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Chapter 1
Molecular Pathways and Targets in B-Cell 
Progenitor Acute Lymphoblastic Leukemia

Kathryn G. Roberts and Charles G. Mullighan

 Introduction

Acute lymphoblastic leukemia (ALL) is a neoplasm of B- or T-lineage lymphoid 
progenitors, with B-cell precursor ALL (BCP-ALL) representing the more common 
lineage of disease in both children and adults. BCP-ALL comprises over 20 subtypes 
characterized by constellations of genetic alterations, including aneuploidy, 
chromosomal rearrangements, DNA copy number alterations, and sequence 
mutations and, typically, distinct gene expression profiles [1–3]. As described in this 
review, the subtypes of B-ALL show variability in the nature of the initiating lesion 
(e.g., single or multiple chromosomal rearrangements, sequence mutations, or 
aneuploidy), secondary genetic alterations, and outcome. The prevalence and 
prognosis of each subtype is age dependent. Moreover, there is growing appreciation 
of the role of germline coding and non-coding variants in predisposing to ALL, both 
in familial and sporadic cases, and, in some instances, predisposing to specific 
subtypes of ALL, a striking example being germline TP53 alterations and low 
hypodiploid ALL [4]. In the majority of subtypes of B-ALL, secondary genomic 
alterations are important events required for leukemogenesis, and also influence the 
risk of relapse [5, 6] (Fig. 1.1). Indeed, it is now recognized that in the majority of 
cases of B-ALL, the disease is usually polyclonal at the time of diagnosis, and when 
relapse occurs, there is substantial genomic evolution with clonal rise and fall and 
mutational extinction, convergence, and emergence [7–9]. Herein, we review the 
genomic landscape of BCP-ALL, including discussion of the role of germline pre-
disposition and the genetics of clonal evolution and relapse. This review will empha-
size illustrative examples of recently defined subtypes of ALL and highlight 
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potential avenues for diagnostic implementation and therapeutic targeting of 
relapsed ALL with an emphasis on newly described entities and targets during the 
past decade.

 Historic Aspects of Genetic and Genomic Classification 
of B-ALL

For many years, genetic classification of B-ALL was performed by cytogenetic 
karyotyping and complementary targeted fluorescence in situ hybridization (FISH) 
and molecular assays for specific chromosomal rearrangements and fusions [10]. 
These identified aneuploid B-ALL with high hyperdiploidy and hypodiploidy; 
chimeric fusions including ETV6-RUNX1, BCR-ABL1, and TCF3-PBX1; and 
rearrangement of KMT2A (MLL) in approximately two thirds of childhood 
ALL. Due to the low prevalence of high hyperdiploidy and ETV6-RUNX1 in older 
individuals, over 50% of adult cases were unclassified [11]. This, coupled with the 
observation that many of these alterations were insufficient for leukemogenesis in 
experimental models, and the ability to detect several alterations at birth in cord 
blood or blood spots [12] years prior to the onset of leukemia, indicated that many 
cases of ALL had unidentified drivers and that collaborating genetic alterations are 
required for leukemogenesis in many cases.

The advent of microarray profiling of gene expression and DNA content (array- 
based comparative genomic hybridization, array-CGH, and single-nucleotide poly-
morphism (SNP) arrays) demonstrated that known subtypes of B-ALL exhibited 
relatively distinct gene expression profiles and could identify cases and subgroups 
that lacked a known driver [13–15]. SNP arrays identified multiple recurring DNA 
copy number alterations (CNA), particularly alterations in transcriptional regulators 

Fig. 1.1 Schema of the temporal pathogenesis of BCP-ALL
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of lymphoid development (PAX5, IKZF1, EBF1), providing valuable insights into 
the nature of co-alterations in B-ALL [16, 17]. These approaches were largely inca-
pable of robustly identifying subtype-defining new alterations, in part due to the 
limited ability to identify chromosomal rearrangements and chimeric fusion 
oncoproteins.

Transcriptome sequencing (RNA-seq) has been the most powerful single experi-
mental approach in enabling a near-complete understanding of the molecular clas-
sification of B-ALL and the genomic drivers responsible. Although not able to fully 
identify all sequence and structural alterations, RNA-seq provides a wealth of data 
regarding gene expression, gene rearrangement, chromosomal aneuploidy, and 
mutations. The combination of all four data types has proven necessary in classify-
ing B-ALL. The first advance in subtyping of B-ALL using RNA-seq was the iden-
tification of Ph-like (BCR-ABL1-like) ALL, a subtype first recognized using 
microarray gene expression profiling [18, 19], but requiring RNA-seq to resolve the 
remarkable diversity in genetic alterations, particularly chromosomal rearrangements 
resulting in enhancer hijacking and chimeric fusion oncoprotein formation, 
characteristic of this subtype of ALL [20, 21].

In the last 5 years, multiple groups from the USA, Europe, Japan, and China have 
generated or used B-ALL RNA-seq data to identify new targets of recurring 
rearrangement (e.g., DUX4, MEF2D, and ZNF384) associated with distinct gene 
expression profiles [22–29] and the presence of cases with alterations that phenocopy 
additional canonical B-ALL drivers, e.g., ETV6-RUNX1-like ALL [27]. Several of 
these subtypes have diverse rearrangements involving a single gene, some of which 
are cryptic and eluding classification by conventional cytogenetic analysis. Several 
large-scale B-ALL RNA-seq generation/aggregation studies encompassing up to 
almost 2000 samples enabled additional observations: additional, less prevalent 
subtypes driven by chromosomal rearrangements (e.g., rearrangement of NUTM1 
and BCL2MYC/BCL6), identification of subtypes driven by initiating sequence 
mutations rather than chromosomal rearrangements (e.g., PAX5 P80R and IKZF1 
N159Y), and subtypes with relatively distinct gene expression but diverse alterations 
targeting a single gene (PAX5alt, with fusions, sequence mutations, and intragenic 
amplification of this DNA-binding transcription factor) [5, 6, 26, 29] (Fig. 1.2).

By extending these studies across the age spectrum, these data have been particu-
larly valuable in defining the genetic basis of B-ALL in older individuals, which is 
more parsimonious in the repertoire of subtypes, and commonly driven by altera-
tions that are now recognized as inherently high risk: BCR-ABL1, Ph-like, low 
hypodiploid, and KMT2A- rearranged ALL, providing a partial explanation for the 
historically poor outcomes of B-ALL in adults [30] (Fig. 1.3).

Collectively, these studies have enabled classification of over 90% of childhood 
and adult ALL cases (Table 1.1). A minority of cases remain unclassified, but their 
driver alterations will likely be identified by the application of WGS that can identify 
non-coding mutations and rearrangements that deregulate genes without generating 
a chimeric RNA molecule and thus are not detected by RNA-seq alone.

1 Molecular Pathways and Targets in B-Cell Progenitor Acute Lymphoblastic Leukemia
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Fig. 1.2 t-SNE plot of gene expression data showing major B-cell precursor acute lymphoblastic 
leukemia (BCP-ALL) subtypes based on gene expression profiling of 1988 cases [5]. Each dot 
represents an individual case
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Fig. 1.3 Prevalence of each major subtype in B-cell precursor acute lymphoblastic leukemia 
(BCP-ALL) across age or risk. AYA, adolescent and young adult; SR, standard risk; HR, high risk. 
(a) Distribution of key groups of ALL according to age. (b) Cumulative prevalence of ALL 
subtypes by age. Outcome of selected subtypes for (c) high-risk childhood B-ALL and (d) adult 
ALL. (Data taken from Gu et al. [5])

K. G. Roberts and C. G. Mullighan



7

Ta
bl

e 
1.

1 
G

en
et

ic
 a

nd
 c

lin
ic

al
 c

ha
ra

ct
er

is
tic

s 
of

 B
-A

L
L

 s
ub

ty
pe

s

M
ol

ec
ul

ar
 s

ub
ty

pe

M
ed

ia
n 

ag
e 

(y
ea

rs
)

Pe
ak

 
pr

ev
al

en
ce

G
en

om
ic

 a
lte

ra
tio

ns
C

ha
ra

ct
er

is
tic

s
T

he
ra

pe
ut

ic
 a

pp
ro

ac
h

R
ef

H
ig

h 
hy

pe
rd

ip
lo

id
 

(5
1–

67
 c

hr
om

os
om

es
)

4
C

hi
ld

re
n 

(2
5%

)
R

as
 p

at
hw

ay
, F

LT
3,

 
ep

ig
en

et
ic

 m
od

ifi
er

s
E

xc
el

le
nt

 p
ro

gn
os

is
; a

ss
oc

ia
tio

n 
of

 C
R

E
B

B
P

 
m

ut
at

io
ns

 w
ith

 r
el

ap
se

; F
LT

3,
 R

as
 a

lte
ra

tio
ns

FL
T

3 
in

hi
bi

tio
n?

[5
7,

 5
9]

L
ow

 h
yp

od
ip

lo
id

 
(3

2–
39

 c
hr

om
os

om
es

)
47

A
du

lts
 

(1
0–

15
%

)
IK

Z
F

2 
de

le
tio

n,
 b

ia
lle

lic
 

T
P

53
 a

lte
ra

tio
ns

Po
or

 p
ro

gn
os

is
; T

P
53

 a
lte

ra
tio

ns
 a

re
 c

om
m

on
ly

 
in

he
ri

te
d 

in
 c

hi
ld

re
n,

 b
ut

 n
ot

 in
 a

du
lt

B
C

L
2/

B
C

L
-X

L
 in

hi
bi

to
rs

[4
, 6

7]

N
ea

r 
ha

pl
oi

d 
(2

4–
31

 
ch

ro
m

os
om

es
)

5.
4

<
 3

%
 in

 a
ll 

ag
es

R
as

 p
at

hw
ay

 (
N

F
1)

, 
IK

Z
F

3 
de

le
tio

ns
In

te
rm

ed
ia

te
 p

ro
gn

os
is

; N
o 

lo
ss

 o
f 

ch
ro

m
os

om
e 

21
 is

 o
bs

er
ve

d
B

C
L

2/
B

C
L

-X
L

 in
hi

bi
to

rs
[4

, 6
7]

iA
M

P2
1

10
<

 3
%

 in
 

ch
ild

re
n 

an
d 

A
Y

A

G
ai

n 
of

 th
re

e 
or

 m
or

e 
ex

tr
a 

co
pi

es
 o

f 
a 

re
gi

on
 o

f 
ch

ro
m

os
om

e 
21

 in
cl

ud
in

g 
R

U
N

X
1

G
oo

d 
pr

og
no

si
s 

w
ith

 in
te

ns
iv

e 
th

er
ap

y;
 lo

w
 W

B
C

 
at

 d
ia

gn
os

is
; t

he
 g

er
m

lin
e 

R
ob

er
ts

on
ia

n 
tr

an
sl

oc
at

io
n 

ro
b(

15
;2

1)
 o

r 
a 

ge
rm

lin
e 

ri
ng

 
ch

ro
m

os
om

e 
21

 is
 a

ss
oc

ia
te

d 
w

ith
 in

cr
ea

se
d 

ri
sk

 
of

 iA
M

P2
1

[6
9,

 7
0,

 7
4]

E
T

V
6-

R
U

N
X

1
4

C
hi

ld
re

n 
(2

5%
)

D
el

et
io

n 
of

 th
e 

no
n-

re
ar

ra
ng

ed
 E

T
V

6 
al

le
le

, 
PA

X
5 

de
le

tio
ns

, W
H

SC
1 

m
ut

at
io

ns

E
xc

el
le

nt
 p

ro
gn

os
is

; e
xp

re
ss

io
n 

of
 C

D
27

 a
nd

 lo
w

/
ne

ga
tiv

e 
ex

pr
es

si
on

 o
f 

C
D

44
; a

cq
ui

re
d 

in
 u

te
ro

[1
6,

 7
7]

E
T

V
6-

R
U

N
X

1-
 lik

e 
A

L
L

3
C

hi
ld

re
n 

(3
%

)
A

lte
ra

tio
ns

 (
fu

si
on

s/
de

le
tio

ns
) 

in
 E

T
V

6,
 

IK
Z

F
1,

 T
C

F
3

In
te

rm
ed

ia
te

 to
 f

av
or

ab
le

 p
ro

gn
os

is
; s

im
ila

r 
ge

ne
 

ex
pr

es
si

on
 p

ro
fil

e 
to

 E
T

V
6-

R
U

N
X

1 
A

L
L

; 
ex

pr
es

si
on

 o
f 

C
D

27
 a

nd
 lo

w
/n

eg
at

iv
e 

ex
pr

es
si

on
 

of
 C

D
44

[5
, 2

7,
 7

6]

T
C

F
3-

P
B

X
1

8
C

hi
ld

re
n 

(8
%

)
G

oo
d 

pr
og

no
si

s;
 p

re
-B

 im
m

un
op

he
no

ty
pe

R
O

R
1,

 B
C

L
2 

in
hi

bi
to

rs
[8

0,
 1

83
]

T
C

F
3-

H
L

F
15

<
 1

%
 in

 a
ll 

ag
es

PA
X

5 
de

le
tio

ns
, R

as
 

pa
th

w
ay

V
er

y 
po

or
 p

ro
gn

os
is

, s
en

si
tiv

ity
 to

 B
C

L
2 

in
hi

bi
to

rs
B

C
L

2 
in

hi
bi

to
rs

[8
8,

 8
9]

K
M

T
2A

 r
ea

rr
an

ge
d

40
In

fa
nt

s 
(8

0%
) 

an
d 

ad
ul

ts
 

(1
5%

)

R
as

 p
at

hw
ay

 (
su

bc
lo

na
l)

, 
PI

3K
 p

at
hw

ay
Po

or
 p

ro
gn

os
is

; r
el

at
io

n 
to

 th
er

ap
y-

re
la

te
d 

le
uk

em
ia

 (
to

po
is

om
er

as
e 

II
 in

hi
bi

to
rs

);
 a

cq
ui

re
d 

in
 u

te
ro

 (
in

fa
nt

 A
L

L
)

D
O

T
1L

, M
E

N
IN

 in
hi

bi
to

rs
[9

2,
 9

8,
 9

9]

B
C

R
-A

B
L

1 
(P

h+
)

40
–4

5
A

du
lts

 
(4

0–
50

%
)

IK
Z

F
1 

al
te

ra
tio

ns
, 

C
D

K
N

2A
/B

 d
el

et
io

ns
Pr

og
no

si
s 

im
pr

ov
ed

 w
ith

 T
K

I
Se

co
nd

-/
th

ir
d-

ge
ne

ra
tio

n 
T

K
I,

 r
ex

in
oi

ds
, F

A
K

 
in

hi
bi

to
rs

[4
3,

 1
02

, 
10

8,
 1

84
, 

18
5]

(c
on

tin
ue

d)

1 Molecular Pathways and Targets in B-Cell Progenitor Acute Lymphoblastic Leukemia



8

M
ol

ec
ul

ar
 s

ub
ty

pe

M
ed

ia
n 

ag
e 

(y
ea

rs
)

Pe
ak

 
pr

ev
al

en
ce

G
en

om
ic

 a
lte

ra
tio

ns
C

ha
ra

ct
er

is
tic

s
T

he
ra

pe
ut

ic
 a

pp
ro

ac
h

R
ef

Ph
-l

ik
e

21
A

Y
A

 
(2

5–
30

%
)

M
ul

tip
le

 k
in

as
e 

al
te

ra
tio

ns
, I

K
Z

F
1 

al
te

ra
tio

ns
, C

D
K

N
2A

/B
 

de
le

tio
ns

Po
or

 p
ro

gn
os

is
, a

m
en

ab
le

 to
 T

K
I 

th
er

ap
y;

 s
im

ila
r 

ge
ne

 e
xp

re
ss

io
n 

pr
ofi

le
 to

 B
C

R
-A

B
L

1 
A

L
L

JA
K

, A
B

L
1,

 T
R

K
 

in
hi

bi
to

rs
; c

om
bi

na
tio

n 
w

ith
 P

I3
K

, B
C

L
2,

 B
C

L
-X

L
 

in
hi

bi
to

rs
; C

R
L

F2
 C

A
R

-T

[2
0,

 1
16

, 
13

1,
 1

33
, 

13
5,

 1
39

]

D
U

X
4 

re
ar

ra
ng

ed
14

.3
A

Y
A

 (
8%

)
E

R
G

 d
el

et
io

ns
 

(p
ol

yc
lo

na
l)

, I
K

Z
F

1 
de

le
tio

ns
, R

as
 p

at
hw

ay

E
xc

el
le

nt
 p

ro
gn

os
is

; d
is

tin
ct

 im
m

un
op

he
no

ty
pe

 
(C

D
2 

an
d 

C
D

37
1 

po
si

tiv
e)

Po
te

nt
ia

lly
 d

ei
nt

en
si

fy
 

th
er

ap
y

[2
2–

24
, 

14
0,

 1
45

]

M
E

F
2D

 r
ea

rr
an

ge
d

14
A

Y
A

 (
7%

)
R

as
 p

at
hw

ay
In

te
rm

ed
ia

te
 to

 u
nf

av
or

ab
le

 p
ro

gn
os

is
; l

ow
 o

r 
ab

se
nt

 e
xp

re
ss

io
n 

of
 C

D
10

 a
nd

 h
ig

h 
ex

pr
es

si
on

 o
f 

C
D

38

B
or

te
zo

m
ib

, p
an

ob
in

os
ta

t
[2

4,
 1

45
]

Z
N

F
38

4 
re

ar
ra

ng
ed

15
A

Y
A

 (
5%

)
R

as
 p

at
hw

ay
, e

pi
ge

ne
tic

 
m

od
ifi

er
s

Pe
ak

 a
ge

 o
f 

on
se

t a
nd

 p
ro

gn
os

is
 v

ar
ie

s 
by

 f
us

io
n 

pa
rt

ne
rs

; l
ow

 C
D

10
 e

xp
re

ss
io

n 
an

d 
ab

er
ra

nt
 C

D
13

 
an

d/
or

 C
D

33
 e

xp
re

ss
io

n;
 f

re
qu

en
t i

n 
ch

ild
ho

od
 

B
/M

 M
PA

L

FL
T

3 
in

hi
bi

tio
n

[2
2,

 1
47

, 
14

8]

PA
X

5a
lt

10
C

hi
ld

re
n 

(1
0%

)
PA

X
5 

re
ar

ra
ng

em
en

ts
In

te
rm

ed
ia

te
 p

ro
gn

os
is

; l
os

s 
of

 h
et

er
oz

yg
os

ity
 o

r 
ac

qu
is

iti
on

 o
f 

co
m

po
un

d 
he

te
ro

zy
go

si
ty

 o
f 

PA
X

5

PA
X

5 
P8

0R
22

A
du

lts
 (

4%
)

R
as

 p
at

hw
ay

, J
A

K
-S

TA
T

 
pa

th
w

ay
In

te
rm

ed
ia

te
 to

 f
av

or
ab

le
 p

ro
gn

os
is

; a
ss

oc
ia

tio
n 

w
ith

 d
ic

(9
:2

0)
[5

, 1
59

, 
16

0,
 1

86
]

N
U

T
M

1 
re

ar
ra

ng
ed

3
C

hi
ld

re
n 

(1
%

)
E

xc
el

le
nt

 p
ro

gn
os

is
[7

]

IK
Z

F1
 N

15
9Y

<
 1

%
 in

 a
ll 

ag
es

G
ai

n 
of

 w
ho

le
 

ch
ro

m
os

om
e 

21
R

et
ai

n 
no

n-
m

ut
at

ed
 w

ild
-t

yp
e 

al
le

le
 o

f 
IK

Z
F

1
[7

]

B
C

L
2/

M
Y

C
 

re
ar

ra
ng

ed
48

A
Y

A
 a

nd
 

ad
ul

ts
 (

3%
)

Po
or

 p
ro

gn
os

is
[5

]

Ta
bl

e 
1.

1

K. G. Roberts and C. G. Mullighan



9

 Heritable Susceptibility to Leukemia

Several lines of evidence support genetic predisposition for many subtypes of BCP- 
ALL, including (a) Down syndrome and other rare constitutional syndromes with 
increased risks for leukemia; (b) kindreds with familial BCP-ALL; (c) genome- 
wide association studies (GWAS) that have identified non-coding DNA polymor-
phisms which influence risk of BCP-ALL; and (d) a growing number of genes 
harboring germline non-silent variants presumed to confer risk of sporadic HM.

Children with constitutional syndromes such as Down syndrome, Noonan syn-
drome, neurofibromatosis type 1, ataxia-telangiectasia, Fanconi anemia, and other 
bone marrow failure syndromes (severe congenital neutropenia, dyskeratosis con-
genita, Shwachman-Diamond syndrome, and Diamond-Blackfan anemia) have an 
increased risk of leukemia. The spectrum of risk is syndrome specific. For example, 
Down syndrome is associated with a markedly increased risk of AML and B-ALL; 
Noonan syndrome and neurofibromatosis type 1 have increased risk of JMML (dis-
cussed later in this chapter), ataxia-telangiectasia increases T-ALL risk, and bone 
marrow failure syndromes primarily increase risk of AML [31–34].

Familial cancer syndromes such as Li-Fraumeni syndrome, constitutional mis-
match repair deficiency syndrome, or DNA repair syndromes (Bloom, Werner, 
Nijmegen breakage) have increased incidence of malignancy, including ALL in a 
proportion of cases [35, 36]. Familial BCP-ALL is uncommon, but genomic analy-
ses of such kindreds has been tremendously informative by identifying non- silent 
germline variants in transcription factor and tumor suppressor genes segregating 
with ALL that in many cases are also present as germline events in sporadic BCP-
ALL.  Key examples are TP53 germline mutations and low hypodiploid B-ALL, 
ETV6 variants and hyperdiploid and ETV6-RUNX1-like ALL [37], and PAX5 muta-
tions and B-ALL with dicentric/isochromosome 9 [4, 38–40]. These susceptibility 
genes are targets of somatic mutation in ALL: ETV6 and PAX5 are rearranged, 
amplified, deleted, and mutated in B-ALL [5, 16]. Germline variants of IKZF1 pre-
dispose to a syndrome with immunodeficiency, autoimmunity, and sporadic/famil-
ial BCP-ALL [41, 42]; somatic IKZF1 alterations are enriched in BCR-ABL1, 
Ph-like, and DUX4-rearranged B-ALL [19, 23, 43].

Genome-wide association studies (GWAS) have identified at least 13 loci with 
primarily non-coding variants associated with BCP-ALL.  The relative risk 
associated with these variants is modest compared with constitutional syndromes or 
familial leukemia. Risk variants are frequently at or near hematopoietic transcription 
factor or tumor suppressor gene loci, including ARID5B, BAK1, CDKN2A/CDKN2B, 
BMI1-PIP4K2A, CEBPE, ELK3, ERG, GATA3, IGF2BP1, IKZF1 IKZF3, USP7, 
and LHPP [36, 44, 45]. Several variants display ancestry and ALL subtype-specific 
associations, such as GATA3 with Hispanics and Ph-like B-ALL, ERG with African 
Americans and TCF3-PBX1 B-ALL, and USP7 with African Americans and T-ALL 
with TAL1 deregulation [46–48].

Genomic analyses have identified additional susceptibility variants in sporadic 
hyperdiploid B-ALL (NBN, ETV6, FLT3, SH2B3, and CREBBP), Down syndrome- 
associated B-ALL (IKZF1, NBN, RTEL1), and T-ALL (Fanconi-BRCA pathway 
mutations) [49–51].

1 Molecular Pathways and Targets in B-Cell Progenitor Acute Lymphoblastic Leukemia
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 Prenatal Origin of Leukemia

Several observations indicate that a proportion of childhood leukemia cases are ini-
tiated before birth [52–54]. Chromosomal translocations such as ETV6-RUNX1 
may be detected at birth in blood spots and cord blood, years before the clinical 
onset of leukemia, providing support for a multistep process of leukemogenesis. 
This is supported by genomic analyses of monozygotic, monochorionic twins 
concordant for leukemia, showing genetic identity of initiating lesions and 
discordance for secondary genetic alterations, indicating inter-twin, intrauterine 
transmission of leukemia [53, 55]. Evidence for in utero origin is strongest for 
KMT2A-rearranged and ETV6-RUNX1 ALL. Anecdotal evidence supports in utero 
origin for other subtypes of B-ALL, including hyperdiploid and ZNF384-rearranged 
leukemia [56].

 Aneuploid BCP-ALL: Hyperdiploidy, Hypodiploidy, 
and Intrachromosomal Amplification of Chromosome 21

High hyperdiploidy (51–67 chromosomes) comprises approximately 30% of pedi-
atric BCP-ALL and is associated with a favorable prognosis (Table 1.1) [57]. High 
hyperdiploidy is characterized by a nonrandom gain of chromosomes, typically +X, 
+4, +6, +10, +14, +17, +18, and +21 [57]. In particular, combined gain of chromo-
some 4, 10, and 17 is associated with favorable prognosis [58]. Alterations involv-
ing the Ras pathway (KRAS, NRAS, FLT3, PTPN11) and epigenetic modifiers 
(CREBBP, WHSC1) are frequent genetic events, with deletions leading to enhancer 
hijacking and deregulation of FLT3 particularly common in high hyperdiploid ALL 
[57, 59]. These secondary genomic alterations and the gene expression profiles of 
high hyperdiploid and the near-haploid subset of hypodiploid ALL are similar, 
suggesting a common origin [60]. Low hyperdiploid cases (47–50 chromosomes) 
harbor a diverse range of chromosomal changes and alterations rather than 
representing a genetically distinct subtype of ALL.

Hypodiploid ALL comprises three subtypes, two of which have an unfavorable 
prognosis: near-haploid ALL (24–31 chromosomes) and low hypodiploid ALL 
(32–39 chromosomes) [61–63]. Notably, chromosome 21 is never lost in hypodiploid 
ALL nor in other forms of ALL, suggesting an essential role in tumor cell fitness 
[4]. High hypodiploid ALL (40–44 chromosomes) is genetically heterogeneous, is 
not a distinct subtype of B-ALL, and does not share the unfavorable outcome of the 
other two groups. Accurate identification of low/near-haploid ALL is important in 
view of the poor prognosis and inherited genetic basis of low hypodiploid ALL in 
children [4]. Duplication of the aneuploid genome, or masked hypodiploidy, is 
common and may be mistaken for high hyperdiploidy [64]. These entities can be 
distinguished by the patterns of chromosomal gain and loss of heterozygosity 
observed on cytogenetic or SNP array analysis: masked hypodiploidy typically has 
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diploid and tetraploid chromosomes, whereas hyperdiploidy has a mixture of 
triploid and some tetraploid (e.g., 21, X); masked hypodiploid cases typically have 
LOH of the duplicated chromosomes. Flow cytometric analysis of DNA index 
frequently demonstrates peaks for both non-duplicated and masked clones in 
hypodiploid ALL, even if cytogenetic analysis demonstrates an apparently 
predominant masked clone.

Near-haploid ALL presents at a younger age and commonly exhibits alterations 
activating the Ras pathway (particularly NF1) and inactivating mutations/deletions 
of IKZF3 (AIOLOS) [4]. Low hypodiploid ALL is rare but increases with age. 
Frequent secondary alterations include IKZF2 (HELIOS), RB1, and 
CDKN2A/CDKN2B. The mechanistic differences between the IKAROS gene family 
members in leukemogenesis (IKZF1 in kinase-driven and DUX4-rearranged 
leukemia and IKZF2/3 in hypodiploid ALL) remain to be determined. Importantly, 
almost all cases of low hypodiploid ALL in children and adults have biallelic 
alterations of TP53 due to mutation (or less commonly focal deletion) and aneu-
ploidy of the second chromosome [4]. In approximately half of pediatric cases (but 
not adult), the TP53 mutations are germline, indicating that low hypodiploid ALL is 
a manifestation of Li-Fraumeni syndrome [4, 65]. Although still associated with an 
unfavorable prognosis, minimal residual disease (MRD) risk-stratified therapy has 
improved the outcome of hypodiploid ALL [66]. Hypodiploid ALL cells are 
sensitive to BCL2 inhibition, and BCL2 inhibitors are being evaluated in prospective 
clinical trials of newly diagnosed and relapsed/refractory ALL [67].

Intrachromosomal amplification of chromosome 21 (iAMP21) is more common 
in older children and is characterized by gain of three or more extra copies of a 
region of chromosome 21 including RUNX1 generated by breakage-fusion-bridge 
cycles and chromothripsis [68–71]. The germline Robertsonian translocation 
rob(15;21) or a germline ring chromosome 21 is associated with a markedly elevated 
risk of iAMP21 [72]. Patients with iAMP21 usually lack other key cytogenetic 
alterations, although it is observed as a secondary event in ETV6-RUNX1 and BCR- 
ABL1 ALL in a minority of cases. Historically associated with an unfavorable 
outcome, intensive therapy improves prognosis [73, 74]. The key driver gene(s) 
located on chromosome 21 resulting in requirement for this chromosome in ALL, 
and mediating leukemogenesis in iAMP21 ALL, remains to be determined.

 ETV6-RUNX1 and ETV6-RUNX1-Like ALL

The t(12:21)(p13:q22) translocation encodes ETV6-RUNX1, the most common 
fusion in BCP-ALL (20–25% in children) that is associated with a favorable 
prognosis [5, 75]. This translocation is frequently cryptic on cytogenetic analysis, 
and leukemic cells have a distinct immunophenotype (CD27 positive and CD44 
low/negative) [76]. The ETV6-RUNX1 fusion may be identified in umbilical cord 
blood and, thus, is considered to arise in utero as a leukemia-initiating alteration 
[75]. However, ETV6-RUNX1 itself is insufficient to induce overt leukemia and 

1 Molecular Pathways and Targets in B-Cell Progenitor Acute Lymphoblastic Leukemia



12

requires the prolonged latency with additional genetic events including deletion of 
the non-rearranged ETV6 allele, focal deletion of PAX5, and mutation of WHSC1 [2, 
16, 17, 75, 77]. This is supported by heterogeneity in the subclonal composition of 
ETV6-RUNX1 ALL [75, 78, 79].

ETV6-RUNX1-like ALL exhibits a similar GEP and immunophenotype to ETV6- 
RUNX1 ALL despite the lack of ETV6-RUNX1 fusion [5, 6, 27, 76]. ETV6-RUNX1- 
like ALL is also most common in children and has relatively favorable outcome [27, 
76]. This subtype includes several alternate rearrangements in ETV6 (e.g., ETV6- 
ELMO1), IKZF1 (e.g., IKZF1-ETV6), TCF3 (e.g., TCF3-FLI1), and FUS-ERG as 
well as copy number alterations in ETV6, IKZF1, and ARPP21, suggesting that 
alteration of multiple ETS and other transcription factors are converging on the 
same mechanism of transformation (although not ERG, which is distinct in the 
DUX4-rearranged ALL) [5, 27, 76].

 TCF3-PBX1 and TCF3-HLF BCP-ALL

The t(1;19)(q23;p13) translocation encoding TCF3-PBX1 fusion is present in 5–6% 
of pediatric BCP-ALL and is associated with a pre-B in transition (cytoplasmic 
immunoglobulin heavy chain positive) immunophenotype [80]. Previously 
considered high risk due to higher central nervous system involvement and relapse 
[15, 81, 82], TCF3-PBX1 ALL is classified as favorable or intermediate risk with 
current treatment regimens [83]. Conditional activation of TCF3-PBX1 in B-cell 
progenitors results in enhanced self-renewal and eventual development of leukemia 
with PAX5 deletion and activation of JAK-STAT or Ras signaling pathways [84]. 
Importantly, TCF3-PBX1 ALL exhibits sensitivity to dasatinib and ponatinib, but 
not imatinib, which occurs as a result of inhibition of pre-BCR signaling by SRC 
kinases. Due to compensatory upregulation of ROR1 expression, combination with 
ROR1 inhibition may enhance the sensitivity of dasatinib [85].

A variant of the t(1;19) translocation, t(17;19)(q22;p13), encodes the TCF3-HLF 
fusion, a rare subtype of ALL associated with an extremely poor prognosis [86, 87]. 
TCF3-PBX1 and TCF3-HLF ALL have distinct gene expression profiles and 
mutational landscapes [88]. TCF3-HLF ALL exhibited stem cell and myeloid 
features with enrichment of PAX5 deletions and alterations of Ras pathway genes 
[88]. The TCF-HLF fusion may act as a pioneer transcription factor, recruiting 
EP300 to activate MYC, with vulnerability to EP300 inhibition [89]. TCF3-HLF 
leukemic cells are sensitive to the BCL2 inhibitor venetoclax (ABT-199), 
representing a potential targeted therapeutic approach [88].

 KMT2A-Rearranged ALL

KMT2A (MLL) on chromosome 11q23 is rearranged to more than 80 different part-
ner genes, and these rearrangements describe a distinct subtype of leukemia with 
variable immunophenotype spanning ALL, AML, and mixed phenotype leukemia 
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with both lymphoid and myeloid features and poor outcome [90]. KMT2A- 
rearranged BCP-ALL is typically of the pro-B phenotype, lacking CD10 expres-
sion, with co-expression of myeloid markers. Approximately 80% of 
KMT2A-rearranged ALL is observed in infants, in whom KMT2A rearrangement is 
acquired in utero. There is also a second peak in prevalence in adults, and more than 
75% of cases are fused to AFF1. KMT2A-rearranged leukemia may also follow 
exposure to topoisomerase II inhibitors, with similar breakpoints to infant leukemia 
suggesting a common mechanism of leukemogenesis [91]. In infant ALL, the most 
commonly perturbed pathways include PI3K and Ras pathways [92–94]. KMT2A 
rearrangement results in assembly of a large multi-protein complex that results in 
aberrant transcriptional and epigenetic dysregulation via H3K79 methylation and 
recruitment of the H3K79 methyltransferase DOT1L, which interacts with multiple 
KMT2A rearrangement partners [95–97]. Multiple therapeutic approaches are being 
pursued, including inhibition of DOT1L, bromodomain, Menin, and the polycomb 
repressive complex [90, 97–99].

 Kinase-Driven BCP-ALL: BCR-ABL1 ALL and Ph-like ALL

The derivative chromosome 22, Philadelphia chromosome (Ph), arises from the 
reciprocal t(9;22)(q34;q11) translocation and encodes BCR-ABL1 [7, 41, 100]. 
Although BCR-ABL1 ALL is associated with poor prognosis, the addition of 
tyrosine kinase inhibitors (TKIs) to the conventional chemotherapy has improved 
outcome in children and adults [101–104]. In contrast to BCR-ABL1-positive 
chronic myeloid leukemia at chronic phase, BCR-ABL1 ALL is characterized by a 
high frequency of secondary genetic alterations, particularly of the lymphoid 
transcription factor gene IKZF1 and CDKN2A/B encoding the INK4/ARF cell cycle 
regulators [43, 105], and IKZF1 alterations are associated with unfavorable outcome 
irrespective of TKI exposure [102, 105]. Moreover, mutations in the kinase domain 
of ABL1 (most frequently T315I) induce TKI resistance and are more commonly 
observed in patients treated with TKI monotherapy or in adults treated with less 
intensive chemotherapy and less common in children treated with intensive 
chemotherapy [106]. Current treatment approaches to mitigate the poor outcome of 
BCR-ABL1 ALL include frontline treatment with the third-generation TKI pona-
tinib with chemotherapy [101]. The adverse effect of IKZF1 mutations in the patho-
genesis of BCR-ABL1 ALL is in part due to loss of IKZF1 repression of stemness 
and cell- cell adhesion [107, 108]. This may be reversed by rexinoids (via agonism 
of rexinoid X receptor alpha, which induces expression of wild-type IKZF1) and 
focal adhesion kinase inhibitors (which inhibit downstream integrin signaling path-
ways) [108, 109].

Before consensus guidelines for MRD assessment in BCR-ABL1 ALL were pro-
vided [110], several approaches have been tested for MRD monitoring (genome or 
transcriptome BCR-ABL1 and Ig/TCR rearrangements) [111]. Importantly, some 
patients showed discrepancy of MRD results as assessed by measurement of Ig/
TCR and BCR-ABL1 transcript levels, due to the presence of the BCR-ABL1 fusion 
in progenitors in addition to the blast population [111]. This BCR-ABL1-positive 
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clonal hematopoiesis is suggestive of a CML-like disease exhibiting lymphoid 
blast crisis.

Ph-like or BCR-ABL1-like ALL exhibits a gene expression profile similar to 
BCR-ABL1 ALL despite the lack of the BCR-ABL1 fusion [18, 19]. The prevalence 
and outcome of Ph-like ALL are similar to those of BCR-ABL1 ALL, increasing in 
incidence with age and associated with elevated MRD levels and/or higher rates of 
treatment failure [20, 112–118], although the prevalence of Ph-like ALL is higher 
than BCR-ABL1 ALL in the adolescent and young adult (AYA) population [20, 117, 
119, 120]. Similar to BCR-ABL1 ALL, IKZF1 alterations are common, which result 
in acquisition of stem cell-like features and poor responsiveness to TKI.  The 
heterogeneous genetic alterations driving Ph-like ALL may be classified into four 
main groups (Table  1.2., Fig.  1.4): (1) alterations driving JAK-STAT signaling, 
including rearrangements and mutations/deletions of CRLF2, JAK2, EPOR, TYK2, 
IL7R, SH2B3, JAK1, JAK3, TYK2, and IL2RB; (2) fusions involving ABL-class 
genes (ABL1, ABL2, CSF1R, LYN, PDGFRA, PDGFRB); (3) mutations activating 
Ras signaling (NRAS, KRAS, PTPN11); and (4) less common fusions (FLT3, 
FGFR1, NTRK3) [2, 121, 122]. Of these, CRLF2 alterations are found in almost 
half of Ph-like ALL in adolescents, young adults, and older adults, as well as in half 
of ALL associated with Down syndrome ALL [123–125]. These alterations are 
rearrangements of CRLF2 to IGH or P2RY8 resulting in enhancer hijacking or 
promoter swapping, respectively, and aberrant expression of CRLF2 as part of a 
heterodimer with IL-7 receptor alpha. CRLF2-rearranged ALL commonly has 
concomitant alterations that facilitate JAK-STAT signaling pathway activation, 
including sequence mutations of Janus kinases (most commonly at R683 of the 
pseudokinase domain of JAK2), IL-7RA, and deletions of negative regulators of 
JAK-STAT signaling (SH2B3 and USP9X) [126, 127]. CRLF2 rearrangement is 
associated with Hispanic ancestry and a germline GATA3 non-coding variant 
[46, 128].

Importantly, most kinase-activating alterations in Ph-like ALL can, theoretically, 
be targeted by FDA-approved TKIs: JAK-STAT signaling (JAK inhibition), ABL- 
class fusions (ABL inhibitor), and FLT3 and NTRK3 fusions (FLT3 and NTRK3 
inhibitor) with emerging evidence of efficacy in human leukemia, although evidence 
for efficacy of TKIs, at least as monotherapy, is strongest for ABL1-class and ETV6- 
NTRK3 Ph-like ALL [20, 129–133]. In contrast JAK inhibitor monotherapy in pre-
clinical and clinical studies of CRLF2-rearranged Ph-like ALL is less effective 
[134]. Combination of kinase inhibitors against multiple signaling shows synergis-
tic effects in PDX models of CRLF2/JAK mutant (JAK and PI3K/mTOR inhibitors) 
and ABL/PDGFR mutant (dasatinib and PI3K/mTOR inhibitor) [135]. Several of 
these (ruxolitinib, imatinib, dasatinib, ponatinib) are being tested in frontline stud-
ies [120, 133, 136]. As kinase-activating lesions also drive signaling through addi-
tional signaling pathways (e.g., PI3K, MEK, etc.), it is likely that additional 
therapeutic approaches will be required for optimal therapeutic response. Additional 
therapeutic approaches include BCL2 inhibitors, which exhibit synergy with TKIs 
in preclinical models [137, 138], and chimeric antigen receptor T cells directed 
against CRLF2 [139].
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Table 1.2 Kinase-activating alterations in Ph-like ALL

Category
Kinase 
gene Representative alterations

Targeted 
therapy

JAK- 
STAT

CRLF2 Mutations (F232C), fusions (CSF2RA, IGH, P2RY8) JAK inhibitor
EPOR Truncating rearrangement to enhancers (IGH, IGK, 

LAIR1, THADA)
JAK inhibitor

TYK2 Fusions (MYB, SMARCA4, ZNF430) TYK2 
inhibitor

TSLP Fusions (IQGAP2) JAK inhibitor
SH2B3 Deletion/mutations JAK inhibitor
IL7RA Mutations, indels JAK inhibitor
JAK1 Mutations (e.g., V658F) JAK inhibitor
JAK2 Mutations (of R683; most commonly R683G, also 

kinase domain mutations), fusions (ATF7IP, BCR, EBF1, 
ETV6, HMBOX1, PAX5, PCM1, PPFIBP1, RFX3, 
SMU1, SNX29, SSBP2, STRN3, TERF2, TPR, USP25, 
WDR37, ZNF274, GOLGA5, SMU1, HMBOX1, SNX29, 
ZNF430)

JAK inhibitor

JAK3 Mutations (usually kinase domain) JAK inhibitor
IL2RB Fusions (MYH9) JAK inhibitor
USP9X USP9X-DDX3X interstitial deletion and fusion JAK inhibitor

ABL ABL1 Fusions (CENPC, ETV6, FOXP1, LSM14A, MYO18B, 
NUP214, NUP153, RCSD1, RANBP2, SFPQ, SNX2, 
SPTAN1, ZMIZ1)

Imatinib/
dasatinib

ABL2 Fusions (ATF7IP, EBF1, ETV6, PAG1, RCSD1, SSBP2, 
TNIP1, ZEB2, ZC3HAV1, ZMYND8)

Imatinib/
dasatinib

CSF1R Fusions (MEF2D, SSBP2, TBL1XR1) Imatinib/
dasatinib

LYN Fusions (GATAD2A, NCOR1) Imatinib/
dasatinib

PDGFRA Fusions (FIP1L1) Imatinib/
dasatinib

PDGFRB Fusions (ATF7IP, EBF1, ETV6, SNX29, SSBP2, TNIP1, 
ZEB2, ZMYND8)

Imatinib/
dasatinib

Ras NRAS Mutations MEK inhibitor
KRAS Mutations MEK inhibitor
PTPN11 Mutations MEK inhibitor
NF1 Mutations/deletions MEK inhibitor
BRAF Mutations MEK inhibitor
CBL Fusions (KANK1) MEK inhibitor

Other FLT3 FLT3-ITD, fusions (AMYM2) FLT3 inhibitor
NTRK3 Fusions (ETV6) NTRK3 

inhibitor
FGFR1 Fusions (BCR, MYO18A) Ponatinib
PTK2B Fusions (KDM6A, STAG2, TMEM2) FAK inhibitor
DGKH Fusions (ZFAND3)
BLNK Fusions (DNTT)

Clinical trials of TKI in Ph-like ALL include dasatinib (newly diagnosed, NCT03117751 and 
NCT03020030; relapsed, NCT02420717) and ruxolitinib (newly diagnosed, NCT02723994, 
NCT03571321, NCT03117751; relapsed, NCT02420717). Data updated from Gu et al. [5]
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 DUX4-Rearranged ALL

Rearrangement and overexpression of the homeobox transcription factor gene 
DUX4 defines a distinct subgroup of BCP-ALL [5, 22, 23, 27]. This subtype also 
exhibits deregulation of the ETS family transcription factor ERG and comprises up 
to 5–10% of BCP-ALL with a slight peak in the AYA population. It has a distinct 
immunophenotype (CD2 and CD371 positive) and favorable outcome [140]. The 
pathogenesis of this form of leukemia is remarkable for the interrelated, sequential 
genetic events that deregulate two DNA-binding transcription factors characteristic 
of this disease (Fig. 1.5). Deregulation of DUX4 is induced by rearrangement to 
strong enhancer elements, most commonly the immunoglobulin heavy chain (IGH) 
enhancer, which results in expression of a C-terminal truncated DUX4 protein that 
is not normally expressed in B cells [22, 23]. This truncated isoform of DUX4 then 
binds to an intragenic region of ERG resulting in transcriptional deregulation and 
expression of multiple aberrant coding and non-coding ERG isoforms and deletion 
of ERG in up to 70% of DUX4-rearranged cases [23]. One isoform is ERGalt, a 
C-terminal fragment which retains the DNA-binding and transactivating domain of 
ERG, that exerts a dominant negative effect and is transforming [23]. The deletions 
of ERG are commonly polyclonal [141], supporting a model in which an initiating 
rearrangement of DUX4 results in gross transcriptional deregulation of ERG and 
primes the locus for RAG-mediated deletion. Loss of ERG activity, either through 
deletion and/or expression of ERGalt, cooperates with DUX4 deregulation in leuke-
mogenesis [23, 141]. DUX4 rearrangement is associated with a favorable outcome 
in children and adults, even with IKZF1 deletion [142]. As clonal ERG deletions are 

Fig. 1.4 Cartoon depicting targets of genetic alteration and type of mutation in Ph-like ALL
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Fig. 1.5 Schema of the sequence of transcription factor alterations driving leukemogenesis in 
DUX4-rearranged ALL: rearrangement of DUX4 to strong enhancers results in deregulation of 
DUX4 expression with truncation of the C-terminus. This shortened form of DUX4 binds to intron 
6 of ERG, resulting in gross transcriptional deregulation and expression of multiple coding, non- 
coding, and enhancer RNA species, including a C-terminal isoform initiated by a novel first exon, 
ERGalt. This aberrancy also permits deletion of ERG as a secondary event

not present in all DUX4-rearranged cases, the use of ERG deletion as a surrogate for 
this subtype, as is used in the definition of IKZFplus [143], is suboptimal and should 
be avoided. Accurate identification of this favorable subtype of ALL requires iden-
tification of DUX4 rearrangement (either directly or through identification of ele-
vated DUX4 expression) [23]. In this regard, detection of strong CD371 cell surface 
expression by flow cytometry might serve as a promising surrogate marker for this 
subtype [140].

 MEF2D-Rearranged ALL

Rearrangement of MEF2D is associated with older age of onset and relatively infe-
rior outcome due to early relapse [24, 26, 144, 145]. MEF2D-rearranged ALL is 
characterized by an aberrant immunophenotype (low or absent expression of CD10, 
high expression of CD38, and cytoplasmic μ-chain), mature B-ALL-like 
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morphology, and distinct expression profiles. The N-terminal of MEF2D is fused to 
several partner genes, retaining its DNA-binding domain [24, 144, 145]. High 
expression of MEF2D fusion protein is induced by evasion from miRNA- mediated 
degradation [146] and results in transcriptional activation of MEF2D targets [24]. 
Dysregulated MEF2D targets include overexpression of HDAC9, which confers 
therapeutic sensitivity to HDAC inhibitors such as panobinostat [24].

 ZNF384-Rearranged ALL

ZNF384 rearrangement defines a distinct subtype of leukemia that can be diagnosed 
as BCP-ALL or B/myeloid mixed phenotype acute leukemia (MPAL) [147]. 
ZNF384 is rearranged as the C-terminal partner to multiple genes, including the 
histone acetyltransferases and transcriptional regulators EP300 and CREBBP, SWI/
SNF proteins SMARCA2 and ARID1B, and others (TAF15, EWSR1, TCF3, 
NIPBL, and CLTC) [5, 6, 22, 24–26, 29, 147–154]. The most common are EP300- 
ZNF384 (particularly in BCP-ALL) and TCF3-ZNF384 (in both BCP-ALL and B/
myeloid MPAL). In BCP-ALL, peak age of onset and prognosis vary by fusion 
partners: EP300-ZNF384 (median age 11, excellent outcome) and TCF3-ZNF384 
(median age 5, frequent late relapse) [5, 148, 155]. In contrast, ZNF384-rearranged 
ALL shows uniformly distinct immunophenotype (weak CD10 and aberrant CD13 
and/or CD33 expression) and gene expression profiles [147, 148]. The secondary 
genomic alterations and gene expression profiles of ZNF384-rearranged BCP-ALL 
and MPAL cases are similar, and both have lineage plasticity at diagnosis and 
relapse (lymphoid disease to myeloid disease and vice versa) [147]. Transplantation 
of purified lymphoid or myeloid subpopulations of cells from ZNF384-rearranged 
leukemia showed that each subpopulation could reconstitute the immunophenotypic 
diversity of the primary leukemia, indicating that this plasticity is inherent to all 
leukemic cells [69]. These data support the notion that ZNF384-rearranged cases 
should be treated uniformly rather than tailoring therapy according to predominant 
lineage. In this regard, FLT3 overexpression without mutation is characteristic of 
ZNF384-rearranged leukemia and in anecdotal reports can be targeted with the 
multi-kinase inhibitor sunitinib [156]. Due to the propensity of ZNF384-rearranged 
ALL to change lineage, CD19-directed CAR-T cell therapy may fail due to CD19- 
negative escape [147, 157, 158].

 PAX5-Driven BCP-ALL: PAX5alt and PAX5 P80R

The paired box DNA-binding transcription factor PAX5 is required for B-cell lin-
eage commitment and differentiation. PAX5 alterations are important in the patho-
genesis of BCP-ALL as initiating or cooperating lesions. These include (1) disease 
initiating alterations (PAX5 rearrangements in chimeric fusion oncoproteins and the 
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P80R mutation [5, 16, 159–161], rearrangements/focal intragenic amplifications in 
PAX5-altered ALL [PAX5alt]) [5, 162], (2) secondary lesions (e.g., PAX5 focal 
deletions in 30% of ETV6-RUNX1 ALL [16, 77] and PAX5 mutations in multiple 
subtypes), and (3) germline alterations that predispose to ALL [39]. In mouse mod-
els, Pax5 heterozygosity cooperates with constitutive activation of the JAK-STAT 
pathway in the development of BCP-ALL, supporting its role as a haploinsufficient 
tumor suppressor [163].

PAX5alt is a subtype of BCP-ALL with similar leukemic cell gene expression 
profiles but diverse nature of underlying PAX5 alterations. These include (1) cases 
with diverse (>20) PAX5 rearrangements that typically preserve the N-terminal 
DNA-binding domain of PAX5, but with loss of the C-terminal transactivation 
domain, (2) cases with focal intragenic amplification of the PAX5 DNA-binding 
paired domain (PAX5amp), and (3) cases with sequence mutations. Within this 
group, specific lesions are associated with variation in gene expression profile, for 
example, cases with PAX5-ETV6 rearrangement, or compound heterozygosity for 
p.Arg38 and p.Arg140 mutations in the DNA-binding paired domain, have distinct 
gene expression profiles. PAX5alt is most common in children and the AYA 
population and is associated with intermediate outcome [5].

The PAX5 P80R subtype is characterized by the presence of the PAX5 P80R 
mutation with inactivation of the wild-type PAX5 allele by deletion, loss-of-function 
mutation, or copy-neutral loss of heterozygosity [5, 159, 160]. Notably, heterozygous 
Pax5P80R/+ knock-in mice develop transplantable BCP-ALL, with genetic inactivation 
of the wild-type Pax5 allele [5]. Thus, biallelic PAX5 alterations are a hallmark of 
this subtype, and sequence mutations of lymphoid transcription factors such as 
PAX5 P80R and IKZF1 N159Y (see below) may be initiating events in 
leukemogenesis. The prevalence of PAX5 P80R increases with age and is associated 
with intermediate to favorable prognosis [5, 159, 160]. Additional important 
cooperating lesions include structural rearrangements of chromosomal arms 9p and 
20q, which associate with the presence of dic(9:20). Moreover, mutations in the Ras 
and JAK-STAT pathway members are particularly enriched, highlighting the poten-
tial for targeted therapies.

 Other Subtypes of BCP-ALL

BCP-ALL with NUTM1 rearrangements is a rare subtype observed exclusively in 
children [5, 6]. NUTM1 is a chromatin modifier, recruiting EP300 to increase local 
histone acetylation [164]. While the common partner, BRD9-NUTM1, is reported in 
BCP-ALL, BRD4-NUTM1 is a hallmark of NUT midline carcinoma (NMC) and 
acts to repress differentiation in NMC by widespread repression of histone 
acetylation, indicating therapeutic approach with bromodomain and HDAC 
inhibitors. NUTM1 is rearranged to multiple genes in BCP-ALL (and less commonly, 
T-ALL) [165] in addition to BRD9 [92, 166], including ACIN1 [24, 26, 92, 167, 
168], AFF1 [6, 151], BPTF [165], CUX1 [24, 167], IKZF1 [6, 24, 27, 167], 
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SCL12A6 [6, 24, 167], and ZNF618 [6, 24, 29, 151], with emerging evidence that 
these fusions are enriched in non-KMT2A-rearranged BCR-ALL in infants [92, 
168]. The potential for bromodomain inhibition as a therapeutic strategy has not yet 
been tested in NUTM1-rearranged BCP-ALL.

IKZF1 alterations, like PAX5, are also common across the spectrum of B-ALL 
(particularly in BCR-ABL1-positive, Ph-like, and DUX4-rearranged cases), but a 
specific mutation, IKZF1 p.Asn159Tyr, defines a subtype with gene expression 
profile [5, 6]. In this subtype, the non-mutated wild-type allele of IKZF1 is retained, 
and most cases have concurrent gain of chromosome 21. Notably, this mutation is 
located at a residue that is critical for DNA binding of IKZF1 [169] and is also 
mutated in germline syndromes with immunodeficiency and autoimmunity [42, 
170], although most commonly to serine but not tyrosine, suggesting genotype- 
phenotype variation of different IKZF1 mutations. The IKZF1 p.Asn159Tyr 
mutation induces misregulation of IKZF1 transcriptional activation, in part through 
distinctive nuclear mislocalization and enhanced intercellular adhesion [108].

 Relapsed ALL

Genomic analyses of paired primary and relapsed ALL samples have revealed that 
these secondary mutations are acquired during disease progression with Darwinian 
patterns of selection, and highly branched clonal architectures, especially in early 
relapse (9–36 months) [8, 9, 78, 171–175]. Furthermore, chemotherapy of ALL has 
been postulated to induce bona fide drug resistance mutations including NT5C2, 
PRPS1, NR3C1, and TP53 [9]. However, recent studies integrating genome 
sequencing of matched diagnosis and relapse samples, and xenografts propagated 
from these samples, coupled with drug sensitivity testing of the relapse fated clones 
have shown that relapse-fated subclones present at diagnosis commonly exhibit 
drug resistance prior to the administration of any therapy [174] (Fig. 1.6).

One of the representative relapse-specific somatic alterations is CREBBP altera-
tions which occur in up to 20% of relapsed B-ALL and impair glucocorticoid sen-
sitivity [60]. Early relapse is commonly associated with 6-MP resistance, as a result 
of NT5C2 gain-of-function mutations [175–178], PRPS1 mutations [179], and loss 
of MSH6 [180]. NT5C2 mutations confer resistance to purine analogs at the cost of 
impaired tumor cell growth and reduced leukemia-initiating cell activity [175]. 
While the development of NT5C2 inhibitors may be promising, several problems 
are anticipated such as the development of mutant specific inhibitors [176]. 
Importantly, NT5C2 and PRPS1 mutations are not detectable in primary samples 
even in a minor clone [7, 9, 175]. Other recurrent somatic alterations in relapsed 
ALL include mutations in [78] SETD2, KDM6, and KMT2D (MLL2) [9, 173, 181]. 
Tracking of these mutations as MRD may offer the opportunity to identify the 
relapse-fated clone early in disease evolution and modulate therapy accordingly to 
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circumvent relapse. Detailed, genome-wide analyses of large ALL cohorts have 
enabled several additional important observations: hypermutation becomes 
increasingly frequent during disease progression, is enriched in leukemic cells with 
mutations in mismatch repair genes and hypodiploidy, and results in a predicted 
increase in expressed neoantigen formation. Thus, strategies to promote autologous 
T cell reactivity may be efficacious in this setting. Secondly, careful analysis of the 
nature and structure of coding and non-coding sequence and structural variants has 
shown that most cases presumed to be second leukemias are indeed clonally related 
to the primary tumor, including cases with lineage shift/switch, indicating relapse 
from an ancestral, pre-diagnosis clone [7] (Fig. 1.6b). These observations confirm 
hypotheses from SNP array analyses of relapsed ALL [78] and are of therapeutic 
importance for disease monitoring and selection of therapy.
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Fig. 1.6 (a) Oncoprint of the most common targets of mutation at relapse in childhood B- and 
T-ALL. (b) Patterns of clonal evolution in relapsed ALL. (Data taken from Waanders et al. [7])
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 Summary

Genomic analyses have transformed our understanding of the molecular basis of 
BCP-ALL, in terms of identification of new subtypes and dysregulated pathways 
associated with therapeutic targets. Many clinically important alterations are not 
evident using conventional cytogenetic and molecular approaches, and optimal 
ALL diagnosis requires next-generation sequencing, with RNA-seq capturing the 
most relevant information required for risk stratification, disease monitoring, and 
the development of precision medicine approaches [136]. While clinical 
implementation of genome and transcriptome sequencing is not trivial, it is now 
clearly apparent that targeted molecular approaches such as fusion-specific PCR 
and exome/gene panel capture sequencing are not optimal as they do not capture the 
diversity of genomic alterations in ALL. Moreover, integrated genome, exome and 
transcriptome sequencing has been shown to have excellent sensitivity and 
specificity in detection of the various driver alterations in pediatric cancer [182]. 
Even if sequencing is not available, several key alterations can be detected by 
alternative approaches, such as flow cytometry for CRLF2 (which correlates well 
with CRLF2 overexpression) and FISH assays for gene rearrangements in 
Ph-like ALL.

These genomic discoveries are partly responsible for a wave of new therapeutic 
approaches entering the clinic in BCP-ALL including small molecules (TKI, BCL2 
inhibitors, MEK inhibitors), antibody-based therapy (blinatumomab, inotuzumab), 
and cellular immunotherapy. Future challenges and opportunities include (1) 
determining the tumor intrinsic and extrinsic determinants of response in the era of 
targeted therapies and immunotherapy, (2) developing efficacious approaches to 
directly target transcription factor alterations that underlie over 50% of BCP-ALL, 
and (3) integrating genomic and functional genomic approaches to identify 
therapeutic vulnerabilities both in the research and clinical setting.
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