
45© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Heins, NB-IoT Use Cases and Devices, https://doi.org/10.1007/978-3-030-84973-3_3

Ingredients for NB-IoT Design Concepts

“IoT” is an umbrella term for different applications with certain similarities, e.g., 
they are all connected and perform some kind of edge processing. But most IoT 
applications require use-case-specific, customized IoT devices because they are part 
of a unique solution contributing to the overall approach how a business case is 
being addressed.

Different requirements might apply in terms of sensor functions, power supply, 
computing speed, cost, packaging, security, etc. But customization on hardware 
level very often comes down to selecting suitable components for remote sensing 
and acting, i.e., standard products will do the job and no dedicated custom circuits 
will be required. The core IoT device hardware platform is quite the same for all: 
you need a modem, a general-purpose application processor (MCU), some memory 
for code/data storage and standard interfaces like I2C, SPI, or GPIOs to connect 
selected peripheral components.

A universal IoT hardware platform will offer the following building blocks, 
see Fig. 1:

	1.	 Cellular network interface incl. modem, antenna, SIM card interface
	2.	 IoT application processor (MCU) incl. memory
	3.	 IoT peripherals like a sensor or an actuator

Due to the huge business potential of IoT applications, many suppliers of IoT 
components and services are struggling for customer attention. “One-stop-
shopping” is a common industry trend for suppliers to offer IoT solutions rather 
than single products or resources, e.g., hardware/software bundles, development 
kits and tools, ready-to-use software stacks, cloud support, connectivity services, 
etc. This trend is beneficial for application developers who can minimize design 
risk and turn-around-time. Another trend is online support allowing application 
developers to access useful resources and interact with experts at anytime from 
anywhere.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84973-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-84973-3_3#DOI


46

�NB-IoT Cellular Network Modules

In general, interfacing to a cellular network is complex and requires advanced RF 
and analog design expertise. On top of this, application developers expect a certain 
level of abstraction from complex 3GPP standards resp. from low-level knowledge 
of NB-IoT physical layer, device-network synchronization, random-access proce-
dures, etc. Know-how on this level is useful but not required for IoT application 
development. Instead, for efficient work, higher-level functions (API) and efficient 
tools are needed. Cellular modem vendors have recognized an increasing IoT 
demand from different industry segments, so they started to leverage their modem 
expertise for their offer of comprehensive and easy-to-use subsystems. These cel-
lular network modules are for application developers requiring cellular connectiv-
ity for their project without spending too much time with underlying cellular 
network technology itself (Fig. 2).

In fact, core of each cellular network module is a modem (modulator-
demodulator), i.e., a data converter which is modulating a carrier wave to encode 
digital data for transmission. In our case, transmission medium is a wireless cellular 
NB-IoT network with carrier frequencies of up to 2 GHz and output transmit power 
of up to 23 dBm resp. 200 mW. This mix of digital, analog, and power requirements 
means extra challenge for integration within a single semiconductor product. Thus, 
cellular network modules are usually containing a mixed-signal modem chip plus 

Fig. 1  Block diagram of a simple generic IoT device

Ingredients for NB-IoT Design Concepts



47

extra power amplifier and some other discrete components altogether in a compact 
multi-chip SMD package (e.g., a 96-pin LGA with 16 × 26 × 2.4 mm).

A typical cellular network module contains

•	 Modem incl. command/data interface to IoT application (UART or USB)
•	 RF interface, amplifiers, filters
•	 Clock generation and distribution
•	 Power management
•	 SIM card interface
•	 Microcontroller, OS, firmware, memory
•	 Analog/Digital Converter
•	 Peripheral interfaces (GPIOs, I2C, SPI, etc.)

Most of the modem work is digital data processing on baseband level, i.e., it is a 
specialized embedded computing device. Usually, a general-purpose CPU core 
(e.g., by ARM) is used, controlled by a flash-based dedicated modem firmware. 
This firmware is subject to occasional updates in an effort to follow NB-IoT exten-
sions specified in yearly 3GPP releases, for added features, bug fixes, etc. For 
deployed IoT devices which are prepared for it, firmware can be upgraded “over-
the-air” (OTA), i.e., using an NB-IoT connection for transmission of the new firm-
ware version.

As a matter of fact, a cellular network module for NB-IoT (short: “NB-IoT mod-
ule”) is the most important component of a NB-IoT device, mainly because of the 
complexity of the LTE/NB-IoT standard and corresponding infrastructure. All other 

Fig. 2  Cellular network module

NB-IoT Cellular Network Modules



48

components of an IoT device are built “around” the NB-IoT module, even though it 
is controlled via AT command interface by an IoT application program running on 
an extra MCU (see Fig. 1). For example, in a typical device design scenario the 
modem will wake up the rest of the design when PSM state has been ended by the 
network. Main reason for the major role of the NB-IoT module is the overall com-
plexity of 3GPP cellular technologies requiring a certain level of dedicated exper-
tise which is offered by all module vendors mentioned below. From an IoT 
application point of view, NB-IoT modules unfold most of the benefits of NB-IoT 
cellular connectivity by delivering essential network functions, protocols, tools, 
support. Price of a NB-IoT module will be around 20 EUR per unit for small 
quantities.

�Vendor Overview

Major NB-IoT module vendors are (in alphabetical order): Nordic Semiconductor, 
Quectel, Sierra Wireless, Telit, and u-blox. Interestingly, all of these companies are 
wireless network specialists, no broadline semiconductor manufacturers like Texas 
Instruments or STMicroelectronics or Samsung are offering any cellular 
modem chips.

•	 Nordic Semiconductor, https://www.nordicsemi.com

–– Nordic Semiconductor is a Norwegian semiconductor company founded in 
1983. Nordic is specializing in wireless communication technology for IoT 
(Bluetooth, ANT+ Thread, Zigbee, WiFi, LTE-M/NB-IoT). Listed at Oslo 
Stock Exchange. 2020 revenues: 405 mio USD, 1000 employees.

•	 Quectel, https://www.quectel.com/product-category/lpwa-modules/

–– Quectel entered business 2020 in Shenzhen/China with a GSM/GPRS module 
and exclusively focused on cellular network modules. Claims to be the 
“world’s largest and fastest-growing supplier of IoT modules.” Listed at 
Shanghai Stock Exchange since 2019. 2020 revenues: 935 mio USD, 2300+ 
R&D engineers.

•	 Sierra Wireless, https://www.sierrawireless.com/products-and-solutions/
embedded-solutions/

–– Sierra Wireless entered business in 1997 with an embedded cellular module. 
Focused on cellular modules and services. Headquartered in Canada, listed at 
NASDAQ. 2020 revenues: 448 USD, 1000+ employees.

•	 Telit, https://www.telit.com/m2m-iot-products/cellular-modules/

–– Telit started in 1997. Cellular IoT, WiFi, Bluetooth, GPS/GNSS products, 
solutions and services. Listed at London Stock Exchange. 2020 revenues: 343 
mio GBP.

Ingredients for NB-IoT Design Concepts

https://www.nordicsemi.com
https://www.quectel.com/product-category/lpwa-modules/
https://www.sierrawireless.com/products-and-solutions/embedded-solutions/
https://www.sierrawireless.com/products-and-solutions/embedded-solutions/
https://www.telit.com/m2m-iot-products/cellular-modules/


49

•	 u-blox, https://www.u-blox.com/en/cellular-modules

–– u-blox started as a spin-off from the Swiss Federal Institute of Technology in 
1997, first product was a GPS receiver. Listed at Swiss stock exchange since 
2007, they still specialize on IoT solutions for cellular networks and GPS/
GNSS. 2020 revenues: 333 mio CHF, 1200+ employees.

Figure 3 provides an overview of typical NB-IoT modules available at time of 
writing. A comprehensive competitive comparison would have to include several 
additional technical criteria (e.g., operating temperature, supply voltage) and cost. 
Instead, our table is taking a top-level view focusing on key product differentiators 
from a device design perspective, and it is highlighting some power saving or secu-
rity features, if any. It also includes some “soft” criteria like online support.

Nordic Quectel Sierra
Wireless Telit u-blox

nRF9160 BG95 Series WP7700 ME910x SARA-R5
Series

NB1, NB2, M NB1, NB2, M NB1, M NB1, NB2, M NB1, NB2, M

14 14 13 14 14

no yes yes yes no

yes (int.) yes (int.) yes (int.) yes (int.) yes (int.)

no no yes no no

embedded user application ? yes no yes yes (IoT
AppZone)

no

ARM
CryptoCell

secure
element CC

EAL5+
Power Class 6
(14dBm) ?

no no no no yes

antenna tuning
control
interface

yes no optional no yes

PSM [µA] 2,7 3,9 22 3 0,5

wake-up Input PWRKEY POWER_ON WAKE PWR_ON
TX indicator Output TX_ON
PSM
indicator Output PWRMON V_INT

private support
request

qualification
req'd yes

Community yes yes yes no yes

last update: May 2021

Online
support

P
ow

er
C
on

su
m
pt
io
n

Manufacturer

Standards

3GPP Release

GPRS fall-back?

GPS option ?

open OS ?

security hardware

Type

Fig. 3  NB-IoT modules overview

NB-IoT Cellular Network Modules

https://www.u-blox.com/en/cellular-modules


50

All mentioned modules are compliant with 3GPP Releases 13/14 only, i.e., they 
are not covering subsequent specifications. This means that efficient Rel. 15 “Early 
Data Transmission (EDT)” power saver feature is not available for NB-IoT device 
designs yet. And Rel. 14 power class 6 (14 dBm) capability for reduced transmis-
sion power of NB-IoT devices is offered only by u-blox SARA-R5 so far. In fact, 
NB-IoT devices can benefit from power class 6 only if they are operated in a com-
pliant network infrastructure, so we might have kind of a chicken-and-egg prob-
lem here.

Independently from applied level of transmission power, antenna, and transmit-
ter impedances should be matched properly. This does not cost much, but helps to 
improve efficiency and quality of uplink data channel, see section “Low Power 
Device Design-Matching of Antenna” of chapter “Designing an NB-IoT Device.” 
For this purpose, a matching C/L network must be inserted in between transmitter 
and antenna— depending on actual NB-IoT frequency band. Some modules have 
implemented corresponding control software and AT commands as modem firm-
ware out-of-the box (Nordic nRF9160, u-blox SARA-R5). For others, the user IoT 
application program will have to take care and handle activation of an antenna 
matching network.

Another power saver is PSM input current which makes a significant difference 
in terms of product lifetime, esp. for battery-powered NB-IoT devices. With just 
0.5 μA u-blox SARA-R5 is best-in-class in this particular field. First of all, PSM is 
an NB-IoT feature which is applied to reduce modem power consumption during 
inactivity periods, but it can also be used to trigger other device component to enter 
sleep mode. For this purpose, some modules offer an PSM indicator pin to external 
elements that the modem is currently in PSM state (u-blox SARA-R5, Telit 
ME910x).

For “Remote Monitoring/Detection” IoT use cases, a path in opposite direction 
might be required: a sensor might want to indicate a wake-up event to the NB-IoT 
modem in order to terminate PSM mode and trigger uplink data transmission. For 
this purpose, most modules are offering a dedicated input pin (called PWR_ON or 
WAKE or similar) and associated embedded function.

For IoT deployments in areas with uncertain NB-IoT coverage, a GSM/GPRS 
fallback option can help. In fact, GPRS was the first cellular data service back in 
year 2000 and still supported by most networks. GPRS is available almost every-
where in every part of world, see https://www.gsma.com/coverage/. Some manufac-
turers offer GPRS as an integrated additional feature of an NB-IoT module, or as a 
replacement option with same pinout (Quectel, Sierra Wireless, Telit).

For some IoT applications (see section “Object Tracking/Localization” of chap-
ter “IoT Target Applications”) require precise localization of an IoT device via sat-
ellite (GPS, GNSS, etc.). In fact, many manufacturers of cellular network modules 
also have a product line for satellite positioning, so they offer some kind of CIoT/
GPS bundle which is combining both technologies. In fact, all vendors listed in 
Fig. 3 have a single-chip solution with an integrated GPS engine and an AT com-
mand extension dedicated for GPS control and interaction.

Ingredients for NB-IoT Design Concepts

https://www.gsma.com/coverage/


51

In general, each network module comes with a handful of GPIOs and standard 
interfaces like I2C, which can be used by the IoT application. For this purpose, 
custom AT commands are offered which can be used to exchange data with IoT 
peripherals or for control of an antenna matching network, for example. On top of 
sharing I/O resources, some module manufacturers are even sharing the module 
MCU with the host IoT application which would normally be running on a separate 
external MCU, see Fig. 1. This is a strong feature which is reducing component 
count (bill-of-material) and PCB space. Nordic Semiconductor as well as Telit are 
offering dedicated development environments for this purpose. Sierra Wireless 
WP7700 offers an open source platform (https://legato.io) for IoT application devel-
opment, module OS is a fully user-interactive Linux derivative.

End-to-end security for IoT data and protection against misuse of IoT applica-
tions are important aspects to be addressed by design. Some IoT applications are 
requiring an extra level of protection because failure would create damage or finan-
cial loss. In these cases, so-called secure elements resp. security certifications are 
required for an IoT device to qualify as a candidate for short-listing. Two NB-IoT 
modules (Nordic nRF9060 and u-blox SARA-R5) are offering dedicated security 
hardware. See section “End-to-End IoT Data Security” for further information.

Last but not least, an appropriate level manufacturer online support and ser-
vices are particularly important for many small- and medium-scale IoT projects 
with no direct link to products experts and dedicated field application staff. See 
extra section “Suppliers and Online Support.”

�AT Command Interface

For modem control and data transfer between an IoT application program and a cel-
lular network module, a special command language is being used (see Fig. 1). It is 
called AT command set. Usually, the IoT application program is running on a sepa-
rate MCU communicating with the NB-IoT modem via UART or USB interface. 
But some integrated solutions are also available, see Fig.  3. AT commands are 
defined as part of 3GPP standard under 3GPP TS 27.007. That implies that all cel-
lular network modules have to implement this API (Fig. 4).

The AT command set consists of a series of short text strings. AT commands 
always start with “AT” which is a mnemonic code for “Attention.” We have four 
types of AT commands, namely Test, Read, Set, and Execute (Fig. 5).

•	 Test. The Test command is mainly used to check whether a command is sup-
ported or not by the modem.

–– syntax: AT<command name>=?

Example:

+CGMI=? (Request Manufacturer Identification)
Response: 
OK

NB-IoT Cellular Network Modules

https://legato.io


52

•	 Read. The Read command is mainly used to check the current setting of the 
modem parameter required for a specific operation.

–– syntax: AT<command name>?

Example:

AT+UBANDSEL? (check current LTE frequency bands)
Response:

+UBANDSEL: 800,850,900,1800,1900,2100,2600
OK

•	 Set. The Set command is mainly used to modify settings of the modem required 
for a specific operation.

Fig. 4  AT command interface

Fig. 5  AT command syntax

Ingredients for NB-IoT Design Concepts



53

–– syntax: AT<command name>=value1, value2, ..., valueN

Example:

AT+UBANDSEL=1800,2100,2600 (change the operating LTE bands)
response:

OK

•	 Execution. The Execution command is used to carry out an operation.

–– syntax: AT<command name>=parameter1, parameter2, ..., parameterN

Example:

AT+CMGS="67890"<CR> Hello world<Ctrl-Z>(send a text SMS)
Response: 
+CMGS: 6 
OK

As a starting point, AT commands can be used to retrieve general information 
about the user device, e.g., manufacturer name, model number, firmware version, 
International Mobile Equipment Identity (IMEI) number, IMSI (International 
Mobile Subscriber Identity), ICCID (serial number of the SIM).

Next command group is about user device status and control, e.g., perform a 
reset, set power modes (incl. “airplane mode”), indicator for network or battery, 
real-time clock, boot behavior, SIM management.

Network service commands are dealing with network detection, selection, and 
configuration incl. eDRX and paging window settings, registration procedure, radio 
connection (RRC) status, received network signal strength, optimizations for net-
work attach, TAU requests and coverage enhancement level, etc. A group of dedi-
cated commands are provided for packet-switched services, i.e., the “PS domain” 
like GPRS for data transmission. A group of standard commands for SMS message 
handling is also available.

On top of commands dealing with basic function, manufacturers have added 
proprietary AT command extension to control various module features, e.g., for

•	 Firmware update
•	 Clock and power management
•	 GPIOs and other interfaces, e.g., I2C and for GPS engine
•	 Module file system administration
•	 IP sockets management
•	 Device and data security
•	 Data transmission protocols and message handling for SMS, FTP, HTTP, TCP, 

MQTT, CoAP
•	 Cloud services incl. LwM2M device management

NB-IoT Cellular Network Modules



54

For IoT application developers, the module’s AT command set is the most rele-
vant programming interface (API) because it allows to verify some NB-IoT network 
settings and to control some of them. Usually, application developers do not have 
direct access to standardized low-level procedures, e.g., for network resource allo-
cation, assignment of coverage enhancement level, or relevant parameters for power 
reduction (see section “NB-IoT Technology” of chapter “Cellular IoT Technology”). 
Instead, each module offers an exclusive set of functions which are NB-IoT appli-
cation toolkit at the same time. Besides other criteria mentioned in Fig. 3 of section 
“NB-IoT Cellular Network Modules,” the module’s unique AT command set is an 
important short-listing aspect.

For practical evaluation please also refer to section “RasPi Mockup and Network 
Tester” of chapter “Designing an NB-IoT Device” introducing a tool which can be 
used for functional verification of standards AT commands. This tool is based on 
Quectel BG96.

�Unsolicited Result Code (URC)

URC is a modem message which is not responding to an AT command which has 
been submitted by the IoT application before. Instead, it is kind of a soft interrupt 
indicating an unscheduled event or status change, e.g., an incoming SMS or other an 
IP data packet. Another potential event is, for example, start of Active Timer T3324 
(see section “Power Saving Mode (PSM)” of chapter “Cellular IoT Technology”) 
when PSM function was enabled and an RRC connection release has been received.

A URC can occur at any time to inform the application about a specific event or 
status change. Because completely uncorrelated to an AT command execution, a 
collision between a URC and an AT command might occur. Some modules allow 
users to configure URC feature, which event is causing a URC and how/when to 
present an occurrence. For example, an enabled URC can be buffered by the module 
until an AT command execution ends when the final result code for the command 
has been returned.

In addition to the URC message, configured events can also trigger an external 
signal. For this purpose, most network modules have a dedicated output pin RI 
(Ring Indicator). This is a powerful feature for some IoT devices and can be used, 
for example, as an interrupt signal to wake up the host MCU.

�IoT Data Transfer Protocols

Main reason for IoT connectivity is data transfer from a remote location to a central 
server. While the existing structure of the Internet is freely available and usable by 
any IoT device, these instruments often too heavy and too power-consuming, esp. 
for battery-powered devices. Good old SMS messages are still good enough as a 
starting point, but is not available in all NB-IoT networks. Plain TCP/IP low-level 

Ingredients for NB-IoT Design Concepts



55

data transmission allows efficient communication for small IoT deployments, but 
some IoT projects will require scalable solutions for a larger number of connected 
devices. First candidate is MQTT (Message Queuing Telemetry Transport) which is 
aiming data collection and deployment from/to IoT devices. Another option is 
CoAP (Constrained Application Protocol) which is aiming at a HTTP-type web 
presentation of IoT data. Both are application resp. service layer protocols which 
are operating on top of TCP/IP or another transport layer protocol (see Fig. 6).

�IP-Based Protocols

Sending and receiving IoT data through the Internet sometimes require the cellular 
IoT device to behave like an IP network node, i.e., as an Internet endpoint with an 
IP address (IP = Internet Protocol). For this purpose, most NB-IoT module vendors 
are offering an integrated protocol stack which is a set of services that allow pro-
cesses to communicate over the Internet using the protocols (e.g., TCP, UDP) 
offered by the stack. The module OS forwards the payload of incoming IP packets 
to the corresponding IoT application by extracting the socket address information 
from the IP and transport protocol headers and stripping the headers from the appli-
cation data. For cellular network modules, used API for interaction with the inte-
grated IP protocol stack is part of the AT command set, i.e., a proprietary extension 
of the AT command set.

Typically, an IP endpoint is implemented as a “socket,” there are several types of 
IP sockets: Datagram sockets, Stream sockets, and Raw sockets. Stream sockets are 
connection-based and provide a sequenced flow of error-free data packets, reliably 
and in right order. Stream sockets are typically implemented using TCP 
(Transmission Control Protocol) so that applications can run across any networks 
using TCP/IP protocol. Datagram sockets are connectionless with data packets 

Fig. 6  C-IoT Internet protocol suite

NB-IoT Cellular Network Modules



56

sent and received individually addressed and routed one-by-one. User Datagram 
Protocol (UDP) is used. Order and reliability are not guaranteed with datagram 
sockets, so multiple packets sent from one machine or process to another may arrive 
in any order or might not arrive at all.

UDP is a light-weight protocol offering high throughput and low latency (vs. 
TCP) which is good for unidirectional broadcasting of audio or video files, but can-
not be used for a reliable IoT communication channel. On the other side, TCP pro-
vides end-to-end reliable communication incl. correction of transmission errors 
based on error detecting code and an automatic repeat request (ARQ) protocol. On 
top of this, TCP manages reordering of data packages which have been received 
out-of-order. As a consequence, TCP is used for many popular applications, includ-
ing HTTP web browsing and email transfer.

For IoT applications, some low-level services for TCP and UDP transport layer 
protocols are available via AT command interface, e.g., sending and receiving raw 
data which is not wrapped in any upper layer overhead data. In order to prepare an 
IoT device on transport layer for TCP or UDP communication, we first have to set 
up the device as an IP network node and create an IP socket. Different modules 
will offer different configuration options, but in general this socket will be reach-
able by its IP address by any external TCP/IP node, and will be listening for incom-
ing traffic.

Typical AT commands for TCP/IP communication are (syntax from Quectel):

•	 Open a Socket Service AT+QIOPEN
•	 Query Socket Service Status AT+QISTATE
•	 Send data AT+QISEND
•	 Retrieve the Received TCP/IP Data AT+QIRD
•	 Ping a Remote Server AT+QPING

If an open socket has been configured as for TCP or UPD listening and new data 
has been received, the IoT application will be notified by associated URC message 
and/or RI interrupt (see also Fig. 7). In order to avoid collision of the URC with the 
ongoing execution of a submitted AT command, incoming data can be buffered 
temporarily by the NB-IoT module until the IoT application is ready for reception.

For uplink data transmission, the NB-IoT device must connect to the IP address 
of the recipient node first. After successful connection, the IoT application can sub-
mit uplink data via AT command to the modem. The modem can be configured to 
acknowledge successful data submission to the cellular network via related URC 
message to the IoT application.

�MQTT (Message Queuing Telemetry Transport)

MQTT is a widely adopted standard in the Industrial IoT, for meters and detection 
devices and vehicles. It is a publication/subscription type messaging protocol. 
MQTT has been designed for communication in low-bandwidth networks, it has a 
small code footprint and requires low processing power and memory, i.e., an MQTT 

Ingredients for NB-IoT Design Concepts

https://en.wikipedia.org/wiki/Error_detecting_code
https://en.wikipedia.org/wiki/Automatic_repeat_request


57

client running on an IoT device will cause only low-power consumption. The proto-
col usually runs over TCP/IP; however, any network protocol that provides ordered, 
lossless, bi-directional connections can support MQTT.  The protocol is an open 
OASIS standard and an ISO recommendation (ISO/IEC 20922).

The MQTT protocol defines two types of network entities: a message broker 
and a number of clients. An MQTT broker is a server that receives all messages 
from the clients and then routes the messages to the appropriate destination clients. 
Information is organized in a hierarchy of topics. Whenever one of the clients has a 
new item of data to distribute, it sends a control message to the connected broker 
including the new data and associated topic. The broker then distributes the infor-
mation to any clients that have subscribed to that topic.

A MQTT control message can be as little as two bytes of data, but can also carry 
nearly 256 megabytes of data if needed. There are 14 defined message types used

•	 To connect and disconnect a client from a broker,

Fig. 7  TCP/IP for cellular IoT

NB-IoT Cellular Network Modules



58

•	 To publish data,
•	 To acknowledge receipt of data, and,
•	 To supervise the connection between client and server.

The MQTT broker is software running on a computer, either on-premises or in 
the cloud. Clients only interact with a broker, not with other clients. The broker 
role needs to be specified by an agreed policy, but in general it will be up to the 
broker to ensure integrity of all participating clients and to ensure security and reli-
ability of service. In addition, a certain level of service quality can be part of the 
defined MQTT infrastructure. For example, the broker has to ensure that a sub-
scriber receives a message only once (i.e., no duplicates).

Connected MQTT clients do not need to know each other and do not communi-
cate directly with each other. Instead, topics are used to categorize messages, autho-
rized clients can subscribe to.

For a typical Remote Monitoring/Detection use case scenario, a sensing IoT 
device will publish local measurement data to the MQTT broker. For example, 
device X monitors the actual ambient temperature of 21 °C in room 5 on floor 1 in 
office building B. In order to classify this information, data will be published by 
device X as a hierarchical topic containing several levels like /temperature/
building_A/Floor_1/Room_A105. This is a multi-level topic, clients can subscribe 
to each level, whereas upper levels include subscription to respective sublevels, e.g., 
a subscriber of /temperature/building_A/Floor_1 will receive temperature data 
for all rooms on floor 1. As the tenant T of room A105, you might be interested in 
this particular data only, so—as a first step—you contact the responsible MQTT 
broker B and apply for connection. After successful verification of authorization 
and identity of tenant T, the smart phone of tenant T is allowed to subscribe to topic 
/temperature/building_A/Floor_1/Room_A105. Consequently, broker B will for-
ward messages of device X to the smartphone of tenant T.

Situation looks different for property management P of building B who is inter-
ested to monitor temperature of all rooms in building B, so P can subscribe to /
temperature/building_A and will receive all temperature data messages of con-
nected and publishing IoT sensors in building B. As an alternative, data might first 
go to a connected analytics and data consolidation service S (see “Analytics” icon 
in Fig. 8). For this purpose, S will subscribe to /temperature/building_A, perform 
agreed work and publish resulting data each month as a separate hierarchical topic, 
e.g., as /temperature/building_A/July2021.

From an IoT application point of view, many NB-IoT network modules are offer-
ing a set of MQTT-related AT commands allowing the device to manage data 
accordingly. Each vendor implements MQTT AT commands in a different way. 
Typical MQTT commands are with syntax from Quectel are as follows:

•	 Connect a Client to MQTT Server AT+QMTCONN
•	 Subscribe to Topics AT+QMTSUB
•	 Publish Messages AT+QMTPUB
•	 Read Messages from Buffers AT+QMTRECV

Ingredients for NB-IoT Design Concepts



59

Similar to process for TCP/IP downlink data, new MQTT subscription data for-
warded by the MQTT broker will be indicated to the IoT application by an associ-
ated URC message and/or RI interrupt (see Fig. 7).

Each client can both produce and receive data by both publishing and subscrib-
ing, i.e., an IoT device can publish sensor data and still be able to receive configura-
tion information or control commands which are valid for all or a specific group of 
IoT devices. Although many NB-IoT applications are focusing on uplink data (see 
section “NB-IoT Use Cases” of chapter “IoT Target Applications”) based on a pre-
configured factory setup which is not altered during product lifetime, the MQTT 
option to change client’s publish/subscribe roles will be useful for many NB-IoT 
applications—at least occasionally, e.g., for a changed PLMN list to be considered 
by all devices in the field (see case “global setup” in Fig. 8). Due to MQTT’s flexible 

Fig. 8  MQTT roles

NB-IoT Cellular Network Modules



60

approach how to manage client roles and hierarchical topics, many IoT deploy-
ments can adjust MQTT according specific need.

In addition, MQTT broker model is beneficial for IoT applications which require 
privacy protection of connected clients. The broker decides which kind of data 
about other clients is being shared with other clients, and will specify a related 
policy to be agreed by all connected clients resp. owners of these clients.

On top of this, MQTT uses Transport Layer Security (TLS) data encryption 
with user name, password protected connections, and optional certificates for used 
key material. This architecture allows to set up IoT applications to meet highest 
security requirements—with extra tamper protection for critical use cases if some 
dedicated security hardware is being used. See section “End-to-End IoT Data 
Security” for further information.

�CoAP (Constrained Application Protocol)

In comparison to MQTT, the operating principle of Constrained Application 
Protocol (CoAP) is very different: while an MQTT server (broker) is pushing sub-
scribed IoT data updates to clients automatically, a CoAP server is waiting for a 
dedicated request by an (authorized) IoT client each time. Such a request will lead 
to a one-to-one interaction between the IoT device and an associated CoAP server.

CoAP was designed to address the needs of HTTP-based IoT systems, but trans-
lates the HTTP model so that it could be used in restrictive (aka “constrained”) 
device and network environments. CoAP relies on the transport layer User Datagram 
Protocol (UDP). The Internet Engineering Task Force (IETF) Constrained RESTful 
Environments Working Group (CoRE) has done the major standardization work, it 
is specified in RFC 7252 (Fig. 9).

CoAP is essentially a request/response protocol to be used by an IoT client 
device with an existing CoAP Internet server. Connection will be requested by the 
CoAP client as a one-to-one communication with a specific CoAP server. If the host 
component is provided as an IP-literal or IPv4address, then the CoAP server can be 
reached at that IP address, e.g., via coap://<IP address:port>, resp. coap://<host 
name:port>.

A CoAP client can use the GET, PUT, POST, and DELETE methods using 
requests and responses with a CoAP server. Depending on use case (see sections 
“Object Tracking/Localization” resp. “Remote Monitoring/Detection” of chapter 
“IoT Target Applications”), an IoT client can either POST data or PUT data. The 
IoT device will POST it, if submitted IoT data is new and should be created by the 
CoAP server as a new record. On the other hand, a PUT request can be used to insert 
data resp. replace if it already exists. For example, a temperature sensor would PUT 
a periodic update rather than POST it. In general, each CoAP requests and response 
message may be marked as:

•	 “Confirmable” (CON): the messages must be acknowledged by the receiver if 
successfully received or as

Ingredients for NB-IoT Design Concepts



61

•	 “Non-confirmable” (NON): the messages are “fire and forget.”

This CoAP option allows IoT applications to meet requested quality of service 
resp. shorten interaction time and reduce corresponding power consumption of 
requesting client devices when using NON messages.

Different network module vendors are implementing their CoAP client APIs dif-
ferently. For u-blox SARA-N3 module [17], for example, client profiles are used to 
define relevant parameters for each interaction with a specific server. Up to four 
profiles can be stored in the module flash memory and only one can be loaded at a 
time. The loaded profile will be considered as the current profile to be used for sub-
sequent CoAP client requests. For profile management, CoAP Profile Configuration 
Command +UCOAP is used. Syntax: AT+UCOAP=<op_ code>,<param_ val> 
is used. For op_code=1, the URI (Uniform Resource Identifier) for this profile is 
specified. For example, this command will set the destination path of a CoAP profile 
to a resource called “text.” AT+UCOAP=1,"coaps://1.123.123.123:5684/text".

Now, CoAP command +UCOAPC can be used send a client request to the 
CoAP server. Syntax: AT+UCOAPC= <coap_command>. Allowed values for 
<coap_command> are “1” for GET request, “2” for DELETE, “3” for PUT, and “4” 

Fig. 9  CoAP request/response principle

NB-IoT Cellular Network Modules



62

for “POST.” So, for example, the following command will write “Hello World” (in 
ASCII format) to the destination specified in above profile: AT+UCOAPC=3,
"48656C6C6F20576F726C64,",0.

Another op_code (“8”) option of CoAP Profile Configuration Command 
+UCOAP enables an SSL connection between CoAP client and server. For exam-
ple, AT+UCOAP=8,0 specifies to use Security Profile 0 specifying all relevant 
TLS/SSL parameters. It will be activated whenever the coaps:// scheme is used.

Note: TLS communication protocol is based on cryptographic keys and certifi-
cates which are potentially vulnerable to attacks. For critical IoT applications, extra 
protection of sensitive data might be required. See section “End-to-End IoT Data 
Security” for further information.

Last but not least, op_code (“9”) option of CoAP +UCOAP command enables 
Release Assistance indication (RAI) feature of NB-IoT.  For example, command 
AT+UCOAP=9,1 will set RAI flag to “1” instructing the modem to manage release 
of the network connection to RRC_Idle state and switch off radio right after the 
uplink data is sent. This makes sense for battery-powered monitoring devices send-
ing infrequent snapshot measurement data and go back to low-power mode after-
wards. See section “Release Assistance Indication (RAI)” of chapter “Cellular IoT 
Technology” for background information.

Note: By nature, this option cannot be selected with confirmable (CON) message 
type because in this case the modem will have to wait for acknowledgement by 
CoAP server and has to keep radio switched on.

�End-to-End IoT Data Security

In order to ensure bullet-proof communication and remote control of IoT devices, 
IoT projects will have to implement an appropriate level of security and protection 
against potential attacks or attempts to misuse the IoT application. Independent 
from technology used for data transmission, a secure channel between communica-
tion partners will have to protect integrity and confidentiality of data. This end-to-
end security will ensure that nobody can understand or modify data transferred from 
one endpoint to another (typically from an IoT device to a dedicated IoT server or 
vice versa). Typically, an IoT server is located in a safe environment. But for many 
IoT use cases, end-to-end security requirement is particularly challenging because 
involved IoT devices are mobile and/or unattended, i.e., exposed to risk.

For use in IoT devices, all vendors of cellular network modules are including 
features or options to support TLS (Transport Layer Security), the successor of SSL 
(Secure Sockets Layer), see Fig. 10. TLS is a secure communication protocol which 
is using public-key cryptography. For an NB-IoT device, in most cases the end-
point of a secure TLS channel will be an integrated “secure element” inside the 
network module. For a software-only implementation, the TLS/SSL software stack 
will be part of the module firmware and accompanied with a dedicated set of AT 

Ingredients for NB-IoT Design Concepts



63

commands for use by the IoT application. Key storage and crypto operations will be 
performed by the module MCU.

�How Public-Key Cryptography Can Help

A fundamental ingredient of secure communication systems is public-key cryptog-
raphy (or asymmetric cryptography) which is an encryption scheme. Other than 
symmetric cryptography, public-key cryptography uses a pair of keys which are 
different but mathematically linked to each other: i.e., a public key, which may be 
disseminated widely, and a private key, which are known only to the “owner.” In a 
one-to-one electronic communication one of the keys (either public or private—
depending on use case) is used by the sender, the other one is used by the recipient. 
Difference is illustrated in Fig. 11.

Public-key cryptography has a big advantage when compared to classic symmet-
ric crypto schemes where same unique secret key is used by sender as well as by 
recipient: effective security requires keeping only the private key as a secret; the 
public key can be openly distributed without compromising security → key distribu-
tion and key storage are much easier to handle. But due to the fact that one key is 
public, asymmetric crypto algorithms are more complex and require longer key 
lengths compared to symmetric cryptography— at the same level of security. For 
example, security provided with a 1024-bit key using asymmetric RSA is consid-
ered approximately equal to an 80-bit key in a symmetric algorithm like AES.

In general, public-key cryptography can solve different fundamental security 
problems related to one-to-one communication scenarios:

	1.	 Protect message privacy, i.e., nobody else is able read contents of message
	2.	 Verify authenticity of sender, i.e., sender identity is tamper-proof and unique
	3.	 Ensure integrity of message, i.e., make sure that nobody is able to modify mes-

sage contents on its way to the recipient

Fig. 10  Secure element for TLS-secured channel

NB-IoT Cellular Network Modules



64

Problem 1 can be solved by data encryption, i.e., sender uses the public key of 
the recipient → decryption of the received message can be done with the recipient’s 
private key only. Problems 2 and 3 can be solved by use of a digital signature—to 
be applied using the sender’s private key.

�Message Authenticity and Integrity

In general, the sender’s private key is used to sign a message, and all recipients can 
verify the sender’s authenticity with the sender’s public key. In order to limit 
required computational effort to create a digital signature, only the hash value of the 
message is encrypted, not the complete message itself. What does “hash” mean? A 
hashing algorithm is a mathematical function that condenses data to a fixed size, a 
hash is a fingerprint of the original data. On top of that a secure hash is irreversible 
and unique. Irreversible means “one-way,” i.e., from the hash itself you could not 
figure out what the original piece of data was, therefore allowing the original data to 
remain secure and unknown. Unique means that two different pieces of data can 
never result in the same hash value. Today, for digital signatures SHA-2 algorithms 
are common, e.g., SHA-256 with a hash length of 256 bit.

So, on sender side (see Fig. 12) the message will be hashed, encrypted with 
sender’s private key (aka “signed”) and attached to the message before being trans-
mitted via a public (i.e., unsecured) network. In order to verify sender authenticity 
and message integrity this signature will be decrypted with the sender’s public key 
on receiver side. This operation creates H*(M). For verification purposes the 
received message M* will be hashed using the same hash algorithm as on sender 
side. This auxiliary hash H(M*) must be identical to the received decrypted hash 
H*(M). If not equal, very obviously something is wrong, either because

	1.	 Used public key on sender side does not match → identity of sender is 
questionable

or
	2.	 Received message is not identical with original message → message content is 

questionable

Fig. 11  Keys for symmetric vs. asymmetric encryption

Ingredients for NB-IoT Design Concepts



65

�Public Key Infrastructure (PKI)

In general, a public key represents the electronic identity of a person or an object. 
With a public key you can verify a digital signature, i.e., authenticity of the sender, 
but the key itself does not provide any information about the sender. This is why a 
public key infrastructure (PKI) is required for every application using public-key 
cryptography.

A PKI consists of a set of policies and an associated system that manage the 
creation, distribution, revocation, and administration of electronic identities incl. 
corresponding key pairs. PKI is about how two entities can trust each other in order 
to exchange messages securely. Usually, this is done by means of delegated trust 
using certificates issued be a mutually trusted entity, a so-called certification 
authority (CA). Each certificate links a public key to the corresponding electronic 
identity, it contains relevant information required for the application to work prop-
erly and in a trustworthy and tamper-proof manner (Fig. 13).

A PKI has to specify how new electronic identities (i.e., for new IoT devices) are 
added to the application environment and how to revoke obsolete or expired 

Fig. 12  Digital signature—create and verify process

NB-IoT Cellular Network Modules



66

certificates. In any case, an up-to-date certificate database must ensure that all valid 
public keys are available to all participants, i.e., all potential message recipients, 
e.g., via central online repository.

For large-scale roll-outs of complex applications like a national citizen ID card a 
suitable PKI will be very complex, but for many IoT applications requirements 
might be much more simple and easier to implement, e.g., you might only one cen-
tral registration authority which is exclusively handling certificates for new IoT 
devices and all IoT devices in the field. A PKI for a specific IoT project might be 
tailored to application requirements and should be as simple as possible, but at least 
you will have to consider, specify, and implement all relevant aspects how to handle 
and deploy public keys for all communication endpoints within your application 
environment.

�TLS Handshake and DH Key Agreement

TLS key ingredients are cryptographic algorithms (asymmetric, symmetric, hash) 
and a PKI infrastructure for public key management and deployment. Symmetric 
crypto is used for data encryption because used keys are much shorter and reduce 
required computational effort which is particularly beneficial for low-cost and 
battery-powered IoT devices. Because with symmetric cryptography both parties 
have to use the same crypto key for data encryption as well as for data decryption, 
a major challenge is to agree or to exchange a session key securely. Traditionally, 

Fig. 13  PKI certificate

Ingredients for NB-IoT Design Concepts



67

this was done by physical means, e.g., by a trusted courier delivering key lists writ-
ten down on paper. The Diffie–Hellman key exchange method allows two parties 
that do not know each other to jointly establish a shared secret key over an insecure 
channel like the Internet.

For preparation of a TLS/SSL-based secure communication session, IoT client 
and server have to perform a handshake protocol to exchange parameters and shared 
keys. Key parameter is the cipher suite to be used for exchanging messages. A 
cipher suite specifies used cryptographic algorithms and key lengths. For example, 
TLS_DHE_RSA_WITH_AES_256_CBC_SHA means:

•	 Tunnel type: TLS
•	 Public-key algorithm for digital signatures and PKI: RSA
•	 Key exchange method: DHE (Ephemeral Diffie–Hellman)
•	 Symmetric algorithm for data encryption: 256-bit AES with CBC
•	 Hashing method: SHA

As a prerequisite before starting the TLS handshake, both parties have exchanged 
and mutually verified validity of provided certificates for used public keys of IoT 
client and IoT server. This means that both parties have authenticated each other, so 
they are prepared for handshake between trusted communication partners. Messages 
will be readable by anybody “in the middle,” but they are digitally signed, so the 
message content cannot get manipulated.

In Fig. 14 a sample Diffie–Hellmann (DH) handshake for a secret key agree-
ment is illustrated. Circled numbers in picture are referring to numbers in brackets 
in text. For a sample calculation of an agreed pre-master secret, parameters with the 
following values have been used:

•	 Modulus p = 25 (N)
•	 Base g = 38 (G)
•	 Client: secret random a = 2
•	 Server: secret random b = 5

After mutual authentication with the server has been done, the IoT client device 
will start the TLS handshake process by sending a list of cipher suites supported (1) 
to the server. In response, the server will return a message indicating which cipher 
suite has been selected for secure messaging (1).

In this case we are using a handshaking method of DHE-RSA, a 256-bit AES-
CBC shared key, and with a SHA hash signature. In order to generate a symmetric 
session 256-bit AES key for data encryption, the protocol uses the multiplicative 
group of integers modulo p (aka “modulus”) where p is prime, and g is a primitive 
root of prime number p (aka “base”). Numbers g and p are random, but carefully 
selected as seed parameters for the calculation process and will be shared with the 
client (2).

The server will then generate a random number b, and based on previously gen-
erated values for g and p, the server will then generate B = gb mod p. On client side, 
same operation is done with secret random a: A = ga mod p. Both results A and B 
are shared with the other party (3).

NB-IoT Cellular Network Modules



68

Now, the trick is that on both sides the same secret S  =  gab mod p can be 
calculated:

S = Ab mod p = (ga mod p)b = gab mod p
S = Ba mod p = (gb mod p)a = gba mod p

Fig. 14  DH key agreement (handshake concept)

Ingredients for NB-IoT Design Concepts



69

Only a and b are secret, all other values are sent in clear. S = gab mod p is called 
the pre-master secret (4).

Here, for demonstration purposes, in this example only small numbers have been 
used. With p = 25 only 25 possible results of a pre-master secret are possible (n mod 
25) and can be determined shortly. However, if p is a large prime of—let us say—1000 
bits, then even the fastest known algorithm on fastest computer cannot find random 
number a based on given public values of g, p and (ga mod p) and (gb mod p).

Based on this shared pre-master secret, both client and server can generate a 
master key. For this purpose, the TLS PRF (Pseudorandom Function) will be used. 
In TLS 1.2 this is created using an HMCA-SHA256 hashed value which will gener-
ate a 256-bit key. To create the actual key used we feed the master key and the nonce 
into the PRF and generate the shared 256-bit AES key for the session (5).

For use of the module TLS/SSL stack, if available, a proprietary AT command 
extension is provided as part of the firmware. As an example, for Telit ME910G1 
NB-IoT module [18] the following commands are available to communicate 
securely with a remote SSL server:

•	 Configure Security Parameters of an SSL Socket AT#SSLSECCFG

–– Select cipher suite and authentication mode (server and or client).

•	 Manage the Security Data AT#SSLSECDATA

–– Stores, reads, and deletes security data (certificates, private keys) in/from 
module NVM (non-volatile memory)

•	 Enable an SSL Socket AT#SSLEN
•	 Open an SSL Socket to a Remote Server AT#SSLD
•	 Send Data through a SSL Socket AT#SSLSEND
•	 Read Data from an SSL Socket AT#SSLRECV

As a default setting, TLS is focusing on authentication of the IoT server, i.e., the 
client verifies the identity of the server. This might be fine for traditional browser–
server interaction, but for IoT applications also user devices are potential candidates 
for hacking and identity theft. As a consequence, mutual authentication is required 
to cover IoT devices as well and extend overall security scope. Mutual TLS (mTLS) 
is an option of the TLS protocol which can be used for this purpose. With mTLS, a 
two-way authentication of both parties is performed at the same time (using a chal-
lenge-response approach) and must succeed before any data exchange can start.

�Security Hardware and Certifications

For most TLS stacks the module MCU will be used for cryptographic work and 
module memory will be used for key storage (see Fig. 10 in section “End-to-End 
IoT Data Security”). Even if no extra protection for cryptographic material and 
processes has been implemented, software solutions are good enough for many IoT 
use cases. But in general, standard MCUs and memory products are not designed to 

NB-IoT Cellular Network Modules



70

provide high-level tamper protection against well-educated attackers with expen-
sive equipment. Faking device identities and IoT messages are potential threats, but 
sometimes it is just “brand protection” why manufacturers want to prevent people 
from cloning an IoT device.

Some IoT projects are at high risk, for example, because they trigger flow of 
money. Misuse or tampering involved IoT devices might cause financial damage. A 
popular IoT use case is smart metering, i.e., remote access to household electricity 
meters where transmitted consumption data is automatically converted into an 
energy bill which is addressed to the registered customer— without any human 
interaction or control. Needless to say, that energy providers are interested in an 
efficient infrastructure, but incorrect data delivery would cause financial loss resp. 
legal/liability problems. As such, this kind of IoT application requires strong 
protection.

But what does “strong protection” mean? On the market you will find some 
MCUs and MCU subsystems selling their products as “secure elements” emphasiz-
ing implemented security and crypto performance for use of their products as a 
“trusted zone” incl. protected storage and a secure operating system. For further 
evidence some manufacturers of secure elements are offering security evaluation 
results provided by independent crypto experts, e.g., a CC certificate (CC = “Common 
Criteria for Information Technology Security Evaluation,” short: “Common 
Criteria” or “CC”).

Common Criteria is an international standard (ISO/IEC 15408) for computer 
security certification [19]. Common Criteria is a process how to specify security 
functional and assurance requirements for IT products. A user (e.g., a governmental 
institute or organization) can formally specify security requirements as an 
implementation-independent Protection Profile (PP). Each PP is addressing a spe-
cific use case scenario or application, e.g., a digital tachograph for vehicles, a 
machine-readable travel document (ePassport), or a cash register. A PP may cover 
hard- and software components and contains threats, security objectives, assump-
tions, functional requirements, and security assurance requirements. For compliant 
products manufacturers will have to implement these requirements and submit can-
didates for certification to accredited CC testing laboratories for final verification. 
Specified CC Evaluation Assurance Level (EAL1 through EAL7) reflects how thor-
oughly products must be tested, i.e., the quality of implementation. Of course, the 
CC certificate will not disclose any implementation details, but—in combination 
with applied Protection Profile–it will tell which security measures have been taken, 
e.g., which kind of attacks have been addressed, e.g., physical intrusion, fault 
attacks, side-channel attacks, power analysis (see [20] for further explanation).

In fact, a CC evaluation is common practice for many national smartcard projects 
used for identification purposes. For this kind of projects, a successful security eval-
uation is mandatory for suppliers who want to qualify their products for related 
tenders. This business scenario mainly applies to governmental smartcard roll-outs, 
but in the meantime, CC security evidence is also required for some IoT projects. 
For example, the German nation-wide electricity meter roll-out is asking for a level 
EAL4+ Common Criteria security certificate for a so-called Smart Meter 

Ingredients for NB-IoT Design Concepts



71

Gateway (SMGW) to be deployed in households and industrial sites. An embedded 
smartcard is used as a security module for crypto operations and secure storage, this 
smartcard module will have to be certified even on CC level EAL4+. See [21] for 
more information about applied Protection Profiles (PP) for German Smart Meter 
Gateway IoT project.

In fact, many initiatives all over the world have started to regulate security of IoT 
devices. For example, the IoT Cybersecurity Improvement Act of 2020 (IoT CIA) is 
on the way in the USA since Dec, 4, 2020 and relies on the National Institute of 
Standards and Technology (NIST) to formalize security requirements for IoT 
devices which are owned or controlled by US government. This is another indica-
tion for increasing importance and market relevance of proven IoT security. Some 
manufacturers of cellular IoT network modules have started to prepare their prod-
ucts accordingly and provide evidence about strength and quality of implemented 
protection measures. For example, u-blox SARA-R5 (see Fig.  3) is featuring an 
embedded discrete secure element which is certified CC EAL5+. This extra chip is 
offering data protection, anti-cloning and secure boot. On top of this, it is acting as 
a “root of trust” for cloud services, e.g., secure firmware update (see section “Server 
Hosting and IoT Clouds”). Nordic Semiconductor nRF9160 does not offer any 
security certificate, but is based on an ARM Cortex-M33 MCU core and “CryptoCell” 
technology which is offering extra cryptographic and security resources for energy-
constrained devices. ARM cores are used by many smartcard ICs and CC-certified 
smartcard products.

In general, developers can add an extra 1-EUR IoT Secure Element (“SE”) to any 
IoT device design—independent from selected network module. All of these chips 
are CC EAL4 or EAL5 certified. SE chips will store credentials (e.g., private RSA 
keys for TLS communication) and run crypto algorithms securely and efficiently in 
a protected on-chip environment, sensitive data will never leave. Secure elements 
connect internally to the network module or to the host MCU via I2C or SPI bus. SE 
chips consume only few microamps in power-down mode and should wake up in 
active IoT periods only. This means that also battery-powered IoT devices can ben-
efit (see “Estimate overall power consumption” and two design concepts). 
CC-certified secure elements and associated services, e.g., for device provisioning, 
are available from

•	 NXP Semiconductor, URL: https://www.nxp.com/products/
security-and-authentication

•	 STMicroelectronics, URL: https://www.st.com/en/secure-mcus/authentica-
tion.html

•	 Infineon, URL: https://www.infineon.com/cms/de/product/security-smart-card-
solutions/optiga-embedded-security-solutions/optiga-trust/

In fact, secure elements offer ultimate end-to-end security for IoT communica-
tion channels (e.g., on top of TLS) and a root-of-trust for IoT applications—at some 
extra cost. This investment might pay off for IoT devices requiring strong tamper 
protection.

NB-IoT Cellular Network Modules

https://www.nxp.com/products/security-and-authentication
https://www.nxp.com/products/security-and-authentication
https://www.st.com/en/secure-mcus/authentication.html
https://www.st.com/en/secure-mcus/authentication.html
https://www.infineon.com/cms/de/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-trust/
https://www.infineon.com/cms/de/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-trust/


72

�Server Hosting and IoT Clouds

By nature, IoT applications are connected to the Internet, exchanging data between 
IoT clients and an IoT server. This is why an IoT project can take advantage of 
external online IoT services instead of implementing them in-house, e.g., server 
hosting, IoT device management, data analytics. Following increasing worldwide 
demand for IoT solutions, this market is versatile and encouraged many big players 
like Google or AWS to enter. Vendors of cellular network modules (modems) are 
bundling IoT services with their products in order to offer a one-stop-shopping 
experience to their customers.

An IoT cloud offers resources (servers, storage) and services to support opera-
tion of IoT applications and devices (Fig. 15). In general, IoT cloud services are 
leveraging available external expertise of IT companies and offload in-house devel-
opment efforts to build an infrastructure for IoT device management and data pro-
cessing. In fact, all IoT devices are delivering application-specific local data via 
Internet which require analysis and consolidation in order to generate actionable 
insights. This objective is particularly difficult to manage for large-scale IoT deploy-
ments with many devices and big data load. IoT cloud services allow IoT applica-
tions to collect, filter, transform, visualize, and act upon device data according to 
customer-defined rules. Another challenge is to manage deployed devices in the 
field, i.e., to check status, update functionality, or to re-configure them, if required.

By nature, IoT clouds offered by Google, AWS, etc. are generic, i.e., offered 
services are offered independently from target application and device hardware or 
used network technology. Services do not need any lower level support from device 
MCU, operating system, network interface, etc. Instead, on device side a TLS/SSL 

Fig. 15  IoT Cloud interface

Ingredients for NB-IoT Design Concepts



73

socket is acting as a device identifier and endpoint for IoT cloud one-to-one 
communication. For Google and AWS IoT clouds (and others), HTTP or MQTT 
application layer protocols can be used for uplink IoT data transfer or downlink 
device updates. Embedded HTTP and/or MQTT clients are standard firmware func-
tions offered by most NB-IoT network modules. Device identities can be securely 
stored and managed in combination with an integrated secure element and associ-
ated PKI certificates, if available (see sections “Public Key Infrastructure (PKI)” 
and “Security Hardware and Certifications”).

A cloud function called “device manager” establishes individual device identi-
ties and authenticates the device when connecting. It also maintains a logical con-
figuration of each device and can be used to remotely control the device from the 
cloud. Since the IoT cloud does not know any technical details of the NB-IoT 
device, each configuration request is must be converted locally by the host MCU 
into a sequence of module-specific AT commands.

IoT clouds are offered by

•	 Google Cloud IoT Core, URL: https://cloud.google.com/iot-core
•	 AWS IoT Core, URL: https://aws.amazon.com/iot-core/
•	 Microsoft Azure IoT, URL: https://azure.microsoft.com/en-us/overview/iot/
•	 IBM Watson IoT, URL: https://www.ibm.com/cloud/watson-iot-platform
•	 Telekom Cloud of Things, URL: https://iot.telekom.com/en/solutions/platform

and many others. In particular, vendors of cellular network modules like Telit or 
u-blox (see section “Vendor Overview”) are predestinated partners for cloud-based 
services as an added value of their products. For example, u-blox SARA-R5 NB-IoT 
module has an integrated MQTT interface to AWS IoT cloud with its own AT com-
mand set for control by the device IoT application.

�LwM2M Device Management

An interesting alternative is Lightweight M2M (LwM2M) which is a standard pro-
tocol from the Open Mobile Alliance (OMA) for IoT device management and 
service enablement. The LwM2M standard defines the application layer communi-
cation protocol between a LwM2M server and a LwM2M client which is offered by 
most cellular network modules. It offers an approach for managing IoT devices and 
allows devices and systems from different vendors to co-exist in an IoT-ecosystem.

Many industry members incl. module manufacturers and IoT platform vendors 
are OMA members, including ARM, Gemalto, Microsoft (Azure), Sierra Wireless, 
Telit, and u-blox. LwM2M’s device management capabilities include remote provi-
sioning of security credentials, firmware updates, connectivity management (e.g., 
for cellular), remote device diagnostics, and troubleshooting. LwM2M’s service 
enablement capabilities include sensor and meter readings, remote actuation, and 
configuration of host devices.

NB-IoT Cellular Network Modules

https://cloud.google.com/iot-core
https://aws.amazon.com/iot-core/
https://azure.microsoft.com/en-us/overview/iot/
https://www.ibm.com/cloud/watson-iot-platform
https://iot.telekom.com/en/solutions/platform


74

Open source implementations of the LwM2M protocol incl. LwM2M server are 
available on GitHub. For more information see https://omaspecworks.org/what-is-
oma-specworks/iot/lightweight-m2m-lwm2m/.

�SIM Card or Embedded eSIM

Everybody knows that a new mobile phone will not work if no SIM card has been 
inserted before. In fact, every cellular device is identified on the mobile network by 
the subscriber identity stored in its SIM card (SIM  =  Subscriber Identification 
Module). A SIM card is a personalized electronic component which is associated 
with the selected connectivity partner, i.e., a network operator (MNO). The SIM is 
used to identify the user (and associated subscription plan), and it activates a pre-
configured, MNO-specific connection profile on the user device. It also defines 
which service has been booked. Based on this commercial agreement (subscription 
plan), the selected network partner defines which network services are available and 
delivers those services using a combination of their own and/or sub-contracted 
mobile networks.

For a cellular IoT device, a SIM card is usually inserted during production or 
installation and will stay there until its end of life. Historically, SIM cards could 
hold just one subscriber identity linked to a single service provider. One service 
provider can still provide access to several networks through roaming, but in order 
to switch service providers, the SIM card needed to be physically changed to a new 
SIM card with a different subscriber identity. But, for some IoT use cases, SIM 
replacement would be practically impossible or this process would cost too much.

On the other hand, for some IoT projects flexibility of MNO selection during the 
complete device lifecycle would make sense. For example, if a company wants to 
permanently deploy devices in markets where permanent roaming is prohibited by 
regulation, such as in China and Brazil. Another reason is operational cost: even if 
an MNO offers roaming in an area which is not covered by its own network, a local 
MNO might offer IoT connectivity at a lower price.

Swapping SIM cards is a logistical challenge esp. for large-scale international 
IoT projects where you might have different MNO preferences for different loca-
tions of installed IoT devices. For stationary IoT devices this means that you might 
have to differentiate production process depending on target location, i.e., you will 
have to maintain different device versions and different BOMs with different SIM 
cards, i.e., SIM cards from multiple MNOs need to be managed in the supply chain. 
Even more challenging are mobile IoT applications or devices which are supposed 
to work everywhere (see “Design Concept #2: Object Localizer”).

From a technical point of view, a SIM card is just a copy-protected 32-64 kB stor-
age device which is owned and managed exclusively by the MNO. But in order to 
increase flexibility and reduce cost, industry members have been pushing to “virtual-
ize” the SIM card. Result is an embedded SIM (eSIM) or eUICC (embedded uni-
versal integrated circuit card) which converts the removable SIM card into a fixed 

Ingredients for NB-IoT Design Concepts

https://omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
https://omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/


75

SIM chip which can be soldered into the device PCB (Fig. 16). In fact, the eUICC is 
a single-chip secure MCU platform which is shared by MNOs in a way that multiple 
profiles can be loaded. Users can select and activate the most appropriate profile per 
remote control. The eUICC is a secure element based on a multi-application 
GlobalPlatform JavaCard operating system which is offering strictly separated secu-
rity domains for each MNO who is owning and managing its content. eSIM stan-
dardization is being facilitated by GSM Association, further information and 
specifications are available here: https://www.gsma.com/esim/esim-specification/. 
An eSIM can accommodate several subscriptions, and provisioning of an eSIM can 
be performed over-the-air with clearly defined roles and interfaces described in 
GSMA’s “Remote SIM Provisioning (RSP) Architecture for consumer Devices.” 
High security standards for production and processes have been put in place in order 
to create confidence among all involved parties, i.e., chip manufacturers, device 
manufacturers, operators, service providers, and users. eUICC implementations are 
subject to Common Criteria evaluation aiming at assurance level EAL4+. 
Communication channels for remote provisioning are TLS-encrypted with authen-
ticated parties based on PKI certificates with GSMA as the root certification 
authority.

The eSIM approach is addressing the patchwork and fragmented structure of the 
current global cellular network. For current IoT applications an eSIM will effi-
ciently solve logistics problems in case a different MNO should be used. But eSIM 
might also create new ideas for new IoT business opportunities because it will allow 
IoT application owners to switch to the most appropriate network anywhere at any 
time— on the fly.

Fig. 16  eSIM MFF2 SMD package

NB-IoT Cellular Network Modules

https://www.gsma.com/esim/esim-specification/


76

From practical NB-IoT device design point of view, use of eSIM will reduce 
component count and PCB space, and obsolete SIM connectors will increase secu-
rity and reliability of the design. Impact on power consumption will be marginal 
because SIM card will be powered by the modem only when needed (see section 
“Design Concept #1: Environmental Sensor” of chapter “Designing an NB-IoT 
Device”). In general, massive eSIM adoption is ongoing and used by several mobile 
phones and also by some IoT cellular network modules, e.g., by Telit and Sierra 
Wireless (see section “Vendor Overview”) who are offering their own subscription 
plans as IoT MVNOs.

But in general, implementing and operating eUICC-based IoT solutions require 
more than just dealing with a new SIM formfactor. Instead of just inserting a ready-
to-use SIM card, fixed eSIM users will need a secure infrastructure to manage 
download and activation of different MNO profiles, subscriber identities and man-
age the lifecycle of the overall setup. For many straight-forward IoT projects, e.g., 
indoor and fixed-location use cases, the traditional SIM card approach is still good 
enough, if device space constraints do not prevail.

�Sensors

Sensing one or multiple parameters of a remote location is a major ingredient of 
every IoT application (see section “NB-IoT Use Cases” of chapter “IoT Target 
Applications”). Typical parameters to be monitored are temperature, humidity, pres-
sure, vibration, motion, fill level, weight, noise, volume, applied force, chemical 
composition, presence, distance, brightness, speed. But also, simple yes/no indica-
tors might be relevant, e.g., an open door, presence of an object, full container. In 
fact, all NB-IoT network modules are offering various interface options for sensors 
(see Fig. 3). Typically, three different options are available: general-purpose I/Os 
(GPIOs), an integrated Analog/Digital Converter (ADC) and I2C or SPI serial data 
interfaces. A simple digital yes/no indicator can connect to a GPIO pin of the mod-
ule. For analog signals, an ADC channel can be used. Digital sensors normally use 
an I2C or SPI interface for data transmission. A NB-IoT cellular module typically 
offer dedicated AT commands are usually available for all three inputs options. 
These AT commands are used by the IoT application software to control sensor 
operation and input data flow. If not supported by module AT commands, the host 
MCU will have to take over and provide suitable sensor interfaces.

For many IoT applications, IoT devices can deliver local sensor data on remote 
request at any time, but for battery-powered NB-IoT devices additional require-
ments apply in an effort to leverage PSM power saving feature. Limited battery 
capacity mandates a strict power reduced design with components remaining in 
power-down mode as long as possible. By default, the modem is in PSM mode and 
will wake up for scheduled or event-driven activity cycles only. Sensor devices 
should follow PSM cycles, i.e., enter stand-by operation whenever PSM mode has 
been activated by the IoT application software (in cooperation with NB-IoT 

Ingredients for NB-IoT Design Concepts



77

network). Independent from measured parameter, an IoT sensor should offer a 
power-down mode allowing the device to consume only few microamperes during 
this period. Activation can be done by software (I2C command) or via dedicated 
hardware wake-up pin (see Fig. 17). For this purpose, many network modules offer 
an external signal which is indicating that the modem has switched its radio on, i.e., 
has returned to active mode. This mechanism can be used for scheduled IoT device 
activity, e.g., for monitoring IoT application (used for “Design Concept #1: 
Environmental Sensor”). As an alternate unscheduled wake-up approach, the 
modem’s “RING” indicator (for a received message) can be used to initiate sensor 
full operation.

For sensor-driven operation of the IoT device, a wake-up pin is offered by most 
NB-IoT modules (called WAKE or PWR_ON or similar). Pulling this pin for a cer-
tain duration will end PSM mode and reactivate full modem operation. This pin can 
be used for a typical IoT monitoring applications (see section “Remote Monitoring/
Detection” of chapter “IoT Target Applications”) where users are focused on a local 
parameter to escape from an expected range, e.g., ambient temperature gets too 
high. Thus, he/she wants to get alerted whenever a certain minimum or maximum 
value (threshold) is exceeded. Many digital sensors offer this function and the 
option to fire an interrupt signal in this case.

Lowest power consumption, wake-function, and threshold-driven interrupt capa-
bility are additional requirements which apply mainly for battery-powered zero-
touch IoT applications. In general, important selection criteria for digital sensors are 
measurement performance like resolution, accuracy, response time, long-term drift, 
etc. Figure 18 is providing an overview of major vendors and typical categories for 
monolithic sensor chips with digital output (e.g., I2C) which have been designed for 
mass-market cost-sensitive IoT applications.

Many sensors are directly matching the objective of an IoT application. For 
example, for remote monitoring of CO2 pollution, specialized sensor ICs are 

Fig. 17  Sensor interfaces

Sensors



78

available to deliver the actual CO2 rate in a digital format. Integration of these sen-
sors via I2C bus is straight-forward.

Other applications can use sensor outputs as an input parameter for calculations, 
e.g., to determine the distance to an object. For this purpose, the time-of-flight 
(TOF) of an emitted light pulse and reflected by the object. A sensor detects the 
returning signal, and the total travel time determines its distance to the object. For a 
seamless integration into an IoT device, sensor manufacturers are usually offering a 
comprehensive solution package incl. application notes, design kits, source code, 
etc. in order to accelerate customer design.

Te
m
pe
ra
tu
re

Hu
m
id
ity

O
pt
ic
al

Pr
ox
im

ity
,

Ti
m
e-
of
-F
lig
ht

G
as
,L
iq
ui
d

Fl
ow

Ac
ce
le
ro
m
et
er

e-
Co
m
pa
ss

G
yr
os
co
pe

Pr
es
su
re

(B
ar
om

et
er
)

M
ic
ro
ph
on
e

U
ltr
as
ou
nd

Vo
lta

ge

Ra
da
r

M
ag
ne

tic

CO
2

Cu
rr
en
t

G
as
,L
iq
ui
d

Fl
ow

Analog Devices
(www.analog.com)

x x x x x

Bosch Sensortec
(www.bosch-sensortec.com)

x x x x x x

Infineon
(www.infineon.com)

x x x x x x

Maxim
(www.maximintegrated.com)

x

Microchip
(www.microchip.com)

x x x

Murata
(www.murata.com)

x x x x

NXP (www.nxp.com) x x x
ON Semiconductor
(www.onsemi.com)

x x

Renesas
(www.renesas.com)

x x x x x

ROHM
(www.rohm.com)

x x x x x x x

ScioSense
(www.sciosense.com)

x x x x x

Sensirion
(www.sensirion.com)

x x x x x

Silicon Labs
(www.silabs.com)

x x x x

STMicroelectronics
(www.st.com)

x x x x x x x x x x x

TE Connectivity
(www.te.com)

x x x x x x

Texas Instruments
(www.ti.com)

x x x x x x x

Vishay
(www.vishay.com)

x

Measurement Parameter

Manufacturer
(Website URL)

Fig. 18  Digital sensors—overview

Ingredients for NB-IoT Design Concepts



79

Another example are MEMS sensors (MEMS = micro-electro-mechanical sys-
tems) which are based on semiconductor technology to measure mechanical force, 
i.e., convert it into an electrical signal. In fact, MEMS accelerometers measure 
linear acceleration. But they can also be used for specific purposes such as inclina-
tion and vibration measurements which are needed for “Predictive Maintenance” of 
machines or equipment. With MEMS accelerometers you can also address special 
IoT use cases, e.g., detect an object which has been moved from its assigned loca-
tion, or detect free-falling condition of an object. Sensor measurement data might 
not immediately answer the question, but measurement data can be used to feed 
calculation and creation of meaningful IoT data.

�Suppliers and Online Support

Good news for IoT application developers is that the “Internet of Things” has been 
elected by all market players as the #1 top priority application for the IT electronics 
business. All contributors like semiconductor manufacturers, network operators, 
distributors, IT service providers, etc. are trying to benefit from promising IoT mar-
ket outlook and take their share. For IoT device designers this means that they can 
expect to receive a decent level of support for their engineering work.

On top of this, most manufacturers of electronic components and subsystems 
have learned how to handle a large number of different customer projects via sales 
partners or online channels. In fact, most chips are offered as standard products 
accompanied by a comprehensive set of documentation, evaluation tools, and a 
design kit. Objective is to provide self-explanatory material which is supposed to 
answer most questions in order to minimize customer need for one-to-one support. 
All relevant product information should be published online and downloadable 
via manufacturer website. Usually, it also allows customers to order product sam-
ples, evaluation boards, design kits, etc. directly.

In addition, and whenever needed, an authorized dealer (distributor) will be 
the day-to-day business partner and entry point for all kind of customer requests. 
Traditional distributors are independent and work as a supply partner offering addi-
tional customer services incl. stock management, consultancy, and technical sup-
port. As an alternative, commercial customer requests can also go to online 
distributors like Mouser or Digi-Key who do not offer any additional support, but 
competitive prices.

IoT design engineers are particularly online-minded and might take decisions to 
select a component based on information which have been extracted from online 
sources. In general, manufacturer websites are most important self-service reposi-
tories for product information and a common starting point for application design-
ers to prepare for competitive product comparisons. Besides technical information 
like datasheets and user manuals also white papers, presentations, and videos are 
available for download. Design kits should include drivers, sample source code, 
schematics, guidelines for PCB layout, etc. For components like cellular network 

Suppliers and Online Support



80

modules or sensors which are specifically addressing devices for IoT applications, 
many manufacturers are offering IoT-specific application notes and design tips in 
order to support implementation and to speed up customer time-to-market. In par-
ticular, they should explain how to perform application-specific adjustments, e.g., 
which features have been implemented to save power consumption and/or how to 
configure a NB-IoT network cell according to application requirements.

On top of product information, manufacturers should offer interactive support 
services. A popular online support instrument is a virtual community where people 
with a particular common interest meet online and exchange information. For this 
purpose, manufacturers of electronic components offer a community platform with 
discussion boards for product-related topics. These are places where users can ask 
questions and share material with other community members. Communities are man-
aged by a company moderator and supported by product experts, but key aspect for 
success are contributions from other users. Community members will have to register, 
but hide their professional identity from others, i.e., they can participate anonymously. 
By nature, all contributions are published and might help multiple visitors.

For non-public support requests, some manufacturers are offering the option to 
submit a private support ticket. Each case will be handled one-to-one by a com-
pany employee and will be escalated to a product expert, if required.

Ingredients for NB-IoT Design Concepts


	Ingredients for NB-IoT Design Concepts
	NB-IoT Cellular Network Modules
	Vendor Overview
	AT Command Interface
	Unsolicited Result Code (URC)

	IoT Data Transfer Protocols
	IP-Based Protocols
	MQTT (Message Queuing Telemetry Transport)
	CoAP (Constrained Application Protocol)

	End-to-End IoT Data Security
	How Public-Key Cryptography Can Help
	Message Authenticity and Integrity
	Public Key Infrastructure (PKI)
	TLS Handshake and DH Key Agreement
	Security Hardware and Certifications

	Server Hosting and IoT Clouds
	LwM2M Device Management

	SIM Card or Embedded eSIM

	Sensors
	Suppliers and Online Support


