
The Fields Institute for Research in Mathematical Sciences

Fields Institute Communications 85

V. Kumar Murty
Jianhong Wu
Editors

Mathematics 
of Public 
Health
Proceedings of the Seminar 
on the Mathematical Modelling 
of COVID-19



Fields Institute Communications

Volume 85

Editorial Board Member
Deirdre Haskell, Fields Institute for Research in Mathematical Sciences, Toronto,
ON, Canada
Lisa C. Jeffrey, Mathematics Department, University of Toronto, Toronto, ON,
Canada
Winnie Li, Department of Mathematics, Pennsylvania State University,
University Park, PA, USA
V. Kumar Murty, Fields Institute for Research in Mathematical Sciences, Toronto,
ON, Canada
Ravi Vakil, Department of Mathematics, Stanford University, Stanford, CA, USA



The Communications series features conference proceedings, surveys, and lecture
notes generated from the activities at the Fields Institute for Research in the
Mathematical Sciences. The publications evolve from each year’s main program and
conferences. Many volumes are interdisciplinary in nature, covering applications of
mathematics in science, engineering, medicine, industry, and finance.

More information about this series at https://link.springer.com/bookseries/10503

https://springerlink.bibliotecabuap.elogim.com/bookseries/10503


V. Kumar Murty • Jianhong Wu
Editors

Mathematics of Public
Health
Proceedings of the Seminar on the
Mathematical Modelling of COVID-19



Editors
V. Kumar Murty
Fields Institute for Research
in Mathematical Sciences
Toronto, ON, Canada

Jianhong Wu
Department of Mathematics and Statistics
York University
Toronto, ON, Canada

ISSN 1069-5265 ISSN 2194-1564 (electronic)
Fields Institute Communications
ISBN 978-3-030-85052-4 ISBN 978-3-030-85053-1 (eBook)
https://doi.org/10.1007/978-3-030-85053-1

Mathematics Subject Classification: 92-10, 68Txx, 65Y10, 68W20

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-85053-1


Preface

At noon on March 17, 2020, the doors of the Fields Institute closed as the
coronavirus pandemic reached Toronto, and the Province of Ontario declared a state
of emergency.

The Institute building on College Street may be considered the physical embod-
iment of the legacy of John Charles Fields. It is a wonderful sunlit space, lined
with blackboards and covered in a fine film of chalk dust. It is the place where
mathematical scientists from around the world congregate to exchange ideas. While
there are many structured events, the most precious aspect of the Institute is in its
ability to provide a physical environment to stimulate serendipitous meetings of
minds in which creative thoughts, embedded in a string of symbols, diagrams, and
formulae, are bounced around and collectively shaped into new discoveries.

About a month earlier, in mid-February, the Institute recognized the coming
storm and started planning the role it might play in dealing with the virus. With
barely a week’s notice, the Institute summoned mathematical modelers from across
Canada to convene in Toronto for a 2-day seminar and brainstorming session on
February 14–15, 2020. During that session, the core group was formed, and soon
afterwards, a proposal was submitted to the Canadian Institutes of Health Research
(CIHR) for funding the work of the Task Force.

That proposal was successful, and the research activity of the group began in
earnest. During the period of March 2020 to June 2021, the Task Force produced
46 seminars, publishing dozens of papers, participating in and running knowledge-
sharing events for mathematicians and nonmathematicians alike, and supporting
decision makers across the country to reduce the spread of COVID-19 by applying
mathematical modeling to a host of public health problems.

Particularly noteworthy about this Task Force is that it had members from
across Canada as well as the support of the mathematical science institutes,
namely AARMS (the Atlantic Association for Research in Mathematical Sciences),
CRM (Centre de Recherches Mathematiques), and PIMS (Pacific Institute for
Mathematical Sciences) in addition to the Fields Institute itself. In addition, we
also had the support of the Public Health Agency of Canada (PHAC), the Vaccine
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vi Preface

and Infectious Disease Organization (VIDO-Intervac), and the National Research
Council (NRC).

A central feature of the research activity of the Task Force was the weekly
COVID-19 Mathematical Modelling Seminar. The seminar brought together experts
in mathematical modeling from across Canada and the world, presenting modeling
methods as they related to the COVID-19 pandemic. While the primary aim of
the seminar was to advance the work of the Canadian Mathematical Modelling of
COVID-19 Task Force, we hoped that sharing the methods and mathematics that
have proved useful in a particular geography might provide useful insights that could
be applied elsewhere. This volume largely represents talks from that seminar.

The mathematics in this book can be used to support decision makers on critical
issues such as projecting outbreak trajectories, evaluating public health interventions
for infection prevention and control, and developing vaccines and decisions around
vaccine optimization. Readers of this book will find chapters on

• Compartment modeling involving categories of susceptible, exposed, infected,
and recovered (SEIR) as well as versions of compartment models which are more
nuanced to include age stratification and other subdivisions

• Forecasting for personal protective equipment (PPE)
• Predicting COVID-19 deaths
• The impact of delays of contact tracing
• Heterogeneity in social distancing
• The challenge of providing daily COVID-19 forecasts
• Analytics of contagion
• Modeling point-of-care diagnostics of COVID-19
• Understanding unreported cases

Readers will have the opportunity to learn about current modeling methodologies
for infectious diseases, and the mathematics behind them, and understand the
important role that mathematics has to play during this crisis, in supporting
governments and public health agencies.

Most researchers who have been grappling with issues related to the pandemic
understand that the challenges that had to be dealt with evolved quite rapidly over
the course of the past year, and in some sense, they continue to evolve. In the
early months, data was in short supply, but that changed very quickly, and there
is now an abundance of data from around the world. At the same time, specific
regions had, and still have, data silos, and accessing that data was a nontrivial matter
which was addressed in some specific cases only through the leadership shown by
policy makers and decision makers. Data access remains an issue for those who are
thinking about the future of public health preparedness and resilience. Mathematical
scientists have shown that access to good data can provide a formidable tool in
dealing with public health crises.

The availability of data at a speed and a scale that we did not have in the
past naturally led to a keen interest in turning this data to knowledge and to
actionable science. With polymerase chain reaction (PCR) tests giving rapid results
for infections and cell phones providing data on people’s mobility (more accurate
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than human recall), financial data on spending, and digital government data that
records information like employment status, we are challenged to quickly and
accurately calculate the spread of the disease and observe its impact on people’s
lives. What will happen to rates of infection if we open the border? What will
happen if we reopen schools? How will we cope with flu and COVID-19? How
do we optimize testing or make sure that testing is equitable? Who will get the
vaccine? These are complex questions that require an assortment of tools including
mathematical modeling.

While the pandemic forced us to temporarily close our physical space, the
problems we were trying to solve gave birth to new virtual collaborations. As every-
one worked on these complex problems presented by COVID-19, mathematicians
found themselves alongside epidemiologists and public health experts applying
mathematical tools in novel ways, where clear gaps between knowledge creation
and translation existed. The immediacy of these problems did not allow the luxury
of time to polish and discuss as in pre-COVID times.

Virtual environments have made it possible for us to work quickly, to all be in
the same room without the obstacles of travel and room bookings, and to include
those who could not come to the meeting because of other commitments, career
responsibilities, and mobility or health issues. While we definitely want to return to
our beautiful physical Institute, this new, virtual world is also quite beautiful and a
“new frontier of math,” one which also is “strengthening collaboration, innovation,
and learning in mathematics and across a broad range of disciplines” beyond what
is possible at 222 College Street. If meeting in physical space enables the possibility
of serendipitous collaboration, meeting in virtual space enables introduction to an
expanded world of researchers with new ideas and new approaches. Effectively
utilizing both kinds of space will be crucial for the successful functioning of the
Institute in the future.

And we bring these prefatory remarks to a close on this optimistic note. While
there has been much suffering around the world as a result of the pandemic, perhaps
it has also opened our minds to the possibility of broader and deeper collaboration
through the combined use of virtual and in-person interactions.

Toronto, ON, Canada V. Kumar Murty

Toronto, ON, Canada Jianhong Wu
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Diverse Local Epidemics Reveal
the Distinct Effects of Population Density,
Demographics, Climate, Depletion
of Susceptibles, and Intervention
in the First Wave of COVID-19
in the United States

Niayesh Afshordi, Benjamin P. Holder, Mohammad Bahrami,
and Daniel Lichtblau

1 Introduction

The new human coronavirus SARS-CoV-2 first reported in Wuhan Province, China
in December 2019 [1, 2], reached 10,000 confirmed cases and 200 deaths due to the
disease (known as COVID-19) by the end of January 2020. Although travel from
China was halted by late-January, dozens of known introductions of the virus to
North America occurred prior to that [3, 4], and dozens more known cases were
imported to the US and Canada during February from Europe, the Middle East,
and elsewhere. Community transmission of unknown origin was first detected in
California on February 26, followed quickly by Washington State [5], Illinois and
Florida, but only on March 7 in New York City. Retrospective genomic analyses
have demonstrated that case-tracing and self-quarantine efforts were effective in
preventing most known imported cases from propagating [6–8], but that the eventual
outbreaks on the West Coast [5, 8, 9] and New York [7] were likely seeded by
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unknown imports in mid-February. By early March, cross-country spread was
primarily due to interstate travel rather than international imports [10].

In mid-March 2020, nearly every region of the United States of America saw a
period of uniform exponential growth in daily confirmed cases—signifying robust
community transmission—followed by a plateau in late March, likely due to
social mobility reduction. The same qualitative dynamics were seen in COVID-
19 mortality counts, delayed by approximately 1 week. Although the qualitative
picture was similar across locales, the quantitative aspects of localized epidemics—
including initial rate of growth, infections/deaths per capita, duration of plateau,
and rapidity of resolution—were quite diverse across the country. Understanding
the origins of this diversity will be key to predicting how the relaxation of social
distancing, annual changes in weather, and static local demographic/population
characteristics will affect the resolution of the first wave of cases, and will drive
coming waves, prior to the availability of a vaccine.

The exponential growth rate of a spreading epidemic is dependent on the
biological features of the virus-host ecosystem—including the incubation time,
susceptibility of target cells to infection, and persistence of the virus particle outside
of the host—but, through its dependence on the transmission rate between hosts, it
is also a function of external factors such as population density, air humidity, and
the fraction of hosts that are susceptible. Initial studies have shown that SARS-
CoV-2 has a larger rate of exponential growth (or, alternatively, a lower doubling
time of cases1) than many other circulating human viruses [11]. For comparison,
the pandemic influenza of 2009, which also met a largely immunologically-naive
population, had a doubling time of 5–10 d [12, 13], while that of SARS-CoV-2 has
been estimated at 2–5 d [14, 15] (growth rates of ∼ 0.10 d−1 vs. ∼ 0.25 d−1). It is
not yet understood which factors contribute to this high level of infectiousness.

While the dynamics of an epidemic (e.g., cases over time) must be described by
numerical solutions to nonlinear models, the exponential growth rate, λ, usually has
a simpler dependence on external factors. Unlike case or mortality incidence num-
bers, the growth rate does not scale with population size. It is a directly measurable
quantity from the available incidence data, unlike, e.g., the reproduction number,
which requires knowledge of the serial interval distribution [16–18], something that
is difficult to determine empirically [19, 20]. Yet, the growth rate contains the same
threshold as the reproduction number (λ = 0 vs. R0 = 1), between a spreading
epidemic (or an unstable uninfected equilibrium) and a contracting one (or an
equilibrium that is resistant to flare-ups). Thus, the growth rate is an informative
direct measure on that space of underlying parameters.

In this work, we leverage the enormous data set of epidemics across the United
States to evaluate the impact of demographics, population density and structure,
weather, and non-pharmaceutical interventions (i.e., mobility restrictions) on the
exponential rate of growth of COVID-19. Following a brief analysis of the initial
spread in metropolitan regions, we expand the meaning of the exponential rate

1 The doubling time is ln 2 divided by the exponential growth rate.
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to encompass all aspects of a local epidemic—including growth, plateau and
decline—and use it as a tracer of the dynamics, where its time dependence and
geographic variation are dictated solely by these external variables and per capita
cumulative mortality. Finally, we use the results of that linear analysis to calibrate a
new nonlinear model—a renewal equation that utilizes the excursion probability
of a random walk to determine the incubation period—from which we develop
local predictions about the impact of social mobility relaxation, the level of herd
immunity, and the potential of rebound epidemics in the Summer and Fall of
2020. The methodology can be modified to make local predictions as the pandemic
evolves.

2 Results

2.1 Initial Growth of Cases in Metropolitan Regions Is
Exponential with Rate Depending on Mobility, Population,
Demographics, and Humidity

As an initial look at COVID-19’s arrival in the United States, we considered the
∼100 most populous metropolitan regions—using maps of population density to
select compact sets of counties representing each region (see [21])—and estimated
the initial exponential growth rate of cases in each region. We performed a linear
regression to a large set of demographic (sex, age, race) and population variables,
along with weather and social mobility [22] preceding the period of growth (Fig. 1).
In the best fit model (R2 = 0.75, BIC = −183), the baseline value of the initial
growth rate was λ = 0.21 d−1 (doubling time of 3.3 d), with average mobility 2
weeks prior to growth being the most significant factor (Fig. 1b). Of all variables
considered, only four others were significant: population density (including both
population-weighted density (PWD)—also called the “lived population density”
because it estimates the density for the average individual [23]—and population
sparsity, γ , a measure of the difference between PWD and standard population
density, see Methods), p < 0.001 and p = 0.006; specific humidity 2 weeks prior
to growth, p = 0.001; and median age, p = 0.04.

While mobility reduction certainly caused the “flattening” of case incidence in
every region by late-March, our results show (Fig. 1c) that it likely played a key role
in reducing the rate of growth in Boston, Washington, DC, and Los Angeles, but
was too late, with respect to the sudden appearance of the epidemic, to have such an
effect in, e.g., Detroit and Cleveland. In the most extreme example, Grand Rapids,
MI, seems to have benefited from a late arriving epidemic, such that its growth (with
a long doubling time of 7 d) occurred almost entirely post-lockdown.

Specific humidity, a measure of absolute humidity, has been previously shown
to be inversely correlated with respiratory virus transmission [24–27]. Here, we
found it to be a significant factor, but weaker than population density and mobility
(Fig. 1c). It could be argued that Dallas, Los Angeles, and Atlanta saw a small
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Fig. 1 Mobility and COVID-19 incidence data examples, and the results of linear regression to
extracted initial exponential growth rates, λexp, in the top 100 metropolitan regions. (a) Three
example cities with different initial growth rates. Data for Google mobility (blue points), daily
reported cases (black points), and weather (red and blue points, bottom) are shown with a logistic
fit to cases (green line). Data at or below detection limit were excluded from fits (dates marked by
red points). Thin grey bars at base of cases graphs indicate region considered “flat”, with right end
indicating the last point used for logistic fitting; averaging over “flat” values generates the thick
grey bars to guide the eye. [See Supp. Matt. in [21] for additional information and for complete
data sets for all metropolitan regions.] (b) Weighted linear regression results in fit to λexp for
all metropolitan regions. (c) Effect of each variable on growth rate (i.e., �λ values) for those
regions with well-estimated case and death rates; white/yellow indicates a negative effect on λ, red
indicates positive

benefit from higher humidity at the time of the epidemic’s arrival, while the dry
late-winter conditions in the Midwest and Northeast were more favorable to rapid
transmission of SARS-CoV-2.

2.2 Exponential Growth Rate of Mortality as a Dynamical,
Pan-Epidemic, Measure

In the remainder of this report, we consider the exponential rate of growth (or
decay) in local confirmed deaths due to COVID-19. The statistics of mortality is
poorer compared to reported cases, but it is much less dependent on unknown factors
such as the criteria for testing, local policies, test kit availability, and asymptomatic
individuals [28]. Although there is clear evidence that a large fraction of COVID-
19 mortality is missed in the official counts (e.g., [29, 30]), mortality is likely less
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Fig. 2 COVID-19 mortality incidence (7-day rolling average, left) and exponential growth rate
(λ14, determined by regression of the logged mortality data over 14-day windows, right) for the
four US counties with >2400 confirmed COVID-19 reported deaths (as of 8th June, 2020)

susceptible to rapid changes in reporting, and, as long as the number of reported
deaths is a monotonic function of the actual number of deaths (e.g., a constant
fraction, say 50%), the sign of the exponential growth rate will be unchanged, which
is the crucial measure of the success in pandemic management.

To minimize the impact of weekly changes, such as weekend reporting lulls,
data dumps, and mobility changes from working days to weekends, we calculate the
regression of ln

[
Mortality

]
over a 14-day interval, and assign this value, λ14(t), and

its standard error to the last day of the interval. Since only the data for distinct 2-
week periods are independent, we multiply the regression errors by

√
14 to account

for correlations between the daily estimates. Together with a “rolling average” of the
mortality, this time-dependent measure of the exponential growth rate provides, at
any day, the most up-to-date information on the progression of the epidemic (Fig. 2).

In the following section, we consider a linear fit to λ14, to determine the
statistically-significant external (non-biological) factors influencing the dynamics
of local exponential growth and decline of the epidemic. We then develop a first-
principles model for λ14 that allows for extrapolation of these dependencies to
predict the impact of future changes in social mobility and climate.

2.3 Epidemic Mortality Data Explained by Mobility,
Population, Demographics, Depletion of Susceptible
Population and Weather, Throughout the First Wave of
COVID-19

We considered a spatio-temporal dataset containing 3933 estimates of the exponen-
tial growth measure, λ14, covering the 3 month period of 8 March 2020–8 June
2020 in the 187 US counties for which information on COVID-19 mortality and
all potential driving factors, below, were available (the main barrier was social
mobility information, which limited us to a set of counties that included 69% of
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Table 1 Joint linear fit to λ14(t) data (Top). Any dependence with t-statistic below 2.5σ is
considered not statistically significant. Joint linear fit to λ14(t), including only statistically
significant dependencies (Bottom). For all coefficients, the population-weighted baseline is
subtracted from the linear variable

Estimate Std. err t-Statistic

Joint fit to all potential drivers

Baseline mortality growth rate λ14 0.195 0.011 17.2

COVID death fraction −59.4 6.1 −9.7

Social mobility (2wks prior) 0.00238 0.00028 8.5

ln(population weighted density) 8.24 0.0412 0.0058 7.1

Social mobility (4wks prior) 0.00122 0.00019 6.6

Population sparsity 0.188 −0.249 0.063 −3.9

log(annual death) 4.04 −0.0301 0.0091 −3.3

Median age 37.47 0.0038 0.0012 3.0

People per household 2.76 0.023 0.014 1.6

Specific humidity (2wks prior) 5.92 g/kg −0.0033 0.0031 −1.1

Temperature (2wks prior) 13.11 C −0.00083 0.0013 −0.6

Temperature (4wks prior) 11.60 C −0.00060 0.0014 −0.4

Specific humidity (4wks prior) 5.53 g/kg 0.00058 0.0032 0.2

Joint fit to statistically significant drivers

Baseline mortality growth rate λ14 0.198 0.011 18.7

COVID death fraction −56.7 5.9 −9.7

Social mobility (2wks prior) 0.00236 0.00027 8.8

Social mobility (4wks prior) 0.00131 0.00017 7.6

ln(population weighted density) 8.24 0.0413 0.0058 7.2

Population sparsity 0.188 −0.260 0.061 −4.3

Specific humidity (2wks prior) 5.92 g/kg −0.0047 0.0011 −4.1

log(annual death) 4.04 −0.0324 0.0088 −3.7

Median age 37.48 0.0040 0.0012 3.3

US mortality). A joint, simultaneous, linear fit of these data to 12 potential driving
factors (Table 1) revealed only 7 factors with independent statistical significance.
Re-fitting only to these variables returned the optimal fit for the considered factors
(BIC = −5951; R2 = 0.674).

We found, not surprisingly, that higher population density, median age, and social
mobility correlated with positive exponential growth, while population sparsity,
specific humidity, and susceptible depletion correlated with exponentially declining
mortality. Notably the coefficients for each of these quantities was in the 95%
confidence intervals of those found in the analysis of metropolitan regions (and
vice versa). Possibly the most surprising dependency was the negative correlation,
at � −3.7σ between λ14 and the total number of annual deaths in the county.
In fact, this correlation was marginally more significant than a correlation with
log(population), which was −3.3σ . One possible interpretation of this negative
correlation is that the number of annual death is a proxy for the number of potential



Diverse Drivers of COVID-19 in the United States 7

outbreak clusters. The larger the number of clusters, the longer it might take for the
epidemic to spread across their network, which would (at least initially) slow down
the onset of the epidemic.

2.4 Nonlinear Model

To obtain more predictive results, we developed a mechanistic nonlinear model
for infection (see [21] for details). We followed the standard analogy to chemical
reaction kinetics (infection rate is proportional to the product of susceptible and
infectious densities), but defined the generation interval (approximately the incu-
bation period) through the excursion probability in a 1D random walk, modulated
by an exponential rate of exit from the infected class. This approach resulted in a
renewal equation [19, 31, 32], with a distribution of generation intervals that is more
realistic than that of standard SIR/SEIR models, and which could be solved formally
(in terms of the Lambert W function) for the growth rate in terms of the infection
parameters:

λ = 1

2τ

[

W

(√
βSτ

2

)]2

− d (1)

The model has four key dependencies, which we describe here, along with our
assumptions about their own dependence on population, demographic, and climate
variables. As mortality (on which our estimate of growth rate is based) lags infection
(on which the renewal equation is based), we imposed a fixed time shift of �t for
time-dependent variables:

1. We assumed that the susceptible population, which feeds new infections and
drives the growth, is actually a sub-population of the community, consisting
of highly-mobile and frequently interacting individuals, and that most deaths
occurred in separate sub-population of largely immobile non-interacting indi-
viduals. Under these assumptions, we found (see Supp. Mat. in [21]) that the
susceptible density, S(t), could be estimated from the cumulative per capita death
fraction, fD , as:

S(t −�t) = S(0) exp [−CD fD(t)] (fD = Dtot/N) ,

where Dtot is the cumulative mortality count, N is the initial population, and the
initial density is S(0) = k PWD.

2. We assumed that the logarithm of the “rate constant” for infection, β, depended
linearly on social mobility, m, specific humidity, h, population sparsity, γ , and
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total annual death, AD , as:

ln [β (M,H, γ, AD)] = ln [β0]

+ CM
(M − M̄) + CH

(H − H̄)

+ Cγ (γ − γ̄ )+ CAD
(
AD − ĀD

)
(2)

where a barred variable represents the (population-weighted) average value over
all US counties, and where the mobility and humidity factors were time-shifted
with respect to the growth rate estimation window: M = m(t −�t) and H =
h (t −�t).

3. The characteristic time scale to infectiousness, τ , is intrinsic to the biology and
therefore we assumed it would depend only on the median age of the population,
A. We assumed a power law dependence:

τ = τ0

(
A

A0

)CA
(3)

where we fixed the pivot age, A0, to minimize the error in τ0.
4. The exponential rate of exit from the infected class, d, was assumed constant,

since we found no significant dependence for it on other factors in our analysis of
US mortality. From the properties of the Lambert W function, when the infection
rate or susceptibility density approach zero—through mobility restrictions or
susceptible depletion—the growth rate will tend to λ ≈ −d, its minimum value.

With these parameterizations, we performed a nonlinear regression to λ14(t)

using the entire set of US county mortality incidence time series (Table 2).

Table 2 Best-fit parameters for the nonlinear model using parametrization defined in the text

Parameter Best-fit ± Std. err Description

τ = τ0(Median Age/26.2 years)CA Time from exposure to contagiousness

τ0(day) 160 ± 58 Normalization

CA −2.26 ± 0.95 Age dependence

d−1(day) 17.6 ± 2.2 Time from exposure to
quarantine/recovery

CD 3460 ± 610 Conversion constant, fD → fI

β: Eq. (2) Rate constant for infection

ln
[
kβ0τ

−2
0 (m2/day3)

]
0.37 ± 1.25 Normalization

100CM 8.08 ± 1.76 Dependence on social mobility

CH −0.154 ± 0.055 Dependence on specific humidity

Cγ −5.52 ± 2.35 Dependence on population sparsity

CAD −1.05 ± 0.25 Dependence on total annual deaths
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Compared to the linear model of the previous section (Table 1b), the fit improved by
7.6σ (BIC = −6008; R2 = 0.724), despite both having 9 free parameters. Through
the estimated parameter values, the model makes predictions for an individual’s
probability of becoming infectious, and the distributions of incubation period and
generation interval, all as a function of the median age of the population (see
Supplementary Material in [21]).

The model was very well fit to the mortality growth rate measurements for
counties with a high mortality (Fig. 3). More quantitatively, the scatter of measured

Fig. 3 Nonlinear model prediction (Eq. 1, red) for the actual (blue) mortality growth rate, in the
six counties with highest reported death. Bands show 1-σ confidence region for both the model
mean and the λ14 value
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Fig. 4 Forecasts of COVID-19 mortality (orange)—based on the best-fit nonlinear model to data
prior to May 16th, 2020—versus actual reported mortality (blue) for 4 large US counties. The 68%
confidence range (orange regions) were determined from 100 random 60-day long simulations (see
Supplementary Methods in [21]). The vertical red lines indicate June 21st. Forecasts for most US
counties can be found at our online dashboard: https://wolfr.am/COVID19Dash

growth rates around the best-fit model predictions was (on average) only 13% larger
than the measurement errors, independent of the population of the county.2

Importantly, when the model was calibrated on only a subset of the data—e.g.,
all but the final month for which mobility data is available—its 68% confidence
prediction for the remaining data was accurate (Fig. 4) given the known mobility
and weather data for that final month. This suggests that the model, once calibrated
on the first wave of COVID-19 infections, can make reliable predictions about the
ongoing epidemic, and future waves, in the United States.

2.5 Predictions for Relaxed Mobility Restrictions, the Onset
of Summer, and the Potential Second Wave

Possibly the most pressing question for the management of COVID-19 in a
particular community is the combination of circumstances at which the virus fails
to propagate, i.e., at which the growth rate, estimated here by λ14, becomes negative
(or, equivalently, the reproduction number Rt falls below one). In the absence of
mobility restrictions this is informally called the threshold for “herd immunity,”

2 See [21] for more detailed discussion of Error Diagnostics.

https://wolfr.am/COVID19Dash
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which is usually achieved by mass vaccination (e.g., [33, 34]). Without a vaccine,
however, ongoing infections and death will deplete the susceptible population and
thus decrease transmission. Varying the parameters of the nonlinear model individ-
ually about their Spring 2020 population-weighted mean values (Fig. 5) suggests
that this threshold will be very much dependent on the specific demographics,
geography, and weather in the community, but it also shows that reductions in social
mobility can significantly reduce transmission prior the onset of herd immunity.

To determine the threshold for herd immunity in the absence or presence of social
mobility restrictions, we considered the “average US county” (i.e., a region with
population-weighted average characteristics), and examined the dependence of the
growth rate on the cumulative mortality. We found that in the absence of social
distancing, a COVID-19 mortality rate of 0.13% (or 1300 per million population)
would bring the growth rate to zero. However, changing the population density of
this average county shows that the threshold can vary widely (Fig. 5).

Examination of specific counties showed that the mortality level corresponding
to herd immunity varies from 10 to 2500 per million people (Fig. 6). At the current
levels of reported COVID-19 mortality, we found that, as of June 22nd, 2020,
only 128 ± 55 out of 3142 counties (inhabiting 9.4 ± 2.1% of US population)
have surpassed this threshold at 68% confidence level (Fig. 7). Notably, New York
City, with the highest reported per capita mortality (2700 per million) has achieved
mobility-independent herd immunity at the 10σ confidence level, according to
the model (Fig. 8). A few other large-population counties in New England, New
Jersey, Michigan, Louisiana, Georgia and Mississippi that have been hard hit by the
pandemic also appear to be at or close to the herd immunity threshold. This is not
the case for most of the United States, however (Fig. 7). Nationwide, we predict that
COVID-19 herd immunity would only occur after a death toll of 340, 000±61, 000,
or 1058 ± 190 per million of population.

We found that the approach to the herd immunity threshold is not direct, and
that social mobility restrictions and other non-pharmaceutical interventions must be
applied carefully to avoid excess mortality beyond the threshold. In the absence
of social distancing interventions, a typical epidemic will “overshoot” the herd
immunity limit (e.g., [35, 36]) by up to 300%, due to ongoing infections (Fig. 8). At
the other extreme, a very strict “shelter in place” order would simply delay the onset
of the epidemic; but if lifted (see Figs. 8 and 9), the epidemic would again overshoot
the herd immunity threshold. A modest level of social distancing, however—e.g., a
33% mobility reduction for the average US county—could lead to fatalities “only” at
the level of herd immunity. Naturally, communities with higher population density
or other risk factors (see Fig. 5), would require more extreme measures to achieve
the same.
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Fig. 5 Dependence and 68% confidence bands of the mortality growth rate—as specified by
the nonlinear model (Eq. 1)—on various parameters for an “average county.” All parameters
not being varied are fixed at their population-weighted mean values (as of 8th June, 2020):
log10[PWD/km−2)] = 3.58, population sparsity = 0.188, COVID death fraction = 5.1 × 10−4

(510 deaths/million population), Median age = 37.5 yr, log(annual death) = 4.04, social mobility
M̄ = −44%, and specific humidity H̄ = 5.7 g/kg
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Fig. 6 Histogram of reported COVID-19 deaths per million for all US counties, showing the
proportion that have passed “herd immunity” threshold, according to fit of the nonlinear model

Avoiding the level of mortality required for herd immunity will require long-
lasting and effective non-pharmaceutical options, until a vaccine is available. The
universal use of face masks has been suggested for reducing the transmission
of SARS-CoV-2, with a recent meta-analysis [37] suggesting that masks can
suppress the rate of infection by a factor of 0.07–0.34 (95% CI), or equivalently
� ln(transmission) = −1.9 ± 0.4 (at 1σ ). Using our model’s dependence of the
infection rate constant on mobility, this would correspond to an equivalent social
mobility reduction of �M̄mask � −24% ± 9%. Warmer, more humid weather
has also considered a factor that could slow the epidemic (e.g., [38–40]). Annual
changes in specific humidity are �H̄ � 6 g/kg (Figure 10b in [21]), which can be
translated in our model to an effective mobility decrease of �M̄summer � −12% ±
5%. Combining these two effects could, in this simple analysis, yield a modestly
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Fig. 7 Top: United States counties that have passed (blue), or are within (cyan), the threshold
for “herd immunity” at the 1-σ level, as predicted by the nonlinear model. Bottom: Predicted
confidence in the growth of COVID-19 outbreak (defined as predicted daily growth rate divided
by its uncertainty), for all counties should they return today to their baseline (pre-COVID) social
mobility. Counties that have approached the threshold of herd immunity have lower growth rates
due to the depletion of susceptible individuals
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Fig. 8 Nonlinear model prediction of the exponential growth rate, λ14, vs. cumulative COVID-19
mortality (top panels), assuming baseline social mobility, M̄ = 0, in the “average US county” (see
caption of Fig. 5) on the left, and New York City, on the right. The curves show 68% predictions for
the nonlinear model (Table 2), while the points with errorbars are linear fits to all the data within
bins of death fraction. The threshold for “herd immunity” (λ14 = 0) is reached at a mortality of
approximately 1300 (1700) per million for an average county (NYC), but this would be higher in
counties with more unfavorable values of the drivers. The eventual mortality burden of the average
county will be determined by its path through a “phase space” of Daily vs. Total Mortality (bottom
panel). An epidemic without intervention (red curves, with the particular trajectory starting at zero
death shown in bold) will pass the threshold for herd immunity (1300 deaths per million; note that
at zero daily deaths this is a fixed point) and continue to three times that value due to ongoing
infections. A modest 33% reduction in social mobility (blue curves), however, leads to mortality at
“only” the herd immunity level (the green disk). The black curve on the bottom right panel shows
the 7-day rolling average of reported mortality for NYC, which appears to have “overshot” the
“herd immunity threshold”

effective defense for the summer months: �M̄mask+ summer � −37% ± 10%.
Therefore, this could be a reasonable strategy for most communities to manage
the COVID-19 epidemic at the aforementioned −33% level of mobility needed to
arrive at herd immunity with the least excess death. More stringent measures would
be required to keep mortality below that level. Of course, this general prescription
would need to be fine-tuned for the specific conditions of each community.
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Fig. 9 Epidemic Phase Portraits for the same four counties as in Fig. 4, similar to the Phase
portrait in Fig. 8. The blue curves are for the county’s average Social Mobility during Feb. 15
through June 12, 2020, while red curves/arrows are at normal (pre-covid) social mobility. The
thick black curve is the 7-day rolling average of the official reported mortality, while the green
disk shows the threshold for “herd immunity”

3 Discussion and Conclusions

By simultaneously considering the time series of mortality incidence in every
US county, and controlling for the time-varying effects of local social distancing
interventions, we demonstrated for the first time a dependence of the epidemic
growth of COVID-19 on population density, as well as other climate, demographic,
and population factors. We further constructed a realistic, but simple, first-principles
model of infection transmission that allowed us to extend our heuristic linear model
of the dataset into a predictive nonlinear model, which provided a better fit to the
data (with the same number of parameters), and which also accurately predicted
late-time data after training on only an earlier portion of the data set. This suggests
that the model is well-calibrated to predict future incidence of COVID-19, given
realistic predictions/assumptions of future intervention and climate factors. We
summarized some of these predictions in the final section of Results, notably that
only a small fraction of US counties (with less than 10% of the population) seem to
have reached the level of herd immunity, and that relaxation of mobility restrictions
without counter-measures (e.g., universal mask usage) will likely lead to increased
daily mortality rates, beyond that seen in the Spring of 2020.

In any epidemiological model, the infection rate of a disease is assumed
proportional to population density [41], but, to our knowledge, its explicit effect
in a real-world respiratory virus epidemic has not been demonstrated. The universal
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reach of the COVID-19 pandemic, and the diversity of communities affected have
provided an opportunity to verify this dependence. Indeed, as we show here, it
must be accounted for to see the effects of weaker drivers, such as weather and
demographics. A recent study of COVID-19 in the United States, working with a
similar dataset, saw no significant effect due to population density [42], but our
analysis differs in a number of important ways. First, we have taken a dynamic
approach, evaluating the time-dependence of the growth rate of mortality incidence,
rather than a single static measure for each county, which allowed us to account for
the changing effects of weather, mobility, and the density of susceptible individuals.
Second, we have included an explicit and real-time measurement of social mobility,
i.e., cell phone mobility data provided by Google [22], allowing us to control for the
dominant effect of intervention. Finally, and perhaps most importantly, we calculate
for each county an estimate of the “lived” population density, called the population-
weighted population density (PWD) [23], which is more meaningful than the
standard population per political area. As with any population-scale measure, this
serves as a proxy—here, for estimating the average rate of encounters between
infectious and susceptible people—but we believe that PWD is a better proxy than
standard population density, and it is becoming more prevalent, e.g., in census work
[43, 44].

We also found a significant dependence of the mortality growth rate on specific
humidity (although since temperature and humidity were highly correlated, a
replacement with temperature was approximately equivalent), indicating that the
disease spread more rapidly in drier (cooler) regions. There is a large body of
research on the effects of temperature and humidity on the transmission of other
respiratory viruses [27, 45], specifically influenza [46]. Influenza was found to trans-
mit more efficiently between guinea pigs in low relative-humidity and temperature
conditions [24], although re-analysis of this work pointed to absolute humidity (e.g.,
specific humidity) as the ultimate controller of transmission [25]. Although the
mechanistic origin of humidity’s role has not been completely clarified, theory and
experiments have suggested a snowballing effect on small respiratory droplets that
cause them to drop more quickly in high-humidity conditions [47–49], along with a
role for evaporation and the environmental stability of virus particles [49, 50]. It has
also been shown that the onset of the influenza season [26, 51]—which generally
occurs between late-Fall and early-Spring, but is usually quite sharply peaked for
a given strain (H1N1, H3N2, or Influenza B)—and its mortality [46] are linked to
drops in absolute humidity. It is thought that humidity or temperature could be the
annual periodic driver in the resonance effect causing these acute seasonal outbreaks
of influenza [52, 53], although other influences, such as school openings/closings
have also been implicated [54]. While little is yet known about the transmission of
SARS-CoV-2 specifically, other coronaviruses are known to be seasonal [45, 55],
and there have been some preliminary reports of a dependence on weather factors
[56, 57]. We believe that our results represent the most definitive evidence yet for
the role of weather, but emphasize that it is a weak, secondary driver, especially in
the early stages of this pandemic where the susceptible fraction of the population
remains large [58]. Indeed, the current early-summer rebound of COVID-19 in the
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relatively dry and hot regions of the Southwest suggests that the disease spread will
not soon be controlled by seasonality.

We developed a new model of infection in the framework of a renewal equation
(see, e.g., [32] and references therein), which we could formally solve for the
exponential growth rate. The incubation period in the model was determined by a
random walk through the stages of infection, yielding a non-exponential distribution
of the generation interval, thus imposing more realistic delays to infectiousness than,
e.g., the standard SEIR model. In this formulation, we did not make the standard
compartmental model assumption that the infection of an individual induces an
autonomous, sequential passage from exposure, to infectiousness, to recovery or
death; indeed, the model does not explicitly account for recovered or dead individ-
uals. This freedom allows for, e.g., a back passage from infectious to noninfectious
(via the underlying random walk) and a variable rate of recovery or death. We
assumed only that the exponential growth in mortality incidence matched (with
delay) that of the infected incidence—the primary dynamical quantity in the renewal
approach—and we let the cumulative dead count predict susceptible density—the
second dynamical variable in the renewal approach—under the assumption that
deaths arise from a distinct subset of the population, with lower mobility behavior
than those that drive infection (see [21]). Therefore, we fitted the model to the
(rolling 2-week estimates of the) COVID-19 mortality incidence growth rate values,
λ14, for all counties and all times, and used the per capita mortality averaged over
that period, fD , to determine susceptible density. Regression to this nonlinear model
was much improved over linear regression, and, once calibrated on an early portion
of the county mortality incidence time series, the model accurately predicted the
remaining incidence.

Because we accounted for the precise effects of social mobility in fitting our
model to the actual epidemic growth and decline, we were then able to, on a
county-by-county basis, “turn off” mobility restrictions and estimate the level of
cumulative mortality at which SARS-CoV-2 would fail to spread even without social
distancing measures, i.e., we estimated the threshold for “herd immunity.” Meeting
this threshold prior to the distribution of a vaccine should not be a goal of any
community, because it implies substantial mortality, but the threshold is a useful
benchmark to evaluate the potential for local outbreaks following the first wave of
COVID-19 in Spring 2020. We found that a few counties in the United States have
indeed reached herd immunity in this estimation—i.e., their predicted mortality
growth rate, assuming baseline mobility, was negative—including counties in the
immediate vicinity of New York City, Detroit, New Orleans, and Albany, Georgia.
A number of other counties were found to be at or close to the threshold, including
much of the greater New York City and Boston areas, and the Four Corners, Navajo
Nation, region in the Southwest. All other regions were found to be far from the
threshold for herd immunity, and therefore are susceptible to ongoing or restarted
outbreaks. These determinations should be taken with caution, however. In this
analysis, we estimated that the remaining fraction of susceptible individuals in the
counties at or near the herd immunity threshold was in the range of 0.001% to
5% (see [21]). This is in strong tension with initial seroprevalence studies [59, 60]
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which placed the fraction of immune individuals in New York City at 7% in late
March and 20% in late April, implying that perhaps 75% of that population remains
susceptible today. We hypothesize that the pool of susceptible individuals driving
the epidemic in our model is a subset of the total population—likely those with
the highest mobility and geographic reach—while a different subset, with very low
baseline mobility, contributes most of the mortality (see [21]). Thus, the near total
depletion of the susceptible pool we see associated with herd immunity corresponds
to the highly-mobile subset, while the low-mobility subset could remain largely
susceptible. One could explicitly consider such factors of population heterogeneity
in a model—e.g., implementing a saturation of infectivity as a proxy for a clustering
effect [61–64]—but we found (in results not shown) that the introduction of
additional of parameters left portions of the model unidentifiable. Despite these
cautions, it is interesting to note that the epidemic curves (mortality incidence over
time) for those counties that we have predicted an approach to herd immunity
are qualitatively different than those we have not. Specifically, the exponential
rise in these counties is followed by a peak and a sharp decline—rather than the
flattening seen in most regions—which is a typical feature of epidemic resolution
by susceptible depletion.

At the time of this writing, in early Summer 2020, confirmed cases are again
rising sharply in many locations across the United States—particularly in areas of
the South and West that were spared significant mortality in the Spring wave. The
horizon for an effective and fully-deployed vaccine still appears to be at least a year
away. Initial studies of neutralizing antibodies in recovered COVID-19 patients,
however, suggest a waning immune response after only 2–3 months, with 40%
of those that were asymptomatic becoming seronegative in that time period [65].
Although the antiviral remdesivir [66–68] and the steroid Dexamethasone [69] have
shown some promise in treating COVID-19 patients, the action of remdesivir is
quite weak, and high-dose steroids can only be utilized for the most critical cases.
Therefore, the management of this pandemic will likely require non-pharmaceutical
intervention—including universal social distancing and mask-wearing, along with
targeted closures of businesses and community gathering places—for years in the
future. The analysis and prescriptive guidance we have presented here should help to
target these approaches to local communities, based on their particular demographic,
geographic, and climate characteristics, and can be facilitated through our http://
mylocalcovid.uwaterloo.ca/ online simulator dashboard. Finally, although we have
focused our analysis on the United States, due to the convenience of a diverse and
voluminous data set, the method and results should be applicable to any community
worldwide, and we intend to extend our analysis in forthcoming work.
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Describing, Modelling and Forecasting
the Spatial and Temporal Spread
of COVID-19: A Short Review

Julien Arino

1 Introduction

On 21 February 2003, a disease now known as the severe acute respiratory syndrome
(SARS) arrived in Hong Kong when a physician from Guandong Province in
Mainland China bearing the SARS coronavirus (SARS-CoV), checked in at the
Metropole Hotel [54]. The primary case in Hong Kong was by no means the index
case: the virus had been circulating in Guandong since at least November 2002 [52].
However, that patient triggered a chain of infections that, together with earlier cases
in China, led to 8098 known cases and 774 deaths in 28 countries [42] and was
declared a pandemic by the World Health Organisation (WHO).

Similarly, it is not certain at the time of writing that SARS-CoV-2 and its
associated disease COVID-19 had its index case in Wuhan, Hubei Province, China.
What is certain, on the other hand, is that it is in Wuhan that COVID-19 underwent
its first noticeable amplification phase, following which it spread rapidly across the
world, to the point that there are now very few top level jurisdictions not having
reported COVID-19 cases.

SARS-CoV-2 is the third novel Coronavirus to emerge in the twenty-first century
(after SARS and the Middle East respiratory syndrome—MERS [28]) and the
second to generate a pandemic (a third pandemic was triggered by the H1N1
influenza outbreak in 2009). COVID-19 is also the most devastating pandemic in
over a century in terms of its death toll as well as its economic and societal impact.

Here, I review some aspects of the spatio-temporal spread of COVID-19. Some
caveats are in order. Firstly, while spatial epidemiology is not the most popular topic
among modellers, it does remain a vast field where a myriad of approaches coexist;
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surveying the work done on the topic would require an entire monograph. While I
have tried to be inclusive, it is certain that I have omitted some topics or techniques.
I am for instance making the choice to describe mostly mechanistic models of
spread, be they deterministic or stochastic, mathematical or computational. Some
very good statistical work has been published on the topic of COVID-19, but I focus
here to a large extent on models that can explain reality perhaps at the detriment of
forecasting power. Secondly, I am aware that many modellers who have worked or
are working with public health authorities may not have had the time yet to publish
their work. Except for my work, I report here only on papers already published or
available on recognised preprint servers. Thirdly, new variants of concern (VoC)
were detected while this paper was under review. A short section at the end of this
document to describe what little is known in terms of spatio-temporal spread of
these variants.

Finally, even though some work makes use of data at a very fine spatial
resolution, in keeping with the philosophy of some prior work [13], I focus on
models that can be used with publicly available data.

This review is organised as follows. First, in Sect. 2, I provide an overview of
the mechanisms that lead to the spatial spread of infections and three of the major
types of models that have been used to study it. In Sect. 3, I then describe the
spread of COVID-19 from a chronological point of view. Finally, in Sect. 4, I discuss
modelling work specific to COVID-19.

2 Spatialised Infections: Mechanisms and Models

Before considering work specific to COVID-19, let me spend some time on the
spatialisation of infectious diseases in general. Indeed, while COVID-19 presents
specific challenges, it is by no means the first spatial epidemic that humanity is
confronted to; for instance, a simple description of the spatio-temporal trajectory
of the Plague of Athens can be found in the History of the Peloponnesian War
[176], which was written almost 2500 years ago; on a more local scale, spatial
epidemiology can be traced to the cholera epidemic of London in 1854 [171]. There
is therefore much understanding to be gained about the current crisis by considering
what was known prior to its start.

2.1 How Does an Infectious Disease Become Spatial?

Different conceptual models explain the mechanisms that lead to the spatialisation
of an infectious disease, leading to potentially different modelling paradigms.

Working at the level of the individual, one can envision spatial spread as
the repetition of inter-individual spread events. Individuals are mobile in space
and it is their movement while bearing the infectious pathogen that leads to the
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disease becoming spatial, when they come into contact with susceptible individuals
who are also mobile. This description falls mostly into what have been called
Markovian contact processes [146]. When considered at the population level, this
leads to models using partial differential equations and is particularly appropriate
for describing the spread of a disease where the hosts can move freely, such as
epizooties. Such a description can also lead to network or agent-based models.

Work with my collaborators usually instead focuses on locations and adopts a
vision of spatial spread articulated in [17]: an infectious disease becomes spatialised
by the repetition of processes summarised as importation, amplification, exportation
and transport. Importation itself is the event when an individual infected with the
disease reaches a new location. Importation is successful if the imported case leads
to at least one local transmission event. This way of thinking about spread is easy to
reconcile with data, since locations are jurisdictions in the context of public health.
It also matches the cones of resolution that some geographers use when they think
about the spatial spread of epidemics; see [11] and references therein. See also [110,
111], which consider the roles of the different levels of mobility on the spread of
SARS in and to and from Beijing.

2.2 What Are the Main Drivers of Spatial Spread?

Whatever the way one conceptualises the spatialisation process, the main driver of
spatial spread is human mobility. Long range fast movements using air travel have
considerably changed the way diseases spread and while amplification in a location
remains driven by population effects, the initial spread is to a large extent driven by
air travel. This was shown for SARS [42], the 2009 H1N1 influenza pandemic [119]
and MERS [90], for instance. Long distance high speed train travel has also been
associated to spread; see, e.g., [47]. It is interesting to note, though, that despite the
highly heterogeneous nature of spatio-temporal spread brought on by modern travel
modalities, continental-level effects can still be observed [93].

2.3 How Does One Model a Spatialised Infectious Disease?

As mentioned in the Introduction, I focus here on mechanistic models. There are
many ways to model the spatio-temporal spread of infectious diseases. Let me
present the main contenders; see an interesting and more complete list in [161]
or [147]. I do not detail reaction-diffusion equations, because, to the best of my
knowledge, they have seen very little use in modelling the spatio-temporal spread
of COVID-19; readers are referred to [158], for instance, for more details on
deterministic aspects involving such systems. See [145] for a seminal review of
the link between stochastic and deterministic spatial models, as well as interesting
overviews in [61].
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2.3.1 Agent-Based Models

Agent-based models (ABM) consider populations of autonomous agents that
interact following some rules [76]. Agents have a set of characteristics that can
be modified through their interactions with other agents. Although there are some
attempts to mathematise some of the properties of such systems, they remain for
the most part computational tools that need to be studied using a large number
of simulations. Their strength lies in their realism: an agent can be given realistic
behavioural characteristics (schedule, place of residence or of work, etc.). ABM are
also easier to implement because they require very little mathematical background.
Agent-based models have proved most useful when considering the effect of
individual behaviours on the spread of infection in smaller populations. For instance,
they have been used to study individual protective behaviour [116], the effect
of presenteeism while infected with a disease [126], the risk in small isolated
communities [49, 129], the effect of social distancing [169] or the role of avoidance
behaviour when vaccines have low effectiveness [177]. Examples of spatialised
problems (all about influenza) that were studied using agent-based models include
its spread in slums of Delhi [5], the use of a hybrid approach involving networks
to describe the social structure and ABM to describe inter-individual spread in
Forsyth Country, NC [98], the potential for social structure to generate inequalities
in incidence in different areas of a county [127] or the spread within an airport
terminal [165]. See also [154, 155], which use a detailed location survey to conduct
a simulation of the spread of influenza in Japan. ABM are also useful as a means to
model evolution; see, for instance, [96], where an ABM is used to model evolution
of virulence at the front line of a spreading epidemic

The area where ABM have proved most informative is when considering spread
of infections within areas where movement is constrained and generalised contact
is impossible, such as buildings or cruise ships. For instance, when considering
nosocomial infections, it is possible to monitor health care personnel movement
and use this data to parametrise an ABM of spread within a hospital [109], or to
formulate a model of spread between beds within an intensive care unit [109].

However, ABM lose in value when populations become larger, except in rare
instances where unexpected emergent behaviour occurs. Where the law of large
number applies, it is indeed less computationally onerous to use “classic” determin-
istic or stochastic models. For instance, the model in [18] reproduces almost exactly
the behaviour of the agent-based model in [134], but furthermore gives access to
explicit expressions of the basic reproduction number R0 and the final size of the
epidemic. See also the comparisons in [7, 66].

Altogether, agent-based models are powerful tools of investigation at the hyper-
local scale. Considering agents consisting of groups of individuals instead of
individuals also allows to operate at a higher spatial scale, although models then
lose some of the interesting properties they have at the finer scale.
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2.3.2 Network Models

Network models are very similar to agent-based models, of which they were,
essentially, the inspiration. The two types of models are sometimes difficult to
distinguish. In epidemiology, work on networks and ABM was popularised in
particular by the NIGMS Models of Infectious Disease Agent Study, which led for
instance to EpiSimS [56, 77]. In network models, nodes are typically simpler than
agents in agent-based models; the most straightforward example would be a network
consisting of nodes (individuals) that can be in two states: susceptible to the disease
or infected and infectious with it. If there is an edge in the network between two
nodes, this means the two nodes came into contact; in the case of a network used to
model disease spread, this indicates that a contact took place, which could lead to
the transmission of the disease. One promising direction of research that has been
explored using networks is that of the link between network structure and shape of
the epidemic curve; see, e.g., [48, 57]. This is particularly important during the early
spread of a disease and has been considered in a variety of contexts using network
models.

Because they are simpler than ABM, network models are more amenable to
analysis; see, e.g., [34, 38]. Originally, tools used to study the dynamics of network
epidemic models originated in statistical mechanics [139, 140]. Because networks
allow to incorporate a more realistic description of the contact process while
maintaining some level of analytic tractability, comparing their dynamics with that
of classical models is useful. In [8], this is done for instance for a two-strains
influenza model with vaccination. [156] There has been a move lately towards
characterising the dynamics of smaller networks using the properties of individual
nodes rather than through distributions of these properties; see, e.g., [32].

While examples of use of network models in mathematical epidemiology
abound, their use in situations that are specifically spatial are not as common.
Instances include [79], who considered an SEIR model set in a lattice and simulated
using a Monte Carlo process, to incorporate both stochasticity and space, [33], who
consider the spread of dengue in city blocks or [82], who consider the spread of
equine influenza. The latter paper illustrates the strength of the method, in that they
have access to extensive data on horse movement between locations and are able to
assess the effect of the topology of the networks, both for long range movement and
shorter contact patterns with locations, on the spread of the infection.

Networks are also a natural candidate for considering the spread of infections
using the air transportation network as a conduit. This was done for instance with
SARS [42].

2.3.3 Metapopulation Models

Also known as patch models, metapopulations couple together (typically sim-
ilar) models, with each model encoding for the dynamics of the disease in a
population and coupling representing the movement of individuals between the
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populations [16], the average time spent in remote locations [37] or the interactions
between populations. Metapopulation models had been used computationally since
the early 1970s, for instance to consider the spread of influenza within countries
[83, 164]. They have known a resurgence since the beginning of the twenty-first
century, because, on the one hand, computing resources made simulating them
easier and, on the other hand, papers such as [15, 19] showed that linear algebra
techniques could be used to render the study of such systems very similar to that
of their constituting systems. See [31] for a list of problems the authors identify as
interesting challenges in the field.

Metapopulations are now quite popular and have been used in a variety of
settings. A lot of work concerns investigation of properties of spatial models. For
instance, with coauthors, I investigated the effect of lowering travel rates between
locations [20] and of interconnection between a large urban centre and smaller
satellite cities [22]. Other interesting issues studied include the effect of vaccination
targeted at high risk areas [29], cooperation between governments on vaccination
policy [123]. Geographically targeted vaccination has also been considered at
smaller spatial scales; see, e.g., [26, 29, 101, 118, 121, 135]. Other spatial control
issues have been considered in [41, 92, 95, 102, 122, 130, 136].

Papers addressing issues that are present also with COVID-19 have considered
infection during transport [25], in particular in relation to entry screening [133]
as well as exit and entry screening [132]. Exit and entry screening were also
considered in [178]. Some work has also considered the effect of media-induced
social distancing [87, 173].

Metapopulation models were used to consider specific diseases as well; the
spread of SARS [162], age-structured contact patterns during the 2009 H1N1
pandemic [12], chikungunya [50], dengue [141], cholera [73] or malaria [14, 88, 89];
see also [160].

Standard metapopulation models are not well suited to consider the hyperlocal
scale, because they assume homogeneity within the constituting units. In [12], an
interesting approach is used that allows more heterogeneous contacts within patches.
Similarly, in [148], the authors consider behaviour at the hyperlocal scale but still
within a metapopulation model. In [7], the behaviour of an ABM is compared with
that of a stochastic metapopulation model.

3 Chronology and Characteristics of COVID-19 Spread

To describe the spatio-temporal spread of COVID-19, I use the previously discussed
framework of [17]. There is some discrepancy in reporting units, but to some extent,
one can think along the lines of the ISO 3166 standard [114]. Global spread occurs
between ISO 3166-1 codes (countries, dependent territories and special areas of
geographical interest). Local spread within ISO 3166-1 codes occurs between ISO
3166-2 codes (provinces in Australia and Canada, départements in France, states
in Brazil and the USA, etc.). Many countries also report at a finer geographical
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scale, which I still call local: counties, regional health authorities or cities. Anything
below the city level is hyperlocal; typically, this corresponds to commuting to work,
school or shopping, but can even be mobility within a building. In keeping with my
avowed preference for publicly available data, my description involves higher level
jurisdictions rather than spread at the hyperlocal scale, which is typically associated
to confidential data.

Throughout the description that follows, one should bear in mind that data used
to describe the spread is very likely wrong in some instances, or rather, some
jurisdictions might be reporting with a delay because of a lower capacity to detect
cases. See for instance [100], in which two health security indices, the Global Health
Security Index and the Joint External Evaluation, are used to assess the likelihood
that countries detected COVID-19 early. (The work also shows that countries with
higher values of these indices also saw reduced mortality from the disease to 1 July
2020, although this is likely not true anymore.)

3.1 Chronology and Characteristics of Global Spread

There is evidence that COVID-19 could have started its global spread in December
2019, with reports of a case in France [68] as well as suspicious cases [39] and
positive wastewater samples [128] in Italy. However, these retrospective analyses
have yet to be confirmed, so at the time of writing, the first ten locations to have
confirmed importations are those listed in Table 1. The remainder of January saw
cases being confirmed in several other countries. Of note is that China imposed
a cordon sanitaire in Wuhan on 23 January 2020 and that the first successful
importation (in the terminology of [17], i.e., a local transmission event) was reported
by Vietnam on 24 January 2020 [182].

Table 1 First ten international locations having reported imported COVID-19. Date refers to the
date the case was reported. All dates are in 2020. All cases in this table were imported from China,
except for Vietnam, which concerned both an imported case and a local contact

Date Location Note Source

13 Jan. Thailand Arrived 8 Jan. [181]

16 Jan. Japan Arrived 6 Jan. [168, 179]

20 Jan. Republic of Korea Airport detected on 19 Jan. [180]

20 Jan. USA Arrived Jan. 15 [107]

23 Jan. Nepal Arrived 13 Jan. [35]

23 Jan. Singapore Arrived 20 Jan. [2]

24 Jan. France Arrived 22 Jan. [1]

24 Jan. Vietnam Arrived 13 Jan. [60, 152]

25 Jan. Australia Arrived 19 Jan. [27]

25 Jan. Malaysia Arrived 24 Jan. [74, 151]
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Starting in February 2020 and with more and more of the locations hav-
ing reported importations earlier seeing local transmission chains, global spread
accelerated. Figure 1 shows the number of ISO 3166-1-alpha3 codes (top level
jurisdictions) reporting their first confirmed case as a function of the time since
the first confirmed international exportation event.

While I do not detail them in the modelling section because of my focus there
on models able to provide explanations of the phenomena, it is worth noting
that interesting time series analyses were performed during the early stages of
spread. For instance, [58] used ARIMA analysis of travel data together with disease
propagation data to forecast future destinations. The authors find that uncertainty
as to the percentage of asymptomatic cases makes previsions complicated; this
conclusion is in line with personal work [23]. Likewise, [99, 105] considered
spatial autoregressive models. Also, although not global, continental-level spread
as documented for Africa in [91] is included here because the focus is not on the
transition between the global level to the continental level but on spread within the
continent. Finally, [138] use self-organising maps to look for similarities in epidemic
curves to identify countries seeing propagation of the same type.

3.2 Attempts to Slow Down the Global Spread

Using the terminology of the conceptual model of spatialisation, when COVID-19
started its international spread, there were very few jurisdictions that were exporters
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of COVID-19 and an immense majority of potential importers. Public health
authorities in those jurisdictions that did not have cases at that point therefore took
measures to try to stop or at least delay importations. To this end, they used three
main types of measures: restriction or suspension of travel, entry screening and post-
arrival self-isolation measures.

Starting early on and ongoing at the time of writing, various jurisdictions took
measures to curtail or even interrupt travel. Passengers themselves also abstained
from travelling. The result of this was a precipitous drop in travel volumes. The
intensity of this effect can be seen in Fig. 2, which shows the daily number of
passengers processed by the United States Transport Security Agency, i.e., the
number of individuals undertaking a trip originating in the USA, in 2019 (red)
and 2020 (blue). The data shown for 2019 is for a year earlier, but shifted so it
corresponds to the same day in the week. At the lowest point, on Thursday 16
April 2020, TSA screened 3.63% of the number of travellers they had screened on
Thursday 18 April 2019. The same trend can be observed for instance in tourism,
with the United Nations World Tourism Organisation Tourism Dashboard (https://
www.unwto.org/international-tourism-and-covid-19) reporting that the number of
international tourists arrivals in April and May 2020 was 97% less than the same
months in 2019.

In [6], an analysis of the global air transportation network is undertaken using
the network distance defined in [44], attempting to tease out the effect of travel
interruptions on the spread. While both of these studies provide very interesting
insights into the issue, a precise quantification of the effect of such fundamental
changes to travel is hard.
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Fig. 2 Daily number of passengers processed by the United States Transport Security Agency
(TSA) in 2019 and 2020; data from https://www.tsa.gov/coronavirus/passenger-throughput
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Entry screening is typically implemented at ports of entry (ports, airports, border
crossings) and seeks to identify individuals who are bearing the disease of concern,
in order to isolate them and thereby avoid potential transmission of the disease in
the local population. There is some debate about the usefulness of entry screening,
especially during the early stages of a global spread event. See [149] for an
extensive review. The sensitivity and specificity of the thermal detection equipment
used is questionable [40]. In the case of COVID-19, it has also been argued that
this low sensitivity would combine with the fact that fever detection would often
fail because of the frequency of asymptomatic cases [45]. Entry screening at the
beginning of a health crisis also means looking for a needle in a haystack, since the
volume of incoming passengers from all locations vastly dominates the volume of
passengers coming from the location of interest [120]. Since prevalence is low at
the beginning of the event, this further compounds the lack of efficacy and results in
poor characteristics for the method [67]. Also, screening protocols themselves vary
widely from location to location [86], rendering a general evaluation of the value of
a protocol difficult. Despite these reservations, in the case of COVID-19, some of
the evidence of early international spread comes through entry screening, so there
seems to have been some limited benefit to thermal imaging entry screening.

After the initial few days during which testing was thermal imaging-based,
screening switched to using much more reliable PCR tests. This became possible
because sequencing of the virus genome was performed remarkably quickly. As
a consequence, currently, there are four main attitudes towards screening: no
screening at all; “soft” screening, i.e., verbal or written questionnaires; testing on
entry; testing prior to entry. Some countries use a combination of approaches, for
instance requiring testing only for individuals arriving from regions considered
particularly at risk.

A jurisdiction still has one option to combat the risk that successful importations
take place: it can recommend or impose that individuals arriving from another
jurisdiction spend some time in quarantine. Canada, for instance, has insisted on
a 2-weeks quarantine period for all incoming travellers since the beginning of the
crisis, with exemptions.

3.3 From Global to Local Spread

The first step in switching from a purely global vision of spread to a local one is to
consider when COVID-19 could arrive in “one’s backyard”. In the early stages of the
pandemic, before most top-level jurisdictions reported reported human-to-human
transmission chains, it was of interest to those jurisdictions having no or few local
cases to understand the risks that their connectedness to other jurisdictions carried.
Because of evidence gathered during past pandemics and other notable public health
events (see Sect. 2.2), this evaluation was mostly carried out by investigating a given
jurisdiction’s connection to the rest of the world by means of the air transportation
network. This was the method used for instance in Mexico [64], India [97] or
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Europe [157]. Much practical work on this aspect has come to rely on global
airline transportation data such as that provided by the International Air Transport
Association (IATA). However, it should be noted that this dataset quickly became
unreliable because of the dramatic fall in travel volumes discussed in Sect. 3.2.

3.4 Chronology and Characteristics of Local Spread

Most of the very early work on local spread concerned China, since it was the first
country to experience this. The same type of method was used in [78] as is detailed
at the start of this section, but with past data on mobility during the Spring Festival
of millions of migrant workers residing in Wuhan. The aim was to assess the risk
to locations visited by the migrant workers. Since Chinese New Year was on 25
January 2020, while the cordon sanitaire was imposed in Wuhan on 23 January, a
lot of individuals did make the trip. This allowed the authors to venture which places
were probably under-reporting cases. See also [184], which uses GIS techniques to
study the spread within China and the factors contributing to this spread. As do the
authors of the previous paper, they find that connection to Wuhan, both in terms of
population flow and economically, was the main driver of the initial spread.

Tracing transmission chains originating from importations allowed to better
understand the consequences of importations. See, for instance, [36], which breaks
down such a transmission chain that started on 27 January 2020 in Bavaria
(Germany). In [46], the early spread in Brazil is documented, from importation
from Europe (as evidenced by genome typing of the strains) to local spread within
states, finally followed by exportation from urban centres. This is confirmed by
[84], who consider spread among 604 cities in São Paulo State, Brazil. They
show that in the heterogeneous setting they consider, there are two patterns of
spread: one spatial, where the disease spreads to the nearest spatial component;
the other hierarchical, where within one unit, spread starts with the top level urban
centre then makes its way to smaller cities. In [80], the authors use genomic and
transportation data to consider the spread within the USA and conclude that quite
early on in the spread, importations into uninfected locations in the country were
much more likely to originate elsewhere in the country than abroad. Propagation
within the USA was also studied by [106], in which the occurrence of space-time
clusters is studied. This interestingly shows that as the epidemic took hold, there
occurred more and more smaller clusters, confirming in some sense the similar
observations in Brazil. Another investigation of continental spread in the USA is
carried out in [144] using a multilayer perceptron neural network. The authors
use the Moran index computed on the incidence rates and a large number (57)
of explanatory variables: socioeconomic, behavioural, environmental, topographic,
demographic, age-adjusted mortality rates from several diseases, both infectious
and chronic. They find that some of the most important factors predicting COVID-
19 incidence rates are the age-adjusted mortality rates of ischemic heart disease,
pancreatic cancer and leukemia, median household income and total precipitation.
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In [3], the time evolution in several countries and the time evolution within
France are investigated using time series methods incorporating spatial components.
While mostly methodological, this provides interesting tools to consider the spatio-
temporal evolution of the disease across multiple jurisdictions.

Other authors considered mechanisms for slowing down the spatial spread within
a country. The authors of [142] advocate for a disconnection between locked-down
urban centres and rural areas in India as a means to avoid complete country-wide
lockdown. This position is justified; indeed, authors in [63], for instance, found
strong correlation between population density and the spread of SARS-CoV-2 in
China, so it could be that forbidding movement between locations at high risk
(the cities) and those at lower risk is a valid approach. However, to the best of
our knowledge, no nation implemented such a system; indeed, during the initial
wave, most countries implemented country-level lockdowns that also relied on
severely limiting or completely interrupting mobility within their territory. In [70],
the authors consider the effect of containment measures on the spread of COVID-19
between provinces in Italy. In [124], the authors used human mobility data in China
to consider the spread of COVID-19 within China, in particular in relation to the
impact of control measures.

3.5 Chronology and Characteristics of Hyperlocal Spread

Hyperlocal spread was documented early on during the course of the pandemic
because of cases that happened onboard cruise ships that were under quarantine.
These events, while unfortunate for those involved, have provided a wealth of data.
In particular, they were extremely helpful in finding out key epidemiologic parame-
ters such as reproduction number [185], prevalence of asymptomatic infections [75],
incidence [153], transmissibility of the disease [143] or case fatality ratio [163].
Because cruise ships have records of who was infected together with the room they
were in, it should become possible to build a good understanding of spatial aspects,
although to the best of our knowledge, this data has not yet been released.

Many countries faced and are facing outbreaks in long-term care facilities (LTC).
There are a variety of reasons for this elevated risk; see, e.g., [172, 175]. This led
to tremendous effort to control such outbreaks [175]. Movement within LTC can be
documented (and modelled) accurately; see, e.g., [51, 150]. The health of residents is
also monitored (usually) well. As a consequence, nosocomial COVID-19 outbreaks
also provide valuable data at the hyperlocal level. See documented outbreaks in
[113, 125, 137, 166, 167].

Note an interesting “twist” on hyperlocal spread: in [108], the authors conduct
a wide-ranging analysis at the hyperlocal scale, in the sense that the consider the
movements of individuals at the local scale but over the entire territory of the United
States of America. This allows them to consider the effect of spatial heterogeneity
of public health orders.
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4 COVID-19-Specific Models

I replicate here the hierarchical spatial structure in Sect. 3 rather than the method-
ological one in Sect. 2.3. Indeed, while most work detailed here falls within one of
the three classes of methods in Sect. 2.3, I also report on other methods that gave
interesting results.

4.1 Models of Global Spread

To the best of my knowledge, most models for the global spread had in their
objectives to study how to slow down the global spread of the infection or considered
spread within specific countries or groups of countries; these are discussed in the
relevant later sections.

In [21, 24], we set the SL1L2I1I2A1A2R model of [23] in a metapopulation
context and focused on the risk of importation in different countries. The model was
run daily to provide the Public Health Agency of Canada with an assessment of the
most likely countries to import the disease in the coming days. The model includes
travel at different levels, which, as pointed out in Sect. 3.3, was a documented feature
of spread.

In [170], an SIR-type metapopulation model in the GLEAM framework [30] is
used that combines population densities, commute patterns and long-range travel.
Used at the early stage of the spread, the authors find that it is likely that the value
of the basic reproduction number R0 and the prevalence are badly estimated in some
locations, with estimates in the literature at the time driven by locations with a large
population. They conclude that the number of cases was probably underestimated.

4.2 Modelling the Slowing Down of Global Spread

In [55], a metapopulation model for the global spread of COVID-19 is used to
consider in particular the role of international travel bans. The authors show that
while the cordon sanitaire in Wuhan did little to slow spread within China, its impact
internationally was more pronounced. The combined effect of travel restrictions and
community effort is also studied, with the interesting finding that travel restrictions
alone do not suffice to have an effect on propagation. In [4], a stochastic SEIR
metapopulation model is used, together with Official Airlines Guide (OAG) data,
to consider the role of travel restrictions taking place after 24 January 2020. The
authors found good adequation with the number of imported cases in several
countries as of the end of January. They focused in particular on Australia and
establish that the travel ban there might have delayed the onset of widespread
propagation by 4 weeks.
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A stochastic simulation model is used in [69] to consider different scenarios
regarding testing (rather than screening) of incoming individuals and the duration of
quarantine periods. Similarly, [59] use a stochastic model to quantify the effective-
ness of screening and so-called sensitisation of travellers, i.e., the provision of health
information in an effort to trigger compliance with self-isolation recommendations.
In [159], the example of air transportation in Brazil is considered using an SIR-
type metapopulation. The speed of spread in relation to network measures such as
centrality was explored, with closeness centrality shown to be a good predictor of
the vulnerability of a city.

In [17], we considered the risk of disease importation in a location that is seeing
little to no local transmission chains. As with most of our work on the subject, we
used a modified version of the model in [23]. In this case, we used a stochastic
version, which we subjected to stimulations to represent the inflow of infected
individuals into a location. The model also allowed us to quantify precisely the
effect of quarantine in terms of its effect on the inflow rate.

4.3 Modelling the Transition from Global to Local Spread

In [94], the risk of importation of COVID-19 in African countries was considered
using air travel data as well as data from the Monitoring Evaluation Framework
(MEF) of the WHO International Health Regulations. The model is quite simple and
comprises no dynamic components, meaning that it provides a snapshot evaluation
of the risk of importation. As it was formulated at the beginning of the spread event,
when most of the exportation was assumed to come from China, it does nonetheless
provide meaningful results.

In the already cited [17], we focused on the risk of importation of COVID-
19 in locations that are seeing little to no local transmission, thereby considering
the interface between the rest of the world and such locations. We showed that
the probability of importation was most dependent on the rate at which cases are
imported in the locations, but that the outcome of a successful importation was
then determined to a large extent by the intensity of public health measures in the
locations.

4.4 Models of Local Spread

The location for which data became readily available the soonest was China. Since
China is also a very large country, some very interesting work was carried out in the
context of spread within that country. The authors of [183] considered the spread
of COVID-19 within China using an interesting idea: they estimated the size of the
outbreak in Wuhan from known international exportations, then used a metapopula-
tion model with Wuhan as the source of infection to estimate spread within China.
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In [131], the role of undocumented infections is investigated in relation with the
spread of COVID-19 between 372 Chinese cities using a metapopulation SEIR
model incorporating documented and undocumented infections. In [112], spread
within Hubei Province and in the rest of China is investigated using statistical tools
(the Moran index and a logistic model). Then an ODE SEIR model is used to
compute R0 in the different locations. In [174], an SEIR-type model with additional
compartments for diagnosed and confirmed, suspected and infected as well as
suspected but uninfected individuals is set in a metapopulation framework with two
patches: Hubei Province and the rest of China. The model is used to consider the
effect of lifting lockdown measures.

In [10], a simulation platform is used to consider the spread in France. The model
operates at the level of subregions (départements) and supposes that individuals can
be susceptible, asymptomatic, symptomatic, recovered, hospitalised and diseased.
An interesting feature of the paper is a comparison between the results of continuous
time deterministic and discrete stochastic methods, with the latter showing better
adequation with observed data.

The authors of [46] considered spread of SARS-CoV-2 within Brazil. This colos-
sal endeavour considers actual genotyping of the virus and prior to modelling work
proper, details importations and the spatio-temporal spread of various genomes
of the virus. Spatio-temporal modelling then uses a continuous phylogeographic
model. The model is not predictive but sheds light on the spread process: they
find that spread was mostly local, i.e., within state borders. Both within-state and
between-state spread was also found to have decreased after the implementation of
NPI.

In [9], the effect of heterogeneity of policies in the USA is investigated. A model
is formulated that is a metapopulation in essence; based on data on people movement
to places of gathering such as churches, the model allows the redistribution of
individuals between locations following different types of policies. They observe
that spatial heterogeneity in measures tends to increase the likelihood of subsequent
infection waves. Spatial heterogeneity is also investigated in [65], which uses a
metapopulation model to probe the impact of disparity of healthcare capacity in
Ohio. In [53], the effect of changing travel rates within and between locations is
investigated, with data for Taiwan.

Finally, note that because COVID-19 is spreading globally and that national
level jurisdictions (and sometimes even lower level ones) implemented a variety
of responses, it is useful to compare the situation in different jurisdictions. Even
though this is not spatial modelling stricto sensu, such works are worth mentioning
here as they provide the underpinning to spatial models. In [104], the authors use
an SEIR model to compare transmission patterns in China, South Korea, Italy and
Iran. In [103], an age-structured SEIR model is used to compare the dynamics
of disease spread in Hubei Province and six European regions. The focus is on
the estimation of the case-fatality (CFR), symptomatic case-fatality (sCFR) and
infection-fatality (IFR) ratios. The authors find that the latter two indicators are
better suited to describe the potential impact of the pandemic and note that they find
geographic heterogeneity of the estimated values. This heterogeneity is not only
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between Hubei Province and the European locations under consideration, but also
between the European locations themselves. With collaborators, we used the model
in [23] to provide a daily forecast of spread in several Canadian provinces [21] and
found that estimates for some parameters were consistent across provinces while
estimates for others varied widely, in particular, the proportion of asymptomatic
cases.

4.5 Models for Spread at the Hyperlocal Level

A lot of work during this pandemic has focused implicitly on the hyperlocal level,
but recall that here the object is models in which I found an explicit reference to
spatial aspects.

In [115], a network model is used to model the spread of SARS-CoV-2 onboard
the Diamond Princess cruise ship, with nodes representing individual passengers
and crew members. Age-structure was used as well. The model was calibrated to
known transmission data and the effect of control measures was then considered.
See also the already cited [75, 143, 153, 185] for more modelling work related to
spread aboard the Diamond Princess.

The authors of [43] used an SLIAR agent-based model to consider the effect of
social distancing, viral shedding and what they call the social distance threshold.
They find that the three lead to threshold behaviour (“phase transitions”) that have
different effects on the course of the epidemic.

In [81], ABM are used to consider in particular the effect of testing policies.
Agents are distributed on a map depending on the population density in the areas
under consideration. They are also assigned movement patterns that can cover the
whole map, a medium range or a small one. Some interesting observations are that
when tests have low reliability or that the ability to trace contact is low, a large
fraction of the testing capacity remains unused despite an increasing incidence. They
also find that mixed testing policies are useful to contain spread.

5 New Variants

SARS-CoV-2 is an RNA virus and as such is subject to high mutation rates leading
potentially to variants [72, 117]. Thus the emergence of new variants was expected
from the onset of the crisis. At this point, there are several major variants to the
original variant that have been detected. This number can be expected to rise:
detection of most variants requires genome sequencing, which is performed at
different rates in different countries [85], meaning that capacity to detect variants
varies greatly globally. Of particular interest at the time of writing is B.1.1.7,
which was first detected in the United Kingdom in early December 2020 but is
presumed to have been spreading since as early as September 2020. This variant
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is particularly concerning as it appears to be more transmissible than the original
variant. It seems that this variant should not, however, be detrimental to the ongoing
vaccination efforts [62]. Many countries took preventive measures in order to delay
the arrival of the variant, essentially forbidding all travel originating from the
United Kingdom, but given that circulation probably started several months before
these measures, their efficacy is debatable. For instance, [71] estimates that, of 19
countries evaluated, 16 had at least a 50% chance of having already imported the
variant by 7 December 2020. The novel variants led some countries to consider exit
control measures; some European Union (EU) countries (Belgium and France, for
instance) decided late January 2021 or early February 2021 to forbid both entry from
and exit to non-EU countries for non-essential travel. In the context of pandemic
H1N1 influenza, exit screening was shown to have the potential to be more an
efficacious control measure than entry screening [120]. It is therefore interesting
to see this type of control finally being applied, although the intent is not the one we
were advocating in [120].

Modelling the spatio-temporal spread of these novel variants can be conducted
in very much the same manner as was done for the original variant. For instance,
metapopulation models for multiple species such as those considered in [19, 20] can
be readily adapted to a multiple variant situation. However, it is important to bear in
mind that because of the detection issues mentioned earlier, these models are hard
to parametrise when considering the initial spread of the variants.

6 Discussion

This is but a brief and very incomplete snapshot of the state of knowledge about the
spread of COVID-19 at the time of writing in December 2020, with a few additional
details about the new variants added in January 2021. As indicated, it is likely that I
omitted a lot of publications on the subject, given the immense amount of literature
COVID-19 has generated.

From the perspective of the spatio-temporal spread of the disease, although there
is still much to learn, I think we also now have the luxury of hindsight: many
groups, mine included, have produced a variety of models in the first few months of
the crisis, which can and should now be confronted to the reality of the outbreak.
Because COVID-19 is so widespread, there is less urgency to consider its spatial
spread in the perspective of emergency response and the focus could now evolve,
at least in part, to the evaluation of the models we produced. The problem of re-
importation of the disease in locations having managed to drive it away remains an
important one, so I am not advocating to stop all work regarding spatial spread; I
am only pointing out that understanding what worked and what did not during the
initial spread would actually help for these subsequent importation events.

Going forward, though, I believe that there is still a lot to be done on one
key aspect of spatio-temporal models: most of the work carried out by those of
us working in this area has come to rely on one particular dataset, the so-called
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IATA air transport data. Figure 2 shows that in the particular instance of COVID-
19, the quality of this data leaves a lot to be desired. When the data for 2020
becomes available in 2021, it will be extremely important to scrutinise it in order to
understand what type of changes took place. Another important point to ponder will
be the use of other data sources to compensate for this loss of relevance of IATA-
type data. Cell phone location data is showing promise, but it suffers from several
limitations, the most important of which being that it is most useful and detailed
at the country level and, more importantly, that it is either proprietary or extremely
expensive to acquire.
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A Logistic Growth Model
with Logistically Varying Carrying
Capacity for Covid-19 Deaths Using Data
from Ontario, Canada

Georges Bucyibaruta, C. B. Dean, and E. M. Renouf

1 Introduction

Covid-19 infections have increased rapidly worldwide for the last several months.
By mid-June, 2020, worldwide confirmed cases of Covid-19 were setting records
for daily growth. This growth has continued into late July, with newly reported
infections surpassing one quarter of a million daily, driven largely by new infections
in the United States, Brazil, India, and South Africa. By July 30, 2020, worldwide
recorded infections have surpassed 17 million. Canada announced its first case of
Covid-19 in Toronto, Ontario on January 25, 2020 in an international traveller from
Wuhan. By July 2020, Canada surpassed 115,000 cases of recorded infections, and
almost nine thousand deaths. Within Canada, most cases have occurred within the
provinces of Ontario and Quebec. Both provinces adopted more stringent public
health measures to reduce infections after major issues arose within long term care
facilities. Within Ontario, the number of cases grew rapidly by the end of March,
at more than 400 daily new cases, reaching a peak of over 600 daily new cases in
the third week of April. By the third week of May, Ontario saw a decline in daily
deaths. The Ontario provincial database available through the provincial data portal
records onset dates as early as January 01, 2020 in both travellers and non-travellers.
While no death dates are recorded in this publicly available database, the earliest
deaths recorded show 17 cases with onset dates on or before March 10, 2020 over a
geographically dispersed set of health units (Windsor, Chatham, London, Niagara,
Waterloo, Peel, Haliburton, Simcoe, Durham, Toronto, York and more).

While Ontario may be past the first peak of the epidemic, the lifting of public
health restrictions and social distancing measures in a series of three planned stages
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may result in a rise in cases and hospitalizations due to Covid-19. Approximately 2
months after the initial lockdown in March 2020, the province of Ontario unveiled
its three stage re-opening plan. Stage 1 of re-opening began on May 19, 2020, with
a limited set of businesses allowed to re-open in accordance with strict public health
guidelines. Two weeks after the first stage of re-opening, Ontario cases remained
stubbornly flat with new cases persisting between 300 and 450 daily. Approximately
two-thirds of the health regions in Ontario were allowed to progress to Stage 2 re-
opening on June 12, 2020, where businesses such as hair and nail salons, restaurants
with outdoor patios, campgrounds and community pools were allowed to re-open.
At that time, new recorded cases had fallen to just below 200 per day in Ontario.
All remaining health regions progressed to Stage 2 by July 7. On July 17, 2020, 24
of Ontario’s 34 health regions, who were among the first health units to progress
to Stage 2, were allowed to progress to Stage 3 of re-opening, which allows most
businesses and workplaces to re-open but with limits on capacity and with measures
in place such as wearing of masks indoors. By the final week of July, reported new
infections hovered between approximately 100 and 170 per day, with some of the
higher numbers driven by large outbreaks in agricultural farm workers. Meanwhile,
health officials across the province remain alert to warning signs of resurgence.

Our approach here uses a logistic growth model for the cumulative number
of deaths from Covid-19. The logistic growth model includes a carrying capacity
parameter that is meant to reflect an upper limit in the number of deaths. Here
we consider, conceptually, that deaths would be limited by the number of (true)
cases. Since the number of cases is changing over time, so should the carrying
capacity parameter for death in the logistic model. The logistic growth model we
employ therefore allows the carrying capacity parameter to change over time by
incorporating a logistic growth function for the carrying capacity parameter.

Throughout the course of the Covid-19 pandemic, Ontario and Canadian data
have been modelled in a series of important papers using a broad set of epidemi-
ological methods [4, 13, 14]. One of the first papers using Canadian data fit an
exponential curve to the number of daily cases and estimated growth rates by fitting
a linear regression model to the logarithm of the data [11]. Growth rates were
estimated for two separate windows of time, to allow for changes in trend as a result
of a significant public health intervention.

In terms of analysis of Ontario data, simple exponential or logistic growth models
have been considered in a report published by a resource management group in
collaboration with researchers at academic institutions across Canada. Growth rate
curves of time series data of Covid-19 deaths for Canada are modeled to incorporate
changes in rates under different public health interventions [5]. From the time series
of daily deaths, the authors back-calculate the cumulative number of infections.
Using a time series growth model the number of future infections are predicted.
The model utilizes either a simple exponential growth model or a logistic growth
model. In a report published May 17, 2020, the authors demonstrate how to use their
modeling framework and provide software to generate forecasts of cases and deaths
for Ontario and Canada under the assumption of continued health policy measures
as they currently stand.
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There have been other studies of Ontario data beyond growth curve modeling. For
example, in a recently published article, Wu and colleagues [15] use a generalized
Susceptible Exposed Infected Recovered (SEIR) model that allows incorporation
of asymptomatic infectious, quarantined susceptible and isolated exposed model
compartments. They evaluated trends in transmission and the effect of social
distancing measures based on data up to March 29, 2020, showing an increasing
effectiveness of public health interventions in lowering the reproductive number of
Covid-19.

Analyses utilizing logistic growth curve models to forecast epidemic growth of
infections have been published using data outside of Canada as well. These models
use the standard form of the logistic growth curve to model infections. To model
early growth of the epidemic in Hubei, China, [10] applied the generalized logistic
growth model to produce short-term forecasts of cases using data up to February 29,
2020. [16] also use a generalized logistic growth model to forecast cases in mainland
China excluding Hubei province. They compare the classical logistic growth model,
a generalized model, and a generalized Richards model using data up to March 10,
2020. [3] uses a logistic growth model as well as an SEIR model to estimate final
epidemic size worldwide.

A recent paper using publicly available data from Nigeria applied a logistic
growth curve as one element of a larger model forecasting epidemic growth
[1]. Using the daily number of new cases of Covid-19 in Nigeria, the authors
implemented an ensemble of forecast models. One of these models included as
a component a logistic growth model with time-varying carrying capacity. This
implementation allows the carrying capacity to vary as a function of time, rather
than a logistically varying carrying capacity as in our model.

The logistic growth model has been used extensively, either in traditional or
extended form, to model new infections for Covid-19. A model accommodating
a varying carrying capacity parameter as considered in this paper has not been
used in logistic growth models for Covid-19. In our application which follows,
we demonstrate the utility of the logistic growth model to model deaths, with the
modification that the parameter identified with carrying capacity varies over time.
We will also provide confidence bands for potential indicators through Monte Carlo
methods.

2 Data Description

The aggregate data used here were obtained from the daily epidemiological
summaries released by Public Health Ontario on their website. In a table under
the heading ‘Severity’, these daily reports show the reported cumulative deaths and
the daily change from the previous report, with the caveats that only deaths for lab-
confirmed cases are included here, and also that there is a reporting delay for deaths.
Figure 1 shows deaths in Ontario as reported by Public Health Ontario.
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Fig. 1 Cumulative and daily number of deaths in Ontario from 27/03/2020 until 17/07/2020 (data
from Public Health Ontario daily epidemiological summaries)

3 Methods

Our focus is on modeling deaths in the province of Ontario. This approach uses
a growth model for the cumulative number of deaths from Covid-19, and our
growth model accommodates, conceptually, that deaths have a carrying capacity
that would be limited by, for example, the number of cases or hospitalizations which
change over time. This is not a process model, but an empirical model. A series of
publications, [2, 8, 12], portray an array of logistically developing and diffusing
social mechanisms. They compare technological innovations as a social epidemic
by arguing that the former do not usually distribute themselves evenly through
time. They consider a model where the carrying capacity of the system increases
dynamically, but in a distinct pulse. Conceptually, we adapt this approach and we
allow the carrying capacity of our logistic growth model to vary as a logistic growth
curve.

3.1 Logistic Growth Model for the Mean

As the carrying capacity is meant to conceptually reflect the number of cases
or hospitalizations, and since these values are changing over time, so should the
carrying capacity for death in the logistic model. LetN(t) be the cumulative number
of deaths at time t , where t = 0 is the recorded date of the first death in Ontario.
The logistic growth curve model can be represented in the following way:

dN(t)

dt
= rN(t)

[
1 − N(t)

K(t)

]
(1)
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where

r is the growth rate and
K(t) is the carrying capacity parameter for modeling N(t) at time t ,
N(t = 0) = N0 is the cumulative number of deaths at the initial time.

Time here is recorded as rounded to days, so N0 is the number of deaths on the first
day of recorded deaths. The general solution of (1) is

N(t) = N0 exp(rt)

1 + rN0
∫ t

0
exp(rx)
K(x)

dx
(2)

with K(t) also modeled as a logistic growth curve:

dK(t)

dt
= αK(t)

[
1 − K(t)

G

]
(3)

with α being the growth rate for K(t), and G being the carrying capacity parameter
for modeling K(t). The analytical solution of K(t) follows as

K(t) = G

1 + ( G
G0

− 1) exp(−αt) (4)

whereG0 is the initial value of the carrying capacity for modelingK(t). Substituting
(4) in (2) yields the solution:

N(t) = G

1 + (A1 exp(−αt))+ (A2 exp(−rt)) (5)

where

A1 =
( G
G0

− 1
)( r

r − α
)

(6)

and

A2 =
( G
N0

− 1
)

−
( G
G0

− 1
)( r

r − α
)
. (7)

3.2 Non-linear Least Squares Estimation

We employ non-linear least squares estimation for the parameters. The function
N(t) is known up to a set of p = 4 unknown parameters θ = (θ1, ..., θp) =
(G,G0, r, α) which also must be estimated. Under the assumption that both the
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predictor and the response are observed without error, the relationship in (5) will
hold to define cumulative counts of deaths over time if the model is correct.

In reality, measurement errors will arise. Non-linear least squares estimation
proceeds by finding θ̂ that minimizes

RSS(θ) =
n∑

i=1

(yi −N(ti))2 (8)

where yi = N(ti)+ εi , and εi ∼ N(0, σ 2).
An estimate of the measurement error is obtained as

σ̂ 2 = RSS(θ̂)

n

where RSS(θ̂) is the residual sum of squares.

4 Introducing Stochasticity into the Daily Counts

The logistic growth model provides an estimate of the future mean cumulative
deaths. We also consider stochasticity in the daily counts, required for short-term
analyses of the behaviour of the disease progression and assume that the daily
number of deaths follow a negative binomial distribution with mean derived from
the fitted values of the logistic growth model. We estimate the dispersion parameter
κ̂ using maximum likelihood estimation and this allows us to incorporate stochas-
ticity in the daily counts. We then utilize a Monte Carlo approach for obtaining
future daily predictions by generating future daily data using a negative binomial
distribution with mean derived from the fitted logistic model for cumulative deaths
and dispersion κ̂ . Using B = 1000 simulations, under the negative binomial
distribution, we predict future cumulative deaths. In a single peak epidemic wave,
an indicator of lack of control could be based on the cumulative number of deaths
N(t), and the rate of change of deaths dN(t)

dt
, as described in the next section.

5 Short-Term Predictions and Beyond

We discuss here potential tools that could be utilized as short-term predictors, as
applicable more broadly for pandemic monitoring in various settings. For example,
we may calculate the probability that the total number of deaths observed in the next
l days, after a reference point t0, indicating current time, will exceed that observed
in the past l days, where l monitors short-term activity, for example, l = 3 or l = 5.
We also examine the probability that the current growth rate of deaths exceeds that



A Logistic Growth Model with Logistically Varying Carrying Capacity 59

seen during the beginning of the first phase of re-opening when the pandemic was
seen to be sufficiently under control.

Looking beyond the short-term predictors, a few indicators of a second wave, or
resurgence, have been proposed however most are ad hoc apart from the risk ratio
recently proposed by Noorbhai [9], who offers a model based on the ratio of total
recoveries to cases. This is problematic for Ontario where recoveries are tracked
with different methodologies within each of the 34 health units. Freitag et al. [6] has
proposed a spatio-temporal model of mobility levels, taking into account population
density, as an indicator of resurgence. An immediate issue for Ontario, however, is
that indicators for resurgence cannot be based upon growth models, such as the one
used here, which are meant for modeling an epidemic with a single peak.

6 Results

The logistic growth model with a logistically varying carrying capacity parameter
was fitted to cumulative deaths. Figure 2 shows the results of the analysis with
both fitted and observed values displayed. The time-varying carrying capacity curve
is shown in blue. The plot illustrates how the logistic curve approaches its upper
limit over time. As the logistic growth model reaches the asymptote, the difference
between the carrying capacity and the logistic growth curve diminishes. Figure 3
displays the confidence bands associated with the fit are also provided. The model
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Fig. 2 Fitted logistic growth model with logistically varying carrying capacity from 27/03/2020
to 17/07/2020
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Fig. 3 Fitted Logistic growth model with logistically varying carrying capacity from 27/03/2020
to 17/07/2020, showing confidence bands in green
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Fig. 4 Total number of Deaths predicted under logistic growth curve (blue) with 95% confidence
bands(green) and simulated curves under negative binomial distribution (red)

show no obvious lack of fit. Figure 4 displays the logistic growth curve with 95%
confidence bands and simulated curves under negative binomial distribution.

In order to assess our model we present some comparisons between the give
day ahead forecasted number of deaths for various dates versus what was actually
observed, in Table 1.

To examine the future trajectory of predicted deaths, we consider the probability
that the total number of deaths observed in the next l days after day t0 = 54 in
our dataset (19 May, 2020), exceeds that observed in the last l days, where l = 3
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Table 1 Observed
cumulative deaths at time t0
(second column), predicted
cumulative deaths after 5
days (3rd column) and
observed cumulative deaths
after 5 days (last column)

Date (t0) N(t0) PredictedN(t0+5) ObservedN(t0+5)

2020-05-10 1669 1952 1858

2020-05-19 1962 2081 2012

2020-06-04 2372 2447 2475

2020-06-12 2507 2599 2553

2020-07-04 2689 2731 2710

2020-07-17 2748 2758 2755

or 5. Using the Monte Carlo approach described in Sect. 4, these probabilities are
estimated as,

P̂ (N(t0 + 3) > N(t0)+ {N(t0)−N(t0 − 3)}) = .29

P̂ (N(t0 + 5) > N(t0)+ {N(t0)−N(t0 − 5)}) = .14

It is useful to note that the probability declines as l increases. In reality, starting at
the reference time, the number of deaths in the next l days slightly exceeded the
number of deaths observed during the previous l days, for both l = 3 and 5, by 5
deaths and 3 deaths respectively. As another example, when t0 = 84, corresponding
to 18 June, 2020, we have,

P̂ (N(t0 + 5) > N(t0)+ {N(t0)−N(t0 − 5)}) = 0.72

Starting at the reference time, the number of deaths in the subsequent 5 days
exceeded the number of deaths observed during the previous 5 days by 22 deaths.
The probability values themselves give some indication of the strength of evidence
concerning the prediction, yet a threshold is required to form an alarm system. This
could be developed through a receiver operating characteristic curve analysis.

Figure 5 shows the receiver operating characteristic curve for the model. This
curve was developed through a Monte Carlo simulation, similar to the method
described in Sect. 4, where we calculated the probability of exceeding the l-day-
ahead target for deaths, the target being the total number of deaths in the previous l
days, for different t0’s. Then we assessed whether the observed number of deaths
actually exceeded the target: for each t0 an outcome of 1 was assigned if the
number of deaths in the next l days exceeded the number of deaths observed during
the previous l days, otherwise an outcome of 0 was assigned. By comparing the
estimated probabilities of exceeding the l-day-ahead target to a series of thresholds
between 0 and 1, we obtain a prediction of whether the number of deaths l days
ahead will exceed the target. For each of these probability thresholds, we are then
able to compare outcomes with predictions to calculate the true positive rate (TPR)
and false positive rate (FPR) associated with each of these thresholds.

On the ROC curve, the point at the top left corner of the curve is identified as
providing the level of best performance. This occurs at a TPR of 0.9 and FPR of 0.3,
as shown in Fig. 5. This, in turn, corresponds to a threshold probability of 0.6. At
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Fig. 5 Optimal threshold for predicting an increase in deaths over the next l days, compared to
the previous l days, where l = 5

this point, we therefore expect 90% of true positives will be well classified, and 30%
of false positives will be misclassified. Therefore, when considering predictions of
deaths 5 days ahead, we would sound an alarm indicating an expected increase in
deaths when the probability described above is greater than the threshold of 0.6. A
probability of 0.72, as obtained in our most recent example, would be considered
high enough to sound an alarm, according to the threshold determined by means of
our ROC curve analysis.

We can also develop an assessment of risk level given by dN(t), the rate of
change. Since dN(t) is the derivative of N(t), these indicators provide the same
probability measure, however dN(t) gives us the ability to compare to earlier phases
of the pandemic, with a straightforward visual representation. Figure 6 gives a visual
representation of the values of dN(t) over time since late March, 2020.

We present in Table 2 a scale of low, medium and high risk values for the
predicted rate of change as measured at time t with the intention being that rates
of change should be decreasing over time, and where they are not, could support
concerns about resurgence.

If we use the date of June 18, 2020 (day 84 in our dataset) given in our previous
example, we calculate the predicted average growth rate over the next 5 days to be
11.4. We can compare this value to the start of Phase 2 on June 12, shown in Fig. 6,
where the instantaneous growth rate was 13, and we see therefore, that growth rate
is declining.
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Fig. 6 An indicator based on dN(t), the rate of change of deaths

Table 2 Risk levels based on
the rate of change, dN(t)

dN(t) Risk level

>35 Very high

13–34 High

7–12 Medium

2–6 Low

<2 Very low

7 Discussion

In this paper we have used a simple model to predict future deaths in the short
term. Our model fits reasonably well, with narrow confidence bands. We consider
an extension of the classic logistic growth model which allows the carrying capacity
for deaths to change logistically over time. This model does not take into account the
mechanisms of transmission of Covid-19, such as health interventions and human
behavior. As the situation evolves, anomalous values or rapidly changing trends
could upend any prediction efforts. Worse still, sudden shocks that permanently
affect a time series could also render all past data as irrelevant. We also note that
phenomenological growth models such as the logistic growth curve model presented
here are meant for predicting growth trajectories during a single peak epidemic.
However, multiple peak epidemic trajectories caused by factors such as increasing
contacts and releasing of public health interventions are much more challenging to
model.

Our study has some important limitations to acknowledge with respect to the
data used in our model. This pandemic in particular has highlighted challenges in
data collection and management in Ontario. The deaths, as reported, do have a lag
from their actual death date as can be gleaned from graphs provided in the Daily
Epidemiological Summary published by Public Health Ontario. While deaths are
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a late indicator, they are still a valuable marker to track as part of a composite
surveillance plan. In addition to monitoring the growth rate of deaths as described
in this paper, policy makers would consider a broad context, examining other
metrics such as hospitalization numbers, test percent positivity, current reproduction
number, and number of new cases per 100,000 population. These indicators for the
future number of deaths which we present here are meant as an additional layer of
insight to combine with other important metrics.

In future work we will explore modeling the carrying capacity parameter as
a function of hospitalizations. Hospitalizations may indeed provide conceptually
a better upper limit for modeling deaths as many cases may be mild whereas
hospitalizations would be strongly linked to the more severe cases that progress
to death. In future work we hope to address the reporting lag for deaths and
to incorporate a method to adjust for these lags in our predictions based on
hospitalization rates.

Provincial analyses could be supplemented by regional analyses in order to detect
regional trends. As noted in [7], using aggregate level data as an indicator for all of
Ontario can obscure what might be happening at the local level. The indicators in
this paper could easily be extended for use at the regional level and we intend to
model this in future work.

At the time of completing this study, Ontario has allowed all health regions to
progress to Stage 3 of re-opening, where bars and restaurants with indoor seating
have re-opened, as well as gyms, personal care services such as hair salons, and also
places of worship. Most remaining workplaces and businesses are allowed to re-
open with some precautions in place. On September 8, 2020, schools in the province
will re-open with some additional public health measures such as mandatory masks
for grade 4 and up, but for the most part will proceed as usual except in 24 out of 76
school boards, where secondary school class sizes will be limited to 15 students who
will attend on a rotating schedule. Physical distancing requirements are set at only
1 m by the Ministry of Education, even in classes where masks are not mandatory.

This return to school will result in increased contact for the population of
Ontario, and in conjunction with the upcoming influenza season, the fall season
may be a period of increased risk for Covid-19. Formal indicators of public
health interventions may be useful for managing risk, and we intend to investigate
extensions of this type of model that will allow modeling of future epidemic peaks
in Ontario. In this paper we presented a model to predict future deaths in the short-
term with an appropriate measure of uncertainty.
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COVID-19 in Ontario: Modelling
the Pandemic by Age Groups
Incorporating Preventative
Rapid-Testing

Roie Fields, Lia Humphrey, Edward W. Thommes, and Monica G. Cojocaru

1 Introduction

Since its first reported outbreak in Wuhan, China [1], the novel betacoronavirus
SARS-COV-2 and its associated disease COVID-19 has spread to virtually all
corners of the globe. In absence of vaccination and effective antiviral drugs, over
47 million people worldwide have been confirmed as having contracted COVID-19,
resulting in over 1.2 million deaths as of November 2, 2020 [2].

Some early models for the COVID-19 outbreak were purely curve-fitting [3].
Much of the epidemiological modelling is now performed with variants of the
classic SIR model [4–7] which fits the number of individuals in a population who
are susceptible to, infected with, or have recovered from a communicable disease.
The model can be extended to incorporate different phases of a disease outbreak,
[8] or population subtypes [9, 10]. Studies have stratified Ontario populations by
categorising gender [11] or profession (such as healthcare workers) [12] separately.
Little work has been done to differentiate age groups in COVID-19 models, which
we show is an important factor to consider (see also [13]).

Although contact rates between individuals have previously been studied [14,
15], due to imposed social distancing and sheltering measures, absolute contact
rates during the pandemic have changed drastically from their projected baseline
as was demonstrated by a paper that was published shortly after our manuscript was
submitted [16]. Presently, governments have imposed measures in an attempt to
reduce the spread of COVID-19. These include sheltering in place and isolation,
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travel restrictions, social distancing protocols, and the closure of public and
commercial spaces. Specifically in Ontario, the government has mandated a slow
reopening of the economy [17], and provided guidance on protective measures such
as hand-washing and the use of face coverings. In fact, in the face of the second
wave, most recent government measures have reversed to stronger social distancing
ones in provincial areas that are more affected.

It is known that the contact rates between individuals of different age groups will
vary significantly [18], so it is important to take this into account. An Ontario paper
uses an SEIR-type model with compartments by age, but only modifies the severity
of infection per age group [9]. A Brazilian study uses data from nine distinct age
groups, but uses identical contact rates within and between groups [19]. The work in
[20] uses an SEIR model with age stratification to investigate the effect of various
management strategies. Unfortunately, the study suffers from a lack of empirical
data instead arriving at exposure rates by “making educated estimates of the effects
of hygiene restrictions and specific social interactions in each place”. Research is
now suggesting that children only play a minor role in transmitting COVID-19 [21].
The spread of the disease is greatest between adults in the same age group, and less
frequently between parents and children. These results will have an impact on the
effective contact rates between individuals [22].

In this chapter we use a SEIR-type compartmental model and provincial case
data from Ontario, Canada, to build upon our previous work [13] to depict COVID-
19 case progression from February 14 to October 5, 2020. We fit our differential
equations model describing COVID-19 transmission to Ontario Public Health onset
case data. We then estimate the effects of preventative measures (social distancing,
mask-wearing, etc.) on age-stratified contact rates. Furthermore, to address the
implementation of population-wide diagnostic testing by the provincial government
on May 24, 2020, we retroactively investigate the effects of different levels of testing
for a given test success rate and infer potential cases prevented. Finally, we estimate
levels of large-scale rapid testing that, in combination with other measures, maintain
an effective reproduction number (Reff ) below 1.

The presentation below includes a section on building our model, as well as
a detailed discussion of our data sources. We then continue in Sect. 3 with our
estimates on fitting the pandemic contact rates to onset cases, and then we show
how differing levels of large-scale testing may help in controlling the pandemic.

2 Methods and Materials

2.1 Adapted SEIR Model

We begin by presenting an adapted SEIR model that modifies variants of the
SEILR model presented in [23, 24] and [13]). In Sects. 2 and 3, we summa-
rize model findings from [13] to lay the groundwork for a revised SEILR(pas)
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Fig. 1 Schematic of SEILR(pas) model for COVID-19 progression and control measures for a
Group i, i ∈ {1, 2, 3} as in [13]. The outward arrow labelled βij implies that the encircled
compartments (Presymptomatic, Asymptomatic, and Symptomatic infected) in each age group
have an impact on new transmissions to the other age groups {1, . . . , 3}

system in Sect. 4, incorporating diagnostic COVID-19 tests at various levels of
uptake, to explore sensitivity effects on the total number of cases. We differentiate
the extended SEILR(pas) model from other compartmental models through
the inclusion of additional compartments to discern various stages of symptom
progression. Seen in Fig. 1, these are Susceptible (S), Exposed (E)—not yet
contagious, Infected (p)resymptomatic (IP )—contagious, infected (a)symptomatic
(IA), Infected (s)ymptomatic (IS), Recovered (R), and iso(L)ated—symptomatic
cases isolated to prevent spread.

In order to account for differences in disease susceptibility and infection
outcomes, we divided the population of Ontario in three age-stratified subgroups:
Group 1, denoted by N1: 0–19 years old, Group 2, denoted by N2: 20–59 years old,
and finally Group 3, denoted by N3: (≥ 60) years old.

Contact rates (cij ) within and between the age groups were inferred from
Canadian contact data estimated by Prem et al. [15] and we continue to use those
here. Since contact rates are a factor in determining the size of the effective contact
rates, typically denoted by β, in the context of age-stratified transmission, the
effective rates will be denoted by βij . Before we outline the equations governing
our model, we include first the flow chart between the above compartments, together
with classic notations of the flow rates:
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Considering the i-group model for i, j ∈ {1, . . . , K}, the differential equations
governing each of the groups are given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi

dt
= −

K∑

j=1

βijSi(t)
IPj (t)+ IAj (t)+ ISj (t)

Nj (t)
,

dEi

dt
=

K∑

j=1

βijSi(t)
IPj (t)+ IAj (t)+ ISj (t)

Nj (t)
− σEi(t),

dIPi

dt
= σEi(t)− ψIPi (t),

dIAi

dt
= (1 − α) ·ψ · IPi (t)− γ IAi (t),

dISi

dt
= α ·ψ · IPi (t)− (1 − ε)γ ISi (t)− ε · κ · ISi (t),

dLi

dt
= ε · κ · ISi (t)− (γ − κ)Li(t),

dRi

dt
= γ (IAi (t)+ (1 − ε)ISi (t))+ (γ − κ)Li(t).

Individuals are all initialized in the S compartment, with the exception of a
single infected individual from the largest group (2) seeded in the IP compartment.
Susceptible individuals exposed to the virus enter the E category for an average
of 1/σ days before they become contagious, at which point they move into the IP

category. After an average of 1/ψ days, α proportion of individuals will develop
symptoms and move into the IS compartment, with the remaining 1−α moving into
the IA compartment. Individuals in IP , IA and IS compartments are all contagious.
ε proportion of individuals in IS choose to self-isolate to prevent further disease
transmission, and as a result move into compartment L (isolated) and do not interact
with others. They do so with a delay of 1/κ , accounting for test result waiting time
and individuals who may disregard minor symptoms initially. In 1/γ days after
entering the IA and IS compartment, individuals all recover from (or succumb to)
their infection and move into the R compartment, where they remain permanently.
The model was implemented and numerically solved with R (version 4.0.2) using
the packages ggplot2 and deSolve.

2.2 Ontario Specific Parameter Values and Data Sources

We assume that the outbreak of COVID-19 in Ontario begins on February 14th, and
that the implementation of intervention and control strategies begins on March 15th.
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Control responses in Ontario were officially enacted on Monday, March 17th [25],
but commensurate with earlier institutional responses, we adjust for the fact that the
public began to alter behaviour before this date. For further discussion, see [13]. We
assume individuals who recover from infection remain in the R compartment, with
immunity from COVID-19 for the duration of the simulation. Given the short time
frame for simulation, our model does not include births or natural deaths, and any
COVID-19 deaths are captured in R. Furthermore, we assume an isolation delay of
1 day on average, due to individuals not always taking initial symptoms seriously
enough to isolate. Additionally, we assume an isolation compliance rate of 95%.

An early study of the virus in quarantined cruise ship passengers finds that 17.9%
of infected individuals were asymptomatic, and suggests the true proportion could
be up to 39.9% depending on the latency period of the virus [26]. A meta-analysis of
six studies estimates the asymptomatic infection rate to be anywhere in the range of
18.4% to 78.3%, and cites 46% as the most likely value [27]. Public Health Ontario
states estimates ranging from 8.2% to 87.8%, depending on a variety of factors
[28]. The true proportion of asymptomatic individuals may be difficult to determine
accurately, because those without symptoms are unlikely to be tested. As such, we
approximate a value of 0.5 as the proportion of symptomatic cases.

Next, assume that the only cases reported by Ontario’s public health units (PHUs)
are symptomatic cases, and that every symptomatic case will be identified and
reported. In addition, we assume that asymptomatic and presymptomatic cases are
not tested and therefore do not self-isolate.

The model presented above is now tailored to Ontario using the following
parameter values, as well as Ontario data sources for the pandemic evolution to
date (Table 1).

3 Fitting the Age Stratified Model to iPHIS Data

In this section we present a brief recap of our fitting results for the model (2.1) to
the existing iPHIS data. We have presented these in detail in [13] (where we include
discussions about the effects of mobility on the effective contact rates βij ). Here we
focus the presentation on the needed details for ease of reading.

In [15] (a study of country-specific contact rates), a 16 × 16 contact matrix
provides contact rates between Canadians aged 0–80 in 5-year intervals with the
each row representing the age interval of an individual, and the age interval of the
group being contacted listed on the columns. The highly stratified contact rates in
this 16 × 16 matrix were then combined in [13] to create a condensed 3 × 3 contact
matrix in accordance to our selected age groups in the following manner:
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Table 1 Parameters and initial values of the SEILR(pas) system (2.1)

Symbol Definition Initial value Reference

K Number of age groups 3

Ni Subgroup population size

Ntotal 14,566,547 [29]

N1: (0–19) 3,141,693 [29]

N2: (20–59) 7,977,131 [29]

N3: (60+) 3,447,723 [29]

cij Number of daily contacts with Group j per member of
Group i

Table 2

p Transmission probability per contagious contact Section 3.1

βij Effective contact-rate, i, j ∈ {1, . . . , K} cij ∗ p
σ Time from exposure until contagious (days) 1/2.5 [9]

ψ Time from contagious until symptomatic (days) 1/3.5a,b [9, 30]

α Proportion of permanently asymptomatic cases 0.5 [26–28]

ε Proportion of compliance with isolation 0.95

γ Recovery/removal rate 1/7 [8]

z Sensitivity of COVID-19 tests 0.7 [31]

δ Daily population testing rate 0

0.0025

0.005

0.01
a

The parameter ψ is estimated from the relationship 1/σ+ 1/ψ = incubation period, where
1/σ = 2.5 days and incubation period = 6 days

b
This value pre-dates October 1st, 2020

Table 2 Contact rates calculated for the three Ontario population subgroups. Contact rates are
taken from Canadian estimates by Prem et al. [15] and weighted according to census data from
Statistics Canada [29]

Group 1 Group 2 Group 3 Total contacts

Group 1 c11 = 8.565645854 c12 = 4.661272358 c13 = 0.304014985 13.5309332

Group 2 c21 = 2.987996842 c22 = 11.49063721 c23 = 0.522285468 15.00091952

Group 3 c31 = 1.248771202 c32 = 3.686037351 c33 = 1.982952539 6.917761092

1. Columns are partitioned into the three age groups with which individuals come
into contact: Group 1 (0–19), Group 2 (20–59), and Group 3 (60–80).1

2. Contacts are summed in each row in accordance with the new column partitions,
yielding a 16×3 matrix, representing each of the 16 age groups’ combined daily
contacts with each of the 3 new age groups created

1 Since [15] estimates contact rates only up to 80 years of age, we assume that Ontarians aged 80+
have identical contact rates to those aged 60–80 years.
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3. A population-weighted average of each respective cumulative contact-rate for all
members of each group was taken to generate our final 3×3 matrix in accordance
with our new age groups, outlined below. Each interval’s population was taken
from [29].

We preserve our contact structure by adopting Canadian relative contact rates
from [15] and assume they apply to Ontario for our time period with uniform contact
scaling across all interactions. We assume our age-stratified population subgroups
are homogeneously mixed, with heterogeneous intergroup mixing.

3.1 Dampening Contact Rates to Replicate Behavioural
Changes and Preventative Measures

The effective contact rate for a member of Group i with members of Group j is
given by

βij = cij ·p, (1)

As p for COVID-19 is not well established, we must solve for it implicitly by fitting
our model to the onset data presented by iPHIS for our pre-intervention period
(Feb 14th–Mar 15th). We do so using a derivative-free optimization method (the
Golden Section Search method) to minimize the SSE between our model output
and iPHIS data (see [32]). We conclude that pre-lockdown, the transmission rate
is p = 0.045085. We note that this transmission success rate is much lower than
the estimate of 0.145 given by Wu et al. [33], yet higher than the estimates of
0.041, 0.0365, 0.018 and 0.0045 for presymptomatic, severe symptomatic, mild
symptomatic and asymptomatic cases respectively given by Abdollahi et al. [34].

The following depicts our simulated data from Feb 14th–March 15th (Fig. 2).
After March 15, 2020, both the social behaviour and the mobility of the

population have changed, as the province adopted various preventative measures
to help curb the spread of COVID-19. (For more detail on date selection, see [13].)
We therefore need our model to reflect:

• changes in the frequency of contacts due to social distancing measures intra- and
inter-groups

• changes in the transmission probability due to mask wearing and other hygiene
practices.
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New daily SEILR-modeled symptomatic infections in Ontario pre-lockdown
(Feb 14 - March 15), compared with iPHIS reported data (Feb 14 - June 7)
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Fig. 2 Pre-lockdown iPHIS data (black) and simulated symptomatic infections in each of the 3
groups up to March 15. The blue curve represents symptomatic infected in the overall Ontario
population

To do so, we introduce a dampening variable, denoted by qint ∈ [0, 1] during a
given time interval and generically denoted by int , such that

βij (int) = cij ·p · qint , ∀ int ∈ interval (2)

where qint is constant during time interval int , interval is the number of time
intervals used in the model, and int is defined as the ceiling of the number of weeks
since preventative measures are introduced. Since no preventative measures were
present pre-lockdown (Feb 14th–March 15th), we will define this time period as
int 0 := [Feb 14, March 15] and q0 := 1.

We use again the Golden Section Search to fit our model to iPHIS data, but
this time we fix p = 0.045085. We solve for qint and obtain the following results
(Fig. 3).

Our model yields 56,865 total cases from February 14th to October 5th, 2020,
3.2% fewer than the 58,716 cases reported by iPHIS during the same time period.
Of the 58,716 cases reported by iPHIS: 9.01% were among Group 1, 64.1% were
among Group 2, and 26.88% were among Group 3. Of the 56,865 cases modeled:
22.78% were among Group 1, 68.34% Group 2 and 10.59% Group 3. While our
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Fig. 3 Simulated new daily symptomatic infections in each of the 3 age groups according to the
SEILR(pas) model

modeled Group 2 cases are very similar to the iPHIS-reported Group 2 cases, the
model predicts too many Group 1 cases, and too few Group 3 cases. We can explain
the excess of Group 1 cases over Group 3 since both have similar population sizes,
by noticing that Group 1 has almost double the total daily contacts.

To better understand the behaviour of the epidemic curve, we estimate Reff ,
the effective reproductive number of the virus. To estimate Reff near the disease-
free equilibrium pre-lockdown, we compute the spectral radius of our model’s next
generation matrix (which is a 12 × 12 matrix) while taking q = 1. Doing2 so yields
an Reff = 4.78. Consequently, we find that with p = 0.045085 and q = 0.20918,
Reff = 1. This implies that 0.20918 is our threshold value for q, which we denote
from here onward by q̄: this value prevents total new cases from increasing. At q
values above this threshold we expect the disease to proliferate, and at q values
below this threshold we expect case numbers to decrease over time. For this reason,
it is interesting to investigate the behaviour of q over time (Fig. 4). When comparing
the placement of q relative to q̄ to the behaviour of disease spread over the same time
intervals, it can be observed that when q < q̄, case numbers decrease, when q > q̄,
case numbers rise, and when q ≈ q̄, case numbers remain relatively consistent.

2 We used MAPLE 19 to derive a closed form solution of the next generation matrix of our model.
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Fig. 4 Change in q over time as compared to threshold, q̄ = 0.20918

4 Preventative Testing and Its Effects on the Evolution
of the Pandemic in ON

Our model considers the combination of physical distancing, mask-wearing, hand-
washing, and other contact-limiting measures as the standard for preventing the
spread of COVID-19, as was common in the early stages of the pandemic without
wide availability of diagnostic tests. By May 24, Ontario had opened municipal test-
ing centers with sufficient resources to extend testing not only to essential workers
and those with symptoms, but to suspected asymptomatic cases as well. To date,
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however, voluntary testing levels still fall 36% short of provincial testing capacity
(up to 50,000 tests daily), and reportedly fewer people are getting tested than before
[35]. Supposing the testing uptake had been higher (e.g. due to employers incentives,
more rigorous contact tracing, etc.) we investigate the potential effect of widespread
testing and isolation on infection rates in Ontario.

We introduce a variation of our model in which we test δ of the population of
Ontario every day (with replacement). We assume a uniform probability of being
tested among all age groups. Thus, on any given day, each individual within the
population has probability δ of being tested. If an individual tests positive they are
removed from the population and asked to isolate (see new compartment LT ) for 13
days, the total number of days for the course of the virus in our model. We assume
a uniform test accuracy of z = 0.7. [31]. Thus zδ of all infected individuals (those
in compartments E, IP , IA, and IS) will be removed from the population daily and
placed in the LT compartment where they isolate for 13 days and are thus unable to
transmit the disease further. Figure 5 describes the new flow between compartments
as introduced here.
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Fig. 5 Schematic of the SEILR(pas) model, now including uniform random population testing
and isolation of infected cases via a new compartment LT , for Group i ∈ 1, 2, 3
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Similarly, the associated system of differential equations governing this modified
model is given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi

dt
= −

K∑

j=1

βijSi(t)
IPj (t)+ IAj (t)+ ISj (t)

Nj (t)
,

dEi

dt
=

K∑

j=1

βijSi(t)
IPj (t)+ IAj (t)+ ISj (t)

Nj (t)
− σEi(t)− zδEi(t),

dIPi

dt
= σEi(t)− ψIPi (t)− zδIPi (t),

dIAi

dt
= (1 − α) ·ψ · IPi (t)− γ IAi (t)− zδIAi (t),

dISi

dt
= α ·ψ · IPi (t)− (1 − ε)γ ISi (t)− ε · κ · ISi (t)− zδISi (t),

dLi

dt
= ε · κ · ISi (t)− (γ − κ)Li(t),

dLTi

dt
= zδEi(t)+ zδIPi (t)+ zδIAi (t)+ zδISi (t)− (σ + ω − γ − κ)LTi ,

dRi

dt
= γ (IAi (t)+ (1 − ε)ISi (t))+ (γ − κ)Li(t)+(σ + ω − γ − κ)LTi .

On May 24th, Ontario announced open testing to all Ontario residents, regardless
of symptoms. We assume that by this date, Ontario had the ability to conduct
as many tests as desired. We would like to investigate the scenario where the
Government of Ontario actively conducted random tests instead of waiting for
people to volunteer. As such, we introduce our new model on May 25th.

We run trials with 3 daily testing levels and compare them to the test-free model
we simulated previously. These test rates are 0.25%, 0.5%, and 1% of the total
Ontario population tested per day, beginning on May 25, with no daily random
testing before this date. Over this 128 day time period, Ontario conducted a total
of 4,415,630 tests, an average of 34,497 tests per day. While this does amount to a
daily testing rate of 0.2368% of the population, this refers to voluntary and targeted
testing, biased towards individuals who are more likely to have been exposed. The
effects of this biased testing are encapsulated in the q-values obtained in the initial
fitting of our model to Ontario data. The testing we are modeling here is uniform
random testing that would serve supplementary to the testing that currently exists. In
other words, we assume that the testing that currently occurs at a rate of 34,497 per
day still exists, and the δ proportion of the population modeled here is an additional
number of daily tests, taken with a uniform random distribution of individuals
(Fig. 6).
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Fig. 6 Simulated Ontario case number trajectories at 0%, 0.25%, 0.5%, and 1% daily testing of
the Ontario population starting from May 25. New daily reported infected cases decrease with
increased population testing

Table 3 Summary of results for various simulated levels of testing performed on the Ontario
population from May 25 to October 5

δ × 102 (daily testing rate) (% of pop.) 0 0.25 0.5 1

Daily tests 0 36,416 72,832 145,665

Total tests 0 4,843,328 9,686,656 19,373,445

Case total 29,834 26,246 23,230 18,541

Case difference from 0% N/A 3588 6604 11,293

% decrease N/A 0.12027 0.22136 0.37853

Case decrease/test N/A 0.000740813 0.000681763 0.000582911

As expected, when increasing daily testing levels and isolating infected individ-
uals, we see a clear decrease in new daily infected cases reported when increasing
testing rates, as shown in Table 3:

As shown in Table 3, Ontario could have decreased total cases since May 25th by
almost 40% by conducting an additional 145,665 tests per day (1% of population),
roughly 5 times as many as were conducted daily over this time period. This level of
testing results in a 5.82911×10−4 decrease in cases per test conducted, or one fewer
case for every 1, 715.5 tests. Even by only conducting an additional 26,246 daily
tests (0.25% of population), slightly more than double the current rate, we estimate
Ontario could have avoided 3,588 cases, or 12.027% of total cases since May 25-th.
At this testing rate, each test removes an average of 7.40813 × 10−4 cases, or one
case for every 1, 349.9 tests. It is important to note there are diminishing returns on
cases removed per test as testing rate increases, as the fraction of total cases removed
each day is taken from a lower total number (Fig. 7).
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(lower panel)

5 Discussion and Conclusions

Despite drastically lowering total cases, introducing random uniform testing at rates
up to 1% of total population did not have a major impact on q̄, the behaviour
threshold for Reff ≤ 1. In order to lower q̄ by a significant number, a large
proportion of cases would have to be prevented altogether. For instance, at a 1%
daily testing rate and a 13 day disease cycle, there is a (1 − (0.7 · 0.99)13) =
8.727% chance of each infected individual being removed from the population.
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The theoretically most effective timepoint to minimize new cases via isolation of
infected individuals is immediately upon contraction.

Thus, if all individuals removed due to random uniform testing (LT ) were instead
removed from the system on day 1 of infection, it would have the same effect as
scaling q down by a factor of 0.9127, allowing for a q value 9.56% higher for
the same Reff . Since under our model individuals are removed not only on day 1,
but throughout the 13 day infected period, the effect of uniform random testing at
1% daily rate will be lesser than a hypothetical 9.56% threshold increase. Indeed,
q̄(0%) = 0.9363 · q̄(1%), or a threshold increase of about 6.803%, a lesser effect
than the ideal scenario in which q̄(0%) = 0.9127 · q̄(1%).

Unfortunately, testing is clearly bounded in its utility. In order to increase
our threshold q such that q̄ = 1, we would need to implement a testing rate
of approximately 38% of the remaining susceptible total population per day, a
logistically daunting task. While testing can clearly help control outbreaks and
reduce spread of COVID-19, it is currently limited to an aid in the control of
COVID, and cannot by itself allow us to return to pre-COVID-19 behaviour.

The approval and advent of rapid-testing can dramatically improve the testing
rate needed above. The 15 min response tests (by Abbott) or the ones developed
in British Columbia and at the University of Guelph, Ontario, can be scaled up
and used in formalized settings, such as: employers being able to test employees,
schools, retails and restaurants could screen students and patrons, etc. This would
be consistent with our previous work [23] where we assess that testing everyone
every 4–6 days would suffice to control the pandemic (i.e., keep Reff ≈ 1) without
the need of social distancing measures of various intensities. In our opinion, the
cost of implementing rapid testing on a larger scale, in conjunction with PCR tests
and public education on the value of preventative testing would compare favourably
to the current economic losses incurred by playing “whack-a-mole” with regional
pandemic outbreaks and public fatigue.
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Sub-epidemic Model Forecasts During
the First Wave of the COVID-19
Pandemic in the USA and European
Hotspots

Gerardo Chowell, Richard Rothenberg, Kimberlyn Roosa, Amna Tariq,
James M. Hyman, and Ruiyan Luo

1 Introduction

Throughout history, many of the large-scale infectious disease outbreaks, such as
pandemic influenza (1918; 2009–2010), measles, and Ebola (2014–2016), have
resulted in a single peak followed by a steady decline; therefore, many of the
mathematical models commonly used to model outbreaks tend to follow this
pattern. Other outbreaks, like HIV/AIDS and Ebola (2018–2020), however, result
in more complicated trajectories that require models that can extend beyond the
standard single-peak trends. The ongoing COVID-19 pandemic is accompanied by
complicating factors in many countries, like delayed action for social distancing
measures and premature relaxation of these measures. The sub-epidemic model
presented here is flexible to these complex patterns, while remaining relatively
simple. The model results and forecasts provide information for data scientists
and policy makers to inform future decisions regarding relaxation of intervention
measures or tighter controls for social distancing. Further, the model can infer the
start of another outbreak wave from the data, which allows hospitals and health care
settings to prepare for another potential increase of cases.

The asynchronicity of the infection patterns of the current coronavirus disease
2019 (COVID-19) pandemic illustrates the need for models that can capture
complex dynamics beyond a single-peak trajectory to forecast the worldwide spread.
This is also true for the spread within nations and within other sub-regions at various
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geographic scales. The infections in these asynchronous transmission networks
underlie the reported infection data and need to be accounted for in forecasting
models.

We analyze the COVID-19 pandemic assuming that the total number of new
infections is the sum of all the infections created in multiple asynchronous outbreaks
at differing spatial scales. We assume there are weak ties across sub-populations, and
we represent the overall epidemic as an aggregation of sub-epidemics, rather than
a single, universally connected outbreak. The sub-epidemics can start at different
time points and affect different segments of the population in different geographic
areas. Thus, we model sub-epidemics associated with transmission chains that are
asynchronously triggered and that progress somewhat independently from the other
sub-epidemics.

Jewell et al. [1] review the difficulties associated with long-term forecasting
of the ongoing COVID-19 pandemic using statistical models that are not based
on transmission dynamics. They also describe the limitations of models that use
established mortality curves to calculate the pace of growth, the most likely
inflection point, and subsequent diminution of the epidemic. The review analyzes
the need for broad uncertainty bands, particularly for sub-national estimates. It
also addresses the unavoidable volatility of both reporting and estimates based on
reports. The analysis, delivered in the spirit of caution rather than remonstration,
implies the need for other approaches that depend on overall transmission dynamics
or large-scale agent-based simulations. Our sub-epidemic approach addresses this
need in both the emerging and endemic stages of an epidemic.

This approach is analogous to the model used by Blower et al. [2] to demon-
strate how the rise and endemic leveling of tuberculosis outbreaks could be
explained by dynamical changes in the transmission parameters. A related multi-
stage approach was used by Garnett [3] to explain the pattern of spread for sexually
transmitted diseases and changes in the reproductive number during the course
of an epidemic. Rothenberg et al. [4] demonstrated that the national curve of
Penicillinase-Producing Neisseria gonorrhoeae occurrence resulted from multiple
asynchronous outbreaks.

As with HIV/AIDS, which has now entered a phase of intractable endemic
transmission in some areas [5], COVID-19 is likely to become endemic. New
vaccines and pharmacotherapy might mitigate the transmission, but the disease
will not be eradicated in the foreseeable future. Some earlier predictions based on
mathematical models predicted that COVID-19 would soon disappear or approach
a very low-level endemic equilibrium determined by herd immunity. To avoid
unrealistic medium-range projections, some investigators artificially truncate the
model projections before the model reaches these unrealistic forecasts.

Here, we demonstrate a five-parameter sub-epidemic wave modeling framework
that provides a simple characterization of unfolding trajectories of COVID-19
epidemics that are progressing across the world at different spatial scales [6].
We systematically assess calibration and forecasting performance for the ongoing
COVID-19 pandemic in hotspots located in the USA and Europe using the sub-
epidemic wave model, and we compare results with those obtained using the
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Richards model, a well-known three-parameter single-peak growth model [7]. The
sub-epidemic approach captures the rise to an initial peak followed by a wide range
of post-peak behavior, ranging from a typical decline to a steady incidence level to
repeated small waves for sub-epidemic outbreaks. This framework yields excellent
short- and intermediate-term forecasts that are not attainable with other single-peak
transmission models of similar complexity, whether mechanistic or phenomeno-
logical. We illustrate how this view of the epidemic could help data scientists and
policymakers better understand and predict the underlying transmission dynamics
of COVID-19.

2 Methods

2.1 Country-Level Data

We retrieved daily reported cumulative case data of the COVID-19 pandemic for
France, the United Kingdom (UK), and the United States of America (USA) from
the World Health Organization (WHO) website [8] and for Spain and Italy from the
corresponding governmental websites [9, 10] from early February to May 24, 2020.
We calculated the daily incidence from the cumulative trajectory and analyzed the
incidence trajectory for the 5 countries.

2.2 State-Level US Data

We also retrieved daily cumulative case count data from The COVID Tracking
Project [11] from February 27, 2020 to May 24, 2020 for five representative COVID-
19 hotspot states in the USA, namely New York, Louisiana, Georgia, Arizona and
Washington.

3 Methodology Overview: Parameter Estimation
and Short-term Forecasts with Quantified Uncertainty

3.1 Parameter Estimation

Given a model, parameter estimation is the process of finding the parameter values
and their uncertainty that best explain empirical data. In this section we briefly
describe the parameter quantification method described in refs. [12]. First, we
define the general form of a dynamic model composed by a system of h ordinary
differential equations as follows:
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ẋ1(t) = g1 (x1, x2, . . . , xh,�)

ẋ2(t) = g2 (x1, x2, . . . , xh,�)

.

.

.

ẋh(t) = gh (x1, x2, . . . , xh,�)

where ẋidenotes the rate of change of the system state xi where i = 1, 2, . . . , h and
� = (θ1, θ2, . . . , θm) is the set of model parameters.

To calibrate dynamic models describing the trajectory of epidemics, researchers
require temporal data for one or more states of the system (e.g., daily number of new
outpatients, inpatients and deaths). In this paper, we consider the case with only one
state of the system

ẋ = g (x,�)

The temporal resolution of the data typically varies according to the time scale
at which relevant processes operate (e.g., daily, weekly, yearly) and the frequency
at which the state of the system is measured. We denote the time series of n
longitudinal observations of the single state by

yti=yt1,yt2 , . . . , ytn

where i = 1, 2, . . . , nwhere ti are the time points of the time series data and n
is the number of observation time points. Let f (t,�) denote the mean of observed
incidence series yt over time, which corresponds to ẋ(t)if x(t)denotes the cumulative
count at time t. Usually the incidence series yti is assumed to have a Poisson
distribution with mean ẋ(t)or a negative binomial distribution if over-dispersion is
present. Modeling an error structure using a negative binomial distribution would
require the estimation of the over-dispersion coefficient. In the same way we
estimate other model parameters, one would need to estimate the extra parameter
from data.

Model parameters are estimated by fitting the model solution to the observed
data via nonlinear least squares [13]. This is achieved by searching for the set

of parameters �̂ =
(
θ̂1, θ̂2, . . . , θ̂m

)
that minimizes the sum of squared differ-

ences between the observed data yti=yt1,yt2 . . . ..ytnand the model mean which
corresponds to f (ti,�). That is, � = (θ1, θ2, . . . , θm) is estimated by �̂ =
arg min

∑n
i=1

(
f (ti ,�)− yti

)2.

Then, �̂ is the parameter set that yields the smallest differences between the
data and model. This parameter estimation method gives the same weight to all of
the data points. This method does not require a specific distributional assumption
for yt, except for the first moment E[yt] = f (ti;Θ); meaning, the mean at time t is
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equivalent to the count (e.g., number of cases) at time t [14]. Moreover, this method
yields asymptotically unbiased point estimates regardless of any misspecification

of the variance-covariance error structure. Hence, the model mean f
(
ti , �̂

)
yields

the best fit to observed data yti in terms of squared L2 norm. More generally, this
objective function can be extended to simultaneously fit more than one state variable
to their corresponding observed time series.

If we assume a Poisson error structure in the data, the parameters can be esti-
mated via maximum likelihood estimation (MLE). Consider the probability density
function (PDF) that specifies the probability of observing data yt given the parameter
set �, or f (yt|�); given a set of parameter values, the PDF can show which data
are more probable, or more likely [14]. MLE aims to determine the values of the
parameter set that maximizes the likelihood function, where the likelihood function
is defined as L(�| yt) = f (yt|�) [14, 15]. The resulting parameter set is called the
MLE estimate, the most likely to have generated the observed data. Specifically, the
MLE estimate is obtained by maximizing the corresponding log-likelihood function.
For count data with variability characterized by the Poisson distribution, we utilize
Poisson-MLE [16, 17], where the log-likelihood function is given by:

L
(
�|yti

) =
n∑

i=1

[
yti log (f (ti;�))− f (ti;�)

]

and the Poisson-MLE estimate is expressed as

�̂=argmax
n∑

i=1

[
yti log (f (ti;�))− f (ti;�)

]

.
In Matlab, we can use the fmincon function to set the optimization problem.
To quantify parameter uncertainty, we follow a parametric bootstrapping

approach which is particularly powerful, as it allows the computation of standard
errors and related statistics in the absence of closed-form formulas [18, 19]. As
previously described in ref. [12], we generate S replicates from the best-fit model

f
(
ti , �̂

)
by assuming an error structure in the data (e.g., Poisson) in order to

quantify the uncertainty of the parameter estimates and construct confidence

intervals. Specifically, using the best-fit model f
(
ti , �̂

)
, we generate S-times

replicated simulated datasets, where the observation at time tiis sampled from

the Poisson distribution with mean f
(
ti , �̂

)
. Next, we refit the model to each

of the S simulated datasets to re-estimate parameters for each of the S-simulated
realizations. The new parameter estimates for each realization are denoted by

�̂iwhere i = 1, 2, . . . , S. Using the sets of re-estimated parameters
(
�̂i

)
,it is

possible to characterize the empirical distribution of each estimate and construct
confidence intervals for each parameter. Moreover, the resulting uncertainty around
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the model fit is given by f
(
t, �̂1

)
, f

(
t, �̂2

)
, . . . , f

(
t, �̂S

)
. It is worth noting

that a Poisson error structure is the most common for modeling count data where
the mean of the distribution equals the variance. In situations where the time series
data show over-dispersion, a negative binomial distribution can be employed instead
[12].

3.2 Model-Based Forecasts with Quantified Uncertainty

Forecasting from a given model f
(
t, �̂

)
, h units of time ahead is straight forward:

f
(
t + h, �̂

)
. We can use the RMSE to quantify the forecasting performance

of the models. The uncertainty of the forecasted value can be obtained using the
previously described parametric bootstrap method. Let

f
(
t + h, �̂1

)
, f

(
t + h, �̂2

)
, . . . , f

(
t + h, �̂S

)

denote the forecasted value of the current state of the system propagated by a horizon
of h time units, where �̂i denotes the estimation of parameter set � from the
ith bootstrap sample. We can calculate the bootstrap variance of the estimates to
measure the uncertainty of the forecasts, and the 2.5% and 97.5% percentiles to
construct 95% confidence intervals.

4 Generalized Growth Model (GGM)

The generalized growth model (GGM) is a simple model that characterizes the early
ascending phase of the epidemic. Previous studies have highlighted the occurrence
of early sub-exponential growth patterns in various infectious disease outbreaks.
This model allows for the relaxation of exponential growth by modulating a “scaling
of growth parameter”, p, which allows the model to capture a range of epidemic
growth profiles [20]. The GGM is given by the following differential equation:

dC(t)

dt
= C′(t) = rC(t)p

In this equation C
′
(t) describes the incidence curve over time t, C(t) describes

the cumulative number of cases at time t, p∈[0,1] is a “deceleration or scaling
of growth” parameter and r is the growth rate. This model represents constant
incidence over time if p = 0 and exponential growth for cumulative cases if p = 1. If
p is in the range 0 < p < 1, then the model indicates sub-exponential or polynomial
growth dynamics [20–25].
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5 Generalized Logistic Growth Model

The generalized logistic growth model (GLM) is an extension of the simple logistic
growth model that allows for capturing a range of epidemic growth profiles, includ-
ing sub-exponential and exponential growth dynamics. The GLM characterizes
epidemic growth through the intrinsic growth rate r, a dimensionless “deceleration
of growth” parameter p, and the final epidemic size, k0. The deceleration parameter
modulates the epidemic growth patterns including sub-exponential growth (0 < p <
1), constant incidence (p = 0) and exponential growth dynamics (p = 1). The GLM
is given by the following differential equation:

dC(t)

dt
= rCp(t)

(
1 − C(t)

k0

)

where dC(t)
dt

describes the incidence over time t, and the cumulative number of cases
at time t is given by (t) [25–28].

6 Richards Growth Model

The Richards growth model is also an extension of the simple logistic growth model
and relies on three parameters. It extends the simple logistic growth model by
incorporating a scaling parameter, a, that measures the deviation from the symmetric
simple logistic growth curve [7, 21, 29]. The Richards model is given by the
differential equation:

dC(t)

dt
= rC(t)

[
1 −

(
C(t)

k0

)a]

where c(t) represents the cumulative case count at time t, r is the growth rate, a is a
scaling parameter and k0 is the final epidemic size.

6.1 Sub-epidemic Wave Modeling Motivation

The concept of weak ties was originally proposed by Granovetter in 1973 [30]
to form a connection between microevents and macro events. We use this idea to
link the person-to-person viral transmission of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) to the trajectory of the COVID-19 epidemic. The
transient connection between two people with different personal networks that
results in the transference of the virus between the networks can be viewed as a
weak tie. This event can cause asynchronous epidemic curves within the overall
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network. The events can spread the infection between sub-populations defined by
neighborhoods, zip codes, counties, states, or countries. The resulting epidemic
curve can be modeled as the sum of asynchronous sub-epidemics that reflect the
movement of the virus into new populations.

In the absence of native immunity, specific viricidal treatment, or a working
vaccine, our non-pharmacological preventive tools—testing, contact tracing, social
separation, isolation, lockdown—are the key influences on sub-epidemic spread
[31–34]. The continued importation of new cases will result in low-level endemic
transmission. A model based on sub-epidemic events can forecast the level of
endemic spread at a steady state. This can then be used to guide intervention efforts
accounting for the continued seeding of new infections.

6.2 Sub-epidemic Modeling Approach

We use a five-parameter epidemic wave model that aggregates linked overlapping
sub-epidemics [6]. The strength (e.g., weak vs. strong) of the overlap determines
when the next sub-epidemic is triggered and is controlled by the onset threshold
parameter, Cthrs. The incidence defines a generalized-logistic growth model (GLM)
differential equation for the cumulative number of cases, Ct, at time t:

dC(t)

dt
= rCp(t)

(
1 − C(t)

K0

)
.

Here, r is the fixed growth rate, and p is the scaling of growth parameter, and K0 is
the final size of the initial sub-epidemic. The growth rate depends on the parameter .
If p = 0, then the early incidence is constant over time, while if p = 1 then the early
incidence grows exponentially. Intermediate values of (0 < p< 1) describe early sub-
exponential (e.g. polynomial) growth patterns.

The sub-epidemics are modeled by a system of coupled differential equations:

dCi(t)

dt
= rAi−1(t)Ci(t)

p

(
1 − Ci(t)

Ki

)
,

Here Ci(t) is the cumulative number of infections for sub-epidemic i, and Ki is the
size of the ith sub-epidemic where i= 1, . . . , n. Starting from an initial sub-epidemic
size K0, the size of consecutive sub-epidemics Ki decline at the rate q following an
exponential or power-law function.

The onset timing of the (i + 1)th sub-epidemic is determined by the indicator
variable Ai(t). This results in a coupled system of sub-epidemics where the (i +
1)th sub-epidemic is triggered when the cumulative number of cases for the ith sub-
epidemic exceeds a total of Cthr cases. The sub-epidemics are overlapping because

the Cthr sub-epidemic takes off before the i
th sub-epidemic completes its course.

That is,
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Ai(t) =
{

1 Ci(t) > Cthr

0 Otherwise
, i = 1, 2, . . . , n− 1

The threshold parameters are defined so 1≤Cth<K0 and A0(t) = 1 for the first
sub-epdemic.

This framework allows the size of the ith sub-epidemic (Ki) to remain steady or
decline based on the factors underlying the transmission dynamics. These factors
could include a gradually increasing effect of public health interventions or popula-
tion behavior changes that mitigate transmission. We consider both exponential and
inverse decline functions to model the size of consecutive sub-epidemics.

6.3 Exponential Decline of Sub-epidemic Sizes

If consecutive sub-epidemics decline exponentially, then Ki is given by:

Ki = K0e
−q(i−1)

where K0 is the size of the initial sub-epidemic (K1 = K0). If q = 0, then the model
predicts an epidemic wave comprising sub-epidemics of the same size. When q > 0,
then the total number of sub-epidemics ntot is finite and depends on Cthr, q, and
K0 The sub-epidemic is only triggered if Cthr ≤ Ki, resulting in a finite number of
sub-epidemics,

ntot =
⌊
− 1

q
ln

(
Cthr

K0

)
+ 1

⌋

The brackets ∗� denote the largest integer that is smaller than or equal to *. The
total size of the epidemic wave composed of ntot overlapping sub-epidemics has a
closed-form solution:

Ktot =
ntot∑

i=1

K0e
−q(i−1) = K0

(
1 − e−qntot )
1 − e−q

6.4 Inverse Decline of Sub-epidemic Sizes

The consecutive sub-epidemics decline according to the inverse function given by:

Ki = K0

(
1

i

)q
.
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When q > 0, then the total number of sub-epidemics ntot is finite and is given by:

ntot =
[(
Cthr

K0

)− 1
q

]

.

The total size of an epidemic wave is the sum of n overlapping sub-epidemics,

Ktot =
ntot∑

i=1

K0

(
1

i

)q
.

In the absence of control interventions or behavior change (q = 0), the total
epidemic size depends on a given number n of sub-epidemics,

Ktot = nK0.

The initial number of cases is given by C1(0) = I0 where I0 is the initial number
of cases in the observed case data. The cumulative cases, C(t), is the sum of all
cumulative infections over the n overlapping sub-epidemics waves:

Ctot (t) =
n∑

i=1

Ci(t)

6.5 Parameter Estimation

Fitting the model to the time series of case incidence requires estimating up to five
model parameters � = (Cthr,q,r, p,K). If a single sub-epidemic is sufficient to fit
the data, then the model is simplified to the three-parameter generalized-logistic
growth model. The model parameters were estimated by a nonlinear least square
fit of the model solution to the observed incidence data [13]. This is achieved by

searching for the set of parameter �̂ =
(
θ̂1, θ̂2, . . . , θ̂m

)
that minimizes the sum of

squared differences between the observed incidence data yti = yt1 , yt2 , . . . , ytN and
the corresponding mean incidence curve denoted by f (ti,� ). That is, the parameters
are estimated by

�̂ = argmin
N∑

i=1

(
f (ti ,�)− yti

)2

where ti are the time points at which the time-series data are observed, and N is the

number of data points available for inference. Hence, the model solution f
(
ti , �̂

)

yields the best fit to the time series data yti where �̂ is the vector of parameter
estimates.
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We solve the nonlinear least squares problem using the trust-region reflective
algorithm. We used parametric bootstrap, assuming an error structure described in
the next section, to quantify the uncertainty in the parameters obtained by a non-
linear least squares fit of the data, as described in refs. [12, 35]. Our best-fit model

solution is given by f
(
t, �̂

)
where �̂ is the vector of parameter estimates. Our

MATLAB (The MathWorks, Inc) code for model fitting along with outbreak datasets
is publicly available [36].

The confidence interval for each estimated parameter and 95% prediction
intervals of the model fits were obtained using parametric bootstrap [12]. Let S
denote the number of bootstrap realizations and �̂i denote the re-estimation of
parameter set� from the ith bootstrap sample. The variance and confidence interval
for �̂ are estimated from �̂1, . . . , �̂S. Similarly, the uncertainty of the model

forecasts, f
(
t, �̂

)
, is estimated using the variance of the parametric bootstrap

samples

f
(
t, �̂1

)
, f

(
t, �̂2

)
, . . . , f

(
t, �̂s

)
.

where �̂i denotes the estimation of parameter set � from the ith bootstrap sample.
The 95% prediction intervals of the forecasts in the examples are calculated from
the 2.5% and 97.5% percentiles of the bootstrap forecasts.

6.6 Error Structure

We model a negative binomial distribution for the error structure and assume a
constant variance/mean ratio over time (i.e., the overdispersion parameter). To
estimate this constant ratio, we group every four daily observations into a bin across
time, calculate the mean and variance for each bin, and then estimate a constant
variance/mean ratio by calculating the average of the variance/mean ratios over
these bins. Exploratory analyses indicate that this ratio is frequently stable across
bins, except for 1–2 extremely large values, which could result from a sudden
increase or decrease in the number of reported cases. These sudden changes could
result from changes in case definition or a weekend effect whereby the number
of reported cases decreases systematically during weekends. Hence, these extreme
large values of variance/mean ratio are excluded when estimating the constant
variance/mean ratio.
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6.7 Model Calibration and Forecasting Approach

For each of the ten regions, we analyzed six weekly sequential forecasts, conducted
on March 30, April 6, April 13, April 20, April 27, and May 4, 2020, and
assessed the calibration and forecasting performances at increasing time horizons
of 2, 4, 6, . . . , and 20 days ahead. The models were sequentially re-calibrated each
week using the most up-to-date daily curve of COVID-19 reported cases. That is,
each sequential forecast included one additional week of data than the previous
forecast. For comparison, we also generated forecasts using the Richards model, a
well-known single-peak growth model with three parameters [7, 37].

6.8 Model Performance

To assess both the quality of the model fit and the short-term forecasts, we used
four performance metrics: the mean absolute error (MAE), the mean squared error
(MSE), the coverage of the 95% prediction intervals, and the mean interval score
(MIS) [38]. The mean absolute error (MAE) is given by:

MAE = 1

n

N∑

i=1

∣∣∣f
(
ti , �̂

)
− yti

∣∣∣

Here yti is the time series of incident cases describing the epidemic wave where ti
are the time points of the time series data [39]. Similarly, the mean squared error
(MSE) is given by:

MSE = 1

n

N∑

i=1

(
f
(
ti , �̂

)
− yti

)2

In addition, we assessed the coverage of the 95% prediction interval, e.g., the
proportion of the observations that fell within the 95% prediction interval as well as
a metric that addresses the width of the 95% prediction interval as well as coverage
via the mean interval score (MIS) [38, 40] which is given by:

MIS = 1

h

h∑

i=1

(
Uti − Lti

) + 2

0.05

(
Lti − yti

)
I
{
yti < Lti

} + 2

0.05

(
yti − Uti

)
I
{
yti > Uti

}

where Lt and Ut are the lower and upper bounds of the 95% prediction interval and
I{} is an indicator function. Thus, this metric rewards for narrow 95% prediction
intervals and penalizes at the points where the observations are outside the bounds
specified by the 95% prediction interval where the width of the prediction interval
adds up to the penalty (if any) [38].
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The mean interval score (MIS) and the coverage of the 95% prediction intervals
take into account the uncertainty of the predictions whereas the mean absolute
error (MAE) and mean squared error (MSE) only assess the closeness of the mean
trajectory of the epidemic to the observations [41]. These performance metrics have
also been adopted in international forecasting competitions [40].

For comparison purposes, we compare the performance of the sub-epidemic
wave model with that obtained from the 3-parameter Richards model [7], a well-
known single-peak growth model given by:

Ċ(t) = rC(t)

(

1 −
(
C(t)

K

)θ)

,

where θ determines the deviation from symmetry, and again r is the growth rate, and
K is the final epidemic size.

7 Results

7.1 Model Parameters and Calibration Performance

A five-parameter dynamic model, postulating sub-exponential growth in linked sub-
epidemics, captures the aggregated growth curve in diverse settings (Figs. 1, 2,
and 3 and Figs. S3, S4, S5, S6, S7, S8, and S9). Using national-level data from
five countries, we estimate the initial sub-exponential growth parameter (p) with
a mean ranging from 0.7 to 0.9. Our analysis of five representative hotspot states
in the USA indicates that early growth was sub-exponential in New York, Arizona,
Georgia, and Washington (mean p ~ 0.5–0.9) and exponential in Louisiana (Table 1).
Moreover, the rate of sub-epidemic decline that captures the effects of interventions
and population behavior changes is shown in Fig. S10. The decay rate was fastest
for Italy, followed by France, with the lowest decline rate in the USA (Table 1).
Within the USA, the decline rate was the fastest for New York and Louisiana and
more gradual for Georgia and Washington (Fig. S10).

The calibration performance across all regions presented in Figs. S1 and S2
is substantially better for the overlapping sub-epidemic model compared to the
Richards model based on each of the performance metrics (for MAE, MSE, and
MIS, smaller is better; for 95% PI coverage, larger is better). An informative
example of the model fit to the trajectory of the COVID-19 epidemic in Spain
(Fig. 1) shows the early growth of the epidemic in a single large sub-epidemic
followed by a smaller sub-epidemic (blue in row 2, column 2 of Fig. 1), which
is then followed by a much smaller sub-epidemic (green). In row 1 (Fig. 1), the
parameter distributions demonstrate relatively small confidence intervals. Thus, the
model captures a common phenomenon in epidemic situations: an initial steep rise,
followed by a leveling or decline, then a second rise, and a subsequent repeat of
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Fig. 1 The best fit of the sub-epidemic model to the COVID-19 epidemic in Spain. The sub-
epidemic wave model successfully captures the multimodal pattern of the COVID-19 epidemic.
Further, parameter estimates are well identified, as indicated by their relatively narrow confidence
intervals. The top panels display the empirical distribution of estimated parameters. Bottom panels
show the model fit (left), the sub-epidemic profile (center), and the residuals (right). Black circles
correspond to the data points. The best model fit (solid red line) and 95% prediction interval
(dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual
bootstrapped curves. Three hundred realizations of the sub-epidemic waves are plotted using
different colors

the same pattern. A somewhat different pattern is observed in the USA, which
experienced sustained transmission with high mortality for a long period (Fig. 2). A
single epidemic wave failed to capture the early growth phase and the later leveling
off; whereas, the aggregation of multiple sub-epidemics produces a better fit to the
observed dynamics. In comparison, New York, the early epicenter of the pandemic
in the USA, displays a similar sub-epidemic profile, while the sub-epidemic sizes
decline at a much faster rate (Fig. 3).

Similar composite figures for the remaining regions (Figs. S3, S4, S5, S6, S7,
S8, and S9) demonstrate diverse patterns of underlying sub-epidemic waves. For
example, Italy experienced a single peak, largely the result of an initial sub-epidemic
(in red), that was quickly followed by several rapidly declining sub-epidemics
that slowed the downward progression (Fig. S3). The UK’s sub-epidemic profile
resembles that of the USA, but the sub-epidemics decline at a faster rate (Fig. S5;
Table 1).
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Fig. 2 The best fit of the sub-epidemic model to the COVID-19 epidemic in the USA. The sub-
epidemic wave model successfully captures the multimodal pattern of the COVID-19 epidemic.
Further, parameter estimates are well identified, as indicated by their relatively narrow confidence
intervals. The top panels display the empirical distribution of estimated parameters. Bottom panels
show the model fit (left), the sub-epidemic profile (center), and the residuals (right). Black circles
correspond to the data points. The best model fit (solid red line) and 95% prediction interval
(dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual
bootstrapped curves. Three hundred realizations of the sub-epidemic waves are plotted using
different colors

7.2 Forecasting Performance

The sub-epidemic wave model outperformed the simpler Richards model in most
of the 2-20 day ahead forecasts (see Fig. 4 and Figs. S11, S12, S13, S14, S15, S16,
S17, S18, and S19). We observe that the sub-epidemic model forecasting accuracy
increases as evidence for the second sub-epidemic appears in the data. For instance,
the initial forecasts for the USA using the sub-epidemic model (Figs. 5 and S20)
underestimate reported incidence for the 20 days after April 7th, which is likely
attributable to the unexpected leveling off of the epidemic wave. However, this
model provided more accurate forecasts in subsequent 20-day forecasts.

Similarly, sub-national models of the USA state trajectories confirm the general
findings of fit and 20-day forecasting (see supplementary materials). Among the
most striking of these is the sub-epidemic structure modeled for New York state
(Fig. S25). When the sub-epidemic model is calibrated by April 7, 2020, a single
sub-epidemic is observed; however, subsequent weeks of data helped infer an under-
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Fig. 3 The best fit of the sub-epidemic model to the COVID-19 epidemic in New York State.
The sub-epidemic wave model successfully captures the overlapping sub-epidemic growth pattern
of the COVID-19 epidemic. Further, parameter estimates are well identified, as indicated by
their relatively narrow confidence intervals. The top panels display the empirical distribution of
estimated parameters. Bottom panels show the model fit (left), the sub-epidemic profile (center),
and the residuals (right). Black circles correspond to the data points. The best model fit (solid red
line) and 95% prediction interval (dashed red lines) are also shown. Cyan curves are the associated
uncertainty from individual bootstrapped curves. Three hundred realizations of the sub-epidemic
waves are plotted using different colors

lying overlapping sub-epidemic structure and correctly forecasted the subsequent
downward trend. With variation, other states shown in the supplementary materials
provided similar confirmation of the method.

8 Discussion

Our sub-epidemic modeling framework is based on the premise that the aggregation
of regular sub-epidemic dynamics can determine the shape of the trajectory
of epidemic waves observed at larger spatial scales. This framework has been
particularly suitable for forecasting the spatial wave dynamics of the COVID-19
pandemic, where the trajectory of the epidemic at different spatial scales does not
display a single peak followed by a “burnout” period, but instead follows more
complex transmission patterns including leveling off, plateaus, and long-tail decline
periods. The model overwhelmingly outperformed a standard growth model that
only allows for single-peak transmission dynamics. Model parameters also inform
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Fig. 4 Mean performance of the sub-epidemic wave (red) and the Richards (blue) models in
2-20 day ahead forecasts conducted during the epidemic in the USA. The sub-epidemic model
outperformed the Richards model across all metrics and forecasting horizons.

the effect of interventions and population behavior changes in terms of the sub-
epidemic decay rate.

Overall, this approach predicts that a relaxation of the tools currently at our
disposal—primarily aimed at preventing person-to-person and person-to-surface
contact—would result in continuing sub-epidemics and ongoing endemic trans-
mission. If we add widespread availability of testing, contact tracing, and cluster
investigation (e.g. nursing homes, meatpacking plants, and other sites of unavoid-
able congregation), early suppression of sub-epidemics may be possible. The United
States leads in the total number of tests performed, but it is currently ranked
25th among all nations in testing per capita [42]. The sub-epidemic description of
COVID-19 transmission provides a rationale for substantial increases in testing.

Parsimony in model construction is not an absolute requirement, but it has several
advantages. With fewer parameters to estimate, the joint simulations are more
efficient and more understandable. Degenerate results are more easily avoided, and,
when properly constructed, confidence intervals for the key parameters are more
constrained. In our projections, we fit five parameters to the data:
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Fig. 5 Sub-epidemic profiles of the sequential 20-day ahead forecasts for the COVID-19 epidemic
in the USA. Different colors represent different sub-epidemics of the epidemic wave profile.
The aggregated trajectories are shown in gray, and black circles correspond to the data points.
The vertical line separates the calibration period (left) from the forecasting period (right). The
sequential forecasts were conducted on March 30, April 6, April 13, April 20, April 27, and May
4, 2020

1. The onset threshold parameter, Cthr, that triggers the onset of a new sub-epidemic
and determines if the overlap is weak or strong,

2. The new epidemic starting size, K0,
3. The size of consecutive sub-epidemics decline rates q,
4. The positive parameter r denoting the growth rate of a sub-epidemic, and
5. The “scaling of growth” parameter p ∈ [0,1](exponential or sub-exponential).

As shown in Fig. 1, the confidence limits for these parameters are narrow, and
the scaling of growth parameter is constantly in the 0.8–0.9 range (Table 1).



104 G. Chowell et al.

Short-term forecasting is an important attribute of the model. Though long-term
forecasts are of value, their dependability varies inversely with the time horizon. The
20-day forecasts are most valuable for the monitoring, management, and relaxation
of the social distancing requirements. The early detection of potential sub-epidemics
can signal the need for strict distancing controls, and the reports of cases can identify
the geographic location of incubating sub-epidemics. No single model or method
can provide an unerring approach to epidemic control. The multiplicity of models
now available can be viewed as a source of confusion, but it is better thought
of as a strength that provides multiple perspectives [43–45]. The sub-epidemic
approach adds to the current armamentarium for guiding us through the COVID-
19 pandemic.
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Appendix

Fig. S1 The calibration performance metrics across five countries are uniformly better for the
overlapping sub-epidemic models (for MAE, MSE, and MIS, smaller is better; for % covered,
larger is better)
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Fig. S2 The calibration performance metrics across five hotspots in the USA are uniformly better
for the overlapping sub-epidemic models (for MAE, MSE, and MIS, smaller is better; for %
covered, larger is better)
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Fig. S3 The best fit of the sub-epidemic model to the COVID-19 epidemic in Italy. The sub-
epidemic wave model successfully captures the multimodal pattern of the COVID-19 epidemic.
Further, parameter estimates are well identified, as indicated by their relatively narrow confidence
intervals. The top panels display the empirical distribution of r, p, K, and q. Bottom panels show the
model fit (left), the sub-epidemic profile (center), and the residuals (right). Black circles correspond
to the data points. The best model fit (solid red line) and 95% prediction interval (dashed red lines)
are also shown. Cyan curves are the associated uncertainty from individual bootstrapped curves.
Three hundred realizations of the sub-epidemic waves are plotted using different colors
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Fig. S4 The best fit of the sub-epidemic model to the COVID-19 epidemic in France. The sub-
epidemic wave model successfully captures the multimodal pattern of the COVID-19 epidemic.
Further, parameter estimates are well identified, as indicated by their relatively narrow confidence
intervals. The top panels display the empirical distribution of r, p, K, and q. Bottom panels show the
model fit (left), the sub-epidemic profile (center), and the residuals (right). Black circles correspond
to the data points. The best model fit (solid red line) and 95% prediction interval (dashed red lines)
are also shown. Cyan curves are the associated uncertainty from individual bootstrapped curves.
Three hundred realizations of the sub-epidemic waves are plotted using different colors
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Fig. S5 The best fit of the sub-epidemic model to the COVID-19 epidemic in the United
Kingdom. The sub-epidemic wave model successfully captures the multimodal pattern of the
COVID-19 epidemic. Further, parameter estimates are well identified, as indicated by their
relatively narrow confidence intervals. The top panels display the empirical distribution of r, p, K,
and q. Bottom panels show the model fit (left), the sub-epidemic profile (center), and the residuals
(right). Black circles correspond to the data points. The best model fit (solid red line) and 95%
prediction interval (dashed red lines) are also shown. Cyan curves are the associated uncertainty
from individual bootstrapped curves. Three hundred realizations of the sub-epidemic waves are
plotted using different colors
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Fig. S6 The best fit of the sub-epidemic model to the COVID-19 epidemic in Louisiana, USA.
The sub-epidemic wave model successfully captures the multimodal pattern of the COVID-19
epidemic. Further, parameter estimates are well identified, as indicated by their relatively narrow
confidence intervals. The top panels display the empirical distribution of r, p, K, and q. Bottom
panels show the model fit (left), the sub-epidemic profile (center), and the residuals (right). Black
circles correspond to the data points. The best model fit (solid red line) and 95% prediction interval
(dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual
bootstrapped curves. Three hundred realizations of the sub-epidemic waves are plotted using
different colors
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Fig. S7 The best fit of the sub-epidemic model to the COVID-19 epidemic in Georgia, USA.
The sub-epidemic wave model successfully captures the multimodal pattern of the COVID-19
epidemic. Further, parameter estimates are well identified, as indicated by their relatively narrow
confidence intervals. The top panels display the empirical distribution of r, p, K, and q. Bottom
panels show the model fit (left), the sub-epidemic profile (center), and the residuals (right). Black
circles correspond to the data points. The best model fit (solid red line) and 95% prediction interval
(dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual
bootstrapped curves. Three hundred realizations of the sub-epidemic waves are plotted using
different colors
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Fig. S8 The best fit of the sub-epidemic model to the COVID-19 epidemic in Arizona, USA.
The sub-epidemic wave model successfully captures the multimodal pattern of the COVID-19
epidemic. Further, parameter estimates are well identified, as indicated by their relatively narrow
confidence intervals. The top panels display the empirical distribution of r, p, K, and q. Bottom
panels show the model fit (left), the sub-epidemic profile (center), and the residuals (right). Black
circles correspond to the data points. The best model fit (solid red line) and 95% prediction interval
(dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual
bootstrapped curves. Three hundred realizations of the sub-epidemic waves are plotted using
different colors
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Fig. S9 The best fit of the sub-epidemic model to the COVID-19 epidemic in Washington.
The sub-epidemic wave model successfully captures the multimodal pattern of the COVID-19
epidemic. Further, parameter estimates are well identified, as indicated by their relatively narrow
confidence intervals. The top panels display the empirical distribution of r, p, K, and q. Bottom
panels show the model fit (left), the sub-epidemic profile (center), and the residuals (right). Black
circles correspond to the data points. The best model fit (solid red line) and 95% prediction interval
(dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual
bootstrapped curves. Three hundred realizations of the sub-epidemic waves are plotted using
different color
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Fig. S10 The sub-epidemic decline function across countries and USA states based on results
presented in Table 1
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Fig. S11 Mean performance of the sub-epidemic wave and the Richards models in 2–20 day
ahead forecasts conducted during the epidemic in Italy. The sub-epidemic model outperformed the
Richards model across all metrics and forecasting horizons except for 2-day ahead forecasts based
on the MAE and the MSE



116 G. Chowell et al.

Fig. S12 Mean performance of the sub-epidemic wave and the Richards models in 2–20 day
ahead forecasts conducted during the epidemic in Spain. The sub-epidemic model outperformed
the Richards model across all metrics and forecasting horizons, but the MSE and MAE reached
similar values at longer forecasting horizons
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Fig. S13 Mean performance of the sub-epidemic wave and the Richards models in 2–20 day
ahead forecasts conducted during the epidemic in France. The sub-epidemic model outperformed
the Richards model across all metrics and forecasting horizons
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Fig. S14 Mean performance of the sub-epidemic wave and the Richards models in 2–20 day
ahead forecasts conducted during the epidemic in the UK. The sub-epidemic model outperformed
the Richards model across all metrics and forecasting horizons except for 2-day ahead forecasts
for which the Richards model reached somewhat better performance
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Fig. S15 Mean performance of the sub-epidemic wave and the Richards models in 2–20 day
ahead forecasts conducted during the epidemic in New York. The sub-epidemic model outper-
formed the Richards model across all forecasting horizons based on the PI Coverage and the MIS
except for 2-day ahead forecasts. However, the Richards model more frequently outperformed the
sub-epidemic wave model based on the MAE and MSE
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Fig. S16 Mean performance of the sub-epidemic wave and the Richards models in 2–20 day
ahead forecasts conducted during the epidemic in Louisiana. The sub-epidemic model outper-
formed the Richards model across all metrics and forecasting horizons
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Fig. S17 Mean performance of the sub-epidemic wave and the Richards models in 2–20 day
ahead forecasts conducted during the epidemic in Georgia. The sub-epidemic model outperformed
the Richards model across all metrics and forecasting horizons
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Fig. S18 Mean performance of the sub-epidemic wave and the Richards models in 2–20 day
ahead forecasts conducted during the epidemic in Arizona. The sub-epidemic model outperformed
the Richards model across all metrics and forecasting horizons
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Fig. S19 Mean performance of the sub-epidemic wave and the Richards models in 2–20 day
ahead forecasts conducted during the epidemic in Washington. The sub-epidemic model outper-
formed the Richards model across all metrics and forecasting horizons
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Fig. S20 Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19
epidemic in the USA. Black circles correspond to the data points. The model fit (solid red line) and
95% prediction interval (dashed red lines) are also shown. The vertical line separates the calibration
period (left) from the forecasting period (right). The sequential forecasts were conducted on March
30, April 6, April 13, April 20, April 27, and May 4, 2020
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Fig. S21 Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-
19 epidemic in Italy. Black circles correspond to the data points. The model fit (solid red line) and
95% prediction interval (dashed red lines) are also shown. The vertical line separates the calibration
period (left) from the forecasting period (right). The sequential forecasts were conducted on March
30, April 6, April 13, April 20, April 27, and May 4, 2020
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Fig. S22 Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19
epidemic in France. Black circles correspond to the data points. The model fit (solid red line) and
95% prediction interval (dashed red lines) are also shown. The vertical line separates the calibration
period (left) from the forecasting period (right). The sequential forecasts were conducted on March
30, April 6, April 13, April 20, April 27, and May 4, 2020
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Fig. S23 Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19
epidemic in Spain. Black circles correspond to the data points. The model fit (solid red line) and
95% prediction interval (dashed red lines) are also shown. The vertical line separates the calibration
period (left) from the forecasting period (right). The sequential forecasts were conducted on March
30, April 6, April 13, April 20, April 27, and May 4, 2020
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Fig. S24 Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19
epidemic in the UK. Black circles correspond to the data points. The model fit (solid red line) and
95% prediction interval (dashed red lines) are also shown. The vertical line separates the calibration
period (left) from the forecasting period (right). The sequential forecasts were conducted on March
30, April 6, April 13, April 20, April 27, and May 4, 2020
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Fig. S25 Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19
epidemic in New York State. Black circles correspond to the data points. The model fit (solid red
line) and 95% prediction interval (dashed red lines) are also shown. The vertical line separates
the calibration period (left) from the forecasting period (right). The sequential forecasts were
conducted on March 30, April 6, April 13, April 20, April 27, and May 4, 2020



130 G. Chowell et al.

Fig. S26 Sub-epidemic profiles of the sequential 20-day ahead forecasts for the COVID-19
epidemic in New York. Different colors represent different sub-epidemics of the epidemic wave
profile. The aggregated trajectories are shown in gray and black circles correspond to the data
points. The vertical line separates the calibration period (left) from the forecasting period (right).
The sequential forecasts were conducted on March 30, April 6, April 13, April 20, April 27, and
May 4, 2020
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Fig. S27 Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19
epidemic in Louisiana. Black circles correspond to the data points. The model fit (solid red line) and
95% prediction interval (dashed red lines) are also shown. The vertical line separates the calibration
period (left) from the forecasting period (right). The sequential forecasts were conducted on March
30, April 6, April 13, April 20, April 27, and May 4, 2020
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Fig. S28 Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19
epidemic in Georgia. Black circles correspond to the data points. The model fit (solid red line) and
95% prediction interval (dashed red lines) are also shown. The vertical line separates the calibration
period (left) from the forecasting period (right). The sequential forecasts were conducted on March
30, April 6, April 13, April 20, April 27, and May 4, 2020
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Fig. S29 Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19
epidemic in Arizona. Black circles correspond to the data points. The model fit (solid red line) and
95% prediction interval (dashed red lines) are also shown. The vertical line separates the calibration
period (left) from the forecasting period (right). The sequential forecasts were conducted on March
30, April 6, April 13, April 20, April 27, and May 4, 2020
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Fig. S30 Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-
19 epidemic in Washington. Black circles correspond to the data points. The model fit (solid red
line) and 95% prediction interval (dashed red lines) are also shown. The vertical line separates
the calibration period (left) from the forecasting period (right). The sequential forecasts were
conducted on March 30, April 6, April 13, April 20, April 27, and May 4, 2020
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A Model on the Large Scale Use
of Convalescent Plasma to Treat Patients
with Severe Symptoms

Xi Huo

1 Background

Convalescent plasma (sera) refers to the processed blood product, which contains
neutralized antibodies against a specific pathogen. Convalescent plasma therapy
(CP therapy), also known as passive antibody therapy, refers to the treatment that
transfuses convalescent plasma donated by recent survivors of infectious disease
into the ills [1]. This therapy can be dated back to the 1890s and was once the only
possible treatment for several infectious diseases before the antibiotic era. In the past
two decades, convalescent plasma therapy has been used to treat patients with severe
illness and life-threatening conditions during several emerging infectious disease
outbreaks, such as severe acute respiratory syndrome (SARS-CoV-1) in 2002-2003,
H1N1 in 2009, Middle East respiratory syndrome (MERS) in 2012, Ebola in 2014-
2016, and the ongoing COVID-19 outbreak [2].

On March 24th 2020, the US Food and Drug Administration (FDA) allowed
healthcare providers to administer CP as an investigational treatment for patients
with severe COVID-19 symptoms. From April 3 to June 2, 2020, the FDA Expanded
Access Program for COVID-19 convalescent plasma transfused a convenience
sample of 20,000 hospitalized patients with COVID-19 convalescent plasma, and
demonstrated the safty of this therapy [3]. On August 23rd, 2020, a new guidance
was issued to provide updated recommendations to health care providers on the
use of COVID-19 convalescent plasma during public health emergency. Indeed,
the efficacy of convalescent plasma therapy would be distinct from pathogen
to pathogen and still needs to be determined by clinical studies [4]. However,
this therapy might be the only readily available treatment strategy for emerging

X. Huo (�)
Department of Mathematics, University of Miami, Coral Gables, FL, USA
e-mail: x.huo@math.miami.edu

© Springer Nature Switzerland AG 2022
V. K. Murty, J. Wu (eds.), Mathematics of Public Health, Fields Institute
Communications 85, https://doi.org/10.1007/978-3-030-85053-1_6

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85053-1_6&domain=pdf
mailto:x.huo@math.miami.edu
https://doi.org/10.1007/978-3-030-85053-1_6


140 X. Huo

infectious diseases, and the large-scale use of it will help to buy time for the
development and testing of potential treatments and vaccines.

The population-wide use of convalescent plasma therapy involves several logis-
tics managements: convalescent patients should be gathered and screened to select
potential donors, donated blood products should be stored and stockpiled appropri-
ately, the blood bank should distribute convalescent plasma based on both treatment
requests and deployment strategy. Thus the more donations are made, the higher
stockpile is achieved, and the more lives could be saved. The logistic coordination
of each step should be quantified to estimate the feasibility, and the effectiveness
in mortality reduction should be projected to adjust our expectations. This chapter
will discuss the use of an ordinary differential equation model framework that
reflects the treatment-donation-stockpile dynamics arising from the population-
wide implementation of convalescent plasma therapy during an infectious disease
outbreak. We also refer to the limited number of previous works on modeling the
use of convalescent plasma in treating patients under critical conditions of H1N1 in
Hong Kong [5], Ebola in West Africa [6], and COVID-19 in Italy [7].

2 Model

To get a complete estimation of the resources needed to conduct convalescent
plasma therapy, one will need to consider both the transmission dynamics and the
treatment-donation-stockpile dynamics. Simulations of the transmission dynamics
will provide the essential inflow to the treatment-donation-stockpile model: projec-
tions on the number of patients under severe conditions, recovered individuals, and
potential donors are all driven factors of the treatment implementation. On the other
side, the treatment dynamics might not influence the spread of the virus—outbreaks
can only be contained via a series of non-pharmaceutical interventions (such as
isolation, quarantine, testing, contact tracing, personal protective equipment, etc.)
with the absence of vaccines. Therefore, the treatment-donation-stockpile dynamics
can be decoupled from the transmission dynamics, and the compartmental diagram
is illustrated in Fig. 1.

Treatment Dynamics The infected population can be stratified into three classes—
patients with mild symptoms treated under palliative care (Pm), patients with severe
symptoms treated under palliative care (Ps), and patients treated by convales-
cent plasma therapy (T ). Patients in each compartment are assumed to recover
(γmp , γ

s
p, γT ) or die (μmp ,μ

s
p, μT ) at constant rates. All recovered individuals are

stratified into compartment R to select for qualified donors.

The inflow of new patients can be simulated by the transmission dynamics model,
and we denote A(t) as the rate of newly identified patients at time t , and assume
a proportion p of them are under severe conditions. Patients identified initially
with mild symptoms could gradually develop severe symptoms, and we assume this
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Fig. 1 Compartmental diagram of the treatment-donation-stockpile dynamics. Blue compartments
and solid arrows refer to the population dynamics of patients and donors, red compartment and
dashed arrows refer to the convalescent plasma dynamics. Depending on the specific disease,
donors would either consist of all recovered patients (illustrated in green arrows) or consist of
patients with mild symptoms only (represented in yellow arrows)

happens at a linear rate of q. The fraction of severe cases upon identification p and
the symptom deterioration rate q would vary significantly from disease to disease.
In the Ebola outbreak, most of the cases are under severe conditions, and then one
can assume p = 1, q = 0, and omit the compartment Pm. While in the case of
COVID-19, symptom deterioration is uncommon, and one may have to estimate p
and q based on a combination of case report data, hospitalization data, and intensive
care unit data.

In most cases, only those patients with severe symptoms will be considered for
convalescent therapy, where the rate of receiving such therapy would highly depend
on the stockpile of plasma at the time. Thus we model the rate for severe patients
to receive convalescent therapy as a function η(Ps, B) with its value determined by
both the demand and supply. There is more than one way to formulate the need-
supply function. When the stockpile is abundant all the time, one can consider the
saturation function

η(Ps, B) = ηPsB

B +K , (1)

with η as the treatment arrangement and approval rate for blood transfusion therapy,
and K as the threshold of stockpile level where only half of the demands could be
met. When the stockpile is scarce, one can also consider using the step-wise function

η(Ps, B) = ηmin{Ps, B}, (2)
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with η−1 as the mean turnaround time for treatment arrangements and approvals.
The model equations for the treatment-related compartments then follow below:

P ′
s (t) = pA(t)− (μcP + γ cP )Ps(t)− η(Ps(t), B(t)),
P ′
m(t) = (1 − p)A(t)− (μmP + γmP )Pm(t), (M.1)

T ′(t) = η(Ps(t), B(t))− (μT + γT )T (t).

Donation Dynamics In order to model the donation process, all recovered patients
are stratified into classes for convalescent patients who are considered as potential
donors (R), donors ready for their first-time donations (D1), donors preparing for
their next-time donations (D0), and donors ready to make their next-time donations
(Dm). The criteria for potential donors might defer from disease to disease: for
example, the majority of COVID-19 and H1N1 patients would experience mild
symptoms and would provide sufficient donations to save the critical patients,
whereas for fatal illness as Ebola all survivors must be considered for donations.

Further, among all potential donors, only a fraction ε of them would be qualified,
and we assume the rate of the screening process as σ . Qualified donors who are
ready for donations would donate their convalescent plasma at a rate of α, and
donors at all stages could quit at a constant rate of ξ . The dynamics between
available donors and those at rest can be modeled using a delay term to reflect the
mandatory resting period of τ between two consecutive donations.

Depending on the actual screening and plasmapheresis resources, the donor
screening rate σ and donation rate α can be formulated in many different ways.
Under abundant resources, one can model σ and α as constant linear rates.
While under limited resources, for example, the number of donor applications and
donations far exceeds the number of screening and plasmapheresis throughput Us
and Up, one can formulate the two rates via the step-wise functions

σ(R) = σ min{R,Us}, (3)

α(D1) = αmin{D1 +Dm,Up} · D1

D1 +Dm , α(Dm) = αmin{D1 +Dm,Up} · Dm

D1 +Dm ,
(4)

with σ, α represent the mean turnaround time for screening and plasmapheresis. The
equations relating to the donation population dynamics are as following:

R′(t) = γmP Pm(t)+ γ sP Ps(t)+ γT T (t)− σ(R(t)),
D′

1(t) = εσ (R(t))− α(D1(t))− ξD1(t),
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D′
0(t) = α(D1(t))+ α(Dm(t))− ξD0(t)− e−ξτ [α(D1(t − τ))+ α(Dm(t − τ))],

(M.2)

D′
m(t) = e−ξτ [α(D1(t − τ))+ α(Dm(t − τ))] − α(Dm(t))− ξDm(t),

where the terms γ sP Ps(t) + γT T (t) are only needed when modeling diseases with
high mortality rates (such as Ebola).

Blood Bank The number of convalescent blood products in the unit of treatment
is denoted as B, that is, one unit of blood product from the bank can be used
to treat one patient. The inflow rate to compartment B is proportionally related
to the donation rate α(D1) + α(Dm). The proportionality constant, ω, could vary
accordingly to the actual donation-treatment protocols, for example, the Expanded
Access to Convalescent Plasma for the Treatment of Patients with COVID-19
program led by Mayo Clinic utilized 1 ∼ 2 units of convalescent plasma to treat
each patient, thus, in this case, ω is regarded to vary between 0.5 and 1. Further, one
can assume a linear expiration rate of λ for the unused donations, where this value
can be estimated differently based on the types of blood donations in storage. In
the 2014–2016 Ebola outbreak, WHO suggested that the donations should either be
stored in the format of whole blood or plasma, where the average expiration period
is 35 days for whole blood and 40 days for plasma. Based on the above discussions,
the equation for blood bank storage is shown below

B ′(t) = ω[α(D1)+ α(Dm)] − η(Ps(t), B(t))− λB(t). (M.3)

3 Parameterization

Death and recovery rates for each compartment should be parameterized together
so as to reflect the correct mortality rate for patients under different situations. Let
P(t) denote the number of patients at time t and let μ and γ respectively represent
the death and recovery rates. Then the instantaneous outflow rates of patients due
to death and recovery are respectively modeled as μP(t) and γP (t). And the case
fatality ratio (CFR) can be calculated as

CFR =
∫ +∞

0 μP(t)dt
∫ +∞

0 μP(t)dt + ∫ +∞
0 γP (t)dt

= μ

μ+ γ .

Therefore, one only needs to estimate two quantities out of the above three. In the
treatment-donation dynamics, it is more vital to estimate the instantaneous number
of recovered individuals. Also, the average recovery period and the mortality rate
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are relatively easier to determine in practice. Thus one might fix γ as the reciprocal
of mean recovery time and simply set μ = CFR

1−CFRγ .
It is worth mentioning that for the problem modeled, the method discussed above

is more suitable for the compartments into which newly identified patients are
stratified—such as Ps and Pm in our model. While patients in the blood transfusion
compartment T have already spent an average time η−1 in the compartment Ps ,
one has to pay extra attention when estimating the recovery rate γT . The best-case
scenario is knowing the average time for patients to recover after blood transfusion,
but this information could be hard to perceive given insufficient knowledge about
CP therapy for emerging diseases. One way to proceed is to assume that it takes the
same amount of time for patients under CP therapy to recover compared to patients
with severe symptoms. Then we have η−1 + γ−1

T = γ sP
−1 for a possible estimation

of γT and therefore μT .
Rates of making and quitting donations can be estimated similarly. LetD(t) be

the compartment of donors and assume that the donors would leave the compartment
by either making a donation or quitting at linear rates αD(t) and ξD(t). Assume pd
as the probability for a donor to donate during the first day of qualification, and we
have pd = 1 − e−α . Assume pc as the probability for a person to quit in the first
day of qualification, and pc = 1 − e−ξ . The ranges of the probability parameters
pd and pc are relatively easier to perceive and can be therefore used to estimate α
and ξ . Notably, from the definitions of pd and pc, it is not necessary to suppose
pd + pc = 1.

4 Outcome Measurements

Given projections on the time-dependent case data, one can measure the following
essential aspects of CP therapy (here we use a time unit of days).

Time-dependent outcomes on the treatment-donation-stockpile dynamics
include: (O1) patients under each therapy (palliative care or CP therapy) can
be measured by evaluating Ps(t)+ Pm(t) and T (t); (O2) cumulative deaths can be
evaluated by

∫ t
0 μ

m
PPm(x) + μsPPs(x) + μT T (x)dx; (O3) daily screening burden

for potential donors as
∫ t
t−1 εR(x)dx; (O4) daily number of donations (hence the

daily demands for plasmapheresis) as
∫ t
t−1 α(D1(x)+Dm(x))dx; (O5) blood bank

storage as B(t); and (O6) cumulative expired CP donations
∫ t

0 λB(x)dx.
Overall outcomes that evaluate the feasibility and effectiveness of the CP

therapy implementation can be reported in four major aspects. The population-level
effectiveness of therapy can be assessed by computing the overall CFR after the
implementation, which is obtained by (O2) and the total case count projected by the
transmission model. The feasibility of the population-wide use of CP therapy can
be evaluated by the maximal demands of plasmapheresis and that of potential donor
screenings, which can be obtained by evaluating the maximal values of (O3) and
(O4). Further, based on the choice of function η(Ps, B), the distribution strategy of
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CP stockpiles should be evaluated not only by CFR but also by the total number of
unused donations, which is estimated from (O6).

5 Simulations

A simple transmission model is used in this section to generate the outbreak data
with the following equations:

S′(t) = −β(t)S(t)I (t),
L′(t) = β(t)S(t)I (t)− ρL(t), (M.0)

I ′(t) = ρI (t)− κI (t),

where S refers to the susceptible population, L refers to the latent population, and
I refers to the infectious population that are not yet hospitalized or isolated. The
parameters and initial conditions of the transmission model are listed in Table 1, and
were used to simulate the Ebola outbreak in Guinea, which emerged in December
2013 [9]. In the early stage of this outbreak, the case count increased exponentially,
and the basic reproductive number was estimated between 1.50 and 1.52. With the
local leaders’ help and carefully designed policy implementations, the outbreak
was eventually contained and resulted in 3814 total cases and 2544 deaths. The
nonpharmaceutical interventions’ impacts were reflected by considering a time-
dependent transmission rate estimated to decay exponentially over time. Thus, it
was formulated as β(t) = 0.3e−0.0023t .

By the time of the outbreak, no licensed medicine or vaccine exists for Ebola.
In September 2014, WHO issued interim guidance on the large-scale use of
convalescent blood products collected from Ebola survivors for blood transfusion
therapy[8]. The parameters used in these simulations are directly adopted from
the WHO guidance and are listed in Table 1. As discussed before, most Ebola
patients would experience life-threatening symptoms. Thus one should assume
p = 1, q = 0 and Pm(t) = 0 for all t ≥ 0, and assume all recovered patients
would be considered for potential donors. In the simulations presented, the donor
screening and plasma donation dynamics are assumed to be linear processes, where
the maximal demands of these two processes are estimated to inform the capacity
requirements. For all simulations presented here, the collection and enforcement
of blood transfusion therapy are initiated on the 60th day from the beginning of
the outbreak. Numerical simulations are conducted by the software Python version
3.7.3 and utilized the ODE and DDE solvers odeint and ddeint.

Choice of the CP distribution function η(Ps, B) as a saturation function in
(1) or a step-wise function in (2) represents different deployment philosophies of
CP stockpiles. When the CP storage meets the treatment demand (B > Ps), the
choice of saturation function is equivalent to a conservative use of blood donations,
resulting in fewer patients treated. On the other way around, when the treatment
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Table 1 Parameter summary and values used in simulations

Parameter Definition Values

Transmission parameters

N Total population 12 × 106

β Transmission rate without control: 0.3/N

with control: 0.3e−rt /N
ρ−1 Latent period 11.4 days

κ Hospitalization rate 1/5 day−1

p Progression rate from mild to critical NA

γ cP Recover rate of critical case 0.05 day−1

γmP Recover rate of mild case NA

μcP Death rate of critical case 7γ cP /3
a

μmP Death rate of mild case NA

Treatment parameters

γT Recover rate with CP (1/γ cP − 1)−1

μT Death rate with CP f
1−f γT

η Arrangement rate of CP therapy 1 day−1

K Threshold of blood stock 5000

f Fatality ratio with CP 0.1

Donation parameters

ε Probability of becoming a donor 0.5

σ Transition rate from discharged patients to potential
donors

1/28 day−1

α Rate of donation − ln(1 − pd)
ω Inflow rate of donation to blood bank Same as α

pd Probability of making donation 0.9

ξ Loss rate of donors − ln(1 − pc)
pc Probability of quitting donation 0.1

τ Donor recovery period between consecutive
donations

14 days

λ CP expiration rate 1/40 day−1

Initial values for transmission dynamics

S(0) Susceptible population 12 × 106

L(0) Latent population 0

I (0) Infectious population 21

Pc(0) Critically ill cases 0

Pm(0) Mild cases NA

R(0) Recovered population 0

Initial values for donation dynamics

T (0) Patients under CP treatment 0

D1(0) Potential first-time donors 0

D0(0) Donors under recovery 0

Dm(0) Potential multi-time donors 0

B(0) Blood bank stockpile 0
a
The estimation of the death rate for EVD is based on a 70% mortality rate
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Fig. 2 Treatment-donation-stockpile dynamics under no intervention. All parameters are fixed
according to Table 1 except for β = 0.3/N

Fig. 3 Treatment-donation-stockpile dynamics under nonpharmaceutical interventions. All
parameters are fixed according to Table 1 except for β(t) = 0.3e−0.0023t /N

demand exceeds the available storage (Ps < B), the model with the saturation
function would experience a faster CP consumption rate comparing to that with
the step-wise function (η Ps

B+KB > ηB), resulting in a faster depletion of blood
donations and hence the model will project more treatments.

Such phenomenon is illustrated respectively in Figs. 2 and 3. In Fig. 2, the
transmission rate is fixed as a constant by assuming no transmission intervention
strategies were enforced, and the CP demand far exceeds the stockpiles throughout
the outbreak—hence more treatments are projected by the model with saturation
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distribution function. In Fig. 3, the transmission rate is formulated according to the
results from the data fitting analyses literature, which represents an implementation
of strong nonpharmaceutical interventions. The available stockpiles are sufficient
throughout the outbreak—hence more patients are projected to be saved by the
model with step-wise function.

However, in reality, neither the CP therapy deployment nor the treatment request
delivery can be processed simultaneously or in every second. Depending on the
health system turnaround frequency, it might be more realistic to reduce the
model into a discrete-time system and refresh the system status in a unit of days
in the simulations, and we refer to the work by Wu et al. on H1N1 for more
information [5].

Feasibility and possible benefits of the large-scale use of CP therapy depend
on a few aspects. The simulations in Figs. 4 and 5 discuss the impacts of the
efficacy of CP therapy and the effectiveness of nonpharmaceutical interventions.
All simulations are performed by utilizing the step-wise CP distribution function
η(Ps, B). Based on both simulations, CP therapy’s potential benefits in reducing
the overall CFR are mostly impacted by the therapy’s efficacy. While the feasibility
of the population-wide implementation of the donor screening and blood donation
collection depends significantly on the containment of the outbreak.

Figure 4 estimated the peak-time plasmapheresis demand as 10,000 when no
infection control strategies were enforced. Such a demand is not manageable in
almost any part of the world: the estimated number of plasmapheresis machines that
would become available for such treatment was 4.9 per 106 population in Houston,
Texas [5]. Thus for a local healthcare system as advanced as that in Houston, there
are less than 60 machines available for conducting blood donations for the simulated
12-million-population community, which means each machine has to process 166
donations every day during the peak time. On the other hand, with a reasonable level
of infection control, which is not necessarily as efficient as that in Guinea’s Ebola
outbreak, the demands for donor screening and plasma collection appear to be much
more realistic.

6 Discussion

In the event of a disease outbreak caused by novel pathogens, no drugs or other
potential therapy might be immediately available to prevent or treat the new disease.
Convalescent plasma therapy is one of the few rapidly available treatments since
recovered individuals could be tracked and identified as potential donors even in the
early stage of the outbreak. Implementing the population-wide use of this therapy
could buy time for the development of vaccines and other promising treatment
options, whereas the logistic operation is complex and involves the coordination
of many parts of the public health and medical system. In the past few years, the use
of convalescent plasma has been suggested and investigated by medical authorities
during almost every large-scale infectious disease outbreak. It is still highly likely
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Fig. 4 Effectiveness and feasibility with respect to different clinical efficacies of CP therapy
without nonpharmaceutical interventions. All parameters are fixed according to Table 1 except
for the CFR of CP therapy (hence μT ) being varied at different levels among 0∼60%

for this therapy to be proposed for many more times in future disease outbreaks.
Therefore, integrating strategic plans that balance the needs of treatment delivery,
donor screening and documentation, and plasma bank coordination is essential to
save lives. The model presented in this chapter can be applied to quantify and
validate such integrative plans for regions with detailed information on their aphere-
sis and serology testing facilities. Further, the modelling framework can be easily
extended to take into consideration many other important aspects about plasma
therapy. For example, the timing of infusing a severe patient with convalescent
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Fig. 5 Effectiveness and feasibility with respect to different transmission control efforts. All
parameters are fixed according to Table 1 except for β(t) = 0.3e−rt /N with r varying from 0.001
to 0.0025

plasma is considered to be important and could affect the pharmacokinetics of the
neutralizing antibodies [10]. Thus an extended model structured with the age-since-
infection of the severely ill patients would help address this issue.
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1 Introduction

In late December 2019, some severe pneumonia cases of unknown cause were
reported in Wuhan, Hubei province, China. These cases epidemiologically related to
a seafood wholesale market in Wuhan, although many of the first 41 cases were later
reported to have no known exposure to the market. In early January 2020, the World
Health Organisation (WHO) named this novel coronavirus as Severe Acute Respira-
tory Syndrome Coronavirus 2 (SARS-CoV-2) and the associated disease as COVID-
19 [14]. Following this report, there has been a rapid increase in the number of
cases as on 24th June 2020, there were over 9.2 million confirmed cases and almost
475,000 deaths worldwide, while the confirmed cases in Canada was 103,000, with
8500 deaths mostly distributed in three provinces of Quebec, Ontario, and Alberta.
The death rates for these cases which are available from https://www.canada.ca/en/
public-health/services/diseases/2019-novel-coronavirus-infection.html
are shown in Fig. 1.

From the box plot one can see that there are a few outliers in the Alberta data
only, see Fig. 2. Also the trend, seasonal and random components of each case can
be obtained by decomposition function of time series where in Fig. 3 we plotted
only the Canada deaths. To see the normality of the data, we can plot the histogram
as well as the density of the deaths, Fig. 4. The plots clearly show that there are
substantial overdispersion relative to the Poisson for all cases except possibly for
the Alberta data.
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2 Generalized Additive Models

In general, generalized additive models (GAMs), see e.g. S. Wood [10] are a semi-
parametric extension of the generalized linear models (GLMs), used often for the
case when there is no a priori reason for choosing a particular response function
(such as linear, quadratic, etc.). GAMs first introduced by Hastie and Tibshirani [7]
and Hastie and Tibshirani [8] and are widely used in practice [1–3, 6]. On the other
hand, GLMs themselves are extension of the linear models (LMs). To understand
the thing better, let us start with LMs. For a univariate response variable of multiple
predictors one may simply write

y = αX + ε = α0 + α1x1 + α2x2 + · · · + αmxm + ε, ε ∼ N(μ, σ 2). (1)

It is clear that the response variable y is normally distributed with mean μ, and
variance σ 2 and the linearity of the model is apparent from the equation. One of the
issues with this model is that, the assumptions about the data generating process are
limited. One remedy for this is to consider other types of distribution, and include a
link function g(.) relating the mean μ, i.e.,

E(y) = μ, g(μ) = αX. (2)

In fact the typical linear regression model is a generalized linear model with a Gaus-
sian distribution and identity link function. To further illustrate the generalization,
we may consider a distribution other than the Gaussian for example Poisson or a
negative binomial distribution for a count data where the link function is natural log
function.

g(y) = αX + ε, ε ∼ D(μ, θ), (3)

where D is any exponential family distribution. We can still generalize more to add
nonlinear terms in the above equation namely

g(μi) = Xiα + f1(x1i )+ f2(x2i )+ f3(x3i , x4i )+ · · · ,

where μi = E(yi) and yi ∼ an exponential or non-exponential family distribution
and fj s are any univariate or multivariate functions of independent variables called
smooth and nonparametric part of the model, which mean that the shape of predictor
functions are fully characterized by the data as opposed to parametric terms that are
defined by a set of parameters like the parameter vector α in the linear part in which
both to be estimated.
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Having said that, the ordinary least square problem generalizes into

L(α) = (‖y − Xα‖2 +
n∑

j=1

λj

∫ 1

0
[f (2)j ]2(x)) (4)

where λj , controlling the extent of penalization and establishes a trade-off between
the goodness of fit and the smoothness of the model.

On the other hand, these functions are represented using appropriate intermediate
rank spline basis expansions of modest rank kj , as

fj (x) =
kj∑

j=1

βjibji(x). (5)

Substituting the function under the integral sign with the above equation we get

∫ 1

0
[f (2)j ]2(x) = βT Sjβ (6)

where the right hand side is a quadratic form with respect to the known matrix Sj .
Collecting both the parametric and non-parametric coefficients into a double

parameter (α, β), we obtain

L(α, β) = (‖y − Xα‖2 + 1

2

n∑

j=1

λjβ
T Sjβ). (7)

Writing Sλ = ∑n
j=1 λjSj we get the more compact form

L(α, β) = (l(α)+ 1

2
λjβ

T Sλβ). (8)

Let β̂ be the maximizer of L and H the negative Hessian of L at β̂. From a Bayesian
viewpoint β̂ is a posterior mode for β. The Bayesian approach views the smooth
functions as intrinsic Gaussian random fields with prior given by N(0, S−

λ ), where
S−
λ is a Moore–Penrose or pseudoinverse of Sλ. Furthermore in the large sample

limit

β|y ∼ N(β̂, (H + Sλ)−1). (9)

Writing the density in (2.8) as Dg , and the joint density of y and β as D(y, β), the
Laplace approximation to the marginal likelihood for the smoothing parameters λ
and α is D(λ, α) = D(y, β)/Dg(β, y). Finally, nested Newton iterations are used to
find the values of log λ and α; maximizing D(λ, α ) and the corresponding β̂ [11].
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3 Application of GAMs for Fatal Cases of Canada

Let yk denotes the deaths reported on day k. We will study the Canada deaths in
general and the provinces of Quebec, Ontario, and Alberta in particular cases. Due
to overdispersion seen in the deaths, we assume that yk follows a negative binomial
distribution with mean μ and variance
μ+ μ2/θ . Note that NB(θ, p), where p = μ/(μ+ θ).
Then let

g(μ) = f (tk)+ fw(dk)+ fb(dk)+ fm(dk), (10)

where g is a link function log in our discussion, f is a smooth function of
time, tk , measured in days, fw is a zero mean cyclic smooth function of day of
the week dk ∈ {1, 2, · · · , 7}, set up so that f (n)w (0) = f

(n)
w (7), fb is a zero mean

cyclic smooth function of day of the biweek dk ∈ {1, 2, · · · , 14}, set up so that
f
(n)
b (0) = f

(n)
b (14), fm is a zero mean cyclic smooth function of day of the month

dk ∈ {1, 2, · · · , 30}, set up so that f (n)m (0) = f
(n)
m (30), and n ∈ {0, 1, 2} denotes

the order of the derivative in fw, fb and fm, see S. Wood 2020 [13]. Based on the
discussion and notations in Sect. 1, f , fw, fb and fm are basis functions representing
the underlying death rate and the strong weekly, biweekly and monthly cycles seen
in the data respectively.

From (2.8) we can easily compute the confidence intervals for each f and make
inferences about when the peak in f occurs. This can be done by executing gam
function of mgcv library in R code. The fitted models to the reported deaths in
Canada, Quebec, Ontario, and Alberta are shown in Figs. 5, 6, 7, and 8 respectively.

Fig. 5 Results of the fitted model to the Canada deaths. Note that all variable are statistically
significant
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Fig. 6 Results of the fitted model to the Quebec deaths. Note that all variable are statistically
significant

Fig. 7 Results of the fitted model to the Ontario deaths. Note that all variable are highly significant

In the Canada case, we model the deaths with respect to day, day of week and day
of month. As the results of Fig. 5 shows, all the variables are statistically significant
with 0.856 as R-squared.

For the deaths of Quebec, we see that the day, day of week is an appropriate
choice for the predicted variables. As the results of Fig. 6 shows, all the variables
are statistically significant with 0.75 as R-squared.

In the case of the Ontario we see that also the day, day of week and day of month
is an appropriate choice for the predicted variables. As the results of Fig. 7 shows,
all the variables are highly significant with 0.82 as R-squared.
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Fig. 8 Results of the fitted model to the Alberta deaths. Note that all variable are statistically
significant

We figured out that the day, day of biweek as predictors for the Alberta case is
an appropriate choice for the model. As the results of Fig. 8 shows, all the variables
are statistically significant with 0.722 as R-squared.

The next statistics is the results of the gam.check consists of Q-Q plot where
for a good fit the data should lie on the red line. The second is the histogram of
the residuals. In this plot, the histogram must be symmetric with respect to the line
x = 0. Third plot is the Residuals vs. Linear predictors. This plot must be symmetric
with respect to the line y = 0. Finally, the last plot is the Response vs. Fitted values.
The more closer the data to the line y = x, the better the fitted model. These plots
for the corresponding data of Canada, Quebec, Ontario and Alberta are given in
Figs. 9, 10, 11, and 12 respectively.

The other statistics of the model fits to the reported deaths in all cases are
shown in Fig. 13, 14, 15, and 16 respectively. The posterior modes (solid) and 95%
confidence intervals for the model functions as well as auto-correlation functions
and the deviance residuals against day for the Quebec and Alberta.

4 Inference About the Peak of the Day of Each Four Cases

With gam model it is also straightforward to make inferences about when the peak
in f occurs. To this end, it is enough to use the model matrix by removing cyclic
part, the coefficients and variance-covariance matrix of the model to estimate the
model functions and 95% confidence intervals. To find the day of occurrence of the
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Fitted values

peak for each corresponding underlying death rate function, f , simply we generates
multivariate normal random deviates using ‘rmvn’ function from ‘mgcv’ package in
which it takes 3 arguments as number of simulations, the coefficients and variance-
covariance matrix of the model. The results for all 4 cases are shown on the Figs. 17
and 18 respectively.
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5 Inference About the Past Fatal Infection Cases

To obtain the model priors with auto-generated code and associated data is to
simulate jagam from rjags library in GAMs. We also load glm to improve samplers
for GLMs. This is useful for inference about models with complex random effects
structure. The new mgcv function jagam is designed to be called in the same way
that the modeling function gam would be called. That is, a model formula and family
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object specify the required model structure, while the required data are supplied in a
data frame or list or on the search path. However, unlike gam, jagam does no model
fitting. Rather it writes JAGS code to specify the model as a Bayesian graphical
model for simulation with JAGS, and produces a list containing the data objects
referred to in the JAGS code, suitable for passing to JAGS via the rjags function
jags.model [5]. To infer the sequence of past fatal infections one needs to produce
the observed sequence of deaths. Verity et al. [9] show that the distribution of time
from onset of symptoms to death for fatal cases can be modelled by a gamma density
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Fig. 12 Alberta: Q-Q plot, Histogram of residual, Residuals vs. Linear predictors and Response
vs. Fitted values

with mean 17.8 and variance 71.2 (s.d. 8.44). Let fv(t) be the function describing
the variation in the number of eventually fatal cases over time. Let B be the lower
triangular square matrix of order n, describing the onset-to-death gamma density,
given above where n is the number of day of pandemic under consideration. Then
we have Bij = γ (i − j + 1) if i ≥ j and 0 otherwise. Now Bfv = h, where
h(k) is the expected number of deaths on day k. Then log(fv(k)) can be represented
using an intermediate rank spline, again with a cubic spline penalty. We can then



Generalized Additive Models to Capture the Death Rates in Canada COVID-19 165

0

–6

–4
f-Canada

–2

0

2

20 40

day, t

f(
t)

60 80 1

–0.15

0.00

f_{dow}-Canada

0.10

2 3

day of week, d

s(
do

w
, 1

.6
7)

4 5 6 7

1

–0.2

0.2

f_{dow}-Canada

Auto-correlation-function

0.6

0.1

5

Lag

A
C

F

–0.06

–0.02

0.02

0.06

S
 (

do
m

, 0
.1

9)

10 15 200 5

day of dom, d

10 20 30
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employ exactly the model of the previous section but setting f (k) = log(h(k)).
The only difference is that we need to infer fv over a considerable period before
the first death occurs where 15 days is clearly sufficient given the form of deaths
data. After executing the jagam code for the data frame of deaths, day, day of
week, day of biweek and day of month variables—note that we have used different
combination of the above variables to see which one is appropriate of Canada
deaths in general and Quebec, Ontario and Alberta in particular cases. Jagam code
with Poisson family distribution produces a model containing all the priors. Then
by adding the matrix B and a bit of extra regularization to the output we pass
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the model to jags.model function JAGS is Just Another Gibbs Sampler. It is a
program for the analysis of Bayesian models using Markov Chain Monte Carlo
(MCMC) simulation. Then by passing the result to the jags.samples function with
the parameters of thin = 300 and iteration = 1,000,000 we get the values of θ , ρ,
and the Monte Carlo array b of three dimension with the first dimension equals to
the number of parameters in the gam model. As in the gam model, we take the data
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in the first component of the jags model as the model.matrix X and the data in first
two dimension of the b to simulate the fatal infection profiles f = exp(Xb) and get
all the necessary statistics such as median with confidence intervals, the peak points
of the median profile, the squared second difference of the median infection profile
on the log scale which is proportional to the smoothing penalty and the absolute
gradient of the infection profile. See Wood [12] These are depicted in Fig. 19.
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day of peak fatal infection. The dashed grey curve is proportional to the squared second difference
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Acknowledgments I am very grateful to Simon S. Wood as his paper [13] was very inspirational
to my work.

References

1. Fahrmeir, L., and Lang, S. 2001, Bayesian Inference for Generalized Additive Mixed Models
Based on Markov Random Field Priors, Applied Statistics, 50, 201–220.

2. Fahrmeir, L., Kneib, T., and Lang, S. 2004, Penalized Structured Additive Regression for
Space-TimeData: ABayesian Perspective, Statistica Sinica, 14, 731–761.

3. Fahrmeir, L., Kneib, T., Lang, S., and Marx, B. 2013, Regression Models, New York: Springer.
4. Green, P. J. and B. W. Silverman 1994. Nonparametric Regression and Generalized Linear

Models. Chapman & Hall.



Generalized Additive Models to Capture the Death Rates in Canada COVID-19 171

5. Plummer M 2016. rjags: Bayesian Graphical Models Using MCMC. R package version 4-6,
URL https://CRAN.R-project.org/package=rjags.

6. Ruppert, D.,Wand, M. P., and Carroll, R. J. 2003, Semiparametric Regression, New York:
Cambridge University Press.

7. Hastie, T., and Tibshirani, R. 1986, Generalized Additive Models (with discussion), Statistical
Science, 1, 297–318.

8. Hastie, T., and Tibshirani, R. 1990, Generalized AdditiveModels, London: Chapman & Hall.
9. Verity, R., L. C. Okell, I. Dorigatti, P. Winskill, C. Whittaker, N. Imai, G. Cuomo-Dannenburg,

H. Thompson, P. G. Walker, H. Fu, et al. 2020. Estimates of the severity of coronavirus disease
2019: a model-based analysis. The Lancet Infectious Diseases.

10. Wood, S. N. 2017. Generalized Additive Models: An Introduction with R (2 ed.). Boca Raton,
FL: CRC press.
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Real-Time Prediction of the End of an
Epidemic Wave: COVID-19 in China
as a Case-Study

Quentin Griette, Zhihua Liu, Pierre Magal, and Robin N. Thompson

1 Introduction

The COVID-19 pandemic has now spread worldwide, causing over one million
deaths and 40 million reported cases so far (as of 25 October, 2020 [37]). SARS-
CoV-2, the virus that causes COVID-19, emerged in China at the end of 2019.
In early 2020, the Chinese government imposed strong public health measures,
including enhanced epidemiological surveys and surveillance, travel restrictions,
quarantine, contact tracing and isolation [27]. These intense interventions were
sufficient to bring the epidemic wave under control, and since mid-March case
numbers have remained low.

A key challenge in infectious disease epidemiology is forecasting the progression
of an epidemic. Significant attention has been directed towards developing methods
for estimating future numbers of cases and deaths, as well as forecasting the timing
of the epidemic peak [2–5, 16–20, 28, 32]. Predicting the ends of epidemic waves,
on the other hand, has received considerably less attention [23], despite the fact that
the end of an epidemic wave signals an opportunity to relax costly public health
measures. Some previous studies have estimated the probability that an epidemic is
over as a function of the time since the last observed case using renewal equation
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models [14, 22] or stochastic compartmental models [31]. However, predicting the
end of the first COVID-19 epidemic wave in China was particularly challenging
for two key reasons. First, evidence emerged early in the COVID-19 pandemic
that infected individuals could transmit the virus prior to displaying symptoms
(“presymptomatic infection”). Second, some infected individuals never display
symptoms or display only mild symptoms, and therefore do not report disease
(“asymptomatic infection”). It is now widely accepted that these presymptomatic
and asymptomatic hosts play a significant role in SARS-CoV-2 transmission
[6, 12, 29, 30, 33].

Early evidence for asymptomatic transmission included a study by Nishiura et
al. [24], which reported early in the pandemic that 13 evacuees on charter flights
from Wuhan (China) were infected and four of these individuals never developed
symptoms. Chowell et al. [21] estimated the proportion of asymptomatic infections
to be 17.9%. Research by Li et al. [15] generated an estimate that 86% of all
infections were undocumented (95% CI: [82%–90%]) prior to the introduction
of travel restrictions in China on January 23, 2020, and a team in China [35]
suggested that there were 37,400 cases in Wuhan that authorities were unaware of
by February 18, 2020. More recently, Ferretti et al. [6] split the reproduction number
into components corresponding to transmission from symptomatic, presymptomatic
and asymptomatic infectious individuals, as well as environmental transmission.
Unreported cases, largely due to presymptomatic and asymptomatic infections, were
a key driver of the rapid geographic spread of SARS-CoV-2 and explain why early
containment of the virus was impossible (compared to, e.g. SARS [7]). In [4], we
consider the symptomatic reported and unreported patients and we prove that it
is hopeless to estimate the fraction of reported (or unreported) patients by using
SI models. In other words, several values of the fraction of reported symptomatic
patients give the exact same fit to the data. Finally, a study based on several cohorts
of patients was conducted in Oran et al. [26].

Here, we consider a compartmental model characterising SARS-CoV-2 trans-
mission, and parameterise it using data from the first (yet unique) epidemic wave
in China. Our model incorporates key features of this epidemic wave, including
explicit inclusion of public health measures designed to mitigate the severity of
the epidemic, as well as presymptomatic and asymptomatic infections. When we
conducted our analysis in real-time, the proportion of infected individuals that were
symptomatic and reported disease was unknown (and, in fact, the precise value
remains uncertain even now), so we consider a range of values of that parameter
(f ). We derive an analytic expression for predicting when an epidemic wave is
likely to end, under the assumption that public health measures that are in place
remain fixed until the epidemic wave is over. We use this expression to show how
the predicted end of epidemic wave date changed as the epidemic wave continued,
and compare these results to equivalent results obtained using model simulations.
Not only do we provide a framework for predicting the ends of epidemic waves, but
we also show that the times at which epidemic waves end depend on the proportion
of detected cases. This emphasises the importance of intense surveillance to find
infectious cases, including those who do not display clear symptoms.
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2 Methods

2.1 Data

We use cumulative data describing daily numbers of cases in mainland China
from January 20, 2020 to March 18, 2020, obtained from the National Health
Commission of the People’s Republic of China and Chinese Center for Disease
Control and Prevention [38, 39]. Up until February 10 2020, cases in the dataset
were only those that were confirmed by laboratory testing. From February 11
to February 15, data were available not only for cases confirmed by laboratory
testing, but also for cases that were clinically diagnosed based on medical imaging.
From February 16 onwards, these two data types were combined in the dataset, so
that it was impossible to distinguish between laboratory confirmed and clinically
diagnosed cases. Changing case definitions in response to changes in case numbers
is necessary and commonplace [34], however such changes make inferring epidemic
trends based on case numbers challenging. To account for this and remove the
substantial jump in cases on February 16 due to changes in testing practices, we
calculated the cumulative number of clinically diagnosed cases between Febru-
ary 11 and February 15, and subtracted this from the cumulative numbers of
cases from February 16 onwards. We therefore obtained approximate numbers of
confirmed cases throughout the period from January 20 to March 18, 2020. The
dataset, accounting for this adjustment, is shown in the Supplementary Information
(Table 4).

We note that, on January 23, mainland China began implementing lockdowns,
beginning with a lockdown in the city of Wuhan.

2.2 Mathematical Model

To characterise changes in observed case numbers from January 20 to March 18
in mainland China, we considered a compartmental model in which we track the
number of individuals that are either susceptible to the virus (S(t)), in early infection
and infectious (I (t)) and in later infection and reporting disease (R(t)) or in later
infection and not reporting disease (U(t)) [11, 17]. Individuals that are in later
infection and not reporting disease include those that are asymptomatic and those
who develop only mild symptoms and so do not adhere to interventions targeting
symptomatic individuals. The model is therefore given by:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S′(t) = −τ(t)S(t)[I (t)+ U(t)],
I ′(t) = τ(t)S(t)[I (t)+ U(t)] − νI (t),
R′(t) = νf I (t)− ηR(t),
U ′(t) = ν(1 − f )I (t)− ηU(t),

(1)
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Fig. 1 Schematic showing the different compartments and transition rates in the model given by
system of Eqs. (1)

Table 1 Parameters and initial conditions of the model

Symbol Interpretation Method

t0 Epidemic start time Fitted

S0 Number susceptible at time t0 Fixed

I0 Number in early infection and infectious at time t0 Fitted

U0 Number in later infection and not reporting disease at time t0 Fitted

τ(t) Transmission rate at time t , accounting for public health measures Fitted

1/ν Average duration of early infection Fixed

f Fraction of infected individuals that go on to report disease Fixed

1/η Average duration of later infection Fixed

with initial data

S(t0) = S0 > 0, I (t0) = I0 > 0, R(t0) = R0 ≥ 0 and U(t0) = U0 ≥ 0. (2)

In this model, t ≥ t0 is time in days and t0 is the start date of the epidemic
wave. A schematic illustrating the different model compartments is shown in
Fig. 1 and the model parameters—including whether the parameter values were
assumed or obtained via model fitting—are listed in Table 1. It has previously been
demonstrated that the latent period for COVID-19 is short [18], and COVID-19
patients have been found to have high viral loads early in infection [13, 36], so
we do not include individuals who are presymptomatic and not yet infectious in
the model. However, explicit inclusion of individuals who are infected but not yet
infectious would be a straightforward extension of our model [19].

Early infection (which corresponds to the incubation period, for individuals who
develop clear symptoms) is assumed to last for an average period of 1/ν days.
The infectious period is assumed to be 1/ν + 1/η days, although we assume that
individuals that report disease do not transmit the virus during their symptomatic
infectious period (i.e. they adhere to public health measures that are effective at
reducing transmission). A fraction, f , of infected hosts report disease, whereas a
fraction 1 − f do not report disease at any stage of their infection.
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In the model, the transmission rate at time t , accounting for public health
measures in place at that time, is denoted by τ(t). During the exponential growth
phase, we assume that τ(t) ≡ τ0 is constant. We then use a time-dependent
decreasing transmission rate τ(t) to incorporate the effects of the strong measures
taken by Chinese authorities to control the epidemic wave (see Introduction for a
description of the different measures that were introduced):

{
τ(t) = τ0, 0 ≤ t ≤ N,

τ(t) = τ0 exp (−μ (t −N)) , t > N. (3)

The date N and the value of μ are chosen so that daily numbers of cumulative
reported cases in the numerical simulation of the epidemic align with the analogous
values in the dataset.

The cumulative number of reported cases at time t is given by

CR(t) = νf

∫ t

t0

I (σ )dσ, for t ≥ t0, (4)

and the cumulative number of unreported cases at time t is given by

CU(t) = ν(1 − f )
∫ t

t0

I (σ )dσ, for t ≥ t0. (5)

The daily number of reported cases can be obtained by computing the solution of
the following equation:

DR′(t) = ν f I (t)−DR(t), for t ≥ t0 and DR(t0) = 0. (6)

2.3 Parameter Values

Since there is substantial uncertainty surrounding the proportion of cases that are
symptomatic and report disease for COVID-19, the value of f is unknown. Since
intense interventions were introduced in China during the first epidemic wave,
and the full extent of asymptomatic transmission was unknown, we assume in the
baseline version of our analysis that f = 0.8. However, we checked the robustness
of our results to this assumption by also considering different values (f = 0.2, 0.4
and 0.6).

We assume that the durations of early and late infection are ν = 1/7 days and
η = 1/7 days, respectively. By assuming that the mean duration of early infection
(i.e. duration of infection prior to symptoms, for individuals that go on to develop
symptoms) is 7 days, the expected generation time for individuals that develop
symptoms might be expected to be around 3.5 days. This lies within the range
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of estimated generation times for COVID-19 (see e.g. [8]). COVID-19 patients
have been found to shed virus up to around 1 week after hospitalisation, thereby
motivating our assumed value of η [36].

To determine the initial conditions (Eqs. (2)), we assumed that in the initial
exponential growth phase of the epidemic wave (the earliest stages of the epidemic,
which is assumed to be between January 19 and January 26, 2020), CR(t) took the
form:

CR(t) = χ1 exp(χ2 t)− χ3, t ≥ t0. (7)

Following [16], expressions for I0, U0, R0 can be obtained:

I0 = χ2

f (νf + ν2)
, U0 =

(
(1 − f )(νf + ν2)

η + χ2

)
I0, R0 = 0. (8)

Furthermore, the transmission rate during this exponential growth phase of the
epidemic wave is given by the constant value

τ(t) = τ0 =
(
χ2 + νf + ν2

S0

)(
η + χ2

ν(1 − f ) + η + χ2

)
, (9)

the epidemic start time is

t0 = 1

χ2

(
log(χ3) − log(χ1)

)
, (10)

and the value of the basic reproductive number is

R0 =
(
τ0S0

νf + ν2

)(
1 + ν2

η

)
. (11)

In the above, the value of χ3 = 30 is assumed and the values of χ1 and χ2
are obtained by fitting Eq. (7) to data on the cumulative numbers of cases per day
using least squares estimation. Specifically, we use the “polyfit” Matlab function to
estimate χ1 and χ2. The population size is assumed to be large, so that the initial
number of susceptible individuals, S0, corresponds to the total population size.

3 Results

3.1 Fitting the Model to Data

We first estimated the values of χ1 and χ2 using data on the cumulative number of
confirmed cases in the earliest stages of the epidemic wave (January 19 to January
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26, 2020). The values of τ0 and the initial conditions (I0, U0 and t0) are then
obtained using formulae (8)–(10). The fitted parameter values are shown in Table 2.
Analogous results for different values of the reporting fraction, f , are also shown.

We then used the mathematical model (1) with these parameter values and initial
conditions to project the cumulative number of reported cases forwards (black line
in Fig. 2 (left)), choosing μ so that CR(t) matched the observed data (red dots in
Fig. 2 (left)). The inferred cumulative numbers of unreported cases are also shown in
Fig. 2 (left), assuming that f = 0.8. Daily numbers of reported cases corresponding
to this forward projection are shown in Fig. 2 (right).

3.2 Predicting the End of the Epidemic Wave

To predict the end of the epidemic wave, we are particularly interested in the time
period in which cases are fading out and very few new infections are occurring.
We consider a scenario in which the current time is day t1, and we are attempting to
predict when the epidemic will end. As long as t1 is sufficiently long after the peak of
the epidemic wave that the quantity τ(t)S(t) ≤ τ(t)S0 is small, the approximation

I ′(t) � −νI (t),

can be used instead of the second equation in system (1) when t > t1. For the
parameter values used in our model, temporal changes in S0τ(t) are shown in the
Supplementary Information (Fig. 6), highlighting that τ(t)S(t) is small from the
second half of March, 2020, onwards).

Hence, to obtain an analytic expression describing the predicted end of the
epidemic wave, we considered the following approximate system of equations
whenever t ≥ t1:

⎧
⎪⎪⎨

⎪⎪⎩

I ′(t) = −νI (t),
R′(t) = νf I (t)− ηR(t),
U ′(t) = ν(1 − f ) I (t)− ηU(t).

(12)

This system is supplemented by the initial data

I (t1) = I1, U(t1) = U1 and R(t1) = R1. (13)

where I1, U1 and R1 are the values of the solutions of the original system (1)–(2) on
day t1. A schematic for the approximate model (12) is shown in the Supplementary
Information (Fig. 7).

The error between the original model and the approximate model is shown in the
Supplementary Information (Fig. 8), where the error is given by
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Fig. 2 Comparison of the model output with the data for mainland China. The parameter values
and initial conditions are listed in Table 2, and f = 0.8. On the left hand side we plot the
cumulative data (red dots), the simulated cumulative reported cases CR(t) (black line) and
unreported cases CU(t) (green line). On the right hand side, we plot data on the daily numbers
of cases (black dots) and the inferred daily number of cases using the model, DR(t) (blue line)

err(t1) = sup
t≥t1

max
(|I (t)− I1(t)|, |U(t)− U1(t)|

)
. (14)

In this expression, I (t) and U(t) are the solutions of the original system (1), and
I1(t) and U1(t) are solutions of the approximate model. In both cases, the models
are fitted to observed data on cumulative numbers of reported cases (hence, this error
formula does not involve R(t) which is very similar for the two models). When
applied in the later stages of the epidemic wave, the approximate model is more
accurate than earlier in the epidemic wave.

By considering the analogous continuous-time Markov chain to the approximate
model (12), the probability that the epidemic is over on different future dates can
be estimated analytically (see Supplementary Information Sect. 5 for additional
details). Specifically, the probability that no individuals remain in the I or U
compartments can be calculated at different times in future:

P(I (s)+ U(s) = 0 for s ≥ t | I (t1) = I1, U(t1) = U1) =
(

1 − e−η(t−t1)
)U1

(15)

×
(

1 − e−ν(t−t1) − (1 − f )ν(t − t1)e−η(t−t1)
)I1
.

The predictions generated by Eq. (15) for different values of t1 are shown in Fig. 3.
We note that, as t1 increases, the probability distribution of the date of extinction
converges to a limit profile.

Furthermore, we also computed the earliest dates that corresponded to at least
90%, 95% and 99% probabilities that the epidemic was over, for different values of
t1, using Eq. (15). The results of this analysis are shown in Fig. 4.
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Fig. 3 Estimated extinction probabilities (using Eq. (15)). The numerical values for I1 and U1
were computed from the ODE model, considering t1 values at 7 day intervals. In this figure, we
assume that f = 0.8 (other parameter values are listed in Table 2)

3.3 Comparing the Analytic Predictions with Stochastic
Simulations

To investigate the accuracy of our analytic predictions, we also estimated the end
of epidemic time using simulations of the analogous stochastic model to the system
of Eqs. (1). Specifically, as before, the deterministic model was fitted to the data on
cumulative numbers of confirmed cases and used up until time t1. Then from time
t1 onwards, stochastic simulations were run using the direct method version of the
Gillespie stochastic simulation algorithm [9].

In Fig. 5, we plot the cumulative distribution for the epidemic wave extinction
probability obtained using the stochastic simulations. As can be seen in that figure,
since the stochastic simulations involve using the exact model (Eqs. (1)) rather
than the approximate model, the predicted end dates of the epidemic wave are
independent of t1. The graph in Fig. 5 corresponds to the limit profile discussed
at the end of the previous section (i.e. the analytic prediction when t1 is sufficiently
late in the epidemic that the analytic prediction is accurate). From Fig. 3, it can be
seen that that this approximation is accurate when t1 is February 17, 2020, or later.

We also computed the error between the analytic end of epidemic time prediction
and the analogous quantity using the stochastic simulations. More precisely, we
computed the quantity (Tables 3, 4, and 5)

diff(t1) = sup
t≥t1

|fIBM(t)− fanalytic(t)| (16)
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Fig. 4 For each panel, the x-axis corresponds to the day t1 and the y-axis corresponds to the
dates of epidemic wave extinction at different probability levels (90%, 95% and 99%) computed
by using (15). Different panels correspond to different values of the parameter f ((a) f = 0.8; (b)
f = 0.6; (c) f = 0.4; (d) f = 0.2). The values of I1 and U1 are computed by solving system of
Eqs. (1) numerically up to the time t = t1. Parameter values are listed in Table 2

for each value of t1 presented in Figs. 3 and 5, where fIBM is the cumulative dis-
tribution computed by stochastic simulations (Fig. 5) and fanalytic is the cumulative
distribution given by Eq. (15) (Fig. 3). The results are shown in the Supplementary
Information (Table 6, Figs. 6, 7, and 8).

Finally, we compared the mean outputs from the stochastic simulations to the
numerical solutions of the original model (system of Eqs. (1)). Unsurprisingly,
these quantities match closely (Fig. 9). In Fig. 10, we show the variability between
different stochastic simulations obtained when the stochastic simulations are run
throughout the epidemic (i.e. starting on day t0). This high variability observed
between different simulations is largely due to the small number of individuals
infected initially; when instead stochastic simulations were run from day t1 onwards,
the variability between different stochastic simulations reduced (see Supplementary
Information, Table 7).
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Fig. 5 Estimated cumulative probability distribution for the end of epidemic wave date obtained
using stochastic simulations. Results are shown for different values of t1, although as expected the
different lines in this graph lie on top of each other. Initial conditions for the stochastic simulations
were computed by rounding the solutions of Eqs. (1) at t = t1 to the nearest integers. 150,000
simulations were run for each value of t1. In this figure, f = 0.8. Other parameter values are
shown in Table 2

4 Discussion

Despite receiving surprisingly little attention from epidemiological modellers,
predicting the ends of epidemic waves is important for estimating how long intense
interventions are likely to be required [14, 22, 23, 31]. In this study, we developed
a framework for predicting the ends of epidemic waves using compartmental
epidemiological models. This involving fitting a compartmental model to case
notification data and using an analytic expression to estimate when the epidemic
wave is likely to end. We also compared our analytic prediction to analogous results
obtained via model simulations, thereby demonstrating that our results are accurate
whenever the underlying epidemiological model provides a realistic reflection of
pathogen transmission.

In Table 3, we show the results that we obtained using this framework in real-
time to predict the end of the first COVID-19 epidemic wave in China. Specifically,
the results in this table correspond to those shown in Fig. 3, after the end of
epidemic wave probability converged to the limit profile (i.e. using values of t1
from approximately mid-February onwards). Importantly, the predicted epidemic
wave end date depended on the assumed proportion of infectious cases that report
disease (f ). Since this quantity was unknown, and remains uncertain even now, we
conclude that accurate estimation of the reporting fraction is essential to forecast the
ends of epidemic waves accurately.

Our intention here was to develop a basic modelling approach for predicting
when an epidemic wave is likely to end. To improve the accuracy of predictions,
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Table 3 The predicted end of epidemic wave date inferred when t1 was March 16, 2020, for
different levels of risk aversion. For example, assuming f = 0.8, our model predicted a 10% chance
that the epidemic wave would persist beyond May 19, 2020

Level of risk 10% 5% 1%

Extinction date (f = 0.8) May 19 May 24 June 5

Extinction date (f = 0.6) May 25 May 31 June 12

Extinction date (f = 0.4) May 31 June 5 June 17

Extinction date (f = 0.2) June 7 June 12 June 24

Table 4 Cumulative data describing confirmed cases in mainland China from January 20, 2020 to
March 18, 2020

January

19 20 21 22 23 24 25

198 291 440 571 830 1287 1975

26 27 28 29 30 31

2744 4515 5974 7711 9692 11,791

February
1 2 3 4 5 6 7

14,380 17,205 20,438 24,324 28,018 31,161 34,546

8 9 10 11 12 13 14

37,198 40,171 42,638 44,653 46,472 48.467 49,970

15 16 17 18 19 20 21

51,091 70,548 −
17,409

72,436 −
17,409

74,185 −
17,409

75,002 − 17,409 75,891 − 17,409 76,288 − 17,409

22 23 24 25 26 27 28

76,936 −
17,409

77,150 −
17,409

77,658 −
17,409

78,064 −
17,409

78,497 − 17,409 78,824 − 17,409 79,251 − 17,409

29

79,824 −
17,409

March
1 2 3 4 5 6 7

79,824 −
17,409

79,824 −
17,409

79,824 −
17,409

80,409 −
17,409

80,552 − 17,409 80,651 − 17,409 80,695 − 17,409

8 9 10 11 12 13 14

80,735 −
17,409

80,754 −
17,409

80,778 −
17,409

80,793 −
17,409

80,813 − 17,409 80,824 − 17,409 80,844 − 17,409

15 16 17 18

80,860 −
17,409

80,881 −
17,409

80,894 −
17,409

80,928 −
17,409

this approach would require adjustments to account for important features of real-
world epidemic waves. As well as uncertainty in the reporting fraction, another
key assumption was that public health measures remained in place until the end
of the epidemic wave. Of course, if measures such as isolation of infectious cases
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Table 5 Absolute difference between the cumulative distribution given by the stochastic simu-
lations and the reference simulation t1 = 82. For each t1 we computed the error as diff(t1) =
supt≥t1 |ft1 (t)−f81(t)|, where ft1 is the estimated distribution computed simulations, for which the
initial condition correspond to the components of (1) at t = t1 rounded to the closest integer

t1 26 33 40 47 54 61

Date Jan. 27 Feb. 3 Feb. 10 Feb. 17 Feb. 24 Mar. 2

diff(t1) 2.9 × 10−3 2.1 × 10−3 2.9 × 10−3 1.8 × 10−3 2.5 × 10−3 1.4 × 10−3

t1 68 75 82

Date Mar. 9 Mar. 16 Mar. 23

diff(t1) 1.6 × 10−3 1.2 × 10−3 0.00

Table 6 Absolute difference between the cumulative distribution given by the stochastic simula-
tions and the analytic approximation using the approximate model (12), computed using Eq. (16)

t1 26 33 40 47 54 61

Date Jan. 27 Feb. 3 Feb. 10 Feb. 17 Feb. 24 Mar. 2

diff(t1) 8.6 × 10−1 4.4 × 10−1 1.7 × 10−1 6.4 × 10−2 2.5 × 10−2 8.1 × 10−3

t1 68 75 82

Date Mar. 9 Mar. 16 Mar. 23

diff(t1) 3.5 × 10−3 8.5 × 10−4 5.7 × 10−4

Fig. 6 Graph of τ(t)S0 = τ0S0 exp(−μmax(t −N, 0)) with S0 = 1.40005 × 109, τ0 = 3.3655 ×
10−10,N = Jan. 26, andμ = 0.148. The transmission rate is very small in the second half of March
onwards. The parameter values correspond to the baseline case that we considered (f = 0.8) see
Table 2

are relaxed before an epidemic wave has ended, then the epidemic end date is
likely to be different to the one predicted using our modelling framework. In that
scenario, relaxation of interventions could in theory be integrated explicitly into the
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Fig. 7 Schematic of the model (12)

Fig. 8 In this figure the x-axis corresponds to t1 and the y-axis corresponds to the error err(t1)
defined in (14). We observe that the smaller f , the larger the error. Parameter values are listed in
Table 2

underlying model, and model simulations used to predict the end of epidemic waves.
Since interventions are often included in compartmental models [3, 5, 28, 32], this
is a straightforward extension of the research presented here. We also note that, if
interventions are relaxed following the end of an epidemic wave, then additional
cases could begin a second wave—a phenomenon that is now arguably being
observed in a range of countries worldwide for COVID-19.

We note that there were very few cases in mainland China after mid-March, 2020.
As a result, our modelling framework tended to estimate later end of epidemic wave
dates than turned out to be the case. The most likely explanation for this is that,
by characterising the impacts of control interventions using Eq. (3), public health
measures did not have a sufficiently strong effect in the model. Testing the effects



188 Q. Griette et al.

Fig. 9 In figure (a) we plot a comparison between the average S (susceptible) computed from
the IBM and the S component of the solution of (1). In figure (b) we plot a comparison between
the average I (asymptomatic), R (reported) and U (unreported) computed from the IBM and the
components I , R and U of the solution of (1). In figure (c) we plot a comparison between the
average RR (removed) computed from the IBM and the components RR of the solution of (1). In
figure (d) we plot a comparison between the average CR (cumulative reported cases) computed
from the IBM and the curve CR computed by (1)–(4). In this figure 500 independent runs of the
IBM simulations are used and the corresponding components of the ODE model start from the
same initial condition (at t = t0). The parameters we used for both computations are the following:
I0 = 93, U0 = 5, S0 = 1.40005 × 109 − (I0 + U0), R0 = RR0 = CR0 = 0 and f = 0.8,
τ0 = 3.3655 × 10−10, N = 26, μ = 0.148, ν = 1

7 , η = 1
7 , t0 = 13.3617

of different possible characterisations of the effects of public health measures is left
as future work.
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Fig. 10 In figure (a) we plot the mean value and variance of S (susceptible) computed from the
IBM. The dark blue area contains 68% of the trajectories, and the light blue area 95%. In figure (b)
we plot the mean value and variance of I (infected), R (reported) and U (unreported) computed
from the IBM. The dark areas contains 68% of the trajectories, and the light areas 95%. In figure
(c) we plot the mean value and variance of RR (removed) computed from the IBM. The dark
green area contains 68% of the trajectories, and the light green area 95%. In figure (d) we plot the
mean value and variance of CR (cumulated reported) computed from the IBM. The dark gray area
contains 68% of the trajectories, and the light gray area 95%. We use 500 independent runs of the
IBM simulations. The parameters we used for both computations are the following: I0 = 93, U0 =
5, S0 = 1.40005 × 109 − (I0 + U0), R0 = RR0 = CR0 = 0 and f = 0.8, τ0 = 3.3655 × 10−10,
N = 26, μ = 0.148, ν = 1

7 , η = 1
7 , t0 = 13.3617

Since the precise method of parameter inference was not central to our frame-
work, we used a basic approach to estimate the values of pathogen transmission
parameters here, namely least squares estimation. Many different methods are used
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Table 7 Maximal standard deviation for the components I , R and U computed by stochastic
simulations started at date t1 with initial condition given by the solution to (1) with the parameters
from Table 2. The ODE model (1) is solved up to t = t1, and we take the solution to (1) at t = t1
as initial condition for the stochastic simulations. σ(t) is the maximum, at time t , of the standard
deviations of the quantities I (t), R(t) and U(t) in a sample of n = 1000 independent simulations
started at t = t1, and is expressed in number of individuals. We took f = 0.8 and other parameters
are taken from Table 2

t1 t0 18 22 26 33 40

Date Jan. 14 Jan. 19 Jan. 23 Jan. 27 Feb. 3 Feb.10

maxt≥t1 σ(t) 3717 1685 787 401 186 106

to estimate transmission parameters in real-time during epidemics [1, 25], and our
modelling framework could be extended to use these more sophisticated methods.

Despite the many simplifications in our modelling approach as presented here,
we have provided an initial framework for predicting the ends of epidemic waves,
and demonstrated the key principle that the end date of an epidemic wave depends
sensitively on the proportion of infectious cases that report disease. Extending this
framework to include additional epidemiological realism, so that ends of epidemic
waves can be forecasted as accurately as possible, is an important target for future
research. This will allow public health decision makers to plan control interventions
effectively during infectious disease epidemics.

5 Supplementary Information

5.1 Formula to Compute the Probability Distribution of the
Extinction Date

We use continuous-time Markov processes to compute the exact distribution of the
date of end of the epidemic after the transmission rate is effectively taken as zero. We
start on t1 with initial values I1, U1, and R1 for I -individuals, U -individuals and R-
individuals, respectively. The evolution of each individual is guided by independent
exponential processes, and we have the following:

(i) Each individual I will change state following an exponential clock of rate ν.
When I changes its state, it will be transferred to the class of R-individuals
with probability f and to the class of U -individuals with probability (1 − f );

(ii) Each individual in the state U will change state following an exponential clock
with rate η and become removed individual;

(iii) Each individual in the state R will change state following an exponential clock
with rate η and become removed individual

Since the class I has only outgoing fluxes, the law of extinction for the I -
individuals is
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P(I (t) = 0 | I (t1) = I1) =
(∫ t

t1

νe−ν(s−t1)ds
)I1

=
(

1 − e−ν(t−t1)
)I1
,

and the probability to have some I -individual left at time t is

P(I (t) = I | I (t1) = I1) = (1 − e−ν(t−t1))I1−I e−νI (t−t1).

For the U -individuals and the R-individuals, the situation is more intricate. Indeed,
the U -individuals and the R-individuals vanish at a constant rate η but new
individuals appear from the I class at rate (1−f )ν and f ν, respectively, depending
on the remaining stock of I . Therefore the probability that U gets extinct before t
also depends on the number of remaining I . It is actually easier to compute directly
the extinction property for the sum I + U , which is our aim anyways.

When ν �= η, we obtain

P(I (s)+ U(s) = 0 ∀s ≥ t | I (t1) = I1, U(t1) = U1)

=
(

1 − e−η(t−t1)
)U1

×
(∫ t

t1

P(U → RR before t | I → U at s)P(I → U at s)+P(I → R at s)ds

)I1

=
(

1 − e−η(t−t1)
)U1

×
(∫ t

t1

(
1−e−η(t−s)

)
× (1 − f )νe−ν(s−t1) + f νe−ν(s−t1)ds

)I1

=
(

1 − e−η(t−t1)
)U1

×
(

(1 − f )
(

1 − e−ν(t−t1) − ν e
−ν(t−t1) − e−η(t−t1)

η − ν

)

+ f (1 − e−ν(t−t1))
)I1

=
(

1 − e−η(t−t1)
)U1 ×

(

1 − e−ν(t−t1) − (1 − f )ν e
−ν(t−t1) − e−η(t−t1)

η − ν

)I1
,

where the RR-individuals are the removed individuals.
Similarly when η = ν, we obtain

P(I (s)+ U(s) = 0 ∀s ≥ t | I (t1) = I1, U(t1) = U1)

=
(

1 − e−η(t−t1)
)U1 ×

(
1 − e−ν(t−t1) − (1 − f )ν(t − t1)e−η(t−t1)

)I1
.

(17)
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5.2 Cumulative Distribution of the Date of End of the Epidemic

The stochastic simulations introduced in Sect. 3.3 can be used, in particular, to
precisely estimate the cumulative probability distribution of the date of end of the
epidemic, defined as the last time at which the quantity I + U is positive.

In order to get a measure of the precision we remark that the values taken by
the cumulative probability distribution f (t) can be estimated by the average of
independent measures of the random variable

X = 1text≤t ,

which follows an Bernouilli distribution of parameter f (t). Consecutive runs of the
individual-based simulations yield independent observationsXn of this distribution.
By Hoeffding’s inequality we have for all ε > 0 and n ∈ N

P

(∣∣∣∣∣
1

n

n∑

i=1

Xn − f (t)
∣
∣∣∣∣
≥ ε

)

≤ 2 exp
(
−2ε2n

)
=: α,

and we achieved an error of at most ε = 10−3 at risk α ≤ 10−3 by running
n = − 2

ε2 ln
(
α
2

) ≈ 15201805 independent individual-based simulations to estimate
the probability distribution of the extinction time (Fig. 5, t1 = 82 i.e. March 23).
Other curves are estimated on the basis of 152019 independent simulations, which
amounts to an error of at most 10−2 at risk 10−3.

Since the curves presented in Fig. 3 are so similar that it is difficult to see any
difference between them, we computed the absolute error between each curve and
the “reference” of t1 = 82. We present the numerical values in Table 5. Notice that
the error is actually below the estimated precision of the approximation.

5.3 Supplementary Figures

5.4 Supplementary Tables

We use cumulative reported data from the National Health Commission of the
People’s Republic of China and the Chinese CDC for mainland China. Before
February 11, the data was based on laboratory confirmations. From February 11
to February 15, the data included cases that were not tested for the virus, but
were clinically diagnosed based on medical imaging (patients that showed signs
of pneumonia). There were 17,409 such cases from February 11 to February 15.
The data from February 11 to February 15 specified both types of reported cases.
From February 16, the data did not separate the two types of reporting, but reported
the sum of both types. We therefore subtracted 17,409 cases from the cumulative
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reported cases after February 15 to obtain approximate data for the cumulative
numbers of reported cases based only on laboratory confirmations after February
15.The data is given in Table 4 with this adjustment.
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The Effect of Heterogeneity in Social
Distancing on the Infection Peak
for COVID-19

Connell McCluskey

1 Introduction

For many models, analytical calculations can give great insight into the beginning of
an outbreak (the period of exponential growth) and also into the long-term behaviour
(asymptotic stability). However, with COVID-19 it is extremely important to
understand what happens between these extremes. Insight into questions about the
timing and height of peaks is of fundamental importance, and is one focus of this
work.

Another goal of this work is to provide insight into the effect of having different
subgroups of a population that engage in social distancing (or other means of contact
reduction) at different levels. Along with general analysis for multiple groups,
we provide numerical simulations that focus on the case of two levels of social
distancing.

The idea of social distancing as a policy to help control the spread of COVID-
19 was introduced to Canada in March 2020; many other places adopted similar
policies around the same time. Until then, Canadian mixing patterns had not sub-
stantially reacted to the novel virus. Before social distancing began, the following
transfer diagram (which is a simplification of the model used in [6]) would have
been appropriate.
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The compartments in the transfer diagram are:

S Susceptible

E Exposed (latently infected)

A Asymptomatically Infectious

I s Infectious (and symptomatic) - Serious case

Im Infectious (and symptomatic) - Mild case

H Hospitalized (and at risk of dying)

R Recovered

We now split each of these compartments into n subgroups based on the level of
engagement in social distancing. Thus, we have S1, S2, . . . , Sn, E1, E2, . . . , En, and
so on for the other compartments that appear in the transfer diagram. Suppose the
baseline contact rate of the population, before social distancing policies are intro-
duced, is c. For j = 1, . . . , n, the contact rate for group j , after social distancing
policies are introduced, is cτj , where we expect (but don’t require) that τj ∈ [0, 1].
Aside from social distancing, the n subgroups of an epidemiological compartment
are assumed to be identical. For intuition, we assume1 τ1 ≤ τ2 ≤ · · · ≤ τn. For the
purposes of our analysis, the period before the introduction of social distancing is
ignored; we assume social distancing was already in place at the beginning.

1 Since subgroups are identical beyond the value of τj , there is no need for any of the τ ’s to be
equal, but it does allow for discussion of the case where they are all equal. See Sect. 3.1.
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Table 1 Parameters used in the incidence functions

Parameter Value Description

c 13.46 Number of contacts in the absence of social distancing

τj varies Contact multiplier for subgroup j

βA 0.0249 Probability of infection per contact with Aj
βs 0.0249 Probability of infection per contact with I sj
βm 0.0249 Probability of infection per contact with Imj

Table 2 The remaining system parameters

Parameter Value Description

N0 6,000,000 Total population size at the DFE

1/μ 80 years Life expectancy

� μN0 ≈ 205 Birth rate (in people per day)

1/ε 2.5 days Duration of latency

1/α 1 day Duration of asymptotic infectiousness

p 0.07 Probability that a case is serious

q 1 − p = .93 Probability that a case is mild

1/ks 6 days Time for a serious case to lead to hospitalization

1/νs 12 days Time for serious cases to recover (outside of the hospital)

1/νm 6 days Time for mild cases to recover

1/νH 18 days Time for hospitalized cases to recover

pd 0.078 Fraction of hospitalizations ending in death

1/d νH
pd

1−pd Time in hospital before death

fj varies Fraction of the population in social distancing group j

We assume that a fraction fj ∈ (0, 1) of the population enters the j ’th subgroup
(with contact multiplier τj ), through the birth/recruitment rate �, with f1 + · · · +
fn = 1. Furthermore, we assume that the initial distribution of the population is in
accordance with these fractions.

The meaning of the system parameters, along with the values that are used in
the numerical simulations can be found in Table 1 (for parameters related to the
incidence functions) and Table 2 (for other parameters).

Let Nj be the number of non-hospitalized individuals in group j . All non-
hospitalized individuals are assumed to engage in contacts. (Quarantining and
self-isolation are not included in the model.) Then

Nj = Sj + Ej + Aj + I sj + Imj + Rj .
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Let �j be the incidence affecting Sj , calculated using proportional mixing. To
calculate �j , we determine the probability that a given contact is with an individual
in a particular compartment. This is related to earlier work such as [1, 2]. The total
contact rate of individuals in group Ak , for example, is cτkAk . Dividing by the
total contact rate of the population

∑n
i=1 cτiNi , we see that the probability that a

particular contact is with someone in group Ak is τkAk∑n
i=1 τiNi

. The contact rate for an

individual in group Sj is cτj . Thus, the rate of contacts between groups Sj andAk is
cτjSj

τkAk∑n
i=1 τiNi

. Multiplying by the transmission probability βA of the asymptomatic

class gives the associated transmission rate. Calculating similar terms for I sk and Imk
and summing over k gives

�j = cτjSj

∑n
k=1 τk

(
βAAk + βsI sk + βmImk

)

∑n
i=1 τiNi

.

We note that
�j
�l

= τj Sj
τlSl

, so that the force of infection for the various susceptible
groups varies only by the change in the contact multiplier τ .

The differential equations for the system are

dS

dt
= fj�− μS − �j

dE

dt
= �j − (ε + μ)E

dA

dt
= εE − (α + μ)A

dI s

dt
= pαA− (νs + ks + μ)I s

dIm

dt
= qαA− (νm + μ)Im

dH

dt
= ksI

s − (νH + μ+ d)H
dR

dt
= (1 − p − q)αA+ νsI s + νmIm + νHH − μR,

where the variables (S, E, . . . , R) should all have a subscript j on them, but we have
omitted the subscript in order to make the equations more legible.

In order to study the initial outbreak, it is appropriate to consider initial
conditions near the disease-free equilibrium.

Parameters related to the incidence are described in Table 1, while the remaining
parameters appear in Table 2. The population size and life expectancy were chosen
with the Greater Toronto Area in mind. Other parameters came from [3, 5, 6] and
[4], including Supplementary Table 5.
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2 Disease-Free Equilibrium

The disease-free equilibrium (DFE) is given by

S0
j = fj

�

μ
, and Ej = Aj = I sj = Imj = Hj = Rj = 0,

for j = 1, . . . , n. Note that at the DFE, Nj = S0
j .

It is worth rewriting the incidence as

�j = GjB,

where

Gj = τjSj∑n
i=1 τiNi

and B = c

n∑

k=1

τk
(
βAAk + βsI sk + βmImk

)
.

Note that Gj is the probability that a given contact (by an infectious individual) is
with an individual in class Sj . These probabilities are highly relevant for how the
disease spreads and their values near the DFE affect the initial outbreak. At the DFE,
we have

Gj = G∗
j = τjfj∑n

i=1 τifi
.

Note thatG∗
1 +· · ·+G∗

n = 1, and so theGj can be used as coefficients in a weighted
average. Let

τ ∗ =
n∑

j=1

τjG
∗
j

=
∑n
j=1 τ

2
j fj∑n

i=1 τifi
.

(1)

This quantity τ ∗ will arise naturally when the basic reproduction number R0 is
calculated. Due to the role that it will play, we refer to τ ∗ as the effective contact
multiplier and the product cτ ∗ gives the effective contact rate of the population.
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3 The Basic Reproduction Number R0

Using the next generation matrix method [7], with the infected variables ordered as

(
E1, . . . , En,A1, . . . , An, I

s
1 , . . . , I

s
n, I

m
1 , . . . , I

m
n ,H1, . . . , Hn, R1, . . . , Rn

)
,

leads to rather large matrices for F and V , size 6n × 6n. Fortunately, they have a
block form that can be used efficiently. First, F = (�1, . . . , �n, 0, . . . , 0)T ∈ R

6n,
with all other terms put in V.

Differentiating �j with respect to Al (and similarly for I sl and Iml ), and
evaluating the results at the DFE, we obtain the matrix

cβA∑n
i=1 τifi

T, where T =

⎡

⎢⎢⎢⎢
⎣

τ 2
1 f1 τ1f1τ2 · · · τ1f1τn

τ2f2τ1 τ 2
2 f2 · · · τ2f2τn

...
...

. . .
...

τnfnτ1 τnfnτ2 · · · τ 2
nfn

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

τ1f1

τ2f2
...

τnfn

⎤

⎥⎥⎥⎥
⎦

[
τ1 τ2 · · · τn

]
.

The matrix T will appear as a block in the matrix F below. At this point it is worth
noting that T has rank 1, and therefore it has n− 1 eigenvalues that are 0, while the
remaining eigenvalue is equal to the trace. Thus, the spectral radius ρ of T is given
by

ρ (T) = trace (T) =
n∑

j=1

τ 2
j fj .

Calculating F and V from F and V in the standard way (see [7]), using 0 to
denote an n× n block of zeros and using I to denote the n× n identity, we obtain

F = c
∑n
i=1 τifi

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

0 βAT βsT βmT 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

and

V =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

(ε + μ)I 0 0 0 0 0
−εI (α + μ)I 0 0 0 0

0 −pαI (νs + ks + μ)I 0 0 0
0 −qαI 0 (νm + μ)I 0 0
0 0 −ksI 0 (νH + μ+ d)I 0
0 −(1 − p − q)αI −νsI −νmI −νH I μI

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

.
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(If the infected variables are reordered as (E1, . . . , R1, E2, . . . , R2, . . . , En, . . . ,

Rn), then V becomes block diagonal, where the diagonal blocks are all identical
and can be obtained by replacing each block of the matrix given here for V , with
the scalar appearing on that block’s diagonal.)

In order to write R0 concisely, we define TA, Ts and Tm, the average times spent
in classes A, I s and Im, respectively. They are given by

TA = ε

(ε + μ)(α + μ), Ts = TA
pα

ks + νs + μ and Tm = TA
qα

νm + μ,

and appear in V −1.
Due to the many rows of zeroes in F , the next generation matrix FV −1 also has

many rows of zeros. In terms of n× n blocks we get

FV −1 = c
∑n
i=1 τifi

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

M1 M2 M3 M4 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

,

where

M1 = (βATA + βsTs + βmTm)T.

We can now write

R0 = ρ
(
FV −1

)

= c
∑n
i=1 τifi

ρ (M1)

= c
∑n
i=1 τifi

(βATA + βsTs + βmTm) ρ (T)

= c

∑n
j=1 τ

2
j fj∑n

i=1 τifi
(βATA + βsTs + βmTm) ,

and so

R0 = c τ ∗ (βATA + βsTs + βmTm) . (2)
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3.1 Interpreting τ∗

From Eq. (2), we see that the manner in which the heterogeneity in contact rates
comes into the expression for R0 is in cτ ∗. The individual values of τ1, . . . , τn do
not matter, except in how they affect τ ∗. Two different sets of values of (τ1, . . . , τn)

that produce the same τ ∗ lead to the same value for the basic reproduction number.
Consider the case where all of the τj are equal. Suppose τ1 = · · · = τn = τ .

Then Eq. (1) gives τ ∗ = τ . This is equivalent to having a single group (i.e. n = 1),
with everyone at the same contact level.

Thus, the value of R0 that arises from a population with heterogeneity in the
contact rates, given by (cτ1, . . . , cτn), would also be obtained if everyone in the
population adopted a contact rate of cτ ∗.

This is the reason why τ ∗ can reasonably be called the effective contact multiplier
of the population and cτ ∗ can be called the effective contact rate.

3.2 A Different Average τ

Averaging τ over the non-hospitalized population gives

τ̄ =
∑n
j=1 τjNj∑n
i=1Ni

.

At the DFE, the hospitalized populations are zero, and Ni = fi
�
μ

. Since
∑
fi = 1,

this average τ̄ becomes

τ̄DFE =
n∑

j=1

τjfj . (3)

The relationship between τ ∗ and τ̄DFE will be discussed in Sects. 4 and 6. However,
comparing Eqs. (1) and (3) makes it immediately apparent that τ ∗ and τ̄DFE are
generally different.

3.3 How R0 and τ∗ Depend on the τ ’s

If all other parameters are held fixed while τl is varied, then the ratio of R0 to τ ∗
remains fixed. Thus, it is sufficient to determine how τ ∗ depends on τl , and the same
correlation will apply to R0. With a bit of calculation, we obtain

∂τ ∗

∂τl
= 2fl
τ̄DFE

(
τl − 1

2
τ ∗
)
.
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Recall that τ1 ≤ τ2 ≤ · · · ≤ τn and also that τ ∗ (defined in Eq. (1)) is a weighted
average of the τ ’s. This means that some of the τ ’s (including τn) are greater than
1
2τ

∗, making the corresponding derivative positive.
On the other hand, it is possible that τ1 (and some other τ ’s) are less than 1

2τ
∗,

making the corresponding derivative negative—a surprising result. We have the
following:

• If τl > 1
2τ

∗, then an increase in τl leads to an increase in R0. This is certainly the
case for τn.

• If τl < 1
2τ

∗, then an increase in τl leads to a decrease in R0. This may or may not
be the case for τ1.

4 Numerical Work

In this section we present the results of numerical simulations2 for the simplified
case of n = 2. This means that each epidemiological group from the original transfer
diagram is divided into two subgroups, which differ only in the contact multipliers
τ1 and τ2.

4.1 Parameters

System parameters that are associated with the original transfer diagram—except
for the population size, the contact rate c and the transmission probabilities βA,
βs and βm—are taken from [6], as the model studied here is a modified version
of the model studied there. The population size is taken to be 6 million, which is
roughly the size of the Greater Toronto Area. We use c = 13.5, which comes from
[4, Supplementary Table 5], work that provides data on contact rates for infectious
respiratory diseases in several European countries. In the absence of more detailed
information, we use βA = βs = βm. The value3 used is chosen so that in the
absence of contact heterogeneity we obtain R0 = 2.3, taken from [3, 6]. All system
parameters are given in Tables 1 and 2, which appear in Sect. 1.

With two subgroups, we have f2 = 1−f1, and so there are three input parameters
(f1, τ1 and τ2), which can be varied. We choose to keep τ2 fixed at 1, so that
individuals in sub-group 2 can be thought of as maintaining their original contact
level. This gives two input parameters (f1 and τ1), which can be varied. We make
the further restriction that τ ∗ = 0.7. This essentially sets f1 to be a function of τ1.

2 Numerical solutions were calculated in Matlab using ode45.
3 We experimented with distinct values, but there did not seem to be a significant difference in the
results.
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Rearranging Eq. (1) gives

f = f (τ1) = τ2(τ2 − τ ∗)
(τ2 − τ1)(τ2 + τ1 − τ ∗)

= 0.3

(1 − τ1)(0.3 + τ1)
. (4)

We now have a single input parameter τ1 to be varied.

4.2 The Simulations

The goal is to investigate the significance of having different groups social distanc-
ing at different levels and to see how this affects the time-course of the outbreak.
In particular, numerical simulations will allow us to see how an outbreak develops
both during and after the initial period of exponential growth.

The choice of τ ∗ = 0.7 results in a new basic reproduction number of 1.61
(coming from 70% of 2.3, the original value of R0). Thus, we still have a period of
exponential growth. By varying the value of τ1 (while choosing f1 so that τ ∗ stays
fixed), we are able to study:

• how heterogeneity affects the doubling time during the period of exponential
growth,

• how heterogeneity affects the height and timing of the infection peak,
• the difference between predictions that explicitly include heterogeneity versus

those that use the average value of τ̄DFE or τ ∗.

We note that since τ2 is held fixed at 1, lower values of τ1 represent greater
heterogeneity.

4.2.1 Doubling Time

The doubling time during the period of exponential growth was studied by finding
the dominant eigenvalue λ̃ of the Jacobian matrix at the DFE for each value of τ1,
and then determining the doubling time Tdouble as

Tdouble = ln(2)

λ̃

so that eλ̃Tdouble = 2. Calculations were completed numerically in Matlab and again
independently in Maple. The observed result was that the doubling time remained
constant at 10.85 days, as τ1 was varied (while τ ∗ remained constant).
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4.2.2 The Infection Peak

In Fig. 1, the blue curves are the most important as they represent the total
population (i.e. groups 1 and 2 combined). The red curves give the quantities in
the social distancing group (group 1); the green curves give the quantities for the
non-distancing group. In the left-hand panel of Fig. 1, f1 = 1 and so everyone is in
the social distancing group. This is why the green curve is at 0 and the red curve is
covered by the blue curve.

The top portion of each panel shows the total number of current infections (E +
A + I s + Im + H ) as a function of time. The second portion gives the number of
hospitalized cases. The third portion gives the cumulative deaths. The fourth portion
gives the number of susceptibles. More or less, it is better when the curves in the top
three portions are lower and the curves in the fourth portion are higher—especially
the blue curves. Figure 1 suggests that (for fixed τ ∗) it is better to have τ1 small.

As τ1 is varied, the timing of the peak remains constant (see the left-hand panel
of Fig. 2). The height of the peak decreases from 588,000 to 175,000 as τ1 decreases
from 0.7 to 0.1 (middle panel). That’s a decrease of just over 70%.

Note that when τ1 = 0.7 (at the right-hand side of each panel of Fig. 2), we have
f1 = 1, as shown in the right-hand panel, and the entire population is in group 1.
As τ1 decreases from 0.7 (i.e. moving to the left within the panel), the fraction f1
decreases so that less of the population is in group 1 so that τ ∗ remains fixed, before
reaching a minimum at τ1 = 1

2τ
∗ = 0.35.

Throughout the simulations, f1 ≥ 0.7 (right-hand panel of Fig. 2). This means
that the social distancing group is always more than 70% of the total population,
explaining why the red curves in Fig. 1 are generally higher than the green curves.
(This changes a bit, but not dramatically, if the value of τ ∗ is changed from 0.7.)

Fig. 1 Numerical plots. The left-hand panel has τ1 = 0.7 and f1 = 1, so that everyone is in group
1 and everyone has a contact level that is 70% of the original level. The middle panel has τ1 = 0.4
and f1 = 5

7 so most of the population is at 40% of the original contact level and the remainder is

at 100%. The right-hand panel has τ1 = 0.1 and f1 = 5
6
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Fig. 2 The left-hand panel indicates that heterogeneity in social distancing does not appreciably
affect the timing of the epidemic peak. The middle panel shows that the height of the epidemic
peak has a strong dependence on the level of heterogeneity in social distancing (as represented by
τ1). The right-hand panel shows the fraction f1 of the population in group 1 as a function of τ1
(given that τ2 and τ ∗ are held fixed)

Fig. 3 The left-hand panel shows the predicted timing of the infection peak, while the right-hand
panel shows the height of the peak. In each panel, the blue curve comes from explicitly using
two subgroups with contact multipliers of τ1 and τ2, whereas the red curve comes from not using
subgroups and using a single contact rate of cτ̄DFE

The right-hand panel of Fig. 2 shows that even when the majority of the
population is in a strongly social distancing group (about 83% of the population
when τ1 = 0.1) a comparatively small group of non-distancers (about 17% of the
population) are able to maintain the outbreak, with R0 fixed at 1.61.

4.2.3 Including Heterogeneity Versus Using τ̄DFE

In Fig. 3, the blue curve in each panel is the same as in the first two panels of Fig. 2,
giving the timing and height of the infection peak versus τ1, with τ2 and τ ∗ held
fixed.

Separate simulations were run using a single contact level (i.e. 7 variables S, E,
A, I s , Im, H and R with no subgroups) given by the average contact level of the
population: cτ̄DFE. (Note that this approach is natural, but ignores that clusters are
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more likely to occur in the highly active subgroups of the population that interact
primarily with each other.) The red curves in Fig. 3 give the resulting predictions for
the timing and the height of the infection peak. All other parameters are the same as
in the main simulations that led to the blue curves.

By using a contact rate of cτ̄DFE, rather than cτ ∗, the value of R0 changes by a
factor of τ̄DFE

τ∗ . For low values of τ1 (recalling that f1 remains above 0.7—see the
right-hand panel of Fig. 2), a contact rate of cτ̄DFE results in a value of R0 less than
1. This can be seen in the right-hand panel of Fig. 3, where the height of the peak
is essentially zero for τ1 < 0.3. As τ1 increases past 0.35, the height of the peak
climbs, while remaining significantly lower than the blue curve. Only when τ1 gets
to 0.7 (at which point τ̄DFE = τ ∗) do the red and blue curves converge.

This means that in the presence of heterogeneity, treating the contact level as
being homogeneously at the population average underestimates the height of the
peak. Additionally, when an outbreak occurs τ1 > 0.35) using cτ̄DFE leads to
overestimating the time until the peak occurs. Such a prediction would encourage
preparation for a lower peak that would happen later, leading to a state of
underpreparedness.

It is important to address the left-hand portion of the left-hand panel of Fig. 3.
The red curve is very low in this portion of the figure. However, by looking at the
right-hand panel, we see that there is no outbreak for these low values of τ1 (since
heterogeneity has been inappropriately omitted). Thus, the “timing of the peak” is
really coming from the small number of initial infections that are used to seed the
numerical simulations.

The flatness of the upper portion of the red curve in the left-hand panel comes
from using a maximum time of 300 days in the numerical simulations. Cases were
still climbing when the simulation terminated.

For contrast, if heterogeneity is not explicitly accounted for by including
subgroups, but is acknowledged by setting the single contact level to be cτ ∗, then
it is equivalent to the result obtained for τ1 = 0.7 (since that gives f1 = 1). In the
right-hand panel of Fig. 3 this would give a third curve that is constant at a height
equal to the intersection point of the blue and red curves.

Thus, a single contact level cτ̄DFE underestimates the height of the peak, possibly
dramatically, while a single contact level cτ ∗ overestimates the height of the peak,
also possibly dramatically.

5 A Summary of Key Observations

As τ1 decreases from 0.7 to 0.1 (and f1 correspondingly changes so that τ ∗ stays
fixed) we have:

• R0 remains constant,
• the doubling time for the period of exponential growth remains constant,
• the timing of the peak (in the number of infections) remains constant,
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• BUT the height of the peak decreases by as much as 70%,
• a small group of non-distancers can keep R0 elevated.

Ignoring heterogeneity in the contact levels can profoundly affect the accuracy
of predictions about the height and timing of the infection peak.

6 Discussion

Many early models predicted peak levels of infection (and the resulting death toll) to
be much higher than were seen in the first wave of COVID-19. Clearly, policies that
were introduced to limit social interactions played a significant role in the reduction
of cases. However, an additional factor that is less obvious, is that not everybody had
the same contact level. This would have been the case even without interventions.

The exact doubling time found here is likely not the real-world value. (The basic
compartmental model and parameters are not precise enough for that.) However,
the fact that the doubling time depends on τ ∗ (but not directly on τj , fj or τ̄DFE)
is noteworthy. Two major population level quantities of interest are R0 and the
doubling time. It is apparent that these depend strongly on τ ∗ rather than on τ̄DFE.

Often R0 and/or the doubling time is known through other means. It is then used
to calculate the contact rate c or the transmission probability β or the product cβ.
The current work suggests that this should be done carefully due to heterogeneity in
the contact levels.

The numerical simulations were done in the limited case of only 2 groups
(represented by τ1 and τ2). However, it is clear that similar behaviour also happens
with more than 2 groups—although likely at a reduced level.

Certainly, the most extreme case studied here (two subgroups with associated
values of τ1 = 0.1 and τ2 = 1) is unlikely to be representative of a real population.
Nevertheless, it highlights the fact that system parameters that give the same value
for τ ∗ (and hence for R0) can yield wildly different predictions for the height of the
infection peak (70% in this case). It follows that if heterogeneity is ignored, then
quantitative predictions may suffer substantially.

If a subgroup’s contact levels are very small compared to the full population
(as represented by τ ∗), then it becomes similar to that group being absent and the
population being a little smaller. In that case, a new higher value of τ ∗ would be
calculated based on the remainder of the population. If the subgroup with the low
contact level were to engage in more contacts, this would (in some sense) shield the
higher contact subgroups from infection, provided that it did not result in an increase
of contacts for those higher contact subgroups. Nevetheless, the author would not
recommend intentionally increasing any of the τ ’s. Instead, this observation can be
seen as shining a light on the fact that higher activity groups appear to be able to
sustain the epidemic on their own by maintaining high contact levels with others in
the high contact population.
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Combining Eqs. (3) and (4), we see that in our simulations

τ̄DFE = τ1τ2

τ2 + τ1 − τ ∗ = τ1

τ1 + 0.3
.

Thus, for τ1 = 0.7 (the beginning of our simulations) we get τ̄DFE = 0.7, whereas
for τ1 = 0.1 (the end of our simulations), we get τ̄DFE = 0.25 (a 64% reduction).
As τ̄DFE changes dramatically throughout the simulation, we have τ ∗ ≡ 0.7 and so
R0 remains fixed at 1.61.

Many models are (quite reasonably) focused on issues other than heterogeneity
in contact levels. Nevertheless, those models often encapsulate the population’s
contact level in a single parameter c. In estimating a value of c from contact data
(c1, . . . , cn) with associated frequencies (f1, . . . fn), it would be more appropriate
to use an effective contact level associated with τ ∗, rather than a standard average
contact level associated with τ̄DFE. That is, it is better to use

c∗ =
∑n
j=1 c

2
j fj∑n

i=1 cifi
, rather than c̄ =

n∑

i=1

cifi .

Either way, though, predictions about the height of a peak can be profoundly
affected by not explicitly including subgroups with different contact levels.

As societies and economies continue to navigate the pandemic, there will be
people that continue to keep their contacts levels reduced and others that won’t.
Accounting for the impact of heterogeneity in contact levels will continue to be
important.
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Forecasting Demand for Personal
Protective Equipment for Ontario Acute
Care Hospitals During the First Wave
of the COVID-19 Pandemic

Kali Barrett, Yoshiko Nakamachi, Terra Ierasts, Yasin A. Khan, Stephen Mac,
David Naimark, Nathan M. Stall, Raphael Ximenes, Andrew M. Morris,
and Beate Sander

1 Introduction

Novel Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory
Syndrome-related Coronavirus-2 (SARS-CoV-2), has placed tremendous strain on
healthcare systems. Personal protective equipment (PPE)—designed to protect
healthcare workers and patients, and promote infection prevention and control—
proved to be one of the first vulnerabilities of healthcare systems when COVID-19
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cases surged [1]. PPE shortages in Canada led governments, health regions, and
hospitals to resort to extraordinary measures to source and procure supplies in
a highly competitive and uncertain global marketplace [2]. Actual and feared
PPE shortages contributed to burnout among healthcare workers, resulted in legal
challenges over the right to access PPE, and were considered as a contributing factor
in COVID-19 outbreaks in congregate settings [3–5].

As the pandemic evolved, recommendations for PPE use diverged from conven-
tional infection control policies (e.g., contact, droplet) [6] to policies based on risk
mitigation given a changing understanding of disease transmission. PPE shortages
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led some institutions to require staff to reuse PPE to conserve supplies. Increased
community spread with subsequent concern for nosocomial spread of COVID-19
led many institutions to adopt universal masking policies. It was unclear how these
new PPE policies would impact overall demand for PPE.

Accurate predictions of PPE demand during a pandemic are critical to ensure
adequate supplies and prevent morbidity and mortality among patients and health-
care workers. Forecasting PPE demand informs estimates of remaining days of
stock on hand, supports procurement decisions, aids in supply chain management,
and assists with planning for the resumption of clinical activities such as non-
urgent surgeries. Estimates of PPE demand must be based on empirical data that
incorporates epidemic trajectories, clinical volumes, healthcare worker practice
patterns, and other human factors. We used health system modelling, informed by
data on clinical practice patterns to forecast provincial PPE demand in the acute
care setting in Ontario, Canada, and to estimate the effect that changes to PPE use
policies, such as universal masking and conservation strategies, have on demand.

2 Methods

We forecasted near-term (up to 60 days) PPE demand during the COVID-19
pandemic, taking into account COVID-19 epidemic trajectories and the acute care
pathway for COVID-19 patients, acute care patient mix (COVID-19 confirmed
and suspected patients, and non-COVID-19 patients), healthcare workers’ practice
patterns, and PPE required by type of activity. We considered two PPE strategies
based on: (1) provincial public health recommendations for PPE use—provincial-
level study; and (2) institutional policies of universal masking and conservation
strategies- hospital-level case study.

We obtained research ethics board approval from the University of Toronto to
access provincial datasets. Sinai Health waived research ethics board approval for
the case study.

2.1 Provincial-Level Study

2.1.1 Forecasting COVID-19 Cases and Their Care Trajectory:
COVID-19 Resource Estimator (CORE) Model

To forecast emergency department (ED) visits, hospital admissions and care
pathways for COVID-19 patients in Ontario (population 14.6 million), we updated
through refinement and calibration, our previously described COVID-19 resource
estimator (CORE) health system model [7], a discrete time, dynamic, open, parallel,
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individual-level health state transition model. We used the CORE model to forecast
the daily number of COVID-19 cases presenting to the ED and being admitted to
the hospital ward or intensive care unit (ICU), with or without invasive mechanical
ventilation. To account for PPE use to care for suspected COVID-19 cases, i.e.,
persons under investigation (PUI) until infection is ruled out, we applied the
reported ratio of PUI per confirmed COVID-19 patient in acute care [8–10].
We chose to base our case numbers on the CORE model results as opposed to
daily reported numbers available in provincial data sets for two reasons. First, we
developed this model in March 2020, to estimate future 60-day demand for PPE
for provincial decision-makers. Second, simply extrapolating case numbers from
existing epidemic curves would not provide data on the number of patients with
COVID-19 admitted to hospital and at a given stage in their admission (day 1 in
ICU, day 2 in ICU, etc.), which are required to allocate the appropriate touchpoint.

2.1.2 Determining PPE Use

PPE is used during episodes of patient contact. We therefore estimated the number
of times patient-contact takes place per patient within a 24-h period. We defined
these episodes of “patient touchpoints” as any time a health care worker (HCW)
enters a patient room or is required to physically interact with a patient, thereby
requiring PPE. We stratified the number of touchpoints per patient per 24-h
period by in-patient hospital setting (ED, ICU, and ward), type of healthcare
worker (physician, nurse, respiratory therapist, allied health professional), COVID-
19 status of the patient (confirmed, suspected or negative), and type of contact
(COVID−, COVID+, low-risk aerosol generating medical procedure [AGMP],
high-risk AGMP). Examples of touchpoints for patients in the ICU are provided
in Table 1.

In order to quantify the type and frequency of patient touchpoints in a 24-
h period, we observed healthcare workers on various hospital units while they
provided care to patients, and conducted in-the-moment empathy interviews for
each group of HCWs. Observations and interviews occurred at two points in time:
April 2, 2020 and April 17, 2020. The rationale for repeating this process was
twofold: PPE policies were evolving as new information became available regarding
COVID-19 infection prevention and control practices, and HCWs’ behaviours
around PPE use also changed as the pandemic evolved. Specifically, HCWs were
adapting to their new work environment and were modifying the manner and
frequency of patient care/touchpoints. For example, the use of cell phones, baby
monitors, and intercoms to communicate with patients/staff in the room reduced the
need to use PPE. Extending patient IV tubing so medication pumps could be placed
outside the patient’s room for medication management, coordinating several patient
care tasks to occur at the same time, or remaining in the patient room for an extended
period of time (1–2 consecutive hours)—particularly during the first 24–48 h of a
newly admitted critical care patient—are just a few of the observed changes. Thus,
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Table 1 Daily touchpoints for suspected or confirmed COVID-19 patients in the ICU

Mechanical
ventilation
status

Day of
admission

Touchpoints
from contact

Touchpoints
from intubation
and extubation

Touchpoints
from proning

Receiving
invasive
mechanical
ventilation

Day 1 57 8 31

Day 2 53 31
Day 3 onward 39.25 31

Not receiving
invasive
mechanical
ventilation

Day 1 57

Day 2 53
Day 3 onward 39.25
Ward post ICU 40.25

re-validation of touchpoints was essential to ensure we captured these changes in
practice and PPE use.

Permission was obtained from the unit manager upon entry to each of the units
and prior to any observations or interviews with HCWs. HCWs were informed
that the purpose was to understand the frequency with which they had contact
with their patient, the purpose for contact/entering the patient room, and the type
of PPE worn during each of those touchpoints. HCWs were observed while they
worked in their native environment and clarifying questions were asked while
they were still in-context to elicit further information and insights to quantify
touchpoints. Access to types of PPE and the distribution of PPE to HCWs on each
of the units was also captured. HCW observations and interviews were conducted
with physicians, nurses, respiratory therapists, allied health professionals, hospital
support staff, diagnostic technicians, unit managers, managers of environmental
services (housekeeping, transportation, and linen & laundry) and nutritional ser-
vices. Observations occurred in 3 Emergency Departments, 4 Intensive Care Units
(COVID+ve patient ICUs, COVID−ve patient ICUs and COVID mixed-patient
ICUs), 7 General Internal Medicine Units (COVID+ve and COVID−ve units), and
1 Surgical Unit (COVID−ve).

Based on local clinical experience, we assumed that 15% of patients with
COVID-19 in the ICU not requiring invasive mechanical ventilation would require
non-invasive ventilation or oxygen via high-flow nasal cannula, and that touchpoints
for these patients would require the low-risk AGMP PPE bundle. Although not
considered an AGMP in provincial guidelines, local critical care clinical guidelines
considered patient care associated with patient proning during invasive mechanical
ventilation to require the use of N95 masks and face shields given the risk of
ventilator circuit disconnection and aerosolization of respiratory droplets, and we
therefore considered these touchpoints to require the low-risk AGMP PPE bundle.
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Table 2 Personal Protective Equipment (PPE) Bundles

Bundle per touchpoint
High Risk AGMP Low Risk AGMP COVID+/PUI COVID−

Surgical mask 1
N95 mask 1 1
Gloves 2 2 2
Gloves (extended) 2
Face shield 1 1
Face shield with drape 1
Gown 1 1 1
Level 1 mask

AGMP Aerosol-generating Medical Procedure, COVID+/− Coronavirus Disease positive, Coro-
navirus Disease negative, ED Emergency Department, ICU Intensive Care unit, PPE Personal
Protective Equipment, PUI Person Under Investigation

In the absence of high-quality published data, we assumed that 60% of mechanically
ventilated patients with COVID-19 were being proned. This assumption was based
on the proportion of COVID-19 patients reported in UK case series data with a
PaO2/FiO2 <150 mmHg, the clinical threshold below which proning is indicated
[11, 12]. All intubations and extubations were considered high-risk AGMPs by our
institution’s infection prevention and control department, necessitating extended
length gloves and a face-shield with drape for touchpoints associated with those
procedures.

We determined PPE bundles based on provincial PPE recommendations [13],
combining PPE elements—masks (level 1, surgical/level 3, N95), face shields
(with/without drape), gloves (regular, extended) and gowns—for each patient
touchpoint depending patient COVID-19 status (COVID-19 positive, PUI, COVID-
19 negative) and risk of AGMP (none, low, high risk). PPE bundles are shown in
Table 2. Provincial PPE recommendations [13] provide no guidance for reuse of
PPE, and we therefore assumed PPE was discarded after a single touchpoint for this
policy.

2.1.3 Analysis

We calculated the total number of daily touchpoints for all patients estimated from
our model to be admitted to hospital from March 6–May 5, 2020. We allocated
corresponding bundles of PPE to each touchpoint based on patient characteristics.

PPE was therefore calculated as:

Daily sum of : PPE bundles/touchpoint × touchpoint/patient × patients.

We reported total PPE demand per day, based on provincial recommendations
for PPE use to care for confirmed and suspected cases of COVID-19 in Ontario,
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for the period from March 6–May 5, 2020. This time period was chosen as our aim
was to estimate projected demand for PPE during the peak of new COVID-19 cases
hospitalized in Ontario. Our model estimated a peak number of daily new cases in
the second week of April, which corresponded to the observed peak of daily new
cases.

Our CORE model was validated and calibrated against reported numbers of
confirmed cases and patients admitted to hospital and ICUs with COVID-19. The
CORE model results used to inform this study were based on the post-calibration
model [7]. We did not attempt to validate or calibrate our predictions of PPE demand
as, at the time of model development, there was no publicly available data informing
on PPE use by Ontario acute care hospitals. Furthermore, our a priori assumption
was that historical patterns of PPE use, or “burn rates”, would likely be influenced
by conservation strategies and thus may underestimate demand for PPE.

2.2 Hospital-Level Case Study

2.2.1 Determining Patient Volume and Staffing at the Institution Level

Institutional PPE policies often differ from provincial recommendations. PPE
policies implemented by some Ontario hospitals include: (1) universal wearing of
surgical masks, (2) PPE conservation efforts requiring the reuse or extended use of
surgical masks, face shields, and N95 masks during a shift, and (3) individual point
of care risk assessment allowing the healthcare worker to request an N95 facemask
instead of a surgical facemask [13]. We conducted a case study to explore the effect
these different PPE use policies have on demand, using real world data for observed
case numbers and staffing from the University Health Network (UHN), a tertiary
academic hospital in Toronto for the period of April 7, 2020 to April 16, 2020. This
time period was chosen as it represented a period of high and sustained numbers of
new COVID-19 cases presenting to hospital.

We identified the total daily number of patients assessed in the ED, admitted to
acute and ICU beds, and requiring mechanical ventilation at UHN from institutional
and provincial data sources. We identified the daily number of confirmed COVID-
19 cases and PUIs among UHN admitted patients from provincial databases and
reports. Institutional Human Resource data was used to estimate the number of
clinical and non-clinical employees working each day. Attending physician staffing
data was obtained from hospital on-call duty lists. UHN physician trainee (residents
and clinical fellows) staffing data was provided by the University of Toronto Post-
Graduate Medical Education office. Medical and other interdisciplinary health
students were not working at UHN during the period under consideration (Tables
5 and 6).
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Determining PPE Use

Because universal PPE policies are implemented across the entire institution, we
considered PPE issued to all clinical and non-clinical staff, e.g., administrative,
porters, etc., as well as all staff caring for patients assessed in the ED or admitted to
acute care hospital beds. However, we did not consider PPE required for touchpoints
associated with surgical procedures, endoscopy, bronchoscopy or other medical
procedures deemed AGMPs, cardiac arrests, ambulatory clinics, or non-COVID-
19 related contact precautions given the variability in policy between institutions
and data limitations. As part of UHN’s conservation strategy, PPE bundles were
amended to reflect three levels of staff PPE allocation: non-clinical staff allocated
one level 1 mask per shift; clinical staff working on wards allocated two surgical
masks and one face shield per shift; and clinical staff working in ICUs and EDs with
high risk for AGMPs allocated two surgical masks, one face shield, and one N95
mask per shift. We amended PPE bundles per touchpoint to reflect PPE allocated
to healthcare workers per 12 hour shift, and reduced PPE consumed at each patient
touchpoint (Table 3).

2.2.2 Analysis

Total PPE demand was calculated based on PPE required for patient touchpoints,
and PPE allocated to staff. Daily PPE demand was calculated as:

(PPE allocated to staff × daily staff numbers)
+ (PPE bundles/touchpoint × touchpoint/patient × patients)

We calculated PPE demand for the entire institution, and also performed separate
analyses for the ED/ICU (where AGMP procedures take place), and acute care
wards. The unit level analyses were conducted to determine PPE consumed for
direct patient care, without the effect of universal masking for non-clinical staff. We
performed several scenario analyses for: (1) COVID-19 and PUI patient volume; (2)
proportions of patient touchpoints deemed to need an N95 based on point of care
risk assessment; and (3) ratios of healthcare workers to patients on acute care wards
(Table 4).

For each scenario we estimated the difference in the amount of PPE that would
be required between the PPE use policy based on provincial recommendations
versus the institutional policy for PPE use that involved universal masking and
conservation.

We could not validate our results against real world PPE consumption as
institutional data corresponding to the PPE consumed at the point of patient care
for this time period did not exist. We did have access to the amount of PPE issued to
the corresponding units within the hospital, but issued volumes were not felt to be
an accurate surrogate of consumption. Furthermore, the purpose of this model was
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Table 4 Description of provincial-level and hospital-level studies

Provincial-level study Hospital-level case study

Patients included in
analysis

• Patients with COVID-19 and
persons under investigation
(PUIs) for COVID-19 assessed
in ED and admitted to acute care
hospitals in Ontario

• All patients presenting to the
ED and admitted to intensive care
and acute care at University
Health Network, Toronto Canada.

Time horizon • 60 days (March 6–May 5,
2020)

• 10 days (April 7–April 16,
2020)

Sources for patient
numbers

• Daily number of new cases of
COVID-19 and PUIs presenting
to Ontario hospital EDs and
admitted to acute and intensive
care beds (with/without
mechanical ventilation)
estimated by CORE model
• Number of PUIs calculated
based on observed ratios of
PUIs: confirmed COVID-19
cases for Ontario over 60-day
period:
– 1:1 for patients admitted to
ICU (source: Provincial and
Regional CCSO COVID-10
Dashboard Reports, Critical Care
Services Ontario)
– 2:1 for patients admitted to
ward (source: Daily Bed Census,
Ontario Ministry of Health)
– 4:1 for patients assessed in
ED (source: Electronic Canadian
Triage and Acuity Scale
(eCTAS), Ontario Ministry of
Health)

• Institutional and provincial
daily data for number of patients
who were PUI, COVID-19+ and
COVID-19- who presented to the
ED and were admitted to acute
and intensive care at University
Health Network, Toronto, Canada

Data to inform
patient location
within hospital

• CORE model [7] • Institutional and provincial
databases on acute care and
intensive care bed occupancy

PPE policy
considered

• Ontario Provincial
Recommendation for the use of
PPE

• Ontario Provincial
Recommendation for the use of
PPE
• Institutional COVID-19
specific PPE use policy:
conservation of masks and face
shields and universal masking of
health care workers

(continued)
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Table 4 (continued)

Provincial-level study Hospital-level case study

PPE Consumption • Patient touchpoints • Patient touchpoints
Hospital staffing data • Not applicable • Total number of hospital

employees: Institutional data of
number of full-time equivalents
• Resident and clinical fellow
physician numbers: University of
Toronto Post-Graduate Medical
Education Office
• Staff physician numbers:
Institutional daily on-call
schedules
• ICU nurse:patient ratio
assumed at 1:1/12 h shift
• Ward nurse:patient ratio
assumed at 1:4/12 h shift

Levels of analysis • Ontario • Hospital
• ICU/ED
• Ward

Scenario analyses • None conducted • Proportion of patients in
hospital confirmed to have
COVID-19 or be PUI (+/− 20%
of basecase % PUI)
• Ward nurse staffing ratios (1:6,
1:8)
• Percentage of touchpoints for
non-PUI patients deemed to be
risk of AGMP through staff point
of care assessments requiring
upgrading in PPE: N95 mask and
face shield (1%, 5%, 10%; base
case 0%)

AGMP Aerosol Generating Medical Procedure, COVID-19 Coronavirus Disease, ED Emergency
Department, ICU Intensive Care Unit, PPE Personal Protective Equipment, PUI Person Under
Investigation

to estimate the magnitude in difference for demand for PPE between a strategy of
single use PPE to strategies employing conservation and universal masking, not to
accurately predict the amount of PPE that this specific institution would require.

3 Results

For the provincial-level study, we estimated that 2198 confirmed COVID-19 patients
were admitted to Ontario hospitals over the 60-day period from March 6–May
5, 2020. We estimated that there were an additional 48,356 COVID-19 or PUI
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Table 5 Results for Province-level study: Total PPE demand for the care of suspected and
confirmed COVID-19 patients in Ontario’s acute care system using Ontario Provincial Recom-
mendations for the use of PPE

10-day demand
(April 3–April
12)a

30-day demand
(March
6–April 6)

45-day demand
(March
6–April 20)

60-day demand
(March 6–May
5)

Surgical masks 1,299,338 2,165,288 3,751,435 4,564,801
N95 masks 45,441 65,962 130,464 166,136
Gloves 3,688,383 5,815,652 10,726,711 13,572,199
Gloves (extended) 6384 10,296 17,148 20,311
Face shields 1,341,587 2,226,102 3,873,325 4,720,782
Face shields with drape 3192 5148 8574 10,156
Gowns 1,344,779 2,231,250 3,881,899 4,730,938

aApproximate epidemic peak
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Fig. 1 Results for Province-level study: Total PPE demand for the care of suspected and confirmed
COVID-19 patients in Ontario’s acute care hospital system, March 6–May 5, 2020. Note: Y-Axis is
on the logarithmic scale. COVID-19 Coronavirus-19 disease, PPE Personal Protective Equipment

patients assessed in EDs who did not require admission. The total PPE required was
estimated to be 13.5 million gloves, 4.7 million face shields and gowns, 4.5 million
surgical masks, and 152,174 N95 masks over the 60-day period near the height of
the pandemic (Table 5). PPE demand varied according to the epidemic pattern and
resulting hospitalizations (Fig. 1).

Over the 10-day period of our hospital-level case study, daily total occupancy
averaged: 166 patients assessed in the ED—of whom 15% were admitted, 440
patients occupying acute care beds, and 97 patients occupying ICU beds. The
number of confirmed cases of COVID-19 admitted at UHN increased from 29 on
April 7 to 66 on April 16, 2020. There was an average of 23 confirmed COVID-19
cases in the ICU per day.
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Case study results are presented in Tables 6 and 7, and Fig. 2. Universal masking
significantly increases demand for surgical masks at the institutional level given the
large number of staff but is conserving at the ward and ICU level where PPE demand
is driven by patient touchpoints. Our scenario analyses show that healthcare worker
point of care risk assessments have a substantial impact on the demand for N95
masks. For example, the ward level analyses using provincial recommendations for
PPE use, with 1% of touchpoints upgraded, resulted in an additional 2259 N95
masks used, but if N95 masks are re-used during one shift, the number of additional
N95 masks needed is only 23. The same pattern was identified for analyses at the
ICU/ED level.

4 Interpretation

Our results demonstrate that the PPE requirements to care for COVID-19 patients
are substantial. We further demonstrate that policies aimed at reducing spread
within institutions, such as universal masking, may result in substantial increases
in PPE demand for surgical masks compared to provincial recommendation, and
are unlikely to be offset by reduced PPE per patient touchpoint and conservation
strategies. Institutional policies, without compensatory procurement, may therefore
contribute to the depletion of supplies. In settings where the risk of community
or nosocomial spread is low, policies of universal masking may unnecessarily
deplete scarce resources; however, universal masking and conservation strategies
may represent the best PPE policy in settings with high rates of community spread
to help preserve supplies and protect healthcare workers.

A key strength of our model is the dynamic projection of COVID-19 cases
and real-world patient contact “touchpoint” data. Simple consumption calculators,
such as the CDC PPE calculator [14], are based on static historic trends of PPE
use, and are not informed by changing epidemiology and clinical practice patterns.
We caution against estimating PPE demand based on historical burn rates, as this
may substantially underestimate PPE needs—especially if case volumes increase.
Institutions at risk of depleting PPE stocks may implement conservation strategies
such as reuse of masks or restricted distribution. It is imperative for health systems
to plan PPE demand based on non-restrictive estimates of PPE use to prevent patient
and healthcare worker morbidity and mortality. Our base-case analysis was therefore
based on non-restrictive PPE utilization policies.

Our study is limited by the fact that we did not account for PPE consumed by
touchpoints in some settings in acute care hospitals such as operating rooms or
ambulatory clinics, and we do not therefore estimate the total PPE demand across
the acute care sector. However, during the period studied, most elective surgeries
were cancelled, and most ambulatory clinics were conducted virtually, and likely
had little impact on demand for PPE. Touchpoint estimates and PPE policies used
in our hospital-level analysis may not be generalizable to hospitals with different
practices. We were unable to fully validate our results with actual PPE consumption.
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Fig. 2 Results for hospital-level case-study: Incremental PPE demand over 10-day period insti-
tutional PPE policy compared to provincial recommendations. Note: Positive numbers indicate
institutional policy resulted in higher PPE demand. Negative numbers indicate institutional policy
resulted in lower PPE demand. There was no difference in PPE demand for gloves, gowns,
extended gloves, and face shield with drape. ED Emergency Department, ICU Intensive Care Unit,
PPE Personal Protective Equipment

Further, PPE use may be influenced by other social factors (e.g. fear among staff),
which may influence the proportion of point of care assessments that are upgraded
and consume additional PPE. We did not explore the human factors that influence
point of care risk assessments.

Our methodology to determine PPE demand based on case trajectories, patient
touchpoints, and policy or site-specific PPE bundles can be applied to other settings,
and can be adapted for use across the healthcare sector. To facilitate the adoption
of our methods, we have published our model as a web-based, interactive tool,
(www.covid-19-mc.ca) that allows users to customize model parameter inputs and
generate results applicable to their local institution.

We demonstrate that the estimated volume of PPE required to care for confirmed
and suspected COVID-19 cases in the Ontario acute care sector is substantial. Our
case study further shows that institutional PPE policies that differ from provincial
recommendations, such as universal masking, may result in a considerable increase
in PPE demand, which needs to be considered in procurement. Decision-makers
at all levels of government need to consider local epidemiology, practice patterns,
and local policies that differ from provincial recommendations to procure adequate
supplies of PPE over the coming months, particularly in the context of a subsequent
waves of COVID-19.

http://www.covid-19-mc.ca
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Don’t Wait, Re-escalate: Delayed Action
Results in Longer Duration of COVID-19
Restrictions

Amy Hurford and James Watmough

1 Introduction

Non-pharmaceutical public health interventions are an essential tool during a
pandemic. Indeed, we can expect they will often be the only available tools at
the start of a pandemic when little is known about a novel pathogen. However,
these interventions have significant economic and social costs, and minimizing the
duration and impact of interventions is paramount. In Canada, and in particular in
Atlantic Canada and the Territories, contact tracing and testing combined with travel
restrictions, quarantine of incoming travellers, and social distancing, including
business closures and limits on larger gatherings are the main tools in use during the
current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic.
These have proven very effective in the smaller centres. At the time of writing border
restrictions and traveller quarantine in conjunction with testing and contact tracing
have allowed most businesses and social activity to resume a new, albeit slightly
restricted, normal.

Current modelling efforts to understand the relative efficiency of the interven-
tions include a full range of models from simple phenomenological forecasts [12]
to complex network and agent-based models explicitly including households and
healthcare systems [1, 6, 15]. While these details are necessary to predict healthcare
needs and monitor capacity, we argue that the strategy for timing of implementing
non-pharmaceutical community interventions can be based on much simpler linear
deterministic models.
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Specifically, we use a simple linear SIR model with case importation to determine
the relationship between the timing of restrictions, duration of measures necessary
to return the incidence to a set point, and the final size of the outbreak. We conclude
from our analysis that delaying re-escalation of restrictions leads to increased
duration of control measures and larger outbreaks. Conversely, earlier re-escalation
results in shorter disruptions, smaller outbreaks, and consequently, lower economic
and social costs.

2 Linear SIR Model

Consider a linear Susceptible-Infected-Recovered [8] model,

dI (t)

dt
= aciS

I (t)

N
− γ I (t)+mi (1a)

dC(t)

dt
= aciS

I (t)

N
, (1b)

where I (t) is the number of infected individuals, and C(t) is the cumulative cases at
time, t . The contact rate, ci , is the rate that a susceptible individual contacts another
individual in the population, I (t)

N
is the probability that the contacted individual is

infected, where N is the total population size, and a is the probability of infection
given a contact. The rate that infected individuals recover is γ infected individuals
per day and the rate that cases are imported is mi cases per day. The appropriate
initial values are I (0) = I0 and C(0) = 0.

The number of susceptible individuals in the population is S, and as an approx-
imation, S is assumed to be unchanging, such that S/N is approximately equal to
1. This assumption is justified when the number of susceptible individuals is very
large, and only a small fraction of these susceptible individuals have been infected
during the study period. This is the case in many regions, for example, in Canada,
as of October 29, 2020, there have been 228,542 clinical coronavirus disease 2019
(COVID-19) cases [9], which represents 0.6% of the Canadian population [10]. If
40% of cases are asymptomatic, then only around 1% of the Canadian population
has been infected to date.

We consider the epidemiological dynamics subject to restrictions that affect the
contact rate and the importation rate, and are implemented at t = t1. Let ci and mi
denote the contact and importation rates where i = 1 indicates prior to restrictions
(0 ≤ t ≤ t1), and i = 2 indicates after restrictions (t1 < t ≤ t2). To simplify the
notation, let βi = aciS/N = aci and λi = βi − γ .

We consider a restricted parameter space, such that the number of infected
individuals increases until the restrictions are implemented, and then decreases.
This scenario represents the epidemiological dynamics for outbreaks that have
subsequently been eradicated, for example outbreaks in New Zealand, Taiwan [17],
and the provinces of Atlantic Canada [9]. The parameter space that we consider
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is such that prior to restrictions the outbreak grows. There are two parameter
combinations that allow for this possibility: (1) importations occur m1 > 0; or (2)
if importations do not occur, m1 = 0 and λ1 > 0. After restrictions, we assume that
λ2 < 0 and m2 = 0, such that the outbreak dissipates, and infection is eventually
eradicated.

Under these assumptions, the outbreak exponentially increases and then expo-
nentially decreases, and we can solve Eq. (1a), such that,

I (t) =
⎧
⎨

⎩

(
I0 + m1

λ1

)
eλ1t − m1

λ1
, when 0 ≤ t ≤ t1, and

I1e
λ2(t−t1), when t1 < t ≤ t2

(2)

where I1 is the number of infected individuals when restrictions are implemented:

I1 =
(
I0 + m1

λ1

)
eλ1t1 − m1

λ1
. (3)

Note that after the restrictions are enacted (t > t1), the number of infections, I (t), is
decreasing (since λ2 < 0), and when the number of infected individuals decreases
below a value I2, we assume that the restrictions might be lifted, and then the
duration of the restrictions is calculated as,

τ = 1

λ2
log

(
I2
I1

)
, (4)

where we have used log to denote the natural logarithm. If λ1 > 0, the duration of
restrictions, τ , is increasing with respect to the timing of restrictions, t1:

dτ

dt1
= −λ1

λ2

(
1 + m1

λ1I1

)
. (5)

Hence, delaying the implementation of the restrictions results in a longer period that
the restrictions must be in place to reduce the active number of cases, I (t), below
the target I2. If λ2 < λ1 < 0, but λ1 > −m1/I1, the same result holds. However,
if λ2 < λ1 < −m1/I1, then τ is decreasing with respect to t1. Since in this last
scenario, the number of active cases, I (t) is decreasing for 0 < t < t1, it is not
likely a scenario that would trigger re-escalation.

Next, we calculate the total number of infections (also referred to as the final
size [4]). The cumulative number of infections at the time when the restrictions are
implemented is,

C(t1)− C(0) =
∫ t1

0

dC(t)

dt
dt,

C(t1)− 0 =
∫ t1

0
β1I (t) dt,
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C(t1) = β1

∫ t1

0

(
I0 + m1

λ1

)
eλ1t − m

λ1
dt,

= β1

[
1

λ1

(
I0 + m1

λ1

)
eλ1t − m

λ1
t

]t1

0
,

= β1

λ1

[(
I0 + m1

λ1

)
eλ1t1 −m1t1 −

(
I0 + m1

λ1

)]
,

= β1

λ1
(I1 − I0 −m1t1). (6)

The total number of cases occurring after restrictions, which we denote C(t2), is
found by a simple integration:

C(t2)− C(t1) =
∫ t2

t1

β2I (t) dt,

= β2

∫ t2

t1

I1e
λ2(t−t1) dt,

= β2

λ2
I1e

λ2(t−t1)
∣∣∣
∣

t2

t1

,

= β2

λ2
I1

(
eλ2(t2−t1) − 1

)
. (7)

Therefore, adding Eqs. (6) and (7), the total number of infections in the outbreak is,

C(t2) = β1

λ1
(I1 − I0 −m1t1)+ β2

λ2
I1

(
eλ2(t2−t1) − 1

)
. (8)

Returning to Eq. (7), and rearranging Eq. (6) such that I1 = λ1
β1
C(t1) + I0 + m1t1,

we have that,

C(t2) = β2

λ2
I1

(
eλ2(t2−t1) − 1

)
+ C(t1),

= β2

λ2

(
λ1

β1
C(t1)+ I0 +m1t1

)(
eλ2(t2−t1) − 1

)
+ C(t1),

= C(t1)

(
β2

λ2

λ1

β1

(
eλ2(t2−t1) − 1

)
+ 1

)
+ β2

λ2
(I0 +m1t1)

(
eλ2(t2−t1) − 1

)
, (9)

such that the total number of cases in the outbreak is a linearly increasing function
of the total number of cases up until the restrictions are enacted, with a slope of(
β2
λ2

λ1
β1

(
eλ2(t2−t1)−1

) + 1
)

.
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3 Comparing the Linear SIR Model Predictions to Data

To test the predictions of the linear SIR model, we fit Eq. (2) to data describing
the number of active infections in Newfoundland and Labrador (NL) and New
Brunswick (NB) for the March–May 2020 outbreaks that occurred in these Cana-
dian provinces (Fig. 1; where these data are from [7]). We defined t = 0 as the
day that the number of active cases first exceeded 10. We then use the estimated
values for λ1, λ2 and m1 to predict the number of active cases at the peak of
the outbreak (Eq. (3)), the required duration of restrictions (Eq. (4)), and the total
number of cases in the outbreak (Eq. (8) and Table 1). We assumed that restrictions
were enacted on the day, t1, corresponding to the peak number of active infections in
the data. Fitting was performed using maximum likelihood and assuming normally
distributed residuals.

We found a close agreement between the predictions of the linear SIR model and
these same quantities calculated from data (Table 1), suggesting that the linear SIR
model can effectively predict the necessary duration of restrictions.

Fig. 1 The linear SIR model fitted to data describing the active number of COVID-19 cases
in Newfoundland and Labrador and New Brunswick from March-May, 2020. Equation (1a),
describing the number of active infections for the linear SIR model (grey line), is fit to data
describing the number of active COVID-19 cases (black dots). We assume that restrictions are
enacted at the time of the peak number of active infections in the data and remain until there are
fewer than 5 active cases (black horizontal line). The duration of restrictions, τ , is predicted by the
linear SIR model (Eq. (4); grey horizontal line). The fitted model parameters and the comparison
of the model predictions with the data are reported in Table 1
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4 Comparison of the Linear SIR Model to a Nonlinear
COVID-19 Model

The linear SIR model (Eqs. (1)) assumes that the number of susceptible individuals
is not changing, and does not distinguish between different types of infected
individuals, while deterministic mathematical models specifically developed for
COVID-19 typically include these features. In this section, we examine the agree-
ment between the predictions of the linear SIR model and a nonlinear COVID-19
model with different types of infected individuals, where the comparison between
these models is illustrated in Fig. 2. The nonlinear COVID-19 model that we
consider is based on [14], but without any age or spatial structure. The COVID-19
model equations are as follows:

dS(t)

dt
= −βiS(t) IP (t)+ bCIC(t)+ bAIA(t)

N
, (10a)

dL(t)

dt
= βiS(t)

IP (t)+ bCIC(t)+ bAIA(t)
N

− δL(t), (10b)

Fig. 2 Diagram comparing the Linear SIR model and the COVID-19 model. The linear SIR model
has just one dynamic state, the number of infected individuals, I (t), and the number of susceptible
individuals, S, is assumed to be unchanging. The COVID-19 model (Eqs. (10)) has five dynamic
states: susceptible individuals, S(t), latently infected individuals, L(t), and individuals with: pre-
clinical infections (not yet showing symptoms), IP (t); clinical infections (showing symptoms),
IC(t); and asymptomatic infections, IA(t). States representing infected individuals have some grey
fill, infectious states are have solid grey fill, and since latently infected individuals are not infectious
this compartment has a checkered grey fill. All model parameters are defined in Table 2
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dIP (t)

dt
= rδLL(t)− δP IP (t), (10c)

dIC(t)

dt
= δP IP (t)− δCIC(t), (10d)

dIA(t)

dt
= (1 − r)δLL(t)− δAIA(t), (10e)

where S(t) is the number of susceptible individuals, L(t) is the number of latently
infected individuals (infected, but not yet infectious), IP (t) is the number of
individuals that have pre-clinical infections (infectious, but yet to be symptomatic),
IC(t) is the number of individuals that have clinical infections (infectious and
symptomatic), and IA(t) is the number of individuals that have asymptomatic
infections (infectious, but without symptoms). All model parameters are defined
and estimated in Table 2.

For these more complex COVID-19 mathematical models, analytic solutions
such as the results in the Linear SIR model section are not possible. This model
(Eqs. (10)) is a variation on a class of SLIAR models previously studied for influenza
and SARS-CoV-2 [3, 5]. Several relevant results for this class of models, including
general formulae for the basic reproduction number and the final size of the
epidemic were established earlier [4].

Many models for SARS and influenza pandemics, including those for the current
COVID-19 pandemic, fall into the following general form:

dx(t)

dt
= βS(t)Πbx(t)− V x(t), (11a)

dS(t)

dt
= −βS(t)bx(t), (11b)

dz(t)

dt
= Wx(t), (11c)

where x(t) is a vector of numbers of infected individuals in each stage, S(t) is
again the dynamically changing number of susceptible individuals, and z(t) is a
vector of numbers of individuals recovered through various routes of progression
(typically either recovered from asymptomatic infection, recovered with only mild
symptoms, recovered following hospitalization, or deceased). The parameter β is
as defined previously, the vectors Π and b indicate the initial stage(s) of infection
and relative transmission rates of the infectious stages, respectively, such that Πb
is a rank one matrix. The matrices V and W contain rates of progression through
and out of the stages of infection and recovery. This is a simplification of the Arino
et al model which included a structured susceptible population [4]. The COVID-
19 model (Eqs. (10)) is the special case of the general SLIAR model with x(t) =
(L(t), IP (t), IC(t), IA(t)), Π = (1, 0, 0, 0)T , b = (0, 1, bC, bA), and V a 4 × 4
matrix containing the remaining parameters. The total numbers of observed cases,
C(t), can be included by setting z(t) = C(t) andW = (0, δP , 0, 0).
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Following the same analysis as we have done with the linear SIR model, we
extend the Eqs. (11a) to include importation of infected individuals at rate m and
linearize assuming S(t) remains near S0:

dx

dt
= βS0Πbx − V x +m. (12)

The solution can be expressed as x(t) = ∫∞
0 eAsm(t − s) ds where for simplicity

we have set A = βS0Πb − V . As before, supposing restrictions are put in place at
time t1, and that β = β1 before restrictions and m is constant on (0, t1) and zero
otherwise, and that after time t1 we have β = β2 and m identically zero, leads to
solutions for C(t1) and C(t2). However, the resulting transcendental relations do
not obviously lead to the simple expressions for the duration of restrictions or the
total number of cases as with the linear SIR model. Hence, we instead proceed to a
numerical comparison of the simple linear SIR model (Eqs. (1)) and the COVID-19
model (Eqs. (10)).

We assumed that the initial number of individuals in each infected state for
the COVID-19 model (Eqs. (10)) was close to the right eigenvector (Table 2). We
numerically solved Eqs. (10) in R using the deSolve package [16]. We compared the
number of infected individuals under each model formulation (I (t) for the linear
SIR model and L(t) + IP (t) + IC(t) + IA(t) for the COVID-19 model). Figure 3
shows a close agreement between the dynamics of the linear SIR model (Eq. (1a))
and the nonlinear COVID-19 model (Eqs. (10)). All data and code for this Chapter
are archived at https://github.com/ahurford/reescalation-chapter.

5 Discussion

We derive some simple equations to calculate the required duration of restrictions
necessary to meet a target number of active infections (Eq. (4)) and the total
number of cases in an outbreak (Eq. (8)), and while the model itself (Eq. (1a))
lacks complexity, when parameterized properly (Table 2), the dynamics are nearly
identical to those of more complex nonlinear coupled ordinary differential equations
(Eqs. (10), i.e. [14]). We also show that it is simple to estimate the parameters for
the linear SIR model from epidemic data (Fig. 1), which then allows for the duration
of restrictions and the total number of cases to be predicted using Eqs. (4) and (8).
From the expression for the necessary duration of restrictions (Eq. (4)), we are able
to show that restrictions always need to be in place longer when actions is delayed
(Eq. (5)).

https://github.com/ahurford/reescalation-chapter
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Fig. 3 The dynamics and predictions of the linear SIR model are in close agreement with the
nonlinear COVID-19 model. We find a close agreement between the linear SIR model (dashed
lines; Eq. (1a)) and the COVID-19 model (solid lines; Eqs. (10)) for the number of infected
individuals over time (top left), the total number of cases during an outbreak (top right), the
duration of restrictions (bottom left), and the peak number of infected individuals (bottom right).
For the COVID-19 model, the number of infected individuals is calculated as IP (t) + IC(t) +
IA(t)+ L(t). All parameters values are listed in Table 2

5.1 Public Health Implications

Whether public health measures will be enacted to mitigate the spread of COVID-
19 is a decision that public health officials should make prior to the discovery of
exponentially growing cases numbers in the local community. Regarding SARS-
CoV-2, the novel coronavirus, whereby the majority of the population is susceptible
to infection, waiting to enact the restrictions only delays the inevitable, whereby
restrictions with undesirable impacts will still have to occur, just at a later date.
However, while action is delayed, the number of cases will continue to increase
exponentially, and an unintuitive consequence of delayed restrictions, is that the
restrictions, and their undesirable impacts, will need to be in place longer, to reduce
the number of cases to the same level (Fig. 4).

While delayed restrictions might be justified to protect the economy and keep
children in school, this is short sighted: delayed action will yield these benefits now,
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Fig. 4 Delayed action results in a longer duration of COVID-19 restrictions. We calculated the
number of active clinical infections, IC(t), (black line) for the COVID-19 model (Eqs. (10)) with
restrictions enacted on either day 7 (left) or day 14 (right) and remaining in place until there are
30 or fewer active clinical cases of COVID-19 (orange boxes). Delaying action results in a longer
duration of restrictions, because a constant decay rate beginning from a higher peak will require
longer to reduce the number of cases to the same level. The peak in the number of clinical cases
occurs after the enactment of the restrictions because some individuals that were infected prior
to the restrictions have yet to show symptoms. Elsewhere in this chapter (Eq. (5) and Fig. 3), we
have shown that delaying restrictions results in a longer period of restrictions generally, not just
for restrictions at 7 and 14 days as illustrated here. All parameter values are listed in Table 2

while ultimately these impacts will still be felt, just later and for longer. The only
reasons to delay restrictions are if (1) a vaccine is likely in the near future, (2)
conditions are likely to change in the near future, for example, a school break or a
low tourism season, (3) there was never any intention to implement any restrictions,
or (4) infection prevalence in the community is very low, such that exponential
growth has not been established, and the outbreak may go extinct without any
intervention.

Frequently, the question has been posed ‘what should be a trigger for lock-
downs?’, where the trigger is in terms of the number of active cases [13]. We
suggest that, providing that exponential growth is established, there is no benefit
to delaying action. Such early action does not prioritize epidemiology over other
considerations, because early action also enables the restrictions to be lifted after a
shorter time, allowing for unrestricted economic, social, and education activities to
resume sooner, and potentially allowing for a longer period of unrestricted activities
until restrictions need to be enacted again.

Finally, while the effective reproduction number, Rt , has become a popular
method for communicating epidemic trends, this metric has limitations, including
that Rt is a lagged measure since the number of secondary infections generated
per infected person can only be known after that person recovers, or by making
assumptions via the method of nowcasting [2]. By contrast, the exponential growth
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rates, λ1, and λ2 are instantaneous measures, and can be easily communicated as
doubling times. As an alternative to Rt , we suggest estimating λ1, λ2 and m1, as
shown in Fig. 1 and using Eq. (1a) to predict the future time course of the epidemic,
and using Eq. (4) to communicate the likely duration of restrictions shortly after
they have been enacted.

Our key message is succinctly summarized by the phrase ‘Don’t wait, re-
escalate’ as coined by Christina Bancej of the Public Health Agency of Canada.
We find that delaying re-escalation of restrictions to prevent the spread of COVID-
19 results in not only in more infections, but also longer periods of restrictions. As
such, we recommend not waiting to enact restrictions.
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Learning COVID-19 Mitigation
Strategies Using Reinforcement Learning

Nicholas Denis, Alexander El-Hajj, Blair Drummond, Yamina Abiza,
and Krishna Chaitanya Gopaluni

1 Introduction

The novel coronavirus 2019 (COVID-19) pandemic prompted by severe acute
respiratory syndrome (SARS-CoV-2) has introduced many challenges for public
health officials and global economies. Since its onset, many modelling efforts
related to COVID-19 have been published, ranging from estimating epidemiological
parameters [1–3] to forecasting hospitalizations, deaths and infection events [4–6].
Public health officials generally use two modelling approaches: forecasting models
and dynamic models [7, 8]. Forecasting models estimate the future number of a
specified metric (e.g., deaths) in a population [9]. In contrast, dynamic models
illustrate the virus’s potential implications over a specified period, depending on
how the virus functions and the likely outcomes of public health interventions [10].
Indeed, there is a demand for reliable models that can guide policy development to
mitigate the virus, effectively detail the virus’s perceived spread, and yield future
predictions.

An effective mechanism for fighting an epidemic of such nature is through
mitigation strategies. Many well-established epidemiological models are used to
determine which non-pharmaceutical interventions (NPIs) will be most effective
for examining the outcomes of preventive simulation strategies. These models
generally fall within two categories: equation-based and agent-based [11]. The
compartmental model, the most common type of equation-based model, contains
a population usually assumed to be a homogenous mixture while consisting of
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compartments derived from health status [12]. In contrast, agent-based models
(ABM) are computer simulations designed to include interactions between agents
and their environment. Despite their differences, both approaches typically assume
uniform dynamics applied across the modelled population. These approaches can
capture metric means for large-populations; however, they are unfit to perform more
granular analysis, for instance, conditioned on a distinct demographic. Moreover,
human populations are not uniform in their dynamics, and individuals may behave
quite differently depending on various attributes such as age and employment.

For this reason, we propose to utilize Reinforcement Learning (RL) with an
agent-based modelling environment. The agent population and their state repre-
sentation include pertinent demographic attributes. This approach allows agents to
learn granular behaviours, called policies, conditioned on demographic data. The
RL environment is encoded to minimize infection events within a population. By
providing an array of actions related to everyday activities (e.g., going to work),
the agents are able to learn behaviours that dramatically reduce certain metrics,
including infections and hospitalizations, compared to different baselines. Rather
than modelling specific scenarios such as “school closures”, by providing the RL
agents with the freedom to select and learn from their own actions, this approach
allows for a more expressive range of scenarios to be considered, and thus a larger
set of scenarios to be optimized over. The learned policies can then be analyzed,
conditioned on state or agent attributes, to provide a more granular analysis on the
types of mitigation strategies that could lead to a dramatic reduction in the spread
of SARS-CoV-2, which can inform policy for real-life mitigation strategies and
restrictions.

The main contributions of this work include:

• A novel ABM-RL-based modelling approach for learning and analyzing pan-
demic mitigation strategies using Ontario, Canada epidemiological, socioeco-
nomic, health, and social data.

• We model two scenarios involving non-compliant agent subpopulations and show
their effect on the spread of SARS-CoV-2 within the population.

• We provide an analysis and insights on the importance of mitigation strategy
compliance within schools and the asymptomatic agent subpopulation, while
highlighting the potential importance of recommendations and guidelines for
individuals self-isolating in the same household as a SARS-CoV-2-positive
person.

• We provide a Kibana dashboard for the public to analyze and explore the results
of our experiments, including supplementary tables and figures (see Ref. [13] for
link).

The rest of the paper is organized as follows: Sect. 2 provides a review of
reinforcement learning and its mathematical framework. Section 3 details the
methodology and implementation details. Section 4 describes the experimental
results and Sect. 5 provides a discussion of the work.
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2 Reinforcement Learning

RL is a field of machine learning wherein an agent interacts with an environment at
successive time steps by observing its current state, selecting an action, subsequently
resulting in the environment transitioning to a new successor state and returns a
scalar reward to the agent [14]. The goal is to learn a state-dependant action selection
strategy that maximizes the expected discounted sum of cumulative rewards over
an infinite horizon. We introduce the mathematical formalism for representing
and solving RL problems, then describe how it is applied to learning mitigation
strategies for reducing COVID-19 infections within an agent-based simulation
environment.

2.1 Markov Decision Processes

A Markov Decision Process (MDP) is represented as a tuple M = 〈S,A, P ,R, γ 〉.
S is the set of states of the environment, |S| < ∞. A is the set of actions which the
agent has access to, |A| < ∞. P := {Pa}a∈A, is the dynamics of the environment.
∀a ∈ A, Pa is the state transition kernel associated to action a. Under the above
assumptions, Pa ∈ [0, 1]S×S is a stochastic |S| × |S| transition matrix, where
Pa(i, j) is the probability of the environment transitioning to state j when action a
is taken from state i. R : S × A → Δ(R), is the reward model of the environment
that is a function mapping state-action pairs to distributions over R. R is assumed to
be almost surely bounded (i.e. ∃M < ∞, such that |R(s, a)| ≤ M , ∀(s, a) ∈ S×A,
almost surely). γ ∈ (0, 1) is called the discount-factor.

The MDP framework receives its name from the assumption that the environment
dynamics are Markovian. That is,

P(st+1|at , st , at−1, st−1, ..., a1, s1) = P(st+1|at , st ),

where sk, ak denotes the state s ∈ S and action a ∈ A taken at time k. This property
is assumed to be true ∀s ∈ S, a ∈ A and ∀t ∈ N.

2.2 Policies and Value Functions

Agent action selection strategies (behaviours) are represented through a policy,
which is a deterministic map from states to action: π : S → A. Let Rn represent
the random reward received at time point n ∈ N. The infinite horizon return indexed
at time t ∈ N,

Gt =
∞∑

k=0

γ kRt+k, (1)



254 N. Denis et al.

is the random variable representing the random sum of discounted rewards over
the infinite future. Under the above assumptions Gt is bounded almost surely ∀s ∈
S, a ∈ A, t ∈ N. With policies and returns defined, one can introduce the definition
of a value function. Let π be a fixed policy, then the state value function, V π :
S → R,

V π(s) := E
[
Gt |st = s

]
, (2)

where the expectation is taken with respect to the environment dynamics, P,R,
and with respect to actions taken while following policy π . The state-action value
function,Qπ : S × A → R, is defined similarly:

Qπ(s, a) := E
[
Gt |st = s, at = a

]
. (3)

The objective in RL is to learn an optimal policy π∗, and optimal value functions,
V π

∗
,Qπ

∗
. A policy, π∗, is optimal if ∀s ∈ S, π∗ ∈ arg max

π∈AS
V π(s). It can be

shown that under π∗, a recurrent structure exists for the value functions [15], relating
the value of the current state to the expected immediate reward under π∗ and the
expected discounted value of the successor state:

V π
∗
(s) = Qπ

∗
(s, π∗(s)) = max

a∈A Qπ
∗
(s, a)

= max
a∈A

∑

s′∈S
P(s′|s, a)

[
E[R(s, a)] + γQπ∗

(s′, a)
]

= max
a∈A E

[
R(s, a)+ γV π∗

(s′)
]
.

Furthermore, the Bellman Optimality Operator [15] is a contraction mapping on
the Banach space of value functions, which allows for the use of the value iteration
algorithm [15] to solve for the optimal value functions, and hence optimal policies.
However, this operator requires full knowledge of the environment dynamics, P,R,
which is typically unavailable, as is the case for this study. For this reason we employ
a model based approach and implement a variant of Q-learning [16], called Dyna-Q
learning [17].

2.3 Model Based RL and Dyna-Q Learning

Value function based solution methods in RL typically utilize temporal difference
learning algorithms [14]. Briefly, given an estimate ofQ(s, a), and a transition event
〈s, a, r, s′〉, one can use the immediate return as an unbiased estimate of the expected
immediate reward. For a learning rate, α ∈ (0, 1), the Q-learning update is given as:

Q(s, a) ← (1 − α)Q(s, a)+ α(r + γmax
b∈A Q(s′, b)

)
, (4)
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where Q(s′, b) is evaluated using the current Q-function. Tabular Q functions are
implemented as |S| × |A| matrices, and the current policy can be greedily followed
by simply taking the action that maximizes the row vector Q(s, .). Under mild
assumptions, as in this experiment, Q-learning is known to converge to Qπ

∗
[16].

To facilitate faster learning and convergence rates, we introduce a variant of the
Dyna-Q learning algorithm. Dyna-Q [17] learning involves building a model of
the environment, p̂ ≈ P, r̂ ≈ R, which we now describe. Let D be a database
which holds transition events realized by agents acting in the environment of
the form 〈s, a, r, s′〉. Model-based learning is employed in conjunction with Q-
learning. Specifically, each transition event, 〈s, a, r, s′〉, is used to update a tabular
model. A simple count-based model on empirical transitions is used to approximate
P(st+1 = s′|at = a, st = s):

p̂(st+1 = s′|at = a, st = s) =
#
{
〈x, α, ρ, x′〉 ∈ D|x = s, α = a, x′ = s′

}

#
{
〈x, α, ρ, x′〉 ∈ D|x = s, α = a

} ,

(5)

where #{ .} denotes set cardinality. Similarly, in order to approximate R(s, a), let
Rs,a = {r|〈x, α, r, x′〉 ∈ D, x = s, α = a} be the set of recorded rewards received

from agents taking action a ∈ A from state s ∈ S, then r̂(s, a) =
∑
r∈Rs,a

#Rs,a
.

Every transition event of every agent is added to D and included in the model,
and Q-learning updates are performed exclusively using simulated transition events
sampled from the model. Specifically, ∀s ∈ S,∀a ∈ A, counters of occurrences for
st = s, and for (at = a|st = s) (conditional action selection) are maintained. In this
way, a simulated transition event 〈s̃, ã, r̃, s̃′〉 is sampled from the model via:

s̃ ∼ p̂(s), (6)

ã ∼ p̂(a|s̃) (7)

r̃ = r̂(s̃, ã) (8)

s̃′ ∼ p̂(st+1 = s̃′|at = ã, st = s̃) (9)

Using the simulated transition event, 〈s̃, ã, r̃, s̃′〉, a Q-learning update is per-
formed, with learning rate α ∈ (0, 1), where:

Q(s̃, ã)← (1 − α)Q(s̃, ã)+ α(r̃ + γ ∗ max
b∈AQ(s̃′, b)). (10)
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2.4 Framing Learning Mitigation Strategies as an MDP

We now describe how the MDP framework is applied to learning mitigation
strategies. Agent states comprise different categorical values relating to facets,
including age and current location (Table 1). Though a total of slightly under
100,000 states are feasible within our environment, each agent may only experience
a small subset, as some state attributes are specific to them (e.g., number of
comorbidities) and remain constant throughout a simulation. In this way, we can
represent entire populations’ policies using a single tabular Q-table. Agent actions
are related to work, school, home, social and economic activities (Table 2). Rewards
are sparse, in that only transition events resulting in an agent becoming infected, or
infecting another agent, results in a small negative reward; all other transition events
result in zero rewards. Agents “sleep” between 11 pm–5 am, inclusive, taking no
actions, and each hour between 6 am–10 pm, inclusive, each agent selects an action
(when possible), actions are resolved, states are updated, rewards received, and each
agents transition event is appended to a database D, the model is updated, and the
model is sampled to perform a number of Dyna-Q learning updates.

Table 1 Agent states Category Values

Age {0-5, 6-10, 11-15, ..., 95+}

Employment status {True, False, Student}

Employment type {NE, E}

Live in senior center {True, False}

# Comorbdities {0, 1, 2+}

Work/school hour {True, False}

Node location {Home, E Food, ..., School}

Symptomatic {True, False}

Susceptible {True, False}

Note: E = Essential; NE = Nonessential

Table 2 Action categories

Work Social Economic School Home

Go to work Social Visit NE Other School Home

Go to work + SD Social Visit + SD NE Other + SD School + SD Home + SD

Work from home E Food Home + ISO

Work from home + SD E Food + SD

E Health

E Health + SD

E Other

E Other + SD

Note: SD = Social distancing; ISO = Self-isolation; E = Essential; NE = Nonessential
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3 Methods

In this section we describe the methodology pertaining to the simulation environ-
ment, epidemiological parameters, reinforcement learning and the wildcard and
attrition experiments.

3.1 Simulation Environment

Below we describe how the simulation environment is generated. We address
generating the agent population, employment assignment and building the agent
community.

3.1.1 Agent Population

Given the user-specified population size, a population is generated with agents
belonging to households or senior centers (i.e., senior centers or long-term care
homes). Households and their occupants are sampled from empirical distributions
obtained from the 2016 Canadian Census of Population, Statistics Canada surveys,
and other institutional sources [13, 18–28], with agent attributes relating to age and
employment status sampled accordingly. A portion of the population is assigned to
senior center nodes using data from the Canadian Institute for Health Information
[26].

3.1.2 Assigning Agent Employment

Employment node types were categorized as: essential health, essential food,
essential other, nonessential school, or nonessential other. The classification of
essentiality was referenced from an Ontario news releases [29], which outlined the
businesses allowed to remain open during the pandemic. Health, food, school and
the other categories represent high-level aggregates corresponding to sector level
(i.e., two-digit) North American Industry Classification System (NAICS) codes
[13, 30]. The employment statistics based on the sector-level NAICS codes were
aggregated to categories, including business size by employment node [13, 19, 21].
These aggregates were used in the sampling process to assign employment nodes
to an employed agent and assign the maximum number of employees to their given
employment node. The hours of operation are generalized for each employment
node [13]. Each employed agent assigned to a work node is designated a schedule
of 5 days, with 8 h of scheduled employment consistent with the hours of operation
for that employment node.
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3.1.3 Agent Community

As described below (Sect. 3.3.1), agents can take actions involving visiting a
particular node type or social visit. To represent preference or neighbourhood
structure, each agent was assigned a subset of each node type [13]. Moreover, each
agent is assigned a subset of the agent population with sample size as a function
of age, representing the social circle in which they can visit [13, 22–24]. These
node subsets act as constraints imposed on each agent regarding the ability to visit
when taking an appropriate action. For instance, when a given agent selects an
action for visiting an essential food node, that agent samples from its essential food
node subset, representing its preference over all essential food nodes within the
environment.

3.2 Epidemiological Parameters

3.2.1 Infection Events

Agents exist in an SEIR model-like setting [31], where all agents begin as
susceptible to infection, and upon being exposed to an infected agent, one may
become infected. The severity of infection is categorized as either: asymptomatic,
mild, severe, or critical, each associated with their respective sampling distributions
anatomized by age (Table 3). Depending on the severity level, an agent may
transition through the following successive stages: latent period (non-infectious,
asymptomatic), asymptomatic, symptomatic, require hospitalization, require Inten-
sive Care Unit (ICU), and finally either death or recovery (Table 4), with durations
sampled from Table 5.

Except for mortality rates (Table 4) conditioned on the presence of comorbidities,
all epidemiological parameters were provided by the Public Health Agency of
Canada (PHAC) [personal communications, Victoria Ng]. Aside from the latent
period, a constant value of 3.931058% was used to represent the probability of
infection given an infected and susceptible agent interacted. Infection events are
sampled based on the presence of infected agents at a particular node. At each time

Table 3 Probability of
infection severity

Age Mild Severe Critical

20–43 0.752 0.039 0.009

44–53 0.686 0.085 0.029

54–63 0.654 0.114 0.032

64–73 0.571 0.167 0.061

74–83 0.342 0.234 0.224

84+ 0.157 0.357 0.286

Note: Agents age 0–19 have proba-
bilities similar to agents age 20–43.
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Table 4 Probability of
deatha by number of
comorbidites

Age 0 1 2 3+

20–43 0.005 0.005 0.007 0.010

44–53 0.025 0.027 0.035 0.050

54–63 0.069 0.076 0.097 0.139

64–73 0.131 0.144 0.148 0.263

74–83 0.200 0.220 0.279 0.399

84+ 0.489 0.537 0.684 0.977
a
P(death|critical severity)

Note: Agents age 0–19 have zero proba-
bility of death.

Table 5 Sampling distributions for duration of infection stages

Incubation period Latent period Symptomatic Hospital (severe/critial) ICU (critical)

N(5.1, 1.0) N(3.7, 1.0) N(5.0, 1.0) N(8.0, 1.0)/N(6.0, 1.0) N(10.0, 1.0)

C(2.0, 5.0) C(0, 20.0) C(1.0, 20.0)/C(1.0, 10.0) C(1.0, 10.0)

Note: N: Normal Distribution; mean, standard deviation, C: Clip (limit) the values; min, max.

step (i.e., 1 h) during the simulation, several contact events are sampled for each
infected agent at a given node. This is done by sampling a maximum of five agents
present at the node location (ten for students while at school) for interaction. Each
infectious-susceptible interaction event leads to a new infection with the probability
given above.

3.2.2 Contact Tracing

Testing for SARS-CoV-2 is implemented when an agent shows symptoms and takes
an essential health action, and if an agent requires hospitalization due to their
infection’s severity, we assume the agent is tested upon arrival at the hospital.

Each agent maintains a list of every other agent they have been in contact with
over the previous 7 day period. Agent A′ can only be added to the contact tracing
list of Agent A if A′ belongs to the same social circle or is employed at the same
employment node as A. This heuristic aims to represent that someone should only
be able to share contact information of people they know. Upon testing positive, the
agent, their cohabitants (household or senior center node), and all agents belonging
to the positive agents’ contact tracing list are sequestered to their household nodes
for 14 days of self-isolation. If an agent requires hospitalization during the self-
isolation period, they transition to a hospital node. Agents in self-isolation can still
interact with other agents that share the same household node and can receive a
social visit from agents but cannot take any actions themselves. Agents self-isolating
receive a discrete state associated with self-isolation, and no actions are permitted.
Likewise, agents admitted to the hospital, ICU or after death, transition to distinct
states respective of each, and no actions are permitted.
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3.3 Reinforcement Learning

3.3.1 Actions

A critical factor in expanding the space of representable behaviours is the inclusion
of relevant actions endowed to the agents. Actions should represent abstractions
of conventional everyday decisions and activities that a population may encounter
(Table 2). Each action has a Socially Distanced (+SD) equivalent, whereby the
infection rate is reduced by a factor of 0.6 [10].

Depending on the state, some actions may not be available. This requirement
ensures common-sense rules to the environment. For example, an unemployed agent
should not have access to actions for to going to work. During school, asymptomatic
agents must take school related actions, while symptomatic agents can also get
tested (take essential health action), or stay home. During work hours, an employee
working at an essential node must take a work related action, while agents employed
at nonessential nodes may stay home (work from home). When symptomatic, all
employed agents may stay home, go to work, or go to an essential health node.

3.3.2 States and Rewards

States represent the information agents have about their environment and are
depended on by agents for action selection. As seen in Table 1, the state is
represented by the concatenation of various information-relevant categories, either
binary or categorical. The environment provides very sparse rewards, with a reward
of −1 whenever an agent becomes infected and for each other agent they infect. All
other rewards are 0. The Q-values of all state-action pairs are initialized to 0.

3.3.3 Model Learning

Dyna-Q learning updates use a learning rate of α = 0.1. During RL training epochs,
after each “hour” of the simulation each agent’s transition events are added to D, the
model is sampled N times, and each sample is used to perform a Q-learning update.
We set N to the size of the agent population.

3.3.4 ε-greedy

ε-greedy is an action-selection strategy that balances exploration and exploitation
[14]. With probability ε, legal actions are taken uniformly at random, and with
probability 1 − ε, the policy is followed. This mechanism allows agents to explore
all actions with some non-zero probabilty. ε-greedy is only implemented during
training epochs. We initialize ε := 1, then linearly anneal ε to 0.1 over the first 40
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training epochs, and keep it fixed at 0.1 for the remaining training epochs. Testing
epochs can be viewed as implementing ε greedy with ε := 0.

4 Results

We first describe the results of the RL experiments, then explore the learned agent
behaviours. Next, we compare the learned behaviours to various baselines. Finally,
we provide results for two non-compliant subpopulation scenarios.

4.1 Agent Learning

This experiment’s primary intention is to allow the agent population to learn optimal
behaviours, π , that maximize V π(s),∀s ∈ S. Based on the formulation of the MDP
(Sect. 2.1), this is equivalent to minimizing infection events within the population.
The subsequent experiments within this section aim to compare and evaluate the
learned behaviours, compared to various baselines, in terms of their ability to
minimize infections, hospitalizations, ICU occupancy and deaths.

An agent-based simulation environment was used to allow a population of agents
to learn behaviours that minimize infection events (Sect. 3.1). Each simulation
generated 50,000 agents, and in each simulation of 120 days, an initially infected
subset of 500 agents was randomly sampled. 100 simulation epochs were run,
alternating between training (using epsilon greedy, Sect. 3.3.4) and testing learned
behaviours. Q-learning updates occur throughout the training simulations, whereas
the policies are fixed and followed deterministically during the testing epochs.

Figure 1 plots the daily new infections (top) and cumulative new infections
(bottom) over each epoch. The agents progressively learn behaviours that reduce
the number of infection events occurring within the population. Moreover, as the
agents’ policies improve from epoch to epoch, as expected, the testing epochs
demonstrate more dramatic advancements and show improved reductions in the
number of infection events over the training epochs. Similar plots for other recorded
metrics (e.g., deaths, ICU) are available to view on our Kibana dashboard [13]. The
policy resulting in the lowest number of infections was saved and used for further
experiments.

4.2 Learned Agent Behaviour Analysis

The learned policies from Sect. 4.1 can then be analyzed and treated as a database
that maps states to its actions’ values. In viewing the Q-table as a database, the
policy associated with a specific state (i.e., 35 years old, employed, one comorbidity,
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Fig. 1 Agents learn to reduce infections over time. Daily (top) and cumulative (bottom) infections
as a percentage of the population size over each RL training and testing epoch. Each epoch is
plotted slightly darker in colour, leaving the darkest plot for the best performing epoch

outside of work hours, currently at home, no symptoms) can be determined and
utilized to produce summary statistics marginalized over state attributes. The states
included in the Q-table provide a multitude of dynamics to explore. For instance,
one can condition on subpopulations based on various attributes (i.e., by age or the
number of comorbidities).

Figure 2 provides a visualization of behaviours related to essential employed
workers during work hours. When conditioned on work hours of asymptomatic
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Fig. 2 Analysis of learned agent behavarious for work and school related states. Learned policies
for essential workers (left) and for students (right) differ depending on presence of symptoms

agents, 72.5% of agent states resulted in going to work and practicing Social
Distancing (+SD), compared to 27.5% for going to work without practicing Social
Distancing (-SD). Note that the environment logic prevents essential workers
from getting tested (visiting essential health nodes) or working from home when
asymptomatic. However, when symptomatic, those actions become available to the
essential worker agents. When symptomatic, agents chose to forgo work and get
tested for 38.2% of the agent states (27.8% +SD, 10.4% -SD), work from home for
42.9% of the agent states (32.8% +SD, 10.1% -SD) and go to work for 18.9% of the
agent states (10.7% +SD, 8.2% -SD). Symptomatic agents employed at nonessential
work nodes chose to forgo work and get tested in 47.3% of the agent states (36.8%
+SD, 10.5% -SD), work from home for 47.3% of the agent states (36.8% +SD,
10.5% -SD) and go to work +SD for remaining 5.4% of the agent states (0% -SD).

The proportion of action selections for students during school hours, as shown in
Fig. 2 reveals a similar trend in preference. When asymptomatic, students at school
are 8.2x more likely to use +SD than -SD school actions. Notably, during school
hours, 0% of symptomatic students went to school, as these agents prefer to get
tested (57.6%; 48.5% +SD, 9.1%) -SD or stay home (42.4%; 18.2% +ISO, 21.2%
+SD, 3% -SD). Interestingly, outside of school hours, asymptomatic student agents
spent 10.5% (7.9% +SD, 2.6% -SD) of their free time making social visits, whereas
symptomatic student agents completely stopped all social visits.

We analyze the learned agent behaviours outside of work and school hours
(Fig. 3). We break down the analysis by aggregating agent states by employment
status outside of work/school hours and further decompose the analysis by the
presence or absence of symptoms. For all categories, the +SD action variant is
significantly preferred to the -SD variant. Asymptomatic agents learn to spend
most of their time at home (25.6%, 43.4%, 26.2% for the employed, student and
unemployed agents, respectively), while symptomatic, the agents strongly prefer to
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Fig. 3 Heatmap representing the distribution over actions selected by policy for states outside of
school or work for asymptomatic (left) and symptomatic agents (right). E: employed agent, S:
student agent, U: unemployed agent

get tested (44.2%, 50.0%, 52.5% for the employed, student and unemployed agents,
respectively). Clearly, getting tested and partaking in the self-isolation and contact
tracing mechanisms is invaluable for minimizing infection events, as agents learn to
do this without explicitly being provided with any positive reward.

4.3 Learned Agent Behaviour Performance

The performance of the learned behaviours in terms of relevant metrics (infections,
hospitalization, ICU, death) was assessed by comparing three baselines: (1) Baseline
1 (B1) involves agents taking actions uniformly at random, constrained to -SD
actions; (2) Baseline 2 (B2) involves agents taking actions uniformly at random,
including +SD actions; (3) Baseline 3 (B3) extends B2 by including testing, contact
tracing and self-isolation; and (4) Learned Behaviours (LB) denotes actions selected
using the policy learned using RL (Sect. 4.1) and employs testing, contact tracing
and self-isolation. Each experiment comprises 50 epochs. All results, including
mean fold reductions and metric plots, can be found in the Kibana dashboard [13].

Figure 4 demonstrates an expected result, in that B1 results in the most infection
events, B2 improves upon B1, B3 improves upon B2, and LB outperforms all the
baselines with roughly 97%, 89%, and 30% of the population becoming infected in
B1, B2, and B3, respectively, whereas, in LB, the proportion that gets infected is
4.4%. It is observed that the RL behaviours (LB) lead to a 22.3, 20.4, and 6.79
mean fold reduction in total cumulative infection events over B1, B2, and B3,
respectively. Introducing testing, contact tracing and self-isolation in B3 contributes
to a noteworthy decrease in the mean fold reduction compared to B1 and B2.
Improving upon B3, LB leads to a further reduction in the spread of COVID-19 due
to an optimized state-dependent action selection strategy. Of note, in comparison to
B3, the agents in LB learn to be responsible by taking certain precautions such as
reducing ineffective actions (i.e., social visits), while increasing social distancing,
getting tested, and staying at home. When comparing other metrics, it was found
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Fig. 4 Comparison of daily (top) and cumulative (bottom) infection events between B1, B2, B3,
and LB. Each experiment is run with 50 repeats and plotted in light colour, with the mean plotted
in dark color

that LB resulted in a 20.6, 18.1, and 8.2 mean fold reduction in total deaths over
B1, B2, and B3, respectively, an 11.4, 10.3, and 3.9 mean fold reduction in total
hospitalizations over B1, B2, and B3, respectively and finally a 16.7, 14.9, and
5.9 mean fold reduction in the number of ICU admittances over B1, B2, and B3,
respectively.
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4.4 Wildcard and Attrition Experiments

We address two modelling scenarios wherein agents may prefer a non-social
distancing default behaviour to the learned RL mitigation behaviour. The first
scenario involves Wildcard (WC) agents, and the second models behaviour attrition
(ATT). While generating the population, each agent samples a value, δ ∈ [0, 1],
representing the probability that the agent follows the learned RL policy or with
probability 1 − δ, in which the agent follows a predefined default behaviour
(See Supplementary Kibana Tables [13] for details). This scenario represents a
population with a distribution over agents related to how often they are willing to
comply with NPI strategies. Attrition is represented similarly; each agent in the
population is assigned a value δ, initialized to 1. We represent attrition by sampling
each day with probability 0.5, whether the agent’s δ value exponentially decays by
a factor of 0.95.

Figure 5 compares the daily new infections (top) and cumulative new infections
(bottom) for LB, LB + WC, and LB + ATT. The results confirm that attrition
leads to a larger number of infections throughout the simulation than wildcard
agents, with a 3.8 and 2.4 fold increase in the number of infection events over
LB for LB + ATT and LB + WC, respectively. Figure 5 (top) shows that LB +
WC eventually results in daily infection events decreasing to zero, concomitant
with a plateau in the cumulative number of infections (Fig. 5, bottom). However,
in the presence of attrition, the population sees a monotonic increase in cumulative
infection events as the daily number of infections fails to converge down to zero,
plateauing roughly half-way through the simulation. As attrition represents the
progression of a population from uniformly following behaviours that minimize
infection events to uniformly following default behaviours (e.g., a relaxation of
population restrictions and return to normal life, pre-COVID-19), it is vital to find
an attrition/relaxation strategy that does not lead to large increases (e.g., waves) in
infection events. Though our results are inconclusive, we conjecture that running
the LB + ATT experiments for longer (e.g., 180 days) could likely lead to a second
wave of infection events.

Of interest, Fig. 5 (top) demonstrates periodic trends in the infections throughout
the simulation runs. Vertical bars are plotted for Saturdays and Sundays within the
simulations to help visualize the periodicity. In the presence of wildcard agents (LB
+ WC, LB + ATT), one can see that the weekends correspond to valleys (local
minima), with the mid-week typically associated with peaks (local maxima). Inter-
estingly, the opposite trend is seen for LB, with mid-week days corresponding to
valleys (local minima) and weekends with peaks (local maxima). It is worth noting
that with the exception of schools, all employment nodes are open 7 days a week and
employed agents sample five employment days uniformly over the week. Hence, it
is expected that no periodicity related to such employment nodes can be observed.
The only facet of the simulation environment that could encode a weekday/weekend
periodicity must come from the schools. This result demonstrates that in the absence
of wildcard agents, when the agents present in schools are uniformly following the
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Fig. 5 Comparison of daily (top) and cumulative (bottom) infection events between LB, LB +
WC and LB + attrition. Saturdays and Sundays within the 50 simulation runs are marked in green

learned RL behaviours, this leads to decreases in infection events during the week,
while in the presence of wildcard agents, schools can become hotbeds for infection
events. We believe this result provides strong supporting evidence on the importance
of uniform compliance of recommended NPI strategies within schools.
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4.5 Infection Event Analysis

Infection events are recorded for all simulations, allowing for a statistical analysis
conditioned on state and attributes of infecting and infected agents, as well as the
node type. Table 6 presents several of these infection events. For baselines B1, B2,
and B3, the proportion of all infection events that occur when agents are taking
social visit actions are 14.3%, 9.9% and 10.0%, respectively, whereas, for LB,
only 0.2% of all infection events result from social visit actions. The LB + WC
and LB + ATT saw these numbers increase to baseline values at 8.6% and 13.5%,
respectively. Similarly, 9.6%, 7.5% and 2.5% of all infection events occur within
schools for B1, B2, and B3, while only 1.1% for LB. The LB + WC and LB + ATT
saw these numbers increase to baseline values of 6.6% and 8.6%, respectively. This,
in addition to results from Section 4.2, demonstrate that RL allows the agents to
learn to minimize riskier actions, leading to a reduction in overall infection events
and a reduction in infection events related to particular states (i.e., during school
hours).

Oppositely, the proportion of all infection events occurring at home are 15.4%,
14.2%, 44.5%, and 45.4% for B1, B2, B3 and LB, respectively. Again, the LB + WC
and LB + ATT saw these numbers return to baseline values at 10.6% and 15.3%,
respectively. The high proportion of infection events occurring in the household of
LB agents is explained by the fact that the LB agents spend significantly less time
taking actions that lead them outside their households due to the agent’s improved
mitigation strategy. In addition, B3 and LB both include self-isolation mechanisms
leading agents to be sequestered to their place of residence. Further analysis revealed
that for LB, 60.57% of all infection events occurred when two members of the same
household were self-isolating together after one member had tested positive for
COVID-19. We believe this result strongly suggests that as a population improves its
NPI strategies, infection events become more concentrated in self-isolating agents’
households. Thus, guidelines and strategies on effectively self-isolating with an
infected cohabitant become increasingly crucial for further reducing infections.

Finally, we analyzed the proportion of infection events based on whether the
infecting agent was symptomatic or not. For B1, B2 and B3, it was observed that
27.4%, 24.0%, and 43.4% of infections involved a symptomatic infecting agent,
while LB and LB + WC resulted in 47.0% and 17.5%, respectively. In raw numbers,
LB resulted in a 30.5, 29.2 and 7.3 fold reduction in infections by asymptomatic

Table 6 Infection events (%)

Infection event B1 B2 B3 LB LB +WC LB + ATT

Being social 14.3 9.9 10.0 0.2 8.6 13.5

At school 9.6 7.4 2.5 1.1 6.6 8.6

At home 15.4 14.2 44.5 45.4 10.6 15.3

Symptomatic 27.4 24.0 43.4 47.0 17.5 22.9

Note: ATT = Attrition
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infecters over B1, B2, and B3, respectively, as well as a 3.7 and 5.5 fold reduction
in such infections for LB + WC and LB + ATT, respectively. These results stress
the importance of maintaining NPI strategies such as testing, contact tracing, and
self-isolation when asymptomatic, as a large proportion of all infection events may
occur from asymptomatic individuals.

5 Discussion

In this paper, we demonstrate the potential of RL combined with agent-based
modelling in the context of learning optimal behaviours for controlling the COVID-
19 pandemic. The general nature of the RL simulation environment allows it
to be easily customizable for different nations, provinces or communities, and
different pandemics. Using mainly Ontario epidemiological, health, social, and
socioeconomic data, we showed that the RL model could be trained to dramatically
reduce the number of infections, hospitalizations, ICU admittance and deaths over
time.

This work introduces RL as a novel and expressive modelling tool with the
capabilities to allow researchers and policymakers to consider policy recommenda-
tions related to novel mitigation strategies with increased granularity over standard
scenario-based approaches [4, 5]. By conditioning the analysis on subsets of the
agent population and states, policies and guidelines can focus and target at-risk
subpopulations. For instance, our results suggest that as a population increas-
ingly practices social distancing strategies, the importance of recommendations
and education about safely self-isolating at home with a SARS-CoV-2 positive
cohabitant may become increasingly important. Additionally, Sects. 4.4–4.5 suggest
the importance of uniform compliance within schools to reduce infections within the
population.

Our RL simulation environment allows agents to learn behaviours that dramat-
ically reduce infection, hospitalizations, ICU admittance and deaths compared to
various baselines. Section 4.2 reveals that this can be attributed to an increase
in the use of SD actions and an increase in agents staying at home, while also
unveiling the importance of these decisions when agents do not show signs of
symptoms. When symptomatic, the agents learned to decrease risky behaviour such
as social visits and learned to opt to get tested and subsequently stay at home
under self-isolation. However, when wildcard agents are present, agents following
these mitigation behaviours have a reduced impact on the population. Further
studies on this interaction between compliant versus non-compliant subpopulations
and varying the attrition rates and mechanisms may be informative for policy
surrounding re-opening strategies and how to inform how and when to return to
normal life. Another exciting avenue for future work includes investigating different
self-isolating strategies and their impact on further mitigating infection events
within the population.
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Joint Modeling of Hospitalization
and Mortality of Ontario Covid-19 Cases

Dexen D. Z. Xi, C. B. Dean, and E. M. Renouf

1 Introduction

In epidemiology, various empirical methods have been developed to quantify the
outbreak of infectious diseases. One approach models public health data as time
series processes (Zeger et al. 2006), which is typically suitable when an outcome is
observed for a long period of time. Time series models generally assume that the
observation today is linearly related to the observations lagged several days prior,
with additive error terms independently and identically distributed (i.e. i.i.d.) from
a normal distribution with a mean of zero and an unknown variance. The average,
the trend, and the seasonality of the outcome process can then be specified in the
model.

Time series models have previously been used in public health studies of
infectious diseases. Examples of the diseases and study regions where time series
models have been applied are Campylobacter and measles in Montreal, Canada
(Allard 1998), diarrhoea in Peru (Checkley et al. 2000), and Covid-19 in Italy
[1]. Times series models are prominently studied in field outside of public health,
such as econometrics, where a technique, termed cointegration analysis, can further
assess whether if there is correlation in the long run between two processes [2].
For example, cointegration analysis was applied to various processes of stock prices
to examine if the SARS outbreak in 2003 had an impact on them (e.g. Chen et
al. 2018). As hospitalization data regarding Covid-19 are collected and become
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available, several authors have indeed studied the relationship between the daily
number of cases and stock prices (e.g. Zeren and Hizarci 2020; [3]).

Another potential approach for studying the relationship between two outcomes
is through so-called joint-outcome modeling (Dunson 2000; Henderson and Shi-
makura (2003)). This approach links the outcomes through a latent variable, a shared
error term that is incorporated in the models for each of the outcomes, which then
induces an underlying correlation between the outcomes. The method has been
utilized in linking, for example, various outcomes that are count data (Feng and
Dean 2012; Juarez-Colunga et al. 2017), survival data [4], and presence/absence
data (Lundy and Dean 2018), where the latent variable is shared among the
outcomes. Such a methodology has not been considered in linking time series data,
and it may provide a novel perspective for understanding the long-run relationship
between two time series processes.

In this study, we analyze the daily number of new hospitalizations and the daily
number of new deaths from Covid-19 in Ontario as autoregressive processes. In
infectious disease studies, these two processes are key indicators in an outbreak
(e.g. Trivedi et al. 2012). We chose to model hospitalized cases instead of the
number of new infections because testing was initially limited to the sickest patients
or those recently returned from travel, so that case counts did not reflect the true
progression of transmission. Section 2 outlines two frameworks for assessing the
relationship between hospitalizations and deaths, where a cointegration analysis
and a joint modeling framework are used to understand and model the long-run
relationship between these two outcomes. Section 3 presents results of the analysis
on the Ontario data using each framework, identifying the unique perspective that
each framework provides. Section 4 closes with a discussion of the utility of each
of the frameworks and potential ways that the models can be extended.

2 Models and Methods

2.1 Cointegration Analysis

We assume that the time series process, yt, t = p + 1, . . . , n follows an
autoregressive model with lag p, termed an AR(p) model, defined as

yt = μ+ θ1 (yt−1 − μ)+ · · · + θp
(
yt−p − μ) + εt ,

whereμ is the intercept; θ s = σ s/σ 0, s= 1, . . . , p such that σ s = COV(yt, yt + s), the
covariance between yt and yt + s, is the autocorrelation coefficient associated with
lag s; εt is the random error assumed to be distributed as i.i.d. N(0, σ 2), t = p + 1,
. . . , n. Inference on the model is straight forward when the time series process is
stationary, that is, if the intercept and the autocorrelation are both fixed and do not
depend on t. This is equivalent to stating that the process has a unit root, or, |θ s| < 1.
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A non-stationary process can often become stationary by differencing yt with respect
to time d times, and such process is denoted as yt~I(d). For example, if yt~I(1), then
y∗
t = Δyt = yt−yt−1 is stationary; whereas if yt~I(2), then y∗∗

t = Δy∗
t = y∗

t −y∗
t−1

is stationary. The value d is often referred as the order of integration.
Two outcome processes ykt, k = 1, 2 are cointegrated with other, if there exists

an integer constant b such that y1t~I(d), y2t~I(d) and zt~I(d − b), where zt is a linear
combination of y1t and y2t. In other words, given two processes that are stationary
after differencing d times, if their residuals zt are stationary by differencing less
than d times, the two processes are related in a unique long-run relationship and
they are termed cointegrated. Heuristically, variables that are cointegrated do not
deviate from each other in the longer term.

We first need to determine the value of d that supports stationarity in the two
outcome processes. Several tests can be used to determine if a process, yt is
stationary. For example, an AR(1) process with intercept zero can be written as

yt = θyt−1 + εt .

For testing that yt is non-stationary, the Dickey-Fuller test [5] tests that
π = 0, π = θ − 1, in the rearranged model framework

yt − yt−1 = θyt−1 − yt−1 + εt

Δyt = (θ − 1) yt−1 + εt

Δyt = πyt−1 + εt .

When the null hypothesis is true, the stochastic error term accumulates over time
and hence the process is unstable. Hence the null and the alternative hypotheses can
be written as

H0 : π = 0

H1 : π < 0.

If there is significant evidence to reject H0, we conclude that yt is stationary. More
generally, assuming an AR(p) process analogously yields the augmented Dickey-
Fuller (ADF) test, utilizing the same null and alternative hypotheses, here using the
modeling framework

Δyt = πyt−1 +
∑p−1

s=1
γsΔyt−s + εt .
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The parameters can be estimated using least squares. The test statistic π follows
a Dickey-Fuller distribution whose p-value is computed through Monte Carlo
methods (i.e. [6, 7]; Chang et al. 2017). Although the Dickey-Fuller test is a standard
in the literature, we note that alternative tests, such as the Phillips-Perron (PP) test,
the Elliott-Rothenberg-Stock (ERS) test, and the Schmidt-Phillips (SP) test may also
be used; see Pfaff [2] for a description of these tests.

2.2 Joint Modelling

Let ykt, k = 1, 2, t = p + 1, . . . n be two time series processes, each process with lag
pk and p = max (p1, p2). This model assumes that the processes quantify outcomes
measured at the same values of t. The model is defined by

ykt = μk + θk1
(
yk,t−1 − μk

) + · · · + θkpk
(
yk,t−pk − μk

) + bkt + εkt ,

where, associated with outcome k: μk is the intercept; θks = σ ks/σ k0, s = 1, . . . ,
pk such that σ ks = COV(ykt, yk, t + s), the covariance between ykt and yk, t + s, is
the autocorrelation coefficient with lag s; εkt are random errors distributed as i.i.d.
N
(
0, σ 2

k

)
; and bt = (b1t, b2t)T is a 2 × 1 vector of random effects, independent from

εkt, used to model the shared variability between the outcomes. The distribution of
bt, t = p + 1, . . . , n, is i.i.d. Q(b|D) = N2(0,D), with a 2 × 1 mean vector 0 and a
2 × 2 symmetric and positive definite variance-covariance D. Each outcome is of an
order of integration dk. In other words, the outcomes will need to be differenced dk
times before model development in order to achieve stationarity in the transformed
outcomes.

It is convenient to represent the framework in matrix notation. The response Yk,
the design matrix Xk, and the associated vectors of parameters and random effects
are specified as follows

Y k = Xkθk + μk
(

1 −
pk∑

s=1

θk,s

)

+ Bk + εk,

where

Y k =
⎡

⎢
⎣

yk,p+1
...

yk,n

⎤

⎥
⎦ ,Xk =

⎡

⎢
⎣

yk,p · · · yk,p+1−pk
...

. . .
...

yk,n−1 · · · yk,n−pk

⎤

⎥
⎦ , θk =

⎡

⎢
⎣

θk,1
...

θk,pk

⎤

⎥
⎦

Bk =
⎡

⎢
⎣

bk,p+1
...

bk,n

⎤

⎥
⎦ , εk =

⎡

⎢
⎣

εk,p+1
...

εk,n

⎤

⎥
⎦ .
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The joint posterior distribution is expressed as

p (μ, θ , b,D|y) ∝ p (y|μ, θ , b)Q (b|D) p (μ) p (θ) p (D) p (σ ) ,

where y = (yp + 1, . . . , yn), yt = (y1t, y2t), μ = (μ1,μ2), θ = (θ1, θ2),
b = (bp + 1, . . . , bn), and σ = (σ 1, σ 2). The first term on the right-hand side is
the conditional likelihood

p (y|μ, θ , b) ∝
n∏

t=p+1

f
(
yt |μ, θ , bt

)
,

where f (yt| μ, θ , bt) is the joint density function of yt. We impose different con-
straints on the term bkt and εkt to create four joint outcome models and these are
shown in Table 1. For instance, Model B defines the vectors of error terms as
(b1t + ε1t, b2t + ε2t)T = (γ bt, bt + ε2t)T . This model assumes that all the variability
in y1t is explained by the term bt which follows i.i.d.N

(
0, σ 2

b

)
and is scaled by the

factor loading parameter γ ; as well, that all the variability in y2t is explained by the
sum of bt and the additive error term ε2t, where ε2t isN

(
0, σ 2

ε2

)
. Since the outcomes

are independent, given the shared random effect, we have the joint density expressed
as

n∏

t=p+1

f
(
yt |μ, θ , bt

) =
n∏

t=p+1

2∏

k=1

fk (ykt |μk, θk, bkt ) ,

where fk(ykt|μk, θk, bkt) is the marginal density function of ykt. Finally, the product
of the prior distributions is given by

p (μ) p (θ) p (D) p (σ ) =
2∏

k=1

[
p (μk) p (θk1) . . . p

(
θkpk

)
p (σk)

]
p (γ ) p (σb) .

Choices of the distributions of the priors will be discussed more fully in the next
section.
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3 Result and Analysis

3.1 Ontario Data

We obtain data from the daily epidemiological summaries provided by Public
Health Ontario.1 To study the delayed effect of hospitalization on mortality, the
daily number of new hospitalizations 6 days prior and the daily number of new
deaths are defined as the outcomes of interest. We shift the time between these two
outcomes by 6 days because recent research shows that a reasonable estimate of
the median time from hospitalization to death for Covid-19 varies between 4 days
(i.e. [15]; The Ontario Public Health surveillance report2) to 7.5 days (i.e. Zhao
et al. 2020). Additional evidence for using a 6-day lag is that a basic generalized
additive model examining the relationship between hospitalizations at various lags
and deaths gives the highest deviance explained at a 6-day lag period. There are
n = 78 observations from March 29 to June 14. Figure 1 provides an illustration
of the data. The left panel is the base 10 logarithm of the cumulative number of
hospitalizations (black solid lines) and deaths (red dashed lines) and the right panel
provides the daily number of these outcomes. On the right panel, both processes
demonstrate a downward trend starting in May, while their residual, defined as their
difference (blue dotted line), appears stationary. We define the daily number of new
hospitalizations and new deaths by y1t and y2t and identify here the potential long-
run relationship between them, if any.

3.2 Cointegration Analysis of Ontario Data

To assess if y1t and y2t are cointegrated, we first need to identify an appropriate
model for each process, respectively denoted as AR(pk), k = 1, 2. For pk = 1, . . . ,
10, the Akaike information criterion (AIC) of the models yield a minimum at p1 = 5
for y1t and at p2 = 3 for y2t. We apply the ADF test to y1t and y2t to determine if
they are non-stationary under the models selected with the minimum AIC. The p-
values for the tests are 0.258 and 0.193, respectively, suggesting that y1t and y2t are
not stationary. Taking the first order difference of each process and reapplying the
above procedure on y∗

1t = Δy1t and y∗
2t = Δy2t yields a minimum AIC for each

model at p1 = 9 for y∗
1t and p2 = 8 for y∗

2t . Under the models with the minimum
AIC, the p-values for the tests are 0.027 and 0.052, respectively, suggesting that
y∗

1t and y∗
2t are stationary. Identifying an appropriate model for zt = y1t − y2t as

an AR(p) process, yields a minimum over p = 1, . . . , 10 of the AIC at p = 3.

1 https://covid-19.ontario.ca/covid-19-epidemiologic-summaries-public-health-ontario#daily
2 https://www.publichealthontario.ca/-/media/documents/ncov/epi/covid-19-severe-outcomes-
ontario-epi-summary.pdf?la=en

https://covid-19.ontario.ca/covid-19-epidemiologic-summaries-public-health-ontario#daily
https://www.publichealthontario.ca/-/media/documents/ncov/epi/covid-19-severe-outcomes-ontario-epi-summary.pdf?la=en
https://www.publichealthontario.ca/-/media/documents/ncov/epi/covid-19-severe-outcomes-ontario-epi-summary.pdf?la=en
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Fig. 1 The left panel illustrates the logarithm of the cumulative number of hospitalizations 6 days
prior (black) and the cumulative number of deaths (red). Hospitalizations and deaths grow with
a decreasing rate over time. The right panel plots the daily number of these quantities and their
residuals (blue) against time. The processes are identified as having a long-term correlation through
the cointegration analysis described in the text

The corresponding p-value for testing non-stationarity of zt, distributed as AR(3), is
0.019, suggesting that zt is stationary. This evidence indicates that there is long-run
correlation between y1t and y2t; that y1t and y2t are cointegrated such that y1t~I(1),
y2t~I(1) and zt~I(0).

3.3 Joint Modeling of the Ontario Data

The joint model is fitted by the adaptive Markov Chain Monte Carlo (MCMC)
method described in Xi et al. (2020). We assume vague priors commonly used in the
literature: for k = 1, 2 and s = 1, . . . , pk, p(uk) and p(θks) follow i.i.d. N(0, 10000);
p(γ ), p(σ b) and p(σεk) follow i.i.d. half. N(0, 10000). Credible intervals are obtained
as the lower and upper 2.5% quantiles of the posterior density. The goodness of fit
of the models are assessed by their deviance information criteria (DIC) with models
having low DIC considered to offer a good fit to the data (Spiegelhalter et al., 2002).

We consider model parameterization in three ways. Four forms of the joint model
as provided in Table 1 are considered; four choices of order of integration based on
the result of the cointegration analysis above and additionally exploring the use of
the responses themselves as well as first differences: (d1, d2) = (0, 0), (0, 1), (1, 0),
(1, 1); a hundred combinations of the number of lags: pk = 1, . . . , 10 for each of
k = 1, 2. Hence a total of 1600 models are estimated. We first select the models with
the optimal number of lags using the DIC criterion under each of the joint models
and the forms of the order of integration, then choose an overall model that provides
the best fit.
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Table 2 Statistics assessing
model fits for the candidate
models

Form d1 d2 p1 p2 DIC

A 0 0 4 10 518
A 0 1 4 10 518
A 1 0 5 10 516
A 1 1 3 10 520
B 0 0 10 4 493
B 0 1 10 3 487
B 1 0 10 2 485
B 1 1 10 3 482
C 0 0 5 10 521
C 0 1 4 10 517
C 1 0 5 10 517
C 1 1 3 10 518
D 0 0 10 4 494
D 0 1 10 3 486
D 1 0 10 2 486
D 1 1 10 3 484

Table 2 lists the 16 optimal models along with their DIC. Including an outcome-
specific variability term, εkt, in modeling the outcome death (i.e. as in models B
and D) yields a much better fit than incorporating such a term in modeling the
outcome hospitalization (i.e. as in models A and C). Models with a factor loading
on hospitalization (i.e. B) have slightly better fit than those with a factor loading on
death (i.e. D). Both of the outcomes hospitalization and death are best fitted with an
order of integration dk = 1. This is consistent with the results from our cointegration
analysis. We note that for all models omitting the additive error term, εkt, yields that
the maximum number of lagged terms needs to be considered. We note that a better
fit may be produced by incorporating an even higher number of lagged terms in the
model, but a model with high number of lagged terms is not conducive to model
parsimony.

The parameter estimates along with their 95% credible intervals for model B,
with the lowest DIC, are presented in Table 3. The intercepts of the model are
non-significant with estimates of μk respectively as 1.560 (−0.171, 3.350) and
−1.631 (−0.280, 1.080) for k = 1, 2; recall the responses here are first order differ-
ences since dk = 1, k = 1, 2. Although model B incorporated 10 lagged terms for the
outcome hospitalization, only the credible intervals for the coefficients of the first
two lagged terms do not include zero. The values of the coefficients of the leading
lagged term, θk1, k = 1, 2, are estimated respectively as −0.295 (−0.410, −0.165)
and −0.741 (−0.977, −0.506), suggesting that the correlation of death (k = 2) with
observations on the previous day is stronger than the corresponding correlation for
hospitalization (k = 1). The standard deviation of the shared variability, σ b, has an
estimate of 1.416 (1.151, 1.841). The factor loading parameter, γ , and the standard
deviation of the outcome-specific variability in modelling death, σ 2, have estimates
of 13.644 (11.129, 14.876) and 12.533 (10.610, 15.131), respectively. The variance
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Table 3 Posterior estimates
of the model parameters

Q.025 Q.500 Q.975

μ1 −0.171 1.560 3.350
μ2 −1.631 −0.280 1.080
θ11 −0.410 −0.295 −0.165
θ12 −0.341 −0.172 −0.046
θ13 −0.053 0.020 0.094
θ14 0.056 0.143 0.283
θ15 −0.042 0.056 0.225
θ16 −0.006 0.058 0.161
θ17 −0.170 −0.077 0.010
θ18 −0.101 −0.038 0.044
θ19 −0.093 0.054 0.161
θ110 −0.071 0.023 0.116
θ21 −0.977 −0.741 −0.506
θ22 −0.598 −0.318 −0.035
θ23 −0.489 −0.254 −0.017
γ 11.129 13.644 14.876
σ b 1.151 1.416 1.841
σε2 10.610 12.533 15.131

of the outcomes is parameterized as γ 2σ 2
b for y1t and σ 2

b +σ 2
ε2 for y2t, with estimates

of 373.06 (258.57, 537.15) and 159.08 (114.48, 229.82). These estimates suggest
that although there is dependence between hospitalizations and deaths, much of the
variability in these outcomes is unexplained as outcome specific random error.

The left panel of Fig. 2 illustrates the posterior estimates of the shared random
effect, bt, along with their 95% credible intervals, plotted against time. The peak
value of 5.38 on May 2 reflects the peak of hospitalization 6 days prior in Fig. 1.
The right panel of Fig. 2 provides the estimated joint distribution of the outcomes,
reflecting the positive, weak correlation in these outcomes as discussed earlier.

4 Discussion

The co-integration analysis identified a long-run relationship between hospitaliza-
tions and deaths subsequently modeled through a joint outcome autoregressive
model with a shared latent random effect. The first order differences of hospital-
izations 6 days prior, and deaths, in the joint outcome model are autoregressively
correlated with the observations 2 and 3 days ago respectively. The autocorrelation
could be a result of the reporting schedule by public health units as many of them
do not report on weekends. The weak dependence between the outcomes may be
due in part to reporting lags in both hospitalizations and deaths in the Ontario data.
The data are reported to Public Health Ontario by 34 different public health units,
and while the reporting lag is not currently quantified, it likely varies by health unit
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Fig. 2 Posterior estimates of the shared random effect (left panel) and the estimated joint distri-
bution (right panel) of the outcomes, y1 and y2 being the first order difference of hospitalizations
6 days prior and deaths, respectively. The posterior estimates of the shared random effect have a
peak on May 2, reflecting the peak in daily hospitalizations. The estimated joint distribution of the
outcomes demonstrates a weak dependence between the outcomes

and by outcome. In future work we hope to be able to adjust for the lags in both
outcomes.

The framework can be extended in several ways to reduce the unexplained
variability, enhance predictability, and sharpen linkages across the outcomes. An
ARIMA model that has moving averaging error terms may better describe the
structure of the variability, and it may also be useful to incorporate autoregres-
sive structures in the latent random effect. Comparisons with multivariate time
series frameworks may help identify the benefits of using shared random effect
for modeling joint outcomes beyond ease of interpretation. Environmental data
associated with each day, such as temperature and humidity (i.e. [13, 16]), as
well as geographical information, if available, may be included into the model
as explanatory covariates. As the uncertainty in the model is reduced and with
stronger linkages evidenced across the outcomes, given any current increment in
hospitalization, more accurate predictions of future mortality may be obtained
through the estimated joint distribution of the outcomes.
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Evaluating the Risk of Reopening
the Border: A Case Study of Ontario
(Canada) to New York (USA) Using
Mathematical Modeling

Pei Yuan, Elena Aruffo, Qi Li, Juan Li, Yi Tan, Tingting Zheng,
Jummy David, Nick Ogden, Evgenia Gatov, Effie Gournis, Sarah Collier,
Beate Sander, Guihong Fan, Jane M. Heffernan, Jun Li, Jude Dzevela Kong,
Julien Arino, Jacques Bélair, James Watmough, and Huaiping Zhu

1 Introduction

SARS-CoV-2 can rapidly spread within and between populations. Travel restrictions
and border closures have been among the first control measures to be implemented
during the COVID-19 pandemic. After several months of lockdown, regional
economic outcomes have suffered greatly [1]. Borders have therefore begun to be
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reopened to allow the growth of local economies, but to do so, changes to safety
measures, such as COVID-19 tests, health certificates, and quarantine requirements
[2–5], to keep the importation of cases and possible spread of infection in destination
regions under control.

While reopening borders will help relaunch local and global economies, a
complete and uncontrolled opening can result in new waves of outbreaks. More
locally, Prince Edward Island (Canada) experienced a new cluster of COVID-19
cases stemmed from a traveler from the USA [6]. Infected travelers are key to the
global spread of COVID-19 [7–10]. Therefore, the critical question is if there is a
way to reopen borders but ensuring minimal COVID-19 spread risk.

There has been an enormous amount of trade and transportation across the
Canada-USA land border. On average, more than 70,000 trucks and 700,000 people
crossed the Buffalo-Niagara Falls border each month in 2019 [11]. Between January
to June 2020 there were only 744,489 overnight visitors into Ontario from the USA
(4136 per day), a 73.7% decrease compared to the same period in 2019 (15,698 per
day). Overnight overseas visitors also dropped [12] (by 71.3%). Simultaneously,
Ontario’s hotel occupancy rate dropped by 31.1% (from 65.4% to 34.3%), and
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revenue per available room dropped by 55.6% [12]. Although no direct data show
the specific losses caused by the border closure, open borders play a crucial role in
both economic and social lifelines. However, the USA’s situation is very worrying,
with 6,656,799 cumulative cases on September 18, 2020 and currently about 40,000
new cases per day [13]. Thus, a reopening of the Canada-USA border requires
careful consideration. Now the border is still closed [14, 15], if and when to reopen
made frequent headlines of both countries.

Some studies have confirmed that border closure has played a crucial role in
delaying and controlling the advancement of COVID-19 [16–25] Dickens et al. [16]
showed that effective testing and a mandatory 14-day quarantine of all travelers into
Canada are needed to curb COVID-19 if the border is reopened. Linka et al. [17],
however, suggested a complete travel ban.

Another COVID-19 restrictive measure that has been implemented is the stay-at-
home policy (SAHP). SAHP is effective in controlling the spread of the infection
[26, 27] in concert with border closures. Ontario entered phase three with com-
munity reopening at the end of July, and while transmission has been kept under
control, recently, there is evidence that the epidemic is resurging [28]. If borders are
reopened, it may increase epidemic resurgence in Canada beyond our capacity to
control.

Given the extensive land border between Canada and the USA, it is essential
to investigate the impact of a full/partial reopening of the border on the spread of
COVID-19 in Canada. Herewith we present a compartmental mathematical SEAIR
model (following the Susceptible-Exposed-Asymptomatic-Infectious (prodromal
phase)-Infectious (with symptoms)-Recovered) that is employed to quantify differ-
ent border reopening strategies. Using the household structure model for Toronto,
we will incorporate daily travelers, traveler quarantine policy, and border testing or
required health certificates. We define an average risk index to forecast the intensity
of COVID-19. Investigating the effective reproduction number and forecasting
simulations is also carried out to inform public health decision-makers on the best
border reopening strategies that will contain the spread of the epidemic.

2 Method

2.1 Data and Materials

Canada and the USA share the longest land border in the world. However, we focus
only on investigating visitors from USA to Canada from the border of Ontario
and New York State given the large number of vehicles crossing the border [29],
and consider the extreme case that visitors all enter Toronto as a worst scenario
of increasing incoming travelers after border reopens. We obtained daily new
confirmed case data, by episode date and reporting date in Toronto from February
24, 2020, to August 31, 2020 [28]. This data is used to validate our model during
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escalation (February 24–mid-March), mitigation (mid-March–mid-May), and de-
escalation (stage 1: mid-May–mid-June, stage 2: mid-June–mid-July, stage 3: mid-
July to border reopening) stages of the epidemic before border reopening, and to
evaluate the risk of transmission in Toronto over time. The model validation results
are presented in Figure ESMC1 in the electronic supplementary material (ESM C).

2.2 Compartmental Model: Description and Assumptions

The federal government of Canada determines entry into Canada. Therefore, the
federal government decides border control measures, whereas what happens after
an individual has been granted access into the country is determined by provincial
governments. To control case-importation, and consequently, a rapid spread of
COVID-19 in Ontario, we assume that the Ontario will implement safety measures
for border reopening, applicable at the border upon arrival once travelers are granted
entry into the country. We assume that upon arrival at the frontier, traveler health
certificates (with an issue date that does not exceed 2 days prior arrival) will be
required and that COVID-19 symptom detection checks (i.e., temperature testing)
will be implemented. We also assume that all eligible travelers entering Canada
will need to provide proof of domicile and a 14-day quarantine plan. Moreover,
they must follow all local control policies, i.e., Nonpharmaceutical Interventions
(NPIs), personal protective equipment (PPE) requirements, and social distancing
restrictions. Modeling assumptions are summarized in Table 1 (Appendix).

We extend our household-based transmission model with a Susceptible-
Exposed-Asymptomatic-Infectious (prodromal phase)-Infectious (with symptoms)-
Recovered framework proposed in [27] by assuming that a proportion of S, E, A
and I (prodromal stage) (mS,mE,mA,mI1 , respectively) travelers will be allowed
to cross the border. We note that individuals with positive tests will not cross the
border. We do, however, allow for faulty testing, and assumed that the effective
detection rate of asymptomatic infections via testing is η.

The model is structured over three periods: before and after implementing SAHP,
and after border reopening. In the latter two periods, the population is divided
into SAHP (home quarantine) compliant and non-compliant subpopulations, with
subscript q and g, respectively.

For travelers, they are divided into quarantined and community. A proportion
ω of travelers will be considered part of the community, since not all travelers
will strictly respect the mandatory quarantine/isolation policies. Consequently, a
proportion 1 − ω will be in the quarantined household sub-group.

Figure 1 shows the flow diagram for modeling [27]. Details of model derivation
are in electronic supplementary materials (ESM A).

Given the current epidemics in Canada [30], the planned reopening scheduled on
October 21 is improbable. Using available data, we simulate the impact of reopening
on Toronto if the border reopened on September 21, 2020 [31]. We will calculate
and present useful information to public health on safe reopening once the daily
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Fig. 1 Modeling with household structure. (a) shows the activity and response of different groups.
(b) Schematic diagram after border reopening, red solid arrow indicates of importation of travelers
into quarantined (q) or non-quarantine into Ontario (assuming that they all go to Toronto). Solid
lines indicate movement between classes. Dashed lines represent the virus transmission routes

cases in Ontario drop below 100. We will also forecast the infection trend for 1,
12, and 24 weeks after this date. The degree of infection is compared between
different strategies, considering variations in the number of daily travelers crossing
the border, and variations in parameter for the effectiveness of border control, the
ratio of individuals who will go to the non-quarantined group after arrival.
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2.3 Risk Indicators of the Border Opening

2.3.1 The Instantaneous Reproduction Number

The instantaneous reproduction number, Rt,is defined as

Rt = It∑t
j=1 pj It−j

, (1)

which can be estimated by the statistical approach [32] using episode date [28].
Here It is the new cases on day t and pj is the discretized distribution of the serial
intervals, assuming a Gamma distributed serial interval of 7.5 days with a standard
deviation of 3.4 days [33].

2.3.2 Risk Indicator

We define a risk indicator at time t as

Riskt = PercentRank
(
new inf ectiont

) ∗ 100 (2)

indicating the risk of COVID-19 infection on a given day t. Estimation of Riskt
is computed by calculating the rank of the percentile of daily new infections in
R [34], indicating the value below which a given percentage of observations is
contained. The risk is measured by a function PercentRank, given the relative rank
of the number of new infections on a given day in the historical data. A percentage
representing those is less than or equal to the value. A non-parametric approach is
used in which data do not follow a particular distribution, and the highest and lowest
values are excluded. This indicator reflects the degree of risk compared to the current
epidemic period since the first wave of the Toronto epidemic peaked in April. A
value close to 100 indicates that a new peak of the epidemic has appeared. Also, we
define low risk if 0<Riskt≤30, moderate risk if 30<Riskt≤50, high risk if Riskt>50.
The risk indicator has also been used in other fields, like in microbiological control
levels [35]. It is applicable to inform the public about the risk of COVID using this
risk indicator.

3 Results

3.1 Risk in Toronto

Figure 2 plots the risk indicator Riskt for different stages of escalation, mitigation,
and de-escalation. We observe that in the 2 weeks before stage 1 reopening was
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Fig. 2 Risk of COVID-19 in Toronto. Risk indicator in Toronto from February 24 to August
31. The average risk and Rt 2 weeks before and in the period of reopening stage 1, 2 and 3
are presented. The dark solid line indicates the critical threshold Rt = 1 of the instantaneous
reproduction number. All dates are in 2020

implemented, the risk indicator is very high (Risk = 81) but the average Rt has
declined to 0.9. Within the 2 weeks before stage 2 reopening, the average risk has
decreased to 50, with Rt = 0.7. Finally, before Toronto entered stage 3, the risk
dropped to 17 with Rt = 0.7. Although the effective reproduction numbers before
each reopening stage are below 1, the epidemic risk is entirely different. We also
note that the Rt increases to values greater than 1 in stage 3, but the risk value is not
high [21].

3.2 Effect of Border Control Measures

Border control will affect the epidemic in two ways: managing the number of people
allowed to cross the border and controlling what travelers do after crossing. Figure 3
shows that 1500 daily travelers will generate a sufficient number of infections to
cause a new transmission wave, which will be more severe than the first wave.
Observe that if the quarantine policy is strictly followed by all travelers (Fig. 3a, b),
the daily new cases increase until December 31 and slightly decrease by April 30,
2021 (panel A). We also see that the number of new infections that enter the region
does not differ significantly between a 50 or 100% detection level. By April 30 there
is only a 5000 person difference in the cumulative number of imported cases (panel
B). If 100% of all travelers quarantined upon entering, the level of government
resources invested in health certificate checking and temperature testing is not over
burdensome. However, we observe a similar outcome when the detection rate is
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Fig. 3 Effect of border control measures. (top row) Number of daily new infections (a) and
cumulative infection (b) in Toronto 1 week after border reopening (September 28, 2020) to the
end of April 2021 for 1500 travelers, when ω = 0 and η = 1, 0.5. (bottom row) Number of
daily new infections (c) and cumulative infection (d) in Toronto 1 week after border reopening
(September 28, 2020) to the end of April 2021 for 1500 travelers daily, when η = 1 and ω = 1,
0.5. ω= proportion of travelers not following home quarantine orders. η= effective detection rate
of asymptomatic infections

100% in detecting possible infection importation (panels C and D)—the difference
between the cumulative number of infections given a 0–50% quarantine uptake rate
is miniscule (panel D). We note that the results shown in Fig. 3 may not reflect
government investment optimization and may instead solely indicated that daily
1500 travelers might overwhelm the system. Both scenarios have been investigated
with fewer daily travelers (500 or 1000) in electronic supplementary material (ESM
C) (see Fig. ESMC2-C3). While the number of daily and the cumulative number of
infections are reduced, we find a similar outcome when comparing detection levels
and quarantine rates.
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Fig. 4 Effect of importation of travelers. Number of daily new infections (a) and number of
cumulative infections with different daily number of travelers (0 (border closed), 500, 1500, 10,000
(the situation before pandemic)) under the best border control measures, ω =0, η =1. Contour plot
of average daily new infections after border reopening (c) within 2 weeks (September 21–October
5) and (d) in the long run (September 21, 2020–April 30, 2021) with different daily number of
travelers and βg. The red star indicates the current state in Toronto (βg = 0.019). ω= proportion
of travelers not following home quarantine orders. η= effective detection rate of asymptomatic
infections. βg= probability of transmission per contact outside household

3.3 Effect of Importation of Travelers

The number of infection cases will increase over time when 500, 1500 or 10,000
(86% of 2019) travelers cross the border daily under perfect conditions that all are
quarantined, and the test efficacy is 100% (Fig.4a, b). It is visible that if more than
1500 travelers cross the border daily, the number of infections increases sharply
between December 2020 and April 2021. Moreover, if 10,000 travelers are entering
Ontario daily, the epidemic will become much severer with daily reported cases
over 600 in October that keeps increasing after that. We also observe that opening
the border to 500 travelers daily (yellow) does not result in a large outbreak, but the
cases are still rising if compared to the current situation.
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The number of daily new cases decreases as the number of daily travelers and the
probability of transmission outside household (βg) decreases in the short and long
term (Fig. 4c, d). With the current NPIs policy (βg= 1.9%), an average of 100 or
less daily new infections 2 weeks after border reopening are possible if a maximum
of 2000 travelers enter Ontario. It will also happen if the current restrictions are
lifted (increasing the value of βg). However, in the long run (until the end of April
2021, Fig. 4d), the daily number of travelers should be restricted to 1000 to keep
the average daily new infection below 100 under current NPIs interventions. And
if NPIs are relaxed a little (βg larger than 2.3%), daily cases will exceed 100 if
daily number of travelers is above 200. Moreover, Toronto might experience 10,000
daily newly reported cases with relaxed NPIs if borders are opened for an extended
period.

3.4 Tradeoff Between Border Reopening and Local Risk

If we open the border for more to enter Canada (represented by Ontario here), we
will face increasing local transmission (Fig. 5). Currently, the risk in Toronto (blue
star, Fig. 5) is high, we find that to mitigate the risk (in the interval (0–30)), we can
only allow about 100 travelers to enter Ontario each day. If more than 300 people
cross the border, the average risk will become medium (between 30 and 50), and
if more than 1200 travelers to enter, the risk will become high (above 50). We also
observe that if the risk in Toronto increases above 30, the average risk will always be
medium or high, even just a few travelers to cross the border. On the other hand, if
the local risk is relatively low, the average risk remains low if we allow a maximum
of daily 500 travelers to cross the border.

4 Discussion

Our findings suggest that the border may be reopened with the restricted number
of travelers, under the strictest border control measures when the daily cases in
Ontario is roughly 100. Despite that, the risk of local transmission will rise. Hence
reopening is imprudent given the current arising situation. Effective detection of
infectious visitors at the border and quarantine of passengers after entry can reduce
the risk of reopening to a certain extent.

However, we also observe that, in the absence of efficient border control
measures and quarantine of travelers, reopening the border might induce a new
local outbreak even with a low number of visitors. Moreover, the current local
risk is still at a critical point of resurgence and, a slight relaxation of the current
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Fig. 5 The tradeoff between border reopening and local risk. Contour plot of average risk in the
period of 2 weeks after border reopening on September 21 with different daily number of travelers
and local risk. The blue star is the current state.

control measures may result in a new wave of outbreak. Without strengthening local
prevention and control measures, it would be even more impractical to reopen the
border. Also, even with perfect control measures (efficient testing process at the
border and strict implementation of quarantine), if a larger number of passengers,
for example, 10,000 per day, to enter Ontario, it will result in a second wave at least
three times larger than the original COVID-19 wave in Toronto.

Reasonable and effective risk measurement indicators are crucial for short-
term risk forecasting and timely adjustment of staggered measures, especially
when it is foreseen that SARS-CoV-2 may persist for a long time. When the
instantaneous reproduction number Rt becomes less than 1, we will consider that the
local epidemic is well mitigated or controlled. However, when considering border
reopening, it is not enough to judge the situation of the epidemic from Rt alone, since
we noticed that during the first phase of Toronto’s reopening, Rt was already less
than 1, but the local infection risk was still high. To ensure more accurate short-term
predictions, we consider both Rt and risk indicators as a measurement of infection
levels.

In the short run, our new indicator of risk of infection has been useful to establish
different levels of risk: low, medium and high. We identified that the current risk in
Toronto is low and, in case of reopening, this level can be maintained only if the
local risk is below 30 and at most 500 travelers can cross the border. Allowing more
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people to enter Ontario will result in an increase of the general risk of infection in
the province. Hence, we recommend keeping the level of risk low in Ontario, using
NPIs, and reopening the border to a minimal number of travelers.

We mainly discuss the number of passengers allowed to enter if the border
reopens and local risk. Our results should be interpreted as the best-case scenario
indicating the maximum possible number allowed after border reopening. However,
neither the effectiveness of border detection nor compliance of individuals coming
from abroad with quarantine can be fully guaranteed. People may get upset with
social distancing and other control measures, and children have started returning
to school in early September, which makes local epidemic prevention and controls
more difficult. Therefore, keeping the border closed might be a more appropriate
and safer choice. Reopening the border might be a feasible plan when a vaccine is
available.

Our work provides an essential reference for public health, it has some lim-
itations. Scenario analyses are conducted under the current epidemic situation
in USA. However, it is not very likely that the epidemic in USA will mitigate
sooner. If the USA epidemic were to become controlled, our results would need
to be re-examined. Moreover, our findings may be too pessimistic for lifting travel
restrictions towards countries where the epidemic is well controlled, such as South
Korea and China.

In conclusion, reopening the borders to the USA is possible only if the mandatory
quarantine, high efficiency of testing at the frontier and a maximum daily number of
500 travelers to cross, if the use of NPIs is enforced strictly, or strengthened further
and if the daily cases in Canada drop drastically about 100.

Appendix

Table A.1 Model assumptions

General setting a. No birth, death or immigration
b. We divide the population into two groups: one consisting of individuals

who follows SAHP (indicated by subscript q) and another consisting of
individuals who do not opt for this intervention (subscript g). Due to
influences of self-protection consciousness and severity of the
epidemic, people are assumed to move from one group to another with
stay-at-home rate (denoted by q(t)) or going out rate (denoted by g(t))

c. Each subpopulation is further the divided into Susceptible (Si(t)),
Exposed (Ei(t)), Asymptomatic (subclinical) infection (Ai(t)),
Infectious pre-symptomatic (will eventually show symptoms) (Ii1(t))
and Infectious symptomatic (Ii2(t))

d. Both Ai(t) and Ii1(t) are infectious virus carriers. Individuals in Ai(t)
never show symptoms, while individuals in Ii1(t) develop into
symptomatic classes (Ii2(t)) after a specified period of time

(continued)
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Table A.1 (continued)

e. Mild symptomatic infections (Ii2(t)), may choose to either isolate
themselves at home (or other places). If the quarantine is respected well
enough, these infections are fully isolated and, consequently, do not
contribute to the spread of the virus. Otherwise, they are still a source
of infection until recovery

f. Two further compartments encode for severe infections: the fully
isolated W(t), and the hospitalized H(t) who are all severely affected.
Neither of these compartments contribute to infection transmission

Household
structure
setting

a. All households contain n (n = 3) individuals and family members are
homogeneously mixing i.e., contacting each other randomly

b. The infection rate of asymptomatic and symptomatic infectious
individuals to the susceptible is the same among the household

c. Two members in a family cannot be infected by one household member
at the same time t

d. Every family except for those with symptomatic members has an equal
opportunity to be released from quarantine after the SAHP is relaxed

e. Households with infected symptomatic individuals will continue to be
quarantined after the SAHP is relaxed

f. For family members following SAHP, susceptible Sq(t) are only
infected by infectious individuals in the home Aq(t), Iq1(t) or Iq2(t)

g. When there are no infections in a household, the family is safe and is
no longer be involved in the transmission of COVID-19

Assumed
border control
measures

a. Travelers are required to provide certificate of health to border control
officials. Travelers indicate all the people entering
The test must report an issued date which does not exceed 2 days prior
arrival. ONLY travelers with negative results are allowed to enter
Canada. (Note that this is specific to the Canada-USA border.)

b. Further tests, such as rapid test (POC) or temperature check, are
implemented to all travelers eligible to enter Canada. ONLY travelers
with negative tests will be then allowed to enter Canada. (Note that this
is specific to the Canada-USA border.)

c. The daily number of travelers is restricted
Assumed
traveler
restrictions

a. Travelers eligible to enter Ontario/Canada need to provide proof of
domicile. Visitors are only allowed to stay in hotels or isolated in
camping areas

b. Travelers must follow the local control policies, such as mandatory
NPI’s, PPE’s, and social distancing, etc.

Note: See electronic supplementary material for model details and derivation process

Electronic Supplementary Material

Data 1 (DOCX 468 kb)



300 P. Yuan et al.

References

1. Statistics Canada. Recent development in the Canadian economy, 2020: COVID-19, third
edition. 2020. https://www150.statcan.gc.ca/n1/pub/11-626-x/11-626-x2020013-eng.htm (3
August 2020, date last accessed).

2. Etias.Info. The EU Is Reopening Its Borders for Internal Travel. 2020. https://www.etias.info/
eu-reopening-borders-internal-travel/ (30 July 2020, date last accessed).

3. McClanahan P. Europe’s Patchwork Reopening. The New York Times. 2020. https:/
/www.nytimes.com/2020/06/05/travel/europe-reopening-tourism-covid.html (30 July 2020,
date last accessed).

4. Chiew CJ, Li Z, Lee VJ. Reducing onward spread of COVID-19 from imported cases:
quarantine and ‘stay at home’ measures for travelers and returning residents to Singapore. J
Travel Med 2020; 27: taaa049.

5. Li X, Liu M, Zhou R, et al. Centralized medical quarantine for imported COVID-19 in
Shanghai, China, J Travel Med 2020; 27: taaa109.

6. Silberman A. Canada adds health officials at U.S. border crossings to screen for COVID-
19. CBC News. 2020. https://www.cbc.ca/news/canada/new-brunswick/canada-adds-health-
officials-us-border-1.5645990 (15 July 2020, date last accessed).

7. Liu JY, Chen TJ, Hwang SJ. Analysis of Imported Cases of COVID-19 in Taiwan: A
Nationwide Study. Int J Environ Res Public Health 2020; 17: 3311.

8. Ministry of Health (New Zealand) 3 new imported cases of COVID-19. 2020. https://
www.health.govt.nz/news-media/media-releases/3-new-imported-cases-covid-19-1 (10 Octo-
ber 2020, date last accessed).

9. Luft A. Travelers who sat close to COVID-19-infected passenger on Air Canada flight will be
alerted: Quebec public health. CTV News. 2020. https://montreal.ctvnews.ca/travellers-who-
sat-close-to-covid-19-infected-passenger-on-air-canada-flight-will-be-alerted-quebec-public-
health-1.4825506 (1 September 2020, date last accessed).

10. Davidson S. More planes land in Canada with COVID-19-infected passengers. Here’s where
the flights came from. CTV News. 2020. https://toronto.ctvnews.ca/more-planes-land-in-
canada-with-covid-19-infected-passengers-here-s-where-the-flights-came-from-1.5076714 (1
September 2020, date last accessed).

11. Tableau Server. Border Crossing Entry Data. 2020. https://explore.dot.gov/views/
BorderCrossingData/Monthly?:isGuestRedirectFromVizportal=y&:embed=y (30 August
2020, date last accessed).

12. Government of Ontario. Tourism research. 2020. http://www.mtc-currentperformance.com (18
Sep 2020, date last accessed).

13. Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19). 2020.
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html (30 July 2020,
date last accessed).

14. National Post Staff. Hundreds of thousands of U.S. visitors are still crossing border into
Canada each week. National Post News. 2020. https://nationalpost.com/news/hundreds-of-
thousands-of-u-s-visitors-are-still-crossing-border-into-canada-each-week (22 July 2020, date
last accessed).

15. Government of Canada. Coronavirus disease (COVID-19): Travel restrictions, exemp-
tions and advice. 2020. https://www.canada.ca/en/public-health/services/diseases/2019-novel-
coronavirus-infection/latest-travel-health-advice.html (29 July 2020, date last accessed).

16. Dickens BL, Koo JR, Lim JT, et al. Strategies at points of entry to reduce importation risk of
COVID-19 cases and reopen travel. J Travel Med 2020; taaa141.

17. Linka K, Rahman P, Goriely A, Kuhl E. Is it safe to lift COVID-19 travel bans? The
Newfoundland story. Comput Mech 2020; 66: 1081-1092.

18. Hu Z, Cui Q, Han J, et al. Evaluation and prediction of the COVID-19 variations at different
input population and quarantine strategies, a case study in Guangdong province, China. Int J
Infect Dis 2020; 95: 231-240.

https://www150.statcan.gc.ca/n1/pub/11-626-x/11-626-x2020013-eng.htm
https://www.etias.info/eu-reopening-borders-internal-travel/
https://www.nytimes.com/2020/06/05/travel/europe-reopening-tourism-covid.html
https://www.cbc.ca/news/canada/new-brunswick/canada-adds-health-officials-us-border-1.5645990
https://www.health.govt.nz/news-media/media-releases/3-new-imported-cases-covid-19-1
https://montreal.ctvnews.ca/travellers-who-sat-close-to-covid-19-infected-passenger-on-air-canada-flight-will-be-alerted-quebec-public-health-1.4825506
https://toronto.ctvnews.ca/more-planes-land-in-canada-with-covid-19-infected-passengers-here-s-where-the-flights-came-from-1.5076714
https://explore.dot.gov/views/BorderCrossingData/Monthly?:isGuestRedirectFromVizportal=y&:embed=y
http://www.mtc-currentperformance.com
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
https://nationalpost.com/news/hundreds-of-thousands-of-u-s-visitors-are-still-crossing-border-into-canada-each-week
https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection/latest-travel-health-advice.html


Evaluating the Risk of Reopening the Border: A Case Study of Ontario. . . 301

19. Huang Q, Kang YS. Mathematical Modeling of COVID-19 Control and Prevention Based
on Immigration Population Data in China: Model Development and Validation. JMIR Public
Health Surveill 2020; 6: e18638.

20. Sun T, Weng D. Estimating the effects of asymptomatic and imported patients on COVID-19
epidemic using mathematical modeling. J Med Virol 2020; 92: 1995-2003.

21. Hossain MP, Junus A, Zhu X, et al. The effects of border control and quarantine measures on
the spread of COVID-19. Epidemics 2020; 32: 100397.

22. Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions on the spread of the 2019
novel coronavirus (COVID-19) outbreak. Science 2020; 368: 395-400.

23. Kraemer MG, Yang CY, Gutierrez B, et al. The effect of human mobility and control measures
on the COVID-19 epidemic in China. Science 2020; 368: 493-497.

24. Linka K, Peirlink M, Costabal FS, Ellen K. Outbreak dynamics of COVID-19 in Europe and
the effect of travel restrictions. Comput Methods Biomech Biomed Engin 2020; 23: 710-717.

25. Song W, Zang P, Ding Z, et al. Massive migration promotes the early spread of COVID-19 in
China: a study based on a scale-free network. Infect Dis Poverty 2020; 9:109.

26. Gao S, Rao J, Kang Y, et al. Association of Mobile Phone Location Data Indications of Travel
and Stay-at-Home Mandates With COVID-19 Infection Rates in the US. JAMA Netw Open
2020; 3: e2020485.

27. Yuan P, Li J, Aruffo E, et al. Efficacy of ‘Stay-at-Home’ Policy and Transmission of COVID-
19 in Toronto, Canada: A Mathematical Modeling Study. 2020. Available at SSRN: https://
doi.org/10.2139/ssrn.3678581

28. City of Toronto. COVID-19. 2020. https://www.toronto.ca/home/covid-19/ (31 Aug 2020, date
last accessed).

29. Statistics Canada. Number of vehicles travelling between Canada and the United States. 2020.
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=2410000201 (22 July 22 2020, date last
accessed).

30. Government of Canada. Coronavirus disease (COVID-19). 2020. https://www.canada.ca/en/
public-health/services/diseases/coronavirus-disease-covid-19.html (3 August 2020, date last
accessed).

31. Government of Canada. Travel restriction to Canada remain in place for September
long weekend. 2020. https://www.canada.ca/en/border-services-agency/news/2020/08/travel-
restrictions-to-canada-remain-in-place-for-september-long-weekend.html (30 Aug 2020, date
last accessed).

32. Cori A, Ferguson NM, Fraser C, et al. A new framework and software to estimate time-varying
reproduction numbers during epidemics. Am J Epidemiol 2013; 178: 1505-1512.

33. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-
infected pneumonia. N Engl J Med 2020; 382: 1199–207.

34. R Core Team. R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. 2020. https://www.R-project.org/ (30 July 2020, date
last accessed).

35. Gordon O, Goverde M, Pazdan J, et al. Comparison of different calculation approaches for
defining microbiological control levels based on historical data. PDA J Pharm Sci Technol
2015; 69: 383-398.

http://dx.doi.org/10.2139/ssrn.3678581
https://www.toronto.ca/home/covid-19/
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=2410000201
https://www.canada.ca/en/public-health/services/diseases/coronavirus-disease-covid-19.html
https://www.canada.ca/en/border-services-agency/news/2020/08/travel-restrictions-to-canada-remain-in-place-for-september-long-weekend.html
https://www.r-project.org/


Optimal Staged Reopening Schedule
Based on ICU Capacity: A
Model-Informed Strategy
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Francesca Scarabel, Yanyu Xiao, Nicola Luigi Bragazzi, Jane M. Heffernan,
Nicholas H. Ogden, and Jianhong Wu

1 Introduction and Background

Reopening plans and strategies have been developed and revised in every country
around the world as part of the COVID-19 pandemic recovery process. These
plans and strategies are based on some basic principles and golden rules focusing
on the importance of existing measures such as increasing access to diagnostic
testing, contact tracing, and access to PPE (personal protective equipment), among
others [1]. While the COVID-19 reopening will be a staged process with staggered
reopening of activities in order to minimize risk, reopening details vary from
one country/region to another, depending on their unique demographic, economic,
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health care system, and dynamics of disease transmission. Reopening has been
occurring under much uncertainty about many factors including the availability and
effectiveness of vaccines/treatment drugs [2, 3]. Thus, it is very challenging for
decision makers to determine the timing and level of relaxation which should be
considered for their jurisdictional circumstances [4, 5]. Therefore, mathematical
modelling and statistical and optimization techniques are needed to reduce this
uncertainty and assist decision makers. To address these challenges, we propose a
modelling framework that can be used to examine and assess the impacts of different
reopening strategies, and find optimum, calculated, and feasible solutions [6, 7].
The outcomes are based on the expected access and arrival time of an efficacious
vaccine/treatment drug for SARS-CoV-2.

Ontario, with more than 14 million people, is the largest Canadian province and
was among the first provinces to have confirmed COVID-19 cases, starting in late
January 2020, from international travelers. While monitoring the situation during
the month of February of 2020, the province started to implement a number of
pandemic response measures, with public school closures in March 12 of 2020
(escalation phase 1), and a declaration of the state of emergency in March 17 of
2020 including cancelation of public events, places and establishments (escalation
phase 2), followed by closure of non-essential workplaces on March 24 of 2020,
and by more strict measures including the prohibition of gatherings greater than five
people on March 25 of 2020 (escalation phase 3).

On April 27 of 2020, the government of Ontario issued its framework for
reopening the province after going through several escalation phases for nearly
2 months [8]. The reopening framework envisioned three incremental and gradual
stages in which moving from one stage to the next will depend on the success and
outcomes of the current stage, which can be evaluated based on the impacts of the
reopening measures against the number of predicted cases admitted in ICU. This
reopening framework was based on six key principles of responsibility, evidence-
informed, resourced, monitored, responsive and effective, and clear communication.
In particular, the framework emphasized the adequacy of health system capacity
to respond to resurgence in COVID-19 infections and efficiency of implemented
measures. Accordingly, easement of public health measures in response to the
COVID-19 were assessed based on four criteria, including virus spread and
containment, health system capacity, public health system capacity, and incidence
tracking capacity. The main goal of this study was to assess Ontario’s reopening
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plans by taking into consideration the capacity of the health system based on the
province’s disease transmission model that incorporates these reopening criteria.
More specifically, we developed and applied an optimization technique to the
disease transmission model which maximizes the relaxation of social contacts while
remaining within the health system’s capacity, considering an expected time for
SARS-CoV-2 vaccine/treatment drug availability.

2 Materials and Methods

2.1 The Transmission Dynamics Model

We use the parameterized model describing COVID-19 transmission dynamics in
Ontario, Canada used in previous studies [9, 10]. The population is divided into
susceptible (S), exposed (E), asymptomatic infectious (A), infectious with symp-
toms (I), and recovered (R) compartments according to the epidemiological status
of individuals. We also include diagnosed and isolated (D), isolated susceptible (Sq),
and isolated exposed (Eq) compartments based on control interventions. Within the
modelling framework, we also account for contact tracing, where a proportion, q,
of individuals exposed to the virus are traced and isolated (we will also refer to
q as ‘quarantine proportion’ or ‘quarantine fraction’). The quarantined individuals
can either move to the compartment Eq or Sq, depending on whether transmission
occurred (with probability β), while the other proportion, 1 − q, consists of
individuals exposed to the virus who are missed from contact tracing and, therefore,
move to the exposed compartment E once infected, or stay in the compartment S
otherwise. The transmission dynamics model is

S′ = − (βc + cq (1 − β)) S (I + θA) /N + λSq,

E′ = βc (1 − q) S (I + θA) /N − σE,

I ′ = σ�E − (δI + α + γI ) I,

A′ = σ (1 − �)E − γAA,

Sq
′ = (1 − β) cqS (I + θA) /N − λSq,

Eq
′ = βcqS (I + θA) /N − δqEq,

D′ = δI I + δqEq − (α + γD)D,

R′ = γI I + γAA+ γDD,
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where N denotes the total population in Ontario, Canada. In order to better capture
the different phases of the escalation of intervention measures, the contact rate and
quarantine proportion are assumed to be time-dependent. Specifically, after March
2 of 2020, the contact rate c(t) and quarantine proportion q(t) are exponentially
decreasing or increasing with exponential rates r1 and r2, respectively. That is, by
introducing T0, T1 and Ts corresponding to March 14, March 18 and March 24 of
2020, respectively, we have

c(t) =
{
c0, t < T0, c1, t < T1, c2, t < Ts, (c2 − cb) e−r1(t−Ts) + cb, t ≥ Ts,

and

q(t) =
{
q0, t < Ts , (q0 − qb) e−r2(t−Ts) + qb, t ≥ Ts,

where c0, c1, c2 are the constant contact rates and q0 is the quarantine proportion
before March 24 of 2020. The parameters cb and qb denote the minimum contact
rate and the maximum quarantine proportion, respectively, estimated after March
24 of 2020. A full parameterization of the transmission model for each phase of the
escalation process in Ontario, Canada has been proposed in [11]. Table 1 contains
the parameter definitions and estimated values from [11] (Fig. 1).

2.2 Division of the Diagnosed Class

We further divide the class D(t), the number of diagnosed but not-yet-recovered
population, as follows:

D = Dmild +Dicu +Dward,

distinguishing the confirmed cases into those who show only mild symptoms and are
not hospitalized (Dmild),are hospitalized in ICU with severe symptoms (DICU),and
are hospitalized in non-ICU units (Dward). We describe each of the populations by

D′
mild = (1 − h) (δI I + δqEq

) − (α + γmild)Dmild ,
D′
icu = h (1 − w) (δI I + δqEq

) + bwardDward − (α + γicu)Dicu,
D′
ward = hw

(
δI I + δqEq

) − (α + γward + bward)Dward,

where h is the proportion of hospitalized cases among newly confirmed cases and w
is the proportion which are hospitalized in non-ICU units. The values of h and w are
estimated to be 0.16 and 0.77, respectively [12]. The recovery rates for individuals
in each states are γmild = 1/5, γ icu = 1/14 and γ ward = 1/12 [13–15]. For the
following simulations, the initial conditions given as Dmild(0) = 4, Dicu(0) = 0 and
Dward(0) = 1. The value of bward is estimated to be 0.26*1/3 which is the product of
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Table 1 Parameter estimates for COVID-19 in Ontario, Canada, taken from [11]

Parameter Definitions Mean (Std)
c0 Contact rate before March 14 11.5801 (0.3456)
c1 Contact rate between March 14 to March 18 10.1202 (0.9185)
c2 Contact rate between March 18 to March 24 8.0495 (0.2787)
c(t) c2 Constant contact rate at March 24 8.0495 (0.2787)

r1 Exponential decrease of contact rate 0.0466 (0.0152)
cb Minimum contact rate after March 24 2.1987 (0.2400)

β Probability of transmission per contact 0.1469 (0.0023)
q0 Fraction of quarantined exposed individuals before

March 24
0.1145 (0.0114)

q(t) q0 Quarantine fraction at March 24 0.1145 (0.0114)
r2 Exponential increase of quarantine fraction 0.1230 (0.0123)
qb The maximum quarantine fraction 0.3721 (0.0371)

σ Transition rate of exposed individuals to the infected
class

1/5

λ Rate at which the quarantined uninfected contacts were
released into the wider community

1/14

� Probability of having symptoms among infected
individuals

0.7036 (0.0261)

δI Transition rate of symptomatic infected individuals to
the quarantined infected class

0.1344 (0.0134)

δq Transition rate of quarantined exposed individuals to the
quarantined infected class

0.1237 (0.0086)

γ I Recovery rate of symptomatic infected individuals 0.1957 (0.0111)
γ A Recovery rate of asymptomatic infected individuals 0.139
γD Recovery rate of quarantined diagnosed individuals 0.2
α Disease-induced death rate 0.008
θ Modification factor of asymptomatic infectiousness 0.0275 (0.0128)
Initial values Definitions Mean (Std)
S(0) Initial susceptible population 1.471 × 107

E(0) Initial exposed population 8.9743 (0.6558)
I(0) Initial symptomatic infected population 5.3887 (0.9442)
A(0) Initial asymptomatic infected population 19.4186 (3.9406)
Sq(0) Initial quarantined susceptible population 0
Eq(0) Initial quarantined exposed population 0
D(0) Initial quarantined diagnosed population 5
R(0) Initial recovered population 0

the two quantities: proportion of patients who are moving to ICU beds among those
who are originally admitted to non-ICU units, 0.26 [16], and the average duration
of pre-ICU period of 3 days [16].
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Fig. 1 The flowchart of the transmission dynamics model, where the population is stratified
by susceptible (S), exposed (E), asymptomatic infectious (A), symptomatic infectious (I), and
recovered status (R), and by quarantine and isolation status (i.e. Sq and Eq). The compartment
of diagnosed but not yet resolved cases is further stratified by the need for the use of hospital
wards (Dward) and/or ICU beds (Dicu), and mild (Dmild)

2.3 De-escalation Considerations

We investigate de-escalation using the same model. A simple de-escalation plan is
to simply ‘reverse’ the escalation steps, as studied in [11]. There, three main de-
escalation phases were considered:

De-escalation-Phase 1: Opening of workplaces;
De-escalation-Phase 2: Resumption of public events and activities;
De-escalation-Phase 3: School opening.
In [11], authors focused on the effect of different parameters on the control repro-

duction number Rc, defined as the average number of secondary infections that one
primary infected individual would produce in a fully susceptible population under
control measures, with the goal of investigating which parameter combinations, and
public health intervention measures, would allow to avoid a rebound of the epidemic
(by achieving Rc < 1).

Here we relax this requirement by allowing the reproduction number to be above
1 during the de-escalation phase, hence allowing for a second wave, but constrained
so that the critical cases will not exceed the health system capacity. More precisely,
we study the optimal initiation time of each de-escalation phase in order to keep the
number of diagnosed cases below a certain threshold while we gradually retrieve
the pre-intervention contact rate.

Herein, a de-escalation strategy refers to a set of initiation timings corresponding
to each de-escalation phase. An acceptable de-escalation strategy refers to the
strategy which makes the number of diagnosed cases below a certain threshold.
This threshold is set by the health system capacity in the considered area (which
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is Ontario, Canada, in the present study). We compute the cost of a de-escalation
strategy by quantifying the reduction in contacts until we return to the pre-pandemic
contact level. We then find the optimal acceptable de-escalation strategy, depending
on various public health intervention scenarios (in terms of the improvement of
contact tracing, diagnosis, and recommendations for PPE usage) put in place
after re-opening, and on different time-windows of cost-evaluation. We start by
evaluating the three-phase de-escalation process outlined above, with contact rates
estimated in the escalation phases [11]. We then evaluate a more gradual de-
escalation process of the workplace resumption divided into five subphases.

2.4 Feasible De-escalation Plans Based on the Health System
Capacity

We consider four time-points, t0, t1, t2 and t3, each of which corresponds to the
beginning of cost-evaluation (May 20, 2020), de-escalation-phase 1, de-escalation-
phase 2 and de-escalation-phase 3. The three latter time-points are to be optimally
selected.

Each de-escalation phase is characterized by a contact rate, with cr, 0 denoting
the contact rate before reopening, and cr, 1,cr, 2 and cr, 3 denoting the (increasing)
contact rates in each de-escalation phase (see Table 2). The contact rate cr, 3 is
assumed to be at the value estimated before interventions, hence it corresponds to a
full resumption of social contacts and activities.

We consider the acceptable de-escalation strategies which meet the constraints
Dicu(t) ≤ Dicu

_
for t1 < t < t0 + T, where, t0 + T is the time corresponding to the

end of cost-evaluation and Dicu
_

is a capacity of the ICU beds available for COVID-

19 patients. The total number of existing ICU and acute beds in Ontario, Canada as
of April 16 is 3504 and 20,354, respectively [17]. We assume that only a portion of
these resources is available for COVID-19 patients.

Table 2 Parameters considered in the reopening plans

Parameter Definitions Lower bounds Upper bounds

T Days of cost-evaluation (counting from
May 20, 2020)

163 (Nov 1, 2020) 28 (Mar 1, 2021)

βr Transmission probability after t = t1 0.13 0.1469
qr Quarantine proportion after t = t1 0.3721 0.5
δI, r Detection rate after t = t1 0.1344 0.25
cr, 0 Contact rate before de-escalation 3.759 3.759
cr, 1 Contact rate during de-escalation-phase 1 8.0495 8.0495
cr, 2 Contact rate during de-escalation-phase 2 10.1202 10.1202
cr, 3 Contact rate during de-escalation-phase 3 11.5801 11.5801
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A de-escalation strategy refers to the vector (ε1, ε2, ε3) determined by

εi = ti − ti−1,

for i = 1, 2, 3. Here, ε1 represents the length of pre-reopening period starting from
t0 (the beginning of cost-evaluation), ε2 and ε3are the duration of the de-escalation
phases 1 and 2, respectively. The initiation time of de-escalation phase 3 is at the
time t3 = t0 + ε1 + ε2 + ε3.

We solve the following optimization problem of minimizing the intensity of
reduced contacts (cost)

∑3

i=1

(
cr,3 − cr,i−1

)
εi,

with constraints

maxt1<t<t0+T Dicu(t) ≤ Dicu
_
,

ε1 + ε2 + ε3 ≤ T ,
and

εi ≥ 0

for i = 1, 2, 3. We further restrict the values of ε1, ε2, ε3 to be integer multiples
of 14 days (including 0 day) considering the minimum time unit required for the
implementation of each de-escalation strategy.

The range of each parameter used for scenario analysis is presented in Table 2.
The days of cost-evaluation are set so that the end of the evaluation time corresponds
to the beginning, middle and end of the flu season (i.e., November 2020, January
2021, March of 2021). The underlying assumption is that, after re-opening, we
would enforce other control measures while we relax the regulations resulting in
the increase of the contact rate. Therefore, the upper bound of the transmission
probability and lower bounds of the quarantine proportion and detection rates are
set to be at the level of pre-reopening time presented in Table 1. Lower bound of the
transmission probability is obtained from the result of the similar modeling study
[18] in China, setting this level of PPE as a maximum level we can achieve. The
lower bound for the quarantine proportion is set at the level of qb=0.3721, the
estimated value of the maximum fraction of the quarantine in Table 1. The upper
bound for the detection rate is set to be 0.25, assuming that 4 days is the minimum
length of time required for testing and case-confirmation.

The minimum level of contact rate before reopening is set to be 3.759, calculated
using weighted contact matrices from the POLYMOD project with no contacts in
schools, workplaces and communities while the contacts in households increased
20% due to provincial emergency orders since March 17 of 2020 in Ontario, Canada
[19–21]. The minimum level of contact rate is achieved prior to the beginning of
cost-evaluation (earlier than May 20) and therefore remained to be constant at the
level of 3.759 till the first reopening date.
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3 Results

The optimal and acceptable de-escalation strategy depends on various public health
intervention scenarios in terms of improvement of contact tracing (increase of
the quarantine proportion, q), diagnosis (increase of the diagnosis rate, δI), and
recommendations for PPE usage (decrease of the transmission probability, β) put
in place after re-opening (t ≥ t1), as well as the length of cost-evaluation (T).

3.1 Optimal De-escalation Strategy Under Different Cost
Evaluation Periods

Figure 2 shows the optimal de-escalation strategies and the resulting numbers of
cases in ICU with three distinguished lengths of cost-evaluation (T) assuming
that 50% of ICU beds are available for COVID-19 patients and that public health
measures (such as contact tracing, diagnosis and personal protection) are kept at
high levels. In the three different scenarios, we set the end of the evaluation period
at March 2021, January 2021 and November 2020.

As we can see from the top panel of Fig. 2, the timing of acceptable reopening
date is delayed when the duration of cost-evaluation (T) is prolonged, indicating
that the plan for the early reopening should be in line with the early release of
vaccines/drugs. In all cases, the optimal strategies allow the immediate initiation
of de-escalation phase 1 and then transition to de-escalation phase 3 without the
implementation of de-escalation phase 2.

In the following section, we compare the optimal de-escalation strategies with the
three specific scenarios on the time of vaccine availability, at the beginning, middle,
and at the end of influenza season.

Scenario 1: With the early release of vaccines in November 2020 (T = 163),
the optimal strategy is to initiate the de-escalation phase 1 immediately and then
transition to phase 3 in early October. With this strategy, the rebound will lead to
exceeding the ICU beds around early November.

Scenario 2: When T = 224 (January 2021), the optimal strategy is to initiate de-
escalation phase 1 immediately, and then transition to de-escalation phase 3 in mid
December. With scenario 2, the rebound will lead to exceeding the ICU beds around
early January, 2021.

Scenario 3: When T = 283 (March 2021), the optimal strategy is to initiate de-
escalation phase 1 immediately, and then transition to de-escalation phase 3 in late
February. With scenario 3, the rebound will lead to exceeding the ICU beds around
March, 2021.

The bottom-right panel shows the percentage of cases in ward beds. While the
number of cases in ICU reaches near to its limit at the end of cost-evaluation (time
of vaccine availability), the number of cases in ward beds will remain at less than
5% of the total ward beds by the end of cost evaluation.
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Fig. 2 Optimal de-escalation strategies under three different cost evaluation periods. Top panel
shows the timing of optimal de-escalation phases with vaccine availability in March 2021 (top line),
January 2021 (middle line) and November 2020 (bottom line). Middle panel shows the contact
rate at the optimal strategy. Bottom panels show the predicted number of confirmed cases in ICU,
DICU(t), (left) and the predicted percentage of ward beds occupied by COVID-19 patients, Dward(t),
(right). Here, Dicu

_
=1752, assuming that 50% of the existing ICU beds are available for COVID-

19 patients. The results are obtained at the minimum level of quarantine proportion(q = 0.3721),
maximum level of diagnosis rate (δI = 0.25), and the minimum level of transmission probability
(β = 0.13) within their respective ranges in Table 2. Note that in the case of vaccine availability
(mass vaccination) in March of 2021, Ontario should remain in stage 2 almost all the time until
late February 2021
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3.2 Optimal De-escalation Strategy Under Different Hospital
Bed Capacity

Given the same parameters and the three cost-evaluation periods used in the previous
section, Fig. 3 presents optimal de-escalation strategies with different ICU bed
capacities available for COVID-19 patients. We can see that the plan for the early
reopening and de-escalation should be in line with the improved numbers of ICU
beds as well as the early release of vaccines.

Fig. 3 Optimal de-escalation strategies under different ICU bed capacity. Each of the lines shows
the timing of optimal de-escalation phases under different % of ICU beds available for COVID-19
patients. Each panel is with vaccine availability in March 2021 (top panel), January 2021 (middle
panel) and November 2020 (bottom panel). The results are obtained at the minimum level of
quarantine proportion(q = 0.3721), maximum level of diagnosis rate (δI = 0.25), and the minimum
level of transmission probability (β = 0.13) within the range in Table 2
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3.3 Optimal De-escalation Strategy Under Various
Intervention Scenarios

In Table 3 and Figs. 4 and 5, we present the optimal de-escalation strategies obtained
at different levels of quarantine proportion(q), diagnosis rate (δI), by fixing the

Table 3 Optimal de-escalation strategies depending on the percentage of contacts traced and
quarantined (q) and the percentage of symptomatic diagnosed, (δI /(δI+α + γ I))

% contacts traced and quarantined
% symptomatic diagnosed 37% 44% 50%

40% (δI= 0.1344) Oct 7–Oct
21–Nov 4

Aug 12–Dec 2–Dec 16 Jul 1–Dec 2–Dec 16

49% (δI= 0.1922) Aug 12–Nov
18–Dec 2

Jun 3–NA–Dec16 May 20–Oct 21–Nov 4

55% (δI=0.25) May
20–NA–Dec 16

May 20–Oct 7–Nov 4 May 20–Jul 15–Sep 23

Note: The red and yellow cells correspond to the high and low cost. Corresponding initiation timing
of each phase are presented in the cells. The transmission probability (β) is fixed to be 0.13. Here,
it is assumed that the vaccines are available on Jan 1, 2021 (T = 235) andDicu

_
=1752. For optimal

de-escalation strategies which skip a phase, NA appears to identify this case

Fig. 4 Optimal de-escalation strategies under different percentages of symptomatic diagnosed
with minimum level of quarantine proportion, q = 0.3721, (upper panel) and maximum level of
quarantine proportion, q = 0.5(lower panel). Here, δI = 0.1344, β = 0.13, T = 235 (Jan 01, 2021)
and Dicu

_
=1752
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Fig. 5 Optimal de-escalation strategies under different percentages of contacts traced (q) with
minimum level of diagnosis rate, δI = 0.1344, (upper panel) and maximum level of diagnosis rate,
δI = 0.25(lower panel). Here,β = 0.13, T = 235 (January 01, 2021) andDicu

_
=1752

transmission probability (β), end of the cost evaluation period and the fraction of
ICU beds available.

Sensitivity to diagnosis capacity (see Table 3, Fig. 4): while the maximum
diagnosis rate allows for an immediate reopening (May 20 of 2020), a lower (and
likely more realistic) diagnosis rates of 0.134 (corresponding to a time to diagnosis
of about 7.5 days) at the minimal level of contact tracing (37%), requires to delay
the reopening by almost 5 months, to the beginning of October, 2020. Re-opening
on May 20, 2020 is allowed only by almost unrealistic values of diagnosis rate
(corresponding to the average time from symptom onset to diagnosis of 4–5 days).
In the lower panel of Fig. 4, we can see that the higher diagnosis capacity is related
with the earlier reopening (the date of initiating de-escalation phase 1) when the
quarantine proportion is high. With low quarantine proportion, the higher diagnosis
capacity is related.

Sensitivity to quarantine proportion (see Fig. 5): With maximum level of
diagnosis rate (δI = 0.25), the higher quarantine proportion is related with the
earlier initiation of phase 2 and 3. When the quarantine proportion is also at the
maximal level (50%), de-escalation phase 3 can follow immediately after the end
of de-escalation phase 1. With minimum level of diagnosis rate (δI = 0.1344), the
higher quarantine proportion is related to the earlier reopening.
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3.4 Optimal De-escalation Strategy with Gradual
Implementation of De-escalation Phase 1

In the following, we consider the optimization problem with five sub-stages for the
de-escalation phase 1 (workplace resumption):

min
∑7

i=1

(
cr,7 − cr,i−1

)
εi,

with constraints

maxt1<t<t0+T Dicu(t) ≤ Dicu
_
,

∑7

i=1
εi ≤ T ,

εi ≥ 0 (and)

for i = 1,...7, where DICU(t) is the solution of the transmission dynamics model
with initial conditions in Table 1 and Dmild(0) = 4, Dicu(0) = 0 and Dward(0) = 1.
The contact rates corresponding to each of the de-escalation sub-stages for phase
1 and other phases are set to be cr, 1 = 4.6171, cr, 2 = 5.4752 cr, 3 = 6.3333,
cr, 4 = 7.1914, cr, 5 = 8.0495, cr, 6 = 10.1202 and cr, 7 = 11.5801. The contact
rates are obtained by dividing the increase in contact rate due to workforce into five
substages with equal increase of contacts per day. Using weighted contact matrices
for the workplaces, we calculated that the first four contact levels corresponding
roughly to 30%, 57%, 72%, 87% and 98% workforce resumption in phase 1; the
last two contact rates are estimated for phase 2 (resumption of public events and
activities) and phase 3 (school reopening).

Figure 6 presents the results. In all of the cases, the optimal strategies allow
the immediate relaxation of the contact level to be at 4.6171 (first sub-stage of
de-escalation phase 1), which is obtained by ~30% of workforce resumption. In
the following, we compare optimal de-escalation strategies with three distinguished
scenarios regarding the time of vaccine availability or improved number of ICU
beds.

Scenario 1: With the early release of vaccines or improved numbers of ICU beds
in November of 2020 (T = 163), the optimal strategy is to initiate the fourth sub-
stage of de-escalation phase 1, corresponding to 86–87% resumption of workforces,
in mid July of 2020. The initiation of de-escalation phase 3 is at the end of July of
2020.
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Fig. 6 Optimal de-escalation strategies under three different cost evaluation periods. The upper
panel shows the contact rate at the optimal strategy with vaccine availability in March of 2021,
January of 2021 and November of 2020. Bottom panels show the predicted number of confirmed
cases in ICU, Dicu(t), (left) and the predicted number of ward beds occupied by Covid-19
patients, Dward(t), (right). Here, Dicu

_
=1752, q = 0.3721, δI = 0.25and β = 0.13

Scenario 2: With the early release of vaccines or improved numbers of ICU beds
in January of 2021 (T = 224), the optimal strategy is to initiate the second sub-
stage of de-escalation phase 1 at the end of July of 2020, corresponding to 56–57%
resumption of workforces. The initiation of de-escalation phase 2 is at the end of
August of 2020 and the initiation of de-escalation phase 3 should be at the beginning
of September of 2020.

Scenario 3: With the early release of vaccines or improved numbers of ICU beds
in March of 2021 (T = 283), the optimal strategy is to initiate the second sub-stage
of de-escalation phase 1 at the end of August of 2020, corresponding to 56–57%
resumption of workforces. The initiation of de-escalation phase 2 is at the end of
September of 2020 and the initiation of de-escalation phase 3 should be at the end
of October of 2020.
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Fig. 7 Optimal de-escalation strategies under two different pre-reopening contact rates. Each of
the panels shows the timing of optimal de-escalation phases with pre-reopening contact rates
cr, 0 = 3.759 (top) and cr, 0 = 4.6171 (bottom), respectively. The three lines in the panels
correspond with vaccine availability in March of 2021 (top line), January of 2021 (middle line)
and November of 2020 (bottom line). Here, Dicu

_
=1752, q = 0.3721, δI = 0.25and β = 0.13

3.5 Sensitivity of the Optimal De-escalation Strategy
to the Pre-reopening Contact Rate

As of May 19, 2020, the government of Ontario announced reopening of some
businesses. This may have lifted the contact rate of pre-reopening stages. In Fig. 7,
we observe that the optimal de-escalation timings are not highly sensitive to the
different levels of pre-reopening contact rates, although higher contact rate during
the pre-reopening stage may cause a slightly delayed initiation of phase 1 and
phase 3.

4 Discussion and Conclusion

Using a transmission dynamics model parameterized through model fitting to
cumulative incidence data during different social distancing escalation phases [11],
we identified the optimal timing for social-distancing de-escalation for Ontario,
Canada as a case study. The timing of acceptable reopening date is delayed when
the expected date of vaccine/drug availability is prolonged. While ICU beds in
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use reach its limit by the end of cost-evaluations, less than 10% of ward beds
are needed. Increasing the capacity of ICU beds available for COVID-19 patients
and enforcing other measures (diagnosis, PPE, contact tracing) would allow earlier
reopening dates and therefore reduce the number of social contacts lost during the
social-distancing period. Specifically, our simulations show that improving contact
tracing and diagnosis capacity has a significant effect on the reopening date (Figs. 4
and 5), whereas increasing ICU beds capacity has only a minor effect (Fig. 3).

While using a different disease transmission and optimization method, our
findings are in line with other optimization and de-escalation studies such as those
conducted by Rawson et al. [22] in the UK and German et al. [23] in Germany. These
studies also emphasize the importance of gradual reopening and implementation of
various public health measures and constraints such as social distancing, antibody
testing, isolation of infectious individuals and contact tracing.

In our study, we have only considered the de-escalation scenario of reversing
steps implemented during the escalation phases. However, the actual reopening
strategy may be more gradual. The Ontario government was taking a gradual
reopening approach for the reopening of workplaces and public places. Starting
from May 4 of 2020, businesses which could meet public health guidelines started
to reopen, including seasonal business and construction projects. Although we have
considered the scenario of gradual workplace reopening by having sub-phases of
de-escalation phase 1, the contact rates set up for our sub-phases may not match
with the contact rates during the actual gradual reopening of businesses. Once we
obtain more accurate estimates of the contact rates during those small steps, the
optimal reopening plans onwards can be re-evaluated. In Sect. 3.4, we explored
the optimal control problem with fixed and equal increase of contacts per day
for five sub-stages of de-escalation phase 1. Based on our algorithm, we can also
conduct the optimization with different sub-stages assigned by various contact rates
corresponding to increased levels of workforce resumption, such 25%, 50%, 75%,
90% and 100%.

Note that in our cost function, the number of contacts lost during three de-
escalation phases have equal weights and we did not consider the difference
in economic impact the number of social contacts lost have during workplace
closure/public event closure/school closure. Also, we assumed that the contact
rates are constant during de-escalation phases. Therefore, the resulting optimal
timing should be carefully interpreted considering the delay between the approval
of reopening and actual implementation.

We expect that the reopening plan would take place with constant monitoring
of the risk indicators (e.g. incidence), and therefore the reopening plans may
change over time responding to the situations. As a next step, we need to build a
model which incorporates the adaptive reopening strategies by identifying the risk
indicators and criteria which form the adaptive strategy.

In the study, we establish a functional and flexible framework for determining
optimal de-escalation strategies capable of performing key scenario analyses to
inform decision-making. To accomplish this, we have utilized our previously
established modelling studies in Ontario, Canada [9, 11]. We note that the estab-
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lished framework is amenable to expansion and modification to address specific
research questions at hand. Further, the systematic process presented of model-
fitting, scenario analysis and interpretation may be used as a reference to inform
optimal de-escalation strategies in other regions. More broadly, this study highlights
the opportunity for mathematical model-based techniques to play a pivotal role in
the management, risk assessment, and control of COVID-19 globally.

As a final remark added when the paper is being processed for publication in
January of 2021, we note that the Province of Ontario has unfortunately experienced
a second outbreak started in the fall of 2020, and the Province entered a full
lockdown on December 26 of 2020, although a gradual mass vaccination is indeed
expected to start in March of 2021. This scenario of vaccine availability in March of
2021 was considered in our simulations, and our model-based simulation suggested
optimal timing for the Province to have advanced to phase 2 and phase 3 social
distance de-escalation should be August of 2020 and October of 2020, respectively.
The Province, however, decided to start its region (public health unit)-specific staged
reopening process much earlier: the Toronto Public Health Unit, for example, started
its phase 2 (officially called Stage 2) and phase 3 on June 24 and July 31, 2020
respectively. This pre-mature advancing to staged reopening process was halted
indeed due to the ICU capacity limitation. As a result, the Province reverted the
reopening process and the Toronto Public Health Unit moved back to the modified
Stage −2 on October 10, 2020, and further back to the Red Zone (Control) on
November 7, 2020, and then Grey Zone (Lockdown) on November 24, 2020. The
issue of optimal timing for reopening unfortunately arises again with an evolving
vaccine availability timeline, so our methodology could potentially be tested.
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Mathematics of the Pandemic

M. Ram Murty and V. Kumar Murty

1 Introduction

Mathematics offers a framework for tackling the coronavirus pandemic that is
now confronting the human race. We will show below how basic mathematics
already gives us a viable method to control the spread of the virus. More advanced
techniques can be used to make predictions and plot future trajectories. This, of
course, does not preclude the essential aspect of pharmaceutical research needed to
develop a vaccine. It however offers us a method of social behaviour essential to
thwart the spread of the disease until a vaccine is developed.

This paper is largely expository and can be dubbed “basic epidemiology for
(pure) mathematicians.” Our main references are the book by Bailey [1] and Chapter
21 of [10]. Though this paper is a condensed exegesis of known results, we do
however make some new remarks concerning the approximate solution by Kermack
and McKendrick [16] of their “SIR” model to study epidemics. A study of this
approximation and how it falls short of the reality has been discussed in several
papers such as [15] and [12]. One of our main results is that a small correction term
in the Kermack–McKendrick solution improves the error term in their model.

Daniel Bernoulli [5] was the first to propose a mathematical model to study
the spread of smallpox back in 1760. But the idea of using mathematics to study
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the spread of diseases did not quite catch on (pardon the pun). The simplest
mathematical model to study the transmission of disease is called the SI model,
where there is no recovery. It was proposed by Hamer [13] in 1906 and then
expanded by Ross [21] in 1915. Later, Kermack and McKendrick [16] in 1927
proposed the celebrated SIR model which accomodates recovery from the infection.
(Incidentally, Ross’s work on malaria won him the 1902 Nobel Prize and a
knighthood in 1911.) By the middle of the twentieth century, the mathematics of
epidemics evolved into a serious subject and the book by Bailey [1] is considered a
primary source.

In this paper, we will examine the SIR model. After surveying the paper by
Kermack and McKendrick, we examine the question of error in the approximate
solution in [16]. Then, we discuss the topic of “exact solutions” mainly from a
combinatorial perspective via an application of the Lagrange inversion theorem.
This leads to the introduction of the important role played by the Lambert W -
function. We derive at the end an assortment of results that are also of number
theoretic interest. In particular, we give two new integral expressions for the
Lambert function for positive real arguments.

In the simplest model, we have a branching process. This means that each
infected individual meets k other people and infects every individual he meets with
probability p. Thus, the number of new cases generated by a single individual is
R0 = pk, which is called basic reproductive number. The infected people go on to
infect other people in the same way and we can model this using graph theory by
a tree structure. It is then clear that if we let qn be the number of infected people
at the n-th level of this tree, then qn = (pk)n. Since we want qn to go to zero, we
derive our first theorem.

Theorem 1 The number of infected people will eventually tend to zero if pk < 1.

This simple result already gives us a powerful method to deal with the pandemic.
First, we need to know p. That is obtained by collecting data, which is very
important and this means extensive testing of the population. The probability p is
approximated by the ratio of the number of infected people by the total number of
people tested. Of course, a total lockdown of the entire population will substantially
diminish the spread of the disease. However, this is not practical in the long run
and Theorem 1 tells us that we can relax this and curtail the number of people
an individual can come into contact with. That number is [1/p], where [ · ] is the
greatest integer function. We record this as:

Corollary 2 The number of people each individual can come into contact with
should be less than [1/p] in order to contain the pandemic.

Our simple model, though expedient in giving us a quick understanding of the
pandemic and its spread, is not an accurate reflection of the real state of things. For
instance, there is no single value of p that can be ascribed to an entire nation since
often, the value of p changes from region to region. Therefore, it is necessary to
view p as a function of two co-ordinates x, y giving the geographical position. The
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same can be said of the quantity k. Thus, if R is the region we are interested in, the
number of people infected at the n-th level in the region R is

∫∫

R
p(x, y)nk(x, y)ndxdy.

Suppose that

f (x, y) = lim
n→∞p(x, y)

nk(x, y)n

exists almost everywhere. This is a reasonable assumption since our functions are
locally constant functions. As the sequence of functions

fn(x, y) = p(x, y)nk(x, y)n

is bounded by the total population of the region, an application of Lebesgue’s
dominated convergence theorem (see page 26 of [22]) shows that if we want

lim
n→∞

∫∫

R
p(x, y)nk(x, y)ndxdy = 0,

then f (x, y) = 0 almost everywhere. In other words, we must have
p(x, y)k(x, y) < 1 almost everywhere. We thus arrive at our second theorem.

Theorem 3 The pandemic is contained if p(x, y)k(x, y) < 1 almost everywhere in
every part of the region.

In order to formulate a practical public policy, it is then prudent to consider these
localized probabilities and functions.

There are several models that describe the spread of epidemics. Broadly, they
can be grouped into two categories: discrete and continuous with respect to the time
parameter. Our theorems above deal with the discrete time model. Much of this
paper is devoted to the continuous time model which uses the theory of differential
equations. By contrast, the discrete model uses graph theory. In this model, each
person of the population is represented by a vertex. A vertex can be in one of two
states: susceptible or infected. A directed edge from node i to node j means that i
can infect j . The rate of infection β is attached to each edge and the rate of recovery
γ is attached to each infected node. This results in a graph G and one defines the
epidemic threshold of the graph G as the value τ such that if β/γ < τ then the
epidemic dies over time and if β/γ > τ , the epidemic spreads over time. In [25], the
authors show that if λ1 is the largest eigenvalue of the adjacency matrix of G, then
the epidemc threshold of G is 1/λ1. This gives an interesting connection between
spectral graph theory and the study of epidemics. We refer the reader to [9, 25] and
the survey [6] for further details.
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2 The SI Model

The SI model to study epidemics is discussed in Chapter 5 of Bailey [1]. We give
a brief exposition. At time t = 0, we consider a population of size N + a, with
N “susceptible” and a persons “infected”. Let S(t) be the number of susceptible
people and I (t) the number of infected people at time t respectively. We assume
that the infection rate is β and that

dS(t)

dt
= −βS(t)I (t).

As we assume the population is constant throughout the epidemic, we have S(t) +
I (t) = N + a so that our differential equation reduces to

dS(t)

dt
= −βS(t)(N + a − S(t)),

which is easily solved using basic calculus. We have

S(t) = N(N + a)
N + ae(N+a)βt .

Thus, as S(t)+ I (t) = N + a, we have

dI (t)

dt
= −dS(t)

dt
= aN(N + a)2e(N+a)βt

(N + ae(N+a)βt )2
,

often called the epidemic curve since it gives the rate at which infections occur. It is
not difficult to see that this attains its maximum at time

t = log(N + a)
β(N + a) .

If β is very large, the peak will be reached very early in the time period. Though this
model is simple, it leads to some interesting probability theory for which we refer
the reader to Chapter 5 of [1].

3 The SIR Model

To understand the spread of a virus in a community, Kermack and McKendrick
formulated in 1927 the so-called SIR model. (See in particular equation (29) of
[16].) This is one of the basic models that mathematical biology uses to study
epidemics. Other models are variations on this theme. There are three quantities
that need to be studied as a function of time. The first is the number of “susceptible”
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people who can contract the disease. This is denoted S(t) as a function of the time
parameter t . The next is the number of infected people at time t , denoted I (t). The
third is the number of “recovered” people R(t). This explains the acronym ‘SIR.’

These quantities are inter-related. We make the following assumptions.

S(t)+ I (t)+ R(t) = N, (1)

where N is the total population of the region under consideration. In other words,
we assume our population of the region is constant and does not increase with time
t . We assume that a proportion γ of the infected people will recover. (Sadly, the
word ‘recover’ may also euphemistically include deaths.) Thus,

dR(t)

dt
= γ I (t). (2)

The number of new infections is proportional to the number of interactions between
susceptible people and the infected people and so, taking into account the recovery
rate, we see that the differential equation encoding this fact is

dI (t)

dt
= β S(t)I (t)− γ I (t), (3)

where β is the infection rate. Finally, the number of susceptible people satisfies

dS(t)

dt
= −βS(t)I (t). (4)

These equations together with

dS(t)

dt
+ dI (t)

dt
+ dR(t)

dt
= 0,

obtained by differentiating (1) give us a system of three differential equations
govering the spread of the pandemic. This can also be deduced simply by adding
up (4), (3) and (2). In essence, we actually have two differential equations. Let us
record this in the following system describing the SIR model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −βS(t)I (t)

dI (t)

dt
= β S(t)I (t)− γ I (t)

dR(t)

dt
= γ I (t).

(5)
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Fortunately, this system can be simplified as follows. Dividing (4) by (2) and
using the chain rule, we get

dS

dR
= −β

γ
S,

so that

−β
γ
R(t) = log(S(t)/S(0))

since at time t = 0, we have R(0) = 0. In other words, S(t) = S(0) exp(− β
γ
R(t)).

Inserting this back into (2) we obtain

dR

dt
= γ

(
N − R(t)− S(0) exp(−β

γ
R(t))

)
,

which is the basic differential equation governing the behaviour of the epidemic.
The ratio β/γ is often denoted R0 in the literature1 and is called the basic

reproduction number or basic reproduction ratio and it is not unrelated to the
concept introduced in the earlier section. The reciprocal ρ = 1/R0 is called the
removal rate by Bailey [1]. The rate at which infections are increasing is given by
(3) and we can re-write it as

dI (t)

dt
= γ [R0S(t)− 1]I (t),

from which we note that as S(t) ≤ S(0), the function I ′(t) is decreasing ifR0S(0) <
1. We therefore see that the epidemic can start only when S(0) > 1/R0 = ρ. Thus,
the reproduction ratio measures the spread of the epidemic.

Using the notation of R0, our differential equation for R now becomes

dR

dt
= γ

(
N − R − S(0)e−R0R

)
. (6)

This differential equation has no closed form solution for R and one approximates
the exponential function by its Taylor series. Thus, the equation studied becomes

dR

dt
= γ

(
N − S(0)+ (R0S(0)− 1)R − (R2

0S(0)/2)R
2
)
. (7)

This is a special case of the generalized Riccati differrential equation.

1 This is unfortunate notation since R0 has nothing to do with the R function. Bailey [1] denotes
this as 1/ρ and this is a better notation which we also use sporadically, whenever convenient.
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We could have equivalently divided (4) by (3) and obtained a relation between
I (t) and S(t) but this arrangement is simpler and follows [16]. For the sake of
clarity, we rewrite (7) as

dR

dt
= γ (A+ BR + CR2), with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A = N − S(0),

B = R0S(0)− 1,

C = −R2
0S(0)/2.

(8)

Let us observe that the discriminant of this quadratic is

(R0S(0)− 1)2 + 2(N − S(0))R2
0S(0) > 0. (9)

Now we insert the following lemma from first year calculus (which we leave as an
exercise to the reader):

Lemma 4 Let � = B2 − 4AC > 0. Then

∫
dR

A+ BR + CR2 = − 2√
�

tanh−1
(

2CR + B√
�

)
.

Thus, (8) is solved by

2√
�

tanh−1
(

2CR + B√
�

)
= −γ t + φ (10)

where � is given by (9), and

φ = 2√
�

tanh−1
(
B√
�

)
,

is the integration constant determined by R(0) = 0. Hence, we deduce that

R(t) =
−B + √

� tanh
(
−

√
�

2 (γ t − φ)
)

2C
.

As tanh is an odd function, we can simplify this to

R(t) =
R0S(0)− 1 + √

� tanh
(√

�
2 (γ t − φ)

)

R2
0S(0)

,

which agrees with formula (30) in the Kermack–McKendrick paper [16].
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We record the solution of this in the following theorem and interpret the results.

Theorem 5 The solution of (8) is given by

R(t) =
R0S(0)− 1 + √

� tanh
(√

�
2 (γ t − φ)

)

R2
0S(0)

,

where

φ = 2√
�

tanh−1
(
R0S(0)− 1√

�

)
,

and

� = (R0S(0)− 1)2 + 2(N − S(0))R2
0N

2S(0) > 0.

Since we are interested in the infection rate which is the derivative of R(t), we find
easily: (there is a typo in [16],

√−q in formula (31) should be −q. This seems to
have been corrected in the book by Bailey [1] on page 83.)

Theorem 6

I (t) = �

2R2
0S(0)

sech 2

(√
�

2
(γ t − φ)

)

.

The function appearing in the above theorem is often called the epidemic curve.
It is a symmetrical bell-shaped curve that reflects what is often seen in epidemics,
namely that new cases continue to rise until they hit a certain peak point and then
slowly reduce in number. Let us note that this model does not take into account
variable rates of infection or removal. One can, for instance, drastically reduce the
rate of infection by following the suggested guidelines of personal hygiene, mask
wearing and social distancing with or without a vaccine.

To determine the maximum number of infected people, we can differentiate this
function representing I (t) and note that it attains its maximum value of

�

2R2
0S(0)

at t0 = φ

γ
.

We also see from Theorem 5 that

R(∞) = ρ2

S(0)

(
S(0)R0 − 1 + √

�
)
.
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At the beginning of the outbreak, we expect N and S(0) to be very close, and so we
can approximate

√
� by S(0)R0 − 1. Thus,

R(∞) ≈ 2ρ

(
1 − ρ

S(0)

)
.

How good is this approximation? Using Taylor’s theorem with error term, it is
possible to write down an approximation of the error incurred by using only
the quadratic term. We can also analyse if the approximation has any serious
repercussions with respect to making predictions. This we do in the next section.

4 Error Terms

We will now analyze the error terms incurred in the use of the quadratic approx-
imation of the exponential function in the previous section. This will also give us
insight into an understanding of using higher polynomial approximations and the
errors that arise in that context.

Let us write

e−R0R = 1 − R0R + 1

2
R2

0R
2 + E

so that in fact, the difference

∫ t

0

dR

(N − R − S(0)e−R0R)
−
∫ t

0

dR

(N − S(0)+ (R0S(0)− 1)R − 1
2R

2
0S(0)R

2)

is equal to

∫ t

0

S(0)EdR

(N − R − S(0)e−R0R)(N − S(0)+ (R0S(0)− 1)R − 1
2R

2
0S(0)R

2)
. (11)

By Taylor’s theorem with approximation (see for example, Theorem 1.18 on pages
36–37 of [17]), we have

|E| = R3
0e

−R0ξ
R3

3! ,

for some ξ ∈ [0, t]. As the function e−R0r is decreasing, we have

|E| ≤ R3
0
R3

3! .
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Thus, the error (11) is bounded by O(log t) where the implied constant depends on
N and S(0).

If on the other hand, we use a cubic polynomial approximation to e−R0R , then
the resulting error integral is of the form

∫ t

0

E3(R)dR

f (R)

where E3(R) = O(R4) and f (R) is a polynomial in R of degree 6. Thus, the
integral is convergent and we can write it as

∫ ∞

0

E3(R)dR

f (R)
−
∫ ∞

t

E3(R)dR

f (R)

which is of the form

constant +O
(

1

t

)
.

One can also use a quartic approximation to e−R0R and this leads to a similar
conclusion with the error being of the form

constant +O
(

1

t2

)
.

In the last two cases, therefore, the error is “negligible” in the sense that as t goes to
infinity, there is no significant increase in the term we would obtain if we use either
a cubic or quartic approximation to the exponential function.

Since

∫ t

0

dR

A+ BR + CR2 −
∫ t

0

dR

A+ BR + CR2 +DR3 =

∫ ∞

0

DR3dR

(A+ BR + CR2)(A+ BR + CR2 +DR3)
+O

(
1

t

)
,

the integral on the right hand side is a convergent integral. In other words, (10)
changes to

2√
�

tanh−1
(

2CR + B√
�

)
= −γ t + φ + φ′ +O

(
1

t

)
,
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where φ′ is a suitable constant alluded to above. We state this formally as:

Theorem 7 The exact solution for R(t) in the SIR model (5) satisfies

R(t) =
R0S(0)− 1 + √

� tanh
(√

�
2 (γ t − φ − φ′ +O

(
1
t

)
)
)

R2
0S(0)

,

where

φ = 2√
�

tanh−1
(
R0S(0)− 1√

�

)
,

and

� = (R0S(0)− 1)2 + 2(N − S(0))R2
0N

2S(0) > 0.

5 Kendall’s Exact Solution

The implication of the deliberations of the previous section to the result of Kermack
and McKendrick (sometimes called K and K in the literature) is that one need
only adjust the constant φ to correct the error incurred in using the quadratic
approximation to e−R0R . We underline this observation in light of a paper written by
Kendall [15] in 1956, where he shows that the use of the quadratic approximation
“consistently underestimates the infection rate” (see page 151 of [15]). Referring to
the approximation we have recorded in Theorem 6 above, he adds that “it is curious
that the K and K approximation should have been accepted without comment for
nearly 30 years; the exact solution is easily obtained and the difference between the
two can be of practical significance.”

Kendall uses a calculus of variations argument to show that the K and K
approximation underestimates the rate of infection β. For the sake of clarity, we
outline his argument following [15] and [1]. Suppose that β is a function of R.
Then, proceeding as we did before we can solve for S(t):

S(t) = S(0) exp

(
− 1

γ

∫ R

0
β(r)dr

)
,

which leads to as earlier

dR(t)

dt
= γ

(
N − R − S(0) exp

(
− 1

γ

∫ R

0
β(r)dr

))
.
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The function

β(R) = 2β

(1 − R0R)+ (1 − R0R)−1

leads to the K and K approximation. Thus, β(0) = β and β(R) < β for 0 <
R < 1/R0 and this is the basis of Kendall’s statement that the K and K model
underestimates the infection rate β. He adds that for R > 1/R0, the model gives a
negative infection rate. Because of these objections, he suggests a renormalization
using the exact solution.

The “exact” solution alluded to is simply the transcendental function obtained
by integrating (6). It is surprising that it was (perhaps independently) re-discovered
by the authors in [14] in 2014. Neither Kendall nor the classic text book by Bailey
which discusses Kendall’s work are mentioned in the references of [14].

Kendall’s approach can be described as follows. Using basic calculus, it is easily
seen

N − R − S(0)e−R0R = 0

has exactly two real roots, one negative and one positive, denoted −η1 and η2 (using
the notation of page 85 of [1]). Thus,

γ t =
∫ R

0

dr

N − r − S(0)e−R0r
, 0 < R < η2. (12)

The integral diverges for R → η2 and so, R(∞) = η2. But the integral also diverges
if S(0) = N which suggests that there is an infinite amount of time before the
epidemic starts, which is absurd. This absurdity is resolved by changing the origin
to the point where S = 1/R0 which is referred to as the center of the epidemic.
The peak of the epidemic occurs when I (t) reaches its maximum, which is when
I ′(t) = 0. Since

γ I ′(t) = d

dt

(
dR

dt

)
= γ 2I (t) (R0S(t)− 1) ,

we see that the peak of the epidemic curve occurs when S(t) = 1/R0 which is the
center of the epidemic defined above. From (5), the maximum number of infections
also occurs at the same point. This leads to the parametric solution described in the
following 1956 theorem due to Kendall [15].



Mathematics of the Pandemic 335

Theorem 8 The parametric solution of the SIR model (5) is:

t = 1

γ

∫ R

0

dr

I (0)− r + R−1
0 (1 − e−rR0)

,

dR

dt
= γ (I (0)− r + R−1

0 (1 − e−R0r )),

where −∞ < t <∞ and −ζ1 < r < ζ2, with −ζ1 and ζ2 being the unique negative
and positive roots of

I (0)− ζ + R−1
0 (1 − e−R0ζ ) = 0. (13)

The meaning of the roots −ζ1 and ζ2 is that ζ1 + ζ2 is the total number of
recovered people during the entire pandemic. In fact, ζ1 is the number before the
peak and ζ2 is the number after the peak. It is therefore of some interest to determine
these roots with some accuracy. This we do in the next section using the Lagrange
inversion formula and the Lambert W -function. We study roots of exponential
equations such as (13) from a general perspective.

6 An Application of the Lagrange Inversion Formula

If we want to determine the extremal points of R(t), we need only look at when the
right hand side of Eq. (6) vanishes. In other words, we want to solve for R in the
equation

N − R − S(0)e−R0R = 0.

Lagrange’s inversion formula states that if we have a functional relation f (r) = t

with f being analytic at 0 and f ′(0) �= 0, then we can invert and write r as a power
series in t . The precise formula is

r(t) = r(0)+
∞∑

n=1

cnt
n

where

cn = 1

n!D
n−1 (φ(t)n

) ∣∣∣
t=0
, (14)

where D = d/dt and φ(t) = 1/r ′(t).
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We give a simple proof of the Lagrange inversion formula using the Cauchy
residue theorem, and then apply it to derive the needed facts about the Lambert
W -function.

Given a formal power series

f (t) =
∞∑

n=−∞
cnt

n,

we use the notation

[tn](f (t)) := cn.

Thus, for instance [tn](f (t)) = [tn+m](tmf (t)], a fact we will use later in the proof
of the proposition below.

Proposition 9 (Lagrange Inversion Formula) Suppose f (z) is analytic in a neigh-
borhood of z = 0 with f (0) = 0 and f ′(0) �= 0. Then f−1 is analytic in a
neighborhood of z = 0 and

[zn](f−1(z)) = [zn−1]
(

zn

nf (z)n

)
.

Proof Since f ′(0) �= 0, we have by the inverse function theorem (see page 62
of [17]) that f−1(z) is well-defined and analytic in a neighborhood of f (0) = 0.
Consequently, it has a power series expansion in a neighborhood of zero. By the
Cauchy residue theorem,

[zn](f−1(z)) = 1

2πi

∫

C

f−1(w)dw

wn+1
,

with C being a sufficiently small circle centered at zero. We change variables in the
integral by setting w = f (v) which is a conformal map if C is of sufficiently small
radius. Since f−1(f (v)) = v, we have

[zn](f−1(z)) = 1

2πi

∫

C′
vf ′(v)dv
f (v)n+1 ,

where C′ is the closed contour image of C under our conformal mapping. Our
integral can be re-written as

− 1

2πin

∫

C′
vd

(
1

f (v)n

)
= 1

2πin

∫

C′

(
1

f (v)n

)
dv,
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on integrating by parts and noting that the residue of d(v/f (v)n) at v = 0 is zero.
Thus, by the Cauchy residue theorem, we conclude that

[zn](f−1(z)) = [z−1]
(

1

nf (z)n

)
= [zn−1]

(
zn

nf (z)n

)
,

the last equality being clear by shifting the power series appropriately. ��
Remark 10 This elegant proof is due to Whittaker and Watson [26]. The analyticity
assumption in the proposition is a red herring and can be dispensed with using the
theory of formal power series. A proof centered on these ideas can be found in
Chapter 5 of [24]. It is straightforward to see that Proposition 9 gives (14).

It is not difficult to see that the above proof can be suitably modified to yield the
following more general result.

Proposition 11 Suppose f (z) is analytic in a neighborhood of z = 0 with f (0) = 0
and f ′(0) �= 0. Then f−1 is analytic in a neighborhood of z = 0 and for each
1 ≤ k ≤ n, we have

[zn](f−1(z))k = [zn−k]
(
kzn

nf (z)n

)
.

Another version of the same theorem is often useful in applications. To this end, we
introduce the Bell polynomials which are defined as follows. Suppose that

f (z) =
∞∑

n=1

cn
zn

n!

Then

exp (f (z)) =
∞∑

n=0

Bn(c1, c2, ..., cn)
zn

n! . (15)

Thus, the so-called n-th complete Bell polynomial is given by

Bn(c1, ..., cn) = ∂n

∂zn
exp

( ∞∑

n=1

cn
zn

n!

) ∣∣∣
z=0
.

The Lagrange inversion formula can also be stated in terms of the Bell polynomials
(see page 151 of [7]).

One more variation of the Lagrange inversion formula is given in [19]. To present
it, we let

a1z+ a2z
2 + · · · = w
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be a power series which converges in a neighborhood of z = 0. If a1 �= 0, this
gives a conformal mapping of a sufficiently small disc centered at z = 0 onto a
neighborhood of w = 0. Thus, we can write

z = b1w + b2w
2 + · · · .

If we let

φ(z) =
(
a1 + a2z+ a3z

2 + · · ·
)−1

then w = z/φ(z).

Proposition 12 Let f be any analytic function. With φ and w as above, we have

f (z)

1 − wφ′(z)
=

∞∑

n=0

wn

n!
dn

dxn

(
f (x)φ(x)n

)
∣
∣∣∣
x=0

.

Proof For C a circle enclosing ζ = 0 and oriented counterclockwise, we have

1

n!
dn

dxn

(
f (x)φ(x)n

)
∣∣∣
∣
x=0

= 1

2πi

∫

C

f (ζ )φ(ζ )ndζ

ζ n+1
,

by Cauchy’s formula. Thus, for |wφ(ζ )/ζ | < 1, we have

∞∑

n=0

wn

n!
dn

dxn

(
f (x)φ(x)n

)
∣∣∣
∣
x=0

= 1

2πi

∫

C

f (ζ )

ζ

( ∞∑

n=0

(wφ(ζ )/ζ )n

)

dζ

which is

1

2πi

∫

C

f (ζ )dζ

ζ − wφ(ζ ) .

Since |wφ(ζ )| < |ζ |, we deduce from Rouché’s theorem that ζ and ζ −wφ(ζ ) have
the same number of zeros in C which means the zero is unique, simple and equal to
z. Thus the integral is

f (z)

1 − wφ′(z)
.

This completes the proof. ��
We apply the Lagrange inversion theorem to study the inverse function of the map

w �→ wew. This map sends zero to zero and satisfies the hypothesis of Proposition 9.
Its inverse function, called the LambertW -function is sometimes denoted asW0 and
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we can compute its power series easily using the Lagrange inversion formula. We
find

W0(z) =
∞∑

n=1

(−n)n−1

n! zn. (16)

Using Stirling’s formula, it is easy to see that this power series converges absolutely
for |z| < 1/e.

It seems that the series (16) was independently re-discovered by Ramanujan
where Question 738 on page 332 of [20] asks one to show that for 0 < x < 1,

x =
∞∑

n=1

nn−1

n! x
ne−nx. (17)

It is not clear what proof Ramanujan may have had, but it follows immediately from
our derivation above. Indeed, from (16), we see that

W0(−xe−x) = −
∞∑

n=1

nn−1

n! x
ne−nx,

so that the right hand side of (17) is −W0(−xe−x) = x, since W is the inverse
function of the map z �→ zez. According to Berndt [4], Ramanujan had a more
general result of which (17) is a special case and proofs of the related entries
that appear in Ramanujan’s notebooks are supplied on page 70 of [4]. It appears
that Ramanujan re-discovered Lambert’s function. Lambert himself introduced his
function in 1758 to solve trinomial equations and Ramanujan’s “Entry 14” in his
famous notebooks does just that. Euler [11] extended Lambert’s work but it seems
to be E.M. Wright [27] who recognized the importance of the function in solving
certain transcendental equations.

Proposition 11 gives immediately the Taylor series around z = 0 for all powers
ofW(x). Indeed,

W0(x)
k =

∞∑

n=k

−k(−n)n−k−1

(n− k)! xn,

which can be re-written as

(
W0(x)

x

)k
=

∞∑

n=0

k(n+ k)n−1

n! (−x)n. (18)

This series is valid for |x| < 1/e.
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In combinatorics, there is a cognate function called the Tree function, denoted
T (x) which is the inverse function of the map w �→ we−w. Using the Lagrange
inversion theorem, it is not difficult to see that

T (x) =
∞∑

n=1

nn−1

n! x
n,

which again converges for |x| < 1/e. It is so-called because nn−1 is the number of
labelled trees having n vertices. Clearly T (x) = −W0(−x). The analog of (18) is

T (x)k =
∞∑

n=0

k(n+ k)n−1xn+k

n! .

If in Proposition 12, we let φ(z) = ez and f (z) = eaz, we obtain

∞∑

n=0

(n+ a)n
n! wn = eaz

1 − wez = eaz

1 − z .

In particular, setting a = 0, we deduce

1

1 − T (x) =
∞∑

n=0

nnxn

n! .

ButW0 given by (16) is only a (tiny) piece of the inverse function of the complex
map w �→ wew. We can plot the map w �→ wew for w real and see that its global
minimum occurs at w = −1. From the graph, it is evident that the inverse function
has two real branches, one branch whose range includes (−1,∞) and another whose
range includes (−∞,−1]. These branches are denotedW0 andW−1 respectively. In
fact, in analogy with the logarithm function, the inverse function of w �→ wew has
countably many branches. More precisely,W0(z) extends to an analytic function on
C\(−∞,−1] with −1 as a branch point. The countably many branches are denoted
Wk , k ∈ Z. We refer the reader to [8] for details. In the next section, we discuss
the analytic continuation of W0(x) and give two integral formulas for positive real
values of x (Fig. 1).

7 Integral Formulas for W0(x)

This function W0(x) and its other branches are as ubiquitous in mathematics as the
logarithm function and its range of wide applicability is discussed in [8]. Comtet
(see pages 228–229 of [7]) derived the asymptotic behaviour of the principal branch
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Fig. 1 y = xex

ofW0(x). He proved that

W0(x) = log x − log log x −
∞∑

n=1

(−1)n

(log x)n

n∑

m=1

s(n, n−m+ 1)
(log log x)m

m! ,

where s(n, k) is the Stirling number of the first kind. As x → ∞, this shows that

W0(x) = log x − log log x + o(1).

It is possible to derive a similar expansion for the other branches as in [8].
Introducing the notation

logk z := log z+ 2πik, (19)

as in [8], we have

Wk(x) = logk x − log logk x −
∞∑

n=1

(−1)n

(logk x)n

n∑

m=1

s(n, n−m+ 1)
(log logk x)

m

m! .
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(The “outer” log is the principal branch of the logarithm.) Here, we briefly discuss
methods of extending the domain of the LambertW -function. In this context, it may
help the reader to recall how the logarithm function is analytically continued to the
cut complex plane C\(−∞, 0]. On this region, the principal branch of the logarithm
is defined

log z = log |z| + i arg z. − π < arg z < π.

The branches of the logarithm are then given simply by (19). Following [8], we
can give an analogous description of the branches of the W -function. But first, we
review some basic information concerning the branches ofW . Let us write z = wew

with z = x + iy and w = u+ iv, and u, v, x, y real. Then

x = eu(u cos v − v sin v)
y = eu(v cos v + u sin v)

Under this mapping, the image of the x-axis (that is, the curve y = 0 ) consists
of the curves

v = 0 or u = −v cot v

in the (u, v)-plane. This means that

x = −eu v

sin v
< 0 ⇐⇒ (2k − 1)π < v < (2k + 1)π, k ∈ Z.

The curve which separates the principal branchW0 fromW1 andW−1 is

−v cot v + vi : −π < v < π.

We give an analytic integral formula for W0(x) for x > 0 in the following
theorem.

Theorem 13 For x > 0,

1

x(1 +W0(1/x))
=

∫ ∞

−∞
du

(eu − xu)2 + π2x2

Proof Let RT be the closed rectangular contour with vertices

(−T ,−π), (T ,−π), (T , π), (−T , π)

oriented counterclockwise. Consider the integral

IT :=
∫

RT

dw

ew + xw .
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Since

1

|ew + xw| ≤ 1

||ew| − |x||w|| → 0, as |w| → ∞,

we see that the vertical integrals in the contour integral tend to zero as T → ∞.
Thus,

lim
T→∞ IT =

∫ ∞

−∞
du

eu−πi + x(u− πi) −
∫ ∞

−∞
dxu

eu+πi + x(u+ πi) .

Therefore,

lim
T→∞ IT =

∫ ∞

−∞
2πixdu

(−eu + xu)2 + π2x2

Let us examine the integrand of IT . Writing w = u+ iv, and keeping in mind that
x > 0, we see that ew + xw = 0 if and only if

eu cos v = −xu, eu sin v = −xv.

In the region RT , the second equation eu sin v = −xv has a solution only when
v = 0 in which case the first equation eu cos v = −xu becomes 1/x = (−u)e−u
and we see the solution to this is −u = W0(1/x). This is the unique singularity of
our integrand in the region, for T sufficiently large. If we denote by α this solution,
we have

lim
T→∞

IT

2πi
= 1

eα + x .

Since eα = −xα, we find

∫ ∞

−∞
du

(eu − xu)2 + π2x2 = 1

x(1 +W0(1/x))
,

as claimed. ��
The number W0(1) is often called the “omega constant” and denoted as  in the
literature. Our integral formula in this special case yields the elegant formula

1

1 + =
∫ ∞

−∞
dx

(ex − x)2 + π2

usually attributed to Adamchik, though there doesn’t seem to be any published paper
of his on the topic. Our formula can be viewed as a generalization of his result.
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8 Zeros of Exponential Polynomials

Equation (13) in Kendall’s parametric solution of the SIR model encoded in
Theorem 8 is a special case of an exponential polynomial. In this section, we make
some number-theoretic remarks concerning the arithmetic nature of roots of such
polynomials. This will also lead to some interesting results about special values of
the Lambert function.

An exponential polynomial has the general form

n∑

i=1

pi(z)e
αiz,

where pi(z) is a polynomial for 1 ≤ i ≤ n and α1, ..., αn are distinct complex
numbers. We want to study zeros of such polynomials when α1, ..., αn are algebraic
numbers and pi(z) are non-zero polynomials with algebraic coefficients.

Theorem 14 If α1, ..., αn are distinct algebraic numbers, and p1(z), ..., pn(z) are
polynomials with algebraic coefficients, then any non-zero root z0 of

n∑

i=1

pi(z)e
αiz (20)

is transcendental unless z0 is a common root of all the polynomials pi(z) for 1 ≤
z ≤ n.
Proof We recall the following version of a theorem of Lindemann and Weierstrass
proved in 1885 (see Theorem 4.1 of [18] on page 15): if α1, ..., αn are distinct
algebraic numbers, then eα1 , ..., eαn are linearly independent over the field of
algebraic numbers Q. So, if z0 is a non-zero algebraic root of (20), then

n∑

i=1

pi(z0)e
αiz0 = 0.

Since α1z0, ..., αnz0 are then distinct algebraic numbers, and pi(z0) are algebraic
numbers, this would contradict the Lindemann-Weierstrass theorem, unless z0 is a
common root of all the polynomials pi(z), 1 ≤ i ≤ n. ��
Corollary 15 Any root of (13) is transcendental.

Proof We need only observe that in Kendall’s parametric solution of the SIR model,
Eq. (13) is an exponential equation and as all the constants appearing there are
rational numbers, an immediate application of the theorem gives the result. ��
Corollary 16 If α is algebraic and lies in C\(−∞, 0], thenWk(α) is transcenden-
tal.



Mathematics of the Pandemic 345

Proof Wk(α) is the root of the exponential polynomial equation zez−α = 0. Since
α �= 0, we see thatWk(α) �= 0. The result is now evident. ��

A minor variation of this result leads to a small generalization. The previous
corollary is the case with n = 1 of the following.

Corollary 17 If α1, ..., αn are non-zero algebraic numbers and c1, ..., cn are
rational numbers, then at least one of the following is true:

(a) c1W(α1)+ · · · + cnW(αn) is either zero or transcendental;

(b) W(α1)
c1 · · ·W(αn)cn is non-zero and transcendental,

whereW is any branch of the Lambert function.

Proof We have

W(α1)
c1 · · ·W(αn)cn exp (c1W(α1)+ · · · + cnW(αn)) = α

c1
1 · · ·αcnn ,

Suppose thatW(α1)
c1 · · ·W(αn)cn is non-zero and algebraic. Then

exp (c1W(α1)+ · · · cnW(αn))

is algebraic. But this contradicts the Lindemann-Weierstrass theorem unless
c1W(α1)+ · · · + cnW(αn) = 0. ��

As a consequence of these comments on the transcendence ofW(z) for algebraic
z, we deduce immediately from Theorem 13:

Corollary 18 For any positive algebraic x, the integrals

∫ ∞

−∞
du

(eu − xu)2 + π2x2

are transcendental numbers.

A celebrated conjecture of Schanuel (see page 17 of [18]) predicts that if
x1, ..., xn are linearly independent over the rational number field, then the transcen-
dence degree of

Q(x1, ..., xn, e
x1 , ..., exn)

is at least n. Thus, if α1, ..., αn are algebraic numbers such that W(α1), ...,W(αn)

are linearly independent over Q, then applying the functional relation of the Lambert
function leads to the prediction that the transcendence degree of

Q(W(α1), ...,W(αn))
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is at least n. In other words, Schanuel’s conjecture predicts that if α1, ..., αn are
algebraic numbers such that W(α1), ...,W(αn) are linearly independent over Q,
then they are algebraically independent. In particular, this would suggest that
W(α1), ...,W(αn) are linearly independent over Q. Perhaps this last implication
can be proved using existing techniques from transcendental number theory.

9 The Mellin Transform of W(x)

The Mellin inversion formula allows us to derive another integral formula forW(x)
for x > 0. As noted in [8], the Mellin transform ofW(x) is

∫ ∞

0
W(x)xs−1dx =

∫ ∞

0
e−W(x)xsdx,

since W(x)/x = e−W(x). Setting W(x) = u so that x = W−1(u) = ueu, and using
the fact that

dx = eW (1 +W)dW,

we get

∫ ∞

0
W(x)xs−1dx =

∫ ∞

0
(ueu)s(u+ 1)du.

Putting us = −t , we obtain

∫ ∞

0
W(x)xs−1dx = −

∫ ∞

0
e−t (−t/s)s(−t/s + 1)dt/s.

The right hand side is

−(−s)−s
∫ ∞

0
e−t t s(1 − t/s)dt/s = −(−s)−s

{
�(s)− �(s + 2)

s2

}
.

Using the functional relation �(s + 2) = (s + 1)s�(s), this simplifies to

∫ ∞

0
W(x)xs−1dx = (−s)−s �(s)

s
.

Since the logarithm is analytic in C\(−∞, 0] and the �-function has simple poles
only at negative integers, we see that the right hand side is analytic in the region
−1 < Re(s) < 0.

For ease of reference, we recall the Mellin inversion formula (see p. 273 of [23]):
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Proposition 19 Suppose that F(s) is a function of the complex variable σ+it which
is regular in the infinite strip S = {s : a < σ < b} and for arbitrary small positive
number ε, F(s) tends to zero uniformly as |t | → ∞ in the strip a+ ε ≤ σ ≤ b− ε.
Then, if the integral

∫ ∞

−∞
F(σ + it)dt

is absolutely convergent for each value of σ in the open interval (a, b) and if for
positive real values of x and a fixed c ∈ (a, b) we define

f (x) = 1

2πi

∫ c+i∞

c−i∞
x−sF (s)ds,

then in the strip S, we have

F(s) =
∫ ∞

0
xs−1f (x)dx.

We can apply the Mellin inversion formula to deduce:

Theorem 20 Let −1 < c < 0. For x > 0 we have

W(x) = 1

2πi

∫ c+i∞

c−i∞
x−s(−s)−s �(s)

s
ds. (21)

Proof To apply Proposition 19, we verify the growth conditions on (−s)−s�(s)/s.
To this end, let us recall Stirling’s approximation: for s = σ + it with σ, t ∈ R, we
have

|�(s)| = √
2π |t |σ−1/2e−π |t |/2(1 +O(|t |−1))

for |t | sufficiently large. Moreover, writing log(−s) = log |s| + i arg(−s), we see
that

|(−s)−s�(s)/s| = |s|−σ et arg(−s)|t |σ−3/2e−π |t |/2

satisfies the condition of the theorem in that it tends to zero uniformly as |t | → ∞ in
the strip −1 + ε ≤ σ ≤ −ε. We need only note that in this region | arg(−s)| ≤ π/2.

��
Incidentally, the above theorem can be used to derive the power series represen-

tation ofW(x) for |x| < 1/e obtained earlier using the Lagrange inversion theorem.
To see this, we truncate the integral of the theorem and view it as

lim
T→∞

1

2πi

∫ c+iT

c−iT
x−s(−s)−s �(s)

s
ds.
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Having done this, we move the contour to the left and note that the singularities of
the integrand occur at negative integers. The residue is easily calculated. At s = −n,
it is

−xnnn−1(−1)n/n!

and both the horizontal and vertical integrals tend to zero since |x| < 1/e. Summing
this over n ≥ 1 gives (16). (We leave the details to the reader as an exercise in
complex analysis.)

Our integral formulas are valid only for x > 0 and it would seem natural to
inquire if there is an analytic power series that gives the analytic continuation of
the principal branch of W . This was done recently by Beardon [2]. Using fairly
elementary complex analysis, he shows that for z ∈ C\(−∞,−1/e] we have the
following series for the principal branch:

W0(z) =
∞∑

m=1

am

(√
ez+ 1 − 1√
ez+ 1 + 1

)m
, am =

m∑

n=1

(−n)n−1

n!
(

4

e

)n (
m+ n− 1

m− n
)
.

He also indicates how one may derive similar series representations of the other
branches.

After this digression into the theory of the Lambert function, we describe how it
relates to an exact solution of the SIR model in the next section.

10 Solving A + Br + eCr = 0 and Kendall’s Arrangement

One can solve for roots of exponential equations using the W -function. Indeed,
suppose we have an equation of the form

A+ Br + eCr = 0, (22)

with A,B,C given, and we want to solve for r . Thus, (A+Br)e−Cr = −1 and we
can re-write this as

B

C

(
−AC
B

− Cr
)
e−Cr−AC/B = e−AC/B.

Thus, −Cr − AC/B = Wk(Ce
−AC/B/B) so that all the roots are given by

−A
B

− 1

C
Wk

(
C

B
e−AC/B

)
.
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For algebraic values A,B,C, the non-zero roots of (22) are transcendental
numbers by the theorem of Hermite and Lindemann alluded to earlier. It is curious
to note that, by contrast,Wk

(−AC
B
e−AC/B

) = −AC/B is algebraic.
We apply this discussion to determine the roots of (13) appearing in Kendall’s

Theorem 8 which we re-write as

−[R0I (0)+ 1] + R0ζ + e−R0ζ = 0.

The positive root ζ2 is

ζ2 = R0I (0)− 1

R0
+ 1

R0
W0

(
−e1−R0I (0)

)
.

Since R0 > 1 in the case of an epidemic, and we may suppose that there are initially
at least two infected people, we see that 1 − R0I (0) < −1 so that the value of this
root can easily be determined using the power series (16) since the argument of the
W -function lies in the domain of absolute convergence.

To find the negative root −ζ1, we have

−ζ1 = R0I (0)− 1

R0
+ 1

R0
W−1

(
−e1−R0I (0)

)
.

Interestingly, by our earlier remark, both ζ1 and ζ2 are transcendental numbers.
This should not be a cause for too much consternation since, after all, the SIR
model is not an exact description of “reality” regarding the pandemic but only a
mathematical tool to enable us to understand its behaviour.

According to Kendall’s arrangement, the total number of people infected during
the entire epidemic will be ζ1 + ζ2 which is

1

R0

(
W0

(
e1−R0I (0)

)
−W−1

(
e1−R0I (0)

))
.

11 The Hadamard Product of A + Bz + eCz

The function f (z) = A+ Bz+ eCz is of order 1 (in the sense of Hadamard) and as
such, admits a factorization of the form

ec0z+c1
∏

ω

(
1 − z

ω

)
ez/ω,

where the product is over the zeros of f (z) and c0, c1 are appropriate constants.
These are easily determined as follows. Setting z = 0 gives ec1 = A + 1. We will
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assume A+ 1 �= 0. Taking the logarithmic derivative gives

f ′(z)
f (z)

= c0 +
∑

ω

[ 1

z− ω + 1

ω

]
,

so by setting z = 0 we get c0 = f ′(0)/f (0) = (B + C)/(A+ 1). This proves:

Proposition 21

A+ Bz+ eCz = (A+ 1)e(B+C)z/(A+1)
∏

ω

(
1 − z

ω

)
ez/ω,

where the product is over the zeros of A+ Bz+ eCz.
As we observed in the previous section all the roots of f (z) can be written as

ωk := −A
B

− 1

C
Wk

(
C

B
e−AC/B

)
.

We also noted that the Hermite-Lindemann theorem shows that ωk is transcendental
whenever A,B,C are algebraic. We can deduce the following curious result,
reminiscent of Euler’s explicit evalutaion of ζ(2n).

Proposition 22 For A,B,C algebraic, the sums

!n+1

n! :=
∑

ω

1

ωn+1

are algebraic for n ≥ 1.

Proof By Taylor’s theorem, we have

1

n!
dn

dzn

(
f ′(z)
f (z)

) ∣
∣∣
z=0

= −
∑

ω

1

ωn+1
.

The left hand side is an algebraic number. ��

12 Kendall’s Integral and Lagrange Inversion

The exact solution to the SIR model provided by Kendall [15] amounts to writing
the time function as a function of R via an integral of the form

∫ R

0

dr

A+ Br + ecr ,
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with suitable values of A,B,C. Though perhaps not practical, we want to show
that it is theoretically possible to invert this and write R as a function of the time
parameter t . To do this, we first write the above integral as a power series in R as
follows. Using our Hadamard factoriztion we see that

A+ Br + eCr = (A+ 1) exp

(
(B + C)r
A+ 1

+
∑

ω

[
log

(
1 − r

ω

)
+ r

ω

])

.

Thus,

1

A+ Br + eCr = (A+ 1)−1 exp

(

−B + C
A+ 1

r +
∞∑

n=2

∑

ω

ω−n rn

n

)

.

It seems convenient to define !1 = −(B + C)/(A+ 1) so that applying (15) gives

1

A+ Br + eCr = (A+ 1)−1
∞∑

n=0

Bn(!1, ..., !n)
rn

n! .

We can now integrate term by term and deduce that

∫ R

0

dr

A+ Br + eCr = (A+ 1)−1
∞∑

n=0

Bn(!1, ..., !n)
Rn+1

(n+ 1)! .

The right hand side is of the form Rg(R) with g(0) �= 0, as required by
Proposition 9. We can then invert this power series using the Lagrange inversion
formula.

13 Further Remarks

The approximation of the exponential function with a quadratic polynomial leads
to the above analysis. In particular, it implies that there is a single maximum for
the number of infected people. In practice however, there seem to be waves of the
epidemic pointing to a series of local maxima. So perhaps, this model may have to
be modifed by allowing β to be a function of time and introducing an oscillation
factor.

It is evident from the discussion of the previous sections that by using higher
order polynomial approximations of the exponential function, one is led to the study
of integrals of the form

∫
dr

f (r)
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where f (r) is a polynomial. One can evaluate such integrals using the method of
partial fractions and we immediately see that r is an algebraic function over the field
generated by et .

In the particular cases of cubic and quartic approximations to the exponential
function, we end up with explicit formulas for r(t) in terms of the exponential func-
tion since we have formulas for roots of the general cubic and quartic polynomials.
The general quintic can also be solved using elliptic functions. Thus, it may be
fruitful to push this analysis to at least these three levels of approximation and derive
further local maxima of the I (t) function. This would be only of theoretical interest
since our analysis shows that the Kermack and McKendrick solution is very accurate
if we introduce the constant φ′ mentioned in Theorem 7.

There are efficient numerical methods that can be used to solve the original dif-
ferential equation without using the polynomial approximations of the exponential
function. Most notable in this array of methods is the Runge-Kutta method. The idea
here is to use the differential equation for r as the starting point of developing its
Taylor series. We will not go into details but refer the reader to section 14 of Chapter
8 of [3]. Since we are interested in knowing before hand the peaks of the number
of infected people at any given time, it is the derivative of the function r that we
will need to focus on and determine its zeros. This can be done numerically through
these methods.

Acknowledgments We thank Siddhi Pathak, Troy Day and Jianhong Wu for their careful reading
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