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Chapter 1 ®)
Introduction Check for

1.1 Introduction

Stereochemistry is the chemistry of organic compounds in three dimensions. The
term stereochemistry has been derived from the Greek word ‘steros’ meaning solid.
In fact, stereochemistry is an important branch of chemistry. It is not only concerned
with the geometry of the molecules but is also of immense use in understanding the
pathway of chemical transformations.

The origin of stereochemistry stems from the discovery of plane-polarised light by
French physicist Malus (1809). Subsequently, another French physicist Biot (1815)
discovered the existence of two types of quartz crystals, which rotated the plane-
polarised light in opposite directions. It was found that this property was not only
associated with the crystalline structure but some compounds in solution also exhib-
ited this property. It was Pasteur who studied various salts of tartaric acid and
observed that optically inactive sodium ammonium tartarate is actually a mixture
of two different kinds of crystals which were mirror images of each other and rotated
the plane-polarised light in opposite directions. He was able to separate them by
using a hand lens and a pair of tweezers. It was concluded that the optical activity in
solution is due to some molecular property which is retained in solution. It is now
well known that this property is due to the presence of asymmetric carbon in the
compound. A detailed discussion on this forms the subject matter of a sub-section
chapter (see Chap. 2).

It is now well known that a very large number of compounds can be represented
in more than one form. The phenomenon of the existence of two or more compounds
having the same molecular formula is known as isomerism. Such compounds are
referred to as isomers. Thus, it can be said that the isomers have the same molec-
ular formula. However, they differ from each other in their physical and chemical
properties.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 3
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4 1 Introduction

Isomerism is basically of two types. These are structural isomerism and stereoiso-
merism. The structural isomerism, as we know, is due to the difference in the struc-
tures of the molecules. These structural differences can be further classified into, i.e.,
chain isomerism, position isomerism and functional group isomerism. Besides these,
we also come across metamerism and tautomerism. On the other hand, stereoiso-
merism is not structural isomerism; it is due to constituent atoms or groups differing
in their arrangement in space. The different types of isomerisms are represented
below:

Isomerism

l '

Structural Stereoisomerism
isomerism

l l l l

Chain Metamerism Position Tautomerism Functional
isomerism isomerism group
isomerism
Conformational Configurational
isomerism isomerism
Geometrical Optical
isomerism isomerism

The stereoisomers can be either conformational isomers (leading to conforma-
tional isomerism); they arises due to rotation about a carbon—carbon sigma bond
(single bond) or configurational isomers, which are of two types, viz., geometrical
isomers (leading to geometrical isomerism) and optical isomers (leading to optical
isomerism).

Chain isomerism arises due to the different carbon skeletons of the isomers
(called chain isomers). Some examples are
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Chain isomers

C4H10 CH3CH20H20H3 CH3 — CHCH3
Butane
CHj
Isobutane
CH3
CsHq2 CH3CH,CH,CHoCH3 CH3CHCH,CH3
n-Pentane Isobutane

(2-methylbutane)

Position isomerism as the name implies is due to the difference in the position
of the substitutions of the isomers (called position isomers). As an example, C3;HsO
can be 1-propanol or 2-propanol.

(l)H
CH3CHoCHo0H CH3CHCHg
1-Propanol 2-Propanol

(n-Propyl alcohol) (isopropyl alcohol)

Functional group isomerism arises due to different functional groups. The
isomers are called functional isomers. As an example, C3HgO can be either acetone
or propanal and C3HgO can be either an ether or an alcohol.

C3HgO CH3CCHg3
Acetone

C3HgO CH3CH>0OCH3

Methoxyethanel

(Ethyl methyl ether)

CH3CH,CHO
Propanal

CH3CH,CH,OH
Propanal
(n-Proyl alcohol)

In case of metamerism, the isomers (known as metamers) have the same

functional group. Some examples include

C4H4100 CH30CH,CH,CH3
Methoxy propane
(Methylpropyl ether)

0]

Il
CsH100 CH3CHoCCH,CHs

3-Pentanone
(Diethyl ketone)

CH3CH,OCH,CH3
Ethoxyethane
(Diethyl ether)

(0]
[

CH3CCH,CH,oCHj

2-Pentanone
(Methylpropylketone)



6 1 Introduction

In tautomerism a compound can exist in two interconvertible forms known as
tautomers. It is also called dynamic isomerism or Keto-enol tautomerism. Some
examples are

0 OH
[ |

CH3 —C—CH; ===  CHy —C=CH,

Acetone Acetone
(Keto form) (Enolic form)
93% 7%
O OH
CH3CCH,COOC,H5 == CH3C =CHCOOC,H5
Ethylacetoacetate Ethylacetoacetate
(Keto form) (Enolic form)

Stereoisomerism, as has already been stated, is due to differences in the arrange-
ment of atoms or groups in space. Stereoisomerism is of two types, viz., conforma-
tional isomerism and configurational isomerism. A discussion on these forms is the
subject matter of subsequent chapters (see Chap. 2, Sect. 2; Chaps. 3 and 4).

Stereochemistry plays a special role in drugs. It is now known that only one
enantiomer of a drug is useful for the effective treatment of a disease. As an example,
the well-known drug ibuprofen (which contains a stereogenic centre) exists as a pair
of enantiomers. However, only (S)-ibuprofen is effective as an anti-inflammatory
agent. The (R)-ibuprofen shows no anti-inflammatory activity but is slowly converted
into the (S)-enantiomer in vivo. Another drug, fluoxetine, is used as an antidepressant;
in this case, only the (R)-enantiomer is the active component. The most interesting
example is the case of the drug thalidomide, which was taken during pregnancy to
avoid morning sickness. This drug (which was a mixture of (R) and (S) enantiomers)
caused catastrophic birth defects to children born to women who took thalidomide.
It was subsequently formed that only the (R) enantiomer has the desired effect and
the (S)-enantiomer was responsible for birth abnormalities. This has been discussed
in detail in Sect. 18.2 of Chap. 18.

Stereochemistry plays a vital role in the outcome of products obtained in various
reactions like addition reactions, elimination reactions, substitution reactions, rear-
rangement reactions, free radical reactions and pericyclic reactions. All these form
the subject matter of Part-III of this book.
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Chapter 2 ®)
Stereochemistry of Organic Compounds Qs
Containing Carbon—Carbon Single

Bonds (Hydrocarbons)

2.1 Introduction

Organic compounds containing carbon—carbon single bonds are called alkanes. Since
there is free rotation about the single bonds (sigma bond), various spatial arrange-
ments are obtained by rotation about the single bonds. These spatial arrangements
are called conformations of a molecule. Out of all the conformations, the stable
ones are known as conformers or conformational isomers.

2.2 Projection Formula of Conformers

The projection formula of conformers are useful for studying the conformations
of simple molecules. Two projections, viz., Newman projection and Sawhorse
representation are possible.

In order to write the Newman Projection of a molecule (say ethane), it is viewed
along a carbon—carbon bond [Fig. 2.1a]; in this case, the ethane molecule can be
represented in wedge and dash drawings. For drawing Newman’s projection, the
carbon near the observer is represented by a point and the three groups attached to it
are represented by three lines emerging from this point [Fig. 2.1b]. The other carbon
(rear carbon) is shown by a circle and the three substituents attached to this carbon
are shown by three lines emerging from the edge of the circle. The angle, 6, between
the H—C—C plane and the C—C—H plane of the H—C—C—H unit is called the
dihedral angle.

In Sawhorse representation, the carbon—carbon single bond of ethane is repre-
sented by a line, which is oriented diagonally backwards, i.e., the left-hand carbon
projects towards the viewer and the other carbon (right-hand carbon) projects away
from the viewer (Fig. 2.2). As in case of Newman projections, the substituents on
each carbon are also shown by lines.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 9
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Fig. 2.1 a Wedge and dash formula and b Newman projection of ethane

Fig. 2.2 Sawhorse H
representation of ethane

The projection formulae (as mentioned above) can be best understood by using
molecular models. The four substituents attached to the carbon atoms in ethane are
arranged in a tetrahedral fashion.

It was J. H. van’t Hoff who first postulated that certain formations of molecules
are favoured. He was the winner of the first Nobel Prize in Chemistry (1901) for his
work on Chemical Kinetics.

2.3 Conformations of Ethane

As already stated, in case of ethane a large number of conformations are possible
resulting from the rotation of CHj3 group about carbon—carbon single bond. The
different conformations in ethane can be either staggered or eclipsed. These are
represented in wedge and dash forms as shown in Fig. 2.3.

The scattered and eclipsed conformations of ethane are best represented by
Newman projections. These projections represent the view along the C;—C, bond.
Carbon 1 is represented by a small black circle and carbon 2 is represented by a large
circle. The staggered and eclipsed conformations of ethane are represented by the
Newman projection as shown in Fig. 2.4.

When the dihedral angle is 0°, then the hydrogens on the two carbon atoms
are parallel and the conformation is called eclipsed conformation. However, when
the dihedral angle is 60°, the hydrogens on two carbons are at maximum distance
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Fig. 2.3 Wedge and dash representations of staggered and eclipsed conformations of ethane

Fig. 2.4 Newman H HH
projections of staggered and 0 = 60° ] 0=0°
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and the conformation is called staggered conformation (see Fig. 2.4). It has been
found that there is an energy difference of 12.13 kJ mol™! between the eclipsed
and staggered conformations and that the staggered conformation has the lower
energy. This is due to the reason that there is maximum separation of bonded pairs
in the staggered conformation leading to maximum repulsion between them. On the
other hand, in the eclipsed conformation, the C—H bonds are very close to each
other and this results in repulsion between the electrons forming the bonds. So the
staggered conformation is more stable than the eclipsed conformation. Though the
energy difference between the two conformations is very small (12.13 kJ mol™') in
comparison to the kinetic energy of the molecule due to molecular motions. Even at
low temperature, a molecule can pass through one staggered conformation to another
staggered conformation, although in between it has to pass through an eclipsed
conformation at a rate of about 10'! times per second.

This interconversion, as seen, is very rapid though it is not completely ‘free’ in
the sense that the energy barrier of 12.13 kJ mol™! is there to be overcome. In fact,
ethane molecule spends most of its time in staggered conformation, passing only
transiently through its eclipsed form. At ordinary temperature, the rotation about the
C—C bond is restricted. The energy required to rotate the molecule about the C—C
bond is called torsional energy.

The variation of potential energy for various conformations of ethane is shown in
Fig. 2.5.
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Fig. 2.5 Variation of potential energy with dihedral angle. The molecule is in eclipsed conformation
at 0°, 120°, 240° and 360° and in staggered conformation at 60°, 180° and 300°

The analysis of molecular conformation and its relative energy is called confor-
mational analysis.

2.4 Conformations of Butane

The Sawhorse and Newman projections of butane are represented as

CH3 CH3
H H
H H
H H
H H
CH3 CH3
Sawhorse Newmann
projection projection

As in the case of ethane, in butane also various conformations are possible by the
rotation of the C—C bond formed by carbon atoms 2 and 3. These conformations
are represented as follows:
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HSC CH3 CH3 HCH3 CH3
H CHj H H
H H H H
H H H H H CHz H H
H CHj
| Il I \%
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H CHj CH, H;C CH,
HsC H
H,C H H H
3 H H H H H
H
Vi \
Conformations: Eclipsed Gauche Eclipsed
Dihedral angle:  24(° 300° 360° =0

When the dihedral angle is 0°, the conformation (I) is called eclipsed confor-
mation. As the dihedral angle increases to 60°, another conformation (II) called
gauche or skew conformation is obtained. When the dihedral angle is 120°, another
eclipsed conformation (III) results. In this conformation (III), CH; and H are
eclipsed, whereas in the earlier eclipsed conformation (I) the two methyl groups
were eclipsed. Hence, this eclipsed conformation (III) is at a lower energy level than
the earlier conformation (I). When the two methyl groups are maximum apart (when
the dihedral angle is 180°), the conformation is called anti-conformation (IV). This
conformation (IV) is the most stable conformation of butane since it has the lowest
energy value. Further rotation gives another eclipsed (V) and gauche (VI) confor-
mations. The difference in energy between the anti- and gauche conformations is
about 3.14 kJ mol™". It is found that at room temperature, butane is a mixture of
72% anti-conformation and 28% gauche conformation. As in the case of ethane, in
this case also the interconversion is quite rapid. In case one wants to separate the
conformations, it is necessary to slow down the interconversion by working at a
low temperature of about 43 K. Figure 2.6 shows the potential energy variations for
various conformations of butane.

Conformational analysis or the study of conformations is helpful in explaining
the specificity of reactions, particularly the reactions observed in living systems.
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Fig. 2.6 Potential energy diagram for the conformations of butane

2.5 Conformations of Cycloalkanes

Cycloalkanes are cyclic compounds and contain carbon—carbon single bonds as in
the case of alkanes. Examples include cyclopropane, cyclobutane, cyclopentane and
cyclohexane. However, cycloalkanes having more than six carbons are also known.

2.5.1 Stability of Cycloalkanes

Cycloalkanes do not have the same relative stability. Their stabilities are determined
on the basis of their heats of combustion. The heat released on complete combus-
tion of one mole of a substance is called its heat of combustion. Higher the heat
of combustion per methylene group, lower will be its stability. The cycloalkanes,
as we know, constitute a homologous series, each member differing from the one
immediately preceding it by one —CH,— group. On this basis, the general equation
for the combustion of a cycloalkane is given by the equation

3
(CH,) + EnOQ — nCO;, 4+ nH,0 + heat

In case of cycloalkanes, it is possible to calculate the amount of heat evolved
per CH, group, on the basis of which the stabilities of cycloalkanes are directly
compared. Table 2.1 gives the heat of combustion per CH; group in cycloalkane and
the ring strain. It is also possible to determine the bond angle in cycloalkanes, on
which their stabilities de