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Preface

This volume contains the papers presented at WORDS 2021, the 13th International
Conference on Words, held online during September 13–17, 2021, at the University
of Rouen Normandy, France. The meeting was supported financially by the Normastic
FR CNRS 3638 Federation, the LITIS EA4108 Laboratory, the GREYC UMR CNRS
6072, the UFR Sciences and Techniques, the University of Rouen Normandy and the
city of Rouen.

WORDS is a biannual conference devoted entirely to combinatorics on words.
WORDS is the main conference series devoted to the mathematical theory of words,
i.e., finite or infinite sequences of letters. In particular, the combinatorial, algebraic, and
algorithmic aspects of words are emphasized. Motivations may also come from other
domains such as theoretical computer science, bioinformatics, digital geometry, sym-
bolics dynamics, numeration systems, text processing, number theory, automata theory,
etc. Previous WORDS conferences took place in Rouen (France) in 1997 and 1999,
Palermo (Italy) in 2001, Turku (Finland) in 2003 and 2013, Montréal (Canada) in 2005
and 2017, Marseille (France) in 2007, Salerno (Italy) in 2009, Prague (Czech Republic)
in 2011, Kiel (Germany) in 2015, and Loughborough (UK) in 2019.

Using different e-mail lists, theWORDS 2021 call for papers was distributed around
the world, resulting in 18 submissions. The EasyChair system was used to facilitate
management of submissions and refereeing, with three referees from the 18-member
Program Committee assigned to each paper. A total of 14 papers (77%) were accepted,
subject to revision, for presentation at the conference.

Six invited talks were given:

– NathalieAubrun (CNRS,Université Paris-Saclay, France): “1D substitutions as tilings
and applications”;

– Golnaz Badkobeh (Goldsmiths, University of London, UK): “Avoidability of
Patterns”;

– Julien Leroy (Université de Liège, Belgium): “Rauzy graphs, S-adicity and
dendricity”;

– Zuzana Masáková (Czech Technical University in Prague, Czech Republic): “Infinite
words connected to numeration: β -integers and Erdös spectrum”;

– Jeffrey Shallit (University of Waterloo, Canada): “Synchronized Sequences”;
– Luca Zamboni (Université Claude Bernard Lyon 1, France): “Continuants with equal
values, a combinatorial approach”.

These proceedings contain all 14 presented papers, together with two extended
versions of the invited talks. We thank the authors for their valuable combinatorial
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contributions and the referees for their thorough, constructive, and enlightening
comments on the manuscripts.

July 2021 Thierry Lecroq
Svetlana Puzynina
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Synchronized Sequences

Jeffrey Shallit(B)

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
shallit@uwaterloo.ca

Abstract. The notion of synchronized sequence, introduced by Carpi
and Maggi in 2002, has turned out to be a very useful tool for investigat-
ing the properties of words. Moreover, if sequence is synchronized, then
one can use a theorem-prover such as Walnut to “automatically” prove
many results about it, with little human intervention. In this paper I will
prove some of the basic properties of synchronization, and give a number
of applications to combinatorics on words.

Keywords: Synchronized sequence · Automata · Automatic
sequence · Regular sequence · Combinatorics on words ·
Theorem-prover

1 Introduction

Let us recall the notions of automatic and regular sequences. In what follows, k
is an integer ≥ 2, and Σk = {0, 1, . . . , k − 1}.

A sequence (a(n))n≥0 taking its values in a finite alphabet Δ is said to be
k-automatic if there is a deterministic finite automaton with output (DFAO)
that, on input n represented in base k, reaches a state with output a(n). Classi-
cal examples of automatic sequences include the Thue-Morse sequence and the
Rudin-Shapiro sequence [3].

The notion of automatic sequence can be generalized to representations other
than base k—for example, Fibonacci representation, Tribonacci representation,
and Pell representation.

A sequence (a(n))n≥0 taking its values in Q is said to be k-regular if there
exist an integer d, vectors v, w ∈ Qd, and a matrix-valued morphism ζ : Σ∗

k →
Qd×d such that a(n) = vζ(x)wT , where x is the base-k representation of n. The
triple (v, ζ, w) is called a linear representation for (a(n))n≥0. In this paper we
will only be interested in sequences taking their values in N or a finite set. Every
k-automatic sequence is also k-regular.

Classical examples of k-regular sequences include ν2(n), the exponent of the
highest power of 2 dividing n, and s2(n), the sum of the bits of the base-2
representation of n [4,5]. Once again, this notion can easily be generalized to
representations other than base k.

Carpi and Maggi [10] introduced a third class of sequences lying strictly in
between these two: the synchronized sequences. We say a sequence (a(n))n≥0

c© Springer Nature Switzerland AG 2021
T. Lecroq and S. Puzynina (Eds.): WORDS 2021, LNCS 12847, pp. 1–19, 2021.
https://doi.org/10.1007/978-3-030-85088-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85088-3_1&domain=pdf
http://orcid.org/0000-0003-1197-3820
https://doi.org/10.1007/978-3-030-85088-3_1
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is k-synchronized if there exists a deterministic finite automaton (DFA) that
recognizes the language of base-k representations of n and a(n), in parallel. Here
the shorter of the two representation is padded with leading zeros, if necessary.

As an example, the sequence (a(n))n≥0 defined by a(n) = 2n + 1 is 2-
synchronized. (Actually, it is k-synchronized for all k ≥ 2, but we need a different
automaton for each k.) To see this, examine the DFA in Fig. 1. For example, it
accepts the input [0, 1][1, 1][1, 0][0, 0][0, 1]. Here the first components spell out
01100, which is a base-2 representation of 12, while the second components spell
out 11001, the base-2 representation of 25.

Fig. 1. Synchronized automaton computing the sequence a(n) = 2n + 1.

My goal in this paper is to prove some of the basic properties of synchronized
sequences and demonstrate their utility in combinatorics on words.

2 Connection with Logic

There is a close connection between synchronized sequences and fundamental
results of Bruyère et al. [7]. The basic idea is that if we can write a first-order
formula for an integer s = f(n) in terms of k-automatic sequences, logical oper-
ations, universal and existential quantifiers, and comparisons and addition on
integers, then the pairs (n, s) are k-synchronized. In fact, we can “compile” the
formula directly into a synchronized DFA. For example, the formula s = 2n + 1
corresponds to the DFA in Fig. 1. This immediately implies many useful prop-
erties of f , such as bounds on its growth rate (as we will see in Sect. 8).

Furthermore, if a sequence is synchronized, then many of its properties can
be proved “automatically” using a theorem-prover, such as Walnut [16], with
almost no work.

3 Closure Properties of Synchronized Sequences

Before we start discussing the properties of synchronized sequences, let us gener-
alize the concept a bit. Let k, � ≥ 2 be two natural numbers. We say a sequence
(a(n))n≥0 is (k, �)-synchronized if there exists a DFA recognizing, in parallel,
the base-k representation of n and the base-� representation of a(n). We write
(n)k,� for this representation, consisting of a word over the alphabet Σk × Σ�.
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Theorem 1. Suppose (a(n))n≥0 and (b(n))n≥0 are (k, �)-synchronized sequen-
ces. Then so are the sequences

(a) (a(n) + b(n))n≥0;
(b) (a(n) ·− b(n))n≥0, where x ·− y is the “monus” function, defined by max

(0, x − y);
(c) (|a(n) − b(n)|)n≥0;
(d) (�αa(n)�)n≥0, where α is a non-negative rational number;
(e) (max(a(n), b(n)))n≥0;
(f) (min(a(n), b(n)))n≥0;
(g) running maximum, defined by c(n) = max0≤i≤n a(n);
(h) running minimum, defined by d(n) = min0≤i≤n a(n).

Proof. Let A be a (k, �)-synchronized DFA computing a(n) and B be a (k, �)-
synchronized DFA computing b(n). Here we treat A as a boolean function that
returns TRUE if A accepts (n)k and (x)� in parallel and similarly for B. To prove
these results, it suffices to provide first-order formulas asserting s = f(n) for
each transformation f(n). We do this as follows:

(a) ∀x, y (A(n, x) ∧ B(n, y)) =⇒ s = x + y.
(b) ∀x, y (A(n, x) ∧ B(n, y)) =⇒ ((x ≥ y =⇒ x = s + y) ∧ (x < y =⇒

s = 0)).
(c) ∀x, y (A(n, x) ∧ B(n, y)) =⇒ ((x ≥ y =⇒ x = s + y) ∧ (x < y =⇒

y = s + x)).
(d) Write α = p/q. Then the formula is ∀x A(n, x) =⇒ (qs ≥ px ∧ qs < px+q).

As stated, this is not a first-order formula, but it becomes one if q and p are
replaced by their particular values. Here we understand 2x to mean “x+x”,
3x to mean “x + x + x”, etc.

(e) ∀x, y (A(n, x) ∧ B(n, y)) =⇒ ((x ≥ y =⇒ s = x) ∧ (x < y =⇒ s = y)).
(f) ∀x, y (A(n, x) ∧ B(n, y)) =⇒ ((x ≥ y =⇒ s = y) ∧ (x < y =⇒ s = x)).
(g) (∃i (i ≤ n) ∧ A(i, s)) ∧ (∀j, t (j ≤ n ∧ A(j, t)) =⇒ s ≥ t).
(h) (∃i (i ≤ n) ∧ A(i, s)) ∧ (∀j, t (j ≤ n ∧ A(j, t)) =⇒ s ≤ t).

�

Remark 1. Not all of these properties hold for k-regular sequences. For example,
the k-regular sequences are not closed under absolute value, min, or max.

Assume that (a(n))n≥0 is unbounded. The first discrete inverse is defined by
g(n) = min{i : a(i) ≥ n}. If further we have limn→∞ a(n) = ∞, the second
discrete inverse is defined to be h(n) = max{i : a(i) ≤ n}.

Theorem 2. Suppose (a(n))n≥0 is k-synchronized. Then so are the first and
second discrete inverses.

Proof. Again, it suffices to provide first-order formulas. For g(n) it is

∃i A(i, s) ∧ s ≥ n ∧ (∀j (A(j, t) ∧ t ≥ n) =⇒ j ≥ i),
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and for h(n) it is

∃i A(i, s) ∧ s ≤ n ∧ (∀j (A(j, t) ∧ t ≤ n) =⇒ j ≤ i).

�

Our next theorem concerns composition of synchronized sequences.

Theorem 3. Suppose (a(n))n≥0 is (k, �)-synchronized and (b(n))n≥0 is (�,m)-
synchronized. Then (b(a(n)))n≥0 is (k,m)-synchronized.

Proof. Let A be an automaton recognizing pairs (n, a(n)) represented in bases
k and �, respectively, and similarly B for (t, b(t)) in bases � and m. Consider the
first-order formula ∃t A(n, t) ∧ B(t, s); it is true iff s = b(a(n)). �

Remark 2. A priori, given an automaton A with inputs drawn from (Σk ×Σ�)∗,
we do not necessarily know that A represents a sequence (that is, a function f
from N to N) and not just a relation. However, we can check this property of
being a sequence with a first-order formula asserting that for each n we have
A(n, s) for one and only one value of s, as follows:

(∀n ∃s A(n, s)) ∧ (∀n, s, t (A(n, s) ∧ A(n, t)) =⇒ s = t).

At first glance, it might seem that a synchronized representation for a
sequence f(n) might not be very useful because it doesn’t give an explicit way
to compute f on any specific n. But it does! We can, for example, intersect the
synchronized automaton with an automaton of O(logk n) states that recognizes
all words that spell out 0∗(n)k in the first component, and anything in the second
component. The resulting automaton accepts exactly one word with no leading
[0, 0]’s, which we can easily find in O(logk n) time using breadth-first search.
Thus we have proved

Proposition 1. The value of a synchronized sequence f at n can be computed
in linear time in the number of bits of n.

4 Relationship Between Automatic, Synchronized,
and Regular Sequences

Theorem 4. Suppose (a(n))n≥0 is a (k, �)-synchronized sequence taking values
in N, and a(n) = O(1). Then (a(n))n≥0 is k-automatic.

Proof. If a(n) = O(1) then it takes only finitely many values. By intersecting the
synchronized DFA with a DFA that spells out each of these values c expressed
in base-� in the second component, and anything in the first component, we
get a DFA Mc recognizing those n in base k corresponding to a(n) = c. Now,
using the familiar cross-product construction, we can simply combine all these
different DFA’s Mc into one DFAO computing (a(n))n≥0.
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Theorem 5. Suppose a = (a(n))n≥0 is a (k, �)-synchronized sequence taking
values in N, and let S be the range of the sequence a. Then the characteristic
sequence (χS(n))n≥0, defined to be 1 if n ∈ S and 0 otherwise, is �-automatic.

Proof. Let A be a (k, �) synchronized DFA computing a(n). Consider the first-
order formula

∃n A(n, s);

then the set of values of s making this formula evaluate to true is �-automatic.

Theorem 6. Let (a(n))n≥0 be a (k, �)-synchronized sequence. Then it is k-
regular.

Proof. Suppose A is a DFA recognizing the pairs (n, a(n)) with n represented in
base k and a(n) in base �. Consider the first-order formula

∃s i < s ∧ A(n, s);

the set of pairs (i, n) for which this formula evaluates to true forms an (�, k)-
automatic sequence and we can constructively find the appropriate DFA B.
Furthermore, for a given n, the number of i making this formula true is a(n).
Therefore, using a theorem of [11], we can easily compute a linear representation
for a(n) directly from B, and hence (a(n))n≥0 is k-regular. (Actually, the proof
in that paper assumes � = k, but the generalization given here is clear.)

Fig. 2. (2, 3)-synchronized DFA for the Cantor sequence.

Example 1. Consider the DFA in Fig. 2. This one-state DFA A, which is
(2, 3)-synchronized, computes the Cantor sequence (c(n))n≥0 = (0, 2, 6, 8, 18,
20, 24, 26, . . .) of numbers having no 1’s in their base-3 representation; it is
sequence A005823 in the On-Line Encyclopedia of Integer Sequences (OEIS)
[23]. The characteristic sequence of the range of (c(n))n≥0 is easily seen to be
3-automatic.

However, using the formula ∃s i < s ∧ A(n, s) given above, and computing
the corresponding linear representation, gives

v =
[
1 0

]
; ζ(0) =

[
1 0
0 3

]
; ζ(1) =

[
1 2
0 3

]
; w =

[
0
1

]
,

so the sequence (c(n))n≥0 itself is 2-regular.

https://oeis.org/A005823
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5 Propp’s Sequence

Propp [17] studied an increasing sequence s = (s(n))n≥0 having the property
that s(s(n)) = 3n for all n. In fact, there is only one such sequence, and the first
few values are given in Table 1 below [2]. It is sequence A003605 in the OEIS.

Table 1. First few values of Propp’s sequence.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

s(n) 0 2 3 6 7 8 9 12 15 18 19 20 21 22 23 24 25 26 27 30 33

Let us look at three ways of describing it.
First, as an automatic sequence. Consider the characteristic sequence χs(n).

This sequence is 3-automatic, and is generated by the DFAO given in Fig. 3. The
meaning of a/b in the state is that a is the state name and b is the output.

Fig. 3. DFAO generating χs(n).

Second, as a 3-regular sequence. Here its linear representation is given as
follows:

v = [ 0 2 3 ] ; ζ(0) =
[
3 6 6
0 1 0
0 0 1

]
; ζ(1) =

[
0 0 0
1 2 1
0 1 2

]
; ζ(2) =

[
0 −6 −12
0 3 6
1 2 1

]
; w =

[
1
0
0

]
.

Third, the most useful representation is as a 3-synchronized sequence prop(n, x),
embodied by the automaton in Fig. 4. With the aid of this DFA (stored as
prop.txt in the Automata Library of Walnut) we can prove that s does indeed
satisfy the identity s(s(n)) = 3n.

eval proppcheck "?msd_3 An,x,y ($prop(n,x) & $prop(x,y)) => y=3*n":

https://oeis.org/A003605
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Fig. 4. Synchronized DFA for Propp’s function, base 3.

This may be a good time to briefly explain the syntax of Walnut.

– eval is the instruction to evaluate the formula that follows and decide TRUE
or FALSE.

– ?msd 3 specifies that the formula should be evaluated using base-3 represen-
tations of the objects.

– & is logical AND (∧) and => is logical implication ( =⇒ ). Similarly, Walnut
uses | for logical OR (∨), <=> for ⇐⇒ , and ~ for logical NOT (¬).

– A is Walnut’s way of writing the universal quantifier ∀. Similarly, the existen-
tial quantifier ∃ is written E.

– Values of sequences are written @0, @1, etc.
– DFA’s can be defined in terms of regular expressions using the reg command.
– Once defined, a DFA can be referenced by placing a $ before the name.

We can also check that our DFAO for the range of s was correct:

eval proppcheck2 "?msd_3 An PRO[n]=@1 <=> Em $prop(m,n)":

Finally, we can verify yet another formula for s, namely

s(n) =

⎧
⎪⎨

⎪⎩

0, if n = 0;
n + 3k, if 3k ≤ n < 2 · 3k for k ≥ 0;
3(n − 3k), if 2 · 3k ≤ n < 3k+1 for k ≥ 0.

with the following Walnut code:

reg power3 msd_3 "0*10*":

def pow3n "?msd_3 $power3(x) & x<=n & ~Et $power3(t) & x<t & t<=n":

# x is the largest power of 3 that is <= n

eval proppcheck3 "?msd_3 An,x (($pow3n(n,x) & n<2*x) =>

$prop(n,n+x)) | (($pow3n(n,x) & n>=2*x) => $prop(n,(3*n)-3*x))":
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Here we have to use a slightly roundabout formulation in Walnut, because we
cannot express the function k → 3k in our particular first-order logic. Instead we
let the variable x represent 3k, and assert that x is a power of 3 with a regular
expression.

Notice that the representation as a synchronized sequence is more general
than the other two, as we can obtain the representation as an automatic sequence
using the first-order formula ∃n prop(n, s), and we can obtain the representation
as a k-regular sequence by determining the matrices corresponding to the formula
∃s i < s ∧ prop(n, s).

6 Separation

Let x be a sequence over a finite alphabet. We say that a factor w of x is
recurrent if w appears infinitely often in x. Obviously for each n there is at least
one recurrent factor of x of length n. If every finite factor of x is recurrent, then
we say x is recurrent. If further for each factor w there is a constant c = c(w) such
that two consecutive occurrences of w are separated by at most c(w) symbols,
then we say x is uniformly recurrent.

Let w be a recurrent factor and let ij(w) be the starting position of the
j’th occurrence of w in x. Then ij+1(w) − ij(w) is the distance between two
consecutive (possibly overlapping) occurrences of w in x.

We can consider the four quantities

S1(n) = min
|w|=n

min
j

(ij+1(w) − ij(w)),

S2(n) = min
|w|=n

max
j

(ij+1(w) − ij(w)),

S3(n) = max
|w|=n

min
j

(ij+1(w) − ij(w)),

S4(n) = max
|w|=n

max
j

(ij+1(w) − ij(w)).

The function S1(n) was called the repetitivity index by Carpi and D’Alonzo [9].
Note that if x is not uniformly recurrent, then the functions S2 and S4 may not
be well-defined for all n.

Theorem 7. Suppose x is k-automatic. Then S1 and S3 are k-synchronized,
and if x is uniformly recurrent, so are S2 and S4.

Proof. For each of these four interpretations, 1 ≤ i ≤ 4, we can easily write a
first-order formula giving the value t = Si(n) for each corresponding n. �

Here is the Walnut code for the four formulas above in the case of the
Thue-Morse sequence, represented in Walnut with the capital letter T. Here
tmfactoreq is used to assert that the two factors t[i..i+n−1] and t[j..j +n−1]
are equal, and tmconsec asserts that t[j..j + n − 1] and t[k..k + n − 1] are two
consecutive occurrences of t[i..i + n − 1].
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def tmfactoreq "At (t<n) => T[i+t]=T[j+t]":
def tmconsec "(k>j) & $tmfactoreq(i,j,n) & $tmfactoreq(i,k,n) &

Al (j<l&l<k) => ~$tmfactoreq(i,l,n)":
def mindist "(Aj,k $tmconsec(i,j,k,n) => s+j<=k) &

(Ej,k $tmconsec(i,j,k,n) & s+j=k)":
def maxdist "(Aj,k $tmconsec(i,j,k,n) => s+j>=k) &

(Ej,k $tmconsec(i,j,k,n) & s+j=k)":
def s1 "(Ei $mindist(i,n,t)) & (Ai,s $mindist(i,n,s) => s>=t)":
def s2 "(Ei $maxdist(i,n,t)) & (Ai,s $maxdist(i,n,s) => s>=t)":
def s3 "(Ei $mindist(i,n,t)) & (Ai,s $mindist(i,n,s) => s<=t)":
def s4 "(Ei $maxdist(i,n,t)) & (Ai,s $maxdist(i,n,s) => s<=t)":

The first few values for the Thue-Morse sequence are as follows:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1(n) 1 2 3 4 6 6 8 8 12 12 12 12 16 16 16 16 24

S2(n) 3 4 8 8 16 16 16 16 32 32 32 32 32 32 32 32 64

S3(n) 1 4 4 8 8 16 16 16 16 32 32 32 32 32 32 32 32

S4(n) 3 8 9 18 18 36 36 36 36 72 72 72 72 72 72 72 72

We now illustrate one huge advantage to a synchronized representation for
a sequence: we can verify “guessed” formulas with ease. For example, studying
the values of S4(n) for the Thue-Morse sequence given above suggests that

S4(n) = 9 · 2k provided 2k + 2 ≤ n < 2k+1 + 2 and n ≥ 3;
S4(n) ≤ 9n − 18 for n ≥ 3.

We can now verify both of these with Walnut, as follows:

reg power2 msd_2 "0*10*":
eval s4check1 "An,x (n>=3 & $power2(x) & x+2<=n & n<2*x+2) =>

$s4(n,9*x)":
eval s4check2 "An,s (n>=3 & $s4(n,s)) => s+18<=9*n":

and Walnut returns TRUE for both. Here we are using the same trick as we used
for Propp’s sequence, with x here representing a power of 2 (instead of a power
of 3, as was the case for Propp’s sequence).

7 Other Synchronized Sequences

There are many other aspects of automatic sequences x that are synchronized.
For example

– the position of the first occurrence of two identical symbols exactly n symbols
apart [20];
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– the starting position of the first run of length ≥ n;
– length of shortest prefix of x containing all factors of length n (the appearance

function) [3];
– the longest distance between two consecutive length-n palindromes appearing

in x;
– the order |y| of the largest square yy centered at position n of x [11];
– the length of the longest palindromic suffix of x[0..n − 1] [6];
– the length of the shortest prefix of x containing two (possibly overlapping)

occurrences of a length-n word [8];
– the number of distinct factors of length n (called subword complexity or factor

complexity) [13];
– the number of distinct primitive factors of length n [13].

See the cited papers for more details about them. First-order formulas are
relatively easy to construct for all.

8 Growth Rate of Synchronized Sequences

A k-regular sequence (a(n))n≥0 can grow as fast as any polynomial in n, but
no faster. However, for synchronized sequences, their growth rate is much more
constrained.

Let k, � ≥ 2 be integers, and define β = (log �)/(log k).

Theorem 8. Let (a(n))n≥0 be a (k, �)-synchronized sequence. Then

(a) a(n) = O(nβ);
(b) If a(n) = o(nβ), then a(n) = O(1);
(c) If there exists an increasing subsequence 0 < n1 < n2 < · · · such that

limi→∞ a(ni)/nβ
i = 0, then there exists a constant C such that a(n) = C

for infinitely many n.

Proof.

(a) Suppose f �= O(nβ). Then there exists an increasing subsequence (ni)i≥0

such that f(ni)/nβ
i → ∞. Suppose the DFA accepting {(n, f(n))k,� :

n ≥ 0} has t states; then t is the pumping lemma constant. Choose i

such that ni ≥ kt and f(ni)/nβ
i > �t+1, and in the pumping lemma let

z = (ni, f(ni))k,�. Then |z| > t, and furthermore we have

|f(ni)�| > log� f(ni) > log�(n
β
i �t+1) = (log� nβ

i ) + t + 1 = (β log� ni) + t + 1
= (logk ni) + t + 1 ≥ |(ni)k| + t.

Hence the first component of z starts with at least t 0’s, while the second
component starts with a nonzero digit. When we pump (that is, write z =
uvw with |uv| ≤ t and |v| ≥ 1 and consider uv2w) we only add to the
number of leading 0’s in the first component, but the second component’s
base-� value increases in size (since it starts with a nonzero digit). This
implies that f is not a function, a contradiction.
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(b) We prove the contrapositive. Since L = {(n, f(n))k,� : n ≥ 0} is regular,
so is the reversed language LR = {(n, f(n))R

k,� : n ≥ 0}. Let M be a
DFA recognizing LR, and let t be the number of states of M (which is the
pumping lemma constant). Assume that f �= O(1). Then there must be an
n0 > 0 for which f(n0) > �t. Let z = (n0, f(n0))R

k,�. Then |z| > t. Using the
pumping lemma, write z = uvw with |uv| ≤ t and |v| ≥ 1, and consider the
sequence of words zi = uvi+1w ∈ LR for i ≥ 0. Then zi = (ai, bi)R

k,� for some
integers ai, bi and hence f(ai) = bi. Let r, s be integers such that kr ≤ n0 <
kr+1 and �s ≤ f(n0) < �s+1. Then ai < kr+1+i|v| and bi > �s+i|v|. Thus
log� bi − logk ai > s− r −1, and so f(ai) = bi > �s−r−1aβ

i . Thus f(n) > cnβ

for infinitely many n, with c = �s−r−1, and hence f(n) �= o(nβ).
(c) Suppose the synchronized DFA for f has t states. Since limi→∞ f(ni)/nβ

i =
0, there must exist some ni > kt for which f(ni)/nβ

i < �−(t+1). Then

|f(ni)�| ≤ (log� f(ni)) + 1 ≤ (log� nβ
i �−(t+1)) + 1 = (β log� ni) − t

= (logk ni) − t ≤ |(ni)k| − t.

Let z be the basek representation of the pair (ni, f(ni)). The second com-
ponent of z then starts with at least t 0’s. Applying the pumping lemma
to z then implies there are infinitely many n for which f(n) = f(ni). Take
C = f(ni) to obtain the result.

�

Corollary 1. Let f(n) be a (k, �)-synchronized sequence that is increasing. Then
either f = O(1) or f = Θ(nβ), where β = (log �)/(log k).

Let’s now apply some of these ideas to the infinite fixed point

vn = aabaabbaabaabbb · · ·
of the morphism a → aab, b → b. This sequence was previously studied by
Allouche et al. [1], where the authors prove it is not 2-automatic. Their proof
was somewhat involved, but with the bounds of Theorem 8, we can prove a
stronger result rather easily.

Theorem 9. The sequence vn is not k-automatic for any base k ≥ 2.

Proof. Suppose it is k-automatic. Then, as in Sect. 7, the starting position of
the first occurrence of a run of n b’s would be k-synchronized and hence is O(n).
However, the first occurrence of bn appears at position 2n+1 − n − 1, a contra-
diction. �

As another consequence of these ideas, we can now prove a theorem about
the asymptotic critical exponent of an automatic sequence. Recall that a finite
word w of length n has period p if w[i] = w[i+p] for 1 ≤ i ≤ n−p. The smallest
positive period is called the period, and is denoted by per(w). The exponent of
a word w, denoted exp(w), is defined to be |w|/per(w).
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The asymptotic critical exponent ace(x) of an infinite word is defined to be

sup{α : there exist arbitrarily long factors w of x with exp(w) ≥ α}.

Theorem 10. If x is a k-automatic sequence, then ace(x) > 1.

Proof. We saw in Theorem 7 that if x is k-automatic, then the function S1(n)
is k-synchronized. By Theorem 8 (a), we have S1(n) = O(n). Hence there exists
a constant c such that for all sufficiently large n, there are two consecutive
occurrences of some length-n factor z at distance d from each other, with d ≤ cn.
So n ≥ d/c. Let w = wn be a word of length at most d + n with two distinct
occurrences of z, one as prefix and one as suffix. Then

exp(w) = |w|/per(w) ≥ (d + n)/d ≥ (d + d/c)/d = 1 + 1/c > 1.

�

Here is yet another application of synchronization. Recall that a maximal
run is a sequence of consecutive symbols x[i..i + n − 1] all equal to a, where
x[i + n] �= a and (if i > 0) x[i − 1] �= a.

Theorem 11. Let x be a k-automatic sequence. There exists a constant C such
that for all i ≥ 0, there are in x at most C different maximal run lengths � lying
in the interval [ki, ki+1).

Proof. Let f(i) be the number of different maximal run lengths lying in the
interval [ki, ki+1).

For each different run length r ∈ [ki, ki+1) there exists a factor of x of the
form abrc in x with a �= b �= c. These different factors can only overlap, at most,
at the endpoints a, c, so even with the most efficient “packing” of these factors
together, the last such maximal run to appear in x must appear at a starting
position p ≥ (f(i) − 1)ki. But since maximal run lengths are synchronized, by
Theorem 8 there exists a constant c such that the first occurrence of any run of
length t must occur in x at a starting position p ≤ ct. Hence (f(i) − 1)ki ≤ p ≤
ct ≤ cki+1. It follows that f(i) ≤ 1 + ck. Taking C = 1 + ck, the result follows.

Corollary 2. Let x be a k-automatic sequence, and let �1 < �2 < · · · be the
lengths of all maximal runs appearing in x. Then the base-k representations of
{�1, �2, . . .} can be written as a finite union of sets of the form uv∗w.

Proof. From Theorem 11 we know that the number of different maximal run
lengths in the interval [kn, kn+1) is O(1). Hence, letting L be the language of
base-k representations of all these different maximal run lengths, the language
L contains at most a constant number of different words of each length: it is
“slender”. Furthermore, since there is a first-order formula for specifying that
n is the length of a maximal run, we know that L is a regular language. By a
theorem of [21,24], a slender regular language is the union of a finite number of
regular languages of the form uv∗w.
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9 Fibonacci Synchronization

We can talk about Fibonacci synchronization of a sequence (a(n))n≥0 in analogy
with base-k synchronization. Here both n and a(n) are expressed in Fibonacci
representation [15,26]. Defining F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for
n ≥ 2, the Fibonacci representation of a natural number n is defined to be a
binary string w = a1a2 · · · at with a1 �= 0 and aiai+1 = 0 for 1 ≤ i < t such that
n =

∑
1≤i≤t aiFt+2−i.

Theorem 12. Let ϕ = (1 +
√

5)/2, the golden ratio. The following functions
are Fibonacci-synchronized:

(a) n → �ϕn�;
(b) n → �ϕ2n�;
(c) n → �n/ϕ�.

Proof. We start from the identities

[(n)F 0]F = �(n + 1)ϕ� − 1

[(n)F 00]F = �(n + 1)ϕ2� − 2

for n ≥ 0, whose proof can be found, for example, in [18]. First we define a DFA
shift that accepts two inputs in parallel if the second is the left shift of the
first, with a 0 in the last position. Then we can construct synchronized DFA’s
for �ϕn� and �ϕ2n� as follows:

reg shift {0,1} {0,1} "([0,0]|[0,1][1,1]*[1,0])*":
def phin "?msd_fib (s=0 & n=0) | Ex $shift(n-1,x) & s=x+1":
def phi2n "?msd_fib (s=0 & n=0) | Ex,y $shift(n-1,x) & $shift(x,y)

& s=y+2":

with the automata depicted in Fig. 5. Next, using the fact that n/ϕ = nϕ − n,
we get a synchronized automaton for (c) as follows:

def noverphi "?msd_fib Et $phin(n,t) & s+n=t":

giving us the automaton in Fig. 6. �

Corollary 3. Let γ ∈ Q(
√

5) = Q(ϕ) be positive. Then the sequence (�γn�)n≥0

is Fibonacci-synchronized.

Proof. Write γ = (a + bϕ)/c for integers a, b, c with c positive.
First, note that for all real x and integers c ≥ 1 we have �x/c� = � �x	

c �. Let
a, c be integers with a, c positive. Then, writing f(n) = �ϕn�, we have

�γn� =
⌊(

a + bϕ

c

)
n

⌋
=

⌊
an + ϕbn

c

⌋
=

⌊�an + ϕbn�
c

⌋

=
⌊

an + �ϕbn�
c

⌋
=

⌊
an + f(bn)

c

⌋
.
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Fig. 5. Synchronized Fibonacci automata for �ϕn� (top) and �ϕ2n� (bottom).

Since f(n) is synchronized, so is f(bn). And hence so is an + f(bn). And hence
so is �(an + f(bn))/c�.

If b is negative then we use the fact that �−x� = −1 − �x� if x �∈ Z. �

Now we can use all this to prove some recent conjectures of Don Reble about
letters in 3-term arithmetic progressions in the infinite Fibonacci word f =
(fn)n≥0 = 01001001 · · · , which is sequence A003849 in the OEIS. Letting

AP0 := {n : ∃i f [i] = f [i+ n] = f [i+ 2n] = 0} = {0, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, . . .}
AP1 := {n : ∃i f [i] = f [i+ n] = f [i+ 2n] = 1} = {0, 3, 5, 8, 10, 13, 16, 18, 21, 24, . . .}.

Fig. 6. Synchronized Fibonacci automaton for �n/ϕ�.

https://oeis.org/A003849


Synchronized Sequences 15

we can define the sets

R1 := AP0 \AP1 = {2, 4, 6, 9, 11, 12, 15, 17, 19, 22, 23, 25, . . .}
R2 := N \ (AP0 ∪ AP1) = {1, 7, 14, 20, 27, 35, 41, 48, 54, . . .}
R3 := AP0 ∩ AP1 = {0, 3, 5, 8, 10, 13, 16, 18, 21, 24, 26, . . .}.

Defining r = 2, s = (
√

5−1)/2, t = (1+
√

5)/2, Reble conjectured that for x ≥ 1
we have

x + 1 ∈ R1 ⇐⇒ x ∈ A189377 = {n + �sn/r� + �tn/r� : n ≥ 1}
x + 1 ∈ R2 ⇐⇒ x ∈ A189378 = {n + �rn/s� + �tn/s� : n ≥ 1}
x + 1 ∈ R3 ⇐⇒ x ∈ A189379 = {n + �rn/t� + �sn/t� : n ≥ 1}.

So we can prove all the Reble conjectures as follows. Here F is Walnut’s way
of representing the Fibonacci word f .

def ap0 "?msd_fib Ei F[i]=@0 & F[i]=F[i+n] & F[i]=F[i+2*n]":

def ap1 "?msd_fib Ei F[i]=@1 & F[i]=F[i+n] & F[i]=F[i+2*n]":

def r1 "?msd_fib $ap0(n) & ~$ap1(n)":

def r2 "?msd_fib ~$ap0(n) & ~$ap1(n)":

def r3 "?msd_fib $ap0(n) & $ap1(n)":

def fibsr "?msd_fib Er $phin(n,r) & s=(r-n)/2":

def fibtr "?msd_fib Er $phin(n,r) & s=r/2":

def fibrs "?msd_fib $phin(2*n,s)":

def fibts "?msd_fib Er $phin(n,r) & s=r+n":

def fibrt "?msd_fib Er $phin(2*n,r) & s=r-2*n":

def fibst "?msd_fib Er $phin(n,r) & s=2*n-(r+1)":

def a189377 "?msd_fib En,x,y $fibsr(n,x) & $fibtr(n,y) & z=n+x+y":

def a189378 "?msd_fib En,x,y $fibrs(n,x) & $fibts(n,y) & z=n+x+y":

def a189379 "?msd_fib En,x,y $fibrt(n,x) & $fibst(n,y) & z=n+x+y":

eval rebleconj1 "?msd_fib Ax (x>=1) => ($r1(x+1) <=> $a189377(x))":

eval rebleconj2 "?msd_fib Ax (x>=1) => ($r2(x+1) <=> $a189378(x))":

eval rebleconj3 "?msd_fib Ax (x>=1) => ($r3(x+1) <=> $a189379(x))":

and Walnut returns TRUE for the last three.
The positions of the 1’s in A003849 form sequence A003622, namely (as is

well known) �nϕ2� − 1, where ϕ = (1 +
√

5)/2. We can easily prove this with
Walnut, as follows.

eval pos1 "?msd_fib An (F[n]=@1) <=> (Er $phi2n(r,n+1))":

Now let’s look at the possible distances between all occurrences of the 1’s.
This is the set

D1 = {n : ∃i f [i] = f [i + n] = 1} = {0, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 18, . . .},

which we can define in Walnut as follows:

https://oeis.org/A003849
https://oeis.org/A003622
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def dist1 "?msd_fib Ei (F[i]=@1 & F[i+n]=@1)":

Notice that D1 is not cofinite, which we can check as follows:

eval d1notcofinite "?msd_fib Am En (n>m & ~$dist1(n))":

The set D1 is (up to the inclusion of 0) sequence A307295 in the OEIS. This
latter sequence is defined in the OEIS to be A001950(n/2 + 1) if n is even, and
a(n) = A001950((n+1)/2)+1 if n is odd, where A001950 is the sequence �ϕ2n�.
We can prove the equality of these two sequences as follows:

def even "?msd_fib Em n=2*m":

def odd "?msd_fib Em n=2*m+1":

def a307295 "?msd_fib (Em $even(m) & $phi2n(m/2 + 1,n)) |

(Em,r $odd(m) & $phi2n((m+1)/2,r) & n=r+1)":

eval checkdist1 "?msd_fib An (n>=1) => ($dist1(n) <=> $a307295(n))":

The complementary sequence of D1 (that is, N \ D1) is

D1 = {1, 4, 9, 12, 17, 22, 25, . . .},

which is sequence A276885. There the formula 2�(n − 1)ϕ� + n is given for
A276885, which we can prove as follows:

def altc "?msd_fib Em,r $phin(m-1,r) & n=2*r+m":
eval test276885 "?msd_fib An $dist1(n) <=> ~$altc(n)":

See, for example, [12].
R. J. Mathar conjectured (see A276885) that

D1 = {1} ∪ A089910,

where
A089910 = {n : f [n − 1] = f [n − 2]}.

We can prove this as follows:

eval mathar "?msd_fib An (n>=2) => ($altc(n) <=> F[n-1]=F[n-2])":

Finally, let’s prove the classical characterization of the sequences An = �ϕn�
and Bn = �ϕn2� in terms of the “mex” or “minimal excluded number” function,
due to Wythoff [25]. For a set S � N, we define mex(S) = min{n : n �∈ S}.
Then

An = mex{Ai, Bi : 0 ≤ i < n}
Bn = An + n.

We can check this as follows:

def incl "?msd_fib Ei i<n & ($phin(i,s) | $phi2n(i,s))":

# s appears in {A_i, B_i : 0 <= i < n }

def mex "?msd_fib (~$incl(n,s)) & At (t<s) => $incl(n,t)":

# s equals mex {A_i, B_i : 0 <= i < n }

eval mexchk1 "?msd_fib An,s $mex(n,s) <=> $phin(n,s)":

eval mexchk2 "?msd_fib An,s $phi2n(n,s) <=> (Et $phin(n,t) & s=t+n)":

https://oeis.org/A307295
https://oeis.org/A001950
https://oeis.org/A276885
https://oeis.org/A276885
https://oeis.org/A276885
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10 Unsynchronized Sequences

Although a synchronized representation for a sequence is often the most useful
one to have, not all k-regular sequences have one, even if their growth rate might
permit it.

For example, we could consider the number of unbordered length-n factors
of the characteristic sequence of the powers of 2. This is a 2-regular sequence,
but in [13], the authors proved that it is not 2-synchronized.

Here is another example. Consider the function f(n) = n2. The bounds
on growth rate in Theorem 8 do not rule out the possibility that f could be
(k, k2)-synchronized for some k. Assume it is. Then f(n + 1) would be (k, k2)-
synchronized by Theorem 3, and g(n) = f(n + 1) − f(n) would be (k, k2)-
synchronized by Theorem 1 (b). But g(n) = 2n + 1, which cannot be (k, k2)-
synchronized because its growth rate is Θ(n), which violates Corollary 1.

11 Hilbert’s Space-Filling Curve

As lagniappe, we offer one more example.
In 1891 David Hilbert famously described the construction of a continuous

curve that fills the unit square [14]. Instead of filling the unit square, we consider
a sequence (xn, yn)n≥0 that visits every non-negative pair of integers exactly
once, starting from the origin (x0, y0) = (0, 0).

It turns out that the coordinates (xn, yn) of the Hilbert curve are synchronized,
but only if we represent n, xn, and yn in the right way. The right way is to represent
n in base 4, but represent xn and yn in base 2! In other words, the triple (n, xn, yn)
is (4, 2, 2)-synchronized, by a 10-state automaton HS; see [19] for details.

From the synchronized automaton, given (n)4 = a1a2 · · · at, the base-4 rep-
resentation of n, we can easily determine (xn, yn) as explained in the proof of
Proposition 1. The reverse is also true: given the base-2 representations of (x, y),
we can easily determine the n for which (xn, yn) = (x, y), using the same idea.

With the aid of the synchronized representation for HS, we can easily produce
a bitmap image of each generation of the Hilbert curve, as previously done in
[22, Fig. 6].

To do so, we “expand” the curve, inserting rows and column that are blank,
except for when they connect two consecutive points of the curve. The following
Walnut code produces a DFA $hp describing a bitmap image of the Hilbert curve.

def even "Em n=2*m":
def odd "Em n=2*m+1":
def hp "($even(x) & $even(y)) | ($even(x) & $odd(y) &
(En (HS[?msd_4 n][x/2][(y-1)/2]=@1 &
HS[?msd_4 n+1][x/2][(y+1)/2]=@1) |(HS[?msd_4 n][x/2][(y+1)/2]=@1
& HS[?msd_4 n+1][x/2][(y-1)/2]=@1)) | ($odd(x) & $even(y) &
(En (HS[?msd_4 n][(x-1)/2][y/2]=@1 &
HS[?msd_4 n+1][(x+1)/2][y/2]=@1) |(HS[?msd_4 n][(x+1)/2][y/2]=@1
& HS[?msd_4 n+1][(x-1)/2][y/2]=@1))":
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For example, for generation 7 we get the image in Fig. 7.

Fig. 7. Generation 7 of the Hilbert curve.

Acknowledgments. Thanks to Jean-Paul Allouche and Narad Rampersad for their
helpful comments.
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Annalen 38, 459–460 (1891)

15. Lekkerkerker, C.G.: Voorstelling van natuurlijke getallen door een som van getallen
van Fibonacci. Simon Stevin 29, 190–195 (1952)

16. Mousavi, H.: Automatic theorem proving in Walnut (2016). Preprint available at
http://arxiv.org/abs/1603.06017

17. Propp, J.: Problem proposal 474. Crux Math. 5, 229 (1979). Solution by G.
Patruno, Crux Math. 6, 198 (1980)

18. Reble, D.: Zeckendorf vs. Wythoff representations: comments on A007895 (2008).
Manuscript available at https://oeis.org/A007895/a007895.pdf

19. Shallit, J.: Hilbert’s spacefilling curve described by automatic, regular, and syn-
chronized sequences (2021). Preprint, https://arxiv.org/abs/2106.01062

20. Shallit, J.: The Logical Approach to Automatic Sequences: Exploring Combina-
torics on Words with Walnut. Cambridge University Press (2022, to appear)

21. Shallit, J.O.: Numeration systems, linear recurrences, and regular sets. Inform.
Comput. 113, 331–347 (1994)

22. Shallit, J.O., Stolfi, J.: Two methods for generating fractals. Comput. Graph. 13,
185–191 (1989)

23. Sloane, N.J.A., et al.: The on-line encyclopedia of integer sequences (2021). https://
oeis.org

24. Szilard, A., Yu, S., Zhang, K., Shallit, J.: Characterizing regular languages with
polynomial densities. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS,
vol. 629, pp. 494–503. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
55808-X 48

25. Wythoff, W.A.: A modification of the game of Nim. Nieuw Archief voor Wiskunde
7, 199–202 (1907)

26. Zeckendorf, E.: Représentation des nombres naturels par une somme de nombres
de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Liège 41, 179–182 (1972)
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Abstract. A regular continuant is the denominator K of a terminat-
ing regular continued fraction, interpreted as a function of the partial
quotients. We regard K as a function defined on the set of all finite
words on the alphabet 1 < 2 < 3 < · · · with values in the positive
integers. Given a word w = w1 · · ·wn with wi ∈ N we define its multi-
plicity µ(w) as the number of times the value K(w) is assumed in the
Abelian class X (w) consisting of all permutations of the word w. We
prove that there is an infinity of different lacunary alphabets of the form
{b1 < · · · < bt < l + 1 < l + 2 < · · · < s} with bj , t, l, s ∈ N and s
sufficiently large such that µ takes arbitrarily large values for words on
these alphabets. The method of proof relies in part on a combinatorial
characterisation of the word wmax in the class X (w) where K assumes
its maximum.

Keywords: Values of continuants · Regular continued fractions ·
Combinatorial word problems

1 Introduction

Given a sequence w = (w1, . . . , wn), of positive wi, let K(w) be the continuant
of w, i.e., the denominator of the finite regular continued fraction

[w] =
1

w1 +
1

w2 +
1

. . . +
1

wn

We shall regard w as a word of length n over the alphabet {1 < 2 < 3 < . . . }
and write w = w1 · · · wn. Since K(w) = K(w̄), where w̄ = wn · · · w1 denotes
the reversal of w, we shall henceforth identify each word w with its reverse w̄.
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Let X (w) denote the Abelian class of w consisting of all permutations of w.
The following problem has attracted much attention and led to a number of
applications (see e.g. [1,4,5,7,8]): Let A = {a1 < · · · < as} be a finite ordered
alphabet with aj ∈ N. Given a word w = w1w2 · · · wn with wi ∈ A, find the
arrangements wmax, wmin ∈ X (w) maximizing resp. minimizing the function K(·)
on X (w). The first author [3] gave an explicit description of both extremal
arrangements wmax and wmin and showed that in each case the arrangement
is unique (up to reversal) and independent of the actual values of the positive
integers ai. He also investigated the analogous problem for the semi-regular
continuant K ′ defined as the denominator of the semi-regular continued fraction

[w]• =
1

w1 − 1

w2 − 1

. . . − 1
wn

with entries wi ∈ {2, 3, ...}. He gave a fully combinatorial description of the mini-
mizing arrangement w′

min for K ′(·) on X (w) and showed that the arrangement is
unique (up to reversal) and independent of the actual values of the positive inte-
gers ai. However, the determination of the maximizing arrangement w′

max for the
semi-regular continuant turned out to be more difficult. He showed that in the
special case of a 2-digit alphabet {(2 ≤) a1 < a2}, the maximizing arrangement
w′

max is a Sturmian word and is independent of the values of the ai. Recently the
second author together with M. Edson and A. De Luca [8] developed an algo-
rithm for constructing w′

max over any ternary alphabet {(2 ≤) a1 < a2 < a3},
and showed that the maximizing arrangement is independent of the choice of the
digits. In contrast, they exhibited examples of words w = w1 · · · wn over a 4-digit
alphabet A = {(2 ≤) a1 < a2 < a3 < a4} for which the maximizing arrangement
for K ′(·) is not unique and depends on the actual values of the positive integers
a1 through a4. In the course of these investigations the following problem came
up: given an alphabet A of positive integers, we say that a word w on A has
multiplicity μ = μ(w) if the value K(w) occurs precisely μ times in the multi-set
{K(x) : x ∈ X (w)}. The multiplicity μ′(w) is defined analogously for the semi-
regular continuant K ′(w). Thus each Abelian class X (w) is split into subclasses
of equally valued words. Question: is it true that μ can take arbitrarily large
values for infinitely many alphabets and is there a combinatorial proof of this?
Our aim here is to give a positive answer to this question in the case of regular
continued fractions:

Theorem 1. Fix positive integers 1 ≤ t ≤ l < s, b1 < ... < bt ≤ l and let A =
{b1 < · · · < bt < l + 1< · · · <s}. Then for all s sufficiently large, there exists an
infinite sequence of words wk over the alphabet A with multiplicities μ(wk) → ∞
as k → ∞.
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It should be noted that for fixed s one obtains the largest possible alphabet
A′={1<2 <· · · < s} by choosing b1 = t = l = 1 (< s). Our proof makes use of
the combinatorial structure of wmax found by the first author in [3].

2 Preliminaries

We introduce some notation. Let w = w1 · · · wn be a word of length n ≥ 2 with
wj ∈ N (j = 1, . . . , n). The regular continuant of w has a matrix representation

K(w1) = w1 and K(w) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w1 −1 0 · · · 0

1 w2 −1
. . .

...

0 1
. . . . . . 0

...
. . . . . . wn−1 −1

0 · · · 0 1 wn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, n ≥ 2

It can also be defined recursively by K({}) = 1 ({} = empty word), K(w1) =
w1 and K(w1 · · · wj) = wjK(w1 · · · wj−1) + K(w1 · · · wj−2) for j ≥ 2. For each
1 ≤ k ≤ m ≤ n we set wk,m := wk · · · wm and W := W1,n, Wk,m := K(wk,m).
The following fundamental formula goes back to the late 19th century and can
be found in Perron [2], p. 11, (4): (W =) W1,n = W1,jWj+1,n + W1,j−1Wj+2,n

(j ∈ {1, . . . , n − 1}). From this we infer the simple but useful inequality

W1,n < 2W1,jWj+1,n. (1)

Let A = {a1 < · · · < as} ⊂ N. We consider a word w = w1 · · · wn :=
ap1
1 · · · aps

s of length n with Parikh vector p = (p1, ..., ps) with p1 + · · · + ps = n
where

ar = aa · · · a︸ ︷︷ ︸
r-times

denotes a sequence of r equal elements a. Let X = X (A,p) denote the set
of all permutations of w where we identify each word v with its reverse v̄. Let
N(A,p) denote the cardinality of X . Then, N(A,p) ≥ n!

2p1!...ps!
. We put Wmax =

Wmax(A,p) := max{K(v) : v ∈ X}. It was shown in [3] (see (3), p. 190) that
Wmax is uniquely attained (up to reversal) by the arrangement

asLs−1as−2Ls−3 · · · ap1
1 · · · as−3Ls−2as−1Ls (2)

where Li = api−1
i . Let P = P (A,p) = #{K(v) : v ∈ X}.

3 Proof of Theorem 1

Our first goal is to describe how to specify the last digit s (≥ 2) in an alphabet
A : {b1 < · · · < bt < l + 1 < · · · < s}. We consider ‘equipartitioned’ words
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w = w1 · · · wn := bm1 · · · bmt (l + 1)m · · · sm.

corresponding to the Parikh vector p = (m,m, . . . ,m) in which each digit of
A occurs precisely m-times in w. We will give a lower bound for s (see (7) below).
To this end, we introduce the quantities Qr,m−1 := K(rm−1) (r ∈ 1, 2, ...) . They
are the elements of the r-th generalized Fibonacci sequence which is determined
by the recursion Qr,0 := 1, Qr,1 := K(r) = r, Qr,j+1 := rQr,j + Qr,j−1 (j =
1, 2, . . . ).

Claim: Qr,j−1 < (r + 1)j for each fixed r ≥ 1 and all j ≥ 1.

To prove the claim, we proceed by induction on j : This is obviously true for
j = 1 and j = 2. Then by the induction hypothesis

Qr,j−1 = rQr,j−2 + Qr,j−3 < r(r + 1)j−1 + (r + 1)j−2

= (r + 1)j−2(r(r + 1) + 1) < (r + 1)j−2(r + 1)2

= (r + 1)j .

In order to obtain an upper bound for the number P (A,p), it suffices to consider
words over the largest allowed s-digit alphabet A′ : {1 < · · · < s}, b1 = t = l =
1 (< s), with Parikh vector p′ = (m,m, . . . ,m︸ ︷︷ ︸

s-times

). Clearly

P (A,p) < Wmax(A,p) ≤ Wmax(A′,p′),

and by (2)

wmax(A′,p′) = s ·(s−1)m−1 ·(s−2) · · · 1 ·1m−1 · · · (s−2)m−1 ·(s−1) ·sm−1. (3)

By iteration of (1) applied to the decomposition in (3) we obtain the
inequalities

Wmax(A′,p′) = K(wmax(A′,p′))

< 22s s · (s − 1) · · · 3 · 2
s∏

j=1

K(jm−1)

= 22s s!
s∏

j=1

Qj,m−1

< 22s s!
s∏

j=1

(j + 1)m

= 22s s!((s + 1)!)m

and hence
P (A,p) < 22s s! ((s + 1)!)m. (4)
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For each s ≥ 2 we define m0 = m0(s) to be the smallest positive integer such
that

22s s! ≤
(

100
99

)m0

.

Then

P (A,p) <

(
100
99

((s + 1)!)
)m

for all m ≥ m0(s). (5)

On the other hand, we have the following lower bound for the number of
different words in X (w):

N(A,p) ≥ ((s − l + t) m)!
2(m!)s−l+t

(6)

Based on the condition (7) below, we will later make a choice of s = s′(t, l)
depending on the parameters t, l. We apply the estimates provided by Sterling’s
formula to the factorial terms occurring in relations (5) and (6) to obtain

(P (A,p))1/m <
100
99

(s + 1)! <
100
99

12
11

e−(s+1)(s + 1)s+1
√

2π(s + 1).

(((s − l + t)m)!)1/m > e−(s−l+t)((s − l + t)m)s−l+t
√

2π(s − l + t)m
1/m

.

(
2 (m!)s−l+t

)1/m
< e−(s−l+t)ms−l+t

(
2

12
11

(√
2πm

)s−l+t
)1/m

.

When we put the right hand sides of the last two inequalities together, the
terms es−l+t and ms−l+t cancel out, and if we keep the parameters t, l fixed
for the moment, the terms of the form

√ · 1/m tend to 1 as m → ∞. Letting
m → ∞ we get

lim
m→∞

(
N(A,p)
P (A,p)

)1/m

≥ 99
100

11
12

es+1(s − l + t)s−l+t

√
2π(s + 1)(s + 1)s+1

=
363
400

es+1(s + 1 − l + t − 1) s+1−l+t−1

√
2π(s + 1)(s + 1)s+1

=
363
400

es+1

√
2π(s + 1) (s − l + t)l−t+1

(
1 − l − t + 1

s + 1

)s+1

.

For fixed t, l (l − t ≥ 1) the function f(t, l, s) =
(
1 − l−t+1

s+1

)s+1

in the
variable s is strictly increasing on the interval [l − t + 1,∞) with f(t, l, s) ↗
e−(l−t)−1 as s → ∞. We define s0 to be the lowest integer such that f(t, l, s0) ≥
1
2 e−(l−t)−1. Then

lim
m→∞

(
N(A,p)

P (A,p)

)1/m

≥ 363

400

es+1√
2π(s + 1) (s − l + t)l−t+1

1

2
e−(l−t)−1 =: H(t, l, s)
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for all s ≥ s0. Obviously there exists some sufficiently large s′ = s′(t, l) ≥ s0
such that

H(t, l, s′) > 1. (7)

Therefore the right hand side of
(

N(A,p)
P (A,p)

)
> (H(t, l, s′))m (8)

can be made arbitrarily large by letting m → ∞. We call an (s′−l+t)-digit alpha-
bet A = {(1 ≤) b1 < · · · < bt < · · · < s′} admissible if s′ = s′(t, l) fulfills condi-
tion (7) We consider the word u(A,p1) = (b1)m1 · · · (bt)m1(l + 1)m1 · · · (s′)m1 of
length n = (s′ − l + t)m1 with Parikh vector p1 = ((m1)s

′−l+t) where we choose
m1 ≥ m0 such that

(
N(A,p1)
P (A,p1)

)
> (H(t, l, s′))m1 . The multi-set X1 = X (A,p1) is

made up of the N(A,p1) = #X1 permuted arrangements of u. There exists
at least one word w1 ∈ X1 with multiplicity μ ≥ 2 because otherwise we
would have N(A,p1) = P (A,p1) which contradicts (8) with m = m1. Let
μ1 (≥ 2) be the maximal multiplicity attained by words w ∈ X1. Next choose
m2 > m1(s′) such that H(t, l, s′)m2 > μ1. We claim that at least one word w2

from X2 = X (A,p2), p2 = ((m2)s
′−l+t) has multiplicity μ > μ1. Otherwise we

would have N(A,p2) ≤ μ1P (A,p2) which contradicts (8) with m = m2. Next
let μ2 (≥ μ1) be the maximal multiplicity attained by words w ∈ X2. Proceeding
with this construction step by step we end up with a sequence of words wk on
A with multiplicities μk → ∞ as k → ∞. The construction can be carried out
for infinitely many different admissible alphabets. This completes the proof of
Theorem 1.

The question remains largely unsolved in the case of semi-regular continuants
though it seems certain that the behavior is quite similar to the regular case.

There is some evidence supporting the following:

Conjecture. Given any ordered alphabet A = {a1 < · · · < as} (aj ∈ N, s ≥ 2),
let μ ≥ 2 be a positive integer. Then there exist infinitely many words on A whose
multiplicity is precisely μ. The problem appears to require a deeper investiga-
tion into the values of continuants. Most likely our theorem and the conjecture
also hold for continuants of semi-regular continued fractions. Unfortunately no
higher-dimensional analogue of the theorem is available at present for s ≥ 4 due
to the fact that very little is known about the maximizing arrangements w′

max

for s ≥ 4 (see [8]).
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Via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy

manselmo@unisa.it
2 Dipartimento di Matematica e Informatica, Università di Catania,
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Abstract. A k-ary n-cube is a graph with kn vertices, each associated to a word
of length n over an alphabet of cardinality k. The subgraph obtained deleting
those vertices which contain a given k-ary word f as a factor is here introduced
and called the k-ary n-cube avoiding f . When, for any n, such a subgraph is
isometric to the cube, the word f is said isometric. In the binary case, isomet-
ric words can be equivalently defined, independently from hypercubes. A binary
word f is isometric if and only if it is good, i.e., for any pair of f -free words u and
v, u can be transformed in v by exchanging one by one the bits on which they dif-
fer and generating only f -free words. These two approaches are here considered
in the case of a k-ary alphabet, showing that they are still coincident for k = 3,
but they are not from k = 4 on. Bad words are then characterized in terms of their
overlaps with errors. Further properties are obtained on non-isometric words and
their index, in the case of a quaternary alphabet.

Keywords: Hypercubes · Words avoiding factors · Index of a word · Overlap ·
Hamming and Lee distance

1 Introduction

Graphs and words, or strings, are two of the most central notions in computer science,
especially in interconnection networks and combinatorics on words areas. Many paral-
lel processing applications have communication patterns that can be viewed as graphs
called k-ary n-cubes [10]. The k-ary n-cube, Qk

n, is a graph with kn vertices, each asso-
ciated to a word of length n over a k-ary alphabet identified withZk = {0, 1, . . . , k−1}.
Two vertices in Qk

n are adjacent whenever their associated words differ in exactly one
position, and the mismatch is given by two symbols x and y, with x ≡ y ± 1 mod k.
Special cases include rings (when n = 1), hypercubes Qn (when k = 2) and tori.

The binary case has been extensively investigated [4]. In order to obtain some vari-
ants of hypercubes such that the number of vertices increases slower than in a hyper-
cube, Hsu [5] introduced Fibonacci cubes. They received a lot of attention afterwards
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and found application in theoretical chemistry (see [8] for a survey). These notions
have been then extended to define the generalized Fibonacci cube Qn(f) [6]. It is the
subgraph of Qn obtained by considering only vertices associated to binary words that
do not contain a given word f as a factor, i.e. f -free binary words. Using this nota-
tion, and binary alphabet {0, 1}, Fibonacci cubes are the ones avoiding f = 11. In this
framework, a binary word f is said isometric when, for any n ≥ 1, Qn(f) can be iso-
metrically embedded into Qn, and non-isometric, otherwise [9]. Isometric words have
been recently investigated from many points of view (see [2,15]).

Observe that, in the binary case, the distance of two vertices in the hypercube coin-
cides with their Hamming distance. Hence, the definition of isometric binary word can
be equivalently given ignoring hypercubes and adopting a point of view closer to com-
binatorics on words. A binary word f is d-good if for any pair of f -free words u and v
of length d, u can be transformed in v by exchanging one by one the bits on which they
differ and generating only f -free words. It is good if it is d-good for all d. A binary word
f is bad if it is not good. The index of a binary bad word is the threshold d from which
the word is no longer d-good. The structure of binary bad words has been characterized
in [7,9,14,16,17]. In particular, a binary word is good if and only if it is isometric.
Recently, binary bad words have been considered in the two-dimensional setting, and
bad pictures have been investigated [1].

In this paper, we extend these definitions to the case of a generic k-ary alphabet. We
introduce the k-ary n-cube avoiding f ,Qk

n(f), for any k-ary word f . It is obtained from
Qk

n by elimination of the vertices containing f as a factor. In other words, only vertices
avoiding factor f are kept. Then, we define isometric/non-isometric, and good/bad k-
ary words, keeping the terminology of the binary case. While in the binary and ternary
cases the two approaches coincide, this is no more true for k-ary alphabets, with k ≥ 4.
Then, we introduce two distinct definitions of index of a word and show lower and
upper bounds in relation to the length of the word.

Binary bad words are characterized in [9] and [14] as the ones having a 2-error
overlap, i.e., a prefix that differs from the suffix of the same length in exactly 2 positions.
We generalize this nice characterization to the case of an alphabet of any cardinality
k ≥ 2. Recall that the notions of bad and non-isometric word do not coincide for k-ary
alphabets with k ≥ 4. It turns out that the characterization still holds for bad (not for
non-isometric) k-ary words.

Particular interest is devoted to the quaternary alphabet, as the first value of k
such that the definitions of bad and non-isometric word no longer coincide, and
taking in mind the importance of quaternary alphabet, for example to model DNA
sequences. Hence, our preferred quaternary alphabet will be the genetic alphabet
Δ = {A,C, T,G}. Some of the results on quaternary (non-) isometric words will be
achieved applying known properties of binary ones. In fact, for all n, the cube Q4

n is
isomorphic to the hypercube Q2

2n [3]. The isomorphism is obtained by the Gray map,
g from Δ∗ to the set of binary words of even length given by g(A) = 00, g(C) = 01,
g(T ) = 11, and g(G) = 10. Observe that the distance of two vertices in Q4

n is no longer
their Hamming distance, but it is their Lee distance. Indeed, the Hamming and the Lee
distance are the same for binary (and ternary) words, while they differ when dealing
with k-ary words, with k ≥ 4. We will characterize non-isometric quaternary words as
the ones having a prefix and a suffix of same length whose Lee distance is 2.
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Another question that naturally arises on quaternary words is whether there is a rela-
tion between the isometricness of a quaternary word f and of its binary representation
by the Gray map, g(f). We obtain that if f is non-isometric then so is g(f). The vice
versa holds if and only if g(f) has an overlap of even length with exactly 2 errors.

As a conclusion, let us point out that the topics treated in this paper, for their inter-
disciplinary feature, promise to contribute to many areas of computer science. For
instance, the property of avoiding a factor intervenes in combinatorics of words, as
well as in the investigation of DNA sequences, where the avoided factor is referred
to as an absent word [13]. Finally, overlaps with errors can play an important role in
approximate pattern matching [11].

2 Preliminaires

Let Σ be an alphabet and |Σ| = k. Throughout the paper, Σ will be identified with
Zk = {0, 1, . . . , k − 1}. A word (or string) f ∈ Σ∗ of length n is f = x1x2 · · · xn,
where x1, x2, · · · , xn are symbols in Σ. The set of words over Σ of length n is denoted
Σn. Let f [i] denote the symbol of f in position i, i.e. f [i] = xi. Then, f [i . . . j] =
xi · · · xj , for 1 ≤ i ≤ j ≤ n, is a factor of f . The prefix of f of length l is prel(f) =
f [1 . . . l]; while the suffix of f of length l is sufl(f) = f [n − l + 1 . . . n]. When
prel(f) = sufl(f) then prel(f) is referred to as an overlap of f of length l.

Let u, v ∈ Σ∗ be two words of the same length. Then, the Hamming distance
dH(u, v) between u and v is the number of positions at which u and v differ. The Lee
distance between two words u, v ∈ Z

n
k , u = x1 · · · xn and v = y1 · · · yn is

dL(u, v) =
n∑

i=1

min(|xi − yi|, k − |xi − yi|).

The distance dG(u, v) between two vertices u and v of a graph G is the length of
any shortest path in G from u to v (zero, if u = v). A subgraph G′ of G is called an
isometric subgraph of G if for any two vertices u, v ∈ V (G′), dG′(u, v) = dG(u, v).

A k-ary n-cube, denoted Qk
n, is a graph with kn vertices, each associated to a word

of length n over an alphabet of cardinality k identified with Zk = {0, 1, . . . , k−1}. Two
vertices u and v in Qk

n are adjacent if and only if there exists an integer j ∈ {1, . . . , n}
such that u[j] ≡ v[j] ± 1 mod k, and u[i] = v[i] for all i ∈ {1, . . . , n}\{j} [12]. A
k-ary n-cube can be recursively defined as in [10], or in the following way. A k-ary 1-
cube,Qk

1 , is a ring of k nodes labelled 0, 1, . . . , k−1, with edges connecting i and (i+1)
mod k, for any i ∈ Zk, while a k-ary n-cube can be obtained as Qk

n = Qk
1 × Qk

n−1.
In the sequel, Σ will denote a generic alphabet of cardinality k, while B is used to

denote the binary alphabet B = {0, 1}, and Δ to denote the quaternary alphabet Δ =
{A,C, T,G}, referred to as the genetic alphabet. Symbols A and T (C and G, resp.)
will be called complementary symbols, in analogy to the Watson-Crick complementary
bases they represent. The alphabet Δ will be identified with Z4, in such a way that
A, C, T , and G will be identified with 0, 1, 2, and 3, respectively. Therefore, pairs
of complementary symbols have Lee distance 2, whereas pairs of non-complementary
symbols have Lee distance 1. Moreover, Q4

n is the n-cube defined starting from the ring
(A,C, T,G) (see Fig. 1 for n = 1 and n = 2). Thus, dQ4

1
(A, T ) = dQ4

1
(C,G) = 2, i.e.

the complementary symbols have distance 2.



30 M. Anselmo et al.

Fig. 1. Q4
1 and Q4

2 with alphabet Δ = {A, C, T, G}

3 Non-isometric and Bad Words

The notions of non-isometric and bad binary words have been introduced in [7,9],
where the authors observe that they are equivalent definitions. In this section, we gen-
eralize these definitions to words over an alphabet Σ with k symbols, k ≥ 2. It will
turn out that the definitions are equivalent for k = 2, 3, while they differ from k = 4
onwards. That is why we introduce two distinguished definitions. Then, we present a
characterization of bad words which holds for any cardinality k of the alphabet.

Let Σ be an alphabet with |Σ| = k and f be a word over Σ. Then, s ∈ Σ∗ is
said f -free if it does not contain f as a factor. Given two f -free words, u and v of
the same length, we can transform u in v by replacing one-by-one all the symbols in
which they differ. This results in a sequence of words w0, w1, . . . , wh such that w0 = u,
wh = v and for i = 0, 1, · · · , h − 1, wi differs from wi+1 only in one position, i.e.,
dH(wi, wi+1) = 1. Its length is h. When each wordwi, for i = 0, 1, · · · , h, is f -free the
sequence is called an f -free transformation from u to v. Note that the next definitions
are referred to a given map which identifies Σ with Zk = {0, 1, . . . , k − 1}.
Example 1. Let f = 010, u = 0011, v = 0110 be in B∗. Two transformations from
u to v are the following ones, τ : w0 = 0011, w1 = 0111, w2 = 0110, and τ ′: w′

0 =
0011, w′

1 = 0010, w′
2 = 0110. Then, τ is f -free, while τ ′ is not f -free.

Definition 2. Let Σ be a k-ary alphabet and d a positive integer. A word f ∈ Σ∗

is d-good if for any pair of f -free words u and v of length d, there exists an f -free
transformation from u to v of length dH(u, v). A word is good if it is d-good for any
d ≥ 1. A word is bad if it is not good.

An example of bad word is given in Example 11. On the other hand, one can show
that the words 10s, 11010 are examples of good words (see [6,9]).

Definition 3. Let Σ be a k-ary alphabet and let f ∈ Σ∗. The subgraph of Qk
n obtained

by deleting those vertices which contain f as a factor is called k-ary n-cube avoiding
f , and is denoted Qk

n(f).
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Definition 4. Let Σ be a k-ary alphabet. A word f ∈ Σ∗ is isometric if for all d ≥ 1,
Qk

d(f) is an isometric sub-graph of Qk
d. A word f ∈ Σ∗ is non-isometric if it is not

isometric.

In analogy to the definition of good word, the definition of isometric word can be
equivalently given by ignoring the notion of n-cube and referring to some kind of f -free
transformation, as defined below.

Definition 5. Let Σ be a k-ary alphabet and f ∈ Σ∗. Let u, v ∈ Σn be f -free words.
An L-transformation of length h from u to v is a sequence of words w0, w1, . . . , wh

such that w0 = u, wh = v, and for any i = 0, 1, · · · , h − 1, dL(wi, wi+1) = 1. The
L-transformation is f -free if for any i = 0, 1, · · · , h, word wi is f -free.

Note that the definition of f -free L-transformation differs from the one of f -free
transformation only in the distance that is used, the Lee or the Hamming distance. The
definitions coincide when k = 2, since the Lee distance coincides with the Hamming
distance when k = 2. Observing that for any u, v ∈ Σn, dQk

n
(u, v) = dL(u, v) [3], the

following result holds.

Lemma 6. Let Σ be a k-ary alphabet. A word f ∈ Σ∗ is isometric if and only if for all
n ≥ 1, and f -free words u, v ∈ Σn, there is an f -free L-transformation from u to v of
length equal to dL(u, v).

Remark 7. Let f ∈ Σ∗ and let u, v ∈ Σ∗ be two f -free words. Consider any f -free
L-transformation from u to v of length equal to dL(u, v). Then, only symbols in the
positions where u and v differ are modified in this transformation. Moreover, at each
step of the transformation, a symbol x can be replaced by y only if dL(x, y) = 1. Hence,
each position i such that dL(u[i], v[i]) = d is replaced exactly d times.

Remark 8. Let f ∈ Σ∗ and let u, v ∈ Σ∗ be f -free words. If there exists an f -free
L-transformation from u to v, then there exists an f -free L-transformation from v to u.

Remark 9. Consider a non-isometric word f ∈ Σ∗ and two f -free words u, v ∈ Σn,
for some n ≥ 1, such that no f -free L-transformation from u to v of length equal to
d = dL(u, v) exists; suppose d to be minimal. Let V = {i1, i2, . . . , im}, with 1 ≤ i1 <
i2 < · · · < im ≤ n be the set of all the positions where u and v differ; m ≤ d.

The minimality of d implies that when, in any L-transformation from u to v of
length d, u[i], for i ∈ V , is replaced, then the resulting word, say wi, has an occurrence
of f including position i. Otherwise, let ı ∈ V such that wı is f -free. Then, wı and v are
f -free words, with dL(wı, v) = d− 1 < d. Further, there is no f -free L-transformation
from wı to v of length d − 1 (otherwise it would provide an f -free L-transformation
from u to v of length d).

Let us show a characterization of k-ary bad words. It involves the overlaps with
errors of a word. Note that in other frameworks, a prefix of a word that is equal to the
suffix of the same length is (commonly) called a border or a bifix instead of an overlap.
Even though, we have preferred to maintain the original term (in the paper where it
is defined). A word f of length n has a q-error overlap of length l, 0 ≤ l, q < n, if
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dH(prel(f), sufl(f)) = q. Differently saying, the prefix and the suffix of length l of f
differ in exactly q positions [16]. The characterization of bad words is proved in [9,14]
for the binary case. Let us emphasize that the generalization holds true for bad words
(and not for non-isometric). Please, note that the proof of Theorem 10 closely follows
the proof of Theorem 5.1 in [9] and Lemma 2.2 in [14], unless for the definition of a
new Condition+ for 2-error overlaps. It is Condition∗ of [14] plus a further property
of f . Nevertheless, we sketch the proof in order to give some details which will be used
in the following proofs.

Theorem 10. Let Σ be a k-ary alphabet and f ∈ Σ∗. Then, f is bad if and only if f
has a 2-error overlap.

Proof (Sketch). The proof that, if f ∈ Σ∗ is bad then f has a 2-error overlap, can be
given as in the case of a binary alphabet (see Theorem 5.1 in [9]).

From now on, readers can find more details, to be adapted to the k-ary case, in the
proof of Lemma 2.2 in [14].

Suppose that |f | = n and f has a 2-error overlap of length l = n − r. We show that
f is bad, by constructing two f -free words over Σ, of same length, for which no f -free
transformation between them, of length equal to their Hamming distance, exists.

Let prel(f) disagree from sufl(f) in positions i and j, with i < j, and f [i] = x,
f [j] = y, f [r + i] = x′ and f [r + j] = y′, for some x, y, x′, y′ ∈ Σ, with x �= x′ and
y �= y′. Let f (i) (f (j), resp.) be obtained from f by replacing symbol x (y, resp.) in
position i (j, resp.) with x′ (y′, resp.). Consider α = prer(f)f (i) and β = prer(f)f (j).

Let us show that α is f -free. Indeed, assume, on the contrary, that α is not f -free
and let fα a copy of f that occurs in α starting from position r1+1, with r1 < r. Since
f [i] = x = fα[i], then α[r1+i] = x. Note that r1+i < r+i and, hence, α[1 . . . r1+i] =
f [1 . . . r1 + i]. This implies x = α[r1 + i] = f [r1 + i] = α[r + r1 + i] = fα[r + i],
against the fact that fα[r + i] = x′.

Moreover, one can show that β has a factor f if and only if the 2-error overlap of f
satisfies

Condition+:

⎧
⎨

⎩

j − i = r/2
f [r + i] = f [r + j]
f [i + t] = f [j + t] for all 0 ≤ t ≤ r/2 − 1

Suppose that the 2-error overlap of f does not satisfy Condition+. Therefore, α
and β are f -free words and dH(α, β) = 2, since they differ only in positions r + i and
r+j. Moreover, the word obtained from α, by replacing α[r+ i] with β[r+ i], (α[r+j]
with β[r + j], resp.) contains f as a factor; it occurs in position r + 1 (1, resp.). Hence,
there exists no f -free transformation from α to β of length equal to dH(α, β).

On the other hand, if the 2-error overlap of f satisfies Condition+, then α is still
f -free, but β contains one, and only one, occurrence of f that starts in position r/2+1.
Now let k1 and k2 such that i − 1 = (k1r/2) + q and n − j = (k2r/2) + h, for some
0 ≤ q, h ≤ r/2 − 1. Then k1 ≥ 0 and k2 ≥ 2.

In case k1 ≥ 1, f has another 2-error overlap, namely the one of length n − (k1 +
k2)r/2, that does not satisfy Condition+. A construction analogous to the one used
for α and β, leads to a pair of f -free words μ and ν for which there does not exist any
f -free transformation of length equal to their Hamming distance; hence, f is bad.
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In case k1 = 0, set k = (r/2) + j, and denote by f (i) the word obtained from f by
replacing f [i] with f [r + i], and by f (j,k) the word obtained from f by replacing f [j]
and f [k] with f [r + j] and f [i], respectively. Define η = prer(f)f (i)sufr/2(f) and
γ = prer(f)f (j,k)sufr/2(f). Note that η and γ disagree in positions r + i, r + j and
(3r/2)+ j. Moreover, the words obtained from η by replacing η[r+ i] with γ[r+ i], or
η[r + j] with γ[r + j], or η[(3r/2) + j] with γ[(3r/2) + j], all contain f as a factor; it
occurs in position r+1, 1 and (3r/2)+ 1, respectively. Thus, no f -free transformation
from η to γ of length equal to their Hamming distance exists and f is bad. Note also
that, in this case, since k1 = 0 and k2 ≥ 2, we have 3r/2 ≤ n = |f | and, therefore,
|η| = |γ| ≤ 2n = 2|f |. ��
Example 11. Let f = ATC ∈ Δ3. The word f has a 2-error overlap of length 2; here
n = 3, r = 1, and n − r = 2. Hence, ATC is bad from Theorem 10. Let us exhibit
two f -free words α and β with no f -free transformation of length equal to dH(α, β),
following the proof of Theorem 10. We have that pre2(f) disagrees from suf2(f) in
positions i = 1 and j = 2, and f [i] = A, f [j] = T , f [r + i] = T and f [r + j] = C.
Then, α = prer(f)f (i) = ATTC and β = prer(f)f (j) = AACC. The words α and
β are f -free words and dH(α, β) = 2. Moreover, there is no f -free transformation from
α to β of length dH(α, β) = 2. Indeed, if we replace α[2] with β[2] = A then f occurs
in position 2 of α; if we replace α[3] with β[3] = C then f occurs in position 1.

Example 12. Let f = AACC ∈ Δ4. The word f has a 2-error overlap of length 2.
Hence, f = AACC is bad from Theorem 10. Note that the 2-error overlap of f satisfies
Condition+. Indeed, we have i = 1, j = 2, r = 2, f [r+i] = f [3] = C = f [4] = f [r+
j] and f [i] = A = f [j]. Therefore, following the proof of Theorem 10 in the case that
the 2-error overlap of f satisfies Condition+ and k1 = 0, let us set k = (r/2) + j = 3
and let us consider the two words η = prer(f)f (i)sufr/2(f) = AACACCC and

γ = prer(f)f (j,k)sufr/2(f) = AAACACC. The words η and γ are f -free words
and dH(η, γ) = 3. Moreover, there is no f -free transformation from η to γ of length
dH(η, γ) = 3. Indeed, if we replace η[3] with γ[3] = A then f occurs in position 3 of
η; if we replace η[4] with γ[4] = C then f occurs in position 1 and if we replace η[5]
with γ[5] = A then f occurs in position 4.

The definitions of bad and non-isometric words are equivalent for binary words. Let
us investigate the case of k-ary words, with a generic k ≥ 2. Observe that the main
reason why the equivalence holds true for binary words is that the ring Q2

1 is just an
edge, hence it is a complete graph. Therefore, dQ2

n
(u, v) = dL(u, v) = dH(u, v) for

any u, v ∈ Bn. In a similar way, the ring Q3
1 is a triangle, hence it is a complete graph.

Therefore, dQ3
n
(u, v) = dL(u, v) = dH(u, v) for any u, v ∈ Σn. Let us state this result.

Proposition 13. Let |Σ| ≤ 3 and f ∈ Σ∗. Then, f is bad iff f is non-isometric.

The notions of bad and non-isometric word no longer coincide for words on a qua-
ternary alphabet. The proof is given by Examples 15 and 16 which show a quater-
nary non-isometric and good word (AGAC) and a quaternary isometric and bad word
(ATC).
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Proposition 14. There exist a word in Δ∗ which is non-isometric and good, and a word
in Δ∗ which is isometric and bad.

Example 15. Let f = AGAC ∈ Δ∗. The word f has no 2-error overlap and thus it
is good by Theorem 10. On the other hand, AGAC is non-isometric. In fact, consider
vertices w = AGAAAC and w′ = AGATAC in Q4

6. Their distance is 2, because there
are two paths of length 2 linking them, namely (AGAAAC,AGACAC,AGATAC)
and (AGAAAC,AGAGAC,AGATAC), but no edge, even if they differ only in one
position.

Note that w = AGAAAC and w′ = AGATAC are f -free, and hence they are
vertices of Q4

6(f), too. To the contrary, AGACAC and AGAGAC both contain f as
factor, and thus they are not vertices of Q4

6(f). Hence, there is no path of length 2 in
Q4

6(f) connecting w and w′, and then dQ4
6(f)

(AGAAAC,AGATAC) > 2. Therefore,
Q4

6(f) is not an isometric subgraph of Q4
6, and f is not isometric.

Example 16. Let f = ATC ∈ Δ∗. The word f has a 2-error overlap, the one of length
2, and thus it is bad by Theorem 10. On the other hand, ATC is isometric.

Suppose by contradiction that it is non-isometric. In view of Lemma 6, there exist
d ≥ 1 and two f -free words u, v ∈ Δd, such that there does not exist any f -free L-
transformation from u to v of length equal to dL(u, v). Without loss of generality, let u
and v be of minimal Lee distance dL(u, v). Let i1 < i2 < . . . im be the error positions,
i.e., the positions where u and v differ. The minimality of dL(u, v) implies that, in any
L-transformation from u to v of length dL(u, v), each time a symbol of u in one of these
positions, say i, is replaced, then an occurrence of ATC appears, either in position i, or
i − 1, or i − 2 (see Remark 9).

Consider any error position, say i. If u[i] and v[i] are complementary symbols, then
the replacement of u[i] by v[i] can be accomplished without factor ATC appearing. In
fact, if u[i] and v[i] are A and T , then two replacements are needed on this position (see
Remark 7), and going through G, the factor ATC cannot appear. Otherwise, if u[i] and
v[i] are C and G, if a factor ATC appears when going through A, then going through
T it will not; and vice versa. Therefore, any error position in u and v, does not involve
two complementary symbols.

Consider now i1, the leftmost error position and suppose first that u[i1] = A. The
symbol A cannot be (directly) replaced by T (because dL(A, T ) �= 1), nor by G, since
this replacement cannot let ATC appear. Let us show that it cannot even be replaced by
C. In fact, in this case, an occurrence of ATC appears from position i1 −2. Then, since
neither i1 − 2 nor i1 − 1 is an error position, factor ATC could no longer be removed,
against the f -freeness of v. In view of Remark 8, not even v[i1] = A can hold true.

An analogous reasoning shows that u[i1] and v[i1] cannot be T . Finally, u[i] and
v[i] cannot be neither C nor G. In fact, if u[i]=C then v[i] cannot be A or T , as just
proved, nor G, since the case of complementary symbols has been excluded before.

Observe that the non-isometricness of AGAC and the isometricness of ATC have
been proved in Examples 15 and 16 by ad-hoc techniques. The proofs will become
much more simple, by applying Theorem 23 in the next section.
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4 Quaternary Isometric and Non-isometric Words

In this section, we investigate the case of (non-) isometric words over an alphabet of
cardinality k = 4, as the first value of k such that the definitions of bad and non-
isometric word no longer coincide. Some of the results in this section will be achieved
applying known properties of binary (non-) isometric words, in view of the following
remark.

Remark 17. The graphs Q4
n and Q2

2n are isomorphic, for all n. The isomorphism is
obtained by the Gray map g given by g(A) = 00, g(C) = 01, g(T ) = 11, and
g(G) = 10 (see [3]).

The Gray morphism is a bijection from Δ∗ to (B2)∗. Hence, in this section we will
consider binary words of even length, only. A word f ∈ Δ∗ will be possibly denoted
as (f)4 to stress its belonging to the quaternary alphabet, while the corresponding word
g(f) ∈ B∗ will be denoted as (f)2. The following question naturally arises.

Question 18. Does (f)2 non-isometric imply (f)4 non-isometric, or vice versa?

To completely answer the question we will need the characterization of non-isometric
quaternary words in Theorem 23. Now, let us show a partial result useful in the sequel.

Proposition 19. Let (f)4 ∈ Δ∗ and (f)2 ∈ (B2)∗. If (f)2 is non-isometric and it has
a 2-error overlap of even length then (f)4 is non-isometric.

Proof. Let (f)2 ∈ B2n be a non-isometric word with a 2-error overlap of length 2l.
The sequel of the proof refers to the proof of Theorem 10 for the notations and the

construction of a pair of (f)2-free words which witness the non-isometricness of (f)2,
starting from a given 2-error overlap. The pair is referred to either as ((α)2, (β)2), or
((μ)2, (ν)2), or ((η)2, (γ)2), as appropriate. Let us show that the corresponding pairs
in Δ∗ witness that (f)4 is non-isometric.

Note that, since (f)2 has a 2-error overlap of even length 2l then (f)4 has either a 1-
error or a 2-error overlap of length l. More exactly, suppose that pre2l((f)2) disagrees
from suf2l((f)2) in positions i and j, with i < j. If i is odd and j = i+1, then (f)4 has
a 1-error overlap, where the error is caused by two complementary symbols. Otherwise,
(f)4 has a 2-error overlap where any error is given by two non-complementary symbols.
Then, prel((f)4) disagrees from sufl((f)4) in position s = 	i/2
, in the first case, and
in positions s = 	i/2
 and t = 	j/2
, in the second case.

Consider now the words (α)4 and (β)4 in Δ∗ which correspond to (α)2 and (β)2.
If the 2-error overlap of (f)2 does not satisfy Condition+ then (α)2 and (β)2 are

(f)2-free words, and therefore, (α)4 and (β)4 are (f)4-free words. Moreover, (α)4 and
(β)4 differ uniquely either in position l + s, because of two complementary symbols,
or in positions l + s and l + t, because of non-complementary symbols. Suppose, by
the contrary, that there exists an (f)4-free L-transformation from (α)4 to (β)4 of length
dL((α)4, (β)4) = 2, and set r = 2n − 2l. The two changes of symbols correspond to
complementing (α)2[r + i] and (α)2[r + j], yielding two occurrences of (f)2 in (α)2,
in positions r + 1 and 1, respectively. Since both r + 1 and 1 are odd numbers, then
(f)4 occurs in (α)4. The contradiction shows that (f)4 is non-isometric in this case.
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On the other hand, if the 2-error overlap of (f)2 satisfies Condition+, then (α)2
is still (f)2-free, but (β)2 contains a unique occurrence of (f)2; it starts in position
r/2 + 1. If r/2 is an odd integer then r/2 + 1 is an even value and, therefore, the
occurrence of (f)2 in (β)2 starts in an even position. So (f)4 does not occur in (β)4
and the conclusion that (f)4 is non-isometric follows as in the previous case. Suppose
now that r/2 is an even integer. In this case, the occurrence of (f)2 in (β)2 starts in an
odd position, r/2 + 1. So (β)4 is not (f)4-free. Let us construct some other pairs of
words to prove that (f)4 is non-isometric. Let k1 and k2 such that i − 1 = (k1r/2) + q
and 2n − j = (k2r/2) + h, for some 0 ≤ q, h ≤ r/2 − 1.

If k1 ≥ 1, then (f)2 has another 2-error overlap of even length 2n − (k1 + k2)r/2,
which does not satisfy Condition+. Let (μ)2 and (ν)2 be the related words. Hence,
(f)4 has either a 2-error or a 1-error overlap. Reasoning as for (α)4 and (β)4, we have
that (μ)4 and (ν)4 are (f)4-free words which witness the non-isometricness of (f)4.

If k1 = 0, consider the words (η)4, (γ)4 ∈ Δ∗ that correspond to the words (η)2
and (γ)2. Since (η)2 and (γ)2 are (f)2-free words, (η)4 and (γ)4 are (f)4-free words.
Moreover, dL((η)4, (γ)4) = 3. In fact, (η)4 and (γ)4 differ either in two positions
(because of a pair of complementary symbols and another pair of non-complementary
symbols), or in three positions (because of three pairs of non-complementary symbols).
Consider, by contraposition, an L-transformation from (η)4 to (γ)4 of length equal to
dL((η)4, (γ)4) = 3. The three changes of symbols that are necessary to transform (η)4
in (γ)4, correspond to complementing (η)2[r+i], (η)2[r+j] and (η)2[(3r/2)+j]. These
changes provide three occurrences of (f)2 in (η)2; they start in positions r + 1, 1 and
(3r/2) + 1, respectively. Since they are all odd positions, they yield three occurrences
of (f)4 in (η)4. Hence, (f)4 is non-isometric. ��

Let us introduce a new definition that will be the key of the characterization of
quaternary non-isometric words.

Definition 20. Let f ∈ Σ∗ . The word f has a q-Lee-error overlap of length l if
dL(prel(f), sufl(f)) = q.

Note that if, for some f ∈ Δ∗, prel(f) and sufl(f) differ in exactly one posi-
tion because of a pair of complementary symbols, then f has a 2-Lee-error overlap of
length l. For example, AGAC ∈ Δ∗ has a 2-Lee-error overlap of length 2. Indeed,
dL(AG,AC) = 2.

Proposition 21. Let f ∈ Δ∗. If f is non-isometric then f has a 2-Lee-error overlap.

Proof. Let u, v ∈ Δn be f -free words for which there is no f -free L-transformation
from u to v of length equal to d = dL(u, v), and assume that d is as small as possible.
Clearly, d ≥ 2. Let V = {i1, i2 . . . , im}, with 1 ≤ i1 < i2 . . . , im ≤ n, be the set of all
positions in which u differs from v; note that m ≤ d. Consider an L-transformation τ
from u to v of length d; by hypothesis, it is not f -free. Further, for any i ∈ V , whatever
is the letter u[i] replaced in the first step of τ , the resulting word, say wi, contains an
occurrence of f (see Remark 9). Two cases are possible: there is no i ∈ V such that u[i]
and v[i] are complementary symbols (case 1), and the opposite one (case 2).

In case 1), we have m = d. The same argument used in the case of a binary alphabet
(see Theorem 5.1 in [9]) shows that if f is non-isometric then it has an overlap with
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errors only in two distinct positions. The hypotheses of case 1) imply that f has a 2-
Lee-error overlap.

In case 2), let us show the proof for u[i] = A and v[i] = T (the other cases go
similarly). If u[i] is replaced by C (G, resp.) then the resulting word contains an occur-
rence of f . These two occurrences of f start in different positions, but they both include
position i of u. So, they have an overlap with one mismatch. This implies that f has a
2-Lee-error overlap (the error is due to a C that does not match a G). ��
Proposition 22. Let f ∈ Δ∗. If f has a 2-Lee-error overlap then f is non-isometric.

Proof. Let f = (f)4 ∈ Δn be a word with a 2-Lee-error overlap of length l. Consider
prel((f)4) and sufl((f)4). They differ either in one position, because of two com-
plementary symbols, or in two positions, each one because of two non-complementary
symbols. Since g(A) = 00, g(C) = 01, g(T ) = 11, and g(G) = 10, then, in both cases,
it turns out that g(f) = (f)2 ∈ B2n has a 2-error overlap of even length 2l. Moreover,
(f)2 is non-isometric and, hence, (f)4 is non-isometric applying Proposition 19. ��

Propositions 21 and 22 prove the following characterization of quaternary non-
isometric words. Theorem 23 provides a simple tool to test whether a quaternary word is
isometric or not. Moreover, it allows us to answer Question 18, about the isometricness
of a quaternary word and its representation as a binary word.

Theorem 23. Let f ∈ Δ∗. Then, f is non-isometric if and only if it has a 2-Lee-error
overlap.

Proposition 24. Let (f)4 ∈ Δ∗ and (f)2 ∈ (B2)∗.
If (f)4 is non-isometric then (f)2 is non-isometric.
If (f)2 is non-isometric, then (f)4 is non-isometric if and only if (f)2 has a 2-error
overlap of even length.

Proof. If (f)4 is non-isometric then it has a 2-Lee-error overlap (Proposition 21) and
(f)2 has a 2-error overlap of even length (as shown in the proof of Proposition 21).
Hence, (f)2 is bad (Theorem 10) and non-isometric (Proposition 13).

Suppose that (f)2 is non-isometric. If (f)2 has a 2-error overlap of even length then
(f)4 is non-isometric (Proposition 19). If (f)4 is non-isometric, then it has a 2-Lee-
error overlap and (f)2 has a 2-error overlap of even length, as shown before. ��
Example 25. Let (f)2 = 000110 and (f)4 = ACG. Theorem 10 shows that (f)2 is
non-isometric (or equivalently bad) because it has a 2-error overlap. Indeed, all the 2-
error overlaps of (f)2 are of odd length, namely 3 and 5, and Proposition 19 cannot be
applied. Further, (f)4 is isometric, because it has no 2-Lee-error overlap (Theorem 23).

5 The Index of Bad and Non-isometric Words

The index of a binary bad word has been introduced in [7]. In this section, we extend
the notion to k-ary alphabets. Two distinct definitions of index are given, accordingly
to the definitions of bad and non-isometric k-ary word. We show some bounds on the
index of a word in terms of its length. Next proposition warrants the introduction of
the index for k-ary words. It can be proved as the analogous result for binary words
(Lemma 2.1 in [9]).
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Proposition 26. Let Σ be a k-ary alphabet and f ∈ Σ∗.
If f is not d-good then, for any d′ > d, f is not d′-good.
If Qk

d(f) is not an isometric subgraph of Qk
d then, for any d′ > d, Qk

d′(f) is not an
isometric subgraph of Qk

d′ .

Definition 27. The badness-index of a bad word f ∈ Σ∗, denoted by Ibad(f), is defined
as the smallest integer d for which f is not d-good. The badness-index of a good word
is ∞.

Definition 28. The non-isometricness-index of a non-isometric word f ∈ Σ∗, denoted
by Iiso(f), is defined as the smallest integer d for which Qk

d(f) is not an isometric
subgraph of Qk

d . The non-isometricness-index of an isometric word is ∞.

The index of a binary bad word is bounded in [17] as follows. Let f ∈ Bn be a bad
binary word and I(f) be its index. Then n+ 1 ≤ I(f) ≤ 2n − 1. Let us generalize the
result to k-ary alphabets.

Proposition 29. Let f ∈ Σn be a bad word. Then n + 1 ≤ Ibad(f) ≤ 2n − 1.

Proof. The lower bound directly follows from the definition of Ibad(f).
Recall that if f is a bad word then it has a 2-error overlap (Theorem 10). The proof

allows to construct a pair of f -free words in Σ∗ for which no f -free transformation of
length equal to their Hamming distance exists. In some cases, the pair is (α, β), in others
(μ, ν) or (η, γ). In any case, one can observe that the length of the words α, β, μ, ν, η, γ
is strictly less than 2|f | and, hence, the bound follows. ��

In a similar way, the same bounds can be proved for the non-isometricness-index of
a non-isometric word in the case Σ = Δ. It is sufficient to use the definition of Iiso(f)
and the construction in Proposition 19.

Proposition 30. Let f ∈ Δn be a non-isometric word. Then n+1 ≤ Iiso(f) ≤ 2n−1.

Example 31. Let f = ATC, α = ATTC, β = AACC ∈ Δ∗ as in Example 11. Since
there is no f -free transformation from α to β, then f is not d-good, where d = 4.
From the lower bound given in Proposition 29, we have Ibad(f) ≥ 4 and, therefore,
Ibad(f) = 4. On the other hand, as seen in Example 16, f = ATC is isometric and,
hence, Iiso(f) = ∞.

Let f ′ = AAT ∈ Δ∗. Consider the f ′-free words α′ = AAGT and β′ = AACT .
We have dQ4

4
(AAGT,AACT ) = 2, but there is no path of length 2 in Q4

4(f
′) con-

necting α′ and β′. Therefore, Q4
4(f

′) is not an isometric subgraph of Q4
4, hence f ′

is not isometric. Moreover, from the lower bound given in Proposition 30, we have
Iiso(f) ≥ 4 and, therefore, Iiso(f) = 4. On the other hand, f ′ = AAT has no 2-error
overlap, so it is good by Theorem 10 and, hence, Ibad(f ′) = ∞.
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Abstract. Each strictly increasing sequence of positive integers can be
used to define a numeration system so that any non-negative integer
can be represented by a suitable and unique string of digits. We con-
sider sequences defined by a two termed linear recurrence with constant
coefficients having some particular properties and investigate on the pos-
sibility to define a Gray code for the set of the strings arising from them.

Keywords: Gray code · Numeration system · Regular language

1 Introduction

In [4] a very simple and general system of numeration is presented, based on a
strictly increasing integer sequence and an iterating division algorithm. Each
non-negative integer can then be uniquely represented by a suitable string.
These strings form a language over a certain alphabet and, clearly, the language
depends on the selected sequence. In some cases interesting and useful represen-
tations for the numbers can be obtained. In [4] several application of different
systems of numeration can be found, ranging from compressing and partition-
ing large dictionaries, ranking permutations with repetitions, up to designing
error-insensitive codes for data transmission.

In [2] some languages arising from particular sequences (defined by a two
termed linear recurrence) are analysed and in [1] a definition af a Gray code
for some of them is provided. In the present paper we continue this study and
define a new Gray code with Hamming distance equal to 1 for a new group
of languages. More precisely, we consider the sequence whose general term is
am = kam−1 − ham−2, with k > h > 0 and initial conditions a0 = 1, a1 = k,
and we give a Gray code for the set of the strings representing all the integers
� ∈ {0, 1, 2, . . . , am − 1} for a fixed value of m, in the case of h being even.

2 Preliminaries

Given a sequence {am}m≥0 of positive integers such that a0 = 1 and am < am+1

for each m ∈ N, let N be any non-negative integer. Consider the largest term
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an of the sequence such that an ≤ N . More precisely, an = max{am | am ≤ N}
(for the particular case N = 0, see below). We divide N by an obtaining N =
dnan + rn. Obviously, for the remainder rn, it is clear that rn < an. If we divide
rn by an−1, we get rn = dn−1an−1 + rn−1, with rn−1 < an−1. Then, iterating
this procedure until the division by a0 = 1 (where of course the remainder is 0),
we have:

N = dnan + rn 0 ≤ rn < an ,

rn = dn−1an−1 + rn−1 0 ≤ rn−1 < an−1 ,

rn−1 = dn−2an−2 + rn−2 0 ≤ rn−2 < an−2 ,

· · · = · · · · · · · · · · · · · · · · · · · · · · · ·

· · · = · · · · · · · · · · · · · · · · · · · · · · · ·

r3 = d2a2 + r2 0 ≤ r2 < a2 ,

r2 = d1a1 + r1 0 ≤ r1 < a1 ,

r1 = d0a0 .

The above relations imply that:

N = dnan + dn−1an−1 + dn−2an−2 + . . . . . . + d1a1 + d0a0 . (1)

Expression (1) is the representation of N in the numeration system S =
{a0, a1, a2, . . . . . .}, and the string dndn−1 . . . d1d0 is associated to the number N
(in what follows the term “representation” equivalently refers either to expression
(1) or to its associated string). This method [4] can be applied to every non-
negative integer and in the case N = 0, clearly, all the coefficients di are 0 (in
other words the representation of 0 is simply the string 0). Moreover, we have

ri = di−1ai−1 + di−2ai−2 + . . . . . . + d1a1 + d0a0 < ai , (2)

for each i ≥ 0.
It is possible to show [4] that if N =

∑n
i≥0 diai with

diai + di−1ai−1 + . . . + d1a1 + d0a0 < ai+1 (3)

for each i ≥ 0, then the representation N =
∑n

i≥0 diai is unique. For the sake of
completeness, we recall the complete theorem:

Theorem 1. Let 1 = a0 < a1 < a2 < . . . be any finite or infinite sequence
of integers. Any non-negative integer N has precisely one representation in the

system S = {a0, a1, a2, ...} of the form N =
n∑

i≥0

diai where the di are non-

negative integers satisfying (3).
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As an example, consider the well-known sequence of Pell numbers (sequence
M1413 in [5]) pm = 1, 2, 5, 12, 29, . . . defined by p0 = 1, p1 = 2, pm = 2pm−1 +
pm−2. The representation of N = 16 is associated to the string 1020.

3 Strings from a Number Sequence

Given a sequence {am}m≥0, for a fixed m > 0, we consider all the integers
� ∈ {0, 1, 2, . . . , am − 1}. According to the scheme of the previous section, the
representations of the integers j with am−1 ≤ j < am is j = dm−1am−1 +
dm−2am−2 + . . . + d0a0 (so that the associated string is dm−1dm−2 . . . d0),
while, following the same scheme, the remaining integers (i.e. the integers
0 ≤ j < am−1) have a representation with less than m digits. For example:
the representation of am−1 − 1 = dm−2am−2 + . . . + d0a0 has m − 1 digits. For
our purpose (the construction of a Gray code), we require that all the represen-
tations of the considered integers � ∈ {0, 1, 2, . . . , am − 1} have m digits, so we
pad the string on the left with 0’s until we have m digits: the representation of
am−1 − 1 becomes am−1 − 1 = 0am−1 + dm−2am−2 + . . . + d0a0 (therefore, the
associated string is 0dm−2 . . . d0).

With this little adjustment, we now define the following sets:

L0 = {ε} ,

Lm = {dm−1 . . . d0 | the string dm−1 . . . d0 is the representation of an integer
� < am in the numeration system {an}n≥0 }.
Finally, we denote by L the language obtained by taking the union of all the
sets Lm:

L =
⋃

m≥0 Lm.
We remark that each element of Lm has precisely m digits, so that some string
dm−1 . . . d0 can have a prefix consisting of consecutive zeros. Moreover, each
Lm contains precisely am elements (which are the representations of each � ∈
{0, 1, . . . , am − 1}).

Referring to the sequence of Pell numbers pm = {1, 2, 5, 12, 29, . . .} defined
in Sect. 2, we have:

L0 = {ε}

L1 = {0, 1}

L2 = {00, 01, 10, 11, 20}

L3 = {000, 001, 010, 011, 020, 100, 101, 110, 111, 120, 200, 201}

L4 = {0000, 0001, 0010, 0011, 0020, 0100, 0101, 0110, 0111, 0120, 0200, 0201, 1000,
1001, 1010, 1011, 1020, 1100, 1101, 1110, 1111, 1120, 1200, 1201, 2000,
2001, 2010, 2011, 2020}
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The strings in L2 are, respectively, the representations of the integers � ∈
{0, 1, 2, 3, 4}. This corresponds to the case m = 2 where am = 5. Note that L2

contains exactly a2 = 5 elements.
It is not difficult to realize that the alphabet of the language L strictly

depends on the sequence {am}m≥0. In general it is possible to set an upper
bound for the digits di. From (3), we deduce diai < ai+1 − ∑i−1

j=0 djaj , so that,
since the numbers are all integers:

diai ≤ ai+1 − 1 −
i−1∑

j=0

djaj ≤ ai+1 − 1 ,

leading to

di ≤
⌊

ai+1 − 1
ai

⌋

. (4)

Therefore, the alphabet for Lm is given by {0, 1, . . . , s} with

s = max
i=0,1,...,m−1

{⌊
ai+1 − 1

ai

⌋ }

,

and, denoting by Σ the alphabet for L , we have Σ = {0, 1, . . . , t} with

t = max
i

{⌊
ai+1 − 1

ai

⌋ }

.

We now investigate on the strings deriving from integer sequences defined by
the following recurrences, where k > h > 0, with k, h ∈ N:

am =

⎧
⎪⎨

⎪⎩

1 if m = 0
k if m = 1
kam−1 − ham−2 if m ≥ 2

It is not difficult to show that am < am+1 for each m ≥ 0, so that Theorem
1 can be applied. Moreover, from [2] we deduce that the alphabet Σ for the lan-
guage L is Σ = {0, 1, . . . , k − 1} and that the language L is the set constituted
by all the words w = urur−1 . . . u0 ∈ Σ∗ (w having length r+1, with r ≥ 0) such
that if ui = k−1 then ui−1 ≤ k−h−1, and if ui−1 = ui−2 = . . . = uj = k−h−1,
j > 0, then uj−1 ≤ k − h − 1.

4 A Gray Code for Ln

We introduce some notations (as in [3]) in order to express the language L in
an alternative recursive way.

– If α is a symbol and L is a list of words L = (v1, v2, . . . , vs), then α · L =
(αv1, αv2 . . . , αvs) is the list obtained by left concatenating α to each string
of the list L;
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– if i and j are symbols, then ij · L is the list obtained by concatenating i to
each string of j · L (or equivalently ij · L = i · (j · L));

– if L is a list of words, L̄ is the list in the reverse order;
– if L is a list of words, (L)i is L if i is even and L̄ if i is odd;
– if L and M are two lists, L ◦ M is their positions preserving union. For

example, if L = (v1, v2) and M = (w1, w2), then L ◦ M = (v1, v2, w1, w2)
which is considered different from (v2, w1, v1, w2);

– if Lj , Lj+1, . . . , Lj+r are lists, ©r
�=0Lj+� is the list Lj ◦ . . . ◦ Lj+r.

– if L is a list of words, then first(L) is the first element of L and last(L) is
the last element of L.

The set Ln of the of the strings of L having length n, lexicographically
ordered, by using the above notation and operations, can be defined as:

Ln =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ε) if n = 0

(0, 1, . . . , k − 1) if n = 1

(©k−2
i=0 i · Ln−1

)

◦ (©k−h−2
i=0 (k − 1)i · Ln−2

)

◦ ©n−2
�=1

(©k−h−2
α=0 (k − 1)(k − h − 1)�α · Ln−�−2

)

◦ (k − 1)(k − h − 1)n−1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

if n ≥ 2.

(5)

It is rather complicated, but the idea is the following:

– There is nothing to explain for n = 0 and n = 1.
– For a given n ≥ 2, any prefix up to k − 2 can be appended to any string of

length n − 1 (this is the first line of the case n ≥ 2 in the above formula).
– The prefix to append can start also with k − 1. In this case we have to pay

attention to the second digit since, according to the description of L at the
end of the previous section, the digit following k − 1 must be less or equal
to k − h − 1. So, the possible prefixes of length 2 starting with k − 1 are
(k − 1)0, (k − 1)1, . . . (k − 1)(k − h − 2), and also (k − 1)(k − h − 1). If the
chosen prefixes are different from (k − 1)(k − h − 1), there are no restrictions
for the following digits, so they can be appended to any string of length n−2
(this is the second line of the case n ≥ 2 in the above formula).

– If the prefix starting with (k−1)(k−h−1) is chosen, then other digits k−h−1
can appear, but after the last one the following digit (if present) must be less
than k − h − 1. So, the prefix starts with (k − 1)(k − h − 1)� and there are
two possibilities:

• add a digit α ≤ k − h − 2 followed by any string of length n − � − 2 (this
is the third line of the case n ≥ 2 in the above formula) or

• add α = k − h − 1 up to the end of the string (this is the fourth line of
the case n ≥ 2 in the above formula).
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If h is even, then the strings of Ln can be suitably arranged so that they form
a Gray code with Hamming distance equal to 1. In particular we define

Ln =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ε) if n = 0

(0, 1, . . . , k − 1) if n = 1

(
©k−2

r=0 r · Lk+r+1
n−1

)

◦
(
(k − 1) · ©k−h−2

r=0 r · Lk−h+r+1
n−2

)

◦
(
(k − 1) · ©n−2

�=1 (k − h − 1)� ·
(
©k−h−2

α=0 α · Lk−h+α+1

n−�−2

))

◦ (k − 1)(k − h − 1)n−1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

if n ≥ 2.

(6)

We note that the lists Ln and Ln contain exactly the same strings. It can be
easily seen that the construction of the strings with length n ≥ 2 is the same
but in Ln, sometimes the sublists are read in the reverse order.

We have the following proposition.

Proposition 1. The list Ln is a Gray code with Hamming distance equal to
one, for each n ≥ 0.

Proof. There is nothing to prove if n = 0, 1. We have to check that:

1. in lines 1, 2, 3 and 4 in the case n ≥ 2 of Definition 6 the strings are listed in
a way such that in any couple of consecutive strings they differ in only one
entry;

2. the last string u of the i-th line and the first string v of the (i + 1)-th line
differ in only one entry, for i = 1, 2, 3.

For what the first point is concerned we proceed by induction, starting from
the first line

(
©k−2

r=0 r · Lk+r+1
n−1

)
. The list L0 and L1 are, trivially, Gray codes.

Suppose that all the lists Lj are Gray codes up to j = n−1. Then, since Lk+r+1
n−1 is

a Gray code for inductive hypothesis, the list r ·Lk+r+1
n−1 is a Gray code, too, as it

is obtained by appending the same entry r at each string. We have now to check
the Hamming distance between last

(
r · Lk+r+1

n−1

)
and first

(
(r + 1) · Lk+r+2

n−1

)
,

for r = 0, . . . , . . . k − 3. We have:

last
(
r · Lk+r+1

n−1

)
= r · last

(
Lk+r+1

n−1

)

and

first
(
(r + 1) · Lk+r+2

n−1

)
= (r + 1) · first

(
Lk+r+2

n−1

)
.
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Since k + r + 1 and k + r + 2 have opposite parity, it is Lk+r+1
n−1 = Ln−1

and Lk+r+2
n−1 = Ln−1, or vice versa. In both cases, clearly, it is last

(
Lk+r+1

n−1

)
=

first
(
Lk+r+2

n−1

)
and the required Hamming distance is 1, since the two strings

differ only in the first position.
A similar argument can be used to show that the strings arising from the

second line
(
(k − 1) · ©k−h−2

r=0 r · Lk−h+r+1
n−2

)
form a Gray code.

The fourth line is a single string and there is nothing to prove, while in the
third line we have to check the Hamming distance between the last string arising
with a certain � and the first string arising with � + 1, for � = 1, 2, . . . , n − 3:

last
(
(k − 1)(k − h − 1)� ·

(
©k−h−2

α=0 α · Lk−h+α+1

n−�−2

))

= (k − 1)(k − h − 1)� · last
(
©k−h−2

α=0 α · Lk−h+α+1

n−�−2

)

= (k − 1)(k − h − 1)�(k − h − 2) · last
(
L2k−2h−1

n−�−2

)

and

first
(
(k − 1)(k − h − 1)�+1 ·

(
©k−h−2

α=0 α · Lk−h+α+1

n−�−3

))

= (k − 1)(k − h − 1)�+1 · first
(
©k−h−2

α=0 α · Lk−h+α+1

n−�−3

)

= (k − 1)(k − h − 1)�+10 · first
(
Lk−h+1

n−�−3

)

= (k − 1)(k − h − 1)�(k − h − 1)0 · first
(
Lk−h+1

n−�−3

)
.

Since 2k − 2h − 1 is odd, observe that:

last
(
L2k−2h−1

n−�−2

)
= last

(Ln−�−2

)
= first (Ln−�−2) = 0 · first

(
Lk+1

n−�−3

)

(the last equality being derived from Definition 6).
Recalling that h is even, we have that first

(
Lk−h+1

n−�−3

)
= first

(
Lk+1

n−�−3

)
,

having k + 1 and k − h + 1 the same parity. Therefore

(k − 1)(k − h − 1)�(k − h − 2) · last
(
L2k−2h−1

n−�−2

)

and
(k − 1)(k − h − 1)�(k − h − 1)0 · first

(
Lk−h+1

n−�−3

)

differ only in the (� + 1)-th position.
We now analyse the last string u of the first line and the first string v of the

second line of the case n ≥ 2 in Definition 6.
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We have:

u = last
(
©k−2

r=0 r · Lk+r+1
n−1

)
= last

(
(k − 2) · L2k−1

n−1

)

= (k − 2) · last
(
L2k−1

n−1

)
= (k − 2) · last

(Ln−1

)

= (k − 2) · first (Ln−1) = (k − 2) · first
(
0 · first

(
Lk+1

n−2

))

= (k − 2)0 · first
(
Lk+1

n−2

)
,

while

v = first
(
(k − 1) · ©k−h−2

r=0 r · Lk−h+r+1
n−2

)
= (k − 1)0 · first

(
Lk−h+1

n−2

)
.

The quantities k + 1 and k − h + 1 have the same parity since h is even, so
that u and v differ only in the first position.

For the second and third line we have:

u = last
(
(k − 1) · ©k−h−2

r=0 r · Lk−h+r+1
n−2

)

= (k − 1)(k − h − 2) · last
(
L2k−2h−1

n−2

)

= (k − 1)(k − h − 2) · last
(Ln−2

)
= (k − 1)(k − h − 2) · first (Ln−2)

= (k − 1)(k − h − 2)0 · first
(
Lk+1

n−3

)

and

v = first
(
(k − 1) · ©n−2

�=1 (k − h − 1)� ·
(
©k−h−2

α=0 α · Lk−h+α+1

n−�−2

))

= (k − 1)(k − h − 1)0 · first
(
Lk−h+1

n−3

)
.

Again, since h is even, the parity of k + 1 and k − h + 1 is the same and the
strings u and v differ in the second position.

Finally, we have:

u = last
(
(k − 1) · ©n−2

�=1 (k − h − 1)� ·
(
©k−h−2

α=0 α · Lk−h+α+1

n−�−2

))

= (k − 1)(k − h − 1)n−2(k − h − 2) · last
(
L2k−2h+1
0

)

= (k − 1)(k − h − 1)n−2(k − h − 2) ,

which differ only in the last position from the string v = (k−1)(k−h−1)n−1.
The proof is completed.

�



48 E. Barcucci et al.

As an example, we consider the case k = 4, h = 2 and we give the Gray
codes for the strings of length up to 4. In each line of the lists L2, L3 , and L4

we grouped together the strings corresponding to each line of the case n ≥ 2
of Definition 6. The first terms of the sequence are 1, 4, 14, 48, 164, . . . which
correspond to the cardinality of the showed Gray codes.

L0 = (ε)

L1 = (0, 1, 2, 3)

L2 = (03, 02, 01, 00, 10, 11, 12, 13, 23, 22, 21, 20,
30,
empty...
31)

L3 = (0 · L2, 1 · L2, 2 · L2,
30 · L1,
310,
311)

= (031, · · · , 003, 103, · · · 131, 231 · · · , 203,
303, 302, 301, 300,
310,
311)

L4 = (0 · L3, 1 · L3, 2 · L3,
30 · L2,
310L1, 3110,
3111)

= (0311, · · · , 0031, 1031, · · · , 1311, 2311, · · · , 2031,
3031, · · · , 3003,
3103, 3102, 3101, 3100, 3110,
3111)

5 Conclusion and Further Developments

In the present paper we considered the recurrence relation defined by am =
kam−1 − ham−2 with k > h > 0, which leads to a strictly increasing sequence
defining a language L over the alphabet {0, 1, 2, . . . , k − 1}. In the case h even,
a general recursive method defining a Gray code L with Hamming distance 1
for the language L is given, so extending the results obtained in [1]. The case h
odd is still open, indeed we were not able to find a general recursive method to
generate a Gray code with Hamming distance 1.
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Abstract. Widespread use of string solvers in formal analysis of string-
heavy programs has led to a growing demand for more efficient and
reliable techniques which can be applied in this context, especially for
real-world cases. Designing an algorithm for the (generally undecidable)
satisfiability problem for systems of string constraints requires a thor-
ough understanding of the structure of constraints present in the tar-
geted cases. In this paper, we investigate benchmarks presented in the
literature containing regular expression membership predicates, extract
different first order logic theories, and prove their decidability, resp. unde-
cidability. Notably, the most common theories in real-world benchmarks
are PSPACE-complete and directly lead to the implementation of a more
efficient algorithm to solving string constraints.

1 Introduction

String constraint solving (for short, string solving) is a topic within the more gen-
eral constraint solving area, where one is interested in checking the satisfiability
of particular quantifier-free first order logic formulae over a structure involving
string equalities, linear arithmetic over string length, and regular language mem-
bership, all built on top of string variables. While deeply rooted in algebra and
combinatorics on words (more precisely, in the theory of word equations [15]), in
recent years, string solving has also attained widespread interest in the formal
methods community. Indeed, this model arises naturally in, e.g., tasks related
to formal analysis of string-heavy programs such as sanitization and validation
of inputs (cf. [27]), leading to the development of multiple string solvers such as
CVC4 [4], Z3seq [8], Z3str3 [5], and Woorpje [13]. Even though these solvers
are quite efficient for certain practical use cases, novel applications demand even
more efficient and reliable techniques, especially for real-world inputs. Taking
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a closer look at all reported security-related vulnerabilities listed in the Com-
mon Vulnerabilities and Exposures Repositories [12], the most frequent issues
are related to strings, e.g. Cross-site Scripting. For such an attack, an attacker
inserts malicious data into an HTML document, which is usually countered
by input sanitization using regular expressions. However, due to the complex
requirements, coming up with correct regular expressions is error-prone. Con-
sider for example the regular expression /[^A-Za-z0-9 .-@:/]/ taken from [10]
which was used inside the PHP web application MyEasyMarket [3] to sanitize
a user’s input. The intention of the developer was to remove everything other
than alphanumeric characters and the symbols ., -, @, :, and /. Unfortunately,
this expression overlooks the special semantics of - within a regular expression.
Instead of listing all unwanted symbols individually (.-@), this regex specifies
the union of all characters between . and @. Since < is within this range, an
attacker can inject HTML elements which bypass the sanitizer. The correct reg-
ular expression using proper escaping has the form /[^A-Za-z0-9 .\-@:/]/.
Detecting these kinds of errors is extremely hard. This is where modern string
solvers come into play. Based on a proper specification, a string solver that han-
dles regular expression membership predicates is able to reveal human mistakes
as seen above.

Theories containing string constraints have been studied for decades. In [25]
Makanin proved that the satisfiability of word equations is decidable. Recently,
Jeż [21] showed that word equations can be solved in non-deterministic linear
space. In [26] a reduction from the more powerful theory of word equations with
linear length constraints (i.e., linear relations between word lengths) to Dio-
phantine equations is shown. Whether this extended theory of word equations is
decidable remains a major open problem. Solely considering the theory of reg-
ular expression membership predicates, an elegant proof of their decidability is
given in [1]. The theory of word equations and regular expression membership
predicates is known to be decidable [24]. It is not known whether the satisfi-
ability problem for string constraints involving all aforementioned theories is
decidable or not. However, already in the presence of other simple and natural
constraints, like string-number conversion, this problem becomes undecidable
(cf. [14]).

Driven by practical relevance and the need of more efficient algorithms,
we analysed 56993 string solving instances from industrial applications and
solver developers containing regular expression membership predicates, gath-
ered in [22], and identified numerous relevant sub-theories based around regular
membership predicates. In particular, we identified theories which may have
a string-number conversion predicate numstr (contains pairs of integers and
their string representation), a string length function and/or string concatena-
tion, and prove decidability resp. undecidability for certain sub-theories. One
benefit arising from this analysis is the observation that the sub-theory occur-
ring most frequently within the benchmarks is actually PSPACE-complete. Most
notably, these results lead to an algorithm implemented within Z3str3 showing
superior performance compared to its competitors [7]. The algorithm itself was
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directly informed by the ideas we used in proofs of the theorems presented in
this work. Within this paper we show that the theory of complement-free-regular
expression membership predicates, with linear length constraints and concate-
nation is PSPACE-complete. Furthermore, if we additionally allow complement,
we prove decidability and a NSPACE(f(n)) lower bound, where f(n) is a tetra-
tion 2 ↑h (cn) whose height h depends on the number of stacked complements
(and c is a constant). Continuing this trail, we prove PSPACE-completeness for
the theory of complement-free regular expression membership predicates and a
string-number conversion predicate, which naturally leads to decidability when
considering complements. We show corresponding lower bounds in this case too.
At the opposite end of our spectrum, we show that the theory of regular expres-
sion membership predicates, linear length constraints, concatenation and string-
number conversion is in fact undecidable.

To summarize, our analysis of the benchmarks not only revealed these the-
ories, but also shows that most considered real-world string constraints actu-
ally fall into a decidable fragment. Out of 56993, about 51% lay in a decidable
fragment. Only considering string constraints without word equations (30540 of
56993 instances), 26140 of these instances (85%) fall into a decidable fragment.
Therefore, our theoretical analysis gives an intuition wrt. the performance of our
solver.

2 Preliminaries

Let N be the set of natural numbers (including 0). By dom(r) we denote the
domain of a function r. An alphabet Δ is a set of symbols, whereas a ∈ Δ are
called letters. By Δ∗ we denote the set of all finite words over Δ and let ε ∈ Δ∗

denote the empty word. For n ∈ N let w = a1 . . . an ∈ Δ∗ be a word, i.e. a finite
sequence. By w[i] = ai we refer to the letter in the ith position of w. Let |w| = n
denote the length of a word w. Let Δ′ be an alphabet. A mapping h : Δ∗ → Δ′∗

satisfying h(uv) = h(u)h(v) for all u, v ∈ Δ∗ is called a morphism. In particular,
for a morphism h we have h(ε) = ε and by defining h for each a ∈ Δ the mapping
is completely specified.

A finite automaton is a structure A = (Q,Δ, δ, q0, F ) where Q is the set
of states, Δ an alphabet, δ : Q × Δ → 2Q a transition function, q0 ∈ Q the
initial state, and F ⊆ Q a set of accepting states. We call A a deterministic
finite automaton (DFA) if for all q ∈ Q and a ∈ Δ we have (q, a) ∈ dom(δ)
and |δ(q, a)| = 1. Otherwise, A is a non-deterministic finite automaton (NFA).
We say A accepts a word w ∈ Δ if there is a path via δ leading from q0 to
some f ∈ F (shortly w ∈ L(A)). We define regular expressions RegExΔ over
three operations, namely concatenation · : RegExΔ × RegExΔ → RegExΔ, union
∪ : RegExΔ ×RegExΔ → RegExΔ, and Kleene star∗ : RegExΔ → RegExΔ. On top
of these operations we define the set of regular expressions RegExΔ inductively
as follows: we have ε, ∅, a ∈ RegExΔ for a ∈ Δ. Given R1, R2 ∈ RegExΔ we
have R1 · R2, R1 ∪ R2, R

∗
1 ∈ RegExΔ. The semantics L : RegExΔ → 2Δ∗

are
given by L(a) = { a } for a ∈ Δ ∪ { ε }, L(∅) = ∅. For R1, R2 ∈ RegExΔ,
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let R1 · R2 = { α · β | α ∈ L(R1), β ∈ L(R2) }, R1 ∪ R2 = L(R1) ∪ L(R2), and
L(R∗

1) = L(R1)∗.
We shall generally distinguish between two alphabets, namely a finite set

A = { a, b, c, . . . } called terminals or constants and a possibly infinite set X =
{ x1, x2, . . . } called variables such that A ∩ X = ∅. We call a word α ∈ (X ∪ A)∗

a pattern. Let PatA = (X ∪ A)∗ denote the set of all patterns and vars (α) ⊆ X
denotes the set of all variable occurring in α.

Where not specified otherwise, we shall rely on the basic logical definitions
and notations as presented in [16]. We consider first-order logical theories of
the Σ1 fragment. Whenever the connection of constants cA, functions fA, or
relations RA to a V-structure is clear from context we omit the superscriptA and
simply write c, f , and R, instead of cA, fA, and RA, respectively. Let A be a
V-structure having the domain A. An assignment h : A ∪ X → A is a morphism
such that h(x) ∈ A∗ and h(c) = cA holds. The morphism naturally extends to
PatA. Let HA =

{
h

∣
∣ h : PatA → A morphism,∀ c ∈ A : h(c) = cA

}
denote the

set of all assignments. We call a V formula ϕ in a V-structure A satisfiable if
there exists an assignment h ∈ HA such that A, h |= ϕ holds and use A |= ϕ as
a short form. In this case we also call h a solution to ϕ. Consequently, we call ϕ
unsatisfiable if there does not exist an assignment h ∈ HA such that A, h |= ϕ
holds and shortly write A 
|= ϕ. A set Φ ⊆ FO(V) of V formulae is satisfiable
within a V-structure A if there exists an assignment h ∈ HA such that A, h |= ϕ
holds for all ϕ ∈ Φ and we denote this by A |= Φ. Otherwise, the set of formulae
Φ is unsatisfiable within the V-structure A (A 
|= Φ). As commonly known, the
Σ1 fragment is as expressive as the quantifier-free fragment of the corresponding
theory, and we refer to the quantifier-free fragment whenever we are talking
about a specific assignment.

The theory of word equations is built on top of the vocabulary W = { ·//2, ε̇ }
having the axioms of (PatA, ·A, ε) forming a monoid. We consider the W-
structure A .

= =
{

A∗, ·A, ε̇A
}
, whereas ·A is defined as the concatenation of

words. For W terms α, β ∈ PatA the atom α
.= β is called a word equation.

Let h ∈ H. The semantics of a word equation α
.= β are induced through h by

h(α) = h(β), meaning h unifies both sides of the word equation.
The basis theory involving a regular expression membership predicate called

simple regular expressions is defined on top of the vocabulary Rs = { ·//2,∪//2,
∗//1, ∈̇ /2, ∅̇, ε̇ } being axiomatized as 1. the existence and associativity of a neu-
tral element ε̇ of ·//2, 2. the existence, associativity, and commutativity of a neu-
tral element ∅̇ and idempotents, 3. the distributivity, 4. the annihilation by ∅̇, We
consider the many-sorted Rs-structure As = { RegExA, A∗, ·A, ·RegExA , ∪RegExA ,

∗RegExA , ∅̇RegExA , ε̇RegExA , ∈̇A RegExA }. Our regular expression operations and con-
stants over RegExA are defined as given before. The semantics of our relation
∈̇A RegExA is defined by α ∈̇A RegExA R iff there exists a solution h ∈ HA s.t.
h(α) ∈ L(R) for α ∈ A∗ ∪ X and R ∈ RegExA. Both theories can be com-
bined by considering the union of their components and denote the structure by
A .

=
s .
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3 From Practice to Theory

During the development of an extension to cope with regular membership
constraints within our SMT solver Z3str3RE [7] we analysed a huge set of
over 100,000 industrial influenced benchmarks gathered by the authors of
ZaligVinder [22] and identified 22425 instances containing at least one reg-
ular expression membership constraint. This set includes instances from the
AppScan [31], BanditFuzz,1 JOACO [29], Kaluza [27], Norn [1], Sloth [19],
Stranger [30], and Z3str3-regression [5] benchmarks. Additionally we generated
19979 benchmarks based on a collection of real-world regex queries collected
by Loris D’Antoni from the University of Wisconsin, Madison, USA. Thirdly,
we applied StringFuzz’s [9] transformers to instances supplied by Amazon Web
Services related to security policy validation to obtain roughly 15000 instances.
All benchmarks follow the widely used SMT-LIB Standard [8] commonly used
by SMT string solvers. More details on the selected benchmarks are available in
Section 5.2 in [7].

We analysed the benchmarks according to their structure, as well as predi-
cates and functions, by using a small parser for the input formulae, allowing us
to observe used operations and structural properties of the regular expressions.
We identified sets which contain string-number conversion, string concatenation,
and/or linear length constraints over variables used within the regular expression
membership predicate. The benchmarks contained combinations of these oper-
ations. The goal was now to group them into different first order logic theories,
which will be introduced in the next section.
The Resulting First Order Logic Theories. The basis of the following the-
ories is built by As, the theory of simple regular expressions. While categorising
the benchmarks, we identified four important, (partially) disjoint theories, form-
ing extensions of the aforementioned theory. The vocabulary of extended regular
expressions is given by Re = Rs ∪ { //1 }. In principle, it adds the complement
to our basis. The many-sorted Re-structure Ae = Ae ∪ {

RegExA
}

therefore
simply adds the complement having the semantics L(R1) = L(R∗

1) \ L(R1) to
the theory As. Let RegExCA denote the set of all regular expressions including
complement, inductively defined as seen above.

Furthermore, in practice solutions to variables are often restricted by linear
inequalities ranging over the length of potential solutions. Therefore a natural
extension is adding a function to our vocabularies allowing us to reason about
length. Let Ril = Ri ∪ {

Z,+//2,≤ /2, 0̇, len//1
}

be a vocabulary where i ∈
{ e, s }, being characterised by previously defined axioms and additionally the
associativity and commutativity of +//2, the existence of a neutral element,
and the requirement that ≤ be a total ordering and monotonic on our domain.
The many-sorted Ril-structure of regular expressions with length is defined by
Ail = Ai ∪ { +Z,≤Z, 0̇Z, lenA→Z }, where +Z,≤Z are defined as commonly used

1 The BanditFuzz benchmark was obtained via private communication with the
authors.
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operations over Z, 0̇Z = 0 ∈ Z, and the length function lenA→Z for a pattern
α ∈ PatA and an assignment h ∈ HA by lenA→Z(α) = |h(α)|.

A third addition often occurring in real-world program analysis is a string-
number conversion predicate. To this extend let Rin = Ri∪{ numstr/2 } whereas
i ∈ { e, s, el, sl } be a vocabulary. The axioms are derived from the corresponding
base theory. The many-sorted Rin-structure of regular expressions with number
conversation is defined by Ain = Ai ∪

{
N, numstrNA∗ }

, whereas numstrNA∗
is a

relation, which holds for all positive integers i ∈ N and words w ∈ { 0, 1 }∗ where
w – possibly having leading zeros – is the binary representation of i, formally
defined by numstr(n,w) iff w ∈̇(0 ∪ 1)∗ ∧ n ≥ 0 ∧ ∑

j∈{ 1,..., | w| } w[j] · 2|w|−j .
Naturally, not only in real-world applications, it is interesting to ask whether

a pattern α ∈ PatA possibly containing variables is bound by a regular language.
This leads to the last extension we are considering in this work. Let Ric =
Ri ∪ { ·//2 } whereas i ∈ { e, s, el, sl, eln, sln, en, sn } be a vocabulary, having
the additional axioms induced by (PatA, ·A, ε) forming a monoid. The many-
sorted Ric-structure of regular expressions with concatenation is defined by Aic =
Ai ∪ { ·A, ε̇A

}
, whereas ·A is defined as the classical concatenation over PatA

and ε̇A = ε ∈ A∗. These theories are again naturally combined with the theory
of word equations by simply considering the union of their components.

As an example, consider the string constraint C = x1 ∈̇ 1∗ ∧ numstr(15, x1) ∧
len(x1) ≥ 3 where x1 ∈ X and 1 ∈ A. A solution h ∈ HA is given by h(x1) =
1111, since h(x1) = 1111 ∈ L(1∗), numstr(15, 1111) because 1111 is the binary
representation of 15, and h(x1) ≥ 3. Therefore Asln, h |= C.

A .=
s A .=

sl A .=
snA

.=
slcA

.=
sln A .=

slnc A .=
elcAs Asc

AslAsnAslc Asln
Ae

0 3054 6108 9162 12216 15270 18324 21378 24432 27486 30540

(a)

(b)

Fig. 1. Distribution of instances among their theories. (a) instances with word equa-
tions (b) instances without word equations.

Benchmark Analysis. The analysis of the 56993 instances reveals that 30540
instances are solely a member of one of our regular expression theories, while
26453 additionally contained word equations. In Fig. 1 we plot the distribution
of all instances w.r.t. their theory. We display the instances according to the
presence of word equations into two bars (a) and (b). The width of a single
block within a bar corresponds to the instance count of the smallest theory.
Since some of the theories are disjoint (e.g. Asl and Asn) the diagram does not
visualise inclusions.

Within the pure regex formulae, the most frequented theory is As holding
24256 instances. As we will see in this work, this theory and also its successor
Asl with 4327 instances are PSPACE-complete and raises hope for practically
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viable solving strategies. The theories Aelnc and Aslnc, for which we prove unde-
cidability within this work, do not seem to have a high relevance in application
since they do not occur at all within our analysed set of benchmarks.

On the other hand, the instances containing word equations are also based
around simple regular expressions. The most prominent theory is A .

=
sl holding

22604 instances, followed by A .
=
s containing 2813 instances. Unfortunately, the

decidability of the largest set of instances is not known. Notably, the total set only
contains 9 instances based on the theory Ae where the complement is actually
needed. All other instances can be rewritten to simply avoid the complement.

4 Decidability of the Theories

In this section2, we characterise the related quantifier-free first-order theories
introduced in Sect. 2 according to their decidability. The contributions are sum-
marized in Fig. 2. The arrows lead from stronger and more expressive theories
to weaker ones. Theories in the upper box are undecidable, while those in the
lower box are decidable (similarly, the theories within the inner dashed box are
PSPACE-complete). We proceed with a summary of the theorems we prove and
some discussion of the motivation and intuition for the proofs.

U
n
d
ec

id
a
b
le

O
p
en

D
ec

id
a
b
le

PSPACE-complete

Aelnc

Aslnc

Aenc Aelc

Aen AelcAel

Asn AslcAsl

As

Fig. 2. Visualization of relationship and
decidability of various extensions of As,
with arrows leading from stronger theories
to theories which they contain.

In an attempt to move from sim-
pler to more complicated theories, we
will begin our journey with the the-
ory without complement operation for
regular expressions. We will start be
considering Aslc. The motivation in
approaching this theory first (formal-
ized later in Theorem 3) is that for
more general theories, which include
regular expressions with complement
operations, even simple tasks (like
checking whether there exists a com-
mon string in the languages of two
given expressions) require an expo-
nential amount of space. One way to
understand this is that the exponen-
tial blow-up with respect to the size of the regular expressions comes from trans-
forming this expression into an NFA, determinising it, and then computing its
complement. In fact, we will see that any other approach inherently leads to
such an exponential blow-up. We can state the following result.

Theorem 1. The satisfiability problems for Aslc and Asl of simple regexes, lin-
ear integer arithmetic, string length, and concatenation are PSPACE-complete.

2 All proofs can be found in our companion paper [6].
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In the following we sketch the proof of this theorem. It is enough to show
the statement for Aslc. Assume that the input is a formula ϕ. We first prop-
agate all negations top-down in the formula, so that we obtain an equivalent
formula ϕ′ which consists of a Boolean combination of atoms of the form α ∈̇ R
or ¬(α ∈̇R), where α ∈ PatA and R ∈ RegExA, as well as atoms encoding arith-
metic constraints. Clearly, |ϕ′| ∈ O(|ϕ|). Then, we non-deterministically choose
an assignment of truth values for all atoms such that ϕ′ evaluates to true. As
such, we get from our formula a list Lr of atoms of the form α ∈̇R or ¬(α ∈̇ R),
where α ∈ PatA and R ∈ RegExA, that have to be true. If an atom α ∈ R is
false in our assignment, then Lr will contain ¬(α ∈̇R), and if ¬(α ∈̇R) is false
in the assignment, then Lr will contain α ∈̇ R. We similarly construct a second
list Ln with the arithmetic linear constraints that should be true. Clearly, an
assignment of the variables occurring in these two lists such that all the atoms
they contain are evaluated to true exists if and only if ϕ is satisfiable.

Let us first neglect the polynomial space requirement. We construct the
NFA MR for each regex R ∈ RegExA occurring in Lr. Following a folklore
automata-theoretical approach (reminiscent of classical algorithms converting
finite automata into regexes and vice versa, and also used in string solving in,
e.g., [1,2]), each occurrence of a variable x ∈ X should be assigned a path in
one of the NFAs MR (if x ∈ vars (α) for an atom α ∈̇R) or in the NFA MR,
accepting the complement of the language accepted by MR (if x ∈ vars (α)
for an atom ¬(α ∈̇R)). This assignment should be correct: for each atom α ∈̇ R
(resp., ¬(α ∈̇ R)), concatenating the paths assigned to the occurrences of the
variables of α, in the order in which they occur in α, we should get an accepting
path in MR (resp., MR). Hence, it is enough to associate to each occurrence
of each variable the starting and ending state of the respective paths, and then
ensure that we connect these states by the same word for all occurrences of the
same variable. That is, we associate to an occurrence of a string variable x ∈ X
occurring in α ∈̇ R a copy of the automaton MR with the initial and final state
changed, so that they correspond to the starting and ending state on the path of
MR associated to the respective occurrence of x (and similarly for MR). So, if xi

is the ith occurrence of x in ϕ, then we associate an NFA Mx,i to it. We intersect
all the automata Mx,i to obtain an NFA Ax which accepts exactly those strings
which are a correct assignment for the variable x.

Observe now that if a word is accepted in Ax then its length is part of
an arithmetic progression, from a finite set of arithmetic progressions [11,18].
Conversely, each element of these arithmetic progressions is the length of a word
accepted by Ax, and the set of progressions can be computed based only on the
underlying graph of the NFA Ax. Hence, we get several new linear arithmetic
constraints on the length of our variables, which are satisfied if and only if there
exists a correct assignment for the variables. We add this new set of constraints
to Ln and then solve the resulting linear integer system with standard methods.

Finally, if, and only if, the final set of linear constraints we defined is satisfi-
able, then ϕ′ and, consequently, ϕ are also satisfiable.



58 M. Berzish et al.

This ends the description of our decision procedure, which is based on rela-
tively standard automata-theory techniques. To show the PSPACE-membership
we use the fact that the regexes of Aslc do not have complements. Firstly, note
that we can just build the NFAs for all the regexes occurring in the positive
or negative atoms ϕ′ (and not complement any of them). Once these automata
are built, we do not have to explicitly construct the automata Mx,i or Ax: we
implicitly know their states and the transitions that may occur between them.
Indeed, the states are tuples of states of the original NFAs MR, and, as we do not
have complements in any expression R, the number of components in each tuple
is bounded by a polynomial in the size of ϕ; the transitions between such states
can be simulated by looking at the transitions of the original NFAs. Computing
(and storing) the linear constraints on the length of the correct assignments for
x from Ax can also be done in polynomial space (because of the bounds on the
number of states of the automata Ax). We obtain, as such, a system of linear
arithmetic constraints with coefficients of polynomial size (w.r.t. the size of ϕ).
Thus, solving the derived system can be done in polynomial space.

The lower bounds stated in Theorem 1 follow immediately from the PSPACE-
completeness of the intersection problem for NFAs.

When we allow arbitrary complements in the regular expressions, we can still
prove the decidability of the respective theories but the complexity increases.

Theorem 2. The satisfiability problems for Aelc and Ael of regular expressions,
linear integer arithmetic, concatenation, and string length are decidable.

The idea is to use the same strategy as explained above for Aslc. Since regular
expressions may now contain complements, when constructing the automaton
MR associated with a regex R ∈ RegExA we might have an exponential blow-up
in size, even if the alphabet of the regex (resp. NFA) is binary and only one
complement is used (as shown, for instance, in [20]). We can no longer guarantee
the polynomial space complexity of our approach, but the decidability result
holds.

This theorem is supplemented by the following remark, which shows upper
and, more interestingly, lower bounds for the space needed to decide the satisfi-
ability problem for a formula in the quantifier-free theories Ael and Aelc.

Remark 1. Let g : N>0 × Q → Q recursively defined by g(1, c) = 2c and g(k +
1, c) = 2g(k,c) for k ∈ N>0 and c ∈ Q. Informally this mapping corresponds to

the following tower of powers (a.k.a. tetration) g(k, c) = 22
2...2

︸ ︷︷ ︸
k times

c

= 2 ↑k c.

For a regex R ∈ RegExCA, define the complement-depth cDepth : RegExCA →
N recursively as follows. If R ∈ { ∅, ε, a } for a ∈ A let cDepth(R) = 0. Otherwise
if R ∈ { R1 ∪ R2, R1 · R2 } let cDepth(R) = cDepth(R1)+cDepth(R2), if R = R∗

1

let cDepth(R) = cDepth(R1), and if R = R1 let cDepth(R) = 1 + cDepth(R1)
for appropriate R1, R2 ∈ RegExCA. For a formula ϕ in the quantifier-free theory
Aelc (as well as Ael) we let cDepth(ϕ) be the maximum depth of a regex in ϕ.

One can show, using for instance our approach from the proofs of Theorems
1 and 2, that the satisfiability problem for formulae ϕ from the quantifier-free
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theory Aelc (and Ael as well), with size n ∈ N and cDepth(ϕ) = k ∈ N, is
in NSPACE(f(g(k − 1, 2n))), where f is a polynomial function. However, there
exists a positive rational number c ∈ Q such that the respective problem is not
contained in NSPACE(g(k − 1, cn)). This lower bound follows from [28]. There,
the following problem is considered: Given a regex R ∈ RegExCA, of length n,
with cDepth(R) = k ∈ N over an alphabet A, decide whether L(R) = A∗. It
is shown that there exists a positive rational number c such that the respective
problem cannot be solved in NSPACE(g(k, cn)). So, deciding whether a formula
ϕ of Ael consisting of the atoms α ∈̇ R and α ∈ A∗, where R ∈ RegExCA is a regex
of length n with cDepth(R) = k − 1, is not contained in NSPACE(g(k − 1, cn))
(note that, in this case, the length of the formula ϕ is also O(n)).

Intuitively, this lower bound shows that if the complement-depth of a formula
of length n is k, then checking its satisfiability inherently requires an amount of
space proportional to the value of the exponentiation tower of height k − 1, and
with the highest exponent cn. 


Clearly, the satisfiability problem for the quantifier-free theory Ael is also
decidable according to the theorem above. Let g be defined as given in Remark 1.
Based on the classical results from [28], we can derive the following theorem.

Theorem 3. There exists a positive rational number c such that the satisfiability
problem for the fragments of As and Asc allowing only formulae of complement-
depth at least k is not in NSPACE(g(k − 1, cn)).

This theorem shows that, in fact, when deciding the satisfiability problem
for the quantifier-free theories Aelc and Ael the automata-based proof we pre-
sented is relatively close to the space-complexity lower bound for this problem.
Any other approach, automata-based or otherwise, would still meet the same
obstacle: the space complexity of any algorithm deciding the satisfiability of for-
mulae of complement-depth k cannot go under the NSPACE(g(k−1, cn)) bound.
This, on the one hand, explains our interest in analysing the theory Asl (and
its variants): as soon as we consider stacked complements, we are out of the
PSPACE complexity class. On the other hand, this also explains the reason why
in developing a practical solution for the satisfiability problem of Ael formulae
within our tool Z3str3RE we use many heuristics. While the result of Theorem
2 was known from [23], our approach seems to provide a deeper understanding
of the hardness of this problem (and where this stems from) and of the ways we
can deal with it.

Next we consider the case when we replace the length function by the numstr
predicate. The lower bound of Theorem 3 applies also to the case of Aen. So
one cannot hope to solve the satisfiability problem for this theory in polynomial
space, as soon as we allow arbitrary complements in our regular expressions.
However, we can show that the satisfiability problem for Aen is decidable, and
in PSPACE when only simple regular expressions are allowed.

Theorem 4. The satisfiability problem for Asn (resp. for Aen) of (simple)
regexes and a string-number predicate is PSPACE-complete (resp. decidable).
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While the general idea to prove the above result is based on a similar construc-
tion to that in Theorem 1, in this case we need to use a different strategy to work
with the linear arithmetic constraints (due to the fact that numstr predicates are
involved, and their fundamentally different nature w.r.t. the length function).
Assume that the input is a formula ϕ. Similar to the strategy seen in the proof of
Theorem 1 we split the atoms of the formula this time into three disjoint lists. We
construct the list Lr of atoms of the form α ∈̇R or ¬(α ∈ R), where α is a string
term and R is a simple regular expression and the second list Ln containing a set
of arithmetic linear constraints as seen as well in the proof of Theorem 1. Each
atom of the form numstr(m,α) and ¬numstr(m,α), where m is an integer term
and α ∈ A∗∪X . Note, since we do not allow concatenation, α can only be a word
consisting of constants or a single variable. If m is neither a variable nor a con-
stant, we add a new integer variable xm and replace numstr(m,α) (respectively,
¬numstr(m,α)) by the predicate numstr(xm, α) (respectively, ¬numstr(xm, α))
and the arithmetic atom xm = m. A similar processing can be done to replace
the constant strings from numstr predicates by variables. We obtain in this way
a new formula ϕ′′, still of size O(|ϕ|). After this, each term in every numstr
predicate is either a constant or variable of the appropriate sort.

Now, in ϕ′′, if we have a predicate numstr(m,α) (respectively, ¬numstr(m,α))
where m ∈ Z is a constant, we let M be the constant string consisting
of the shortest binary representation of m. We add α ∈̇ 0∗M (respectively,
¬(α ∈̇ 0∗M)) to the list of regular constraints Lr. We remove numstr(m,α)
(respectively, ¬numstr(m,α)) from ϕ′′. If we have numstr(x, α) (respectively,
¬numstr(x, α)) where x is an integer variable, we add α ∈̇ 0∗{0, 1}∗ (respectively,
¬(α ∈̇ 0∗{0, 1}∗)) to the regular constraints Lr. We remove numstr(x, α) (respec-
tively, ¬numstr(x, α)) from ϕ′′, but store in a new list Lb the information that
the binary representation of x fulfils the same regular constraints as α (e.g., if we
have α ∈̇ R we add x ∈̇ R as well), or, respectively, the complement of the regular
constraints of α. In the latter case, it is worth nothing that if we have a restric-
tion ¬(α ∈̇R), the binary representation of x must be in the language defined
by R, so we will not obtain regular expressions with stacked complements. In
this way we obtain a list of regular constraints that need to be true, a list of
arithmetic linear constraints that need to be true, as well as a list of constraints
stating the binary representation of certain integer variables must also fulfil the
same regular constraints as certain variables.

We afterwards use the fact that deciding whether the set of linear constraints
is satisfiable is equivalent to checking whether the language accepted by a finite
synchronized multi-tape automaton is empty or not (see [17]) where each tape of
the automaton corresponds to a variable. The entire approach is now automata-
based and, once again, the key to showing the PSPACE membership is the fact
that these automata can be simulated in polynomial space.

Dropping the polynomial upper bound on the space we use gives us the
decidability of Aen.

It is natural to ask whether the decidability result extends to the theories
Aenc (and Asnc), which also allow concatenation. While we leave this open, one
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can make interesting observations which we will highlight in the proof of the
following theorem.

Theorem 5. The satisfiability problem for Aslnc of regular expressions, linear
integer arithmetic, a string-number predicate and concatenation is undecidable.

We begin by looking at the theory Asnc and define a predicate eqLen ⊆
PatA × PatA defined by eqLen(α, β) iff len(α) = len(β) for α, β ∈ PatA. We can
express eqLen(α, β) as:

eqLen(α, β) = (z ∈ 1{0}∗)
∧ numstr(i, z) ∧ numstr(j, z0) ∧ numstr(na, 1α) ∧ numstr(nb, 1β)
∧ (i ≤ na) ∧ (na + 1 ≤ j) ∧ (i ≤ nb) ∧ (nb + 1 ≤ j),

for integer variables i, j, na, nb and string variables z. Indeed, for a potential
assignment h ∈ HA∪Z, we have h(i) = 2len(z) and h(j) = 2len(z)+1. Then, we have
h(na) = 2len(α)+A and h(nb) = 2len(β)+B, where numstr(A,α) and numstr(B, β)
are true. Therefore, 2len(z) ≤ 2len(α) + A < 2len(z+1) and 2len(z) ≤ 2len(β) + B <
2len(z)+1. It is immediate that len(α) = len(β) = len(z), so our claim holds.

We can also show that the theory of word equations with regular constraints
and numstr predicate is equivalent to the theory Aenc.

For one direction, we need to be able to express an equality predicate between
string terms eq ⊆ PatA × PatA. The regular constraints as well as those involv-
ing the numstr predicate are canonically encoded. This predicate is encoded as
follows:

eq(α, β) = eqLen(α, β) ∧ numstr(i, 1α1β) ∧ numstr(j, 1β1α) ∧ (i = j),

for α, β ∈ PatA. Indeed, this tests for a potential assignment h ∈ HA∪Z that
len(α) = len(β) and h(1α1β) = h(1β1α). If these are true, it is immediate that
h(α) = h(β).

For the converse, it is easy to see that each string constraint α ∈̇R (respec-
tively, ¬(α ∈̇ R)), where α ∈ PatAand R ∈ RegExCA, can be expressed as the
word equation α

.= xR, where xR ∈ X is a fresh variable, which is constrained by
the regular language defined by R (respectively, by the regular language defined
by R). This allows us to define a stronger length-comparison predicate. We will
define a predicate leqLen ⊆ PatA × PatA, whose semantics is defined by

leqLen(α, β) iff len(α) ≤ len(β),

for α, β ∈ PatA. We can express leqLen(α, β) by leqLen(α, β) = (z ∈ {0, 1}∗) ∧
eqLen(αz, β).

Finally, we can now move on to Aelnc and show our statement. According
to [14] the quantifier-free theory of word equations expanded with numstr pred-
icate and length function (not only a length-comparison predicate) and linear
arithmetic is undecidable. Thus, if we consider Aelnc, this undecidability result
immediately holds according to the above.

In conclusion, Aenc and Aeln are the only fragments of Aelnc where the
decidability status of the satisfiability problem remains open.
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5 Conclusion

Within this work we analysed 56993 string solving benchmarks containing reg-
ular expression membership queries and identified relevant sub-theories based
around regular membership predicates. It turned out that the most frequently
occurring sub-theory is decidable. Notably, the ideas of these proofs directly lead
to a well-performing solver for regular expression membership predicates. This
paper also shows that an interleaving between theory and practice potentially
leads to new interesting solutions in both worlds. Our future work will continue
on this trail to obtaining relevant sub-theories used in practice, always in the
hope of finding decidable sub-theories which lead to the design of new decision
procedures for solving practically relevant string constraints.
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Abstract. Cyclotomic polynomials are basic objects in Number Theory.
Their properties depend on the number of distinct primes that intervene
in the factorization of their order, and the binary case is thus the first
nontrivial case. This paper sees the vector of coefficients of the polyno-
mial as a word on a ternary alphabet {−1, 0, +1}. It designs an efficient
algorithm that computes a compact representation of this word. This
algorithm is of linear time with respect to the size of the output, and,
thus, optimal. This approach allows to recover known properties of coef-
ficients of binary cyclotomic polynomials, and extends to the case of
polynomials associated with numerical semi-groups of dimension 2.

Keywords: Binary cyclotomic polynomials · Words · Algorithms

1 Introduction

General Description. Cyclotomic polynomials are defined as the irreducible
factors in Q[x] of the polynomial xn − 1. The identity

xn − 1 =
∏

d|n
Φd(x) (1)

holds between the d-th cyclotomic polynomials Φd. The polynomial Φd(x) equals
the product

∏
(x − α) where α ranges over the primitive d-th roots of unity. It

has integer coefficients, is self-reciprocal, and irreducible over Q[x]. Its degree is
ϕ(d), where ϕ stands for Euler’s totient function. The following holds, for any
prime p,

Φpn(x) = Φn(xp) if p divides n,

Φn(x)Φpn(x) = Φn(xp) if p does not divide n .
(2)

It is thus enough to compute Φd when d is squarefree. Due to the equality

Φp(x) = xp−1 + · · · + x + 1,
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that holds when d = p is prime, the first nontrivial case occurs when d is the
product of two distinct primes p and q, and defines what is called a binary
cyclotomic polynomial.

A cyclotomic polynomial Φd is usually given by its dense representation,
described by the vector of its coefficients in Q

ϕ(d)+1. Many properties of interest
hold on the dense representation of a binary cyclotomic polynomial Φpq (see
[3,4,6]), for instance:
(a) the polynomial Φpq has all its coefficients in the ternary alphabet {−1, 0,+1};
(b) its nonzero coefficients alternate their signs: i.e. after a 1 follows a −1 .
(c) for p < q, the maximum number of consecutive zeros in the vector of coeffi-
cient equals p − 2.

Many algorithms are designed for computing these polynomials, most of them
being based on identities of type (1) and (2). Around 2010, Arnold and Monagan
wished to study the coefficients of cyclotomic polynomials in an experimental
way. They thus designed efficient algorithms that compute cyclotomic polyno-
mials of very large order. Their work [1] is the main reference on this subject.

Our Approach. We are concerned here with the representation and the compu-
tation of binary cyclotomic polynomials Φpq. We let m = ϕ(pq) = (p− 1)(q − 1),
and we consider the cyclotomic vector apq, (that is moreover palindromic) formed
with coefficients of Φpq, from two points of view:
(i) first, classically, as a vector of Qm+1,
(ii) but also as a word of length m+1 on the ternary alphabet A = {−1, 0,+1}.
With the first point of view, we use classical arithmetical operations on vectors.
With the second point of view, we use operations on words as cyclic permuta-
tions, concatenations and fractional powers. In fact, we use both points of view
and then all the operations of these two types. We have just to check that the
sum of two words of Am+1 always belongs to Am+1. We will see in Lemma 1 that
this is indeed the case in our context: the “bad” cases (+1)+(+1) or (−1)+(−1)
never occur in the addition of two symbols of A, and the sum remains “internal”.

We design an algorithm, called BCW, that only uses simple operations on
words (concatenation, shift, fractional power, internal addition). It takes as an
input a pair (p, q) of two prime numbers p, q with p < q, together with the quo-
tient and the remainder of the division of q by p; this input is thus of size Θ(log q).
The algorithm outputs the cyclotomic word apq of size Θ(pq); it performs a num-
ber Θ(pq) of operations on symbols of A. The complexity of the algorithm is
thus linear with respect to the size of the output, and thus optimal in this sense.
The proof of the algorithm is based on arithmetical operations on polynomials,
of type (1) or (2), that are further transfered into operations on words; however,
the algorithm itself does not perform any polynomial multiplication or division.

To the best of our knowledge, our approach, based on combinatorics of words,
is quite novel inside the domain of cyclotomic polynomials. The compact repre-
sentation of binary cyclotomic polynomials described in Theorem 1 appears to
be new and the algorithm BCW, whose complexity is Θ(pq), is more efficient
that the already existing algorithms, whose complexity is O(pq)E(p, q), where
E(p, q) is polynomial in log q (see Sect. 4).
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2 Statement of the Main Results

We first define the main operations on words that will be used, then we state our
two main results: the first one (Theorem 1) describes a compact representation
of the cyclotomic word, whereas the second result (Theorem 2) describes the
algorithm – so called the binary cyclotomic word algorithm (BCW algorithm
for short) – that is used to obtain it. Theorem 1 will be proven in Sect. 3 and
Theorem 2 in Sect. 4.

Operations on Words. We first define the operations on words that we will
use along the paper: concatenation and fractional power, cyclic permutation,
addition.

Concatenation and Fractional Power. Given two words u = u0u1 . . . uk−1

and v = v0v2 . . . v�−1 from the alphabet A, its concatenation is denoted by u ·v.
For any s ∈ N, the s-power of a word is denoted by vs, and v0 = ε is the empty
word.
Let k and p be positive integers. For any v ∈ Ap, the fractional power vk/p of v
is the element of Ak defined as follows:
(a) For k < p, then vk/p is the truncation of the word v to its prefix of length k.
(b) For k ≥ p, then vk/p = v�k/p� · v(k (mod p))/p.

Circular Permutation. The left circular permutation σ is the mapping σ :
Ap → Ap defined as

if v = v0 v1 v2 · · · vp−2 vp−1, then σ(v) = v1 v2 · · · vp−2 vp−1 v0. (3)

The mapping σ has order p: it satisfies for s ∈ Z,

σs = σsmod p, σp = Id .

Addition. The paper is based on a transfer between algebra and combinatorics
on words and leads to define addition between words; we begin with the usual
sum between two vectors of Zk, component by component: the sum u+v between
two words u = u0u1 . . . uk−1 and v = v0v2 . . . vk−1 is

u + v = (u0 + v0)(u1 + v1) · · · (uk−1 + vk−1).

Then, the sum of two words from A may have symbols not in A, due to the two
bad cases [+1+(+1)] and [(−1)+(−1)]. However, we will prove in Lemma 1 that
this will never occur in our framework. Then, an addition between two symbols
of A will be always an internal operation, with a sum that stays inside A and
coincides with the sum in Z:

0 + 0 = 0; 1 + 0 = 1; −1 + 0 = −1; −1 + 1 = 0; 1 + (−1) = 0 .
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A Compact Representation of Ninary Cyclotomic Polynomials.

Theorem 1. Let p < q be prime numbers. Consider the alphabet A = {−1, 0, 1}
and the left circular permutation σ defined in (3). With the (p − 1) words
d0,d1, . . . dp−2 ∈ Ap,

d0 = 1(−1)0 · · · 0, di = σq(di−1) = σiq(d0), for i ≥ 1,

define the (p − 1) words ω0,ω1, . . . ,ωp−2,

ω0 = d0, ωi = ωi−1 + di, for i ≥ 1. (4)

Then, the following holds:

(a) The words ω0,ω1, . . . ωp−2 belong to Ap: each addition ωi−1+di is internal
in A. These (p − 1) words only depend on the pair (p, r = q (mod p)).

(b) Let s = �q/p�. The cyclotomic word apq coincides with the prefix of length
ϕ(pq) + 1 of the word

bpq = ωs
0 · ω

r/p
0 · ωs

1 · ω
r/p
1 · . . . · ωs

p−2 · ω
r/p
p−2 ∈ A(p−1)q, (5)

and is written in fractional power notation as

apq = ω
q/p
0 · ω

q/p
1 · · · ω

q/p
p−3 · ω

(q−p+2)/p
p−2 .

The Algorithm BCW. Given two positive primes p and q with p < q, together
with the quotient s = �q/p� and the remainder r = q (mod p) of q by p, the
BCW algorithm proceeds in three main steps. The first two steps define the
precomputation phase and only depend on the pair (p, r = q (mod p)), whereas
the third step performs the computation itself and depends on the pair (q, p).

Precomputation Phase. It has two steps and computes
(i) the words di for i ∈ [[0 , p − 2]] defined in (4),
(ii) the words ωi defined in (4) and their prefixes ωr

i for i ∈ [[0 , p − 2]].

Computation Phase. It computes the word bpq defined in (5) with concatening
powers of ω0, . . . ,ωp−2. It depends on s. The cyclotomic word apq is obtained
from bpq by deleting its suffix of length p − 2.

The BCW algorithm only performs the operations described at the beginning
of this section, on words of length at most p, each one having a cost Θ(p). The
precomputation phase performs

– cyclic permutations of any order of a word of length p;
– truncations of a suffix of length � < p;
– internal additions between two words of length p.

The computation phase performs concatenations of a word of length at most p
(at the end of an already existing word of any length);

Theorem 2 summarizes the analysis of the complexity of the BCW algorithm.
It will be proven in Sect. 4.
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Theorem 2. Suppose that the two prime numbers p < q are given together
with the quotient s = �q/p� and the remainder r = q (mod p). Then, the BCW
algorithm computes the cyclotomic word apq in Θ(pq) operations on words:

(a) The precomputation phase only depends on the pair (p, r = q (mod p)) and
its cost is Θ(p2).

(b) The computation phase performs s(p− 2) concatenations of words of length
p, and its cost is Θ(pq).

3 A Compact Representation for Binary Cyclotomic
Polynomials

This section is devoted to the proof of Theorem 1 and is organized into three
main parts. We first consider the particular case p = 2, then we describe the
general case p > 2, and we finally prove two auxiliary results (Proposition 1 and
Lemma 1) that have been used in the proof of the general case.

Particular Case p = 2. The polynomial Φ2q satisfies the relation Φ2q(x) =
Φq(−x). Since Φq(x) = 1 + x + · · · + xq−1, it turns out that Φ2q is a polynomial
of degree q−1 whose nonzero coefficients take the values 1 and −1 alternatively.
The equality m + 1 = ϕ(2q) + 1 = q holds and entails �(m + 1)/q� = 1. There is
only one word ω0 = 1(−1) which has to be concatenated with itself �q/2� times.
The resulting word is

ω
�q/2�
0 = 1(−1)1(−1) · · · 1(−1),

which coincides with the vector a2q of coefficients of Φ2q. This ends the proof
for the case p = 2.

General Case p > 2. We let m = ϕ(pq). We consider the set of words Am+1

as embedded in Q
m+1 because we only deal with internal additions between

words. This fact that is stated as the assertion (a) of Theorem 1 is proven in
Lemma 1. We then do not distinguish between words or vectors, and the notation
v = v0 · · · vm denotes both a word v ∈ Am+1 and/or a vector of Qm+1. We write
vi,j to denote the j-th symbol (or coordinate) of a word vi.

The proof is described along three main steps. In Step 0, we deal with linear
algebra over the vector space Q

m+1, introduce the shift-matrix S and recall its
main properties. Then Step 1 transfers polynomial identities into linear algebra
equations on Q

m+1. Finally, Step 2 adopts the point of view of words.

Step 0. Starting with Linear Algebra. We consider the vector space Q
m+1,

and the linear map

S : Qm+1 → Q
m+1 Sv = 0v0 . . . vm−1 for any v = v0 . . . vm ∈ Q

m+1.

We denote by e0,e1, . . . ,em the vectors of the canonical basis of Qm+1: the word
ei is the word whose symbols satisfy ei,i = 1 and ei,j = 0 for j �= i. We deal
with the matrix associated with the linear map S in the canonical basis that
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is also denoted by S and called the shift-matrix. This is a nilpotent matrix of
size (m + 1) × (m + 1) having 1-s along the main lower subdiagonal and 0-s
everywhere else, that satisfies

Sm+1 = 0 ∈ Q
(m+1)×(m+1) and S�e0 = e�, for any � ∈ [[0 , m]].

With a polynomial f(x) = a0+a1x+a2x
2+ · · ·+amxm, we associate the matrix

f(S) = a0Id+a1S +a2S
2 + · · ·+amSm (here Id is the identity matrix) together

with the vector of coefficients a = a0a1 . . . am ∈ Q
m+1. The following relation

holds
a = a0S

0e0 + a1S
1e0 + · · · + amSme0 = f(S)e0. (6)

Moreover, f(S) is invertible if and only if a0 �= 0.

Step 1. From Polynomial Identities to Linear Algebra Equations. Our
starting point is the polynomial identity (2). When applied to the case when p
and q are distinct primes, it writes as

(1 − xq)Φpq(x) = (1 − x)Φq(xp). (7)

We now specialize the previous identity in the shift-matrix S of size (m + 1) ×
(m + 1), apply it to the vector e0, and obtain

(Id − Sq)Φpq(S)e0 = (Id − S)Φq(Sp)e0.

Relation (6) entails the equality

apq = Φpq(S)e0 = (Id − Sq)−1(Id − S)Φq(Sp)e0. (8)

Since S is a nilpotent matrix, the inverse matrix (Id − Sq)−1 equals

(
Id − Sq

)−1

=
�(m+1)/q�∑

i=0

Siq. (9)

Next, for p > 2, the following holds

m + 1 = q(p − 2) + q − (p − 1) + 1, 0 ≤ q − (p − 1) + 1 < q ,

and entails the equality �(m + 1)/q� = p − 2. Following (8) and (9), the vector
apq satisfies

apq = Φpq(S)e0 =
p−2∑

i=0

Siqcpq with cpq = (Id − S)Φq(Sp)e0. (10)

The relation S�e0 = e� holds for integer � ∈ [[0 , m]] and yields

Φq(Sp)e0 =
�m+1

p �∑

j=0

ejp.
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Then the vector cpq ∈ Q
m+1 defined in (10) is

cpq =
�m+1

p �∑

j=0

(ejp − ejp+1) = 1 − 10 · · · 0︸ ︷︷ ︸
p

· · · 1 − 10 · · · 0︸ ︷︷ ︸
p

1 − 10 · · · 0︸ ︷︷ ︸
m+1 (mod p)

. (11)

Step 2. From Vectors to Words. With (11), we now view the vector cpq as a
word of Am+1 that is written as a fractional power of the word d0 ∈ Ap defined
in the statement of Theorem 1:

cpq = d
(m+1)/p
0 ∈ Am+1. (12)

We now use the next proposition (Proposition 1) that states that such a frac-
tional power can be written in terms of the transforms di of d0 via cyclic per-
mutations. The proof of Proposition 1 will be found at the end of this section.

Proposition 1. The fractional power d
(m+1)/p
0 of d0 is written as a concatena-

tion of fractional powers of the cyclic transforms di = σiq(d0):

cpq = d
(m+1)/p
0 = d

q/p
0 · d

q/p
1 · · · dq/p

p−3 · d
(q−p+2)/p
p−2 .

We then return to the proof. In (10), we now view, for each i ∈ [[0 , p − 2]],
Siqcpq as a word in Am+1, written as

Siqcpq = 0iq · d
q/p
0 · d

q/p
1 · · · d

(q−p+2)/p
p−2−i ,

where 0iq is the word obtained with the concatenation of iq consecutive zeros.
From (10), the cyclotomic word apq is expressed in terms of cpq as

apq =
p−2∑

i=0

Siqcpq =
p−2∑

i=0

0iqd
q/p
0 · d

q/p
1 · · · d(q−p+2)/p

p−2−i . (13)

We now explain how the sums ωi that intervene in Theorem1 appear. We con-
sider the (p − 2) following vectors of Qq

f0 = d
q/p
0 , f1 = d

q/p
1 , f2 = d

q/p
2 , . . . , fp−3 = d

q/p
p−3,

together with the (p − 2) following vectors of Qq−p+2:

g0 = d
(q−p+2)/p
0 , g1 = d

(q−p+2)/p
1 , . . . , gp−2 = d

(q−p+2)/p
p−2 . (14)

We use the expression of the vector apq in (13) as a sum that uses (p − 1) lines,
indiced from 0 to p − 2, each line for each term of the sum,

apq = f0 · f1 · f2 · f3 · · · fp−3 · gp−2

+ 0q · f0 · f1 · f2 · · · fp−4 · gp−3

+ 0q · 0q · f0 · f1 · · · fp−5 · gp−4

...
+ 0q · 0q · 0q · 0q · · · 0q · g0.
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Each line exactly follows the same pattern: it is formed with (p − 2) blocks of
length q, followed with a block of length (q − p + 2). The line of index i begins
with i blocks of q zeroes, that perform a shift between blocks. Then, when we
read the result of the previous sum by columns, indexed from 0 to p−1, the j-th
column contains (for 0 ≤ j < p − 2) the element f0 + · · · + f j , whereas the last
column equals the sum of elements defined in (14). Provided that all the sums
be internal, this implies the equality

apq = d
q/p
0 · (d0 + d1)q/p · · · (d0 + · · · + dp−3)q/p · (d0 + · · · + dp−2)(q−p+2)/p ,

and introduces the words ωi involved in Theorem1.

The next lemma shows that the computation of the words ωi = d0 + · · ·+di

defined in Theorem 1 indeed involves internal operations in A. It will be proven
at the end of the section. It provides the proof of Statement (a) of Theorem 1.

Lemma 1. Under the assumptions and notations of Theorem1, the words ωi

belong to Ap for each i ∈ [[0 , p − 2]].

Now, with Lemma 1, the cyclotomic word apq is thus expressed as a concatena-
tion of fractional powers,

apq = ω
q/p
0 · ω

q/p
1 · · · ω

q/p
p−3 · ω

(q−p+2)/p
p−2 ,

it has length m + 1 and coincides with the prefix of length m + 1 of the word

bpq = ω
q/p
0 · ω

q/p
1 · · · ω

q/p
p−3 · ω

q/p
p−2.

This ends the proof of Theorem 1.
We now provide the proof of the two results that we have used.

Proof of Proposition 1. The first step of the proof is based on a simple fact
which holds for any positive integers m, p and q, with m > p and q ∈ [[p+1 , m]],
and any word d0 ∈ Ap. The fact is the following: if r = q (mod p), then

d
(m+1)/p
0 = d

q/p
0 · d

(m+1−q)/p
1 with d1 = σq(d0) = σr(d0) ∈ Ap.

Here we prove it. First, it is clear that

d
(m+1)/p
0 = d

q/p
0 · v with v ∈ Am+1−q.

Let dj and vj denote the jth coordinates of d0 and v, respectively. It is
clear that vj equals the (j + r)(mod p) coordinate of d0. This implies that
v = d

(m+1−q)/p
1 , with d1 = σq(d0) = σr(d0) = dr+1 · · · dpd0 · · · dr. This is what

we wanted to prove.
For the particular choice m = ϕ(pq), it turns out that �(m + 1)/q� = p − 2

and m + 1 = q − p + 2 (mod q) (recall that p > 2).
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Now, we apply an inductive argument. For i = 0, . . . , p−2, set di = σr(di−1).
Then

d
(m+1)/p
0 = d

q/p
0 · d

(m+1−q)/p
1 = d

q/p
0 · d

q/p
1 · · · d

q/p
p−3 · d

(q−p+2)/p
p−2 .

Proof of Lemma 1. Fix i ∈ [[1 , p − 2]] and let j be in the interval [[0 , p − 1]].
With r = q (mod p), the relation

dk = σr(dk−1) = σkr(d0)

shows that

dk,j =

⎧
⎪⎨

⎪⎩

1 if j + kr = 0 (mod p),
−1 if j + kr = 1 (mod p),
0 otherwise .

Now, we proceed with an inductive argument. The statement of the lemma is
clear for ω0 = d0. Suppose that ωi−1 ∈ Ap. From the definition of words ωi,
given in (4), it is clear that

ωi−1 = d0 + d1 + · · · + di−1.

Hence, if ωi−1,j = 1, then j + kr = 0 (mod p) for some k ∈ [[0 , i − 1]]; and
similarly, if ωi−1,j = −1, then j + kr = 1 (mod p) for some k ∈ [[0 , i − 1]].
Remark that the converse might not be true because there might be cancellations
between 1 and −1.

Since gcd(p, r) = 1, we have kr �= ir (mod p) for any k ∈ [[0 , i−1]]. It follows
that there is no j ∈ [[0 , p − 1]] such that ωi−1,j = di,j = 1 or ωi−1,j = di,j = −1.
Then, the sum ωi = ωi−1 + di ∈ Ap, that is, the sums of two 1 or two −1 never
occur.

4 Algorithms

This section considers algorithms, and analyses their complexities. It is organised
into three main parts. It begins with the BCW algorithm, then explains how it
may be used to compute tables of binary cyclotomic polynomials, and finally
compares the BCW algorithms with other algorithms that have been previously
proposed.

Analysis of the BCW Algorithm. We first analyse the BCW algorithm
designed in Sect. 2. This will provide the proof of Theorem2. The analysis of the
BCW algorithm follows from the next two lemmas.

Lemma 2. [Precomputation step]. The output Op,r of the precomputation step
on the input (p, r = q (mod p)) contains the words ωi together with their prefixes
ω

r/p
i , for i = 0, . . . , p − 2. It is computed with Θ(p) operations on words of Ap.

The total cost for computing Op,r is Θ(p2).
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Proof. In Lemma 1, we already proved that all the additions between words ωi

and words di are internal to the alphabet A. Given r = q (mod p), the p − 2
words di are obtained by applying p−2 cyclic permutations of order r to a word
of length p. The words ωi are obtained with Θ(p) internal additions of words in
Ap. The computation of the prefixes ω

r/p
i only involves p − 2 truncations. All

the words involved has length p. Thus, the total cost is Θ(p2).

Lemma 3. [Concatenation step]. The concatenation step computes apq from
the output Op,r of the precomputation step in Θ(q) words operations (mainly
concatenations). The total cost of the concatenation step is Θ(pq).

Proof. We consider the quotient s and the remainder r of the division of q by
p. The word bpq is obtained by concatenating the words ωi ∈ Ap or ω

r/q
i ∈ Ar

according to the order prescribed in Theorem 1. There are Θ(sp) = Θ(q) such
concatenations of words of length at most p. Finally, to obtain apq from bpq, it
suffices to delete the last p − 2 symbols. The total cost of this step is Θ(pq).

Computing Tables of Binary Cyclotomic Polynomials with the BCW
Algorithm. We denote by Op the total precomputation output relative to a
fixed prime p, that is the union of the precomputation outputs relative this fixed
prime p and all possible values of r ∈ [[1 , p − 1]]. The cost of building the total
output Op is Θ(p3).

We discuss the cost of computing a list of polynomials Φp0q for a fixed prime
p0 and a number t = pβ

0 of primes q that all satisfy q ≤ pα
0 (with α > 1).

Case (a). Consider first the case when we wish to compute the polynomials
Φp0q for a number t = pβ

0 of primes q that satisfy q ≤ pα
0 (with α ≥ 1) and q

(mod p) = r. We then precompute only the output Op0,r, with a cost Θ(p20),
then we perform t computations of cost p1+α

0 . The total cost is

Θ(p20) + Θ(p1+α+β
0 ) = Θ(p1+β+α

0 ) .

In this case, the cost of the precomputation is always smaller than the cost of
the computation.
Case (b). Consider now the case when we wish to compute the polynomials Φp0q

for a number t = pβ
0 of primes q that all satisfy q ≤ pα

0 , with α ≥ 1 and various
values of q (mod p). We have to compute the total precomputation output Op0

in Θ(p30) steps, then we perform t computations of cost p1+α
0 The total cost is

Θ(p30) + Θ(p1+α+β
0 ) = Θ(p1+max((α+β),2)

0 ) .

The cost of the precomputation is larger than the cost of the computation, when
α + β is smaller than 2.
Case (c). Consider finally the case when we wish to compute the polyno-
mials Φp0q for any prime q ≤ pα

0 , with α ≥ 1 with various values of q
(mod p). We assume that the list of primes q ≤ pα

0 is already built. There
are t = Θ(1/ log p0)pα

0 such primes q. We have to compute the total output Op0
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in Θ(p30) steps, then we perform t = O(pα
0 ) computations of cost p1+α

0 The total
cost is

Θ(p30) + Θ(p1+2α
0 ) = Θ(p1+2α

0 ) .

The cost of the precomputation is always smaller than the cost of the computa-
tion.

Comparison with Other Algorithms. We now briefly describe algorithms
that have been previously designed to compute cyclotomic polynomials. Even
when they are designed in the case of a general cyclotomic polynomial, we only
analyse their complexity in the binary case, and compare them to the complexity
of the BCW algorithm. In the following, M(�) denotes the cost of multiplying
two integers of bit-length at most �. With fast-multiplication algorithms, M(�)
is O(� log � log log �).

(i) The first algorithm is based on a formula due to Lenstra-Lam-Leung [4,5],
and is only valid in the binary case. With this formula, the j-th coefficient of
apq is computed via a solution (x, y) of an equation of the type j = xp + yq
with |x| < q and |y| < p. The cost of computing one single coefficient is thus
O(M(log q)). The total cost for the whole vector apq is Θ(pq)M(log q).

(ii) The other two algorithms are due to Arnold and Monagan and are
described in [1]. They compute the cyclotomic vector in the case of a general
order n, but we describe them for a binary order n = pq. They do not perform
any polynomial divisions.

(ii)(a) The first algorithm is a recursive algorithm, called the sparse power
series algorithm (SPS algorithm, for short) because it expresses cyclotomic poly-
nomials as products of sparse power series. In the binary case, the recursion is
made with Θ(pq) additions between integers less than (but close to) ϕ(pq). Then,
its complexity is Θ(pq) log q.

(ii)(b) The second algorithm is called the Big Prime algorithm (BP, for short).
It is adapted to the case when the order n has a big prime as a factor. Here, in
the binary case, the big prime is q. The algorithm is based on Identity (1) and
performs a precomputation step which involves Θ(p) computations of residues
modulo p of integers of size O(log q)). The cost of this step is then Θ(p)M(log q)).
The whole cyclotomic word apq is obtained via a recursive step which computes
ϕ(pq) residues modulo p of integers of size O(log q). Thus, the cost of computing
the whole vector apq is Θ(pq)M(log q).

The previous discussion shows that the existing algorithms are all of complex-
ity O(pq) ·E(p, q) where the factor E(p, q) is polynomial in log q. The complexity
of the BCW algorithm does not contain such a factor E(p, q).

5 Conclusions and Further Work

In this conclusion, we first explain how our results may be extended to another
family of polynomials, related to semi-groups. We then discuss how the repre-
sentation of Theorem 1 may entail results on the length of blocks of consecutive
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zeros in the cyclotomic words. The paper ends with a short discussion on the
non-binary case.

Another Polynomial Fp,q. We consider two numbers (p, q) with 2 < p < q,
that are coprime but now not necessarily primes, and define the polynomial
Fp,q ∈ Z[x] as follows:

Fp,q(x) =
(xpq − 1)(x − 1)
(xp − 1)(xq − 1)

.

A folklore result relates the polynomial Fp,q to numerical semi-groups (see, [6]
for definitions and proofs). A numerical semi-group is the set

S(p, q) = {ap + bq | a, b ∈ Z≥0}.

The polynomial Fp,q is called the semi-group polynomial associated with S(p, q)
due to the following identity

Fp,q(x) = 1 + (x − 1)
∑

s/∈S(p,q)

xs.

Clearly, Fp,q coincides with the cyclotomic polynomial Φpq when p and q are
primes. Also, if we define Fq = 1 + x + · · · + xq−1, the polynomial Fp,q satisfies
the identity (7) that is our starting point in the proof of Theorem1, namely

(1 − xq)Fp,q(x) = (1 − x)Fq(xp).

This entails that all our results also hold for semi-groups polynomials Fp,q.

Proving Other Properties for Φpq and Fp,q. The representation provided
in Theorem 1 implies that the coefficients of Φpq belong to A. A parameter of
interest is the maximum gap of these polynomials, that we now define: for a
given polynomial f(x) = b1x

n1 + b2x
n2 + · · · + bkxnk , with bi all nonzero and

n1 < n2 < · · · < nk, the maximum gap is defined as

g(f) = max
1≤i<k

(ni+1 − ni), g(f) = 0 if k = 1.

The fact that g(Fp,q) = p−1 was proven in [3] for binary cyclotomic polynomials
Φpq and in [6] for semi-group polynomials. In [2,7], it is proven that the number
of maximum gaps in binary cyclotomic polynomials is 2�q/p�.

Our description in terms of words easily entails the inequality g(Fp,q) ≥ p−1
and proves that there are, at least, 2�q/p� maximum gaps. The upper bounds
will be recovered from our Theorem 1 provided that the possible cancellations
1 + (−1) be controlled in the sums ωi−1 + di. This is the aim of a further work.

Possible extensions to the non-binary case? Our results seem to be specific
to the binary case where the order is n = pq. In the case when n is squarefree
with at least three prime factors, the coefficients of the cyclotomic polynomial
do not any longer belong to a finite alphabet A. It seems thus difficult to easily
deal with words on this alphabet A.

Acknowledgments. The authors wish to thank Brigitte Vallée for many helpful con-
versations and suggestions.
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Computation of Critical Exponent
in Balanced Sequences
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Abstract. We study balanced sequences over a d-letter alphabet. Each
such sequence v is described by a Sturmian sequence and two constant
gap sequences y and y′. We provide an algorithm which for a given y,
y′ and a quadratic slope of a Sturmian sequence computes the critical
exponent of the balanced sequence v.

Keywords: Critical exponent · Balanced sequences · Return words ·
Bispecial factors

1 Introduction

An infinite sequence v over a finite alphabet is called balanced if for each pair u,
v of its factors having the same length and for each letter a of the alphabet, the
number of occurrences of a in u and v differs at most by one. Balanced aperiodic
sequences over a binary alphabet were introduced already in 1940 by Hedlund
and Morse under the name Sturmian sequences (see [7]). Balanced sequences
over a d-letter alphabet were characterized by Hubert in [8]; in particular he
showed that each aperiodic balanced sequence over a d-letter alphabet can be
mapped by a letter-to-letter projection π to a Sturmian sequence. In this paper
we focus on the critical exponent of a balanced sequence v. Roughly speaking,
the critical exponent E(v) describes the maximal repetition of factors in v. For
Sturmian sequences, the formula to evaluate the critical exponent was provided
by Carpi and de Luca in [3] (see also [4]). Recently, Rampersad, Shallit and
Vandomme in [9] and Baranwal and Shallit in [1] and [2] started looking for
balanced sequences over a d-letter alphabet having the least critical exponent.
They used the automated theorem prover Walnut to show that the smallest
possible critical exponent of a balanced sequence over d letters is d−2

d−3 for d =
5, . . . , 8. For d = 9, 10 they showed that the least critical exponent can not be
smaller than d−2

d−3 and conjectured that this value is attained by the sequences
x9 and x10 (see Example 5).

In [5], we gave a general method to compute the critical exponent E(v) and
the asymptotic critical exponent E∗(v) of any uniformly recurrent sequence v.
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Our method is based on looking for the shortest return words to bispecial factors
in v. The asymptotic critical exponent E∗(v) reflects repetitions of factors of
length growing to infinity. Since the letter-to-letter projection π maps every
sufficiently long bispecial factor in a balanced sequence v to a bispecial factor in
the underlying Sturmian sequence, we could apply our method to compute the
asymptotic critical exponent of balanced sequences.

In this contribution we refine our approach to all bispecial factors, not only
the long enough ones (Propositions 3, 5 and 6) and deduce an algorithm for
computing the critical exponent of balanced sequences associated with Stur-
mian sequences with quadratic slopes (Sect. 6). In particular, we confirm the
conjectured property of the sequences x9 and x10 (Example 7).

2 Preliminaries

An alphabet A is a finite set of symbols called letters. A (finite) word over A of
length n is a string u = u0u1 · · · un−1, where ui ∈ A for all i = 0, 1, . . . , n − 1.
The length of u is denoted by |u|. The set of all finite words over A together
with the operation of concatenation forms a monoid, denoted by A∗. Its neutral
element is the empty word ε and we denote A+ = A∗ \ {ε}. If u = xyz for some
x, y, z ∈ A∗, then x is a prefix of u, z is a suffix of u and y is a factor of u. To any
word u over A with cardinality #A = d, we assign its Parikh vector �V (u) ∈ N

d

defined as (�V (u))a = |u|a for all a ∈ A, where |u|a is the number of letters a
occurring in u. A sequence over A is an infinite string u = u0u1u2 · · · , where
ui ∈ A for all i ∈ N. In this paper we always denote sequences by bold letters.
The shift of u = u0u1u2 · · · is the sequence σ(u) = u1u2u3 · · · . A sequence u is
eventually periodic if u = vwww · · · = v(w)ω for some v ∈ A∗ and w ∈ A+. It is
periodic if v = ε. If u is not eventually periodic, then it is aperiodic. A factor of
u = u0u1u2 · · · is a word u such that u = uiui+1ui+2 · · · uj−1 for some i, j ∈ N,
i ≤ j. The number i is called an occurrence of the factor u in u. If each factor of
u has infinitely many occurrences in u, the sequence u is recurrent. Moreover, if
for each factor the distances between its consecutive occurrences are bounded,
u is said to be uniformly recurrent.

The language L(u) of a sequence u is the set of all its factors. A factor w of
u is right special if wa,wb are in L(u) for at least two distinct letters a, b ∈ A.
Analogously, we define a left special factor. A factor is bispecial if it is both left
and right special.

The central notion of our contribution is the critical exponent of an infinite
sequence. Let z ∈ A+ be a prefix of a periodic sequence uω with u ∈ A+, and
let us suppose that u is minimal in length with this property. We say that z has
fractional root u and exponent e = |z|/|u|. We usually write z = ue.

Definition 1. Given a sequence u, we define the critical exponent of u as

E (u) = sup{e ∈ Q : there exist x , y ∈ L(u), with |x | > 0 and y = x e}.



80 F. Dolce et al.

If E (u) < +∞, we define the asymptotic critical exponent of u as

E∗(u) = lim
n→∞ sup{e ∈ Q : there exist x , y ∈ L(u), with |x | > n and y = x e} .

Otherwise E∗(u) = E (u) = +∞.

In [5] we find a formula to compute E(u) and E∗(u) for a uniformly recurrent
aperiodic sequence u. This tool uses the notion of return words.

Let us consider a factor w of a recurrent sequence u = u0u1u2 · · · . Let i < j
be two consecutive occurrences of w in u. Then the word uiui+1 · · · uj−1 is a
return word to w in u. The set of all return words to w in u is denoted by
Ru(w). If u is uniformly recurrent, then the set Ru(w) is finite for each prefix
w. In this case u can be written as a concatenation u = rd0rd1rd2 · · · of return
words to w. The derived sequence of u to w is the sequence du(w) = d0d1d2 · · ·
over the alphabet of cardinality #Ru(w).

Proposition 1 ([5]). Let u be a uniformly recurrent aperiodic sequence. Let
(wn)n∈N be a sequence of all bispecial factors of u ordered by their length. For
every n ∈ N, let vn be a shortest return word to wn in u. Then

E (u) = 1 + sup
n∈N

{ |wn |
|vn |

}
and E∗(u) = 1 + lim sup

n→∞

{ |wn |
|vn |

}
.

3 Balanced Sequences

A sequence u over the alphabet A is balanced if for every letter a ∈ A and every
pair of factors u, v ∈ L(u) with |u| = |v|, we have

∣∣|u|a − |v|a
∣∣ ≤ 1. Aperiodic

balanced sequences over binary alphabet, i.e., Sturmian sequences, can be char-
acterized by many equivalent definitions. The definition we will need is based
on return words. Vuillon in [10] shows that an infinite recurrent sequence u is
Sturmian if and only if each of its factors has exactly two return words. More-
over, the derived sequence to a factor of a Sturmian sequence is Sturmian too.
A Sturmian sequence u is called standard if each bispecial factor of u is a prefix
of u. To any Sturmian sequence u′ there exists a standard Sturmian sequence u
such that L(u) = L(u′). Balanced sequences over alphabets of higher cardinality
can be constructed from Sturmian sequences. To describe the construction we
need the following definition.

Definition 2. A sequence y over an alphabet A is a constant gap sequence if
for each letter a ∈ A appearing in y there is a positive integer, denoted gapy(a),
such that the distance between successive occurrences of a in y is always gapy(a).

Any constant gap sequence is periodic. We denote by Per(y) the minimal
period of y. Note that gapy(a) divides Per(y) for each letter a appearing in y.
Given a constant gap sequence y and a word y ∈ L(y) we denote by gapy(y)
the length of the gap between two successive occurrences of y in y. Note that
gapy(y) = lcm{gapy(a) : a ∈ A and a occurs in y}. Moreover gapy(y) divides
Per(y) for every factor y ∈ L(y).
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Example 1. In the sequel we will deal with the following constant gap sequences
y = (01)ω and y′ = (234567284365274863254768)ω. The sequence y is evi-
dently a constant gap sequence because gapy(0) = gapy(1) = 2. The sequence
y′ is also a constant gap sequence because gapy′(a) = 6 for a ∈ {2, 4, 6} and
gapy′(a) = 8 for a ∈ {3, 5, 7, 8}. Moreover, for every y ∈ L(y′) with |y| ≥ 2
we have gapy′(y) = 24. The minimal periods are respectively Per(y) = 2 and
Per(y′) = 24.

Given a constant gap sequence y we define for every positive integer n the
set gap(y, n) = {i : ∃ y ∈ L(y), |y| = n, gapy(y) = i} . It is clear that
gap(y, 0) = {1} for every constant gap sequence y.

Example 2. Let y,y′ be the sequences in Example 1. One has gap(y, n) = {2}
for every n ≥ 1, gap(y′, 1) = {6, 8} and gap(y′, n) = {24} for every n ≥ 2.

Theorem 1 ([8]). A recurrent aperiodic sequence v is balanced if and only if
v is obtained from a Sturmian sequence u over {a, b} by replacing the a’s in u
by a constant gap sequence y over some alphabet A, and replacing the b’s in u
by a constant gap sequence y′ over some alphabet B disjoint from A.

Let us recall that the frequencies of letters in any Sturmian sequence u are
always well defined and irrational. We will assume here, without loss of generality,
that ρa < ρb and adopt the convention that the first component of the Parikh
vector of a factor of u corresponds to the least frequent letter of u and the second
component to the most frequent letter (even if we consider a Sturmian sequence
over binary alphabets other than {a, b}).

Definition 3. Let u be a Sturmian sequence over the alphabet {a, b}, and y,y′

be two constant gap sequences over two disjoint alphabets A and B. The colouring
of u by y and y′, denoted v = colour(u,y,y′), is the sequence over A∪B obtained
by the procedure described in Theorem 1.

For v = colour(u,y,y′) we use the notation π(v) = u and π(v) = u for
any v ∈ L(v) and the corresponding u ∈ L(u). Symmetrically, given a word
u ∈ L(u), we denote by π−1(u) = {v ∈ L(v) : π(v) = u}. We say that u (resp.
u) is a projection of v (resp. v).

Example 3. Let us consider the sequence x9 (see Example 5 later for a more
precise definition) obtained as colouring by the constant gap sequences y and y′

given in Example 1 of a Sturmian sequence u starting as follows:

u = bbabbabbabbbabbabbabbbabbabbabbabbbabbabbabbbabbabb · · · .

Thus x9 starts as follows:

x9 = 230451670284136052174806312504716820341560728143065 · · · .

Such a sequence is balanced according to Theorem 1.
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The language of balanced sequences has certain symmetries. In particular,
the following result is proved in [5, Corollary 1].

Lemma 1 ([5]). Let v = colour(u,y,y′) and v ∈ L(v). For any i, j ∈ N the
word v′ obtained from π(v) by replacing the a’s by σi(y) and the b’s by σj(y′)
is in L(v).

Note that L(v) does not depend on the sequence u itself but only on L(u).
Having in mind the formula for computing the critical exponent given in Propo-
sition 1, we focus on return words to factors of balanced sequences.

In the sequel we will use the following notation:
(

a
b

)
mod

(
n
n′

)
:=

(
a mod n
b mod n′

)
.

Proposition 2. Let u, f ∈ L(u) such that fu ∈ L(u) and u is a prefix of fu.
Then the two statements are equivalent:

1. there exist w and v such that vw ∈ L(v), w is a prefix of vw, |w| = |u| and
π(vw) = fu;

2. �V (f) =
(

0
0

)
mod

(
n
n′

)
for some n ∈ gap(y, |u|a) and n′ ∈ gap(y′, |u|b).

Proof. Let v and w be as in Item 1. Then u is a prefix and a suffix of π(vw)
and f = π(v). By Lemma 1, the factor w occurring as a prefix of vw is obtained
from u by colouring the a’s with σs(y) and the b’s with σt(y′) for some s, t ∈ N.
Hence, the same factor w occurring as a suffix of vw is obtained from u by
colouring the a’s with σS(y) and the b’s with σT (y′), where S = s + |f |a and
T = t + |f |b. Hence the prefixes of length |u|a of σs(y) and σS(y) coincide, and
similarly the prefixes of length |u|b of σt(y′) and σT (y′) coincide. This implies
that |f |a is divisible by some n ∈ gap(y, |u|a) and that |f |b is divisible by some
n′ ∈ gap(y′, |u|b). In other words, |f |a = 0 mod n and |f |b = 0 mod n′.

Let f, n and n′ be as in Item 2. Let us consider y ∈ L(y) and y′ ∈ L(y′) such
that gapy(y) = n with |y| = |u|a and gapy(y′) = n′ with |y′| = |u|b. Let s, t ∈ N

be such that y is a prefix of σs(y) and y′ is a prefix of σt(y′). Colouring the
letters a’s in fu with σs(y) and the letters b’s with σt(y′), we get, by Lemma 1,
a factor x of v. Since |f |a is a multiple of gapy(y) and |f |b is a multiple of
gapy(y′), the prefix and the suffix of length |u| of x coincide, i.e., x = vw, w is
a prefix of vw, |w| = |u| and π(vw) = fu.

As we have already mentioned, any factor of a Sturmian sequence has exactly
two return words and thus any piece of u between occurrences of u is a concate-
nation of these two return words. This implies the following observation.

Observation 1. Let r and s be respectively the most and the least frequent
return words to u in u. If fu ∈ L(u) and u is a prefix of fu, then �V (f) =
k�V (r)+��V (s), where

(
�
k

)
is the Parikh vector of a factor of the derived sequence

du(u).
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4 Shortest Return Words to Factors in Balanced
Sequences

The length of the return words to factors of a Sturmian sequence u is well-
known. Our aim in this section is to find a formula for the length of the shortest
return words to factors of a colouring of u. As occurrences of a factor u in a
Sturmian sequence u and occurrences of factors from π−1(u) in any colouring of
u coincide, we can therefore be able to give a formula based on the knowledge
of the length of return words in u. Proposition 2 and Observation 1 justify the
following definition.

Definition 4. Let u ∈ L(u) and let r and s be respectively the most and the
least frequent return words to u in u. We denote S(u) = S1(u) ∩ S2(u) ∩ S3 ,
where

S1(u) =
{(

�
k

)
:
(

�
k

)
is the Parikh vector of a factor of du(u)

}
;

S2(u) =
⋃

n∈gap(y,|u|a)

⋃
n′∈gap(y′,|u|b)

{(
�
k

)
: k�V (r) + ��V (s) =

(
0
0

)
mod

(
n
n′

)}
;

S3 =
{(

�
k

)
: 1 ≤ k + � ≤ Per(y)Per(y′)

}
.

Using the formula provided in Proposition 1, we can treat all bispecial factors
of the same length simultaneously.

Proposition 3. Let v = colour(u,y,y′) and u ∈ L(u). The shortest words in
the set {v : v ∈ Rv(w) and π(w) = u} have length

|v| = min{k|r| + �|s| :
(

�
k

)
∈ S(u)}.

Proof. First, let us show that the length of any return word in v to a fac-
tor from π−1(u) is contained in the set

{
k|r| + �|s| :

(
�
k

) ∈ S1(u) ∩ S2(u)
}
. By

Proposition 2 and Observation 1, a vector
(

�
k

)
belongs to S1(u) ∩ S2(u) if and

only if k�V (r) + ��V (s) is the Parikh vector of π(v), where v is a factor between
two (possibly not consecutive) occurrences of a factor w ∈ π−1(u) in v. Obvi-
ously, the length of v is k|r| + �|s|. It is evident that if we consider above
|v| = min{k|r| + �|s|}, where

(
�
k

) ∈ S1(u) ∩ S2(u), then v is a return word
to a factor w ∈ π−1(u).

To finish the proof, we have to show that the minimum value of |v| is attained
for k and � satisfying 1 ≤ k + � ≤ Per(y)Per(y′). Let

(
�
k

) ∈ S1(u) ∩ S2(u)
and k + � > Per(y)Per(y′). Thus �V (d) =

(
�
k

)
for some d = d1d2d3 · · · dk+� ∈

L(du(u)). For every i = 1, 2, . . . , k + �, we denote
(

�i
ki

)
= �V (d1d2 · · · di). We

assign to each i the vector Xi = ki
�V (r)+�i

�V (s). Since the number of equivalence
classes mod ( n

n′ ) is nn′ ≤ Per(y)Per(y′), there exist i, j with 1 ≤ i < j ≤ k + �
such that Xi = Xj mod ( n

n′ ). Denote
(

�′
k′

)
the Parikh vector of di+1di+2 · · · dj .
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Obviously,
(

�′
k′

) ∈ S1(u), 1 ≤ j − i = k′ + �′ < k+ � and k′ ≤ k and �′ ≤ �. Hence
k′|r| + �′|s| < k|r| + �|s|. Since k′�V (r) + �′�V (s) = Xj − Xi = ( 0

0 ) mod ( n
n′ ),

the vector
(

�′
k′

) ∈ S2(u). Therefore, the minimum length can not be achieved for
k + � > Per(y)Per(y′).

Since a constant gap sequence is periodic, it is clear that any long enough
factor in the sequence is neither right special nor left special. Let us define, for
a given constant gap sequence y, the number

β(y) = max{|u| : u is a bispecial factor of y}.

It immediately follows that for n > β(y), we have gap(y, n) = {Per(y)}.

Example 4. Let us consider the sequences y and y′ from Example 1. One can
easily check that β(y) = 0 and β(y′) = 1.

The following result is analogous to [5, Lemma 3].

Lemma 2. Let v = colour(u,y,y′) and w ∈ L(v).

1. If π(w) is bispecial in u, then w is bispecial in v.
2. If w is bispecial in v, |π(w)|a > β(y) and |π(w)|b > β(y′), then π(w) is

bispecial in u. Moreover, in this case π(Rv(w)) = π(Rv(w′)) for each w′ ∈
L(v) with π(w′) = π(w).

If a projection of a bispecial factor w in v is bispecial in L(u), we can deduce
an explicit formula for 1 + |w|

|v| , where |v| is the length of a shortest return word
to w in v. These values are crucial for the computation of E(v) and E∗(v).

First, we list some important facts on Sturmian sequences. They are partially
taken from [6]. Recall our convention for the frequencies of letters ρa < ρb. The
language of the Sturmian sequence u is fully described by the coefficients of the
continued fraction of the number θ associated with u, that is

θ = θ(u) :=
ρa
ρb

= [0, a1, a2, a3, . . .].

The relation to the slope α of u is α = 1
1+θ . The Parikh vectors of the bispecial

factors in u and the corresponding return words can be easily expressed using
the convergents pN

qN
to θ.

Proposition 4 ([6]). Let θ = [0, a1, a2, a3, . . .] be the irrational number associ-
ated with a standard Sturmian sequence u and b a bispecial factor of u. Then

1. there exists a unique pair (N,m) ∈ N
2 with 0 ≤ m < aN+1 such that the

Parikh vectors of the most frequent return word r to b, of the least frequent
return word s to b and of b itself are

�V (r) =
(

pN

qN

)
, �V (s) =

(
mpN + pN−1

mqN + qN−1

)
and �V (b) = �V (r) + �V (s) −

(
1
1

)
;
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2. the derived sequence du(b) to b in u is Sturmian and the irrational number
associated with du(b) is θ′ = [0, aN+1 − m,aN+2, aN+3, . . .].

Let us recall that the nominator pN and the denominator qN of the N th

convergent to θ satisfy for all N ≥ 1 the recurrence relation XN = aNXN−1 +
XN−2, but that they differ in their initial values: p−1 = 1, p0 = 0; q−1 = 0, q0 = 1.

The following statement is a direct consequence of Propositions 3 and 4.

Proposition 5. Let v = colour(u,y,y′) and
(

pN

qN

)
N

be the sequence of con-

vergents to the irrational number θ associated with u. Let (N,m) be the pair
assigned in Proposition 4 to a bispecial factor b ∈ L(u). Then, a shortest return
word v to a factor w ∈ π−1(b) satisfies

I(N,m) := 1 +
|w|
|v| = 1 + max

{
(1 + m)QN + QN−1 − 2
(k + �m)QN + �QN−1

:
(

�
k

) ∈ S(b)
}

, (1)

where QN := pN + qN and QN−1 := pN−1 + qN−1.

The following lemma helps us to recognize which vector is the Parikh vector
of a factor of a given Sturmian sequence. This is important to decide whether(

�
k

)
belongs to S1(b). The lemma can be shown using the facts that θ = ρa

ρb
and

that u is balanced.

Lemma 3. Let u be a Sturmian sequence with associated irrational number θ.
Then u contains a factor u such that |u|b = k and |u|a = � if and only if
(k − 1)θ − 1 < � < (k + 1)θ + 1 and k, � ∈ N.

Example 5. In the sequel, we will illustrate our method for computing the critical
exponent on the balanced sequences x9 and x10 introduced in [9] as candidates to
be the balanced sequences having the minimal critical exponent over respectively
a 9- and a 10-letter alphabet. Let us define x9 and x10.

– x9 = colour(u,y,y′), where u is the standard Sturmian sequence associated
with θ = [0, 2, 3, 2ω], and y,y′ are the constant gap sequences introduced in
Example 1. Prefixes of u and x9 are displayed in Example 3.

– x10 = colour(u′,y,y′′), where u′ is the standard Sturmian sequence asso-
ciated with θ = [0, 4, 2, 3ω], y is the constant gap sequence introduced in
Example 1 and y′′ = (234567284963254768294365274869)ω.

5 Computation of the Asymptotic Critical Exponent

From now on we consider a standard Sturmian sequence u with associated irra-
tional number θ having eventually periodic continued fraction expansion. The
goal of this section is to compute the asymptotic critical exponent of a sequence
v obtained by colouring of u. By Proposition 1, to determine E∗(v) we only
need to consider long enough bispecial factors w.
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For this purpose, we write the continued fraction expansion of θ as

θ = [0, a1, a2, . . . , ah, (z0, z1, . . . , zM−1)ω] , (2)

where the preperiod h is chosen so that each bispecial factor b associated with
(N,m), N ≥ h, satisfies |b|a > β(y) and |b|b > β(y′).

We then decompose the set W of all nonempty bispecial factors of v =
colour(u,y,y′) into two subsets:

W long := {w ∈ W : π(w) bispecial in u assigned to (N,m) with N ≥ h} .
Wshort := W \ W long.
Using Proposition 5 and Lemma 2 in order to compute E∗(v), we need to

manipulate the numbers I(N,m) defined in Eq. (1).
Our approach consists in partitioning the set of all possible pairs (N,m),

N ≥ h, into a finite number of subsets such that S(b) is the same for each
Sturmian bispecial factor b assigned to a pair in the given subset. A suitable
partition uses the following equivalence relation on the first component of the
pair.

Definition 5. Let N1, N2 ∈ N and N1, N2 ≥ h. We say that N1 is equivalent to
N2, and write N1 ∼ N2, if the following three conditions are satisfied:

1. N1 = N2 mod M ,

2.
(

pN1−1

qN1−1

)
=

(
pN2−1

qN2−1

)
mod

(
Per(y)
Per(y′)

)
,

3.
(

pN1

qN1

)
=

(
pN2

qN2

)
mod

(
Per(y)
Per(y′)

)
.

The properties of the equivalence ∼ are summarized in the following lemma.
They follow from the definition of convergents to θ and from the periodicity of
the continued fraction expansion of θ.

Lemma 4. Let ∼ be the equivalence on the set {N ∈ N : N ≥ h} introduced in
Definition 5 and let H denote the number of equivalence classes.

1. If N1 ∼ N2, then aN1+1 = aN2+1.
2. N1 ∼ N2 if and only if N1 + 1 ∼ N2 + 1.
3. N1 ∼ N2 if and only if N2 = N1 mod H.
4. H = min {i ∈ N, i > 0 : h + i ∼ h} ≤ MPer(y)2Per(y′)2.
5. H is divisible by M .

Definitions 4 and 5 together with Lemma 4 ensure the following property.

Corollary 1. Let b(1) and b(2) be bispecial factors of u and (N1,m1) and
(N2,m2), with N1 ≥ h and N2 ≥ h, be the pairs assigned to b(1) and b(2) respec-
tively.

If N1 ∼ N2 and m1 = m2, then S(b(1)) = S(b(2)).
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Let us define a partition of the set W long into subsets C(i,m), where 0 ≤ i <
H and 0 ≤ m < zi mod M , as follows: if (h + i + NH,m) is the pair assigned to
a bispecial factor b = π(w) in u, then we put w into the subset C(i,m). Using
Propositions 1 and 5, we have

E∗(v) = max {E∗(i,m) : 0 ≤ i < H, 0 ≤ m < zi mod M} , (3)

where E∗(i,m) := lim sup
N→∞

I(h + i + NH, m).

To compute E∗(i,m), we need, according to Eq. (1), to determine lim
N→∞

QN−1
QN

.

A direct consequence of the Perron-Frobenius theorem serves this purpose.

Lemma 5. Let A ∈ N
2×2 be a primitive matrix with det A = ±1, and

(SN )N , (TN )N be two sequences of integers given by the recurrent relation
(SN+1, TN+1) = (SN , TN )A for each N ∈ N, with S0, T0 ∈ N such that
S0 + T0 > 0. Denote by ( x

y ) an eigenvector of A to the non-dominant eigen-
value λ. Then

1. lim
N→∞

SN

TN
= − y

x , and

2. SN + y
xTN = λN (S0 + y

xT0) for each N ∈ N.

Proof. As A is a primitive matrix with non-negative entries, the components
x and y of an eigenvector to the non-dominant eigenvalue have opposite signs.
In particular x, y 
= 0. Obviously, (SN , TN ) = (S0, T0)AN for each N ∈ N.
Multiplying both sides of the equation by the eigenvector ( x

y ), we obtain xSN +
yTN = λN (xS0 + yT0), i.e., Item 2 is proven.

As |λ| < 1, Item 2 implies that lim
N→∞

xTN

(
SN

TN
+ y

x

)
= lim

N→∞
(xSN + yTN ) =

0. Since lim
N→∞

TN = +∞, necessarily lim
N→∞

(
SN

TN
+ y

x

)
= 0. This proves Item 1.

Periodicity of the continued fraction expansion of θ and the previous lemma
ensure that the sequences SN := QMN+h+i−1 and TN := QMN+h+i satisfy the
recurrent relation (SN+1, TN+1) = (SN , TN )A(i) with

A(i) =
(
0 1
1 zi

) (
0 1
1 zi+1

) · · · ( 0 1
1 zM−1

) (
0 1
1 z0

) · · · ( 0 1
1 zi−1

)
, (4)

and hence also the existence of the limit

Li = lim
N→∞

SN

TN
= lim

N→∞
QHN+h+i−1

QHN+h+i
for i = 0, 1, . . . ,H − 1. (5)

Moreover, the non-dominant eigenvalue λ of A(i) satisfies

SN − LiTN = λN (S0 − LiT0) for each N ∈ N . (6)

By Corollary 1, for all bispecial factors w in C(i,m) we obtain the same set
S(π(w)). Let us denote S(i,m) := S(π(w)). Formula (1) then immediately gives

E∗(i,m) = 1 + max
{

1 + m + Li

k + �m + �Li
:

(
�
k

) ∈ S(i,m)
}

. (7)
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Example 6. Let us evaluate E∗(x9), where x9 is the sequence defined in Exam-
ple 5. It is easy to find that H = 8 and there are 16 distinct subsets C(i,m)
for i ∈ {0, 1, . . . , 7} and m ∈ {0, 1}. As θ = [0, 2, 3, 2ω] has period 1, the recur-
rence relation for (QN )N is QN+1 = 2QN + QN−1 for N ≥ 2. In particular
Li = lim

N→∞
QN−1
QN

=
√

2 − 1 for each i. Listing all elements of S(i,m) is more

laborious (but possible to do by hand as well). Thanks to a program imple-
mented by our student Daniela Opočenská we find that E∗(x9) = E∗(2, 1). Since
S(2, 1) = {( 6

10 )}, we have E∗(x9) = E∗(2, 1) = 1+ 2+L0
16+6L0

= 1+ 2
√
2−1
14

.= 1, 1306.

Using the same program we also find that E∗(x10) = 1 +
√
13
26

.= 1, 1387.

6 Computation of the Critical Exponent

In order to evaluate the critical exponent of v = colour(u,y,y′), we have to
determine, by Proposition 1,

E(v) = 1 + sup
{ |w|

|v| : w ∈ L(v), w bispecial and v ∈ Rv(w)
}

.

To find the maximum value of |w|
|v| among w ∈ Wshort and v ∈ Rv(w) we use

Propositions 3 and 5. To determine sup
{

|w|
|v| : w ∈ W long and v ∈ Rv(w)

}
we

use the partition of W long into subsets C(i,m) which have been introduced in
the previous section to count the asymptotic critical exponent. For each C(i,m)
we have to find

E(i,m) := sup {I(h + i + NH, m) : N ∈ N} ≥ E∗(i,m)

and then to determine the maximal value among E(i,m). We show that I(h +
i + NH,m) may exceed E∗(i,m) only for a finite number of indices N ∈ N.

Proposition 6. Let λ be the non-dominant eigenvalue of the matrix A(i) defined
in Eq. (4) and Li be the limit given in Eq. (5). Denote μ = |λ|H/M < 1. If N0 ∈ N

satisfies μN0 |Qh+i−1 − LiQh+i| ≤ 2Li, then I(h + i + NH,m) ≤ E∗(i,m) for
all N ≥ N0 and 0 ≤ m < zi mod M .

Proof. Equation (6) gives |Qh+i+NH−1 − LiQh+i+NH |=μN |Qh+i−1 − LiQh+i| .
Thus, it is enough to show the implication:

If I(h + i + NH,m) > E∗(i,m), then |Qh+i+NH−1 − LiQh+i+NH | > 2Li.
For this sake, we abbreviate notation by putting S = Qh+i+NH−1, T =

Qh+i+NH and L = Li. Recall that 0 < Li < 1. Let
(

�
k

) ∈ S(i,m) such that

I(h + i + NH,m) = 1 +
(1 + m)T + S − 2
(k + �m)T + �S

> E∗(i,m) ≥ 1 +
1 + m + L

k + �m + �L
.

Thus we have (k−�)(S−LT ) > 2(k+�m+�L) ≥ 2L|k−�|, hence |S−LT | > 2L.
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Example 7. Let us show that E(x9) = 7
6 . To do that we have to consider the

sets of short and long bispecial factors.

Wshort: It is easy to check that π
(Wshort

)
=

{
a, b, ab, ba, b2, b3, b2ab2,

b2ab2ab2}. For each element w in Wshort we have to prove that
1 + |w|

|v| ≤ 1 + 1
6 , i.e., that |w|

|v| ≤ 1
6 , where v is a shortest return word to

w.
Let π(w) = a, which is not a bispecial factor in u. We use Proposi-
tion 3. Looking into the prefix of u (as in Example 3) we see that the
return words to a are r = ab2 and s = ab3. By Definition 4, each vec-
tor

(
�
k

) ∈ S(a) satisfies k + � ≥ 1 and k ( 1
2 ) + � ( 1

3 ) = ( 0
0 ) mod ( 2

1 )
since gap(y, 1) = {2} and gap(y′, 0) = {1}. This implies for each solu-
tion that k + � ≥ 2. Since 3k + 4� ≥ 3k + 3� ≥ 6, we have |w|

|v| =

max
{

|a|
|ab2|k+|ab3|� :

(
�
k

) ∈ S(a)
}

≤ max
{

1
3k+4� : k + � ≥ 2

}
≤ 1

6 .

On the other hand, |w|
|v| ≥ 1

3·2+4·0 = 1
6 as the solution

(
�
k

)
= ( 0

2 ) is
the Parikh vector of a factor of any Sturmian sequence, in particular of
du(a). Note that the value 1/6 is attained for any w with π(w) = a.
For instance we can consider w = 0 and v = 045167.

Let π(w) = ab. Again, Ru(ab) = {ab2, ab3}. We have gap(y, 1) = {2}
and gap(y′, 1) = {6, 8}. Thus

(
�
k

) ∈ S(ab) satisfies

k ( 1
2 ) + � ( 1

3 ) = ( 0
0 ) mod ( 2

6 or 8 ) . (8)

If k + � ≥ 4, then |ab|
|ab2|k+|ab3|� = 2

3k+4� ≤ 2
3k+3� ≤ 2

3·4 = 1
6 .

When 1 ≤ k + � ≤ 3, the only vector
(

�
k

)
satisfying Eq. (8) is ( 2

0 ). How-
ever, this is never the Parikh vector of a Sturmian factor (cf. Lemma 3).

Let π(w) = b2ab2. Then b = b2ab2 is a bispecial factor of u associated
with (N,m) = (1, 1). We have gap(y, 1) = {2} and gap(y′, 4) = {24}.
By Proposition 4 we know the Parikh vectors of r and s, thus

(
�
k

) ∈ S(b)
satisfies

k ( 1
2 ) + � ( 1

3 ) = ( 0
0 ) mod ( 2

24 ) . (9)

It is not difficult to see that 5
3k+4� ≤ 1

6 .

Similar computations show that |w|
|v| ≤ 1

6 for each w ∈ Wshort and
v ∈ Rv(w).

W long: From Example 6 it follows that E∗(x9)
.= 1, 1306 < 7

6 . Apply Proposi-
tion 6. We have μ = (

√
2−1)8. Since μ|Q1−L0Q2| = μ|3−(

√
2−1)10| ≤

2(
√

2 − 1) and |Q2 − L0Q3| = |10 − (
√

2 − 1)23| ≤ 2(
√

2 − 1), we have
I(2 + i + NH,m) ≤ E∗(i,m) ≤ E∗(x9) for all i,m and N besides
i = 0, N = 0, i.e., we have to consider separately the bispecial factors
associated with the pairs (2, 0) and (2, 1). Again, both I(2, 0) and I(2, 1)
are smaller than 7

6 .

A similar computation can be done for the sequence x10. In this case we can
show that E(x10) = 1+ 1

7 and that the value 8
7 is attained for instance for w = 2

and v = 2345067.
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Abstract. String matching is one of the most extensively studied prob-
lems in computer science, mainly due to its direct applications to such
diverse areas as text, image and signal processing, speech analysis and
recognition, information retrieval, data compression, computational biol-
ogy and chemistry. In the last few decades a myriad of alternative solu-
tions have been proposed, based on very different techniques. However,
automata have always played a very important role in the design of effi-
cient string matching algorithms. In this paper we introduce the Range
Automaton, a weak yet efficient variant of the non-deterministic suffix
automaton of a string whose configuration can be encoded in a very sim-
ple form and which is particularly suitable to be used for solving text-
searching problems. As a first example of its effectiveness we present
an efficient string matching algorithm based on the Range Automaton,
named Backward Range Automaton Matcher, which turns out to be very
fast in many practical cases. Despite our algorithm has a quadratic worst-
case time complexity, experimental results show that it obtains in most
cases the best running times when compared against the most effective
automata based algorithms. In the case of long patterns, the speed-up
reaches 250%. This makes our proposed solution one of the most flexible
algorithms in practical cases.

Keywords: String matching · Text processing · Automata ·
Experimental algorithms · Design and analysis of algorithms

1 Introduction

The string matching problem consists in finding all the occurrences of a pattern
P of length m in a text T of length n, both strings defined over an alphabet
Σ of size σ. In the last few decades a myriad of alternative solutions have been
proposed, based on very different techniques [9].

The first linear-time solution to the problem was given by Knuth, Morris and
Pratt (KMP [11]), whereas Boyer and Moore (BM) provided the first sub-linear
solution on average [2]. The Backward-Dawg-Matching (BDM) algorithm [5]
was instead the first solution to reach the optimal O(n logσ(m)/m) time com-
plexity on the average. Both the KMP and the BDM algorithms are based on
c© Springer Nature Switzerland AG 2021
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finite automata; in particular, they simulate a deterministic automaton for the
language Σ�P and a deterministic suffix automaton for the language of the suf-
fixes of P , respectively. The subsequent solutions to the problem introduced in
the literature (see for instance [3,6,8,14]) have amply demonstrated how the effi-
ciency of such solutions is strictly affected by the encoding used for simulating
the underlying automaton.

An efficient technique which has been extensively used for the simulation
of non-deterministic automaton is bit parallelism [1]. It has been used, for
instance, in the design of the Shift-Or (SO) algorithm [1] and the Backward-
Non-deterministic-Dawg-Matching (BNDM) algorithm [13]. The first is based
on the non-deterministic simulation of the KMP automaton, while the second is
a very fast variant of the BDM algorithm, based on the bit-parallel simulation of
the non-deterministic suffix automaton. Specifically, in the design of automata-
based algorithms, bit-parallelism allows to take advantage of the intrinsic par-
allelism of the bitwise operations inside a computer word, potentially cutting
down the number of transitions that an algorithm performs by a factor up to
w, i.e. the number of bits in a computer word. However, one bit per pattern
symbol is required for representing the states of the automaton, for a total of
�m/ω� words. This implies that, as long as a pattern fits in a computer word,
bit-parallel algorithms are extremely fast, otherwise their performances degrade
considerably as �m/ω� grows. Although such limitation is intrinsic, several tech-
niques have been developed which retain good performance also in the case of
long patterns.

1.1 Previous Results

A common approach to overcome this problem consists in constructing an
automaton for a substring of the pattern fitting in a single computer word, to
filter possible candidate occurrences of the pattern. However, besides the costs
of the additional verification phase, a drawback of this approach is that, in the
case of the BNDM algorithm, the maximum possible shift length cannot exceed
ω, which could be much smaller than m.

The Long-BNDM [14] (LBNDM) and the BNDM with eXtended Shift [6]
(BXS) algorithms are two efficient solutions specifically designed for simulating
the suffix automaton using bit-parallelism in the case of long patterns. Specif-
ically the LBNDM algorithm works by partitioning the pattern in �m/k� con-
secutive substrings, each consisting in k = �(m− 1)/ω�+1 characters. Similarly
the BXS algorithm cuts the pattern into �m/ω� consecutive substrings of length
w except for the rightmost piece which may be shorter. In both cases the sub-
strings are superimposed getting a superimposed pattern of length ω. The idea is
to search using a filter approach: first the superimposed pattern is searched in the
text, then an additional verification phase is run when a candidate occurrence
of the pattern has been located.

Cantone et al. presented in [3] an alternative technique, still suitable for bit-
parallelism, to encode the non-deterministic suffix automaton of a given string
in a more compact way. Their encoding is based on factorization of strings in
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which no character occurs more than once in any factor. It turns out that the
non-deterministic automaton can be encoded with k bits, where k is the size of
the factorization. As a consequence, the resulting algorithm, called Factorized-
BNDM (FBNDM) tends to be faster in the case of sufficiently long patterns.

Finally the Backward-SNR-DAWG-Matching (BSDM) algorithm, introduced
by Faro and Lecroq in [8]. It is an efficient filtration algorithm based on a very
simple encoding of the suffix automaton of a pattern x. The BSDM algorithm is
based on the fact that a string where each character is repeated only once admits
a deterministic suffix automaton which can be encoded with a simple integer.

1.2 Our Contribution

In this paper we introduce the Range Automaton, a weak yet efficient variant of
the non-deterministic suffix automaton of a string whose configuration can be
encoded in a very simple form and which is particularly suitable to be used within
text-searching algorithms, naturally overcoming the intrinsic space limitations
introduced by bit-parallelism.

The idea underlying the Range Automaton is to approximate the configu-
ration of the non-deterministic Suffix Automaton by means of a simple pair of
integers to represent the range within which the active states of the automaton
are located. In order to prove the practical effectiveness of our approach, we also
present an efficient string matching algorithm based on the Range Automaton
and named Backward Range Automaton Matcher (BRAM), which turns out to
be very effective in practical cases. From our experimental results it turns out
that our algorithm, despite its quadratic worst-case running time, obtains in
most cases the best searching speed when compared against the most effective
automata based algorithms, especially in the case of long patterns.

The paper is organized as follows. In Sect. 2 we briefly introduce the basic
notions which we use along the paper. Then in Sect. 3 we introduce the Range
Automaton and present the new algorithm and some efficient implementation
of it in Sect. 4. In Sect. 5 we compare the newly presented solution with the
suffix automata based algorithms known in literature. We draw our conclusions
in Sect. 6.

2 Basic Notions and Definitions

Given a finite alphabet Σ, we denote by Σm, with m ≥ 0, the set of all strings
of length m over Σ and put Σ∗ =

⋃
m∈N

Σm. We represent a string P ∈ Σm,
also called an m-gram, as an array P [0 . . m − 1] of characters of Σ and write
|P | = m (in particular, for m = 0 we obtain the empty string ε). Thus, P [i] is
the (i + 1)-st character of P , for 0 ≤ i < m, and P [i . . j] is the substring of P
contained between its (i+1)-st and the (j +1)-st characters, for 0 ≤ i ≤ j < m.
For any two strings P and P ′, we say that P ′ is a suffix of P if P ′ = P [i . . m−1],
for some 0 ≤ i < m, and write Suff (P ) for the set of all suffixes of P . Similarly,
P ′ is a prefix of P if P ′ = P [0 . . i], for some 0 ≤ i < m. In addition, we write



94 S. Faro and S. Scafiti

P · P ′, or more simply PP ′, for the concatenation of P and P ′, and P r for the
reverse of the string P , i.e. P r = P [m − 1]P [m − 2] · · · P [0].

Given a string P ∈ Σm, we indicate with S(P ) = (Q,Σ, δ, I, F ) the non-
deterministic suffix automaton with ε-transitions for the language Suff (P ),
where Q = {I, q0, q1, . . . , qm} is the set of automaton states, I is the ini-
tial state, F = {qm} is the set of final states and the transition function
δ : P(Q) × (Σ ∪ {ε}) −→ P(Q), where P(Q) is the set of parts of Q. Specifi-
cally, for any Q′ ⊆ Q and c ∈ Σ, we have qi+1 ∈ δ(Q′, c) if qi ∈ Q′ and c = P [i],
for 0 ≤ i < m. In addition we have δ(I, ε) = Q. In all other cases we agree
that δ(Q′, c) = ∅. For simplicity, in what follows, we will use the notation δ(q, c)
instead of δ({q}, c).

The valid configurations δ∗(I,W ) which are reachable by the automaton
S(P ) on input W ∈ Σ∗ and starting from the initial state I are defined recur-
sively as:

δ∗(I,W ) :=

{
{q0, q1, ..., qm} if W = ε,
⋃

q′∈δ∗(I,W ′) δ(q′, c) if W = W ′c, for some c ∈ Σ, and W ′ ∈ Σ∗.

3 The Range Automaton

Let P be a string of length m over the alphabet Σ. The Range Automaton of a
pattern P is a weaker version of the non-deterministic Suffix Automaton of P in
the sense that, while using an encoding that can allow to keep track of the set of
all active states of the automaton, it adopts a weak transition approach, meaning
that also transitions not tagged with the current character may be activated.

Despite this weak transition approach, the Range Automaton has the inter-
esting feature of operating as an Oracle: the recognized language contains all the
factors of P and (possibly) other strings as well. This is the price to pay for an
automaton that can allow a simpler encoding and a more efficient simulation.

Before entering into the details of the description of the Range Automaton
it is advisable that some useful notions are introduced, some definitions are
provided and some properties are proved.

For each character c ∈ Σ, we define the position function, ρ : Σ −→
P({0, 1, ...,m− 1}), as the function which maps each character c ∈ Σ to the set
of positions where c occurs in P . If c doesn’t occur in P we agree to set ρ(c) = ∅.
More formally, ρ(c) := {i | P [i] = c, 0 ≤ i < m}, for each c ∈ Σ. Particularly
important for our discussion is the following definition of a range-set.

Definition 1 (Range-Set). Given a string P of length m and a termination
symbol $ /∈ Σ, a range-set of P is a set of contiguous positions in the string P$.
We use the notation [i : j] to denote the range-set of positions in P from i to j,
extremes included. Formally [i : j] = {i, i + 1, ..., j}, where 0 ≤ i ≤ j ≤ m.

The symbol $ is concatenated at the end of P in order to extend its length of
one character and allow the value m to be included in any range-set.
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We denote by Rm the set of all possible range-sets associated to a given
string on length m. Formally Rm = {[i : j] | 0 ≤ i ≤ j ≤ m}.

We also define the range function, denoted by r : Σ −→ Rm, as the function
which maps each character c to the tightest set-range where the character c
occurs in the pattern. More formally, for c ∈ Σ, r(c) is defined as follows.

r(c) =

{
[min ρ(c) : max ρ(c)] if ρ(c) 
= ∅
∅ otherwise.

Example 1. Given the pattern P = banana, we have that r(a) = [1 : 5] =
{1, 2, 3, 4, 5}, r(b) = [0 : 0] = {0} and r(n) = [2 : 4] = {2, 3, 4}, while r(c) = ∅
for any other character c not appearing in P .

Given a range-set R, we denote by R�k the left shift operation on R by
k positions. The result of such shift operation is a new range-set obtained by
decreasing each element of R by k. More formally, if R = [i : j], we have:

R�k :=

⎧
⎪⎨

⎪⎩

∅ if R = ∅ or j < k,

{0, 1, .., j − k} if i < k and j ≥ k.

{i − k, i, .., j − k} if i ≥ k.

Example 2. Given a range-set R = [2 : 5] = {2, 3, 4, 5} of size 4, we have that
R � 1 = [1 : 4] = {1, 2, 3, 4} and R � 2 = [0 : 3] = {0, 1, 2, 3}. In addition we
have also R � 4 = [0 : 1] = {0, 1} and R � 6 = ∅.

We notice that a one-to-one correspondence can be defined between the states
of the suffix automaton S(P ) and the positions within the string P$. Conse-
quently it is possible to map any range-set in R to a set of states in the suffix
automaton. Formally we can map any position i with the state qi, for 0 ≤ i ≤ m,
and any range-set [i : j] with the set of states {qi, qi+1, .., qj}, for 0 ≤ i ≤ j ≤ m.

We are now ready to define the Range Automaton used in our approach.
Using the correspondence between any range-set of the pattern P and the set
of states in the suffix automaton of P , in the following definition we will deal
with the sets of states as range-sets. In this context a configuration of the Range
Automaton of P is maintained as a single range-set, which identifies the set
of all active states of the automaton. In other words if [i : j] is the range-set
which represents the configuration of the Range Automaton, each state qk, with
k ∈ [i : j], is an active state.

Definition 2 (The Range Automaton). Given a string P ∈ Σm, we indicate
with A(P ) = (Q,Σ, γ, Ir, F ) the non-deterministic range suffix automaton of P .
It is defined as follows:

– Q = [0 : m] = {0, 1, . . . ,m} is the set of states of the automaton;
– Ir = [0 : m] = Q is the set of initial states;
– γ : Rm × Σ −→ Rm is the transition function, where γ(R, c) is defined as

γ(R, c) = (R � 1) ∩ r(c), for any R ∈ Rm and c ∈ Σ;
– F = [0 : 0] = {0} is the set of final states.
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The valid configurations γ∗(Ir,W ) which are reachable by the Range Automa-
ton A(P ) on input W ∈ Σ∗, with |W | = n, are defined recursively as follows

γ∗(Ir,W ) =
{

[0 : m] if n = 0
γ(γ∗(Ir,W [0..n − 2]),W [n − 1]) if n > 0

The following technical lemma allows to characterize the Range Automaton
as an oracle, proving that it recognizes (at least) all the factors of the pattern.

Lemma 1. Let P be a string of length m and let S(P ) be the non-deterministic
suffix automaton with ε-transitions for the language Suff (P ). In addition let
A(P ) be the Range Automaton of P . We have that if qi ∈ δ∗(I,W ), for a string
W ∈ Σ∗, then i ∈ γ∗(Ir,W ).

Proof. Let W be a string of length n. We proceed by induction on n.
For the base case, we have n = 0, i.e. W = ε. In this case δ∗(I,W ) =

{q0, q1, .., qm} and γ∗(Ir,W ) = [0 : m], so the lemma trivially holds.
Let now n > 0 and let us suppose that the lemma holds for every string of

length l ≤ n − 1. Since |W | = n > 0 we can write W = W ′c, with W ′ ∈ Σn−1.
By inductive hypothesis, if qi ∈ δ∗(I,W ′), then i ∈ γ∗(Ir,W

′). Since γ∗(Ir,W
′)

is a range, then [i′ : j′] ⊆ γ∗(Ir,W
′), where i′ and j′ are, respectively, the

minimum and the maximum of the set {i | qi ∈ δ∗(I,W ′)}. Remembering that
δ∗(I,W ) =

⋃
q′∈δ∗(q0,W ′) δ(q′, c), we have that if qk ∈ δ∗(I,W ) then, by the

definition of δ the following inequalities hold:

– max(0, i′ − 1) ≤ k ≤ max(0, j′ − 1),
– f ≤ k ≤ l, where [f : l] = r(c).

By the first inequality it follows that k ∈ ([i′ : j′] � 1). Since for the second
inequality k ∈ r(c), then k ∈ ([i′ : j′] � 1) ∩ r(c). Moreover, we observe that,
since [i′ : j′] ⊆ γ∗(Ir,W

′), then ([i′ : j′] � 1) ∩ r(c) ⊆ γ∗(Ir,W ) holds. Thus,
we can conclude that k ∈ γ∗(Ir,W ) too.

The following Corollary allows to characterize the range automaton as a
useful tool to search for a pattern in a text. It trivially follows from Lemma 1.

Corollary 1. Let P be a pattern of length m and let T be a text of length n. In
addition let A(P ) be the Range Automaton of P . If the prefix P [0..i] occurs in
T at position j, i.e. P [0..i] = T [j..j + i], then 0 ∈ γ∗(I, (T [j..j + i])r).

4 The Backward Range Automaton Matcher

In this section we describe the Backward Range Automaton Matcher (BRAM)
and discuss its time and space complexity. In our presentation we will refer to
the pseudo-code of the BRAM algorithm depicted in Fig. 1.

As before, let P be a pattern of length m and let T be a text of length n,
both strings defined over an alphabet Σ of size σ.
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The preprocessing phase of the BRAM algorithm consists in the computa-
tions of the function r(c), for each c ∈ Σ (lines 1–6) by means of two simple for
loops, taking time O(σ) and O(m), respectively. Thus, the preprocessing phase
achieves an overall O(m + σ)-time and O(σ)-space complexity.

The searching phase of the algorithm proceeds along the same line of the
BNDM algorithm, where the configuration of the Range Automaton is main-
tained as a range set R. The algorithm works by sliding a window W of length
m along the text starting form the left end of the text and proceeding from left
to right. At the end of each attempt the window is shifted to the right by a given
amount s > 0. This process continues until the right end of the text is reached.

Suppose we are in any of the attempts of the search phase, assuming that
W = T [j..j + m − 1]. At the beginning of the attempt the configuration of the
automaton is initialized to the set of initial states Ir. This is done by setting
R = [0 : m] = {0, 1, ...,m} (line 11). Thus all automaton states are active.

While proceeding in the backward scan of the window the configuration of
the automaton is updated accordingly. Specifically, after reading a character c,
the configuration of the automaton is updated by the following operation:

R ← (R � 1) ∩ r(c),

which is always performed at the beginning of each iteration of the while
cycle at line 12.

The algorithm keeps track of the length of the prefixes recognized during
the backward scan by maintaining a variable p which is initialized to 0 at the
beginning of each attempt. By Lemma 1, a prefix of P is recognized whenever
0 ∈ R. When this condition occurs, the algorithm updates the length of the
prefix just identified (line 17). This information will later be used to carry out
the correct advancement of the window along the text (line 22).

The backward scan proceeds until R becomes empty, a condition which occurs
when the substring T [j + m − i..j + m − 1] is not recognized by the automaton
and no state in the automaton is active. In this case the window is advanced
in order to align the first character of P with the starting position of the last
recognized prefix (line 22).

However, observe that R = ∅ can occur also when exactly m characters have
been scanned. If such condition occurs (line 18) then a candidate occurrence
of the pattern has been located and a naive check if performed to verify the
occurrence of the whole pattern starting from position j of the text.

Regarding the space and time complexity of the resulting algorithm it is
straightforward to observe that the searching phase of the BRAM algorithm
runs in O(mn)-time and O(σ)-space.

Example 3. Let P = banana be a pattern of length 6 and assume W = anaban
is the current window of the text. Plainly we have r(a) = [1 : 5], r(b) = [0 : 0]
and r(n) = [2 : 4]. The following table shows the configurations of the Range
Automaton obtained during the backward scan of the string W.
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Iteration Operation Range-set computation Configuration

Iteration 0 Initial state R0 = [0 : 5] [b a n a n a]

Iteration 1 Read n R1 = [0 : 4] ∩ [2 : 4] = [2 : 4] b a[n a n]a

Iteration 2 Read a R2 = [1 : 3] ∩ [1 : 5] = [1 : 3] b[a n a]n a

Iteration 3 Read b R3 = [0 : 2] ∩ [0 : 0] = [0 : 0] [b]a n a n a

Iteration 4 R4 = ∅

BRAM (P, m, T, n)
1. for each c ∈ Σ do
2. r(c) ← ∅
3. for c ∈ P do
4. i ← min ρ(c)
5. j ← max ρ(c)
6. r(c) ← [i : j]
7. j ← 0
8. while j ≤ n − m do
9. p ← 0

10. i ← m
11. R ← [0 : m]
12. do
13. R ← (R 1) ∩ r(T [j + i − 1])
14. i ← i − 1
15. if (0 ∈ R) then
16. if (i > 0) then
17. p ← m − i
18. else
19. if P = T [j . . . j + m − 1] then
20. Output(j)
21. while (R = ∅)
22. j ← j + m − p

Fig. 1. The pseudocode of the BRAM algorithm and its auxiliary procedures.

4.1 Speeding-Up Searching by Condensed Alphabets

In order to further improve the efficiency of the BRAM algorithm it is possible
to adopt a well-known strategy based on the use of condensed alphabet, whose
characters are obtained by combining groups of q characters, for a fixed value q.

As before let P be a pattern of length m over the alphabet Σ. An efficient
method for computing a condensed alphabet was presented in [16], and has
been then adopted extensively (see for instance [4,8,12]). It makes use of a hash
function hash : Σq −→ {0, ...,max − 1} to combine groups of q characters,
for a fixed constant value Max. Thus a new condensed pattern Pq of length
m − q + 1, over the alphabet {0, . . . ,Max− 1}, is obtained from P . Specifically
we have Pq[i . . j] = hash(P [i] · · · P [i + q − 1]) · · · hash(P [j] · · · P [j + q − 1]), for
0 ≤ i, j ≤ m − q, where Pq = Pq[0 . . m − q].

For instance if q = 3 the pattern P = banana of length 6 is condensed in
a new pattern P3 of length 4, and specifically P3 = hash(ban) · hash(ana) ·
hash(nan) · hash(ana).

The hash function is implemented as a shift-and-addition procedure, defined
as hash(c1, c2, ..., cq) = (

∑q
i=1(ci � (sh · (q − i))) mod Max.

The choice of the value sh is related to Max and q. In our experiments, we
set Max = 216 while we set sh = 2 when 1 ≤ q ≤ 4, and sh = 1 otherwise.
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Figure 2 shows experimental evaluations to compare the performances of the
BRAM algorithm under various conditions and for different values of the param-
eter q (a description of the experimental settings can be found in Sect. 5).

It turns out from experimental evaluations shown in Fig. 2 that the perfor-
mances of the algorithm strongly depend on the values of m, q and σ. When
the size of the alphabet is small then larger values of the parameter q are more
effective. Such difference is less sensible when the size of the alphabet gets larger.
However it turns out that the smaller is the length of the pattern the lower is
the performance of the algorithm. This behavior is more evident for larger val-
ues of the parameter q. Thus, the choice of the parameter q should be directed
to larger values when the size of alphabet decreases or when the length of the
pattern increases. Conversely the values of q should get smaller.
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Fig. 2. Running times of the BRAM algorithm extended with condensed alphabets
using groups of q characters. We report searching speed of the algorithms for different
values of q. Experimental test have been conducted on a genome sequence and a protein
sequence. Speed is reported in GB/s.

5 Experimental Results

We report in this section the results of an extensive experimentation of the
BRAM algorithm against the most efficient solutions known in the literature for
the online exact string matching problem, mostly focusing on those algorithms
which make use of the suffix automaton. Specifically, the following 10 algorithms
(implemented in 33 variants, depending on the values of their parameters) have
been compared: the BNDMq algorithm [13] implemented with q-grams, for 2 ≤
q ≤ 6; the LBNDM algorithm [14]; the BSXq algorithm [6] implemented using
q-grams, with 2 ≤ q ≤ 4; the FBNDM algorithm [3] of the BNDM algorithm [13];
the BSDMq algorithm [8] using q-grams characters, with 3 ≤ q ≤ 7; the BRAMq

algorithm, implemented using q-grams characters, with 3 ≤ q ≤ 7.
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Table 1. Experimental results obtained for searching on a genome sequence (at the
top), a protein sequence (in the center) and an English text (in the bottom). Searching
speed is reported in GB/s. Best results have been bold faced.

m 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

Genome Sequence BNDMq 3.05 3.07 3.01 2.96 3.05 3.01 3.03 2.96 2.94 3.00 2.94 2.94

LBNDM 1.56 1.78 2.00 0.94 0.19 0.20 0.23 0.25 0.25 0.25 0.25 0.26

BXSq 2.96 2.86 2.98 3.07 2.96 3.03 2.96 3.09 2.98 2.98 2.76 2.89

FBNDM 1.76 2.25 2.42 2.26 2.26 2.47 2.34 2.48 2.41 2.37 2.29 2.38

BSDMq 2.48 2.53 2.58 2.65 2.65 2.79 2.74 2.82 2.74 2.76 2.73 2.73

BRAMq 2.81 3.11 3.32 3.41 3.76 3.97 3.91 4.21 6.98 11.36 13.56 11.10

MAS 0.96 1.18 1.40 1.64 - - - - - - - -

MAS4 2.19 2.82 3.26 3.37 - - - - - - - -

TMAS 1.18 1.54 1.74 1.74 - - - - - - - -

EPSM 3.37 3.41 3.62 3.59 3.76 3.94 3.67 3.97 4.00 4.98 4.65 4.88

WFRq 3.05 3.26 3.39 3.59 3.81 3.84 3.94 4.10 6.78 9.57 6.60 2.38

TWFRq 2.49 2.63 3.21 3.30 3.76 3.81 4.00 4.07 6.78 9.39 6.69 2.48

Protein Sequence BNDMq 2.42 2.42 2.41 2.43 2.44 2.38 2.41 2.39 2.41 2.39 2.56 2.56

LBNDM 1.76 2.01 2.14 2.31 2.41 2.20 1.11 0.49 0.39 0.39 0.40 0.39

BXSq 2.67 2.70 2.67 2.70 2.67 2.70 2.65 2.68 2.63 2.64 2.63 2.61

FBNDM 1.97 2.13 2.29 2.29 2.29 2.28 2.26 2.26 2.25 2.27 2.45 2.25

BSDMq 2.33 2.44 2.48 2.52 2.54 2.54 2.52 2.56 2.54 2.50 2.79 2.57

BRAMq 2.21 2.38 2.52 2.61 2.82 2.77 2.96 2.98 5.37 8.88 12.21 10.85

EPSM 2.48 2.56 2.65 2.81 2.86 2.87 2.87 2.91 3.01 3.49 4.07 3.79

WFRq 2.34 2.48 2.58 2.71 2.81 2.96 2.98 3.00 5.43 9.04 10.61 5.49

TWFRq 2.37 2.49 2.56 2.70 2.86 2.94 2.98 3.00 5.37 8.88 10.39 5.55

English Text BNDMq 2.50 2.57 2.58 2.56 2.61 2.57 2.41 2.35 2.36 2.34 2.35 2.3

LBNDM 1.68 2.06 2.35 2.53 2.58 2.61 2.23 1.63 1.05 0.74 0.61 0.52

BXSq 2.57 2.65 2.6 2.58 2.58 2.57 2.6 2.58 2.58 2.53 2.50 2.44

FBNDM 1.93 2.16 2.42 2.44 2.43 2.43 2.20 2.18 2.21 2.15 2.20 2.17

BSDMq 2.60 2.67 2.74 2.73 2.77 2.77 2.54 2.60 2.58 2.60 2.65 2.65

BRAMq 2.45 2.70 2.81 2.94 3.05 3.15 3.01 3.05 5.49 9.21 12.52 11.36

EPSM 2.65 2.71 2.84 3.00 3.07 3.07 2.94 2.98 3.26 3.62 3.81 4.14

WFRq 2.50 2.65 2.74 2.82 3.00 2.89 3.00 3.03 5.25 8.00 7.40 3.81

TWFRq 2.64 2.71 2.76 2.91 3.03 3.11 2.94 3.00 5.25 8.00 7.40 3.81

For completeness, we also evaluated some among the most effective algo-
rithms in practice and specifically: the Maximal Average Shift algorithm
and its variants [15] (MAS, MAS4 and TMAS), specifically designed for
genome sequences and short patterns;1 the Weak Factors Recognition (WFR)
algorithm [4], implemented using q-grams, with 3 ≤ q ≤ 7 and its variant
(TWFR); the Exact Packed String Matching (EPSM) algorithm [7] based on
SIMD instructions.2

1 Search speed of MAS and its variants, MAS4 and TMAS, has been omitted starting
from m = 256, since the preprocessing time of such solutions become prohibitive as
the length of the pattern increases.

2 We notice that the EPSM algorithm is designed for simply counting the number of
matching occurrences without reporting the corresponding positions.
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All algorithms have been implemented in the C programming language3 and
have been tested using the Smart tool [10]. All experiments have been exe-
cuted locally on a computer running Linux Ubuntu 20.04.1 with an Intel Core
i5 3.40 GHz processor and 8 GB RAM.

Our tests have been run on a genome sequence, a protein sequence, and an
English text (each of size 6 MB). Such sequences are provided by the Smart
research tool and are available online for download.4 In the experimental eval-
uation, patterns of length m were randomly extracted from the sequences, with
m ranging over the set of values {2i | 5 ≤ i ≤ 16}. In all cases, the mean over
the search speed (expressed in Gigabytes per seconds) of 1000 runs has been
reported. Table 1 summarises our evaluations. Each table is divided into two
blocks. The first block presents results of the most effective automata based
algorithms while the second block concerns the speed search obtained by other
algorithms. Best results have been boldfaced both among automata-based algo-
rithms and among the entire set of algorithms.

Among the automata-based algorithms the new algorithm turns out to be
the best in many cases, obtaining increasingly higher performances as the length
of the pattern increases, showing considerable speed ups, especially in the case of
long patterns. In particular, other algorithms are superior only for m = 32, and,
in the case of protein sequences, up to m = 256. However, as m grows beyond
1024, the BRAM algorithm becomes by far faster than the previous solutions,
reaching a search speed up to 4.6 times higher than the second best solution.

Extending the comparison also to non-automata-based solutions, it is inter-
esting to note how the BRAM algorithm scales better as the size of the pattern
increases, outperforming all the remaining algorithms starting from m = 1024,
both in the case of genome sequences and for texts in natural language. In the
case of protein sequences, both WFRq and TWFRq turn out to be competi-
tive up to m = 8192, but fail to scale-up with respect to the new approach for
larger values of m. Moreover, we also notice how the BRAM algorithm is still
very competitive also for patterns of medium size, since the search speed never
deviates too much from the best results.

6 Conclusions

In this paper we introduced the Range Automaton, a weak version of the non-
deterministic suffix automaton of a string whose configuration can be encoded
as a simple pair of integers. Such encoding turns out to be effective in order
to overcome the intrinsic space limitation of bit-parallel simulations of the suf-
fix automaton. We then introduced a new efficient string matching algorithm,
named Backward Range Automaton Matcher (BRAM), based on the Range
Automaton of the pattern and conducted an extensive experimental evaluation

3 The source code of the new BRAM algorithm is available at the following link:
https://github.com/ostafen/range-automaton.

4 Additional details on the sequences can be found in Faro et al. [10].

https://github.com/ostafen/range-automaton
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from which it turns out that our newly presented algorithm is very competitive
when compared with the most efficient algorithms known in literature.

The good performances obtained by the BRAM algorithm suggest that the
encoding of the automaton proposed in this work is simple and flexible and
allows us to imagine that it can be adapted to other relevant text-processing
problems. Among these, the application to multiple string matching is one of
the most promising ways, as is its application to non-standard text processing
problems such as approximate string matching.
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Abstract. Motivated by the study of Fibonacci-like Wang shifts, we
define a numeration system for Z and Z

2 based on the binary alphabet
{0, 1}. We introduce a set of 16 Wang tiles that admits a valid tiling of
the plane described by a deterministic finite automaton taking as input
the representation of a position (m, n) ∈ Z

2 and outputting a Wang tile.

1 Introduction

A theorem of Cobham (1972) says that a sequence u = (un)n≥0 is k-automatic
with k ≥ 2 if and only if it is the image, under a coding, of a fixed point
of a k-uniform morphism [AS03, Theorem 6.3.2]. This result was extended to
non-uniform morphisms [RM02], see also [BR10, Theorem 3.4.1], by replacing
the usual base-k expansion of nonnegative integers by an abstract numeration
system and a regular language [LR01]. It was later extended to configurations
x : N

d → Σ in dimension d ≥ 1 based on the notion of shape-symmetric morphic
words [CKR10], see also [BR10, Theorem 3.4.26] and [AA20, Sect. 5].

In this article, we explore an extension of Cobham’s result beyond the non-
negative octant N

d to include configurations x : Z
d → Σ defined on the whole

lattice Z
d. We concentrate on one example in dimension d = 2. The example

is motivated by the study of Wang tilings of the plane. Given an alphabet C of
colors, a Wang tile is a 4-tuple (a, b, c, d) ∈ C4 that represents the labeling of the
edges of a unit square, by convention, in the order corresponding to a positive
rotation on the complex plane, i.e., a is the east edge label, b is the north edge
label, c is the west edge label and d is the south edge label.

We introduce a set Z = {z0, . . . , z15} of 16 Wang tiles shown in Fig. 1. The
set Z is a simplification of an existing aperiodic set of 19 Wang tiles [Lab19]
after identification of few colors, which was shown to be related [Lab21] to the
smallest set of aperiodic Wang tiles found by Jeandel and Rao [JR21].

A valid configuration over the set of Wang tiles Z is a function f : Z
2 →

{0, . . . , 15} such that adjacent tiles have the same label on their common edge,
i.e., for every n ∈ Z

2, the east label of the tile zf(n) is equal to the west label of
the tile zf(n+e1) and the north label of the tile zf(n) is equal to the south label
of the tile zf(n+e2). A partial valid configuration is shown in Fig. 2. It is this
c© Springer Nature Switzerland AG 2021
T. Lecroq and S. Puzynina (Eds.): WORDS 2021, LNCS 12847, pp. 104–116, 2021.
https://doi.org/10.1007/978-3-030-85088-3_9
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Fig. 1. The set Z = {z0, . . . , z15} of 16 Wang tiles. The index i of the tile zi is written
in the center of each tile.

particular configuration that is linked with a numeration system in Theorem 1.
The set ΩZ of valid configurations f : Z

2 → {0, . . . , 15} is called the Wang shift
associated to the set of Wang tiles Z.
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Fig. 2. A partial valid configuration [−5, 8[2→ {0, . . . , 15} with the set Z of Wang tiles.
(Color figure online)

We show the following result which states a link between a specific configu-
ration over the set Z of Wang tiles shown in Fig. 1, a numeration system for Z

2

and a deterministic finite automaton with output (DFAO). Definition of DFAO
is recalled in Sect. 3 and corresponds to the classic definition [AS03].

Theorem 1. Let Z be the set of 16 Wang tiles shown in Fig. 1. There exist a
valid Wang configuration x ∈ ΩZ and a DFAO A and a numeration system F
for Z

2 with a representation function repF : Z
2 → {( 0

0 ) , ( 0
1 ) , ( 1

0 ) , ( 1
1 )}∗ such

that the tile at position n ∈ Z
2 in x is xn = A(repF (n)).

In fact, the Wang shift ΩZ is self-similar, minimal and aperiodic. Moreover,
it is topologically conjugate to the Wang shift ΩU generated by the set U of 19
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Wang tiles introduced in [Lab19]. These results are not shown here due to lack
of space and will be part of an extended version of this article.

The article is structured as follows. In Sect. 2, we introduce a Fibonacci
numeration system for Z and Z

2. In Sect. 3, we illustrate how to change the
usual automaton in Cobham’s theorem for N so that it can read the representa-
tion of integers including the negative ones. In Sect. 4, we recall the definitions
and notations for two-dimensional words, languages and morphisms. The self-
similarity of the Wang shift ΩZ is stated in Sect. 5 (the proof is available in the
appendix of the preprint version) from which the automaton of Theorem 1 is
deduced, see Fig. 5. The proof of Theorem 1 is done in Sect. 6.

2 A Fibonacci Numeration System for Z and Z
2

Let (Fn)n≥1 be the Fibonacci sequence defined with the reccurent relation

F0 = 1, F1 = 1, F2 = 2, Fn+2 = Fn+1 + Fn for all n ≥ 1.

By the Zeckendorf theorem [Zec72] every nonnegative integer n can be repre-
sented as a unique sum of nonconsecutive Fibonacci numbers n =

∑�
i=1 wiFi,

where � = max {i ∈ N0 : Fi ≤ n}, wi ∈ {0, 1} and wiwi+1 = 0, for all i ∈
{1, 2, ..., � − 1}.

Inspired by the Two’s complement, “the most common method of representing
signed integers on computers”,1 we introduce a numeration system F which
extends the Fibonacci numeration system to all n ∈ Z as follows. For each binary
word w = w2k+1w2k · · · w1 ∈ Σ2k+1 of odd length over the alphabet Σ = {0, 1},
we define

valF (w) =
2k∑

i=1

wiFi − w2k+1F2k.

The following lemma is an exercise based on the Fibonacci recurrence.

Lemma 2. Let k ∈ N and w ∈ Σ2k \ Σ∗11Σ∗. We have

1. valF (0w) = valF (000w) = valF (110w),
2. valF (1w) = valF (101w),
3. valF (100w) = valF (000w) − F2k+2,
4. 0 ≤ valF (0w) < F2k+1,
5. −F2k+2 ≤ valF (100w) < 0. ��

Thus, the first digit of w ∈ Σ2k+1 \ Σ∗11Σ∗ gives the sign (nonnegative or
negative) of the value valF (w). We can show the following.

Proposition 3. For every n ∈ Z there exists a unique odd-length word

w ∈ Σ(ΣΣ)∗ \ (Σ∗11Σ∗ ∪ 000Σ∗ ∪ 101Σ∗)

such that n = valF (w).
1 https://en.wikipedia.org/wiki/Two’s complement.

https://en.wikipedia.org/wiki/Two's_complement
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Proof. (Unicity). Let w,w′ ∈ Σ(ΣΣ)∗ \ (Σ∗11Σ∗ ∪ 000Σ∗ ∪ 101Σ∗) of minimal
length such that valF (w) = valF (w′). If w ∈ 1Σ∗, then valF (w) = valF (w′) < 0
and w′ ∈ 1Σ∗ as well. In fact, we must have w,w′ ∈ 100Σ∗. Thus w = 10u and
w = 10u′ for some words u, u′ such that valF (u) = valF (u′). This contradicts the
minimality of the lengths of w and w′. If w ∈ 0Σ∗, then valF (w) = valF (w′) ≥ 0
and w′ ∈ 0Σ∗ as well. But w,w′ /∈ 000Σ∗, thus w ∈ {01, 001}u and w′ ∈
{01, 001}u′ for some u, u′ ∈ Σ∗. From Zeckendorf’s theorem applied to 1u and
1u′, we conclude that u = u′.

(Existence). If n = 0, then n = 0 = repF (0). Assume that n > 0. From Zeck-
endorf’s theorem, there exists a unique u ∈ 1Σ∗\Σ∗11Σ∗ such that n = valF (u).
If u has odd-length, then n = valF (00u). If u has even-length, then n = valF (0u).
Now assume that n < 0. Let k ∈ N be such that −F2k ≤ n < −F2k−2. We have
0 ≤ n + F2k < F2k − F2k−2 = F2k−1. Let w ∈ Σ2k−2 \ Σ∗11Σ∗ such that
valF (000w) = n + F2k. We thus have n = valF (100w). ��
Definition 4. (Numeration system F for Z). For each n ∈ Z, we denote by
repF (n) the unique word satisfying the proposition.

The numeration system F is illustrated in Fig. 3.
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4

5

6

7

-3

-4
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8
9
10
11
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13
14
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16
17
18
19
20

-6
-7
-8
-9
-10
-11
-12
-13

00

01

0

1

10

01

00

10
01

00

01

00

10
01

00

10
01
00

01
00

10
01
00

01
00

10
01
00

10
01
00

01
00

10
01
00

n repF (n)
7 01010
6 01001
5 01000
4 00101
3 00100
2 010
1 001
0 0
-1 1
-2 100
-3 10010
-4 10001
-5 10000

n repF (n)
20 0101010
19 0101001
18 0101000
17 0100101
16 0100100
15 0100010
14 0100001
13 0100000
12 0010101
11 0010100
10 0010010
9 0010001
8 0010000
-6 1001010
-7 1001001
-8 1001000
-9 1000101
-10 1000100
-11 1000010
-12 1000001
-13 1000000

Fig. 3. Representations in the numeration system F of n ∈ [−13, 21[.

We now extend that numeration system to Z
2. If n = (n1, n2) ∈ Z

2 is
such that |n1| >> |n2|, then the word representing n2 is smaller than the word
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representing n1. We handle this issue by padding the smaller word so that it
becomes of the same length as the longer one. The padding is done differently
according to the sign of the number involved: nonnegative numbers are padded
with 00, while negative numbers are padded with 10. This is consistent with the
numeration system F , refer also to the two loops in Fig. 3.

Definition 5. (Numeration system F for Z
2). Let n = (n1, n2) ∈ Z

2. We
define

repF (n) =
(

padt(repF (n1))
padt(repF (n2))

)

where t = max{| repF (n1)|, | repF (n2)|} and

padt(w) =

{
(00)

1
2 (t−|w|)w if w ∈ 0Σ∗,

(10)
1
2 (t−|w|)w if w ∈ 1Σ∗.

The set of all canonical representations repF (n) for n ∈ Z
2 are words in

{( 0
0 ) , ( 0

1 ) , ( 1
0 ) , ( 1

1 )}∗ of odd length such that there are no consecutive one’s in
each row. E.g. repF (−2, 9) = ( 1010100

0010001 ) , repF (14, 2) = ( 0100001
0000010 ). The length of

the representation splits Z and Z
2 into levels.

Lemma 6. For every k ∈ N, we have

{n ∈ Z : | repF (n)| = 2k + 1} = Ik \ Ik−1,

{n ∈ Z
2 : | repF (n)| = 2k + 1} = I2k \ I2k−1

where Ik = {i ∈ Z | −F2k ≤ i < F2k+1} for k ≥ 0 and I−1 = ∅.

Proof. The first equality follows from the fact that Ik = {n ∈ Z : | repF (n)| ≤
2k + 1} where the minimal value −F2k is attained by the word 1(00)k and the
maximal value F2k+1 − 1 is attained by the word 0(10)k. The second equality
follows from the fact that I2k = {n ∈ Z

2 : | repF (n)| ≤ 2k + 1}. ��
In Fig. 2, the levels I20 \ I2−1, I21 \ I20 and I22 \ I21 are shown in yellow, green

and blue respectively.

3 An Automaton Not only for Nonnegative Integers

We introduce the terms based on [BR10] to be used in this section. Let σ :
A 	→ A∗ be a non-erasing morphism prolongable on the letter a ∈ A such
that x = (xn)n≥0 = σω(a) is infinite. Let C = {0, ...,maxb∈A |σ(b)| − 1} be an
alphabet. The deterministic finite automaton with output (DFAO) associated
to the morphism σ and letter a is the 5-tuple,2 Aσ,a = (A,C, δ, a,A), where
δ : A × C → A is a partial function such that δ(b, i) = c if and only if c = ui

and σ(b) = u0 . . . u|σ(b)|−1. Let L be the language accepted by Aσ,a. Then the

2 In contrast to [BR10] we omit the coding as it is the identity map.
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triple S = (L \ 0C∗, C, <) is an abstract numeration system, where (C,<)
is the totally ordered alphabet with the natural order on N and the language
L \ 0C∗ is radix ordered. Radix order <rad is defined for words u, v ∈ L \ 0C∗

as follows: u <rad v if and only if |u| < |v| or |u| = |v| and u <lex v. The map
repS : N → L\0C∗ maps n ∈ N to the (n+1)th word in the language L\0C∗ and
the map valS : L → N maps a word w to the number n such that repS(n) = w′,
where w = 0pw′ for a p ≥ 0. For some state r ∈ A and word w ∈ C∗, we denote
by Aσ,a(r, w) the state reached by the automaton after following the path labeled
by w from the state r. We denote it by Aσ,a(w) when r is the initial state. The
following is essentially a reformulation of [BR10, Corollary 3.4.14].

Proposition 7. For every integer n > 0, there exist integers m ∈ N and � ∈ C
such that xn = σ(xm)[�] and repS(n) = repS(m) · �. Moreover, for any i ∈ N,
| repS(n)| = i if and only if |σi−1(a)| ≤ n < |σi(a)|.
Proof. Let n ∈ N. Let u ∈ L\0C∗ such that repS(n) = u. Let w ∈ C∗ and � ∈ C
such that u = w�. We have valS(w�) = n. Let m = valS(w). Since w ∈ L \ 0C∗,
then repS(m) = w. From [BR10, Corollary 3.4.14], we have

σ(xvalS(w)) = xvalS(w0)xvalS(w1) · · · xvalS(w�) · · · xvalS(w·(K−1))

where K = |σ(xvalS(w))|. Thus xn = xvalS(w�) = σ(xvalS(w))[�] = σ(xm)[�]. The
other statement follows from the equation [BR10, (3.12)]. ��

Let ϕ be the morphism ϕ : a 	→ ab, b 	→ a. The automaton Aϕ2,a asso-
ciated to the right-infinite fixed point of ϕ2 starting with letter a is shown
in Fig. 4. We construct another automaton Aϕ2,s associated to the bi-infinite
fixed point of ϕ2 defined from the seed s = b.a, see Fig. 4. The bi-infinite
Fibonacci word is x = limk→+∞ ϕ2k(b.a), where the dot represents the origin
between positions −1 and 0. When referring to ϕ2k(b.) we mean the finite word
ϕ2k(b) = x−|ϕ2k(b)| . . . x−2x−1.

a b

1

0

0, 2 1

START

a b

01

00

0 1

00, 10 01

START

a b

1

0

0 1

0

Fig. 4. Automata Aϕ2,a, Aϕ2,s and Aϕ,s with seed s = b.a.

Lemma 8. Let x = limk→+∞ ϕ2k(b.a) and let n ∈ Z \ I0. Then there exist
integers m ∈ Z and 0 ≤ � < 3 such that

x[n] = ϕ2(x[m])[�], with repF (n) = repF (m)h(�),

where h is the morphism h : {0, 1, 2}∗ → {0, 1}∗ defined as h : 0 	→ 00, 1 	→
01, 2 	→ 10. Moreover, if n ∈ Ii \ Ii−1 for some 1 ≤ i ≤ k, then m ∈ Ii−1 \ Ii−2.
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Proof. First assume that n > 0. Let Aϕ2,a and G = (L \ 0C∗, C,<). Then
x = limk→+∞ ϕ2k(a) is G-automatic, i.e., for any n ∈ N, we have xn =
Aϕ2,a(repG(n)), where repG(n) ∈ {ε, 1, 2, 10, 11, 20, 21, 22, 100, 101, . . . }. From
the definition of Aϕ2,s in Fig. 4, we have xn = Aϕ2,s(0h(repG(n))). Moreover,
from Proposition 7, for n > 0 there exist integers m ∈ N and � such that
h(repG(n)) = h(repG(m))h(l). On the other hand, 0h(repG(n)) = repF (n) for
all n ∈ N. This follows from the following reasons. Applying Proposition 7, we
obtain that |0h(repG(n))| = 2i+1 if and only if n ∈ (Ii \Ii−1)∩N. The alphabet
h(C) has the same ordering as the alphabet C. Finally, a word 12 is not accepted
by the automaton Aϕ2,a and therefore a word 11 is forbidden in 0h(L). Moreover,
as |h(�)| = 2, we observe | repF (m)| = | repF (n)| − 2, thus m ∈ Ii−1 \ Ii−2.

If n = −2, then we denote � = 0,m = −1. Let n < −2 and let k ≥ 2 be such
that n ∈ Ik \ Ik−1. We have

ϕ2k(b.)[n] = ϕ2k−1(a)[n + |ϕ2k(b)|], (1)

where |ϕ2k(b)| = F2k. As ϕ2k−1(a) is a prefix of ϕ2k(a), we can write

ϕ2k−1(a)[n + F2k] = ϕ2k(a)[n + F2k].

Then 0 ≤ n + F2k < F2k−1 and we denote 0 ≤ i ≤ k − 1 such that n + F2k ∈
Ii \ Ii−1. In case that i > 0, we use the previous paragraph for positive n > 0 on
a long enough prefix z of x (z = ϕ2k−2(a), therefore n + F2k < |z| = F2k−1) and
we find mP ∈ Ii−1 \ Ii−2 and � such that repF (n + F2k) = repF (mP )h(�) and

ϕ2(ϕ2k−2(a))[n + F2k] = ϕ2(ϕ2k−2(a)[mP ])[�].

As 0 ≤ mP < F2k−3 < F2k−1 = |ϕ2k−2(a)|, we restrict the last relation just to a
prefix ϕ2k−3(a) and use the relation (1) again to get m = mP − F2k−2 < 0

ϕ2k(b.)[n] = ϕ2(ϕ2k−3(a)[mP ])[�] = ϕ2(ϕ2k−2(b.)[mP − F2k−2])[�].

The representation repF (n) = 10w has the first digit corresponding to −F2k.
Then (00)k−i repF (n + F2k) = 00w. As mP ∈ Ii−1 \ Ii−2, then mP − F2k−2 ∈
Ik−1 \ Ik−2 and repF (mP − F2k−2) = 10(00)k−i−1 repF (mP ). As a whole,

repF (n) = 10(00)k−i−1 repF (mP )h(�) = repF (mP − F2k−2)h(�) = repF (m)h(�).

If i = 0, then we denote � = 0,m = −F2k−2 and the statement holds true. ��
We show the following result.

Proposition 9. The DFAO Aϕ,s associated to the seed s = b.a satisfies

xn = Aϕ,s(repF (n)) for all n ∈ Z.

Proof. Let Aϕ,s be the automaton shown in Fig. 4, i.e., the DFAO Aϕ,s =
({a, b} ∪ {start} , {0, 1} , δ, start, {a, b}) with the partial function δ such that

– δ(start, repF (n)) = sn for every n ∈ I0 = {−1, 0}, where s−1 = b, s0 = a,
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– δ(c, i) = d for any c, d ∈ {a, b} if and only if ϕ(c) = u and ui = d.

Assume n ∈ I0. If n = 0, then we have x0 = a = Aϕ,s(0) = Aϕ,s(repF (0)). If
n = −1, then x−1 = b = Aϕ,s(1) = Aϕ,s(repF (−1)). Induction hypothesis: we
assume for some k ∈ N that xm = Aϕ,s(repF (m)) for all m ∈ Ik \ Ik−1. Let
n ∈ Ik+1 \ Ik. Then from Lemma 8 there exist m ∈ Ik \ Ik−1 and � ∈ {0, 1, 2}
such that xn = ϕ2(xm)[�] and repF (n) = repF (m) · h(�), where h(�) = �0 · �1 for
some �0, �1 ∈ {0, 1}. From the induction hypothesis, we have

xn = ϕ2(xm)[�] = ϕ2(Aϕ,s(repF (m)))[�] = ϕ(ϕ(Aϕ,s(repF (m)))[�0])[�1]
= Aϕ,s(repF (m) · �0 · �1) = Aϕ,s(repF (m)h(�)) = Aϕ,s(repF (n)).

��

4 Two-Dimensional Words, Languages and Morphisms

In this section, we introduce 2-dimensional words, languages and morphisms
following the notations of [CKR10,Lab21]. Let k ∈ N and A = {0, 1, . . . , k}
be a finite alphabet and let u : {0, . . . , n1 − 1} × {0, . . . , n2 − 1} → A be a 2-
dimensional word of shape n = (n1, n2) ∈ N

2. Let An denote the set of all
2-dimensional words of shape n. We refer to the words of shape (1,2), (2,1) as
to the vertical, horizontal dominoes, respectively. We represent a 2-dimensional
word u of shape (n1, n2) ∈ N

2 as a matrix with Cartesian coordinates:

u =

⎛

⎝
u0,n2−1 . . . un1−1,n2−1

. . . . . . . . .
u0,0 . . . un1−1,0

⎞

⎠ .

Let A∗2 =
⋃

n∈N2 An the set of all 2-dimensional words. Let u, v ∈ A∗2 be of
shape (n1, n2), (ñ1, ñ2), respectively. If n2 = ñ2, the concatenation in direction
e1 is defined as a 2-dimensional word u �1 v of shape (n1 + ñ1, n2) given as

u �1 v =

⎛

⎝
u0,n2−1 . . . un1−1,n2−1 v0,n2−1 . . . . . . vñ1−1,n2−1

. . . . . . . . . . . . . . . . . .
u0,0 . . . un1−1,0 v0,0 . . . . . . vñ1−1,0

⎞

⎠ .

If n1 = ñ1, the concatenation in direction e2 is defined analogically. A word
v ∈ A∗2 is a subword of a word u ∈ A∗2 if there exist words u1, u2, u3, u4 ∈ A∗2

such that u = u3 �2 (u1 �1 v �1 u2) �2 u4.
A subset L ⊆ A∗2 is called a 2-dimensional factorial language if u ∈ L implies

that v ∈ L for all 2-dimensional subwords v of u.
Let A and B be two alphabets. Let L ⊆ A∗2

be a factorial language. A
function ω : L → B∗2

is a 2-dimensional morphism if for every i with 1 ≤ i ≤ 2,
and every u, v ∈ L such that u �i v is defined and u �i v ∈ L, we have that the
concatenation ω(u) �i ω(v) in direction ei is defined and

ω(u �i v) = ω(u) �i ω(v).
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A 2-dimensional morphism L → B∗2
is thus completely defined from the

image of the letters in A and can be denoted as a rule A → B∗2
.

A subset X ⊆ AZ
2

is called a subshift if it is closed under the shift3 σ and
closed with respect to compact product topology. Let L ⊆ A∗2

be a factorial
language and L(x) be the factorial language containing all subwords of the con-
figuration x ∈ AZ

2
. Then, XL = {x ∈ AZ

2 | L(x) ⊂ L} is a subshift generated
by L. A 2-dimensional morphism ω : L → B∗2

can be extended to a continuous
map ω : XL → BZ

2
in such a way that the origin of ω(x) is at zero position in

the word ω(x(0,0)) for all x ∈ XL.
In general, the closure under the shift of the image of a subshift X ⊆ AZ

2

under ω is the subshift ω(X)
σ

= {σkω(x) ∈ BZ
2 | k ∈ Z

2, x ∈ X} ⊆ BZ
2
.

A 2-dimensional morphism ω : A → A∗2
is said expansive if the width and

height of ωk(a) goes to ∞ for all letters a ∈ A. A subshift X ⊂ AZ
2

is self-
similar if there exists an expansive 2-dimensional morphism A → A∗2

such that
X = ω(X)

σ
.

5 Self-similarity of the Wang Shift ΩZ

Proposition 10. The Wang shift ΩZ is self-similar satisfying φ(ΩZ)
σ

= ΩZ
where φ is the 2-dimensional morphism over the alphabet H = {0, . . . , 15}

φ : H → H∗2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 	→ (14) , 1 	→ (13) , 2 	→ (12, 10) , 3 	→ (11, 8) ,

4 	→ (14, 7) , 5 	→ (13, 7) , 6 	→ (12, 7) , 7 	→
(

6
12

)
,

8 	→
(

3
14

)
, 9 	→

(
3

13

)
, 10 	→

(
2

12

)
, 11 	→

(
6 1

12 10

)
,

12 	→
(

6 1
11 8

)
, 13 	→

(
5 1

15 9

)
, 14 	→

(
4 1

11 8

)
, 15 	→

(
2 0

12 7

)
.

(2)

The proof of Proposition 10 is done in the appendix. It is using algorithms
to desubstitute Wang shifts based on the notion of marker tiles [Lab21].

Similarly to the 1-dimensional case, we can build an automaton associated to
a fixed point of the 2-dimensional morphism φ defined in Eq. (2). Let s = ( 8 12

1 6 ) ∈
H(2,2) be the seed associating one letter to each quadrant. We observe that φ2(s)
prolongates s at the origin. Therefore, limk→∞ φ2k(s) defines a configuration in
HZ

2
which is a fixed point of φ2.

Associated to the morphism φ and to the seed s =
( s(−1,0) s(0,0)

s(−1,−1) s(0,−1)

) ∈ H(2,2),
we construct a DFAO Aφ,s = (H ∪ {start}, Σ, δ, I,H) such that Σ =
{( 0

0 ) , ( 0
1 ) , ( 1

0 ) , ( 1
1 )}, I = {start} and δ : Q × Σ → Q is a partial function

such that

– δ(start, repF (n)) = sn for every n ∈ I20 = {(0, 0), (−1, 0), (0,−1),
(−1,−1)},

– δ(a, e) = b for any a, b ∈ H and e ∈ Σ if and only if b is in φ(a) at position e.

The automaton Aφ,s associated to the morphism φ and seed s = ( 8 12
1 6 ) is

shown in Fig. 5.
3 Note that from now on, σ denotes the shift action and not a morphism.
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Fig. 5. The automaton Aφ,s associated to the 2-dimensional morphism φ and seed
s = ( 8 12

1 6 ).

6 Proof of Main Results

In this section, we prove Theorem 1. The strategy is to extract the horizontal and
vertical structure (expressed as 1-dimensional morphisms) of a 2-dimensional
morphism and exploit results proved for the 1-dimensional case in Sect. 3, in
particular Lemma 8.

Let ω be a 2-dimensional morphism on the alphabet Q and Xω be the asso-
ciated substitutive subshift. Since ω : Xω → Xω is well-defined, it imposes that
the horizontal width of ω(a) equals the horizontal width of ω(b) for every pair
of letters a, b ∈ Q appearing in the same column. This holds also for the height
of the images of letters appearing in the same row. However, more can be said.

We define ∼col the equivalence relation as the reflexive, symmetric and tran-
sitive closure of the relation {(a, b) | ( b

a ) ∈ Lω} made of the vertical domi-
noes in the language. We define ∼row the equivalence relation as the reflexive,
symmetric and transitive closure of the relation {(a, b) | ( a b ) ∈ Lω} made
of the horizontal dominoes in the language. We have that a ∼col b if and
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only if letters a and b appear in the same column in some configuration of
Xω. Let πcol : Q → Q|∼col and πrow : Q → Q|∼row be the maps defined as
πcol : a 	→ [a]∼col , and πrow : a 	→ [a]∼row mapping a letter a ∈ Q to its equiva-
lence class.

We define the horizontal and vertical structure of ω resp. as the 1-dimensional
morphisms ωhoriz : Q|∗∼col

→ Q|∗∼col
and ωvert : Q|∗∼row

→ Q|∗∼row
by

ωhoriz([a]∼col) = [w0,0]∼col · · · [wm−1,0]∼col ,

ωvert([a]∼row) = [w0,0]∼row · · · [w0,n−1]∼row

where w = ω(a) ∈ Q(m,n).

Lemma 11. Let φ be the 2-dimensional morphism from Proposition 10 and x
the point fixed by φ2, x = limk→+∞ φ2k(s) for the seed s = ( 8 12

1 6 ). Let n ∈ Z
2\I20 .

Then, there exist vectors m ∈ Z
2 and � ∈ {0, 1, 2}2 such that

xn = φ2(xm )[�], where repF (n) = repF (m) · h(�).

Proof. Let n ∈ Z
2 \ I20 . The powers φ2k(s) are defined such that they grow in

all four quadrants. The vertical and horizontal structure of φ are respectively

φvert = φhoriz =
{

a 	→ ab
b 	→ a

satisfying

width(φ(w)) = |φhoriz ◦ πcol(w0,0 · · · wm−1,0)|
height(φ(w)) = |φvert ◦ πrow(w0,0 · · · w0,n−1)|

for all 2-dimensional words w ∈ Lφ of shape (m,n). Therefore, the vectors m
and � we are searching for can be found coordinate by coordinate.

Let y = limk→∞ φ2k
horiz(b.a) = limk→∞ φ2k

vert(b.a). From Lemma 8, there exist
integers m1,m2 ∈ Z and 0 ≤ �1, �2 < 3 such that

y[n1] = φ2
horiz(y[m1])[�1] and y[n2] = φ2

vert(y[m2])[�2],

where repF (n1) = repF (m1) · h(�1) and repF (n2) = repF (m2) · h(�2). Moreover,
it satisfies x(n1,n2) = φ2(x(m1,m2))[(�1, �2)]. We conclude

repG(n) =
(

padt(repF (n1))
padt(repF (n2))

)

=
(

padt−2(repF (m1) · h(�1)
padt−2(repF (m2) · h(�2)

)

= repF (m) ·h(�).

where t = max{| repF (n1)|, | repF (n2)|}. ��
Lemma 12. For any state r ∈ Q \ {start} in the automaton Aφ,s and any
� ∈ {

0, ...,width(φ2(r)) − 1
} × {

0, ...,height(φ2(r)) − 1
}
we have

Aφ,s(r, h(�)) = φ2(r)[�].
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Proof. Let r and � be according to the assumptions. Therefore, � ∈ {0, 1, 2}2 .

Then, there exist unique vectors �0, �1 ∈ {0, 1}2 such that φ2(s)[�] =
φ(φ(s)[�0])[�1]. As �0, �1 ∈ {0, 1}2, they belong to the set of edges Σ of the
automaton Aφ,s. Then, using the general properties of an automaton we have

φ2(r)[�] = φ(φ(r)[�0])[�1] = φ(Aφ,s(r, �0))[�1]
= Aφ,s(Aφ,s(r, �0), �1) = Aφ,s(r, �0�1) = Aφ,s(r, h(�)),

where the last equation holds for the following reasons.
I) If � ∈ {0, 1}2 ,

(
i
j

)
= �, then h(�) =

(
0 i
0 j

)
. Also, �0 = ( 0

0 ) and �1 =
(

i
j

)
.

II) If � ∈ {2} × {0, 1} ,
(
2
j

)
= �, then h(�) =

(
1 0
0 j

)
. On the other hand,

�0 = ( 1
0 ) and �1 =

(
0
j

)
. The case � ∈ {0, 1} × {2} is analogical.

III) If � ∈ {2}2 , then h(�) = ( 1 0
1 0 ) . Also, �0 = ( 1

1 ) and �1 = ( 0
0 ) . ��

Theorem 13. Let φ be a 2-dimensional morphism and x the point fixed by φ2,
x = limk→+∞ φ2k(s) for a seed s = ( 8 12

1 6 ). Then, there exists an automaton A
such that xn = A(repF (n)).

Proof. Let A = Aφ,s the automaton associated to the morphism φ and seed s =
( 8 12
1 6 ). If n ∈ I20 = {(0, 0), (−1, 0), (−1,−1), (0,−1)} , then xn = A(repF (n)).

Induction hypothesis: we assume for some k ∈ N that xm = A(repF (m)) for all
m ∈ I2k \ I2k−1. Let n ∈ I2k+1 \ I2k . Then, from Lemma 11 there exist m ∈ Z

2 and
� ∈ {0, 1, 2}2 such that xn = φ2(xm )[�] where repF (n) = repF (m) · h(�).

This implies | repF (m)| = | repF (n)| − 2, and therefore by Lemma 6, m ∈
I2k \ I2k−1. From the induction hypothesis, xm = A(repF (m)). Then, from the
induction hypothesis and Lemma 12, we have

xn = φ2(xm )[�] = φ2(A(repF (m)))[�]
= A(repF (m)h(�)) = A(repF (n)).

��
Proof (of Theorem 1). Let φ be the 2-dimensional morphism from Proposition 10
and let x = φ2(x) be the point fixed by φ2, where x = limk→+∞ φ2k(s) of the seed
s = ( 8 12

1 6 ). Let A = Aφ,s (see Fig. 5). The conclusion follows from Theorem 13. ��
Example 14. Let n = (−1, 6) ∈ Z

2. Then, repF (n) = ( 10101
01001 ) and Aφ,s gives

start
(1,0)−−−→ 8

(0,1)−−−→ 3
(1,0)−−−→ 8

(0,0)−−−→ 14
(1,1)−−−→ 1.

The tile at position n in the tiling x in Fig. 2 is indeed xn = 1.

Since ΩZ is minimal, we believe that Theorem 1 can be extended to all
configurations in ΩZ provided an additional input is given. Moreover, we believe
that Theorem 1 holds for a large family of self-similar subshifts and not only for
Fibonacci-like examples, thus extending Cobham’s theorem to Z

2 and Z
d. This

asks for further research and is part of an ongoing work.
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179–182 (1972)

https://doi.org/10.1007/978-3-030-57666-0
https://doi.org/10.1007/s00454-019-00153-3
https://doi.org/10.1007/s00454-019-00153-3
https://doi.org/10.1007/s002240010014
https://doi.org/10.1007/s002240010014


Perfectly Clustering Words are Primitive
Positive Elements of the Free Group

Mélodie Lapointe(B)

Université de Paris, IRIF, CNRS, 75006 Paris, France
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Abstract. A word over a totally ordered alphabet is perfectly cluster-
ing if its Burrows-Wheeler transform is a non-increasing word. A famous
example of a family of perfectly clustering words are Christoffel words
and their conjugates. In this paper, we show another similarity between
perfectly clustering words and Christoffel words: Both are positive prim-
itive elements of the free group.

Keywords: Perfectly clustering words · Free group · Bases

1 Introduction

Perfectly clustering words are a natural generalization of Christoffel words.
Which properties of Christoffel words can be extended to perfectly clustering
words? Our main focus is to show that as Christoffel words, perfectly clustering
words are positive primitive elements of the free group. An element of the free
group is called primitive if it is an element of a basis of the free group.

A word over a totally ordered alphabet is called perfectly clustering if its
Burrows-Wheeler transform is a non-increasing word. They were introduced
in [13]. The Burrows-Wheeler transform [4] is an invertible function introduced
in data compression algorithms. On a binary alphabet the Burrows-Wheeler
transform of a word is a non-increasing word if and only if it is a power of a
conjugate of a Christoffel word [10]. This characterization of Christoffel words
leads to perfectly clustering words as a way to generalize Christoffel words on a
larger alphabet.

In the last decade, several properties of perfectly clustering words have been
studied. Puglisi and Simpson [13] have used two morphisms and a function
defined on the factors of length two of a word to construct the set of perfectly
clustering words on a ternary alphabet, as well as proven that these words are
the product of two palindromes on any alphabet. Moreover, the square of a word
is a factor of an infinite word describing a minimal symmetric discrete interval
exchange transformation if and only if the word is a clustering word as shown
by Ferenczi and Zamboni [5]. Using the link between interval exchange transfor-
mations and perfectly clustering words lead to a family of free group morphisms
that can generate perfectly clustering words [8].
c© Springer Nature Switzerland AG 2021
T. Lecroq and S. Puzynina (Eds.): WORDS 2021, LNCS 12847, pp. 117–128, 2021.
https://doi.org/10.1007/978-3-030-85088-3_10
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Words are elements of the free monoid, but also of the free group on that
alphabet. In that sense, we aim to describe the positive bases of the free group
using a set of words on the free monoid. For the free group on two generators, it
is fully done: conjugates of Christoffel words are exactly the positive primitive
elements of the free group with two generators [6,11]. Some sets of words on a
larger alphabet are already known to appear in a basis of the free group such as
return words of dendric words [3]. Our main result is that perfectly clustering
words are positive primitive elements of the free group (see Theorem 2).

This paper is organized as follows. In Sect. 2, we recall properties of the free
group and its bases as well as defining perfectly clustering words. In Sect. 3,
we describe a set of morphisms such that any perfectly clustering word can be
obtained by composing a sequence of those morphisms applied to the word a.
In Sect. 4, we prove some properties of primitive elements of the free group and
our main result.

2 Definitions

Let A = {a1, . . . , ar} be a totally ordered alphabet, where a1 < a2 < · · · < ar.
A word w on the free monoid A∗ is a sequence of letters, i.e., w = w1 . . . wn.
The length of w = w1 . . . wn, denoted by |w|, is n. The number of occurrences of
a letter a in w is denoted by |w|a. The Parikh vector of w is the integer vector
(d1, . . . , dr) where di = |w|ai

. The function Alph is defined by Alph(w) = {x ∈
A | |w|a ≥ 1}. If w ∈ A∗, then Alph(w) ⊆ A. A word w is called complete if
Alph(w) = A.

A word w is called primitive if it is not the power of another word, that is,
if there exists a word z such that w = zn, then n = 1. The conjugates of a word
w of length n are the words wi . . . wnw1 . . . wi−1. If a word w is primitive, then
it has exactly n distinct conjugates.

The lexicographic order is an extension of the total order on A defined by
the following: if u, v ∈ A∗, we have u < v if either u is a proper prefix of v, or
u = rxs and v = ryt such that x < y and x, y ∈ A and r, s, t ∈ A∗. A word w
is called a Lyndon word if it is a primitive word, and it is the minimal word in
lexicographic order among its conjugates.

A word u is a factor of w if there exist two words x, y ∈ A∗ such that w = xuy.
The set of factors of a word is denoted by Fact(w) and Factn(w) denotes the
set of factors of length n of w.

2.1 Perfectly Clustering Words

To define perfectly clustering words, we first need to introduce the Burrows-
Wheeler transform of a word. Let w be a primitive word of length n on a
totally ordered alphabet. Let w1 < w2 < · · · < wn be its conjugates, lexico-
graphically ordered. Let li be the last letter of the word wi for 1 ≤ i ≤ n.
The Burrows-Wheeler transform of the word w, denoted by bwt(w), is the word
l1 . . . ln. For example, the Burrows-Wheeler transform of the word apartment is
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bwt(apartment) = tpmteaanr (see Fig. 1). One can check that two words u and
v are conjugates if and only if bwt(u) = bwt(v) (see [10]).

a p a r t m e n t
a r t m e n t a p
e n t a p a r t m
m e n t a p a r t
n t a p a r t m e
p a r t m e n t a
r t m e n t a p a
t a p a r t m e n
t m e n t a p a r

Fig. 1. The conjugates of the word apartment sorted in lexicographic order. The last
column is its Burrows-Wheeler transform

A primitive word w is π-clustering if bwt(w) = a
|w|aπ(1)

π(1) . . . a
|w|aπ(r)

π(r) , where π

is a permutation on {1, . . . , r}. Note that π cannot be the identity permutation:
Suppose that π = Id, then w1 = ua where a is the smallest letter, then au < w1

contradicting the fact that w1 is the smallest word among its conjugates. For
example, the word aluminium = a1a3a6a4a2a5a2a6a4 is 451623-clustering, since
bwt(aluminium) = mmnauuiil. A word is perfectly clustering if the permutation
π is the symmetric permutation, i.e., π(i) = r − i + 1, for all i ∈ {1, . . . , r}. A
well-known family of examples of perfectly clustering words are Christoffel words
and their conjugates (see [10,12]).

2.2 Christoffel Word

Let us recall the definition of Christoffel words. Let p and q be two relatively
prime integers, and A = (q, p) a point in the discrete plane Z×Z. The Christoffel
path of slope p/q is the discrete path, formed by elementary steps right and
upward, from the origin O to A, lying under the segment OA, and such that the
polygon delimited by this segment and the path does not contain any integral
point, except those lying on the path (see Fig. 2). The Christoffel word of slope
p/q is the word on the free monoid {a, b}∗, which represents the Christoffel path
of the slope p/q, where a represents a right step and b represents an upward
step. For example, the Christoffel word of slope 4/7 is the word aabaabaabab
(see Fig. 2). A lot is known about Christoffel words, but let us only recall that
Christoffel words are Lyndon words [2] and perfectly clustering words [10].

2.3 Free Group

Let F and G be groups (resp. monoids). A group (monoid) homomorphism f
is a map from F into G such that f(uv) = f(u)f(v) for any u, v ∈ F (and
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Fig. 2. The Christoffel path of the slope 4/7.

f(ε) = ε). An isomorphism is a bijective homomorphism, and an automorphism
is an isomorphism from F to itself. An antimorsphism f is a map from F into
G such that f(uv) = f(v)f(u) for any u, v ∈ F .

Let us denote by FA the free group generated by the alphabet A. Each
element of the free group FA may be represented by a reduced word, which is a
word on the alphabet A ∪ A−1 without the factors aa−1 or a−1a for any letter
a ∈ A. The monoid A ∪ A−1 has an involutory antimorphism called inversion,
w �→ w−1, which exchange a for a−1 for any letter a ∈ A.

For any word w on A ∪ A−1, there is a unique reduced word equivalent to w
modulo the relations aa−1 ≡ a−1a ≡ ε for any a ∈ A. If u is the reduced word
equivalent to w, we say that w reduces to u and we denote it as w ≡ u. The
length of an element of FA is the length of its unique reduced word. The product
of two elements u, v of FA is the reduced word w equivalent to uv.

The free monoid A∗ is a submonoid of FA, since each word in A∗ is a reduced
word. An element of the free group FA that is also an element of A∗ is called a
positive element.

Recall that A = {a1, . . . , ar}. A basis of FA, denoted by B, is a subset of
FA such that for any function f from the set B to a group H, there exists a
unique extension of f to a homomorphism f∗ from FA into H. The alphabet A
is a basis of FA by definition. Any basis B has cardinality equal to |A|, since all
basis of a free group has the same cardinality. An element g of the free group FA

is primitive if there exist elements h1, . . . , h|A|−1 such that {g, h1, . . . , h|A|−1} is
a basis of FA.

Remark 1. Some properties of words on the free monoid and elements of the free
group have the same name although they are not equivalent, such as primitive
words and primitive elements. To avoid confusion we call w a word if w ∈ A∗,
and an element, if w ∈ FA. Therefore, a primitive element is an element of a
basis of FA and a primitive word is not a power of another word.

In fact, a primitive element is also a primitive word, but a primitive word is
not necessarily a primitive element. The word aabb is a primitive word, but it
is not a primitive element of F{a,b}; only Christoffel words and their conjugates
are primitive elements of F{a,b} (see [12]).
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If FA is a free group, then any automorphism of FA carries A onto another
basis. Conversely, every one-to-one map from A onto any basis of FA uniquely
extends to an automorphism. A more complete introduction to free groups can
be found in [9].

3 Generation of Perfectly Clustering Words Using Free
Group Morphisms

Even if perfectly clustering words are on the free monoid A∗, they can be gener-
ated by group morphisms which are not monoid morphisms. Since the definition
of those group morphisms on an arbitrary alphabet is technical, we first begin
by an example on the ternary alphabet {a, b, c}.

3.1 Example on the Ternary Alphabet

Let A = {a, b, c} be an alphabet such that a < b < c. Let λa be the group
morphism defined by

λa(a) = a, λa(b) = ab, λa(c) = ac.

Let λb be the group morphism defined by

λb(a) = ab−1, λb(b) = b, λb(c) = bc.

Let λc be the group morphism defined by

λc(a) = ac−1, λc(b) = bc−1, λc(c) = c.

Let ρa, ρb and ρc be group morphisms satisfying ρa = λ−1
a , ρb = λ−1

b , and
ρc = λ−1

c . Let fa and fb be morphisms from {a, b}∗ to {a, b, c}∗ defined by
fa = Id and fb(a) = b, and fb(b) = c. If w is a perfectly clustering word on
the ternary alphabet {a, b, c}, then there exists a sequence of group morphisms,
namely g1, . . . , gn ∈ {λa, λb, λc, ρa, ρb, ρc} and f ∈ {fa, fb} such that

(g1 ◦ · · · ◦ gn ◦ f)(mw) = w (1)

where mw is a Christoffel word (this is a rewriting of [8, Theorem 4.29] on the
ternary alphabet). For example, the word acbcacc is perfectly clustering and
Lyndon; It is given by ρc ◦ λa ◦ fa(ab) = acbcacc.

Remark 2. We denote the Christoffel word above by mw to highlight that any
Christoffel word can be used to generate perfectly clustering words. However,
we cannot take a fixed Christoffel word over the alphabet {a, b} or {b, c} to
obtain all perfectly clustering words on the ternary alphabet. If g is a sequence
of morphisms in {λa, λb, λc, ρa, ρb, ρc}, then g(mw) is not necessarily a perfectly
clustering word. It might even be a non-positive element of FA, e.g. λc ◦λa(ab) =
ac−1ac−1bc−1 which is not an element of A∗.
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3.2 General Case

Now, we can present the morphisms needed to generate perfectly clustering words
over an arbitrary ordered alphabet in full generality. Let Ar = {a1, a2, . . . , ar}
be a totally ordered alphabet of cardinality r. For each letter � in Ar, we define
the group morphisms λ� and ρ� by

λ�(a) =

⎧
⎪⎨

⎪⎩

a�−1, if a < �;
a, if a = �;
�a, if a > �;

and ρ�(a) =

⎧
⎪⎨

⎪⎩

a�, if a < �;
a, if a = �;
�−1a, if a > �.

In our example of Sect. 3.1, we define ρ� as the inverse of λ�. Now, we need
to prove that this holds for the definition we give of ρ� and λ�. This will be done
in Proposition 3.

Furthermore, we use all Christoffel words (on alphabets {a, b} and {b, c}) to
generate the perfectly clustering words on the ternary alphabet. On an arbitrary
alphabet, we generate any perfectly clustering word starting with the binary
word a. One can easily check that λa and ρb when defined on the alphabet
{a, b} coincide with G and D̃ the usual sturmian morphisms used to construct
Christoffel words (see [12] for example). Then, any Christoffel word w is equal
to g(a) with g = g1 ◦ · · · ◦ gk and gi ∈ {λa, ρb}. Hence, mw can be replaced by
g(a) = mw in Eq. (1). Note that λa, defined on {a, b} or {a, b, c}, sends a to the
same word and b to the same word. So we simply use λ� and ρ� on any finite
alphabet.

We generate perfectly clustering on the totally ordered alphabet Ar by start-
ing from the set of perfectly clustering words on the totally ordered alpha-
bet Ar−1. Hence, we also need monoid morphisms analogue to f . Let Ar =
{a1, . . . , ar} be an alphabet of cardinality r such that a1 < a2 < · · · < ar. We
define a larger totally ordered alphabet Ar+1 of cardinality r + 1 by adding a
new letter to Ar, namely ar+1 /∈ A such that for all a ∈ Ar, a < ar+1, i.e.,
Ar+1 = Ar ∪ {ar+1}. Let f�,Ar

be a monoid morphism A∗
r to A∗

r+1 defined by

f�,Ar
(ai) =

{
ai if ai < �,

ai+1 otherwise,

where ai ∈ Ar. For example, fa3,A4(a1) = a1, fa3,A4(a2) = a2, fa3,A4(a3) = a4

and fa3,A4(a4) = a5. In other words, if w is a word on the alphabet Ar, then
fai,Ar

(w) is a word on the alphabet {a1, . . . , ai−1, ai+1, . . . , ar} ⊂ Ar+1. The
natural extension of f�,Ar

on the free group is f�,Ar
(a−1) = f�,Ar

(a)−1 for all
a ∈ Ar. If w is a perfectly clustering word, there is a composition of those
morphisms applied to a which is equal to w as shown in [8, Theorem 4.29].

Theorem 1. Let w be a Lyndon complete perfectly clustering word on the totally
ordered alphabet A. There exists a sequence of free group morphisms, namely
g = g1 ◦ · · · ◦ gk, such that

g(a) = w
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and gi ∈ {λ�j
, ρ�j

, λ�j
◦ f�j ,B , ρ�i+1 ◦ f�j+1,B | �j ∈ A and B ⊂ A} for i ∈

{1, . . . , k}.
For example, the Lyndon complete perfectly clustering word adbcbdadbd is

given by the sequence of morphisms λb ◦ fb,{a,b,c} ◦ ρc ◦ λa ◦ fa,{a,b} ◦ ρb.

Remark 3. We choose to construct only Lyndon perfectly clustering, since the
Burrows-Wheeler transform of two words is equal if and only if they are con-
jugates. Hence, applying conjugacy on the set of Lyndon perfectly clustering
words gives the set of perfectly clustering words. Moreover, if a word is perfectly
clustering, permutation of letters of that word are necessarily not perfectly clus-
tering word. Hence, we enumerate complete word to ensure that the resulting
word is perfectly clustering.

We do not present the proof of Theorem 1, which can be found in [8, Chap. 4],
but let us discuss the main ideas of it. In order to prove Theorem1, we need a
result of Ferenczi and Zamboni [5]. A word w is a complete perfectly clustering
word if and only if w2 is a factor in the trajectory of a minimal symmetric
discrete interval exchange transformation. Let w be a perfectly clustering word.
We use this bijection to prove that the reduced words of λ�(w) and ρ�(w) are
perfectly clustering words by working on the interval exchange transformation
instead of the Burrows-Wheeler transform.

In fact, minimal symmetric discrete interval exchange transformations are
defined by a vector, called circular composition, which is the commutative image,
i.e., the Parikh vector, of the corresponding perfectly clustering words. We use
a tree labelled by all circular compositions introduced in [7] to prove that any
Lyndon complete perfectly clustering word can be obtained using a sequence of
morphisms as in Theorem 1. This construct along the way a tree labelled by all
perfectly clustering words.

3.3 On the Positivity

As perfectly clustering words are defined on the free monoid, not the free group,
we want that at each step i in the sequence of morphisms the element gi ◦ gk(a)
is positive. However, the morphisms λ� and ρ� are not positive morphisms, but
we can determine if λ�(w) or ρ�(w) reduces to a positive word only by looking
at its factors of length two.

Proposition 1. Let w = w1 . . . wn ∈ A∗ be a word. The reduced word equivalent
to λ�(w) is positive if and only if for all, i ∈ {1, . . . , n − 1}, wi < � implies that
wi+1 ≥ � and wn ≥ �. The reduced word equivalent to ρ�(w) is positive if and
only if, for all i ∈ {2, . . . , n}, wi < � implies that wi−1 ≥ � and w1 ≤ �.

Proof. Suppose that wi < � implies that wi+1 ≥ � for all i ∈ {1, . . . , n − 1} and
wn ≥ �. The only inverse letter in the reduced word of λ�(w) is �−1, since w is
a positive element of FA. Moreover, all occurrences of �−1 in λ� are followed by
at least one occurrence of the letter �. Hence, in the reduced word equivalent to
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λ�(w), the letter �−1 does not appear. Then, the reduced equivalent to λ�(w) is
positive.

Suppose that u, the reduced word equivalent to λ�(w), is positive. This means
that the letter �−1 does not appear in u. Then, all letters in the word w are larger
than �, or all occurrences of a letter smaller than w is followed by an occurrence
of a letter larger than w, i.e., for all i ∈ {1, . . . , n − 1}, wi < � implies that
wi+1 ≥ � and wn ≥ �. The proof is similar to the circularly reduced element of
ρ�(w). �

In the case of a perfectly clustering word, we can say even more as the factor
of length two are determined by the Parikh vector of the word.

Proposition 2. Let w be a Lyndon perfectly clustering word and � a letter. The
reduced word equivalent to λ�(w) (resp. ρ�(w)) is positive if

∑

j>�

|w|j >
∑

j<�

|w|j
⎛

⎝resp.
∑

j>�

|w|j <
∑

j<�

|w|j
⎞

⎠

with j ∈ A.

For example, the word acbcacc is perfectly clustering and its Parikh vector
is (2, 1, 4). Since

∑
j>b |acbcacc|j = 4 >

∑
j<b |acbcacc|j = 2, then λb(w) =

acbbcacbc is positive, but ρb(w) = accacb−1c is not positive.

Remark 4. The same condition on the Parikh vector of w means that λ�(w)
(resp. ρ�(w)) is a perfectly clustering word as shown in [8, Theorem 4.12 and
Theorem 4.18]

Proof. Let w be a Lyndon perfectly clustering word of length n on the alphabet
Ar and its Parikh vector (d1, . . . , dr). Let w1 < w2 < · · · < wn be the set of
conjugates of w in lexicographic order. The word formed by the first letter of each
word wi is u1 . . . un = ad1

1 . . . adr
r and the word formed by the last letter of each

word is v1 . . . vn = adr
r . . . ad1

1 , since w is a perfectly clustering word. Then, the
factors of length 2 of w are of the form: viui ∈ Fact2(w), for some i ∈ {1, . . . , n}.
Since � is a letter in A, there exist a letter ak for some k ∈ {1, . . . , r} such that
ak = �. Suppose that

∑
j>� |w|j >

∑
j<� |w|j , that is if

∑m
j=k+1 dj >

∑k−1
j=1 dj .

If vu ∈ Fact2(w) and v < �, then u > � as the vi’s are in non-increasing order
and the ui’s in non-decreasing order and more letters in w are larger than �.
Then, ui < � implies that ui+1 > �. Moreover, wn = ar since w is a Lyndon
perfectly clustering word. By Lemma 1, the reduced word equivalent to λ�(w) is
a positive. A similar proof is done for the reduced word equivalent to ρ�(w). �

4 Primitive Elements of the Free Group

As for Christoffel words, perfectly clustering words are primitive positive ele-
ments of the free group. In fact, we show that λ� and ρ� are automorphisms
of the free group FA meaning that they send a basis of FA to another basis.
However, f� is not an automorphism of the free group.
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Proposition 3. The morphisms λ� and ρ� are automorphisms of the free group
FA.

Proof. Let Ar be a totally ordered alphabet of cardinality r and FAr
the free

group with basis Ar. Let � ∈ Ar be a letter. We want to show that the morphism
λ� is the inverse morphism of ρ�, i.e., λ� ◦ρ� = ρ� ◦λ� = Id. It is enough to check
that λ� ◦ ρ�(a) = ρ� ◦ λ�(a) = a for any letter a ∈ Ar, since both are group
morphisms. There are three cases.

1. If a < �, then

λ� ◦ ρ�(a) = λ�(a�) = a�−1� = a

ρ� ◦ λ�(a) = ρ�(a�−1) = a��−1 = a.

2. If a = �, then

λ� ◦ ρ�(a) = λ�(a) = a = ρ�(a) = ρ� ◦ λ�(a).

3. If a > �, then

λ� ◦ ρ�(a) = λ�(�−1a) = �−1�a = a

ρ� ◦ λ�(a) = ρ�(�a) = ��−1a = a.

Therefore λ� is the inverse of ρ� and both morphisms are automorphisms of the
free group FAr

. �

Let us stress the fact that f� is not an automorphism, but we will show in
Lemma 2 that f� sends a primitive element of Ar to a primitive element of Ar+1.
Notice that f� is a restriction to A∗

r of an automorphism of the free group FAr+1 .
Let us check first some properties of primitive elements of FA.

Lemma 1. Let x be a primitive element of FA. If A ⊆ B, then x is a primitive
element of FB.

Proof. Let A = {a1, . . . , ar} be an alphabet. We have that B = {a1, . . . , ar, b1,
. . . , bs} with ai �= bj ,∀i ∈ {1, . . . , r} and ∀j ∈ {1, . . . , s}, since A ⊆ B. Let x be
a primitive element of FA, then there exist elements h1, . . . , hr−1 ∈ FA such that
{x, h1, . . . , hr} is a basis of FA. Moreover, x and hi are elements of FB where the
only letters appearing are in A. Therefore {x, h1, . . . , hr−1, b1, . . . , bs} is a basis
of FB . Then x is a primitive element of FB . �

Lemma 2. Let A be a totally ordered alphabet of cardinality r, b /∈ A and B =
A ∪ {b}, such that for all a ∈ A, a < b. If w is a primitive element of FA, then
λ�(w), ρ�(w) and f�(w) are primitive elements of FB for any � ∈ A.

Proof. Let us recall that λ� and ρ� are automorphisms by Proposition 3 of the
free group FA. Since λ� and ρ� are automorphisms, they send a basis of FA to
another basis, then the reduced words of λ�(w) and ρ�(w) are primitive words.
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Then, the reduced word of λ�(w) and ρ�(w) are primitive elements of FB by
Lemma 1.

Let us show that f�(w) is a primitive element of FB. Observe that f�(A) ∪
{�} = A∪{b}. Thus f� can be extended to a permutation letting f�(b) = �. This
extension of f� is an automorphism. Then, for any primitive element w, f�(w) is
a primitive element. �

Let us state our main theorem.

Theorem 2. Let w be a perfectly clustering word on the totally ordered alphabet
A. Then w is a primitive element of FA.

Before doing the demonstration, let us introduce the conjugation on the free
group. Two elements u, v ∈ FA, are conjugate if there exists g ∈ FA such that
u = gvg−1. This is not the same definition as the one for conjugate on the
free monoid. However, there is a relationship between the notions of (monoid-
theoretic) conjugacy in A∗ and (group-theoretic) conjugacy in FA. In the proof
of Theorem 2, we will show that if two words are conjugates in A∗, then they
are also conjugates in FA. The opposite statement also holds as proven in [1,
Lemma 5.1].

Proof. Let w be a complete perfectly clustering word. If w is a Lyndon word.
There exists a sequence of free group morphisms, such that g(a) = w by The-
orem 1. Moreover, the word a is a positive primitive element of FA, if a ∈ A.
Moreover, g sends primitive elements to the primitive elements by Lemma 2.
Then w is a primitive element of FA.

If w is not a Lyndon word, then w is conjugate to a Lyndon word since
perfectly clustering words are primitive words by definition. Denote by v the
conjugate of w which is a Lyndon word. Since w and v are conjugate, there
exist two words x, y ∈ A∗ such that w = xy and v = yx. Since ywy−1 =
y(xy)y−1 = yx = v. Then, w and v are conjugate in FA. Moreover, v is a
primitive element of FA. There is a basis {v, h1, . . . , hr} of FA with hi ∈ FA,
namely {y−1vy, y−1h1y, . . . , y−1hry} = {w, y−1h1y, . . . , y−1hry} is a basis of
FA (remark: the conjugation is a group automorphism). Then w is a primitive
element of FA. �

5 Conclusion

Theorem 2 extends to a larger alphabet a property of Christoffel words, namely
they are positive primitive elements of the free group, and allows to recover the
following result.

Corollary 1 ([6,11]). Any conjugate of a Christoffel word is a primitive positive
element of the free group F{a,b}.
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In fact, the articles [6,11] also show that any primitive element of F{a,b} is
a conjugate of a Christoffel word. However, on a larger alphabet there is not an
equivalence between perfectly clustering words and positive primitive elements
of the free group. In FA with |A| > 2, it is possible to find positive primitive
elements of FA which are not perfectly clustering words. Let us construct a basis
of the free group whose elements are not perfectly clustering words. Let u be the
Tribonacci word, i.e., the infinite word over the alphabet {a, b, c} and a < b < c
which is the fixed point of the substitution φ(a) = ab, φ(b) = ac and φ(c) = a.
The return words of the factor baa are {baabaca, baabacababaca, baabacabaca}.
Those words are a positive basis of the free group F{a,b,c} (see [3]), but none of
them is a perfectly clustering word.

To conclude, let us check some known results on Christoffel words and sym-
metric interval exchange transformations that lead to open questions on per-
fectly clustering words. In [3], the authors construct bases of the free group with
the first return words of dendric words. Since trajectory of minimal interval
exchange transformations are dendric words, it means that first return words
of those words are also primitive elements of FA. As perfectly clustering words
are also factors of the trajectory of an interval exchange transformation, we are
currently investigating the following question supported by experimental data:

1. Are return words of a symmetric interval exchange transformation perfectly
clustering words?

It is important to highlight that perfectly clustering words and first return
words are proper subsets of the factors of a trajectory of a minimal interval
exchange transformation. For example, the word baab is a factor of sturmian
words, but it is not a first return word, neither a perfectly clustering word.

As primitive element of F{a,b} are Christoffel words or conjugates to a
Christoffel word, they can be factorized as a product of two Christoffel words
forming a basis of the free group. We would want to factorize similarly perfectly
clustering words on a larger alphabet. For example, takes acbbcacbc a perfectly
clustering word on the ternary alphabet and the factorization ac.bbc.acbc. Each
word is a perfectly clustering word and they form a basis of the free group
as each letter can be expressed as a product of the words ac, bbc and acbc:
(ac)(acbc)−1(ac)(bbc)(acbc)−1(ac) = a, (bbc)(acbc)−1(ac) = b, and (ac)−1(acbc)
(bbc)−1(ac)−1(acbc) = c. The factorisation of a Christoffel word into two
Christoffel words also provide a way to construct a basis from a Christoffel
word. Hence, the following questions on perfectly clustering word:

2. Can a complete perfectly clustering word on the alphabet Ar be factorized in
a product of r words forming a basis of FAr

?
3. If w is a perfectly clustering word, can we describe a set of words B of cardi-

nality r − 1 such that B ∪ {w} is a positive basis of the free group FAr
?

4. If yes, are the words in B perfectly clustering words?
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Abstract. The Billaud Conjecture, which has been open since 1993, is
a fundamental problem on finite words w and their heirs, i.e., the words
obtained by deleting every occurrence of a given letter from w. It posits
that every morphically primitive word, i.e. a word which is a fixed point
of the identity morphism only, has at least one morphically primitive heir.
In this paper, we introduce and investigate the related class of so-called
Billaud words, i.e. words whose all heirs are morphically imprimitive.
We provide a characterisation of morphically imprimitive Billaud words,
using a new concept. We show that there are two phenomena through
which words can have morphically imprimitive heirs, and we highlight
that only one of those occurs in morphically primitive words. Finally, we
examine our concept further, use it to rephrase the Billaud Conjecture
and study its difficulty.

Keywords: Billaud conjecture · Morphic primitivity · Fixed point

1 Introduction

In this paper we study the notion of morphic primitivity of words: a word is
morphically primitive if the only morphism for which it is a fixed point is the
identity morphism. The context of our research is the conjecture posed by Billaud
[1] in 1993, which is still open today:

Conjecture 1 (The Billaud Conjecture). There exists at least one letter x in
every morphically primitive word w such that the word obtained by deleting all
occurrences of x in w is also morphically primitive.

We shall call the word w the parent, and the words obtained through a
deletion of a letter from w heirs. As a simple example, consider the morphically
primitive word abcbac: the word resulting from the deletion of the letter c is
abba, and it is morphically primitive. The Billaud Conjecture, however, is an
implication and not a characterisation. Hence, while there exist words, such as
(abc)2, where the deletion of each of the letters leads to a morphically imprimitive
heir, there are also words such as abcbca, which are morphically imprimitive, yet
have morphically primitive heirs (here abba).
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Despite being an open problem, a number of results in relation to the Billaud
Conjecture have been established. In the direct response to the question posed
by Billaud, the initial insight that we need only to consider idempotent mor-
phisms was due to Geser [3]; an extended version of this statement was proved
by Levé and Richomme [9]. Several special cases where the conjecture holds were
identified: Zimmermann [15] showed that the conjecture holds for the alphabet
size of 3. (We note the case of alphabet size of 2 is trivial.) Levé and Richomme
[9], working with the contrapositive of the conjecture, proved that if all morphi-
cally imprimitive heirs of a word are fixed points of non-trivial morphisms with
exactly one expanding letter each, then the same holds for the parent word; the
letter x is expanding if the morphism φ for which the word is a fixed point is
such that |φ(x)| ≥ 2. Walter [14] identified and proved some of the cases nec-
essary for showing that the conjecture holds for alphabet size of 4. Nevisi and
Reidenbach [11] proved that the conjecture is correct for all words (with three
or more different letters) if they contain each letter exactly twice.

More generally, the study of morphic primitivity of words has been of interest
in a variety of contexts. Finite fixed points of morphisms were first characterised
by Head [5] in the context of L-systems. An alternative characterisation of the
finite fixed points was given by Hamm and Shallit [4], and in the context of eras-
ing pattern languages by Reidenbach [12]. Reidenbach and Schneider [13] intro-
duced the concept of ‘morphic imprimitivity’ itself, and described a factorisation
characteristic to finite fixed points of morphisms. In relation to terminal-free
erasing pattern languages, a morphically primitive word is the shortest genera-
tor of a pattern language, as shown by Filè [2], and Jiang et al. [7]. Holub [6]
gave a polynomial-time algorithm (further refined and analysed by Matocha and
Holub [10]) to decide whether or not a word w is morphically imprimitive; the
algorithm can yield the imprimitivity factorisation of a morphically imprimitive
w. Kociumaka et al. [8] further improved the algorithm to work in linear time.

In this paper we introduce and explore a class of words related to the Billaud
Conjecture, the words whose all heirs are morphically imprimitive. We shall call
these Billaud words, and as an example consider the word abcabc again, whose
three heirs abab, acac, and bcbc are all morphically imprimitive. In particular,
if the Billaud Conjecture holds, then all Billaud words are morphically imprim-
itive. After providing some basic definitions, in Sect. 3 we focus on morphically
imprimitive Billaud words. We shall give more complex examples of these words
and show that there are two fundamental phenomena leading to morphically
imprimitive heirs that occur on deletion of a letter. Finally, we provide a charac-
terisation of morphically imprimitive Billaud words. In the subsequent Sect. 4,
we shift our focus to examining different aspects surrounding one of the given
phenomena. To learn more about the reasons for the difficulty of the Billaud
Conjecture, we provide an alternative statement of it and discuss why certain
approaches to solving it are unsuitable.

We note that due to space constraints most of the proofs have been omitted.
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2 Preliminaries

We shall denote the set of all positive integers with N+, and non-negative integers
with N0. Moreover, for any two integers m,n, m ≥ n, we shall denote with �n,m�
the set of all integers i such that n ≤ i ≤ m. An alphabet Σ is an enumerable set
of symbols or letters. Letters typeset in a sans-serif font, i.e. a, b, c, . . ., should
always be understood as distinct; in other cases, we shall explicitly state such
assumptions. As a word (over an alphabet Σ) we refer to a finite sequence of
elements, symbols, of Σ. The cardinality of a set A shall be denoted by |A|,
similarly the length of a word w is |w|. The empty word, denoted by λ, is the
special word for which |λ| = 0. The concatenation of two words w and v shall be
written as w ·v or wv. Given a word w and n ∈ N0, wn denotes the concatenation
of n copies of the word w. We say that a word v is a factor of w, denoted v � w,
if there exist words w1 and w2 such that w = w1 · v · w2. Given words w, v and
i ∈ N0, we shall call the tuple 〈i, v〉 an occurrence (of v) in w (at position i)
if there are words w1, w2 such that w = w1 · v · w2 and |w1| = i. The number
of occurrences of v in w is denoted by |w|v. Let symb(w) denote the set of all
letters x � w.

For any alphabets A and B and all words w, v ∈ A∗, a (homo-)morphism
φ : A∗ → B∗ is a function that satisfies φ(w)φ(v) = φ(wv). A morphism φ :
A∗ → A∗ is idempotent if φ = φ ◦ φ. A word w is a (finite) fixed point of a
morphism φ if φ(w) = w. If a morphism φ is not idempotent, and there exists
a finite fixed point word w of φ, then, as shown by Geser [3], there exists an
idempotent morphism φ′ such that φ′(w) = w. There also exists an integer
i ∈ N+ such that φi = φ′, and we shall call i the mortality exponent of φ. If x is
a letter, then we denote with πx the morphism deleting x, i.e. πx(y) = y for all
y 
= x, and πx(x) = λ. The morphism ι : A∗ → A∗ is the identity (or trivial) if
for every x ∈ A, ι(x) = x.

A word w is morphically primitive [13] if there is no word w′ with |w′| < |w|
such that w and w′ can be mapped onto each other by morphisms; otherwise w
is morphically imprimitive. At the end of the present section, we shall explain
that this definition is equivalent to the notion of morphic primitivity used at the
beginning of Sect. 1.

Let φ : Σ∗ → Σ∗ be an idempotent morphism; when discussing morphic
imprimitivity we shall restrict ourselves only to idempotent morphisms, unless
explicitly stated otherwise. We define the following three sets, similarly to Levé
and Richomme [9], which form a partition on symb(w), in the context of φ:

– the set of expanding letters, Eφ = {x ∈ Σ | |φ(x)| ≥ 2},
– the set of mortal letters, Mφ = {x ∈ Σ | φ(x) = λ},
– the set of constant letters, Cφ = {x ∈ Σ | φ(x) = x}.

A letter x ∈ Σ is necessarily expanding (or mortal, or constant) if x ∈ Eφ (or Mφ,
or Cφ respectively) for all (idempotent) non-identity φ : symb(w)∗ → symb(w)∗

with a fixed point w. Let us denote the set of (all) expanding letters in a word
w with Ew: the letter x is in Ew if there is a morphism φ such that x ∈ Eφ, and
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φ(w) = w. Then we say that x is expanding in (the word) w. We define Mw and
Cw analogously.

An imprimitivity factorisation f of w is a tuple 〈x1, x2, . . . , xn; v1, v2, . . . , vn〉,
where v1, v2, . . . , vn ∈ Σ+, x1, x2, . . . , xn ∈ Σ, n ∈ N+, such that w can be
written as u0v1u1v2u2 · · · vnun, for some u0, u1, . . . , un ∈ Σ∗, and there is a non-
trivial morphism φ with φ(w) = w such that for all i ∈ N+, |vi|xi

= 1, vi = φ(xi)
and u0, ui ∈ C∗

φ. We call the word vi an imprimitivity factor of f (corresponding
to xi). We shall say that φ determines f , and define sets Ef ,Mf , and Cf to be
equal to Eφ,Mφ, and Cφ.

Finally, as we shall operate with the following concepts interchangeably, we
restate the following result by Reidenbach and Schneider [13]. For every word
w, the following statements are equivalent: w is morphically imprimitive, w is a
fixed point of a non-trivial morphism, and w has an imprimitivity factorisation.

3 Morphically Imprimitive Billaud Words

Let us recall that the Billaud Conjecture is stated merely as an implication, and
not as a characterisation. In other words, there exist morphically imprimitive
words with morphically primitive heirs. In this section, we shall provide a char-
acterisation of morphically imprimitive Billaud words, i.e. words whose all heirs
are morphically imprimitive. In the context of the conjecture, this means par-
titioning the set of all morphically imprimitive words into those relevant to the
Billaud Conjecture, hence our name: Billaud words, and the morphically imprim-
itive words with morphically primitive heirs. Moreover, it is also worth noting
that the Billaud Conjecture in this context posits that all Billaud words are
morphically imprimitive, i.e. there are no morphically primitive Billaud words
in general. We look into morphically primitive words in more detail in Sect. 4.
We shall now proceed to formally define the notion of Billaud words:

Definition 1. The word w is a Billaud word if πx(w) is morphically imprimitive
for all x ∈ symb(w).

In order to better understand what Billaud words look like, and to motivate
our reasoning thereafter, we consider the following example:

Example 1. Let us define the following words w1 and w2:

w1 := ab c ab dea c ab dea c ab, w2 := ab c ab de2a c ab de2a c ab

The words w1, w2 are fixed points of the following morphisms φ1, φ2 respectively:

φ1 : b �→ ab, d �→ dea, c �→ c, ae �→ λ, φ2 : b �→ ab, d �→ de2a, c �→ c, ae �→ λ

Neither φ1 nor φ2 is trivial, and the words w1 and w2 are morphically imprimi-
tive. The word w1 is a Billaud word, as all of its heirs are morphically imprimitive.
This can be verified by finding a suitable imprimitivity factorisation of each of
these heirs or by finding morphisms for which the words are fixed points. On the
other hand, the word w2 is not a Billaud word, as it has an heir πd(w2) which is
morphically primitive. ♦
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The words in Example 1 are very similar in many respects, and differ super-
ficially by one square. In particular, we can see that the sets of expanding, con-
stant, and mortal letters are equal for φ1 and φ2. Nevertheless, a more detailed
consideration of letter roles in a word is centre to our characterisation of Billaud
words. In the remainder of this section we shall prove our characterisation of
morphically imprimitive Billaud words, which shall culminate with Theorem 1,
by systematically considering deletion of letters of different roles.

We shall start by giving a lemma with a basic necessary condition for a word
to be a morphically imprimitive Billaud word, namely that a word has to have
at least one imprimitivity factorisation with more than one mortal letter in it.

Lemma 1. Let w be a morphically imprimitive word. If every imprimitivity fac-
torisation of w has exactly one mortal letter, then πm(w) is morphically primitive
for every m ∈ Mw.

We shall note that the class of words which have one mortal letter in each
of their imprimitivity factorisations is severely restricted. Generally speaking, if
a word has one mortal letter per imprimitivity factorisation, then it is the same
mortal letter across all imprimitivity factorisations. There is an exception to this
rule, illustrated by the word (ab)2, where the roles of the letters a, b can ‘flip’
between the two factorisations of the word. The following proposition illustrates
this:

Proposition 1. Let w be a morphically imprimitive word where every imprim-
itivity factorisation has exactly one mortal letter. Let w have no pair of imprim-
itivity factorisations f, g such that Ef ∪ Mf = Eg ∪ Mg. Then the word has
exactly one mortal letter.

We shall now commence with the key part of the proof of our characterisation
of morphically imprimitive Billaud words. Let w be an arbitrary morphically
imprimitive word. We shall investigate what happens when we delete letters
from w, and in particular if the resulting heirs are morphically imprimitive, in
order to determine whether or not w is a Billaud word. In particular we note
that if a letter is neither mortal nor constant in w, it is necessarily expanding.

We introduce Lemmata 2, 3, and 6, each giving a necessary and sufficient
condition for the morphic imprimitivity of the heirs obtained by deletions of
different classes of letters. The subsequent two lemmata deal with the simpler
cases of deletion of constant or mortal letters from w.

Lemma 2 (Any Constant Letter). Let w be a morphically imprimitive word.
For all x ∈ Cw, the word πx(w) is morphically imprimitive.

Lemma 3 (Any Mortal Letter). Let w be a morphically imprimitive word.
For all x ∈ Mw, the word πx(w) is morphically imprimitive if and only if there
is at least one imprimitivity factorisation f of w where |Mf | ≥ 2.

So far, we have dealt with situations where the imprimitivity factorisations of
the parent and the heir are in a way ‘related’ to each other. These are the cases
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when the morphisms determining the imprimitivity of the parent and the heir,
let us call them φ and χ respectively, are such that either χ = φ or χ = πx ◦ φ.

In order to finalise our characterisation of morphically imprimitive Billaud
words, the remainder of our reasoning deals with those situations in the word
when, as a result of deletion of a letter, we obtain a word which has an imprim-
itivity factorisation ‘unrelated’ to the parent word. As we have considered the
deletion of constant, and mortal letters, we now address the final class of neces-
sarily expanding letters. We observe that when we delete a necessarily expand-
ing letter in the word, the resulting heir has an alternative parent, in which the
deleted letter is not necessarily expanding. The following is an example of such
a word, where there is a letter that is necessarily expanding.

Example 2. Let w := (abacb)2; then it can be verified that φ : c �→ abacb, ab �→ λ
is the only non-trivial morphism for which w is a fixed-point. Note that the letter
c is thus necessarily expanding in w. The heir obtained by deleting c from w,
πc = (ab)2, is trivially morphically imprimitive, as it is a fixed point of, e.g., the
morphism χ : a �→ ab, b �→ λ. Interestingly, χ is not related to φ – there is no
simple way in which we could uniformly ‘add’ letters to χ, such that the new
morphism determines the morphic imprimitivity of w.

However, let us observe what happens when we apply χ (redefined to map
c to itself) to w: w′ := χ(w) = ((ab)2c)2. The ‘new’ word w′, which shares an
heir with w, still has c as an expanding letter, but it is no longer necessarily
expanding, as a result of having another imprimitivity factorisation determined
by χ. In fact, with Lemma 6, we show that the existence of a morphism where
c is a constant letter, and mapping w to w′ is characteristic for the word πc(w)
to be morphically imprimitive. ♦

We shall define this specific relationship between the ‘original’, and the ‘new’
parent as follows:

Definition 2. Let w and w′ be words. We call w′ a companion of w (with
respect to x) if πx(w) = πx(w′) and there exists a non-identity idempotent mor-
phism φ such that φ(w) = w′ and φ(x) = x. We shall refer to such morphism φ
as a companion morphism.

Firstly, we present a fundamental lemma that motivates our use of compan-
ions, which demonstrates that these words are always morphically imprimitive:

Lemma 4. Let w′ be a companion of some word w, and let φ be the correspond-
ing companion morphism. Then the word w′ is morphically imprimitive, and φ
determines an imprimitivity factorisation of w′.

Having defined this notion of a companion, we now postulate that a word
having a companion for a letter is characteristic for it having a morphically
imprimitive heir under the deletion of said letter:

Lemma 5. Let w be a word, and let x be a letter in w. The word πx(w) is
morphically imprimitive if and only if the word w has a companion with respect
to x.
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However, it can be seen from Lemma 5 that the present definition of compan-
ions is quite general and includes the simpler cases otherwise covered in Lem-
mata 2 and 3. For example, it is worth noting that any morphically imprimitive
word which has a constant letter is its own companion with respect to that letter,
as trivially the morphism for which the word is a fixed point maps the letter to
itself. Moreover, the phenomenon described before, where a new imprimitivity
factorisation appears in the word upon deletion of a letter can also happen, even
when the letter is constant or mortal. Since we have Lemmata 2 and 3, such an
imprimitivity factorisation is in a way redundant to determining the morphic
imprimitivity of the heir. Thus, it is advisable to strengthen the definition of a
companion to include only those cases when we do not have a trivial imprimitiv-
ity factorisation. Definition 3 accomplishes that, but before we shall introduce
it, we present an example to better illustrate the discussed phenomena.

Example 3. Let w := abc abxd ebxc ebd. The word has only one imprimitivity
factorisation determined by the following morphism:

φ : a �→ ab, e �→ eb, b �→ λ, c �→ c, d �→ d, x �→ x

In particular the letter x is a constant letter in w, and thus trivially by Lemma 2
the heir πx(w) is morphically imprimitive. It can then be seen that the morphism
φ satisfies the definition of a companion morphism, and as such the word w is
its own companion. However, w has another companion w′ with respect to the
following morphism:

χ : c �→ bc, d �→ bd, b �→ λ, a �→ a, e �→ e, x �→ x

Thus w′ := χ(w) = abc axbd exbc ebd, or in other words we have swapped neigh-
bouring b and x. The word w′ has an imprimitivity factorisation determined by χ
which is ‘new’: neither the letter c nor d is expanding in w. However, even though
this imprimitivity factorisation of w′ cannot be derived from any imprimitivity
factorisations of w and is as such an interesting case, it is in a way redundant, as
already by Lemma 2 we have determined that πx(w) is morphically imprimitive.

♦
In other terms, the word in Example 3 possesses a dual nature: it is a wit-

ness to both of the previously discussed phenomena simultaneously. The heir
of πx(w) of w has an imprimitivity factorisation derived from the imprimitivity
factorisation of w, but also has a new unrelated one. In light of this, in order to
strengthen the notion of a companion, we present the following definition, which
aims to encompass only those companions that are essential for determining the
morphic imprimitivity of the heir:

Definition 3. Let w be a word and x ∈ symb(w). A companion of w with respect
to x is called essential if there do not exist a morphism φ and a companion
morphism χ of w with respect to x such that φ(w) = w, and Eφ = Eχ.

In the context of the previous example it can be seen that the word w is
not an essential companion, as it is a companion of itself, and has a companion
morphism φ equal to the morphism for which it is a fixed point.
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We are now ready to state the third main lemma, in which we characterise
the morphic imprimitivity of an heir under deletion of a necessarily expanding
letter:

Lemma 6 (Necessarily Expanding Letter). Let w be a morphically impri-
mitive word, and let x be a necessarily expanding letter in w. The word πx(w)
is morphically imprimitive if and only if the word w has an essential companion
with respect to x.

From the above lemmata we can now see that there are two conditions that
together are necessary and sufficient for an arbitrary morphically imprimitive
word to be a Billaud word, which we formally express in Theorem 1. This is the
characterisation for morphically imprimitive Billaud words only, particularly due
to Lemma 2, and the somewhat unclear nature of the notion of letter roles in
morphically primitive words.

Theorem 1. A morphically imprimitive word w is a Billaud word if and only
if it has at least one imprimitivity factorisation with two or more mortal letters,
and for every necessarily expanding letter it has an essential companion.

Proof. If Direction. Let w have at least one imprimitivity factorisation with two
or more mortal letters, and let it have an essential companion with respect to
each of its necessarily expanding letters.

Since the word w is morphically imprimitive, due to Lemma 2, πx(w) is
morphically imprimitive for all letters x ∈ Cw. Given that the word w has
at least one imprimitivity factorisation with more than one mortal letter, by
Lemma 3, πx(w) is morphically imprimitive for all letters x ∈ Mf . Finally, as w
has an essential companion with respect to every necessarily expanding letter, by
Lemma 6, πx(w) is morphically imprimitive for all letters x ∈ Ew \ (Cw ∪ Mw).

Therefore, as every letter from symb(w) is constant, mortal, or necessarily
expanding, all heirs of w are morphically imprimitive.

Only-if Direction. Let w be a morphically imprimitive Billaud word, and thus
let all of its heirs be morphically imprimitive.

In particular, all heirs πx(w), where x is a mortal letter in w, are morphically
imprimitive, and thus by Lemma 1 there exists an imprimitivity factorisation f
of w, such that f has two or more mortal letters. Moreover, if y is a necessarily
expanding letter in w, then by Lemma 6, w has an essential companion with
respect to x.

Therefore, w has at least one imprimitivity factorisation with more than one
mortal letter, and for every necessarily expanding letter in w (the count of which
could be zero), the word w has an essential companion. 
�

Theorem 1 concludes our characterisation of morphically imprimitive Bil-
laud words. We have shown precisely which morphically imprimitive words have
morphically imprimitive heirs only.
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4 Some Technical Considerations on Companions

Various questions can be posed about the nature of companion words, and in
particular about the essential companions. For instance, after examining our
examples, one might be tempted to conclude that necessarily expanding letters
are relatively infrequent in words, with many words not having any. The below
proposition shows that such a conclusion is not necessarily true:

Proposition 2. For every n ∈ N+ there exists a morphically imprimitive Bil-
laud word with n necessarily expanding letters and 2n + 1 letters that are not
necessarily expanding.

Proof Idea. We examine the set of words wi := (a1b1ca1d1b1)2 · · · (aibicaidibi)2,
and show that for every i ∈ N+, the word wi is a Billaud word and has i neces-
sarily expanding letters, and 2i + 1 letters that are not necessarily expanding. 
�

We now present another observation pertaining to the companions and why
another approach, or a tool, previously used to prove a special case of the conjec-
ture might not be suitable in the general case. Before we state our proposition,
it is necessary for us to define the notion of a letter interrupting an occurrence
of an imprimitivity factor:

Definition 4. Let w′ be a companion of some word w with respect to a letter x,
and let φ be the corresponding companion morphism. We say that x interrupts
an occurrence of an imprimitivity factor φ(y) (at position(s) i1, i2, . . .), for some
y ∈ Eφ, if there exists a factor v � w such that πx(v) = φ(y), and such that for
all ij , j ∈ N+, j ≤ |w|x, v can be factorised as vjxv′

j, for some words vj , v
′
j, such

that ij = |πx(vj)|.
We point out that every collection of positions mentioned in Definition 4

refers to an occurrence of an imprimitivity factor:

Example 4. Let w := abxc axbxc and let w′ := abcx abcx2 be a companion of w.
The companion morphism φ can be defined as follows: φ : a �→ abc, b, c �→ λ, x �→
x. We say that x interrupts an occurrence of an imprimitivity factor φ(a) = abc
at position 2, as abxc = v′xv′′ � w, for v′ = ab, and v′′ = c, and |v′| = 2. The
letter x also interrupts an occurrence of an imprimitivity factor φ(a) = abc at
positions 1 and 2, as axbxc = v′xv′′ � w, for v′ = a, and v′′ = bxc, and for
v′ = axb, and v′′ = c. ♦

Levé and Richomme [9], in their proof of a special case of the Billaud Con-
jecture, work with its contrapositive statement. One of the observations, in their
special case, is that if a letter interrupts an imprimitivity factor of a word, it does
so once and at the same position for every occurrence of the imprimitivity factor
of the heir (and thus the companion). We can show that this is not generally
true when considering companions:
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Proposition 3. There exists a word w that has an essential companion w′ =
χ(w) with respect to some necessarily expanding letter x, where χ is the compan-
ion morphism, such that x interrupts two occurrences of an imprimitivity factor
of χ at different positions i, j ∈ N+.

Proof Idea. The word w := abcdbec becdbcf abcdbcf is a fixed point of φ : a �→
abc, e �→ bec, f �→ bcf, bc �→ λ, d �→ d. There is also a companion χ(w) of w with
respect to e, where χ : d �→ bcdbc, bc �→ λ, a �→ a, e �→ e, f �→ f. The letter e
interrupts two occurrences of the imprimitivity factor χ(d), once at position 4
and once at position 1. 
�

Finally, when examining some of the simpler presented examples of morphi-
cally imprimitive words, such as the word abaxb, which has a companion ababx
with respect to x, one might spot that the necessarily expanding letter in the
parent is also a candidate expanding letter in the companion. We can show that
such a conclusion does not hold universally:

Proposition 4. There exists a morphically imprimitive word w that has an
essential companion w′ with respect to a necessarily expanding letter x, and
which has a necessarily expanding letter y (not necessarily different to x) that is
not expanding in w′.

Proof Idea. Consider the example word in the proof of Proposition 3. The letters
a, e, f are necessarily expanding in w due to φ being the only non-trivial morphism
for which w is a fixed point, but they are not in Eχ. 
�

We do note, however, that the word used in the above propositions is not a
Billaud word. It could be the case that the above propositions are not satisfied
by any such word: if that is the case, such observation would serve as a witness
to the complexity of Billaud words.

So far we have discussed the morphically imprimitive Billaud words, that is
the morphically imprimitive words without morphically primitive heirs. In the
introduction to the previous section we mentioned that the Billaud Conjecture
is equivalent to stating that there are no morphically primitive Billaud words.
We present this alternative statement of the Billaud Conjecture as follows, using
our previously introduced concept of essential companions:

Conjecture 2. Let w be a morphically primitive word. Then there is at least
one letter x ∈ symb(w) such that w does not have an essential companion with
respect to x.

Since morphically primitive words do not have any imprimitivity factorisa-
tions, the only way an heir of such a word can be morphically imprimitive is
if the latter of the phenomena central to Theorem 1 occurs: by default every
imprimitivity factorisation of an heir of a morphically primitive word is unre-
lated to the parent word. We can use this link between the phenomena occurring
in morphically imprimitive and in morphically primitive words to demonstrate
the inherent complexity of the Billaud Conjecture. We begin by giving the fol-
lowing proposition, which shows that a morphically primitive word can only have
essential companions:
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Proposition 5. Let w be a morphically primitive word. If w has a companion
w′ with respect to some letter x, then w′ is essential.

Knowing the above, and for the sake of completeness, we can show the equiv-
alence of Conjecture 2 and the Billaud Conjecture:

Proposition 6. Conjecture 2 is true if and only if Conjecture 1 is true.

An immediate idea for solving Conjecture 2 could be a numerical argu-
ment: one could conjecture that a morphically primitive word w has at most
|symb(w)| − 1 companions. This could be a viable approach if there was only
one and unique companion with respect to every letter. In such a case, showing
that a morphically primitive word w has less companions than letters would be
sufficient to prove the Billaud Conjecture. However, it is not universally true
that companions have to be unique, or that there is only one with respect to
a given letter. The following propositions demonstrate these claims, and they
therefore show that such an approach would be futile.

In order to show the first claim, we refer to the example word abcacb:

Proposition 7. There exists a morphically primitive word w which has more
than |symb(w)| essential companions.

Proof Idea. Let w := abcacb. There are 4 essential companions of w: w1 =
abcabc and w2 = abccab, which are companions with respect to c, and w3 =
bacacb and w4 = acbacb, which are companions with respect to b. 
�

Moreover, we present a related proposition, where we claim that there can
be arbitrarily many essential companions with respect to the same letter:

Proposition 8. For every alphabet Σ with |Σ| ≥ 3 there exists a morphically
primitive word w ∈ Σ∗ and a letter x � w such that w has |Σ| − 1 essential
companions with respect to x.

Proof Idea. We consider the recursively defined words w1, w2, . . . such that, for
any i ∈ N+ we have wi := ux2u′ where uu′ = vi, |u| = 1, and where v0 := a0,
vj := (vj−1ai)2 for j ∈ N+. For instance, w3 = a0xa1a0a1a2 (a0a1)2a2. Every
word wi can be shown to have i + 1 = |symb(wi)| + 2 essential companions with
respect to x, corresponding to every ak, k ∈ �0, j�, being the expanding letter in
the given companion. 
�

The following proposition demonstrates our other claim, namely that com-
panions need not be unique:

Proposition 9. There exists a morphically primitive word w which has the
same word as an essential companion with respect to two different letters.

Proof. Let w := abcdacbd, and let w′ := abcdabcd. The word w′ is an essential
companion with respect to the letter c, as there is a morphism χc : a �→ ab, b �→
λ, c �→ c, d �→ d, such that χc(w) = w, χc is non-trivial and idempotent, and
πc(w) = πc(w′). The word w′ is also an essential companion with respect to the
letter b, as there is a morphism χb : a �→ a, b �→ b, c �→ λ, d �→ cd, such that
χb(w) = w, χb is non-trivial and idempotent, and πc(w) = πc(w′). 
�
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Finally, to conclude this section, we present a collection of examples demon-
strating the varied ways in which roles of letters can differ between the imprimi-
tivity factorisations of the parents and their essential companion morphisms. We
consider companions with respect to necessarily expanding letters, as these are of
particular interest due to Theorem 1. These examples illustrate vital phenomena
that need to be considered when exploring the existence of companions. While
our overview naturally refers to morphically imprimitive parents, we anticipate
that further progress on Conjecture 2 will be related to the question of whether
there exist any words that would fill the gaps in the below table.

We consider words and their companion morphisms with respect to a neces-
sarily expanding letter x. We note the claims of the table can be verified using
the definitions of morphic imprimitivity and companion morphisms. For cells
marked with a question mark we conjecture the words do not exist, otherwise
we provide an example word witnessing a given letter role change; we indicate
such letters in square brackets. We shall denote by NE the necessarily expand-
ing letters. In companions this shall be understood as expanding in all compan-
ion morphisms; we define NM and NC similarly. The backslash should be read
out as ‘but not’, i.e. E\NE stands for ‘expanding, but not necessarily expand-
ing letter’. Some words exhibit multiple changes: w1 := (abm2axb)2(ymzb)2,
w2 := (abaxb)2(ybz)2, w3 := abc2bc2m2abc2bxc2.

Role in
Companion
Morphism

Role in Parent

NE [y] E\NE NM M\NM NC [c] C\NC

NE (abaxb)2(yb)2 w1 [z] ab2axb2 [a] w1 [z] axcax(yacax)2 ?

E\NE ? w2 [yz] w3 [ab] w2 [yz] ? w2 [yz]

NM ? ? w3 [c] ? ? ?

M\NM ? w2 [yz] w3 [b] w2 [yz] ? w2 [yz]

NC (abm2axb)2(ym)2 w1 [y] w3 [m] w1 [y] (abaxb)2c2 w1 [y]

C\NC ? w2 [yz] w3 [a] w2 [yz] ? w2 [yz]
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Abstract. An efficient, when compared to exhaustive enumeration,
algorithm for computing the number of square-free words of length n
over the alphabet {a, b, c} is presented.
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1 Introduction

A square is a string of form ww for some non-empty string w. A string is square-
free, if it has no square substrings. Over the binary alphabet, there is only a finite
number of square-free strings, but the number of square-free strings of length n
over the ternary alphabet grows with n slowly, but exponentially [4].

Since the dawn of combinatorics of words, there has been a lot of research on
bounding the number of ternary square free words of length n from below and
from above (OEIS sequence A006156 [1]). See, for example, a classic review by
Berstel [3] and a new review by Shur [9], to see how much the state of art has
changed in-between.

Most of the research was focused on estimating the numbers from above and
from below, culminating in Kolpakov’s [7] and Shur’s [9] methods of proving
lower and upper bounds on the growth rate of ternary square-free words (and
other power-avoiding words as well), that can be made as close as needed, given
enough computational resources.

Computing their exact number has attracted significantly less attention. Back
in 2001, Grimm [5] obtained the desired values up to 110, but mostly in order
to prove a new upper bound on their growth rate.

We will go up to n = 141 on a completely ordinary laptop. In just a few hours.
This paper gives a high-level account of the underlying ideas, for implementation
details and possible optimisations refer to the repository with implementation [6].
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Most ideas used here are very classic, especially using the antidictionaries,
consisting of minimal squares and building an Aho-Corasick automaton for them.
The key contributions are Lemmas 5 and 6 and the way they are used in the
final algorithm.

As usual, O∗ notation suppresses polynomial factors, so O∗(1) is any at most
polynomially growing function, O∗(2n) is O(2n · poly(n)), et cetera.

2 A Simple (but Mostly Useless) Algorithm

Unless the opposite is explicitly mentioned, all strings in the following text are
over the alphabet Σ = {a, b, c}.

It is not necessary to know how Aho-Corasick automaton works in order to
understand this paper. The only important part is the following theorem, which
is a simple consequence of a more general result by Aho and Corasick:

Theorem A (Aho and Corasick 1975 [2]). For any finite subset S of Σ∗,
there exists a deterministic finite automaton A with at most 1 +

∑

w∈S

|w| states,

such that L(A) is exactly the language of all strings that contain at least one
string from S as a substring. Moreover, such an automaton can be constructed
in O(

∑

w∈S

|w|) time.

Definition 1. A string is a minimal square if it is a square, but does not contain
any smaller squares as substrings.

Definition 2. Denote the set of all square-free strings of length exactly � by L�.

Definition 3. Similarly, denote the set of all minimal squares with half-length
at most � by M�.

The main problem at hand is computing |Ln|. A string of length n is square-
free if and only if it does not contain any minimal squares of half-length at most
�n/2�. Indeed, if a string has a non-minimal square substring, it has a smaller
square substring by definition of non-minimality.

Let A = (Q, q0, δ, F ) be a DFA from Theorem A for the set M�n/2�. Here, and
in the rest of the text, Q is the set of states, q0 is the starting state, δ : Q×Σ → Q
is the transition function (with the usual extension to function Q × Σ∗ → Q)
and F is the set of accepting states.

Let f(�, q) be the number of strings w ∈ Σ�, such that δ(q0, w) = q. Then, we
can compute all values of f(�, q) row-by-row. Indeed, we know f(0, ·): f(0, q0) = 1
and f(0, q) = 0 for q �= q0. Moreover, we can compute f(� + 1, ·) through f(�, ·):
to compute f(� + 1, q), sum up f(�, p) over all predecessors of q. In other words,
f(� + 1, q) =

∑
p∈Q,d∈Σ,δ(p,d)=q f(�, p).

In the end,
∑

q∈F

f(n, q) is the number of strings of length n that are not square

free. So, to compute |Ln|, it is enough to:
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1) Find the set M�n/2� of all short minimal squares.
2) Build the automaton A from Theorem A for M�n/2�.
3) Compute f(n, q) for all q ∈ Q.

How to do all these things?

1) Iterate over all square-free words of length at most �n/2� in O∗(|L�n/2�|)
time and O∗(1) memory, and, for each of them, check whether it is a minimal
square when doubled. It is possible to achieve a polynomial in n speed-up
by building the automaton from point 2 on the fly [9, Subsection 3.3] or
with other similar optimisations. However, the speed-up would still be only
polynomial.

2) Just use Theorem A, the resulting automaton will have at most 2�n/2� ·
|M�n/2�| + 1 = O∗(|M�n/2�|) states and can be constructed in O∗(|M�n/2�|)
time.

3) Compute the values of f(�, ·) row-by-row, using above formulas. It is enough
to keep only values of f(�, ·) and f(� + 1, ·) in the memory. Here, we need
O∗(|M�n/2�|) of both time and memory.

In total, we need O∗(|L�n/2�|) time and O∗(|M�n/2�|) memory, as promised.

3 An Improved Algorithm

The main factor that limits the practical usefulness of the above approach is the
memory usage (compared to the high running time of a naive algorithm).

So, we want to reduce the memory consumption, possibly at the cost of
making running time slightly worse. The key observation that makes this possible
is a pretty interesting one and can be seen as an incomplete application of the
inclusion-exclusion principle.

Intuitively, the knowledge that some fixed substring of a string is a square,
gives a lot of constraints of type “symbols on some positions are equal”. Hence,
the existence of two long (whatever that means, the exact definition of “long”
will come later) square substrings at the same time places too many constraints
on the string, meaning that there are a lot of symbols that are “forced” to be
equal, hence we can find a smaller square substring.

Example 4. Suppose we have a string s of length 13 and we know that its prefix
of length 8 is a square, and so is its suffix of length 12. Hence, we know that
si = si+4 for 0 � i < 4 and, similarly, si = si+6 for 1 � i < 7. Then, s looks like
1232123232123, where equal digits correspond to symbols that must be equal,
and different digits correspond to symbols that can be different. And, indeed,
there is a short square substring 2323 in the middle.

In general, it is not true that all strings have at most one long minimal square
substring, there are some counterexamples. Indeed, the string abcabcab has three
distinct long minimal square substrings: abcabc, bcabca and cabcab. However, all
these squares are of the same half-length and start in the consecutive positions of



Counting Ternary Square-Free Words Quickly 145

the original string, meaning that a lot of constraints actually coincide. Intuitively,
all counterexamples have to look in this, very regular, way.

The following Lemmas 5 and 6 are exact statements that correspond to this
intuition.

Lemma 5. Let s be a string (over any alphabet), such that some proper prefix
uu of s is a minimal square and some proper suffix vv of s is a minimal square.
Then, either |s| � 3min(|u|, |v|)+1, or |u| = |v| and s = uup for some non-empty
prefix p of u.

Proof (Sketch of an automatic “partial proof”). Suppose that we want to check
this lemma for |u| � d and |v| � d. Let us iterate on the length of s (up to 3d) and
create a graph with |s| vertices, with edges corresponding to “forced” equalities
between symbols: edges between i and i + |u| for 0 � i < |u| and edges between
i and i + |v| for |s| − 2|v| � i < |s| − |v|. Now, the connected components in this
graph tell which symbols have to be equal and which do not. Now, we can just
check whether there are any small forced squares that disprove that either uu
or vv was a minimal square. The whole procedure needs polynomial in d time.
Specifically, O(d5) for the most straightforward implementation. Hence, running
the above procedure can actually prove the Lemma, but only for small lengths.
I verified the Lemma for lengths of |s| up to 200 this way [6, test overlay.cpp].

Proof (Mathematical proof). The mathematical proof is messier, but works for
all lengths. Proof by contradiction. Let s = s0s1 . . . s|s|−1.

Consider the case |u| = |v| first. Then, either |s| � 3|u|+1 (and we are done),
or |s| � 3|u|. In the latter case, we know si = s|u|+i for 0 � i < |u|, because uu
is a prefix of s and si = s|u|+i for |s| − 2|u| � i � |s| − |u|, because vv is a suffix
of s. Therefore, si = s|u|+i for 0 � i < |s| − |u|, because |s| − 2|u| � |u|. Hence,
si = si mod |u| for 0 � i < |s|, meaning that s is a prefix of u∗. Because the length
of u is between 2|u| + 1 and 3|u|, it has the same exact form as promised by the
lemma.

Now, suppose that |u| �= |v|. Without loss of generality, |u| < |v|. Then suffix
vv overlaps with the first u: otherwise the whole string s has length at least
|u| + 2|v|, which is at least |u| + 2(|u| + 1) = 3|u| + 2 � 3|u| + 1, contradiction.
Hence, u = fg and v = gh, where g is the non-empty overlap between the first
u and vv. Moreover, f is non-empty, because otherwise uu would be a substring
of vv. Finally, because the right square is longer, |gh| = |v| > |u| = |fg|, hence
|h| > |f |.

Now we know almost everything about the relative positions of uu and vv.
More specifically, fgfg = uu is a prefix of fghgh = fvv. Hence, u = fg is
a prefix of hg (here we use that |h| > |f |). This, in turn, implies that f is a
proper prefix of h: h = fx for some non-empty string x. Therefore, because
fgfg = (fgf)(g) is a prefix of fghgh = fg(fx)gh = (fgf)(xg)h. Hence, g is a
prefix of xg.

Suppose that |g| � |x| − 1. Then, |s| � |fghgh| = |f(gfx)(gfx)| = 2|x| +
2 g|+3|f | � 4 g|+2+3|f | = 3|fg|+|g|+2 = 3|u|+|g|+2 � 3|u|+1. Contradiction.
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Now we know that |g| � |x|. This, along with g being a prefix of xg, means
that x is a prefix of g: g = xy for some, possibly empty, string y. Hence, vv =
g(h)(g)h = g(fx)(xy)h = gf(xx)yh is not a minimal square, because of a square
substring xx. Contradiction.

Lemma 6. Let s be a string that is not square free, but does not have square
substrings with half-length strictly less than |s|/3 (no rounding here). Then, s
has a unique inclusion-maximal substring of form wwp, where ww is a minimal
square and p is some, possibly empty, prefix of w. Moreover, s has exactly |p|+1
minimal square substrings—specifically the substrings of wwp with length 2|w|.
Proof. The case when s has exactly one minimal square substring corresponds to
p = ε. Now, suppose that s has at least two distinct minimal square substrings.
Consider any two of them. Because they are minimal squares, neither of them
is a substring of another. So, one of them starts and ends earlier than another
and we can apply Lemma 5.

Hence, these squares have the same length (otherwise |s| > 3(|s|/3)+1 = |s|+
1). Because the above statement is true for any two minimal square substrings
of s, all minimal square substrings of s have the same length. Consider the
leftmost and the rightmost of them. They intersect because s is short enough,
and their union has the form wwp with p being a prefix of w by Lemma 5.
Then, any substring of their union with length 2|w| is a minimal square. Indeed,
all substrings of wwp with length 2|w| are cyclic shifts of ww. A cyclic shift of
a minimal square is also a minimal square; one can prove this either by case
analysis or by using Shur’s result that a square is minimal if and only if its half
is square-free as a cyclic string [8, Proposition 1].

Summarising, all substrings of wwp with length 2|w| are minimal squares,
and s has no other minimal square substrings, because wwp was chosen to be
the union of the leftmost one and the rightmost one.

Remark 7. In Lemmas 5 and 6 slightly better bounds are actually true, but even
the best possible bounds lead only to constant factor improvements in the final
algorithm.

Let n be the length of square-strings we need to count. Moreover, let A be
the automaton from Theorem A for the set M�n/3� and f(�, q) be the number
of strings with length � that are rejected by A, when the computation starts in
the state q. In other words, f(�, q) is the number of strings s, such that |s| = �
and δ(q, s) /∈ F .

Definition 8. A square is said to be short, if its half-length is at most �n/3�.
Definition 9. A string is promising if it has no short square substrings.

Remark 10. A string s is promising if and only if sR is promising: if s contains
square ww, then sR contains wRwR and vice versa.
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Definition 11. For a promising string t with length at most n and an integer
number � with 0 � � � n − |t|, denote by g(�, t) the number of promising strings
of length n that have t as a substring, starting with position �.

Lemma 12. For any promising string t with 2�n/3� + 1 � |t| � n and any
integer 0 � � � n − |t|, g(�, t) = f(�, δ(q0, tR)) · f(n − |t| − �, δ(q0, t)).

Proof. Suppose that xty is a string satisfying the conditions of the lemma, with
|x| = �. Then, xty is promising if and only if xt and ty are both promising.
Indeed, because |t| � 2�n/3� + 1, any possible short square in xty fully fits in
either xt or ty. By definition of function f , ty is promising if and only if A rejects
y, starting from δ(q0, t). Hence, there is f(|y|, δ(q0, t)) = f(n − |t| − �, δ(q0, t))
ways to choose y.

Similarly, by Remark 10, xt is promising if and only if tRxR is promising.
Hence, there are f(|xR|, δ(q0, tR)) = f(�, δ(q0, tR)) ways to choose x. All in all,
there are f(�, δ(q0, t)) · f(n − |t| − �, δ(q0, t)) ways to choose x and y.

Now, everything is in line for the improved algorithm.

Theorem 13. One can compute |Ln| in O∗(|L�n/2�|) time and O∗(|M�n/3�|)
memory.

Proof. By Lemma 6, there are three types of strings of length n:

1) not promising
2) promising, but not square-free, they have wwp substring as per Lemma 6.
3) square-free

We want to know the number of strings of type 3. By definition of being
promising, the total number of strings of types 2 and 3 is f(n, q0).

Consider any string of type 2. We can try to count them using Lemma 12,
by iterating over a minimal square substring and its position. Of course, there is
massive overcounting happening here: if wwp is the substring of s that is given
by Lemma 6, then we count s exactly |p| + 1 times. To deal with this, notice
that, for such a string, there are exactly |p| substrings of type xxx0, where xx
is a minimal square: exactly the substrings of wwp with length 2|w| + 1. Hence,
counting them with minus sign fixes the overcounting problem perfectly, because
(|p| + 1) − |p| = 1.

In the end, there are

f(n, q0) −
⎛

⎝
∑

ww

n−|ww|∑

i=0

g(i, ww) −
∑

ww

n−|ww|−1∑

i=0

g(i, www0)

⎞

⎠ (1)

strings of type 3, where both summations are over minimal squares with half-
length at least �n/3� + 1.

Let’s trace the steps necessary to complete the algorithm:

1) Find the set M�n/3� and build the automaton A. Takes O∗(|L�n/3�|) time and
O∗(1) memory.
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2) Compute the values f(�, q) for 0 � � � �n/3� and q ∈ Q. Takes O∗(|M�n/3�|)
time and memory.

3) Iterate over all minimal squares with half-length at most �n/2�, in order to
compute the sum (1). This is the slowest part. Iterating over all minimal
squares with half-length at most �n/2� takes O∗(|L�n/2�|) time and O∗(1)
memory. Notice, that there is no need to actually store them all in memory,
knowing only the current one and the values of f is enough. Lemma 12 comes
in play here, allowing to express g’s through f ’s.

In the end, total time complexity is still O∗(|L�n/2�|), but the memory com-
plexity is O∗(|M�n/3�|), as promised.

4 Possible Time-Memory Tradeoffs?

I like to think about the algorithm from Sect. 3 as an incomplete application of
the inclusion-exclusion principle. Indeed, we take all promising strings of length n
and subtract promising strings with at least one minimal square substring (well,
up to technical details in form of the wwp substrings). In a normal inclusion-
exclusion algorithm, we would need to add back promising strings with at least
two different minimal squares, then subtract promising strings with at least
three different minimal squares again, et cetera. However, it turns out that,
up to some simple counterexamples, there are no promising strings with two
different minimal squares!

But what will happen if we replace �n/3� with a smaller number, say, �n/10�,
and do several steps of inclusion-exclusion instead of just one?

As it turns out, this leads to smaller memory consumption at the cost of
higher running time. Indeed, let’s fix some k � 4.

Definition 14. A square is said to be k-short, if its half-length is at most �n/k�.
Definition 15. A string is k-promising if it has no k-short square substrings.

Consider any k-promising string s. Intuitively, Lemma 6 implies that all pairs
of minimal square substrings of s either have small intersection or are both a
part of a large wwp block. Hence, there ought to be only O(1) such blocks —
otherwise some would have large intersection by Dirichlet’s principle.

Let us explain the intuition from the previous paragraph formally. Consider
all minimal square substrings of some k-promising s, sorted by the coordi-
nate of their left end: s[�1, r1), s[�2, r2), . . . , s[�d, rd), with �1 < �2 < . . . < �d

(all inequalities are strict; otherwise some minimal square would be a prefix
of another). Then, r1 < r2 < . . . < rd (otherwise some minimal square is a
substring of another). For each i from 1 to d inclusive, denote the middle posi-
tion of the i-th minimal square by mi. In other words, mi = (�i + ri)/2. It is
easy to see that middles are also increasing: if �i < �i+1, but mi � mi+1, then
ri = 2 ·mi − �i > 2 ·mi+1 − �i+1 = ri+1. Finally, denote the square itself by uiui.
That is, s[�i,mi) = s[mi, ri) = ui.

Indeed, consider some index 1 � i � d − 1. Then, by Lemma 6, there are the
following possibilities:
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1. Substrings s[�i, ri) and s[�i+1, ri+1) do not intersect at all. In other words,
ri � �i+1. Then, mi+1 = �i+1 + |ui+1| > �i+1 + �n/k� � ri + �n/k� =
mi+|ui|+�n/k� > mi+2�n/k� (the first and the last inequalities corresponds
to the fact that all square substrings of s are long enough).

2. Substrings s[�i, ri) and s[�i+1, ri+1) intersect, but the length of their union,
the substring s[�i, ri+1), is at least 3min(|ui|, |ui+1|) + 1. That is,

ri+1 − �i � 3min(|ui|, |ui+1|) + 1 (2)

Because s[�i, ri+1) contains both uiui and ui+1ui+1 as proper substrings,
(ri+1 − �i) � 2max(|ui|, |ui+1|). By taking the average with inequality (2),

ri+1 − �i � (3 · min(|ui|, |ui+1|) + 2max(|ui|, |ui+1|))/2 + 1
= min(|ui|, |ui+1|)/2 + (min(|ui|, |ui+1|) + max(|ui|, |ui+1|)) + 1
= min(|ui|, |ui+1|)/2 + (|ui| + |ui+1|) + 1 � �n/k�/2 + (|ui| + |ui+1| + 1).

Hence, mi+1 − mi = (ri+1 − �i) − (|ui| + |ui+1|) � �n/k�/2 + 1.
3. The string s[�i, ri+1) has small length (ri+1 − �i � 3min(|ui|, |ui+1|)), but

|ui| = |ui+1|. Then, by the conclusion of Lemma 6, s[�i + 1, ri + 1) is a
minimal square. Therefore, �i+1 = �i + 1 and ri+1 = ri + 1. In this case,
the difference between mi+1 and mi is not large, but, like in Sect. 3, we can
consider such minimal squares in batches.

Hence, all minimal square substrings of s split into b inclusion-maximal batches
for some b � 0, with i-th (1 � i � b) of them defined by three parameters Li,
Ri and Ti � 1: the first minimal square in the batch and the size of the batch.
Formally speaking, a batch (Li, Ri, Ti) corresponds to the fact that substrings
s[Li + j, Ri + j) are minimal squares for each 0 � j < Ti, but Ri + Ti > |s| = n
or s[Li + Ti, Ri + Ti) is not a minimal square and, similarly, Li − 1 < 0 or
s[Li − 1, Ri − 1) is not a minimal square.

Let Mi = (Li + Ri)/2 be the middle of the first square in each batch. From
the above, it follows that Mi’s are increasing rather quickly. More specifically,
Mi+1 − Mi > �n/k�/2 for each 1 � i � b − 1. Hence, b � 2k + 1 — otherwise
Mb > (2k + 1 − 1) · �n/k�/2 � n.

Hence, for any k-promising string, there are O(k) batches in total. Each
batch is uniquely defined by its integer parameters (Li, Ri, Ti) and a square-free
string s[Li,Mi) of length Mi − Li = (Ri − Li)/2. Of course, some square-free
strings do not correspond to a valid batch, but this it not important right now.
From now on, by batch, I mean the tuple (Li, Ri, Ti, Ui), with Ui being a square-
free string of length (Ri − Li)/2. A string s contains a batch (Li, Ri, Ti, Ui) if
s[Li, Li + |Ui|) = Ui, substrings s[Li + j, Ri + j) are minimal squares for each
0 � j < Ti and the batch itself is maximal possible by inclusion (in other words,
Li − 1 < 0 or s[Li − 1, Ri − 1) is not a minimal square and Ri + Ti > n or
s[Li + Ti, Ri + Ti) is not a minimal square).

Example 16. For k = 4, a string abcabcabc is k-promising and contains exactly
one batch: (0, 6, 4, abc). It does not contain batches (1, 7, 3, bca), (0, 6, 3, abc) and
(1, 7, 2, bca), because they are not inclusion-maximal.
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We want to compute the number of square-free strings, or, in other words,
k-promising strings that contain no batches. For a set S of batches let h(S) be
the number of k-promising strings of length n that contain all batches from the
set S, but may also contain some other batches. Then, by inclusion-exclusion,
the answer for length n is

∑

|S|�2k+1

(−1)|S|h(S), where the summation is over all

possible sets of batches (as we know already, there are no strings that contain
2k + 2 or more batches). Hence, we are left with the two following subproblems:

1. For a given set S of batches, compute h(S) quickly enough.
2. Iterate over all possible sets of batches efficiently. In particular, prove that

there are not too many possible sets.

Let us solve the first subproblem first.

Lemma 17. h(S) can be computed in O∗(2O(k)) after precomputation that uses
O∗(|M�n/k�|3) time and O∗(|M�n/k�|2) memory. Moreover, for k = 4, h(S)
can be computed in O∗(2O(k)) = O∗(1) time after precomputation that uses
O∗(|M�n/k�|) time and memory.

Proof. Suppose that some string s contains every batch from S. Then, we already
know what some symbols in s are equal to. Moreover, because each batch from
S is inclusion-maximal, we know for some symbols what they are not equal
to. Specifically, for a batch (L,R, T, U) and M := (L + R)/2 we know that
sL−1 �= sM−1 and sR+T−1 �= sM+T−1 (if L − 1 � 0 and R + T − 1 < n
respectively, of course). For each such symbol (at most 2 · (2k + 1) = O(k) of
them), iterate over two possibillities. For each of those 2O(k) cases, check two
things (both can be done in O∗(1) time by simply iterating over all fully-known
substrings of s):

– that s does not contain a k-short square consisting only of known symbols,
– that each batch from S indeed is a valid batch contained in s.

Now, we are left with a simpler problem: how many k-promising strings are
there, assuming that symbols on some positions are already known? Moreover,
positions with known symbols appear in blocks of length at least 2(�n/k� + 1)
each. Hence, any k-short square intersects exactly one block of unknown symbols
(otherwise it fully contains a block of known symbols and, therefore, cannot be
k-short).

Firstly, let us deal with the simpler case of k = 4. In this case, there is at
most one block of known symbols. Indeed, each such block has length at least
2(�n/4� + 1) and there is just not enough space for two of them. Hence, there is
an unknown prefix, a fully-known middle and an unknown suffix (each of those
three parts may be empty). What we need to know is the number of k-promising
strings that conform to this pattern. This situation already appeared before:
specifically, see Lemma 12. We can define and compute the functions f(·, ·) and
g(·, ·) in the same way, with only difference being that the automaton we build
will corespond to k-short squares and will therefore have size O∗(|M�n/k�|).



Counting Ternary Square-Free Words Quickly 151

In the general case, there may be blocks of unknown symbols that are sur-
rounded by known symbols from both left and right. However, all blocks of
unknown symbols can still be filled independently. Consider a block of unknown
symbols of length � that is surrounded by (possibly, empty) blocks wp and wq

of known symbols. Let Ak = (Q, q0, δ, F ) be the automaton from Theorem A for
k-short squares. Then, we can fill-in unknown symbols with a string s ∈ Σ� if
and only if δ(q0, wpswq) /∈ F . In other words, δ(δ(δ(q0, wp), s), wq) /∈ F .

Hence, let us compute fboth(�, p, q): how many strings s ∈ Σ� are there, such
that δ(s, p) = q. We can do this in O∗(|M�n/k�|2) by dynamic programming over
the states of Ak. To compute the number of ways to fill the block, substitute
p := δ(q0, wp) and iterate over all q, such that δ(q, wq) /∈ F .

Unfortunately, this approach takes O∗(2O(k) ·|M�n/k�|) time to compute h(S)
(the second factor comes from iterating over q). To get rid of the second factor,
notice the following: for any s, whether or not wpswq has any k-short square
substrings, depends only on δ(q0, wp) and δ(q0, wR

q ), but not on their exact values
(this immediately follows from the Theorem A and the fact that wpswq does not
have any k-short squares if and only if (wpswq)R = wR

q sRwR
p also does not.

Hence, the numbers of ways to fill-in the block depends only on its length,
δ(q0, wp) and δ(q0, wR

q ). We can simply precompute all those O∗(|M�n/k�|2) num-
bers, each in O∗(|M�n/k�|) time.

Finally, we need to iterate over all possible sets of batches somehow. Iterating
over the numbers Li, Ri, Ti takes only O(nO(k)) time. To iterate over possible
strings Ui, iterate over batches from left to right and fill them in that order.
Because each batch consists of consecutive minimal squares, Li + Ti � Li+1

and Ri + Ti � Ri+1 for consecutive batches. Hence, for each batch, some prefix
of Ui is already known, and some, possibly empty, suffix is not. The unknown
part is a square-free string by itself. Moreover, each symbol in the unknown part
corresponds to at least two positions in the string (otherwise we would have
figured out this symbol already). Hence, we need to iterate over O(k) strings
of total length at most �n/2�. It is known that |L�| grows exponentially. In
particular, c1γ

� � |L�| � c2γ
� for some γ and c1, c2 > 0. Hence, there are at

most ck
2γ

�n/2� ways to choose these strings, which is at most |L�n/2�| · ck
2/c1 =

O(|L�n/2�| · 2O(k)). In total, iterating over all possible sets S takes O(|L�n/2�| ·
nO(k)) time.

Hence, we need O∗(|M�n/k�|2) memory and O∗(|L�n/2�| · nO(k)) time (pre-
computation from Lemma 17 is irrelevant for large k). Moreover, for k = 4 only
O∗(|M�n/k�|) memory is needed. Unfortunately, the practical value of this opti-
misation is questionable. The memory consumption of the algorithm from Sect. 3
is, indeed, quite a problem already for n = 141, but adding even one extra O(n)
factor to the time complexity turns “several hours” into “several weeks”. More-
over, assuming that |M�| grows exponentially with �, we need to choose either
k = 4 or k � 7 to get any memory advantage. Because of the above, choosing
k � 7 is completely hopeless. Choosing k = 4 is an interesting idea that may
lead to a better results in the end, but I have not implemented it yet.
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The main running time bottleneck of this approach is pretty apparent: even
when (Li, Ri, Ti) are fixed, I do not know any way to avoid iterating over almost
a half of the whole string in the worst case. In fact, it seems difficult to compute
the number of minimal squares of half-length n in significantly less than O(|Mn|)
time. Intuitively, counting only minimal squares corresponds to the first step of
inclusion-exclusion and should therefore be easier somehow. However, even such,
intuitively simpler, problem seems to be out of reach now.

5 Final Notes

Of course, the same ideas work for larger alphabet sizes.
The algorithm from Sect. 3 is implemented in the linked repository [6], with

some constant optimisations and other minor tweaks. There are still several
optimisations possible, both in terms of time and memory, but they are more
annoying to implement. If you want to suggest some code improvements, contact
me via e-mail.

As noted in Sect. 4, any substantial improvement to counting square-free
words would likely require a faster way to count minimal squares. I believe that
it also works in the opposite direction: any non-trivial algorithm for counting
minimal squares will lead to a better algorithm for counting square-free words.
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Abstract. In combinatorics on words, a word w over an alphabet Σ is
said to avoid a pattern p over an alphabet Δ if there is no factor f of
w such that f = h(p) where h : Δ∗ → Σ∗ is a non-erasing morphism. A
pattern p is said to be k-avoidable if there exists an infinite word over
a k-letter alphabet that avoids p. A pattern is doubled if every variable
occurs at least twice. Doubled patterns are known to be 3-avoidable.
Currie, Mol, and Rampersad have considered a generalized notion which
allows variable occurrences to be reversed. That is, h(V R) is the mirror
image of h(V ) for every V ∈ Δ. We show that doubled patterns with
reversal are 3-avoidable.

1 Introduction

The mirror image of the word w = w1w2 . . . wn is the word wR = wnwn−1 . . . w1.
A pattern with reversal p is a non-empty word over an alphabet Δ ={
A,AR, B,BR, C, CR . . .

}
such that {A,B,C, . . .} are the variables of p. An

occurrence of p in a word w is a non-erasing morphism h : Δ∗ → Σ∗ satisfying
h(XR) = (h(X))R for every variable X and such that h(p) is a factor of w.
The avoidability index λ(p) of a pattern with reversal p is the size of the small-
est alphabet Σ such that there exists an infinite word w over Σ containing no
occurrence of p. A pattern p such that λ(p) ≤ k is said to be k-avoidable. To
emphasive that a pattern is without reversal (i.e., it contains no XR), it is said
to be classical. A pattern is doubled if every variable occurs at least twice.

Our result is

Theorem 1. Every doubled pattern with reversal is 3-avoidable.

The restriction of Theorem 1 to classical patterns is known to hold.

Theorem 2. [4–6] Every doubled pattern is 3-avoidable.

Let v(p) be the number of distinct variables of the pattern p. In the proof of
Theorem 2, the set of doubled patterns is partitioned as follows:

1. Patterns with v(p) ≤ 3: the avoidability index of every ternary pattern has
been determined [5].

2. Patterns shown to be 3-avoidable with the so-called power series method:
c© Springer Nature Switzerland AG 2021
T. Lecroq and S. Puzynina (Eds.): WORDS 2021, LNCS 12847, pp. 153–159, 2021.
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– Patterns with v(p) ≥ 6 [4]
– Patterns with v(p) = 5 and prefix ABC or length at least 11 [6]
– Patterns with v(p) = 4 and prefix ABCD or length at least 9 [6]

3. Ten sporadic patterns with 4 ≤ v(p) ≤ 5 whose 3-avoidability cannot be
deduced from the previous results: they have been shown to be 2-avoidable [6]
using the method in [5].

The proof of Theorem 1 uses the same partition. Each of the last three
sections is devoted to one type of doubled pattern with reversal.

2 Preliminaries

A word w is d-directed if for every factor f of w of length d, the word fR is not
a factor of w.

Remark 1. If a d-directed word contains an occurrence h of X.XR for some
variable X, then |h(X)| ≤ d − 1.

A variable that appears only once in a pattern is said to be isolated. The for-
mula f associated to a pattern p is obtained by replacing every isolated variable
in p by a dot. The factors between the dots are called fragments. An occurrence
of a formula f in a word w is a non-erasing morphism h such that the h-image
of every fragment of f is a factor of w. As for patterns, the avoidability index
λ(f) of a formula f is the size of the smallest alphabet allowing the existence
of an infinite word containing no occurrence of f . Recently, the avoidability of
formulas with reversal has been considered by Currie, Mol, and Rampersad [2,3]
and me [7].

Recall that a formula is nice if every variable occurs at least twice in the
same fragment. In particular, a doubled pattern is a nice formula with exactly
one fragment.

The avoidability exponent AE(f) of a formula f is the largest real x such
that every x-free word avoids f . Every nice formula f with v(f) ≥ 3 variables is
such that AE(f) ≥ 1 + 1

2v(f)−3 [9].
Let � be the equivalence relation on words defined by w � w′ if w′ ∈{

w,wR
}
. Avoiding a pattern up to � has been investigated for every binary

formulas [1]. Remark that for a given classical pattern or formula p, avoiding p
up to � implies avoiding simultaneously all the variants of p with reversal.

Recall that a word is (β+, n)-free if it contains no repetition with exponent
strictly greater than β and period at least n.

3 Formulas with at Most 3 Variables

For classical doubled patterns with at most 3 variables, all the avoidability
indices are known. There are many such patterns, so it would be tedious to
consider all their variants with reversal.
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However, we are only interested in their 3-avoidability, which follows from
the 3-avoidability of nice formulas with at most 3 variables [8].

Thus, to obtain the 3-avoidability of doubled patterns with reversal with at
most 3 variables, we show that every minimally nice formula with at most 3
variables is 3-avoidable up to �.

The minimally nice formulas with at most 3 variables, up to symmetries,
are determined in [8] and listed in the following table. Every such formula f

is avoided by the image by a q-uniform morphism of either any infinite
(

5
4

+
)
-

free word w5 over Σ5 or any infinite
(

7
5

+
)
-free word w4 over Σ4, depending on

whether the avoidability exponent of f is smaller than 7
5 .

Formula f = fR AE(f) Word q d freeness

ABA.BAB yes 1.5 ga(w4) 9 9
(

131
90

+
, 28

)

ABCA.BCAB.CABC yes 1.333333333 gb(w5) 6 8
(

4
3

+
, 25

)

ABCBA.CBABC yes 1.333333333 gc(w5) 4 9
(

30
23

+
, 18

)

ABCA.BCAB.CBC no 1.381966011 gd(w5) 9 4
(

62
45

+
, 37

)

ABA.BCB.CAC yes 1.5 ge(w4)
a 9 4

(
67
45

+
, 37

)

ABCA.BCAB.CBAC yesb 1.333333333 gf (w5) 6 6
(

31
24

+
, 31

)

ABCA.BAB.CAC yes 1.414213562 gg(w4) 6 8
(

89
63

+
, 61

)

ABCA.BAB.CBC no 1.430159709 gh(w4) 6 7
(

17
12

+
, 61

)

ABCA.BAB.CBAC no 1.381966011 gi(w5) 8 7
(

127
96

+
, 41

)

ABCBA.CABC no 1.361103081 gj(w5) 6 8
(

4
3

+
, 25

)

ABCBA.CAC yes 1.396608253 gk(w5) 6 13
(

4
3

+
, 25

)

a The formula ABA.BCB.CAC seems also avoided up to � by the Hall-Thue word,
i.e., the fixed point of 0 → 012; 1 → 02; 2 → 1.

b We mistakenly said in [8] that ABCA.BCAB.CBAC is different from its reverse.

In the table above, the columns indicate respectively, the considered mini-
mally nice formula f , whether is equivalent to its reversed formula, the avoid-
ability exponent of f , the infinite ternary word avoiding f , the value q such that
the corresponding morphism is q-uniform, the value such that the avoiding word
is d-directed, the suitable property of (β+, n)-freeness used in the proof that f
is avoided. We list below the corresponding morphisms.
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ga
002112201

001221122

001220112

001122012

gb
021221

021121

020001

011102

010222

gc
2011

1200

1120

0222

0012

gd
020112122

020101112

020001222

010121222

000111222

ge
001220122

001220112

001120122

001120112

gf
012220

012111

012012

011222

010002

gg
021210

011220

002111

001222

gh
011120

002211

002121

001222

gi
01222112

01112022

01100022

01012220

01012120

gj
021121

012222

011220

011112

000102

gk
022110

021111

012222

012021

011220

As an example, we show that ABCBA.CAC is avoided by gk(w5). First, we
check that gk(w5) is

(
4
3

+
, 25

)
-free using the main lemma in [5], that is, we

check the
(

4
3

+
, 25

)
-freeness of the gk-image of every

(
5
4

+
)
-free word of length

at most
2× 4

3
4
3−5

4

= 32. Then we check that gk(w5) is 13-directed by inspecting the

factors of gk(w5) of length 13. For contradiction, suppose that gk(w5) contains
an occurrence h of ABCBA.CAC up to �. Let us write a = |h(A)|, b = |h(B)|,
c = |h(C)|.

Suppose that a ≥ 25. Since gk(w5) is 13-directed, all occurrences of h(A) are
identical. Then h(ABCBA) is a repetition with period |h(ABCB)| ≥ 25. So the(

4
3

+
, 25

)
-freenes bound 2a+2b+ c

a+2b+ c ≤ 4
3 , that is, a ≤ b + 1

2c.
In every case, we have

a ≤ max
{
b + 1

2c, 24
}

.

Similarly, the factors h(BCB) and h(CAC) imply

b ≤ max
{

1
2c, 24

}

and
c ≤ max

{
1
2a, 24

}
.

Solving these inequalities gives a ≤ 36, b ≤ 24, and c ≤ 24. Now we can check
exhaustively that gk(w5) contains no occurrence up to � satisfying these bounds.

Except for ABCBA.CBABC, the avoidability index of the nice formulas in
the above table is 3. So the results in this section extend their 3-avoidability
up to �.

4 The Power Series Method

The so-called power series method has been used [4,6] to prove the 3-avoidability
of many classical doubled patterns with at least 4 variables and every doubled
pattern with at least 6 variables, as mentioned in the introduction.



Doubled Patterns with Reversal Are 3-Avoidable 157

Let p be such a classical doubled pattern and let p′ be a doubled pattern with
reversal obtained by adding some −R to p. Witout loss of generality, the leftmost
appearance of every variable X of p remains free of −R in p′. Then we will see that
p′ is also 3-avoidable. The power series method is a counting argument that relies
on the following observation. If the h-image of the leftmost appearance of the
variable X of p is fixed, say h(X) = wX , then there is exactly one possibility for
the h-image of the other appearances of X, namely h(X) = wX . This observation
can be extended to p′, since there is also exactly one possibility for h(XR),
namely h(XR) = wR

X .
Notice that this straightforward generalization of the power series method

from classical doubled patterns to doubled patterns with reversal cannot be
extended to avoiding a doubled pattern up to �. Indeed, if h(X) = wX for the
leftmost appearance of the variable X and wX is not a palindrome, then there
exist two possibilities for the other appearances of X, namely wX and wR

X .

5 Sporadic Patterns

Up to symmetries, there are ten doubled patterns whose 3-avoidability cannot
be deduced by the previous results. They have been identified in [6] and are
listed in the following table.

Doubled pattern Avoidability exponent

ABACBDCD 1.381966011

ABACDBDC 1.333333333

ABACDCBD 1.340090632

ABCADBDC 1.292893219

ABCADCBD 1.295597743

ABCADCDB 1.327621756

ABCBDADC 1.302775638

ABACBDCEDE 1.366025404

ABACDBCEDE 1.302775638

ABACDBDECE 1.320416579

Let w5 be any infinite
(

5
4

+
)
-free word over Σ5 and let h be the following

9-uniform morphism.
h(0) = 020022221
h(1) = 011111221
h(2) = 010202110
h(3) = 010022112
h(4) = 000022121
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First, we check that h(w5) is 7-directed and
(

139
108

+
, 46

)
-free. Then, using the

same method as in Sect. 3, we show that h(w5) avoids up to � these ten sporadic
patterns simultaneously.

6 Conclusion

Unlike classical formulas, we know that there exist avoidable formulas with rever-
sal of arbitrarily high avoidability index [7]. Maybe doubled patterns and nice
formulas are easier to avoid. We propose the following open problems.

– Are there infinitely many doubled patterns up to � that are not 2-avoidable?
– Is there a nice formula up to � that is not 3-avoidable?

A first step would be to improve Theorem 1 by generalizing the 3-avoidability
of doubled patterns with reversal to doubled patterns up to �. Notice that the
results in Sects. 3 and 5 already consider avoidability up to �. However, the
power series method gives weaker results. Classical doubled patterns with at
least 6 variables are 3-avoidable because

1 − 3x +
(

3x2

1 − 3x2

)v

has a positive real root for v ≥ 6. The (basic) power series for doubled patterns
up to � with v variables would be

1 − 3x +
(

6x2

1 − 3x2
− 3x2 + 3x4

1 − 3x4

)v

.

The term 6x2

1−3x2 counts for twice the term 3x2

1−3x2 in the classical setting, for h(V )

and h(V )R. The term 3x2+3x4

1−3x4 corrects for the case of palindromic h(V ), which
should not be counted twice. This power series has a positive real root only for
v ≥ 10. This leaves many doubled patterns up to � whose 3-avoidability must
be proved proved with morphisms.
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Abstract. An infinite word is an infinite Lyndon word if it is smaller,
with respect to the lexicographic order, than all its proper suffixes, or
equivalently if it has infinitely many finite Lyndon words as prefixes.
A characterization of binary endomorphisms generating Lyndon infinite
words is provided.

1 Introduction

Finite Lyndon words are the non-empty words which are smaller, w.r.t. (with
respect to) the lexicographic order, than all their proper suffixes. They are impor-
tant tools in many studies (see, e.g., [2,11,12,15]). Infinite Lyndon words are
defined similarly. They are also the words that have infinitely many finite Lyn-
don words as prefixes. They occur in many context (see, e.g., [1,3,5,8,10,13,14]).

The aim of the current paper is to provide a characterization, in the binary
case, of endomorphisms that generate infinite Lyndon words. This paper contin-
ues the study of links between morphisms and Lyndon words done by the first
author. In [16] he studied and characterized the morphisms that preserve Lyn-
don words, calling them Lyndon morphisms: these morphisms are those that
map any Lyndon word to another Lyndon word. This study was extended to
morphisms that preserve infinite Lyndon words in [17].

Note that being a morphism that preserves finite Lyndon words is a sufficient
condition to generate an infinite Lyndon word (if the morphism generates an
infinite word). Indeed if f is a morphism that preserves finite Lyndon words and
u is a Lyndon word, then, for any n ≥ 0, fn(u) is a Lyndon word. Applying this
process when u = a with a morphism f that generates from a an infinite word w,
we see that w has infinitely many finite Lyndon words as prefixes: it is an infinite
Lyndon word. But the condition is not necessary. For instance, the morphism
defined by f(a) = ababa and f(b) = babbb generates an infinite Lyndon word (the
proof can be done using Proposition 8) but it does not preserve finite Lyndon
words since f(a) is not a Lyndon word.

Our main characterization is Theorem 2: Over {a, b} with a ≺ b, a non-
periodic word generated by a morphism f prolongable on a is an infinite Lyn-
don word if and only if f preserves the lexicographic order on finite words and
f3(a) is a prefix of a Lyndon word. The proof needs to consider separately the
c© Springer Nature Switzerland AG 2021
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case where aa is a prefix of fω(a) and the case where ab is a prefix of fω(a).
After some needed preliminaries in Sect. 2, we prove the following general neces-
sary condition: a binary endomorphism that generates an infinite Lyndon word
must preserve the lexicographic order on finite words. In Sect. 4, we characterize
morphisms that generate an infinite Lyndon word beginning with aa (Proposi-
tion 7). In Sect. 5, we characterize morphisms that generate an infinite Lyndon
word beginning with ab (Proposition 8). In Sect. 6, we prove our main result.
We conclude with a few words on what happens on larger alphabets.

2 About Lyndon Words and Morphisms

We assume that readers are familiar with combinatorics on words and morphisms
(see, e.g., [11,12]). We specify our notation and recall useful results.

An alphabet A is a set of symbols called letters. Here we consider only finite
alphabets. A word over A is a sequence of letters from A. The empty word ε is
the empty sequence. Equipped with the concatenation operation, the set A∗ of
finite words over A is a free monoid with neutral element ε and set of generators
A. We let Aω denote the set of infinite words over A. As usually, for a finite word
u and an integer n, the nth power of u, denoted un, is the word ε if n = 0 and the
word un−1u otherwise. If u is not the empty word, uω denotes the infinite word
obtained by infinitely repeating u. Such a word is called periodic. A finite word
w is said primitive if for any word u, the equality w = un (with n an integer)
implies n = 1.

Given a non-empty word u = a1 · · · an with ai ∈ A, the length |u| of u is the
integer n. One has |ε| = 0. If for some words u, v, p, s (possibly empty), u = pvs,
then v is a factor of u, p is a prefix of u and s is a suffix of u. When p �= u (resp.
s �= u), we say that p is a proper prefix (resp. s is a proper suffix ) of u.

Let us recall two basic results.

Proposition 1 (see, e.g., [11, Prop. 1.3.2]). For any words u and v, uv = vu
if and only if there exist a word w and integers k, � such that u = wk and v = w�.

Theorem 1 (Fine and Wilf ’s Theorem, see, e.g., [11, Prop. 1.3.5]). Let
x, y ∈ A∗, n = |x|, m = |y|, d = gcd(n,m). Assume there exist integers p and q
such that xp and yq have a common prefix of length at least equal to n + m − d.
Then x and y are powers of the same word.

2.1 Lyndon Words

From now on we consider ordered alphabets. We let An = {a1 ≺ . . . ≺ an}
denote the n-letter alphabet An = {a1, . . . , an} with order a1 ≺ . . . ≺ an. Given
an ordered alphabet A, we let also � denote the lexicographic order whenever
used on A∗ or on Aω. Let us recall that for two different (finite or infinite) words
u and v, u ≺ v if and only if u = xαy, v = xβz with α, β ∈ A, α ≺ β, x ∈ A∗,
y, z ∈ A∗ ∪ Aω, or if (when u is finite) u is a proper prefix of v. For any finite
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words u, v, w, if u ≺ v, then wu ≺ wv. Moreover if u is not a prefix of v and
u ≺ v, then ux ≺ vy for any words x and y.

A non-empty finite word w is a Lyndon word if for all non-empty words
u and v, w = uv implies w ≺ vu. Equivalently [6,11], a non-empty word w
is a Lyndon word if all its non-empty proper suffixes are greater than itself
for the lexicographic order. For instance, on the one-letter alphabet {a}, only
a is a Lyndon word. On {a ≺ b} the Lyndon words of length 6 are aaaaab,
aaaabb, aaabab, aaabbb, aababb, aabbab, aabbbb, ababbb, abbbbb. Lyndon words
are primitive. Note that Lyndon words have no non-empty border, that is, there
is no proper prefix of a Lyndon word u that is also a suffix of u. Also observe
that if u is a prefix of a Lyndon word then there cannot exist words v and w
such that the following three conditions hold: v is a prefix of u; w is a factor of
u which is not a prefix of u; w ≺ v.

Proposition 2 (see, e.g., [11, Prop. 5.1.3]). A non-empty word w is a Lyn-
don word if and only if |w| = 1 or w = uv with u and v two Lyndon words such
that u ≺ v.

Lyndon infinite words were introduced in [19] as the infinite words that have
infinitely many prefixes that are Lyndon words. By definition an infinite Lyndon
word is not periodic (but it may be ultimately periodic as, for instance, abω is).
More generally an infinite word is Lyndon if and only if all its proper suffixes
are greater than it w.r.t. the lexicographic order [19, Proposition 2.2].

2.2 Morphisms

Let A and B be two alphabets. A morphism f from A∗ to B∗ is a mapping
from A∗ to B∗ such that for all words u, v over A, f(uv) = f(u)f(v). We say
that f is a morphism over A if we don’t need to refer to B. When A = B, f is
an endomorphism over A. A morphism is erasing if f(a) = ε for some letter a.
For n ≥ 0 and any finite or infinite word u, fn(u) is u if n = 0 and fn−1(f(u))
otherwise.

An endomorphism is said prolongable on a if f(a) = au for some word u and
if limn→∞ |fn(a)| = ∞. For such a morphism, for all n ≥ 0, fn(a) is a prefix of
fn+1(a). Then the sequence (fn(a))n≥0 defines a unique infinite word, denoted
fω(a). This word is a fixed point of f .

A morphism preserves finite Lyndon words if and only if the image of any
finite Lyndon word is also a Lyndon word. Similarly morphisms that preserve
infinite Lyndon words can be defined. A morphism preserves the order on finite
words if, for all words u and v, u ≺ v implies f(u) ≺ f(v). Such a morphism is
injective and so non-erasing. In [16], it is proved that a morphism is a Lyndon
morphism if and only if it preserves the lexicographic order on finite words
and if the image of each letter is a Lyndon word. We also have the following
characterization.

Proposition 3 ( [16, Prop. 3.3]). A morphism f over {a ≺ b} preserves the
lexicographic order on finite words if and only if f(ab) ≺ f(b).
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3 A Necessary Condition

In this section we prove the following result that states a necessary condition for
a prolongable binary morphism to generate an infinite Lyndon word.

Proposition 4. Let f be an endomorphism over {a ≺ b}. Assume that f is
prolongable on a. If fω(a) is a Lyndon infinite word then f preserves the lexico-
graphic order on finite words.

We will use the basic fact and the following characterization of prefixes of
Lyndon words. As recalled to us by one of the referees, the notion of prefix of a
Lyndon word occurs in the literature under various terminologies as pre-necklace,
sesquipower of a Lyndon word or preprime word (see for instance respectively
[4,9,18] where can be found some results close to Proposition 6). It may be
observed that from Proposition 6 (and with c defined as in this result), any
power of a Lyndon word is a prefix of a Lyndon word unless it is a power ck

with k ≥ 2.

Fact 5. Given any finite Lyndon word x and any proper non-empty prefix p of
x, px ≺ x.

Proof. Let q be the word such that x = pq. Since x is a Lyndon word and since
x �= q and x �= ε, x ≺ q. It follows that px ≺ pq = x. 	

Proposition 6 ([7, Prop. 1.7]). Let A be an ordered alphabet with maximal
letter c. Let P be the set of prefixes of Lyndon words. The set P ∪ {ck | k ≥ 2}
is equal to the set of all words on the form (uv)ku with k ≥ 1 an integer and u,
v some finite words such that v �= ε and uv is a Lyndon word.

Proof of Proposition 4. Assume by contradiction that f does not preserve the
lexicographic order on finite words. By Proposition 3, f(b) ≺ f(ab) (the equality
cannot hold as f(a) is not empty). Thus, for any integer n ≥ 0, f(anb) ≺
f(an+1b). So, for any integer n ≥ 1, f(b) ≺ f(anb).

From now on let i be the integer such that aib is a prefix of fω(a). Let also
w be the word such that fω(a) = f(aib)w. Note that i exists and i ≥ 1 since f
is prolongable on a and aω is not an infinite Lyndon word.

Observe that f(b) is a prefix of f(aib). Otherwise, from f(b) ≺ f(aib), we
deduce that f(b)w ≺ fω(a) which contradicts the fact that fω(a) is an infinite
Lyndon word since f(b)w is a proper suffix of fω(a).

As fω(a) is an infinite Lyndon word, it has infinitely many prefixes that
are Lyndon words. Thus its prefix f(aib) is a prefix of a Lyndon word. Hence
by Proposition 6, there exist an integer k ≥ 1 and words u and v such that
f(aib) = (uv)ku, v �= ε and uv is a Lyndon word. Consequently f(b) = (uv)ju′

for some j ≥ 0 and some proper prefix u′ of uv.
Note that fω(a) �= abω since this implies that i = 1 and f(b) ∈ b+, a

contradiction with f(b) ≺ f(ab). Hence the letter a occurs at least twice in
fω(a). Since fω(a) is a Lyndon word, fω(a) �= aω. This implies that aib is a
prefix of f(a). We deduce that aib has a non-prefix occurrence in fω(a). The
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word ai+1b cannot be a factor of the Lyndon word fω(a) (since aib is a prefix of
fω(a)). Hence baib is a factor of fω(a).

Assume that u′ �= ε. Since baib is a factor of fω(a), the word u′uv is a factor
of f(ba) and so of fω(a). By Fact 5, u′uv ≺ uv: since uv is a prefix of fω(a),
this contradicts the fact that fω(a) is an infinite Lyndon word.

Thus u′ = ε. This means that f(b) = (uv)j with j ≥ 0. If j = 0, f(b) = ε
and fω(a) = f(a)ω is a periodic word: a contradiction with the fact that it is an
infinite Lyndon word. Thus j ≥ 1. Since f(b) is a suffix of f(aib) = (uv)ku, we
get uv = vu. Remember that v �= ε. If u �= ε, by Proposition 1, the word uv is
not primitive: a contradiction with the primitivity of the Lyndon word uv. So
u = ε.

This implies that both f(a) and f(b) are powers of v. So fω(a) = vω. This
is a final contradiction with the fact that an infinite Lyndon word cannot be
periodic. The morphism f preserves the order on finite words over {a ≺ b}. 	


Note that the converse of Proposition 4 does not hold. Consider, for instance,
the morphism f defined by f(a) = abb and f(b) = baa. This morphism preserves
the lexicographic order on infinite words but the word fω(a) is not an infinite
Lyndon word.

One could expect a stronger necessary condition as, for instance, a preser-
vation of infinite Lyndon words. The next example shows that this stronger
condition is not necessary.

Let f be defined by f(a) = aab and f(b) = abaabab. The word w =
abbabbbω is an infinite Lyndon word. Its image by f begins with ubua where
u = aababaaba. Hence f does not preserve infinite Lyndon words. Nevertheless
using Proposition 7, one can verify that f generates an infinite Lyndon word.

4 Generating Infinite Lyndon Words Beginning with aa

We consider here the case of generated words beginning with aa.

Proposition 7. Let f be an endomorphism over {a ≺ b} prolongable on a such
that fω(a) begins with aib for some integer i ≥ 2.

The word fω(a) is an infinite Lyndon word if and only if

1. f preserves the lexicographic order on finite words, and,
2. f(aib) is a Lyndon word.

The proof of this proposition is based on the next lemmas.

Lemma 1. Let f be a morphism that preserves the order on finite words. Let
i ≥ 1. Assume that f(aib) is a Lyndon word. For any word v such that aibv is a
Lyndon word, the word f(aibv) is also a Lyndon word.

Proof. We act by induction on |v|.
By hypothesis the result holds when |v| = 0. Assume that |v| ≥ 1. By Propo-

sition 2, there exist Lyndon words � and m such that aibv = �m and � ≺ m. Let
us choose m with the smallest possible length.
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Let us prove that aib is a prefix of �. Assume that this does not hold. Then
� = a and m = ai−1bv. Consequently, since m is a Lyndon word, ai is not a
factor of ai−1bv. Let m′ be the word in a+b+ such that bm′ is a suffix of m. If
such a factor does not exist (that is if m ∈ ai−1b+), let m′ = b. In all cases,
m′ is a Lyndon word. Let �′ be the word such that �m = �′m′. The word aib
is a prefix of �′ (when m′ = b, remember that |v| ≥ 1). Observe that �′ ≺ m′.
The last letter of �′ is b. Indeed, by construction, it could be the letter a only
if m ∈ ai−1b+, that is if m = ai−1bk for some k ≥ 1. But then m′ = b and
�′ = aibk−1. As |v| ≥ 1, we have k ≥ 2, and so, the last letter of �′ is b. Let s be
a proper non-empty suffix of �′. Let j ≥ 0 be the integer such that s begins with
ajb. Since aib is not a factor ai−1bv, we deduce that j < i. So �′ ≺ s. Hence �′ is
a Lyndon word: this contradicts the choice made on m and proves that aib is a
prefix of �.

If aib is a prefix of m then, by inductive hypothesis, f(�) and f(m) are Lyndon
words. Since � ≺ m and f preserves the order on finite words, f(�) ≺ f(m).
Proposition 2 implies that f(aibv) = f(�m) is a Lyndon word.

From now on assume that aib is not a prefix of m. Observe that this implies
that m begins with akb for some integer k < i. Indeed since aibv = �m is a
Lyndon word, for any factor aj of �m, we have j ≤ i. Moreover as m is a Lyndon
word, for any factor aj of m, we have j ≤ k < i. Let s be a proper non-empty
suffix of f(�m). Assume |s| ≤ |f(m)|. Let m0 be the smallest suffix of m such that
s is a suffix of f(m0). Let j < i be the integer and let m′ be the word such that
m0 = ajbm′. By choice of m0, there exists a non-empty suffix s′ of f(ajb) such
that s = s′f(m′). The word s′ is a proper non-empty suffix of the Lyndon word
f(aib). So f(aib) ≺ s′ and f(aibv) ≺ s′ � s. If |s| > |f(m)| then s = s′f(m) with
s′ a proper non-empty suffix of f(�). By inductive hypothesis, f(�) is a Lyndon
word. Thus f(�) ≺ s′ and consequently f(aibv) = f(�m) ≺ s′ ≺ s′f(m) = s.
The word f(aibv) is a Lyndon word. 	

Lemma 2. Let u be a non-empty word. If uu is a prefix of a Lyndon word, then
u is a power of a Lyndon word.

Proof. Since uu is a prefix of a Lyndon word, also u is a prefix of this Lyndon
word. By Proposition 6, there exist words x and y such that y �= ε, xy is a
Lyndon word and for some integer k ≥ 1, u = (xy)kx. If x �= ε, since xy is a
Lyndon word, we have xy ≺ y and so xxy ≺ xy. Then for any word v, the word
x(xy)kxv is a suffix of uuv and x(xy)kxv ≺ uuv. This contradicts the fact that
uu is a prefix of a Lyndon word. So x = ε. This implies that u = yk and y is a
Lyndon word. 	

Lemma 3. Assume that f is an endomorphism over {a ≺ b} prolongable on a
such that f3(a) is a prefix of a Lyndon word, fω(a) begins with the word aib for
some integer i ≥ 2 and fω(a) is not periodic. Then f(aib) is a Lyndon word.

Proof. Let us first observe that f(a) begins with aib. Indeed otherwise f(a) is a
power of a contradicting the non-periodicity of fω(a).
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Also observe that the word f(aib) is a prefix of f2(a) which itself is a prefix
of f3(a). Hence f(aib) is also a prefix of a Lyndon word. By Proposition 6, there
exist a Lyndon word v, a proper prefix p of v (p may be empty) and an integer
� ≥ 1 such that f(aib) = v�p. Since i ≥ 2, by Lemma 2, f(a) is a power of a
Lyndon word u.

If v = u, from f(aib) = v�p, we get f(b) = v�′
p for some integer �′. In

particular p is a suffix of f(b). If p = ε, then fω(a) = vω a contradiction with its
non-periodicity. Assume now that p �= ε. Since i ≥ 2, the word aib occurs twice
in f(aib) which is a prefix of f2(a). Thus ba is a factor of f2(a) and f(ba) is a
factor of f3(a). Then the word pu is a factor of f3(a). Note also that u is a prefix
of f3(a). As p is a proper non-empty prefix of the Lyndon word u, by Fact 5,
pu ≺ u. This contradicts the fact that f3(a) is a prefix of a Lyndon word. Thus
v �= u.

Since i ≥ 2, u2 is a prefix of v�+1. If |u| ≥ |v|, by Theorem 1, u and v are
powers of the same word. This is not possible as u �= v and both words u and v
are primitive (since they are Lyndon words). Thus |v| > |u|.

Note that v is not a factor of f(ai) = f(a)i. Indeed if v is a factor of f(a)i

then it is a prefix of a power of u, and so, a prefix of u is both a prefix and
a suffix of v: this is impossible since v is a Lyndon word. It follows that p is a
proper suffix of f(b).

Observe that aib is a prefix of f(a) and so f(a)aib is a prefix of f(aa) and
so of f2(a). Since f2(a) is a prefix of a Lyndon word, it cannot contain ai+1

as a factor and so the last letter of f(a) must be b. Hence baib and f(baib) are
factors of f3(a). This implies that pv is also a factor of f3(a). By Fact 5, pv ≺ v
if p �= ε. This contradicts the fact that f3(a) is a prefix of a Lyndon word. So
p = ε and f(aib) = v�. Assume that � ≥ 2.

Since aib is a prefix of f(a) and since f(aib) = v�, aib is also a prefix of v.
Thus v� is a prefix of f(v) itself a prefix of f2(a). Since � ≥ 2, f(v)f(v) and
f(v)v� are prefixes of f3(a).

Let us prove that f(v) is not a prefix of vω. Assume by contradiction that
f(v) = vkp′ for some proper prefix p′ of f(v) and some integer k. Since v� is a
prefix of f(v), we have k ≥ � ≥ 2. If p′ �= ε, by Fact 5, p′v ≺ v. Since p′v is a
factor of f(v)f(v), this contradicts the fact that f3(a) is a prefix of a Lyndon
word. So p′ = ε and f(v) = vk. Hence by induction, for all n ≥ 0, fn(v) ∈ v+.
Moreover we have limn→∞ |fn(v)| = ∞. So fω(a) = vω: a contradiction with
the non-periodicity of fω(a).

So f(v) is not a prefix of vω. There exist an integer k, a proper prefix π of v
and letters α, β such that vkπβ is a prefix of f(v) and πα is a prefix of v. Since
f3(a) is a prefix of a Lyndon word, α = a and β = b. Note that vk+1 ≺ vkπβ.

We have already mentioned that v is not a factor of f(ai). From f(aib) = v�

and � ≥ 2, we deduce that v is a suffix of f(b). Moreover since v is a Lyndon
word beginning with aib, the last letter of v is b: v is so a suffix of f(v). Since
f(v)f(v) is a factor of f3(a), the word vk+1 is a factor of f3(a). This contradicts
the fact that f3(a) is a prefix of a Lyndon word.

Thus � = 1: f(aib) is a Lyndon word. 	
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Proof of Proposition 7. We first prove that the two conditions are sufficient. First
observe that, for any integer n ≥ 1, aib is a prefix of fn(aib) (this is a direct
consequence of the facts that f is prolongable on a and that fω(a) begins with
aib). Thus by induction, using Lemma 1, we get: for any integer n ≥ 0, fn(aib) is
a Lyndon word. As limn→∞ |fn(aib)| = ∞, the word fω(a) has infinitely many
prefixes that are Lyndon words. By definition, it is an infinite Lyndon word.

From now on assume that fω(a) is an infinite Lyndon word. Proposition 4
shows that f preserves the lexicographic order on finite words. Observe that
since it is an infinite Lyndon word, fω(a) is not periodic and f3(a) is a prefix of
a Lyndon word. Lemma 3 states that f(aib) is a Lyndon word. 	


5 Generating Infinite Lyndon Words Starting with ab

We consider here the case of generated words beginning with ab. The word abω

is an infinite Lyndon word. A morphism f generates it if and only if f(a) = abi

for some integer i ≥ 1 and if f(b) ∈ b+. In what follows we only consider the
case where fω(a) begins with abia for some i ≥ 1.

Proposition 8. Let f be an endomorphism over {a ≺ b} prolongable on a such
that fω(a) begins with abia for some integer i ≥ 1.

The word fω(a) is an infinite Lyndon word if and only if

1. f preserves the lexicographic order on finite words,
2. f(abi) is a power of a Lyndon word u �= abi, and,
3. if i = 1, |u| > |f(bi)|.

Here follows an example showing that indeed in item 2, f(abi) is not neces-
sarily a Lyndon word.

Example 9. Let f be defined by f(a) = ababbab and f(b) = abb: f(ab) = (ababb)2

is the square of a Lyndon word (longer than f(b)).

We now provide an example showing the necessity of item 3.

Example 10. Let f be defined by f(a) = aba and f(b) = bbababb: f(ab) = u2

with u = ababb is the square of a Lyndon word. Condition 3 is not verified and
indeed fω(a) is not a Lyndon word. It can be verified that fω(a) begins with
u4bbu5 and so contains the factor u4a which is smaller than the prefix u4b.

The proof of Proposition 8 is based on the next lemmas.

Lemma 4. Let f be a morphism that preserves the lexicographic order on finite
words over {a ≺ b}. Assume that i ≥ 2 is an integer and that f(abi) is a power
of a Lyndon word u. Then |u| > |f(b)|.
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Proof. Assume by contradiction that |u| ≤ |f(b)|. Assume first that |u| < |f(b)|.
Since f(b)f(b) is a suffix of f(abi) so of a power of u, there exist words p and s
and an integer k ≥ 1 such that u = ps, f(b) ends with p and f(b) = suk. Since
u is a Lyndon word, p cannot be both a prefix and a suffix of u except if p = ε.
When p = ε, f(b) is a power of u. If |u| = |f(b)| then f(b) = u. In all cases both
f(a) and f(b) are powers of u. Hence f is not injective, a contradiction with the
fact that f preserves the lexicographic order on finite words. 	

Lemma 5. Let f be a morphism that preserves the lexicographic order on finite
words over {a ≺ b}. Assume that f(abi) is a power of a Lyndon word u for some
integer i ≥ 1. Assume also that |u| > |f(b)| if i = 1. Then, for any non-empty
word v over {a ≺ b} such that abiv is a Lyndon word, the word f(abiv) is also
a Lyndon word.

Proof. We act by induction on |v|. Let us observe that f is non-erasing and
injective since it preserves the lexicographic order on finite words. Let n be the
integer such that f(abi) = un. Observe that |f(b)| < |u| (by hypothesis if i = 1
and by Lemma 4 if i ≥ 2).

We first assume that |v| = 1. In this case, since abiv is a Lyndon word, v = b.
Any suffix s of f(abi+1) with |s| ≤ |f(b)| is also a suffix of the Lyndon word u.
Thus u ≺ s (and for length reason, u is not a prefix of s). Hence f(abi+1) ≺ s.
Consider now a suffix s of f(abi+1) such that |f(b)| < |s| < |f(abi+1)|. We have
s = s′f(b) for some suffix s′ of f(abi) = un. If s′ = s′′uk for some proper non-
empty suffix s′′ of u and some integer k then u ≺ s′′ and u is not a prefix of s′′.
Once again f(abi+1) ≺ s. If s′ = uk for some integer k such that 1 ≤ k < n,
s = ukf(b). As f(b) is a proper non-empty suffix of u, u ≺ f(b). Hence uk+1 ≺
ukf(b). Moreover since k+1 ≤ n, f(abi) ≺ ukf(b). So for any proper non-empty
suffix s of f(abi+1), f(abi+1) ≺ s: f(abi+1) is a Lyndon word.

From now on assume that |v| ≥ 2. By Proposition 2, there exist two Lyndon
words � and m such that abiv = �m and � ≺ m. Two cases can hold.

Case |m| ≥ 2. As m cannot begin with the letter b (as any Lyndon word of
length at least 2 over a binary alphabet), � must begin with abi. Moreover as
abiv = �m is a Lyndon word, m is on the form abk with k > i or begins with
a factor abka with k ≥ i. In both cases, abi is a proper prefix of m, and by
inductive hypothesis f(m) is a Lyndon word. If � �= abi, f(�) is also a Lyndon
word. Moreover, since f preserves the lexicographic order, f(�) ≺ f(m). By
Proposition 2, f(abiv) = f(�m) is a Lyndon word. If � = abi, f(�) = un. Since
f preserves the lexicographical order, u � f(�) ≺ f(m). Using Proposition 2,
one can prove by induction that ukf(m) is a Lyndon word for any k ≥ m.
Once again, f(abiv) = unf(m) is a Lyndon word.

Case |m| = 1. In this case, m = b. Let s be a proper non-empty suffix of f(abiv). If
|s| ≤ |f(b)|, then s is a suffix of the Lyndon word u (remember that |f(b)| < |u|
and f(abi) = un). This implies that u ≺ s and so that f(abiv) ≺ s. If
|f(b)| < |s| < |f(abiv)|, we have s = s′f(b) for some proper non-empty suffix
s′ of the Lyndon word f(�) (since |v| ≥ 2, |�| > |abi| and the inductive
hypothesis can be applied). Thus f(�) ≺ s′ which implies that f(abiv) ≺ s.
Hence f(abiv) is a Lyndon word. 	
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Lemma 6. Assume that f is an endomorphism over {a ≺ b} prolongable on a
such that f3(a) is a prefix of a Lyndon word, fω(a) begins with the word abia
for some integer i ≥ 1 and fω(a) is not periodic. Then f(abi) is a power of a
Lyndon word u �= abi. Moreover if i = 1, |u| > |f(b)|.
Proof. The word abia is a prefix of fω(a). Let us prove that the word f3(a) has
a prefix on the form abiabka. If f(a) has abia as a prefix, then f2(a) (and so
f3(a)) contains at least 4 occurrences of a. Since f2(a) is a prefix of a Lyndon
word, it cannot contain the factor aa. Hence we get the result. Assume now that
f(a) = abj for some j < i. Since f is prolongable on a, j > 0. It follows that f(b)
begins with bj−ia. Then f3(a) contains at least 3 occurrences of a. And once
again f3(a) has a prefix on the form abiabka.

Since f3(a) is a prefix of a Lyndon word, we have k ≥ i and so (abi)2 is
a prefix of f3(a). Lemma 2 shows that f(abi) is a power of a Lyndon word u:
f(abi) = un for an integer n ≥ 1. If u = abi, we have fω(a) = (abi)ω which
contradicts the fact that fω(a) is aperiodic. Thus u �= abi.

Assume now that i = 1 and |f(b)| ≥ |u|. From f(ab) = un and f(a) �= ε, we
get n ≥ 2. Let s be the proper suffix of u and let j ≥ 1 be the integer such that
f(b) = suj . If s = ε, then both f(a) and (b) are powers of u. This implies that
fω(a) = uω, a contradiction. Assume now that s �= ε. Let p be the word such
that u = ps: f(a) = ukp for some integer k ≥ 0 and p �∈ {ε, u} since s �∈ {ε, u}.
Since u is a Lyndon word different from ab but beginning with aba, we deduce
that u begins with (ab)mb for some m ≥ 2.

Since n ≥ 2, the word (ab)mb has at least one non prefix occurrence in f(ab) so
in f3(a). This occurrence must be preceded by the letter b since aa cannot occur
in f3(a) which is a prefix of a Lyndon word. Hence the word f(ab)ms = unms
is a prefix of f((ab)mb) itself a prefix of f3(a), and, the word uunm which is a
suffix of f(b(ab)m) is a factor of f3(a). Since u ≺ s, we have unmu ≺ unms: this
contradicts the fact that f3(a) is a prefix of a Lyndon word. 	

Proof of Proposition 8. Let us first show that the three conditions imply that
fω(a) is an infinite Lyndon word. Since f preserves the order on finite words,
f is not erasing. Let u be the word occurring in condition 2 and let k be the
integer such that f(abi) = uk. Observe that abi and the prefix u of f(abi) are
both prefixes of fω(a). From |f(abi)| ≥ |abi|, abi is a prefix of f(abi) = uk. Hence
abi is a prefix of u. By hypothesis, we cannot have abi = u. So abi is a proper
prefix of u. For any n ≥ 0, fn(u) is a prefix of fω(a) and so abi is a proper
prefix of fn(u). Due to condition 3, one can apply Lemma 5. Thus it follows by
induction that fn(u) is a Lyndon word for all n ≥ 0: fω(a) is an infinite Lyndon
word.

Let us show that the conditions are necessary. First Proposition 4 shows that
f preserves the lexicographic order on finite words. Observe that since it is an
infinite Lyndon word, fω(a) is not periodic and f3(a) is a prefix of a Lyndon
word. Lemma 6 states that f(abi) is a power of a Lyndon word u and, when
i = 1, |u| > |f(b)|. 	
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6 A General Characterization

Let us prove our main characterization.

Theorem 2. Let f be an endomorphism over {a ≺ b} prolongable en a. The
word fω(a) is an infinite Lyndon word if and only if

1. f preserves the lexicographic order on finite words,
2. fω(a) is not periodic and
3. the word f3(a) is a prefix of a Lyndon word.

Proof. Assume first that fω(a) is an infinite Lyndon word. Conditions 2 and 3
are direct consequences of this hypothesis. Proposition 4 states condition 1.

Assume now that the three conditions hold. If fω(a) begins with aa, then it
begins with aib for some integer i ≥ 2. Lemma 3 states that f(aib) is a Lyndon
word. Thus from Proposition 7 fω(a) is an infinite Lyndon word.

If fω(a) = abω, it is an infinite Lyndon word.
If fω(a) begins with abia for some integer i ≥ 1, Lemma 6 states that f(abi)

is a power of a Lyndon word u �= abi. Moreover if i = 1 then |u| > |f(b)|. Thus
from Proposition 8 fω(a) is an infinite Lyndon word. 	

Example 11. Let f be the morphism defined by f(a) = aba and f(b) = bab. This
morphism fulfills conditions 1 and 3 of Theorem 2. It generates the periodic word
(ab)ω. This shows the importance of the condition fω(a) is not periodic that does
not occur in Propositions 7 and 8.

Example 12. Let μ be the Thue-Morse morphism defined by μ(a) = ab and
μ(b) = ba. The word μ2(a) is a prefix of the Lyndon word μ2(a)bbb = abbabbb
but μ3(a) begins with abbaa which is not a prefix of a Lyndon word. This example
shows the optimality of the exponent 3 in the last condition of Theorem 2.

7 Conclusion

After Theorem 2, a natural problem is to obtain a characterization of morphisms
that generate infinite Lyndon words over an alphabet containing at least three
letters.

Let us observe that Proposition 4 does not extend to morphisms over alpha-
bets with at least three letters. Indeed consider any endomorphism f such that
f(a) = au with u, f(b) and f(c) belonging to {b, c}∗ (note that one of the two
words f(b) and f(c) could be the empty word: we just need that limn→∞ |fn(a)|
is infinite). Then fω(a) is an infinite Lyndon word whatever is f (which may not
preserve the lexicographic order). Note that the previous example can include
some erasing morphisms. We don’t know whether the condition f preserves the
lexicographic order is necessary if f generates a recurrent word.

Note also that, if an analog of Theorem 2 exists for a larger alphabet A,
then the exponent in the last condition would be at least #A + 1 with #A the
cardinality of A. Indeed if An = {a1 ≺ . . . ≺ an}, one can extends Example 12
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defining the morphism f by f(a1) = a1a2, f(ai) = ai+1 for 2 ≤ i < n and
f(an) = a1. Then for 1 ≤ i ≤ n, f i(ai) is a prefix of a1a2 · · · ana1 and so a
prefix of Lyndon word while fn+1(a) is not such a prefix since it begins with
a1a2 · · · ana1a1.

Acknowledgment. Many thanks to referees for their remarks that slightly improved
the paper.
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10. Levé, F., Richomme, G.: Quasiperiodic Sturmian words and morphisms. Theoret.
Comput. Sci. 372(1), 15–25 (2007)

11. Lothaire, M.: Combinatorics on Words. Encyclopedia of Mathematics and Its
Applications, vol. 17. Addison-Wesley, Boston (1983).Reprinted in the Cambridge
Mathematical Library, Cambridge University Press, UK (1997)

12. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and Its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

13. Paquin, G.: A characterization of infinite smooth Lyndon words. Discrete Math.
Theor. Comput. Sci. 12(5), 25–62 (2010)

14. Postic, M., Zamboni, L.Q.: Reprint of: ω-Lyndon words. Theoret. Comput. Sci.
834, 60–65 (2020)

15. Reutenauer, C.: From Christoffel Words to Markoff Numbers. Oxford University
Press, Oxford (2019)

16. Richomme, G.: Lyndon morphisms. Bull. Belg. Math. Soc. Simon Stevin 10(5),
761–786 (2003)

17. Richomme, G.: On morphisms preserving infinite Lyndon words. Discret. Math.
Theor. Comput. Sci. 9(2), 89–108 (2007)

18. Ruskey, F., Savage, C., Wang, T.M.Y.: Generating necklaces. J. Algorithms 13(3),
414–430 (1992)

19. Siromoney, R., Mathew, L., Dare, V.R., Subramanian, K.G.: Infinite Lyndon words.
Inf. Process. Lett. 50, 101–104 (1994)



Inside the Binary Reflected Gray Code:
Flip-Swap Languages in 2-Gray Code Order

Joe Sawada1(B), Aaron Williams2(B), and Dennis Wong3(B)

1 Computing and Information Science, University of Guelph, Guelph, Canada
jsawada@uoguelph.ca

2 Computer Science, Williams College, Williamstown, USA
aaron@cs.williams.edu

3 School of Applied Science, Macao Polytechnic Institute, Macao, China
cwong@uoguelph.ca

Abstract. A flip-swap language is a set S of binary strings of length n such that
S∪{0n} is closed under two operations (when applicable): (1) Flip the leftmost 1;
and (2) Swap the leftmost 1 with the bit to its right. Flip-swap languages model
many combinatorial objects including necklaces, Lyndon words, prefix normal
words, left factors of k-ary Dyck words, and feasible solutions to 0-1 knapsack
problems. We prove that any flip-swap language forms a cyclic 2-Gray code when
listed in binary reflected Gray code (BRGC) order. Furthermore, a generic succes-
sor rule computes the next string when provided with a membership tester. The
rule generates each string in the aforementioned flip-swap languages in O(n)-
amortized per string, except for prefix normal words of length n which require
O(n1.864)-amortized per string. Our work generalizes results on necklaces and
Lyndon words by Vajnovski [Inf. Process. Lett. 106(3):96−99, 2008].

1 Introduction

Combinatorial generation studies the efficient generation of each instance of a combi-
natorial object, such as the n! permutations of {1, 2, . . . , n} or the 1

n+1

(
2n
n

)
binary trees

with n nodes. The research area is fundamental to computer science and it has been cov-
ered by textbooks such as Combinatorial Algorithms for Computers and Calculators by
Nijenhuis and Wilf [26], Concrete Mathematics: A Foundation for Computer Science
by Graham, Knuth, and Patashnik [9], and The Art of Computer Programming, Volume
4A, Combinatorial Algorithms by Knuth [12]. The subject is important to every day
programmers, and Arndt’s Matters Computational: Ideas, Algorithms, Source Code is
an excellent practical resource [1]. A primary consideration is listing the instances of a
combinatorial object so that consecutive instances differ by a specified closeness condi-
tion. Lists of this type are called Gray codes. This terminology is due to the eponymous
binary reflected Gray code (BRGC) by Frank Gray, which orders the 2n binary strings
of length n so that consecutive strings differ in one bit. The BRGC was patented for a
pulse code communication system in 1953 [10]. For example, the order for n = 4 is

0000, 1000, 1100, 0100, 0110, 1110, 1010, 0010,
0011, 1011, 1111, 0111, 0101, 1101, 1001, 0001.

(1)
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Variations that reverse the entire order or the individual strings are also commonly used
in practice and in the literature. We note that the order in (1) is cyclic because the last
and first strings also differ by the closeness condition, and this property holds for all n.

One challenge facing combinatorial generation is its relative surplus of breadth and
lack of depth1. For example, [1,12], and [26] have separate subsections for different
combinatorial objects, and the majority of the Gray codes are developed from first prin-
ciples. Thus, it is important to encourage simple frameworks that can be applied to a
variety of combinatorial objects. Previous work in this direction includes the following:

1. the ECO framework developed by Bacchelli, Barcucci, Grazzini, and Pergola [2]
that generates Gray codes for a variety of combinatorial objects such as Dyck words
in constant amortized time per instance;

2. the twisted lexico computation tree by Takaoka [21] that generates Gray codes for
multiple combinatorial objects in constant amortized time per instance;

3. loopless algorithms developed by Walsh [24] to generate Gray codes for multiple
combinatorial objects, which extend algorithms initially given by Ehrlich in [8];

4. greedy algorithms observed by Williams [27] that provide a uniform understanding
for many previous published results;

5. the reflectable language framework by Li and Sawada [13] for generating Gray codes
of k-ary strings, restricted growth strings, and k-ary trees with n nodes;

6. the bubble language framework developed by Ruskey, Sawada and Williams [17]
that provides algorithms to generate shift Gray codes for fixed-weight necklaces and
Lyndon words, k-ary Dyck words, and representations of interval graphs;

7. the permutation language framework developed by Hartung, Hoang, Mütze and
Williams [11] that provides algorithms to generate Gray codes for a variety of com-
binatorial objects based on encoding them as permutations.

We focus on an approach that is arguably simpler than all of the above: Start with a
known Gray code and then filter or induce the list based on a subset of interest. In other
words, the subset is listed in the relative order given by a larger Gray code, and the
resulting order is a sublist (Gray code) with respect to it. Historically, the first sublist
Gray code appears to be the revolving door Gray code for combinations [25]. A combi-
nation is a length n binary string with weight (i.e. number of ones) k. The Gray code is
created by filtering the BRGC, as shown below for n = 4 and k = 2 (cf. (1))

���0000,���1000, 1100,���0100, 0110,���1110, 1010,���0010,
0011,���1011,���1111,���0111, 0101,���1101, 1001,���0001.

(2)

This order is a transposition Gray code as consecutive strings differ by transposing
two bits (i.e. swapping the positions of two bits)2. It can be generated directly (i.e.
without filtering) by an efficient algorithm [25]. Vajnovszki [22] proved that necklaces
and Lyndon words form a cyclic 2-Gray code in BRGC order, and efficient algorithms

1 This is not to say that combinatorial generation is always easy. For example, the ‘middle levels‘
conjecture was confirmed by Mütze [14] after 30 years and effort by hundreds of researchers.

2 When each string is viewed as the incidence vector of a k-subset of {1, 2, . . . , n}, then con-
secutive k-subsets change via a “revolving door” (i.e. one value enters and one value exits).
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can generate these sublist Gray codes directly [20]. Our goal is to expand upon the
known languages that are 2-Gray codes in BRGC order, and which can be efficiently
generated. To do this, we introduce a new class of languages.

A flip-swap language (with respect to 1) is a set S of length n binary strings such
that S ∪ {0n} is closed under two operations (when applicable): (1) Flip the leftmost
1 (flip-first); and (2) Swap the leftmost 1 with the bit to its right (swap-first). A flip-
swap language with respect to 0 is defined similarly. Flip-swap languages encode a wide
variety of combinatorial objects. The formal definitions of these languages are given in
Sect. 3.

Theorem 1. The following sets of length n binary strings are flip-swap languages:

Flip-Swap languages (with respect to 1) Flip-Swap languages (with respect to 0)

i. all strings i. all strings

ii. strings with weight ≤ k ii. strings with weight ≥ k

iii. strings ≤ γ iii. strings ≥ γ

iv. strings with ≤ k inversions re: 0∗1∗ iv. strings with ≤ k inversions re: 1∗0∗

v. strings with ≤ k transpositions re: 0∗1∗ v. strings with ≤ k transpositions re: 1∗0∗

vi. strings < their reversal vi. strings > their reversal

vii. strings ≤ their reversal (neckties) vii. strings ≥ their reversal

viii. strings < their complemented reversal viii. strings > their complemented reversal

ix. strings ≤ their complemented reversal ix. strings ≥ their complemented reversal

x. strings with forbidden 10t x. strings with forbidden 01t

xi. strings with forbidden prefix 1γ xi. strings with forbidden prefix 0γ

xii. 0-prefix normal words xii. 1-prefix normal words

xiii. necklaces (smallest rotation) xiii. necklaces (largest rotation)

xiv. Lyndon words xiv. aperiodic necklaces (largest rotation)

xv. prenecklaces (smallest rotation) xv. prenecklaces (largest rotation)

xvi. pseudo-necklaces with respect to 0∗1∗ xvi. pseudo-necklaces with respect to 1∗0∗

xvii. left factors of k-ary Dyck words

xviii. feasible solutions to 0–1 knapsack problems

Our second result is that every flip-swap language forms a cyclic 2-Gray code when
listed in BRGC order. This generalizes the previous sublist BRGC results [20,22].

Theorem 2. When a flip-swap language S is listed in BRGC order the resulting listing
is a 2-Gray code. If S includes 0n then the listing is cyclic.

Our third result is a generic successor rule, which efficiently computes the next
string in the 2-Gray code of a flip-swap language, as long as a fast membership test is
given.

Theorem 3. The languages in Theorem 1 can be generated in O(n)-amortized time
per string, with the exception of prefix normal words which require O(n1.864)-time.
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Table 1. Flip-swap languages ordered as sublists of the binary reflected Gray code. Theorem 1
covers each language, so the resulting orders are 2-Gray codes.

n = 4 all necklaces 0-PNW ≤ 1001 k ≤ 2 neckties
BRGC i. xiii. xii. iii. ii. vii.
0000 � � � � � �
1000 � � �
1100 � �
0100 � � �
0110 � � � � �
1110 �
1010 � �
0010 � � � � �
0011 � � � � � �
1011 � �
1111 � � �
0111 � � � � �
0101 � � � � � �
1101 �
1001 � � � �
0001 � � � � � �

(a) String membership in 6 flip-swap languages.

i. xiii. xii. iii. ii. vii.

(b) Visualizing the 2-Gray codes in (a).

In Sect. 2, we formally define our version of the BRGC. In Sect. 3, we prove The-
orem 1, and define the flip-swap partially ordered set. In Sect. 4, we give our generic
successor rule and prove Theorem 2. In Sect. 5, we present a generic generation algo-
rithm that list out each string of a flip-swap language, and we prove Theorem 3.

2 The Binary Reflected Gray Code

Let B(n) denote the set of length n binary strings. Let BRGC(n) denote the listing
ofB(n) in BRGC order. Let BRGC(n) denote the listing BRGC(n) in reverse order.
Then BRGC(n) can be defined recursively as follows, where L · x denotes the listing
L with the character x appended to the end of each string:

BRGC(n) =

{
0, 1 if n = 1;
BRGC(n − 1) · 0, BRGC(n − 1) · 1 if n > 1.

For example, BRGC(2) = 00, 10, 11, 01 and BRGC(2) = 01, 11, 10, 00, thus

BRGC(3) = 000, 100, 110, 010, 011, 111, 101, 001.

This definition of BRGC order is the same as the one used by Vajnovzski [22]. When the
strings are read from right-to-left, we obtain the classic definition of BRGC order [10].
For flip-swap languages with respect to 0, we interchange the roles of the 0s and 1s;
however, for our discussions we will focus on flip-swap languages with respect to 1.
Table 1 illustrates BRGC(4) and six flip-swap languages listed in Theorem 1.

3 Flip-Swap Languages

In this section, we formalize some of the non-obvious flip-swap languages stated in
Theorem 1. We also prove Theorem 1 for a subset of the listed languages (with respect
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to 1) including necklaces, Lyndon words, prefix normal words, and feasible solutions
to the 0–1 knapsack problems.

Consider a binary string α = b1b2 · · · bn. Let flipα(i) be the string obtained by
complementing bi. Let swapα(i, j) be the string obtained by swapping bi and bj . When
the context is clear we use flip(i) and swap(i, j) instead of flipα(i) and swapα(i, j).
Also, let �0(α) denote the position of the leftmost 0 of α or n + 1 if no such position
exists. Similarly, let �1(α) denote the position of the leftmost 1 of α or n+1 if no such
position exists. To simplify the notation, we define �α = �1(α).

Binary strings with weight ≤ k: The weight of a binary string is the number of 1s it
contains.

Binary strings with ≤ k inversions: An inversion with respect to 0∗1∗ in a binary
string α = b1b2 · · · bn is any bi = 1 and bj = 0 such that i < j. For example α =
100101 has 4 inversions: (b1, b2), (b1, b3), (b1, b5), (b4, b5).

Binary strings with ≤ k transpositions: The number of transpositions of a binary
string α = b1b1 · · · bn with respect to 0∗1∗ is the minimum number of swap(i, j) oper-
ations required to change α into the form 0∗1∗. For example, the number of transposi-
tions of the string 100101 is 1.

Necklaces: A necklace is the lexicographically smallest (largest) string in an equiv-
alence class under rotation. Let N(n) be the set of necklaces of length n and α =
0j1bj+2bj+3 · · · bn be a necklace in N(n). By the definition of necklace, it is easy to
see that flipα(�α) = 0j+1bj+2bj+3 · · · bn ∈ N(n) and thus N(n) satisfies the flip-
first property. For the swap-first operation, observe that if α �= 0n−11 and bj+2 = 1,
then the swap-first operation produces the same necklace. Otherwise if α �= 0n−11 and
bj+2 = 0, then the swap-first operation produces the string 0j+11bj+3bj+4 · · · bn which
is clearly a necklace. Thus, the set of necklaces is a flip-swap language.

Lyndon words: An aperiodic necklace is a necklace that cannot be written in the form
βj for some j < n. A Lyndon word is an aperiodic necklace when using the lexico-
graphically smallest string as the representative. Let L(n) denote the set of Lyndon
words of length n. Since N(n) is a flip-swap language and L(n) ∪ {0n} ⊆ N(n),
it suffices to show that applying the flip-first or the swap-first operation on a Lyndon
word either yields an aperiodic string or the string 0n. Clearly L(n) ∪ {0n} satisfies
the two closure properties when α ∈ {0n, 0n−11}. Thus in the remaining of the proof,
α /∈ {0n, 0n−11}. We first prove by contradiction that L(n) ∪ {0n} satisfies the flip-
first property. Let α = 0j1bj+2bj+3 · · · bn be a string in L(n) ∪ {0n}. Suppose that
L(n) ∪ {0n} does not satisfy the flip-first property and flipα(�α) is periodic. Thus
flipα(�α) = (0j+1β)t for some string β and t ≥ 2. Observe that α = 0j1β(0j+1β)t−1

which is clearly not a Lyndon word, a contradiction. Therefore L(n)∪{0n} satisfies the
flip-first property. Then similarly we prove by contradiction that L(n) ∪ {0n} satisfies
the swap-first property. If bj+2 = 1, then applying the swap-first operation on α pro-
duces the same Lyndon word. Thus in the remaining of the proof, bj+2 = 0. Suppose
that L(n) ∪ {0n} does not satisfy the swap-first property such that α ∈ L(n) ∪ {0n}
but swapα(�α, �α + 1) is periodic. Thus swapα(�α, �α + 1) = (0j+11β)t for some
string β and t ≥ 2. Thus α contains the prefix 0j1 but also the substring 0j+11 in its
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suffix which is clearly not a Lyndon word, a contradiction. Thus, L(n) is a flip-swap
language.

Prenecklaces: A prenecklace is a prefix of a necklace.

Pseudo-necklaces: A block with respect to 0∗1∗ is a maximal substring of the form
0∗1∗. Each block Bi with respect to 0∗1∗ can be represented by two integers (si, ti)
corresponding to the number of 0s and 1s respectively. For example, the string α =
000110100011001 can be represented by B4B3B2B1 = (3, 2)(1, 1)(3, 2)(2, 1). A
block Bi = (si, ti) is said to be lexicographically smaller than a block Bj = (sj , tj)
(denoted by Bi < Bj) if si < sj or si = sj with ti < tj . A string α = b1b2 · · · bn =
BbBb−1 · · · B1 is a pseudo-necklace with respect to 0∗1∗ if Bb ≤ Bi for all 1 ≤ i < b.

Prefix normal words: A binary string α is prefix normal with respect to 0 (also known
as 0-prefix normal word) if no substring of α has more 0s than its prefix of the same
length. For example, the string 001010010111011 is a 0-prefix normal word but the
string 001010010011011 is not because it has a substring of length 5 with four 0s while
the prefix of length 5 has only three 0s. Observe that the set of 0-prefix normal words of
length n satisfies the two closure properties of a flip-swap language as the flip-first and
swap-first operations either increases or maintain the number of 0s in its prefix. Thus,
the set of 0-prefix normal words of length n is a flip-swap language.

Feasible solutions to 0–1 knapsack problems: The input to a 0–1 knapsack problem
is a knapsack capacity W , and a set of n items each of which has a non-negative weight
wi ≥ 0 and a value vi. A subset of items is feasible if the total weight of the items in
the subset is less than or equal to the capacity W . Typically, the goal of the problem is
to find a feasible subset with the maximum value, or to decide if a feasible subset exists
with value ≥ c. Given the input to a 0–1 knapsack problem, we reorder the items by
non-increasing weight. That is, wi ≥ wi+1 for 1 ≤ i ≤ n−1. Notice that the incidence
vectors of feasible subsets are now a flip-swap language. More specifically, flipping any
1 to 0 causes the subset sum to decrease, and so does swapping any 1 with the bit to
its right. Hence, the language satisfies the flip-first and the swap-first closure properties
and is a flip-swap language.

Left factors of k-ary Dyck words: A k-ary Dyck word is a binary string of length
n = tk with t copies of 1 and t(k − 1) copies of 0 such that every prefix has at least
k − 1 copies of 0 for every 1. A string is said to be a left factor of a k-ary Dyck word if
it is the prefix of some k-ary Dyck word. It is well-known that k-ary Dyck words are in
one-to-one correspondence with k-ary trees with t internal nodes. When k = 2, Dyck
words are counted by the Catalan numbers and are equivalent to balanced parentheses.
As an example, 001011 is a 2-ary Dyck word while 011001 is not. k-ary Dyck words
and balanced parentheses strings are well studied and have lots of applications including
trees and stack-sortable permutations [4,16,18,23].

3.1 Flip-Swap Poset

In this section we introduce a poset whose ideals correspond to a flip-swap language
which includes the string 0n.



178 J. Sawada et al.

Fig. 1. Flip-swap languages are the ideals of the flip-swap poset. The ideal in (b) contains the
4-bit binary strings that are ≤ 1001 with respect to lexicographic order.

Let α = b1b2 · · · bn be a length n binary string. We define τ(α) as follows:

τ(α) =

⎧
⎨

⎩

α if α = 0n,

flipα(�α) if α �= 0n and (�α = n or b�α+1 = 1)
swapα(�α, �α + 1) otherwise.

Let τ t(α) denote the string that results from applying the τ operation t times to
α. We define the binary relation <R on B(n) to be the transitive closure of the cover
relation τ , that is β <R α if β �= α and β = τ t(α) for some t > 0. It is easy to see that
the binary relation <R is irreflexive, anti-symmetric and transitive. Thus <R is a strict
partial order. The relation <R on binary strings defines our flip-swap poset.

Definition 1. The flip-swap poset P(n) is a strict poset with B(n) as the ground set
and <R as the strict partial order.

Figure 1 shows the Hasse diagram of P(4) with the ideal for binary strings of length
4 that are lexicographically smaller or equal to 1001 in bold. Observe that P(n) is
always a tree with 0n as the unique minimum element, and that its ideals are the subtrees
that contain this minimum.

Lemma 1. A set S over B(n) that includes 0n is a flip-swap language if and only if S
is an ideal of P(n).

Proof. Let S be a flip-swap language and α be a string in S. Since S is a flip-swap
language, S satisfies the flip-first and swap-first properties and thus τ(α) is a string in
S. Therefore every string γ <R α is in S and hence S is an ideal of P(n). The other
direction is similar. �	

If S is a set of binary strings and γ is a binary string, then the quotient of S and γ is
S/γ = {α | αγ ∈ S}.
Lemma 2. If S1 and S2 are flip-swap languages and γ is a binary string, then S1 ∩S2,
S1 ∪ S2 and S1/γ are flip-swap languages.
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Proof. Let S1 and S2 be two flip-swap languages and let γ be a binary string. The
intersection and union of ideals of any poset are also ideals of that poset, so S1 ∩ S2

and S1 ∪ S2 are flip-swap languages. Now consider α ∈ S1/γ.
Suppose α ∈ S1/γ for some non-empty γ where j = |α|. This means that αγ ∈ S1.

Consider three cases depending �αγ . If �αγ < j, then clearly τ(αγ) = τ(α)γ. From
Lemma 1, τ(α)γ ∈ S1 and thus τ(α) ∈ S1/γ. If �αγ = j, then α = 0j−11 and τ(α) =
0j . Since S1 is a flip-swap language 0jγ ∈ S1. Again this implies that τ(α) ∈ S1/γ.
If �αγ > j then α = 0j and τ(α) = α in this case. For each case we have shown that
τ(α) ∈ S1/γ and thus S1/γ is a flip-swap language by Lemma 1. �	
Corollary 1. Flip-swap languages are closed under union, intersection, and quotient.

Proof. Let SA and SB be flip-swap languages and γ be a binary string. Since SA

and SB can be represented by ideals of the flip-swap poset, possibly excluding 0n,
by Lemma 2 the sets SA ∩ SB , SA ∪ SB and SA/γ are flip-swap languages. �	
Lemma 3. If αγ is a binary string in a flip-swap language S, then 0|α|γ ∈ S.

Proof. This result follows from the flip-first property of flip-swap languages. �	

4 A Generic Successor Rule for Flip-Swap Languages

Consider any flip-swap language S that includes the string 0n. Let BRGC(S) denote
the listing of S in BRGC order. Given a string α ∈ S, we define a generic successor
rule that computes the string following α in the cyclic listing BRGC(S).

Let α = b1b2 · · · bn be a string in S. Let tα be the leftmost position of α such that
flipα(tα) ∈ S when |S| > 1. Such a tα exists since S satisfies the flip-first property
and |S| > 1. Recall that �α is the position of the leftmost 1 of α (or |α| + 1 if no such
position exists). Notice that tα ≤ �α when |S| > 1 since S is a flip-swap language.

Let flip2α(i, j) be the string obtained by complementing both bi and bj . When the
context is clear we use flip2(i, j) instead of flip2α(i, j). Also, let w(α) denote the
number of 1s of α. We claim that the following function f computes the next string in
the cyclic ordering BRGC(S):

f(α) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0n if α = 0n−11; (4a)
flipα(tα) if w(α) is even and (tα = 1 or flip2α(tα − 1, tα) /∈ S); (4b)
flip2α(tα − 1, tα) if w(α) is even and flip2α(tα − 1, tα) ∈ S; (4c)
flip2α(�α, �α + 1) if w(α) is odd and flipα(�α + 1) /∈ S; (4d)
flipα(�α + 1) if w(α) is odd and flipα(�α + 1) ∈ S. (4e)

Thus, successive applications of the function f on a flip-swap language S, starting
with the string 0n, list out each string in S in BRGC order. As an illustration of the func-
tion f , successive applications of this rule for the set of necklaces of length 6 starting
with the necklace 000000 produce the listing in Table 2.
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Table 2. The necklaces of length 6 induced by successive applications the function f starting
from 000000. The sixth column of the table lists out the corresponding rules in f that apply to
each necklace to obtain the next necklace.

Necklaces Parity of w(α) tα �α Successor Case

000000 Even 6 flip2(5, 6) (4c)

000011 Even 3 flip2(2, 3) (4c)

011011 Even 2 flip(2) (4b)

001011 Odd 3 flip(4) (4e)

001111 Even 2 flip2(1, 2) (4c)

111111 Even 1 flip(1) (4b)

011111 Odd 2 flip(3) (4e)

010111 Even 3 flip(2) (4b)

000111 Odd 4 flip(5) (4e)

000101 Even 2 flip(2) (4b)

010101 Odd 2 flip2(2, 3) (4d)

001101 Odd 3 flip(4) (4e)

001001 Even 3 flip(3) (4b)

000001 Odd flip(6) (4a)

Theorem 4. If S is a flip-swap language including the string 0n and |S| > 1, then f(α)
is the string immediately following the string α in S in the cyclic ordering BRGC(S).

We will provide a detailed proof of this theorem in the next subsection. Observe that
each rule in f complements at most two bits and thus successive strings in S differ by
at most two bit positions. Observe that when 0n is excluded from S, then BRGC(S) is
still a 2-Gray code (although not necessarily cyclic). This proves Theorem 2.

4.1 Proof of Theorem 4

This section proves Theorem 4. We begin with a lemma by Vajnovszki [22], and a
remark that is due to the fact that 0n−11 is in a flip-swap language S when |S| > 1.

Lemma 4. Let α = b1b2 · · · bn and β be length n binary strings such that α �= β. Let
r be the rightmost position in which α and β differ. Then α comes before β in BRGC
order (denoted by α ≺ β) if and only if w(brbr+1 · · · bn) is even.

Remark 1. A flip-swap language S in BRGC order ends with 0n−11 when |S| > 1.

Let succ(S, α) be the successor of α in S in BRGC order (i.e. the string after
α in the cyclic ordering BRGC(S)). Next we provide two lemmas, and then prove
Theorem 4.

Lemma 5. Let S be a flip-swap language with |S| > 1 and α be a string in S. Let tα be
the leftmost position such that flipα(tα) ∈ S. If w(α) is even, then tα is the rightmost
position in which α and succ(S, α) differ.
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Proof. By contradiction. Let α = b1b2 · · · bn and β = succ(S, α). Let r be the right-
most position in which α and β differ with r �= tα. If tα > r, then β has the suffix
1br+1br+2 · · · bn since br = 0 because r < tα ≤ �α. Thus by the flip-first property,
0r−11br+1br+2 = flipα(r) ∈ S and r < tα, a contradiction.

Otherwise if tα < r, then let γ = flipα(tα). Clearly γ �= α. Now observe that
w(btbt+1 · · · bn) is even because tα ≤ �α and w(α) is even, and thus by Lemma 4,
α ≺ γ. Also, γ has the suffix brbr+1 · · · bn and w(brbr+1 · · · bn) is even because α ≺ β
and r is the rightmost position α and β differ, and thus also by Lemma 4, γ ≺ β. Thus
α ≺ γ ≺ β, a contradiction. Therefore r = tα. �	
Lemma 6. Let S be a flip-swap language with |S| > 1 and α �= 0n−11 be a string in
S. If w(α) is odd, then �α+1 is the rightmost position in which α and succ(S, α) differ.

Proof. Since α �= 0n−11 and w(α) is odd, �α < n − 1. We now prove the lemma by
contradiction. Let α = b1b2 · · · bn and β = succ(S, α). Let r �= �α+1 be the rightmost
position in which α and β differ. If r < �α +1, then w(brbr+1 · · · bn) is odd but α ≺ β,
a contradiction by Lemma 4. Otherwise if r > �α +1, then let γ = flip2α(�α, �α +1).
Clearly γ �= α, and by the flip-first and swap-first properties, γ ∈ S. Also, observe
that w(b�α+1b�α+2 · · · bn) is even because w(α) is odd, and thus by Lemma 4, α ≺ γ.
Further, γ has the suffix brbr+1 · · · bn and w(brbr+1 · · · bn) is even because α ≺ β and
r is the rightmost position α and β differ, and thus also by Lemma 4, γ ≺ β. Thus
α ≺ γ ≺ β, a contradiction. Therefore r = �α + 1. �	
Proof of Theorem 4. Let α = a1a2 · · · an and β = succ(S, α) = b1b2 · · · bn. Let tα
be the leftmost position such that flipα(tα) ∈ S. First we consider the case when
α = 0n−11. Recall that the first string in B(n) in BRGC order is 0n [15] and 0n is a
string in S by Lemma 3. Also, the last string in S in BRGC order is 0n−11 by Remark 1
when |S| > 1. Thus the string that appears immediately after α in the cyclic ordering
BRGC(S) is f(α) when α = 0n−11. In the remainder of the proof, α �= 0n−11 and we
consider the following two cases.

Case 1: w(α) is even: If tα = 1, then clearly β = flipα(tα) = f(α). For the remainder
of the proof, tα > 1.
Since tα ≤ �α, flip2α(tα − 1, tα) has the prefix 0tα−21. We now consider the
following two cases. If flip2α(tα − 1, tα) /∈ S, then flipα(tα) is the only string
in S that has tα as the rightmost position that differ with α and has the prefix 0t−2.
Therefore, β = flipα(tα) = f(α). Otherwise, flip2α(tα − 1, tα) and flipα(tα)
are the only strings in S that have tα as the rightmost position that differ with α
and have the prefix 0tα−2. By Lemma 4, flip2α(tα − 1, tα) ≺ flipα(tα) since
w(1atα

atα+1atα+2 · · · an) is even. Thus, β = flip2α(tα − 1, tα) = f(α).
Case 2: w(α) is odd: By Lemma 6, β has the suffix a�α+1a�α+2a�α+3 · · · an.

Observe that if flipα(�α + 1) /∈ S, then by the flip-first and swap-first prop-
erties, flip2α(�α, �α + 1) is the only string in S that has �α + 1 as the right-
most position that differ with β. Thus, β = flip2α(�α, �α + 1) = f(α). Other-
wise by Lemma 4, any string γ ∈ S with the suffix a�α+1a�α+2a�α+3 · · · an and
γ �= flipα(�α +1) has flipα(�α +1) ≺ γ because w(1a�α+1a�α+2a�α+3 · · · an) is
even. Thus, β = flipα(�α + 1) = f(α).

Therefore, the string immediately after α in the cyclic ordering BRGC(S) is f(α). �	
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Algorithm 1. Pseudocode of the implementation of the function f .

1: function f (α)
2: if α = 0n−11 then flipα(n)
3: else if w(α) is even then
4: tα ← �α

5: while tα > 1 and flipα(tα − 1) ∈ S do tα ← tα − 1

6: if tα �= 1 and flip2α(tα − 1, tα) ∈ S then α ← flip2α(tα − 1, tα)
7: else α ← flipα(tα)

8: else
9: if flipα(�α + 1) /∈ S then α ← flip2α(�α, �α + 1)
10: else α ← flipα(�α + 1)

Algorithm 2. Algorithm to list out each string of a flip-swap language S in BRGC
order.

1: procedure BRGC
2: α = b1b2 · · · bn ← 0n

3: do
4: if α �= 0n or 0n ∈ S then Print(α)

5: f(α)
6: w(α) ← 0
7: for i from n down to 1 do
8: if bi = 1 then w(α) ← w(α) + 1

9: if bi = 1 then �α ← i

10: while α �= 0n

5 Generation Algorithm for Flip-Swap Languages

In this section we present a generic algorithm to generate 2-Gray codes for flip-swap
languages via the function f .

A naı̈ve approach to implement f is to find tα by test flipping each bit in α to see
if the result is also in the set when w(α) is even; or test flipping the (�α + 1)-th bit of
α to see if the result is also in the set when w(α) is odd. Since tα ≤ �α, we only need
to examine the length �α − 1 prefix of α to find tα. Such a test can be done in O(nm)
time, where O(m) is the time required to complete the membership test of the set under
consideration. Pseudocode of the function f is given in Algorithm 1.

To list out each string of a flip-swap language S in BRGC order, we can repeatedly
apply the function f until it reaches the starting string. We also maintain w(α) and �α

which can be easily maintained in O(n) time for each string generated. We also add a
condition to avoid printing the string 0n if 0n is not a string in S. Pseudocode for this
algorithm, starting with the string 0n, is given in Algorithm 2. The algorithm can easily
be modified to generate the corresponding counterpart of S with respect to 0.

A simple analysis shows that the algorithm generates S in O(nm)-time per string.
A more thorough analysis improves this to O(n + m)-amortized time per string.
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Theorem 5. If S is a flip-swap language, then the algorithm BRGC produces
BRGC(S) in O(n+m)-amortized time per string, where O(m) is the time required to
complete the membership tester for S.

Proof. Let α = a1a2 · · · an be a string in S. Clearly f can be computed in O(n)
time when w(α) is odd. Otherwise when w(α) is even, the while loop in line 5 of
Algorithm 1 performs a membership tester on each string β = b1b2 · · · bn in S with
b�α

b�α+1 · · · bn = a�α
a�α+1 · · · an and w(b1b2 · · · b�α−1) = 1. Observe that each of

these strings can only be examined by the membership tester once, or otherwise the
while loop in line 5 of Algorithm 1 produces the same tα which results in a duplicated
string, a contradiction. Thus, the total number of membership testers performed by the
algorithm is bound by |S|, and therefore f runs in O(m)-amortized time per string.
Finally, since the other part of the algorithm runs in O(n) time per string, the algorithm
BRGC runs in O(n + m)-amortized time per string. �	

The membership tests in this paper can be implemented in O(n) time and O(n)
space; see [3,7,19] for necklaces, Lyndon words, prenecklaces and pseudo-necklaces
of length n. One exception is the test for prefix normal words of length n requires
O(n1.864) time and O(n) space [5]. Together with the above theorem, this proves
Theorem 3.

Visit the Combinatorial Object Server [6] for a C implementation of our algorithms.
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Abstract. Two finite words u and v are k-binomially equivalent if each
word of length at most k appears equally many times in u and v as
a subword, or scattered factor. We consider equations in the so-called
k-binomial monoid defined by the k-binomial equivalence relation on
words. We remark that the k-binomial monoid possesses the compact-
ness property, namely, any system of equations has a finite equivalent
subsystem. We further show an upper bound, depending on k and the
size of the underlying alphabet, on the number of equations in such a
finite subsystem. We further consider commutativity and conjugacy in
the k-binomial monoids. We characterise 2-binomial conjugacy and 2-
binomial commutativity. We also obtain partial results on k-binomial
commutativity for k > 2.

1 Introduction

Word equations (equations over free monoids), or string equations, are of funda-
mental importance in mathematics and theoretical computer science, for exam-
ple in program verification. The area is actively studied both in theoretical and
practical areas (see the recent papers [2,3,6,12] and the references therein).

The notion of compactness is a foundational in numerous areas of mathemat-
ics. In semigroup theory, the compactness property takes the following form: a
semigroup is said to possess the compactness property if every system of equa-
tions with finitely many variables has an equivalent finite subsystem of equations.
That is to say, any solution to the finite subsystem satisfies all the equations of
the original system.

Famously, the free monoid Σ∗ possesses the so-called compactness property,
independently proved in [1] and [4]. The latter work also shows that free groups
possess the compactness property. In [5] it was shown that all commutative
semigroups possess the compactness property. Nevertheless, not all semigroups
possess the compactness property. Some such examples are the monoid of finite
languages [9], the so-called bicyclic monoid, and the Baumslag–Solitar group [5].
An interesting non-example is given in [20]: Shevlyakov gives a semigroup over
which each consistent system of equations (i.e., has a solution) has an equivalent
finite subsystem, yet the semigroup does not possess the compactness property.
Namely, there is an inconsistent system of equations such that each of its finite
subsystems is consistent.
c© Springer Nature Switzerland AG 2021
T. Lecroq and S. Puzynina (Eds.): WORDS 2021, LNCS 12847, pp. 185–197, 2021.
https://doi.org/10.1007/978-3-030-85088-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85088-3_16&domain=pdf
http://orcid.org/0000-0002-6006-9902
https://doi.org/10.1007/978-3-030-85088-3_16


186 M. A. Whiteland

A system of equations is called independent if it is not equivalent to any of
its subsystems. Now if a semigroup possesses the compactness property, then
any independent system of equations is finite. The aspect of considering sizes
of independent systems of equations in semigroups has been previously treated,
e.g., in the paper [7]. See also [16], and references therein, concerning the free
semigroup.

In this note we consider equations over the k-binomial monoids. Two words
u, v ∈ Σ∗ are called k-binomially equivalent, in symbols u ≡k v, if each word e of
length at most k occurs as a subword, or scattered factor, equally many times in
both u and v. The notion was introduced in [18], and has attracted a lot interest
in contemporary research areas in combinatorics on words [10,11,17]. The k-
binomial equivalence actually defines a congruence on Σ∗, the free semigroup
[18]. Hence Σ∗/≡k defines a monoid. Our aim is to study basic equations over
this monoid. Our main motivation is to discover algebraic properties of these
k-binomial monoids. In particular, we consider when two words commute and
when they are conjugate in the k-binomial monoid. These are well understood
equations over Σ∗ [14]: for two word u, v ∈ Σ∗ we have uv = vu if and only if
there exists r ∈ Σ∗ such that u, v ∈ r∗. Thus the set Sol(xy = yx) of solutions
to the equation xy = yx in Σ∗ equals {α : x �→ ri, y �→ rj : r ∈ Σ∗, i, j,� 0}.
Similarly, for words x, y, z ∈ Σ∗ we have xz = zy if and only if there exist
p, q ∈ Σ∗ such that x = pq, y = qp, and z ∈ (pq)∗p (or x = y = ε and z
is arbitrary). In the free monoid, we thus have Sol(xz = zy) = {(x, y, z) �→
(pq, qp, (pq)rp, ) : p, q ∈ Σ∗, r ∈ N}. The results we obtain in this paper differ
quite a bit to these characterisations.

The paper is organised as follows. In Sect. 2 we introduce some basic prop-
erties of the k-binomial equivalence. In Sect. 3 we study the equation xy ≡k yx,
i.e., when do two words commute in the k-binomial monoid. We characterise the
solutions in case k = 2, and give partial results for k � 3. In Sect. 4 we study
the equation xz ≡k zy, i.e., when are two words conjugate in the k-binomial
monoid. In Sect. 5 we show that the k-binomial monoids possess the compact-
ness property. In fact, we observe that this already follows from results in the
literature. We give another proof of this fact and, furthermore, give a bound on
the number of equations in an independent system of equations when k and the
number of variables is fixed. We conclude the paper with some open problems
in Sect. 6.

This paper is based on results appearing in the author’s PhD thesis [21].

2 Preliminaries and Notation

We recall some notation and basic terminology from the literature of combina-
torics on words. We refer the reader to [13,14] for more on the subject.

For a finite alphabet Σ we let Σ∗ denote the set of finite words of Σ. We
use ε to denote the empty word. We let Σ+ denote the set of non-empty words.
For a word w ∈ Σ∗, |w| denotes the length of w. By convention we set |ε| = 0.
For a letter a ∈ Σ, we use |w|a to denote the number of occurrences of a in w.
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The Parikh vector of w is defined by Ψ(w) := (|s|a)a∈Σ . A word u = u0 · · · ut,
ui ∈ Σ is called a subword of w = a0 · · · an, if u = ai1 · · · ait

for some indices
0 � i1 < . . . < it � n. We let

(
w
u

)
denote the number of occurrences of u in w

as a subword. Basic properties of binomial coefficients
(
u
v

)
are presented in [13,

Chapter 6]. We repeat the main properties here. Define, for a, b ∈ Σ, δa,b = 1 if
a = b, otherwise δa,b = 0. For all p, q ∈ N, u, v ∈ Σ∗, and a, b ∈ Σ we have

(
ap

aq

)
=

(
p
q

)
;

(
u
ε

)
= 1; |u| < |v| implies

(
u
v

)
= 0;

(
ua
vb

)
=

(
u
vb

)
+ δa,b

(
u
v

)
.

The last three relations completely determine the binomial coefficient
(
u
v

)
for all

u, v ∈ Σ∗.
A mapping ϕ : Δ∗ → Σ∗ from the language Δ∗ to the language Σ∗ is called

a morphism if ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ Δ∗. Let Ξ be a finite non-empty
set of variables and S a semigroup. An element (u, v) ∈ (Ξ ∪ Σ)+ × (Ξ ∪ Σ)+ is
called an equation over S with variables Ξ. A solution to an equation (u, v) over
S with variables Ξ is a morphism α : Ξ → S such that α(u) = α(v). Here we
extend α to Ξ ∪ S so that α acts as the identity morphism on S. An equation
e = (u, v) is often denoted by e : u = v. The set of solutions to the equation e is
denoted by Sol(e).

A set E ⊆ Ξ+ × Ξ+ is called a system of equations. The solutions to E are
defined as

Sol(E) =
⋂

e∈E

Sol(e).

We say that two systems E1 and E2 of equations are equivalent if Sol(E1) =
Sol(E2). Further, we say that a system of equations E is independent if E is not
equivalent to any of its finite proper subsystems E′ ⊆ E.

Let us turn to the main notion of the paper. Two words u, v ∈ Σ∗ are k-
binomially equivalent if

(
u
e

)
=

(
v
e

)
for all e ∈ Σ∗ with |e| � k. As noted in the

introduction, the k-binomial monoid is defined as the quotient monoid Σ∗/≡k.
We recall a basic result on k-binomial equivalence from [18].

Proposition 2.1. Let u, v, e ∈ Σ∗ and a ∈ Σ.

• We have
(
uv
e

)
=

∑
e1e2=e

(
u
e1

)(
v
e2

)
.

• Let 
 � 0. We have
(

u
a�

)
=

(|u|a
�

)
and

∑
|v|=�

(
u
v

)
=

(|u|
�

)
.

The second point can be refined further:

Lemma 2.2. Let u, v ∈ Σ∗. Then
∑

v′≡1v

(
u
v′

)
=

∏
a∈Σ

(|u|a
|v|a

)
, where the sum-

mation runs through all words v′ for which Ψ(v′) = Ψ(v).

Proof. We count the number of choices of subwords v′ of u having |v′|a = |v|a
for each a ∈ Σ. For each a ∈ Σ, we may choose the occurrences of a in

(|u|a
|v|a

)

ways. Since the choices of distinct letters are independent, the total number of
choices equals

∏
a∈Σ

(|u|a
|v|a

)
. Each of these choices corresponds to an occurrence

of a subword v′ ≡1 v of u. �	
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Let � be a lexicographic order on Σ.

Corollary 2.3. Given two words x, y ∈ Σ∗, we have that x ≡2 y if and only if
x ≡1 y and

(
x
ab

)
=

(
y
ab

)
for all pairs of letters a, b ∈ Σ with a � b.

Proof. Clearly x ≡2 y implies the weaker condition. Now x ≡1 y implies that(
x
aa

)
=

(|x|a
2

)
=

(|y|a
2

)
=

(
y
aa

)
, and Lemma 2.2 implies that, for a � b,

(
x
ba

)
= |x|a|x|b − (

x
ab

)
= |y|a|y|b − (

y
ab

)
=

(
y
ba

)
. �	

3 On Commutativity in the k-Binomial Monoids

We first study when two words commute in the k-binomial monoid. Let us
begin with a straightforward characterisation of commutativity in the 2-binomial
monoids.

Proposition 3.1. For all x, y ∈ Σ∗, xy ≡2 yx if and only if Ψ(x) and Ψ(y) are
collinear.

Proof. Notice first that xy ≡2 yx is equivalent to
(

x
ab

)
+

(
x
a

)(
y
b

)
+

(
y
ab

)
=

(
xy
ab

)
=

(
yx
ab

)
=

(
x
ab

)
+

(
y
a

)(
x
b

)
+

(
y
ab

)

for all a, b ∈ Σ. This, in turn is equivalent to

|x|a|y|b = |y|a|x|b, a, b ∈ Σ. (1)

Assume now that xy ≡2 yx, i.e., (1) holds. Summing both sides over b ∈ Σ yields
|x|a|y| = |y|a|x| for all a ∈ Σ, which is equivalent to |y|Ψ(x) = |x|Ψ(y), and so
the vectors are collinear.

For the converse assume that Ψ(x) = αΨ(y) for some α ∈ Q. If α = 0, then
x = ε and there is nothing to prove. Otherwise, we observe that the property
|x|a = α|y|a for all a ∈ Σ implies |x|a|y|b = α|y|a 1

α |x|b = |y|a|x|b for all a, b ∈ Σ,
so (1) holds. Therefore xy ≡2 yx. �	

It is immediate that if x ≡k rm and y ≡k rn for some r ∈ Σ∗, m,n ∈ N, then
x and y commute in the k-binomial monoid. It is straightforward to see that the
above proposition can be stated as follows: in case k = 2, the elements x and y
commute in Σ∗/≡k if and only if there exist a word r ∈ Σ∗ and non-negative
integers m and n such that x ≡k−1 rm and y ≡k−1 rn (we call such r a common
(k − 1)-binomial root). It is natural to consider whether such characterisation
holds for larger k. Unfortunately, only one direction generalises.

Let us first give a counterexample of 3-binomially commuting words with no
common 2-binomial root.
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Example 3.2. Let x = aaabbb and y = aaabbabb. As their Parikh vectors are
collinear, we have xy ≡2 yx by Proposition 3.1. One can further check that(
xy
e

)
=

(
yx
e

)
for all e ∈ Σ3:

aaa; 35, aab; 81, aba; 48, abb; 82, baa; 18, bab; 46, bba; 19, bbb; 35.

Now gcd(|x|, |y|) = 2, which implies that a possible common 2-binomial root r
must have length at most 2. Clearly it cannot be a single letter, so has length 2
and contains both a and b. Hence r = ab or r = ba. Now

(
x
ba

)
= 0, while

(
r3

ba

)
> 0.

Therefore, x and y do not have a common 2-binomial root.

The other implication of Proposition 3.1 does generalise to arbitrary k � 2:

Proposition 3.3. Let k � 2 be an integer, r ∈ Σ∗, and m,n � 0. For any
x ≡k−1 rm and y ≡k−1 rn we have xy ≡k yx.

Proof. For all a ∈ Σ, we clearly have |xy|a = |yx|a. Further, for each word
e ∈ Σ�k of length at least two,

(
xy
e

) − (
x
e

) − (
y
e

)
=

∑

e1e2=e
e1,e2∈Σ+

(
x
e1

)(
y
e2

)
=

∑

e1e2=e
e1,e2∈Σ+

(
rm

e1

)(
rn

e2

)

=
(
rm+n

e

) − (
rm

e

) − (
rn

e

)
=

∑

e1e2=e
e1,e2∈Σ+

(
rn

e1

)(
rm

e2

)

=
∑

e1e2=e
e1,e2∈Σ+

(
y
e1

)(
x
e2

)
=

(
yx
e

) − (
x
e

) − (
y
e

)
,

where the second and fifth equalities above follow from x ≡k−1 rm and y ≡k−1 rn

and the observation that e1, e2 ∈ Σ�k−1 in the summations. �

Example 3.4. Let x = aba and y = baaaab. Now y ≡2 x2, by simply counting
the occurrences of subwords of length at most two:

a; 4, b; 2, aa; 6, ab; 4, ba; 4, bb; 1

By the above proposition we have xy ≡3 yx.

Let us end this section on a positive note: we characterise k-binomial com-
mutation among words of equal length.

Theorem 3.5. Let x, y ∈ Σ∗ with |x| = |y|. Then xy ≡k yx if and only if
x ≡k−1 y.

Proof. Note that x ≡k−1 y implies xy ≡k yx by Proposition 3.3. We shall prove
the converse by induction on k. Note that the case of k = 2 follows from applying
Proposition 3.1 with |x| = |y|. Assume that the claim holds for some k � 2 and
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suppose xy ≡k+1 yx. It follows that xy ≡k yx so that x ≡k−1 y by induction.
Let then a, b ∈ Σ and e ∈ Σk−1. We have

(
xy
aeb

)
=

(
x

aeb

)
+

(
y

aeb

)
+

(
x
a

)(
y
eb

)
+

(
x
ae

)(
y
b

)
+

∑

e1e2=e
e1,e2∈Σ+

(
x

ae1

)(
y

e2b

)
and

(
yx
aeb

)
=

(
y

aeb

)
+

(
x

aeb

)
+

(
y
a

)(
x
eb

)
+

(
y
ae

)(
x
b

)
+

∑

e1e2=e
e1,e2∈Σ+

(
y

ae1

)(
x

e2b

)
.

Putting
(

xy
aeb

)
=

(
yx
aeb

)
and noting that

(
y

ae1

)(
x

e2b

)
=

(
x

ae1

)(
y

e2b

)
for all terms in the

summation (as x ≡k−1 y), we obtain, after rearranging,

|x|a
((

y
eb

) − (
x
eb

))
= |x|b

((
y
ae

) − (
x
ae

))
.

Note that the above equation holds for all a, b ∈ Σ and e ∈ Σk−1. Assume
without loss of generality that |x|a 
= 0. Letting e = e1 · · · ek−1 and repeatedly
applying the above (to possibly different letters a, b and words e ∈ Σk−1), we
obtain

(
y
eb

) − (
x
eb

)
=

((
y

ae1···ek−1

) − (
x

ae1···ek−1

)) |x|b
|x|a

=
((

y
aae1···ek−2

) − (
x

aae1···ek−2

)) |x|ek−1

|x|a
|x|b
|x|a

= · · ·

=
((

y
ak

) − (
x
ak

)) |x|e1 · · · |x|ek−1 |x|b
|x|ka

= 0,

since
(

y
ak

)
=

(
x
ak

)
follows from x ≡1 y. It thus follows that

(
y
eb

)
=

(
x
eb

)
for all

b ∈ Σ and e ∈ Σk−1, and consequently x ≡k y. This concludes the proof. �

Corollary 3.6. Let k � 2 and x, y ∈ Σ∗. If xy ≡k yx, then there exist m,n ∈ N

such that xm ≡k−1 yn.

Proof. Since xy ≡k yx it follows that xmyn ≡k ynxm for all m,n ∈ N. We may
choose m = lcm(|x|, |y|)/|x| and n = lcm(|x|, |y|)/|y|, whence |xm| = |yn|. By
the above proposition we have that xm ≡k−1 yn as was claimed. �

4 Conjugacy in the 2-Binomial Monoids

Here we consider conjugacy in the 2-binomial monoids. Two words x, y ∈ Σ∗ are
k-binomially conjugate if there exists z ∈ Σ∗ such that xz ≡k zy. Notice that
for such a z to exist, we must have x ≡1 y. Furthermore, for k � 2, z cannot
contain any letters not occurring in x and y. Indeed, if |x|b = |y|b = 0, |z|b � 1,
and |x|a � 1, then

(
xz
ab

)
=

(
x
a

)(
z
b

)
+

(
z
ab

)
>

(
z
ab

)
=

(
zy
ab

)
.

Let us consider first the case when Σ = {a, b}.



Equations over the k-Binomial Monoids 191

Proposition 4.1. Let x, y ∈ {a, b}∗. Then there exists z ∈ {a, b}∗ such that
xz ≡2 zy if and only if x ≡1 y and gcd(|x|a, |x|b) divides

(
x
ab

) − (
y
ab

)
.

Proof. Assume first there exists z such that xz ≡2 zy. It immediately follows
that x ≡1 y. We also have

(
x
ab

)
+

(
x
a

)(
z
b

)
+

(
z
ab

)
=

(
xz
ab

)
=

(
zy
ab

)
=

(
y
ab

)
+

(
z
a

)(
y
b

)
+

(
z
ab

)
, (2)

which implies that
(

x
ab

) − (
y
ab

)
= |z|a|y|b − |z|b|x|a = |z|a|x|b − |z|b|x|a. It now

follows that gcd(|x|a, |x|b) divides
(

x
ab

) − (
y
ab

)
.

Let d = gcd(|x|a, |x|b) and assume that x ≡1 y and
(

x
ab

)− (
y
ab

)
= kd for some

k ∈ Z. By Bezout’s identity there exist i, j ∈ Z, such that kd = i|x|b − j|x|a.
Here we may assume that i, j � 0 since otherwise we may replace (i, j) with
(h|x|a + i, h|x|b + j) for some suitably large h. We claim that z = aibj satisfies(
xz
ab

)
=

(
zy
ab

)
. Indeed,

(
x
ab

) − (
y
ab

)
= i|x|b − j|x|a which is equivalent to

(
x
ab

)
+ |z|b|x|a +

(
z
ab

)
=

(
y
ab

)
+ |z|a|x|b +

(
z
ab

)
.

The latter is equivalent to
(
xz
ab

)
=

(
zy
ab

)
as seen above. By Lemma 2.2, we further

have
(
xz
ba

)
=

(
zy
ba

)
and, since y ≡1 x, we have xz ≡2 zy as claimed. �

Example 4.2. Let x = aabaaaabbbab and y = bbaababaaaba. As y ≡1 x and
gcd(|x|a, |x|b) = 1, there exists z ∈ Σ∗ such that xz ≡2 zy. Now

(
x
ab

)− (
y
ab

)
= 16

and 3|x|b−2|x|a = 1; therefore, the proof above gives us, for example, z = a48b32.
Note that z′ = a6b2 satisfies xz′ ≡2 z′y as well.

On the other hand, for x = aabb and y = abab, we have x ≡1 y and
gcd(|x|a, |x|b) = 2, which does not divide

(
x
ab

) − (
y
ab

)
= 1. Thus x and y are

not 2-binomial conjugate, in other words, xz 
≡2 zy for all z ∈ Σ∗.

We now discuss the generalisation of the above characterisation for larger
alphabets. Notice that if xz ≡2 zy, then (2) holds for all a, b ∈ Σ. Taking into
account Corollary 2.3, we have

Lemma 4.3. For x, y, z ∈ Σ∗, we have xz ≡2 zy if and only if x ≡1 y and(
x
ab

) − (
y
ab

)
= |z|a|x|b − |z|b|x|a for all pairs of letters a, b ∈ Σ with a � b.

Hence, deciding whether x and y are 2-binomially conjugate reduces to solv-
ing a system of linear equations with integer coefficients. Let us formalise this
observation. Let x, y ∈ Σ∗ and assume that x ≡1 y. Assume further that each
letter of Σ occurs in x, otherwise we consider a sub-alphabet instead. Fix an
ordering on Σ and define the vector Dx,y indexed by pairs of letters a, b ∈ Σ,
a�b, defined as follows: Dx,y[(a, b)] =

(
x
ab

)−(
y
ab

)
. Let then Mx be the

(|Σ|
2

)×|Σ|-
matrix (rows indexed by pairs a, b ∈ Σ with a � b, columns by letters a ∈ Σ)
defined as Mx[(a, b), a] = |x|b, Mx[(a, b), b] = −|x|a, and Mx[(a, b), c] = 0 for
c 
= a, b. Let X be a vector of |Σ| unknowns indexed by the letters a ∈ Σ. We
consider solutions to the equation

MxX = Dx,y. (3)

Let us give a brief example of the entities defined above.
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Example 4.4. Let Σ = {0, 1, 2} and let x, y ∈ Σ∗ such that x ≡1 y and |x|a � 1
for each a ∈ Σ. Then Eq. (3) is defined as

⎛

⎝
|x|1 −|x|0 0
|x|2 0 −|x|0
0 |x|2 −|x|1

⎞

⎠

⎛

⎝
X[0]
X[1]
X[2]

⎞

⎠ =

⎛

⎝

(
x
01

) − (
y
01

)
(

x
02

) − (
y
02

)
(

x
12

) − (
y
12

)

⎞

⎠ .

In general, observe that for any word z ∈ Σ∗ we have

MxΨ(z)� =
∑

c∈Σ

Mx[(a, b), c] · |z|c = (|x|b|z|a − |x|a|z|b)(a,b),a�b. (4)

Now, for x and y as defined above, if there exists z ∈ Σ∗ such that xz ≡k zy,
then X = Ψ(z)� is a solution to Eq. (3). Indeed, recall that

|x|b|z|a − |x|a|z|b =
(

x
ab

) − (
y
ab

)
= Dx,y[(a, b)].

On the other hand, if X is a solution to Eq. (3) having non-negative entries,
then the word z =

∏
a∈Σ aX [a] is a solution to xz ≡2 zy.

We are in the position to characterise 2-binomial conjugacy over arbitrary
alphabets.

Theorem 4.5. Let x, y ∈ Σ∗ and assume that each letter of Σ occurs in x.
Then there exists z ∈ Σ∗ such that xz ≡2 zy if and only if x ≡1 y and Eq. (3)
has solution X having integer entries.

Proof. If there exists z such that xz ≡2 zy, then Ψ(z)� is an integer solution to
the equation, as was asserted previously.

Conversely, assume that X is an integer solution to Eq. (3). Notice that
some entries of X could be negative. However, plugging z = x in Eq. (4), we
have MxΨ(x)� = 0.1 Thus, for each n � 0, X + nΨ(x)� is also an integer
solution to the equation. Moreover, taking n large enough, each entry is a non-
negative integer, since all entries of Ψ(x) are assumed to be positive. Now the
word z =

∏
a∈Σ aX [a]+n|x|a satisfies xz ≡2 zy (and is well-defined). �

Remark 4.6. One can compute an (translated) integer basis for the set of solu-
tions to Eq. (4) in polynomial time (see, e.g., [19, Cor. 5.3c]).

5 Bounds on Sizes of Independent Systems of Equations

In this section we show that the k-binomial monoids possess the compactness
property. We further give an upper bound on the size of an independent system
of equations. The main results of this section are the following.

Theorem 5.1. The k-binomial monoids possess the compactness property.

1 It is not hard to verify that Ker(Mx) = Span(Ψ(x)) (compare to Proposition 3.1).
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Theorem 5.2. The number of equations in an independent system of equa-
tions (without constants) over the semigroup Σ+/≡k with variables Ξ is at most
|Ξ�k|.

As a consequence of the latter theorem, for k fixed, the size of an independent
system of equations has a polynomial upper bound with respect to the number
of unknowns. On the other hand, the upper bound is exponential when the
number |Ξ| of unknowns Ξ is fixed and k is allowed to vary. We remark that
these bounds do not depend on the size of the alphabet Σ, when the equations
have no constants, that is, the system of equations is a subset of Ξ+ × Ξ+.

Let us quickly explain why Theorem 5.2 implies Theorem 5.1.
When considering the compactness property, we remark that there is no

loss of generality assuming that h in the above is non-erasing (which implies
that we are considering solutions to equations in which each variable is assigned
a non-empty word). Indeed, it is not hard to see that a semigroup (possibly
without a unit element) possesses the compactness property if and only if the
monoid obtained from S by adding a unit element possesses it (see, e.g., [14,
Problem 13.5.2]).

Note also that there is no loss in generality assuming that the equations have
no constants, as we are dealing with finitely generated monoids: any system E
of equations (with or without constants) over S may be modified into a system
without constants by identifying each generator g ∈ G with a new variable Xg.
The set of solutions of the original system are obtained from the solutions to
the modified system by choosing the solutions where Xg �→ g for each genera-
tor. Further, if the number of equations in an independent system of equations
without constants using n variables is at most f(n) for each n, then the number
of equations in an independent system of equations is at most f(n + #G).

Let us still begin with a short proof of the first main result.

Proof of Theorem 5.1. It is known that if a semigroup S can be embedded in the
ring of integer matrices, then S possesses the compactness property [14, Chapter
13]. In [18] such an embedding is explicitly constructed. �

The rest of this section is devoted to proving Theorem 5.2.
Our approach for upper bounding the size of an independent system of equa-

tions over Σ∗/≡k is identical to the approach taken for showing a similar result
for the so-called k-abelian monoids [8]. We interpret the solutions to a system as
a subset of a finite dimensional subspace. Basic results from linear algebra are
then utilised to show that actually only finitely many equations are required to
define all solutions.

Let us fix some notation. Let k � 1 be fixed. Consider a word u ∈ Ξ+ and
define the |Ξ|k+1−|Ξ|

|Ξ|−1 -dimensional vector u as

u =
((

u
Y

))
Y ∈Ξ�k\{ε} .

For any non-erasing morphism h : Ξ → Σ∗/ ≡k we define, for each word w ∈
Σ�k, the |Ξ|k+1−|Ξ|

|Ξ|−1 -dimensional vector hw (components indexed by non-empty
words in Ξ�k) as
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hw[Y ] =
∑

w=w1···w�

wj∈Σ+

(
h(Y1)

w1

) · · · (h(Y�)
w�

)
,

for each Y = Y1 · · · Y� ∈ Ξ�k with Yi ∈ Ξ for all i = 1, . . . , 
. Note that he[Y ] = 0
for all Y for which |Y | > |e|, as e does not have a factorisation into |Y | non-empty
words.

The following lemma is crucial in the endeavours that follow. Here (x,y)
denotes the inner product of vectors x, y.

Lemma 5.3. Let h : Ξ → Σ∗/ ≡k be a non-erasing morphism, u ∈ Ξ+, and
w ∈ Σ�k. Then

(
h(u)

w

)
= (hw,u).

Proof. To avoid cluttering the text, we set X̂ := h(X) for each X ∈ Ξ. Let u =
X1 · · · Xn, where Xi ∈ Ξ for each i = 1, . . . , n. For any subset S of {1, . . . , n},
by the sequence S1, . . . , S|S| we mean the sequence of elements of S arranged in
increasing order. Now, for each w ∈ Σ�k, we observe that

(
h(u)

w

)
=

∑

S⊆[1,n]
|S|�|w|

∑

w=w1···w|S|
wj∈Σ+

(
̂XS1
w1

) · · · ( ̂XS|S|
w|S|

)
.

Indeed, for each occurrence of w as a subword, there exists a subset S ⊆ [1, n]
of length at most k such that w = w1 · · · w|S|, where wi ∈ Σ+ and the indices
of wi in u are a subset of the indices of X̂Si

in h(u). For each subset S of [1, n]
having |S| � |e|, there exists no such factorisation, and thus the corresponding
sum contributes nothing to the total sum. Now for two subsets S, S′ ⊆ [1, n]
having YS1 · · · YS|S| = YS′

1
· · · YS′

|S′|
= Y , the corresponding sums contribute the

same value. The number of distinct such sets equals
(

u
Y

)
. We may thus rewrite

the above equation as
∑

Y ∈Ξ�k

(
u
Y

) ∑

w=w1···w|Y |
wj∈Σ+

(
̂Y1
w1

)
. . .

(
̂Y|Y |
w|Y |

)
=

∑

Y ∈Ξ�k

hw[Y ] · u[Y ] = (hw,u),

as claimed. �
For a vector x, we let x⊥ denote the orthogonal complement of x.

Lemma 5.4. Let e : u = v be an equation and let h : Ξ → Σ∗/ ≡k be a non-
erasing morphism. Then h is a solution to e over Σ∗/≡k if and only if hw ∈ e⊥

for all w ∈ Σ�k, where e = u − v.

Proof. We have h(u) ≡k h(v) if and only if
(
h(u)

w

) − (
h(v)
w

)
= 0 for all non-empty

w ∈ Σ�k if and only if (hw,u − v) = (hw,e) = 0 for each w ∈ Σ�k, by the
lemma above. �

We may now bound the number of equations in an independent system.

Proof of Theorem 5.2. Let E = {ei : ui = vi}i∈I be an independent system of
equations over Ξ. Assume again that Sol(E) is not empty. The case of Sol(E)
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having no solutions is analogous to the k-abelian case. Now h is a solution to E
if and only if hw ∈ ⋂

e∈E e⊥ = U for all w ∈ Σ�k. Since U is a finite dimensional
vector space, there exist equations e1, . . . , ef ∈ E such that U = ∩f

i=1e
⊥
i , where

f � |Ξ�k| − 1. We claim that E′ = {e1, . . . , ef} is an equivalent subsystem of
E.

Let e ∈ E. Let then h be a solution to E′. It follows that hw ∈ e⊥
i for all

i = 1, . . . , f , so that hw ∈ U for all w ∈ Σ∗. Furthermore hw ∈ e⊥ which is
equivalent to h being a solution to e by the above lemma. as claimed. �

6 Conclusions and Future Work

We have considered basic equations over the k-binomial monoids. For commuta-
tivity, we obtain a characterisation only in the case k = 2. The problem is open
for k > 2, though we obtain some partial results here. We plan to attack the
problem in the future:

Problem 6.1. Characterise when xy ≡k yx for k > 2.

The mixture of positive and negative results obtained relating to this problem
seem to suggest that the problem is quite intricate.

As seen in Theorem 4.5, characterising k-binomial conjugacy of two words
is already quite involved even for k = 2. It is not immediate how to translate
the result into a word combinatorial statement. Furthermore, we suspect that
the methods used in the case k = 2 do not extend to cases with k > 2 without
substantial new insights. The following problem is thus left open.

Problem 6.2. Characterise when, for words x, y, z ∈ Σ∗ and k > 2, we have
xz ≡k zy.

Finally for independent systems of equations, it will be interesting to answer
the following question.

Question 6.3. What is the maximal number of equations in an independent sys-
tem of equations in the k-binomial monoid?

The analogous problem over the free semigroups is notoriously open. There
is a constant upper bound given in the case of equations with no constants when
the alphabet has size 3 (see [15]).
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reviewers for helpful comments.
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