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Abstract. Fall among older people is a major medical concern. Fall Detection
Systems (FDSs) have been actively investigated to solve this problem. In this
sense, FDSs must effectively reduce both the rates of false alarms and unnoticed
fall. In this work we carry out a systematic evaluation of the performance of
one of the most widely used machine learning supervised algorithm (Support
Vector Machine) when using different input features. To evaluate the impact of
the feature selection, we use Area Under the Curve (AUC) of Receiver Operating
Characteristic (ROC) Curve as the performance metric. The results showed that
with four features it is possible to obtain acceptable values for the detection of
falls using accelerometer signals obtained from the user’s waist. In addition, we
also investigate if the impact of selecting the features based on the analysis of a
dataset different from the final application framework where the detector will be
operative.

Keywords: Fall detection system · Supervised algorithm · Accelerometer ·
Wearables · Support vector machine · Feature selection

1 Introduction

TheWorld Health Organization (WHO) has estimated a growth in the number of people
over 60 years of ageworldwidewho annually suffer a fall from688million in 2006 to two
billion by 2050 [1]. Falls are one of the main causes of morbidity and mortality among
elderly as they can provoke from damage to wrists to hip fractures or even traumatic
brain injuries [2].

Automatic Fall Detection Systems (FDSs) are being actively investigated in order to
solve this problem. An FDS can be defined as a binary classification system which must
constantly decide if themovements executed by the subject undermonitoring correspond
to a possible fall or if, instead, they are originated by conventional Activities of Daily
Living (ADLs).

The FDSs are traditionally categorized into two groups: context-aware andwearable-
based. The first group utilizes image analysis from video-camera recording, Kinect-
like devices and/or other environmental sensors, such as pressure sensors or acoustic
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sensors. Context-aware methods present not-negligible installation and service costs as
well as remarkable operational limitations due to privacy issues, camera blind spots, low
device video resolution, little lighting and other visual artifacts [3]. In contrast, wearable
FDSs can be transported as an extra garment or seamlessly integrated via software into
conventional personal devices (such as smartwatches or even smartphones).

Due to the difficulties of systematically testing a FDSwith actual falls experienced by
elderly people, current FDS prototypes are typically trained, shaped and evaluated based
on the movements (in particular, mimicked falls) normally generated in a controlled
laboratory environment. This aspect makes us question the effectiveness of a certain
FDS not only when it is applied on real world falls but also when it is extrapolated to
detect falls with a dataset different from that used to configure the classifier.

FDS algorithms can be grouped into threshold-based techniques and detectors imple-
mented on supervised learning or Machine Learning (ML) strategies. One of the issues
for FDSs based on thresholds is finding an appropriate value for the threshold able to
accurately differentiate falls from ADLs [4]. Therefore, supervised learning algorithms
are commonly preferred. In this regard, a key element for the definition of any supervised
learning is the election of the features with which input data are characterized.

This work carries out a systematic evaluation of the impact of the selection of the
input features. The goal is to assess if the selection of features based on the analysis of a
certain dataset is a good choice when a different dataset (with different movements and
users) is considered. For this purpose, the study focuses on the behavior of a popular
machine learning algorithm (Support Vector Machine -SVM-) when it is applied to
several public datasets containing accelerometer signals from ADLs and falls.

The remainder of this paper is organized as follows: Sect. 2 reviews related works.
Section 3 describes the experimental framework, including the dataset and input features
selection. Section 4 presents and discusses the results. Finally, Sect. 5 recapitulates the
conclusions of our work.

2 Related Works

An FDS error causes either a false negative or a false positive. The first case implies
not detecting a real fall while the second provokes an unnecessary alarm as an ADL is
misinterpreted as a fall. An excessive number of false positives or false alarms can cause
users to consider the system to be ineffective and useless [5].

SVM is one of the most employed techniques used to implement the fall detection
algorithms in wearable systems (refer, for example, to [6] or [7] for two recent reviews
on detection strategies for FDSs). Many works have shown that SVM can outperform
other typical ML strategies [8, 9].

In 2006, Tong Zhang et al. [10] already proposed a method based on the One-class
SVM algorithm. The algorithm was tested with the movement signals of the human
body using a tri-axial accelerometer. The tests were carried out with 600 samples (from
6 categories) recorded from 12 volunteers. They obtained between 80 and 100% correct
detection rate using the following six features: 1) the interval between the beginning
of falling and the beginning of the reverse impact, 2) the average acceleration, 3) the
variance of acceleration before the impact, 4) the interval of the reverse impact, 5) the
average acceleration, and 6) the variance of acceleration after the impact.



382 C. A. Silva et al.

Paulo Salgado et al. [11] tested the SVM algorithm with Gaussian Kernel function
using accelerometers signals collected with a smartphone located on the volunteer’s
torso using four features to determine the falls: 1) angular position, 2) angular rate, 3)
angular acceleration and 4) radius curve. The tests showed a detection rate of 96%.

Medrano et al. [12] evaluated several supervised classifiers, including a SVMmodel
with a Radial Basis Function kernel, using the accelerometer signals recorded with a
smartphone transported by 10 volunteers, who generated 503 samples of simulated falls
and 800 ADLs. Authors concluded that SVM clearly outperformed the other algorithms.
Regarding to the information fed into the classifier, they have restricted this work to
discriminate the acceleration shape during falls using the raw acceleration values.

Santoyo-Ramón et al. [13] used the UMAFall dataset containing data of accelerom-
eters signals of 19 volunteers. These authors evaluated four algorithms: SVM, k-Nearest
Neighbors (KNN), Naive Bayes and Decision Tree using six features: 1) Mean signal
magnitude vector, 2) The maximum value of the maximum variation of the acceleration
components in the three axes, 3) the standard deviation of the signal magnitude vector, 4)
The mean rotation angle, 5) mean absolute difference, 6) the mean module acceleration.
They concluded that the SVM algorithm achieved the performance in the detection of
falls. In a subsequent work [14] they investigated the most significant features of the
accelerometer signals, using the ANOVA tool for the statistical analysis of the perfor-
mance. They evaluated the algorithms with three datasets, UMAFall [15], SisFall [16],
and ‘Erciyes’ repository by Özdemir et al. [17].

In this work we focused on evaluating the importance of a set of candidates features
for seven datasets commonly employed in the related literature. Random Forests (RFs)
are a common tool for feature selection in machine-learning classifiers as their easy
interpretability allows directly weighting the importance of each candidate feature to
represent and characterize the data [18]. Thus, by using a RFs model [19] we determine
which are the most relevant statistical features for each dataset. Then, we assess the
performance of SVM depending on the dataset employed to select the feature set.

3 Process Description for Testbed

3.1 Data Bases Selection

The tests were carried out with publicly available datasets with accelerometer signals
obtained on the volunteers’ waist. In the literature, eleven public datasets, presented
in Table 1, were found with this criterion. The table indicates the complete number of
samples and falls for each dataset.

To characterize each movement sample in the datasets, the features are calculated
by focusing on a fixed time interval (an ‘observation window’) within every sample. As
a fall is associated to a sudden peak in the acceleration magnitude caused by the impact
against the floor, this window is selected around the instant (±0.5 s) where the maximum
value of the acceleration module occurs. For our research we discarded FARSEEING,
SMotion, UR Fall and DLR datasets, as no falls (or an insignificant number of falls)
were found after applying this windowing techniques to the corresponding traces. In
the rest of the datasets, we also ignored those samples in which the acceleration peak
was found in the first or last period of 0.5 s of the whole time series (so that a complete
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observation window of 1 s cannot be properly defined). The datasets and the number of
valid samples finally employed in our tests are shown in Table 2.

Table 1. Public datasets with accelerometer signals captured on volunteers’ waist.

Name and reference Total number of samples Falls

1 TST Fall [20] 264 132

2 UMAFall [15] 746 208

3 SisFall [16] 4050 1798

4 Erciyes [17] 3297 1821

5 UP Fall [21] 559 255

6 IMUFD [9] 600 210

7 FallAllD [22] 6605 1722

8 DLR [23] 1017 56

9 UR Fall detection [24] 70 30

10 FARSEEING [25] 22 22

11 SMotion [26] 364 2

Table 2. Employed datasets after applying the windowing technique.

Name Final number of used samples Final number of used falls

1 TST Fall 263 132

2 UMAFall 604 186

3 SisFall 4474 1797

4 Erciyes 3147 1819

5 UP Fall 505 234

6 IMUFD 591 210

7 FallAllD 1661 465

3.2 Feature Selection

In this work, we use the six ‘candidate’ features described in the work [14]. Additionally,
we added seven extra features (see [27] for a more complete formal definition). For all
the samples (ADLs or falls), the thirteen features were calculated taking into account
only the triaxial signals captured by the accelerometer (located on the waist) that are
provided by the seven datasets under study. The considered features are:

1. Mean Signal Magnitude Vector of the acceleration vector (Mean SMV).
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2. The maximum value of the maximum variation of the acceleration components in
the three axes (Max diff ).

3. The standard deviation of the Signal Magnitude Vector (Std SMV).
4. The mean rotation angle (Mean rotation angle).
5. The mean absolute difference between consecutive samples of the acceleration

magnitude (Mean absolute diff ).
6. The mean acceleration of the magnitude of the vector formed by the acceleration

components that are parallel to the floor plane (Mean body inclination).
7. Maximum value of the acceleration magnitude (Max SMV).
8. Minimum value of the acceleration magnitude (Min SMV).
9. Third central moment (skewness or bias) of the acceleration magnitude (Skewness

SMV).
10. Fourth central moment (kurtosis) of the acceleration magnitude (Kurtosis SMV).
11. The mean of the autocorrelation of the acceleration magnitude within the observa-

tion window (Mean autocorrelation).
12. The standard deviation of the autocorrelation module the acceleration magnitude

within the observation window (Std autocorrelation).
13. The frequency value at which the maximum of the Discrete Fourier Transform

(DFT) of the acceleration magnitude is detected (Freq DFT max).

3.3 Classification of the Candidate Features

The capability of the different candidate features to characterize the signalswas evaluated
and classified throughRandomForests classification [19],whichfits a number of decision
tree classifiers on various sub-samples of the dataset and uses averaging to improve the
predictive accuracy while controlling over-fitting. For this study, one hundred trees were
used. As a result, a matrix is obtained (see Table 3) with the percentage of importance
of each feature for each database. As it can be observed, the relevance of each feature
as a discrimination element strongly varies depending on the considered dataset.

From the previous data, aiming at defining a global classification of the features, we
compute a global ranking by calculating the mean of the percentage importance value of
each feature for each dataset. Figure 1 shows (in descending order) the error bar graphic
with represents the mean and the standard deviation of the obtained values.
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Table 3. Features importance percentage value for each dataset.

Feature Erciyes FallAllD IMUFD SisFall TST Fall UMAFall UP Fall

Kurtosis SMV 0.90 3.08 0.55 1.86 0.41 0.37 0.00

Max diff 20.98 17.08 13.32 9.93 5.41 12.84 18.20

Max SMV 25.36 19.07 17.09 14.92 6.26 12.75 15.03

Freq DFT max 0.14 10.36 15.24 1.12 26.96 2.41 0.61

Mean body inclination 1.60 19.84 1.41 1.47 7.41 9.35 0.00

Mean autocorrelation 14.95 7.39 16.02 20.27 4.13 11.96 12.40

Mean rotation angle 1.32 0.83 1.85 7.53 6.59 7.58 6.23

Mean absolute diff 0.49 0.34 0.30 0.15 0.03 3.54 5.43

Mean SMV 0.09 5.36 5.68 0.83 17.23 0.78 1.39

Min SMV 3.43 3.09 0.03 1.17 1.24 4.40 5.85

Std SMV 12.14 5.69 21.36 15.27 13.69 16.36 18.84

Skewness SMV 6.75 5.70 1.31 9.53 1.25 0.89 1.75

Std autocorrelation 11.86 2.15 5.85 15.95 9.39 16.77 14.27

Fig. 1. Mean importance of the features.

Table 4 shows the features ordered by the mean importance percentage. This rank-
ing does not coincide with that provided in [14], which used the ANOVA analysis. In
that work authors estimated that the best global variables were: 1) Std SMV, 2) body
inclination, 3) max diff, 4) rotation angle, 5) absolute difference and 6) mean SMV.
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Table 4. Global feature ranking.

Order Feature Mean importance (%)

1 Max SMV 15.78

2 Std SMV 14.76

3 Max diff 13.97

4 Mean autocorrelation 12.45

5 Std autocorrelation 10.89

6 Freq DFT max 8.12

7 Mean body inclination 5.87

8 Mean rotation angle 4.56

9 Mean SMV 4.48

10 Skewness SMV 3.88

11 Min SMV 2.74

12 Mean absolute diff 1.47

13 Kurtosis SMV 1.02

4 Results and Discussion

In this section, we analyze the performance of the SVM algorithmwhen different criteria
to select the input features are followed. The goal is to evaluate if the performance of
the ML technique degrades when it is individually applied to a certain dataset, but the
selection of the features is based on the analysis of a different repository. In this frame-
work we also consider the case when the most relevant features are selected according
to the mean case (following the global ranking presented in the previous tables).

Before training and testing, all the features values were scaled following a typical
Z-score normalization [28].

4.1 Model Selection

For the study, we utilized Python and the implementation of the SVMalgorithm provided
by the scikit-learn package [29]. The SVM algorithm was evaluated with the following
kernels: linear, polynomial, Radial Basis Function (RBF) and Sigmoid. The RBF kernel
offered the best results, so the following tests were based on SVM configured with this
kernel.

When training an SVM with the RBF kernel, two parameters must be considered: C
and gamma. The parameter C, common to all SVM kernels, trades off misclassification
of training examples against simplicity of the decision surface. The gamma parameter
in turn defines the influence of a single training example [29]. The optimal values for
the C and gamma parameters were set through a “fit” and a “score” method provided by
scikit-learn package [30].
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4.2 Model Training and Evaluation

We evaluated the performance of the SVM algorithm with a variable number of input
features (from 1 to 13), taking into the rank obtained for both the global and particular
analysis of the datasets. Model training is achieved with 70% of falls and 70% of the
ADL while testing is carried out with the remaining 30% of samples. Whenever a new
test is triggered, an extra feature is added according to 1) the rank established by the
dataset under analysis (‘self-order’), 2) the global rank, 3 and 4) the rank defined by the
analysis of two particular datasets (SisFall and UMAFall, as they have been frequently
utilized by the related literature).

As a performancemetric, we useAreaUnder theCurve (AUC) of ReceiverOperating
Characteristic (ROC) Curve. The AUC provides an aggregate measure of performance
across all possible classification thresholds [31]. Figure 2 shows the ROC AUC values
of the evaluations for each dataset for the four feature selection criteria and for the 13
possible combinations of features. Results show that, for almost all datasets and for a
low number of features, basing the selection on the global analysis of all datasets leads
to a certain increase of the performance of the detection algorithm, when it is compared
with the case in which just a single dataset is considered as the unique reference (SisFall
and UMAFall) to rank and select the features. This performance increase in the detection
algorithm is more remarkable with the FallAllD dataset.

Another important aspect when dealing with ML strategies is the reduction of the
number of features, as a lower dimension of the features may ease the implementation
of the algorithm in low cost devices with limited computation resources. In this regard,
from Fig. 2 we observe that an increase of the number of features beyond 4 or 5 does not
imply a significant improvement of the performance metric if the selection of features is
based on the global knowledge. The values of AUC are tabulated in Table 5 for the case
in which the four most relevant features are selected to characterize the data. The table
also shows the sensitivity (Se) and specificity (Sp) values (for the optimal configuration
of the SVM), which are also basic metrics to evaluate binary classifiers.
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(a) TST Fall dataset 

( b ) UMAFall dataset 

(c) SisFall dataset 

(d) Erciyes dataset 

(e) UP Fall dataset 

(f) IMUFD dataset 

(g) FallAllD dataset 

(h) Results using 4 features 

Fig. 2. AUC ROC for different feature selection criteria and number of features.
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Table 5. Sensitivity, specificity and AUC ROC for each dataset applying the 4 most significant
features according to the global ranking, the order reccomneded by SisFall and the order derived
from the analysis of each dataset.

Dataset Global order Self-order SisFall order

AUC
ROC

Se Sp AUC
ROC

Se Sp AUC
ROC

Se Sp

1 TST Fall 93.75 100.0 87.50 98.75 100.0 97.50 92.50 97.50 87.50

2 UMAFall 92.16 87.50 96.83 95.44 96.43 94.44 94.05 92.86 95.24

3 SisFall 92.08 89.26 94.90 93.16 90.19 96.14 93.16 90.19 96.14

4 Erciyes 94.55 97.62 91.48 94.55 97.62 91.48 96.86 97.99 95.74

5 UP Fall 89.30 85.92 92.68 89.30 85.92 92.68 92.63 90.14 95.12

6 IMUFD 94.29 92.06 96.52 91.91 87.30 96.52 93.14 88.89 97.39

7 FallAllD 90.60 89.29 91.92 92.06 88.57 95.54 89.16 85.00 93.31

5 Conclusions

This paper has assessed the capacity of the detection algorithms intended for wearable
FDSs to extrapolate conclusions obtained with a certain dataset when they are applied
to data obtained with other users and movements. The study is based on the analysis
of seven public datasets that contain recorded accelerometer signals captured on the
volunteers’ waist and the use of AUC ROC as a performance validation metric.

In particular, we analyzed the performance of the SVMalgorithmwhen up to thirteen
accelerometer-based features are considered to feed the classifier. Results reveal the
difficulties of low dimensional algorithms to detect falls when the selection criteria are
merely basedon aprevious studyof a single dataset. This fact highlights the importanceof
considering avariety of datasets to configure, train and test any fall detection algorithm, as
most current datasets have remarkable limitations in terms of the number of experimental
subjects and the typology of movements with which they were generated.

On the other hand, the results also show with a small set of well selected features (in
this work four features seem to be enough) an acceptable performance can be obtained
for fall detection. The results suggest that using a greater number of features to determine
if a fall occurs just slightly improves detection effective ratio at the cost of increasing
the complexity of the algorithms, which may hamper its implementation on the low cost
wearable devices that produce the fall detection decision in real-time.
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