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Abstract. The advent of Big Data has brought with it an unprecedented and
overwhelming increase in data volume, not only in samples but also in available
features. Feature selection, the process of selecting the relevant features and dis-
carding the irrelevant ones, has been successfully applied over the last decades
to reduce the dimensionality of the datasets. However, there is a great number of
feature selection methods available in the literature, and choosing the right one
for a given problem is not a trivial decision. In this paper we will try to determine
which of the multiple methods in the literature are the best suited for a particular
type of problem, and study their effectiveness when comparing them with a ran-
dom selection. In our experiments we will use an extensive number of datasets
that allow us to work on a wide variety of problems from the real world that need
to be dealt with in this field. Seven popular feature selection methods were used,
as well as five different classifiers to evaluate their performance. The experimen-
tal results suggest that feature selection is, in general, a powerful tool in machine
learning, being correlation-based feature selection the best option with indepen-
dence of the scenario. Also, we found out that the choice of an inappropriate
threshold when using ranker methods leads to results as poor as when randomly
selecting a subset of features.

Keywords: Dimensionality reduction · Feature selection · Filters ·
Classification

1 Introduction

Driven by recent advances in algorithms, computing power, and big data, artificial intel-
ligence has made substantial breakthroughs in the last years. In particular, machine
learning has great success because of its impressive ability to automatically analyze
large amounts of data. One of the most important tasks in machine learning is classi-
fication, which allows to predict events in a plethora of applications; from medicine to
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finances. However, some of the most popular classification algorithms can degrade their
performance when facing a large number of irrelevant and/or redundant features. This
phenomenon is known as curse of dimensionality and is the reason why dimensionality
reduction methods play an important role in preprocessing the data.

One of such dimensionality reduction techniques is feature selection, which can be
defined as the process of selecting the relevant features and discarding the irrelevant
or redundant ones. There are considerable noisy and useless features that are often col-
lected or generated by different sensors and methods, which also occupy a lot of compu-
tational resources. Therefore, feature selection performs a crucial role in the framework
of machine learning of removing nonsense features and preserving a small subset of
features to reduce the computational complexity.

There are several applications in which it is necessary to find the relevant features: in
bioinformatics (e.g. to identify a few key biomolecules that explain most of an observed
phenotype [5]), in respect to the fairness of decision making (e.g. to find the input fea-
tures used in the decision process, instead of focusing on the fairness of the decision
outcomes [9]), or in nanotechnology (e.g. to determine the most relevant experimental
conditions and physicochemical features to be considered when making a nanotoxicol-
ogy risk assessment [8]). A shared aspect of these applications is that they are not pure
classification tasks. In fact, an understanding of which features are relevant is as impor-
tant as accurate classification, as these features may provide us with new insights into
the underlying system.

However, there is a large amount of feature selection methods available, and most
researchers agree that the best feature selection method simply does not exist [3]. On
top of this, new feature selection methods are appearing every year, which makes us
ask the questions: do we really need so many feature selection methods? Which ones
are the best to use for each type of data? In light of these issues, the aim of this paper
is to perform an analysis of the most popular feature selection methods using the ran-
dom selection as baseline in two scenarios: real datasets and DNA microarray datasets
(characterized by having a much larger number of features than of samples). Our goal
is to determine if there are some methods that do not obtain significantly better results
than those achieved when randomly selecting a subset of features.

The remainder of the paper is organized as follows: Sect. 2 presents the different
feature selection methods employed in the study. Section 3 provides a brief description
of the 55 datasets used to reduce data dimensionality. Section 4 details the experimental
results carried out. Finally, Sect. 5 contains our concluding remarks and proposals for
future research.

2 Feature Selection

Feature selection methods have received a great deal of attention in the classification lit-
erature, which can be described according to their relationship with the induction algo-
rithm in three categories [10]: filters, wrappers and embedded methods. Since wrapper
and embedded methods interact with the classifier, we opted for filter methods. Besides,
filter methods are a common choice in the new Big Data scenario, mainly due to their
low computational cost compared to the wrapper or embedded methods. Below we
describe the seven filters used in the experimental study.
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– Correlation-based Feature Selection (CFS) is a simple multivariate filter algo-
rithm that ranks feature subsets according to a correlation-based heuristic evaluation
function [12].

– The INTERACT (INT) algorithm is based on symmetrical uncertainty and it also
includes the consistency contribution [23].

– Information Gain (IG) filter evaluates the features according to their information
gain and considers a single feature at a time [11].

– ReliefF algorithm (RelF) [13] estimates features according to how well their values
distinguish among the instances that are near to each other.

– Mutual Information Maximisation (MIM) [15] ranks the features by their mutual
information score, and selects the top k features, where k is decided by some prede-
fined need for a certain number of features or some other stopping criterion.

– Theminimum Redundancy Maximum Relevance (mRMR) [20] feature selection
method selects features that have the highest relevance with the target class and
are also minimally redundant. Both maximum-relevance and minimum-redundancy
criteria are based on mutual information.

– Joint Mutual Information (JMI) [22] is another feature selection method based on
mutual information, which quantifies the relevancy, the redundancy and the comple-
mentarity.

3 Datasets

In order to evaluate empirically the effect of feature selection, we employed 55 real
datasets. 38 datasets were downloaded from the UCI repository [1], with the restriction
of having at least 9 features. Additionally, 17 microarray datasets were used due to
their high dimensionality [17]. Tables 1 and 2 profile the main characteristics of the real
datasets used in this research in terms of the number of samples, features and classes.
Continuous features were discretized, using an equal-width strategy in 5 bins, while
features already with a categorical range were left untouched.

4 Experimental Results

The different experiments carried out consist of making comparisons between the appli-
cation of the seven feature selection methods individually, as well as the random selec-
tion (represented as “Ran” in the tables/figures), which will be the baseline for our
comparisons. While two of the feature selection methods return a feature subset (CFS
and INTERACT), the other five (IG, ReliefF, MIM, JMI and mRMR) are ranker meth-
ods, so a threshold is mandatory in order to obtain a subset of features. In this work we
have opted for retaining the top 10%, 20% and log2(n) of the most relevant features of
the ordered ranking, where n is the number of features in a given dataset. In the case of
microarray datasets, due to the mismatch between dimensionality and sample size, the
thresholds selected the top 5%, 10% and log2(n) features, respectively. We computed
3× 5-fold cross validation to estimate the error rate.

According to the No-Free-Lunch theorem, the best classifier will not be the same
for all the datasets [21]. For this reason, the behavior of the feature selection methods
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Table 1. Characteristics of the 38 real datasets. It shows the number of samples (#sam.), features
(#feat.) and classes (#cl.).

Dataset #sam. #feat. #cl. Dataset #sam. #feat. #cl.

arrhythmia 452 279 13 molec-biol-promoter 106 57 2

bc-wisc-diag 569 30 2 molec-biol-splice 3190 60 3

bc-wisc-prog 198 33 2 musk-2 6598 166 2

breast 569 30 2 optdigits 5620 64 10

coil20 1440 1024 20 ozone 2536 72 2

congress 435 16 2 page-blocks 5473 10 5

conn-bench-sonar 208 60 2 parkinsons 195 22 2

connect-4 67557 42 2 pendigits 10992 16 10

dermatology 366 34 6 satimage 6435 36 6

gisette 7000 5000 2 segmentation 2310 19 7

glass 214 9 6 semeion 1593 256 10

heart 270 13 2 sonar 208 60 2

hill-valley 606 100 2 soybeansmall 47 36 4

ionosphere 351 35 2 spect 267 23 2

isolet 7797 617 2 splice 3175 60 3

krvskp 3196 36 2 USPS 9298 256 10

landstat 5435 36 6 waveform 5000 40 3

libras 360 90 15 wine 178 13 3

low-res-spect 531 100 9 zoo 101 17 7

will be tested according to the classification error obtained by five different classifiers,
each belonging to a different family. The classifiers employed were: two linear (naive
Bayes and Support Vector Machine using a linear kernel) and three nonlinear (C4.5,
k-Nearest Neighbor with k = 3 and Random Forest). All five classifiers were executed
using the Weka tool, with default values for the parameters.

4.1 Real Datasets

This section reports the experimental results achieved by the different feature selection
methods over the 38 real datasets, depending on the classifier. In order to explore the
statistical significance of our classification results, we analyzed the classification error
by using a Friedman test with the Nemenyi post-hoc test. The following figures present
the critical different (CD) diagrams, introduced by Demšar [6], where groups of meth-
ods that are not significantly different (at α = 0.10) are connected. The top line in the
critical difference diagram is the axis on which we plot the average ranks of methods.
The axis is turned so that the lowest (best) ranks are to the right since we perceive the
methods on the right side as better. As can be seen in Fig. 1, regardless of the classifier
used, it seems that the most suitable feature selection methods for this type of datasets
are CFS and INTERACT, which have the additional advantage that there is no threshold
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Table 2. Characteristics of the 17 microarary datasets. It shows the number of samples (#sam.),
features (#feat.) and classes (#cl.).

Dataset #sam. #feat. #cl. Dataset #sam. #feat. #cl.

9-tumors 60 5726 9 gli85 85 22283 2

11-tumors 174 12533 11 leukemia-1 72 5327 3

brain 21 12625 2 leukemia-2 72 11225 3

brain-tumor-1 90 5920 5 lung-cancer 203 12600 5

brain-tumor-2 50 10367 4 ovarian 253 15154 2

CLL-SUB-111 111 11340 3 smk 187 19993 2

CNS 60 7129 2 SRBCT 83 2308 4

colon 62 2000 2 TOX-171 171 5748 4

DLBCL 47 4026 2

for the number of features to select. In the case of ranker methods, which do need to set
a threshold, in general it seems that the percentage of 20% is the best option.

We now compare the classification error achieved by the feature selection meth-
ods and our baseline, the random selection. It can be seen that for all the classification
algorithms, the random selection, both with the logarithmic and 10% thresholds, is the
one that obtains the worst results. However, we can also see that random selection,
with the 20% threshold, achieves highly competitive results compared to certain fea-
ture selection methods. Due to the drawbacks of the traditional tests of contrast of the
null hypothesis pointed up by [2], we have chosen to apply the Bayesian hypothesis
test [14], in order to analyze the classification results achieved by “Ran-20” and the
ranker methods. In this type of analysis, a previous step is needed, which consists in the
definition of the Region of practical equivalence (Rope). Two methods are considered
practically equivalent in practice if their mean differences given a certain metric are less
than a predefined threshold. In our case, we will consider two methods as equivalent if
the difference in error is less than 1%.

For the whole benchmark and each pair of methods, we calculate the probability of
the three possibilities: (i) random selection (Ran) wins over filter method with a differ-
ence larger than rope, (ii) filter method wins over random selection with a difference
larger than rope, and (iii) the difference between the results are within the rope area.
If one of these probabilities is higher than 95%, we consider that there is a signifi-
cant difference. Thus, Fig. 2 shows the distribution of the differences between each pair
of methods using simplex graphs. It can be seen that, although random selection with
the 20% threshold is not statistically significant with respect to the results obtained
over several ranker methods, it always outperforms them. This means that applying
the ranker methods (ReliefF, InfoGain and MIM) with an incorrect threshold produces
results comparable to those obtained when randomly selecting the 20% of features.
These results highlight the importance of choosing a good threshold, which is not a
trivial task, especially because it usually depends on the particular problem to be solved
(and sometimes, even the classifier that is subsequently used).
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Fig. 1. Critical difference diagrams showing the ranks after applying feature selection over the
38 real datasets. For feature selection methods that require a threshold, the option to keep 10%
is indicated by ‘−10’, the option to stay with 20% is indicated by ‘−20’, and the option ‘−log’
refers to use log2.
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(a) C45 classifier (b) SVM classifier (c) SVM classifier

(d) SVM classifier (e) Random Forest classifier (f) Random Forest classifier

Fig. 2. Simplex graphs for pair comparison of each feature selection method and the baseline ran-
dom selection (Ran) over the 38 real datasets using Bayesian hierarchical tests: random selection
(left) and filter method (right).

Regarding the five different classifiers used, Table 3 shows the classification error
obtained by the five classifiers and the eight feature selection methods—the seven fil-
ters and the random selection—over the 38 real datasets (lower error rates highlighted
in bold). As can be seen, although the classification results obtained were not consider-
ably different between the different feature selection methods used, it is notable that the
results obtained with Random Forest outperformed those achieved by the other classi-
fiers.

4.2 Microrrray Datasets

The classification of DNA microarray has been viewed as a particular challenge for
machine learning researchers, mainly due to the mismatch between dimensionality and
sample size. Several studies have demonstrated that most of the genes measured in
microarray experiment do not actually contribute to efficient sample classification [4].
To avoid this curse of dimensionality, feature selection is advisable so as to identify the
specific genes that enhance classification accuracy.

Following the same study as for the previous datasets, and in order to analyze the
ranks of the feature selection methods over the 17 microarray datasets, Fig. 3 presents
the critical different diagrams for each classification algorithm. As can be seen, the fea-
ture selection method that performs best varies depending on the classifier. However,
we can say that, in general, CFS is the best option. With regard to the different thresh-
olds used by the ranker methods, the percentage that retains 5% of the features seems
to be the most appropriate for these high dimensional datasets.
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Table 3. Classification errors obtained by the five classifiers for the real datasets tested.

C4.5 NB 3NN SVM RF

CFS 15.17 18.05 14.83 14.85 13.06

INT 15.01 18.87 14.99 14.98 12.80

IG-10 22.05 26.51 21.96 24.93 21.12

IG-20 18.17 23.52 18.20 19.88 16.88

IG-log 21.65 27.30 21.96 25.84 20.92

RelF-10 23.66 27.67 23.88 25.13 22.87

RelF-20 19.86 24.39 19.84 20.33 18.11

RelF-log 23.57 28.12 23.40 26.27 22.67

MIM-10 22.08 26.64 22.24 25.08 21.23

MIM-20 18.13 23.55 17.92 19.88 16.69

MIM-log 21.88 27.37 22.23 26.04 20.98

mRMR-10 20.79 24.15 20.64 23.19 19.56

mRMR-20 18.10 23.35 17.88 19.66 16.57

mRMR-log 19.48 23.79 19.31 22.93 18.39

JMI-10 20.34 23.29 19.95 22.44 19.02

JMI-20 16.84 20.70 16.40 17.95 15.05

JMI-log 18.89 22.43 18.55 21.98 17.64

Ran-10 30.34 34.87 30.87 32.08 29.45

Ran-20 23.66 29.15 24.12 24.96 22.13

Ran-log 29.16 34.66 29.69 32.66 28.57

If we observe in depth the results provided by the statistical tests, we can also see
that the random selection, both for the thresholds that retain 5 and 10% and for the log-
arithm, obtains the poorest classification accuracy in the C4.5, NB, 3NN and Random
Forest classifiers. The SVM results show a particularly interesting behavior. It seems
that this classification algorithm does not work too well when the number of features is
low (compared to the original size of the dataset) [16]. Remember that, in the case that
the threshold used by the ranker methods select the top log2(n) features, the number
of features used to train the model will be a maximum of 15 for these datasets (not
even 1% of the number of features in the original microarray dataset). Analogously as
with the real datasets, Fig. 4 shows the distribution of the differences between random
selection—with 5% and 10% thresholds—and the ranker methods with the logarithm
threshold using simplex graphs. As can be seen, the random selection performs better
on average and with statistical significance over the ranker methods which retain the top
log2(n) features. Again, these results demonstrate, and in this case more prominently,
that an incorrect choice of threshold when using ranker methods might lead to perfor-
mance as poor as with a random selection of features. This problem is difficult to solve,
as the only way to ensure that we are using the correct threshold is to try a significant
number of them and compute the classification performance for that subset of features,
which would result in inadmissible computation times.
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(e) Random Forest classifier

Fig. 3. Critical difference diagram showing the ranks after applying feature selection over the 17
microarray datasets. For feature selection methods that require a threshold, the option to keep 5%
is indicated by ‘−5’, the option to stay with 10% is indicated by ‘−10’, and the option ‘−log’
refers to use log2.
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Fig. 4. Simplex graphs for pair comparison of each feature selection method and the baseline
random selection (Ran) over the 17 microarray datasets for SVM classifier using Bayesian hier-
archical tests: random selection (left) and filter method (right).

Table 4 shows the classification error obtained by the five classifiers and the eight
feature selection methods over the 17 microarray datasets (the lowest error rates high-
lighted in bold). These results show the superiority in performance of SVM over other
classifiers in this domain, as it is also stated in González-Navarro [19].
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Table 4. Classification errors obtained by the five classifiers for the microarray datasets tested.

C4.5 NB 3NN SVM RF

CFS 30.15 19.77 19.49 17.53 22.52

INT 30.40 20.26 19.56 18.46 22.56

IG-5 27.10 21.98 20.08 15.88 23.73

IG-10 27.52 22.05 20.55 15.73 23.52

IG-log 30.54 23.37 24.73 25.60 23.98

RelF-5 27.46 22.99 19.00 16.90 23.16

RelF-10 27.10 23.01 19.04 16.81 24.81

RelF-log 31.76 27.24 25.73 27.30 26.91

MIM-5 29.08 23.73 20.37 16.70 24.40

MIM-10 28.83 22.94 21.15 15.82 25.28

MIM-log 31.90 24.95 25.78 24.86 27.00

mRMR-5 30.07 21.67 18.92 16.74 24.63

mRMR-10 29.45 22.94 21.15 15.82 25.97

mRMR-log 30.33 23.56 23.71 24.31 24.84

JMI-5 32.72 24.17 23.19 17.89 27.77

JMI-10 32.06 25.19 23.68 16.72 29.36

JMI-log 32.51 25.91 27.21 26.28 27.16

Ran-5 33.00 28.08 28.22 19.62 32.08

Ran-10 32.69 26.66 28.11 17.83 32.96

Ran-log 43.70 43.00 41.62 41.47 41.35

5 Conclusions

The objective of this work is to study in an exhaustive way the most popular methods in
the field of feature selection, making the corresponding comparisons between them, as
well as to determine if there exist some methods that are not able to outperform those
results obtained by the random selection. We performed experiments with 55 datasets
(including the challenging family of DNA microarray datasets) and demonstrated that,
in general, feature selection is effective and, in most of the cases, the feature selection
methods are better than the random selection, as expected.

In particular, our experiments showed that CFS is a very good choice for any type
of dataset. Therefore, in complete ignorance of the particularities of the problem to
be solved, we suggest the use of the CFS method, which has the added advantage of
not having to establish a threshold. Regarding the use of different thresholds, it seems
that 20% is more appropriate for the normal datasets (although worse than the subset
methods, which are the winning option for this type of datasets) and the 5% threshold
for microarray datasets. Indeed, our experiments confirmed that the choice of threshold
when using ranker feature selection methods is critical. In particular, for some thresh-
olds, the results obtained were as poor as when just randomly selecting some features.
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Besides, although the classification results obtained were not considerably different
between the feature selection methods used—as discussed in Morán-Fernández et al.
[18]—, we can conclude that Random Forest in the case of the real datasets and SVM
in the case of the microarrays were those that obtained, in a general way over all the
datasets used, the best results in terms of classification precision, as Fernández-Delgado
et al. [7] concluded in their study.

As mentioned before, the study of an adequate threshold for ranker-type methods
is a major problem in the field of feature selection that has yet to be resolved. Thus,
as future research, we plan to test a larger number of thresholds, as well as develop an
automatic threshold for each type of dataset.
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