
Chapter 12
Lists

Congratulations! You are no longer a beginning student. Change your language
in DrRacket to Intermediate Student with lambda. We shall refer to this
language as ISL+. All your programs written in BSL will still work in ISL+. In fact,
BSL is a subset of ISL+.

In this chapter, we begin to study data of arbitrary size. By data of arbitrary size,
we mean data whose size is not constant. In a practical sense, this means that we
shall begin to learn how to solve problems involving compound data that may have
a varying number of elements. This does not mean that data may be of infinite size.
Every instance of our data will be of finite size. Unlike structures, however, not every
instance shall be of the same size.

Data of arbitrary size is a natural part of human life. For example, it is typical for
persons to make a grocery list before going to the supermarket. My grocery list, of
course, may very well be different than your grocery list. This is no surprise given
that we may have different tastes. For example, a vegetarian’s grocery list will not
contain animal proteins while a non-vegetarian will contain animal proteins. Beside
content, there is another important difference between these lists. They may contain
a different number of items. For example, one grocery list may contain milk, walnuts,
and bread while another grocery list may contain sliced turkey, milk, bread, onions,
and salmon. Yet, someone else’s grocery list may be empty. Regardless of the size,
we all agree that they are valid grocery lists. That is a grocery list is data of arbitrary
size.

Lists may be used to represent much more than just the groceries that we need to
buy. For example, in Aliens Attack we would like to have more than one alien and
we would like to allow the player to shoot more than one shot at a time. Consider
carefully what it means to have multiple aliens and multiple shots in Aliens Attack. Is
the number of aliens constant? Is the number of shots constant? Clearly, the answer
to both questions is no. As the game advances the number of aliens decreases as they
are hit. That is, the number of aliens is not constant. Similarly, the number of shots
varies. At the beginning of the game, the number of shots is 0. Every time the player
shoots the number of shots increases. Every time a shot hits an alien or goes off the
scene, the number of shots decreases. This tells us that aliens and shots are data of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. T. Morazán, Animated Problem Solving, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-85091-3_12

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85091-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-85091-3_12

266 12 Lists

arbitrary size just as a grocery list. Thus, we may consider using a list to represent
the aliens and the shots.

65 Creating and Accessing Lists in ISL+

Given that many different types of data are naturally represented as lists, ISL+
provides support for lists. The smallest possible list is the empty list. In ISL+, the
empty list is represented as '(). We can use the empty list to define many different
types of list. For example, an empty grocery list, an empty list of aliens, and an
empty list of shots may be defined as follows:

(define E-GLIST '())
(define E-LOA '())
(define E-LOS '())

(check-expect (empty? E-GLIST) #true)
(check-expect (empty? E-LOA) #true)
(check-expect (empty? E-LOS) #true)

In essence, '() is an ISL+ constant that represents any type of empty list. It is the
basis of all lists. The ISL+ predicate empty? returns true if its input is '() and
#false otherwise.

Non-empty lists, may be constructed by adding an element to the front of an
existing list. Just like constructors are needed to create structures, a constructor is
needed to build a new list. In ISL+ this function is cons (for construct). The signature
and purpose statement for cons are the following:

any list → list
Purpose: To construct a new list by adding the given value

to the front of the given list

The contract is stating that the first argument may be of any type, that the second
argument must be a list (of any type), and that it returns a list (of any type). This
means that cons is a generic function that may be used to construct any type of list.
We can now use cons to build a grocery list, a list of aliens, and a list of shots of
any (finite) size. For example, a grocery list with 2 elements, a list of 5 aliens, and
list of 3 shots may be defined as follows:

(define A-GLIST (cons "milk"
(cons "apples"

E-GLIST)))
(define A-LOA (cons (make-posn 10 2)

(cons (make-posn 5 12)
(cons (make-posn 4 8)

(cons (make-posn 15 7)
(cons (make-posn 6 6)

E-LOA))))))

65 Creating and Accessing Lists in ISL+ 267

(define A-LOS (cons (make-posn 4 2)
(cons NO-SHOT

(cons (make-posn 17 3)
E-LOS))))

(check-expect (cons? E-GLIST) #false)
(check-expect (cons? E-LOA) #false)
(check-expect (cons? E-LOS) #false)
(check-expect (cons? A-GLIST) #true)
(check-expect (cons? A-LOA) #true)
(check-expect (cons? A-LOS) #true)

The arguments to cons are lined up for you to easily confirm that its second argument
is always a list. That is, the second argument is always a list constructed using cons
or is the empty list (i.e., E-GLIST, E-LOA, or E-LOS). The first argument varies
depending on the type of list constructed. For the grocery list, the first argument is
always a string. For a list of aliens, the first argument is always an alien. For the list
of shots, the first argument is always a shot. Now, it should be even clearer that lists,
just as structures, are generic. The tests use the ISL+ predicate cons? that returns
true when its input is a non-empty list. Otherwise, it returns false.

As with structures, selectors are needed to extract the elements used to construct
a list. Given that a non-empty list is always constructed using cons, two selectors are
needed to extract the components of a list. The selector to extract the first element of
a given list is first. The selector to extract the list containing the rest of the elements
(not including the first element) of a given list is rest. Care must be taken when
using these selector functions because the empty list does not have a first element
nor does it have a value for the rest of the elements. If either list-selector function is
applied to the empty list, an error is thrown. The following tests illustrate how the
list-selector functions work:
(check-error (first E-GLIST))
(check-error (first E-LOA))
(check-error (first E-LOS))

(check-expect (first A-GLIST) "milk")
(check-expect (first A-LOA) (make-posn 10 2))
(check-expect (first A-LOS) (make-posn 4 2))

(check-error (rest E-GLIST))
(check-error (rest E-LOA))
(check-error (rest E-LOS))

(check-expect (rest A-GLIST) (cons "apples" E-GLIST))

268 12 Lists

(check-expect (rest A-LOA)
(cons (make-posn 5 12)

(cons (make-posn 4 8)
(cons (make-posn 15 7)

(cons (make-posn 6 6)
E-LOA)))))

(check-expect (rest A-LOS)
(cons NO-SHOT (cons (make-posn 17 3) E-LOS)))

Here a special form of check-error is used that only checks if an error is thrown. It
does not require an error message to check. This form ofcheck-error is particularly
useful when testing functions whose error messages we did not design.

How is the second element of a list extracted? The third element? To achieve
extractions beyond the first list element you need to compose calls to first and
rest. For example, the second element of A-LOS, NO-SHOT, is given by (first
(rest A-LOS)). Let us examine how this works:
(first (rest A-LOA)) = (first

(rest (cons (make-posn 4 2)
(cons NO-SHOT

(cons
(make-posn 17 3)
E-LOS)))

= (first (cons NO-SHOT
(cons (make-posn 17 3)

E-LOS)))
= NO-SHOT

The first step substitutes A-LOA for its value. In the second step, the inner most
function application (using rest) is evaluated and is replaced with its value. The
third step applies the outermost function application to obtain NO-SHOT.

* Ex. 113 — Design and implement a function, third-of-list, to extract
the third element of a list. Use compositions of first and rest.

* Ex. 114 — Design and implement a function, fourth-of-list, to extract
the fourth element of a list. Use compositions of first and rest.

* Ex. 115 — Design and implement a function, fifth-of-list, to extract
the fifth element of a list. Use compositions of first and rest.

** Ex. 116 — Design and implement a function, tenth-of-list, to extract
the tenth element of a list. Use compositions of first and rest.

Extracting the second, third, fourth, and so on up to the eighth element of a list
is common enough that ISL+ provides functions to do so directly. Not surprisingly,
these functions are called second, third, fourth, and so on up to eighth. Be
mindful when using these functions because if given a list that is too short they
throw an error. These function provide a useful shorthand notation to access list
elements up to the eighth. From the ninth on you must write your own function.

66 Shorthand for Building Lists 269

66 Shorthand for Building Lists

Consider constructing a list of first 7 digits. Your code may look something like this:

(define SEVEN-DIGITS
(cons

0
(cons 1

(cons 2
(cons 3

(cons 4
(cons 5

(cons 6 empty))))))))
(check-expect (first SEVEN-DIGITS) 0)
(check-expect (second SEVEN-DIGITS) 1)
(check-expect (third SEVEN-DIGITS) 2)
(check-expect (fourth SEVEN-DIGITS) 3)
(check-expect (fifth SEVEN-DIGITS) 4)
(check-expect (sixth SEVEN-DIGITS) 5)
(check-expect (seventh SEVEN-DIGITS) 6)

Observe that there is a lot of repetition in the code to construct the list. Specifically,
there is an application of cons for every element of the list. This may not be too
cumbersome for a list with seven elements, but what if you are now asked to define
a list with the integers in [0..19]? You would need to write cons twenty times. To
avoid all this repetition ISL+ provides three shorthand constructors for lists.

The first is used when the elements of the list are known in advance. A quoted
list has the elements listed inside parenthesis preceded by a '. For example, we may
refactor the SEVEN-DIGITS definition as follows:

(define SEVEN-DIGITS '(0 1 2 3 4 5 6))

(check-expect (first SEVEN-DIGITS) 0)
(check-expect (second SEVEN-DIGITS) 1)
(check-expect (third SEVEN-DIGITS) 2)
(check-expect (fourth SEVEN-DIGITS) 3)
(check-expect (fifth SEVEN-DIGITS) 4)
(check-expect (sixth SEVEN-DIGITS) 5)
(check-expect (seventh SEVEN-DIGITS) 6)

Using a quoted list eliminates the need to repeatedly write cons to construct the
list. It is important to note that nothing after the quote (inside the parenthesis) is
evaluated. That means all the listed elements are literal values in the list. This is
important because there can be no expressions that need to be evaluated inside the
parenthesis. For example, consider the following code:

270 12 Lists

(define SOME-SQRS1 (cons (sqr 0)
(cons (sqr 1)

(cons (sqr 2)
empty))))

(define SOME-SQRS2 '((sqr 0) (sqr 1) (sqr 2)))

(check-expect SOME-SQRS1 '(0 1 4))
(check-expect (not (equal? SOME-SQRS1 SOME-SQRS2)) #true)

Both tests pass. For SOME-SQRS1 the expressions using sqr are evaluated. For
SOME-SQRS2 they are not evaluated because they are inside a quoted list. Instead of
being evaluated, they are considered literal sublists. Thus, the value of SOME-SQRS2
is:

(cons (cons 'sqr (cons 0 empty))
(cons (cons 'sqr (cons 1 empty))

(cons (cons 'sqr (cons 2 empty))
empty)))

Naturally, you must be asking yourself if there is shorthand notation to create a
list from evaluated expressions. After all, it would be nice not to repeatedly write
cons to define SOME-SQRS1. The shorthand provided by ISL+ is list. This is a
list-constructor function that evaluates all of its arguments and creates a list of the
results. The number of arguments is arbitrary. If no arguments are provided list
returns '(). We can refactor the SOME-SQRS2 definition and update the tests as
follows:

(define SOME-SQRS1 (cons (sqr 0)
(cons (sqr 1)

(cons (sqr 2)
empty))))

(define SOME-SQRS2 (list (sqr 0) (sqr 1) (sqr 2)))

(check-expect SOME-SQRS1 '(0 1 4))
(check-expect (equal? SOME-SQRS1 SOME-SQRS2) #true)

Use list when you want all the expressions to be evaluated to construct a list.
The third shorthand is a quasiquoted list. A quasiquoted list is a combination of '

and list. Instead of preceding the opening parentheses with a ', it is preceded with
`. The ` indicates that some subexpression inside the parenthesis may have to be
evaluated. To indicate that an expression needs to be evaluated, it must be preceded
by a ,. If there are no expressions preceded by a comma inside the parenthesis, then
` and ' yield the same value when evaluated. To illustrate the use of quasiquote
consider the following code:

(define X 2)
(define Y 3)
(define Z 4)

67 Recursive Data Definitions 271

(define A-LIST '((add1 X) J (* Z Y)))
(define A-LIST2 `(,(add1 X) J ,(* Z Y)))

(check-expect (first A-LIST) '(add1 X))
(check-expect (first A-LIST2) 3)

(check-expect (second A-LIST) 'J)
(check-expect (second A-LIST2) 'J)

(check-expect (third A-LIST) '(* Z Y))
(check-expect (third A-LIST2) 12)

The expressions (add1 X) and (* Z Y) are evaluated to construct A-LIST2 be-
cause they are preceded by a comma in a quasiquoted list. The same expressions are
treated as literal values for A-LIST because they are inside a quoted list.

67 Recursive Data Definitions

We have explored how to create and access lists. As part of our exploration, we have
discovered that lists may be used to store different types of data. We have not yet
explored how to process a list. To do so we first need to be able to develop a data
definition and a function template for a given type of list. Consider defining a list of
numbers. Let us look at some examples based on our knowledge of lists so far:

'()
(cons 87 '())
(cons 24 (cons 87 '()))
(cons 16 (cons 24 (cons 87 '())))
(cons 31 (cons 16 (cons 24 (cons 87 '()))))

If you think about it carefully, you can see a distinct pattern. There are two list-of-
numbers varieties. The first is the empty list of numbers. The second is a non-empty
list of numbers constructed using cons. This immediately suggests that to define a
list of numbers, we need a data definition with two varieties:

;; A list of numbers (lon) is either
;; 1. '()
;; 2. (cons ??? ???)

Now, we must be precise about the types of the arguments to cons. Given that we
are defining a list of numbers, it is clear that the first argument must be a number.
This takes us a step closer to the needed data definition:

272 12 Lists

;; A list of numbers (lon) is either
;; 1. '()
;; 2. (cons number ???)

What is the type of the second argument to cons? To answer this question, let
us analyze one of our examples: '(cons 31 (cons 16 (cons 24 (cons 87
'())))). In this example, 31 is the first number of the list. Clearly, it fulfills
what is required by the data definition we have so far. What is '(cons 16 (cons
24 (cons 87 '())))? If you think about it carefully, the inescapable conclusion
is that it is a lon. Is this really the case? Does this make sense? Let us look at another
example: '(cons 87 '()). Here the argument types to cons are number (the 87)
and, once again, a lon ('()). You can verify that all other examples satisfy this
pattern. This analysis is telling us that the type of the second argument to cons is
lon. Thus, the lon data definition is:

;; A list of number (lon) is either
;; 1. '()
;; 2. (cons number lon)

A list of numbers is defined in terms of itself. That is, it is a circular data definition.
A type defined in terms of itself is a recursive data type.

Does this make any sense? Can this data definition be used to build any list of
numbers? It turns out that you can build any list of numbers using this data definition.
To build the empty list of numbers, we simply use the first rule and write: '(). How
about a list that is not empty? Here is how you build '(cons 24 (cons 87 '())):

lon → (cons 24 lon) using rule 2 to substitute lon
→ (cons 24

(cons 87 lon)) using rule 2 to substitute lon
→ (cons 24

(cons 87 empty)) using rule 1 to substitute lon

This is an example of a derivation. A derivation is the series of steps used to show
how to build an instance of a data type using the varieties of a data definition. It is
not difficult to see that any valid list of numbers can be derived using the above data
definition. Can anything that is not a list of numbers be derived? Let us try to derive
'(cons 42 (cons -6 (cons "Hi" (cons 87 '())))):

lon → (cons 42 lon) using rule 2 to substitute lon
→ (cons 42

(cons -6 lon)) using rule 2 to substitute lon

The derivation fails because there is no lon variety whose first element is a string.
Therefore, '(cons 31 (cons 16 (cons "Hi" (cons 87 '())))) is not a lon.
It is also not difficult to see that according to our data definition all the elements of
a lon must be numbers. If any element of a given list is not a number, then it is not
a lon.

It is very likely that you have been taught to steer away from recursive data
definitions. This is unfortunate because as we have seen recursive data definitions

67 Recursive Data Definitions 273

are useful to define data of arbitrary size like lists. In fact, any data of arbitrary size
requires a recursive data definition. So, why are students steered away from recursive
data definitions? This is likely rooted in the fact that recursive data definitions may be
nonsense. For example, someone may attempt to define a list of numbers as follows:

; A list of numbers (lon2) is a (cons number lon2)

Is this a useful data definition? Let us try to derive '(cons 24 (cons 87 '())):

lon2 → (cons 24 lon2) substitute lon2 using rule 2
→ (cons 24

(cons 87 lon2)) substitute lon2 using rule 2

The derivation fails because we are unable to instantiate the lon2 in (cons 87
lon2). You may say that clearly it should be '(). In fact, this would be wrong.
Nowhere in this data definition does it say that '() is a lon2. It is important to be
precise with our data definitions. Otherwise, we will be unable to solve problems.

This leads to asking ourselves what constitutes a useful recursive data definition. In
order to be useful, a recursive data definition must have the following characteristics:

1. At least two subtypes (varieties)
2. At least one subtype that does not contain a selfreference
3. At least one subtype that contains a selfreference

The subtypes that do not contain a selfreference are known as base subtypes.
These are concrete values that are known to be instances of the data type defined.
These concrete values break the circularity in a derivation. The subtypes that do
contain a selfreference are known as recursive subtypes. These are the varieties
that introduce circularity which endows us with the power to define data of arbitrary
size. In the recursive data definition for lon, we have '() as a base subtype and
(cons number lon) as a recursive subtype. The recursive data definition for lon2
is not useful because it does not have a base subtype.

With our newly acquired knowledge, we can now define a representation for
multiple aliens and multiple shots in Aliens Attack. Given that both are data of
arbitrary size, we need a recursive data definition for each. At this point, the only
recursive data type we know is list. Thus, let us try to use a list to define an arbitrary
number of aliens. Remember that it must have the three characteristic above required
for a useful recursive data definition. A list of aliens may be defined as follows:

;; A list of alien (loa) is either:
;; 1. '()
;; 2. (cons alien loa)

;; Sample instances of loa
(define E-LOA '())
(define INIT-LOA

(list
(make-posn 8 0) (make-posn 9 0) (make-posn 10 0)
(make-posn 11 0) (make-posn 12 0) (make-posn 13 0)

274 12 Lists

(make-posn 8 1) (make-posn 9 1) (make-posn 10 1)
(make-posn 11 1) (make-posn 12 1) (make-posn 13 1)
(make-posn 8 2) (make-posn 9 2) (make-posn 10 2)
(make-posn 11 2) (make-posn 12 2) (make-posn 13 2)))

Observe that the loa data definition has two subtypes: one base subtype and one
recursive subtype. In addition, following the steps of the design recipe, an instance
of each variety of loa is defined. The initial list of aliens, INIT-LOA, contains 18
aliens. This ought to make the game more interesting. You are encouraged to make
the initial list of aliens shorter or longer to personalize the game to your liking.

A list of shots is defined as follows:
;; A list of shot (los) is either:
;; 1. '()
;; 2. (cons shot los)

;; Sample instances of los
(define INIT-LOS '())
(define LOS2 (list (make-posn 8 0) (make-posn 10 5)))

Observe that the requirements for a useful data definition are satisfied and that sample
instances are also defined.

* Ex. 117 — Define sample instances for lon.

* Ex. 118 — Create a data definition and sample instances for a grocery list.

* Ex. 119 — In Chap. 7 a data definition for a 2D-point is developed. Why or
why not is this a useful recursive data definition?

*** Ex. 120 — Create a data definition for a composed image. A composed
image may contain one or more rectangles and circles that are above, next, or
overlaid in relation to each other.

68 Generic Data Definitions

The next natural step is to develop a function template for lon, loa, and los.
However, notice that the three data definitions are almost identical. In other words,
there is a lot of repetition among them. When we have repetition among expressions,
an abstraction step introduces a variable to obtain a function. Can we apply an
abstraction step to avoid repetitions among data definitions?

The situation we face is a bit different from abstraction over expressions. When
you abstract over expressions, a difference is always a value and a variable is used
to represent the value. This felt quite natural because you are familiar with variables
from your Mathematics courses. The difference among the data definitions for lon,
loa, and los is a type. For lon the type used is number. For loa the type used

69 Function Templates for Lists 275

is alien. For los the type used is shot. When abstracting over data definitions
the variables used to capture the differences are type variables. Type variables
represent types not instances of types (i.e., values). A type variable is needed for
each difference.

Let X be the single difference among lon, loa, and los. Instead of using a
concrete type (like number, alien, or shot), we write a data definition using X:

;; A list of X ((listof X)) is either:
;; 1. '()
;; 2. (cons X (listof X))

The data definition is recursive just like the data definitions for lon, loa, and los.
Observe that if we plug in number for X we obtain the data definition for lon.
Similarly, plugging in alien and shot for X yields, respectively, the data definitions
for loa and los. The notation (listof X) is used to emphasize that a type must be
plugged in to obtain a concrete data definition. Clearly, this data definition works for
many different types. A data definition that works for many different types is called
a generic (or parameterized) data definition.

As we shall see, a generic data definition may be used in two ways in our signatures.
We may substitute X with a concrete type to specify a concrete data definition or we
may use (listof X) directly. We shall start with examples of the former. The use
of the latter will follow after we learn how to abstract over functions.

69 Function Templates for Lists

We can write a function template for a (listof X) and use it to define the templates
for lon, loa, and los. Before that, however, we must learn to write a function
template for a recursive data definition. Using the knowledge you have accumulated
so far, we can begin to develop the function template for (listof X):

;; Sample instances of (listof X)
(define LOX1 . . .)
(define LOX2 . . .)

;; (listof X) . . . → . . .
;; Purpose: . . .
(define (f-on-loX a-loX . . .)

(if (empty? a-loX)
. . .
. . .))

;; Sample expressions for f-on-loX
(define LOX1-VAL . . .)
(define LOX2-VAL . . .)

. . .

276 12 Lists

;; Tests using sample computations for f-on-loX
(check-expect (f-on-loX LOX1 . . .) LOX1-VAL)
(check-expect (f-on-loX LOX2 . . .) LOX2-VAL)

. . .

;; Tests using sample values for f-on-los
(check-expect (f-on-loX . . .) . . .)

. . .

A function template for a generic type contains all the same elements as a concrete
function template: sample instances templates, a function definition template, sample
expression templates, and test templates. The definition template has a conditional
expression because there is variety in the data. So far, there is nothing really new
here except not knowing what X is at this time. That is fine because when a type is
plugged in for X, the yield is a concrete function template. The question we must
answer is how do we deal with selfreferences in the data definition. Specifically, how
is . . . substituted in the definition template’s else clause. This clause tells us how
to process a list constructed using cons. Let us examine carefully what needs to be
processed:

(cons X (listof X))

There are two different types that need to be processed: X and (listof X). Process-
ing an X is done by calling a function on an X. How do we process a (listof X)?
The natural answer is to call a function that processes a (listof X). In other words,
the function must call itself. Let us finalize the template using this new insight:

;; Sample instances of (listof X)
(define LOX1 . . .)
(define LOX2 . . .)
. . .

;; (listof X) . . . → . . .
;; Purpose: . . .
(define (f-on-loX a-loX . . .)

(if (empty? a-loX)
. . .
. . .(f-on-X (first a-loX)). . .
. . .(f-on-loX (rest a-loX) . . .). . .))

;; Sample expressions for f-on-loX
(define LOX1-VAL . . .)
(define LOX2-VAL . . .)

. . .

70 Designing List-Processing Functions 277

;; Tests using sample computations for f-on-loX
(check-expect (f-on-loX LOX1 . . .) LOX1-VAL)
(check-expect (f-on-loX LOX2 . . .) LOX2-VAL)

. . .

;; Tests using sample values for f-on-loX
(check-expect (f-on-loX . . .) . . .)

. . .

A new principle now becomes clear. Every selfreference in a data definition becomes
a selfreference in the definition template and, eventually, a selfreference in a func-
tion definition. That is, data of arbitrary size is processed by a recursive function.
Recursion that is based on the structure of your data is called structural recursion
(or natural recursion). As before with structures, the structure of your data suggests
the structure of your functions. Observe that a divide and conquer strategy naturally
arises from the structure of a (listof X). To solve a problem for a (listof X) a
subproblem for an X and a subproblem for a (smaller) (listof X) must be solved.
The fascinating part is that the subproblem for the smaller (listof X) is solved the
same way as the larger (listof X). When using structural recursion, it is always the
case that the subproblem is smaller and, therefore, closer to a base case. This means
that when structural recursion is correctly used, your code is guaranteed to eventually
stop. It becomes impossible for a function to implement an infinite recursion.

70 Designing List-Processing Functions

We can use the generic data definition for a (listof X) to define a list of numbers:

A lon is a (listof number)

Let us take a close look at what this means. Plugging in number for X in the generic
data definition for (listof X) yields:

;; A list of number (lon) is either
;; 1. '()
;; 2. (cons number lon)

This is exactly the data definition derived above. Plugging in number for X in the
function template for a function on a (listof X) yields a concrete function template
for a lon:

;; Sample instances of lon
(define LON1 . . .)
(define LON2 . . .)
. . .

278 12 Lists

;; lon . . . → . . .
;; Purpose: . . .
(define (f-on-lon a-lon . . .)

(if (empty? a-lon)
. . .
. . .(f-on-number (first a-lon)). . .
. . .(f-on-lon (rest a-lon) . . .). . .))

;; Sample expressions for f-on-lon
(define LON1-VAL . . .)
(define LON2-VAL . . .)

. . .

;; Tests using sample computations for f-on-lon
(check-expect (f-on-lon LON1 . . .) LON1-VAL)
(check-expect (f-on-lon LON2 . . .) LON2-VAL)

. . .

;; Tests using sample values for f-on-lon
(check-expect (f-on-lon . . .) . . .)

. . .

We can now use the template to write functions to process a list of numbers.
For example, write a function that squares a list of numbers. The design idea is to
traverse the given list and construct a new list with the square of each number in the
list. Specializing the template yields:

;; Sample instances of lon
(define LON1 '())
(define LON2 '(1 2 3 4))

;; lon → lon
;; Purpose: Return a list of the squares of the given lon
(define (square-lon a-lon)

(if (empty? a-lon)
'()
(cons (sqr (first a-lon))

(square-lon (rest a-lon)))))

;; Sample expressions for square-lon
(define LON1-VAL '())
(define LON2-VAL (cons (sqr (first '(1 2 3 4)))

(square-lon (rest '(1 2 3 4)))))

;; Tests using sample computations for square-lon
(check-expect (square-lon LON1) LON1-VAL)
(check-expect (square-lon LON2) LON2-VAL)

71 What Have We Learned in This Chapter? 279

;; Tests using sample values for square-lon
(check-expect (square-lon '(10 8 4)) '(100 64 16))

It is worth carefully analyzing the expressions used in the function definition:

(sqr (first a-lon)) square of the first number in a-lon
(square-lon (rest a-lon)) list of squares obtained from the rest of a-lon

In the function definition cons is used to construct the new list. A new square is
added to the front of the list of squares obtained from the rest of the given list.
There is a sample expression and corresponding test for each lon variety. Finally, as
always, there is one or more tests using sample values.

To close this chapter, it is worth noting that there is a popular legend among
students and professionals that recursion is hard. If you understand the design of
square-lon, then you know better. Recursion is not hard nor should it be feared.
Understanding how to design solutions to problems based on data definitions makes
recursion quite natural. In the next chapter, you will gain more experience designing
recursive functions. Enjoy the journey!

* Ex. 121 — Design a function to cube a given lon.

*** Ex. 122 — Design a function that returns a list of the lengths of all the
strings in a list of strings. Make sure you have a data definition for all the list
data types needed.

**** Ex. 123 — A student’s backpack may be modeled using a (listof
symbol). For example, a backpack containing a notebook, a laptop, and a
pen is represented as '(notebook laptop pen). Design a function to determine if
a given item is contained in a given backpack.

*** Ex. 124 — For the previous exercise, do you need a conditional to de-
fine the predicate as suggested by the data definition for (listof X)? If you
used a conditional for the previous exercise refactor your solution to not use a
conditional.

71 What Have We Learned in This Chapter?

The important lessons of Chap. 12 are summarized as follows:

• Data of arbitrary size occurs naturally in real life and in virtual worlds.
• A list is data of arbitrary size with two varieties:

– '()
– A list built using cons

280 12 Lists

• The constructor for a non-empty list, cons, builds a new list by adding an element
to the front of an existing list.

• The selectors for lists are first and rest.
• When using an error-throwing function, we did not write use check-error to

test that an error is thrown.
• A quoted list may be used when all the list values are known and can be enumer-

ated.
• The function list may be used when the expressions for each list value are

known and can be enumerated.
• A quasiquoted list may be used when for the list elements either a value or an

expression for the value is known. Expressions that need to be evaluated must be
preceded by a comma.

• A recursive data definition is needed to define data of arbitrary size like lists.
• A recursive data definition always has a variety of subtypes of which at least one

is a base subtype and at least one is a recursive subtype.
• A recursive subtype contains a selfreference to its supertype.
• A generic data definition is an abstraction over types and may be used to define

many different concrete data types.
• For (listof X) there are two varieties: '() is the base subtype and (cons X

(listof X)) is the recursive subtype.
• A generic data definition leads to a generic function template.
• In a function template for data of arbitrary size, the definition template has a

recursive call for every selfreference in the data it is designed to process.
• Data of arbitrary size is processed using a recursive function.
• Recursion based on the structure of the data is called structural recursion.
• Structural recursion implements a divide and conquer design.
• Proper use of structural recursion guarantees that functions are not infinite recur-

sions.
• A concrete type and a concrete function template is obtained from a generic type

and its generic template by plugging in a type for each type variable.
• A concrete type and its concrete template are used to design functions. For

example, (listof number) and its function template are used to design any
function that processes a list of numbers.

	12 Lists
	65 Creating and Accessing Lists in ISL+
	66 Shorthand for Building Lists
	67 Recursive Data Definitions
	68 Generic Data Definitions
	69 Function Templates for Lists
	70 Designing List-Processing Functions
	71 What Have We Learned in This Chapter?

