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Abstract The article is devoted to the study of stability problems of centrally
compressed bars. The difficulties of the classical solution of this problem are high-
lighted. In analytical form, we propose a simplified dependence for calculating the
stress reduction factor. Using the author’s approach shows good agreement between
the results received and the calculation results according to the normative method-
ology for a wide range of slenderness. An algorithm for determining the dimensions
of the cross sections of steel elements loaded with a central force is also constructed.
At the same time, solutions presented through the Lambert transcendental function
are used to test rigidity. The convenience and advantages of using this algorithm are
indicated. A practical example of the column sizing with the subsequent verification
of the results according to current standards is given. The example of calculation
shows the simplicity of the calculation according to the proposed algorithm and the
full compliance of the result with the requirements of regulatory documents.

Keywords Stability · Buckling length · Centrally compressed bar · Buckling
coefficient · Slenderness · Effective length · Lambert function

1 Introduction

The issues of stability theory are very important for displaying the stress–strain state
and understanding the actual operation of compressed bars [1–5]. Stability testing
is an integral part of real design [6–10]. However, it is important to have a simple
engineering algorithm in order to solve practical problems and develop construction
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solutions. The analytical method presented in regulatory documents for calculating
the stress reduction factor of compressed elements complicates this task [11]. First,
it is connected with difficulties of a calculated nature. Thus, the aim of this study was
to develop a methodology for calculating centrally compressed bars, which gives an
accurate result, but is not complicated by unnecessary calculation procedures.

There is a centrally compressed bar with a length �k . The cross-section of the
bar in general is arbitrary, but then the sections that are most popular in the field
of metal structures are considered: equal angle, circular hollow section, channel
section, composite I-beam. With the known strength characteristics of steel (yield
strength Ry) it is necessary to propose an algorithm for determining one of the overall
dimensions of the bar cross-section in a closed form from the condition of ensuring
its stability.

2 Main Body

As you know, the calculation of centrally compressed elements in all world norms
is performed according to the equation [11]

KR = N

ϕRy Ak
≤ 1.0, (1)

where Ak is cross area; ϕ is stress reduction factor.
According to clause 8.1.3 of DBN «Steel Structures» [11], the stress reduction

factor ϕ is a function of the element’s slenderness λ, steel yield strength Ry and type
of buckling curve. The main difficulty in selecting the cross sections of the elements
is because the form of the function ϕ

(
Ry, λ

)
is rather bulky and non-linear with

respect to Ry

(2)

λ = �k

iminμk
, (3)

where α and β are parameters of the buckling curve from Table 1 DBN [11]; �k
is effective length; imin is minimum section radius of inertia; μk is effective length
factor, which takes into account the fastening of the ends of the rod.
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To simplify the calculations, it was proposed to replace this «uncomfortable»
expression with a more «convenient» one, which greatly simplifies the classical
calculation of stability within the framework of norms. An exponential relationship
of the form is proposed as such a «convenient» expression [12, 13, 15–19]

ϕ = exp

(
−δ

λε

π2

Ry

E

)
, (4)

where ε and δ are parameters of the stability curve similar to α and β.
The expression under the sign of the exponent resembles in its structure the well-

known Euler formula for the buckling force and differs from it by the introduction
of additional parameters ε and δ. In the general case, these parameters depend on
the type of cross section of the element and the steel liquid limit. The parameter
values can always be successfully chosen in such a way as to describe the curves
of the stress reduction factor given in the design standards with a minimum error.
However, we propose a simpler way, slightly affecting the accuracy of obtaining
results. Its essence is that the degree of slenderness indicator ε is taken equal to 2,
and the parameter δ is considered dependent only on the type of buckling curve: «a»:
δ = 0.4, «b»: δ = 0.5, «c»: δ = 0.6.

Thus, for the stress reduction factor, we will have

ϕ = exp

(
−δ

λ2

π2

Ry

E

)
. (5)

A comparison of the normative expression for the stress reduction factor (2) with
the proposed relationship (5) is performed in Fig. 1 for two types of buckling curve
(«a» and «b»). The figure shows that in the range of element slenderness values from
0 to 100, the consistency of the results is quite acceptable, and for λ > 100, although
the differences are large, firstly, Eq. (5) gives a lower estimate of the stress reduction
factor ϕ, and secondly, by practice rarely has to deal with values ϕ < 0.3. Taking into
account these considerations and the simplicity of the proposed relationship ϕ(λ),
we will further consider the application of Eq. (5) justified. Substituting Eq. (5) in
Eq. (1), we obtain the following expression for checking the stability of centrally
compressed elements

KR = N

exp
(
−δ

�2k
i2k π2

Ry

E

)
Ry Ak

≤ 1.0, (6)

where slenderness λ is represented through the effective length �k and radius of
inertia ik relative to the plane of interest.

Further, we will assume that the cross area Ak and the radius of inertia ik of the
element can always be represented as

Ak = bk · tk · f1, (7)
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Fig. 1 Approximation buckling curve v DBN [11] according to Eq. (5): a - the type of buckling
curve «a»; b - the type of buckling curve «b»
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ik = bk · f2, (8)

where bk and tk are some characteristic overall size and characteristic thickness
of the cross section; f1 and f2 are some dimensionless coefficients, additionally
characterizing other sizes of the section.

Table 1 represents the values for sections in the form of an equal angle, circular
hollow section, channel section and I-beam.

Substituting expressions Eqs. (7) and (8) into Eq. (6), we obtain the following
equation with respect to the desired cross-sectional characteristic bk

N = KRexp

(
−δ

�2k

b2k f
2
2 π2

Ry

E

)
Rybktk f1. (9)

It is convenient to represent the solution of this equation through the Lambert
function. Omitting the intermediate transformations and simplifications, we give
only the result

bk = bef · 
R, (10)


R = ηR√
LambertW (η2

R)

, (11)

Table 1 Characteristics of cross sections in the formof equal angle, circular hollow section, channel
section and I-beam

Value
Cross section

equal angle
сircular hollow 

section
channel section I-beam

kb width flange diameter width flange width flange

kt
flange thickness thickness flange

thickness
flange

thickness
kh − − depth depth

wt − − web thickness web thickness

1f 2.0

2f 0.195 0.35

plane of greatest rigidity

plane of least rigidity

Designations for sections in the form of a channel section and an I-beam
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where bef is a value having a dimension of length, which we will call the effective
dimension of the cross section. From the physical point of view, this is the dimension
of the cross section calculated at bar in tension.

bef = N

KR Ry f1 tk
, (12)

where ηR is dimensionless characteristic showing how many times it is necessary to
increase the cross-sectional dimension found from tensile analysis.

ηR = 1

π

√

2δ
Ry

E

�k

be f

1

f2
. (13)

As for the Lambert function, it is defined as a solution of the functional equation

Lambert W (ηR) exp[Lambert W (ηR)] = ηR . (14)

This function is transcendental, i.e. the integer values of the argument correspond
to the transcendental values of the function, and vice versa, the integer values of the
function correspond to the transcendental values of the argument. The convenience
of its use is explained by the fact that the dimensionless quantity 
R is enclosed
in a very narrow range of values (from 1 to 10) and can be easily tabulated for all
design schemes of compressed bars and cross-sectional forms of elements. The table
of functional dependency values 
R(ηR) is given below.

Thus, in order to select the cross section of a compressed bar, it is necessary
to select the required overall size from the conditions of its tensile operation and
increase it by the value of 
R , found by the dimensionless parameter ηR . We give a
numerical example.

3 Practical Calculation

According to the described approach, we perform the selection of a section of an I-
beam profile for a 6 m long column with hinged fastening at the ends, with a known
flange thickness tw = 8.0 mm, f1 = 2.7 and f2 = 0.25 characteristics. We also
set the compressive strength of Nk = 1600 kN and the value of the critical factor
KR = 1.0. The type of stability curve is taken as «b», which determines the value of
the parameter δ = 0.5.

In this case, the dimensionless argument of the Lambert function in the calculation
by Eq. (13) is ηR = 1.247. According to Table 2, we find the value of the function

R = 1.45 and calculate the desired cross-sectional dimension (I-beamflangewidth)
bk = 302.9 mm.
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Table 2 Table of values of
function 
R(ηR)

ηR 
R ηR 
R

0.0 1.0 5.0 3.255

0.5 1.107 5.5 3.482

1.0 1.328 6.0 3.707

1.5 1.574 6.5 3.930

2.0 1.824 7.0 4.50

2.5 2.071 8.0 4.584

3.0 2.315 10.0 5.435

3.5 2.555 12.0 6.264

4.0 2.791 15.0 7.487

4.5 3.025 20.0 9.440

According to the assortment of rolled steel GOST 26,020-83 [14], we accept the
30K1 UC with geometric characteristics bk = 300 mm, hk = 296 mm, tw = 9.0
mm, Ak = 108 cm2, imin = 75 mm.

Let us check the cross section according to DBN [11]. The effective length factor
for a bar with fastened ends is μk = 1, and the slenderness of the element according
to (3) will be λk = 80. Note that for the range of slenderness λ < 100 there is a
high convergence of the results in terms of the stress reduction factor of the author’s
approach and the normative methodology. Using Eqs. (1) and (2), we calculate the
stress reduction factor ϕ = 0.697 and the critical factor of the element, which is
almost equal to the initial value Kn

R = 0.996 ≈ KR = 1.

4 Conclusions

1. To solve the stability problem of centrally compressed bars, an engineering
algorithm is formulated. Using the author’s approach makes it possible to
simplify the procedure for determining the section dimensions. At the same
time, the accuracy of the calculation remains quite high and complies with
current standards.

2. The algorithm is based on the use of empirical dependence in determining the
stress reduction factor. The study shows a fairly accurate correspondence of the
results of the author’s approach with the relationship given in current standards
for a wide range of slenderness.

3. The original solution for the desired characteristics of the sections of centrally
compressed elements is presented through the Lambert function. This allows
you to choose the desired overall size of the compressed bar from the conditions
of its operation in tension.
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4. The given practical example of calculation shows the simplicity of the calcula-
tion according to the proposed algorithm and the full compliance of the result
with the requirements of regulatory documents.
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