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Abstract. The standard mass-action kinetics modeling of the dynam-
ics of biochemical reaction networks gives rise to systems of ordinary
polynomial differential equations with (in general unknown) parameters.
Attempts to explore the parameter space in order to predict properties
of the associated systems challenge the standard current computational
tools because even for moderately small networks we need to study fam-
ilies of polynomials with many variables and many parameters. These
polynomials have a combinatorial structure that comes from the digraph
of reactions. We show that different techniques can be strengthened and
applied for biochemical networks with special structure.

1 Introduction

The basic definitions and properties of chemical reaction networks, together with
the features of some important biochemical networks, can be found in the sur-
veys [7–9] and Chap. 5 of the book [6], as well as in the book [12]. The starting
information is a finite directed graph with r labeled edges that correspond to
the reactions and nodes that correspond to complexes, given by nonnegative
integer linear combinations of a set of s chemical species. The concentrations
x = (x1, . . . , xs) of the chemical species are viewed as functions of time. Under
mass-action kinetics, the labels of the edges are positive numbers called reaction
rate constants and x is assumed to satisfy an autonomous system of ordinary
differential equations dx

dt = f(x). Here f = (f1, . . . , fs) is a vector of real poly-
nomials that reflects the combinatorics of the graph.

The reaction rate constants are in general unknown or difficult to measure.
Standard methods in other sciences involve exhaustive sampling. Instead, we
think the vector κ of reaction rate constants as a vector of parameters. In general,
there are further parameters involved in this setting. Linear relations describing
the span S of the difference of the complexes on each side of a reaction give
rise to linear conservation constants of the dynamics. This means that given
a basis �1, . . . , �d of the orthogonal subspace S⊥, any solution x defined in an
interval satisfies linear constraints of the form �1(x) = T1, . . . , �d(x) = Td. We
say that T = (T1, . . . , Td) is a vector of total amounts and we consider (κ, T ) as
parameters.
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The steady states of the the system dx
dt = f(x) are the constant trajectories,

that is the values of x∗ for which f(x∗) = 0. If a trajectory converges, its limit
is a steady state. Stable steady states attract nearby trajectories and unstable
steady states also drive the dynamics. Multistationarity is a crucial property
for chemical reaction networks modeling biological processes, since it allows for
different “responses” of the cell. It corresponds to the existence of more than
one positive steady state with the same total amounts, that is, to the existence
of at least two positive zeros of the ideal 〈f1 . . . , fs, �1 − T1, . . . , �d − Td〉.

We look at these systems as special families of polynomial ordinary differ-
ential equations in s variables with r + d parameters. Our aim is to explore
the parameter space in order to predict properties of the systems associated to
networks studied in systems biology, which usually have too many variables and
too many parameters. There are many useful mathematical and computational
tools, but we are forced to extend the mathematical results and to understand
the structure of the networks to make the computations feasible.

In the following sections, I will very briefly summarize two of these recent
advances. Besides consulting the references, the reader is invited to attend my
lecture or to watch later the video for more information.

2 The ERK Pathway

As an example of more general results, we discuss the ERK pathway. It is an
enzymatic network that consists of a cascade of phosphorylation of proteins in the
cell that communicates a signal from a receptor on the outside membrane to the
DNA inside the nucleus. It controlls different responses such as cell division [19].
It is known that the ERK pathway has the capacity for multistationarity and
there are oscillatory solutions.

Deciding mulstistationarity is a question in real algebraic geometry that can
be effectively decided in practice, but the associated family has 21 variables and
36 = 30 + 6 parameters. So, how is it that we can study it with an algebro-
geometric approach? This important signaling cascade, as most popular models
in systems biology, has a MESSI structure [21]. There is a partition of the set
of species and only certain type of reactions occur. Using this structure, we give
combinatorial conditions on the network that ensure the following:

– There are no relevant boundary steady states. That is, there are no steady
states (zeros of the polynomials f1, . . . , f21) in the boundary of the nonneg-
ative orthant which lie in the closure of the linear variety ST = {�1(x) =
T1, . . . , �d(x) = T6}, for any choice of κ ∈ R

30
>0 and T such that ST intersects

the positive orthant.
– The intersections ST ∩ R

21
≥0 are compact and so the system is conservative.

– The system is linearly binomial, a concept introduced in [11], which implies
that there is a system of binomial generators of the ideal 〈f1, . . . , f21〉 obtained
by linear algebra operations over Q(κ), involving rational functions whose
denominators do not vanish over R

30
>0.
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– The positive points of the steady state variety {x ∈ R
21
>0 : f(x) = 0} can be

cut out by explicit binomials, and thus parametrized by explicit monomials
with coefficients in Q(κ) as above.

One way to approximate the dynamics of biological models while dealing
with less variables and parameters, is the elimination of the intermediate com-
plexes [14]. Following [24], one could ask which are the minimal sets (with respect
to inclusion) of intermediates that still give rise to multistationarity. These sets
are termed circuits of multistationarity. We show in our forthcoming paper [10]
that systems like the ERK pathway without intermediates cannot be multista-
tionary and we use a computer algebra system to find all the corresponding
circuits of multistationarity. We can also identify the circuits of multistationar-
ity for phosphorylation networks with any number of species. The theoretical
results are based on [5,22].

3 Degenerations and Open Regions of Multistationarity

In the beautiful paper [3], regular subdivisions of the (convex hull of the) set of
exponents of a polynomial system are used to get a lower bound on the number
of positive solutions, with combinatorial arguments to get new lower bounds in
terms of the number of variables and the difference between the cardinality of
the support and the number of variables. This is based on classical results on
degenerations that were used in [25] to study real roots of complete intersections.
The idea is to add a parameter u raised to the different heights of a fixed lifting
whose projection produces the given regular subdivision, thus giving a deforma-
tion of the coefficients of the system along a curve. For small positive values of u,
one obtains a degeneration of the original system for which a lower bound on
the number of positive roots can be given in terms of decorated simplices in the
regular subdivision. Again, this is in general unfeasible in practice when there
are many variables and many monomials.

On one side, we show how to replace a deformation using a single parameter
with an open set defined in terms of the cone of all height functions that produce
the regular subdivision. This way, we get an open region in parameter space
where multistationarity occurs [2]. Even if deciding if simplices are part of a
same regular subdivision is algorithmic, in order to do this when the dimension
or the number of monomials is big, we use the simple idea that if two simplices
share a facet, then this is always the case. Moreover, we heavily use results about
the structure of s-toric MESSI systems from [21]. This allows us to find these
open regions for cascades with any number of layers in [15], but the lower bound
that we get is three. Regions of multistationarity with higher lower bounds are in
general unknown, except for the case of sequential distributive phosphorylation
networks [16]. There is also a degeneration approach with one parameter using
arguments from geometric singular perturbation theory in [13].
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4 Other Computational Approaches

There are several other computational approaches to study these systems. Of
course, symbolic software using Gröbner bases and in particular real algebraic
geometry libraries, as well as Cylindrical Algebraic Decomposition software. Also
numerical methods in algebraic geometry can be used [17,18], as well as tropical
tools to separate time scales [23]. Machine learning tools started to be used to
improve both the symbolic and numeric calculations [1,4,20].
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11. Dickenstein, A., Pérez Millán, M., Shiu, A., Tang, X.: Mutistationarity in struc-
tured reaction networks. Bull. Math. Biol. 81, 1527–1581 (2019)

12. Feinberg, M.: Foundations of Chemical Reaction Network Theory. AMS, vol. 202.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03858-8

13. Feliu, E., Rendall, A., Wiuf, C.: A proof of unlimited multistability for phospho-
rylation cycles. Nonlinearity 33(11), 5629 (2020)

14. Feliu, E., Wiuf, C.: Simplifying biochemical models with intermediate species. J.
R. Soc. Interface 10, 20130484 (2013)

15. Giaroli, M., Bihan, F., Dickenstein, A.: Regions of multistationarity in cascades of
Goldbeter-Koshland loops. J. Math. Biol. 78(4), 1115–1145 (2019)

http://arxiv.org/abs/2006.14078
https://doi.org/10.1007/s10208-020-09464-x
https://doi.org/10.1007/978-3-030-21170-7_2
https://doi.org/10.1007/978-3-030-21170-7_2
https://doi.org/10.1007/978-3-030-03858-8


Families of Polynomials in the Study of Biochemical Reaction Networks 5
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