®

Check for
updates

A RESTful Privacy-Aware and Mutable
Decentralized Ledger

Sidra Aslam®2®)@® and Michael Mrissal+2

! Faculty of Mathematics, Natural Sciences and Information Technology,
University of Primorska, Glagoljaska ulica 8, 6000 Koper, Slovenia
2 InnoRenew CoE, Livade 6, 6310 Izola, Slovenia
{sidra.aslam,michael .mrissa}@innorenew.eu

Abstract. During the last decade, blockchain technology has gained
massive attention due to its decentralized, transparent, and verifiable
features. However, data stored on the blockchain is publicly available,
immutable, and may link to the data owner, thus making privacy man-
agement and data modification major challenges. In this paper, we
present a RESTful decentralized storage framework that provides data
privacy and mutability. To do so, it combines blockchain with distributed
hash table, role-based access control, ring signature, and multiple encryp-
tion mechanisms. We designed a protocol that exploits metadata and
pointers stored on the blockchain, while corresponding encrypted data
are stored off-chain, so that data owners are able to control their data.
Each peer in our framework offers RESTful APIs to operate, thus ensur-
ing interoperability over the Web. In this paper, we present the operation
of our framework and its components that enable data protection at run-
time. We also evaluate its performance with time measurements from our
proof-of-concept implementation.

Keywords: Blockchain + Security * Privacy

1 Introduction

For several decades, people have been depending on centralized solutions that
act as Trusted Third Parties (TTPs) to exchange information and to trans-
fer assets through the Internet. These TTPs are responsible for securing data
exchanges and they collect massive amounts of privacy-sensitive information
from their users. However, a TTP becomes a single point of failure (SPOF)
and is more vulnerable to security breaches and attacks [13]. As a solution
to overcome this issue, blockchain [9] has gained massive attention due to its
decentralized, transparent and immutable features. Indeed, blockchain allows
participants to exchange information and store transactions without any TTP.
Concretely, a blockchain is a chain of blocks that contain transactions, and each
block is linked to the previous one with a cryptographic signature generated

© Springer Nature Switzerland AG 2021

L. Bellatreche et al. (Eds.): ADBIS 2021 Short Papers, Workshops and Doctoral Consortium,
CCIS 1450, pp. 193-204, 2021.

https://doi.org/10.1007/978-3-030-85082-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85082-1_18&domain=pdf
http://orcid.org/0000-0001-7020-1762
http://orcid.org/0000-0002-2330-1004
https://doi.org/10.1007/978-3-030-85082-1_18

194 S. Aslam and M. Mrissa

using a hash function. Adding a block to the chain relies on a consensus algo-
rithm [3], which ensures that the same copy of the transactions in the block are
validated by enough (in general, the majority) participants. For the validation
to happen, different consensus algorithms (e.g. proof of work, proof of stake,
etc.) are available nowadays, with different characteristics (computational cost,
complexity, etc.). However, the availability of the recorded data to everyone in
the blockchain network raises issues when it comes to privacy-sensitive data [8].
Besides this, the immutability property of blockchain guarantees that the data
records stored in transactions are tamper-proof, i.e. they can neither be deleted
nor be mutated, which can be seen as a limiting factor.

In this paper, we aim at addressing these challenges with a single framework
that integrates the following contributions:

— a solution for decentralized data storage that combines blockchain and Dis-
tributed Hash Table (DHT) to allow for data updates,

— a Role-Based Access Control (RBAC) solution to manage access to privacy-
sensitive data,

— a flexible encryption design that allows to choose between multiple types of
encryption while storing and querying data on the blockchain,

— a proof-of-concept implementation with performance evaluation that demon-
strate the feasibility of our solution.

The rest of the paper is organized as follows. Section 2 presents the motivat-
ing scenario that highlights the research problem. In Sect. 3, we discuss existing
work and their limitations before highlighting the originality of our contribution.
Section 4 presents our framework and its components and explains how its pro-
vides privacy-preserving, secure, and decentralized data management. Section 5
describes the experimental results that confirm the feasibility of our proposed
solution. Finally, Sect. 6 concludes this paper and lays ground for future work.

2 DMotivating Scenario and Research Problem

In this section, we present a wooden furniture supply chain scenario that moti-
vates the need for data updates and highlights our research problems. In the
following, we identified 6 actors that involve in the wood supply chain: 1) Wood
cutting company identifies specific trees and cuts them into logs. 2) Trans-
port company transports wood logs to warehouse. 3) Storage warehouse
company stores logs temporarily. 4) Furniture assembly company assemble
the furniture. 5) Furniture shop company displays the assembled furniture
6) Customer purchases wooden furniture and verifies product origin.

Our wood supply chain scenario highlights the need for trust and traceability
in the supply chain process. Existing solutions rely on Radio Frequency Iden-
tification (RFID) technology to enable electronic traceability of wood in the
supply chain. Generally, this traceability framework needs a third-party central-
ized database framework to collect and store RFID data, which leads to a Single
Point Of Failure (SPOF). Decentralized storage solutions can solve the problem

A RESTful Privacy-Aware and Mutable Decentralized Ledger 195

of a single point of failure. In particular, blockchain is a decentralized and dis-
tributed ledger technology that stores records of users in such a way that makes
them accessible to all participants without the risk of SPOF. A blockchain con-
sists of a linear sequence of blocks. The contents of each block! contains a hash
of the contents of the previous one to prevent the modification of stored trans-
actions [11]. If the previous block is modified, the new hash one could generate
from the content upon verification would not match the one stored in the next
block. This design provides the blockchain with its immutability feature [6]: once
data has been stored, no one can modify it.

However, our wood supply chain scenario highlights that actors need to insert,
retrieve and delete data about their business activities, and at the same time,
they need to be able to modify data, while keeping the proof that data was
inserted. There is a need to develop a solution that overcomes the immutabil-
ity characteristic of blockchain to allow update and delete operations on stored
data. At the same time, the developed solution must fine-grained access con-
trol, as data access permissions vary depending on the data requester identity
(data owner, business partners, client). In the following, we identify the research
problems that raise from the scenario discussed above:

— Data modification management: In our case study, actors may need to
modify data in blockchain (e.g. number of logs and product type). However,
blockchain does not allow data modification, once it has been added to the
chain due to its immutability nature. The challenge consists in overcoming
this limitation while keeping the properties that make the blockchain inter-
esting.

— Data security and access control: Blockchain stores data publicly and
allows anyone to access it. In our context, a decentralized solution should
ensure data privacy and protect privacy-sensitive data from unauthorized
access.

In the following, we discuss the limitations of decentralized solutions sup-
porting privacy-aware data access and data update.

3 Related Work

In this section, we present the related work and its limitations to store and update
data on the blockchain. In [7], the authors present a blockchain-based framework
to share data between stakeholders. Data hash sum is stored on blockchain while
original data is stored on a MySQL database. However, MySQL databases are
centralized and they are not as scalable as DHTSs to store large amounts of
data [5]. The authors in [14], propose a blockchain-based supply chain frame-
work to maintain food traceability using a smart contract. However, product data
is accessible publicly and immutable, which leads to privacy and data updates
issues. In [12], the authors combine blockchain with DHT for secure IoT data

! Except the first block called genesis block.

196 S. Aslam and M. Mrissa

sharing. Blockchain is used to store access control permissions, which is publicly
visible and raise privacy issues. However, access control permissions are unable
to modify due to blockchain immutability feature. The authors in [1], present
a blockchain-based data storage for PingER (Ping End-to-End Reporting). The
proposed solution use permissioned blockchain to store metadata of PingER
files whereas corresponding data are stored on DHT without any encryption
mechanisms. Additionally, this framework stores monitoring agent name and
upload locations of the file on the blockchain, which raises data security and pri-
vacy issues. Inspired by the PingER metadata structure, our framework extends
metadata structure and enables privacy and security management that ensures
authorized access control and privacy protection.

As a summary, we have identified the most relevant work related to
blockchain and DHT data storage. To the best of our knowledge, this is the
first paper that provides decentralized data storage, data mutability, manages
access to privacy-sensitive data, multiple types of encryption, and message sender
anonymity at the same time in a single solution. In the following, we discuss the
steps of our proposed framework in detail.

4 Proposed Framework

In this paper, we propose a secure privacy-aware decentralized framework that
supports role-based access control, data mutability and actor’s anonymity. Each
actor, as a peer of the framework, runs the same code that is structured into a
set of components. The following subsections describe each of these components
in detail as depicted in Fig. 1.

Independent registry server

Full access

+ [osta oo] =
: Limited access
H —>
: public data

® — y .
Ve I:ll Verify permission ~ { T

Actor . -—- toread/write data x
- <—J RBAC component
A\ 5]

RBAC
-~ response

Decryptdata | - | Encrypt data Send request o readiwrite | : o S |
pointer and metadata H ! ' !

3 ! Store data ! —_ |

ieteleileteteisbietetsisuisisisiiii : —> :

Send request | | Return available
peer list

i

Asymmetric encryption : Blockchain response

DHT component
Symmetric encryption

Y Encrypt symmetric key with :
owner's public key H

Encryption manager component

oo}
9]
S
=
3
>
o
5
Q
°
3
o
]
=]
)
=

Return signed data DHT response

Ring signature component

Fig. 1. Overview of a peer architecture.

A RESTful Privacy-Aware and Mutable Decentralized Ledger 197

4.1 General Overview

Our proposed framework allows wood supply chain actors to store data, read
data upon request, and communicate with other actors through HTTP calls.
Figure 1 shows the layout of our framework and its components organized around
amain program. In our framework different actors are running the main program
and they connect to each other using their APIs, after an initial call to the
registry_server to get the list of available peers.

Let us consider the following example: an actor such as a wood cutter logs in
our framework to store the number of logs cut on this day. When the program
starts, the wood cutter will send a ‘POST’ request to the /peers resource of the
registry_server to add its public key and URL (Uniform Resource Locator)
to the list of connected peers?. Then, it will call the /peers resource with the
‘GET’ method and retrieve the list of connected peers. It will then connect with
other available peers to download a copy of the blockchain (/chain resource,
method ‘GET’, available on each peer). Upon request, the main component will
call the rbac_manager component to verify the current actor’s permission such
as wood cutter to perform read and write operations. Indeed, each actor’s roles,
resources, and permission are defined in this rbac_manager component. Our
framework allows the authorized actor to choose different types of encryption
methods while storing data and generates a public key, private key, or sym-
metric key accordingly. Before storing the data, the main component will call
the encrypt_manager component to encrypt the entered data with the current
actor’s public key or symmetric key depends on the selected encryption method.
For each actor, the encrypt_manager component is responsible for generating
public and private keys. This encrypted data sent to off-chain (key-value) storage
called DHT manager component, while corresponding pointer and metadata are
stored on a blockchain manager component (pointer is the hash of the data).

An authorized actor allows to create, update, delete, and read data using
the pointer stored on the public ledger. A request (/chain/<block no>, method
‘GET’) to the main component might call the ring signature component to
sign data anonymously, only in the case where the data is privacy-sensitive
and the role of the requester requires anonymization. Accordingly, a request
to (/chain/<block_no>, method ‘POST’), will create a block, or update it if it
already exists, and process the contents sent in the request message.

The following subsections describe each of these components in detail.

4.2 Framework Components

In this section, we describe in detail the components of the proposed frame-
work including decentralized data storage, authorized data access, ensure data
traceability, and maintains the actor’s anonymity.

2 Please note that the registry server can easily be replaced by a decentralized discov-
ery protocol like Chord4sS [4].

198 S. Aslam and M. Mrissa

RBAC Manager Component: we use a Role-Based Access Control (RBAC)
model to manage access to privacy-sensitive data. The RBAC model is based on
the following four parameters: user, role, resource, and permission. In RBAC,
users are actors related to the application. Roles are the application’s functions
that allow to access resources based on the given permissions. A permission is
an authorization to access one or more resources within the application [2].

In our work, we define the following users, roles, resources, and permissions
that assigns permissions to the user based on their role in our wood supply chain
scenario.

— Users: In our framework, we need to define RBAC users according to the
actors of the wood supply chain. Therefore, we define the following users:
wood cutter, transporter, warehouse manager, furniture assembler, furniture
seller, and customer.

— Roles: According to the different actions our supply chain users can perform
on the architecture, we define the following roles: 1) Data owner any user®
can be data owner. Data owners can add, read, modify and delete data about
their products. For example, a wood cutter would act as “data owner” and
insert information such as (trees-cut:20, type:oak,). 2) Business partner the
business partner role allows specific users (chosen by the data owner) to access
data that is not available to anyone. For example, a furniture assembler would
act as “business partner” and might be allowed to read from the previous
example: (trees-cut:20, type:oak). 3) Public reader the public reader role
gives access to all public data. For example, a customer would act as “public
reader” and might be allowed to read (type:oak).

— Resources: In our framework, user can access resources according to defined
roles and permissions. In our framework, we define the following resources:
1) DHT: user can access DHT resource to add data about their business
activities. For example, a wood cutter has a role “data owner” and store
information such as (trees-cut:20, type:oak). 2) Blockchain: User allows to
access blockchain resource to read data. For example, a customer has a role
“public reader” and might be allowed to read information such as (type:oak).

— Permissions: We define permissions to restrict user’s actions to access
resources. For example, from previous example. a wood cutter has a role
“data owner” and has a “permission” to write, read, update, and delete data
such as (trees-cut:30, type:maple), whereas transport company would act as
a “business partner” and has only “permission” to read information such as
(trees-cut:30).

— Rules and policies: Our framework defines rules and policies that controls
access to the data such as private data, privacy-sensitive data, and public
data. Our rbac_manager component is responsible to authenticate role of
current login actor. It also ensures if current role has permission to access
resource or not as denoted by wverify_permission (role, operation, resource).
For example, wood cutter has a role ‘business partner’ logs into the frame-
work to store data on blockchain. The main component calls the method

3 Except the end client that has read-only access.

A RESTful Privacy-Aware and Mutable Decentralized Ledger 199

authenticate(actor, role) to authenticate that if a ‘business partner’
role exists in our rbac_manager component or not. After role authentication,
the rbac_manager component verifies the permissions of actions for current
login actor’s role such as if (actor_role == ‘owner’), then “owner” has
permission to perform read, write, update, and delete all types of data on
the blockchain. In case, if (actor_role == ‘business_partner’), then our
framework allows just to read some data such as privacy-sensitive and pub-
lic data. If (actor_role == ‘public_user’), then our framework provides
access to just read public data.

Our framework provides filter access based on role such as wood cutter as a
‘business partner’ has not permission to write, update, and delete data. We
maintain data security by limiting unnecessary access to sensitive data based
on each actor’s role. Please note that although this simple RBAC model
answers the requirements of our scenario, more elaborate models could be
plugged in without changing anything in the framework design.

Blockchain Component: We use blockchain manager component to man-
age metadata and pointer of encrypted data. Our proposed metadata structure
consists of the data entry date, data entry time, and data pointer. The main
components of the blockchain include block transaction, consensus algorithms,
and metadata extension. Each component is explained as follows.

— Block transaction: Each block contains the block header, consensus signature,
hash of the previous block, timestamps, verified metadata, and pointer of the
actual data. In our framework, actors will connect to the framework and call
initialize(chain) method to copy the blockchain if there will be any other
available actors on the network, otherwise genesis block will be created and
added to the blockchain. A blockchain is composed of a chain of the blocks
where each block is comprised of many transactions [10]. Each transaction is
broadcast on the network for verification and miners verifies the transaction
through signature. Then, the verified transactions are added to the block of
the blockchain. After storing verified metadata and pointer on the blockchain,
our framework returns the block number to the data owner. The proposed
framework allows data owner to access specific block to perform data update
and delete operations.

— Consensus mechanism: 1t is used in our blockchain manager component to
establish the agreement on one state of the data in a distributed network.
It ensures that the same copy of the data is replicated to all nodes in the
blockchain network. Further, it verifies the transactions from this block and
prevents the attacker to change the state of the data. Our framework uses a
proof of work consensus mechanism to add each block to the blockchain. To
do so, miners solve the complex puzzle and receive a reward such as a new
coin to validate the block. Miners validate the transactions in a block and add
this block to the blockchain. Proof of work consensus mechanism prevents a
malicious actor to compromise more than half of the hashing power on the

200 S. Aslam and M. Mrissa

blockchain. The process to verify the proof and its correctness is easy and
fast. In the following we define the proposed metadata structure.

— Metadata extension: In [1], the authors allow storing metadata in the
blockchain. We follow a similar approach and store the metadata informa-
tion for each piece of data to maintain product traceability and actors’ trust.
In our framework (see Fig. 1), we have an RBAC_manager component to restrict
user’s actions on the data and we use a blockchain component to store meta-
data and pointer of actual data that are stored on the DHT component. We use
REST APIs (/chain) that allow actors to copy blockchain and to store and
read data on the distributed framework. We propose a metadata extension
that relies on paper [1], to handle privacy constraints on data. To do so, we
propose to encrypt user’s sensitive information (e.g. location) with encryption
mechanisms, and we store this encrypted data on offline storage (DHT). In
our sample scenario, actual data on DHT consists of an actor’s name, product
identity, product location, quantity, and wood type.

DHT Component: In the proposed framework the encrypted data of each
actor is stored on off-blockchain (key, value) storage called DHT. We implement
a DHT component of our framework by using the Kademlia library. DHT is
comprised of network of nodes that enable actors to write/read data associated
with a given key. Actor’s data are randomized across the nodes of the network
and replicated to eliminate the chance of data loss. Our proposed framework
records the date and time of each new data entered by the actor. This enables a
network to keep track of the product and maintains the order of product entries.

Encryption Manager Component: In our framework, the encrypt_manager
component is responsible for data encryption and decryption according to the
selected encryption method. Our framework allows actors to choose encryption
methods for each data write operation. If the data owner chooses the asymmetric
encryption method then data will be encrypted with the owner’s public key and
stored encrypted data on DHT. A public key is accessible publicly while the
private key is kept private by the key’s owner to decrypt the data. If the data
owner chooses the symmetric encryption method then data will be encrypted
with a symmetric key and this symmetric key again will be encrypted with the
owner’s public key to ensure that only the data owner can access it later. Both
encrypted symmetric key and encrypted data will be stored on DHT.

Ring Signature Component: It is an option here to actor’s ensure anonymity
within a group. A signature is created by any member from a set of public
keys called a ring. Therefore, the identity of the signer remains hidden and
no one can identify that who is the actual signer of the data. In our frame-
work, the data owner can allow other actors to read their data upon request by
using (/chain/<block no>, method ‘GET’). To read data, we rely on encryp-
tion according to data reading requirements: 1) Private data will not be shared

A RESTful Privacy-Aware and Mutable Decentralized Ledger 201

with anyone. Therefore, it will be encrypted with the owner’s public key, so only
the owner can decrypt data using their private key. 2) Privacy-sensitive data
is shared with only a specific number of users. It will be encrypted using the
receiver’s public key, so later data can be decrypted only with the corresponding
private key. The data owner will also sign data by using ring signature to remain
anonymous within a group, An authorized requester can read data and verify
the signature. 3) Public data is available to anyone. It will optionally be signed
by ring signature or encrypted with the data owner’s public key to guarantee
data ownership.

5 Implementation and Evaluation

This section discusses the implementation and evaluation of our proposed work.
We implemented the key components of our framework by using an open source
blockchain library* and the Kademlia DHT library®. The blockchain library
is used to achieve consensus on a distributed network and creation of blocks.
While, we used the DHT to store and retrieve data link with a key in a network
of peer nodes. We performed all the experimental process using Python 3. The
experiments are performed on the data (privacy-sensitive, private, and public)
entered by the actors into the framework.

We evaluated the key components of our proposed framework on 64-bit
Microsoft Windows Operating System with 16 GB of memory. In the follow-
ing, we discuss the qualitative security and privacy analysis as well as quanti-
tative performance evaluation. 1) Security analysis: according to the design
of proposed framework, only authorized actors are allowed to access the sys-
tem to perform write, read, update, and delete operations. A malicious user
cannot modify existing data unless he/she controls more computation power
than all other miners. Our framework ensures following security properties:
we achieve confidentiality using asymmetric and symmetric encryption. We
encrypt data with the owner’s public key and store the corresponding pointer
on the blockchain to achieve integrity. Our framework archives availability
through the access control model. We ensures non-repudiation by adding meta-
data to the chain. 2) Linking attack: our framework uses a unique public key
for each transaction. It prevents an attacker to link multiple data and transac-
tions with the same ID. 3) Modification attack: in our solution, data owner
has ability to encrypt data with their public key and store hash of the encrypted
data on the blockchain. It also records evidence of data entry date and data entry
time to trace last modification of data. An attacker can not modify owner’s data.
4) Privacy: our proposed solution ensures that the owner owns and control their
private data. Actor’s private data will not be shared with other actors on the
network. We encrypted privacy-sensitive and public data using requester pub-
lic key to protect the data from malicious actor. In our proposed solution, we

4 https://github.com/satwikkansal /python_blockchain_app/tree/ibm_blockchain._
post.
5 https://github.com/bmuller /kademlia.

https://github.com/satwikkansal/python_blockchain_app/tree/ibm_blockchain_post
https://github.com/satwikkansal/python_blockchain_app/tree/ibm_blockchain_post
https://github.com/bmuller/kademlia

202 S. Aslam and M. Mrissa

achieve anonymity using ring signature. 4) Scalability currently, we tested our
prototype with six actors and achieve reasonable performance. Our framework
is flexible and scalable to work with a large number of actors.

01 = Time to verify permission

= Data encrypt /decrypt time
0,08 (asymmetric encryption)

= DHT acc
= Time to verify permission
006 Blockehai

u Ring signature create time

Time consumption (seconds)

= Ring signature verify time

Total time

S
s
£
g
E
5

= TR Ry L AN

Store data Read data Update data Delete data Store data Readdata Updatedata Delete data

(a) Time overhead of asymmetric encryp- (b) Time overhead of asymmetric encryp-
tion without ring signature tion with ring signature

Fig. 2. Overall time overhead for asymmetric encryption

Performance Evaluation: We evaluate the time overhead to verify permis-
sion, data encryption/decryption using a symmetric or asymmetric method,
DHT access, blockchain access, and overall total time while data store, read,
update and delete operations. Figure 2a and Fig. 2b outline the time processing
for both asymmetric encryption without ring signature and asymmetric encryp-
tion with ring signature. The results demonstrate that the total time of asymmet-
ric encryption without ring signature is larger than the total time of asymmetric
encryption with ring signature while store, update and delete data. We calculated
the overall time for symmetric encryption as depicted in Fig. 3a and Fig. 3b. We
compare results symmetric encryption without ring signature with symmetric
encryption using ring signature. It is seen from the results that the total time
of storing and deleting data for symmetric encryption without ring signature is
larger than the symmetric encryption with ring signature. The total time to read
data for symmetric encryption without ring signature is less than the symmetric
encryption with ring signature. Total time to update data for both Fig. 3a and
Fig. 3b are not much affected by the ring signature and symmetric encryption.

We also calculated average, standard deviation, min, and max value for both
asymmetric and symmetric encryption while store, read, update, and delete data.
We ran our prototype 50 times and experimental results show that asymmetric
encryption gives a standard deviation of 0,022 s and symmetric encryption has a
standard deviation of 0,023 s during data storing operation. To read data, asym-
metric encryption has a minimum value of 0,124s and symmetric encryption
gives 0,142 s. For data update operation, asymmetric encryption has maximum
value of 0,068 s and symmetric encryption gives 0,052 s maximum value. Experi-
mental results clearly show that our proposed framework achieves a low overhead
that is acceptable for the actor.

A RESTful Privacy-Aware and Mutable Decentralized Ledger 203

0,14

°
8

018 = Time to verify permission

o

= Data encrypt /decrypt time
(symmetric encryption)

= Time to verify permission
= DHT access time

o
)
8

u Data encrypt /decrypt time

(symmetric encryption) Blockchain access

time

DHT access time .
m Ring signature create time

Blockchain access time

Time consumption (seconds)

°
)
H

= Ring signature verify time

Time consumption (seconds)

004 mTotal time Total time
0,02

el a1l AL a1

Storedata Readdata Updatedata Delete data Storedata Readdata Updatedata Delete data

(a) Time overhead of symmetric encryp- (b) Time overhead of symmetric encryp-
tion without ring signature tion with ring signature

Fig. 3. Overall time overhead for symmetric encryption

6 Conclusion

In this paper, we illustrate the need for privacy-aware decentralized data stor-
age, access control, data mutability, and actor anonymity in the wood supply
chain scenario. Our framework enables this by combining the blockchain with
DHT, role-based access control, and multiple encryption mechanisms that allow
only authorized actors to access and modify their data without disclosing their
identity on a distributed ledger. Thanks to its RESTful (between peers) and
component-based (inside a peer) design, our framework is fully reusable across
the wide diversity of possible application domains and use cases. We also pre-
sented a performance evaluation regarding its operation. Our simulation results
demonstrate that our framework shows promising results and achieves an accept-
able overhead. To the best of our knowledge, this research is the first work that
integrates this combination of technologies in a single framework. In future work,
we plan to compare our solution to similar blockchain implementations. Fur-
thermore, we will study how the behaviour of our prototype evolves over larger
number of peers, and devise optimizations to improve its performance over large
scale networks, in real or simulated environments.

Acknowledgment. The authors gratefully acknowledge the European Commission
for funding the InnoRenew project (Grant Agreement #739574) under the Horizon2020
Widespread-Teaming program and the Republic of Slovenia (Investment funding of
the Republic of Slovenia and the European Regional Development Fund). They also
acknowledge the Slovenian Research Agency ARRS for funding the project J2-2504.

204

S. Aslam and M. Mrissa

References

10.

11.

12.

13.

14.

. Ali, S., Wang, G., White, B., Cottrell, R.L.: A blockchain-based decentralized data

storage and access framework for pinger. In 2018 17th IEEE International Con-
ference on Trust, Security and Privacy in Computing and Communications/12th
IEEE International Conference on Big Data Science and Engineering (Trust-
Com/BigDataSE), pp. 1303-1308. IEEE (2018)

Bertino, E.: RBAC models - concepts and trends. Comput. Secur. 22(6), 511-514
(2003)

Dinh, T.T.A., Liu, R., Zhang, M., Chen, G., Ooi, B.C., Wang, J.: Untangling
blockchain: a data processing view of blockchain systems. IEEE Trans. Knowl.
Data Eng. 30(7), 1366-1385 (2018)

He, Q., Yan, J., Yang, Y., Kowalczyk, R., Jin, H.: A decentralized service discovery
approach on peer-to-peer networks. IEEE Trans. Serv. Comput. 6(1), 64-75 (2011)
Khamphakdee, N., Benjamas, N., Saiyod, S.: Performance evaluation of big data
technology on designing big network traffic data analysis system. In: 2016 Joint
8th International Conference on soft computing and Intelligent Systems (SCIS)
and 17th International Symposium on Advanced Intelligent Systems (ISIS), pp.
454-459. IEEE (2016)

Vinod Kumar, M., Iyengar, N.C.S.: A framework for blockchain technology in rice
supply chain management. Adv. Sci. Technol. Lett. 146, 125-130 (2017)

Longo, F., Nicoletti, L., Padovano, A., d’Atri, G., Forte, M.: Blockchain-enabled
supply chain: an experimental study. Comput. Ind. Eng. 136, 57-69 (2019)
Moser, M.: Anonymity of bitcoin transactions. In: Miinster Bitcoin Conference
(MBC), Miinster, Germany, July 2013

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

Nofer, M., Gomber, P., Hinz, O., Schiereck, D.: Blockchain. Bus. Inf. Syst. Eng.
59(3), 183-187 (2017)

Pagzaitis, A., De Filippi, P., Kostakis, V.: Blockchain and value systems in the
sharing economy: the illustrative case of backfeed. Technol. Forecast. Soc. Chang.
125, 105-115 (2017)

Shafagh, H., Burkhalter, L., Hithnawi, A., Duquennoy, S.: Towards blockchain-
based auditable storage and sharing of IoT data. In: Proceedings of the 2017 on
Cloud Computing Security Workshop, pp. 45-50 (2017)

Wang, S., Zhang, Y., Zhang, Y.: A blockchain-based framework for data sharing
with fine-grained access control in decentralized storage systems. IEEE Access 6,
38437-38450 (2018)

Westerkamp, M., Victor, F., Kiipper, A.: Blockchain-based supply chain traceabil-
ity: token recipes model manufacturing processes. In: 2018 IEEE International Con-
ference on Internet of Things (iThings) and IEEE Green Computing and Communi-
cations (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), pp. 1595-1602. IEEE (2018)

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

	A RESTful Privacy-Aware and Mutable Decentralized Ledger
	1 Introduction
	2 Motivating Scenario and Research Problem
	3 Related Work
	4 Proposed Framework
	4.1 General Overview
	4.2 Framework Components

	5 Implementation and Evaluation
	6 Conclusion
	References

