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Abstract. Subresultants are one of the most fundamental tools in com-
puter algebra. They are at the core of numerous algorithms including,
but not limited to, polynomial GCD computations, polynomial system
solving, and symbolic integration. When the subresultant chain of two
polynomials is involved in a client procedure, not all polynomials of the
chain, or not all coefficients of a given subresultant, may be needed. Based
on that observation, this paper discusses different practical schemes, and
their implementation, for efficiently computing subresultants. Extensive
experimentation supports our findings.
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1 Introduction

The goal of this paper is to investigate how several optimization techniques for
subresultant chain computations benefit polynomial system solving in practice.
These optimizations rely on ideas which have appeared in previous works, but
without the support of successful experimental studies. Therefore, this paper
aims at filling this gap.

The first of these optimizations takes advantage of the Half-GCD algorithm
for computing GCDs of univariate polynomials over a field k. For input poly-
nomials of degree (at most) n, this algorithm runs within O(M(n) log n) oper-
ations in k, where M(n) is a polynomial multiplication time, as defined in [12,
Chapter 8]. The Half-GCD algorithm originated in the ideas of [16,18] and [26],
while a robust implementation was a challenge for many years. One of the earliest
correct designs was introduced in [28].

The idea of speeding up subresultant chain computations by means of the
Half-GCD algorithm takes various forms in the literature. In [25], Reischert
proposes a fraction-free adaptation of the Half-GCD algorithm, which can be
executed over an effective integral domain B, within O(M(n) log n) operations
in B. We are not aware of any implementation of Reischert’s algorithm.

In [20], Lickteig and Roy propose a “divide and conquer” algorithm for com-
puting subresultant chains, the objective of which is to control coefficient growth
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in defective cases. Lecerf in [17] introduces extensions and a complexity anal-
ysis of the algorithm of Lickteig and Roy, with a particular focus on bivariate
polynomials. When run over an effective ring endowed with the partially defined
division routine, the algorithm yields a running time estimate similar to that of
Reischert’s. Lecerf realized an implementation of that algorithm, but observed
that computations of subresultant chains based on Ducos’ algorithm [10], or on
evaluation-interpolation strategies, were faster in practice.

In [12, Chapter 11], von zur Gathen and Gerhard show how the nominal leading
coefficients (see Sect. 2 for this term) of the subresultant chain of two univariate
polynomials a, b over a field can be computed within O(M(n) log n) operations in
k, by means of an adaptation of the Half-GCD algorithm. In this paper, we extend
their approach to compute any pair of consecutive non-zero subresultants of a, b
within the same time bound. The details are presented in Sect. 3.

Our next optimization for subresultant chain computations relies on the
observation that not all non-zero subresultants of a given subresultant chain
may be needed. To illustrate this fact, consider two commutative rings A and
B, two non-constant univariate polynomials a, b in A[y] and a ring homomor-
phism Ψ from A to B so that Ψ(lc(a)) �= 0 and Ψ(lc(b)) �= 0 both hold. Then,
the specialization property of subresultants (see the precise statement in Sect. 2)
tells us that the subresultant chain of Ψ(a), Ψ(b) is the image of the subresultant
chain of a, b via Ψ .

This property has at least two important practical applications. When B is
polynomial ring over a field, say B is Z/pZ[x] and A is Z/pZ, then one can com-
pute a GCD of Ψ(a), Ψ(b) via evaluation and interpolation techniques. Similarly,
say B is Q[x]/〈m(x)〉, where m(x) is a square-free polynomial, then B is a prod-
uct of fields then, letting A be Q[x], one can compute a GCD of Ψ(a), Ψ(b) using
the celebrated D5 Principle [8]. More generally, if B is Q[x1, . . . , xn]/〈T 〉, where
T = (t1(x1), . . . , tn(x1, . . . , xn)) is a zero-dimensional regular chain (generating
a radical ideal), and A is Q[x1, . . . , xn], then one can compute a so-called regular
GCD of a and b modulo 〈T 〉, see [5]. The principle of that calculation generalizes
the D5 Principle as follows:

1. if the resultant of a, b is invertible modulo 〈T 〉 then 1 is a regular GCD of a
and b modulo 〈T 〉;

2. if, for some k, the nominal leading coefficients s0, . . . , sk−1 are all zero modulo
〈T 〉, and sk is invertible modulo 〈T 〉, then the subresultant Sk of index k of
a, b is a regular GCD of a and b modulo 〈T 〉; and

3. one can always reduce to one of the above two cases by splitting T , when a
zero-divisor of B is encountered.

In practice, in the above procedure, k is often zero, which can be seen as a
consequence of the celebrated Shape Lemma [4]. This suggests to compute the
subresultant chain of a, b in A[y] speculatively. To be precise, and taking advan-
tage of the Half-GCD algorithm, it is desirable to compute the subresultants of
index 0 and 1, delaying the computation of subresultants of higher index until
proven necessary.
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We discuss that idea of computing subresultants speculatively in Sect. 3.
Making that approach successful, in comparison to non-speculative approaches,
requires to overcome several obstacles:

1. computing efficiently the subresultants S0 and S1, via the Half-GCD; and
2. developing an effective “recovery” strategy in case of “misprediction”, that

is, when subresultants of index higher than 1 turn out to be needed.

To address the first obstacle, our implementation combines various schemes for
the Half-GCD, inspired by the work done in NTL [27]. To address the second
obstacle, when we compute the subresultants of index 0 and 1 via the Half-GCD,
we record or cache the sequence of quotients (associated with the Euclidean
remainders) so as to easily obtain subresultants of index higher than 1, if needed.

There are subresultant algorithms in almost all computer algebra software.
Most notably, the RegularChains library [19] in Maple provides three different
algorithms to compute the entire chain based on Ducos’ optimization [9], Bézout
matrix [1], or evaluation-interpolation based on FFT. Each one is well-suited for
a particular type of input polynomials w.r.t the number of variables and the
coefficients ring; see the Maple help page for SubresultantChain command.
Similarly, the Algebramix library in Mathemagix [14] implements different
subresultant algorithms, including routines based on evaluation-interpolation,
Ducos’ algorithm, and an enhanced version of Lickteig-Roy’ s algorithm [17].

The extensive experimentation results in Sect. 5 indicate that the perfor-
mance of our univariate polynomials over finite fields (based on FFT) are closely
comparable with their counterparts in NTL. In addition, we have aggressively
tuned our subresultant schemes based on evaluation-interpolation techniques.
Our modular subresultant chain algorithms are up to 10× and 400× faster than
non-modular counterparts (mainly Ducos’ subresultant chain algorithm) in Z[y]
and Z[x, y], respectively. Further, utilizing the Half-GCD algorithm to compute
subresultants yields an additional speed-up factor of 7× and 2× for polynomials
in Z[y] and Z[x, y], respectively.

Further still, we present a third optimization for subresultant chain compu-
tations through a simple improvement of Ducos’ subresultant chain algorithm.
In particular, we consider memory usage and data locality to improve prac-
tical performance; see Sect. 4. We have implemented both the original Ducos
algorithm [10] and our optimized version over arbitrary-precision integers. For
univariate polynomials of degree as large as 2000, the optimized algorithm uses
3.2× and 11.7× less memory, respectively, than our implementation of the orig-
inal Ducos’ algorithm and the implementation of Ducos’ algorithm in Maple.

All of our code, providing also univariate and multivariate polynomial arith-
metic, is open source and part of the Basic Polynomial Algebra Subprograms
(BPAS) library available at www.bpaslib.org. Our many subresultant schemes
have been integrated, tested, and utilized in the multithreaded BPAS polynomial
system solver [3].

This paper is organized as follows. Section 2 presents a review of subresultant
theory following the presentations of [9] and [15]. Our modular method to compute

www.bpaslib.org
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subresultants speculatively via Half-GCD is discussed in Sect. 3. Section 4 exam-
ines practical memory optimizations for Ducos’ subresultant chain algorithm.
Lastly, implementation details and experimental results are presented in Sect. 5.

2 Review of Subresultant Theory

In this review of subresultant theory, we follow the presentations of [9] and [15].
Let B be a commutative ring with identity and let m ≤ n be positive integers.
Let M be a m×n matrix with coefficients in B. Let Mi be the square submatrix
of M consisting of the first m − 1 columns of M and the i-th column of M , for
m ≤ i ≤ n; let det(Mi) be the determinant of Mi. The determinantal polynomial
of M denoted by dpol(M) is a polynomial in B[y], given by

dpol(M) = det(Mm)yn−m + det(Mm+1)yn−m−1 + · · · + det(Mn).

Note that, if dpol(M) is not zero, then its degree is at most n−m. Let f1, . . . , fm

be polynomials of B[y] of degree less than n. We denote by mat(f1, . . . , fm) the
m × n matrix whose i-th row contains the coefficients of fi, sorted in order of
decreasing degree, and such that fi is treated as a polynomial of degree n−1. We
denote by dpol(f1, . . . , fm) the determinantal polynomial of mat(f1, . . . , fm).

Let a, b ∈ B[y] be non-constant polynomials of respective degrees m = deg(a),
n = deg(b) with m ≥ n. The leading coefficient of a w.r.t. y is denoted by lc(a).
Let k be an integer with 0 ≤ k < n. Then, the k-th subresultant of a and b (also
known as the subresultant of index k of a and b), denoted by Sk(a, b), is

Sk(a, b) = dpol(yn−k−1a, yn−k−2a, . . . , a, ym−k−1b, . . . , b).

This is a polynomial which belongs to the ideal generated by a and b in B[y].
In particular, S0(a, b) is the resultant of a and b denoted by res(a, b). Observe
that if Sk(a, b) is not zero then its degree is at most k. If Sk(a, b) has degree
k, then Sk(a, b) is said to be non-defective or regular; if Sk(a, b) �= 0 and
deg(Sk(a, b)) < k, then Sk(a, b) is said to be defective. We call k-th nominal
leading coefficient, demoted by sk, the coefficient of Sk(a, b) in yk. Observe that
if Sk(a, b) is defective, then we have sk = 0. For convenience, we extend the
definition to the n-th subresultant as follows:

Sn(a, b) =
{

γ(b)b, if m > n or lc(b) ∈ B is regular
undefined, otherwise

,

where γ(b) = lc(b)m−n−1. In the above, regular means not a zero-divisor. Note
that when m equals n and lc(b) is a regular element in B, then Sn(a, b) = lc(b)−1

b
is in fact a polynomial over the total fraction ring of B. We call specialization
property of subresultants the following property. Let A be another commutative
ring with identity and Ψ a ring homomorphism from B to A such that we have
Ψ(lc(a)) �= 0 and Ψ(lc(b)) �= 0. Then, for 0 ≤ k ≤ n, we have Sk(Ψ(a), Ψ(b)) =
Ψ(Sk(a, b)).

From now on, we assume that the ring B is an integral domain. Writing
δ = deg(a) − deg(b), there exists a unique pair (q, r) of polynomials in B[y] sat-
isfying ha = qb + r, where h = lc(b)δ+1, and either r = 0 or deg(r) < deg(b);
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the polynomials q and r, denoted respectively pquo(a, b) and prem(a, b), are the
pseudo-quotient and pseudo-reminder of a by b. The subresultant chain of a and b,
defined as subres(a, b) = (Sn(a, b), Sn−1(a, b), Sn−2(a, b), . . . , S0(a, b)), satisfies
relations which induce a Euclidean-like algorithm for computing the entire sub-
resultant chain: subres(a, b). This algorithm runs within O(n2) operations in B,
when m = n, see [9]. For convenience, we simply write Sk instead of Sk(a, b) for
each k. We write a ∼ b, for a, b ∈ B[y], whenever a, b are associate elements in
frac(B)[y], the field of fractions of B. Then for 1 ≤ k < n, we have:

(i) Sn−1 = prem(a,−b); if Sn−1 is non-zero, defining e := deg(Sn−1), then we
have:

Se−1 =
prem(b,−Sn−1)

lc(b)(m−n)(n−e)+1
,

(ii) if Sk−1 �= 0, defining e := deg(Sk−1) and assuming e < k−1 (thus assuming
Sk−1 defective), then we have:

(a) deg(Sk) = k, thus Sk is non-defective,
(b) Sk−1 ∼ Se and lc(Sk−1)

k−e−1
Sk−1 = sk

k−e−1Se, thus Se is non-defective,
(c) Sk−2 = Sk−3 = · · · = Se+1 = 0,

(iii) if both Sk and Sk−1 are non-zero, with respective degrees k and e then we
have:

Se−1 =
prem(Sk,−Sk−1)

lc(Sk)k−e+1
.

Algorithm 1. Subresultant (a, b, y)

Input: a, b ∈ B[y] with m = deg(a) ≥ n = deg(b) and B is an integral domain
Output: the non-zero subresultants from (Sn, Sn−1, Sn−2, . . . , S0)
1: if m > n then
2: S := (lc(b)m−n−1b)
3: else S := ()

4: s := lc(b)m−n

5: A := b; B := prem(a, −b)
6: while true do
7: d := deg(A); e := deg(B)
8: if B = 0 then return S
9: S := (B) ∪ S; δ := d − e

10: if δ > 1 then

11: C :=
lc(B)δ−1

B

sδ−1

12: S := (C) ∪ S
13: else C := B
14: if e = 0 then return S

15: B :=
prem(A, −B)

sδlc(A)
16: A := C; s := lc(A)
17: end while

Algorithm 1 from [10] is a known version of this procedure that computes
all non-zero subresultants a, b ∈ B[y]. Note that the core of this algorithm is the
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while-loop in which the computation of the subresultants Se and Se−1, with the
notations of the above points (ii) and (iii), are carried out.

3 Computing Subresultant Chains Speculatively

As discussed in the introduction, when the ring B is a field k, the computation
of the subresultant chain of the polynomials a, b ∈ B[y] can take advantage of
asymptotically fast algorithms for computing gcd(a, b). After recalling its speci-
fications, we explain how we take advantage of the Half-GCD algorithm in order
to compute the subresultants in subres(a, b) speculatively.

Consider two non-zero univariate polynomials a, b ∈ k[y] with n0 := deg(a),
n1 := deg(b) with n0 ≥ n1. The extended Euclidean algorithm (EEA) computes
the successive remainders (r0 := a, r1 := b, r2, . . . , r� = gcd(a, b)) with degree
sequence (n0, n1, n2 := deg(r2) . . . , n� := deg(r�)) and the corresponding quo-
tients (q1, q2, . . . , q�) defined by ri+1 = rem(ri, ri−1) = ri−1 − qiri, for 1 ≤ i ≤ �,
qi = quo(ri, ri−1) for 1 ≤ i ≤ �, ni+1 < ni, for 1 ≤ i < �, and r�+1 = 0 with
deg(rl+1) = −∞. This computation requires O(n2) operations in k. We denote

by Qi, the quotient matrices, defined, for 1 ≤ i ≤ �, by Qi =
[
0 1
1 −qi

]
, so that,

for 1 ≤ i < �, we have
[
ri

ri+1

]
= Qi

[
ri−1

ri

]
= Qi . . . Q1

[
r0
r1

]
. (1)

We define mi := deg(qi), so that we have mi = ni−1 − ni for 1 ≤ i ≤ �.
The degree sequence (n0, . . . , nl) is said to be normal if ni+1 = ni − 1 holds, for
1 ≤ i < �, or, equivalently if deg(qi) = 1 holds, for 1 ≤ i ≤ �.

Using the remainder and degree sequences of non-zero polynomials a, b ∈ k[y],
Proposition 1, known as the fundamental theorem on subresultants, introduces
a procedure to compute the nominal leading coefficients of polynomials in the
subresultant chain.

Proposition 1. For k = 0, . . . , n1, the nominal leading coefficient of the k-th
subresultant of (a, b) is either 0 or sk if there exists i ≤ � such that k = deg(ri),

sk = (−1)τi

∏
1≤j<i

lc(rj)
nj−1−nj+1 lc(ri)

ni−1−ni ,

where τi =
∑

1≤j<i(nj−1 − ni)(nj − ni) [12, Theorem 11.16].

The Half-GCD, also known as the fast extended Euclidean algorithm, is a
divide and conquer algorithm for computing a single row of the EEA, say the
last one. This can be interpreted as the computation of a 2×2 matrix Q over k[y]
so that we have: [

gcd(a, b)
0

]
= Q

[
a
b

]
.
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The major difference between the classical EEA and the Half-GCD algorithm
is that, while the EEA computes all the remainders r0, r1, . . . , r� = gcd(r0, r1),
the Half-GCD computes only two consecutive remainders, which are derived
from the Qi quotient matrices, which in turn are obtained from a sequence of
“truncated remainders”, instead of the original ri remainders.

Here, we take advantage of the Half-GCD algorithm presented in [12,
Chapter 11]. For a non-negative k ≤ n0, this algorithm computes the quotients
q1, . . . , qhk

where hk is defined as

hk = max
{

0 ≤ j ≤ � |
j∑

i=1

mi ≤ k
}

, (2)

the maximum j ∈ N so that
∑

1≤i≤j deg(qi) ≤ k. This is done within (22M(k)+
O(k)) log k operations in k. From Eq. 2, hk ≤ min(k, �), and

hk∑
i=1

mi =
hk∑
i=1

(ni−1 − ni) = n0 − nhk
≤ k <

hk+1∑
i=1

mi = n0 − nhk+1. (3)

Thus, nhk+1 < n0 − k ≤ nhk
, and so hk can be uniquely determined; see Algo-

rithm 11.6 in [12] for more details.
Due to the deep relation between subresultants and the remainders of the

EEA, the Half-GCD technique can support computing subresultants. This app-
roach is studied in [12]. The Half-GCD algorithm is used to compute the nom-
inal leading coefficient of subresultants up to sρ for ρ = nhk

by computing
the quotients q1, . . . , qhk

, calculating the lc(ri) = lc(ri−1)/lc(qi) from lc(r0) for
1 ≤ i ≤ hk, and applying Proposition 1. The resulting procedure runs within
the same complexity as the Half-GCD algorithm.

However, for the purpose of computing two successive subresultants
Snv

, Snv+1 given 0 ≤ ρ < n1, for 0 ≤ v < � so that nv+1 ≤ ρ < nv, we
need to compute quotients q1, . . . , qhρ

where hρ is defined as

hρ = max
{

0 ≤ j < � | nj > ρ
}

, (4)

using Half-GCD. Let k = n0 − ρ, Eqs. 3 and 4 deduce nhρ+1 ≤ n0 − k < nhρ
,

and hρ ≤ hk. So, to compute the array of quotients q1, . . . , qhρ
, we can utilize

an adaptation of the Half-GCD algorithm of [12]. Algorithm 2 is this adaptation
and runs within the same complexity as the algorithm of [12].

Algorithm 2 receives as input two polynomials r0 := a, r1 := b in k[y], with
n0 ≥ n1, 0 ≤ k ∈ N, ρ ≤ n0 where ρ, by default, is n0 − k, and the array A of
the leading coefficients of the remainders that have been computed so far. This
array should be initialized to size n0 + 1 with A[n0] = lc(r0) and A[i] = 0 for
0 ≤ i < n0. A is updated in-place as necessary. The algorithm returns the array
of quotients Q := (q1, . . . , qhρ

) and matrix M := Qhρ
· · · Q1.

Algorithm 2 and the fundamental theorem on subresultants yield Algorithm 3.
This algorithm is a speculative subresultant algorithm based on Half-GCD to
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Algorithm 2. AdaptedHGCD(r0, r1, k, ρ, A)

Input: r0, r1 ∈ k[y] with n0 = deg(r0) ≥ n1 = deg(r1), 0 ≤ k ≤ n0, 0 ≤ ρ ≤ n0 is
an upper bound for the degree of the last computed remainder that, by default,
is n0 − k and is fixed in recursive calls (See Algorithm 3), the array A of the
leading coefficients of the remainders (in the Euclidean sequence) which have been
computed so far

Output: hρ ∈ N so that hρ = max{j | nj > ρ}, the array Q := (q1, . . . , qhρ) of the
first hρ quotients associated with remainders in the Euclidean sequence and the
matrix M := Qhρ · · · Q1; the array A of leading coefficients is updated in-place

1: if r1 = 0 or ρ ≥ n1 then return
(
0, (),

[
1 0
0 1

] )

2: if k = 0 and n0 = n1 then

3: return
(
1, (lc(r0)/lc(r1)),

[
0 1
1 −lc(r0)/lc(r1)

] )

4: m1 := � k
2
�; δ1 := max(deg(r0) − 2 (m1 − 1), 0); λ := max(deg(r0) − 2k, 0)

5:
(
h′, (q1, . . . , qh′), R

)
:= AdaptedHGCD(quo(r0, y

δ1), quo(r1, y
δ1), m1 − 1, ρ, A)

6:

[
c
d

]
:= R

[
quo(r0, y

λ)

quo(r1, y
λ)

]
where R :=

[
R00 R01

R10 R11

]

7: m2 := deg(c) + deg(R11) − k

8: if d = 0 or m2 > deg(d) then return
(
h′, (q1, . . . , qh′), R

)

9: r := rem(c, d); q := quo(c, d); Q :=

[
0 1
1 −q

]

10: nh′+1 := nh′ − deg(q)

11: if nh′+1 ≤ ρ then return
(
h′, (q1, . . . , qh′ , q), R

)

12: A[nh′+1] := A[nh′ ]/lc(q)
13: δ2 := max(2m2 − deg(d), 0)

14:
(
h∗, (qh′+2, . . . , qh′+h∗+1), S

)
:=

AdaptedHGCD(quo(d, yδ2), quo(r, yδ2), deg(d) − m2, ρ, A)

15: return
(
hρ := h′ + h∗ + 1, Q := (q1, . . . , qhρ), M := SQR

)

calculate two successive subresultants without computing others in the chain.
Moreover, this algorithm returns intermediate data that has been computed by
the Half-GCD algorithm—the array R of the remainders, the array Q of the
quotients and the array A of the leading coefficients of the remainders in the
Euclidean sequence—to later calculate higher subresultants in the chain without
calling Half-GCD again. This caching scheme is shown in Algorithm 4.

Let us explain this technique with an example. For non-zero polynomials
a, b ∈ k[y] with n0 = deg(a), n1 = deg(b), so that we have n0 ≥ n1. The
subresultant call Subresultant(a, b, 0) returns S0(a, b), S1(a, b) speculatively
without computing (Sn1 , Sn1−1, Sn1−2, . . . , S2), arrays Q = (q1, . . . , q�), R =
(r�, r�−1), and A. Therefore, any attempt to compute subresultants with higher
indices can be addressed by utilizing the arrays Q,R,A instead of calling Half-
GCD again. In the Triangularize algorithm for solving systems of polynomial



Computational Schemes for Subresultant Chains 29

Algorithm 3. Subresultant(a, b, ρ)

Input: a, b ∈ k[x] \ {0} with n0 = deg(a) ≥ n1 = deg(b), 0 ≤ ρ ≤ n0

Output: Subresultants Snv (a, b), Snv+1(a, b) for such 0 ≤ v < � so that nv+1 ≤ ρ <
nv, the array Q of the quotients, the array R of the remainders, and the array A
of the leading coefficients of the remainders (in the Euclidean sequence) that have
been computed so far

1: A := (0, . . . , 0, lc(a)) where A[n0] = lc(a) and A[i] = 0 for 0 ≤ i < n0

2: if ρ ≥ n1 then
3: A[n1] = lc(b)

4: return
(
(a, lc(b)m−n−1b), (), (), A

)

5: (v, Q, M) := AdaptedHGCD(a, b, n0 − ρ, ρ, A)

6: deduce
(
n0 = deg(a), n1 = deg(b), . . . , nv = deg(rv)

)
from a, b and Q.

7:

[
rv

rv+1

]
:= M

[
a
b

]
; R := (rv, rv+1); nv+1 := deg(rv+1)

8: τv := 0; τv+1 := 0; α := 1
9: for j from 1 to v − 1 do

10: τv := τv + (nj−1 − nv)(nj − nv)
11: τv+1 := τv+1 + (nj−1 − nv+1)(nj − nv+1)
12: α := α A[nj ]

nj−1−nj+1

13: τv+1 := τv+1 + (nv−1 − nv+1)(nv − nv+1)
14: Snv := (−1)τv α rv

15: Snv+1 := (−1)τv+1α A[nv]nv−1−nv+1 rv+1

16: return
(
(Snv , Snv+1), Q, R, A

)

equations by triangular decomposition, the RegularGCD subroutine relies on this
technique for improved performance; see [3,5] for more details and algorithms.

For polynomials a, b ∈ Z[y] with integer coefficients, a modular algorithm
can be achieved by utilizing the Chinese remainder theorem (CRT). In this
approach, we use Algorithms 2 and 3 for a prime field k. We define Zp[y] as
the ring of univariate polynomials with coefficients in Z/pZ, for some prime p.
Further, we use an iterative and probabilistic approach to CRT from [22]. We
iteratively calculate subresultants modulo different primes p0, p1, . . ., continuing
to add modular images to the CRT direct product Zp0 ⊗· · ·⊗Zpi

for i ∈ N until
the reconstruction stabilizes. That is to say, the reconstruction does not change
from Zp0 ⊗ · · · ⊗ Zpi−1 to Zp0 ⊗ · · · ⊗ Zpi

.
We further exploit this technique to compute subresultants of bivariate poly-

nomials over prime fields and the integers. Let a, b ∈ B[y] be polynomials with
coefficients in B = Zp[x], thus B[y] = Zp[x, y], where the main variable is y
and p ∈ N is an odd prime. A desirable subresultant algorithm then uses an
evaluation-interpolation scheme and the aforementioned univariate routines to
compute subresultants of univariate images of a, b over Zp[y] and then interpo-
lates back to obtain subresultants over Zp[x, y]. This approach is well-studied
in [22] to compute the resultant of bivariate polynomials. We can use the same
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Algorithm 4. Subresultant(a, b, ρ, Q, R, A)

Input: a, b ∈ k[x] \ {0} with n0 = deg(a) ≥ n1 = deg(b), 0 ≤ ρ ≤ n0, the list Q
of all the quotients in the Euclidean sequence, the list R of the remainders that
have been computed so far; we assume that R contains at least rμ, . . . r�−1, r� with
0 ≤ μ ≤ � − 1, and the list A of the leading coefficients of the remainders in the
Euclidean sequence

Output: Subresultants Snv (a, b), Snv+1(a, b) for such 0 ≤ v < � so that nv+1 ≤ ρ <
nv; the list R of the remainders is updated in-place

1: deduce
(
n0 = deg(a), n1 = deg(b), . . . , n� = deg(r�)

)
from a, b and Q

2: if n� ≤ ρ then v := �
3: else find 0 ≤ v < � such that nv+1 ≤ ρ < nv.

4: if v = 0 then
5: return

(
a, lc(b)m−n−1b

)

6: for i from max(v, μ + 1) down to v do
7: ri := ri+1qi+1 + ri+2; R := R ∪ (ri)

8: compute Snv , Snv+1 using Proposition 1 from rv, rv+1

9: return
(
Snv , Snv+1

)

technique to compute the entire subresultant chain, or even particular subresul-
tants speculatively through Algorithms 2 and 3.

We begin with choosing a set of evaluation points of size N ∈ N and
evaluate each coefficient of a, b ∈ Zp[x, y] with respect to the main variable
(y). Then, we call the subresultant algorithm to compute subresultants images
over Zp[y]. Finally, we can retrieve the bivariate subresultants by interpolat-
ing each coefficient of each subresultant from the images. The number of eval-
uation points is determined from an upper-bound on the degree of subresul-
tants and resultants with respect to x. From [12], the following inequality holds:
N ≥ deg(b, y) deg(a, x) + deg(a, y) deg(b, x) + 1.

For bivariate polynomials with integer coefficients, we can use the CRT algo-
rithm in a similar manner to that which has already been reviewed for univari-
ate polynomials over Z. Figure 1 demonstrates this procedure for two polyno-
mials a, b ∈ Z[x, y]. In this commutative diagram, ā, b̄ represent the modular
images of the polynomials a, b modulo prime pi for 0 ≤ i ≤ e.

In practice, as the number of variables increases, the use of dense evaluation-
interpolation schemes become less effective, since degree bound estimates become
less sharp. In fact, sparse evaluation-interpolation schemes become more attrac-
tive [23,29], and we will consider them in future works.

4 Optimized Ducos’ Subresultant Chain

In [10], Ducos proposes two optimizations for Algorithm 1. The first one,
attributed to Lazard, deals with the potentially expensive exponentiations and
division at Line 11 of Algorithm 1. The second optimizations considers the poten-
tially expensive exact division (of a pseudo-remainder by an element from the
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Fig. 1. Computing the subresultant chain of a, b ∈ Z[x, y] using modular arithmetic,
evaluation-interpolation and CRT algorithms where (t0, . . . , tN ) is the list of evaluation
points, (p0, . . . , pi, ) is the list of distinct primes, ā = a mod pi, and b̄ = b mod pi

coefficient ring) at Line 15 of this algorithm. Applying both improvements to
Algorithm 1 yields an efficient subresultant chain procedure that is known as
Ducos’ algorithm.

Algorithm 5. Ducos Optimization (Sd, Sd−1, Se, sd)

Input: Given Sd, Sd−1, Se ∈ B[y] and sd ∈ B

Output: Se−1, the next subresultant in the subresultant chain of subres(a, b)
1: (d, e) := (deg(Sd), deg(Sd−1))
2: (cd−1, se) := (lc(Sd−1), lc(Se))
3: for j = 0, . . . , e − 1 do
4: Hj := sey

j

5: He := sey
e − Se

6: for j = e + 1, . . . , d − 1 do

7: Hj := yHj−1 − coeff(yHj−1, e)Sd−1
cd−1

8: D :=

d−1∑

j=0
coeff(Sd, j)Hj

lc(Sd)

9: return (−1)d−e+1 cd−1(yHd−1+D)−coeff(yHd−1, e)Sd−1
sd

The Ducos optimization that is presented in Algorithm 5, and borrowed
from [10], is a well-known improvement of Algorithm 1 to compute the subresul-
tant Se−1 (Line 15). This optimization provides a faster procedure to compute
the pseudo-division of two successive subresultants, namely Sd, Sd−1 ∈ B[y], and
a division by a power of lc(Sd). The main part of this algorithm is for-loops to
compute:

D :=

d−1∑
j=0

coeff(Sd, j)Hj

lc(Sd)
,

where coeff(Sd, j) is the coefficient of Sd in yj .
We now introduce a new optimization for this algorithm to make better use of

memory resources through in-place arithmetic. This is shown in Algorithm 6. In
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this algorithm we use a procedure named InplaceTail to compute the tail (the
reductum of a polynomial with respect to its main variable) of a polynomial, and
its leading coefficient, in-place. This operation is essentially a coefficient shift.
In this way, we reuse existing memory allocations for the tails of polynomials
Sd, Sd−1, and Se.

Algorithm 6. memory-efficient Ducos Optimization (Sd, Sd−1, Se, sd)

Input: Sd, Sd−1, Se ∈ B[y] and sd ∈ B

Output: Se−1, the next subresultant in the subresultant chain of subres(a, b)
1: (p, cd) := InplaceTail(Sd)
2: (q, cd−1) := InplaceTail(Sd−1)
3: (h, se) := InplaceTail(Se)
4: Convert p to a recursive representation format in-place
5: h := −h; a := coeff(p, e) h
6: for i = e + 1, . . . , d − 1 do
7: if deg(h) = e − 1 then
8: h := y tail(h) − ExactQuotient(lc(h) q, cd−1)
9: else h := y tail(h)

10: a := a + lc(coeff(p, i)) h

11: a := a + se

∑e−1
i=0 coeff(p, i)yi

12: a := ExactQuotient(a, cd)
13: if deg(h) = e − 1 then
14: a := cd−1 (y tail(h) + a) − lc(h) q
15: else a := cd−1 (y h + a)

16: return (−1)d−e+1
ExactQuotient(a, sd)

Furthermore, we reduce the cost of calculating
∑d−1

j=e coeff(Sd, j)Hj with com-
puting the summation iteratively and in-place in the same for-loop that is used
to update polynomial h (lines 6–10 in Algorithm 6). This greatly improves data
locality. We also update the value of h depending on its degree with respect to y
as deg(h) ≤ e − 1 for all e + 1 ≤ i < d. We utilize an optimized exact division
algorithm denoted by ExactQuotient to compute quotients rather a classical
Euclidean algorithm.

5 Implementation and Experimentation

In this section, we discuss the implementation and performance of our various
subresultant algorithms and their underlying core routines. Our methods are
implemented as part of the Basic Polynomial Algebra Subprograms (BPAS)
library [2] and we compare their performance against the NTL library [27] and
Maple 2020 [21]. Throughout this section, our benchmarks were collected on
a machine running Ubuntu 18.04.4, BPAS v1.791, GMP 6.1.2, and NTL 11.4.3,
with an Intel Xeon X5650 processor running at 2.67 GHz, with 12×4GB DDR3
memory at 1.33 GHz.
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Fig. 2. Comparing plain, Karatsuba,
and FFT-based multiplication in BPAS
with the wrapper mul method in NTL
to compute ab for polynomials a, b ∈
Zp[y] with deg(a) = deg(b) + 1 = d

Fig. 3. Comparing Euclidean and fast
division algorithms in BPAS with the divi-
sion method in NTL to compute rem(a, b)
and quo(a, b) for polynomials a, b ∈ Zp[y]
with deg(a) = 2(deg(b) − 1) = d

Fig. 4. Comparing Euclidean-based
GCD and Half-GCD-based GCD algo-
rithms in BPAS with the GCD algo-
rithm in NTL to compute gcd(a, b) =
1 for polynomials a, b ∈ Zp[y] with
deg(a) = deg(b) + 1 = d

Fig. 5. Comparing EEA, modular sub-
resultant, and Half-GCD-based subresul-
tant (BPAS specSRC, ρ = 0, 2), in BPAS
for dense polynomials a, b ∈ Zp[y] with
deg(a) = deg(b) + 1 = d

5.1 Routines over Zp [y]

We begin with foundational routines for arithmetic in finite fields and polyno-
mials over finite fields. For basic arithmetic over a prime field Zp where p is an
odd prime, Montgomery multiplication, originally presented in [24], is used to
speed up multiplication. This method avoids division by the modulus without
any effect on the performance of addition, and so, yields faster modular inverse
and division algorithms.

We have developed a dense representation of univariate polynomials which
take advantage of Montgomery arithmetic (following the implementation in [6])
for prime fields with p < 264. Throughout this section we examine the perfor-
mance of each operation for two randomly generated dense polynomials a, b ∈ Zp

with a 64-bit prime p = 4179340454199820289. Figures 2, 3, 4 and 5 examine,
respectively, multiplication, division, GCD, and subresultant chain operations.
These plots compare the various implementations within BPAS against NTL.

Our multiplication over Zp[y] dynamically chooses the appropriate algorithm
based on the input polynomials: plain or Karatsuba algorithms (following the
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routines in [12, Chapter 8]), or multiplication based on fast Fourier transform
(FFT). The implementation of FFT itself follows that which was introduced in [7].
Figure 2 shows the performance of these routines in BPAS against a similar “wrap-
per” multiplication routine in NTL. From empirical data, our wrapper multipli-
cation function calls the appropriate implementation of multiplication as follows.
For polynomials a, b over Zp[y], with p < 263, the plain algorithm is called when
s := min (deg(a),deg(b)) < 200 and the Karatsuba algorithm is called when
s ≥ 200. For 64-bit primes (p > 263), plain and Karatsuba algorithms are called
when s < 10 and s < 40, respectively, otherwise FFT-based multiplication is per-
formed.

The division operation is again a wrapper function, dynamically choosing
between Euclidean (plain) and fast division algorithms. The fast algorithm is
an optimized power series inversion procedure that is firstly implemented in
Aldor [11] using the so-called middle-product trick. Figure 3 shows the perfor-
mance of these two algorithms in comparison with the NTL division over Zp[y].
For polynomials a, b over Zp[y], b the divisor, empirical data again guides the
choice of appropriate implementation. Plain division is called for primes p < 263

and deg(b) < 1000. However, for 64-bit primes, the plain algorithm is used when
deg(b) < 100, otherwise fast division supported by FFT is used.

Our GCD operation over Zp[y] had two implementations: the classical
extended Euclidean algorithm (EEA) and the Half-GCD (fast EEA) algorithm,
respectively following the pseudo-codes in [12, Chapter 11] and the implemen-
tation in the NTL library [27]. Figure 4 shows the performance of these two
approaches named BPAS plainGCD and BPAS fastGCD, respectively, in comparison
with the NTL GCD algorithm for polynomials a, b ∈ Zp[y] where gcd(a, b) = 1.

To analyze the performance of our subresultant schemes, we compare the
näıve EEA algorithm with the modular subresultant chain and the speculative
subresultant algorithm for ρ = 0, 2 in Fig. 5. As this figure shows, using the
Half-GCD algorithm to compute two successive subresultants S1, S0 for ρ = 0
is approximately 5× faster than computing the entire chain, while calculating
other subresultants, e.g. S3, S2 for ρ = 2 with taking advantage of the cached
information from the first call (for ρ = 0), is nearly instantaneous.

5.2 Subresultants over Z[y] and Z[x, y]

We have developed a dense representation of univariate and bivariate polyno-
mials over arbitrary-precision integers, using low-level procedures of the GNU
Multiple Precision Arithmetic library (GMP) [13]. Basic dense arithmetic opera-
tions, like addition, multiplication, and division, follows [12]. The representation
of a dense bivariate polynomial a ∈ Z[x, y] (or Zp[x, y] for a prime p) is stored
as a dense array of coefficients (polynomials in Z[x]), possibly including zeros.

Following our previous discussion of various schemes for subresultants, we
have implemented several subresultant algorithms over Z[y] and Z[x, y]. We have
four families of implementations:

(i) BPAS modSRC, that computes the entire subresultant chain using Proposi-
tion 1 and the CRT algorithm (and evaluation-interpolation over Z[x, y]);
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Fig. 6. Comparing (optimized) Ducos’
subresultant chain algorithm, modu-
lar subresultant chain, and speculative
subresultant for ρ = 0, 2, algorithms in
BPAS with Ducos’ subresultant chain
algorithm in Maple for polynomials
a, b ∈ Z[y] with deg(a) = deg(b)+1 = d

Fig. 7. Comparing (optimized) Ducos’
subresultant chain, modular subresultant
chain, and speculative subresultant for ρ =
0, 2, 4, 6, in BPAS with Ducos’ algorithm in
Maple for dense polynomials a, b ∈ Z[x <
y] with deg(a, y) = deg(b, y) + 1 = 50 and
deg(a, x) = deg(b, x) + 1 = d

(ii) BPAS specSRC, that refers to Algorithms 3 and 4 to compute two successive
subresultants using Half-GCD and caching techniques;

(iii) BPAS Ducos, for Ducos’ algorithm, based on Algorithm 5; and
(iv) BPAS OptDucos, for Ducos’ algorithm based on Algorithm 6.

Figure 6 compares the running time of those subresultant schemes over Z[y]
in the BPAS library and Maple. The modular approach is up to 5× faster
than the optimized Ducos’ algorithm. Using speculative algorithms to compute
only two successive subresultants yields a speedup factor of 7 for d = 2000.
Figure 7 provides a favourable comparison between the family of subresultant
schemes in BPAS and the subresultant algorithm in Maple for dense bivariate
polynomials a, b ∈ Z[x, y] where the main degree is fixed to 50, i.e. deg(a, y) =
deg(b, y) + 1 = 50, and deg(a, x) = deg(b, x) + 1 = d for d ∈ {10, 20, . . . , 100}.
Note that the BPAS specSRC algorithm for ρ = 0, 2, 4, 6 is caching the information
for the next call with taking advantage of Algorithm 4.

We further compare our routines with the Ducos subresultant chain algo-
rithm in Maple, which is implemented as part of the RegularChains library [19].
Table 1 shows the memory usage for computing the entire subresultant chain of
polynomials a, b ∈ Z[y], with deg(a) = deg(b) + 1 = d. The table presents
BPAS Ducos, BPAS OptDucos, and Maple Ducos. For d = 2000, Table 1 shows
that the optimized algorithm uses approximately 3× and 11× less memory than
our original implementation and the Ducos’ algorithm in Maple, respectively.

We next compare more closely the two main ways of computing an entire
subresultant chain: the direct approach following Algorithm 1, and a mod-
ular approach using evaluation-interpolation and CRT (see Fig. 1). Figure 8
shows the performance of the direct approach (the top surface), calling our
memory-optimized Ducos’ algorithm BPAS OptDucos, in comparison with the
modular approach (the bottom surface), calling BPAS modSRC. Note that, in this
figure, interpolation may be based on Lagrange interpolation or FFT algorithms
depending on the degrees of the input polynomials.



36 M. Asadi et al.

Table 1. Comparing memory usage (GB) of Ducos’ subresultant chain algorithms for
polynomials a, b ∈ Z[y] with deg(a) = deg(b) + 1 = d in Fig. 6 over Z[y]

Degree BPAS Ducos BPAS OptDucos Maple Ducos

1000 1.088 0.320 3.762

1100 1.450 0.430 5.080

1200 1.888 0.563 6.597

1300 2.398 0.717 8.541

1400 2.968 0.902 10.645

1500 3.655 1.121 12.997

1600 4.443 1.364 15.924

1700 5.341 1.645 19.188

1800 6.325 1.958 23.041

1900 7.474 2.332 27.353

2000 8.752 2.721 31.793

Next, Fig. 9 highlights the benefit of our speculative approach to compute
the resultant and subresultant of index 1 compared to computing the entire.
The FFT-based modular algorithm is presented as the top surface, while the
speculative subresultant algorithm based on the Half-GCD is the bottom surface.

Fig. 8. Comparing Opt. Ducos’ algo-
rithm (the top surface) and modular
subresultant chain (the bottom sur-
face) to compute the entire chain for
polynomials a, b ∈ Z[x < y] with
deg(a, y) = deg(b, y) + 1 = Y and
deg(a, x) = deg(b, x) + 1 = X

Fig. 9. Comparing modular subresultant
chain with using FFT (the top surface),
and speculative subresultant (ρ = 0) (the
bottom surface) for polynomials a, b ∈
Z[x < y] with deg(a, y) = deg(b, y)+1 = Y
and deg(a, x) = deg(b, x) + 1 = X
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Table 2. Comparing the execution time (in seconds) of subresultant schemes on the
BPAS Triangularize solver for well-known bivariate systems in the literature. We call
optimized Ducos’ subresultant chain algorithm in the OptDucos mode, modular subre-
sultant chain algorithms (FFT and Lagrange) in the ModSRC mode, and Half-GCD based
subresultant algorithms in the SpecSRCnaı̈ve and SpecSRCcached modes. We do cache subre-
sultant information for further calls in the ModSRC and SpecSRCcached modes; deg(src[idx])
shows a list of minimum main degrees of the computed subresultants in each subresul-
tant call and Indexes indicates a list of requested subresultant indexes.

SysName ModSRC SpecSRCnaı̈ve SpecSRCcached OptDucos deg(src[idx]) Indexes

13 sings 9 3.416 3.465 3.408 3.417 (1) (0)

compact surf 11.257 26.702 10.26 10.258 (0, 2, 4, 6) (0, 3, 5, 6)

curve24 4.992 4.924 4.911 4.912 (0, 0, 1) (0, 0, 0)

curve issac 2.554 2.541 2.531 2.528 (0, 0, 1) (0, 0, 0)

cusps and flexes 4.656 8.374 4.656 4.488 (0, . . . , 2) (0, . . . , 2)

degree 6 surf 81.887 224.215 79.394 344.564 (0, 2, 4, 4) (0, 2, 4, 4)

hard one 48.359 197.283 47.213 175.847 (0, . . . , 2) (0, . . . , 2)

huge cusp 23.406 33.501 23.41 23.406 (0, 2, 2) (0, 2, 2)

L6 circles 32.906 721.49 33.422 32.347 (0, . . . , 6) (0, . . . , 6)

large curves 65.353 64.07 63.018 366.432 (0, 0, 1, 1) (0, 0, 0, 0)

mignotte xy 348.406 288.214 287.248 462.432 (1) (0)

SA 2 4 eps 4.141 37.937 4.122 4.123 (0, . . . , 6) (0, . . . , 6)

SA 4 4 eps 222.825 584.318 216.065 197.816 (0, . . . , 3) (0, . . . , 6)

spider 293.701 294.121 295.198 293.543 (0, 0, 1, 1) (0, 0, 0, 0)

spiral29 24 647.469 643.88 644.379 643.414 (1) (0)

ten circles 3.255 56.655 2.862 2.116 (0, . . . , 4) (0, . . . , 4)

tryme 3728.085 4038.539 2415.28 4893.04 (0, 2) (0, 2)

vert lines 1.217 24.956 1.02 1.021 (0, . . . , 6) (0, . . . , 6)

Lastly, we investigate the effects of different subresultant algorithms on the
performance of the BPAS polynomial system solved based on triangular decom-
position and regular chains; see [3,5]. Subresultants play a crucial role in com-
puting regular GCDs (see Sect. 1) and thus in solving systems via triangular
decomposition. Tables 2, 3, and 4 investigate the performance of BPAS modSRC,
and BPAS specSRC and the caching technique, for system solving.

Table 2 shows the running time of well-known and challenging bivariate sys-
tems, where we have forced the solver to use only one particular subresultant
scheme. In SpecSRCnaı̈ve, BPAS specSRC does not cache data and thus does not
reuse the sequence of quotients computed from previous calls. Among those
systems, the caching ratio (SpecSRCnaı̈ve/SpecSRCcached) of vert lines, L6 circles,
ten circles, and SA 2 4 eps are 24.5, 21.6, 19.8, 9.2, respectively, while the
speculative ratio (ModSRC/SpecSRCcached) of tryme, mignotte xy, and vert lines are
1.5, 1.2, and 1.2, respectively.
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Tables 3 and 4 examine the performance of the polynomial system solver on
constructed systems which aim to exploit the maximum speed-up of these new
schemes. Listing 1.1 and 1.2 in Appendix A provide the Maple code to construct
these input systems. For those systems created by Listing 1.1, we get 3× speed-
up through caching the intermediate speculative data rather than repeatedly
calling the Half-GCD algorithm for each subresultant call. Using BPAS specSRC
provides a 1.5× speed-up over using the BPAS modSRC algorithm. Another family
of constructed examples created by Listing 1.2 is evaluated in Table 4. Here, we
get up to 3× speed-up with the use of cached data, and up to 2× speed-up over
the modular method.

Table 3. Comparing the execution time (in seconds) of subresultant schemes on the
BPAS Triangularize system solver for constructed bivariate systems in Listing 1.1 to
exploit the speculative scheme. Column headings follow Table 2, and FFTBlockSize is
block size used in the FFT-based evaluation and interpolation algorithms.

n ModSRC SpecSRCnaı̈ve SpecSRCcached deg(src[idx]) Indexes FFTBlockSize

50 9.382 25.025 6.295 (0, 25, 50, 75) (0, 26, 51, 75) 512

60 22.807 82.668 23.380 (0, 30, 60, 90) (0, 31, 61, 90) 1024

70 23.593 105.253 30.477 (0, 35, 70, 105) (0, 36, 71, 105) 1024

80 36.658 156.008 47.008 (0, 40, 80, 120) (0,41,81,120) 1024

100 171.213 272.939 83.966 (0, 50, 100, 150) (0, 51, 101, 150) 1024

110 280.952 370.628 117.106 (0, 55, 110, 165) (0, 56, 111, 165) 1024

120 491.853 1035.810 331.601 (0, 60, 120, 180) (0, 61, 121, 180) 2048

130 542.905 1119.720 362.631 (0, 65, 130, 195) (0, 66, 131, 195) 2048

140 804.982 1445.000 470.649 (0, 70, 140, 210) (0, 71, 141, 210) 2048

150 1250.700 1963.920 639.031 (0, 75, 150, 225) (0, 76, 151, 225) 2048

Table 4. Comparing the execution time (in seconds) of subresultant schemes on the
BPAS Triangularize system solver for constructed bivariate systems in Listing 1.2 to
exploit the speculative scheme. Column headings follow Table 3.

n ModSRC SpecSRCnaı̈ve SpecSRCcached deg(src[idx]) Indexes FFTBlockSize

100 894.139 1467.510 474.241 (0, 2, 2) (0, 2, 2) 512

110 1259.850 2076.920 675.806 (0, 2, 2) (0, 2, 2) 512

120 1807.060 2757.390 963.547 (0, 2, 2) (0, 2, 2) 512

130 2897.150 4311.990 1505.080 (0, 2, 2) (0, 2, 2) 1024

140 4314.300 5881.640 2134.190 (0, 2, 2) (0, 2, 2) 1024

150 5177.410 7869.700 2609.170 (0, 2, 2) (0, 2, 2) 1024
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A Maple code for Polynomial Systems

1 SystemGenerator1 := proc(n)

2 local R := PolynomialRing ([x,y]);

3 local J := PolynomialIdeals :-Intersect(<x^2+1,xy+2>,

4 <x^2+3,xy^floor(n/2)+floor(n/2)+1>);

5 J := PolynomialIdeals :-Intersect(J, <x^2+3,xy^n+n+1>);

6 local dec := Triangularize(Generators(J),R);

7 dec := map(NormalizeRegularChain ,dec ,R);

8 dec := EquiprojectableDecomposition ([%[1][1] ,%[2][1]] ,R);

9 return map(expand , Equations(op(dec),R));

10 end proc:

Listing 1.1. Maple code of constructed polynomials in Table 3.

1 SystemGenerator2 := proc(n)

2 local R := PolynomialRing ([x,y]);

3 local f := randpoly ([x],dense ,coeffs=rand ( -1..1),degree=n);

4 local J := <f,xy+2>;

5 J := PolynomialIdeals:-Intersect(J,<x^2+2,(x^2+3x+1)y^2+3>);

6 local dec := Triangularize (Generators(J),R);

7 dec := map(NormalizeRegularChain ,dec ,R);

8 dec := EquiprojectableDecomposition ([%[1][1] ,%[2][1]] ,R);

9 return map(expand ,Equations(op(dec),R));

10 end proc:

Listing 1.2. Maple code of constructed polynomials in Table 4.
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