both models are initialized to state s1, with an
initial fluid level x1 = x0; they have the same underlying first order fluid model
process, depicted in Fig. 1c): at time t = x0

β−α , the process jumps to state s2 to
perform rate adaption. In case a), the output of the transition on the right is
reduced to α, while in case b it is reduced to 0. The final result in both cases is
a fluid rate r2 = 0, which ensures that the process is absorbed at the boundary.

When considering second order models, the two scenarios presented in
Fig. 1a) and 1b) are modeled in a different way. The first case is modeled with
a single state s1, with σ1 > 0, with a reflecting barrier placed at x1 = 0. Reflec-
tion makes sure that the randomness in both input and output processes are

282 M. Gribaudo et al.

correctly modeled, since there could be time instants in which the random rate
of the input transition is greater than the one of the output, making thus the
fluid increase in the considered continuous place. This is the key of diffusion
approximation of queuing systems using second order fluid models. The system
shown instead in Fig. 1b) is modeled with an absorbing boundary, which causes
the system to jump to state s2 when x1 = 0 is reached, resulting in a stop of
the flow. The main difference with respect to first order models (σ1 > 0) is that
the time at which the system reaches state s2 is no longer deterministic, but
it rather is a random variable T , whose average is E[T] = x0

β−α . Absorption is
needed, since this case corresponds to the time required to empty an initially
full container: once all its content is gone, since there is no input, the continuous
level will never grow anymore.

Figure 2 shows a few traces of the first order model, identical for cases a) and
b), and of the differences between first and second order models.

0 0.5 1 1.5 2 2.5 3

t [sec.]

0

0.2

0.4

0.6

0.8

1

X
(t)

0 0.5 1 1.5 2 2.5 3

t [sec.]

0

0.2

0.4

0.6

0.8

1

X
(t)

0 0.5 1 1.5 2 2.5 3

t [sec.]

0

0.2

0.4

0.6

0.8

1

X
(t)

)c)b)a

Fig. 2. Traces of 4 simulation runs of the FPN models in Fig. 1 with α = 1, β = 2,
x0 = 1 and σ1 = 0.25 (in the second order case): a) Trace of the first order models;
b) Traces of the second order model corresponding to Fig. 1a); c) Traces of the second
order model corresponding to Fig. 1b).

3.4 Reflecting Barrier in One Dimension

According to [1], Brownian motion with a reflecting barrier located at x = 0 can
be defined as the difference of two processes: the unconstrained Brownian motion
and the barrier process. In particular, let us call w(t) the unconstrained process
and y(t) the barrier process: then the current fluid level defined by variable x(t)
is:

x(t) = w(t) − y(t), (11)

where w(t) evolves as a conventional Brownian motion as defined in Eq. 10, and
y(t) evolves whenever the process crosses the barrier:

y(t) = inf
τ≤t

w(τ). (12)

Figure 3 shows an example of the evolution of the unconstrained process w(t),
of the barrier y(t) and of the resulting reflected process x(t). The challenge in

Simulation of N-Dimensional Second-Order Fluid Models 283

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t [sec.]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X
(t)

Unconstrained Motion
Barrier
Reflected Motion

Fig. 3. The components of a reflected Brownian motion process with ri = −0.5, σi =
0.5 and x0 = 1: the unconstrained process, the barrier, and the reflected process.

simulating this type of reflected process is that during each time interval [tl, tl+1)
the process might reach values that are below the ones assumed at beginning and
at the end of the sampling period, and it might cross the barrier in some unseen
point in the middle. This is, for instance, shown in Fig. 4, where the process
starts at tl = 0 with x(tl) = 1, and ends at tl+1 = 0.1 with x(tl+1) = 1.63,
and the minimum is reached at around tmin = 0.001, with x(tmin) = 0.85. The
process can then be correctly simulated in the following way.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t

0.8

1

1.2

1.4

1.6

1.8

2

2.2

X
(t)

X
X(t)
min(X(t ... t+ t)
X(t+ t)

Fig. 4. A detail of the evolution of Brownian motion with respect to a barrier at 0
within a discretization step Δt = 0.1 s, with ri = 0 and σi = 2 : the process, the
starting and ending point, and the minimum value reached during the evolution.

Let us call xmax(tl, tl+1) the maximum reached by a process in the time
interval [tl, tl+1), i.e.:

xmax(tl, tl+1) = max
tl≤t<tl+1

x(t). (13)

If we consider a process characterised by zero mean and unitary variance (ri = 0
and σi = 1), which starts at x(tl) = 0, it can be proven (see [1]) that:

284 M. Gribaudo et al.

F (m|y) = Prob (xmax(tl, tl+1) ≤ m|x(tl+1) = y) = 1 − e
−2m(m−y)

tl+1−tl ,m ≥ y. (14)

We can invert Eq. 14 and use it to generate samples for xmax(tl, tl+1) using the
Inverse Sampling Transform method:

F−1(u|y) =
1
2

(
y +

√
y2 − 2(tl+1 − tl). ln(1 − u)

)
(15)

Exploiting the symmetry properties of the normal distribution, given two sam-
ples ν = N(0, 1), distributed according to a standard normal distribution, and
η = Unif(0, 1), uniformly distributed between 0 and 1, we can compute both
x(tl+1) and γ = mintl,tl+1 x(t):

w(tl+1) = w(tl) − ν · σi ·
√

tl+1 − tl + ri · (tl+1 − tl) (16)

γ = min
tl,tl+1

w(t) = w(tl) − F−1(η|ν) · σi ·
√

tl+1 − tl + ri · (tl+1 − tl) (17)

y(tl+1) = min(y(tl), γ) (18)
x(tl+1) = w(tl+1) − y(tl+1). (19)

Figure 5a) shows four Brownian motion traces, with a reflecting barrier at
x = 0, starting from x0 = 1, and for a time interval t ∈ [0, 2], with different
drifts (ri = {−0.5, 0, 0, 0.25}) and standard deviations (σi = {0.5, 0.5, 2, 0.25}).
Note how the trace with the negative drift ri = −0.5 clearly bounces repeatedly
against the barrier at X(t) = 0, apparently never touching it, while the trace
with a higher variance and zero drift ri = 0 and σi = 2 gets reflected at the
beginning of the simulation, and then moves away from the boundary. Figure 5
b) shows the distribution of the position of the process with ri = −0.5 and
σi = 0.5, x0 = 1, at six different time instants, namely t ∈ {0.5, 1, 1.5, 2, 5, 10}. It
is interesting to see how the process tends to a steady state distribution caused
by the combination of the negative drift and of the reflecting barrier.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t [sec.]

0

0.5

1

1.5

2

2.5

3

X
(t)

 = -0.5, = 0.5
 =0, = 0.5
 = 0, = 2
 = 0.25, = 0.25

0 0.5 1 1.5 2 2.5 3 3.5 4

X(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
of

 X
(t)

t = 0.5
t = 1
t = 1.5
t = 2
t = 5
t = 10

)b)a

Fig. 5. a) Traces of a Brownian motion with a reflecting barrier and parameters
shown in the legend, all starting at x0 = 1. b) Distribution of the position at
t ∈ {0.5, 1, 1.5, 2, 5, 10} for the case with ri = −0.5, σi = 0.5, x0 = 1.

Simulation of N-Dimensional Second-Order Fluid Models 285

3.5 Absorbing Barrier in One Dimension

An absorbing barrier can be easily implemented by replacing Eqs. 18 and 19 with
the following:

x(tl+1) = max(0, w(tl+1)). (20)

Barrier crossing can be simply identified, starting from Eq. 17, by testing if γ < 0.
Absorption is then implemented, as for the first order case, by moving the system
to a second state s2, where both the drift and variance are zero, i.e. r2 = σ2 = 0.

Figure 6a) shows four Brownian motion traces, with an absorbing barrier at
x = 0, starting from x0 = 1, and for a time interval t ∈ [0, 2], with different
drifts (ri = {−0.5, 0, 0, 0.25}) and standard deviations (σi = {0.5, 0.5, 2, 0.25}).
In particular, the same random number generator used for the traces shown in
Fig. 5 has been used, to better show the effect of the different barrier. In this
case both the traces with negative drift and the one with zero drift and high
variance get absorbed, while the other two continues to evolve in the considered
time frame. Figure 6 b) shows the distribution of the position of the process
with an absorbing barrier and ri = −0.5 and σi = 0.5, x0 = 1, at six different
time instants, namely t ∈ {0.5, 1, 1.5, 2, 5, 10}. It is interesting to see how in this
case, as the time increases, the distribution tends to be deterministic, with the
probability mass centered on the barrier.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t [sec.]

0

0.5

1

1.5

2

2.5

3

X
(t)

 = -0.5, = 0.5
 =0, = 0.5
 = 0, = 2
 = 0.25, = 0.25

0 0.5 1 1.5 2 2.5 3 3.5 4

X(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
of

 X
(t)

t = 0.5
t = 1
t = 1.5
t = 2
t = 5
t = 10

)b)a

Fig. 6. a) Traces of a Brownian motion with an absorbing barrier and different param-
eters, all starting x0 = 1. b) Distribution of the position at t ∈ {0.5, 1, 1.5, 2, 5, 10} for
the case with ri = −0.5, σi = 0.5, x0 = 1.

Extensions to barriers implementing an upper threshold or a different lower
boundary can be applied by simply translating or reflecting the process, and will
not be further investigated.

286 M. Gribaudo et al.

4 Extending to More Than One Dimension

In case of more than one dimension, the definition of reflecting barrier becomes
more complex, and a new aspect must be considered: the reflection direction. To
motivate this extra requirement, we start considering the type of processes that
describe the continuous evolution of two simple examples: a battery operated
device, with energy harvesting (Fig. 7a), and a simple streaming application that
continuously fills a finite buffer of packets, and decodes the ones at the head of
the buffer (Fig. 7b).

Fig. 7. Two simple FPN models with two second order fluid variables: a) an energy
harvesting sensor, b) a streaming video application.

4.1 Reflecting Barriers in More Than One Dimension

To simplify the presentation, in this work we will focus only on barriers that
are perpendicular to one of the axis, that is when uk = |0, . . . , 0, 1, 0, . . . , 0|
(all components equal to zero, except the one corresponding to the considered
continuous variable equal to plus or minus one). In Sect. 4.3 we will give a brief
idea on how this assumption can be relaxed.

Let us start focusing on the battery operated sensor of Fig. 7a). To further
simplify the discussion, and better focus on the barrier behavior, we also assume

that drift is r1 = |0, 0| and we consider unitary covariance Σ1 =
∣
∣
∣
∣
1 0
0 1

∣
∣
∣
∣. In this

example, the barrier corresponding to x1 should be reflecting, to model the input
due to energy harvesting, and the one corresponding to x2 should be absorbing,
since the non-rechargeable battery will become useless once completely depleted.
In this case, extension to more than one continuous variable is straightforward:
it is sufficient to consider w(t) as a two-dimensional Brownian motion process,
and y(t) as a two components vector that encodes the position of the barrier
in both dimensions. Due to the independence of the two continuous variables,
barriers can be considered separately: if, initially, we consider the process being
unconstrained along x2, a simulation step can be executed in this way:

Simulation of N-Dimensional Second-Order Fluid Models 287

w(tl+1) = w(tl) − |ν1, ν2|·Σ1 ·
√

tl+1 − tl + r1 · (tl+1 − tl) (21)

γ = w1(tl) − F−1(η|ν1) · σi:11 ·
√

tl+1 − tl + ri:1 · (tl+1 − tl) (22)
y(tl+1) = |min(y1(tl), γ), y2| (23)
x(tl+1) = w(tl+1) − y(tl+1). (24)

An instance generated with the following procedure is represented in Figs. 8a)
and 8b), where a trace and a point cloud distribution of the result are shown. It
is interesting to see in Fig. 8a) that when the process tries to cross the barrier,
the reflecting boundary lowers it to maintain the fluid component positive, as
it is clearly visible in the point cloud distribution of Fig. 8b) (which does not
display the time component, and uses the content of the two continuous variables
to determine the position of the point on the plane).

5

-6
0

-4

X2(t)

0

-2

2

X 1(t)

0

t [sec.]

4

2

6

4

8 -510

Unconstrained
Reflected

-2 -1 0 1 2 3 4 5

X2(t)

-6

-5

-4

-3

-2

-1

0

1

2

3

4

X 1(t)

Unconstrained
Reflected

)b)a

Fig. 8. Position of a 2D Brownian motion process, with independent drift and a reflect-
ing barrier perpendicular to direction x1 and passing through the origin: a) trace; b)
point cloud distribution for the trace.

We might be tempted to use this approach also to deal with the streaming
video application shown in Fig. 7b), but this would lead to results that are not
correct, as shown in Figs. 9a) and 9b). In this case, the values of the two con-
tinuous variables are completely correlated, producing samples always aligned
over a line, as shown in the unconstrained curve of Fig. 9b). When the barrier is
moved along direction x1 according to Eq. 23, as shown in Fig. 9a), it also shifts
the process along x2, destroying the invariant that this system should maintain
(i.e. x1(t) + x2(t) constant ∀t ≥ 0).

To preserve the correlation between variables, the barrier must be moved
not only in the direction perpendicular to the component crossing the boundary,
but also in the other directions. In particular, each reflecting barrier must be
defined with a skew vector pk, laying on the barrier itself, such that pk ·uk = 0.

288 M. Gribaudo et al.

10

5-6
0

-4

X2(t)

-2

2

X 1(t)

0

0

t [sec.]

4

2

6

4

8 -510

Unconstrained
Reflected

0 1 2 3 4 5 6 7

X2(t)

-6

-5

-4

-3

-2

-1

0

1

2

3

4

X 1(t)

Unconstrained
Reflected

)b)a

Fig. 9. Position of a 2D Brownian motion process, with correlated motion in the two
directions, and a reflecting barrier perpendicular to direction x1 and passing through
the origin: a) trace; b) point cloud distribution for the trace. In this case, the reflection
destroys the correlation between the two variables.

Figure 10 shows an example of the definition of such vector, represented in red,
for cases with 2 and 3 continuous variables, and the final movement of the barrier
caused by both the conventional reflection and parameter pk. In this case, the
simulation of one step of the process becomes the following:

Fig. 10. Skew of the barrier during reflection in two and three dimensions.

w(tl+1) = w(tl) − |ν1, ν2|·Σ1 ·
√

tl+1 − tl + ri · (tl+1 − tl) (25)

γ = w1(tl) − F−1(η|ν1) · σi:11 ·
√

tl+1 − tl + ri:1 · (tl+1 − tl) (26)
y(tl+1) = |min(y1(tl), γ), y2|+pk · (y1(tl) − min(y1(tl), γ)) (27)
x(tl+1) = w(tl+1) − y(tl+1). (28)

Factor (y1(tl) − min(y1(tl), γ)) in the second term of the right-hand-side of
Eq. 27 accounts for the displacement of the barrier perpendicular to the consid-
ered fluid component. This is used to compute the corresponding displacement

Simulation of N-Dimensional Second-Order Fluid Models 289

in the other directions due to the skew vector pk. Figure 11 shows the effect of
having a skew vector pk = |0, 1| for the reflection along direction x1 for the total
correlation case, as in the scenario of the streaming application of Fig. 7b). In
particular, Fig. 11a), shows that the barrier moves also along axis x2 to com-
pensate the motion along x1, and Fig. 11b) confirms that this has the effect of
preserving the fluid invariant, having the reflected process perfectly aligned with
the unconstrained one.

15

10-6
0

-4

X2(t)

5

-2

2

X 1(t)

0

t [sec.]

4 0

2

6

4

8 -510

Unconstrained
Reflected

-3 -2 -1 0 1 2 3 4 5 6 7

X2(t)

-6

-5

-4

-3

-2

-1

0

1

2

3

4

X 1(t)

Unconstrained
Reflected

)b)a

Fig. 11. Position of a 2D Brownian motion process with correlated motion and skew
of the barrier: a) trace b) point cloud distribution for the trace.

4.2 Absorbing Barrier in More Than One Dimension

Absorption in more than one dimension can be implemented in the same way as
rate adaption in first order models, or absorption in second order models with a
single continuous variable. In particular, when the boundary is crossed in a state,
the system jumps to a different state that handles the absorption by stopping the
in and out flows. However, when more dimensions are involved, we can also have
mixed behaviors: fluid might be absorbed in one dimension, but continue to evolve
in the other (partial absorption). In other cases, the system might fully stop
fluid motion when the boundary is reached: this can create probability masses
over the component perpendicular to the boundary, but leaves a continuous
distribution in the other directions. Figure 12 shows the two possible behaviors
in a bi-dimensional case: when the boundary is reached, the full absorption
stops the flow, creating a straight line. Partial absorption instead constrains
the process on the boundary plane, still allowing it to move along direction x2.
Partial absorption is particularly useful to model scenarios such as the battery
operated sensor shown in Fig. 7a), where the system might continue to work
(even if with a reduced performance and reliability) when the non-rechargeable
battery gets depleted. Total absorption can instead be used to model systems

290 M. Gribaudo et al.

where the lack of one resource out of many can stop it from working: for example,
a cloud application might stop working when it has consumed any of its network
transmission or CPU utilization budgets.

Detection of boundary crossing can be implemented by checking that γ < 0
in Eq. 26, and movement to the barrier can be obtained by replacing Eqs. 27 and
28 with:

x(tl+1) = |max(0, w1(tl+1)), w2(tl+1)|. (29)

The state s2 modeling total absorption is characterized by r2 = |0, 0| and

Σ2 =
∣
∣
∣
∣
0 0
0 0

∣
∣
∣
∣. Partial absorption is instead obtained with r2 = |0, r1:2| and

Σ2 =
∣
∣
∣
∣
0 0
0 σ1:2,2

∣
∣
∣
∣

5

-2.5

-2

0

X2(t)

-1.5

0

-1

2

-0.5

X 1(t)

0

t [sec.]

4

0.5

1

6

1.5

8 -510

Unconstrained
Fully Absorbed
Partially Absorbed

Fig. 12. Different types of absorption in a 2D second order model.

4.3 Extensions

Although we have considered only boundaries that are perpendicular to a given
direction, processes with zero mean and with variables that are not correlated,
the proposed procedures can be extended to support general cases. Correlation
between components can be addressed using the Cholesky decomposition of the
covariance matrix [1]. Arbitrarily placed boundaries can instead be considered
by applying an affine transformation to the base process, so to align the given
barrier to be perpendicular to one axis, and passing through the origin. Although
such extensions are conceptually simple, they hide a large number of technical
details, and will be covered in future work.

5 Conclusions

In this work we have addressed the simulation of second order fluid models
with more than one continuous variable, correlated flows, and arbitrarily placed

Simulation of N-Dimensional Second-Order Fluid Models 291

boundaries. The considered topic is quite wide, and cannot be fully explored
in single work. However, this paper addresses the most complex parts from a
theoretical point of view, leaving the other steps required to fully simulate a
model described using the definition proposed in Eq. 1 to future work.

Acknowledgments. We would like to thank Prof. J. Michael Harrison for his kind
help and discussions that made this work possible.

References

1. Kroese, D., Taimre, T., Botev, Z.: Handbook of Monte Carlo Methods, Wiley Series
in Probability and Statistics. Wiley (2011)

2. Horton, G., Kulkarni, V.G., Nicol, D.M., Trivedi, K.S.: Fluid stochastic Petri Nets:
theory, application, and solution techniques. Eur. J. Oper. Res. 105(1), 184–201
(1998)

3. Wolter, K.: Second order fluid stochastic petri nets: an extension of GSPNs for
approximate and continuous modelling. In: Proceedings of World Congress on Sys-
tem Simulation, Singapore, pp. 328–332 (1997)

4. Chen, D.-Y., Hong, Y., Trivedi, K.S.: Second order stochastic fluid flow models
with fluid dependent flow rates. Perform. Eval. 49(1–4), 341–358 (2002)

5. Sericola, B.: Transient analysis of stochastic fluid models. Perform. Eval. 32(4)
(1997)

6. Ramaswami, V.: Matrix analytic methods for stochastic fluid flows. In: Smith, D.,
Hey, P. (eds.) Proceedings ITC, vol. 16, pp. 1019–1030. Elsevier, Edinburgh (1996)

7. da Silva Soares, A., Latouche, G.: Further results on the similarity between fluid
queues and QBDs. In: Latouche, G., Taylor, P. (eds.) Proceedings of the 4th Inter-
national Conference on Matrix-Analytic Methods, pp. 89–106. World Scientific,
Adelaide (2002)

8. Ahn, S., Ramaswami, V.: Fluid flow models and queues - a connection by stochastic
coupling. Comm. Statist. Stochastic Models 19(3), 325–348 (2003)

9. Bean, N.G., O’Reilly, M.M., Taylor, P.G.: Hitting probabilities and hitting times
for stochastic fluid flow s. Stoch. Processes Their Appl. 115, 1530–1556 (2005)

10. Bean, N.G., O’Reilly, M.M. Taylor, P.G.: Algorithms for the first return probabil-
ities for stochastic fluid flows. Stoch. Models 21(1)

11. da Silva Soares, A., Latouche, G.: Matrix-analytic methods for fluid queues with
finite buffers. Perform. Eval. 63(4), 295–314 (2006)

12. Karandikar, R.L., Kulkarni, V.: Second-order fluid flow models: reflected Brownian
motion in a random environment. Oper. Res. 43, 77–88 (1995)

13. Agapie, M., Sohraby, K.: Algorithmic solution to second order fluid flow. In: Pro-
ceedings of IEEE Infocom, Anchorage, Alaska, USA (2001)

14. Asmussen, S.: Stationary distributions for fluid flow models with or without Brow-
nian noise. Stoch. Model. 11, 1–20 (1995)

15. Rabehasaina, L., Sericola, B.: Stability analysis of second order fluid flow models
in a stationary ergodic environment. Ann. Appl. Probab. 13(4) (2003)

16. Field, T., Harrison, P.: Approximate analysis of a network of fluid queues. ACM
(2007)

17. Jones, G.L., Harrison, P.G., Harder, U., Field, T.: Fluid queue models of battery
life (2011)

292 M. Gribaudo et al.

18. Cox, D.R., Miller, H.D.: The Theory of Stochastic Processes. Chapman and Hall
Ltd. (1972)

19. Ang, E.-J., Barria, J.: The Markov modulated regulated Brownian motion: a
second-order fluid flow model of a finite buffer. Queueing Syst. 35, 263–287 (2000)

20. Gribaudo, M., Manini, D., Sericola, B., Telek, M.: Second order fluid models
with general boundary behaviour. Ann. Oper. Res. 160(1), 69–82 (2008). uT:
000253211100006

21. Gribaudo, M., German, R.: Numerical solution of bounded fluid models using
matrix exponentiation. In: Proceedings 11th GI/ITG Conference on Measuring,
Modelling and Evaluation of Computer and Communication Systems (MMB). VDE
Verlag, Aachen (2001)

22. German, R., Gribaudo, M., Horváth, G., Telek, M.: Stationary analysis of FSPNs
with mutually dependent discrete and continuous parts. In: International Confer-
ence on Petri Net Performance Models - PNPM 2003. IEEE CS Press, Urbana
(2003)

23. Barbierato, E., Gribaudo, M., Iacono, M., Piazzolla, P.: Second order fluid perfor-
mance evaluation models for interactive 3D multimedia streaming. In: Bakhshi, R.,
Ballarini, P., Barbot, B., Castel-Taleb, H., Remke, A. (eds.) EPEW 2018. LNCS,
vol. 11178, pp. 205–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-02227-3 14

24. Harrison, J.: Brownian Motion and Stochastic Flow Systems. Wiley Series in Prob-
ability and Statistics. Wiley (1985)

25. Harrison, J.M.: The diffusion approximation for tandem queues in heavy traffic.
Adv. Appl. Probab. 10(4), 886–905 (1978)

26. Gribaudo, M., Remke, A.: Hybrid Petri nets with general one-shot transitions.
Perform. Eval. 105, 22–50 (2016). https://doi.org/10.1016/j.peva.2016.09.002

27. Gribaudo, M., Sereno, M., Horváth, A., Bobbio, A.: Fluid stochastic petri nets
augmented with flush-out arcs: Modelling and analysis. Discret. Event Dyn. Syst.
11(1–2), 97–117 (2001). https://doi.org/10.1023/A:1008339216603

https://doi.org/10.1007/978-3-030-02227-3_14
https://doi.org/10.1007/978-3-030-02227-3_14
https://doi.org/10.1016/j.peva.2016.09.002
https://doi.org/10.1023/A:1008339216603

Performance Evaluation

Queue Response Times with Server Speed
Controlled by Measured Utilizations

Murray Woodside(B)

Carleton University, Ottawa, Canada
cmw@sce.carleton.ca

Abstract. Because CPUs use speed control to conserve energy their response
times may be greater at low loads, than if they were operating at full speed, giv-
ing a flatter response curve against load and trading off longer response time at
light loads for energy savings. When conservative control is applied to average
utilizations and the averaging time is too long, a different and somewhat “toxic”
response-time curve results instead. A numerical investigation was undertaken
of open and closed single-server queues with server speed controlled by feed-
back of CPU utilization measures, which is a common approach for CPUs. With
higher target utilizations and longer averaging times for the measured utiliza-
tion, an undesirable non-monotonic pattern (rising response time, then falling,
finally rising again) emerges. This gives unstable behaviour and could disrupt
autoscaling strategies that assume monotonically increasing response times. Rec-
ommendations have been found for controller parameters, to avoid non-monotonic
response times. It is concluded that speed control based on measured utilizations
has limited usefulness if performance is a concern, which is in line with industry
recommendations. Better speed governors are needed.

Keywords: Performance management · Performance model · Controlled queue

1 Introduction

Modern computer processors have a controllable clock, which can be set by a strat-
egy implemented in the operating system to speed up or slow down the processor, and
save energy at lower speeds. The classical queuing models for processor performance
need to be adapted because they assume a known constant service rate. This note inves-
tigates the response times for a commonly used feedback control strategy and finds
that the response time may follow a desirable flattened pattern, or a highly undesirable
non-monotonic zig-zag shape which could reduce the effectiveness of some adaptive
mechanisms, depending on the speed control parameters. While standard settings may
favour the former, more aggressive power-saving will move the parameters towards
the non-monotonic behaviour and may cause unexpected system instability, and dis-
rupt adaptive application management. The purpose of this work is to understand the
phenomenon and to characterize the parameters that give the desirable and undesirable
patterns.

© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 295–309, 2021.
https://doi.org/10.1007/978-3-030-85172-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-85172-9_16

296 M. Woodside

Speed control has been studied in many different ways, but not for feedback of
performance measures. For a general stochastic workload, optimal stochastic control
provides policies for the optimal speed as a function of the queue state, as in the work of
Lu et al. [10] to optimize a combination of power and response time. These authors also
give references to other research in this direction. While this gives an optimal solution to
the problem considered here, feedback of queue state is not commonly used in practice,
as described below. The purpose here is not to find the ideal control but to model the
effect of policies that are used in practice.

Optimal policies have also been found for problems in which the system is more nar-
rowly specified. For example, in [9] Li et al. consider controlling processing speed,mem-
ory latency and memory bandwidth on multiple processors to minimize the makespan
of a predefined parallel processing job across the cores of a processor. In [13], Rao et al.
consider controlling the overheating effect of completing a given total computation in
minimum time, leading to an optimal profile of speed values over time. In [12], Mutap-
cic et al. determine optimal speed values for heterogeneous co-located processors that
share a heat sink. In [7] speed control is used to help achieve task deadlines, and also to
deliver video frames on time for video streaming (to compensate for the variation in the
processing to be done per frame).

The technology of power management is described by Gough, Steiner and Saunders
[6]. Processors offer a set of clock speeds (called P-states by Intel [8]) which can be
set by the operating system. Linux has a set of standard speed-control policies called
governors [5]. Many governors have been implemented (a list of 117 of them with short
descriptions is given in [14]), but three are notable:

• “performance” [3, 6], which runs at maximum speed when the CPU is busy and
switches to minimum when it is idle,

• “conservative” [3] which steps the speed up and down based on average utilization,
• “schedutil” [3], an evolved version similar to “conservative” which uses moving-
average load measures formed by the scheduler, related to utilization.

Here the “conservative” governor is modeled, since it represents the strongest effort
to save power. These controllers are for Linux; similar controllers are used by theAndroid
[1] and Windows [11, 6] operating systems. Processors are also capable of short-term
additional speed (called “turbo” operation)which cannot be sustained due to overheating;
this work does not consider non-sustainable speeds.

A CPU with the “conservative” governor is modeled below as a single server with
open and closed Markovian workloads and control via a speed reduction factor S that
can be set in the range Smin < S < 1.0. The controller measures the server utilization U
over an interval and then raises S by a step if U is too high, or lowers it if U is too low.
No previous study of queues with this family of speed control policy could be found,
which motivates this report.

A Naive Motivating Observation
Suppose a queue has a target value of utilization ofU* and a service rate Sμwith Smin <

S < 1.0. Figure 1 shows the two response-time functions for the extreme values of S, and
two paths that might be enforced by speed control. A-AA-C-D is a desirable case which

Queue Response Times with Server Speed 297

maintains a constant response time over a wide range of loads. However a controller
might instead give a curve like A-B-C-D, if it enforced the principles:

• maintain Smin as long as the utilization is below U*
• raise the speed to prevent the utilization from exceeding U* if possible

An adaptive system controller that scales up servers depending onRmight be trapped
in the segmentAB and deploy unnecessary extra servers, rather than exploit the improved
response available around C.

Fig. 1. Naive idea of possible response curves

In real systems the speed is controlled in steps at discrete control instants, and the
control is based on past measured utilizations rather than on exact knowledge. This
introduces both a control delay and statistical estimation errors. A Markov model with
these features is developed below, with numerical solutions. In Sect. 4 the naive view
above is formalized as an idealized “perfect knowledge” (PK) approximation to R(λ).
Both the approximation and the Markov model have the zigzag form seen in Fig. 1.

An Experiment
A simple experiment shows that actual controllers have been adjusted to give desirable
flattening, but also confirms the existence of non-monotonic response time functions.
A closed concurrent workload with 300 programs was run in parallel on a laptop under
the “power saving” power management option which controls the processor speed to
a target utilization. The average response times shown in Table 1 initially rise, drop
between throughputs of 5000/s and 8700/s, and then rise again. The measured values
are accurate to about 2% so the dip is statistically significant, although small.

298 M. Woodside

Table 1. Measured response times on a microsoft windows personal computer

Think time between
operations (sec)

Throughput
(responses/sec)

Mean response time R
(sec)

Confidence interval
for R (±)

0 22561 0.01330 0.00031

0.025 8754 0.00927 0.00024

0.05 5024 0.00971 0.00015

0.075 3547 0.00957 0.00028

0.15 1881 0.00950 0.00027

2 The Model

We consider a single server with one class of customers with arrival rate λ and exponen-
tially distributed service demand of mean μ−1. Its speed factor S gives a mean service
rate of Sμ, and takes values S(1), … S(smax) indexed by an integer “speed index” s, with
S(1) = Smin and S(smax) = 1. A utilization estimate U

∧

is formed by averaging over a
measurement interval of length � sec, and is compared to lower and upper thresholds
U− and U+, which bracket the target value U*. The control law adjusts the speed index
s according to:

• if U
∧

< U−, decrease s by one, stopping at the minimum value 1,
• if U

∧

> U+, increase s by one, stopping at the maximum value smax.

To make the solution numerically practical a discrete-time version was adopted
with a time-step of length δ. In each time-step there is an arrival with probability λδ

and a departure (if the server is busy) with probability μδ. For small values of δ this
approximates Poisson arrivals at rate λ and exponential service at rate μ. To make the
state space finite the state n was truncated at N and arrivals in state n = N are lost.

The decision interval was taken as a multiple Kδ of the time-step δ. The utilization
is measured by counting the number b of the K steps that have a busy server, and is
compared to lower and upper target values KU−, KU+. For the decision, if s0 is the
previous index, the new value snew = snew(s0, b) is given by:

Speed-Control Algorithm:

Because s changes only at decision points, the model can be decomposed into two
Markov Chain models, a transient chain one to model the states between decision points,
and the other embedded at the decision points, to model the transitions in s

Queue Response Times with Server Speed 299

(1) The lower level Discrete-Time Markov Chain (DTMC) [2] models the transient
behaviour of the queue state and the accumulated busy time over one interval
between decision points. It has:

– smax submodels, one for each value of s,
– each with a state (n, b) at substep k, where n ∈ [0, ...,N] is the number of

customers in the queue and b ∈ [0, ...,K] is the accumulated busy time of the
server,

– an initial state (n0, 0), where n0 is the value of n at the decision point that begins
the interval.

The lower-level DTMC is solved for each combination of s and n0 to determine the
probability p(n, b; k, n0, s) for state (n, b) at substep k of the interval. The model
equations and solution method are conventional [2]; the important result is the final
probability p(n, b;K, n0, s), and the mean number of customers over the transient,
denoted as n(n0, s)

(2) The upper level DTMC models the joint state (n, s) of the queue and the speed
controller, embedded immediately after the decision points for the control algo-
rithm. It has transition probabilities A(n0, s0; n, s) for a transition from state (n0,
s0) immediately after a decision, to the successor state (n, s) immediately after the
next decision K substeps later. The steady-state probabilities of this DTMC are
denoted π(n, s).

.
The transition probabilities A for the upper level model are found from the solutions

of the lower level model. Let B(s; s0, b) be the set of utilization measures b such that
the speed-control algorithm above gives snew(s0, b) = s. Then

A(n0, s0; n, s) =
∑

b∈B(s,s0,b)
p(n, b;K, n0, s) (1)

The upper-level DTMC with (N + 1)smax states was solved for the steady-state
probabilities π(n, s) for the number in queue and the speed level, after a decision point.
The equations and the solution are conventional [2]. The steady state mean number in the
queue is found by combining the results for the transients, conditioned on the initial state,
giving the overall mean number in the queue n and overall mean arrival rate (without

the lost arrivals) of λ:

n =
∑

n0,s0

n(n0, s0)π(n0, s0)

λ =
∑

n0,s0

λ(n0, s0)π(n0, s0)

The mean response time for the given arrival rate, service rate, speed factor steps
and utilization thresholds is then given by:

R = n /λ (2)

300 M. Woodside

3 The Solution

Toexplore the formof the solution, themajor parameterswere varied across their possible
range of values. The service rate μ was normalized to 1/sec, and.

• U0 = λ/μ (the high-speed utilization) was varied from 0.1 to 0.9;
• the target server utilization U* was varied from 0.3 to 0.9;
• the steps in speed were set to the values [0.4, 0.6, 0.8, 1.0] and
• the control interval � took values [1, 10, 30, 100, 300] sec.

Other parameters were:

• the utilization thresholds U− = 0.9 U* and U+ = min(1.1U*, 0.95).
• the time-step δ = 0.2 s. in the lower-level model
• a limit of 60 queue states, giving a limit of N = 59 customers

Some results giving a broad picture of the solution are shown in Fig. 2. The computed
response times are plotted as circles, and the boundary cases of the maximum-speed and
minimum-speed response times are plotted as solid curves for reference.

The smaller is�, the closer R stays to the high-speed asymptote. For higher� larger
U* gives larger response times, and the response curves are almost flat. For � = 100
and 300 the zigzag shape predicted in Fig. 1 emerges and has a very pronounced peak.
The “desirable” flat response pattern is obtained for cases with � ≤ 30 and pronounced
“undesirable” peaking is obtained for cases with larger � and for U* > 0.5.

The cause of the undesirable peaking can be traced to two factors that are both linked
to�, the control delay. For small� the control delay (which is at least�) is small but the
estimation accuracy is low, while for large � the accuracy is better but the control delay
is large. Clearly the effect of a large control delay overwhelms the system. Consider
this scenario: a combination of stochastic load fluctuations and estimation errors puts
the server into a low-speed state which leads to a long unstable transient increase in the
queue until the end of the next estimation/control period.

In uncontrolled queueing systems, heavier loads always lead to longer response
times, and many adaptive scaling algorithms for computer systems are based on this.
The survey in [4] found that the largest number of reported autoscalers use this kind
of simple feedback loop. We can imagine a scaling algorithm based on response time,
which increases the capacity of a heavily loaded system that is operating to the right of
the peak. This would give increased response times as the load on each CPU is reduced,
and therefore it would scale up further until it crosses the peak into the less economical
regime to the left, and then be stuck there.

Worse, the value of� is difficult to tune.� is the ratio of the measurement interval to
the mean service time of CPU requests, which varies with the program being executed,
so a CPU could be driven randomly between the desirable pattern in parts (a)–(c) and
the less desirable pattern in parts (d) and (e).

Queue Response Times with Server Speed 301

(a) Δ = 1 sec (μΔ= 1) (b) Δ = 10 sec (μΔ= 10)

(c) Δ = 30 sec (μΔ= 30) (d) Δ = 100 sec (μΔ= 100)

(e) Δ = 300 sec (μΔ= 300)

Low-speed High-speed
(μ = 0.4) (μ = 1)
Response Response

Results for
all U*

Fig. 2. Exact (numerical) response times

Two practical recommendations emerge from Fig. 2. First, ifU* is set to a mid-range
value such as 0.5 it tends to give a wide plateau at near-constant response time, for a
wide range of �. Second, if � is set at a moderately small value such as 10 times the
mean service time (� = 10 in Fig. 5)) the response time is attractively flat, while a long
averaging time (300 times the mean service time) gives unstable behaviour and possibly
very long responses (at the peak). However the longer averaging time also gives lower
control overhead and (as shown below) lower average power.

4 An Idealized “Perfect Knowledge” (PK) Analysis

An idealized analytic model was created by assuming that:

1. the controller has perfect knowledge of λ, μ, and U over the next interval (U
∧

= U)

302 M. Woodside

2. the thresholds are equal (U− = U+ = U ∗) and
3. the estimation interval � and the size of the steps in values of S approach zero,

Define U0 = λ/μ and S* = U0/U*, which is the speed factor which would make U
=U* if it is feasible. Then the PK control law uses S*, constrained to the range (Smin, 1):

S = f (U0) = max
(
Smin,min

(
1.0,U0/U

∗)) (3)

We will assume a queueing discipline for which the response time has an analytic
solution of the form:

R(λ, μ) = C/(Sμ − λ) = C/(f (U0)μ−λ) (4)

for some constant C; these disciplines include processor sharing (with C = 1),
which is an approximation to real time-slicing disciplines, and M/G/1, in either case
with Poisson arrivals and general service processes [2]. Using Eq. (4) this can be written
as:

PK approximation:RPK (μ, λ) = min(R1(μ, λ),max(R2(μ, λ),R3(μ, λ))) (5)

where

• R1(μ, λ) is the response time with S = Smin: R1(μ, λ) = C/(Sminμ − λ)

• R3(μ, λ) is the response time with S = 1: R3(μ, λ) = C/(μ − λ)

• R2(μ, λ)is the response time with S = S*: R2(μ, λ) = CU ∗/(λ(1 − U ∗)

Since U0/U* is monotonically increasing in λ, R is unique for each λ and there are
three regimes in which RPK (μ, λ) equals R1(μ, λ),R2(μ, λ),R3(μ, λ) in turn. They are
separated by two thresholds λ1 and λ2 in the arrival rate, which define the points where
U0/U* reaches its limits of Smin and 1. If U0/U* is always greater than Smin, λ1 is zero,
and if it is always less than 1, λ2 is set to infinity. This is summarized in the following
table (Table 2).

Table 2. Definition of the PK-approximation

Regime Condition on λ S given by Response time R(λ, μ)
given by

AB: low speed λ ≤ λ1=μU*Smin S = Smin R1 = C/(Sminμ − λ)

BC: controlled speed �1 < λ ≤ λ2=μU* S = S* = U0/U*
= Smin +
(λ–λ1)/(μU*)

R2 = C/(Sμ − λ)

CD: high speed λ > λ2 S = 1 R3 = C/(μ − λ)

For an M/M/1 queue (for which C = 1) with nominal service rate μ = 1.0 and Smin
= 0.3, the response time approximations for varying λ and some different settings of the

Queue Response Times with Server Speed 303

(a) Response times (b) Speed Factor

U* = 0.9

0.7
0.6

0.3

0.8

U* = 0.3

0.6

0.8
0.9

0.7

0.4
0.5

Fig. 3. The PK-Approximation response time and speed control factor for an open single server
queue with various utilization targets, with Smin = 0.3

target utilization U* are shown in Fig. 3(a). They strongly resemble Fig. 1. Figure 3(b)
shows the speed control settings. Since the power used increases with S it is evident that
the higher U* is set, the less power is used.

In the limit as μ� → 0, Û will be either zero (if the server is idle) or 1 (if it is busy)
and the control will switch between Smin for Û = 0. and S = 1 forU = 1

∧

; thus whenever
there is a customer the server will run at maximum speed and:

Zero − averaging − interval asymptote : R(μ, λ) = R3(μ, λ) (6)

This corresponds to the “performance” governor in Linux [5].
The accuracy of the PK approximation is quite good for some situations and poor in

others. Figure 4 compares it to the numerical exact results. Formoderate target utilization
(U*= 0.5) it is quite accurate for a wide rage of values of the normalized estimation time
μ�. For a higher value (U* = 0.8) it is however quite poor. The hump in the response
time curve corresponds in positioning and amplitude for intermediate values of μ�, but
is more pronounced in the exact results for large U* a large μ�.

In general the exact response time is below the approximation (sometimes much
below) for low loads and above it for high loads. This is due to the estimation errors in
Û ; when the ideal speed is near a boundary (Smin or Smax) the estimation errors tend
to diffuse the speed away from the boundary. The exaggerated hump for large μ� is
probably due to the larger control delay which allows the queue to build up when the
system accidentally (due to estimation error) enters a state with low speed and high load.
For long averaging times (μ� = 100 and 300) the mean relative absolute error (MRAE)
was 9.5%. Over all cases the MRAE was 33%, and it was particularly high for short
averaging and large U*.

A Usable “Plateau” Approximation
For moderate values of U* up to about 0.5 the flattening in the response time curve
can be described by a simpler “plateau approximation” with a constant response in the
middle range between the curves for Smin and for S = 1. Figures 4(a) and 4(b) show it as
a bold line BC placed halfway between the response time at zero load (R = 1/(μ Smin))

304 M. Woodside

(a) U* = 0.5 (b) U* = 0.8

PK
Approximation

Exact values for D

Δμ = 300
Δμ = 100

Δμ = 30
B C

Δμ = 10

Δμ = 1
A

R = peak = 1/[(µSmin)(1-U*)]
R = Plateau = (∗ min))(∗)
R = slowest service time =

1/()
CB

A

D

Fig. 4. The plateau approximation ABCD for response time

and the response time at the peak of the PK approximation, which can be shown from
Eq. (7) and (8) to be R = 1/[(μ Smin)(1 – U*)]. The plateau is approximated by their
average, given by.

Plateau : RP(μ, λ) = (
2 − U ∗Smin)

)
/2μSmin

(
1 − U ∗)

Combining this with the low and high-speed boundary curves the entire plateau
approximation is given by

Plateau approximation : R(μ, λ) = min(R1(μ, λ), max (R2(μ, λ),RP(μ, λ)) (7)

(whereR1 andR2 are given by Eq. (4)), and is shown as the curve ABCD in Figs. 4(a)
and 4(b). For the cases studied that have target utilization U* ≤ 0.5 and normalized
estimation interval μ� ≤ 100, the MRAE was 11.8%.

To summarize the various possible cases, approximate values can be computed, with
average errors around 10% in these situations:

• for very small μ� by using the high-speed response time,
• for moderate μ� and U* by the Plateau approximation Eq. (7), and
• for large μ� by the PK approximation, Eq. (5).

For moderate μ� and large U* a useful approximation has not been found.

5 Effectiveness of Utilization Control and Power Saving

The controller is driven by utilization values and a natural question is, how close does
it stay to the target U*? Figure 6 shows utilization results for the same queue with U*
= {0.3, 0.4, 0.5, 0.6 0.7, 0.8, 0.9}. Following the bottom dashed curve for U* = 0.3
we can see that it does not dwell at U = 0.3 for any substantial interval of arrival rates,
unless μ� is at least 100. Thus, the utilization is not well controlled.

Queue Response Times with Server Speed 305

(a) μΔ = 1.0 (b) μΔ = 10 (c) μΔ = 30

(d) μΔ = 100 (e) μΔ = 300

Control at value U* =
0.6 is achieved over
this range of through-
puts

U* = 0.9

U* = 0.3

U* = 0.9

U* = 0.3

U* = 0.9

U* = 0.3

U* = 0.9

U* = 0.3

U* = 0.9

U* =

Fig. 5. Utilizations for the same cases as in Fig. 2. Values of U* increase from bottom to top,
from 0.3 to 0.9 in steps of 0.1.

Figure 5shows that only for μ� = 300 is there substantial success in achieving the
target utilization over a range of throughputs. For � = 100 there is some success, and
for shorter averaging times very little.

How effective is this form of speed control at reducing power? The SPECPower
benchmarkmeasures power consumption as a function of processing speed, as illustrated
in Fig. 6. These results will be used, normalized to the maximum speed taken as S = 1,
to estimate the power consumption based on S. For the processor in Fig. 7, taking a line
from the point at zero ops (assumed to correspond to S = 0) to the maximum reported
speed (S = 1) gives as a rough approximation:

Power = 11.6 + 33.1S (8)

Using Eq. (8) and the mean value of S found from the model solution gives the power
levels shown in Fig. 7. The dashed lines curves are for values ofU* in the range 0.3–0.9
as before, increasing from top to bottom; the solid lines are for S = 1. The available
power savings are negligible at high loads, about 20% at U0 = 0.5 and about 50% at U0
= 0.2, compared to the solid line. Notice that as long as the power function is linear and
increasing, the conclusion that one condition uses less power than another is unaffected
by the particular values of the coefficients in Eq. (8).

306 M. Woodside

44.7
40.2

35.8
31.4 28.1 25 22.6 20.4 18.4 16

11.6

0
10
20
30
40
50

0 100,000 200,000 300,000 400,000 500,000 600,000

Po
w

er
 [W

]

Throughput [ssj ops]

Power versus Throughput

Fig. 6. Power versus throughput for Fujitsu Server PRIMERGY TX1320 M2 [15]

(a) μΔ = 1.0 (b) μΔ = 10 (c) μΔ = 30

(d) μΔ = 100 (e) μΔ = 300

U*

U*

Fig. 7. Average power in watts, for the cases shown in Fig. 2, using the power approximation in
Eq. (8). Values of U* increase from top to bottom.

6 Control of Finite-Population Queues

Afinite-population model may be preferred since a processor usually has a finite number
of processes or threads that may request to be scheduled. A corresponding PK approxi-
mation can be constructed using the well-known solution of theM/M/1//N queue, giving
the solutions displayed in Fig. 8. To compare the approximation for the closed and open
cases the same example was analyzed with a finite population of 60 customers, and
0.3 < S < 1.0. The arrival rate r for each customer not at the server ranged from 0 to

Queue Response Times with Server Speed 307

0.03 which gave a similar range of throughput values from 0 to 1, as in the open cases
examined above.

Controlled segments for
target utilization values
U* (top to bottom) 0.9

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Fig. 8. Approximate “perfect knowledge” response time curves for a closed queue with 60
customers

As the arrival rate increases the response time follows the upper (minimum-speed)
bound up to the point where its target utilizationU* is reached, then follows the descend-
ing curve for that U* until it reaches the lower (high-speed) bound. The curves have the
same zig-zag shape as those for the open system shown in Fig. 2(a).

TheMarkovmodel for this system follows that of Sect. 3 except for amodified arrival
process with rate (N − n)r arrivals/sec in queue state n. Some numerical solutions for
four-level control, corresponding to the open arrivals case in Fig. 2, are displayed in
Fig. 9. The results are very similar.

(a) Δ = 30 sec (b) Δ = 100 sec (c) Δ = 300 sec

Fig. 9. Some speed-controlled response times for a closed M/M/1//N queue with N = 60

7 Conclusions

Speed-controlled processors can in some circumstances provide nearly constant response
time over a wide range of throughputs, represented by the “plateau” approximation in
Sect. 6. However with a power-saving strategy such as the “conservative” governor for

308 M. Woodside

Linux, the response time increases steeply beyond this controlled range and perfor-
mance collapses with little warning. If the power-management parameters are not ideal,
pathological behaviour can set in, in the form of the non-monotonic (humped) response
curves found for large normalized averaging times (μ�) and large target utilizations
(U*). The ideal settings for a particular workload may not be obtainable, or be stable
over time, since they depend on the application-dependent CPU service times. Large
target utilizations are common in practice and they make the plateau range smaller and
the non-monotonic behaviour more severe.

These attributes of speed control raise challenges for performance management,
particularly for autoscaling. Autoscalers are overwhelmingly based on an assumption
that response time increaseswith increasing throughput, and the non-monotonic response
curve could trap the node at a capacity well below what is achievable. Autoscaling based
on a target utilization has less of this problem but could give reduced capacity because
the speed control slows down the processor to raise the utilization (and save power).

These results also reveal challenges for performance modeling. The exact response
time calculation is not tractable for practical solvers. The PK and plateau approximations
may be useful but have limited accuracy in important cases. A known problem is the
effect of speed control on themeasurement ofCPUdemands for operations; the controller
state must be known while measuring. Calibration of models from performance tests or
from measurements made “in the wild” will be affected. This affects the usefulness of
the models for capacity planning or deployment planning.

Most of these challenges can be offset by always using the “performance” governor,
which uses minimum power with zero requests and switches immediately to maximum
powerwhen any task is scheduled. The response time is close to that formaximumpower.
This is the least power-efficient governor, but there seem to be compelling reasons to
prefer it.

A natural conclusion is that only the “performance” governor has a useful future in
performance-sensitive applications. In coming to this conclusion, the present research
substantiates the usual recommendations regarding the choice of governor. It does not
provide the best saving of power, suggesting thatmore stable controllers would be useful.
The modeling approach taken here may be useful to evaluate other strategies.

Acknowledgements. Thanks to Wenbo Zhu for pointing out this problem where it arose in
some measurements he made. This research was supported NSERC, the Natural Sciences and
Engineering Research Council of Canada, by Discovery Grant RGPIN 06274-2016.

References

1. Anonymous: CPU governors explained, 27 June 2012. https://forum.xda-developers.com/sho
wthread.php?t=1736168. Accessed 4 Jan 2020

2. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications, Wiley (2006)

3. Brodowski, D.: Linux CPUFreq governors. https://www.kernel.org/doc/Documentation/cpu-
freq/governors.txt

4. Chen, T., Bahsoon, R., Yao, X.: A survey and taxonomy of self-aware and self-adaptive cloud
autoscaling systems. ACM Comput. Surv. 51(3), 1–40 (2018). Article 61

https://forum.xda-developers.com/showthread.php%3Ft%3D1736168
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

Queue Response Times with Server Speed 309

5. Doleželová, M., Heves, J., East, J., Domingo, D., Landmann, R., Reed, J.: Power man-
agement guide for RedHat enterprise Linux 6, section 3.2: using CPUFREQ GOV-
ERNORS. https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/
power_management_guide/cpufreq_governors. Accessed 4 Jan 2020

6. Gough, C., Steiner, I., Saunders, W.: Energy efficient servers, chapter 2 CPU power man-
agement, pp. 21–70, and chapter 8 characterization and optimization, pp. 269–306, Apress
(2015)

7. Jadoon, J.K.: Evaluation of power management strategies on actual multiprocessor platforms,
Doctoral thesis, Universite de Nice – Sophia Antipolis, March 2013

8. Kidd, T.: Power management states: P-states, C-states, and package C-states,
April 2014. http://software.intel.com/en-us/articles/power-management-states-p-states-c-sta
tes-and-package-c-states. Accessed Apr 2019

9. Li, B., León, E.A., Cameron,K.W.: COS: a parallel performancemodel for dynamic variations
in processor speed, memory speed, and thread concurrency. In: Proceedings of HPDC 2017,
the 26th International Symposium on High-Performance Parallel and Distributed Computing,
Washington, pp. 155–166, June 2017

10. Lu, Y., Sharma, M., Squillante, M.S., Zhang, B.: Stochastic optimal dynamic control of
Gi/Gi/1 queues with time-varying workloads. Probab. Eng. Inf. Sci. 30, 470–491 (2016)

11. Microsoft: Processor power management options, 10 April 2017. https://docs.microsoft.
com/en-us/windows-hardware/customize/power-settings/configure-processor-power-man
agement-options. Accessed Apr 2019

12. Mutapcic, A., Boyd, S., Murali, S., Atienza, D., De Micheli, G., Gupta, R.: Processor speed
control with thermal constraints. IEEE Trans. Circuits Syst. 56(9), 1994–2008 (2009)

13. Rao,R.,Vrudhula, S., Chakrabarti, C., Chang,N.:An optimal analytical solution for processor
speed control with thermal constraints. In: Proceedings of International Symposium on Low
Power Electronics and Design (ISLPED 2006), Tergensee, Germany, pp. 292–297, October
2006

14. Saber (psuedonym): Collective guide of CPU governors, I/O schedulers and other kernel vari-
ables, 8 March 2015. https://forum.xda-developers.com/t/ref-guide-most-up-to-date-guide-
on-cpu-governors-i-o-schedulers-and-more.3048957/

15. Standard Performance Evaluation Corporation: SPECpower_ssj2008: Fujitsu FUJITSU
Server PRIMERGY TX1320 M2, 25 November 2015. https://www.spec.org/power_ssj2008/
results/res2015q4/power_ssj2008-20151110-00704.html. Accessed 7 Dec 2018

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/power_management_guide/cpufreq_governors
http://software.intel.com/en-us/articles/power-management-states-p-states-c-states-and-package-c-states
https://docs.microsoft.com/en-us/windows-hardware/customize/power-settings/configure-processor-power-management-options
https://forum.xda-developers.com/t/ref-guide-most-up-to-date-guide-on-cpu-governors-i-o-schedulers-and-more.3048957/
https://www.spec.org/power_ssj2008/results/res2015q4/power_ssj2008-20151110-00704.html

Service Demand Distribution Estimation
for Microservices Using Markovian Arrival

Processes

Runan Wang(B) , Giuliano Casale , and Antonio Filieri

Department of Computing, Imperial College London, London, UK
{runan.wang19,g.casale,a.filieri}@mperial.ac.uk

Abstract. Building performance models for microservices applications in
DevOps is costly and error-prone. Accurate service demand distribution estima-
tion is critical to performance model parameterization. However, traditional ser-
vice demand estimation methods focus on capturing the mean service demand,
disregarding higher-order moments of the distribution. To address this limitation,
we propose to estimate higher moments of the service demand distribution for a
microservice from monitoring traces. We first generate a closed queueing model
to abstract a microservice and model the departure process at the queue node
as a Markovian arrival process. This allows formulating the estimation of service
demand as an optimization problem, which aims to find the optimal parameters of
the first multiple moments of the service demand distribution based on the inter-
departure times. We then estimate the service demand distribution with a novel
maximum likelihood algorithm, and heuristics to mitigate the computational cost
of the optimization process for scalability. We apply our method to real traces
from a microservice-based application and demonstrate that its estimations lead
to greater prediction accuracy than exponential distributions assumed in tradi-
tional service demand estimation approaches.

Keywords: Service demand distribution · Markovian arrival process ·
Maximum likelihood estimation · Queueing models · Performance

1 Introduction

DevOps has been widely adopted in industry, becoming an important part of today’s
software development methodologies [2]. Compared with traditional software develop-
ment, DevOps exploits a high degree of automation throughout the whole pipeline to
shorten the development life cycle and deliver high-quality applications.

While DevOps provides software engineers with advantages like frequent releases
of new features and fast resolution of technical issues, how to keep a speedy pace of
delivery to production and ensure the quality of the software at the same time remains an
open challenge [3]. Performance models can help to describe the system with a simpli-
fied abstraction, further enabling simulation and forecasting for use by both developers
and operators. Stochastic models such as queueing networks [14], layered queueing
networks [13], Petri nets [20] are widely used to represent web applications. Instead,
c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 310–328, 2021.
https://doi.org/10.1007/978-3-030-85172-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_17&domain=pdf
http://orcid.org/0000-0001-9245-6096
http://orcid.org/0000-0003-4548-7951
http://orcid.org/0000-0001-9646-646X
https://doi.org/10.1007/978-3-030-85172-9_17

Service Demand Distribution Estimation for Microservices 311

software architecture models are appropriate to describe changes in software structures
and resources [21].

To build performance models in the context of DevOps, it is important to consider
both architectural and analytical models. Existing methods for generating architecture-
level models like UML [28] and Palladio Component Model [7] often rely on manual
analysis and domain knowledge, which cannot satisfy the requirement of high-degree
automation in DevOps. In addition, the description languages of architectural models
in previous works are independent of deployment, which brings complexity to frequent
deployment and automatic calibration of performance models responding to new alter-
natives during this process. Compared to the above models, TOSCA [4] provides a
directed topological description of applications that allows deployment and lifecycle
management via dedicated orchestrators. As such, TOSCA is increasingly widespread
to describe microservice-based applications.

To enable simulation and prediction with TOSCA, model-to-model transformations
are required to decompose an architectural model into an analytical model that can be
solved with analytical solvers via simulation. Among the parameters of a performance
model generated in this way, service demand is a critical aspect that should be spec-
ified [8,33]. Service demand generally refers to the cumulative time a request spends
receiving service from system resources, such as CPU or disk, accumulated over all vis-
its. The accuracy of service demand specification is decisive for the predictive effective-
ness of performance models. Therefore, it is critical to specify accurate service demand
distribution in TOSCA models.

Service demand can be estimated with measurements of CPU utilization and
response time collected via system monitoring. Several different approaches for ser-
vice demand estimation have been proposed over the years, such as utilization law [10],
response time approximations based on linear regression [26], non-linear optimiza-
tion [34] and also machine learning methods [12]. However, most of the existing
approaches for service demand estimation mainly focus on estimating the mean service
demand. Restricting attention to the mean can limit the accuracy of service demand
estimation. This issue as the higher-order moments can affect the accuracy of critical
metrics such as higher percentiles of the response time.

In this paper, we propose to estimate the service demand distribution. To learn the
service demand, we first represent a microservice as a closed queueing system, with
the finite population representing the maximum parallelism level within the microser-
vice, and in which the service demand for queue nodes is characterized with a general
acyclic phase-type (APH) distribution. After generating the continuous-time Markov
chain (CTMC) for this model, we filter the departure transitions into aMarkovian arrival
process (MAP) to characterize the departure process at the queue node. The problem of
service demand estimation can then be formulated as an optimization problem to infer
the service demand distribution that maximizes the likelihood of the collected trace data
with the departure process MAP. The optimal parameters of the service demand distri-
bution can be obtained from matching moments of the APH distribution by a global
search with maximum likelihood estimation.

To address the high cost of global optimization, we then propose a heuristic esti-
mation method. In this method, the problem of service demand distribution estimation
is divided into sub-problems of fitting different moments, using a collection of estima-
tion methods. The required given data for fitting parameters for estimation with MAP

312 R. Wang et al.

consists of the inter-departure times, response times and the time of departure instant,
which can be directly collected with network traffic sniffing from pairs of arrival and
departure events. To evaluate our method, we apply it to the analysis of real traces from
deploying and monitoring a microservice-based application. The results show that our
method can fit the distribution of real traces with a high degree of accuracy.

The rest of the paper is organized as follows. In Sect. 2, we recall necessary back-
ground and definitions. In Sect. 3 the inter-departure time model and problem formu-
lation are introduced. In Sect. 4, we discuss our proposed service demand distribution
estimation method based on global optimization with maximum likelihood. In Sect.
5, we introduce the heuristic method for service demand distribution estimation. We
present our experimental results in Sect. 6. Related work is summarized in Sect. 7.
Finally, we draw conclusions in Sect. 8.

2 Preliminaries

Acyclic Phase-Type Distribution. A phase-type (PH) distribution [23] can be defined
as the distribution of absorbing time in a continuous-time Markov chain (CTMC) with
finite states {1, 2, ...,m,m + 1}, where the first m states are transient and the last state
is absorbing. The infinitesimal generator matrix of the CTMC G is

G =
[
T t
0T 0

]

The sub-generator T with dimension m × m specifies the transition rate from state i to
state j. We also define t = −Te, where e denotes a column vector of 1 with appropriate
dimension. We can further describe the stationary distribution of the transient states
with α = (α1, α2, . . . , αm), subject to αe = 1, αi ≥ 0. A PH distribution may thus be
compactly specified as PH(α,T).

An acyclic PH (APH) distribution [5] is a subset of PH distributions with acyclic
underlying Markov chain. This implies that any state in the underlying Markov chain
cannot be visited more than once before absorption. If a random variable Y has APH
distribution with parameter α′ and T ′, we write Y ∼ APH(α′,T ′).

Service Demand DistributionModeling. In this paper, the service demand distribution
is modeled as an APH distribution. The parameters of APH(α,T) can be obtained
with various PH distribution fitting methods [15]. In this work, we will use the method
of moment matching, which can fit the parameters to match an arbitrary number of
moments of a reference on empirical distribution. In particular, we consider using the
first three moments to study the APH distribution for service demand. The third moment
(skewness, Sk) is considered for its characterization on the fitting performance of the
end of the tail.

Sk =
E[(X − η)3]

(E[(X − η)2])3/2
(1)

In Eq. (1), η denotes the mean value. The first three moments can be described with the
mean value (η), the squared coefficient of variance (SCV, c2) and the skewness (Sk).

E[X2] = (1 + c2)η2 (2)

Service Demand Distribution Estimation for Microservices 313

Fig. 1. The structure (a) and the queueing model (b) for of the example applicaton

E[X3] = Sk(c2)3/2η3 + 3η3c2 + η3 (3)

Thus, we can write the service demand distribution as function of the first three
moments E[X], E[X2] and E[X3] with parameters η, c2, and Sk.

Markovian Arrival Processes.MAPs [22] are able to incorporate correlations between
successive inter-arrival times. An n-state MAP consists of two stochastic processes,
referring to a counting process and a phase process modeled by a finite state (n states)
CTMC with infinitesimal generator Q. Let D0 be a matrix associated with transitions
without arrivals with non-negative off-diagonal elements; D0 and D1 satisfy Q =
D0 + D1 and (D0 + D1)e = 0.

3 Problem Formulation

We propose to observe the departure process of a microservice and determine param-
eters of service demand distribution, modeled as an APH, using maximum likelihood
estimation.

Microservice-based applications can be abstracted as a queueing model. Here we
take a simple microservice as an illustrating example1. This is a simple microservice
exposing a body mass index (BMI) calculation service. The calculation service is a min-
imalistic microservice that only receives requests and posts responses without external
processing. We generate a closed workload to simulate the microservice clients in the
system – the structure of the example is given in Fig. 1(a). Figure 1(b) illustrates the ana-
lytical model for the application, consisting of a closed queueing network describing the
microservice buffer and server, as well as the think time of clients. The model features
N concurrent users, each modeled as a job. Scheduling could be either first-come first-
served (FCFS) or Processor-sharing (PS) order depending on the implementation details
of the web server handling the requests within the microservice. We assume exponen-
tially distributed user think times at the delay station. The problem is to determine the
APH service demand distribution in the queueing station. Note that since we focus on
a single class of jobs, the model admits a product-form solution for the steady-state
distribution, while no specific product-form simplifications are available to analyze the
departure process of this queue. As such, the service distribution identification problem
does not satisfy a simple analytical closed-form to conduct inference.

1 https://github.com/go-chassis/go-bmi.

https://github.com/go-chassis/go-bmi

314 R. Wang et al.

Departure Process Modeling with MAP. Referring to [1], the inter-event times in
queueing models can be captured with a quasi birth-and-death process (QBD). We
can generate the infinitesimal generator Q of the underlying CTMC and then filter the
events associated with job departures from Q as D1. That is, all departure transitions
from the queue are tagged in D1. Then, a MAP can be used to model the departure
process with representation D0 and D1, where D0 = Q − D1.

We consider a MAP = {D0,D1} that represents the departure process of the
queueing station, our objective is to estimate the parameters for service demand dis-
tribution as APH(α,T) from the observable inter-departure times (IDTs). We denote
the time between two successive departure events i and i − 1 as Xi = ai − ai−1. Thus,
the IDTs of jobs are X = [X1,X2, . . . , Xn−1]. Since the departure process is modeled
as a MAP, the IDTs follows a PH distribution PH(π,D0), where π = π(−D0)−1D1

indicating the stationary distribution of the embedded chain. If D0 is acyclic, then the
PH distribution specializes into an APH one. This distribution produces an interval sta-
tionary initialization for the MAP.

For the MAP described above, the joint probability density function (PDF) of IDTs
X = [X1, . . . , Xn] is

f(X) = πeD0X1D1e
D0X2D1 . . . eD0XnD1e (4)

For computational convenience, we assume that the given departure events are inde-
pendent. The logPDF of the IDTs can be approximated as

log f(X) =
n∑

i=1

log(πeD0XiD1e) (5)

In general, let θ be the parameter set of the service demand distribution to be esti-
mated. The log-likelihood for the IDTs is

log f(θ|X) =
n∑

i=1

log(πeD0(θ)XiD1(θ)e) (6)

In (6), D0(θ) and D1(θ) describe the functional dependencies between D0, D1

and the service demand distribution parameters θ such as its moments, e.g., η, c2, and
Sk mentioned in Sect. 2. Then our problem of service demand distribution estimation
can be formulated as finding the parameters that maximize the log-likelihood of the
IDTs measured from the monitoring traces.

fobj(θ) = argmax
θ≥0

log f(X|θ) (7)

4 Global Optimization Based Estimation

The parameter estimation of service demand distribution is based on observations of
real system trace. In this paper, we consider a finite observation with n samples. Our
measured observation consists of the IDTs, the timestamps of each departing instant
and the response times.

Service Demand Distribution Estimation for Microservices 315

Data Preprocessing. For a real system, there could be a large number of requests from
the users arriving within a very short period. If we directly take all of the samples in the
trace, it could be quite time-consuming to calculate the likelihood function in (6), due
to the cost of evaluating the matrix exponential.

Fig. 2. The number of states in the CTMC state space with PS and FCFS

To address the above issue, we observe that the inter-departure times of jobs can
be grouped into different patterns. In order to accelerate the execution times, we apply
clustering based on k-means [17] to partition the IDTs to obtain K groups of data
with cluster centroids C = [C1, C2, . . . , CK]. Then, the log joint PDF in (5) can be
approximated based on the IDT clusters as

log f(C) =
K∑
i=1

Li log(πeD0CiD1e) (8)

where Li denotes the number of points in cluster i.

CTMC State Space Explosion. Increasing of the number of concurrent users, the state
space of the CTMC can easily suffer state-space explosion. Assume a single-server
queue where the service demand SD of the queue node is APH distributed and a delay
node as shown in the example in Fig. 1, and there are N users in the queueing network.
First, we consider the jobs in the queue are processed with a first-come-first-served
(FCFS) order. Only one job can be served by the server at one time. Let P denote the
number of phases in the service process, i.e., the number of columns in α. The number
of states in the state space is

s = N · P + 1 (9)

Instead, if the server follows a processor sharing (PS) scheduling strategy, i.e., multiple
jobs can be served simultaneously, the number of states in the state space is

s =
N∑
i=0

(N + 1 − i)
(

i + P − 2
i

)
(10)

316 R. Wang et al.

Compared to FCFS, we can see that the state space for PS grows combinatorially, as
shown in Fig. 2, making the analysis of the CTMC intractable.

To mitigate the complexity of dealing with PS scheduling, we propose to capture
the behaviours of the original model with a simpler model. We focus on the mean queue
length that can be approximated by using mean-value analysis (MVA). Instead of con-
sidering all the individual jobs circulating in the delay and queue nodes as usual, we
propose a modified model with only an estimated number of jobs N

′
perpetually loop-

ing within the queue.

N
′
=

N − 1
N

E[U(N)] (11)

Let E[U(N)] denote that there are averaged E[U(N)] users at the queue when N users
in the system. Note that the number of jobs N

′
looping in the new model is decided by

the expected number of users at an arrival instant in the queue based on Schweitzer’s
Approximation [31].

For a real system with a large number of users, this approximation can lead to a
significant reduction of the computational cost, while providing adequately accurate
results. For example, N

′
= 2 is obtained with N = 100 and a 3-phase service distribu-

tion, the number of states in the state space is only 10, which is much smaller compared
to the one shown in Fig. 2(a) with N = 100 under PS schedule.

MLE for Service Demand Distribution. Our objective is to search optimal parameters
for approximating service demand distributions. Given the observed trace data, a com-
mon approach for parameter estimation is maximum likelihood estimation (MLE) [24],
which casts the estimation as a global optimization problem. We propose an estimation
method that combines MLE with simulations of queueing models to approximate the
APH distribution for service demand.

Algorithm 1 describes the implementation of this method in details. The algorithm
requires a set of clustered IDTs and the searching boundaries. In each iteration, the
algorithm generates a set of moments satisfying the bound constraints and then the
APH distribution is fitted from the current moments. The conditions of convergence for
the algorithm are set as follows. There are two conditional parameters, including the
maximum number of evaluation on the objective function (MaxEvalFunc) and a last
step tolerance for ending iteration (Tol). For moment matching we use the BuTools
package [16], pointing to APHFit in Line 3. Note that we need to satisfy that the APH
distribution is feasible with given parameters, i.e., both α and T are not empty or zero.
After obtaining the service demand distribution SD, a queueing model is generated
with a queue node of SD. The current queueing model can be solved by analyzing the
underlying CTMC, obtaining the infinitesimal generatorQ. By analyzing the transitions
in Q, the transition rates of departure events on the queue node can be filtered for D1

as shown in Lines 6–8.
In Algorithm 1, the optimal parameters of service demand distribution are obtained

with the maximum likelihood value of the monitoring traces. However, the computation
of the infinitesimal generator involves the computation of a matrix exponential, which
is computationally expensive and rises numerical instability. To mitigate these issues,
we use CTMC uniformization [29] which is well-known to be an effective numerical
method for computing transient measures involving matrix exponential. For transient

Service Demand Distribution Estimation for Microservices 317

analysis, uniformization techniques can be applied with sub-generator D0 and the ini-
tial distribution π of the MAP. Since the transient rate in D0 of a real system could be
large, to guarantee stable calculations, we adopt the scaling method from [32], involv-
ing a scaling factor q to avoid floating-point errors. In Line 10, the scaling CTMC
uniformization method is defined as ctmc uniform, which takes π, Q − D1 and the
centroid of the cluster as the input. The approximated transient probability is obtained
as β for πeD0 . Then the log-likelihood value can be computed using (8) at Line 11.

Algorithm 1. Global optimization based estimation method
Input: C ← Set of clustered inter-departure times [c1, c2, . . . , cn, l1, l2, . . . , ln], where ci is the

centriod value and li is the number of points in cluster i.
LB ←searching lower bound
UB ←searching upper bound

Output: SD ← Estimated service demand with APH distribution
1: Random initialize M0 ← [m1, m2, m3], LB < M0 < UB
2: while MaxEvalFunc ≤ 1010 and Tol ≥ 10−8 do
3: Service demand distribution APH(α, T) ← APHFit[m1, m2, m3]
4: if APH(α, T) is feasible then
5: Generate a queueing network model QNM with service demand APH(α, T)
6: Q ← solve(QNM)
7: Filter D1 from the infinitesimal generator Q
8: MAP ← {Q − D1, D1}, generate π
9: for i = 1 to n do
10: β ← ctmc uniform(π, Q − D1, ci)
11: L ← L + log(βD1e)li
12: end for
13: end if
14: end while
15: Get optimal parameter set [m1, m2, m3] with maximum likelihood value
16: return SD ← APHFit[m1, m2, m3]

5 Heuristics-Based Estimation

As illustrated in Algorithm 1, the global optimization method for service demand dis-
tribution estimation needs to consider a large search space. It could be time-consuming
to obtain the optimal parameter set maximizing the likelihood value. The method pre-
sented in this section estimates the parameters sequentially, rather than jointly, offering
a heuristic estimation that trades accuracy for speed.

Mean Service Demand Estimation. The mean value of service demand can be effi-
ciently estimated based on performance measurements frommonitoring traces. We refer
to the work in [26], which allows estimating the expected value of service demand with
queue length and response times. Both queue length and response times are easily mea-
sured with system monitoring. Since in this work we target the departure process, the
input dataset of the estimation method contains the following data by calculating from
system monitoring at departing occurrence.

318 R. Wang et al.

– The timestamp of a job departing from the queue node (DT)
– The response times from the monitoring traces (R)
– The queue length seen upon arrivals (A).

Considering a single class of jobs in the system, letN be the size of the population in
the closed queueing network. Therefore, the mean service demand E[D] for the single-
class case can be estimated as [26]:

E[D] =
E[R]

1 + E[A]
(12)

where E[R] and E[A] is the expected value of response times and the queue length seen
upon arrivals, respectively.

Fig. 3. c2 conditional on the queue length seen upon arrivals for simulation (a) and the real
trace (b)

SCVEstimation. To estimate the second moment of service demand, we investigate the
state-dependent behavior of the system. The estimation formulation is derived from the
SCV on the mean queue length seen upon arrival. In a queueing system, the response
time of a job is related to the number of jobs in the queue node either waiting or receiv-
ing service. We propose to estimate c2 using the following heuristic expression

c2 = max
E[(Rij − E[Ri])2]

E[Ri]2
(13)

where i is a value for the length of queue seen upon arrival, with i = 0, . . . , max(A).
Ri denotes a set of response times of which the queue length seen upon arrival is i, and
Rij denotes the jth response time belonging to Ri. In detail, at each departure instant,
we can collect the response time of the current completed job and the number of jobs
remaining in the queue. Then the queue length is sorted and the response times can be
grouped according to different numbers of the queue length as Rij .

To demonstrate the accuracy of the approximation for SCV, we conduct an experi-
ment with N = 100. We analyze real trace data from monitoring and compare the c2 of

Service Demand Distribution Estimation for Microservices 319

real traces to the simulated queueing model with estimated parameters based on MLE.
We can see from Fig. 3(a) that the c2 conditional on the queue length first increases to
the maximum and then decrease with the growth of queue length. The same pattern can
be also observed for the real trace as shown in Fig. 3(b). The simulated c2 value is 8.3.
It can be seen that the max(c2) of the simulation is close to the one for the real trace
with c2 = 11.2.

Heuristic Service Demand Distribution Estimation. Our heuristic method to acceler-
ate the MLE estimation is shown in Algorithm 2. Compared to the global optimization
in Algorithm 1, the heuristic-based method is used to estimate the service demand distri-
bution with three separate estimation methods to fit the first three moments, including
mean service demand (η) and SCV (c2) estimation in the beginning of Sect. 5 and a
MLE-based skewness (Sk) estimation as shown in Algorithm 2.

Algorithm 2. Heuristics based estimation method
Input: C ← Set of clustered inter-departure times [c1, c2, . . . , cn, l1, l2, . . . , ln], where ci is the

centriod value and li is the number of points in cluster i.
R ← Set of response times [r1, r2, . . . , rn]
DT ← Set of times on the departure instant [dt1, dt2, . . . , dtn]
Sk = [Sk1, Sk2, . . . , Skj] ← searching set of Sk

Output: SD ← Estimated service demand with APH distribution
1: Compute A from DT and R
2: η ← meanEstimate(A, R)
3: c2 ← scvEstimate(A, R)
4: for i = 1 to j do
5: Compute the first three moments [m1, m2, m3] from m, c2 and Ski

6: APH(α, T) ← APHFit[m1, m2, m3]
7: if APH(α, T) is feasible then
8: Repeat execution of lines 5 to 12 in Algorithm 1
9: end if
10: end for
11: Get optimal skewness set of service demand, Sk ← Ski with max(L)
12: Compute the first three moments [m1, m2, m3] from η, c2 and Sk

13: return SD ← APHFit[m1, m2, m3]

The algorithm requires a set of IDTs, the departure times, the response time of each
job, and the queue lengths seen upon arrivals. In Line 1, we first compute the arrival
times with the departure times DT and response times R and then calculate the queue
length seen upon arrivals for each job. The mean service demand is estimated based on
response times and the queue length seen upon arrivals. Then the algorithm estimates
c2 by (13). The only search parameter for our method now is the skewness Sk. Here
we perform MLE on the departure process with Eq. (6). As in the search-based global
optimization, we first generate a set of candidate skewness values Sk = [Sk1, Sk2, . . .].
For each Ski, we generate a queueing model with corresponding service demand and
then calculate the likelihood value as Lines 5–12 in Algorithm 1. The algorithm will
search on all candidates in the set, and the process is repeated with multiple candidate

320 R. Wang et al.

points for robustness. The estimated result of the skewness is finally decided on the
max likelihood value. Therefore, the final result is obtained with a collection of three-
parameter estimation methods.

6 Evaluation

This section introduces the experimental setup and evaluation metrics, and a compari-
son of our method against the baseline algorithms.

6.1 Experimental Setup

To evaluate the proposed service demand distribution estimation, we conduct several
experiments and compare the results to our baseline algorithm using an open-source
microservice-based application called Sock Shop2. Sock Shop consists of 13 different
services and all services communicate using REST APIs over HTTP. We use Docker
Compose for the multi-container orchestration. We then generate closed workloads with
different intensity using Locust3. In the experiment, we target a service that does not
interact with a database, which avoids indirect drifts in the response time due to the
state of the database.

Table 1.Workload pattern

CPU level Low Medium High

CPU utilization (U) 33% 43% 95%

Number of users (N) 50 100 300

The experimental environment is as follows. For the deployment of the application,
we use a server running Ubuntu 16.04.7, and our target service is pinned to a separate
CPU core. Locust is running on 6 different servers, including one host node and 5
distributed nodes to simulate the concurrent users. We experimented with populations
of different numbers of users to assess the corresponding CPU utilization level as shown
in Table 1.

In all the following experiments, the users’ think time is exponentially distributed
with a mean of 0.1 s.

We conduct experiments with each population in Table 1 and capture the network
traffic with a dockerized tcpdump that is triggered over HTTP. During the experiments,
we monitor HTTP traffic on the source and destination nodes of our target service. Then
the traffic data is parsed to extract the request and response information of each request.
For each different population size, we collect 10,000 HTTP request and response pairs
to build up the trace dataset. Every dataset consists of the response time of each request
and the time of departure instant.

2 https://microservices-demo.github.io/.
3 https://locust.io/.

https://microservices-demo.github.io/
https://locust.io/

Service Demand Distribution Estimation for Microservices 321

Baseline Algorithm. The service demand is usually modeled as exponential with the
estimated mean value [33]. In our experiments, we also fit as baseline an exponential
distribution for service demand.

Metrics. Since the real service times of systems are usually difficult to measure, we opt
to measure the response time via monitoring and use the complementary cumulative
distribution function (CCDF) of the response times as our metrics. We construct the
queueing model parameterized with the estimated service demand distribution and use
the simulation-based JMT solver in LINE [27] to compute the corresponding response
times to compare with. Thus, the only difference between the baseline and our experi-
ments is the service demand distribution at the queueing node.

6.2 Data Preprocessing and Clustering

To demonstrate the trade-off between computational complexity and the approximation
accuracy due to the choice of the number of clusters K, we consider a simulated exper-
iment with 50 users in a single-server queueing system. In this experiment, we estimate
the service demand distribution with the original data and clustered data for different
values of K. Figure 4 shows the simulation results. It can be observed from Fig. 4(b)
that with clustered IDTs the execution time of departure process MAP modeling and
log-likelihood calculation drops by almost 33% compared to the initial execution time
with the whole trace. The accuracy of parameter estimation with the clustered data is
evaluated in Fig. 4(a) by means of CCDF diagrams. While small values of K lead to a
coarse approximation, increasing K the CCDF for the clustered data rapidly converges
to the CCDF estimated from the whole dataset without clustering. As can be noted from
Fig. 4(a), the curves become indistinguishable for K ≥ 100. We can thus conclude that
our clustering heuristics does not significantly reduce the accuracy of the estimation for
K large enough (K ≥ 100 in our experiment), while significantly reducing the compu-
tational cost of the estimation.

Fig. 4. The CCDF of response times (a) and the execution times (b) of maximum likelihood
estimation under different number of clusters

322 R. Wang et al.

6.3 Numerical Experiment Results

We conduct the following numerical experiments to assess the effectiveness of our
global-search based method for the service demand distribution estimation. We first
generate single-server queueing models that can simulate the behaviours of a simplis-
tic microservice, setting different known values for service demand at the queue node.
Then we generate samples of inter-departure times by simulating. The mean service
demand η is fixed at 0.7 and different SCV are selected from c2 ∈ {0.5, 1, 4, 16}. After
generating sample traces via simulation, we execute Algorithm 1 and compare the esti-
mated SD with the known values. We also compare with the baseline algorithm on the
same simulated traces. The results of fitting with different service demand distributions
are plotted as CCDF diagrams in Fig. 5.

Fig. 5. CCDF of response time for different setting of c2

Fig. 6. CCDF of response time for different numbers of users N

It can be seen from the response times distributions that our estimation method
achieves good fits for all setting of c2 and outperforms the exponential distribution
especially for the tail of the distributions. For larger c2, we can observe that only esti-
mating the mean η of the exponential distribution cannot capture the full distribution of
service demand, with the baseline algorithm decreasing much faster than our method,
resulting in an inaccurate prediction of the response times.

We also evaluate the estimation results for different numbers of users. In this experi-
ment, we create the simulation models for sample generation with usersN ∈ {1, 5, 10}.
The assigned parameters of service demand in the simulation models are η = 0.7 and
c2 = 16. We notice that with N = 10, the CPU utilization from simulation can reach
over 95% which is close to saturation. However, compared to the baseline, the fitting
results of our method under different values of N are much closer to the simulated
response time distribution in the tail than the baseline estimation, as shown in Fig. 6.

Service Demand Distribution Estimation for Microservices 323

6.4 Analysis of Results on Measured Traces

Scheduling Policy – FCFS. We now turn our attention to experiments on the real sys-
tem. First, we present our experimental results for different numbers of users with FCFS
scheduling strategy. For a single server system with FCFS, the service times can be
obtained from sampling IDTs when the server is not idle. Therefore, for FCFS, we
can directly calculate the first three moments for these sampled service times. Here we
define this direct measured method as FCFS-single method. We evaluate the simulation
results with FCFS-single method, baseline algorithm, and our method. The CCDF of
response times for low, medium, and high CPU utilization are plotted in Fig. 7, respec-
tively. The parameter estimation results with FCFS are summarized in Table 2, and the
results based on FCFS-single measurement are in Table 3.

We first observe that the FCFS-single method yields a similar accuracy of fitting the
tail of the distribution under low and medium utilization level, whereas the curve based
on the FCFS-single is farther away than our method for the body of the distribution.
For higher CPU utilization, our method has a better fit for the tail of the distribution.
We interpret that the real system is not precisely served by FCFS scheduling, while
it exhibits some state-dependent degree of CPU sharing, and the heuristic we propose

Fig. 7. CCDF of response time with different utilization for the fitted models with FCFS.

Table 2. Service demand distribution parameter estimation results for FCFS

N η × (10−4) c2 Sk Likelihood × (104)

50 8.33 8.24 11 6.62

100 6.21 11.22 57 14.31

300 3.50 8.03 12 10.64

Table 3. Service demand distribution parameter estimation results for FCFS with FCFS-single
method

N η × (10−4) c2 Sk

50 13.61 2.31 4

100 7.96 2.85 5

300 3.72 2.87 7

324 R. Wang et al.

captures instances of large service variance that occur in certain system states, which
can be inferred from c2 in Table 3.

Compared to the baseline algorithm with exponential distribution, it can be seen
that for all 3 different N of users our method produces a closer fit. As one can see
for the body fitting, both baseline and our proposed model yield good performance.
For N = 50 and N = 100, our model fits the body with better accuracy, whereas
the baseline method is outperformed for N = 300. However, for the fitting of the tail,
the baseline method is worse in terms of accuracy for all values of N . Overall, our
estimated distribution achieves a better fit throughout the distribution curve, producing
an approximation of the real trace distribution accurately. Compared to the baseline,
our proposed method can model the heavy-tail behaviors, which is significant to model
different intensive workloads.

Scheduling Policy – PS. To analyze the impact of scheduling policies, we conduct
experiments on the queueing model with N ∈ {50, 100, 300} with PS scheduling pol-
icy. The parameter estimation results with PS is shown in Table 4 and the fitting com-
parison is plotted in Fig. 8. We can see from the figure that switching from FCFS to
PS impacts the results of the baseline in a significant manner. First, comparing the esti-
mated skewness to the results for FCFS, we can observe smaller values of skewness. As
it can be seen in Fig. 8(a) and (b), the baseline method first fits well at the beginning,
and it decays faster from the middle body, ultimately not able to capture the tail. On the
other hand, our method fits the body of the distribution and achieves a slower decay for
the tail, showing a more accurate fit for the distribution.

While for low and medium CPU utilization our method outperforms the baseline,
especially for the tail of the distribution, Fig. 8(c) shows that with the increasing number
of simulated users, and CPU utilization close to 100%, the baseline method achieves a
closer fit to the data with PS scheduling.

Fig. 8. CCDF of response time with different utilization for the fitted models with PS.

Table 4. Service demand distribution parameter estimation results for PS

N η × (10−4) c2 Sk Likelihood × (104)

50 8.33 8.24 9 6.11

100 6.21 11.22 10 14.53

300 3.50 8.03 4 10.68

Service Demand Distribution Estimation for Microservices 325

It is not difficult to see from Table 2 and Table 4 that the likelihood values for
N = 50, 100, 300 with PS are close to the one with FCFS. In reality, the actual system
scheduling will factor in several elements such as caching, memory bandwidth, and
operating system scheduling, which are neither perfectly PS nor FCFS. Thus, our results
indicate that either models provide a reasonable approximation to the observed system
behaviour, but FCFS appears more suitable to model heavy loads.

Summarizing, the previous results indicate that in the majority of instances the pro-
posed method is able to fit the service process characteristics of microservices with
higher fidelity than simple exponential models, especially capturing tail behaviors with
higher accuracy.

7 Related Work

To enable automatic generation for accurate performance models, model parameteri-
zation brings out an important problem of resource demand estimation. There are sev-
eral works using regression methods. Rolia [30] introduce the resource demand estima-
tion problem with linear regression techniques. In general, linear regression has been
employed to solve the service demand estimation mostly based on utilization [9,10]
and response time [26]. Neural networks like recurrent neural networks (RNN) can be
applied to estimate resource demands for the ability to predict time series data like the
works in [12]. Machine learning can also help to select the optimal approaches for esti-
mation on account of varieties of existing resource demand approaches [19]. However,
most of the mentioned approaches based on regression only enable to obtain the mean
value of the resource demand instead of full distributions, lacking higher-order proper-
ties of the demand. These time-series based prediction is not suitable for assigning the
required parameters for performance models.

There are many existing works on modeling with a queueing system in which the
arrivals of users are characterized with a Poisson arrival process and an exponentially
distributed service time [6,18]. However, they are not accurate enough to capture and
represent the behaviors of real systems, especially for the tail of the service demand
distribution. To characterize more accurate service demand, PH distribution provides
possibilities to approximate arbitrary distributions, which has been used in studies of
modeling and simulation like [11,25].

8 Conclusion

In this paper, we have introduced a service demand distribution estimation method by
using Markovian arrival processes for microservices. We have first presented a closed
queueing model for a microservice and characterized the service demand of the queue
node with an APH distribution. We have then proposed to model the departure pro-
cess at the queue node of this model with a MAP, in which the parameters of service
demand can be exposed. The service demand distribution can be estimated with max-
imum likelihood based on the departure process MAP. We applied the global search
and a heuristic estimation method on solving the optimization problem. The proposed
heuristic estimation method can effectively reduce the computational cost compared to

326 R. Wang et al.

the global search approach. We further showed that the proposed estimation method
yields a better performance on fitting real traces of microservices compared to the base-
line.

As we consider a single-server queue with a single-class workload in this work, our
future research aims at generalizing the estimation method with multi-classes models.
In the next step, we plan to model the departure process with a markedMAP, which may
increase the model complexity and the likelihood of CTMC explosion. To deal with the
problems of multi-class queues, multi-class classification methods like the one-against-
all algorithm may provide the feasibility to reduce the number of classes. Aggregation
methods may be explored to address this issue.

Acknowledgement. The work of Giuliano Casale has been partly funded by the EU’s Horizon
2020 program under grant agreement No. 825040.

References

1. Andersen, A.T., Neuts, M.F., Nielsen, B.F.: Lower order moments of inter-transition times in
the stationary QBD process. Methodol. Comput. Appl. Probab. 2(4), 339–357 (2000)

2. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-Wesley
Professional, Boston (2015)

3. Bezemer, C.P., et al.: How is performance addressed in devops?. In: Proceedings of the 2019
ACM/SPEC International Conference on Performance Engineering, pp. 45–50 (2019)

4. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated deployment
and management of cloud applications. In: Bouguettaya, A., Sheng, Q., Daniel, F. (eds.)
Advanced Web Services. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-
7535-4 22

5. Bobbio, A., Horváth, A., Telek, M.: Matching three moments with minimal acyclic phase
type distributions. Stoch. Models 21(2–3), 303–326 (2005)

6. Bramson, M., Lu, Y., Prabhakar, B.: Randomized load balancing with general service time
distributions. ACM SIGMETRICS Perform. Eval. Rev. 38(1), 275–286 (2010)

7. Brosig, F., Kounev, S., Krogmann, K.: Automated extraction of palladio component models
from running enterprise java applications. In: Proceedings of the Fourth International ICST
Conference on Performance Evaluation Methodologies and Tools, pp. 1–10 (2009)

8. Casale, G., et al.: Radon: rational decomposition and orchestration for serverless computing.
SICS Softw.-Intensiv. Cyber-Phys. Syst. 35(1), 77–87 (2020)

9. Casale, G., Cremonesi, P., Turrin, R.: How to select significant workloads in performance
models. In: CMG Conference Proceedings, pp. 58–108. Citeseer (2007)

10. Casale, G., Cremonesi, P., Turrin, R.: Robust workload estimation in queueing network per-
formance models. In: 16th Euromicro Conference on Parallel, Distributed and Network-
Based Processing (PDP 2008), pp. 183–187. IEEE (2008)

11. Dudin, S., Dudina, O.: Retrial multi-server queuing system with PHF service time distribu-
tion as a model of a channel with unreliable transmission of information. Appl. Math. Model.
65, 676–695 (2019)

12. Duggan, M., Mason, K., Duggan, J., Howley, E., Barrett, E.: Predicting host CPU utilization
in cloud computing using recurrent neural networks. In: 2017 12th International Conference
for Internet Technology and Secured Transactions (ICITST), pp. 67–72. IEEE (2017)

https://doi.org/10.1007/978-1-4614-7535-4_22
https://doi.org/10.1007/978-1-4614-7535-4_22

Service Demand Distribution Estimation for Microservices 327

13. Franks, G., Al-Omari, T., Woodside, M., Das, O., Derisavi, S.: Enhanced modeling and solu-
tion of layered queueing networks. IEEE Trans. Softw. Eng. 35(2), 148–161 (2008)

14. Garetto, M., Cigno, R.L., Meo, M., Marsan, M.A.: A detailed and accurate closed queue-
ing network model of many interacting TCP flows. In: Proceedings IEEE INFOCOM 2001.
Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society (Cat. No. 01CH37213), vol. 3, pp. 1706–1715. IEEE
(2001)

15. Horváth, A., Telek, M.: PhFit: a general phase-type fitting tool. In: Field, T., Harrison, P.G.,
Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 82–91. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-46029-2 5

16. Horváth, G., Telek, M.: BuTools 2: a rich toolbox for Markovian performance evaluation. In:
VALUETOOLS (2016)

17. Krishna, K., Murty, M.N.: Genetic k-means algorithm. IEEE Trans. Syst. Man Cybern., Part
B (Cybern.) 29(3), 433–439 (1999)

18. Krishnamoorthy, A., Manikandan, R., Lakshmy, B.: A revisit to queueing-inventory system
with positive service time. Ann. Oper. Res. 233(1), 221–236 (2015)

19. Liao, S., Zhang, H., Shu, G., Li, J.: Adaptive resource prediction in the cloud using linear
stacking model. In: 2017 Fifth International Conference on Advanced Cloud and Big Data
(CBD), pp. 33–38. IEEE (2017)

20. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Gen-
eralized Stochastic Petri Nets, vol. 292. Wiley, New York (1995)

21. Mazkatli, M., Koziolek, A.: Continuous integration of performance model. In: Companion
of the 2018 ACM/SPEC International Conference on Performance Engineering, pp. 153–158
(2018)

22. Neuts, M.F.: Models based on the Markovian arrival process. IEICE Trans. Commun. 75(12),
1255–1265 (1992)

23. O’Cinneide, C.A.: Characterization of phase-type distributions. Stoch. Models 6(1), 1–57
(1990)

24. Pan, J.X., Fang, K.T.: Maximum likelihood estimation. In: Growth Curve Models and Sta-
tistical Diagnostics. Springer Series in Statistics. Springer, New York (2002). https://doi.org/
10.1007/978-0-387-21812-0 3

25. Parini, A., Pattavina, A.: Modelling voice call interarrival and holding time distributions in
mobile networks. In: Proceedings of ITC 2005, pp. 729–738 (2005)

26. Pérez, J.F., Pacheco-Sanchez, S., Casale, G.: An offline demand estimation method for multi-
threaded applications. In: 2013 IEEE 21st International Symposium on Modelling, Analysis
and Simulation of Computer and Telecommunication Systems, pp. 21–30. IEEE (2013)

27. Pérez, J.F., Casale, G.: Line: evaluating software applications in unreliable environments.
IEEE Trans. Reliab. 66(3), 837–853 (2017)

28. Petriu, D.C., Shen, H.: Applying the UML performance profile: graph grammar-based
derivation of LQNmodels from UML specifications. In: Field, T., Harrison, P.G., Bradley, J.,
Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 159–177. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46029-2 10

29. Reibman, A., Trivedi, K.: Numerical transient analysis of Markov models. Comput. Oper.
Res. 15(1), 19–36 (1988)

30. Rolia, J., Vetland, V.: Correlating resource demand information with arm data for application
services. In: Proceedings of the 1st International Workshop on Software and Performance,
pp. 219–230 (1998)

31. Schweitzer, P.: Approximate analysis of multiclass closed networks of queues. J. ACM 29(2)
(1981)

32. Sidje, R.B., Burrage, K., MacNamara, S.: Inexact uniformization method for computing tran-
sient distributions of Markov chains. SIAM J. Sci. Comput. 29(6), 2562–2580 (2007)

https://doi.org/10.1007/3-540-46029-2_5
https://doi.org/10.1007/978-0-387-21812-0_3
https://doi.org/10.1007/978-0-387-21812-0_3
https://doi.org/10.1007/3-540-46029-2_10

328 R. Wang et al.

33. Spinner, S., Casale, G., Brosig, F., Kounev, S.: Evaluating approaches to resource demand
estimation. Perform. Eval. 92, 51–71 (2015)

34. Wang, W., Huang, X., Qin, X., Zhang, W., Wei, J., Zhong, H.: Application-level CPU con-
sumption estimation: towards performance isolation of multi-tenancy web applications. In:
2012 IEEE Fifth International Conference on Cloud Computing, pp. 439–446. IEEE (2012)

Performance Analysis of Work Stealing
Strategies in Large Scale Multi-threaded

Computing

Grzegorz Kielanski and Benny Van Houdt(B)

University of Antwerp, Middelheimlaan 1, Antwerp 2020, Belgium
{Grzegorz.Kielanski,Benny.Houdt}@uantwerpen.be

Abstract. Distributed systems use randomized work stealing to
improve performance and resource utilization. In most prior analytical
studies of randomized work stealing, jobs are considered to be sequential
and are executed as a whole on a single server. In this paper we consider
a homogeneous system of servers where parent jobs spawn child jobs that
can feasibly be executed in parallel. When an idle server probes a busy
server in an attempt to steal work, it may either steal a parent job or
multiple child jobs.

To approximate the performance of this system we introduce a Quasi-
Birth-Death Markov chain and express the performance measures of
interest via its unique steady state. We perform simulation experiments
that suggest that the approximation error tends to zero as the number
of servers in the system becomes large. Using numerical experiments we
compare the performance of various simple stealing strategies as well as
optimized strategies.

Keywords: Performance analysis · Matrix analytic methods ·
Distributed computing

1 Introduction

Jobs in multithreaded computing systems consist of several threads [2,24]. Upon
starting the execution a main thread (which we call a parent job) several other
threads are spawned (which we call child jobs). These spawned child jobs are
initially stored locally, but can be redistributed at a later stage. One way of
redistributing jobs is called “randomized work stealing”: servers that become
empty start probing other servers at random (uniformly) and if the probed server
has pending jobs, some of its jobs are transferred to the probing server [2,5].
Another option is to make use of “randomized work sharing”, where servers that
have pending jobs probe others to offload some of their work to other servers.

Work stealing solutions have been studied by various authors and are often
used in practice. They have been implemented for example in the Cilk program-
ming language [3,6], Intel TBB [19], Java fork/join framework [12], KAAPI [9]

c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 329–348, 2021.
https://doi.org/10.1007/978-3-030-85172-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_18&domain=pdf
http://orcid.org/0000-0001-7149-7657
http://orcid.org/0000-0002-5955-8493
https://doi.org/10.1007/978-3-030-85172-9_18

330 G. Kielanski and B. Van Houdt

and .NET Task Parallel Library [13]. Some early studies on work sharing and
stealing include [5,16,22]. In [5] the performance of work stealing and sharing
is compared for homogenous systems with exponential job sizes. Using similar
techniques the work in [5] was generalized to heterogeneous systems in [16]. The
key takeaway from these papers is that work stealing clearly outperforms work
sharing in system with high load. [22] focused on shared-memory systems and
assumes that migrated jobs have a higher service demand and migrating jobs
requires some time.

More recent work includes [8,14,15,21,23]. In [8] the authors analyse the sys-
tem consisting of several homogeneous clusters with exponential job sizes and
where half of the jobs are transferred when a probe is successful. A fair compari-
son between stealing and sharing strategies is given for homogeneous networks and
exponential job sizes in [14,15] and for non-exponential job sizes in [23]. Further,
the comparison in [15] is extended to heterogeneous networks in [21]. The key dif-
ference with the current paper is that in these prior works jobs are considered to
be sequential and are always executed as a whole on a single server.

In this paper, we consider a system of homogeneous servers that uses a ran-
domized work stealing policy. We consider a set of policies where if a server with
pending child jobs is probed by an idle server, some of its child jobs are transferred.
When a server is probed that does not have any pending child jobs, a pending par-
ent job is transferred instead (if available). The work presented in this paper is
closely related to [20], where two systems are considered: one system where parent
jobs can be stolen and the other system where child jobs can be stolen one at a time.
In the current paper we allow that several child jobs can be stolen at once and the
main objective is to provide insights on how to determine the number of child jobs
that should be transferred in such an event. When several child jobs can be stolen
at once, child jobs may be transferred several times before being executed and this
considerably complicates the analysis compared to [20]. In [20] we also introduced
a mean field model and showed that this mean field model has a unique fixed point
given by the steady state vector of a structured Markov chain. For the model con-
sidered in this paper a similar type of result can be established (albeit with more
effort). However, due to the page limitations, we decided to directly present the
structured Markov chain instead.

The main contributions of the paper are the following:

1. We introduce a Quasi-Birth-Death (QBD) Markov chain describing a single
server queueing system with negative arrivals that is used to approximate the
performance of the work stealing system. We present simulation results that
suggest that as the number of servers becomes large, the approximation error
tends to zero.

2. We prove that this QBD has a unique stationary distribution for which we
provide formulas for the waiting, service, mean waiting and mean service
time. These are the main technical results of the paper.

3. We compare the performance of several stealing strategies. Our main insight
is that the strategy of stealing half of the child jobs performs well for low
loads and/or high probe rates and stealing all child jobs is a good heuristic
when the load is high and/or the probe rate is low.

Analysis of Work Stealing Strategies 331

The rest of this paper is organized as follows. In Sect. 2 we describe the
system while the Quasi-Birth-Death (QBD) Markov chain is introduced in Sect. 3
and the response time distribution is analyzed in Sect. 4. In Sect. 5 we describe
the work stealing strategies considered and present the performance of these
strategies using numerical examples. Section 6 contains some concluding remarks
and possible future work. The QBD approximation is validated using simulation
in Appendix A.

2 System Description and Strategies

We consider a system with N homogeneous servers each with an infinite buffer to
store jobs. Parent jobs arrive in each server according to a local Poisson arrival
process with rate λ. Upon entering service a parent job spawns i ∈ {0, 1, . . . ,m},
with m ≥ 1, child jobs, the number of which follows a general distribution with
finite support pi (i.e., pi ≥ 0 for every i and

∑m
i=0 pi = 1). These child jobs are

stored locally and have priority over any parent jobs (either already present or
yet to arrive), while the spawning parent job continues service. Thus, when a
(parent or child) job completes service the server first checks to see whether it
has any waiting child jobs, if so it starts service on a child job. If there are no
child jobs present, service on a waiting parent job starts (if any are present).
We assume that parent and child jobs have exponentially distributed service
requirements with rates μ1 and μ2 respectively.

When a server is idle, it probes other servers at random at rate r > 0, where
r is a system parameter. Note that r determines the amount of communication
between the servers and increasing r should improve performance at the expense
of a higher communication overhead. When a server is probed (by an idle server)
and it has waiting (parent or child) jobs, we state that the probe is successful.
When a successful probe reaches a server without waiting child jobs, a parent job
is transferred to the idle server. Note that such a transferred parent job starts
service and spawns its child jobs at the new server.

When a successful probe reaches a server with pending/waiting child jobs,
several child jobs can be transferred at once. If the probed server is serving a
parent job and there are i child jobs in the buffer of the probed server, j ≤ i child
jobs are stolen with probability φi,j (i.e., for every i we have

∑i
j=1 φi,j = 1). On

the other hand if a child job is being processed by the probed server and there
are i child jobs waiting in the buffer of the probed server, j ≤ i child jobs are
stolen with probability ψi,j (i.e., for every i we have

∑i
j=1 ψi,j = 1). For ease of

notation we set φi,j = ψi,j = 0 if j > i. Probes and job transfers are assumed to
be instantaneous.

The main objective of this paper is to study how the probabilities φi,j and
ψi,j influence the response time of a job, where the response time is defined as
the time between the arrival of a parent job and the completion of the parent
and all its spawned child jobs. Given the above description, it is clear that we
get a Markov process if we keep track of the number of parent and child job in
each of the N servers. This Markov process however does not appear to have a
product form, making its analysis prohibitive.

332 G. Kielanski and B. Van Houdt

Instead we use an approximation method, the accuracy of which is inves-
tigated in Appendix A. The idea of the approximation exists in focusing on
a single server and assuming that the queue lengths at any other server are
independent and identically distributed as in this particular server. Within the
context of load balancing, this approach is known as the cavity method [4]. In
fact all the analytical models used in [5,8,14–16,20–23] can be regarded as cavity
method approximations. A common feature of such an approximation is that it
tends to become more accurate as the number of servers tends to infinity, as we
demonstrate in Appendix A for our model. The cavity method typically involves
iterating the so-called cavity map [4]. However, in our case the need for such
an iteration is avoided by deriving expressions for the rates at which child and
parent jobs are stolen.

3 Quasi-Birth-Death Markov Chain

In this section we introduce a Quasi-Birth-Death (QBD) Markov chain to
approximate the system from the viewpoint of a single server. Let λp(r)
denote the rate at which parent jobs are stolen when the server is idle. Let
λc,1(r), . . . , λc,m(r) denote respectively the rates at which 1, . . . ,m child jobs
are stolen. We provide formulas for these rates further on. The evolution of a
single server has the following characteristics, where the negative arrivals corre-
spond to steal events:

1. When the server is busy, arrivals of parent jobs occur according to a Poisson
process with rate λ. When the server is idle, parent jobs arrive at the rate
λ+λp(r), while a batch of i child jobs arrives at rate λc,i(r) for i = 1, . . . , m.

2. Upon entering service, a parent job spawns i ∈ {0, 1, . . . ,m},m ≥ 1, child
jobs with probability pi. Child jobs are stored locally.

3. Child jobs have priority over any parent jobs waiting in the queue and are
thus executed immediately after their parent job completes when executed
on the same server.

4. Parent and child jobs have exponentially distributed service requirements
with rates μ1 and μ2, respectively.

5. If there are parent jobs and no child jobs waiting in the buffer of the server
then a negative parent arrival occurs at the rate rq, where q = 1 − ρ is the
probability that a queue is idle (where ρ is defined in (1)).

6. If a parent job is in service and there are i ∈ {1, . . . , m} child jobs in the
buffer of the server, a batch of j negative child job arrivals occurs at the rate
rqφi,j , for all j ∈ {1, . . . , i}.

7. If a child job is in service and there are i ∈ {1, . . . , m − 1} child jobs pending
in the buffer of the server, a batch of j negative child job arrivals occurs at
the rate rqψi,j , for all j ∈ {1, . . . , i}.

Note that the load of the system can be expressed as

ρ = λ

(
1
μ1

+
∑m

n=1 npn

μ2

)

. (1)

Analysis of Work Stealing Strategies 333

Table 1. Transitions for the QBD in Sect. 3

From To Rate For

1 (0, 0, 0) → (0, j, 0) λc,j(r) j = 1, . . . , m,

2 (0, 0, 0) → (0, j, 1) (λ + λp(r))pj j = 0, 1, . . . , m,

3 (X, Y, Z) → (X + 1, Y, Z) λ X + Y + Z ≥ 1,

4 (X, Y, 1) → (X, Y, 0) μ1 X ≥ 0, Y ≥ 1 or X = 0, Y = 0,

5 (X, Y, 0) → (X, Y − 1, 0) μ2 X ≥ 0, Y ≥ 2 or X = 0, Y = 1,

6 (X, 1, 0) → (X − 1, j, 1) μ2pj X ≥ 1, j = 0, 1, . . . , m,

7 (X, 0, 1) → (X − 1, j, 1) μ1pj X ≥ 1, j = 0, 1, . . . , m,

8 (X, Y, Z) → (X − 1, Y, Z) rq X ≥ 1, Y + Z = 1,

9 (X, Y, 1) → (X, Y − j, 1) rqφY,j X ≥ 0, Y ≥ j, j = 1, . . . , m,

10 (X, Y, 0) → (X, Y − j, 0) rqψY −1,j X ≥ 0, Y ≥ j + 1, j = 1, . . . , m − 1

Denote by X ≥ 0 the number of parent jobs waiting, by Y ∈ {0, 1, . . . ,m} the
number of child jobs in the server (either in service or waiting), and by Z ∈ {0, 1}
whether a parent job is currently in service (Z = 1) or not (Z = 0). The possible
transitions of the QBD Markov chain are listed in Table 1, corresponding to: 1. a
batch of j child jobs arriving at an idle queue and the first child job proceeding
directly into service, 2. a parent job arriving at an idle queue and proceeding
directly into service, spawning j child jobs, 3. a parent arriving to a non-idle
queue, 4. completion of a parent in service, not succeeded by another parent
job, 5. child service completion, succeeded by either another child job or no job,
6. child service completion, succeeded by a parent job that enters service and
spawns j child jobs, 7. parent service completion, succeeded by a parent job that
enters service and spawns j child jobs, 8. negative parent job arrival, 9. a parent
is in service and a batch of negative child job arrivals occurs, 10. a child job is
in service and a batch of negative child job arrivals occurs.

The three dimensional process {Xt(r), Yt(r), Zt(r) : t ≥ 0} is an irreducible,
aperiodic Quasi-Birth-Death process. We state that the level � = ∗ when the
chain is in state (0, 0, 0), while for any state with X = � different from (0, 0, 0),
we state that the chain is in level � (for � ≥ 0). When the level � ≥ 0, the phase
of the QBD is two dimensional and given by (Y,Z). The 2m + 1 phases of level
� ≥ 0 are ordered such that the j-th phase corresponds to (Y,Z) = (j, 0), for
j = 1, . . . ,m and phase m + 1 + j to (Y,Z) = (j, 1) for j = 0, . . . ,m.

As explained below, the generator of the process is

Q(r) =

⎡

⎢
⎢
⎢
⎣

−λ0(r)
∑m

j=1 λc,j(r)ej + (λ + λp(r))α
μ B0(r) A1

A−1(r) A0(r) A1

.

⎤

⎥
⎥
⎥
⎦

with λ0(r) =
∑m

j=1 λc,j(r) + λ + λp(r), with ej a row vector with 1 in its
j-th entry and zeros elsewhere. The initial probability vector α records the

334 G. Kielanski and B. Van Houdt

distribution of child jobs upon a parent job entering service and is given by
α =

[
0′

m p0 p1 . . . pm

]
, where 0i is a column vector of zeros of length i. Indeed,

at rate λc,j(r) a batch of j child jobs arrives in an idle server, causing a jump
to level 0 and phase j, while at rate λ + λp(r) a parent job arrives that spawns
j child jobs with probability pj causing a jump to phase m + 1 + j of level 0.

Define

S(r) =
[
S00(r) 0
S10 S11(r)

]

,

where S00(r) is an m × m matrix and S11(r) is an (m + 1) × (m + 1) matrix,

S00(r) = rq

⎡

⎢
⎢
⎢
⎣

ψ1,1

...
. . .

ψm−1,m−1 . . . ψm−1,1

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

−μ2

μ2
. . .
.

μ2 −μ2

⎤

⎥
⎥
⎥
⎥
⎦

,

S10 =

⎡

⎢
⎢
⎢
⎣

0 . . .
μ1

μ1

. . .

⎤

⎥
⎥
⎥
⎦

, S11(r) = rq

⎡

⎢
⎢
⎢
⎣

φ1,1

...
. . .

φm,m . . . φm,1

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

−μ1

. . .
. . .

−μ1

⎤

⎥
⎥
⎥
⎥
⎦

.

The matrix A0(r) contains the possible transitions for which the level � > 0
remains unchanged, this is when child jobs are stolen, or when a waiting child
moves into service. Hence

A0(r) = S(r) − λI − rqI.

Note that even when there are no child jobs waiting, the rate rq appears on
the main diagonal due to the negative parent arrivals. When � = 0 there are
no parent jobs waiting and therefore the negative parent arrivals that occur in
phase 1 and m + 1 have no impact. This implies that

B0(r) = A0(r) + rqV0

= S(r) − λI − rq(I − V0),

where V0 = diag(
[
1 0′

m−1 1 0′
m

]
). The level � can only decrease by one due to a

service completion from a phase with no pending child jobs, that is, from phase
1 and m+1. To capture these events define μ =

[
μ2 0′

m−1 μ1 0′
m

]′. The level can
also decrease due to a negative parent arrival when � > 0. The matrix A−1(r)
records the transitions for which the level decreases and therefore equals

A−1(r) = μα + rqV0.

Finally, parent job arrivals always increase the level by one:

A1 = λI.

Analysis of Work Stealing Strategies 335

Denote by A(r) = A−1(r)+A0(r)+A1, the generator of the phase process, then

A(r) = S(r) + μα − rq(I − V0).

Define
π∗(r) = lim

t→∞ P [Xt(r) = 0, Yt(r) = 0, Zt(r) = 0],

and for � ≥ 0,

π�(r) = (π�,1,0(r), . . . π�,m,0(r), π�,0,1(r), . . . , π�,m,1(r))

where
π�,j,k(r) = lim

t→∞ P [Xt(r) = �, Yt(r) = j, Zt(r) = k].

Due to the QBD structure [17], we have

π0(r) = π∗(r)R0(r), (2)

where R0(r) is a row vector of size 2m + 1 and for � ≥ 1,

π�(r) = π0(r)R(r)�, (3)

where R(r) is a (2m+1)× (2m+1) matrix and by [11] the smallest nonnegative
solution to

A1 + R(r)A0(r) + R(r)2A−1(r) = 0.

Also, due to the balance equations with � = 0, we have

m∑

j=1

λc,j(r)ej + (λ + λp(r))α + R0(r)B0(r) + R0(r)R(r)A−1(r) = 0

and due to [11, Chapter 6]

A1G(r) = R(r)A−1(r),

where G(r) is the smallest nonnegative solution to

A−1(r) + A0(r)G(r) + A1G(r)2 = 0.

Combining the above yields the following expression:

R0(r) = −
⎛

⎝
m∑

j=1

λc,j(r)ej + (λ + λp(r))α

⎞

⎠ (B0(r) + λIG(r))−1, (4)

where B0(r) + λIG(r) is a subgenerator matrix and is therefore invertible. We
note that R(r) and G(r) are independent of λc,1(r), . . . , λc,m(r) and λp(r) and
can be computed easily using the toolbox presented in [1]. To fully characterize
the QBD in terms of λ, μ1, μ2 and the probabilities pi, φi,j and ψi,j , we need to
specify λc,1(r), . . . , λc,m(r) and λp(r).

336 G. Kielanski and B. Van Houdt

To determine these rates we use the following observation: as all parent and
child jobs are executed on some server, q = 1 − ρ should be the probability
that the QBD is in state (0, 0, 0). In this state batches of j child jobs arrive at
rate λc,j(r). Therefore qλc,j(r) should equal the parent arrival rate λ times the
expected number of times that a batch of j child jobs is stolen per parent job.
The main difficulty in using this equality lies in the fact that we must also take
into account that a child job can be stolen several times before it is executed.

To this end and as a preparation for Proposition 1, we define recursively
p0,i(r), i = 1, . . . ,m, as the probability that the QBD visits phase (i, 0) during
the service of a job and similarly p1,i′(r), i′ = 0, . . . ,m that phase (i′, 1) is visited.
By conditioning on whether we first have a service completion or steal event, we
have

p1,m(r) = pm,

p1,i(r) = pi +
rq

rq + μ1

∑

j>i

p1,j(r)φj,j−i,

for i ∈ {0, . . . ,m − 1}, and

p0,i(r) =
μ1

rq + μ1
p1,i(r) +

μ2

rq + μ2
p0,i+1(r) +

rq

rq + μ2

∑

j>i

p0,j(r)ψj−1,j−i,

for i ∈ {1, . . . ,m}, with p0,m+1 = 0. Note that

p1,0(r) + p0,1(r) = 1, (5)

as phase (1, 0) or (0, 1) is visited before any job completes service.
We also define pj

i (r), for 1 ≤ i ≤ j ≤ m, as the probability that the QBD
visits phase (i, 0) given that it is in the phase (j, 0) before a job completes service.
We have

pj
j(r) = 1,

pj
i (r) =

μ2

rq + μ2
pj

i+1(r) +
rq

rq + μ2

j∑

k=i+1

ψk−1,k−ip
j
k(r),

for i ∈ {1, . . . , j − 1}. Note that we have pj
1(r) = 1, for 1 ≤ j ≤ m, as the QBD

visits phase (0, 1) before completing service if it is in phase (0, j). We are now
in a position to define λc,i(r) recursively as:

λc,m(r) =
λ

q
p1,m(r)

rq

rq + μ1
φm,m

λc,i(r) =
λ

q

rq

rq + μ1

∑

j≥i

p1,j(r)φj,i +
λ

q

rq

rq + μ2

∑

j>i

p0,j(r)ψj−1,i

+
m∑

j=i+1

λc,j(r)
j∑

k=i+1

pj
k(r)ψk−1,i

rq

rq + μ2
(6)

Analysis of Work Stealing Strategies 337

for i ∈ {1, . . . , m − 1}. Note that p1,m(r)rqφm,m/(rq + μ1) indeed equals the
expected number of batches of size m that are stolen per parent job (as the job
must spawn m child jobs and these must be stolen as a batch before the parent
completes service). For i < m, the first two sums represent the expected number
of size i batches that are stolen from the original server, while the double sum
counts the expected number of such steals that occur on a server different from
the original server.

It remains to define λp(r), for this we demand that π∗(r) = q and that

π∗(r) +
∑

�≥0

π�(r)e = 1,

where e is a column vector of ones. Then from Eqs. (2) and (3),

q
(
1 + R0(r)(I − R(r))−1e

)
= 1, (7)

where the inverse of I − R(r) exists due to Proposition 1. Using (4) and (7) we
get:

λp(r) =
(1 − q) − q(

∑m
j=1 λc,j(r)ej + λα)w
qαw

, (8)

with w = −(B0(r)+λIG(r))−1(I −R(r))−1e. Note that λp(r) is well-defined for
q > 0, i.e. ρ < 1. This completes the description of the QBD Markov chain.

Proposition 1. The QBD process {Xt(r), Yt(r), Zt(r) : t ≥ 0} has a unique
stationary distribution for any r ≥ 0 if ρ < 1.

Proof. The positive recurrence of the QBD process only depends on the matrices
A−1(r), A0(r) and A1 [17]. These three matrices are the same three matrices
as those of the QBD characterizing the M/MAP/1 queue where the MAP ser-
vice process is characterized by (S0(r), S1(r)) with S0(r) = S(r) − rqI and
S1(r) = μα + rqV0. As such the QBD process is positive recurrent if and only
if the arrival rate λ is less than the service completion intensity of the MAP
(S0(r), S1(r)). This intensity equals θ(r)S1(r)e/θ(r)e, where the vector θ(r) is
such that θ(r)(S0(r) + S1(r)) = 0.

We note that S0(r) + S1(r) = A−1(r) + A0(r) + A1 = A(r) and define

θ
(r)
(0,1) =

1
μ2

p0,1(r),

θ
(r)
(0,i′) =

1
rq + μ2

p0,i′(r),

θ
(r)
(1,0) =

1
μ1

p1,0(r),

θ
(r)
(1,i) =

1
rq + μ1

p1,i(r),

338 G. Kielanski and B. Van Houdt

for i′ = 2, . . . ,m and for i = 1, . . . , m. Define v(r) = θ(r)A(r). Then, using (5),

v
(r)
i = pi−m−1 − p1,i−m−1(r) +

rq

rq + μ1

∑

j>i−m−1

p1,j(r)φj,j−i−m−1 = 0,

for i = m + 1, . . . , 2m + 1, and

v
(r)
i′ = −p0,i′(r) + 1[i < m]

μ2

rq + μ2
p0,i′+1(r)

+
rq

rq + μ2

∑

j>i

p0,j(r)ψj−1,j−i′ +
μ1

rq + μ1
p1,i′(r) = 0,

for i′ = 1, . . . ,m. Hence θ(r)A(r) = θ(r)(S0(r) + S1(r)) = 0. As

θ(r)S1(r)e
θ(r)e

=
1

θ(r)e

(
μ2 + rq

μ2
p0,1(r) +

μ1 + rq

μ1
p1,0(r)

)

≥ 1
θ(r)e

(p0,1(r) + p1,0(r)) =
1

θ(r)e
,

it suffices that λ < 1/θ(r)e for the chain to be positive recurrent. For r = 0 we
have p1,i(r) = pi and p0,i′ =

∑
j≥i′ pj , which implies that θ(0)e = ρ/λ. Therefore

λ < 1/θ(0)e is equivalent to demanding that ρ < 1. As θ(r)e is the mean time
between two service completions of the MAP process where the state is reset
according to the vector α, we have that θ(r)e decreases in r. This completes the
proof as ρ < 1 implies that λ < 1/θ(0)e ≤ 1/θ(r)e.

4 Response Time Distribution

We define T (r) as the response time of a job in a system with probe rate r. The
response time is defined as the length of the time interval between the arrival of
a parent job and the completion of this parent job and all of its spawned child
jobs. T (r) can be expressed as the sum of the waiting time W (r) and the service
time J(r). The waiting time is defined as the amount of time that the parent job
waits in the queue before its service starts. Clearly, the waiting and the service
time of a job are independent in our QBD model.

Theorem 1. The distribution of the waiting time is given by

P [W (r) > t] = (e′ ⊗ π0(I − R(r))−1)eWtvec〈I〉

with W = ((A0(r)+A1)′ ⊗I)+((A−1(r))′ ⊗R(r)) and where vec〈·〉 is the column
stacking operator. The mean waiting time is

E [W (r)] =
∫ ∞

0

P [W (r) > t] dt = (e′ ⊗ π0(I − R(r))−1)(−W)−1vec〈I〉.

Analysis of Work Stealing Strategies 339

Proof. We repeat the arguments of the proof of [20, Theorem 6.1]. Let
(N(k, t))j,j′ be the probability that there are exactly k transitions that decrease
the level by one in (0, t) and the phase at time t equals j′ given that the level
never decreased below 1 and the phase was j at time 0. Due to the PASTA
property we have

P [W (r) > t] =
∞∑

n=1

πn−1

n−1∑

k=0

N(k, t)e,

as (πn−1)j is the probability that a tagged parent job is the nth parent job
waiting in the queue immediately after it arrived and the service phase equals j.
In such case there can be at most n − 1 events that decrease the level otherwise
W (r) < t. Thus,

P [W (r) > t] =
∞∑

k=0

π0

∞∑

n=k+1

R(r)n−1N(k, t)e

= π0(I − R(r))−1
∞∑

k=0

R(r)kN(k, t)e.

Using the same arguments as in [18] or [10] one finds that

vec

〈 ∞∑

k=0

R(r)kN(k, t)

〉

= eWtvec 〈I〉 .

The proof is completed by noting that vec〈ABC〉 = (C ′ ⊗ A)vec〈B〉.
The service time distribution J(r) is more difficult to compute compared to

the model in [20]. This is due to the fact that child jobs can be stolen multiple
times before finally going into service.

We define J0,k(r) as the distribution of the time that it takes for k child
jobs in a server to be completed (k = 1, . . . , m). Similarly, we define J1,k(r) as
the distribution of the time that it takes for a parent job and k child jobs in a
server to be completed (k = 0, . . . , m). The service time distribution can then
be expressed as

P [J(r) ≤ t] =
m∑

k=0

pkP [J1,k(r) ≤ t].

Clearly, P [J0,1(r) ≤ t] = 1 − e−μ2t and P [J1,0(r) ≤ t] = 1 − e−μ1t . For k > 1,
we can condition on the first service completion or steal event to find that

P [J0,k(r) ≤ t] =
∫ t

0

(

rq
k−1∑

j=1

ψk−1,jP [J0,k−j(r) ≤ t − s]P [J0,j(r) ≤ t − s]

+ μ2P [J0,k−1(r) ≤ t − s]

)

e−(rq+μ2)sds, (9)

340 G. Kielanski and B. Van Houdt

and for k > 0 this yields

P [J1,k(r) ≤ t] =
∫ t

0

(

rq

k∑

j=1

φk,jP [J1,k−j(r) ≤ t − s]P [J0,j(r) ≤ t − s]

+ μ1P [J0,k(r) ≤ t − s]

)

e−(rq+μ1)sds. (10)

While the above formulas recursively determine the service time, they are less
suited for numerical computations, we therefore also develop a recursive scheme
for the mean service time.

Consider a set of s servers, where the k-th server contains ik child jobs, where
s ≥ 1, 0 ≤ i1 + · · · + is ≤ m and ik ≥ 0 for k = 1, . . . , s. Let Ei1,...,is(r) be the
expected time until all these child jobs have completed service. Define similarly
Ep

i1,...,is
(r), except that the first server contains i1 child jobs and a parent job

(that is in service).
By definition, we can drop ik’s that are zero (expect i1 in Ep

i1,...,is
(r)) and

can permute the indices of Ei1,...,is(r) and all indices except the first one of
Ep

i1,...,is
(r). We have for s ≥ 1

E1′
s
(r) =

1
μ2

s∑

k=1

1
k

. (11)

We now define recursively, assuming ik ≥ 1 for k = 1, . . . , s:

Ei1,...,is(r) =
1

sμ2 + rq
∑s

k=1 1[ik ≥ 2]

(

1 + μ2

s∑

k=1

Ei1,...,ik−1,ik−1,ik+1,...,is(r)

+ rq

s∑

k=1

ik−1∑

n=1

ψik−1,nEi1,...,ik−1,ik−n,ik+1,...,is,n(r)

)

.

We have Ep
0 (r) = 1/μ1 and we define recursively for s ≥ 1

Ep
1′
s
(r) =

1
μ1 + (s − 1)μ2

(

1 + μ1E1′
s
(r) + (s − 1)μ2E

p
1′
s−1

(r)

)

=
1

μ1 + (s − 1)μ2

(

1 +
μ1

μ2

s−1∑

k=1

1
k

+ (s − 1)μ2E
p
1′
s−1

(r)

)

,

where we have used (11) in the last equality. Finally, we define recursively, assum-
ing ik ≥ 1 for k = 2, . . . , s:

Ep
i1,...,is

(r) =
1

μ1 + (s − 1)μ2 + rq1[i1 ≥ 1] + rq
∑s

k=2 1[ik ≥ 2]

(

1

+ μ1Ei1,...,is(r) + rq

i1∑

n=1

φi1,nEp
i1−n,i2,...,is,n(r)

Analysis of Work Stealing Strategies 341

+ μ2

s∑

k=2

Ep
i1,...,ik−1,ik−1,ik+1,...,is

(r)

+ rq

s∑

k=2

ik−1∑

n=1

ψik−1,nEp
i1,...,ik−1,ik−n,ik+1,...,is,n(r)

)

.

The expectation E[J(r)] can now be computed as:

E[J(r)] =
m∑

k=0

pkEp
k(r).

Note that when r → ∞, children spawned by a parent job get immediately
distributed amongst empty servers. Therefore, as r → ∞, we get

E[J(r)] →
m∑

k=0

pkEp
0,1′

k
(r). (12)

5 Numerical Experiments

In this section we perform numerical experiments to compare the performance
of several stealing strategies. Due to the lack of space, we present only a subset
of the experiments performed. The main conclusions in these additional exper-
iments (e.g., different μ2 values) are in agreement with the results presented.
Define Ψ as the matrix where [Ψ]i,j = ψi,j and define Φ similarly. Note that
a strategy is fully characterized by Ψ and Φ. The strategies considered are as
follows:

1. Steal one: The strategy of always stealing one child job, that is φi,1 = ψi,1 =
1 for every i.

2. Steal half: The strategy of always stealing half of the pending child jobs. If
n, the number of pending child jobs, is uneven, there is a fifty percent chance
that �n/2� child jobs get stolen and n/2� jobs otherwise;

3. Steal all: The strategy of stealing all of the pending child jobs, that is φi,i =
ψi,i = 1 for every i.

Note that these strategies do not rely on any knowledge on the (mean) job sizes
or system load.

We compare the mean response time for these strategies with the optimal
monotone deterministic strategy. A strategy is called deterministic if for every
i ≤ m there exists a j ≤ i such that φi,j = 1 and a k ≤ i such that ψi,k = 1.
It is called monotone deterministic (MD) if in addition having ψi,j = 1 and
ψi′,j′ = 1 with i < i′ implies that j ≤ j′ for all i, j, i′, j′ and the same holds
for Φ. Experiments not included in the paper suggest that the optimal strategy,
that is, the optimal Ψ and Φ matrices, corresponds to an MD strategy. The
optimal MD strategy is determined using brute-force and its mean response
time is denoted as TMD(r). Let p = [p0, p1, . . . , pm].

342 G. Kielanski and B. Van Houdt

0 10 20 30 40 50
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

0 10 20 30 40 50
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

0 10 20 30 40 50
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

Fig. 1. Example 1 with ρ = 0.15 (left), ρ = 0.5 (mid) and ρ = 0.85 (right).

Example 1. In Fig. 1 we examine the effect of increasing the steal rate on how
well the three strategies perform compared to the optimal MD strategy. More
specifically, we plot the mean response time E[T (r)] of our three policies nor-
malized by the mean response time E[TMD(r)] of the optimal MD policy. We
do this for ρ ∈ {0.15, 0.5, 0.85}, μ1 = 1, μ2 = 2,p = 1′

5/5 and r ∈ [0.05, 50]. We
note that there exists no universal best strategy. The strategy of stealing one job
performs the worst. This is due to the fact that relatively very little work of the
pending jobs is transferred. When μ2 < μ1, examples can be constructed where
the strategy of stealing a single child outperforms the others. For moderately
high values of r or for low loads the strategy where half of the child jobs get
stolen is close to the optimal MD strategy. This is intuitively clear as in such case
there is a small chance that there are pending parent jobs in a queue, so stealing
half of the child jobs more or less balances the work. In fact, it seems that as r
becomes large enough the optimal strategy for systems where μ1 ≤ μ2 is stealing
�i/2� + 1 out of i children. For low values of r the strategy of stealing all child
jobs performs well, as there is a fair chance that there are pending parents in
the queue and it can take a long time until the server is probed again.

For ρ = 0.85 the matrices Ψ,Φ of the optimal MD strategy change as follows:
for low values of r the best strategy is the one of stealing all jobs, that is Ψ and
Φ are identity matrices of size m−1 and m respectively. Then, at approximately
r = 7.6, ψ3,2 becomes one. Around r = 13.5, the φ4,3 becomes one and finally
φ3,2 = 1 around r = 20.35. For ρ = 0.5 we see a similar evolution: for low values
of r the best strategy is stealing all child jobs. Then, at approximately r = 0.85,
ψ3,2 becomes one. Around r = 1.55, the φ4,3 becomes one and finally φ3,2 = 1
around r = 3.35.

The number of MD strategies grows quickly in function of m (in fact one
can prove that for a given m there exist C(m)C(m + 1) such strategies, where
C(k) denotes the k-th Catalan number). This implies that it can take a long
time to determine the optimal MD strategy for systems with larger m values.

Analysis of Work Stealing Strategies 343

We therefore introduce a smaller family of strategies and compare our three
strategies with the optimal strategy in this smaller family to limit the brute-
force search. We call a strategy bounded monotone deterministic (BMD) if it
is monotone deterministic and ψi,j = 1 implies ψi+1,j = 1 or ψi+1,j+1 = 1
for every i and the same holds for Φ. Note that there are 2m−22m−1 = 22m−3

BMD strategies for a given m ≥ 2. The optimal BMD strategy is determined
using brute-force and we denote its mean response time by TBMD(r). The mean
response time of the optimal BMD strategy may exceed that of the optimal MD
strategy as indicated in the next example.

0 10 20 30 40 50
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

0 10 20 30 40 50
1

1.02

1.04

1.06

1.08

1.1

1.12

0 10 20 30 40 50
1

1.05

1.1

1.15

1.2

1.25

1.3

Fig. 2. Example 2 with ρ = 0.15 (left), ρ = 0.5 (mid) and ρ = 0.85 (right).

Example 2. In Fig. 2 we examine the effect of increasing the steal rate on
how well the three strategies perform compared to the optimal BMD strat-
egy when m = 6 instead of m = 4 as in the previous example. We do this for
ρ ∈ {0.15, 0.5, 0.85}, μ1 = 1, μ2 = 2,p = 1′

7/7 and r ∈ [0.05, 50]. It is clear that
the main insights are similar as in the m = 4 case, except that more substantial
gains can be achieved by optimizing Ψ and Φ. We also performed some experi-
ments to compare the performance of the optimal MD and BMD strategies and
noted that for r ∈ [6.9, 7.4], the optimal MD strategy has ψ3,2 = 1 and ψ4,4 = 1,
which is not BMD. The reduction in the mean response time was however very
limited.

Example 3. In Fig. 3 we illustrate the effect of increasing the load ρ on the mean
response time. We do this for ρ ∈ [0.05, 0.95], μ1 = 1, μ2 = 2,m = 4,p = 1′

5/5
and r ∈ {0.1, 1, 10}. These result confirm that stealing all is best when the load
is sufficiently high, while stealing half of the child jobs is good for systems with
a limited load.

344 G. Kielanski and B. Van Houdt

0 0.2 0.4 0.6 0.8 1
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

0 0.2 0.4 0.6 0.8 1
1

1.05

1.1

1.15

1.2

0 0.2 0.4 0.6 0.8 1
1

1.05

1.1

1.15

1.2

1.25

Fig. 3. Example 3 with r = 0.1 (left), r = 1 (mid) and r = 10 (right).

6 Conclusions and Future Work

We introduced a model for randomized work stealing in multithreaded computa-
tions in large systems, where parent jobs spawn child jobs and where any number
of existing child jobs can be stolen from a queue per probe. We defined a QBD
Markov chain that approximates the behaviour of the system when the number
of servers tends to infinity. We showed the existence and uniqueness of a sta-
tionary distribution for this QBD, provided formulas for the waiting and service
times and provided a practical way of calculating expected service times. These
are the main technical contributions of the paper. Using numerical experiments
we examined the effect of changing the load ρ and the steal rate r. We concluded
that the stealing policy where the half of child jobs gets stolen every time is in
general a good stealing policy for higher values of r, while the strategy of stealing
all children performs best for low values of r. We concluded further that stealing
only one child performs the worst in most of the cases. Finally, using simulation,
we validated the accuracy of the QBD model.

Possible generalizations include stealing multiple parent jobs (up to some
finite amount) per probe and systems where offspring of a job can spawn further
offspring (multigenerational multithreading). One can also attempt to relax the
exponential service time requirements for child and/or parent jobs. This may be
challenging as this complicates several aspects of the model such as determining
the rates λc,j(r).

A Model Validation

Based on numerical experiments in the Sect. 5, we see that stealing all or half
of the children are good stealing policies: stealing all works best for low values
of r, while stealing half of the children works well for higher values. Therefore,
we validate the mean field model for the policy of stealing all or half of the
children. We always start the simulations from an empty system and simulate
the behaviour for T = 105 with a warm up period of 33% of T .

Analysis of Work Stealing Strategies 345

In Fig. 4 we focus on the case where all children are stolen. The 95% confi-
dence intervals were computed based on 5 runs with N = 500 servers, m = 4,
μ1 = 1, μ2 = 2, ρ = 0.75, p = (1, 1, 1, 1, 1)/5 and r ∈ {1, 5}. We see that there is
an excellent match between the simulated waiting and service times and those
of the QBD model (calculated using Sect. 4).

0 5 10 15 20 25 30
10-5

10-4

10-3

10-2

10-1

100

Fig. 4. Waiting and response times from the QBD (blue dots) and simulations (red
dashed line) with confidence intervals for 5 runs. (Color figure online)

In Table 2 we compare the relative error of the simulated mean response
time, based on 20 runs, to the one obtained from Section 4. We do this for
μ1 = 1, μ2 = 2, p = (1, 1, 1, 1, 1)/5, ρ ∈ {0.75, 0.85}, r ∈ {1, 10} and N ∈
{250, 500, 1000, 2000, 4000}.
The relative error in all cases is below 1.5% and tends to increase with the steal
rate r. Further, the relative error seems roughly to halve when doubling N , which
is in agreement with the results in [7].

Next we validate the model for the strategy of stealing half of the children
using the same simulation settings. In Fig. 5, we see that there is an excellent
match between the simulated waiting and service times and those of the QBD
model. Similarly to Table 2, we see in Table 3 that the relative error is below
1.5% in all cases, tends to increase with the steal rate r and seems about halved
when doubling N .

346 G. Kielanski and B. Van Houdt

Table 2. Relative error of simulation results for E[T (r)], based on 20 runs

N ρ = 0.75 ρ = 0.85

sim. ± conf. rel.err.% sim. ± conf. rel.err.%

r = 1

250 3.7650 ± 1.08e−02 0.2986 5.5121 ± 3.08e−02 0.3386

500 3.7588 ± 6.98e−03 0.1334 5.5053 ± 1.62e−02 0.2157

1000 3.7568 ± 6.16e−03 0.0818 5.4980 ± 1.60e−02 0.0821

2000 3.7548 ± 3.28e−03 0.0283 5.4945 ± 8.76e−03 0.0197

4000 3.7541 ± 2.53e−03 0.0091 5.4953 ± 6.96e−03 0.0344

QBD 3.7537 5.4935

r = 10

250 1.7766 ± 2.11e−03 0.7247 2.1371 ± 6.32e−03 1.2816

500 1.7701 ± 1.53e−03 0.3553 2.1232 ± 3.96e−03 0.6249

1000 1.7671 ± 8.21e−04 0.1894 2.1165 ± 2.50e−03 0.3090

2000 1.7655 ± 7.12e−04 0.0957 2.1131 ± 1.88e−03 0.1454

4000 1.7646 ± 7.18e−04 0.0437 2.1119 ± 8.00e−04 0.0878

QBD 1.7638 2.1100

0 5 10 15 20 25 30
10-5

10-4

10-3

10-2

10-1

100

Fig. 5. Waiting and response times from the QBD (blue dots) and simulations (red
dashed line) with confidence intervals for 5 runs. (Color figure online)

Analysis of Work Stealing Strategies 347

Table 3. Relative error of simulation results for E[T (r)], based on 20 runs

N ρ = 0.75 ρ = 0.85

sim. ± conf. rel.err.% sim. ± conf. rel.err.%

r = 1

250 3.9305 ± 1.45e−02 0.2392 5.8435 ± 2.91e−02 0.2830

500 3.9261 ± 1.26e−02 0.1271 5.8331 ± 1.68e−02 0.1045

1000 3.9231 ± 5.55e−03 0.0506 5.8288 ± 1.04e−02 0.0307

2000 3.9225 ± 4.63e−03 0.0353 5.8281 ± 1.33e−02 0.0187

4000 3.9219 ± 2.71e−03 0.0200 5.8279 ± 9.34e−03 0.0153

QBD 3.9211 5.8270

r = 10

250 1.7822 ± 2.34e−03 0.7748 2.1782 ± 5.92e−03 1.3017

500 1.7752 ± 2.00e−03 0.3790 2.1642 ± 3.21e−03 0.6506

1000 1.7720 ± 1.25e−03 0.1965 2.1576 ± 2.82e−03 0.3437

2000 1.7703 ± 8.84e−04 0.1007 2.1537 ± 1.82e−03 0.1623

4000 1.7695 ± 3.83e−04 0.0567 2.1520 ± 1.65e−03 0.0832

QBD 1.7685 2.1502

References

1. Bini, D., Meini, B., Steffé, S., Van Houdt, B.: Structured Markov chains solver:
software tools. In: Proceeding From the 2006 Workshop on Tools for Solving Struc-
tured Markov Chains, pp. 1–14 (2006)

2. Blumofe, R., Leiserson, C.: Scheduling multithreaded computations by work steal-
ing. J. ACM (JACM) 46(5), 720–748 (1999)

3. Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K., Zhou, Y.: Cilk: an
efficient multithreaded runtime system. J. Parallel Distrib. Comput. 37(1), 55–69
(1996)

4. Bramson, M., Lu, Y., Prabhakar, B.: Randomized load balancing with general ser-
vice time distributions. In: ACM SIGMETRICS 2010, pp. 275–286 (2010). https://
doi.org/10.1145/1811039.1811071, http://doi.acm.org/10.1145/1811039.1811071

5. Eager, D., Lazowska, E., Zahorjan, J.: A comparison of receiver-initiated and
sender-initiated adaptive load sharing. Perform. Eval. 6(1), 53–68 (1986)

6. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 multi-
threaded language. In: Proceedings of the SIGPLAN 1998 Conference on Program
Language Design and Implementation, pp. 212–223 (1998)

7. Gast, N.: Expected values estimated via mean-field approximation are 1/n-
accurate. In: Proceedings of the ACM on Measurement and Analysis of Computing
Systems, vol. 1, no. 1, p. 17 (2017)

8. Gast, N., Gaujal, B.: A mean field model of work stealing in large-scale systems.
ACM SIGMETRICS Perform. Eval. Rev. 38(1), 13–24 (2010)

9. Gautier, T., Besseron, X., Pigeon, L.: Kaapi: A thread scheduling runtime system
for data flow computations on cluster of multi-processors. In: Proceedings of the
2007 International Workshop on Parallel Symbolic Computation, pp. 15–23 (2007)

https://doi.org/10.1145/1811039.1811071
https://doi.org/10.1145/1811039.1811071
http://doi.acm.org/10.1145/1811039.1811071

348 G. Kielanski and B. Van Houdt

10. Horváth, G., Van Houdt, B., Telek, M.: Commuting matrices in the queue length
and sojourn time analysis of map/map/1 queues. Stoch. Model. 30(4), 554–575
(2014)

11. Latouche, G., Ramaswami, V.: Introduction to matrix analytic methods in stochas-
tic modeling, vol. 5. SIAM (1999)

12. Lea, D.: A java fork/join framework. In: Proceedings of the ACM 2000 Conference
on Java Grande, JAVA 2000, New York, NY, USA, pp. 36–43. Association for
Computing Machinery (2000). https://doi.org/10.1145/337449.337465

13. Leijen, D., Schulte, W., Burckhardt, S.: The design of a task parallel library. In:
Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Pro-
gramming Systems Languages and Applications. OOPSLA 2009, New York, NY,
USA, pp. 227–242. Association for Computing Machinery (2009). https://doi.org/
10.1145/1640089.1640106

14. Minnebo, W., Hellemans, T., Van Houdt, B.: On a class of push and pull strategies
with single migrations and limited probe rate. Perform. Eval. 113, 42–67 (2017)

15. Minnebo, W., Van Houdt, B.: A fair comparison of pull and push strategies in
large distributed networks. IEEE/ACM Trans. Networking (TON) 22(3), 996–1006
(2014)

16. Mirchandaney, R., Towsley, D., Stankovic, J.: Adaptive load sharing in heteroge-
neous distributed systems. J. Parallel Distrib. Comput. 9(4), 331–346 (1990)

17. Neuts, M.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic App-
roach. John Hopkins University Press, Baltimore (1981)

18. Ozawa, T.: Sojourn time distributions in the queue defined by a general QBD
process. Queue. Syst. Appl. 53(4), 203–211 (2006)

19. Robison, A., Voss, M., Kukanov, A.: Optimization via reflection on work steal-
ing in TBB. In: 2008 IEEE International Symposium on Parallel and Distributed
Processing, pp. 1–8. IEEE (2008)

20. Sonenberg, B., Kielanski, G., Van Houdt, B.: Performance analysis of work stealing
in large scale multithreaded computing. ACM ToMPECS (2021, to appear)

21. Spilbeeck, I.V., Houdt, B.V.: Performance of rate-based pull and push strategies
in heterogeneous networks. Perform. Eval. 91, 2–15 (2015)

22. Squillante, M., Nelson, R.: Analysis of task migration in shared-memory multi-
processor scheduling. SIGMETRICS Perform. Eval. Rev. 19(1), 143–155 (1991).
http://doi.acm.org/10.1145/107972.107987

23. Van Houdt, B.: Randomized work stealing versus sharing in large-scale systems
with non-exponential job sizes. IEEE/ACM Trans. Networking 27, 2137–2149
(2019)

24. Wirth, N.: Tasks versus threads: an alternative multiprocessing paradigm. Software
Concepts Tools 17, 6–12 (1996)

https://doi.org/10.1145/337449.337465
https://doi.org/10.1145/1640089.1640106
https://doi.org/10.1145/1640089.1640106
http://doi.acm.org/10.1145/107972.107987

Abstractions and Aggregations

Abstraction-Guided Truncations
for Stationary Distributions of Markov

Population Models

Michael Backenköhler1(B), Luca Bortolussi2,3, Gerrit Großmann1,
and Verena Wolf1,3

1 Saarbrücken Graduate School of Computer Science, Saarland University,
Saarland Informatics Campus E1 3, Saarbrücken, Germany

michael.backenkoehler@uni-saarland.de
2 University of Trieste, Trieste, Italy

3 Saarland University, Saarland Informatics Campus E1 3, Saarbrücken, Germany

Abstract. To understand the long-run behavior of Markov population
models, the computation of the stationary distribution is often a cru-
cial part. We propose a truncation-based approximation that employs a
state-space lumping scheme, aggregating states in a grid structure. The
resulting approximate stationary distribution is used to iteratively refine
relevant and truncate irrelevant parts of the state-space. This way, the
algorithm learns a well-justified finite-state projection tailored to the sta-
tionary behavior. We demonstrate the method’s applicability to a wide
range of non-linear problems with complex stationary behaviors.

Keywords: Long-run behavior · State-space aggregation · Lumping ·
Truncation

1 Introduction

In many areas of science, stochastic models of interacting populations can
describe systems in which the discrete population sizes evolve stochastically in
continuous time. Such problems naturally occur in a wide range of areas such
as chemistry [16], systems biology [42,45], epidemiology [35] as well as queuing
systems [9] and finance [37].

Interactions between agents, commonly referred to as reactions, happen
at exponentially distributed random times. Their rate depends on the cur-
rent system state, i.e. the population sizes. This results in a continuous-time
Markov chain semantics [4]. An important part of the analysis of such models
concerns their long-run behavior. Given an ergodic underlying Markov chain,
the chain’s stationary distribution characterizes this behavior. For some spe-
cial model classes, such as zero-deficiency networks [3], analytical solutions for
the stationary distribution are known. However, most models require numerical
approaches, often based on some form of approximation to guarantee tractability.
c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 351–371, 2021.
https://doi.org/10.1007/978-3-030-85172-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-85172-9_19

352 M. Backenköhler et al.

Those approaches can be based on stochastic simulation [16] (which for steady-
state analysis tends to be slow and inaccurate) or moment-bounds via math-
ematical programming [23]. Here, we draw on numerical approaches based on
state-space truncation, which represent a viable option to approximate station-
ary distributions [24]. Truncation-based approaches have the benefit of describ-
ing the complete dynamics within a finite subset of the typically very large or
infinite state-space. As such, they enable the approximation of complex distri-
butions that are not well-described by low-order moments.

The main step in the computation of such an approximation is the identifica-
tion of a suitable truncation, i.e. a subset of the state-space encompassing most
of the stationary probability mass. Existing methods typically rely on Foster-
Lyapunov drift conditions to define such subsets [12]. While these truncations
come with bounds on the contained stationary probability mass, they typically
are far larger than necessary. The truncation is usually strongly constrained
by the form of the chosen Lyapunov function [12,17]. Optimizing over possible
functions to identify efficient truncations is technically challenging and, to our
knowledge, has not been demonstrated for general reaction networks [34].

In this work, we address the identification of suitable truncations by using an
aggregation-refinement scheme. Initially, a Lyapunov analysis yields a set contain-
ing at least 1 − ε of the stationary probability mass. On this subset of the state-
space, we apply an aggregation scheme that groups together states in hypercube
macro-states. Throughout each of these macro-states, we assume a uniform distri-
bution among its constituent micro-states. This allows us to roughly analyze large
portions of the state-space with exponentially fewer variables. We then iteratively
truncate and refine the approximation based on the stationary distribution of this
aggregated Markov chain. We keep only the most relevant macro-states and con-
tinue this scheme until the macro-states contain a single original state. In this way,
we arrive at an effective truncation to compute an approximation of the stationary
distribution.

We investigate the approximation results on case studies with known station-
ary distributions and complex models with intricate stationary distributions. We
evaluate the truncation quality by assessing the stationary probability mass cap-
tured. To this end, we use analytical solutions and bounds given by a Lyapunov
analysis. Further, we explore the control of the truncation size through the trun-
cation parameter. Finally, we demonstrate the method on the p53 oscillator
model exhibiting a complex stationary distribution.

The rest of the paper is organized as follows: Sect. 2 discusses related work,
Sect. 3 introduces background material, Sect. 4 is devoted to the description of
our method, Sect. 5 presents an experimental validation, and finally Sect. 6 con-
tains a final discussion.

2 Related Work

For some specific models, analytical solutions for the stationary distribution
have been found [26,29]. For the class of zero-deficiency networks, the stationary

Abstraction-Guided Truncations for Stationary Distributions of MPMs 353

distribution is known to have a Poisson product form [2]. Monomolecular reaction
networks can be solved explicitly, as well [21].

The analysis of countably infinite-sized state-spaces is often handled by pre-
defined truncations [27]. Sophisticated state-space truncations for the (uncon-
ditioned) forward analysis have been developed that give lower bounds. They
typically provide a trade-off between computational load and tightness of the
bound [5,20,28,33,36]. Such methods cannot be directly applied to the estima-
tion of stationary distributions because the approximation usually introduces a
sink-state.

Truncations for stationary distributions often involve re-direction schemes
for transitions leaving and entering the subset. A comprehensive survey of such
state-space truncation methods can be found in Kuntz et al. [25]. A popular
method of identifying truncations is the construction of a suitable Lyapunov
function. Beyond their use for establishing ergodicity [12,17,30], these functions
can be used to obtain truncations, guaranteed to contain a certain amount of
stationary probability mass [12]. Using Lyapunov functions for the construction
of truncations often leads to very conservative sets [34]. Different approaches
have been employed to find truncations: In Gupta et al. [18] SSA estimates are
used to set up an increasing family of truncations.

Apart from approaches based on state-space truncations, moment-based
approaches have been particularly popular recently [13,15,23,38]. Such
approaches are based on the fact that particular matrices of distributional
moments such as mean and variance are positive semi-definite. Along with lin-
ear constraints stemming from the Kolmogorov equations [7], a semi-definite
program can be formulated and solved using existing tools. While this method
is suited to compute bounds on both moments and subsets of the state-space, its
application is limited, due to numerical issues inherent in the formulation [13].

An approach where quantities are only described in terms of their magnitude
has been proposed by Ceska and Kret́ınský [11]. This allows for an efficient
qualitative analysis of both dynamic and transient behavior.

An aggregation scheme similar to the one used here has been previously pro-
posed in [6] to analyze the bridging problem on Markov population models. This
is the problem of analyzing process dynamics under both initial and terminal
constraints.

Aggregation-based numerical methods for computing the stationary distribu-
tion of discrete or continuous-time Markov chains have been studied in previous
work. Popular approaches rely on an alternation of aggregation and disaggre-
gation of the state-space [39,41]. In the case of stiff chains, such aggregations
are typically based on a separation of time-scales [10]. However, these methods
have been developed for finite chains with arbitrary structure and are motivated
by numerical issues of standard methods such as the power method or Jacobi
iteration [41]. They do not consider a truncation of irrelevant states, while here
our aggregation approach is used to determine the most relevant states under
stationary conditions in large or infinite chains with population structure.

354 M. Backenköhler et al.

3 Preliminaries

3.1 Markov Population Models

A Markov population model (MPM) describes the stochastic interactions among
agents of distinct types in a well-stirred system. This assumes that all agents are
equally distributed in space, which allows us to keep track only of the overall
copy number of agents for each type. Therefore the state-space is S ⊆ N

nS

where nS denotes the number of agent types or populations. Interactions between
agents are expressed as reactions. These reactions have associated gains and
losses of agents, given by non-negative integer vectors v−

j and v+
j for reaction j,

respectively. The overall change by a reaction is given by the vector vj = v+
j −v−

j .
A reaction between agents of types S1, . . . , SnS

is specified in the following form:

nS∑

�=1

v−
j�S�

αj(x)−−−→
nS∑

�=1

v+
j�S� . (1)

The propensity function αj gives the rate of the exponentially distributed firing
time of the reaction as a function of the current system state x ∈ S. In population
models, mass-action propensities are most common. In this case the firing rate
is given by the product of the number of reactant combinations in x and a rate
constant cj , i.e.

αj(x) := cj

nS∏

�=1

(
x�

v−
j�

)
. (2)

In this case, we give the rate constant in (1) instead of the function αj . For
a given set of nR reactions, we define a stochastic process {Xt}t≥0 describing
the evolution of the population sizes over time t. Due to the assumption of
exponentially distributed firing times1, X is a continuous-time Markov chain
(CTMC) on S with infinitesimal generator matrix Q, where the entries of Q are

Qx,y =

{∑
j:x+vj=y αj(x) , if x �= y,

−∑nR

j=1 αj(x) , otherwise.
(3)

The probability distribution over time is given by an initial value problem. Given
an initial state x0, the distribution2

π(xi, t) = Pr(Xt = xi | X0 = x0), t ≥ 0 (4)

evolves according to the Kolmogorov forward equation

d

dt
π(t) = π(t)Q , (5)

1 Note that in addition mild regularity assumptions are necessary for the existence of
a unique CTMC X, such as non-explosiveness [4]. These assumptions are typically
valid for realistic reaction networks.

2 In the sequel, we assume an enumeration of all states in S. We simply write xi for
the state with index i and drop this notation for entries of a state x.

Abstraction-Guided Truncations for Stationary Distributions of MPMs 355

where π(t) is an arbitrary vectorization (π(x1, t), π(x2, t), . . . , π(x|S|, t)) of the
states.

Example. Consider a birth-death process as a simple example. This model is used
to describe a wide variety of phenomena and often constitutes a sub-module of
larger models. For example, it represents an M/M/1 queue with service rates
being linearly dependent on the queue length. Note that even for this simple
model, the state-space is countably infinite.

Model 1 (Birth-Death Process). The model consists of exponentially dis-
tributed arrivals and service times proportional to queue length. It can be
expressed using two mass-action reactions:

∅
μ−→ S and S

γ−→ ∅ .

The initial condition X0 = 0 holds with probability one.

3.2 Stationary Distribution

Assuming ergodicity of the underlying chain, a stationary distribution π∞ is an
invariant distribution, namely a fixed point of the Kolmogorov forward equation
(5). Let π∞ be the vector description of a stationary distribution. It then satisfies

0 = π∞Q and 1 =
∑

x∈S
π∞(x) (6)

as a fixed point of the Kolmogorov equation (5). Stationary distributions are
connected to the long-run behavior of an MPM [12], as the system’s distribu-
tion will converge to the (unique) stationary distribution. The connection of the
stationary distribution to the long-run behavior becomes clear when considering
the ergodic theorem. For some A ⊆ S,

lim
T→∞

1
T

∫ T

0

1A(Xt) dt =
∑

x∈A

π∞(x) . (7)

Thus, the mean occupation time for set A over infinite trajectories is the sta-
tionary measure for A. Equation (7) shows that we can assess long-run behavior
using the stationary distribution and vice-versa.

Example. Returning to the example of Model 1 it is obvious that the state-space
is irreducible. Further, we can easily show, that the stationary distribution is
Poissonian with rate μ/γ:

π∞(x) =
(μ/γ)x exp(−μ/γ)

x!
.

For simplicity, we assume throughout that the state-space is composed of
a single communicating class. Checking ergodicity given a countably infinite
number of states is achieved by providing a suitable Foster-Lyapunov function
[31]. Some automated techniques have been proposed for this task [12,17,34].

356 M. Backenköhler et al.

3.3 Truncation-Based Approximation of π∞

In many relevant cases, the state-space is huge or infinite and therefore the
stationary solution cannot be computed directly. To make such a computation
possible we have to restrict ourselves to a finite manageable subset of the state-
space and assume the majority of the probability mass is concentrated within
that finite subset. The main problem is to deal with the transitions leading to and
from the truncated set (cf. Fig. 1). In forward analysis, the outgoing transitions
are simply redirected into a sink-state. This way, a forward analysis provides
lower bounds since mass leaving the truncation does not re-enter. This approach,
however, is unsuitable for the computation of stationary distributions because
mass would accumulate in the sink-state leading to a distribution assigning all
mass to it. Therefore, transitions leaving the truncation need to be redirected
back into the truncation.

The process’ dynamics outside the truncation are defined by the stochas-
tic complement [40]. If its behavior was known, one could redirect outgoing to
incoming transitions optimally and preserve the correct stationary distribution.
However, this reentry distribution is typically unknown in most relevant cases.
Many different reentry distributions have been used, such as redirecting to some
internal state or states with incoming transition from outside the truncation.
Reference [24] provides a comprehensive review of such methods.

The most natural choice is to pick a reentry distribution that redirects mass
to states with incoming transitions from truncated states (cf. Fig. 1 (center)).

Using varying redirections, we can compute bounds on the stationary proba-
bility conditioned on a truncation [40, (Thm. 14)]. To do this, one has to compute
the stationary distribution for every possible way of connecting all outgoing to a
single incoming transition. Naturally, such an algorithm is rather expensive since
one has to solve a linear system for each combination. Therefore this method of
computing bounds is costly on very large truncations, often given by Lyapunov
functions.

When computing an approximation instead of bounds, we employ a uniform
redirection scheme: Outgoing transitions are split uniformly among incoming
transitions. Due to the threshold-based truncation scheme, we are likely to end
up with a somewhat uniform distribution over in-boundary states (see Sect. 4.3).

The identification of good truncations remains a major task in such approx-
imations. Using approaches such as Lyapunov functions (Sect. 3.4) [12] or
moment-bounds [24] can provide a good initial estimate, but typically the result-
ing truncations are far larger than necessary. This leads to dramatically increased
computational costs, especially when bounding methods mentioned above are
performed. Until a system for a larger truncation is solved, the precise location
of most of the probability mass is often unknown. Instead of solving the full
system for such a large space, we employ an aggregation scheme to cover large
areas of the state-space with exponentially fewer variables.

Error bounds have been derived for increasing truncation sets in the case
of linear Lyapunov functions [18]. However, until now it has not been shown
that these bounds are applicable in practice [32]. Alternatively, one can monitor

Abstraction-Guided Truncations for Stationary Distributions of MPMs 357

Fig. 1. (left) A countably infinite state-space. (center) Outgoing transitions are re-
directed (according to the reentry distribution) to states that have incoming transi-
tions from outside the truncation. (right) A comparison of the area prescribed by a
Lyapunov analysis using Geobound and threshold 0.1 and the minimal area containing
0.9 stationary probability mass. The model is a parallel birth death process (Model 2).

the product of the probability-outflow rate and the maximum L1-norm, which
bounds the approximation error up to a constant M > 0, assuming a linear
Lyapunov function exists [18].

3.4 Lyapunov Bounds

It is well-known that for a CTMC X, ergodicity can be proven by a Lyapunov
function g : S → R+ [12,30]. Given the g, we define its drift d as its average
infinitesimal change, which is obtained applying the generator Q to g.

d(x) =
nR∑

j=1

αj(x)(g(x + vj) − g(x)) (8)

Usually, such a function g grows in all directions on the positive orthant, while
its drift d(x) decreases in all directions. More formally, g is characterized by
having finite level sets {x ∈ S | g(x) < l} for all l > 0. At the same time,

Cε�
= {x ∈ S | ε�

c
d(x) > ε� − 1} (9)

should be finite, where ∞ > c ≥ supx∈S d(x). In this case, Cε�
contains at least

1 − ε� of stationary probability mass for any ε� ∈ (0, 1) [40, Thm. 8]. Given that
Cε�

is finite, the chain is ergodic and
∑

x∈Cε�

π(x) > 1 − ε� (10)

bounding the stationary probability mass contained within Cε�
.

358 M. Backenköhler et al.

In many cases, simple choices of g such as the L1- or L2- norm are sufficient.
However, the sets resulting from such functions are often very conservative. Con-
sider Fig. 1 (right) as an example, where the Lyapunov truncation with ε� = 0.1
for two parallel birth death processes (Model 2) is compared to the smallest
set containing 0.9 of stationary probability. Clearly, the area given by the Lya-
punov function is magnitudes larger than necessary to capture probability mass
consistent with ε�.

We employ this approach to both identify initial truncations and estimate
errors in the evaluation. Specifically, we employ the tool Geobound3 with L2-
norm as function g implementing techniques presented in [12].

4 Method

In this work, we propose a method to identify a truncation that optimizes the
trade-off between the size of the considered state-space and the approximation
error due to the finite state-space projection. To this end, we start with a very
coarse-grained model abstraction that we refine iteratively. The coarse-grained
model is based on an grid-shaped aggregation (i.e., lumping) scheme that identi-
fies a set of macro-states. These macro-states can be used to compute an interim
model solution that guides the refinement in the next step. We perform refine-
ments until the approximation arrives at the resolution of the original model (i.e.,
each macro-state has only one constituent) such that the aggregation introduces
no approximation error.

We explain the construction of macro-states in Sect. 4.1 and their initializa-
tion in Sect. 4.2. We present the iterative refinement algorithm in Sect. 4.3.

4.1 State-Space Aggregation

A macro-state is a collection of micro-states (or simply states) treated as one
state in the aggregated model, which can be seen as an abstraction of the orig-
inal model. The aggregation scheme defines a partitioning of the state-space.
We choose a scheme based on a grid structure. That is, each macro-state is a
hypercube in N

nS .
Hence, each macro-state x̄i(�(i), u(i)) (denoted by x̄i for notational ease) can

be identified using two vectors �(i) and u(i). The vector �(i) gives the corner closest
to the origin, while u(i) gives the corner farthest from the origin. Formally,

x̄i = x̄i(�(i), u(i)) = {x ∈ N
nS | �(i) ≤ x ≤ u(i)}, (11)

where ‘≤’ denotes element-wise comparison.
In order to solve the aggregated model, we need to define transition rates

between macro-states. Therefore, we assume that, given that the system is in
a particular macro-state, all constituent states are equally likely (uniformity

3 https://mosi.uni-saarland.de/tools/geobound.

https://mosi.uni-saarland.de/tools/geobound

Abstraction-Guided Truncations for Stationary Distributions of MPMs 359

assumption). This assumption is the reason why the aggregated model provides
only a coarse-grained approximation.

The uniformity assumption is a modeling choice yielding significant advan-
tages. Firstly, it eases the computation of the rates between macro-states and,
therefore, makes a fast solution of the aggregated model possible. Secondly, even
though it induces an approximation error, it provides suitable guidance as uni-
formity assumption spreads out the probability mass conservatively. Hence, it
becomes less likely that regions of interest are disregarded. Lastly, the unifor-
mity assumption is theoretically well-founded, as it stems from the maximum
entropy principle: In the absence of concrete knowledge about the probability
distribution inside a macro-state, we assume the distribution with the highest
uncertainty, i.e., the uniform distribution.

The grid structure makes the computation of transition rates between macro-
states particularly convenient and computationally simple. Mass-action reaction
rates can be given in a closed-form, due to the Faulhaber formulae [22] and more
complicated rate functions such as Hill-functions can often be handled as well
by taking appropriate integrals [6].

Suppose, we are interested in the transition rate from macro-state x̄i to
macro-state x̄k according to reaction j. Using the uniformity assumption, this is
simply the mean rate of the states in x̄i that go to x̄k using j. However, only a
small subset of constituents in x̄i are actually relevant for this transition. Hence,
we identify the subset of states of x̄i that lie at the border to x̄k and in such
a way that applying reaction j shifts them to a state in x̄k. Then, we sum up
the corresponding rates of these states. Lastly, we normalize according to the
number of states inside of x̄i.

It is easy to see that the relevant set of border states is itself an interval-
defined macro-state x̄

i
j−→k

. To compute this macro-state we can simply shift x̄i

by vj , take the intersection with x̄k and project this set back. Formally,

x̄
i

j−→k
= ((x̄i + vj) ∩ x̄k) − vj , (12)

where the additions are applied element-wise to all states making up the macro-
states. For ease of notation, we also define a general exit state

x̄
i

j−→ = ((x̄i + vj)\x̄i) − vj . (13)

This state captures all micro-states inside x̄i that can leave the state via reaction j.
This uniformity assumption gives rise to the following Q-matrix of the aggre-

gated model:

Q̄x̄i,x̄k
=

⎧
⎨

⎩

∑nR

j=1 ᾱj

(
x̄

i
j−→k

)
/ |x̄i| , if x̄i �= x̄k

−∑nR

j=1 ᾱj

(
x̄

i
j−→

)
/|x̄i| , otherwise

(14)

where
ᾱj(x̄) =

∑

x∈x̄

αj(x). (15)

360 M. Backenköhler et al.

Fig. 2. The state-space refinement algorithm on a birth-death process. From left to
right the state size is halved and states with low probability are removed from the
truncation. The final truncation is a typical truncation with states of size 1 and the
initial states are of size 24.

is the sum of all rates belonging to reaction j in x̄.
Under the assumption of polynomial rates, as is the case for mass-action

systems, we can compute the sum of rates over this transition set efficiently using
Faulhaber’s formula. As an example consider the following mass-action reaction
2X

c−→ ∅ . For macro-state x̄ = {0, . . . , n} we can compute the corresponding
lumped transition rate

ᾱ(x̄) =
c

2

n∑

i=1

i(i − 1) =
c

2

n∑

i=1

(i2 − i) =
c

2

(
2n3 + 3n2 + n

6
− n2 + n

2

)

eliminating the explicit summation in the lumped propensity function.

4.2 Initial Aggregation

The initial aggregated space Ŝ(0) should encompass all regions of the state-space
that could contain significant mass because states outside this initial area will
not be refined. In principle, multiple approaches could be used to identify such a
region. One possibility is the computation of moment bounds for the stationary
distribution [13,15]. Based on these bounds on expectations and covariances, an
initial truncation could be fixed. The approach we use here is to identify such a
region by a Lyapunov analysis [12]. This way, we obtain a polynomial describing
a semi-algebraic subset of the entire state-space containing 1 − ε� of the mass,
where ε� > 0 can be fixed arbitrarily. These sets usually are far larger than a
minimal set containing 1 − ε� of stationary probability mass would be. As an
initial aggregation, we build an aggregation on a subset [0..n]nS ⊂ S containing
the set prescribed by the Lyapunov analysis.

4.3 Iterative Refinement Algorithm

The refinement algorithm (Algorithm 1) starts with a set of large macro-states
that are iteratively refined, based on approximate stationary distributions. We
start by constructing square macro-states of size 2m in each dimension for some
m ∈ N such that they form a large-scale grid S(0). Hence, each initial macro-
state has a volume of (2m)nS . This choice of grid size is convenient because we

Abstraction-Guided Truncations for Stationary Distributions of MPMs 361

Algorithm 1: Lumping to approximate the stationary distribution
input : Initial partitioning S(0), truncation threshold ε
output: approximate stationary distribution π̂∞

1 for i = 1, . . . , m do

2 π̂
(i)
∞ ← solve approximate stationary distribution on S(i);

3 R ← choose smallest R′ ⊆ S(i) such that
∑

x̄∈R′ π̂
(i)
∞ (x̄) ≥ 1 − ε;

4 S(i+1) ← ⋃
x̄∈R split(x̄);

5 update Q̂-matrix;

6 return π̂
(m)
∞ ;

can halve states in each dimension. Moreover, this choice ensures that all states
have an equal volume and we end up with unit-sized macro-states, equivalent to
a truncation of the original non-lumped state-space.

An iteration of the state-space refinement starts by computing the stationary
distribution, using the lumped Q̂-matrix. Based on a threshold parameter ε > 0
states are either removed or split (line 4), depending on the mass assigned to
them by the approximate stationary probabilities π̂

(i)
∞ . Thus, each macro-state

is either split into 2nS new states or removed entirely. The result forms the
next lumped state-space S(i+1). The Q̂-matrix is updated (line 5) using 14 to
calculate the transition rates of the next aggregated truncation S(i+1). Entries
of truncated states are removed from the updated transition matrix. Transitions
leading to them are re-directed according to the re-entry matrix (see Sect. 3.3).
After m iterations (we started with states of side lengths 2m) we have a standard
finite state projection scheme on the original model tailored to computing an
approximation of the stationary distribution.

This way, the refinement algorithm focuses only on those parts of the state-
space contributing most to the stationary distribution. For instance, in Fig. 2 the
stationary probability mass mostly concentrates around #S = 200. Therefore,
states that are further away from this area can be dropped in further refinement.
This filtering (line 3 in Algorithm 1) ensures that states contributing significantly
to π̂

(i)
∞ will be kept and refined in the next iteration. The selection of states is done

by sorting states in descending order according to their approximate probability
mass. This ensures the construction of the smallest possible subset chosen for
refinement according to the approximation. Then states are collected until their
overall approximate mass is above 1 − ε.

An interesting feature of the aggregation scheme is that the distribution tends
to spread out more. This is due to the assumption of a uniform distribution inside
macro-states. To gain an intuition, consider a macro-state that encompasses a
peak of the stationary distribution. If we re-distribute the actual probability mass
inside this macro-state uniformly, a higher probability is assigned to states at the
macro-state’s border. When plugging such macro-states together, this increased

362 M. Backenköhler et al.

mass away from the peak will increase the mass assigned to adjacent macro-
states. This effect is illustrated by the example of a birth-death process in Fig. 2.
Due to this effect, an iterative refinement typically keeps an over-approximation
in terms of state-space area. This is a desirable feature since relevant regions are
less likely to be pruned due to lumping approximations.

5 Results

A prototype was implemented in Rust 1.50 and Python 3.8. The linear systems
were solved either using Numpy [19] for up to 5000 states, or the sparse lin-
ear solver as available through Scipy [43], or the iterative biconjugate gradient
stabilized algorithm [44] (up to 10,000 iterations and absolute tolerance 10−16).

The examples that we consider in the sequel are typical benchmarks for the
analysis of MPMs. For most of them, appropriate Lyapunov functions have been
determined using Geobound [40]. However, the corresponding Lyapunov sets
containing at least 1 − ε� of the stationary probability mass are very large for
typical choices of ε� (e.g. ε� ∈ {0.1, 0.05, 0.001}). Even for extremely large ε�, say
ε� = 0.8, the remaining state-space may still be huge (e.g., 15,198 states).

5.1 Parallel Birth-Death Process

We first examine the algorithm on the simple example of two parallel, uncoupled
birth-death processes.

Model 2 (Parallel Birth-Death Process). Two uncoupled parallel birth-
death processes result in a simple stationary distribution that is given by a product
of two Poisson distributions.

∅
ρ−→ A A

δ−→ ∅ ∅
ρ−→ B B

δ−→ ∅

As a parameterization we choose ρ = 100 and δ = 1.

For this model, the stationary distribution is known to be the product of two
Poisson distributions with rate ρ/δ.

According to the Lyapunov analysis with a 1e-4 bound, we fix the initial
truncation to a 70 × 70 grid of macro-states with size 27 in each dimension.
This implies 8 iterations of the algorithm to arrive at a truncation with the
original granularity. In Fig. 3, we illustrate the truncations of different iterations.
Over the iterations, the covered area decreases, while the aggregation granularity
increases. The final truncation distribution approximation is also depicted and
covers 1 − 1.27e-2 of the true stationary distribution (cf. Table 1).

For this case study, we also compute state-wise bounds on the probabilities
conditioned on the truncation as discussed in Sect. 3.3. In Fig. 6 (right), we
present the difference between upper and lower bound for ε = 0.1. We observe
intervals that are narrowest in the truncation’s interior near the distribution’s
mode. The largest intervals or the largest absolute uncertainty is present in the
boundary states. This indicates, that the specific reentry distribution has little
effect on the main approximate stationary mass. More detailed results on the
intervals’ magnitudes are given in Table 1.

Abstraction-Guided Truncations for Stationary Distributions of MPMs 363

Fig. 3. Results for Model 2 with truncation threshold ε = 0.1. (left) Truncations of dif-
ferent iterations are layered on top of each other. At higher iterations, truncations cover
less area but increase in detail, due to the refinement of macro-states. The final approx-
imation is indicated by its approximate probabilities. (right) The difference between
the upper and lower bounds on the probability conditioned on the truncation.

5.2 Exclusive Switch

The exclusive switch [8] has three different modes of operation, depending on
the DNA state, i.e. on whether a protein of type one or two is bound to the
DNA.

Model 3 (Exclusive Switch). The exclusive switch model consists of a pro-
moter region that can express both proteins P1 and P2. Both can bind to the
region, suppressing the expression of the other protein. For certain parameteri-
zations, this leads to a bi-modal or even tri-modal behavior.

D
ρ1−→ D + P1 D

ρ2−→ D + P2 P1
λ−→ ∅ P2

λ−→ ∅

D + P1
β−→ D.P1 D.P1

γ1−→ D + P1 D.P1
ρ1−→ D.P1 + P1

D + P2
β−→ D.P2 D.P2

γ2−→ D + P2 D.P2
ρ2−→ D.P2 + P2

We choose parameter values ρ1 = 0.7, ρ2 = 0.6, λ = 0.02, β = 0.005, γ1 = 0.06,
and γ2 = 0.05.

Since the exclusive switch models mutually exclusive binding of proteins to a
single genetic locus, we know a priori that there are exactly three distinct oper-
ating modes. In particular are D, D.P1, and D.P2 mutually exclusive such that
XD(t) + XD.P1(t) + XD.P2(t) = 1, ∀t ≥ 0. This model characteristic often leads
to bi-modal stationary distributions, where one or the other protein is more
abundant depending on the genetic state.

Accordingly, we adjust the initial truncation: The state-space for the DNA
states is not lumped. Instead we “stack” lumped approximations of the P1–P2

plane upon each other. Such special treatment of DNA states is common for

364 M. Backenköhler et al.

such models [28]. Using Lyapunov analysis for threshold 0.001, we fix an initial
state-space of 63 × 63 macro-states with size 27. Detailed results for different
parameters ε are presented in Table 3. We compute error bounds using a worst-
case analysis based on reference solutions provided by Geobound with ε� = 0.01.
We observe a strong decrease in both upper bounds on the total absolute and
maximal absolute error in the final iteration. Interestingly, the errors between
different thresholds are very close in earlier iterations. This is mainly due to the
usage of absolute errors which causes probabilities close to the mode dominate.

Using Geobound we observe that our final truncation captures the stationary
mass very well (cf. Table 1). We use the Geobound’s lower bounds with ε� =
1e − 2 and find that the uncovered mass by the aggregation-based truncation
is magnitudes lower than ε or close to it (for ε = 0.1). While they capture the
mass well, they are much smaller than the Geobound truncation (ε� = 0.1) with
16,780 states, regardless of the threshold parameter ε.

In Fig. 4 (left), we show the effect of the threshold parameter ε on the size
of the final truncation. We observe a roughly linear increase in size with an
exponential decrease of ε.

Fig. 4. (left) The sizes of the final truncation vs. the threshold parameter ε. (right)
The approximate stationary distribution of the exclusive switch (Model 3) obtained
with ε = 1e-4.

Table 1. Results for Model 2 and Model 3: The characteristics of the lower-upper
bound intervals on the conditional probability and the (upper bound on) mass not
contained in the truncation are given.

Model Threshold parameter ε

1e-1 1e-2 1e-3 1e-4

2 Total width 1.2336 3.0938e-02 5.3916e-04 8.1249e-06

Max. width 3.4752e-03 9.2954e-05 4.0400e-07 4.6521e-09

Outside mass 1.2708e-02 1.0568e-04 1.0500e-06 1.0617e-08

3 Total width 5.5171 1.5559 2.8946e-02 3.7161e-04

Max. width 1.5898e-01 3.3089e-03 3.4733e-05 3.8412e-07

Outside mass ≤ 1.5274e-01 1.2973e-03 2.0249e-05 2.7280e-07

Abstraction-Guided Truncations for Stationary Distributions of MPMs 365

5.3 P53 Oscillator

We now consider a model of the interactions of the tumor suppressor p53 [14].
The system describes the negative feedback loop between p53 and the oncogene
Mdm2. Species pMdm2 models a precursor to Mdm2. This model is particularly
interesting due to its complex three-dimensional oscillatory behavior. The model
is ergodic with a unique stationary distribution [17].

Model 4 (p53 Oscillator).

∅
k1−→ p53 p53 k2−→ ∅ p53 k4−→ p53 + pMdm2

p53
α4(·)−−−→ ∅ pMdm2 k5−→ Mdm2 Mdm2 k6−→ ∅

The non-polynomial degradation reaction rate

α4(x) = k3xMdm2
xp53

xp53 + k7
.

The parameterization based on [1] is k1 = 90, k2 = 0.002, k3 = 1.7, k4 = 1.1,
k5 = 0.93, k6 = 0.96, and k7 = 0.01.

With the exception of propensity function α4, we can compute the transition
rates ᾱi using the Faulhaber formulae, as discussed in Sect. 4.1. We consider
α4 separately, because it is non-polynomial and therefore, we have to make an
approximation. The fraction occurring in the non-linear propensity function α4

can roughly be characterized as an activation function: Due to the low value of
parameter k7 = 0.01 we can approximate

xp53

xp53 + k7
≈

{
0 if xp53 = 0
1 otherwise

We use this approximation at the coarser levels of aggregation to efficiently
compute the approximate transition rate ᾱ4. At the finest granularity we switch
back to exact propensity function α4.4

Due to the exponential increase stemming from the three-dimensional nature
of this model, we only evaluated with parameter ε = 0.1. According to a Lya-
punov analysis (Sect. B), the area covered by an 6× 6× 6 macro-states with size
220, covers 0.9 of stationary mass. A truncation of this same area would consist
of 226,492,416 states instead of the 216 macro-states. The model has a striking
oscillatory behavior (cf. Fig. 5 (top right)) that is reflected in its stationary distri-
bution. This feature is well-captured in the approximate distribution, where the
oscillatory behavior leads to a complex stationary distribution (cf. Fig. 5 (bot-
tom right)). This distribution leads to a non-trivial truncation (357,488 states)
which is tailored to the main stationary mass (Fig. 5 (left)).

4 We note, that
∑n

i=0 i/(i+k7) can be solved analytically. However, the approximation
presented above is much simpler to compute.

366 M. Backenköhler et al.

Fig. 5. (left) The final truncation at original granularity derived for the p53 oscillator.
(top right) A sample trajectory illustrating the oscillatory long-run behavior. (bottom
right) The approximate marginal distributions of the stationary distribution based on
the truncation derived with ε = 0.1.

6 Conclusion

State-of-the-art methods for numerically calculating the stationary distribution
of Markov Population Models rely on coarse truncations of irrelevant parts of
large or infinite discrete state-spaces. These truncations are either obtained from
the stationary statistical moments of the process or from Lyapunov theory. They
are limited in shape because these methods do not take into account the detailed
steady-state flow within the truncated state-space but only consider the average
drift or stationary moments.

Here, we propose a method to find a tight truncation that is not limited in
its shape and iteratively optimizes the set based on numerically cheap solutions
of abstract intermediate models. It captures the main portion of probability
mass even in the case of complex behaviors efficiently. In particular, the method
represents another option, where Lyapunov analysis leads to forbiddingly large
truncations.

Acknowledgements. This work is supported by the DFG project “MULTIMODE”.

A Detailed Results

See Tables 2, 3 and Fig. 6.

Abstraction-Guided Truncations for Stationary Distributions of MPMs 367

Table 2. Detailed results for Model 2. The errors are computed wrt. the reference
Poissonian product. The total absolute error and the maximum absolute errors are
given.

Iteration i

ε 1 2 3 4 5 6 7 8

1e-1 |S(i)| 4,900 28 52 112 232 472 960 1,932

Tot. error 1.91 1.84 1.73 1.55 1.29 9.35e-1 4.88e-1 3.54e-2

Max. error 3.15e-3 3.13e-3 3.08e-3 2.98e-3 2.77e-3 2.38e-3 1.57e-3 6.04e-5

1e-2 |S(i)| 4,900 52 104 208 464 988 2,008 4,052

Tot. error 1.91 1.84 1.73 1.56 1.30 9.46e-1 5.01e-1 6.22e-4

Max. error 3.15e-3 3.13e-3 3.08e-3 2.98e-3 2.78e-3 2.39e-3 1.59e-3 8.33e-7

1e-3 |S(i)| 4,900 84 152 300 652 1,440 2,996 6,068

Tot. error 1.91 1.83 1.73 1.56 1.30 9.46e-1 5.01e-1 9.83e-6

Max. error 3.15e-3 3.13e-3 3.08e-3 2.98e-3 2.78e-3 2.39e-3 1.59e-3 1.14e-8

1e-4 |S(i)| 4,900 116 212 400 848 1,872 3,960 8,060

Tot. error 1.91 1.83 1.73 1.56 1.30 9.46e-1 5.01e-1 9.83e-6

Max. error 3.15e-3 3.13e-3 3.08e-3 2.98e-3 2.78e-3 2.39e-3 1.59e-3 1.83e-10

Fig. 6. The error over the truncation wrt. the analytical solution

B Lyapunov Analysis of the p53 Oscillator

We now derive Lyapunov-sets for the p53 oscillator case study (Model 4). Let
the Lyapunov function

g(x) = 120xp53 + 0.2xpMdm2 + 0.1xMdm2 . (16)

Then the drift

d(x) = − k3xMdm2xp53

xp53 + k7
− 0.1k6xMdm2 + 120k1

− 120k2xp53 + 0.2k4xp53 − 0.1k5xpMdm2

= − 204xMdm2xp53

xp53 + 0.01
− 0.096xMdm2 − 0.02xp53

− 0.0093xpMdm2 + 10800 . (17)

Clearly, c = supx∈S d(x) = 10800. In particular, the supremum c is at the origin
since all non-constant terms are negative. The slowest rate of decrease for (17) is

368 M. Backenköhler et al.

Table 3. Detailed results for Model 3. Upper bounds on the total absolute error and
the maximum absolute error are given. The worst-case errors are computed wrt. the
reference Geobound solution with ε� = 1e − 2.

Iteration i

ε 1 2 3 4 5 6 7 8

1e-1 |S(i)| 11907 20 32 60 140 340 840 2116

Tot. error ≤ 1.86e0 1.85e0 1.45e0 1.18e0 9.31e-1 6.41e-1 4.67e-1 4.89e-1

Max. error ≤ 1.63e-3 1.63e-3 1.55e-3 1.40e-3 1.22e-3 9.36e-4 8.40e-4 1.40e-3

1e-2 |S(i)| 11907 48 112 148 300 720 1892 5156

Tot. error ≤ 1.86e0 1.84e0 1.44e0 1.21e0 9.56e-1 6.65e-1 3.41e-1 3.31e-2

Max. error ≤ 1.63e-3 1.62e-3 1.53e-3 1.39e-3 1.20e-3 9.59e-4 5.86e-4 5.37e-5

1e-3 |S(i)| 11907 84 192 244 488 1084 2692 7152

Tot. error ≤ 1.86e0 1.83e0 1.46e0 1.22e0 9.63e-1 6.67e-1 3.37e-1 8.01e-4

Max. error ≤ 1.63e-3 2.95e-2 1.54e-3 1.39e-3 1.20e-3 9.51e-4 5.79e-4 1.09e-6

1e-4 |S(i)| 11907 124 324 352 672 1436 3408 8864

Tot. error ≤ 1.86e0 1.83e0 1.46e0 1.22e0 9.63e-1 6.67e-1 3.37e-1 1.12e-5

Max. error ≤ 1.63e-3 3.19e-2 1.54e-3 1.39e-3 1.20e-3 9.51e-4 5.79e-4 1.28e-8

xp53 with xMdm2 = xpMdm2 = 0. We are content with a superset of a Lyapunov
set (9) for some threshold ε�. Therefore taking (9), we can solve the inequality

ε�

c
(c − 0.02xp53) > ε� − 1

for xp53 and
c

0.02ε�
< xp53 . (18)

Therefore

π∞

({
x ∈ S | c

0.2ε�
< ‖x‖

})
> 1 − ε� . (19)

References

1. Ale, A., Kirk, P., Stumpf, M.P.: A general moment expansion method for stochastic
kinetic models. J. Chem. Phys. 138(17), 174101 (2013)

2. Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions
for deficiency zero chemical reaction networks. Bull. Math. Biol. 72(8), 1947–1970
(2010)

3. Anderson, D.F., Kurtz, T.G.: Continuous time Markov chain models for chemical
reaction networks. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (eds.)
Design and Analysis of Biomolecular Circuits, pp. 3–42. Springer, New York (2011)

4. Anderson, W.J.: Continuous-Time Markov Chains: An Applications-Oriented App-
roach. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-3038-0

https://doi.org/10.1007/978-1-4612-3038-0

Abstraction-Guided Truncations for Stationary Distributions of MPMs 369

5. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Parameter identification for
Markov models of biochemical reactions. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 83–98. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22110-1 8

6. Backenköhler, M., Bortolussi, L., Großmann, G., Wolf, V.: Analysis of Markov
jump processes under terminal constraints. arXiv preprint arXiv:2010.10096 (2020)

7. Backenköhler, M., Bortolussi, L., Wolf, V.: Generalized method of moments for
stochastic reaction networks in equilibrium. In: Bartocci, E., Lio, P., Paoletti, N.
(eds.) CMSB 2016. LNCS, vol. 9859, pp. 15–29. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45177-0 2

8. Barzel, B., Biham, O.: Calculation of switching times in the genetic toggle switch
and other bistable systems. Phys. Rev. E 78(4), 041919 (2008)

9. Breuer, L.: From Markov Jump Processes to Spatial Queues. Springer, New York
(2003). https://doi.org/10.1007/978-94-010-0239-4

10. Cao, W.L., Stewart, W.J.: Iterative aggregation/disaggregation techniques for
nearly uncoupled Markov chains. J. ACM (JACM) 32(3), 702–719 (1985)

11. Češka, M., Křet́ınský, J.: Semi-quantitative abstraction and analysis of chemical
reaction networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
475–496. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 28

12. Dayar, T., Hermanns, H., Spieler, D., Wolf, V.: Bounding the equilibrium distribu-
tion of Markov population models. Numer. Linear Algebra Appl. 18(6), 931–946
(2011)

13. Dowdy, G.R., Barton, P.I.: Bounds on stochastic chemical kinetic systems at steady
state. J. Chem. Phys. 148(8), 084106 (2018)

14. Geva-Zatorsky, N., et al.: Oscillations and variability in the p53 system. Mol. Syst.
Biol. 2(1) (2006). 2006.0033

15. Ghusinga, K.R., Vargas-Garcia, C.A., Lamperski, A., Singh, A.: Exact lower and
upper bounds on stationary moments in stochastic biochemical systems. Phys.
Biol. 14(4), 04LT01 (2017)

16. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

17. Gupta, A., Briat, C., Khammash, M.: A scalable computational framework for
establishing long-term behavior of stochastic reaction networks. PLoS Comput.
Biol. 10(6), e1003669 (2014)

18. Gupta, A., Mikelson, J., Khammash, M.: A finite state projection algorithm for
the stationary solution of the chemical master equation. J. Chem. Phys. 147(15),
154101 (2017)

19. Harris, C.R., et al.: Array programming with NumPy. Nature 585, 357–362 (2020).
https://doi.org/10.1038/s41586-020-2649-2

20. Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite
Markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
337–352. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4 27

21. Jahnke, T., Huisinga, W.: Solving the chemical master equation for monomolecular
reaction systems analytically. J. Math. Biol. 54(1), 1–26 (2007)

22. Knuth, D.E.: Johann faulhaber and sums of powers. Math. Comput. 61(203), 277–
294 (1993)

23. Kuntz, J., Thomas, P., Stan, G.B., Barahona, M.: Rigorous bounds on the station-
ary distributions of the chemical master equation via mathematical programming.
arXiv preprint arXiv:1702.05468 (2017)

https://doi.org/10.1007/978-3-642-22110-1_8
https://doi.org/10.1007/978-3-642-22110-1_8
http://arxiv.org/abs/2010.10096
https://doi.org/10.1007/978-3-319-45177-0_2
https://doi.org/10.1007/978-3-319-45177-0_2
https://doi.org/10.1007/978-94-010-0239-4
https://doi.org/10.1007/978-3-030-25540-4_28
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/978-3-642-02658-4_27
https://doi.org/10.1007/978-3-642-02658-4_27
http://arxiv.org/abs/1702.05468

370 M. Backenköhler et al.

24. Kuntz, J., Thomas, P., Stan, G.B., Barahona, M.: Approximations of countably
infinite linear programs over bounded measure spaces. SIAM J. Optim. 31(1),
604–625 (2021)

25. Kuntz, J., Thomas, P., Stan, G.B., Barahona, M.: Stationary distributions of
continuous-time Markov chains: a review of theory and truncation-based approxi-
mations. SIAM Rev. 63(1), 3–64 (2021)

26. Kurasov, P., Lück, A., Mugnolo, D., Wolf, V.: Stochastic hybrid models of gene
regulatory networks-a PDE approach. Math. Biosci. 305, 170–177 (2018)

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

28. Lapin, M., Mikeev, L., Wolf, V.: SHAVE: stochastic hybrid analysis of Markov
population models. In: Proceedings of the 14th International Conference on Hybrid
Systems: Computation and Control, pp. 311–312 (2011)

29. Mélykúti, B., Hespanha, J.P., Khammash, M.: Equilibrium distributions of sim-
ple biochemical reaction systems for time-scale separation in stochastic reaction
networks. J. R. Soc. Interface 11(97), 20140054 (2014)

30. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes III: Foster-Lyapunov
criteria for continuous-time processes. Adv. Appl. Probab. 25, 518–548 (1993)

31. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, Lon-
don (2012). https://doi.org/10.1007/978-1-4471-3267-7

32. Meyn, S.P., Tweedie, R.L., et al.: Computable bounds for geometric convergence
rates of Markov chains. Ann. Appl. Probab. 4(4), 981–1011 (1994)

33. Mikeev, L., Neuhäußer, M.R., Spieler, D., Wolf, V.: On-the-fly verification and
optimization of DTA-properties for large Markov chains. Formal Methods Syst.
Des. 43(2), 313–337 (2013)

34. Milias-Argeitis, A., Khammash, M.: Optimization-based Lyapunov function con-
struction for continuous-time Markov chains with affine transition rates. In: 53rd
IEEE Conference on Decision and Control, pp. 4617–4622. IEEE (2014)

35. Mode, C.J., Sleeman, C.K.: Stochastic Processes in Epidemiology: HIV/AIDS,
Other Infectious Diseases, and Computers. World Scientific (2000)

36. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution
of the chemical master equation. J. Chem. Phys. 124(4), 044104 (2006)

37. Pardoux, E.: Markov Processes and Applications: Algorithms, Networks, Genome
and Finance, vol. 796. Wiley (2008)

38. Sakurai, Y., Hori, Y.: A convex approach to steady state moment analysis for
stochastic chemical reactions. In: 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), pp. 1206–1211. IEEE (2017)

39. Schweitzer, P.J.: A survey of aggregation-disaggregation in large Markov chains.
Numer. Solution Markov Chains 8, 63–88 (1991)

40. Spieler, D.: Numerical analysis of long-run properties for Markov population mod-
els. Ph.D. thesis, Saarland University (2014)

41. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Prince-
ton University Press (1994)

42. Ullah, M., Wolkenhauer, O.: Stochastic Approaches for Systems Biology. Springer,
New York (2011). https://doi.org/10.1007/978-1-4614-0478-1

43. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-
0686-2

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-1-4471-3267-7
https://doi.org/10.1007/978-1-4614-0478-1
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

Abstraction-Guided Truncations for Stationary Distributions of MPMs 371

44. Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of BI-
CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.
13(2), 631–644 (1992)

45. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. CRC Press, Boca Raton
(2018)

Reasoning About Proportional
Lumpability

Carla Piazza1 and Sabina Rossi2(B)

1 Università di Udine, Udine, Italy
carla.piazza@uniud.it

2 Università Ca’ Foscari Venezia, Venice, Italy
sabina.rossi@unive.it

Abstract. In this paper we reason about the notion of proportional
lumpability, that generalizes the original definition of lumpability to cope
with the state space explosion problem inherent to the computation of
the performance indices of large stochastic models. Lumpability is based
on a state aggregation technique and applies to Markov chains exhibiting
some structural regularity.

Proportional lumpability formalizes the idea that the transition rates
of a Markov chain can be altered by some factors in such a way that the
new resulting Markov chain is lumpable. It allows one to derive exact
performance indices for the original process.

We prove that the problem of computing the coarsest proportional
lumpability which refines a given initial partition is well-defined, i.e., it
has always a unique solution. Moreover, we introduce a polynomial time
algorithm for solving the problem. This provides us further insights on
both the notion of proportional lumpability and on generalizations of
partition refinement techniques.

Keywords: Markov chains · Lumpability · Algorithms

1 Introduction

Markov chains constitute the basic underlying semantics model of a plethora of
modelling formalism for reliability analysis and performance evaluation of com-
plex systems, such as Stochastic Petri nets [22], Stochastic Automata Networks
[24], queuing networks [3] and Markovian process algebras [10,11].

Although the use of high-level specification formalisms highly simplifies the
design of compositional/hierarchical quantitative models, the stochastic process
underlying even a very simple model may have a large number of states that
makes its analysis a difficult, sometimes impossible, task. In order to study
models with a very large state space without resorting to approximation or
simulation techniques we can attempt to reduce the state space of the underly-
ing Markov chain by aggregating states with equivalent behaviours (according
to a notion of equivalence that captures our concept of behaviour). An inter-
esting class of these aggregation methods that can be decided by the structural
c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 372–390, 2021.
https://doi.org/10.1007/978-3-030-85172-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_20&domain=pdf
http://orcid.org/0000-0002-2072-1628
http://orcid.org/0000-0002-1189-4439
https://doi.org/10.1007/978-3-030-85172-9_20

Reasoning About Proportional Lumpability 373

analysis of the original Markov chain is known as lumping. In the literature,
several notions of lumping have been introduced: strong and weak lumping [15],
exact lumping [25], and strict lumping [4]. The lumpability method allows one to
efficiently compute the exact values of the performance indices when the model
is actually lumpable. However, it is well known that not all Markov chains are
lumpable. Indeed, Markov chains arising in real-life applications are, in general,
not lumpable. To cope with this problem, in [7] the notion of quasi-lumpability
has been introduced. The idea is that a quasi-lumpable Markov chain can be
altered in such a way that the new resulting Markov chain is lumpable and
steady state probability bounding methods [5,7,8] can be applied to the new
lumpable Markov chain in order to obtain bounds on the performance indices of
the original model.

In [19], the notion of proportional lumpability has been introduced. It extends
the original definition of lumpability but, differently than the general definition
of quasi-lumpability, it allows one to derive exact performance indices for the
original process. In [20] we extended the work presented in [19] by comparing
the notion of proportional lumpability with other definitions of lumping such
as weak lumpability [15,17] and the notion of exact lumpability for ordinary
differential equations (ODEs) [16,18].

The definition of proportional lumpability requires to find a function that
assigns a positive coefficient to each state of the system. Being the set of all
possible such functions infinite, the existence of an efficient algorithmic tech-
nique to either check or compute proportional lumpability is not an immediate
consequence of the definition.

In this paper we study the properties of proportional lumpability and present
two alternative characterizations of it. The first characterization has been proved
in [20] and allows one to efficiently verify whether a partition of the state space
of a Markov chain is induced by an equivalence relation which is a propor-
tional lumpability. The second charaterization is a novel contribution and it is
exploited to design a polynomial time algorithm to compute the coarsest propor-
tional lumpability of a given Markov chain. Indeed, in the case of the classical
notion of strong lumpability, partition refinement algorithms are at the basis of
the efficient computation of the coarsest lumpability included in a given initial
partition. In the same spirit, we prove that the problem of computing the coars-
est proportional lumpability which refines a given initial partition is well-defined,
i.e., it has always a unique solution. Moreover, we introduce a polynomial time
algorithm for solving the problem. This provides us further insights on both the
notion of proportional lumpability and on generalizations of partition refinement
techniques.

Structure of the Paper. The paper is structured as follows: In Sect. 2 we review
the theoretical background on continuous-time Markov chains and recall the
concept of strong lumpability. The notion of proportional lumpability is intro-
duced in Sect. 3 and one novel characterization of it is proved. In Sect. 4 an
algorithm for proportional lumpability is presented and both its correctness and
its complexity are proved. Section 5 concludes the paper.

374 C. Piazza and S. Rossi

2 Background

In this section we rapidly review the fundamentals of continuous-time Markov
chains and the concept of lumpability.

Continuous-Time Markov Chains. A Continuous-Time Markov Chain (CTMC)
is a stochastic process X(t) for t ∈ R

+ taking values into a discrete state space
S such that the Markov property holds, i.e., the conditional (on both past and
present states) probability distribution of its future behaviour is independent of
its past evolution until the present state:

Prob(X(tn+1) = sn+1 | X(t1) = s1,X(t2) = s2, . . . , X(tn) = sn) =
Prob(X(tn+1) = sn+1 | X(tn) = sn).

A stochastic process X(t) is said to be stationary if the collection of random
variables (X(t1),X(t2), . . . , X(tn)) has the same distribution as the collection
(X(t1 +τ),X(t2 +τ), . . . , X(tn +τ)) for all t1, t2, . . . , tn, τ ∈ R

+. A CTMC X(t)
is said to be time-homogeneous if the conditional probability Prob(X(t + τ) =
s | X(t) = s′) does not depend upon t, and is irreducible if every state in S can be
reached from every other state. A state in a Markov process is called recurrent if
the probability that the process will eventually return to the same state is one. A
recurrent state is called positive-recurrent if the expected return time is finite. A
CTMC is ergodic if it is irreducible and all its states are positive-recurrent. In the
case of finite Markov chains, irreducibility is sufficient for ergodicity. Henceforth,
we consider ergodic CTMCs.

An ergodic CTMC possesses an equilibrium (or steady-state) distribution,
that is the unique collection of positive real numbers π(s) with s ∈ S such that

lim
t→∞ Prob(X(t) = s | X(0) = s′) = π(s) .

Notice that the above equation for π(s) is independent of s′. We denote by q(s, s′)
the transition rate out of state s to state s′, with s �= s′, and by q(s) the sum of all
transition rates out of state s to any other state in the chain. A state s for which
q(s) = ∞ is called an instantaneous state since when entered it is instantaneously
left. Whereas such states are theoretically possible, we shall assume throughout
that 0 < q(s) < ∞ for each state s. The infinitesimal generator matrix Q of
a CTMC X(t) with state space S is the |S| × |S| matrix whose off-diagonal
elements are the q(s, s′)’s and whose diagonal elements are the negative sum of
the extra diagonal elements of each row, i.e., q(s, s) = −∑

s′∈S, s′ �=s q(s, s′). For
the sake of simplicity, we use q(s, s′) to denote the components of matrix Q. For
s ∈ S and S ⊆ S we write q(s, S) to denote

∑
s′∈S q(s, s′).

Any non-trivial vector of positive real numbers μ satisfying the system of
global balance equations (GBEs) μQ = 0 is called invariant measure of the
CTMC. For an irreducible CTMC X(t), if μ1 and μ2 are two invariant measures
of X(t), then there exists a constant k > 0 such that μ1 = kμ2. If the CTMC is
ergodic, then there exists a unique invariant measure π whose components sum
to unity, i.e.,

∑
s∈S π(s) = 1 . In this case π is the equilibrium or steady-state

distribution of the CTMC.

Reasoning About Proportional Lumpability 375

Strong Lumpability. In the context of performance and reliability analysis, the
notion of lumpability provides a model aggregation technique that can be used
for generating a Markov chain that is smaller than the original one but allows
one to determine exact results for the original process.

The concept of lumpability can be formalized in terms of equivalence rela-
tions over the state space of the Markov chain. Any such equivalence induces
a partition on the state space of the Markov chain and aggregation is achieved
by clustering equivalent states into macro-states, thus reducing the overall state
space. If the partition can be shown to satisfy the so-called strong lumpability
condition [2,15], then the equilibrium solution of the aggregated process may be
used to derive an exact solution of the original one.

The notion of strong lumpability has been introduced in [15] and further
studied in [1,4,21,26].

Definition 1 (Strong lumpability). Let X(t) be a CTMC with state space S
and ∼ be an equivalence relation over S. We say that X(t) is strongly lumpable
with respect to ∼ (resp., ∼ is a strong lumpability for X(t)) if ∼ induces a
partition on the state space of X(t) such that for any equivalence class Si, Sj ∈
S/ ∼ with Si �= Sj and s, s′ ∈ Si,

q(s, Sj) = q(s′, Sj) .

Thus, an equivalence relation over the state space of a Markov process is
a strong lumpability if it induces a partition into equivalence classes such that
for any two states within an equivalence class their aggregated transition rates
to any other class are the same. Notice that every Markov process is strongly
lumpable with respect to the identity relation, and also with respect to the trivial
relation having only one equivalence class.

In [15] the authors prove that for an equivalence relation ∼ over the state
space of a Markov process X(t), the aggregated process is a Markov process
for every initial distribution if, and only if, ∼ is a strong lumpability for X(t).
Moreover, the transition rate between two aggregated states Si, Sj ∈ S/ ∼ is
equal to q(s, Sj) for any s ∈ Si.

Proposition 1 (Aggregated process for strong lumpability). Let X(t) be
a CTMC with state space S, infinitesimal generator Q and equilibrium distri-
bution π. Let ∼ be a strong lumpability for X(t) and X̃(t) be the aggregated
process with state space S/ ∼ and infinitesimal generator Q̃ defined by: for any
equivalence class Si, Sj ∈ S/ ∼,

q̃(Si, Sj) = q(s, Sj)

for any s ∈ Si. Then the equilibrium distribution π̃ of X̃(t) is such that for any
equivalence class S ∈ S/ ∼,

π̃(S) =
∑

s∈S

π(s) .

376 C. Piazza and S. Rossi

3 Proportional Lumpability

The notion of proportional lumpability has been introduced in [19]. As the notion
of quasi-lumpability [7], also called near-lumpability in [4], proportional lumpabil-
ity extends the original definition of strong lumpability but, differently from the
general definition of quasi-lumpability, it allows one to derive an exact solution
of the original process.

Definition 2 (Proportional lumpability). Let X(t) be a CTMC with state
space S and ∼ be an equivalence relation over S. We say that X(t) is propor-
tionally lumpable with respect to ∼ (resp., ∼ is a proportional lumpability for
X(t)) if there exists a function κ from S to R

+ such that ∼ induces a partition
on the state space of X(t) satisfying the property that for any equivalence classes
Si, Sj ∈ S/∼ with Si �= Sj and s, s′ ∈ Si,

q(s, Sj)
κ(s)

=
q(s′, Sj)

κ(s′)
.

We say that X(t) is κ-proportionally lumpable with respect to ∼ (resp., ∼ is
a κ-proportional lumpability for X(t)) if X(t) is proportionally lumpable with
respect to ∼ and function κ.

The following theorem [19] proves that proportional lumpability allows one
to compute an exact solution for the original model.

Theorem 1 (Aggregated process for proportional lumpability). Let
X(t) be a CTMC with state space S, infinitesimal generator Q and equilib-
rium distribution π. Let κ be a function from S to R

+, ∼ be a κ-proportional
lumpability for X(t) and X̃(t) be the aggregated process with state space S/∼ and
infinitesimal generator Q̃ defined by: for any equivalence classes Si, Sj ∈ S/∼

q̃(Si, Sj) =
q(s, Sj)

κ(s)

for any s ∈ Si. Then the invariant measure μ̃ of X̃(t) is such that for any
equivalence class S ∈ S/∼,

μ̃(S) =
∑

s∈S

π(s)κ(s) . (1)

The next Definition 3 introduces a way to perturb a proportionally lumpable
CTMC in order to obtain a strongly lumpable one. In contrast with previous
perturbation-based approaches, Theorem 2 gives a way to compute the station-
ary probabilities of a proportionally lumpable chain given those of the perturbed
lumpable one. The proof of Theorem 2 is given in [19].

Definition 3 (Perturbed Markov chains). Let X(t) be a CTMC with state
space S, and infinitesimal generator Q. Let κ be a function from S to R

+. We

Reasoning About Proportional Lumpability 377

(1,0,1)(1,1,1)

(0,1,1)

(1,1,0)

(0,0,1)

(0,1,0)

(1,0,0)

(0,0,0)

μ1

μ2

μ3

λ

μ2

μ1

μ3

μ2

μ1μ1

μ2

μ3

μ3

Fig. 1. CTMC representing the reliability of a system with 3 components.

say that a CTMC X ′(t) with infinitesimal generator Q′ is a perturbation of X(t)
with respect to κ if X ′(t) is obtained from X(t) by perturbing its rates such that
for all s, s′ ∈ S with s �= s′,

q′(s, s′) =
q(s, s′)
κ(s)

.

Theorem 2 (Equilibrium distribution for proportional lumpability).
Let X(t) be a CTMC with state space S, infinitesimal generator Q and equilib-
rium distribution π. Let κ be a function from S to R

+. Then, for any perturba-
tion X ′(t) of the original chain X(t) with respect to κ according to Definition 3
with infinitesimal generator Q′ and equilibrium distribution π′, the equilibrium
distribution π of X(t) satisfies the following property: let K =

∑
s∈S π′(s)/κ(s)

then, for all s ∈ S
π(s) =

π′(s)
K κ(s)

.

Example 1. Consider the standard reliability problem for a system consisting of
N components. The time to failure of each component i ∈ {1, . . . , N} is expo-
nentially distributed with rate μi and it is independent of the state of the other
components. This type of system has been studied in several works, like, e.g.,
[9,12–14,27]. As in [14], we assume that when the system fails it is restored to
a new “good” state and the time it takes for this restoration is exponentially
distributed with rate λ. At any point in time, the state of the system can be
represented as a boolean vector of size N , x̄ = (x1, . . . , xN), where xi = 1 if the

378 C. Piazza and S. Rossi

S3 S2 S1 S0

μ1 + μ2 + μ3 1 1

λ

Fig. 2. Aggregated CTMC representing the reliability of the system in Fig. 1,

i-th component of the system is working, otherwise xi = 0. Hence the set of all
possible states is S = {0, 1}N . Under these conditions, the time evolution of
the state of the system can be described by a continuous time Markov chain.
The Markov process corresponding to a system with 3 components, i.e., N = 3,
is depicted in Fig. 1. This system is proportionally lumpable with respect to the
partition: Sn = {x̄ ∈ S :

∑
xi = n} with n ∈ {0, 1, 2, 3}, i.e.,

S0 = {(0, 0, 0)}
S1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
S2 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}
S3 = {(1, 1, 1)}
and the function κ such that for each state s ∈ S1 ∪ S2, κ(s) = q(s), while
for s ∈ S0 ∪ S3, κ(s) = 1.

Thus, we can analyze the aggregated Markov chain represented in Fig. 2 and,
by Theorems 1 and 2 we can compute the exact solution to the original model.

3.1 Alternative Characterizations of Proportional Lumpability

We present two alternative characterizations of proportional lumpability. The
first characterization has been proved in [20] and allows one to efficiently verify
whether a partition of the state space of a Markov chain is induced by a pro-
portional lumpability. The second charaterization is a novel contribution and is
exploited in the next section to design a polynomial time algorithm to compute
the coarsest proportional lumpability of a given Markov chain.

First, for a given equivalence relation ∼ over the state space of a CTMC, we
denote by q∼(s) the sum of all transition rates from the state s to any state t
such that s �∼ t, i.e., for all s ∈ S,

q∼(s) =
∑

t�∼s

q(s, t).

The following theorem shows that proportional lumpability can be charac-
terized in terms of q∼(s) by replacing κ(s) with q∼(s) in the original definition.

Reasoning About Proportional Lumpability 379

Theorem 3 (Characterization 1 of proportional lumpability [20]). Let
X(t) be an ergodic CTMC with state space S and ∼ be an equivalence relation
over S. The relation ∼ is a proportional lumpability for X(t) if and only if for
any equivalence classes Si, Sj ∈ S/∼ with Si �= Sj and s, s′ ∈ Si,

1. q∼(s) �= 0 if and only if q∼(s′) �= 0
2. if q∼(s) �= 0 then

q(s, Sj)
q∼(s)

=
q(s′, Sj)
q∼(s′)

.

While the above characterization can be exploited to efficiently check whether
a given relation is a proportional lumpability, it is not immediate to guess how
to use it within an algorithm for the computation of the proportional lumpabil-
ity that refines a given initial relation. As we will see in Sect. 4, if the relation
changes during the computation, q∼ also changes. So it could be the case that one
of the equalities of item 2 which is not true at the current step will become true
later. On the other hand, the following characterization of proportional lumpa-
bility is easier to use to define a partition refinement algorithm for proportional
lumpability.

Theorem 4 (Characterization 2 of proportional lumpability). Let X(t)
be an ergodic CTMC with state space S and ∼ be an equivalence relation over
S. The relation ∼ is a proportional lumpability for X(t) if and only if for any
equivalence classes Si, Sj , Sk ∈ S/∼ with Si �= Sj, Si �= Sk, and s, s′ ∈ Si,

1. q(s, Sk) �= 0 if and only if q(s′, Sk) �= 0 and
2. if q(s, Sk) �= 0, then

q(s, Sj)
q(s, Sk)

=
q(s′, Sj)
q(s′, Sk)

Proof. ⇒) Suppose that ∼ is a κ-proportional lumpability for a function κ : S →
R

+, i.e., for any equivalence classes Si, Sj ∈ S/∼ with Si �= Sj and s, s′ ∈ Si,

q(s, Sj)
κ(s)

=
q(s′, Sj)

κ(s′)
. (2)

Item 1. follows by the definition of proportional lumpability. Moreover, if
q(s, Sk) �= 0 we have that also q(s′, Sk) �= 0 and

q(s, Sj)
q(s, Sk)

=
q(s, Sj)

κ(s)
κ(s)

q(s, Sk)
=

q(s′, Sj)
κ(s′)

κ(s′)
q(s′, Sk)

=
q(s′, Sj)
q(s′, Sk)

.

⇐) Suppose that ∼ is an equivalence relation such that for any equivalence
classes Si, Sj , Sk ∈ S/∼ with Si �= Sj , Si �= Sk, and s, s′ ∈ Si,

1. q(s, Sk) �= 0 if and only if q(s′, Sk) �= 0 and
2. if q(s, Sk) �= 0, then

q(s, Sj)
q(s, Sk)

=
q(s′, Sj)
q(s′, Sk)

380 C. Piazza and S. Rossi

For each S ∈ S/ ∼ such that there exists s ∈ S with q∼(s) �= 0 we choose a class
BS �= S of S/ ∼ such that q(s,BS) �= 0. We define κ : S −→ R

+ as follows:

– if q∼(s) = 0, then κ(s) = 1 otherwise
– if s ∈ S, then κ(s) = q(s,BS).

We prove that ∼ is a κ-proportional lumpability. Let Si, Sj ∈ S/∼ with Si �= Sj

and s, s′ ∈ Si

q(s, Sj)
κ(s)

=
q(s, Sj)
q(s,BSi

)
=

q(s′, Sj)
q(s′, BSi

)
=

q(s′, Sj)
κ(s′)

.

��

3.2 Comparison with Lumpability of the Embedded Markov Chain

We compare proportional lumpability with lumpability of the embedded Markov
chain [20]. The following Examples 2 and 3 are novel.

One standard approach for computing the stationary probability distribution
of an ergodic continuous-time Markov chain X(t) is by analyzing its embedded
Markov chain XE(t). Strictly speaking, the embedded Markov chain is a regular
discrete-time Markov chain (DTMC), sometimes referred to as its jump process.
Given X(t) with state space S, each element of the one-step transition probabil-
ity matrix of the corresponding embedded Markov chain is denoted by p(s, s′),
and represents the conditional probability of the transition from state s into
state s′, defined by:

p(s, s′) =
q(s, s′)
q(s)

for s �= s′

while p(s, s) = 0. Assuming that XE(t) is aperiodic, let π∗ be its steady-state
distribution. Then, one may derive the distribution π of X(t) as follows: let
W =

∑
s∈S π∗(s)/q(s), then

π(s) =
π∗(s)
Wq(s)

.

Notice that, in general, our definition of q∼(s) is different from that of q(s),
hence the fact that X(t) is proportionally lumpable does not imply that the
corresponding embedded Markov chain XE(t) is lumpable.

On the other hand, if XE(t) is lumpable then X(t) is proportionally lumpable
with respect to function κ from S to R

+ such that κ(s) = q(s) for all s ∈ S. In
conclusion, we can say that if X(t) has a strongly lumpable embedded process,
then it is also proportional lumpable but the opposite does not hold.

Example 2. Consider again the problem of reliability for a system consisting of
N components. Suppose that we are now interested in the number of compo-
nents working at any point time. Thus the state space S = {Si : 0 ≤ i ≤ N}

Reasoning About Proportional Lumpability 381

SN · · · S3 S2 S1 S0

μN μ4 μ3 μ2 μ1

μc

λλλλλ

μc

μc

μc

μc

Fig. 3. CTMC for system repair model with common cause failures.

S1 S0

1

1

Fig. 4. Aggregated CTMC for system repair model with common cause failures.

where Si denotes the state of the system where i components are working. We
assume that in each state Si, the time to failure of a component is exponentially
distributed with rate μi. Each componenet can be restored with rate λ. In some
cases, the system fails due to the simultaneous failure of components due to
common factors. Common cause failures may arise due to the failure of common
power supply, environmental conditions (e.g., earthquake, flood, humidity, etc.),
common maintenance problems, etc. Simultaneous failure due to common cause
may occur with failure rate μc. The state transition diagram for system repair
model is depicted in Fig. 3.

This model is proportionally lumpable with respect to the relation ∼ over
S given by the reflexive, symmetric and transitive closure of {(Si, Sj) : 1 ≤
i, j ≤ N}, and the function κ such that κ(Si) = q∼(Si) for i ∈ {0, . . . , N}. This
relation induces two equivalence classes, C0 = {S0} and C1 = {S1, . . . , SN}, and
the model in Fig. 3 is proportionally lumpable to the one depicted in Fig. 4.

In this case the model in Fig. 3 has not a strongly lumpable embedded process
due to the fact that q(Si) �= q∼(Si) for each i ∈ {0, . . . , N}.

Example 3. Consider the model described in Example 1. We showed that the
CTMC depicted in Fig. 1 is proportionally lumpable. It is easy to see that this
model has also a strongly lumpable embedded process. Indeed, this trivially
follows by Theorem 3 and the fact that q(s) = q∼(s) for all s ∈ S where ∼ is the
relation inducing the partition Sn = {x̄ ∈ S :

∑
xi = n} with n ∈ {0, 1, 2, 3}.

4 Computing Proportional Lumpability

In this section we consider the maximum proportional lumpability problem.

382 C. Piazza and S. Rossi

Definition 4 (Maximum Proportional Lumpability Problem). Let X(t)
be a CTMC with state space S and let R be an equivalence relation over S.
The maximum proportional lumpability problem over X(t) and R consists in
finding the largest equivalence relation ∼ such that ∼⊆ R and ∼ is a proportional
lumpability for X(t).

We have to prove that the maximum proportional lumpability problem is
well-defined, i.e., it always admits a unique solution. To this aim, it is convenient
to reason in terms of partitions instead of equivalence relations. As a matter of
fact, each equivalence relation R over S is naturally associated to the partition
S/R whose blocks correspond to the maximal sets of R-equivalent elements,
and vice-versa. This allows us to talk about proportional lumpabilities as both
equivalence relations and partitions. In particular, a partition P is said to be a
proportional partition when it is associated to an equivalence relation which is a
proportional lumpability.

We introduce some notations and terminologies over partitions useful for
providing an alternative definition of the maximum proportional lumpability
problem.

Given two partitions P1 and P2 over S we say that P1 is finer than P2,
denoted by P1 � P2, if and only if for each block B1 of P1 there exists a block
B2 of P2 such that B1 ⊆ B2. This is equivalent to say that the blocks of P2 are
unions of blocks of P1. Equivalently we say that P2 is coarser than P1 (also P1

refines P2) if P1 is finer than P2.
Let R1 and R2 be two equivalence relations over S. It holds that R1 ⊆ R2 if

and only if the partition P1 ≡ S/R1 associated to R1 is finer than the partition
P2 ≡ S/R2 associated to R2, i.e., P1 � P2.

Definition 5 (Maximum Proportional Partition Problem). Let X(t) be
a CTMC with state space S, let P be a partition over S. The maximum pro-
portional partition problem over X(t) and P consists in finding the coarsest
proportional partition P∼ refining P.

Proposition 2 (Equivalence of the two problems). Let X(t) be a CTMC
with state space S. Let R be an equivalence relation over S and S/R be the parti-
tion associated to R. ∼ is the solution of the maximum proportional lumpability
problem over X(t) and R if and only if the partition S/ ∼ is the solution of the
maximum proportional partition problem over X(t) and S/R.

Proof. This is an immediate consequence of the definitions. ��
As a consequence, from now on we will focus on the maximum proportional

partition problem.
Notice that the partition S/Id, where Id is the identity relation, is associated

to the proportional lumpability Id and it is finer than any other partition P.
In other terms the set of proportional partitions that refine a given partition P
is always not empty. However, it could be the case that for a given partition
P such set contains different elements which are maximal with respect to the

Reasoning About Proportional Lumpability 383

partial order �. The following property will allow us to prove that this is never
the case, i.e., that the maximum proportional partition problem has always a
unique solution. The proofs of the following lemma and theorem are reported in
the Appendix.

Lemma 1. Let X(t) be a CTMC with state space S and let P1 and P2 be two
proportional partitions over S. Let P be the smallest partition that is coarser
than both P1 and P2. P is a proportional partition.

Theorem 5 (Uniqueness). The maximum proportional partition problem has
always a unique solution.

Partition refinement algorithms already defined in the context of bisimulation
[23] and lumpabilities [1,28] are based on the following idea: at every step each
existing block B is split into B1, B2 using a reference block S, called splitter,
which witnesses that the elements of B1 and B2 are not equivalent, no matter
how S will be split during the next steps. In such framework the correctness of
the algorithm is proved by proving that:

ST. Step Correctness: at each step the current partition is refined into a new
one that is coarser than the solution;

FC. Final Convergence: the final partition is a proportional partition.

In order to be able to proceed along the same lines, we first need to prove
that the maximum proportional partition problem has a chance be solved by
iteratively applying refinement steps.

Proposition 3 (Iterative Refinements). Let X(t) be a CTMC with state
space S, let P be a partition over S. Let P∼ be the solution of the maximum
proportional partition problem over X(t) and P. If P ′ is finer than P and coarser
than P∼, i.e., P∼ � P ′ � P, then the solution of the maximum proportional
partition problem over X(t) and P ′ is P∼.

Proof. This is an immediate consequence of the definition of maximum propor-
tional partition problem. ��

We now focus on Step Correctness, i.e., we define splitting strategies that
approaches the current partition to the result. To this aim we deeply analyse the
characterization provided in Theorem 4.

Notice that if P has a unique class, then P is a proportional partition, i.e., no
refinement is needed. In the case of partitions with only two classes the second
condition of Theorem 4 is trivially satisfied, so we get the following characteri-
zation for such simple partitions.

Lemma 2. Let X(t) be a CTMC with state space S, let P be a partition over S
with |P| = 2. P is a proportional partition if and only if for all Si, Sk ∈ P with
Si �= Sk, and s, s′ ∈ Si it holds that

q(s, Sk) �= 0 iff q(s′, Sk) �= 0

384 C. Piazza and S. Rossi

Algorithm 1. Fix point computation of BisimSplit

1: function BisimSplit(X(t), P)
2: repeat
3: Bool = True
4: for S, B ∈ P with S �= B do � S splits B
5: B1 = {s ∈ B | q(s, S) �= 0}
6: if B1 �= B ∧ B1 �= ∅ then
7: P = (P \ {B}) ∪ {B1, B \ B1}
8: Bool = False
9: until Bool � Exit when Bool is True
10: return P

Proof. This is an immediate consequence of Theorem 4. ��
In the general case only the left to right direction of the above result continues
to hold and provides us a first splitting strategy.

Lemma 3. Let X(t) be a CTMC with state space S, let P be a partition over
S. If P is a proportional partition, then for all Si, Sk ∈ P with Si �= Sk, and
s, s′ ∈ Si it holds that

q(s, Sk) �= 0 iff q(s′, Sk) �= 0

Proof. It immediately follows from the definition of proportional lumpability. ��
Hence, we can split blocks exploiting the above condition. If s and s′ in Si are

such that q(s, Sk) �= 0 while q(s′, Sk) = 0, no matter how Sk will be split during
the computation s and s′ will always violate the condition with respect to at
least one new class S′

k ⊆ Sk. So, we split Si separating the elements reaching Sk

from those that do not reach Sk. We call such splits BisimSplit, since they are
exactly the splits performed in classical strong bisimulation algorithms [23]. In
Algorithm 1 we describe the function that computes these splits until a fix-point
is reached.

Proposition 4 (BisimSplit Correctness). Let X(t) be a CTMC with state
space S, let P be a partition over S. Let P∼ be the solution of the maximum
proportional partition problem over X(t) and P. Let P ′ be the partition returned
by BisimSplit(X(t),P). P ′ is finer than P and coarser than P∼.

Proof. This is a consequence of Lemma 3. ��
At this point we focus on the second condition of Theorem 4 and we translate

it in a splitting strategy. If s and s′ satisfy the first condition of Theorem 4, but
not the second one, then one could believe that next splits on Sj and Sk could
avoid the problem. In other terms it could be possible for s and s′ to remain in
the same block thanks to changes in Sj and Sk. The following result proves that
this is never the case. The proof is reported in the Appendix.

Reasoning About Proportional Lumpability 385

Lemma 4. Let X(t) be a CTMC with state space S, let P be a partition over
S. Let P∼ be the solution of the maximum proportional partition problem over
X(t) and P. If there exist Si, Sj , Sk ∈ P with Si �= Sj, Si �= Sk, and s, s′ ∈ Si

such that q(s, Sk) �= 0, q(s′, Sk) �= 0, and

q(s, Sj)
q(s, Sk)

�= q(s′, Sj)
q(s′, Sk)

then s and s′ belong to different blocks in P∼.

As a consequence we get the splitting strategy described in Algorithm 2.

Algorithm 2. Fix point computation of PropSplit

1: function PropSplit(X(t), P)
2: repeat
3: Bool = True
4: for S, T ∈ P with S �= T do
5: for B ∈ P with B �= S, B �= T and ∀s ∈ B it is q(s, T) �= 0 do
6:
7: B = {B1, . . . , Bn} such that Bf ⊆ B and

8: for all s, s′ ∈ Bf it is q(s,S)
q(s,T)

= q(s′,S)
q(s′,T)

9: if |B| > 1 then
10: P = (P \ {B}) ∪ B
11: Bool = False
12: until Bool � Exit when Bool is True
13: return P

Proposition 5 (PropSplit Correctness). Let X(t) be a CTMC with state
space S, let P be a partition over S. Let P∼ be the solution of the maximum
proportional partition problem over X(t) and P. Let P ′ be the partition returned
by PropSplit(X(t),P). P ′ is finer than P and coarser than P∼.

Proof. This is a consequence of Lemma 4. ��
The algorithm we propose for solving the maximum proportional partition

problem alternatively applies the two above described splitting strategies until
a fix point is reached. It is described in Algorithm 3.

Since in Proposition 3 we proved that the problem can be solved through an
iterative algorithm and in Propositions 4 and 5 we provided the Step Correctness,
it only remains to prove that the final result is a proportional partition and to
analyse the complexity of the procedure.

Theorem 6 (Correctness and Complexity). Let X(t) be a CTMC with
state space S, let P be a partition over S. MaxProp(X(t),P) returns the solu-
tion of the maximum proportional partition problem over X(t) and P in time
O(|S|4).

386 C. Piazza and S. Rossi

Algorithm 3. Fix point computation of the Maximum Proportional Partition
1: function MaxProp(X(t), P)
2: repeat
3: P ′ = P
4: P =PropSplit(X(t),BisimSplit(X(t), P))
5: until P = P ′

6: return P

Proof. As far as correctness is concerned, in virtue of Propositions 3, 4, and
5 we only have to prove that the output of the algorithm is a proportional
partition. The output of the algorithm is a fix-point for the function Prop-
Split(X(t),BisimSplit(X(t),)). We have that BisimSplit implements the
first condition of Theorem 4 and PropSplit implement the second condition of
Theorem 4. So, since Theorem 4 is a characterization for proportional lumpabil-
ity, the output of the algorithm is a proportional partition.

During the computation O(|S|) splits will be performed by either BisimSplit
or PropSplit, since in the worst case the final partition has Θ(|S|) blocks.
Each split performed by BisimSplit can be computed in time O(|S|2), e.g., by
exploiting [23]. As for the splits performed by PropSplit, from the infinitesimal
generator of X(t) and the blocks of the current partition in time Θ(|S|2) we can
compute a matrix in which for each state s and each class S we store q(s, S).
This matrix has size O(|S2|). Each block T of the current partition corresponds
to a column t in the matrix. For each column t we compute a new matrix in
which for each row s having q(s, t) �= 0 we normalize all the row dividing by
q(s, t). This take time O(|S|2) and allow us to split each class B with respect
to all other classes S, through a single complete scan of the matrix. Hence, for
each normalizer T we need time O(|S|2). Since T has O(|S|) possible values, one
split of PropSplit requires O(|S|3). ��

Notice that the above complexity result can be refined by exploiting adja-
cency lists, hence replacing a factor |S|2 by the number of non-null elements of
the infinitesimal generator of X(t).

5 Conclusion

In this paper we recall the notion of proportional lumpability and present two
characterizations of it. These characterizations allow us to develop a computa-
tional method for proportional lumpability. More precisely, the first characteri-
zation has been proved in [20] and can be exploited to efficiently check whether a
given relation is a proportional lumpability, while the second characterization is
a novel contribution and allows us to develop an algorithm for the computation
of the proportional lumpability that refines a given initial relation.

The algorithm we presented for proportional lumpability at the moment does
not exploit any ad-hoc technique for reducing the computational complexity,
such as the process the smallest half policy presented in [23] for bisimulation

Reasoning About Proportional Lumpability 387

computation and extended to lumpability in [6,28]. As future work we plan to
investigate along this direction.

A Appendix

Proof of Lemma 1

First notice that each block A ∈ P can be written both as a union of blocks of
P1 and as a union of blocks of P2, i.e.,

A = A11 ∪ A12 ∪ · · · ∪ A1k1 = A21 ∪ A22 ∪ · · · ∪ A2k2

with Aij ∈ Pi.
Since P1 and P2 are proportional partitions, there exist two functions κ1, κ2

from S to R
+ that witness this fact. This implies that if we take two states s

and s′ which are not in A and are in a block Bi of Pi, it holds that:

q(s,A)
κi(s)

=

∑ki

j=1 q(s,Aij)
κi(s)

=

∑ki

j=1 q(s′, Aij)
κi(s′)

=
q(s′, A)
κi(s′)

This last can be rewritten as:

q(s,A) =
κi(s)
κi(s′)

q(s′, A)

For each block B ∈ P we fix a representative element b ∈ B. For each b′ ∈ B
there exists at least one finite sequence b0, b1, . . . , bm such that b0 = b, bm = b′

and for each h = 0, . . . ,m−1 there exists Bh such that bh, bh+1 ∈ Bh and either
Bh ∈ P1 or Bh ∈ P2. For each b′ ∈ B we fix one of such sequences. For the sake
of clarity, let us consider a simple case where b, b1 ∈ B0 ∈ P1, b1, b2 ∈ B1 ∈ P2,
and b2, b

′ ∈ B2 ∈ P1. Let A ∈ P with A �= B. In virtue of the last equation, we
have:

q(b, A) =
κ1(b1)
κ1(b)

q(b1, A) =
κ1(b)
κ1(b1)

κ2(b1)
κ2(b2)

q(b2, A) =
κ1(b)
κ1(b1)

κ2(b1)
κ2(b2)

κ1(b2)
κ1(b′)

q(b′, A)

In the general case we obtain:

q(b, A) = K(b, b′)q(b′, A)

where K(b, b′) is a product of fractions involving values of κ1 and κ2 that depends
on the sequence that we have fixed from b to b′. Since both b and the sequence
have been fixed we can define K(b′) = K(b, b′). As a consequence, if b′, b′′ ∈ B
we obtain that for each A ∈ P with A �= B it holds

K(b′)q(b′, A) = q(b, A) = K(b′′)q(b′′, A)

This means that P is a proportional partition. ��

388 C. Piazza and S. Rossi

Proof of Lemma 4

Let Sj = A1 ∪ · · · ∪ An and Sk = B1 ∪ . . . Bm with Af , Bh ∈ P∼. Let κ be a
function witnessing that P∼ is a proportional lumpability. If by contradiction
there exists a block C ∈ P∼ such that s, s′ ∈ C, then we would have

q(s,Af)
κ(s)

=
q(s′, Af)

κ(s′)

for each f = 1, . . . , n and

q(s,Bh)
κ(s)

=
q(s′, Bh)

κ(s′)

for each h = 1, . . . , m. As a consequence by summing for f = 1, . . . , n and
h = 1, . . . ,m we have

q(s, Sj)
κ(s)

=
q(s′, Sj)

κ(s′)
and

q(s, Sk)
κ(s)

=
q(s′, Sk)

κ(s′)

Since by hypothesis it holds q(s, Sk) �= 0 and q(s′, Sk) �= 0 we get

q(s, Sj)
q(s, Sk)

=
q(s′, Sj)
q(s′, Sk)

which contradicts the hypothesis. ��

Proof of Theorem 5

The existence of at least one solution is trivial, since the identity relation is a
proportional lumpability.

As far as the uniqueness is concerned, let us consider the maximum pro-
portional partition problem over X(t) and P. Let us assume by contradiction
that the set of proportional partitions that refines P has at least two different
maximal elements. This means that there are two different partitions Q1 and
Q2 such that:

a. Qi is a proportional partition;
b. Qi refines P;
c. each Q′ coarser than Qi and refining P is not a proportional partition.

By Lemma 1 the smallest partition Q that is coarser than both Q1 and Q2 is a
proportional partition. Moreover, since both Q1 and Q2 refine P, it holds that
Q refines P. This contradicts item c. ��

Reasoning About Proportional Lumpability 389

References

1. Alzetta, G., Marin, A., Piazza, C., Rossi, S.: Lumping-based equivalences in Marko-
vian automata: algorithms and applications to product-form analyses. Inf. Comput.
260, 99–125 (2018). https://doi.org/10.1016/j.ic.2018.04.002

2. Baarir, S., Beccuti, M., Dutheillet, C., Franceschinis, G., Haddad, S.: Lumping par-
tially symmetrical stochastic models. Perform. Eval. 68(1), 21–44 (2011). https://
doi.org/10.1016/j.peva.2010.09.002

3. Balsamo, S., Marin, A.: Queueing networks. In: Bernardo, M., Hillston, J. (eds.)
SFM 2007. LNCS, vol. 4486, pp. 34–82. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-72522-0 2

4. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl.
Probab. 31, 59–75 (1994). https://doi.org/10.1017/S0021900200107338

5. Courtois, P.J., Semal, P.: Computable bounds for conditional steady-state proba-
bilities in large Markov chains and queueing models. IEEE J. Sel. Areas Commun.
4(6), 926–937 (1986)

6. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov
chains. Elsevier Inf. Process. Lett. 87(6), 309–315 (2003)

7. Franceschinis, G., Muntz, R.: Bounds for quasi-lumpable Markov chains. Perform.
Eval. 20(1–3), 223–243 (1994). https://doi.org/10.1016/0166-5316(94)90015-9

8. Franceschinis, G., Muntz, R.: Computing bounds for the performance indices of
quasi-lumpable stochastic well-formed nets. IEEE Trans. Software Eng. 20(7), 516–
525 (1994). https://doi.org/10.1109/32.297940

9. Frostig, E.: Jointly optimal allocation of a repairman and optimal control of service
rate for machine repairman problem. Eur. J. Oper. Res. 116(2), 274–280 (1999)

10. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45804-2

11. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
Press (1996). https://doi.org/10.1017/CBO9780511569951

12. Hooghiemstra, G., Koole, G.: On the convergence of the power series algorithm.
Perform. Eval. 42(1), 21–39 (2000)

13. Katehakis, M., Derman, C.: Optimal repair allocation in a series system. Math.
Oper. Res. 9(4), 615–623 (1984)

14. Katehakis, M., Smit, L.: A successive lumping procedure for a class of Markov
chains. Probab. Eng. Inf. Sci. 26(4), 483–508 (2012)

15. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York (1976)
16. Kuo, J., Wei, J.: Lumping analysis in monomolecular reaction systems. Analysis of

approximately Lumpable system. Ind. Eng. Chem. Fundam. 8(1), 124–133 (1969)
17. Ledoux, J.: A necessary condition for weak lumpability in finite Markov processes.

Oper. Res. Lett. 13(3), 165–168 (1993)
18. Li, G., Rabitz, H.: A general analysis of exact lumping in chemical kinetics. Chem.

Eng. Sci. 44(6), 1413–1430 (1989)
19. Marin, A., Piazza, C., Rossi, S.: Proportional Lumpability. In: André, É., Stoelinga,

M. (eds.) FORMATS 2019. LNCS, vol. 11750, pp. 265–281. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29662-9 16

20. Marin, A., Piazza, C., Rossi, S.: Proportional lumpability and proportional bisim-
ilarity. Acta Informatica (2021). https://doi.org/10.1007/s00236-021-00404-y

21. Marin, A., Rossi, S.: On the relations between Markov chain lumpability and
reversibility. Acta Informatica 54(5), 447–485 (2017). https://doi.org/10.1007/
s00236-016-0266-1

https://doi.org/10.1016/j.ic.2018.04.002
https://doi.org/10.1016/j.peva.2010.09.002
https://doi.org/10.1016/j.peva.2010.09.002
https://doi.org/10.1007/978-3-540-72522-0_2
https://doi.org/10.1007/978-3-540-72522-0_2
https://doi.org/10.1017/S0021900200107338
https://doi.org/10.1016/0166-5316(94)90015-9
https://doi.org/10.1109/32.297940
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1017/CBO9780511569951
https://doi.org/10.1007/978-3-030-29662-9_16
https://doi.org/10.1007/s00236-021-00404-y
https://doi.org/10.1007/s00236-016-0266-1
https://doi.org/10.1007/s00236-016-0266-1

390 C. Piazza and S. Rossi

22. Molloy, M.K.: Performance analysis using stochastic petri nets. IEEE Trans. Com-
put. 31(9), 913–917 (1982). https://doi.org/10.1109/TC.1982.1676110

23. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

24. Plateau, B.: On the stochastic structure of parallelism and synchronization models
for distributed algorithms. SIGMETRICS Perf. Eval. Rev. 13(2), 147–154 (1985).
https://doi.org/10.1145/317795.317819

25. Schweitzer, P.: Aggregation methods for large Markov chains. In: Proceedings of
the International Workshop on Computer Performance and Reliability, pp. 275–
286. North Holland (1984)

26. Sumita, U., Rieders, M.: Lumpability and time-reversibility in the aggregation-
disaggregation method for large Markov chains. Commun. Stat. Stoch. Models 5,
63–81 (1989). https://doi.org/10.1080/15326348908807099

27. Ungureanu, V., Melamed, B., Katehakis, M., Bradford, P.: Deferred assignment
scheduling in cluster-based servers. Clust. Comput. 9(1), 57–65 (2006)

28. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2 4

https://doi.org/10.1109/TC.1982.1676110
https://doi.org/10.1145/317795.317819
https://doi.org/10.1080/15326348908807099
https://doi.org/10.1007/978-3-642-12002-2_4

Lumpability for Uncertain
Continuous-Time Markov Chains

Luca Cardelli1, Radu Grosu2, Kim G. Larsen3, Mirco Tribastone4,
Max Tschaikowski3(B), and Andrea Vandin5,6

1 University of Oxford, Oxford, UK
2 TU Wien, Vienna, Austria

3 Aalborg University, Aalborg, Denmark
tschaikowski@cs.aau.dk

4 IMT School for Advanced Studies Lucca, Lucca, Italy
5 Sant’Anna School of Advanced Studies, Pisa, Italy

6 DTU Technical University of Denmark, Lyngby, Denmark

Abstract. The assumption of perfect knowledge of rate parameters
in continuous-time Markov chains (CTMCs) is undermined when con-
fronted with reality, where they may be uncertain due to lack of infor-
mation or because of measurement noise. In this paper we consider uncer-
tain CTMCs, where rates are assumed to vary non-deterministically with
time from bounded continuous intervals. This leads to a semantics which
associates each state with the reachable set of its probability under all
possible choices of the uncertain rates. We develop a notion of lumpability
which identifies a partition of states where each block preserves the reach-
able set of the sum of its probabilities, essentially lifting the well-known
CTMC ordinary lumpability to the uncertain setting. We proceed with
this analogy with two further contributions: a logical characterization of
uncertain CTMC lumping in terms of continuous stochastic logic; and a
polynomial time and space algorithm for the minimization of uncertain
CTMCs by partition refinement, using the CTMC lumping algorithm as
an inner step. As a case study, we show that the minimizations in a sub-
stantial number of CTMC models reported in the literature are robust
with respect to uncertainties around their original, fixed, rate values.

1 Introduction

Motivation. Continuous-time Markov chains (CTMCs) are a fundamental tool
for describing a wide range of natural and engineered systems and serve as the
underlying semantics for several formalisms such as stochastic Petri Nets [13],
stochastic process algebra (e.g., [29,30]), and chemical reaction networks [22].
A CTMC is typically characterized by a number of parameters such as arrival
and service rates in a queuing network [45], transmission and infection rates of
epidemic processes [43], and the kinetic rates of a chemical reaction. In essentially
all practical situations, however, knowing the values of all parameters precisely
is unlikely. This may be due to measurement noise when parameters are to be

c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 391–409, 2021.
https://doi.org/10.1007/978-3-030-85172-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-85172-9_21

392 L. Cardelli et al.

estimated from observations, as well as to our inability to accurately observe
events at certain spatio-temporal scales—a well-known problem notably arising
in computational systems biology [11]. In addition, sometimes the modeler wishes
to be deliberately imprecise about the value of certain parameters in order to
explicitly account for the disagreement between the real system and its model.

These motivations have stimulated a vigorous line of research into quanti-
tative modeling frameworks where uncertainty is a first-class citizen, with the
basic idea to replace known constants with sets of values which can be non-
deterministically assigned to parameters. A prominent instance is Jonnson and
Larsen’s interval specification systems [31] (equivalent to interval-valued finite
Markov chains [35]), where the probability of making a transition between two
states of a discrete-time Markov chain is assumed to be taken from a continuous
interval of possible values, later generalized to polynomial constraints [7].

Contributions. In this paper we consider uncertain CTMCs (UCTMCs). They
allow time-varying nondeterministic uncertainty in the values of the rate param-
eters within given bounded intervals. This is essentially the continuous-time
analogue of the model of nondeterminism in [20,42], and can be seen as an over-
approximation for a time-invariant interpretation of uncertainty which underlies
a family of CTMCs, one for each possible choice of rate parameter values [31].

Here we study minimization of UCTMCs, motivated by the appeal to work
with models of smaller size that still preserve quantities of interest for analysis
and verification purposes. We proceed by means of analogies with the well-known
CTMCs counterpart of ordinary lumpability [4,34] (reviewed in Sect. 2):

– CTMC ordinary lumpability identifies a partition of the state space which
induces a lumped chain where each macro-state represents a partition block;
the probability of being in each macro-state at all time points is equal to
the sum of the probabilities of the states of the original CTMC belonging
to that block [4]. The semantics of UCTMCs associates each state with the
reachable set of the probabilities of that state under all possible values of the
uncertain transition rates at any time point. Mutatis mutandis, our notion
of lumpability is such that the lumped UCTMC preserves reachable sets of
sums of the states in each block. In fact, UCTMC lumpability turns out to
be a conservative extension of CTMC lumpability.

– We study the logical characterization of UCTMC lumpability. Similarly to the
characterization of continuous stochastic logic (CSL) [1] by F-bisimulation [1],
a notion closely related to ordinary lumpability, we prove that UCTMC lumpa-
bility preserves a conservative extension of CSL to UCTMCs, where a CSL for-
mula is satisfied by a UCTMC if it is true for all possible rate values.

– CTMCs enjoy an efficient minimization algorithm based on partition refine-
ment which computes the coarsest ordinarily lumpable partition that refines
a given initial partition of states [17,46]. Here we develop an analogous algo-
rithm for UCTMCs where the CTMC lumping algorithm is used as an inner
step: the coarsest UCTMC lumpable partition is the coarsest one that refines
both of the two time-homogeneous CTMCs derived by choosing the lower and

Lumpability for Uncertain Continuous-Time Markov Chains 393

upper bounds for all uncertainty intervals, respectively. Thus, the minimiza-
tion algorithm takes O(rslogs) steps in the worst case, where r is the number
of transitions and s is the number of states of the UCTMC.

As an application, we consider the problem of analyzing the “robustness” of
CTMC lumping, i.e., to what extent the minimization depends on the specific
choice of rate parameters of a model. Using a prototype implementation, we
study how adding uncertainty intervals around the constant values of the rates
of a CTMC model preserves the original CTMC lumping.

Further Related Work. A UCTMC can be seen as a continuous-time Markov
decision process (MDP). Indeed, we formally show in Sect. 3.3 that the UCTMC
can be alternatively given as a time-inhomogeneous continuous-time MDP with
an uncountable action space, which represents the values within the uncertainty
intervals, see [42] and [23, Section 2.2]. This model of uncertainty is different
from the state of the art concerned with MDPs where the action space is finite
and/or policies are time-independent (alternatively, untimed or time-invariant),
see for instance [5,6,25,39]. Another related model is that of parametric Markov
chains and parametric MDPs [14,26,36], where certain transition probabilities
have symbolic parameters. A parametric model underlies an (infinite) family of
Markov models, one for each possible evaluation of the parameters. However,
each member of this family is time-invariant because the instantiation of the
parameters is assumed fixed throughout the time course evolution of the process.

Most notions of lumpability and bisimulation for these models of uncertainty
impose constraints that must hold for all actions (in the case of MDPs [26,
39,44]) or, analogously, for all parameter evaluations (for parametric Markov
chains [26]). Instead, our notion of lumping can aggregate states even when real-
izations of the uncertain transition rates make the resulting time-inhomogeneous
Markov chain not lumpable. In order to clarify this difference, let us consider
the simple graph structure in the right inset. If q2,1

and q3,1 are constant values, then the graph repre-
sents a continuous-time Markov chain. In this case,
states 2 and 3 can be aggregated by ordinary lumpa-
bility if q2,1 = q3,1. In the case of a parametric
Markov chain, q2,1 and q3,1 can be expressions over
parameters; yet, parametric Markov chain lumping requires these two expres-
sions to be equal for all possible assignments of the parameters [26]—hence,
each member of the family of Markov chains will be ordinarily lumpable. A sim-
ilar remark applies to lumpability of parametric MDPs. Indeed, if qi,j(a) denotes
the transition rate from state i into state j in the case of any action a, the lumpa-
bility condition requires that q2,1(a) = q3,1(a). Instead, a UCTMC has bounded
intervals as transitions. Applied to this simple example, our proposed notion
of lumpability will require that the intervals of both transitions be equal; how-
ever, according to the semantic interpretation of a UCTMC, this model underlies
behavior in the form of (time-varying) CTMCs which have different transition
rates when the uncertainty is resolved.

394 L. Cardelli et al.

The closest notion to UCTMC lumping is the alternating probabilistic bisim-
ulation considered in [27] for discrete-time interval MDPs. Similarly to us, alter-
nating probabilistic bisimulation: (i) does not require that realizations of the
uncertain transition probabilities make the discrete-time Markov chain lumpable;
(ii) can be computed in polynomial time; (iii) preserves quantitative and logi-
cal properties; however, in [27] it is not proved that the bisimulation is indeed
necessary for the preservation of such properties. We relate UCTMC lumping
to alternating probabilistic bisimulation by defining an approximation for the
continuous-time MDP interpretation of the UCTMC that discretizes both time
and the action space using an MDP with a probabilistic scheduler. On this
discretized model, we show that a UCTMC lumping does correspond to a prob-
abilistic alternating bisimulation, see Sect. 3.4.

Paper Organization. Sect. 2 provides the background, while Sect. 3 introduces
UCTMCs and discusses techniques for their analysis. Section 4, instead, intro-
duces UCTMC lumpability, its quantitative and logical characterization, and an
algorithm for the computation of the coarsest UCTMC lumpability. Section 5
continues with an evaluation of UCTMC lumpability on a set of benchmarks
from the literature, while Sect. 6 concludes the paper.

2 Preliminaries

In this section we fix the notation and briefly recall the definitions of CTMCs
and lumpability that will be used throughout the paper.

Notation. We use ∂t to denote derivative with respect to time t, while xT is
the transpose of a vector x. Pointwise equivalence of functions is denoted by ≡,
while := signifies a definition. Given two partitions H1 and H2 of a set V, we
say that H1 is a refinement of H2 if for any H1 ∈ H1 there exists a (unique)
H2 ∈ H2 such that H1 ⊆ H2. We shall not distinguish among an equivalence
relation and the partition induced by it.

We first introduce time-inhomogeneous (alternatively, time-varying) CTMCs.
To facilitate later results, throughout this paper we assume that transition rates
vary with time according to uniformly piecewise analytic functions, i.e., functions
which are analytic and bounded on all intervals [kh; (k + 1)h), where k ≥ 0 is
an integer and h > 0 is a given fixed time step.

Definition 1 (CTMC). A time-varying CTMC is a tuple (V, Q) where V is a
set of states V = {1, . . . , n}, while Q = (qi,j)i,j is a time-varying transition rate
matrix such that qi,j : R≥0 → R≥0 is a uniformly piecewise analytic transition
rate function from i into j. ��

The following result relates the (transient) probability distributions of (V, Q)
to the Kolmogorov equations for time-varying transition rates [23, Section 2.2].

Lumpability for Uncertain Continuous-Time Markov Chains 395

Theorem 1. Given a CTMC (V, Q) and an initial probability distribution
π[0], the probability distributions π(t) exist and satisfy, for all t ∈ R≥0, the
Kolmogorov equation1

∂tπ(t)T = π(t)T Q(t), where π(0) = π[0]. (1)

Thanks to Theorem 1, ordinary lumpability for time-varying CTMCs is a
straightforward generalization of ordinary lumpability for time-homogeneous
CTMCs (e.g., [4]). The next well-known result provides a quantitative char-
acterization of ordinary lumpability.

Theorem 2 (Ordinary Lumpability). Given a CTMC (V, Q), a partition
H of the set of states V is an ordinary lumping if

∑

j∈H′
qi1,j ≡

∑

j∈H′
qi2,j , for all H,H ′ ∈ H and i1, i2 ∈ H,

The lumped CTMC (V̂, Q̂) is given by

– States V̂ := {iH | H ∈ H}, where iH ∈ H is an arbitrary representative of H.
– Transition rate matrix Q̂ = (q̂iH ,iH′)H,H′ , where

q̂iH ,iH′ :=
∑

j∈H′
qiH ,j forall H,H ′ ∈ H.

If the initial probability distribution of (V̂, Q̂) is defined by π̂[0]iH =
∑

i∈H π[0]i
for all H ∈ H and the transient probability distributions of (V̂, Q̂) are denoted
by π̂, the following holds.

– If H is an ordinary lumping, then π̂iH ≡ ∑
i∈H πi for all H ∈ H and π[0].

– If H is such that π̂iH ≡ ∑
i∈H πi for all H ∈ H and π[0], then H is an

ordinary lumping.

3 Uncertain Continuous-Time Markov Chains

UCTMCs allow transition rates to vary non-deterministically with time within
bounded continuous intervals. After the formal introduction of the model
(Sect. 3.1), we provide the semantics of UCTMCs both in terms of reachable
sets of their probability distributions using the Kolmogorov equations (Sect. 3.2)
and by means of an encoding into a time-inhomogeneous continuous-time MDP
(Sect. 3.3). The time and action-space discrete approximation of the latter
semantics is presented in Sect. 3.4.

1 Proofs are given in the extended version available at doi.org/10.5281/zenodo.469
9211.

http://doi.org/10.5281/zenodo.4699211
http://doi.org/10.5281/zenodo.4699211

396 L. Cardelli et al.

3.1 Model Definition

Definition 2 (Uncertain CTMC). An uncertain CTMC (V,m,M) is a set
of states V = {1, . . . , n} and non-negative matrices m = (mi,j)i,j and M =
(Mi,j)i,j, with m ≤ M , describing the lower and upper bounds of the transition
rates, respectively. ��
According to the above definition, a UCTMC (V,m,M) induces two extremal
(time-homogeneous) CTMCs (V,m) and (V,M) by fixing all lower and upper
bounds, respectively, for each transition rate.

Example. Throughout of this paper, we will use the UCTMC depicted in

11

10 01

00

[β;β] [β;β]

[α;α]

[γ; γ]

[β;β]

[α;α]

[γ; γ]

[β;β]

[α;α] [α;α]

Fig. 1. Running example.

Figure 1 as a running example. To
favor intuition, it can be interpreted
as a symmetric model of two com-
ponents (e.g., two virtual machines)
with a binary state (e.g., down/0
and up/1). Assuming independent
events, each UCTMC state tracks
a possible configuration of the two
machines. Each transition is labeled
with the interval within which the
rates can vary; we use distinct sym-
bols α, β, γ to indicate different
activities of an hypothetical system
under study, such as start-up, shut-
down or machine migration, respec-
tively. When all parameters are precisely known, i.e., α = α, β = β, and γ = γ,
there is the ordinary lumping consisting of blocks {11}, {01, 10}, and {00}. In
this paper we will develop the theory to capture such symmetry for UCTMCs.
For this, here we also observe that the aforementioned ordinary lumping car-
ries over to the two extremal time-homogeneous CTMCs. Indeed, it turns out
that these are the only two CTMCs needed to consider for UCTMC lumpability,
although the UCTMC admits time-varying behaviors that do not satisfy the con-
ditions of CTMC ordinary lumpability stated in Theorem 2 and also mentioned
in Sect. 1.

3.2 Reachable-Set Semantics

Analogously to the probability distribution of a CTMC obeying the Kolmogorov
equations, the semantics of a UCTMC is given by the set of reachable probability
distributions under all possible time-varying values of the transition rate matrix.

Lumpability for Uncertain Continuous-Time Markov Chains 397

Definition 3 (UCTMC reachable-set semantics). The semantics of a given
UCTMC U = (V,m,M) is provided by the reachable sets

RU
(
H, τ, π[0]

)
=

{ ∑

i∈H

πi(τ) | ∂tπ(t)T = π(t)T Q(t)

such that π(0) = π[0] and Q is admissible
}

,

where τ ≥ 0 and H ⊆ V, while Q = (qi,j)i,j is admissible if, for all t ≥ 0 and i
= j,
qi,j(t) ∈ [mi,j ;Mi,j] and qi,j is uniformly piecewise analytic function of time. ��
Remark 1. The common notion of reachable sets is recovered by restricting H
to singleton blocks only, i.e., {{i} | i ∈ V}. We allow for general blocks because
our ultimate goal is to relate sums of reachable probability distributions of a
UCTMC to the reachable probability distributions of a lumped UCTMC.

The reachable-set semantics gives a concrete operational view of the model.
Indeed, reachable sets can be analyzed in two ways. The first is by determin-
ing, by means of some analytical approach, the transient probabilities for all
possible time-varying transition rates satisfying mi,j ≤ qi,j(t) ≤ Mi,j that obey
the ODE in Eq. 1. The second way is to compute reachable intervals by formal
under- and over-approximation, using well-established techniques for uncertain
dynamical systems, of which Eq. 1 are an instance, such as those implemented
in C2E2, Flow* or SpaceEx, see [2,12,19] and references therein. We remark
however that the aforementioned methods apply to nonlinear dynamical sys-
tems of which UCTMCs are a specific instance. While time-varying transition
rates can be interpreted as control inputs that are steering the transient prob-
abilities towards certain values, it is also possible to approximate UCTMCs by
carefully chosen discrete-time MDPs (DTMDP). As discussed further below, in
both cases the presence of time-varying uncertainty may result in computation-
ally challenging problems, thus further motivating the development of efficient
reduction techniques.

3.3 CTMDP Semantics

As introduced in Sect. 1, a UCTMC can also be seen as an instance of a time-
inhomogeneous continuous-time MDP (CTMDP). To see this, we consider a
CTMDP with the scheduler model as in [23, Section 2.2], which can be intuitively
described as follows. For a sufficiently small time step h > 0, a CTMDP that
is in state i ∈ V at some time kh ≥ 0, where k ≥ 0 is an integer, may choose
an action ai from A(i), the set of available actions in state i. With this, the
CTMDP remains in state i on [kh; kh + h), while at time kh + h the state is:

– j
= i, with probability qi,j(kh, ai)h + o(h), where o(h) refers to the standard
small-o notation, while qi,j(kh, ai) denotes the transition rate from state i
into state j at time kh under action ai;

– i, with probability 1 + qi,i(kh, ai)h + o(h).

398 L. Cardelli et al.

Note that qi,j(kh, ai)h + o(h) and 1 + qi,i(kh, ai)h + o(h) can be interpreted
as transition probabilities of the embedded DTMC under action ai at step k.
Indeed, in the special case when the transition rates are time-invariant, the
time-homogeneous CTMDP admit a characterization in terms of sojourn times
and an embedded discrete time Markov chain, according to which the choice of
action ai ∈ A(i) upon entering state i ∈ V gives a sojourn time in state i that is
exponentially distributed with rate −qi,i(ai), and the probability to move into a
state j
= i equal to −qi,j(ai)/qi,i(ai) (see Theorem 2.8.2 in [40]).

Under this model, the discussion in [23, Section 2.2] yields the following rela-
tionship between a UCTMC and a CTMDP, where, essentially the uncountable
many actions of the latter encode the uncertainty intervals of the former.

Theorem 3. For a given UCTMC (V,m,M), consider the CTMDP (V,A,M)
where an action taken at time t in state i, denoted by ai(t), is a row vector such
that each component ai,j(t) determines the transition rate from i into j at time
t. More formally:

– The set of actions in state i ∈ V be given by A(i) =
∏

j �=i[mi,j ;Mi,j];
– The transition rate from state i to state j at time t under action ai ∈ A(i) is

denoted by qi,j(t, ai) and is given by ai,j ∈ [mi,j ;Mi,j], where ai,j is the j-th
entry of ai;

– The policies form the set M and are given by uniformly piecewise analytic
functions a : [0;∞) → ∏

i∈V A(i).

For such a CTMDP, the maximization (respectively, minimization) of the prob-
ability of reaching a state in block H at the time τ corresponds to the compu-
tation of the maximal (respectively, minimal) value of the reachable set from
Definition 3.

3.4 Discrete-Time Approximation of the CTMDP Semantics

In this appendix we present a discrete-time approximation of the CTMDP
semantics which is of interest for a two-fold purpose. First, we show that the
resulting DTMDP can be analyzed to obtain approximations of the maximal
and minimal reachable probabilities for each state using dynamic programming.
Second, in the proof of Theorem 9, this approximate DTMDP is used to relate the
notion UCTMC lumping with the alternating probabilistic bisimulation of [27].

Instrumental to the DTMDP approximation is an alternative CTMDP encod-
ing which uses finite action spaces, at the expense of probabilistic (instead of
deterministic) policies. Before giving this encoding, we convey the main underly-
ing idea on an illustrative example. Let us assume that we are given a CTMDP
that can move from state i only into state j and that the corresponding time-
dependent deterministic transition rate function is qi,j(t, a(t)) = ai,j(t), where
mi,j = 1, Mi,j = 2 and ai,j(t) = 2 − e−t. With this, we first replace the contin-
uous interval [1; 2] with the discrete action set {mi,j ,Mi,j}, where the symbols
mi,j and Mi,j represent the boundary values mi,j = 1 and Mi,j = 2, respec-
tively. Then, the idea is to choose suitable probability functions μmi,j

(t) and

Lumpability for Uncertain Continuous-Time Markov Chains 399

μMi,j (t) such that the average transition rate from state i into state j at time
t, given by 1μmi,j

(t) + 2μMi,j
(t), is identical to ai,j(t). It can be easily verified

that μmi,j
(t) = e−t and μMi,j

(t) = 1 − e−t induce ai,j .
Following [23, Section 2.2], the foregoing example can ge generalized as fol-

lows.

Proposition 1. For a given UCTMC (V,m,M), consider the CTMDP
(V,A′,M′) where an action in state i at time t is taken randomly, is denoted
by ai(t), and is a row vector such that each row entry ai,j(t) ∈ {mi,j ;Mi,j}
determines the transition rate from i into j at time t accordingly. Formally, we
have the following.

– The set of actions in state i ∈ V is given by A′(i) =
∏

j �=i{mi,j ,Mi,j}.
– The transition rate of from i into j at time t under action ai ∈ A′(i) is

qi,j(t, ai) = v(ai,j), where v(ai,j) = mi,j if ai,j = mi,j and v(ai,j) = Mi,j

when ai,j = Mi,j .
– The set of policies, M′, constitutes non-negative uniformly piecewise analytic

functions μ satisfying
∑

ai∈A′(i) μai
(t) = 1 for all i ∈ V and t ≥ 0. In particu-

lar, with D(X) denoting the set of probability measures on a set X, it holds
that M′ is a proper subset of [0;∞) → ∏

i∈V D(A′(i)).

Then, the policy sets M and M′, where M refers to the policy set given in
Theorem 3, induce the same set of time-inhomogeneous CTMCs.

For a policy μ ∈ M′, the Kolmogorov equations ∂tπ(t)T = π(t)T Q(t, μ(t))
describing the transient probabilities of the time-inhomogeneous CTMC can be
solved numerically by invoking the Euler method [21], a classic approach for the
numeric solution of systems of differential equations. Specifically, by discretizing
time into the set {0, h, 2h, . . .}, the probability distribution at time kh, denoted
by π(kh), is approximated by π[k], where

π[k + 1]T := π[k]T
(
I + hQ(kh, μ(kh))

)
,

π[0] := π(0) and I is the identity matrix. Additionally to the known fact that
the approximation error is O(h), we make the key observation that the Euler
method defines a time-inhomogeneous DTMC. Indeed, similarly to the discussion
in Sect. 3.3, I +hQ(kh, μ(kh)) describes the transition probability matrix of the
embedded time-inhomogeneous DTMC.

Together with Theorem 3 and Proposition 1, the next result allows us to
formally relate UCTMCs to time-inhomogeneous DTMDPs.

Theorem 4. Given UCTMC (V,m,M), set

Λ = max
i∈V

(∑

j �=i

Mi,j +
∑

j �=i

Mj,i

)

and fix h ≤ 1/Λ. Then, I + hQ(kh, μ(kh)) is a stochastic matrix for all μ ∈ M′

and k ≥ 0. With this, consider the DTMDP (V,A′,M′
h) given as:

400 L. Cardelli et al.

– The states are V, while the actions in state i ∈ V are given by A′(i) =∏
j �=i{mi,j ;Mi,j}.

– The transition probability from state i into state j at step k ≥ 0 for ai ∈ A′(i)
is

pi,j(k, ai) =

{
hv(ai,j) , j
= i

1 − h
∑

j �=i v(ai,j) , j = i

– The set of policies is M′
h = {ν | ν : N0 → ∏

i∈V D(A′(i)
)}. In particular,

for a given policy ν, the transition probability from state i into state j at step
k ≥ 0 is given by pi,j(k, ν(k)) =

∑
ai∈A′(i) νai

(k)pi,j(k, ai).

Then, for any time τ > 0 and policy a ∈ M such that the modulus of the
derivative of each ai,j is bounded by λ ≥ 0 almost everywhere, there exits a
policy ν ∈ M′

h such that

max
i∈V

|πi[k] − πi(τ)| ≤ h

[
3Λ
2

+
λ

Λ
max
i∈V

deg(i)
] (

eΛτ − 1
)

= O(h),

where deg(i) = |{j
= i | mi,j < Mi,j}| + |{j
= i | mj,i < Mj,i}| are the incoming
and outgoing non-deterministic transitions of i, while k ≥ 0 minimizes |kh − τ |.

Theorem 4 ensures that any τ ≥ 0 and any admissible transition rate matrix
of the UCTMC can be matched by an approximate DTMDP such that the tran-
sition probabilities of both, the so-induced DTMC and the so-induced CTMC,
are matching up to an ε at τ ≥ 0.

We state our first major result which relates reachability- and MDP-
semantics.

Theorem 5. For τ > 0, a UCTMC U = (V,m,M) and H ⊆ V, let k be such
that τ = kh. Then, the maximal (minimal) probability for reaching a block H
at τ coincides, by Theorem 3, with the maximum (minimum) of RU (H, τ, π[0])
from Definition 3 and can be computed in

O
(
k
(∑

i∈V
degallo (i)

)(∑

i∈V
2dego(i)

))
,

where degallo (i) = |{j
= i | 0 < Mi,j}| is the number of outgoing transitions
from state i, while dego(i) = |{j
= i | mi,j < Mi,j}| is the number of outgoing
non-deterministic transitions from state i.

The complexity bound from Theorem 5 is polynomial in the number of states
and exponential in maxi dego(i), i.e., the maximal number of outgoing non-
deterministic transitions of the approximate DTMDP.

4 UCTMC Lumpability

In Sect. 4.1 we prove that UCTMC lumpability characterizes the preservation
of sums of reachable probability distributions. The logical characterization of
UCTMC lumpability with respect to continuous stochastic logic is presented in
Sect. 4.2. The UCTMC lumping algorithm is discussed in Sect. 4.3.

Lumpability for Uncertain Continuous-Time Markov Chains 401

4.1 UCTMC Lumpability

Definition 4 (UCTMC Lumpability). A partition H of V is a UCTMC
lumping of UCTMC (V,m,M) if it is an ordinary lumping of both CTMCs (V,m)
and (V,M). ��

For instance, H =
{{00}, {01, 10}, {11}}

is a UCTMC lumping of the
UCTMC from Fig. 1. The lumped UCTMC is obtained in a similar way as for
ordinary lumpability.

Definition 5 (Lumped UCTMC). Assume that H is a UCTMC lumping of
(V,m,M) and fix, for each H ∈ H, some representative iH ∈ H. The lumped
UCTMC has states V̂ := {iH | H ∈ H} and bounds m̂iH ,iH′ :=

∑
j∈H′ miH ,j and

M̂iH ,iH′ :=
∑

j∈H′ MiH ,j. ��
Example. In the case of the UCTMC from Fig. 1, the UCTMC lumping

11

10

00

[2β; 2β][α;α]

[β;β][2α; 2α]

Fig. 2. Lumped UCTMC.

H =
{{11}, {01, 10}, {11}}

induces the lumped
UCTMC in Fig. 2. Each state is labeled with a rep-
resentative of the corresponding partition block. It
is interesting to note that the transitions between
states 01 and 10 in the original UCTMC correspond
to self-loops in the lumped UCTMC. However, since
self-loops induce self canceling terms at the level of
forward Kolmogorov equations, they do not have an
impact on system’s dynamics and can be ignored.

Sums of reachable probability distributions of
a UCTMC coincide with the reachable proba-
bility distributions of the corresponding lumped
UCTMC.

Theorem 6 (Preservation of Reachability). Assume that H is a UCTMC
lumping of U = (V,m,M). Then, for any time τ ≥ 0, block H ∈ H and initial
probability distribution π[0], it holds that

RU (H, τ, π[0]
)

= RÛ ({iH}, τ, π̂[0]),

where Û refers to the lumped UCTMC induced by H and π̂[0]iH =
∑

i∈H π[0]i
for all H ∈ H.

Example. In the case of the running example, Theorem 6 ensures, for instance,
that RU ({10, 01}, t, π[0]) = RÛ ({10}, t, π̂[0]) for all t ≥ 0 and π[0].

We next present a modification of Theorem 6 that allows one to over-
approximate sums of reachable probability distributions when H is not a
UCTMC. It resembles [33] which provides over-approximations of uniformized
CTMCs.

Theorem 7 (Over-Approximation). For a given UCTMC U = (V,m,M)
and partition H of V, assume that

402 L. Cardelli et al.

– m′ ≤ m such that H is an ordinary lumping of the CTMC (V,m′);
– M ≤ M ′ such that H is an ordinary lumping of the CTMC (V,M ′).

Then, H is a UCTMC lumping of U ′ = (V,m′,M ′) and for any initial probability
distribution π[0], the lumped UCTMC Û ′ induced by U ′ and H satisfies

RU (H, τ, π[0]) ⊆ RÛ ′({iH}, τ, π̂′[0]
)

for all τ ≥ 0 and H ∈ H, provided that π̂′[0]iH =
∑

i∈H π[0]i for all H ∈ H.

Our next result is the converse of Theorem 6. Together with Theorem 6, it
provides a quantitative characterization of UCTMC lumpability.

Theorem 8 (Quantitative Characterization). Let U = (V,m,M) be some
UCTMC and Û = (V̂, m̂, M̂) a UCTMC with V̂ = {iH | H ∈ H} where H is
a partition of V and for any time τ ≥ 0, block H ∈ H and initial probability
distribution π[0], it holds that

RU
(
H, τ, π[0]

)
= RÛ

({iH}, τ, π̂[0]
)

whenever π̂[0]iH =
∑

i∈H π[0]i for all H ∈ H. Then, H is a UCTMC lumping
and Û the underlying lumped UCTMC.

Remark 2. By Theorem 8, the subset relation of Theorem 7 becomes an identity
only if H is a UCTMC lumping of (V,m,M) and m = m′, M = M ′. In particular,
over-approximations due to Theorem 7 are proper in general.

We end this section by relating UCTMC lumpability to other notions. First,
we observe that UCTMC lumpability is a conservative generalization of ordinary
lumpability.

Lemma 1 (Generalization). Assume that H is a UCTMC lumping of a
UCTMC (V,m,M) which is deterministic, i.e., m = M . Then, H is an ordinary
lumping.

Second, we prove that any UCTMC admits a DTMDP approximation that
discretizes time and action spaces and for which the notions of UCTMC lumpa-
bility and alternating probabilistic bisimulation (cf. [27]) coincide.

Theorem 9. Fix a UCTMC (V,m,M), an equivalence relation R ⊆ V ×V and
let H = V/R. Then H is a UCTMC lumpability of (V,m,M) if and only if R is
an alternating probabilistic bisimulation of the DTMDP from Theorem 4.

As mentioned earlier, alternating probabilistic bisimulation only preserves
logical and quantitative properties [27] on the domain of DTMDPs, while
UCTMC lumping characterizes these on the domain of UCTMCs.

Lumpability for Uncertain Continuous-Time Markov Chains 403

4.2 Logical Characterization

We extend CSL to UCTMCs by defining a formula to be true when it is satisfied
by all admissible Q = (qi,j)(i,j). This allows one to study safety properties in
presence of uncertainty, aligning with [39], which considers CSL for CTMDPs
with finite action spaces.

Definition 6 (CSL for UCTMCs). Given a UCTMC (V,m,M), the CSL
syntax is

φ:: = a | φ ∧ φ | ¬φ | P∀
��p

(
X[t0;t1]φ

) | P∀
��p

(
φU[t0;t1]φ

)

For an arbitrary small but fixed time step h > 0, let t denote the smallest grid
point in {0, h, 2h, . . .} that minimizes the distance to t ≥ 0, i.e., t = h · t/h�,
where ·� is the floor function. For a given labeling function L : V → 2V and
initial probability distribution π[0], the satisfiability operator is defined by induc-
tion:

– i, t |= a iff a ∈ L(i);
– i, t |= φ1 ∧ φ2 iff i, t |= φ1 and i, t0 |= φ2;
– i, t |= ¬φ iff not i, t |= φ;
– i, t |= P∀

��p

(
X[t0;t1]φ1

)
iff i, t |= P��p

(
X[t0;t1]φ

)
for all admissible q;

– i, t |= P∀
��p

(
φ1U

[t0;t1]φ2

)
iff i, t |= P��p

(
φ1U

[t0;t1]φ2

)
for all admissible q. ��

Similarly to [39], existential quantification is given by P∃
��p(Φ) := ¬P∀

¬��p

(
Φ

)
,

where ¬ � is defined in the obvious manner (e.g., ¬ ≤ is >). Likewise, ∨, → are
defined using ∧, ¬.

Theorem 10 (Preservation of CSL). Let H be a UCTMC lumping of UCTMC
U and let Û be the underlying lumped UCTMC. Further, assume that L(i) = L(j)
for all H ∈ H and i, j ∈ H. With this, define Â := A and L̂(iH) := L(iH) for all
H ∈ H. Then

i, t |=U φ ⇐⇒ iH , t |=Û φ

for any t ≥ 0, h > 0, block H ∈ H, state i ∈ H, X-operator free CSL formula φ
and initial probability distribution π[0].

The next result is a converse of Theorem 10 and establishes a logical charac-
terization of UCTMC lumpability.

Theorem 11 (Logical Characterization). Fix a UCTMC (V,m,M), a par-
tition H of V and let L, Â and L̂ be as in Theorem 10. Assume further that there
exists a UCTMC (V̂, m̂, M̂) such that V̂ = {iH | H ∈ H} and

i, t |=V,m,M φ ⇐⇒ iH , t |=V̂,m̂,M̂ φ

for any t ≥ 0, h > 0, H ∈ H, i ∈ H and X-operator free CSL formula φ. Then,
H is a UCTMC lumping and (V̂, m̂, M̂) the underlying lumped UCTMC.

404 L. Cardelli et al.

Algorithm 1. Partition refinement algorithm for the computation of the coars-
est UCTMC lumping H from the proof of Theorem 12.
Require: Uncertain CTMC (V, m, M) and initial partition H
1: while true do
2: H′ ←− coarsest ordinary lumping of CTMC (V, m) that refines H
3: H′′ ←− coarsest ordinary lumping of CTMC (V, M) that refines H′

4: if H′′ = H then
5: return H′′

6: else
7: H ←− H′′

8: end if
9: end while

4.3 UCTMC Lumping Algorithm

We next present an algorithm for the efficient computation of the coarsest
UCTMC lumping that refines a given partition H. Its steps are as follows.

A1 With H being the current partition, compute the coarsest ordinary lumping
H′ of the CTMC (V,m) that refines H;

A2 Compute the coarsest ordinary lumping H′′ of the CTMC (V,M) that refines
H′;

A3 If H′′ = H, return H′′; Otherwise, set H := H′′ and go to A1.

Obviously, if A1 does not refine H and A2 does not refine H′, then H is a
UCTMC lumping of (V,m,M). The algorithm terminates because V is finite.
Moreover, it can be shown that the algorithm indeed computes the coarsest
UCTMC partition because each refinement produces a partition which, itself, is
still refined by the coarsest UCTMC lumping.

The next result summarizes the above discussion. The complexity statement
follows thanks to the fact that A1 and A2 can be processed via efficient CTMC
lumping algorithms such as [17,46].

Theorem 12. Given a UCTMC (V,m,M), let H be a partition of V. Then, the
following can be shown.

1) Algorithm 1 computes the coarsest UCTMC lumping refining H.
2) The time and space complexity required for one while loop iteration does not

exceed O(r log(s)), where r := |{(i, j) | mi,j > 0 or Mi,j > 0}| and s := |V|.
The number of while loop iterations, instead, is at most s.

We conclude this section with two remarks regarding the lumping algorithm.
First, we note that it simplifies to the CTMC lumping algorithm if applied to a
deterministic UCTMC (V,m,M), i.e., a UCTMC that satisfies m = M . Second,
using the correspondence between UCTMC lumpability and probabilistic alter-
nating bisimulation from Theorem 9, it would be possible to apply the algorithm
for the largest alternating probabilistic bisimulation [27] of the approximate

Lumpability for Uncertain Continuous-Time Markov Chains 405

DTMDP from Theorem 9. However, in contrast to the UCTMC algorithm, such
an approach would incur an exponential dependence on the maximal number of
outgoing non-deterministic transitions of the approximate DTMDP.

5 Evaluation

Here we assess UCTMC lumpability in terms of both its computational tractabil-
ity and reduction power with respect to ordinary lumpability. To this end, we
consider uncertain variants of CTMCs of increasing size generated from bench-
mark models in PRISM [36].

Tool-Support and Replicability. In our experiments we used a prototype
implementation of our algorithm based on the tool ERODE [9]. ERODE sup-
ports CTMC minimization as a special case of lumping algorithms for nonlin-
ear ordinary differential equations [10]. Given that CTMC ordinary lumpability
is the most important inner step of our algorithm, other tools implementing
CTMC lumping could have been used, such as MRMC [32], STORM [15], and
CoPaR [16,18]. All runtimes reported refer to the execution of ERODE on a
common desktop machine with 8 GB RAM. All the material to replicate the
experiments is available at https://www.erode.eu/examples.html.

Set-Up. For this evaluation we used CTMCs in the MRMC format [32], gener-
ated from PRISM models. We considered CTMCs which describe: a dependable
cluster of workstations [28]; a protocol for wireless group communication [3,38];
a model of the cell cycle control in eukaryotes [37,41]. Similarly to [24,27], we
considered uncertain relaxations of such CTMCs by adding uncertainty to the
transition rates. In particular, in each model we replaced every transition rate
value with an interval of fixed length (arbitrarily fixed equal to 20% of the small-
est transition rate in the model) centered at the original rate value itself.

Results. The results are provided in Table 1. We report the number of tran-
sitions and states of the obtained CTMCs in the second and third column,
respectively, as a function of the scaling parameter N . The initial input par-
tition of states, denoted by H0, was induced by the original model specification
by creating blocks of states characterized by the same atomic propositions. The
comparison of the runtimes of the minimization algorithms provides an indi-
cation of the increased overhead for the reduction (which is proportional to
the number of states in the worst case). In all our tests, UCTMC lumpability
had, up to a factor of two, the same runtime as the CTMC version. This is
because in all models at most two iterations of our algorithm were necessary.
The effectiveness of UCTMC lumping can be evaluated by comparing the size of
the coarsest UCTMC lumpings with their corresponding CTMC counterparts.
Notably, CTMC and UCTMC lumpability coincide on the first two families of
models, while in the third family UCTMC lumpability leads to finer (at most
18% more blocks) partitions than the CTMC counterpart.

https://www.erode.eu/examples.html

406 L. Cardelli et al.

Table 1. Quantitative comparison of CTMC and UCTMC lumpability. Entries iden-
tical denote cases with identical CTMC and UCTMC lumpable partitions.

Original model (CTMC) CTMC Lumpability UCTMC Lumpability

N r s |H0| Red.(s) |H| Red.(s) |H|
Workstation cluster

128 2 908 192 597 012 4 2.21E+1 298 893 2.64E+1 identical

192 6 52 4960 1 33 7876 4 6.78E+1 669 517 8.04E+1 identical

256 11 583 520 2 373 652 4 1.55E+2 1 187 597 1.85E+2 identical

320 18 083 872 3 704 340 4 2.81E+2 1 853 133 3.58E+2 identical

384 26 026 016 5 329 940 4 out of memory out of memory

Wireless group communication protocol

16 686 153 103 173 2 2.26E+0 4 846 2.97E+0 identical

24 3 183 849 453 125 2 1.34E+1 20 476 1.61E+1 identical

32 10 954 382 1 329 669 2 4.49E+1 58 906 5.50E+1 identical

40 22 871 849 3 101 445 2 1.35E+2 135 752 1.61E+2 identical

48 46 574 793 6 235 397 2 out of memory out of memory

Cell cycle control in eukaryotes

2 18 342 4 666 3 1.76E–1 3 514 1.97E–1 4 000

3 305 502 57 667 3 8.21E–1 40 667 9.81E–1 48 147

4 2 742 012 431 101 3 6.45E+0 282 956 7.80E+0 33 9368

5 16 778 785 2 326 666 3 4.58E+1 1 424 935 9.15E+1 1 712 322

6 78 768 799 9 960 861 3 out of memory out of memory

Table 2. Summary of results. UCTMC lumpability generalizes the well-known dynam-
ical, logical and algorithmic properties of ordinary lumpability for CTMCs (in state-
ments concerning complexity, s refers to the numbers of states, while r denotes the
number of transitions).

CTMC lumpability UCTMC lumpability

� [4,8,34] Dynamics � Theorem 6, 8
∑

i∈H πi(t) = π̂iH (t) R(∑
i∈H πi, t, π[0]

)
= R(

π̂iH , t, π̂[0]
)

� [1] Logics � Theorem 10, 11

i, t |=V φ ⇐⇒ iH , t |=V̂ φ i, t |=V,m,M φ ⇐⇒ iH , t |=V̂,m̂,M̂ φ

O(r log(s)) [17,46] Complexity O(sr log(s)) Theorem 12

6 Conclusion

Uncertain continuous-time Markov chains (UCTMCs) generalize continuous-time
Markov chains (CTMCs) by allowing transition rates to non-deterministically take
values within given bounded intervals. UCTMC lumpability enjoys a polynomial
time and space algorithm for the computation of the largest UCTMC lumping.

Lumpability for Uncertain Continuous-Time Markov Chains 407

Similarly to CTMC lumping that characterizes the preservation of sums of prob-
ability distributions, UCTMC lumping characterizes the preservations of reach-
able sets of sums of probability distributions. We have provided a logical charac-
terization of UCTMC lumpability to uncertain time-varying parameters. Over-
all, the results in this paper can be put in analogy with the corresponding CTMC
counterparts, as summarized in Table 2. The applicability of UCTMC lumpabil-
ity has been established by presenting substantial reductions in benchmark mod-
els. The discretization of a UCTMC as a DTMDP has offered the means to relat-
ing UCTMC lumpability to bisimulations for DTMDPs. Future work will consider
model-checking algorithms for UCTMCs.

Acknowledgement. Luca Cardelli is supported by a Royal Society Research Profes-
sorship. The work has been partially supported by the ERC Advanced Grant LASSO,
the Villum Investigator Grant S4OS, the EU-Ecsel project iDev40, the FFG project
Adex, the PRIN project SEDUCE, no. 2017TWRCNB, the FWF project COCO no.
M-2393-N32, the Poul Due Jensen Foundation grant no. 883901, and by the DFF RP1
project REDUCTO no. 9040-00224B.

References

1. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algo-
rithms for continuous-time Markov Chains. IEEE Trans. Software Eng. 29(6),
524–541 (2003)

2. Bogomolov, S., Frehse, G., Grosu, R., Ladan, H., Podelski, A., Wehrle, M.: A box-
based distance between regions for guiding the reachability analysis of SpaceEx.
In: CAV, pp. 479–494 (2012)

3. Bondavalli, A., Coccoli, A., Giandomenico, F.D.: QoS analysis of group com-
munication protocols in wireless environment. In: Ezhilchelvan, P., Romanovsky,
A. (eds.) Concurrency in Dependable Computing, pp. 169–188. Springer, Boston
(2002). https://doi.org/10.1007/978-1-4757-3573-4 9

4. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl.
Prob. 31(1), 59–75 (1994)

5. Buchholz, P., Hahn, E.M., Hermanns, H., Zhang, L.: Model checking algorithms
for CTMDPs. In: CAV, pp. 225–242 (2011)

6. Butkova, Y., Hatefi, H., Hermanns, H., Krcál, J.: Optimal continuous time Markov
decisions. In: ATVA, pp. 166–182 (2015)

7. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.:
Constraint Markov chains. Theoret. Comput. Sci. 412(34), 4373–4404 (2011)

8. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation
of differential equivalences. In: POPL, pp. 137–150 (2016)

9. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the
evaluation and reduction of ordinary differential equations. In: TACAS (2017)

10. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation
of polynomial dynamical systems. Proc. Natl. Acad. Sci. 114(38), 10029–10034
(2017)

11. Češka, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Informatica 54(6),
589–623 (2017)

https://doi.org/10.1007/978-1-4757-3573-4_9

408 L. Cardelli et al.

12. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: CAV, pp. 258–263 (2013)

13. David, R., Alla, H.: Discrete, Continuous, and Hybrid Petri Nets. Springer, Hei-
delberg (2005). https://doi.org/10.1007/978-3-642-10669-9

14. Dehnert, C., et al.: PROPhESY: A PRObabilistic ParamEter SYnthesis tool. In:
CAV, pp. 214–231 (2015)

15. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern
probabilistic model checker. In: Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24–28, 2017, Proceedings, Part
II, pp. 592–600 (2017)

16. Deifel, H.-P., Milius, S., Schröder, L., Wißmann, T.: Generic partition refinement
and weighted tree automata. In: FM (2019, to Appear)

17. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov
chains. Inf. Process. Lett. 87(6), 309–315 (2003)

18. Dorsch, U., Milius, S., Schröder, L., Wißmann, T.: Efficient coalgebraic partition
refinement. In: CONCUR, pp. 32:1–32:16 (2017)

19. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachabil-
ity analysis for nonlinear hybrid models with C2E2. In: CAV, pp. 531–538 (2016)

20. Fecher, H., Leucker, M., Wolf, V.: Don’t Know in probabilistic systems. In: SPIN,
pp. 71–88 (2006)

21. William Gear, C.: Numerical Initial Value Problems in Ordinary Differential Equa-
tions. Prentice Hall PTR (1971)

22. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

23. Guo, X., Hernandez-Lerma, O.: Continuous-Time Markov Decision Processes.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02547-1

24. Hahn, E.M., Hashemi, V., Hermanns, H., Turrini, A.: Exploiting robust optimiza-
tion for interval probabilistic bisimulation. In: Agha, G., Van Houdt, B. (eds.)
QEST 2016. LNCS, vol. 9826, pp. 55–71. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-43425-4 4

25. Hahn, E.M., Hermanns, H., Wimmer, R., Becker, B.: Transient reward approxima-
tion for continuous-time Markov chains. IEEE Trans. Reliability 64(4), 1254–1275
(2015)

26. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. STTT 13(1), 3–19 (2011)

27. Hashemi, V., Turrini, A., Hahn, E.M., Hermanns, H., Elbassioni, K.M.:
Polynomial-time alternating probabilistic bisimulation for interval MDPs. In:
SETTA, pp. 25–41 (2017)

28. Haverkort, B.R., Hermanns, H., Katoen, J.-P.: On the use of model checking tech-
niques for dependability evaluation. In: SRDS, pp. 228–237 (2000)

29. Hermanns, H., Rettelbach, M.: Syntax, semantics, equivalences, and axioms for
MTIPP. In: Proceedings of Process Algebra and Probabilistic Methods, pp. 71–87,
Erlangen (1994)

30. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

31. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS, pp. 266–277 (1991)

32. Katoen, J.-P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In:
QEST, pp. 243–244 (2005)

33. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for
continuous-time Markov chains. In: CAV, pp. 311–324 (2007)

https://doi.org/10.1007/978-3-642-10669-9
https://doi.org/10.1007/978-3-642-02547-1
https://doi.org/10.1007/978-3-319-43425-4_4
https://doi.org/10.1007/978-3-319-43425-4_4

Lumpability for Uncertain Continuous-Time Markov Chains 409

34. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York (1976)
35. Kozine, I.O., Utkin, L.V.: Interval-valued finite Markov chains. Reliable Comput.

8(2), 97–113 (2002)
36. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic

real-time systems. In: CAV, pp. 585–591 (2011)
37. Lecca, P., Priami, C.: Cell cycle control in eukaryotes: a biospi model. Electr. Notes

Theor. Comput. Sci. 180(3), 51–63 (2007)
38. Massink, M., Katoen, J.-P., Latella, D.: Model checking dependability attributes

of wireless group communication. In: DSN, pp. 711–720 (2004)
39. Neuhäußer, M.R., Katoen, J.-P.: Bisimulation and logical preservation for

continuous-time Markov decision processes. In CONCUR, pages 412–427, 2007
40. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1998)
41. Novak, B., Csikasz-Nagy, A., Gyorffy, B., Nasmyth, K., Tyson, J.J.: Model scenar-

ios for evolution of the eukaryotic cell cycle. Philosophical Trans. Roy. Soc. Lond.
Ser. B: Biol. Sci. 353(1378), 2063–2076 (1998)

42. Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence
of uncertainties. In: TACAS, pp. 394–410 (2006)

43. Simon, P.L., Taylor, M., Kiss, I.Z.: Exact epidemic models on graphs using graph-
automorphism driven lumping. J Math. Biol. 62(4), 479–508 (2010)

44. Song, L., Zhang, L., Godskesen, J.Chr.: Bisimulations and logical characterizations
on continuous-time Markov decision processes. In: VMCAI, pp. 98–117 (2014)

45. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation. Princeton
University Press, PrincetonPrinceton (2009)

46. Valmari, A., Franceschinis, G.: Simple O(m log n) time Markov chain lumping. In:
TACAS, pp. 38–52 (2010)

Stochastic Models

Accurate Approximate Diagnosis
of (Controllable) Stochastic Systems

Engel Lefaucheux(B)

Max Planck Institute for Software Systems, Saarland Informatics Campus,
Saarbrücken, Germany
elefauch@mpi-sws.org

Abstract. Diagnosis of partially observable stochastic systems prone to
faults was introduced in the late nineties. Diagnosability may be specified
in different ways: exact diagnosability requires that almost surely a fault
is detected and that no fault is erroneously claimed; approximate diag-
nosability tolerates a small error probability when claiming a fault; last,
accurate approximate diagnosability guarantees that the error probabil-
ity can be chosen arbitrarily small. While all three notions were studied for
passive systems such as observable Markov chains, only the exact notion
was considered for systems equipped with a controller. As the approximate
notion of diagnosability was shown to be undecidable in passive systems, in
this article, we complete the picture by deciding the accurate approximate
diagnosability for controllable observable Markov chains. More precisely,
we show how to adapt the accurate approximate notion to the active set-
ting and establish EXPTIME-completeness of the associated decision prob-
lem. We also show how to measure the set of faulty paths that are detected
under the accurate approximate notion in the passive setting.

Keywords: Stochastic systems · Partial observation · Control ·
Diagnosis

1 Introduction

Diagnosis and Diagnosability. There has been an increasing use of software
systems for critical operations. When designing such systems, one aims at elim-
inating faults that could trigger unwanted behaviours. However, for embedded
systems interacting with an unpredictable environment, the absence of faults is
not a reasonable hypothesis. Thus diagnosis, whose goal consists to detect faults
from the observations of the runs of the system, is a crucial task. One of the
approaches frequently used to analyse diagnosability consists in modelling the
system by a transition system whose states (depending on the internal part of
the system) are unobservable and events may, depending on their nature, be
observable or not. One of the proposed approaches consists in modelling these
systems by partially observable labelled transition systems (poLTS) [24]. In such
a framework, diagnosability requires that the occurrence of unobservable faults
can be deduced accurately from the previous and subsequent observable events.
c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 413–434, 2021.
https://doi.org/10.1007/978-3-030-85172-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_22&domain=pdf
http://orcid.org/0000-0003-0875-300X
https://doi.org/10.1007/978-3-030-85172-9_22

414 E. Lefaucheux

In other words, defining the disclosure set of a system as the set of faulty paths
of the system that can be detected, a system is diagnosable if every faulty path
belongs to the disclosure set. Diagnosability for poLTS was shown to be decid-
able in PTIME [18]. Diagnosis has since been extended to numerous models (Petri
nets [12], pushdown systems [20], etc.) and settings (centralized, decentralized,
distributed), and have had an impact on important application areas, e.g. for
telecommunication network failure diagnosis.

Diagnosability for Stochastic Passive Systems. In transition systems, the unpre-
dictable behaviours of the environment are modelled by a nondeterministic
choice between the possible events from the current state. However, in order
to quantify the risks induced by the faults of the systems, the designer often
substitutes the nondeterministic choice by a random choice or equivalently by a
weighted one. Then the model becomes a discrete time observable Markov chain
(oMC) in the passive case (i.e. without control). In these models, one can define
a probability measure over infinite runs. In that context, the accuracy required to
claim a path is faulty can be relaxed. There are three natural variants: (1) exact
disclosure, which, as in the non-stochastic case, requires that every path sharing
the given observation sequence is faulty in order to claim a fault occurred, (2)
ε-disclosure for ε > 0 which tolerates small errors, allowing to claim the failure
of a path if the conditional probability that the path is faulty exceeds 1− ε, and
(3) Accurate Approximate disclosure (AA-disclosure) which is satisfied when the
accuracy of the guess can be chosen arbitrarily high. Diagnosability with exact
disclosure has been studied extensively for oMC [6,8,25]. In particular, various
exact notions of diagnosability have been shown to be PSPACE-complete for
oMC. Due to the quantitative requirement, diagnosability with ε-disclosure was
shown to be undecidable while diagnosability with AA-disclosure was surpris-
ingly shown to be in PTIME [7].

Active Diagnosability. Embedded systems are often equipped with one (or more)
controller(s) in order to maintain some functionalities of the system in case of a
pathological behaviour of the environment. It is thus tempting to add to the con-
troller a diagnosis task. Formally some of the observable events are controllable
and considering its current observation, the controller chooses which subset of
actions should be allowed to make the system diagnosable. As such, a controller
only has access to the observations produced by the system to make his choice.
This represents the idea that the control is realised by the same entity as the
diagnosis. A system is said actively diagnosable if there exists a controller ensur-
ing diagnosability [13,14,17,23,26]. In [17], the authors designed an exponential
time algorithm and proved the optimality of this complexity. In stochastic sys-
tems, diagnosability has only been considered with exact disclosure and has been
proven EXPTIME-complete [5].

Contribution. In this paper, we study diagnosability in stochastic systems under
AA-disclosure.

Accurate Approximate Diagnosis of (Controllable) Stochastic Systems 415

– we introduce an alternative definition of AA-disclosure and establish its equiv-
alence with the notion introduced in [25] (Proposition 1)

– we show that measuring the set of AA-disclosing paths for oMC is PSPACE-
complete (Theorem 3);

– we establish that diagnosability with AA-disclosure for controllable oMC is
EXPTIME-complete (Theorem 4).

For space concerns, some technical proofs are deferred to the appendix.

2 Diagnosis of Markov Chains

2.1 Observable Markov Chains

For a finite alphabet Σ, we denote by Σ∗ (resp. Σω) the set of finite (resp.
infinite) words over Σ, Σ∞ = Σ∗ ∪ Σω and ε the empty word. The length of
a word w is denoted by |w| ∈ N ∪ {∞} and for n ∈ N, Σn is the set of words
of length n. A word u ∈ Σ∗ is a prefix of v ∈ Σ∞, written u ≤ v, if v = uw
for some w ∈ Σ∞. The prefix is strict if w �= ε. For n ≤ |w|, we write w↓n

for the prefix of length n of w. Given a countable set S, a distribution on S
is a mapping μ : S → [0, 1] such that

∑
s∈S μ(s) = 1. The support of μ is

Supp(μ) = {s ∈ S | μ(s) > 0}. If Supp(μ) = {s} is a single element, μ is a Dirac
distribution on s written 1s. We denote by Dist(S) the set of distributions on S.

For the purpose of partially observable problems, the model must be equipped
with an observation function describing what an external observer can see. The
observation function can be obtained via a labelling of states or transitions, both
options being known to be equivalent. We thus define observable Markov chains
(see Fig. 1).

Definition 1 (Observable Markov chains). An observable Markov chain
(oMC) over alphabet Σ is a tuple M = (S, p,O) where S is a countable set
of states, p : S → Dist(S) is the transition function, and O : S → Σ is the
observation function.

We write p(s′|s) instead of p(s)(s′) to emphasise the probability of going to
state s′ conditioned by being in state s. Given a distribution μ0 ∈ Dist(S), we
denote by M(μ0) the oMC with initial distribution μ0. For decidability and com-
plexity results, we assume that all probabilities occurring in the model (transition
probabilities and initial distribution) are rationals. A (finite or infinite) path of
M(μ0) is a sequence of states ρ = s0s1 . . . ∈ S∞ such that μ0(s0) > 0 and for
each i ≥ 0, p(si+1|si) > 0. For a finite path, ρ = s0s1 . . . sn, we call n its length
and denote its ending state by last(ρ) = sn. A finite path ρ1 prefixes a finite or
infinite path ρ if there exists a path ρ2 such that ρ = ρ1ρ2. The set Cyl(ρ) rep-
resents the cylinder of infinite paths prefixed by ρ. We denote by Path(M(μ0))
(resp. fPath(M(μ0))) the set of infinite (finite) paths of M(μ0). The observation
sequence of the path ρ = s0s1 . . . is the word O(ρ) = O(s0)O(s1)... ∈ Σ∞. For a
set R of paths, O(R) = {O(ρ) | ρ ∈ R} and for a set W of observation sequences,
O−1(W) = {ρ ∈ Path(M(μ0)) ∪ fPath(M(μ0)) | O(ρ) ∈ W}.

416 E. Lefaucheux

a

a

b

c

a b

1/2

1/2

1/2

1/3

1/3

1/3

1/2

1

1

1

Fig. 1. An observable Markov chain. The arrow entering the leftmost state means that
the initial distribution is a Dirac on this state. Faulty states are circled twice.

Forgetting the labels, an oMC with an initial distribution μ0 becomes a
discrete time Markov chain (DTMC). In a DTMC, the set of infinite paths is
the support of a probability measure extended from the probabilities of the
cylinders by the Caratheodory’s extension theorem:

PM(μ0)(Cyl(s0s1 . . . sn)) = μ0(s0)p(s1|s0) . . . p(sn|sn−1) .

When M(μ0) is clear from context, we will sometimes omit the subscript, and
write P for PM(μ0). Let ρ ∈ fPath(M), w ∈ Σ∗ and E ⊆ Σω, with a small abuse
of notation we write P(ρ) for P(Cyl(ρ)), P(w) instead of P(∪ρ∈O−1(w)Cyl(ρ))
and P(E) instead of P({ρ ∈ Path(M(μ0)) | ρ ∈ O−1(E)}).

2.2 Faulty Paths and Notions of Disclosure

In this paper we are interested in the study of diagnosis, a problem in which
one wants to detect whether the current path correspond to a faulty behaviour
of the system. We focus on the particular case where the faulty behavior of the
system is given by a subset of states SF ⊆ S, called faulty states, of the model:
a (finite or infinite) path s0s1 . . . is faulty if si ∈ SF for some i. The set of finite
(resp. infinite) faulty paths is denoted F (resp. F∞). A path that is not faulty is
called correct. Remark that without loss of generality, we can assume that the
set of faulty states is absorbing, i.e. if a path visits SF, it forever remains in SF.

In non-stochastic systems, a faulty path discloses its failure if it does not
share its observation sequence with any correct path, i.e. given a path ρ ∈ SF,
it discloses its failure iff O−1(O(ρ)) ⊆ SF. When adding probabilities, one could
keep the same definition of disclosure, this is what we call exact disclosure.
Denoting Discexact the set of infinite disclosing faulty paths, the exact diagnos-
ability problem for oMC asks whether P(Discexact) = P(F∞). This problem is
known to be PSPACE-complete for oMC [8].

However, one could also weaken the requirement by allowing potential false
claims. In this case, a faulty path is disclosing if, based on its observation, the
likelihood of the path to be faulty is high. To formalise this likelihood, we define
the failure proportion as the conditional probability that a path is faulty, given

Accurate Approximate Diagnosis of (Controllable) Stochastic Systems 417

its observation sequence. Formally, given an oMC M = (S, p,O), an initial dis-
tribution μ0, SF ⊆ S and an observation sequence w ∈ Σ∗, the failure proportion
associated with the observation sequence w is:

FpropM(μ0)(w) =
P({ρ ∈ O−1(w) | ρ ∈ F})

P(w)
.

This proportion is undefined if P(w) = 0.

Example 1. Consider the oMC of Fig. 1 and the observation sequences ak, akbn

and akcm. The observation sequence ak, for k > 1, can be produced by a correct
path with probability 1/2k−1 and by a faulty path with probability 1/2 × 1/3k−2.
Therefore, FpropM(μ0)(a

k) = 1/3k−2

1/2k−2+1/3k−2 which converges to 0 when k grows
to infinity. The failure proportion of the observation akbn with k > 1 and n ≥ 1
is similarly FpropM(μ0)(a

kbn) = 1/3k−1

1/2k−1+1/3k−1 which remains constant for exten-
sions of akbn as it does not depend on n. Finally, if m ≥ 1, FpropM(μ0)(a

kcm) = 1
as no correct path can produce a ‘c’.

Let M = (S, p,O) be an oMC, μ0 be an initial distribution and SF ⊆ S. Given
ε > 0 representing the confidence threshold expected for the detection, we can
define the approximate notion of disclosure: an observation sequence w ∈ Σ∗ is
called ε-disclosing if FpropM(μ0)(w) > 1 − ε. Moreover, it is ε-min-disclosing if
it is ε-disclosing and no strict prefix of w is ε-disclosing. Writing Dε

min for the
set of ε-min-disclosing observation sequences, the ε-disclosure is defined by

Discε(M(μ0)) = P({ρ ∈ F | ∃ρ′ ≤ ρ,O(ρ′) ∈ Dε
min}).

Discε is thus the probability that a path of the oMC will be faulty and disclose
its failure with sufficiently low doubt. The ε-diagnosability problem consists then
in deciding whether Discε(M(μ0)) = P(F∞). Unfortunately, it is known that
this problem is undecidable for ε �= 0:

Theorem 1 ([7]). Given 0 < ε < 1, the ε-diagnosability problem is undecidable
for oMCs.

In order to regain decidability one can consider a slightly more qualitative
notion of approximate information control, that is called accurate approximate.
Instead of deeming the failure of a path to be revealed when the proportion
of faulty paths goes above a given threshold, an infinite observation sequence
is AA-disclosing if this proportion converges toward 1. In other words, when
observing an AA-disclosing observation sequence, one can get an arbitrarily high
confidence that the path is faulty. Formally, an observation sequence w ∈ Σω

is AA-disclosing if limn→∞ FpropM(μ0)(w↓n) = 1. Writing DAA for the set of
AA-disclosing observation sequences, the AA-disclosure is defined by

DiscAA(M(μ0)) = P({ρ ∈ F | O(ρ) ∈ DAA})

418 E. Lefaucheux

As before, the AA-diagnosability problem consists in deciding if DiscAA

(M(μ0)) = P(F∞). When an oMC is not AA-diagnosable, it is interesting to mea-
sure the probability of undetected faulty paths. This motivates the AA-disclosure
problem which consists in, given λ ∈ [0; 1] and ��∈ {>,≥}, deciding whether
DiscAA(M(μ0)) �� λ.

AA-diagnosability was in fact initially defined in [25] slightly differently: a
system was then called AA-diagnosable if it was ε-diagnosable for all ε > 0.
However, the two definitions are in fact equivalent for oMC.

Proposition 1. An oMC is AA-diagnosable iff it is ε-diagnosable for all ε > 0.

Proof. Let M be an oMC and μ0 an initial distribution.
Suppose that M(μ0) is AA-diagnosable. By definition, given an AA-disclosing

observation sequence w, for all ε > 0 there exists n ∈ N such that w↓n is ε-
disclosing. Therefore for all ε > 0, DiscAA(M(μ0)) ≤ Discε(M(μ0)). Moreover,
as M is AA-diagnosable, DiscAA(M(μ0)) = P(F). Thus, Discε(M(μ0)) ≥ P(F).
Finally, as only faulty paths are disclosing, for all ε > 0 Discε(M(μ0)) ≤ P(F).
Thus Discε(M(μ0)) = P(F) and M(μ0) is ε-diagnosable.

Conversely, suppose that M(μ0) is not AA-diagnosable. Let us consider the
set of infinite words D = ∩ε>0D

ε
minΣω\DAA. Let us show that P(D) = 0. Let

w ∈ D, we have (1) for all ε > 0 there exists n ∈ N such that Fprop(w↓n) > 1−ε
and (2) (Fprop(w↓n))n∈N does not converge toward 1. Given ε > 0, due to (1)
we have

P({ρ ∈ O−1(D) \ F}) <
∑

w∈Dε
min

P({ρ ∈ O−1(w) \ F})

<
∑

w∈Dε
min

P({ρ ∈ O−1(w) ∩ F})
ε

1 − ε

<
ε

1 − ε
.

As this holds for all ε > 0, P({ρ ∈ O−1(D)\F}) = 0. Moreover, due to (2), there
exists ε > 0 such that for infinitely many n ∈ N we have Fprop(w↓n) < 1 − ε.
For all k ∈ N, we denote by Ek the set of prefixes w of words of D such that
FpropM(μ0)(w) < 1 − ε for the k’th time. We then have for all k:

P({ρ ∈ O−1(Ek) \ F}) =
∑

w∈Ek

P({ρ ∈ O−1(w) \ F})

>
∑

w∈Ek

P({ρ ∈ O−1(w) ∩ F})
ε

1 − ε

>
ε

1 − ε
P({ρ ∈ O−1(D) ∩ F})

As (P({ρ ∈ O−1(Ek)\F}))k∈N converges toward P({ρ ∈ O−1(D)\F}) which is
equal to 0, this implies that P({ρ ∈ O−1(D) ∩ F}) = 0 and thus that P(D) = 0.
As a consequence, limε→0 P(Dε

min) = P(DAA). As M(μ0) is not AA-diagnosable
by assumption, there thus exists ε > 0 such that M(μ0) is not ε-diagnosable. �

Accurate Approximate Diagnosis of (Controllable) Stochastic Systems 419

The alternative definition of AA-diagnosability was introduced for two rea-
sons. First, through Proposition 1 it helps build a better understanding of this
notion, often misunderstood (see for instance the uniform/non-uniform discus-
sion on AA-diagnosability in [8]). Second, it helps clarify and analyse the notion
in a controllable framework: as we will see later, we aim to build a single strat-
egy achieving arbitrary high confidence, not a family of strategies each achieving
ε-diagnosability for increasingly small ε.

With the accurate approximate approach to diagnosability, one regains decid-
ability. Indeed, the AA-diagnosability problem for finite oMC was shown to be
in PTIME in [7]. This result relies on the notion of distance between two oMC
introduced in [16] and defined in the following way: the distance between two
oMC M1 and M2 with initial distribution μ1 and μ2 is1

d(M1(μ1),M2(μ2)) = max
E⊆Σω

|PM1(μ1)(E) − PM2(μ2)(E)|.

The authors of [16] show how to decide in PTIME if the distance between two
oMC is 1 thanks to the following characterisation.

Proposition 2 ([16]). Given two oMC M1 and M2 and two initial distribu-
tions μ1 and μ2, d(M1(μ1),M2(μ2)) < 1 iff there exists w ∈ Σ∗ and two dis-
tributions π1 and π2 such that, denoting for i ∈ {1, 2}, μw

i (s) = PMi(μi)({ρs ∈
S∗ | O(ρs) = w}), we have, Supp(πi) ⊆ Supp(μw

i) and d(M1(π1),M2(π2)) = 0
(i.e. ∀w′ ∈ Σ∗,PM1(π1)(w

′) = PM2(π2)(w
′)).

Finally, the link between the distance 1 of two oMC and AA-diagnosability was
established in [7], giving the PTIME algorithm:

Theorem 2 ([7]). Let M be a finite oMC and μ0 be an initial distribution.
M(μ0) is not AA-diagnosable iff there exist two states s ∈ SF and s′ ∈ S\SF
with s′ belonging to a bottom strongly connected component (BSCC)2 of M and
there exist two finite paths ρ and ρ′ of fPath(M(μ0)) such that last(ρ) = s,
last(ρ′) = s′, O(ρ) = O(ρ′) and d(M(1s),M(1s′)) < 1.

From the above theorem, one deduces that AA-diagnosability can be tested
by checking the distance 1 of an at most quadratic number of oMC, leading to the
PTIME algorithm. The results of this paper also studyAA-diagnosability by estab-
lishing links to the distance 1 problem. These results however go farther than the
characterisation of Theorem 2. In particular, when studying controllable systems,
we will need to consider infinite oMC. To that end, we can already note that, speak-
ing of the sufficiency condition only, a more general result was in fact proven in [7]:

Proposition 3 ([7]). Let M be an oMC, μ0 be an initial distribution, two states
s ∈ SF and s′ ∈ S \ SF with s′ such that no faulty state can be reached from s′

1 Note that the absolute values are technically not necessary as PM1(μ1)(E) = 1 −
PM1(μ1)(Σ

ω\E).
2 A BSCC is a strongly connected component that cannot be escaped from.

420 E. Lefaucheux

and two finite paths ρ and ρ′ of fPath(M(μ0)) such that last(ρ) = s, last(ρ′) = s′,
O(ρ) = O(ρ′). ThenM(μ0) isAA-diagnosable implies that d(M(1q),M(1q′)) = 1.

While AA-diagnosability can be decided in polynomial time, the AA-
disclosure problem is a bit more complicated. This is not surprising as AA-
diagnosability consists in testing whether DiscAA(M(μ0)) is equal to P(F∞)
(the latter being easy to compute as it is solely a reachability property) while
the AA-disclosure requires to measure precisely DiscAA(M(μ0)).

Theorem 3. The AA-disclosure problem for finite oMC is PSPACE-complete.

Proof (Sketch of proof). In order to solve the AA-disclosure problem in PSPACE.
We first build an exponential size oMC which contains additional information
compared to the original one. Then we show that there are two kinds of BSCC
in this new oMC: the ones that are reached by paths that almost surely have an
AA-disclosing observation sequence, and the ones that are reached by paths that
almost surely do not correspond to AA-disclosing observation sequences. We then
use the existing results for the AA-diagnosability problem to determine the status
of each BSCC. Finally, computing the AA-disclosure of the oMC is equivalent to
computing the probability to reach the “AA-disclosing” BSCC, which can be done
in NC in the size of the oMC, thus giving an overall PSPACE algorithm.

The hardness is obtained by reduction from the universality problem for
non-deterministic finite automaton (NFA), which is known to be PSPACE-
complete [19]. �

3 Diagnosis of Controllable Systems

3.1 Controllable Observable Markov Chains

An extension of the oMC formalism allowing us to express control requires us to
fix at least two features of this formalism: the nature of the control and the distri-
bution of probabilities of the controlled system. Controllable weighted Observable
Markov chains (CoMC) are an extension of oMC equivalent to the model of con-
trollable weighted labelled transition systems (CLTS) which were introduced for
diagnosis in [5] (the difference between the two models lies in whether the states
or the transitions are labelled by an observation). CoMC can also be compared
to partially observable Markov decision processes (POMDP): the two classes of
models are as expressive, but CoMC can be exponentially more succinct.

In order to specify the control in a CoMC, a subset of observable events is
considered as controllable. The control strategy forbids a subset of controllable
events depending on the sequence of observations it has received so far. The
transitions of the system are no longer labelled by (rational) probabilities but
rather by (integer) weights which represent their relative probabilities. Given a
state and a set of allowed events, in order to obtain a probability distribution
on the allowed transitions, the weights of the outgoing transitions labelled by
uncontrollable or allowed controllable actions are normalised. Provided that the
control strategy does not create any deadlock, the controlled CoMC is an oMC.

Accurate Approximate Diagnosis of (Controllable) Stochastic Systems 421

Definition 2 (CoMC). A Controllable weighted Observable Markov chains
(CoMC) over alphabet Σ is a tuple M = (S, T,O) where S is a finite set of
states, T : S ×S → N is the transition function labelling transitions with integer
weights and O : S → Σ is the observation function.

The alphabet is partitioned into controllable and uncontrollable events Σ =
Σc �Σe. A set Σs ⊆ Σ of allowed events in a state s ∈ S is a set of observations
such that Σe ⊆ Σs and {s′ ∈ S | T (s, s′) > 0 ∧O(s′) ∈ Σs} �= ∅. Given a state s
and a set of allowed events Σs, we define the transition probability p(s,Σs) such
that for all s′ with O(s′) ∈ Σs, p(s,Σs)(s′) = T (s,s′)∑

s′′,O(s′′)∈Σs
T (s,s′′) . As before,

we write p(s′|s,Σs) instead of p(s,Σs)(s′). Given an initial distribution μ0, an
infinite path of a CoMC M(μ0) is a sequence ρ = s0Σ0s1Σ1 . . . where μ0(s0) > 0
and p(si+1|si, Σi) > 0, for si ∈ S and Σi is a set of allowed events in si, for
all i ≥ 0. As for oMC, we define finite paths, and we use similar notations for
the various sets of paths. A sequence of observations and sets of allowed events
b ∈ (Σ × 2Σ)∗Σ is called a knowledge sequence. The knowledge sequence of a
path of a CoMC ρ = s0Σ0s1Σ1 . . . si is K(ρ) = O(s0)Σ0O(s1)Σ1 . . .O(si).

The nondeterministic choice of the set of allowed events is resolved by strate-
gies.

Definition 3 (Strategy for CoMC). A strategy of CoMC M with initial dis-
tribution μ0 is a mapping σ : (Σ × 2Σ)∗Σ → Dist(2Σ) associating to any knowl-
edge sequence a distribution on sets of events.

We will only consider here strategies that do not generate a deadlock, i.e. strate-
gies σ such that for all state s reached after a knowledge b, σ(b) is a distribution
on sets of allowed events for s. Given a strategy σ, a path ρ = s0Σ0s1Σ1 . . . of
M(μ0) is σ-compatible if for all i, Σi ∈ Supp(σ(K(s0Σ0s1Σ1 . . . si)). A strategy
σ is deterministic if σ(b) is a Dirac distribution for each knowledge sequence b.
In this case, we denote by σ(b) the set of allowed actions Σa ∈ 2Σ such that
σ(b) = 1Σa

. Let b be a knowledge sequence. We define BM(μ0)(b) the belief about
states corresponding to b as follows:

BM(μ0)(b) = {s | ∃ρ ∈ fPath(M(μ0)), K(ρ) = b ∧ s = last(ρ)}

A strategy σ is belief-based if for all b, σ(b) only depends on its belief BM(μ0)(b)
(i.e. given two knowledge sequence b and b′ if BM(μ0)(b) = BM(μ0)(b

′) then
σ(b) = σ(b′)). For belief-based strategies, we will sometimes write σ(B) for the
choice of the strategy made for knowledge sequences producing the belief B.

As for oMC, the failure of a path is defined by the reachability of a set SF ∈ S
of faulty states of the CoMC and we assume again that this set is absorbing.

A strategy σ on M(μ0) defines an infinite oMC Mσ(μ0) where the set of states
is the finite σ-compatible paths, the observation function associates Σn−1O(sn)
with the state corresponding to the finite path ρ = s0Σ0 . . . Σn−1sn (Σn−1 being
omitted if n = 0) and the transition function pσ is defined for ρ a σ-compatible
path and ρ′ = ρΣas′ by pσ(ρ′|ρ) = σ(K(ρ))(Σa)p(s′|s,Σa). We denote by

422 E. Lefaucheux

PMσ(μ0) the probability measure induced by this oMC. When the strategy pos-
sesses some good regularity properties, this oMC is equivalent to a finite one (i.e.
there is a one-to-one correspondence between the paths of each oMC, it preserves
the knowledge sequence and the probability. The two oMC have therefore the
same disclosure properties). For instance given a deterministic belief based strat-
egy σ, one can define the oMC M

′
σ with set of states S × 2Σ × 2S , observation

O′
σ(s,Σ•, B) = (O(s), Σ•), initial distribution μσ

0 (s, ∅,Supp(μ0) ∩ O−1(O(s))) =
μ0(s) and transition function p′

σ((s1, Σ1, B1) | (s2, Σ2, B2)) = p(s1 | s2, Σ2)
if σ(B1) = Σ2 and B2 = BM(μ1)(O(s2)) for μ1 a distribution of support B1,
p′

σ((s1, Σ1, B1) | (s2, Σ2, B2)) = 0 otherwise. The oMC M
′
σ is exponential in the

size of M and is equivalent to Mσ. When considering belief-based strategies, we
will call Mσ the finite equivalent oMC.

Writing VMσ(μ0) for the set of infinite paths corresponding to AA-disclosing
observation sequences in Mσ(μ0), we have DiscAA(Mσ(μ0)) = PMσ(μ0)(VMσ(μ0)).
The control of the system is assumed to support the diagnosis. Therefore, the
AA-diagnosability problem for CoMC consists in, given a CoMC M and an initial
distribution μ0, deciding whether there exists a strategy σ such that Mσ(μ0) is
AA-diagnosable (aka, such that PMσ(μ0)(VMσ(μ0)) = PMσ(μ0)(F∞)).

Example 2. Consider the CoMC on the left of Fig. 2. Without any control (i.e.
with a strategy permanently allowing every event), one obtains the oMC of Fig. 1,
which is not AA-diagnosable. However, assuming ‘b’ is a controllable event, the
strategy that always forbids it induces the oMC on the right of Fig. 2 which is
AA-diagnosable: every faulty path almost surely contains a ‘c’ that can not be
generated by a correct path. This oMC is in fact exactly diagnosable as once a
‘c’ occurs the failure proportion becomes equal to 1.

Remark that an observation sequence of the oMC induced by a CoMC and a
strategy contains both the observation of the state of the CoMC and the choices
of allowed events done by the strategy. The observation sequence of a path in the
induced oMC is therefore equal to the knowledge sequence of the corresponding
path in the CoMC and as such, we will only speak of observation sequences in
the following. This choice of observation was done to express that the choices
made by the strategy are known to the observer. An important consequence of
this decision is that the strategy does not modify which observation sequences
are AA-disclosing.

Lemma 1. Given M a CoMC, μ0 an initial distribution, SF ⊆ S, σ, σ′ two
strategies and w an observation sequence produced by at least one path of Mσ(μ0)
and at least one path of Mσ′(μ0), then FpropMσ′ (μ0)(w) = FpropMσ(μ0)(w).

Proof. Let M be a CoMC, μ0 be an initial distribution, σ be a strategy and
w = o0Σ0 . . . Σn−1on be an observation sequence produced by at least one
path of Mσ(μ0). By definition of w, FpropMσ(μ0)(w) is defined and in partic-
ular

∏n−1
i=0 σ(O(w↓2i+1))(Σi) �= 0. We have

Accurate Approximate Diagnosis of (Controllable) Stochastic Systems 423

a

q0
a

r0 b

r1

c

r2

a

q1

b

q2

1

1

1

1

1

1

1

1

1

1

a. ∅

(q0. ∅. {q0})
a. {a. c}

(r0. {a. c}. {r0. q1})
c. {a. c}

(r2. {a. c}. {r2})

a. {a. c}

(q1. {a. c}. {r0. q1})

1/2

1/2

1/2
1

1

1/2

Fig. 2. A CoMC (left) and the finite oMC (right) induced by this CoMC and the
strategy that always allow {a, c}. The observation of a state of the oMC is the pair
composed of the observation of the associated state in the CoMC and of the set of
allowed events that lead to it. Its name is the triple composed of the associated state
in the CoMC, the set of allowed event leading to it and the belief about states that
hold in the CoMC when entering this state. The probability in the induced oMC to
loop on (r0 · {a ·c} ·{r0 ·q1}) is obtained by dividing the weight T (r0, r0) by the weights
T (r0, r0) and T (r0, r2), thus 1/2. The weight T (r0, r1) is ignored as b is forbidden.

FpropMσ(μ0)
(w) =

PMσ(μ0)({ρ ∈ O−1(w) | ρ ∈ F})

PMσ(μ0)(w)

=

∑
ρ∈O−1(w)|ρ∈F PMσ(μ0)(ρ)
∑

ρ∈O−1(w) PMσ(μ0)(ρ)

=

∑
ρ=s0Σ0...sn∈O−1(w)|ρ∈F

∏n−1
i=0 σ(O(w↓2i+1))(Σi)p(si+1 | si, Σi)

∑
ρ=s0Σ0...sn∈O−1(w)

∏n−1
i=0 σ(O(w↓2i+1))(Σi)p(si+1 | si, Σi)

=

∑
ρ=s0Σ0...sn∈O−1(w)|ρ∈F

∏n−1
i=0 p(si+1 | si, Σi)

∑
ρ=s0Σ0...sn∈O−1(w)

∏n−1
i=0 p(si+1 | si, Σi)

which is independent of σ, therefore for any strategy σ′ such that at least one
path of Mσ′(μ0) produces w, FpropMσ′ (μ0)(w) = FpropMσ(μ0)(w). �

3.2 Solving AA-Diagnosability for CoMCs

While accurate approximate diagnosability is simpler than exact diagnosability
for oMC (PTIME vs PSPACE) [6,7], for CoMCs this difference disappears and
both problems are EXPTIME-complete. The EXPTIME-completeness of exact
diagnosis for CoMC was established in [5]. We will devote this section to the
proof of the following theorem:

Theorem 4. The AA-diagnosability problem over CoMCs is EXPTIME-
complete.

424 E. Lefaucheux

First, the hardness is obtained directly by applying the proof of Proposition
3 of [5]. This proof relies on a reduction from safety games with imperfect infor-
mation [9] to establish EXPTIME-hardness of an exact notion of diagnosability.
Their proof also applies to AA-diagnosability as, in the system they build, a
faulty path is exactly diagnosable iff it is AA-diagnosable.

Proposition 4. The AA-diagnosability problem over CoMCs is EXPTIME-hard.

The most important step to solve AA-diagnosability for CoMC is to develop a
good understanding on the strategies optimising AA-disclosure. For starters, with
a straightforward adaptation of a proof of [15], we show that one can consider
deterministic strategies only.

Lemma 2. Given M a CoMC, μ0 an initial distribution, SF ⊆ S and σ a
strategy, there exists a deterministic strategy σ′ such that DiscAA(Mσ(μ0)) =
PMσ(μ0)(F∞) implies DiscAA(Mσ′(μ0)) = PMσ′ (μ0)(F∞).

Proof. In the proof of Lemma 1 of [15], the authors show that a randomised
‘observation based’ strategy can be seen as an average over a family of determin-
istic ‘observation based’ strategies3. A consequence of their equation (2) in our
framework is the following: given a strategy σ, for every set of path E, there exists
a deterministic strategy σdet such that (a) Path(Mσdet

(μ0)) ⊆ Path(Mσ(μ0)) and
(b) PMσdet

(μ0)(E) ≥ PMσ(μ0)(E). Using this result with the appropriate set E we
will show that if Mσ(μ0) is AA-diagnosable then Mσdet

(μ0) is AA-diagnosable.
We define Eσ = VMσ(μ0) ∪ (Path(Mσ(μ0))\F∞) which are the set of infinite

σ-compatible paths that are either correct or AA-disclosing. Let σdet be the
strategy obtained by applying the result of [15] on the set Eσ. Suppose Mσ(μ0)
is AA-diagnosable. By definition, this is equivalent to PMσ(μ0)(Eσ) = 1. Due to
(b), this implies that PMσdet

(μ0)(Eσ) = 1 too. Moreover VMσdet
(μ0) = VMσ(μ0) ∩

Path(Mσdet
(μ0)), thanks to Lemma 1 and (a). Thus

Eσ = VMσdet
(μ0) ∪ (VMσ(μ0) \ Path(Mσdet

(μ0)) ∪ (Path(Mσ(μ0)) \ F∞)

= Eσdet
∪ (VMσ(μ0) ∪ (Path(Mσ(μ0)) \ F∞) \ Path(Mσdet

(μ0))

where Eσdet
= VMσdet

(μ0) ∪ (Path(Mσdet
(μ0)) \ F∞).

Finally, PMσdet
(μ0)(VMσ(μ0) ∪ (Path(Mσ(μ0)) \ F∞) \ Path(Mσdet

(μ0)) = 0 as
no path of this set is σdet-compatible. Therefore PMσdet

(μ0)(Eσdet
) = 1 which

implies that Mσdet
(μ0) is AA-diagnosable. �

We can further restrict the strategies by limiting ourselves to belief-based
strategy. This is far from an intuitive result. Indeed, while the AA-diagnosability
of an oMC depends heavily on the exact values of the probabilities in the oMC,
this result implies that the control only needs to remember the set of states
potentially reached with a given observation sequence, not the probabilities with
which one is in each state. Remark though that the choice made by the strategy
in each belief depends on the probabilities.
3 In our framework, by definition, every strategy is ‘observation based’.

Accurate Approximate Diagnosis of (Controllable) Stochastic Systems 425

Lemma 3. detebel Given M a CoMC, μ0 an initial distribution, SF ⊆ S
and σ a deterministic strategy, there exists a deterministic belief based strat-
egy σ′ such that DiscAA(Mσ(μ0)) = PMσ(μ0)(F∞) implies DiscAA(Mσ′(μ0)) =
PMσ′ (μ0)(F∞).

Proof. Let M be a CoMC, μ0 be an initial distribution and σ be a deterministic
strategy such that Mσ(μ0) is AA-diagnosable. We define a belief based strategy
σ′ from σ in the following way. Let ρ ∈ fPath(Mσ(μ0)). We define by Eρ the set
of finite path producing the same belief as ρ, i.e. Eρ = {ρ′ ∈ fPath(Mσ(μ0)) |
BM(μ0)(O(ρ′)) = BM(μ0)(O(ρ))}. We define σ′(BM(μ0)(O(ρ))) =

⋃
ρ′∈Eρ

σ(O(ρ′)).
In other words, in a given belief, σ′ allows anything that σ allowed at least once
in this belief. Let us show that Mσ′(μ0) is AA-diagnosable.

Let two states q = (s,Σ•, B) ∈ SF and q′ = (s′, Σ•, B) ∈ S\SF belonging to
a BSCC of Mσ′(μ0) and reached by two finite paths ρ and ρ′ of fPath(Mσ′(μ0))
with O(ρ) = O(ρ′). We will show that d(Mσ′(1q),Mσ′(1q′)) = 1 using the char-
acterisation given in Proposition 2. More precisely, for any observations sequence
w ∈ Σ∗, and any pair of distributions on the set of states reached from q and from
q′ after observing w, we consider the probabilistic language generated by similar
distributions in Mσ (i.e. distributions giving the same weight to the states of
the original CoMC M) and rely on the fact that Mσ is AA-diagnosable to show
that the generated languages are different. This implies the distance is 1 thanks
to Proposition 2.

Let w ∈ Σ∗ such that PMσ′ (1q)(w) > 0 and PMσ′ (1q′)(w) > 0, we denote
by Bw, Bq and Bq′ the beliefs reached after observing w from the beliefs B,
{q} and {q′} respectively, let two distributions μ′

1 and μ′
2 such that Supp(μ′

1) ⊆
Bq, Supp(μ′

2) ⊆ Bq′ . As σ′ does not allow events that are never allowed by
σ in the same belief, there exists an observation sequence wσ ∈ Σ∗ such that
PMσ(μ0)(wσ) > 0 and the belief reached in M(μ0) after a path of observation wσ

from the initial distribution is Bw, i.e. BM(μ0)(wσ) = Bw.
We can thus define initial distributions μ1 and μ2 on the set of states reached

after observing wσ in Mσ mimicking the distributions μ′
1 and μ′

2 (i.e. for every
state q0 = (s0, Σ0, Bw) of Mσ′(μ0), we select some q1, state of Mσ(μ0) associated
to a σ-compatible paths ρ that ends in s0 and such that O(ρ) = wσ, and we set
for i ∈ {1, 2}, μ′

i(q0) = μ1(q1)). From Proposition 3 and Proposition 2, there
exists a word wd such that PMσ(μ1)(wd) �= PMσ(μ2)(wd). This implies that there
exists a word w′

d such that PMσ′ (μ′
1)

(w′
d) �= PMσ′ (μ′

2)
(w′

d). Indeed, let E be the
set of observation sequences of the form w′a where w′ is a strict prefix of wd,
a ∈ Σ, PMσ′ (μ′

1)
(w′a) > 0 and PMσ(μ1)(w

′a) = 0. If PMσ′ (μ′
1)

(E) �= PMσ′ (μ′
2)

(E),
this implies our result. Otherwise, by construction of the strategy σ′ we have:

PMσ′ (μ′
1)

(wd) =PMσ(μ1)(wd) × (1 − PMσ′ (μ′
1)

(E))

�=PMσ(μ2)(wd) × (1 − PMσ′ (μ′
1)

(E))

=PMσ(μ2)(wd) × (1 − PMσ′ (μ′
2)

(E))

=PMσ′ (μ′
2)

(wd),

426 E. Lefaucheux

in which case we can choose w′
d = wd. As this holds for any w ∈ Σ∗

and pair of distributions μ′
1 and μ′

2, according to Proposition 2 we have
d(Mσ′(1q),Mσ′(1q′)) = 1. From Theorem 2, we can thus deduce that Mσ′(μ0)
is AA-diagnosable. Therefore belief-based strategies are sufficient to decide AA-
diagnosability. �

A naive NEXPTIME algorithm can be obtained from these two lemmas: we
guess a deterministic belief-based strategy then verify AA-diagnosability of the
exponential oMC generated by the CoMC and the strategy. In the following
proposition, we show how to efficiently build a good belief-based strategy, which
gives us an EXPTIME algorithm.

Proposition 5. The AA-diagnosability problem over CoMCs is in EXPTIME.

Proof. Let M be a CoMC and μ0 be an initial distribution. This proof is done
in two steps.

1. We show that, given two deterministic belief based strategies σ1 and σ2 such
that σ1 is less restrictive than σ2 and a state q belonging to a BSCC of both
Mσ1(μ0) and Mσ2(μ0), then if the paths of Mσ2(μ0) that visits q are almost
surely AA-disclosing then so are the paths of Mσ1(μ0) that visits q. In other
words, within a BSCC, the least restrictive a strategy is, the better it is for
the purpose of diagnosis.

2. Thanks to the result obtained in the first step, we efficiently build a strategy
in the form of a greatest fixed point: we start by the most permissive strategy
and iteratively restrict it to prune the BSCC that cause the strategy not to
achieve AA-diagnosability.

Let σ and σ′ be two deterministic belief-based strategies such that for any
belief B of M σ(B) ⊆ σ′(B). Let q be a faulty state associated to a belief B
and belonging to a BSCC of both Mσ(μ0) and Mσ′(μ0). Assume that there
exists a positive measure of paths in Mσ′(μ0) that visit q and that are not
associated to an AA-disclosing observation sequence. Defining B′ = (B\SF) ∪
{q}, this is equivalent to saying that the CoMC Mσ′(μ1), where μ1 is an initial
distribution of support B′, is not AA-diagnosable. Therefore we can use the
characterisation of Theorem 2. Without loss of generality, as q belongs to a
BSCC, we can assume the pair of states given by the characterisation is (q, q′)
where q′ �∈ SF, is associated to the belief B, belongs to a BSCC of Mσ′(μ1)
and is such that d(Mσ′(1q),Mσ′(1q′)) < 1. Let w, π1 and π2 be the observation
sequence and the two distributions obtained by applying Proposition 2 on the
pair of CoMC (Mσ′(1q),Mσ′(1q′)). Let q′′ �∈ SF be a state belonging to a BSCC of
Mσ(μ1) reachable from q′ by a σ-compatible path with observation sequence ww′.
Let π′

1 and π′
2 be the distribution obtained after observing w′ starting in π1 and

π2. As ∀v ∈ Σ∗,PMσ′ (π1)(v) = PMσ′ (π2)(v), we also have ∀v ∈ Σ∗,PMσ′ (π′
1)

(v) =
PMσ′ (π′

2)
(v). This implies that ∀v ∈ Σ∗,PMσ(π′

1)
(v) = PMσ(π′

2)
(v). Indeed, given

v ∈ Σ∗, we have

Accurate Approximate Diagnosis of (Controllable) Stochastic Systems 427

P
Mσ(π′

1)(v) =
∑

ρ∈O−1(v)

P
Mσ(π′

1)(ρ)

=
∑

ρ=s0Σ0...sn∈O−1(v)

π
′
1(s0)

n−1∏

i=0

σ(O(v↓2i+1))(Σi)p(si+1 | si, Σi)

=

(
n−1∏

i=0

σ(O(v↓2i+1))(Σi)

)
∑

ρ=s0Σ0...sn∈O−1(v)

π
′
1(s0)

n−1∏

i=0

T (si, si+1)∑
s′′,O(s′′)∈Σi

T (si, s′′)

=

(
n−1∏

i=0

σ(O(v↓2i+1))(Σi)

)
∑

ρ=s0Σ0...sn∈O−1(v)

π
′
2(s0)

n−1∏

i=0

T (si, si+1)∑
s′′,O(s′′)∈Σi

T (si, s′′)

= P
Mσ(π′

2)(v).

As a consequence, d(Mσ(1q),Mσ(1q′)) < 1. From Theorem 2, this implies that
Mσ(μ1) is not AA-diagnosable and thus there exists a positive measure of paths in
Mσ(μ0) that visit q and that are not associated to an AA-disclosing observation
sequence. Therefore, having restricted the strategy σ′ did not allow to regain
AA-diagnosability of the paths visiting q. This means that a strategy achieving
AA-diagnosability of the CoMC must ensure that q cannot be reached.

Using this result, we build iteratively the most permissive strategy ensuring
AA-diagnosability. We start with the strategy σ0 allowing everything. Assume
we built the strategy σk such that any less permissive strategy do not ensure AA-
diagnosability. If Mσk

(μ0) is not AA-diagnosable, there exists two states s and s′

associated to the same belief B that satisfies the characterisation of Theorem 2.
W.l.o.g one can assume that both of these states belong to BSCCs of Mσk

(μ0).
From our preliminary result, we know that any strategy that contains the states
s and s′ in a BSCC does not ensure AA-diagnosability. As any strategy less
permissive than σk does not ensure AA-diagnosability, we need to restrict the
strategy so that the belief B is not reachable, or that B is not associated to states
belonging to a BSCC anymore. The latter is in fact not sufficient as Theorem 2
would still apply on the pair of states (s, s′). Thus we build σk+1 as the most
permissive strategy such that Mσk+1(μ0) does not contain the belief B, which
can easily be done with belief based strategies. This procedure ends when the
strategy σn that is created either is the most permissive strategy ensuring AA-
diagnosability or if one cannot build a strategy removing the problematic belief.
This algorithm is in EXPTIME as every step of the procedure can be done in
exponential time (verification of AA-diagnosability, identification of the pair of
problematic states and creation of the new strategy are all steps that can be done
in EXPTIME) and there is at most exponentially many steps as each one of them
removes at least one belief from the system, and there are exponentially many
beliefs. Therefore, the AA-diagnosability problem can be solved in EXPTIME. �

Remark that the above proof builds the strategy ensuring AA-diagnosability
when it exists.

428 E. Lefaucheux

4 Conclusion

This paper considers the accurate approximate notion of disclosure for diag-
nosability. We establish how to decide AA-diagnosability in CoMC and how to
measure the AA-disclosure in oMC. Measuring the AA-disclosure was not devel-
oped for CoMC here as the notion is undecidable (straightforward application
of the undecidability of the emptiness problem for probabilistic automata).

Opacity is a notion that intuitively appears as some kind of dual to diag-
nosability. The goal of opacity is to make sure some secret paths of the system
are not detected by an observer. Following the idea that some small amount
of revealed secret information is not problematic, this line of research favors a
quantitative approach to the problem, thus closer to the AA-disclosure problem
we studied for oMC. In this endeavour, various measures for the disclosure set
have been introduced [1,3,4,22]. Opacity has been studied in an active frame-
work called observable Markov decision processes (oMDP) where the controller
is deemed internal to the system and thus makes its choice with more informa-
tion than just the observation sequence. This framework is thus not equivalent
to the CoMC model presented in this paper; the strategy is more powerful. As
such, while measuring the disclosure is undecidable (for any disclosure notion)
in CoMC, some positive results were established in oMDP [2]. However, as this
work only considered the exact notion of disclosure, it would be interesting to
see if the approximate approach pushed here could also be applied for oMDP.
Moreover, this framework also makes sense for a study of diagnosability as the
control defined in oMDP can correspond to designing choices of the system.

A AA-Disclosure Problem for oMC

Theorem 3. The AA-disclosure problem for finite oMC is PSPACE-complete.

We decompose the proof of the theorem in the two following proposition,
each establishing one direction.

Proposition 6. The AA-disclosure problem for finite oMC is in PSPACE.

Proof. To establish this result, we first build an exponential size oMC which
contains additional information: the set of states the system could be in after
the observation sequence. Then we show that there are two kinds of BSCC in
this new oMC: the ones that are reached by paths that almost surely have an
AA-disclosing observation sequence, and the ones that are reached by paths that
do not correspond to AA-disclosing observation sequences. We can then use the
existing results for the AA-diagnosability problem to determine the status of
each BSCC. Therefore, computing the AA-disclosure of the oMC is equivalent
to computing the probability to reach the “AA-disclosing” BSCC, which can be
done in NC in the size of the oMC, thus giving an overall PSPACE algorithm.

Let M = (S, p,O) be a finite oMC and μ0 be an initial distribution. We build
a new oMC M′ = (S′, p′,O′) which has the same behaviour as M but where the
states are enriched with an additional information (the set of states the system
can be in, given the produced observation sequence):

Accurate Approximate Diagnosis of (Controllable) Stochastic Systems 429

– S′ = S × 2S ;
– For (s,B), (s′, B′) ∈ S′, p′((s′, B′) | (s,B)) = p(s′ | s) if B′ =

∪q∈BSupp(p(q)) ∩ O−1(O(s′)) else, p′((s′, B′) | (s,B)) = 0;
– For (s,B) ∈ S′, O′(s,B) = O(s).

We define the initial distribution μ′
0 for M′ by μ′

0(s,Supp(μ0) ∩ O−1(O(s))) =
μ0(s) for all s ∈ S. There is a one-to-one correspondence between the paths of
M(μ0) and M′(μ′

0): every path ρ = s0s1 · · · sn of M(μ0) is associated to an
unique path ρ′ = (s0, B0)(s1, B1) · · · (sn, Bn) with O(ρ) = O(ρ′), PM(μ0)(ρ) =
PM′(μ′

0)
(ρ′) and Bn contains the set of states of S that can be reached with a

path of observation O(ρ). Due to the latter property, Bn only depends on O(ρ)
and is called the belief associated to O(ρ).

Let (s,B) ∈ S′ such that s ∈ SF and (s,B) belongs to a BSCC of M′. We
claim that either for every path ρ ending in (s,B), P({ρ′ ∈ Path(M′(μ′

0)) |
ρ � ρ′ ∧ O(ρ′) ∈ DAA}) = 0 or for every path ρ ending in (s,B), P({ρ′ ∈
Path(M′(μ′

0)) | ρ � ρ′ ∧ O(ρ′) ∈ DAA}) = P(ρ). In other words, there are two
categories of BSCC composed of faulty states: the good ones, that almost surely
accurate approximately disclose the fault, and the bad ones that do not accurate
approximately disclose the fault at all. Moreover, a BSCC containing the state
(s,B) do not disclose the fault at all iff there exists a state s′ ∈ B such that s′

belongs to a BSCC of M, s′ �∈ SF and d(M(1s),M(1s′)) < 1.
Let (s,B) be a state belonging to a BSCC of M′. Assume that for all s′ ∈ B

such that s′ belongs to a BSCC of M and s′ �∈ SF we have d(M(1s),M(1s′)) = 1.
We denote B′ = (B\SF)∪{s}, and define M′′ by removing the path leading to a
faulty state (aka, a path either starts faulty or forever remain correct). Then as
s belongs to a BSCC of M, we can directly use Theorem 2 to obtain that for any
initial distribution μ1 of support B′, we have that M′′(μ1) is AA-diagnosable. As
the limitation to the states of B\B′ and the transformation from M to M′′ can
only increase the failure proportion, this ensures that P({ρ′ ∈ Path(M′(μ′

0)) |
ρ � ρ′ ∧ O(ρ′) ∈ DiscAA}) = P(ρ).

Conversely, if there exists a state s′ ∈ B such that s′ belongs to a BSCC of B,
s′ �∈ SF and d(M(1s),M(1s′)) < 1, then one can rely on the proof of Lemma A
of [8] to obtain the result. For the sake of pedagogy, we present the proof here
in the simpler case where B does not contain any faulty state beside s. Using
Proposition 2 and the correspondence between M and M′, one deduces that
there exists ρ(s,B) ∈ fPath(M(1(s,B))) and α > 0 such that for all w ∈ Σ∗ with
O(ρ) ≤ w

PM′(1(s,B))({ρ′ ∈ fPath(M′(1(s,B))) | ρ(s,B) � ρ′ ∧ O(ρ′) = w}) (1)

≤ αPM′(1(s′,B))
({ρ′ ∈ fPath(M′(1(s′,B))) | O(ρ′) = w}). (2)

430 E. Lefaucheux

Therefore, for all w ∈ Σ∗ and initial distribution μ1 of support B we have:

FpropM′(μ1)(w) ≤ PM′(1(s,B))(w)

PM′(1(s,B))(w) + μ1(s′)
μ1(s)

PM′(1(s′,B))
(w)

(3)

≤
εw +

∑

ρ|O(ρρ(s,B))≤w

αPM′(1(s,B))(ρ)
PM′(1(s,B))(ρ(s,B))

PM′(1(s′,B))
(wρ)

PM′(1(s,B))(w) + μ1(s′)
μ1(s)

PM′(1(s′,B))
(w)

(4)

where wρ is such that w = O(ρ)wρ, the first term εw = PM′(1(s,B))({ρ ∈
fPath(M(1(s,B)) |� ∃ρ1, ρ2, ρ = ρ1ρ(s,B)ρ2 ∧ O(ρ) = w}) is the probability
of the set of paths with observation w that do not contain the infix ρ(s,B)

and the second term relies on the bound from Eq. 2 to bound the probabil-
ity of every other paths. As with probability 1, a path of M′(1(s,B)) visits
(s,B) infinitely often, it will almost surely contain a ρ(s,B) subpath, more pre-
cisely: the value εw

PM′(1(s,B))
(w) almost surely converges to 0 when |w| diverges

to ∞. Let w ∈ Σω, if FpropM′(μ1)(w↓n) n−→∞−−−−→ 1 then, for all ρ such that

O(ρρ(s,B)) ≤ w we have that
PM′(1(s′,B))

(wρ
↓n)

PM′(1(s,B))
(w↓n) converges to 0, thus, due to Eq. 4,

εw↓n
does not converge to 0, which can only happen with probability 0. There-

fore FpropM′(μ1)(w↓n) almost surely does not converge to 1. This implies that
P{ρ′ ∈ Path(M′(μ′

0)) | ρ � ρ′ ∧ O(ρ′) ∈ DAA} = 0.
This result establishes that the BSCC of M′ are partitioned between the good

ones that accurately approximately and almost surely disclose the fault and the
bad ones that do not accurately approximately disclose it at all. Moreover, given
a state (s0, B0) belonging to a BSCC of M′, if there exists a state s′

0 ∈ B0

such that s′
0 belongs to a BSCC of B, s′

0 �∈ SF and d(M(1s0),M(1s′
0
)) < 1,

then for any state (s1, B1) belonging to the same BSCC, one can find a state
s′
1 ∈ B1 satisfying a similar property with respect to s1. In other words, for every

BSCC of M′, we only need to check a single state (s,B) of the BSCC to identify
whether the BSCC is disclosing or not. Furthermore, this check can be done by
testing the distance 1 between copies of M starting in s and copies starting in
some of the states in B. There is thus at most linearly many tests to do, each of
which can be done in polynomial time in the size of M.

Therefore, one can obtain the value of DiscAA(M′(μ′
0)) by computing the

probability to reach the good BSCC, which is known to be possible in PTIME
in the size of M′. In fact, as computing this probability amount to solve a
linear system of equations, this can even be done in NC [11,21]. The oMC M′

being exponential in the size of M, and as NC blown up to the exponential is
equal to PSPACE [10], this yields a PSPACE algorithm. As DiscAA(M(μ0)) =
DiscAA(M′(μ′

0)), this allows us to solve the AA-disclosure problem. �
Proposition 7. The AA-disclosure problem for finite oMC is PSPACE-hard.

Accurate Approximate Diagnosis of (Controllable) Stochastic Systems 431

Proof. We now establish the hardness by reducing the universality problem
for non-deterministic finite automaton (NFA), which is known to be PSPACE-
complete [19].

An NFA is a tuple A = (Q,Σ, T, q0, F) where Q is the set of states, q0 is the
initial state, F is the set of accepting states, Σ is the alphabet and T ∈ Q×Σ×Q
is the transition function. An NFA is universal if for all w = a1a2 . . . an ∈
Σn, there exists a path q0a1q1a2 . . . qn such that qn ∈ F and for all 1 ≤ i ≤
n, (qi−1, ai, qi) ∈ T .

A :

q2

Â :
a

(q2. a)

b

(q2. b)
a, b

1
4

1
4

Fig. 3. From NFA A to incomplete oMC Â. The label next to the state is its name.
We will not always display the state’s name so as not to overload the figure.

Let A = (Q,Σ, T, q0, F) be an NFA. W.l.o.g. we can assume that F = Q and
Σ = {a, b}. Our first step is to push the observations onto the states (as shown
in Fig. 3). From A we define the incomplete oMC Â = (SA, pA, OA) and the
initial distribution μA

0 such that:

– SA = Q × Σ;
– for (q, c), (q′, d) ∈ SA, if (q, d, q′) ∈ T , then pA((q′, d) | (q, c)) = 1

|SA|+1 , else
pA((q′, d) | (q, c)) = 0;

– for (q, c) ∈ SA, OA(q, c) = c;
– for (q′, d) ∈ SA, if (q0, d, q′) ∈ T , then μA

0 (q′, d) = 1
|SA|+1 , else μA

0 (q′, d) = 0.

This oMC is incomplete as none of the distributions μA
0 and pA(· | s) (for s ∈ SA)

sum to 1. We now build the oMC M = (S, p,O) represented in Fig. 4 where

– S = SA ∪ {s�, fa, fb, f�};
– given s, s′ ∈ SA, p(s′ | s) = pA(s′ | s), p(s� | s) = 1 − ∑

s′∈SA
p(s′ | s), for

h ∈ {fa, fb} and g ∈ {fa, fb, f�}, p(g | h) = 1/3 and p(f� | f�) = p(s� | s�) = 1;
– for s ∈ SA, O(s) = OA(s), O(s�) = O(f�) = �, O(fa) = a and O(fb) = b.

We also define μ0 as μ0(s) = μA
0 (s) for s ∈ SA and μ0(fa) = μ0(fb) =

1−∑
s∈SA

μ0(s)

2 .

432 E. Lefaucheux

a

fa

b

fb

�

f�

s

�

s�

1

1/31/3

1/3

1/3

1/3

1/3
1

Â

Fig. 4. A reduction for PSPACE-hardness of the AA-disclosure problem.

Choosing SF = {f�}, let us show that A is not universal iff DiscAA

(M(μ0)) > 0.
Suppose first that A is not universal. There thus exists a word w ∈ Σ∗ such

that no path starting in SA has observation sequence w. As there exists one faulty
path ρ (starting in either fa or fb) associated to w�, we have FpropM(μ0)(w�) = 1.
Therefore DiscAA(M(μ0)) ≥ PM(μ0)(ρ) > 0.

Conversely, assume that A is universal. Let ρ be a path ending in f� with
observation sequence O(ρ) = w� for some w ∈ Σ∗. As A is universal, there
exists a finite path ρ′ in Â with observation sequence w. As for every state s
of Â, p(s� | s) > 0, ρ′ can be extended into a finite path ρ′′ ending in s� with
observation w�. Thus, FpropM(μ0)(w�) < 1. Moreover, every path ending with
a � remains with probability 1 in either s� or f�, due to this for every k ≥ 2,
FpropM(μ0)(w�k) = FpropM(μ0)(w�). Therefore, w�ω �∈ DAA. This implies that
no infinite path visiting f� corresponds to an AA-disclosing observation sequence.
f� being the only faulty state, DiscAA(M(μ0)) = 0. �

References

1. Bérard, B., Chatterjee, K., Sznajder, N.: Probabilistic opacity for Markov decision
processes. Inf. Process. Lett. 115(1), 52–59 (2015)

2. Bérard, B., Haddad, S., Lefaucheux, E.: Probabilistic disclosure: maximisation vs.
minimisation. In: Proceedings of FSTTCS 2017, volume 93 of LIPIcs, pp. 13:1–
13:14. Leibniz-Zentrum für Informatik (2017)

3. Bérard, B., Kouchnarenko, O., Mullins, J., Sassolas, M.: Preserving opacity on
interval Markov chains under simulation. In: Proceedings of WODES 2016, pp.
319–324. IEEE (2016)

4. Bérard, B., Mullins, J., Sassolas, M.: Quantifying opacity. Math. Struct. Comput.
Sci. 25(2), 361–403 (2015)

Accurate Approximate Diagnosis of (Controllable) Stochastic Systems 433

5. Bertrand, N., Fabre, É., Haar, S., Haddad, S., Hélouët, L.: Active diagnosis for
probabilistic systems. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp.
29–42. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7 2

6. Bertrand, N., Haddad, S., Lefaucheux, E.: Foundation of diagnosis and predictabil-
ity in probabilistic systems. In: Proceedings of FSTTCS 2014, volume 29 of LIPIcs,
pp. 417–429. Leibniz-Zentrum für Informatik (2014)

7. Bertrand, N., Haddad, S., Lefaucheux, E.: Accurate approximate diagnosability
of stochastic systems. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B.
(eds.) LATA 2016. LNCS, vol. 9618, pp. 549–561. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-30000-9 42

8. Bertrand, N., Haddad, S., Lefaucheux, E.: A tale of two diagnoses in probabilistic
systems. Inf. Comput. 269, 104441 (2019)

9. Berwanger, D., Doyen, L.: On the power of imperfect information. In: Proceedings
of FSTTCS 2008, volume 2 of LIPIcs, pp. 73–82. Leibniz-Zentrum für Informatik
(2008)

10. Borodin, A.: On relating time and space to size and depth. SIAM J. Comput. 6,
733–744 (1977)

11. Borodin, A., von zur Gathen, J., Hopcroft, J.: Fast parallel matrix and GCD
computations. Inf. Control 52(3), 241–256 (1982)

12. Cabasino, M.P., Giua, A., Lafortune, S., Seatzu, C.: A new approach for diagnos-
ability analysis of petri nets using verifier nets. Trans. Autom. Control 57(12),
3104–3117 (2012)

13. Cassez, F., Tripakis, S.: Fault diagnosis with static and dynamic observers. Fun-
damenta Informaticae 88, 497–540 (2008)

14. Chanthery, E., Pencolé, Y.: Monitoring and active diagnosis for discrete-event sys-
tems. IFAC Proc. Vol. 42(8), 1545–1550 (2009)

15. Chatterjee, K., Doyen, L., Gimbert, H., Henzinger, T.A.: Randomness for free. In:
Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 246–257. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2 23

16. Chen, T., Kiefer, S.: On the total variation distance of labelled Markov chains. In:
Proceedings of CSL-LICS 2014, pp. 33:1–33:10. ACM (2014)

17. Haar, S., Haddad, S., Melliti, T., Schwoon, S.: Optimal constructions for active
diagnosis. J. Comput. Syst. Sci. 83(1), 101–120 (2017)

18. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial algorithm for testing
diagnosability of discrete-event systems. Trans. Autom. Control 46(8), 1318–1321
(2001)

19. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential space. In: SWAT 1972, pp. 125–129. IEEE
(1972)

20. Morvan, C., Pinchinat, S.: Diagnosability of pushdown systems. In: Namjoshi, K.,
Zeller, A., Ziv, A. (eds.) HVC 2009. LNCS, vol. 6405, pp. 21–33. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-19237-1 6

21. Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix over an
arbitrary field. In: STOC 1986, pp. 338–339 (1986)

22. Saboori, A., Hadjicostis, C.N.: Current-state opacity formulations in probabilistic
finite automata. Trans. Autom. Control 59(1), 120–133 (2014)

23. Sampath, M., Lafortune, S., Teneketzis, D.: Active diagnosis of discrete-event sys-
tems. Trans. Autom. Control 43(7), 908–929 (1998)

24. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:
Diagnosability of discrete-event systems. Trans. Autom. Control 40(9), 1555–1575
(1995)

https://doi.org/10.1007/978-3-642-54830-7_2
https://doi.org/10.1007/978-3-319-30000-9_42
https://doi.org/10.1007/978-3-319-30000-9_42
https://doi.org/10.1007/978-3-642-15155-2_23
https://doi.org/10.1007/978-3-642-19237-1_6

434 E. Lefaucheux

25. Thorsley, D., Teneketzis, D.: Diagnosability of stochastic discrete-event systems.
Trans. Autom. Control 50(4), 476–492 (2005)

26. Thorsley, D., Teneketzis, D.: Active acquisition of information for diagnosis and
supervisory control of discrete-event systems. Discret. Event Dyn. Syst. 17, 531–
583 (2007)

Optimizing Reachability Probabilities
for a Restricted Class of Stochastic

Hybrid Automata via
Flowpipe-Construction

Carina Pilch1(B), Stefan Schupp2, and Anne Remke1

1 Westfälische Wilhelms-Universität Münster,
Münster, Germany

{carina.pilch,anne.remke}@uni-muenster.de
2 Technische Universität Wien, Wien, Austria

stefan.schupp@tuwien.ac.at

Abstract. Stochastic Hybrid automata (SHA) are increasingly used to
evaluate the dependability and safety of critical infrastructures. Nonde-
terminism, which is present in many purely hybrid models, is often only
implicitly considered in SHA. This paper instead proposes algorithms for
computing optimal reachability probabilities for singular automata with
urgent transitions and random clocks which follow arbitrary continuous
probability distributions. We borrow a well-known approach from hybrid
systems reachability analysis, namely flowpipe construction. We extract
those valuations of random clocks which ensure reachability of specific
goal states from the computed flowpipes and compute reachability prob-
abilities by integrating over these valuations. We compute maximal and
minimal probabilities for history-dependent prophetic and non-prophetic
schedulers using set-based methods. A case study featuring a series of
nondeterministic choices shows the feasibility of the approach.

1 Introduction

The combination of nondeterminism and stochasticity in hybrid models, e.g.
in stochastic hybrid automata (SHA), poses a serious challenge to their reach-
ability analysis. Current approaches treat nondeterminism by discretizing the
state-space [1,9] or the support of random variables [14], which both lead to
overapproximating the reachability probabilities.

In this work, we present an approach to compute optimal (minimum and
maximum) reachability probabilities which does not require approximation. We
consider singular automata with random clocks as introduced in [25], which
extend a sub-class of hybrid automata (HA) by random clocks, that follow abso-
lute continuous probability distributions. They form a subclass of SHA, where
the evolution of continuous variables is piece-wise linear and random time delays
are included. The resulting model class is highly useful for dependability eval-
uation and models with similar expressivity have been used to evaluate water
sewage plants [11], smart homes [21] and electric vehicles [6,20].
c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 435–456, 2021.
https://doi.org/10.1007/978-3-030-85172-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_23&domain=pdf
https://doi.org/10.1007/978-3-030-85172-9_23

436 C. Pilch et al.

A novel approach for computing time-bounded reachability for this subclass,
i.e., the probability to reach a specified set of goal states within a given time
bound, is presented. While the model class maintains both, discrete and con-
tinuous nondeterminism, this paper excludes continuous nondeterminism, which
occurs, e.g., through time nondeterminism or nondeterministic resets. We resolve
discrete nondeterminism by the use of history-dependent non-prophetic and
prophetic schedulers. For both scheduler classes, we compute the minimum/
maximum reachability probability induced by an optimal scheduler.

To obtain these probabilities, sets of reachable states are computed by
flowpipe-construction, where random variables, induced by random clocks, are
treated similar to other continuous variables. From the computed sets of reach-
able states, we extract those sets of values for random variables that lead to prede-
fined goal states. We present dedicated algorithms for computing optimal reacha-
bility probabilities for both non-prophetic and prophetic schedulers. Thereby, we
tackle the interplay of stochastic and nondeterministic behaviour by combining
geometric operations and multi-dimensional integration of the joint probability
distribution over all randomvariables present in themodel. The resulting approach
is exact up to numerical integration. The feasibility of our approach is shown on
a parametrized model of a tank that is filled at a constant rate and drained non-
deterministically via one of two different valves with random blocking times. We
validate the non-prophetic case with hpnmg [17], which however cannot optimize
prophetic schedulers in models with multiple nondeterministic decisions.

Related Work. Reachability for a bounded number of discrete steps is decidable
for potentially non-initialized rectangular automata [2,10]. Flowpipe-construction
computes reachable state-set using different representations, e.g., polytopes [10].

CEGAR-style abstraction allows the application of model checking meth-
ods for probabilistic HA [31]. When decidable subclasses of HA are extended
with discrete probability distributions on jumps, reachability is still decid-
able [30]. For example, [23] extends probabilistic timed automata with contin-
uously distributed resets and applies randomized schedulers to resolve discrete
nondeterminism, while discretizing the state-space. Timed automata have also
been extended by continuous probability distributions [5], stochastic delays and
jumps [4] and analyzed using abstraction in [13], or via transient analysis [3]. For
more general classes, incomplete approximative approaches are available [22,26].
For stochastic hybrid systems with a single mode and finite actions, [29] proposes
abstractions for uncountable-state discrete-time stochastic processes. [9] present
a safe overapproximation for stochastic hybrid systems and [14] discretize the
support of random variables and abstracts to Markov decision processes.

History-dependent non-prophetic and prophetic schedulers that resolve dis-
crete nondeterminism, have been applied to stochastic automata [7], where all con-
tinuous variables are random clocks. Prophetic and non-prophetic scheduling has
been introduced for hybrid Petri nets with general transitions in [24], however, no
general implementation exists for the computation of optimal reachability proba-
bilities in the prophetic case. Due to the state-space representation the approach
in [24] is restricted to that specific model class. In contrast, this paper provides
algorithms to compute optimal reachability probabilities for both, non-prophetic

Optimal Probabilities for Singular SHA via Flowpipe-Construction 437

and prophetic schedulers which allows to reduce the computational effort for the
prophetic case to the same complexity as for the non-prophetic case.

Outline. Sect. 2 defines singular automata extended by random clocks. The
flowpipe-based reachability analysis is explained in Sect. 3 for a fixed sched-
uler. Section 4 explains how optimal non-prophetic and prophetic schedulers are
determined. Section 5 presents a case study. The paper is concluded in Sect. 6.

2 Stochastic Hybrid Automata

Singular automata form a sub-class of hybrid automata [16], in which the deriva-
tives of the continuous variables are constant real values. In the following, we
extend singular automata with so-called random clocks, for which we further
define schedulers to resolve discrete nondeterminism. A singular automaton is a
hybrid automaton, where all initial states, invariants and the transition relations
are restricted to rectangular sets and where the activities as well as the resets on
jumps (see below) are further restricted to a singleton, as presented in [15,16].

Definition 1. Let I be the set of all intervals in R ∪ {−∞,∞} with rational or
infinite endpoints and let d ∈ N. A subset of Rd is rectangular if it is a Cartesian
product of d intervals. A rectangular set is a singleton if each of its intervals is
a singleton, i.e., a set with exactly one element c ∈ R

d.

For the definition of singular automata, we refer to [16] and omit labels. Sin-
gular automata have been extended by stochastic variables in terms of random
clocks [25]. Random clocks ri evolve like stop-watches with derivative one or
zero (i.e., Act(l)i ∈ {0, 1}, l ∈ Loc), are reset only to zero on discrete transitions,
and have a random expiration time, which is described by a random variable.
Precisely, each random clock is associated with a continuous probability distribu-
tion, which describes its expiration time [8]. To indicate expiration, the random
clock is reset to zero and its valuation stored in the associated random variable.

Definition 2. We define an absolute continuous probability distribution (CDF)
of a real-valued random variable X over a set D ⊆ R≥0 as a function F : D →
[0, 1] ⊆ R, where F is absolutely continuous and F (x) = P (X ≤ x) equals the
probability that X takes on a value less than or equal to x. The corresponding prob-
ability density function is denoted f . The set of all CDFs is denoted as F.

Definition 3. A singular automaton with random clocks S = (Loc,Var ′,Edg ,
Act , Inv , Init , Φ) is a singular automaton extended by a set R ⊆ Var ′.

Loc is a finite set of locations and Var ′ a finite set of real-valued variables.
Let |Var ′| be denoted as d. A valuation v is the image of a function Var ′ →
R, which assigns a real-value to each variable, i.e., v is in R

d. The set of all
valuations is denoted V and we refer to a set of valuations by V ⊆ V.

The set Edg ⊆ Loc × (Id × I
d × 2{1,...,d}) × Loc is the finite set of transitions

(l, (pre, post , jump), l′) ∈ Edg. Each transition consists of a source location l, a
transition relation (pre, post , jump) and a target location l′.

438 C. Pilch et al.

Act : Loc → R
d assigns a set of (deterministic) activities to each location. We

use Act(l)i to refer to the activity for the i-th variable. Inv : Loc → I
d assigns an

invariant to each location l ∈ Loc. A state in a singular automaton with random
clocks is a tuple (l, v) with location l ∈ Loc and valuation v ∈ V. S = Loc × V

is the set of all states and Init ⊆ Loc × I
d is the set of initial states. We use

(l, V) to refer to a set of states whose elements agree on the location l and whose
valuations are taken from V ⊆ V.

The function Φ : R → F associates an absolute continuous probability distri-
bution (CDF) to each random clock ri ∈ R. For each random clock holds:

1. ∀(l, v) ∈ Init : ri ∈ R ⇒ v(ri) = 0,
2. ∀l ∈ Loc : ri ∈ R ⇒ Act(l)i ∈ {0, 1},
3. ∀(l, (pre, post , jump), l′) ∈ Edg and ∀ri ∈ R: if and only if i ∈ jump, then

Act(l)i = 1, pre = R
d, post i = 0.1 Every expiration time of a random clock ri

follows Fi assigned by Φ(ri).

The state of a singular automaton with random clocks can change in two
ways: (i) A time delay describes the evolution of time, which only changes the
valuations of continuous variables and not the state location; (ii) A jump takes
a transition to another location and may change both, the location and the
variable valuations. The system can only be in states (l, v) with v ∈ Inv(l).

A transition (l, (pre, post , jump), l′) ∈ Edg can only be taken in a state (l, v)
if the valuation v lies in pre and further v ∈ Inv(l) and v ′ ∈ Inv(l ′). When
the transition is taken, the value of every variable xi ∈ Var ′ is updated to
v ′ as follows: If i /∈ jump, v(xi) is not changed and must lie in post i and if
i ∈ jump, xi is deterministically set to post i, which is a singleton in this case.
Accordingly, this jump leads to a new state (l′, v ′) ∈ S . A transition is called
urgent if its enabling prevents further passage of time—the current location has
to be left immediately. In the remainder of this work, we restrict the model class
to urgent transitions to exclude continuous nondeterminism. This is realized via
combinations of pre-guards and invariant conditions. More formally, for every
transition (l, (pre, post , jump), l′) ∈ Edg with k
∈ jump ∀rk ∈ R it holds that for
pre = I0 × · · · × Id−1 : ∃i ∈ {0, . . . , d − 1} : Ii is half-bounded and ∀j
= i : Ij =
(−∞,∞). In case of a lower bound guard, i.e., Ii = [c,∞), c ∈ R, the invariant
equals Inv(l)i = [e, c], e ≤ c, e ∈ R∪ {−∞} and analogously for an upper bound
guard.

A random clock ∈ R expires whenever a transition is taken which resets its
value.2 Furthermore, a random clock may be paused, which changes its activity
to zero, while its valuation remains unchanged. Precisely, every expiration delay
induces a random variable, which follows the same CDF as the random clock.
We define the set C of random variables induced by a singular automaton with
random clocks where si,j ∈ C is the j-th expiration of the random clock ri. Note

1 Note that pre = R
d, since the random clocks do not have a pre-guard.

2 Definition 3 differs from [25], where clocks run backwards. This does not change
model semantics, but simplifies the identification of goal states via flowpipe-
construction.

Optimal Probabilities for Singular SHA via Flowpipe-Construction 439

l0
ẋ = 1
ṙi = 0
x ≤ 1

x = 0
ri = 0

l1
ẋ = 1
ṙi = 1
x ≤ 2

x = 1
x := 0

ri := 0

x = 2
x := 0

si,j

fi

Act i
0

1
tv(ri) = 0 v(ri) = Δtv(ri) = Δt

active active

v(ri) = si,j

integration area

Δt

Fig. 1. Singular automaton with random clock ri and corresponding timeline for acti-
vation and expiration of ri; its j-th expiration is given by a random variable si,j . In
location l1, two outgoing transitions (one deterministic, one stochastic) compete. In
the chosen scenario, the random clock expires at t = 4, thus, the clock is deactivated
once.

that since we exclude Zeno-behavior (infinitely many discrete jumps in finite or
zero time) and perform analysis up to a time bound tmax , C is finite. We define a
function Ψ : Loc ×C → {0, 1}, which assigns an expiration status to each si,j ∈ C
that holds in a given location l ∈ Loc. In the following, Var = (Var ′\R) ∪ C
defines the set of continuous variables present in a singular automaton, where
every random clock is replaced by the set of random variables, which it induces.
Technically, this corresponds to drawing a sample from Fi when this random
clock becomes active (Act(l)i = 1) initially and after every expiration.

Figure 1 sketches the j-th expiration of random clock ri, which is paused at Δt

without being reset. The depicted expiration delay corresponds to a fresh random
variable si,j , which follows density fi. To resolve the inherent nondeterminism,
we consider history-dependent schedulers, which require the history of a state:

Definition 4. A state σi ∈ S is called reachable in a singular automaton with
random clocks with initial set Init, if there exists a finite sequence σ0, . . . , σi

of states connected by either time delays or discrete jumps and σ0 ∈ Init. The
sequence of alternating time delays and jumps is called history h(σi) of σi, where
duration hd(σi) of σi denotes the sum of all durations of time delays in h(σi).

The set of trajectories is not restricted by alternating delays and jumps, as
delays may have duration zero and consecutive time delays can be combined. The
set of all histories in a singular automaton with random clocks is denoted Hist .

In singular automata with random clocks and only urgent transitions, two
or more transitions might be enabled at the same point in time. We call them
to be in conflict. Conflicts result in discrete nondeterminism and in this work
we make use of schedulers to resolve it, as proposed in [24] for hybrid Petri nets
and in [25] for a similar class of singular automata with random clocks.

We define a discrete probability distribution over a set D as a function
μ : D → [0, 1] ⊆ R such that support(μ) = {d ∈ D | μ(d) > 0} is countable
and

∑
d∈support(µ) μ(d) = 1. Further, let Dist(D) be the set of discrete probabil-

ity distributions over D. Let Confl(σi) ⊆ Edg consist of all transitions that are

440 C. Pilch et al.

in conflict in state σi ∈ S . Definition 5 defines a scheduler for singular automata
with random clocks which has complete information about the current and pre-
vious states of the system. Its decisions are history-dependent.

Definition 5. A scheduler for a singular automaton with random clocks S is a
function s : Hist → Dist(Edg) that assigns to every history h(σi) ∈ Hist a distr.
with support(s(h(σi))) ⊆ Confl(σi). The set of schedulers is denoted Sn.

As in [24], we focus on deterministic optimal schedulers which always choose
exactly one transition maximizing or minimizing reachability probabilities. Con-
sidering random clocks, we further distinguish between prophetic and non-
prophetic schedulers. The schedulers from Definition 5 are non-prophetic, hence
they have no information on the future expiration times of the random clocks.
In contrast, prophetic schedulers have full information on previous and future
expiration times of all random clocks. We denote this set of schedulers as Sp.
For further details on the scheduler classes, we refer to [7,24].

3 Reachability Analysis

We propose algorithms for computing optimal time-bounded reachability prob-
abilities in a restricted class of stochastic hybrid models. This corresponds to
maximizing/minimizing the probability of reaching states σ that belong to a
specified set of goal states S goal ⊆ S with a duration hd(σ) ≤ tmax . Due to the
presence of discrete nondeterminism, every scheduler induces a fully stochastic
version of a singular automaton with random clocks.

For a specific class of schedulers S ∈ {Sn,Sp}, we obtain a range of proba-
bilities [pSmin(S goal , tmax), pSmax (S goal , tmax)], where the bounds are the infimum
and supremum, respectively, over the probabilities induced by all schedulers in
that class. We refer to these optimal probabilities as minimum and maximum.
The set S goal is said to be reachable within time bound tmax if the minimum
probability pSmin(S goal , tmax) is larger than zero. History-dependent classic sched-
ulers, as discussed in [7] for stochastic automata, have knowledge on locations,
valuations and expiration times and form the most powerful class of schedulers
for these models. Since our history-dependent prophetic schedulers have com-
plete information on locations, valuations and expiration times, the induced
probability by such an optimal scheduler is optimal over all scheduler classes.

Construction of a Flowpipe. Flowpipe-construction is used to obtain a geo-
metric representation of the set of reachable states without resolving nondeter-
minism. Our approach first disregards the CDFs of the random clocks and treats
each induced expiration delay as continuous variable.

To compute the set of reachable states for a hybrid automaton, successor
states resulting from time delays as well as from discrete jumps are computed
in a fixpoint iteration. A pseudo-code for this fixpoint computation given in
Algorithm 1. Starting from a set of initial states (Lines 1, 2), states reachable by

Optimal Probabilities for Singular SHA via Flowpipe-Construction 441

Algorithm 1. computeReachability(H)
1: R = Init ;
2: Rnew = R;
3: while Rnew �= ∅ do
4: S = getStateSet(Rnew);
5: F = computeTimeDelaySuccessorStates(S);
6: J = computeJumpSuccessorStates(F);
7: Rnew = (Rnew \ S) ∪ (J \ R);
8: R = R ∪ F ;
9: end while

10: return R;

time delay (Line 5) and by discrete jumps (Line 6) are discovered for each set
of states in the working set (Line 4). The computed set of reachable states and
the working set are updated accordingly (Lines 7, 8). Algorithm 1 terminates
when no new sets of reachable states of H are discovered, i.e., a fixpoint has
been reached (Line 3) and R is returned (Line 10). Depending on the subclass
of hybrid automata and H itself a fixpoint may not exist, hence in practice
further termination criteria, such as a global time bound tmax and a maximal
number of jump successors computed are used. For singular automata jump-
bounded reachability is decidable and returns the exact set of reachable states
(c.f. [2]). For models for which Zeno behaviour is excluded, flowpipe-construction
terminates with exact result when computing time-bounded reachability. Convex
polytopes are commonly used as state-set representation for sets of reachable
states of singular automata, as they allow to represent those sets exactly. We
denote a closed and bounded convex set in the d-dimensional real vector space
as convex polytope. For further details, refer to [32].

Assume the dynamics Act(l)i ∈ R for a continuous variable xi in location
l ∈ Loc. During a time delay, each variable xi changes its valuation to v(xi)+ =
v(xi) + Act(l)i · t, t ≥ 0 (see Fig. 2a). We introduce t as a fresh variable with
the constraint t = 0 into the set of variable valuations V ⊆ R

d to obtain a set
V ′ ∈ R

d+1. Time successor states can be computed as the Minkowski sum of
the ray Act(l) · t, t ≥ 0 and the set V ′. The resulting set V + ∈ R

d+1 describes
variable valuations reachable by positive time delays depending on t. If an upper
bound tmax on t is used to compute time-bounded reachability, the ray becomes
a line segment v(xi) + Act(l)i · t, t ∈ [0, tmax] and the resulting set is bounded
(if V was bounded). Elimination of the additional variable t in the description
of V + yields a projection V + ↓Var onto the original variables and describes all
valuations reachable by positive time elapse starting from V . Finally, the set
(V + ↓Var) ∩ Inv(l) yields those states which also admit the invariant condition
in location l. Note that enabled urgent transitions bound the duration of a time
delay. The computation of jump successors may limit the set of time successor
states if an urgent transition is enabled before reaching t.

A transition (l, (pre, post , jump), l′) ∈ Edg with pre being a rectangular set
is enabled by a state set (l, V pre) if V pre ⊆ pre holds. The deterministic reset of

442 C. Pilch et al.

x0

x1

Act(l)0 = 2

Act(l)1 = 0.5

Inv(l) : x0 ≤ 5

V

V +

V + ∩ Inv(l)

(a) Projected illustration of computing suc-
cessor states of V for a time delay.

x0

x1

V

V pre

pre

V projV post

post0

Inv(l) : x0 ≤ 5.5

(b) Computation of jump successor states
of V with 0 ∈ jump and post0 resets x0.

Fig. 2. Illustration of time- and jump-successor computation.

a variable xi to a value in post i as described in Sect. 2 is performed by projec-
tion of V pre on Var/xi (e.g., via Fourier-Motzkin variable elimination) to obtain
V proj = V pre ↓Var/xi

, which effectively removes all constraints on xi and returns
a convex polytope unbounded in xi. The result V proj of the projection is inter-
sected with the hyperplane representing the equation xi = post i. An intersection
of the resulting set V post = V proj ∩post with Inv(l′) ensures the invariant condi-
tion in the target location is satisfied. The whole process is illustrated in Fig. 2b.
For urgent transitions it suffices to compute jump successors up to the first time
point where an urgent transition is enabled.

The alternating computation of all time delays and all valid jump successor
states for a hybrid automaton H eventually yields a set of state sets (segments)
whose union, the so-called flowpipe, represents the set of reachable states of H.
The computation traverses the reachability tree in which nodes represent time
delays and the parent-child relation represents a jump. Following [27], we define
the reachability tree, which is finite for time-bounded reachability in singular
automata without Zeno-behavior:

Definition 6. For a hybrid automaton (Loc,Var ,Edg ,Act, Inv , Init) with
dimension d = |Var | a (finite) reachability tree is defined as tree (N ,E ,Sfunc)
with the following components: a finite set N of nodes and a root node nroot ∈
N ; a set E ⊆ N × N of edges; a function Sfunc : N → (Loc × 2R

d

) that assigns
a flowpipe segment (l, V) to each node as data.

Computation of Probabilities. We compute time-bounded reachability prob-
abilities by extracting valuations of all random variables present in the model
from the reachable goal states. Then, we integrate the joint probability density
of the random variables over the sets of extracted valuations. We detail the main
steps of this computation in the following (see also Fig. 3):

Reduction. In the first step, we reduce the flowpipe segments to states reachable
in S goal before tmax . To bound global time, a fresh clock tG is introduced which
is never reset. Adding an invariant tG ≤ tmax to each location ensures that all
segments of the computed flowpipe comply with the global time bound.

Optimal Probabilities for Singular SHA via Flowpipe-Construction 443

In our approach, a goal state (lgoal , vgoal) in S goal is a tuple of a goal location
lgoal and a goal valuation vgoal . We extend the notation to sets of goal states
(lgoal , V goal). A state set (l, V) contains goal states from the set (lgoal , V goal) if
l = lgoal and V ∩ V goal
= ∅. We represent V goal as a convex polytope.

Projection. For the computation of time-bounded reachability probabilities, we
consider only the random variables and their corresponding probability distribu-
tions. Hence, we exclude all other variables by projecting the non-empty state set
(l, V ∩V goal) onto the n-dimensional sub-space of the random variables (n = |C|)
to obtain (l, V ′) = (l, (V ∩ V goal) ↓C).

s0,j

x0

V ′′

V goal
C

V ∩ V goal

(V ∩ V goal) ↓s0,j

tmax

Fig. 3. Projection of a set of reach-
able valuations (light gray) V ∩
V goal satisfying a goal condition
(gray) on the dimension of s0,j .
The resulting one-dimensional set
V ′ = (V ∩ V goal) ↓s0,j (thick black)
is extended to tmax (thick gray) by
convex union with V ′′.

Extension. Recall that Ψ(l, si,j) denotes the
expiration status of each random variable
si,j ∈ C in location l ∈ Edg . If expired, the
set of valuations stored for si,j describes all
possible valuations which allow reaching a
goal state. These are required to compute
the overall reachability probability. If a ran-
dom variable is not expired when reaching
a goal state, its expiration time lies in the
future and is not relevant for reaching a goal
state. After a goal state has been reached
where v(si,j) = k, the random variable can
expire at any point in time and thus any
value between k and tmax assigned to the
random variable si,j leads to the goal state3.
To include all values in [k, tmax], current
valuations of si,j are extended to the time
bound tmax to reflect this case. Technically,
this corresponds to computing the convex closure (i.e., convex hull) of the union
of V ′ and the set V ′′ in which all valuations of si,j are set to tmax . We use V goal

C to
refer to the set cHull(V ′∪V ′′) computed in this step and use S goal

C = {(l, V goal
C)}

for the corresponding state set. The function pre-process : Loc×2R
d → Loc×2R

n

then maps state sets to their reduced, projected and extended equivalents.

Scheduling. The previous steps yield a set of n-dim. state sets S goal
C that indicate

which values assigned to the n random variables lead to goal states within the
allowed time bound. So far, we consider this set of state sets independently of
the chosen scheduler. Given a scheduler s ∈ S, only a subset S s ⊆ S goal

C of these
assignments results from the decisions of s. This is described in detail in Sect. 4.

Integration. A fixed scheduler s ∈ S results in a subset S s and each correspond-
ing valuation set V s is represented as a convex polytope Ps over the space of the

3 For a fixpoint in time (at which the goal state is reached) v(si,j) = k is a singleton
since the random variable starts at si,j = 0, is never reset, and follow clock-dynamics.

444 C. Pilch et al.

random variables. We compute the probability ps(S goal , tmax) by integrating the
joint probability distribution of all random variables. For a specific scheduler s,
the region of integration is given by the union Us =

⋃
(l,V s)∈Ss V s over all V s,

i.e., the union4 of polytopes Ps.
Then, ps(S goal , tmax) equals the probability that the value of every random

variable si for 0 ≤ i ≤ n − 1 lies within the union Us. Let s = (s0, . . . , sn−1)
denote an n-dimensional point (i.e., one specific assignment of values to the ran-
dom variables). Let G(s) =

∏n−1
i=0 fi(si) be the joint probability density function

which, due to the independence of the random variables, equals the product over
the n probability density functions fi. The resulting probability is:

ps(S goal , tmax) =
∫

Us

G(s) ds. (1)

In practice, we compute these probabilities by numerical integration tech-
niques (Monte Carlo integration) in the same way as described in [18]. Monte
Carlo integration samples points s in the state-space and the joint density G(s)
is only accumulated in case s lies within Us. Thus, the integration can be carried
out directly on the union of convex polytopes [19].

The computational complexity of the flowpipe-construction for this restricted
subclass is exponential in the state-space dimension d. The exponential complex-
ity results from required polytope representation conversions. The operations
projection and extension are also exponential in d (due to representation con-
version). Integration is polynomial in number of random variables n, the number
of discrete jumps and in the complexity of the polytope representation.

4 Optimal Schedulers

The probability that we obtain for time-bounded reachability depends on the
specific scheduler. We want to find the optimal probabilities pSmin(S goal , tmax)
and pSmax (S goal , tmax) over all schedulers of a given class S ∈ {Sn,Sp} for
a certain property described by goal states. For a fixed goal state, an optimal
scheduler s either maximizes or minimizes the reachability probability. The deci-
sions taken by a certain scheduler relate to certain branches in the computed
reachability tree (c.f. Definition 6) and thus every decision resolves a nondeter-
ministic conflict between different branches. Accordingly, only those subsets of
reachable states which originate from the scheduler decision in the chosen branch
are reachable for this scheduler. Hence, every scheduler decision reduces the set
of reachable states to the subset S s over which is integrated.

The number of nodes in the reachability tree is linear in the total number
of taken jumps. For every node the operations reduction, projection, and exten-
sion are executed (at most) once. Next, we introduce the computation of time-
bounded reachability probabilities for non-prophetic and prophetic schedulers.
A proof of correctness of the presented algorithms can be found in Appendix A.

4 Note that this is not the convex closure of the union.

Optimal Probabilities for Singular SHA via Flowpipe-Construction 445

Algorithm 2. computeNonProphetic(S,S goal , tmax)

1: root = computeReachability(S, tmax);
2: polySched = collPolys(root ,S goal , tmax , 0, ∅);
3: optimalProb = 0;
4: for each polytopes ∈ polySched do
5: currentProb = computeProbOverUnion(polytopes,S.distributions);
6: optimalProb = max(currentProb, optimalProb);
7: end for
8: return optimalProb;

4.1 Optimal Non-prophetic Scheduler

Each history-dependent non-prophetic scheduler s ∈ Sn has knowledge about
the history and the current state of a model. However, it does not know the
actual variable assignment s of the random variables, it only knows the set
S goal

C and thus cannot make decisions based on s. For every conflict, which
leads to branching the reachability tree, scheduler s can choose only a specific
sub-tree. The resulting set of paths (from the root to leaf-nodes) through the
selected sub-trees yields a set of nodes Ns ⊆ N . The set S s is given as S s =
{pre-process(Sfunc(n)) | n ∈ Ns}.

The maximum non-prophetic scheduler smax ∈ Sn resolves nondeterminism
which results in the set S s

max , for which pS
n

max (S goal , tmax) is maximized, i.e.,

pS
n

max (S goal , tmax) = max (ps(S goal , tmax) | s ∈ Sn). (2)

The minimum case for pS
n

min(S goal , tmax) is defined analogously. When com-
puting optimal reachability probabilities the result of every non-prophetic sched-
uler is compared and the optimal one is determined by iterating over the reacha-
bility tree and collecting the corresponding state sets for every scheduler decision.
Recall from Eq. 1, that we need to integrate over the union of all state sets S s

for a specific scheduler, since its decisions can lead to multiple state sets.
Algorithm 2 presents pseudo-code for the computation of the maximum prob-

ability obtained by the optimal non-prophetic scheduler. It expects a singular
automaton with random clocks S, the desired set of goal states S goal and the time
bound tmax as input. Line 1 calls the flowpipe-construction, which returns the
root of the computed reachability tree, where every node holds the correspond-
ing flowpipe segment. The function collPolys(root ,S goal , tmax , 0, ∅) called in
Line 2 collects the polytopes, separated by schedulers, such that each entry in
polySched represents one scheduler and contains the set of polytopes which rep-
resent those goal states that are reachable by this scheduler. Lines 4–7 loop over
all entries of polySched and compute the probability currentProb to reach a goal
state for each scheduler in Line 5. This is realized by integration over the union
of the polytopes (see Eq. 1). If the probability is larger than the maximum prob-
ability optimalProb that was computed so far, the latter is updated (Line 6).
Finally, the optimal probability is returned in Line 8.

Function collPolys(node,S goal , tmax , index , polySched) (see Algorithm 3) is
called for the root nodes in the reachability tree node. Given the set of goal states

446 C. Pilch et al.

Algorithm 3. collPolys(node,S goal , tmax , index , polySched)
1: if (Sfunc(node) ∩ S goal �= ∅) then
2: polytope = preProcess(Sfunc(node));//reduce, project, extend, see Sec. 3.2
3: polySched [index].insert(polytope);
4: end if
5: conflChildren = getConflictingChildren(node);
6: nonConflChildren = node.children \ conflChildren;
7: for (each child ∈ nonConflChildren) do
8: polySched = collPolys(child ,S goal , tmax , index , polySched);
9: end for

10: numSched = |polySched |;
11: for (i=1, . . . , |conflChildren| − 1) do
12: newIdx = numSched + i − 1;
13: polySched [newIdx] = (polySched [index]);
14: polySched = collPolys(conflChildren[i],S goal , tmax , newIdx , polySched);
15: end for
16: return polySched ;

S goal , a time bound tmax , the algorithm stores polytopes which represent the
integration domain for each scheduler identified by index in the array polySched .
Initially, the function is called with index = 0 and an empty array. At first, Line 1
checks if the state set referenced by the current node node contains goal states.
If this is the case, in Line 2 the state set is reduced to the reachable goal states,
projected and extended to tmax (see also Sect. 3). The result is inserted into
the array of polytopes in polySched at index index (Line 3) to indicate that the
segment is reachable by the scheduler identified by the current index . In Lines
5, 6 the set of child nodes is separated into conflicting and non-conflicting nodes.
For the recursive call of collPolys on all non-conflicting child-nodes (Lines 7–
9), the given value of index is passed, as no separation of schedulers is required
if no conflict occurs. If there are child nodes in conflict Lines 11–15 loop over the
respective nodes and the current polytope vector in polySched at index index is
copied. Thus, for each decision over the conflicting children, a new scheduler is
instantiated based on the previously taken decisions. For each conflicting child
node, the recursive function is then called (Line 14) with according index of the
new scheduler. Reachability probabilities for the optimal minimum scheduler can
be computed similarly.

4.2 Optimal Prophetic Scheduler

Prophetic schedulers have knowledge on all future expiration times of the random
variables. Hence, a prophetic scheduler can take decisions based on all random
variables present in the model. Precisely, it can take different decisions for dif-
ferent assignments s and can optimize decisions for any given s. This results in
infinitely many prophetic schedulers, if at least one random variable is present
in the model. In contrast, for a fixed time bound and excluding Zeno-behaviour
the number of non-prophetic schedulers is finite, due to the finite reachability
tree.

Optimal Probabilities for Singular SHA via Flowpipe-Construction 447

Algorithm 4. computePropheticMinimum(S,S goal , tmax)

1: root = computeReachability(S, tmax);
2: polySched = collPolys(root ,S goal , tmax , 0, ∅);
3: for each polytopes ∈ polySched do
4: union = computeUnion(polytopes);
5: unitedPolys.insert(union);
6: end for
7: optimalProb = computeProbOverIntersect(unitedPolys,S.distributions);
8: return optimalProb;

Minimum Probabilities. An optimal prophetic scheduler that minimizes the
probability to reach a goal state aims to evade those paths in the reachability
tree leading to goal states for the given s. Recall from Eq. 1 that the probability
obtained by a specific scheduler s is given by integration over the union of all
state sets S s reachable due to decisions of s. Only those s, for which the sched-
uler cannot take any decision to avoid reaching a goal state, have to be included
in the region of integration when computing the minimum probability. For any
other s, there always exists a decision leading to a path which evades goal states.

The set of states that is reachable by all prophetic schedulers and hence,
cannot be avoided, is given by the intersection

⋂
s∈Sp S s. If this intersection is

empty, for every s decisions are possible which avoid goal states. Accordingly,
the minimum probability results from integration over the above intersection.

Algorithm 4 shows pseudo-code for computing the minimum probability
obtained by the optimal prophetic scheduler. Similarly to Algorithm 2, Lines 1–2
collect polytopes for each scheduler. Lines 3–6 loop over each entry in polySched ,
for which the union of the corresponding polytope set is computed and stored
(Lines 4, 5). The minimum probability is computed over the intersection of the
previously united polytopes in Line 7 and finally returned.

Maximum Probabilities. In contrast, the maximum probability is computed by
integration over the union of all polytopes representing S s for all s ∈ Sp: For
any s that lies within the union it is possible to take decisions leading to a goal
state. The region of integration is thus given as the set of polytopes representing
all valuations in

⋃
s∈Sp S s, which is equal to S goal

C . Recall from Sect. 3, that for
each scheduler s these valuations are given by Us, which is again represented by
a union of polytopes. Hence, we integrate over the set

⋃

s∈Sp

Us =
⋃

s∈Sp

⋃

(l,V s)∈Ss

V s =
⋃

(l,V)∈Sgoal
C

V. (3)

To compute the maximum probability of an optimal prophetic scheduler, we
thus do not need to separate sets of states by schedulers, but can process flowpipe
segments which intersect S goal (see Algorithm 5). Line 1 calls the flowpipe-
construction and Line 2 collects all flowpipe segments stored in the reachability
tree. Lines 3–8 loop over all of these flowpipe segments. Line 4 checks for the

448 C. Pilch et al.

Algorithm 5. computePropheticMaximum(S,S goal , tmax ,)

1: root = computeReachability(S, tmax);
2: flowpipe = getAllSetsFromTree(root);
3: for each segment ∈ flowpipe do
4: if (segment ∩ S goal �= ∅) then
5: polytope = preProcess(segment); // reduce, project, extend, see Sec. 3.2
6: polytopes.insert(polytope);
7: end if
8: end for
9: optimalProb = computeProbOverUnion(polytopes,S.distributions);

10: return optimalProb;

Table 1. Maximum reachability probabilities for non-prophetic and prophetic sched-
ulers, goal states S goal = {(l, v) ∈ S |v(x0) ≥ 18 l}, error estimates (±) and computation
times for different time bounds tmax , from the flowpipe approach.

tmax 7 h 8 h 9 h 10 h 11 h

n 2 4 5 6 8

#locs SA 22 34 53 83 119

Non-proph. Flowpipe pS
n

max (S
goal , tmax) 0 0.534 404 0.626 397 0.644 603 0.729 008

± 0 4.306 · 10−4 5.887 · 10−4 7.883 · 10−4 5.343 · 10−3

computation time 0.20 s 1.88 s 10.39 s 54.71 s 2296.73 s

HPnG [24] pS
n

max (S
goal , tmax) 0 0.534 718 0.626 442 0.644 498 0.737 537

± 0 3.090 · 10−5 4.382 · 10−5 3.291 · 10−5 1.417 · 10−5

Computation time 0.01 s 4.47 s 12.88 s 20.49 s 51.98 s

Proph. Flowpipe pS
p

max (S
goal , tmax) 0 0.604 091 0.648 847 0.651 300 0.755 494

± 0 5.667 · 10−4 6.148 · 10−4 1.095 · 10−3 3.050 · 10−3

Computation time 0.19 s 1.67 s 9.19 s 55.04 s 2289.94 s

current segment if it contains goal states. In this case, the segment is reduced
to reachable goal valuations, projected and extended (Line 5). The resulting
polytope is added to the list of polytopes in Line 6. The maximum probability
optimalProb is computed by integration over the union of all polytopes in Line 9.

5 Case Study

We developed a prototype implementation for the maximum case of the pre-
sented approach, which uses the libraries HyPro [28] and GNU Scientific
Library (GSL) [12]. The current implementation relies on the transformation
presented in [25] to compute the set of induced random variables up to time
tmax .

Figure 4 shows the model of a tank which is constantly filled and can be
drained by one of two valves. The fluid in the tank initially equals 4 l (liters)
and its capacity is 20 l. The tank is filled with a rate of 4 l h−1 (liters per hour).
The first valve drains 6 l h−1 and the second one drains 4 l h−1. The controller
chooses nondeterministically to activate exactly one of the valves, as soon as the

Optimal Probabilities for Singular SHA via Flowpipe-Construction 449

fluid level reaches 16 l. If activated, the first valve remains active for 2 h and then
is blocked for a random period of time, which is uniformly distributed. If the
second valve is activated it stays active for 1 h and is also blocked for a uniformly
distributed period of time. A blocked valve cannot be activated.

min

max
goal
activate

control

4 l h−1

6 l h−1 4 l h−1

Fig. 4. A tank with constant inflow
and two controlled draining valves.
After usage each valve is blocked for
a random time.

The above has been modeled as a singu-
lar automaton (see Appendix B). All random
variables follow a continuous uniform distri-
bution on the interval [0 h, 6 h]. We define the
set of goal states S goal = {(l, v) ∈ S |v(x0) ≥
18 l}, i.e., a goal state is reached when the
fluid level of the tank exceeds 18 l.

To validate our non-prophetic method,
we analyzed the tank system modelled as
a hybrid Petri net with general transi-
tions (HPnG), using the non-prophetic app-
roach from [24], implemented in the tool
hpnmg [17]. We transformed the HPnG
model into a singular automaton model
via [25] to ensure it matches the original
model. We were not able to validate prophetic
results, as the prophetic approach from [24] only works for one nondeterministic
decision; the tool ProHVer [14] was only able to compute prophetic overap-
proximations for the two smallest model instances (c.f. Appendix C). All exper-
iments were performed on a machine with an Intel Core I7 CPU (4 × 1.8 GHz)
and 16 GiB memory.

Resulting probabilities for both schedulers classes, error bounds and compu-
tation times are summarized in Table 1. Choosing a time bound tmax results in
a model with n random variables and #locs SA discrete states (i.e., locations)
for the singular automaton, as indicated in Table 1. The number of random vari-
ables increases with tmax , since over time further random clocks are activated
modeling the blocking time of a valve. Note that the number of discrete states in
both the HPnG and the automaton grows due to our approach, which requires
a fresh random clock for every instance of the blocking delay of the valves.

Our evaluation shows that the non-prophetic results computed by both
approaches match for tmax ≤ 10 h, when taking into account the statistical
errors from Monte Carlo integration. For tmax = 11 h the observed difference
between both approaches is larger than the estimated errors provided. We stress
that the error is a statistical estimate and not a strict error bound. Hence, this
may occur. However, note that up to integration our computations are exact and
the error only results from the last step of computing probabilities. Additional
samples for numerical integration can be used to refine the result.

Computation times for the flowpipe approach can only compete with the
HPnG-based approach for tmax ≤ 9 h, which was to be expected, since the for-
mer is much more general and in particular capable of prophetic scheduling.
Both approaches share the computational effort for projecting state sets onto

450 C. Pilch et al.

the domain of the random variables and integrating over reachable sets of states.
Additionally, the flowpipe approach needs to extend the clock domain to time
tmax . The latter is expensive due to required representation conversions, espe-
cially for higher dimensions, which results in an increasing difference between
both computation times.

The maximizing prophetic scheduler always reaches a higher reachability
probability. This stems from the knowledge of the prophetic scheduler on the
duration of the blocking times of the valves in Fig. 4 and allows the prophetic
scheduler to make proficient decisions. Hence, it chooses the valve with the longer
blocking time to reach a high level of fluid. At time t = 8h either scheduler
has for the first time the possibility of exceeding the threshold of 18 l, which
results in a positive reachability probability. At this time a scheduler can choose
a valve for the third time, which leads to the possibility that both valves are
still blocked. With increasing tmax , the number of decisions which a sched-
uler can take, increases. Consequently, a maximizing scheduler (both prophetic
and non-prophetic) has more opportunity to influence the reachability proba-
bility, as reflected in the increasing reachability probabilities for both sched-
uler classes. The computation times for the prophetic approach are in general
slightly smaller than for the non-prophetic approach, which is to be expected as
the computation of the maximizing reachability probabilities in the prophetic
case is simplified to an integration over the union of reachable state sets. The
code (http://go.wwu.de/bes9y) to replicate the results, including the models, is
submitted as an artifact.

6 Conclusion

We present a novel flowpipe construction-based approach to analyze singu-
lar automata with random clocks, excluding continuous nondeterminism. We
introduce algorithms to compute reachability probabilities for optimal history-
dependent (non-)prophetic schedulers, both with similar computational com-
plexity.

Our approach overcomes the requirement for state-space discretization, build-
ing on a combination of geometric operations on multidimensional polytopes and
integration of the joint probability distribution. This allows us to optimize the
probability of reaching a set of goal state within a given time bound. The com-
puted results are exact up to numerical errors from integration. We have shown
the feasibility of the presented method on a small case study and validated the
non-prophetic case with the analytical approach from [24].

This Petri net-based approach (which exploits restrictions of HPnGs), does
not scale for multiple decisions in the prophetic case and hence cannot be used for
validation. Instead, the newly presented approach is equally efficient for both,
non-prophetic and prophetic scheduling. We are able to compute results effi-
ciently for 8 random variables, resulting in a state-space with 12 dimensions.

Furthermore, we expect the presented approach to be extensible to more
powerful model classes, including e.g., time nondeterminism and rectangular
flows, which will be investigated in future work.

http://go.wwu.de/bes9y

Optimal Probabilities for Singular SHA via Flowpipe-Construction 451

We further plan to investigate the influence of (possibly symbolic) state-space
representations (and conversions between several representations) on the perfor-
mance of the flowpipe construction to improve the efficiency of our algorithms.

Appendix A Proof of Correctness

Lemma 1. Given an integration oracle, Algorithms 2 and 3 compute the max-
imum non-prophetic reachability probability.

pS
n

max (S goal , tmax) = max (ps(S goal , tmax) | s ∈ Sn). (4)

Proof (Proof of termination). Algorithm 2 loops over all non-prophetic sched-
ulers in Sn. The number of schedulers |Sn| is finite as the number of discrete
nondeterministic choices is finite in finite time tmax . Hence, Algorithm 2 termi-
nates. Algorithm 2 calls Algorithm 3 (Line 2) which recursively traverses the
finite (c.f. Sect. 3) reachability tree, and hence also terminates.

Proof (Proof of optimality).
Algorithm 3 collects the complete state-space recursively for all schedulers.

This follows directly from the correctness of bounded reachability analysis for
singular automata (c.f. [2]). As we treat random variables as stopwatch variables,
the resulting model is singular.

For each possible scheduler s ∈ Sn(represented by the variable index),
Algorithm 3 traverses the reachability tree (N ,E ,Sfunc). The traversal fol-
lows the set of nodes Ns ⊆ N which is induced by that scheduler s, where
S s = {pre-process(Sfunc(n)) | n ∈ Ns} are in S goal (c.f. Sect. 4.1).

The algorithm recursively collects the sets of valuations Vs for each random
clock in Ns (c.f. Lines 8, 14). The mapping polySched stores an assignment of
polytopes (i.e., the set of valuations for all random clocks) for each scheduler
(Lines 1–4).

Algorithm 2 iterates over said mapping (Lines 4–7) and computes for each
scheduler s ∈ Sn the resulting reachability probability ps(S goal , tmax) (Line 6).

Note that a non-prophetic scheduler does not have knowledge on future expi-
ration times of random clocks. Hence, every choice induces a branching in the
reachability tree and the probability can only be optimised by separately com-
paring the probability of the reachable state-space of the respective branch in
the reachability tree. As Line 6 compares the probability induced by all possi-
ble non-prophetic schedulers over the complete state-space, optimality follows
directly.

The correctness of Lemma 1 follows from termination and optimality. The
minimum case is analogous.

Lemma 2. Given an integration oracle, Algorithm 4 computes the minimum
prophetic reachability probability:

pS
p

min(S goal , tmax) =
∫

⋂
s∈Sp Us

G(s) ds. (5)

452 C. Pilch et al.

Lemma 3. Given an integration oracle, Algorithm 5 computes the maximum
prophetic reachability probability:

pS
p

max (S goal , tmax) =
∫

⋃
s∈Sp Us

G(s) ds, (6)

where
⋃

s∈Sp

Us =
⋃

s∈Sp

⋃

(l,V s)∈Ss

V s =
⋃

(l,V)∈Sgoal
C

V. (7)

Proof (Proof of termination). The set of prophetic schedulers Sp is finite. Algo-
rithm 4 calls Algorithm 3, which terminates (c.f. the non-prophetic case) and
computes a finite union Us of polytopes for each scheduler s ∈ Sp. Hence, it
also terminates. For Algorithm 5 termination follows directly from the finiteness
of the traversed reachability tree, as no iteration over schedulers is needed.

In contrast to the non-prophetic case, the prophetic scheduler can base its
decision on the future expiration times of the random clock (c.f. Sect. 4.2) and
is able to find the optimal decision for every expiration time.

Proof (Proof of minimality).
Algorithm 4 calls Algorithm 3 (Line 2) which computes the complete state-

space (again c.f. [2]) and yields the mapping from schedulers to resulting valua-
tions for random clocks.

For each scheduler s ∈ Sp, it unites all clock valuations that allow reaching
the goal states for this scheduler (Lines 3–6), thus computing Us. Line 7 com-
putes the minimum reachability probability pS

p

min(S goal , tmax) that yields from
integration over the intersection ∩s∈SpUs over the (united) clock valuations for
all schedulers in Sp.

For the clock valuations in the intersection ∩s∈SpUs all schedulers lead to
goal states. Thus integrating over this intersection yields the minimum proba-
bility, since (due to completeness) no scheduler exists that avoids goal states for
those clock valuations. This proves minimality.

Proof (Proof of maximality).
Algorithm 5 computes the reachable state-space as a flowpipe, without dis-

tinguishing between schedulers s ∈ Sp. In this special case, the computation
does not need to distinguish between schedulers, as the union abstracts from
individual schedulers, anyhow (c.f. Sect. 4.2). Again, completeness follows from
the correctness of bounded reachability analysis for singular automata (c.f. [2]).
Hence, all schedulers in Sp that lead to reachable goal states in S goal are con-
sidered within the computed state-space.

The algorithm then takes the union over all possible clock valuations S goal
C

leading to reachable goal states (c.f. Sect. 4.2) and it is impossible that another
scheduler exists that leads to goal states and is not considered in the union.
Thus, integrating over this union results in the maximal probability.

Optimal Probabilities for Singular SHA via Flowpipe-Construction 453

The correctness of Lemma 2 follows from termination and minimality and
the correctness of Lemma 3 follows from termination and maximality.

Appendix B Singular Automaton for Case study

See Fig. 5.

�all off
ẋ = 4
ċ1 = 0
ċ2 = 0
ṙ1 = 0
ṙ2 = 0
x ≤ 16

�v1 on
ẋ = −2
ċ1 = 1
ċ2 = 0
ṙ1 = 0
ṙ2 = 0
c1 ≤ 2

�v2 on
ẋ = 0
ċ1 = 0
ċ2 = 1
ṙ1 = 0
ṙ2 = 0
c2 ≤ 1

�v1 on v2 blocked
ẋ = −2
ċ1 = 1
ċ2 = 0
ṙ1 = 0
ṙ2 = 1

c1 ≤ 2

�v1 blocked v2 on
ẋ = 0
ċ1 = 0
ċ2 = 1
ṙ1 = 1
ṙ2 = 0

c2 ≤ 1

�v1 blocked
ẋ = 4
ċ1 = 0
ċ2 = 0
ṙ1 = 1
ṙ2 = 0
x ≤ 16

�blocked unsafe
ẋ = 4
ċ1 = 0
ċ2 = 0
ṙ1 = 1
ṙ2 = 1

�blocked safe
ẋ = 4
ċ1 = 0
ċ2 = 0
ṙ1 = 1
ṙ2 = 1
x ≤ 16

�v2 blocked
ẋ = 4
ċ1 = 0
ċ2 = 0
ṙ1 = 0
ṙ2 = 1
x ≤ 16

x := 4, c1 := 0, c2 := 0, r1 := 0, r2 := 0

x ≥ 16 x ≥ 16

x
<
16

∧ c 1
≥
2

c 1
:=

0

x ≥ 16 ∧ c1 ≥ 2
c1 := 0

x ≥ 16 ∧ c2 ≥ 1
c2 := 0

x
<
16 ∧

c
2 ≥

1

c
2
:=

0

r1 := 0

x ≥ 16

r2 := 0

x ≥ 16

r2 :=
0

x
<
16

∧ c 1
≥
2

c 1
:=

0

x
≥
16

∧ c 1
≥
2

c 1
:=

0

r1
:=

0
x

<
16 ∧

c
2 ≥

1

c
2
:=

0

x ≥
16 ∧

c
2 ≥

1

c
2
:=

0

r2 := 0 r1 := 0

x ≥ 16

r2 := 0 r1 := 0

Fig. 5. Singular automaton with random clocks for tank model. x models the fluid
level of the tank. c1 and c2 model the active time for the first and second valve. r1 and
r2 are the random clocks, modeling the random blocking time for the valves.

454 C. Pilch et al.

Appendix C Validation of Prophetic Probabilities

Since hpnmg is not able to validate the prophetic case, we tried the tool Pro-
HVer [14] for comparison and were able to compute prophetic overapproxima-
tions of reachability probabilities for the two smallest model instances.

For larger time bounds we were not able to obtain results due to time- and
memory outages. For tmax ≤ 7 h the tool confirms a probability of zero (after
less than a second) and for tmax = 8h an overapproximation of 0.719 998 for
pS

p

max (S goal , tmax) is returned after 648 s (using a uniform discretization into four
intervals for the support of the random variables).

The computed overapproximation confirms our results, however, we were not
able to compute more precise results using finer-grained discretizations (time-
out/memout).

References

1. Abate, A., Katoen, J.P., Lygeros, J., Prandini, M.: Approximate model checking
of stochastic hybrid systems. Eur. J. Control. 16(6), 624–641 (2010). https://doi.
org/10.3166/ejc.16.624-641

2. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci.
138, 3–34 (1995). https://doi.org/10.1016/0304-3975(94)00202-t

3. Ballarini, P., Bertrand, N., Horváth, A., Paolieri, M., Vicario, E.: Transient anal-
ysis of networks of stochastic timed automata using stochastic state classes. In:
Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS,
vol. 8054, pp. 355–371. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40196-1 30

4. Bertrand, N., et al.: Stochastic timed automata. Logical Methods Comput. Sci.
10(4), 1–73 (2014). https://doi.org/10.2168/lmcs-10(4:6)2014

5. Bohnenkamp, H., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MODEST: a com-
positional modeling formalism for hard and softly timed systems. IEEE Trans.
Software Eng. 32(10), 812–830 (2006). https://doi.org/10.1109/tse.2006.104

6. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89963-3 20

7. D’Argenio, P.R., Gerhold, M., Hartmanns, A., Sedwards, S.: A hierarchy of sched-
uler classes for stochastic automata. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS
2018. LNCS, vol. 10803, pp. 384–402. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89366-2 21

8. D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems part I: stochastic
automata. Inf. Comput. 203(1), 1–38 (2005). https://doi.org/10.1016/j.ic.2005.
07.001

9. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: 14th ACM International
Conference on Hybrid Systems: Computation and Control, HSCC 2011, pp. 43–52.
ACM, New York (2011). https://doi.org/10.1145/1967701.1967710

10. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2 17

https://doi.org/10.3166/ejc.16.624-641
https://doi.org/10.3166/ejc.16.624-641
https://doi.org/10.1016/0304-3975(94)00202-t
https://doi.org/10.1007/978-3-642-40196-1_30
https://doi.org/10.1007/978-3-642-40196-1_30
https://doi.org/10.2168/lmcs-10(4:6)2014
https://doi.org/10.1109/tse.2006.104
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-89366-2_21
https://doi.org/10.1007/978-3-319-89366-2_21
https://doi.org/10.1016/j.ic.2005.07.001
https://doi.org/10.1016/j.ic.2005.07.001
https://doi.org/10.1145/1967701.1967710
https://doi.org/10.1007/978-3-540-31954-2_17

Optimal Probabilities for Singular SHA via Flowpipe-Construction 455

11. Ghasemieh, H., Remke, A., Haverkort, B.R.: Analysis of a sewage treatment facil-
ity using hybrid petri nets. In: 7th EAI International Conference on Performance
Evaluation Methodologies and Tools, VALUETOOLS 2013, pp. 165–174. ICST
(2013)

12. Gough, B.: GNU Scientific Library Reference Manual. Network Theory Ltd. (2009)
13. Hahn, E.M., Hartmanns, A., Hermanns, H.: Reachability and reward checking for

stochastic timed automata. Electron. Commun. EASST 70 (2014). https://doi.
org/10.14279/tuj.eceasst.70.968

14. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

15. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid systems, NATO ASI Series, vol. 170, pp.
265–292. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59615-
5 13

16. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998). https://doi.org/
10/cpnnbv

17. Hüls, J., Niehaus, H., Remke, A.: HPNMG: a C++ tool for model checking hybrid
petri nets with general transitions. In: 12th International NASA Formal Methods
Symposium, NFM 2020. LNCS, vol. 12229, pp. 369–378. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-55754-6 22

18. Hüls, J., Pilch, C., Schinke, P., Delicaris, J., Remke, A.: State-space construction
of hybrid petri nets with multiple stochastic firings. In: Parker, D., Wolf, V. (eds.)
QEST 2019. LNCS, vol. 11785, pp. 182–199. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-30281-8 11

19. Hüls, J., Pilch, C., Schinke, P., Niehaus, H., Delicaris, J., Remke, A.: State-space
Construction of Hybrid Petri Nets with Multiple Stochastic Firings. arXiv.org
(2020)

20. Hüls, J., Remke, A.: Coordinated charging strategies for plug-in electric vehicles
to ensure a robust charging process. In: 10th EAI International Conference on
Performance Evaluation Methodologies and Tools, VALUETOOLS 2016. ICST
(2016)

21. Hüls, J., Remke, A.: Energy storage in smart homes: grid-convenience versus self-
use and survivability. In: 24th IEEE International Symposium on Modeling, Anal-
ysis and Simulation of Computer and Telecommunication Systems, pp. 385–390.
IEEE (2016)

22. Koutsoukos, X.D., Riley, D.: Computational methods for verification of stochastic
hybrid systems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38(2), 385–396
(2008). https://doi.org/10.1109/tsmca.2007.914777

23. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative
properties of continuous probabilistic timed automata. In: Palamidessi, C. (ed.)
CONCUR 2000. LNCS, vol. 1877, pp. 123–137. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44618-4 11

24. Pilch, C., Hartmanns, A., Remke, A.: Classic and non-prophetic model checking for
hybrid petri nets with stochastic firings. In: 23rd ACM International Conference
on Hybrid Systems: Computation and Control, HSCC 2020. pp. 1–11. ACM, New
York (2020). https://doi.org/10.1145/3365365.3382198

https://doi.org/10.14279/tuj.eceasst.70.968
https://doi.org/10.14279/tuj.eceasst.70.968
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10/cpnnbv
https://doi.org/10/cpnnbv
https://doi.org/10.1007/978-3-030-55754-6_22
https://doi.org/10.1007/978-3-030-30281-8_11
https://doi.org/10.1007/978-3-030-30281-8_11
http://arxiv.org/abs/org
https://doi.org/10.1109/tsmca.2007.914777
https://doi.org/10.1007/3-540-44618-4_11
https://doi.org/10.1145/3365365.3382198

456 C. Pilch et al.

25. Pilch, C., Krause, M., Remke, A., Ábrahám, E.: A transformation of hybrid petri
nets with stochastic firings into a subclass of stochastic hybrid automata. In: Lee,
R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol.
12229, pp. 381–400. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
55754-6 23

26. Prandini, M., Hu, J.: A stochastic approximation method for reachability computa-
tions. In: Blom, H.A.P., Lygeros,, J. (eds.) Stochastic Hybrid Systems: Theory and
Safety Critical Applications, LNCIS, vol. 337, pp. 107–139. Springer, Heidelberg
(2006). https://doi.org/10/fbxq4h

27. Schupp, S.: State Set Representations and Their Usage in the Reachability Analysis
of Hybrid Systems. Dissertation, RWTH Aachen University, Aachen (2019). http://
publications.rwth-aachen.de/record/767529

28. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: A C++ library of
state set representations for hybrid systems reachability analysis. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288–294. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 20

29. Soudjani, S.E.Z., Gevaerts, C., Abate, A.: FAUST2: formal abstractions of
uncountable-state stochastic processes. In: 21st International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS 2015. LNCS,
vol. 9035, pp. 272–286. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46681-0 23

30. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In:
Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 31–45. Springer, Heidel-
berg (2000). https://doi.org/10.1007/3-540-45352-0 5

31. Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.M.: Safety verification
for probabilistic hybrid systems. Eur. J. Control. 18(6), 572–587 (2012). https://
doi.org/10.3166/ejc.18.572-587

32. Ziegler, G.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152.
Springer, New York (1995). https://doi.org/10.1007/978-1-4613-8431-1

https://doi.org/10.1007/978-3-030-55754-6_23
https://doi.org/10.1007/978-3-030-55754-6_23
https://doi.org/10/fbxq4h
http://publications.rwth-aachen.de/record/767529
http://publications.rwth-aachen.de/record/767529
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/3-540-45352-0_5
https://doi.org/10.3166/ejc.18.572-587
https://doi.org/10.3166/ejc.18.572-587
https://doi.org/10.1007/978-1-4613-8431-1

Attack Trees vs. Fault Trees: Two Sides
of the Same Coin from Different

Currencies

Carlos E. Budde1(B) , Christina Kolb1 , and Mariëlle Stoelinga1,2

1 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{c.e.budde,c.kolb,m.i.a.stoelinga}@utwente.nl

2 Department of Software Science, Radboud University, Nijmegen, The Netherlands

Abstract. This work compares formal approaches to define and operate
with attack trees and fault trees. We start by investigating similarities
between the syntactic structure, semantics, and qualitative analysis, of
static attack trees and fault trees. Then we point out differences of the
analysis methods and metrics between the two formalisms, providing
a deeper insight for their dynamic variants. Finally, we overview sev-
eral extensions and categorise them using the new concept of dimension,
which allows us to compare these extensions and point out research gaps.

1 Introduction

Attack trees (ats) and fault trees (fts) are popular formalisms that support the
identification, documentation, and analysis of security (resp. safety) risks. They
are part of system-engineering frameworks such as SysML-Sec [28], and count
with commercial tools such as Isograph’s AttackTree and FaultTree+ [14,15].

The popularity of these formalisms in industry is due to their capacity to rep-
resent complex processes succinctly and to the desired level of detail. In at (resp.
ft) analysis, a hierarchical diagram is designed to systematically map security
(resp. safety) hazards. The resulting model gives insight into the vulnerabilities
of the system, which can then be countered cost-efficiently [18,34].

The Origins. This analogous procedural approach is no coincidence: ats were
inspired on fts. The latter were introduced in 1961 at Bell Labs to study ballistic
missiles [30,33]. In 1990 ft analysis was “about 39 years old, and has become
a well-recognized tool worldwide” [9]. In contrast, Weiss introduced threat logic
trees—the origin of ats—in 1991, and its “similarity. . . to fault trees suggests
that graph-based security modelling has its roots in safety modelling” [21].

Ever since, these formalisms increased their modelling and analysis power to
best satisfy the needs of the safety or security application domain. This has sep-
arated the syntax and semantics of new ft- and at-based formalisms, in spite of

This work was partially funded by NWO project 15474 (SEQUOIA) and ERC Consol-
idator Grant 864075 (CAESAR).
c© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, pp. 457–467, 2021.
https://doi.org/10.1007/978-3-030-85172-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_24&domain=pdf
http://orcid.org/0000-0001-8807-1548
http://orcid.org/0000-0002-4108-6395
http://orcid.org/0000-0001-6793-8165
https://doi.org/10.1007/978-3-030-85172-9_24

458 C. E. Budde et al.

their sharing the modelling principle of top-down hierarchical decomposition. In
this work we study this disjoint evolution from the perspective of formal meth-
ods. We first show in Sect. 2 that the syntax of their so-called static versions, as
wells as their corresponding semantics and qualitative analysis, are mathemati-
cally equivalent. The only distinction between static fts and ats as a formalism
is their domain ontology: safety vs. security. This is the root of their subse-
quent differentiation, which we study in Sect. 3. To compare their extensions in
a systematic manner we introduce the notion of dimension, which allows us to
contrast parallel (even symmetrical) evolutions. The work concludes in Sect. 4.

Formalism. A formalism is defined by 1. an (unambiguous) syntax to represent
its elements, called models; 2. a semantics that maps each model to a (unique)
mathematical object; 3. a domain ontology in which the models are interpreted.
The three parts of this preliminary definition are formalised in the sequel.

Related Work. Surveys on fts are [18] and [30]. The latter covers modelling
and analysis tools. The former pinpoints limitations of fts to assess the reliabil-
ity of static systems (only), and mentions extensions that overcome them, e.g.
dynamic fts [8], state-event fts [19], and Stochastic Hybrid FT Automata [6].
Standard ft analysis and its extensions are also extensively discussed in [30],
including technical details of different ft models and analyses.

Surveys on attack trees, [21] and [34], present the state of the art in graphical-
hierarchical attack/defense modelling. The latter is a modern and comprehensive
summary on the use of formal methods to enhance security evaluation. It refer-
ences software tools, and discusses steps for industrial technology transfer.

2 Similarities Between Fault and Attack Trees

ats and fts follow the same modelling principle: an expert panel identifies a
main event of interest—one top element—and refine it logically to the level of
well-understood basic components or actions—the set of basic elements—[21,30].
This analogous model-building process results in identical syntactic structures.

2.1 Syntactic Structure: Static FTs and ATs

The vanilla version of fts and ats, so-called static fault or attack trees, have
the same syntax. We unify them under the concept of logical-decomposition tree.

Definition 1 (LDT). A logical-decomposition tree (ldt for short) is a tuple
T = 〈N, t , ch〉 where: (i) N is a finite set of nodes; (ii) t : N → {AND ,OR,
LEAF} gives the type of each node; (iii) ch : N → 2N gives the (possibly
empty) set of children of a node. Moreover, T satisfies the following con-
straints: (a) 〈N,E〉 is a connected directed acyclic graph (dag), where E ={
(v, u) ∈ N2 | u ∈ ch(v)

}
; (b) T has a unique root, denoted RT : ∃!RT ∈ N.∀v ∈

N. RT �∈ ch(v); (c) LEAF nodes NL ⊆ N are the leaves of T : ∀v ∈ N.
t(v) = LEAF ⇔ v ∈ NL ⇔ ch(v) = ∅.

Attack Trees vs. Fault Trees 459

So, syntactically, static fts and ats are ldts (vot gates in static fts are
syntactic sugar of and and or gates). ldts can be proper trees or dags: the
difference is that in proper trees, each child node has exactly one parent. Node
v ∈ N is the parent of u ∈ N iff u is a child of v, i.e. T has the edge v → u. By
definition, LEAF nodes are not parents: parent nodes are called gates.

Logical Gates. An ldt represents the logical decomposition of events via dis-
junction and conjunction, which can be interpreted as a Boolean function. Con-
sider e.g. a wooden gate that can break due to rotten wooden planks or rusty
hinges (or both); and the hinges rust if they are made of iron and the environ-
ment is humid and sufficient time elapses. This decomposition is safety-oriented.
From an analogous security perspective, the wooden gate is breached by dislodg-
ing the hinges or cracking the wooden planks, and hinges can be dislodged if the
alloy is fragile and the attacker has a crowbar and enough strength. Both cases
yield the ldt 〈{a, b, c, d, g1, g2}, t , ch〉 with leaves NL = {a, b, c, d} and gates
t(g1) = AND , t(g2) = OR, s.t. ch(g1) = {a, g2}, ch(g2) = {b, c, d}. This repre-
sents the Boolean function λ abcd . a ∨ (b ∧ c ∧ d) whose atoms take safety or
security meaning: this is denoted or(a,and(b, c, d)) and visualised as Fig. 1a.

Visualisation. fts and ats are graphical formalisms, drawn as in Fig. 1 with
the root on top, and every child connected to an (upper) parent by a line. Leaves
are circles, and logical gates resemble their electronic-circuit counterparts.

Fig. 1. T1 has tree structure; the or gate g1 is the root; g2 is an and gate. T2 has dag
structure: y has two parents.

2.2 Semantics and Analysis

Once an ldt model T has been created, it is studied to find safety/security
vulnerabilities of the system. For this, T is bestowed with formal semantics.

Structure Function. These semantics can be given via a function fT : 2NL → B

that indicates whether a set of basic elements trigger the top element of T .
That is, fT (A) = iff the Boolean function represented by T is satisfied by
the mapping

(
A �→) ∪ (

(NL \ A) �→ ⊥)
, where \ denotes set difference. For

instance for T1 in Fig. 1a, to evaluate fT1({a, c}) one maps a and c to , b and d to
⊥, and evaluates the Boolean function represented by T1—λabcd . a∨(b∧c∧d)—
which returns . This so-called structure function fT is given by the syntactic
structure of T , and hence it is analogous for static fts and ats [17,30].

460 C. E. Budde et al.

Evidence. The set A ⊆ NL on which fT is evaluated is called evidence: for ats
it represents the steps carried out by an attacker; for fts it represents elements
that have failed. If fT (A) = then A is called valid evidence; else it is invalid.
Valid evidence A is called minimal if no proper subset of A is valid. For instance
in Fig. 1, {a} and {x, z} are minimal evidence of T1 and T2 resp., {a, b} is also
valid (but not minimal) evidence, and {x} is invalid. In ft analysis, minimal
evidence is also called “minimal cut set” or “prime implicant.”

Formal Semantics. Static fts and ats are coherent : adding basic elements to
evidence preserves its validity [3]. That is, if fT (A) = , then fT (A ∪ {a}) =
for every a ∈ NL. Thus, all valid evidence of T—i.e. that can trigger its top
element—is characterised by the collection of minimal evidence. This gives rise
to the formal semantics of T : �T � = {A ⊆ NL | fT (A) = ∧ A is minimal}.1

Qualitative Analysis. Since �T � subsumes all ways to trigger the top element of
T , its computation provides key information on the vulnerability of the system.
For fts, any A ∈ �T � with few elements pinpoints a safety hazard—where a
few basic failures can trigger a system-level failure—and likewise for ats. The
amount of subsets in �T � can be exponential on the number of nodes in T [24].
Since this hinders computations, and given the interest in small sets from �T �,
ft analysis sometimes bounds the size of the minimal evidence to compute [32].

Thus, static fts and ats are mathematically equivalent: their syntax is given
by an ldt, T , and their semantics by the set of minimal evidence, �T �. What
sets them apart as formalisms is their domain ontology, i.e. their application
domain: safety and security have different goals, fulfilled by enriching ldts with
(a) attributes on the leaves, and (b) new types of gates. In Sect. 3 we show how
this is the root of several differences between fts and ats.

3 Differences Between Fault and Attack Trees

The aforementioned similarities apply only to static fts and ats. Later exten-
sions to these formalisms, e.g. to include notions of complement and dynamic
behaviour, have caused them to grow in different directions. We discuss this
in Sect. 3.2 but first we show, in Sect. 3.1, that the different goals of the
safety/security domains break the analogies even for static fts and ats.

3.1 Analyses that Differ for Static FTs and ATs

Quantitative Analysis. Beyond the constitution of each set A ∈ �T �, it is
useful to quantify their relevance. For example, if every basic element ai has a
probability pi ∈ [0, 1] of occurrence, one can compute the total probability of
some evidence A [26]. Similarly, values λi ∈ R>0 can describe the rate at which
these basic probabilities increase with time. Then one can measure the system
unreliability, i.e. the probability of triggering the top element at various mission

1 There are other equivalent ways to define static at/ft semantics, e.g. bundles [25].

Attack Trees vs. Fault Trees 461

times. Rates also enable time-only measurements, such as the mean time it takes
for some evidence A ∈ �T � to be observed [30].

All these quantitative queries, that deal with the probability and frequency
of occurrence of events, are characteristic of ft analysis [9,24,30,32]. The reason
is that it is feasible and useful to estimate e.g. the mean time to failure (mttf) of
machine components: this allows engineers to compute safe, cost-optimal policies
for inspection, maintenance, and replacement of company assets [29].

In contrast, the probability of basic attacks in ats are very hard to know [11].
Unknown vulnerabilities may increase it, also its frequency, and the conditional
probability tables are usually not-knowable. Therefore, it is typical to query the
max (rather than total) attack probability [34]. This is also cost-driven: rather
than try everything, an attacker may only choose the most promising attack.

The time for an attack is also described differently than for a failure: whereas
failures typically have mttf or rate values, basic attacks steps can be given
[min,max] intervals, and further differentiate activation from execution time [23].

Finally, quantitative analyses in ats can be richer than in fts, exploring
attribute domains beyond time and probability. These include the cost to carry
out certain attacks, the skill or psychological profile required to do it, the max
damaged caused, and Pareto analyses thereof [2,11,23].

Fig. 2. Probability com-
putation: at (left, red)
vs. ft (right, blue) (Color
figure online)

Propagation of Values Through Logical Gates.
When the at or ft is a proper tree, quantitative
queries can be computed bottom-up directly on its
syntactic structure. For this, the values of the basic
elements are propagated upwards in the tree [25]. For
instance if basic elements a and b cost resp. e 3 and
e 7, then the cost of or(a, b) is the min, e 3, and the
cost of and(a, b) is the sum, e 10.

However, here too we find a remarkable difference
between static fts and ats, that is overlooked by
many reviews in spite of its apparent impact in quan-
titative analyses. In fts, the “probability of failure” asks for total probability, so
the (probability) value of an or gate is the sum of the values of its children,
minus the value of their intersection. Instead and as indicated above, attacks
are characterised by their max probability, so the value of an or gate in an at
is the max value among its children. This is illustrated in Fig. 2: the values in
the basic elements are given; the probability of an and gate is the product of
its children; but if T3 is an at, its (max) attack probability is .35; and if it is an
ft, its (total) failure probability is .455.

This different propagation of values also affects conjunctive gates (and), most
notably with time attributes. The basic elements in static fts refer to failures in
components, which are under simultaneous use and therefore whose degradation
is concurrent. Thus the mttf of an and gate is the max across the mttf of its
children. ats, in contrast, have more ways to describe a conjunction of activities.

462 C. E. Budde et al.

Table 1. Overview of extensions to the ft and at formalisms

Form. Extensions Main features

fts

dft [8] Dynamic fts fts + pand + spare + fdep

rft [4,7] Repairable fts fts + repair boxes
e-dft [10] Extended dfts dfts + gen. spares + triggers
se-ft [27] State/Event fts fts + Petri nets in leaves

ats
sand-at [16] sand attack trees ats with sequential and
adtree [20] Attack–defense trees ats + defenses

fts
&
ats

bdmp [5] Boolean Markov proc. fts + ats + triggers + repairs
cft [31] Component fts ats + fts with modular structure
aft [22] Attack-Fault Trees sand-ats + dfts
ft-at [12] fts integrated to ats fts whose bes are refined as ats

In particular they could require time-exclusion: consider one attacker who must
perform multiple actions, e.g. deactivating an alarm and silencing the dog. Here,
the time to execute all attacks is not the max, but the sum of the times [1]. ats
can indicate this with a new gate: sequential-AND (sand).

Generally speaking, static ats and fts have begotten independent extensions
that introduce new gates. For instance, seq enforcers in fts can be seen as
analogous to sand gates in ats. In general, however, these extensions further
differentiate the at and ft formalisms, as we discuss in Sect. 3.2.

3.2 Extensions of the Formalisms

So far we considered (only) static fts and ats, pointing out their similarities
and differences. In this section we revise several extensions that grow beyond
them. We first overview some prominent formalisms in Table 1, and then refine
the comparison by defining and making use of the concept of dimension.

Safety Extensions of FTs. The first formalisms in Table 1 are important exten-
sions of fts: DFTs are static fts plus pand gates (that fail if all children fail
in left-to-right order), spare gates (for spare parts), and fdeps (that model
common-cause failures); RFTs are static fts with repair boxes, that can repair
failed bes; and E-DFTs are generalised dfts with triggers, which allow arbitrary
subtrees as spares, and whose fdeps can trigger gates as well as bes.

FTs + Security. While dfts, rfts, and e-dfts, improve safety modelling in
fault trees, other extensions can cover security aspects. For instance, SE-FTs
have Petri nets as basic elements. These are more versatile than the usual two-
state bes, allowing state changes that can model safety and security hazards.

Security Extension of ATs. There also exist extensions to improve security
modelling of attack trees: SAND-ATs add dynamic behaviour to ats, by forc-

Attack Trees vs. Fault Trees 463

ing attacks to occur in a specific order via sand gates 2; and ADTrees model
protections against attacks via special defense nodes.

Combinations of FTs and ATs. All those formalisms extend either fts or
ats, but there also exist formalisms that combine them. BDMPs can have ats
as subtrees of fts and vice versa, and allow propagations of failures/attacks
(and repairs) via triggers among gates. CFTs add modular fts to ats, to foster
large-system analysis via decoupled studies of smaller components. In contrast,
AFTs trade scalability for versatility, by merging dfts (with all its dynamic
gates) with ats plus sand gates. Finally, FT-ATs refine the bes in fault trees
via attack trees, modelling attackers that try to force a system failure.

Note that, interestingly and to the best of our knowledge, no formalism that
combines fts with ats includes defenses. More importantly, we find independent
extensions that overlap in some modelling goals, e.g. rfts and the repairs of
bdmps. We compare these (partial) overlaps via dimensions.

Dimensions. An extension augments the modelling power of fts/ats. Some
extensions reach to each other, e.g. afts and bdmps are in both domain ontolo-
gies (safety and security). But other extensions are parallel: compare dfts to
sand-ats, both of which make the order of events relevant but without cross-
ing the safety/security line. We thus identify different ways to classify the space
of formalisms, where a dimension d defines (not necessarily exclusive) classes
that are orthogonal to those defined by another dimension d′. For example,
the domain ontology can be seen as a domain dimension: it defines the classes
safety and security s.t. the formalisms {ft,dft} are in safety, {at,sand-at}
are in security, and {aft,bdmp} are in both. Further dimensions to clas-
sify formalisms include dynamics—the order of events matters or not—and
complement—there is a single type of event (e.g. attacks), or complementary
types (also defenses). Figure 3 shows a scheme of this 3D classification.

Fig. 3. Dimensional split of formalisms: domain, dynamics, and complement .

Such concept of dimension resembles that of an ontology in information sci-
ence [13]. For us, different dimensions yield orthogonal classifications of the same
set of individuals. These individuals are the formalisms within scope: we use
Table 1 as the scope, but Definition 2 generalises to any ft/at extension.
2 sands in ats force a sequence of events, similarly to seq enforcers in certain flavours

of fts; this differs from pand gates in dfts, which observe the order of events.

464 C. E. Budde et al.

Table 2. Dimensional split of formalisms in Table 1

Dimension ft dft rft e-dft se-ft bdmp cft aft ft-at sand-at adtree at
safety � � � � � � � � �

d
o
m
.

security � � � � � � � �
static � � � � �

d
y
n
.

dynamic � � � � � � �
single � � � � � � � � �

cm
p
.

dual � � �

Definition 2 (Dimension). A dimension is an ontology with two or more non-
empty classes, whose individuals are the formalisms from Table 1. A dimensional
base D = {di}ni=1 is a finite set of orthogonal dimensions.

So far we have compared formalisms exclusively from the perspective of the
domain dimension: we now turn our attention to dynamics and complement .

Note, however, that these three dimensions—that Table 2 defines in our full
scope—are not exhaustive. We identify at least an extra complexity dimension,
sensitive to the number of states of the basic elements. In terms of complexity ,
fts and ats are simple (binary states), while se-fts and Fault Maintenance
Trees [29] are complex (its basic elements are resp. Petri nets and Erlang chains).

Dynamics. This dimension classifies formalisms based on whether their seman-
tics caters for order. The broadest possible classes are static and dynamic.
The success of the top element in a static formalism does not depend on the
order in which the basic elements occur. This includes fts, ats, cfts, at-fts,
and adtrees. Other formalisms in Table 1 are dynamic: they either enforce an
order, e.g. sand gates and seq enforcers; or the propagation of success in some
gates depends on it, e.g. pand gates in dfts. Besides a richer semantics (that
affects qualitative analyses), dynamic formalisms have more complex quantita-
tive analyses. In a static at, the attack time of a conjunctive gate is the max
time among its children. Instead, in a sand-at, it is the max or the sum of the
times, depending on whether the gate is a “parallel” and or a sequential-and.

Complement. This dimension has two classes: dual formalisms have two com-
plementary type of events; single formalisms have one. By event we mean a
change of state, whose multiplicity can have syntactic support via a type system,
or it can reside entirely at semantic level. An example of the latter are repairs in
rfts: their (single-typed) basic elements can transit in both directions between
their active and failed states. An example of dual events via types are attack- vs.
defense-nodes in adtrees: given an attack, if the counter-defense occurs, then
the state of the corresponding gate changes first to “attacked” and then to “not
attacked.” This differs from the absence of an attack for quantitative queries, e.g.
to compute attack cost. In Table 1, the only formalisms in the dual class of this
complement dimension are adtree, rft, and bdmp. All the rest are single: only
one change of state can happen, namely a failure (resp. an attack) that involves
a transition from an active to a failed (resp. attacked) state.

Attack Trees vs. Fault Trees 465

Finally, we note that comparing the classification of different dimensions
helps to spot research gaps. For instance, from the five formalisms in both classes
of the domain dimension, only bdmps are dual as per complement . Since that
comes from repairs of failed basic elements, we know that no formalism in Table 1
that combines safety and security includes defenses, as pointed out earlier.

4 Conclusions and Future Work

We have compared fts against ats, showing how they model system vulnera-
bilities in the same mathematical static way. However, their different domain
ontologies—safety for fts, security for ats—gives rise to different quantitative
analyses. This shows in the algebra used to propagate values through gates, e.g.
to compute the probability of a failure vs. that of an attack. Moreover, new gates
have been added to fts and ats, extending these formalisms in directions that
sometimes cross each other. We introduced the concept of dimension to classify
these extensions, thus generalising the safety/security dichotomy.

These studies can be deepened by finding new dimensions to compare for-
malisms. Our dimensional split offers a high-level view that helps to spot research
gaps. In particular, we found no formalism that merges ats and fts, that also
includes defenses against attacks. Neither have we found formalisms with clearly-
differentiated at/ft submodules, such as ft-ats, that also offer dynamic gates
and repairs, such as bdmps. The industrial relevance of model visualisation, plus
the need for versatile modelling, makes this gap a promising line of research.

References

1. Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis
of attacks. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp.
285–305. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54792-
8_16

2. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46666-7_6

3. Barlow, R.E., Proschan, F.: Statistical Theory of Reliability and Life Testing: Prob-
ability Models. International Series in Decision Processes. Holt, Rinehart and Win-
ston, New York (1975)

4. Bobbio, A., Codetta-Raiteri, D.: Parametric fault trees with dynamic gates and
repair boxes. In: RAMS, pp. 459–465. IEEE (2004). https://doi.org/10.1109/
RAMS.2004.1285491

5. Bouissou, M.: BDMP (Boolean logic Driven Markov Processes) as an alternative
to Event Trees. In: ESREL 2008 (2008)

6. Chiacchio, F., D’Urso, D., Compagno, L., Pennisi, M., Pappalardo, F., Manno, G.:
SHyFTA, a stochastic hybrid fault tree automaton for the modelling and simulation
of dynamic reliability problems. Expert Syst. Appl. 47, 42–57 (2016). https://doi.
org/10.1016/j.eswa.2015.10.046

https://doi.org/10.1007/978-3-642-54792-8_16
https://doi.org/10.1007/978-3-642-54792-8_16
https://doi.org/10.1007/978-3-662-46666-7_6
https://doi.org/10.1109/RAMS.2004.1285491
https://doi.org/10.1109/RAMS.2004.1285491
https://doi.org/10.1016/j.eswa.2015.10.046
https://doi.org/10.1016/j.eswa.2015.10.046

466 C. E. Budde et al.

7. Codetta-Raiteri, D., Iacono, M., Franceschinis, G., Vittorini, V.: Repairable fault
tree for the automatic evaluation of repair policies. In: DSN, pp. 659–668. IEEE
Computer Society (2004). https://doi.org/10.1109/DSN.2004.1311936

8. Dugan, J., Bavuso, S., Boyd, M.: Fault trees and sequence dependencies. In: ARMS,
pp. 286–293. IEEE (1990). https://doi.org/10.1109/ARMS.1990.67971

9. Ericson, C.A.: Fault tree analysis - A history. In: 17th International System Safety
Conference, pp. 1–9 (1999)

10. Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: a
tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.)
SAFECOMP 2013. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40793-2_27

11. Fila, B., Wideł, W.: Attack–defense trees for abusing optical power meters: a case
study and the OSEAD tool experience report. In: Albanese, M., Horne, R., Probst,
C.W. (eds.) GraMSec 2019. LNCS, vol. 11720, pp. 95–125. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36537-0_6

12. Fovino, I.N., Masera, M., De Cian, A.: Integrating cyber attacks within fault trees.
Reliab. Eng. Syst. Saf. 94(9), 1394–1402 (2009). https://doi.org/10.1016/j.ress.
2009.02.020

13. Guarino, N.: Formal ontology, conceptual analysis and knowledge representation.
Int. J. Hum.-Comput. Stud. 43(5), 625–640 (1995). https://doi.org/10.1006/ijhc.
1995.1066

14. Isograph: AttackTree. https://www.isograph.com/software/attacktree/
15. Isograph: FaultTree+. https://www.isograph.com/software/reliability-

workbench/fault-tree-analysis-software/fault-tree-analysis/
16. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees

with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8_23

17. Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter
attack trees. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp.
1036–1051. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88873-
4_8

18. Kabir, S.: An overview of fault tree analysis and its application in model based
dependability analysis. Expert Syst. Appl. 77, 114–135 (2017). https://doi.org/10.
1016/j.eswa.2017.01.058

19. Kaiser, B., Gramlich, C., Förster, M.: State/event fault trees–a safety analysis
model for software-controlled systems. Reliab. Eng. Syst. Saf. 92(11), 1521–1537
(2007). https://doi.org/10.1016/j.ress.2006.10.010

20. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19751-2_6

21. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13–14,
1–38 (2014). https://doi.org/10.1016/j.cosrev.2014.07.001

22. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: 18th International Symposium on HASE, pp. 25–32 (2017)

23. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via priced
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015.
LNCS, vol. 9268, pp. 156–171. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22975-1_11

https://doi.org/10.1109/DSN.2004.1311936
https://doi.org/10.1109/ARMS.1990.67971
https://doi.org/10.1007/978-3-642-40793-2_27
https://doi.org/10.1007/978-3-030-36537-0_6
https://doi.org/10.1016/j.ress.2009.02.020
https://doi.org/10.1016/j.ress.2009.02.020
https://doi.org/10.1006/ijhc.1995.1066
https://doi.org/10.1006/ijhc.1995.1066
https://www.isograph.com/software/attacktree/
https://www.isograph.com/software/reliability-workbench/fault-tree-analysis-software/fault-tree-analysis/
https://www.isograph.com/software/reliability-workbench/fault-tree-analysis-software/fault-tree-analysis/
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-540-88873-4_8
https://doi.org/10.1007/978-3-540-88873-4_8
https://doi.org/10.1016/j.eswa.2017.01.058
https://doi.org/10.1016/j.eswa.2017.01.058
https://doi.org/10.1016/j.ress.2006.10.010
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1016/j.cosrev.2014.07.001
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-22975-1_11

Attack Trees vs. Fault Trees 467

24. Lee, W., Grosh, D., Tillman, F., Lie, C.: Fault tree analysis, methods, and appli-
cations – a review. IEEE Trans. Reliab. R-34(3), 194–203 (1985). https://doi.org/
10.1109/TR.1985.5222114

25. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727_17

26. Rauzy, A.: New algorithms for fault trees analysis. Reliab. Eng. Syst. Saf. 40(3),
203–211 (1993). https://doi.org/10.1016/0951-8320(93)90060-C

27. Roth, M., Liggesmeyer, P.: Modeling and analysis of safety-critical cyber physical
systems using state/event fault trees. In: SAFECOMP (2013)

28. Roudier, Y., Apvrille, L.: SysML-Sec: a model driven approach for designing safe
and secure systems. In: MODELSWARD, pp. 655–664. IEEE (2015)

29. Ruijters, E., Guck, D., Drolenga, P., Peters, M., Stoelinga, M.: Maintenance anal-
ysis and optimization via statistical model checking. In: Agha, G., Van Houdt, B.
(eds.) QEST 2016. LNCS, vol. 9826, pp. 331–347. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-43425-4_22

30. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015). https://doi.
org/10.1016/j.cosrev.2015.03.001

31. Steiner, M., Liggesmeyer, P.: Combination of safety and security analysis - finding
security problems that threaten the safety of a system (2016)

32. Vesely, W., Stamatelatos, M., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:
Fault tree handbook with aerospace applications. NASA Office of Safety and Mis-
sion Assurance, version 1.1 (2002)

33. Watson, H.: Launch control safety study. Techical report Section VII, Vol. 1, Bell
Labs (1961)

34. Wideł, W., Audinot, M., Fila, B., Pinchinat, S.: Beyond 2014: formal methods for
attack tree-based security modeling. ACM Comput. Surv. 52(4) (2019). https://
doi.org/10.1145/3331524

https://doi.org/10.1109/TR.1985.5222114
https://doi.org/10.1109/TR.1985.5222114
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
https://doi.org/10.1016/0951-8320(93)90060-C
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1145/3331524
https://doi.org/10.1145/3331524

Correction to: DSMC Evaluation Stages:
Fostering Robust and Safe Behavior in Deep

Reinforcement Learning

Timo P. Gros, Daniel Höller, Jörg Hoffmann, Michaela Klauck,
Hendrik Meerkamp, and Verena Wolf

Correction to:
Chapter “DSMC Evaluation Stages: Fostering Robust
and Safe Behavior in Deep Reinforcement Learning”
in: A. Abate and A. Marin (Eds.): Quantitative Evaluation
of Systems, LNCS 12846,
https://doi.org/10.1007/978-3-030-85172-9_11

In an older version of this paper, there was a mistake in line 12 of the algorithm on page
206. This was corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-85172-9_11

© Springer Nature Switzerland AG 2021
A. Abate and A. Marin (Eds.): QEST 2021, LNCS 12846, p. C1, 2021.
https://doi.org/10.1007/978-3-030-85172-9_25

https://doi.org/10.1007/978-3-030-85172-9_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85172-9_25&domain=pdf
https://doi.org/10.1007/978-3-030-85172-9_11
https://doi.org/10.1007/978-3-030-85172-9_25

Author Index

Ábrahám, Erika 257
Akbari-Moghaddam, Maryam 168

Backenköhler, Michael 351
Bondorf, Steffen 149
Bortolussi, Luca 351
Budde, Carlos E. 457
Busatto-Gaston, Damien 235

Cardelli, Luca 391
Carnevali, Laura 83
Casale, Giuliano 310
Chakraborty, Debraj 235

Down, Douglas G. 168

Filieri, Antonio 310

Ghit,, Bogdan 186
Gribaudo, Marco 276
Gros, Timo P. 197
Großmann, Gerrit 351
Grosu, Radu 391
Guha, Shibashis 235

Haehn, Rebecca 257
Hartmanns, Arnd 39
Haverkort, Boudewijn R. 3
Hermanns, Holger 15
Hillston, Jane 217
Hoffmann, Jörg 197
Höller, Daniel 197

Iacono, Mauro 276

Kaalen, Stefan 105
Katoen, Joost-Pieter 39
Kielanski, Grzegorz 329
Klauck, Michaela 15, 197
Kohlen, Bram 39
Kolb, Christina 457

Larsen, Kim G. 391
Lefaucheux, Engel 413

Manini, Daniele 276
Mattsson, Olle 105
Meerkamp, Hendrik 197

Nießen, Nils 257
Nyberg, Mattias 105

Paolieri, Marco 83
Pérez, Guillermo A. 235
Piazza, Carla 372
Piho, Paul 217
Pilch, Carina 435

Raskin, Jean-François 235
Rausch, Michael 127
Reali, Riccardo 83
Remke, Anne 435
Rossi, Sabina 372

Sanders, William H. 127
Scheffler, Alexander 149
Schupp, Stefan 435
Spel, Jip 39
Stoelinga, Mariëlle 457

Tantawi, Asser 186
Teuber, Samuel 59
Tribastone, Mirco 391
Tschaikowski, Max 391

Van Houdt, Benny 329
Vandin, Andrea 391
Vicario, Enrico 83

Wang, Runan 310
Weigl, Alexander 59
Wolf, Verena 197, 351
Woodside, Murray 295

	Preface
	Organization
	Stochastic Geometry Based Performance Analysis of Wireless Networks (Abstract of Keynote)
	Contents
	Keynote Speaker
	Performance Evaluation: Model-Driven or Problem-Driven?
	1 Introduction
	2 On the Insularity of Quantitative Methods
	3 Observations and Recommendations
	4 Towards Digital Twins
	5 Epilogue
	References

	Probabilistic Model Checking
	A Modest Approach to Dynamic Heuristic Search in Probabilistic Model Checking
	1 Introduction
	2 Theoretical Background
	3 Dynamic Heuristic Search
	3.1 Reachability Properties
	3.2 Expected Reward Properties
	3.3 Bounded Properties

	4 Empirical Evaluation
	5 Related Work
	6 Conclusion
	A Proof for MinProb
	B Proof for MaxProb
	References

	Tweaking the Odds in Probabilistic Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.2 Probabilistic Timed Automata
	2.3 Parametric Probabilistic Timed Automata
	2.4 Problem Statement

	3 PPTA to pMDP Methods
	3.1 Digital Clocks
	3.2 Backwards Reachability
	3.3 Other Methods

	4 Implementation
	5 Evaluation
	6 Conclusion
	References

	Quantifying Software Reliability via Model-Counting
	1 Introduction
	2 Foundations of the Pipeline
	3 Pipeline
	3.1 Transformation: Make Violation Countable
	3.2 Conversion into CNF
	3.3 Model Counting in the Pipeline
	3.4 Correctness of the Pipeline

	4 Evaluation
	5 Related Work
	6 Conclusion
	A Model Counting
	B Correctness of the pipeline
	References

	Quantitative Models and Metamodels: Analysis and Validation
	Compositional Safe Approximationpg of Response Time Distributionpg of Complex Workflows
	1 Introduction
	2 Modeling Workflows with Structured STPNs
	2.1 Stochastic Time Petri Nets (STPNs)
	2.2 STPN Blocks
	2.3 Structure Tree

	3 Compositional Evaluation of Workflows Response Time
	3.1 Regenerative Transient Analysis
	3.2 Complexity Heuristics
	3.3 Analysis Heuristics
	3.4 Approximation Safety

	4 Experimentation
	4.1 Experimentation Models
	4.2 Experimentation Results

	5 Conclusions
	6 Appendix
	6.1 Formal Syntax and Semantics of STPNs
	6.2 Numerical Analysis of Well-Structured Workflows
	6.3 Theorem Proofs
	6.4 Analysis Actions

	References

	Transient Analysis of Hierarchical Semi-Markov Process Models with Tool Support in Stateflow
	1 Introduction
	2 Preliminaries
	2.1 Semi-Markov Process
	2.2 Laplace-Stieltjes Transform
	2.3 Expolynomials

	3 Transient Analysis of Hierarchical Semi-Markov Processes
	3.1 HSMP-models
	3.2 Algorithm for Transient Analysis of HSMP-models
	3.3 Discussion

	4 Transient Analysis of HSMP-models with Unbounded Regeneration
	4.1 Evaluation of Numerical Performance

	5 Tool Support and Case Study
	5.1 Tool Support
	5.2 Case Study
	5.3 Analysis Results

	6 Related Work
	7 Conclusions and Future Work
	A Convolution of Expolynomials
	B Semi-Markov Kernel of Expolynomials

	References

	Evaluating the Effectiveness of Metamodeling in Emulating Quantitative Models
	1 Introduction
	2 Test Cases
	3 Approach
	3.1 Stacking Review and Variants

	4 Evaluation of Accuracy and Speed
	4.1 Accuracy Given Different Committee Compositions and Filters
	4.2 Metamodel Accuracy: Naive vs. Best of Many vs. Stacked
	4.3 Accuracy Given Different Training Sample Dataset Sizes
	4.4 Speed Comparison

	5 Discussion and Recommendations
	6 Related Work
	7 Conclusion
	A Appendix: Values of Input Variables for Test Case Models
	References

	Queueing Systems
	Network Calculus for Bounding Delays in Feedforward Networks of FIFO Queueing Systems
	1 Introduction
	2 Network Calculus Basics and Related Work
	2.1 Network Calculus Ressource Models
	2.2 Network Calculus Analyses and Tool Support
	2.3 The LUDB Analysis and the DEBORAH Tool

	3 Bringing the LUDB Analysis to Feedforward Networks
	3.1 Arrival Bounding Procedure for FIFO
	3.2 Parameter and Residual Service Computation of LUDB-FF
	3.3 DEBORAH-Integration by TFA's Output from Delay

	4 Numerical Evaluation
	5 Conclusion
	A SFA-FIFO
	References

	SEH: Size Estimate Hedging for Single-Server Queues
	1 Introduction
	2 Related Work
	3 Size Estimate Hedging: A Simple Dynamic Priority Scheduling Policy
	3.1 Model
	3.2 Gittins' Index Approach
	3.3 Motivation
	3.4 The SEH Policy
	3.5 Gittins' Index Vs. SEH

	4 Evaluation Methodology
	4.1 Policies Under Evaluation
	4.2 Performance Metrics
	4.3 Simulation Parameters

	5 Simulation Results
	6 Conclusion and Future Work
	References

	An Approximate Bribe Queueing Model for Bid Advising in Cloud Spot Markets
	1 Introduction
	2 Problem Description
	3 Modeling and Analysis
	3.1 Definitions and Assumptions
	3.2 Bribery Queueing Model
	3.3 Parameter Estimation

	4 Simulations
	5 Related Work
	6 Conclusion
	References

	Learning and Verification
	DSMC Evaluation Stages: Fostering Robust and Safe Behavior in Deep Reinforcement Learning
	1 Introduction
	2 Background
	2.1 Markov Decision Processes
	2.2 Deep Q-learning
	2.3 Deep Statistical Model Checking

	3 RL with Evaluation Stages
	3.1 Initial State Partitioning and Notations
	3.2 Evaluation-Based Initial Distribution (EID)
	3.3 Evaluation-Based Prioritized Replay (EPR)
	3.4 Deep Q-learning with Evaluation Stages

	4 Case Studies
	4.1 Racetrack
	4.2 Experiments Setup

	5 Results
	5.1 Local Robustness (Deficiency (i))
	5.2 Fostering Goal Probability (Deficiency (ii))

	6 Conclusion and Future Work
	A Hyperparameters
	References

	Active and Sparse Methods in Smoothed Model Checking
	1 Introduction
	2 Related Work
	3 Background
	3.1 Continuous Time Markov Chains
	3.2 Smoothed Model Checking
	3.3 Variational Inference with Inducing Points
	3.4 Active Learning

	4 Active Model Checking
	4.1 Streaming Setting
	4.2 Query Strategies
	4.3 Implementation
	4.4 Results

	5 Conclusions
	References

	Safe Learning for Near-Optimal Scheduling
	1 Introduction
	2 Preliminaries
	3 Model-Based Learning
	4 Monte Carlo Tree Search with Advice
	5 Experimental Results
	A Proof of Theorem 1
	B Proof of Lemma 2
	C Proof of Theorem 2
	References

	Simulation
	Symbolic Simulation of Railway Timetables Under Consideration of Stochastic Dependencies
	1 Introduction
	2 Railway Systems
	2.1 Modeling Railway Infrastructure Networks
	2.2 Modeling Primary Delays
	2.3 Timetable Execution

	3 Symbolic Simulation
	3.1 Initialization
	3.2 Algorithm

	4 Experimental Results
	5 Conclusion
	References

	Simulation of N-Dimensional Second-Order Fluid Models with Different Absorbing, Reflecting and Mixed Barriers
	1 Introduction
	2 Related Work
	3 Simulation of First and Second Order Fluid Models with Reflecting and Absorbing Barriers
	3.1 Simulation of First Order Fluid Models
	3.2 Simulation of Brownian Motion for Second Order Models
	3.3 Considering Boundaries
	3.4 Reflecting Barrier in One Dimension
	3.5 Absorbing Barrier in One Dimension

	4 Extending to More Than One Dimension
	4.1 Reflecting Barriers in More Than One Dimension
	4.2 Absorbing Barrier in More Than One Dimension
	4.3 Extensions

	5 Conclusions
	References

	Performance Evaluation
	Queue Response Times with Server Speed Controlled by Measured Utilizations
	1 Introduction
	2 The Model
	3 The Solution
	4 An Idealized “Perfect Knowledge” (PK) Analysis
	5 Effectiveness of Utilization Control and Power Saving
	6 Control of Finite-Population Queues
	7 Conclusions
	References

	Service Demand Distribution Estimation for Microservices Using Markovian Arrival Processes
	1 Introduction
	2 Preliminaries
	3 Problem Formulation
	4 Global Optimization Based Estimation
	5 Heuristics-Based Estimation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Data Preprocessing and Clustering
	6.3 Numerical Experiment Results
	6.4 Analysis of Results on Measured Traces

	7 Related Work
	8 Conclusion
	References

	Performance Analysis of Work Stealing Strategies in Large Scale Multi-threaded Computing
	1 Introduction
	2 System Description and Strategies
	3 Quasi-Birth-Death Markov Chain
	4 Response Time Distribution
	5 Numerical Experiments
	6 Conclusions and Future Work
	A Model Validation
	References

	Abstractions and Aggregations
	Abstraction-Guided Truncations for Stationary Distributions of Markov Population Models
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Markov Population Models
	3.2 Stationary Distribution
	3.3 Truncation-Based Approximation of
	3.4 Lyapunov Bounds

	4 Method
	4.1 State-Space Aggregation
	4.2 Initial Aggregation
	4.3 Iterative Refinement Algorithm

	5 Results
	5.1 Parallel Birth-Death Process
	5.2 Exclusive Switch
	5.3 P53 Oscillator

	6 Conclusion
	A Detailed Results
	B Lyapunov Analysis of the p53 Oscillator
	References

	Reasoning About Proportional Lumpability
	1 Introduction
	2 Background
	3 Proportional Lumpability
	3.1 Alternative Characterizations of Proportional Lumpability
	3.2 Comparison with Lumpability of the Embedded Markov Chain

	4 Computing Proportional Lumpability
	5 Conclusion
	A Appendix
	References

	Lumpability for Uncertain Continuous-Time Markov Chains
	1 Introduction
	2 Preliminaries
	3 Uncertain Continuous-Time Markov Chains
	3.1 Model Definition
	3.2 Reachable-Set Semantics
	3.3 CTMDP Semantics
	3.4 Discrete-Time Approximation of the CTMDP Semantics

	4 UCTMC Lumpability
	4.1 UCTMC Lumpability
	4.2 Logical Characterization
	4.3 UCTMC Lumping Algorithm

	5 Evaluation
	6 Conclusion
	References

	Stochastic Models
	Accurate Approximate Diagnosis of (Controllable) Stochastic Systems
	1 Introduction
	2 Diagnosis of Markov Chains
	2.1 Observable Markov Chains
	2.2 Faulty Paths and Notions of Disclosure

	3 Diagnosis of Controllable Systems
	3.1 Controllable Observable Markov Chains
	3.2 Solving AA-Diagnosability for CoMCs

	4 Conclusion
	A AA-Disclosure Problem for oMC
	References

	Optimizing Reachability Probabilities for a Restricted Class of Stochastic Hybrid Automata via Flowpipe-Construction
	1 Introduction
	2 Stochastic Hybrid Automata
	3 Reachability Analysis
	4 Optimal Schedulers
	4.1 Optimal Non-prophetic Scheduler
	4.2 Optimal Prophetic Scheduler

	5 Case Study
	6 Conclusion
	Appendix A Proof of Correctness
	Appendix B Singular Automaton for Case study
	Appendix C Validation of Prophetic Probabilities
	References

	Attack Trees vs. Fault Trees: Two Sides of the Same Coin from Different Currencies
	1 Introduction
	2 Similarities Between Fault and Attack Trees
	2.1 Syntactic Structure: Static FTs and ATs
	2.2 Semantics and Analysis

	3 Differences Between Fault and Attack Trees
	3.1 Analyses that Differ for Static FTs and ATs
	3.2 Extensions of the Formalisms

	4 Conclusions and Future Work
	References

	Correction to: DSMC Evaluation Stages: Fostering Robust and Safe Behavior in Deep Reinforcement Learning
	Correction to: Chapter “DSMC Evaluation Stages: Fostering Robust and Safe Behavior in Deep Reinforcement Learning” in: A. Abate and A. Marin (Eds.): Quantitative Evaluation of Systems, LNCS 12846, https://doi.org/10.1007/978-3-030-85172-9_11

	Author Index

