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1 Introduction

Covid-19 infections have increased rapidly worldwide for the last several months.
By mid-June, 2020, worldwide confirmed cases of Covid-19 were setting records
for daily growth. This growth has continued into late July, with newly reported
infections surpassing one quarter of a million daily, driven largely by new infections
in the United States, Brazil, India, and South Africa. By July 30, 2020, worldwide
recorded infections have surpassed 17 million. Canada announced its first case of
Covid-19 in Toronto, Ontario on January 25, 2020 in an international traveller from
Wuhan. By July 2020, Canada surpassed 115,000 cases of recorded infections, and
almost nine thousand deaths. Within Canada, most cases have occurred within the
provinces of Ontario and Quebec. Both provinces adopted more stringent public
health measures to reduce infections after major issues arose within long term care
facilities. Within Ontario, the number of cases grew rapidly by the end of March,
at more than 400 daily new cases, reaching a peak of over 600 daily new cases in
the third week of April. By the third week of May, Ontario saw a decline in daily
deaths. The Ontario provincial database available through the provincial data portal
records onset dates as early as January 01, 2020 in both travellers and non-travellers.
While no death dates are recorded in this publicly available database, the earliest
deaths recorded show 17 cases with onset dates on or before March 10, 2020 over a
geographically dispersed set of health units (Windsor, Chatham, London, Niagara,
Waterloo, Peel, Haliburton, Simcoe, Durham, Toronto, York and more).

While Ontario may be past the first peak of the epidemic, the lifting of public
health restrictions and social distancing measures in a series of three planned stages
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may result in a rise in cases and hospitalizations due to Covid-19. Approximately 2
months after the initial lockdown in March 2020, the province of Ontario unveiled
its three stage re-opening plan. Stage 1 of re-opening began on May 19, 2020, with
a limited set of businesses allowed to re-open in accordance with strict public health
guidelines. Two weeks after the first stage of re-opening, Ontario cases remained
stubbornly flat with new cases persisting between 300 and 450 daily. Approximately
two-thirds of the health regions in Ontario were allowed to progress to Stage 2 re-
opening on June 12, 2020, where businesses such as hair and nail salons, restaurants
with outdoor patios, campgrounds and community pools were allowed to re-open.
At that time, new recorded cases had fallen to just below 200 per day in Ontario.
All remaining health regions progressed to Stage 2 by July 7. On July 17, 2020, 24
of Ontario’s 34 health regions, who were among the first health units to progress
to Stage 2, were allowed to progress to Stage 3 of re-opening, which allows most
businesses and workplaces to re-open but with limits on capacity and with measures
in place such as wearing of masks indoors. By the final week of July, reported new
infections hovered between approximately 100 and 170 per day, with some of the
higher numbers driven by large outbreaks in agricultural farm workers. Meanwhile,
health officials across the province remain alert to warning signs of resurgence.

Our approach here uses a logistic growth model for the cumulative number
of deaths from Covid-19. The logistic growth model includes a carrying capacity
parameter that is meant to reflect an upper limit in the number of deaths. Here
we consider, conceptually, that deaths would be limited by the number of (true)
cases. Since the number of cases is changing over time, so should the carrying
capacity parameter for death in the logistic model. The logistic growth model we
employ therefore allows the carrying capacity parameter to change over time by
incorporating a logistic growth function for the carrying capacity parameter.

Throughout the course of the Covid-19 pandemic, Ontario and Canadian data
have been modelled in a series of important papers using a broad set of epidemi-
ological methods [4, 13, 14]. One of the first papers using Canadian data fit an
exponential curve to the number of daily cases and estimated growth rates by fitting
a linear regression model to the logarithm of the data [11]. Growth rates were
estimated for two separate windows of time, to allow for changes in trend as a result
of a significant public health intervention.

In terms of analysis of Ontario data, simple exponential or logistic growth models
have been considered in a report published by a resource management group in
collaboration with researchers at academic institutions across Canada. Growth rate
curves of time series data of Covid-19 deaths for Canada are modeled to incorporate
changes in rates under different public health interventions [5]. From the time series
of daily deaths, the authors back-calculate the cumulative number of infections.
Using a time series growth model the number of future infections are predicted.
The model utilizes either a simple exponential growth model or a logistic growth
model. In a report published May 17, 2020, the authors demonstrate how to use their
modeling framework and provide software to generate forecasts of cases and deaths
for Ontario and Canada under the assumption of continued health policy measures
as they currently stand.
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There have been other studies of Ontario data beyond growth curve modeling. For
example, in a recently published article, Wu and colleagues [15] use a generalized
Susceptible Exposed Infected Recovered (SEIR) model that allows incorporation
of asymptomatic infectious, quarantined susceptible and isolated exposed model
compartments. They evaluated trends in transmission and the effect of social
distancing measures based on data up to March 29, 2020, showing an increasing
effectiveness of public health interventions in lowering the reproductive number of
Covid-19.

Analyses utilizing logistic growth curve models to forecast epidemic growth of
infections have been published using data outside of Canada as well. These models
use the standard form of the logistic growth curve to model infections. To model
early growth of the epidemic in Hubei, China, [10] applied the generalized logistic
growth model to produce short-term forecasts of cases using data up to February 29,
2020. [16] also use a generalized logistic growth model to forecast cases in mainland
China excluding Hubei province. They compare the classical logistic growth model,
a generalized model, and a generalized Richards model using data up to March 10,
2020. [3] uses a logistic growth model as well as an SEIR model to estimate final
epidemic size worldwide.

A recent paper using publicly available data from Nigeria applied a logistic
growth curve as one element of a larger model forecasting epidemic growth
[1]. Using the daily number of new cases of Covid-19 in Nigeria, the authors
implemented an ensemble of forecast models. One of these models included as
a component a logistic growth model with time-varying carrying capacity. This
implementation allows the carrying capacity to vary as a function of time, rather
than a logistically varying carrying capacity as in our model.

The logistic growth model has been used extensively, either in traditional or
extended form, to model new infections for Covid-19. A model accommodating
a varying carrying capacity parameter as considered in this paper has not been
used in logistic growth models for Covid-19. In our application which follows,
we demonstrate the utility of the logistic growth model to model deaths, with the
modification that the parameter identified with carrying capacity varies over time.
We will also provide confidence bands for potential indicators through Monte Carlo
methods.

2 Data Description

The aggregate data used here were obtained from the daily epidemiological
summaries released by Public Health Ontario on their website. In a table under
the heading ‘Severity’, these daily reports show the reported cumulative deaths and
the daily change from the previous report, with the caveats that only deaths for lab-
confirmed cases are included here, and also that there is a reporting delay for deaths.
Figure 1 shows deaths in Ontario as reported by Public Health Ontario.
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Fig. 1 Cumulative and daily number of deaths in Ontario from 27/03/2020 until 17/07/2020 (data
from Public Health Ontario daily epidemiological summaries)

3 Methods

Our focus is on modeling deaths in the province of Ontario. This approach uses
a growth model for the cumulative number of deaths from Covid-19, and our
growth model accommodates, conceptually, that deaths have a carrying capacity
that would be limited by, for example, the number of cases or hospitalizations which
change over time. This is not a process model, but an empirical model. A series of
publications, [2, 8, 12], portray an array of logistically developing and diffusing
social mechanisms. They compare technological innovations as a social epidemic
by arguing that the former do not usually distribute themselves evenly through
time. They consider a model where the carrying capacity of the system increases
dynamically, but in a distinct pulse. Conceptually, we adapt this approach and we
allow the carrying capacity of our logistic growth model to vary as a logistic growth
curve.

3.1 Logistic Growth Model for the Mean

As the carrying capacity is meant to conceptually reflect the number of cases
or hospitalizations, and since these values are changing over time, so should the
carrying capacity for death in the logistic model. LetN(t) be the cumulative number
of deaths at time t , where t = 0 is the recorded date of the first death in Ontario.
The logistic growth curve model can be represented in the following way:

dN(t)

dt
= rN(t)

[
1 − N(t)

K(t)

]
(1)
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where

r is the growth rate and
K(t) is the carrying capacity parameter for modeling N(t) at time t ,
N(t = 0) = N0 is the cumulative number of deaths at the initial time.

Time here is recorded as rounded to days, so N0 is the number of deaths on the first
day of recorded deaths. The general solution of (1) is

N(t) = N0 exp(rt)

1 + rN0
∫ t

0
exp(rx)
K(x)

dx
(2)

with K(t) also modeled as a logistic growth curve:

dK(t)

dt
= αK(t)

[
1 − K(t)

G

]
(3)

with α being the growth rate for K(t), and G being the carrying capacity parameter
for modeling K(t). The analytical solution of K(t) follows as

K(t) = G

1 + ( G
G0

− 1) exp(−αt)
(4)

whereG0 is the initial value of the carrying capacity for modelingK(t). Substituting
(4) in (2) yields the solution:

N(t) = G

1 + (A1 exp(−αt)) + (A2 exp(−rt))
(5)

where

A1 =
( G

G0
− 1

)( r

r − α

)
(6)

and

A2 =
( G

N0
− 1

)
−

( G

G0
− 1

)( r

r − α

)
. (7)

3.2 Non-linear Least Squares Estimation

We employ non-linear least squares estimation for the parameters. The function
N(t) is known up to a set of p = 4 unknown parameters θ = (θ1, ..., θp) =
(G,G0, r, α) which also must be estimated. Under the assumption that both the
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predictor and the response are observed without error, the relationship in (5) will
hold to define cumulative counts of deaths over time if the model is correct.

In reality, measurement errors will arise. Non-linear least squares estimation
proceeds by finding θ̂ that minimizes

RSS(θ) =
n∑

i=1

(yi − N(ti))
2 (8)

where yi = N(ti) + εi , and εi ∼ N(0, σ 2).
An estimate of the measurement error is obtained as

σ̂ 2 = RSS(θ̂)

n

where RSS(θ̂) is the residual sum of squares.

4 Introducing Stochasticity into the Daily Counts

The logistic growth model provides an estimate of the future mean cumulative
deaths. We also consider stochasticity in the daily counts, required for short-term
analyses of the behaviour of the disease progression and assume that the daily
number of deaths follow a negative binomial distribution with mean derived from
the fitted values of the logistic growth model. We estimate the dispersion parameter
κ̂ using maximum likelihood estimation and this allows us to incorporate stochas-
ticity in the daily counts. We then utilize a Monte Carlo approach for obtaining
future daily predictions by generating future daily data using a negative binomial
distribution with mean derived from the fitted logistic model for cumulative deaths
and dispersion κ̂ . Using B = 1000 simulations, under the negative binomial
distribution, we predict future cumulative deaths. In a single peak epidemic wave,
an indicator of lack of control could be based on the cumulative number of deaths
N(t), and the rate of change of deaths dN(t)

dt
, as described in the next section.

5 Short-Term Predictions and Beyond

We discuss here potential tools that could be utilized as short-term predictors, as
applicable more broadly for pandemic monitoring in various settings. For example,
we may calculate the probability that the total number of deaths observed in the next
l days, after a reference point t0, indicating current time, will exceed that observed
in the past l days, where l monitors short-term activity, for example, l = 3 or l = 5.
We also examine the probability that the current growth rate of deaths exceeds that
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seen during the beginning of the first phase of re-opening when the pandemic was
seen to be sufficiently under control.

Looking beyond the short-term predictors, a few indicators of a second wave, or
resurgence, have been proposed however most are ad hoc apart from the risk ratio
recently proposed by Noorbhai [9], who offers a model based on the ratio of total
recoveries to cases. This is problematic for Ontario where recoveries are tracked
with different methodologies within each of the 34 health units. Freitag et al. [6] has
proposed a spatio-temporal model of mobility levels, taking into account population
density, as an indicator of resurgence. An immediate issue for Ontario, however, is
that indicators for resurgence cannot be based upon growth models, such as the one
used here, which are meant for modeling an epidemic with a single peak.

6 Results

The logistic growth model with a logistically varying carrying capacity parameter
was fitted to cumulative deaths. Figure 2 shows the results of the analysis with
both fitted and observed values displayed. The time-varying carrying capacity curve
is shown in blue. The plot illustrates how the logistic curve approaches its upper
limit over time. As the logistic growth model reaches the asymptote, the difference
between the carrying capacity and the logistic growth curve diminishes. Figure 3
displays the confidence bands associated with the fit are also provided. The model
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Fig. 2 Fitted logistic growth model with logistically varying carrying capacity from 27/03/2020
to 17/07/2020
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Fig. 3 Fitted Logistic growth model with logistically varying carrying capacity from 27/03/2020
to 17/07/2020, showing confidence bands in green
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Fig. 4 Total number of Deaths predicted under logistic growth curve (blue) with 95% confidence
bands(green) and simulated curves under negative binomial distribution (red)

show no obvious lack of fit. Figure 4 displays the logistic growth curve with 95%
confidence bands and simulated curves under negative binomial distribution.

In order to assess our model we present some comparisons between the give
day ahead forecasted number of deaths for various dates versus what was actually
observed, in Table 1.

To examine the future trajectory of predicted deaths, we consider the probability
that the total number of deaths observed in the next l days after day t0 = 54 in
our dataset (19 May, 2020), exceeds that observed in the last l days, where l = 3
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Table 1 Observed
cumulative deaths at time t0
(second column), predicted
cumulative deaths after 5
days (3rd column) and
observed cumulative deaths
after 5 days (last column)

Date (t0) N(t0) PredictedN(t0+5) ObservedN(t0+5)

2020-05-10 1669 1952 1858

2020-05-19 1962 2081 2012

2020-06-04 2372 2447 2475

2020-06-12 2507 2599 2553

2020-07-04 2689 2731 2710

2020-07-17 2748 2758 2755

or 5. Using the Monte Carlo approach described in Sect. 4, these probabilities are
estimated as,

P̂ (N(t0 + 3) > N(t0) + {N(t0) − N(t0 − 3)}) = .29

P̂ (N(t0 + 5) > N(t0) + {N(t0) − N(t0 − 5)}) = .14

It is useful to note that the probability declines as l increases. In reality, starting at
the reference time, the number of deaths in the next l days slightly exceeded the
number of deaths observed during the previous l days, for both l = 3 and 5, by 5
deaths and 3 deaths respectively. As another example, when t0 = 84, corresponding
to 18 June, 2020, we have,

P̂ (N(t0 + 5) > N(t0) + {N(t0) − N(t0 − 5)}) = 0.72

Starting at the reference time, the number of deaths in the subsequent 5 days
exceeded the number of deaths observed during the previous 5 days by 22 deaths.
The probability values themselves give some indication of the strength of evidence
concerning the prediction, yet a threshold is required to form an alarm system. This
could be developed through a receiver operating characteristic curve analysis.

Figure 5 shows the receiver operating characteristic curve for the model. This
curve was developed through a Monte Carlo simulation, similar to the method
described in Sect. 4, where we calculated the probability of exceeding the l-day-
ahead target for deaths, the target being the total number of deaths in the previous l

days, for different t0’s. Then we assessed whether the observed number of deaths
actually exceeded the target: for each t0 an outcome of 1 was assigned if the
number of deaths in the next l days exceeded the number of deaths observed during
the previous l days, otherwise an outcome of 0 was assigned. By comparing the
estimated probabilities of exceeding the l-day-ahead target to a series of thresholds
between 0 and 1, we obtain a prediction of whether the number of deaths l days
ahead will exceed the target. For each of these probability thresholds, we are then
able to compare outcomes with predictions to calculate the true positive rate (TPR)
and false positive rate (FPR) associated with each of these thresholds.

On the ROC curve, the point at the top left corner of the curve is identified as
providing the level of best performance. This occurs at a TPR of 0.9 and FPR of 0.3,
as shown in Fig. 5. This, in turn, corresponds to a threshold probability of 0.6. At
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Fig. 5 Optimal threshold for predicting an increase in deaths over the next l days, compared to
the previous l days, where l = 5

this point, we therefore expect 90% of true positives will be well classified, and 30%
of false positives will be misclassified. Therefore, when considering predictions of
deaths 5 days ahead, we would sound an alarm indicating an expected increase in
deaths when the probability described above is greater than the threshold of 0.6. A
probability of 0.72, as obtained in our most recent example, would be considered
high enough to sound an alarm, according to the threshold determined by means of
our ROC curve analysis.

We can also develop an assessment of risk level given by dN(t), the rate of
change. Since dN(t) is the derivative of N(t), these indicators provide the same
probability measure, however dN(t) gives us the ability to compare to earlier phases
of the pandemic, with a straightforward visual representation. Figure 6 gives a visual
representation of the values of dN(t) over time since late March, 2020.

We present in Table 2 a scale of low, medium and high risk values for the
predicted rate of change as measured at time t with the intention being that rates
of change should be decreasing over time, and where they are not, could support
concerns about resurgence.

If we use the date of June 18, 2020 (day 84 in our dataset) given in our previous
example, we calculate the predicted average growth rate over the next 5 days to be
11.4. We can compare this value to the start of Phase 2 on June 12, shown in Fig. 6,
where the instantaneous growth rate was 13, and we see therefore, that growth rate
is declining.
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Table 2 Risk levels based on
the rate of change, dN(t)

dN(t) Risk level

>35 Very high

13–34 High

7–12 Medium

2–6 Low

<2 Very low

7 Discussion

In this paper we have used a simple model to predict future deaths in the short
term. Our model fits reasonably well, with narrow confidence bands. We consider
an extension of the classic logistic growth model which allows the carrying capacity
for deaths to change logistically over time. This model does not take into account the
mechanisms of transmission of Covid-19, such as health interventions and human
behavior. As the situation evolves, anomalous values or rapidly changing trends
could upend any prediction efforts. Worse still, sudden shocks that permanently
affect a time series could also render all past data as irrelevant. We also note that
phenomenological growth models such as the logistic growth curve model presented
here are meant for predicting growth trajectories during a single peak epidemic.
However, multiple peak epidemic trajectories caused by factors such as increasing
contacts and releasing of public health interventions are much more challenging to
model.

Our study has some important limitations to acknowledge with respect to the
data used in our model. This pandemic in particular has highlighted challenges in
data collection and management in Ontario. The deaths, as reported, do have a lag
from their actual death date as can be gleaned from graphs provided in the Daily
Epidemiological Summary published by Public Health Ontario. While deaths are
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a late indicator, they are still a valuable marker to track as part of a composite
surveillance plan. In addition to monitoring the growth rate of deaths as described
in this paper, policy makers would consider a broad context, examining other
metrics such as hospitalization numbers, test percent positivity, current reproduction
number, and number of new cases per 100,000 population. These indicators for the
future number of deaths which we present here are meant as an additional layer of
insight to combine with other important metrics.

In future work we will explore modeling the carrying capacity parameter as
a function of hospitalizations. Hospitalizations may indeed provide conceptually
a better upper limit for modeling deaths as many cases may be mild whereas
hospitalizations would be strongly linked to the more severe cases that progress
to death. In future work we hope to address the reporting lag for deaths and
to incorporate a method to adjust for these lags in our predictions based on
hospitalization rates.

Provincial analyses could be supplemented by regional analyses in order to detect
regional trends. As noted in [7], using aggregate level data as an indicator for all of
Ontario can obscure what might be happening at the local level. The indicators in
this paper could easily be extended for use at the regional level and we intend to
model this in future work.

At the time of completing this study, Ontario has allowed all health regions to
progress to Stage 3 of re-opening, where bars and restaurants with indoor seating
have re-opened, as well as gyms, personal care services such as hair salons, and also
places of worship. Most remaining workplaces and businesses are allowed to re-
open with some precautions in place. On September 8, 2020, schools in the province
will re-open with some additional public health measures such as mandatory masks
for grade 4 and up, but for the most part will proceed as usual except in 24 out of 76
school boards, where secondary school class sizes will be limited to 15 students who
will attend on a rotating schedule. Physical distancing requirements are set at only
1m by the Ministry of Education, even in classes where masks are not mandatory.

This return to school will result in increased contact for the population of
Ontario, and in conjunction with the upcoming influenza season, the fall season
may be a period of increased risk for Covid-19. Formal indicators of public
health interventions may be useful for managing risk, and we intend to investigate
extensions of this type of model that will allow modeling of future epidemic peaks
in Ontario. In this paper we presented a model to predict future deaths in the short-
term with an appropriate measure of uncertainty.
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