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Abstract To determine the strength of compressed elements, a variational method
was proposed in the theory of concrete plasticity using the principle of virtual veloc-
ities. Plastic strain of concrete are considered to be localized in thin layers on the
surface of failure (jump of velocities). The given basic dependences of the variational
method. The problem of the strength of a concrete base when a rectangular stamp is
pressed in by themethod of characteristic lines under conditions of a plane stress state
and plane strain has been solved and by the proposed method with a comparison of
the results obtained. Two cases of destruction of a concrete base under local compres-
sion without splitting and during its implementation are considered. Dependencies
provided for determining the ultimate load value under the stamp. The boundary
between the cases of destruction is established depending on the ratio of the height
of the base to the width of the stamp.

Keywords Principle of virtual velocities · Functional of the method · Stationary
state · Strength · Concrete base · Indentation of a stamp

1 Introduction

In construction,widespread concrete elementswith various shapes, geometric dimen-
sions, the nature of the load application, the specifics of the stress state. As a result of
the variety of proposals for assessing their strength [1–7], questions arise regarding
the choice of design dependencies. Modern energy efficient structural solutions
require refinement of calculations [8–10]. The empirical approach has a narrow
field of application, limited by the experimental conditions, and the extension of the
obtained formulas to other cases of operation of compressed elements can lead to
errors in assessing their strength. Therefore, the creation of a fairly general method-
ology for calculating the strength of concrete elements in compression on a theoretical
basis is an urgent task. As such a theoretical basis, the theory of plasticity can be used,
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the mathematical apparatus of which is widely tested for plastic materials. Scien-
tific research is devoted to this direction [11–17]. At the National University «Yuri
Kondratyuk Poltava Polytechnic» a variational method in the theory of plasticity of
concrete using the principle of virtual velocities has been developed for calculating
the strength of concrete and reinforced concrete elements under the shear [18–20].
The method considers discontinuous solutions and has experimental confirmation
on keyed joints, models of a compressed zone above a dangerous inclined crack,
samples that were recommended for determining the resistance of concrete with a
“pure shear”, etc. [21, 22]. There is a possibility of using it to solve problems of the
strength of concrete elements under local compression [23]. Taking into account the
specifics of their stress–strain state will make it possible to add additions to the basic
dependencies of the variational method.

2 TheMain Dependencies of the Principle of Virtual Speeds

The limited plastic properties of concretes cause localization of severe strain in the
area of uneven compression in thin layers on the failure surface. Therefore, the
functional of the principle of virtual velocities, at which only the strain rates vary,
can be written in the form

J =
∫

Sl

(T H ′ + σξ ′)�ndS −
∫

SF

Fiυ
′
i dS, (1)

where T – the shear stress intensity; H’ – the intensity of shear strains; σ –
the average stress; ξ ’ – the volumetric strain; Sl – the failure surface area; �n – the
thickness of the plastic layer;Fi – the surface force;υ ′

i – the speedof theFi application
point; SF – the area of action Fi.

The condition of concrete strength is accepted [24], which in the area of triaxial
non-uniform compression is considered as a condition for the onset of yield of
materials with different resistance to axial tension f ct and compression f c

T 2 + mσ − T 2
sh = 0, (2)

here m = fc − fct , T 2
sh = fc fct/3.

Strength condition (2) at plane stress state and plane strain in coordinates |τn|−σn ,
respectively, is written

|τn| = ϕ(σn) =
√
d2 − 1

4
(σn − m)2, (3)

|τn| = ϕ(σn) =
√
m

(
σn + 1

4
m + 1

12
n2/m

)
, (4)
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where d =
√

( f 2c − fc fct + f 2ct )/3, n = fc + fct .
The functional of the principle of virtual velocities J [25] is investigated for a

stationary state using the equation δ J = 0.
In a plane stress state in the range of available slip planes at �n → 0, using (2)

and (3), we have

δ

∫

Sl

[
d
√
4�v

′2
n + �v

′2
t − m�v

′
n

]
dS −

∫

SF

Fiv
′
ldS = 0, (5)

here�υ ′
n and�υ ′

t – jumps of normal and shear velocity components on the failure
surface (velocity jump line).

Under conditions of plane strain, taking into account (2) and (4), the functional J
is investigated using the equation

δ

∫

Sl

[
d2

m
+ m

4

(
�υ ′

t

�υ ′
n

)2
]

�υ ′
ndS −

∫

SF

Fiυ
′
i dS = 0. (6)

Introducing the characteristic of strengthχ = fct/ fc and parameters k ′ and tan γ ′,
where υ ′

1 and υ ′
2 – the velocity components in the direction of stress σ 1 and σ 2, but

γ ′– the angle between the failure surface and the direction of action of the principal
stresses σ 1, and solving Eq. (5) with respect to σ1 = F1/SF , the basic dependence
for the plane stress state is received

σ1
fc

=
2

√(
1 − χ + χ2

)/
3
√(

k′ − tan γ ′)2 + 0.25
(
1 + k′ tan γ ′)2 − (1 − χ)

(
k′ − tan γ ′) + kσ2

/
fc

tan γ
. (7)

The value σ1
/
fc is set by varying the parameters k and γ and corresponds to the

minimum power of plastic strain.
According to the obtained parameters k and tan γ on the failure surface, the level

of shear stresses

τn

fc
=

√
(1 − χ + χ2)/3(1 + k tan γ )√
4(k − tanγ )2 + (1 + ktanγ )2

, (8)

and normal stresses

σn

fc
= 1 − χ −

4
√(

1 − χ + χ2
)/

3(k − tan γ )√
4(k − tan γ )2 + (1 + k tan γ )2

, (9)

is established.
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When used as a vary parameter of the angle ψ = π/2 − 2γ between the tangent
to the strength condition (3) and the direction of normal stresses σn , the following
expressions were obtained to determine σ1, τn and σn

σ1
fc

=
2

[√(
1 − χ + χ2

)/
3
√
1 + 4 tan2 ψ ′ − (1 − χ) tanψ ′

]
+

(√
1 + tan2 ψ ′ + tanψ ′)σ2

/
fc

√
1 + tan2 ψ ′ − tanψ ′ , (10)

τn

fc
=

√(
1 − χ + χ2

)/
3√

1 + 4 tan2 ψ
, (11)

σn

fc
= 1 − χ − 4

√
(1 − χ + χ2)/3 tanψ√

1 + 4 tan2 ψ
. (12)

Under conditions of plane strain, the equations for determining the stresses σ1,
τn , σn have the form

σ1

fc
=

(
1
3

1−χ+χ2

1−χ
+ 1−χ

4 tan2 ψ

)
ψ + σ2

fc

(√
1 + tan2 ψ + tanψ

)
√
1 + tan2 ψ − tanψ

, (13)

τn

fc
= 1 − χ

2 tanψ
, (14)

σn

fc
= 1 − χ

4

[
1

tan2 ψ
− 1 − 1

3

(
1 + χ

1 − χ

)]
. (15)

3 The Problem of the Action of a Rectangular Stamp
on a Concrete Base Under a Plane Stress State and Plane
Strain

We consider the problem of determining the limit value of a uniformly distributed
load q, which is transmitted to a concrete base through a rectangular stamp (Fig. 1).

To solve it in a plane stress state and plane strain, the well-known method of
characteristic lines is used [24–26]. A thin and infinitely long base is adopted. The
strains are considered small, so the change in the outline of the free surface can be
neglected.

Two families of characteristic lines z and u and three characteristic areas of the
stress state are considered: I (ABC) – simple stress state of uniaxial compression in
the horizontal direction, which corresponds to a free rectilinear boundary; II (CBO) –
a centered arear with an alternating stress state in the direction of the characteristics
u with a family of radial straight lines z = const centered at point B; III (BOB’)
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Fig. 1 Calculating the strength of a concrete base when exposed to a rectangular stamp

– biaxial compression with principal normal stresses σ1 = q. The location of the
OB’C’ and C’B’A’ arears relative to the central axis is symmetric to the OBC and
CBA arears.

The parameters that determine the stress state are first set in the I arear with a
sequential transition to the I arear, the value of the CII(u) is set using the properties
of the characteristic lines and the boundary conditions on the line BC (B’S’).

The calculation is made for concrete with a ratio χ = fct/ fc = 0.1,d = 0.551 fc.
In a plane stress state, the angle of inclination of the characteristic lines in the I

area to direction of action σ 1 is set by the formula

γI = 1

2
arc cos

m − 0.5 fc
1.5 fc

= 1

2
arc cos

0.5 − χ

1.5
(16)

and is equal to γI = 37.27o.
For the convenience of consideration, the parameter is entered t = (σ1 − σ2)/2,

which in the area I and when σ1 = fc and σ2 = 0 is equal tI = 0.5 fc; tI/d = 0.907.
The equation on the characteristics u = const is written as

arcsin

(
5

3
− 8

3

t2III
d2

)
+ 1

2
arcsin

(
5

3
− 2

3

d2

t2III

)
= arcsin

(
5

3
− 8

3

t2I
d2

)
+ 1

2
arcsin

(
5

3
− 2

3

d2

t2I

)
− π. (17)

Substituting the values of the parameters tI and d received: tIII
/
d =

0.82, tIII
/
fc = 0.452.

The principal stresses in area III are determined from the equations

σ1 = m +
√
3
(
d2 − t2III

) + tIII =
(
1 − χ +

√
1 − χ + χ2 − 3t2III + tIII

)
fc, (18)

σ2 = m +
√
3
(
d2 − t2III

) − tIII =
(
1 − χ +

√
1 − χ + χ2 − 3t2III − tIII

)
fc (19)

and are equal to σ1 = 1.9 fc, σ2 = 0.995 fc.
Limit value of uniform load q = 1.9 fc.
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The angle between the characteristic u and the direction in area III is determined
by the formula

γIII = 1

2
arc cos

m − (σ1 + σ2)/2

3tIII
= 1

2
arc cos

1 − χ − (σ1 + σ2)/2

3tIII
(20)

and is equal to γIII = 57◦.
The sizes of areas I, II and III are: BO = a

/
sin γIII = 1.19a; the radius of the

u-characteristic at the boundary of arears I and II is defined as

rBC = 4

√
4t2III − d2

4t2I − d2
rBO , (21)

BC = rBC = 1.1a, AB = 2rmax cos γ1 = 1.75a, AA′ = 2(AC + a) = 5.5a.
Considering that χ = 0.15: γI = 38.25◦, γIII = 58.04◦, tIII = 0.428 fc, σ1 = q =

1.85 fc, σ2 = 0.989 fc;χ = 0.05: γI = 36.27◦, tIII = 0.475 fc, σ1 = q = 1.95 fc,
σ2 = 0.999 fc.

Under conditions of plane strain, the placement of arears I, II, and III is similar
to that shown in Fig. 1.

In the arear I a simple stress state (σ2 = 0) is realized, here the unknown angle of
inclination of the characteristics u to the direction of the stress action σ1, the value
and boundary conditions in the plane of the BC, which is adjacent to the area II. The
values of γI and σ1 are set from the dependencies

γI = 1

2
arc cos

m

m + 2d
=
1

2
arc cos

1 − χ

1 − χ + 2
√

(1 − χ + χ2)/3
, (22)

σI = 2tI = m + 2d =
(
1 − χ + 2

√
(1 − χ + χ2)/3

)
fc (23)

and are equal to γI = 31.63◦, σI = 2 fc, tI = fc.
The condition on the characteristics u = const, which makes it possible to access

the parameters of arear III through a centered arear, with plane strain is written in
the form

tan 2γIII − 2γIII = tan 2γI − 2γI + π. (24)

After substituting the angle values γI and d are installed: 2γIII = 79.53◦, γIII =
39.77◦.

Parameter is equal to tIII = 0.5m/ cos 2γIII = 0.5(1 − χ)/ cos 2γIII = 2.47 fc.
The principal stresses in area III are determined from the equations

σ1 = t2III
1 − χ

+ tIII − (1 + χ)2

3(1 − χ)
, (25)
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σ2 = t2III
1 − χ

− tIII − (1 + χ)2

3(1 − χ)
, (26)

σ3 = σ1 + σ2

2
+ m

2
= σ1 + σ2

2
+ 1 − χ

2
fc (27)

and are equal to σ1 = 9.18 fc, σ2 = 4.22 fc, σ3 = 7.15 fc.
The sizes of areas I, II and III are: BO = a

/
sin γIII = 1.56a; the radius of the

u-characteristics at the boundary areas I and II is defined as

rBC =
√
1 + 2γIII + π − 2γI

tan 2γI
rBO , (28)

BC = rBC = 2.58a; AB = 2rBC cos γI = 4.39a, AA′ = 2(AC + a) = 10.78a.
Having that χ = 0.15: γI = 31.92◦, γIII = 39.80◦, tIII = 2.35 fc, σ1 = 8.75 fc,

σ2 = 4.04 fc, σ3 = 6.82 fc; χ = 0.05: γI = 31.39◦, γIII = 39.75◦, tIII = 2.61 fc,
σ1 = 9.66 fc, σ2 = 4.45 fc, σ3 = 7.53 fc.

According to [26], the distribution of velocities is as follows: the triangular area I
moves downward with a speed V relative to areas II and III, which move away from
the central axis and up. Velocity jumps take place along the boundaries of the arears
on the CO and C’O lines. An analysis of the distribution of strains in this problem is
given in [27].

In a simplified version for applying the dependences of the variational method,
the influence of areas I and II on the strength of the concrete base is proposed to be
taken into account by lateral compression.

Under the conditions of a plane stress state at σ2 = fc, the stress value σ1 and the
geometrical dimensions of the III area (angle γIII) correspond to the characteristics
obtained by the method above.

To determine the value of the ultimate load, the dependence is proposed

q = σ1 = (2 − χ) fc. (29)

Under conditions of plane strain atσ2 = 4.22 fc the stress valueσ1 and geometrical
dimensions of the III area, the characteristics are similar to those obtained by the
method. To determine the ultimate load and principal stresses when a rectangular
stamp is applied to a concrete base under plane strain conditions, the following
dependencies are proposed

q = σ1 = (10 − 8χ) fc, (30)

σ2 = 4.7(1 − χ) fc. (31)

Consider the case of destruction of the concrete base when pressing the stamp
with splitting in the tensile zone (Fig. 2).
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The values of stresses in the tensile zone are penetrated by equal to the value of
the resistance of concrete to axial tension fct .

Dependence for determining the value of the ultimate load in the kinematic scheme
shown in Fig. 2, under conditions of plane stress has the form

q = σ1 = fc
tan γ ′

[√
(1 − χ + χ2)/3

√
4(k′ − tan γ ′)2 + (1 + k′ tan γ ′)2 − (1 − χ)(k′ − tan γ ′)

]
+ k′ fct

(
h

a
− 1

tan γ ′
)

.

(32)

The strength of the concrete base is influenced by the ratio of its height to the
width of the stamp h/a.

For χ = 0.1 a minimum power of plastic strain with varying parameters k and
tan γ in relation to a ratio h

2a = 6.32 is equal to q = σ1 = 1.9 fc, the value of the
load when concrete is destroyed only in the compressed zone.

The shear and normal stresses on the failure surface in the compressed zone are
established fromEqs. (8), (9), (11) and (12) and are equal to τn = 0.55 fc,σn = 0.9 fc.

The calculation results are given in Table 1.

Fig. 2 Kinematic scheme of destruction of the concrete base when pressing a rectangular stamp
with splitting

Table 1 The results of the calculation of the strength of the concrete base with simultaneous failure
in compressed and tensile zones at χ = 0.1
h
2a

σ1
fc

τn
fc

σn
fc

k γ,o ψ,o

4 1.61 0.535 0.639 0.724 28.95 6.96

5 1.74 0.546 0.749 0.643 28.77 3.97

6 1.86 0.550 0.862 0,572 28.79 0.99

7 1.97 0.549 0.983 0.507 29.05 −2.16
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For concretes with the ratio χ = 0.15 and χ = 0.05, the boundary between
the cases of destruction only in the compressed zone and simultaneously in the
compression and tension zones, respectively, is h

2a = 4.38 and h
2a = 12.1.

To establish the boundary between the cases of destruction, the dependence

h

2a
= 1

3
+ 0.6

χ
. (33)

For a larger value determined according to (33), the value h
2a the I case of destruc-

tion is realized (Fig. 1), for a smaller value, the II case of destruction is realized
(Fig. 2).

4 Conclusions

1. When solving the problem of the strength of a concrete base for indentation
of a rectangular stamp by the method of characteristic lines and dependencies
of the proposed variational method using the principle of virtual velocities and
the criterion for the minimum power of plastic strain, the same values of the
ultimate uniform load and geometric parameters of the area under the stamp
were obtained.

2. The size of the principal stress σ2 in the horizontal direction in the triangular
arear of biaxial compression under the stamp at the plane stress state is equal
to the principal stress σ1 = fc in the triangular arear of uniaxial compression,
which is adjacent to the free surface of the concrete base. Analysis of the stress
state of the area under the stamp made it possible to propose for determining
the values of large principal stresses σ1 and the value of the ultimate load in it
the dependence q = 2 fc − fct .

3. In conditions of plane strain, the value of the lower principal stresses in the area
of biaxial compression under the stamp is equal to σ2 = 4.7( fc − fct ) which
correspond to the value of the principal stresses and the ultimate load on the
concrete base q = σ1 = 10 fc − 8 fct .

4. The arear of realization of destruction only in the compressed zone near the
stamp (case I) and simultaneous destruction in the zone of compression and
tension (case II) at a plane stress state was determined. The boundary of cases
of destruction corresponds to the ratio of the height of the concrete element to
the width of the stamp h

2a = 1
3 + 0.6 fc

fct
. If the ratio is greater than or equal to

the specified value, the case I is realized, otherwise, the case of II.
5. The results obtained by the authors indicate that the theory of concrete plasticity

is promising for solving problems of the strength of concrete elements under
local compression.
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