
Trends in Mathematics
Research Perspectives CRM Barcelona  Vol.15

Extended 
Abstracts 
GEOMVAP 2019

Maria Alberich-Carramiñana
Guillem Blanco
Immaculada Gálvez Carrillo
Marina Garrote-López
Eva Miranda
Editors

Geometry, Topology, Algebra, and 
Applications; Women in Geometry 
and Topology





Trends in Mathematics

Research Perspectives CRM Barcelona

Volume 15

Managing Editor

David Romero i Sànchez, Centre de Rercerca Matemàtica, Barcelona, Spain

Since 1984 the Centre de Recerca Matemàtica (CRM) has been organizing scientific
events such as conferences or workshops which span a wide range of cutting-edge
topics in mathematics and present outstanding new results. In the fall of 2012, the
CRM decided to publish extended conference abstracts originating from scientific
events hosted at the center. The aim of this initiative is to quickly communicate new
achievements, contribute to a fluent update of the state of the art, and enhance the
scientific benefit of the CRM meetings. The extended abstracts are published in the
subseries Research Perspectives CRM Barcelona within the Trends in Mathematics
series. Volumes in the subseries will include a collection of revised written versions
of the communications, grouped by events. Contributing authors to this extended
abstracts series remain free to use their own material as in these publications for
other purposes (for example a revised and enlarged paper) without prior consent
from the publisher, provided it is not identical in form and content with the original
publication and provided the original source is appropriately credited.

More information about this subseries at https://link.springer.com/bookseries/13332

https://springerlink.bibliotecabuap.elogim.com/bookseries/13332


Maria Alberich-Carramiñana · Guillem Blanco ·
Immaculada Gálvez Carrillo ·
Marina Garrote-López · Eva Miranda
Editors

Extended Abstracts
GEOMVAP 2019
Geometry, Topology, Algebra,
and Applications; Women in Geometry
and Topology



Editors
Maria Alberich-Carramiñana
Departament de Matemàtiques and Institut
de Robòtica i Informàtica Industrial
(CSIC-UPC)
Universitat Politècnica de Catalunya
Barcelona, Spain

Immaculada Gálvez Carrillo
Departament de Matemàtiques
Universitat Politècnica de Catalunya
Barcelona, Spain

Eva Miranda
Departament de Matemàtiques
Universitat Politècnica de Catalunya
Barcelona, Spain

Guillem Blanco
Department of Mathematics
KU Leuven, Leuven, Belgium

Marina Garrote-López
Departament de Matemàtiques
Universitat Politècnica de Catalunya
Barcelona, Spain

ISSN 2297-0215 ISSN 2297-024X (electronic)
Trends in Mathematics
ISSN 2509-7407 ISSN 2509-7415 (electronic)
Research Perspectives CRM Barcelona
ISBN 978-3-030-84799-9 ISBN 978-3-030-84800-2 (eBook)
https://doi.org/10.1007/978-3-030-84800-2

Mathematics SubjectClassification: 13A18, 13F30, 14C20, 14E15, 14E30, 15B51, 35F21, 53D17, 70H20,
70E60, 92D15

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered
company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-84800-2


Preface

The Geometry of Varieties and Applications Group (GEOMVAP) is a group of
researchers with interests in a wide range of fields, which include algebraic, differ-
ential and symplectic geometries, algebraic topology, commutative algebra and
their applications. The group is composed of researchers rooted or formed at the
Universitat Politècnica de Catalunya (UPC).

Themain objective ofGEOMVAP is to take a deep dive into the study of geometric
structures and their applications. The geometric structures that are considered are
algebraic varieties, symplectic and differentiable manifolds and the applications
are mainly focused in the fields of Phylogenetics, Robotics, Mathematical Physics,
Control Theory, Dynamical Systems and Celestial Mechanics. In order to achieve
that end, a broad range of tools are used (geometric, algebraic, topological, arith-
metic, differential and computational), and in many cases techniques from different
fields are combined.

Themembers of the groupwork in interdisciplinary teams and transversal research
topics. GEOMVAP promotes, in particular, Responsible Research and Innovation
(RRI) within the framework of Horizon 2020. Among the RRI initiatives, it strives
for gender equality, public engagement, science communication and the visibility of
women in Science and Society.

The extended abstracts in this volume stem from the contributions in two events
organized by GEOMVAP during the year 2019.

On January 23 and 24 of 2019, theGEOMVAPgroup organized an offsidemeeting
on the Parador de Cardona, a large ninth century castle perched on a steep hill
overlooking the town and salt mine of Cardona. The goal of that meeting was to
share the different objectives, strategies and advances of the different research topics
of GEOMVAP. The event consisted of 22 talks from different members of the group:
Ph.D. students, postdoctoral members and professors.

A list of the contributed talks is included below.

v
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List of Talks

• Maria Alberich Carramiñana, Action of Cremona maps on planar polynomial
differential systems.

• Patricio Almirón Cuadros, On the Tjurina number of plane curve singularities.
• Josep Àlvarez Montaner, D-modules over direct summands.
• Miguel Angel Barja, Clasificación de variedades irregulars y el Teorema

Fundamental del Cálculo.
• Guillem Blanco, Bernstein-Sato polynomials of plane curves.
• Roisin Braddell, Group symmetries of cosymplectic and b-symplectic manifolds.
• Joaquim Brugués, La construcció de l’homologia de Floer.
• Robert Cardona, Estructures geomètriques en hidrodinàmica.
• Franco Coltraro, Mechanics of inextensible surfaces.
• Josep Elgueta, Representacions categòriques.
• Marina Garrote López, Semi-algebraic conditions for phylogenetic varieties.
• Xavier Gràcia, Hamilton-Jacobi theory and geometric mechanics.
• Juan Margalef, De la mecánica clásica a la mecánica cuántica.
• AnastasiiaMatveeva,Group valuedmoment maps and equivariant cohomologies.
• Eva Miranda, From Celestial Mechanics to Fluid Dynamics: contact structures

with singularities, part I.
• Miguel C. Muñoz Lecanda, Sobre distribucions no integrables.
• Cédric Oms, From Celestial Mechanics to Fluid Dynamics: contact structures

with singularities, part II.
• Alessandro Oneto, Looking for equations of mixtures of phylogenetic models.
• Arnau Planas, A bm-symplectic KAM theorem.
• Xavier Rivas Guijarro, Singular Lagrangian field theories and k-cosymplectic

geometry.
• Jordi Roca-Lacostena, On the embedding problem for evolutionary Markov

matrices.
• Narciso Román Roy, Multisimplectic formulation of Lagrangian models in

gravitation (GR).

The workshop Women in Geometry and Topology was an endeavor orga-
nized by the GEOMVAP research group and financed under the AGAUR project
2017SGR932. It took place at the Centre de Recerca Matemètica, Barcelona, from
Semptember 25 to 27, 2019.

The workshop Women in Geometry and Topology featured nine plenary talks by
top female mathematicians and several contributed talks and poster presentations
by speakers of any gender identity. Two of the plenary lectures were addressed to
the general public, not only for mathematicians but also for anyone with curiosity. A
panel open to the public was also organized in order to discuss the situation of women
in mathematics, the gender gap and strategies to break the glass-ceiling inside and
outside academia.

Below there is a list of plenary, contributed talks and poster presentations.
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List of Plenary Talks

• Başak Gürel (University of Central Florida), From Hamiltonian systems with
infinitely many periodic orbits to pseudo-rotations via symplectic topology.

• Kathryn Hess (École Polytechnique Fédérale de Lausanne, EPFL SV BMI
UPHESS), What does topology have to do with neuroscience?

• Ann Lemahieu (Laboratoire de Mathématiques J. A. Dieudonné), On the
monodromy conjecture for nondegenerate hypersurface singularities.

• Marta Macho-Stadler (Universidad del País Vasco-Euskal Herriko Unibertsi-
tatea), Sesgos de género en la Academia: cuando las matemáticas no funcionan.

• Catherine Meusburger (FAU Erlangen-Nürnberg), Ideal tetrahedra and their
duals.

• EmmyMurphy (NorthwesternUniversity),TheKoras-Russel cubic andWeinstein
flexibility.

• Rita Pardini (Università di Pisa), Deformations of semi-smooth varieties.
• M. Eugenia Rosado Mar a (Universidad Politécnica de Madrid), Second-order

Lagrangians admitting a first-order Hamiltonian formalism.
• Lidia Stoppino (Università degli Studi di Pavia), Clifford-Severi inequalities for

varieties of maximal Albanese dimension.
• Ulrike Tillman (University of Oxford), Geometric groups via homotopy theory.
• Carme Torras (Institut de Robòtica i Informàtica Industrial (CSIC-UPC)), Cloth

manipulation in assistive robotics: Research challenges, ethics and fiction.

List of Contributed Talks

• Daria Alekseeva (National Research University Higher School of Economics),
Presentations of symplectic mapping class group of rational 4-manifolds.

• Patricio Almirón (Universidad Complutense de Madrid), Milnor and Tjurina, a
4/3 relation.

• Guillem Blanco Fernandez (Universitat de Politècnica de Catalunya), Yano’s
conjecture.

• Melanie Bondorevsky (Universidad de Buenos Aires & IMAS-CONICET),
Topological degree and periodic orbits of semi-dynamical systems.

• Robert Cardona (Universitat de Politècnica de Catalunya), A contact topology
approach to Euler flows universality.

• JoanaCirici (Universitat deBarcelona),Hodge theory of almost Kählermanifolds.
• Franco Coltraro (Institut de Robòtica i Informàtica Industrial, CSIC-UPC),

Collisions and friction for inextensible cloth simulatio.
• Aina FerràMarcús (Universitat de Barcelona), Localizations of models of theories

with arities.
• Marina Garrote-López (Universitat de Politècnica de Catalunya), Distance to the

stochastic part of phylogenetic varieties.
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• Jordi Gaset (Universitat de Politècnica de Catalunya), A contact geometry
approach to symmetries in systems with dissipation.

• Debora Gil (Computer Vision Center and Computer Science Department at
Universitat Autonoma de Barcelona), Topological Radiomics (TOPiomics): Early
Detection of Genetic Abnormalities in Cancer Treatment Evolution.

• Matias V. Moya Giusti (Université Paris-Est), Dimension formulas for the
cohomology of arithmetic groups.

• Cédric Oms (Universitat de Politècnica de Catalunya), Do overtwisted contact
manifolds admit infinitely many periodic Reeb orbits?

• Sinem Onaran (Hacettepe University), Legendrian knots in contact 3-manifolds.
• Maryam Samavaki (University of Eastern Finland), On several classes of Ricci

tensor.
• Julia Semikina (University of Bonn), G-theory of group rings for finite groups.
• Paola Supino (Roma Tre University), On complete intersections containing a

linear subspace.
• M. Pilar Vélez (Universidad Antonio de Nebrija), Automated proving and

discovery in elementary Geometry by means of algebraic geometry.

List of Poster Presentations

• Joaquim Brugués (Universitat de Politècnica de Catalunya), Towards a Floer
homology for singular symplectic manifolds.

• Luciana Bonatto (University of Oxford), Decoupling in Higher Dimensions.
• Marta Mazzocco (Universitat de Birmingham), Poisson Structures on Painlevé

Monodromy Manifolds.
• Pau Mir (Universitat de Politècnica de Catalunya), Invariants in Semitoric

Integrable Systems. Looking for a new interpretation.
• Inasa Nakamura (Institute of Science and Engineering, Kanazawa University),

Branched covering surfaces in 4-space and simplifying numbers.

We are very happy to attest that the atmosphere created by the participants of the
workshop was very open and friendly, and we hope that it led to effective further
collaborations.

Barcelona, Spain
Leuven, Belgium
Barcelona, Spain
Barcelona, Spain
Barcelona, Spain
Barcelona 2021

Maria Alberich-Carramiñana
Guillem Blanco

Immaculada Gálvez Carrillo
Marina Garrote-López

Eva Miranda
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Q-Hilbert Functions of Multiplier and
Test Ideals

Josep Àlvarez Montaner and Luis Núñez-Betancourt

Abstract This is an extended abstract with some of the results that will appear in
the forthcoming paper [3] in which we prove the rationality of the Poincaré series
associated tomultipliers and test ideals as long aswe have discreteness and rationality
of the corresponding jumping numbers and Skoda’s theorem is available. In order
to do so we extend the theory of Hilbert functions to the case of filtrations indexed
over the rational numbers.

1 Introduction

Let A be a commutative Noetherian ring containing a fieldK. Assume that A is either
local or graded with maximal ideal m and let a be an m-primary ideal. Depending
on the characteristic of the base field we may find two parallel sets of invariants
associated to the pair (A, ac) where c is a real parameter. In characteristic zero we
have the theoryofmultiplier idealswhichplay aprominent role in birational geometry
and are defined using resolution of singularities (see [12] formore insight). In positive
characteristic we may find the so-called test ideals which originated from the theory
of tight closure [10, 11] and are defined using the Frobenius endomorphism. Despite
its different origins, it is known that under some conditions on A, the reduction mod
p of a multiplier ideal is the corresponding test ideal. Moreover, both theories share

JAM is partially supported by Generalitat de Catalunya 2017SGR-932 project and SpanishMiniste-
rio de Economía y Competitividad MTM2015-69135-P. LNB is partially supported by CONACYT
Grant 284598 and Cátedras Marcos Moshinsky.

J. Àlvarez Montaner (B)
Departament de Matemàtiques, Universitat Politècnica de Catalunya, Av. Diagonal 647,
08028 Barcelona, Spain
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L. Núñez-Betancourt
Centro de Investigación en Matemáticas, Guanajuato, Gto., México
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M. Alberich-Carramiñana et al. (eds.), Extended Abstracts GEOMVAP 2019,
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2 J. Àlvarez Montaner and L. Núñez-Betancourt

a lot of common properties which we summarize as saying that they form a filtration
of m-primary ideals

J : A � Jα1 � Jα2 � · · · � Jαi � · · ·

and the indices where there is an strict inequality is a discrete set of rational
numbers. Following the ideas of [8] we define the multiplicity of c ∈ R>0 as
m(c) = dimK (Jc−ε/Jc), for ε > 0 small enough, and the Poincaré series of J as

PJ(T ) =
∑

c∈R>0

dimK (Jc−ε/Jc) T c.

The natural question is whether this is a rational function, in the sense that it belongs
to the field of fractional functions Q(z) where the indeterminate z corresponds to a
fractional power T 1/e for a suitable e ∈ N>0. The only known results on this question
were given in [9] and [1, 2] where the authors proved the rationality of the Poincaré
series of multiplier ideals in rings of dimension two by giving an explicit formula
for the multiplicities.

The approach that we are going to give is completely algebraic and will provide
an unified proof of the rationality of the Poincaré series for both the multiplier and
the test ideals in any dimension. To such purpose we will develop a theory of Hilbert
functions indexed over Q.

2 Q-Good Filtrations

Let A be a commutative Noetherian ring. Assume that A is either local or graded with
maximal ideal m and let a be an m-primary ideal. The theory of good a-filtrations
gives an approach to the study of Hilbert functions that covers most of the classical
results in an unified way. We start recalling briefly this notion but we refer to the
monograph [13] and the references therein for more insight.

Let M be a finitely generated A-module such that λ (M/aM) < ∞, where λ(·)
denotes the length as A-module. A good a-filtration on M is a decreasing filtration

M : M = M0 ⊇ M1 ⊇ · · ·

by A-submodules of M such that M j+1 = aM j for j >> 0 large enough. Under
these premises we may consider the Hilbert and the Hilbert–Samuel function of M
with respect to the filtrationM defined as

HM( j) := λ
(
M j/M j+1

)
and H 1

M( j) := λ
(
M/M j

)

respectively. Moreover, we consider the Hilbert and the Hilbert–Samuel series
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H SM(T ) :=
∑

j≥0

λ
(
M j/M j+1

)
T j and H S1

M(T ) :=
∑

j≥0

λ
(
M/M j

)
T j .

Notice that we have H SM(T ) = (1 − T )H S1
M(T ). As a consequence of theHilbert–

Serre theorem we can express them as rational functions

H SM(T ) = (1 − T )H S1
M(T ) = (1 − T )

hM(T )

(1 − T )d+1
,

where hM(T ) ∈ Z[T ] satisfies hM(1) �= 0 and d is the Krull dimension of M . The
polynomial hM(T ) is the h-polynomial of M.

The aim of this section is to extend the notion of good a-filtrations by allowing
filtrations indexed overQ and thus mimicking properties satisfied by filtrations given
by multiplier and test ideals.

Definition 1 Let M be a finitely generated A-module such that λ (M/aM) < ∞. A
Q-good a-filtration is a decreasing filtrationM := {Mα}α≥0 of submodules of M0 =
M , indexed by a discrete set of positive rational numbers such that Mα+1 = aMα for
all α > j with j >> 0 large enough.

Indeed, we may think ofM as a filtration of submodules Mc indexed over the real
numbers for which there exist an increasing sequence of rational numbers 0 < α1 <

α2 < · · · such that Mαi = Mc � Mαi+1 for any c ∈ [
αi ,αi+1). In particular we have

a discrete filtration of submodules

M : M � Mα1 � Mα2 � · · · � Mαi � · · ·

and we say that the αi are the jumping numbers ofM. A crucial observation is that,
once we fix an index c ∈ R, the filtration

Mc : Mc ⊇ Mc+1 ⊇ Mc+2 ⊇ · · ·

is a good a-filtration.

Definition 2 LetM := {Mc}c≥0 be a Q-good a-filtration. We define the multiplicity
of c ∈ R>0 as

m (c) := λ (Mc−ε/Mc)

for ε > 0 small enough. Clearly, c is a jumping number if and only if m (c) > 0.

Definition 3 Let M := {Mc}c≥0 be a Q-good a-filtration. We define the Poincaré
series of M as

PM(T ) =
∑

c∈R>0

m(c) T c.

The question that we want to address is whether the Poincaré series is rational in
the sense that it belongs to the field of fractional functions Q(T 1/e) where e ∈ N>0

is the least common multiple of the denominators of all the jumping numbers.
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Proposition 4 Let M := {Mc}c≥0 be a Q-good a-filtration. Given c ∈ R>0 we have
that ∑

j≥0

m(c + j)T j

is a rational function in Q(T 1/e).

Theorem 5 Let M := {Mc}c≥0 be a Q-good a-filtration. Then, the Poincaré series
PM(T ) is rational. Indeed we have

PM(T ) =
∑

c∈(0,1]

(
m(c)

1 − T
+ hMc(T ) − hMc−ε

(T )

(1 − T )d+1

)
T c

where hMc(T ) is the h-polynomial associated to Mc and d = dim A.

3 Poincaré Series of Multiplier and Test Ideals

In this Section we specialize the results obtained above to the case of multiplier and
test ideals.

3.1 Multiplier Ideals

Let (A,m) be a normal local ring essentially of finite type over an algebraically closed
field K of characteristic zero and a ⊆ A an m-primary ideal. Under these general
assumptions we ensure the existence of canonical divisors K X on X = Spec A which
are not necessarily Q-Cartier. Then we may find some effective boundary divisor
� such that K X + � is Q-Cartier with index m large enough. Now, given a log-
resolution π : X ′ → X of the triple (X,�, a) we pick a canonical divisor K X ′ in X ′
such thatπ∗K X ′ = K X and let F be an effective divisor such thata · OX ′ = OX ′ (−F).

The multiplier ideal associated to the triple (X,�, ac) for some real number
c ∈ R>0 is defined as

J(X,�, ac) = π∗OX ′

(⌈
K X ′ − 1

m
π∗(m(K X + �)) − cF

⌉)
.

This construction allowed de Fernex and Hacon [7] to define the multiplier ideal
J(ac) associated to a and c as the unique maximal element of the set of multiplier
ideals J(X,�, ac)where� varies among all the effective divisors such that K X + �

is Q-Cartier. The key point proved in [7] is the existence of such a divisor � that
realizes the multiplier ideal as J(ac) = J(X,�, ac).
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From its construction we have that the multiplier ideals form a discrete filtration
of m-primary ideals

A � J(aα1) � J(aα2) � · · · � J(aαi ) � · · ·

and the αi where we have a strict inclusion of ideals are the jumping numbers of the
ideal a. Although Skoda’s theorem still hold in this framework [7, Corollary 5.7],
that is, for any c > dim A

J(X,�, ac) = a · J(X,�, ac−1)

there are cases where the jumping numbers are not rational as shown by Urbinati
in [16]. Moreover, the question about discreteness is still open despite some partial
results in this direction. Is for this reason that, in order to have a Q-good a-filtration
J = {J(ac)} given by multiplier ideals we will have to restrict to the case that A is Q-
Gorenstein. In this situation, the canonical module K X is Q-Cartier so no boundary
� is required in the definition of multiplier ideal.

Theorem 6 Let (A,m) be a normal local Q-Gorenstein ring essentially of finite
type over a field K of characteristic zero and let a ⊆ A be an m-primary ideal.
Let J := {J(ac)}c∈R>0 be the filtration given by multiplier ideals. Then, the Poincaré
series PJ(T ) is rational.

3.2 Test Ideals

Let A be a commutative Noetherian ring containing a fieldK of characteristic p > 0.
The theory of test ideals has its origins in the work of Hochster and Huneke on tight
closure [11]. In the case of A being a regular ring, Hara and Yoshida in [10] extended
the notion of test ideals to pairs (A, ac) where a ⊆ A is an ideal. Their construction
has been generalized in subsequent works [4–6, 14] using the theory of Cartier
operators. Roughly speaking, the test ideal τ (ac) is the smallest nonzero ideal which
is compatible with any Cartier operator φ ∈ ⊕

e≥0 HomA(Fe∗ A, A) · Fe∗a�cpe�, where
Fe∗ is the Frobenius functor. In this situation we also have a filtration

A � τ (aα1) � τ (aα2) � · · · � τ (aαi ) � · · ·

and theαi wherewe have a strict inclusion of ideals are called the F-jumping numbers
of the ideal a.

The big question in this setting is whether the F-jumping numbers are discrete
and rational. There are some results in this direction but we are going to pay attention
to the work of Schwede and Tucker [15] where they consider a normal Q-Gorenstein
local domain (A,m) essentially of finite type over a perfect field K of characteristic
p > 0. Not only they proved the discreteness and rationality of F-jumping numbers
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[15, Theorem 6.3] but also gave a version of Skoda’s theorem that reads as τ (ac) =
a · τ (ac−1) for any c > dim A. In the case that a is an m-primary ideal we have that
any test ideal τ (ac) ism-primary as well and thus the filtration τ = {τ (ac)} given by
the test ideals is a Q-good a-filtration.

Theorem 7 Let (A,m) be a normal Q-Gorenstein local domain essentially of finite
type over a perfect field K of characteristic p > 0 and let a be an m-primary ideal.
Let τ := {τ (ac)}c∈R>0 be the filtration given by test ideals. Then, the Poincaré series
Pø(T ) is rational.
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Up-to-Homotopy Algebras with Strict
Units

Agustí Roig

Abstract We prove the existence of Sullivan minimal models for operads with non
trivial arity zero. So up-to-homotopy algebraswith strict units are just operad algebras
over these minimal models. As an application we give another proof of the formality
of the unitary n-little disks operad over the rationals.

1 Introduction and Main Result

In the beginning, in Stasheff’s seminal papers [17], A∞-spaces (algebras) had points
(units) in what was subsequently termed the zero arity of the unitary associative
operadAss+. They were still present in [1, 12], for instance, but after that, points or
units generally disappeared, and for a while, people working with operads assumed
as a starting point P(0) = ∅, in the topological setting, or P(0) = 0 in the algebraic
one: see for instance [5]. This may have been caused because of the problems posed
by those points (units); see [9], or [2] for two examples, or, more to the point, [14] (as
well as [15]),whereMarkl constructsminimalmodels for operads of chain complexes
over a field of zero characteristic, carefully excluding operads with non-trivial arity
zero.

More recently, the situation changed, and people have turned their efforts to prob-
lems involving non-trivial arity zero. In the topological context, for instance, we
have [16]; in the algebraic context, [3], or [10]; and dealing with both [4]. When
introducing points (units) back in the theory of up-to-homotopy things, there are two
main possibilities: either you consider strict ones, as in Stasheff’s original papers
[17], or in [2, 4, 12], or you consider up-to-homotopy ones, or other relaxed versions
of them: [1, 10, 16], and many others. You can even do both: [11].

In this paper, we work in the algebraic and strict part of the subject. The contri-
bution we add to the present panorama is to prove the existence of Sullivan minimal
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models P∞ for operads P on cochain complexes over a characteristic zero field k,
with non-trivial arity zero in cohomology, HP(0) = k. In doing so, we extend the
work of Markl [14], (see also [15]) which proved the existence of such models for
non-unitary operads, P(0) = 0. Our models include the one of [2] for the unitary
associative operad Ass+. More precisely, our main result says:

Theorem 1 Every cohomologically unitary, H P(0) = k, cohomologically con-
nected, H P(1) = k, and with a unitary multiplication operad P, has a Sullivan
minimal model P∞

∼−→ P.

In the non-unitary case, the importance of such minimal models is well known.
For instance, they provide a strictification of up-to-homotopy algebras, in that for
an operad P (with mild hypotheses), up-to-homotopy P-algebras are the same as
strict, regular P∞-algebras. We show how up-to-homotopy associative algebras or
A∞-algebraswith strict units are exactly (Ass+)∞-algebras. As a second application,
we offer another proof of the formality of the unitary n-little disks operad Dn+ over
the rationals. This fills the gap in our paper [7] noticed by Willwacher in his speech
at the 2018 Rio International Congress of Mathematicians [18].

2 Ingredients

Our result has been made possible thanks to two main ingredients: (1) the recently
introduced �-modules and �-operads, of [4], and (2) the simplicial and Kan-like
structures we found in an operad with unitary multiplication. Let us explain their
role.

2.1 Restriction Operations

Sullivan minimal models are constructed by a cell-attaching inductive algorithm.
In their original context of commutative dg algebras, the building blocks of this
algorithm are called Hirsch extensions [6], or KS-extensions [8]. In the context of
operads, they are called principal extensions [15]. Their definition in the non-unitary
case is the following.

Definition 2 (See [15]) Let n ≥ 2 be an integer. Let P = �(M) be free as a graded
operad, where M is a graded �-module, with M(0) = M(1) = 0. An arity n prin-
cipal extension of P is the free graded operad

P �d �(E) := �(M ⊕ E) ,
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where E is an arity-homogeneous �n-module with zero differential and d : E −→
Z P(n)+1 a map of �n-modules of degree +1. The differential ∂ on P �d �(E) is
built upon the differential of P, d, and the Leibniz rule.

Definition 3 Given an operad P , a Sullivan minimal model is a quasi-isomorphism
ρ : P∞

∼−→ P , which is built inductively on the arity of the operad through consec-
utive principal extensions

P2 = �(E(2))

ρ2

. . . Pn = Pn−1 �dn �(E(n))

ρn

. . . colim−→ n Pn = P∞

ρ

P

in such a way that, for all n, ρn : Pn −→ P is a quasi-isomorphism up to arity n.
This works perfectly fine in Markl’s non-unitary case. The success of the Sul-

livan algorithm relies on the fact that, when restricted to operads which are coho-
mologically non-unitary HP(0) = 0 and cohomologically connected HP(1) = k,
their minimal model is a free graded operad P∞ = �(M) over a �-module M =⊕∞

n=2 E(n)which is trivial in arities 0 and 1, M(0) = M(1) = 0. As a consequence,
P∞(n) = Pn(n): generators added in arities> n don’t change what we have in lower
ones. The problem in introducing units 1 ∈ k = HP(0) of our cohomologically uni-
tary operads as generators in the arity zero of their minimal model P∞ = �(M)

would be that units give rise to restriction operations which lower the arity:

δi = _ ◦i 1 : P(n) −→ P(n − 1) , ω �→ δi (ω) = ω ◦i 1 i = 1, . . . , n.

So, in the presence of units, new generators ω ∈ E(n) would produce new ele-
ments in lower arities δi (ω) ∈ Pn(n − 1); that is, in the previous steps of the induction
process thus ruining it. Nevertheless, we can also assume that the generating module
M also has trivial arities 0 and 1 in our unitary case. This possibility has been recently
made feasible thanks to Fresse’s �-modules and �-operads, [4]: to put it succinctly,
we strip out of the operad all the structure carried by the elements of P(0) and add
it to the underlying category of �-modules, obtaining the category of �-modules.
This way, we obtain a substitute for the general free operad functor with the bonus
of getting our field k in arity zero, with no need of any generators in the risky arities
zero and one.

But we must keep track of those units somewhere if we want to build minimal
models for cohomologically unitary operads. This is how we do it: we add the
restriction operations δi to the building blocks of our minimal model, the principal
extensions, without producing new generators in P∞, with a just slight modification
of the principal extensions.
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Definition 4 Let n ≥ 2 be an integer. Let P be free as a unitary graded operad,
P = �(M), where M is a graded �-module, with M(0) = M(1) = 0. A unitary
arity n principal extension of P is the free graded operad

P �δ
d �(E) := �(M ⊕ E) ,

where E is an arity-homogeneous �n-module with zero differential and:

(a) d : E −→ Z P(n)+1 is a map of �n-modules of degree +1; the differential ∂ on
P �d �(E) is built upon the differential of P, d and the Leibniz rule.

(b) δi : E −→ M(n − 1), i = 1, . . . , n are morphisms of k-graded vector spaces,
compatible with d and the differential of P , in the sense that, for all i = 1, . . . , n
we have commutative diagrams

E
d

δi

Z P(n)+1

δi

M(n − 1) ∂
P(n − 1)+1 .

Which also have to be compatible with the �-structure of P , from arity n − 1
downwards.

2.2 A Kan-Like Structure

However, once we put unitary principal extensions, with their extra restriction oper-
ations, in the Sullivan inductive algorithm, we have a new problem. To extend our
“partial” quasi-isomorphism ρn−1 to the next arity ρn , we now need to check that it is
compatible with these new restriction operations. For this, we introduce simplicial-
like and Kan-like structures in an operad with unitary multiplication. To the best of
our knowledge, both structures are new.

We begin with the simplicial-like structure. Restriction operations δi give us the
face maps. To obtain the degeneracy maps, we need a unitary multiplication on P;
that is, a morphism of operads Mag+ −→ P . Here, Mag+ stands for the unitary
magmatic operad. Mag+ is the operad of unitary magmas: algebras with a unit,
a single operation, and just the unit relations. This morphism gives us elements
1 ∈ P(0) and m2 ∈ P(2). These elements behave as a unit and a product: m2 ◦1 1 =
id = m2 ◦2 1. This extra condition of a unitary multiplication has an easy and natural
interpretation:we are only asking that the unit of our operad 1 ∈ P(0) not be an “idle”
one: there needs to be an arity two operationm2 for which 1 actually works as a unit.
With this unitary multiplication in P , we define our degeneracy maps as

σi : P(n) −→ P(n + 1) , σi (ω) = ω ◦i m2 , i = 1, . . . , n .
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It is an easy exercise to check that these δi and σi fulfill the simplicial identities
needed to prove Lemma7 below, which says that every operad with unitary mul-
tiplication P is a Kan-like simplicial complex. Its proof follows the one of [13],
theorem 17.1, verbatim. Notice that this proof does not use the simplicial identity
σiσ j = σ j+1σ j , i ≤ j , which in our case would be false, since m2 is not necessarily
associative.

Definition 5 Let {ωi }i=1,...,n be a family of elements in P(n − 1). We say that they
verify a Kan-like condition if δiω j = δ j−1ωi , for all i < j .

Example 6 Elements ω ∈ P(n), n ≥ 1, produce families {ωi = δiω}i=1,...,n in
P(n − 1) that verify the Kan-like condition.

The reciprocal of this example is also true.

Lemma 7 Let {ωi }i=1,...,n be a family of elements in P(n − 1) verifying the Kan-like
condition. Then there exists an ω ∈ P(n) such that δiω = ωi for all i = 1, . . . , n.

Moreover, we can prove that, if all the ωi are cocycles, coboundaries, or belong
to the kernel or the image of an operad morphism ϕ : P −→ Q, then ω can be
chosen to be also a cocycle, a coboundary, or to belong to the kernel or the image of
ϕ, respectively. Even more: if the ωi = ωi (e) depend linearly on e ∈ E(n), we can
choose ω = ω(e) to depend �n-equivariantly on e. So much for the explanations.
Let us now see all these constructions actually in action.

Sketch of the proof of theorem 1. To build ρ2 : P2 −→ P in the non-unitary
case, we take the generators in arity two to be E = E(2) = HP(2). Then, we
choose a �2-equivariant section s2 : HP(2) −→ Z P(2) ⊂ P(2) of the projection
π2 : Z P(2) −→ HP(2). And we get our first stage of the inductive algorithm as:

P2 = �(E) , ∂2|E = 0 , and ρ2 : P2 −→ P , ρ2|E = s2 .

In the unitary case, our section should make the following diagram to commute
too:

E = HP(2)

δi

s ′
2

Z P(2)

δi

π2

k = HP(1)

s1

Z P(1)
π1

Here, section s1 is the uniquek-linearmap sending id ∈ HP(1) to id ∈ Z P(1) and
the restriction operations on E are the ones induced by δi : P(2) −→ P(1), i = 1, 2
on cohomology. This is not necessarily true for the section s2 we have found in
the non-unitary case. So, given e ∈ E , we study the differences ωi (e) = δi s2(e) −
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s1δi (e) ∈ P(1), i = 1, 2. And we observe that they are coboundaries and verify our
Kan-like condition inDefinition 5. Therefore, because ofLemma7,weget a cobound-
ary ∂ω(e) ∈ P(2), such that δi∂ω(e) = ωi (e), i = 1, 2. With this, we modify the
section s2 from the non-unitary case to a new one s ′

2(e) = s2(e) − ∂ω(e) which is
compatible with the restriction operations δi . Finally, we average over �2

s̃2(e) = 1

2!
∑

σ∈�2

σ · s ′
2(σ

−1 · e)

= 1

2

(
s ′
2(e) + (2 1) · s ′

2((2 1) · e))

and obtain a�2-equivariant section, without losing anything we previously had for s2
and s ′

2. Therefore, we have our induced morphism of unitary operads ρ2 : P2 −→ P .
�
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Multisymplectic Lagrangian Models in
Gravitation

Jordi Gaset and Narciso Román-Roy

Abstract We apply the multisymplectic formulation of classical field theories [12,
13, 15] to describe the Einstein–Hilbert and the Einstein–Palatini (or metric-affine)
Lagrangian models of General Relativity.

1 Introduction

The geometrization of the theory of gravity, that is, General Relativity (GR), and in
particular, the multisymplectic framework, allows us to understand several inherent
characteristics of it. It is studied by different authors, such as [1–4, 8–11, 14, 16].

We present the main Lagrangian models for GR using the multisymplectic frame-
work: first the Einstein–Hilbert model which is described by a 2nd-order singular
Lagrangian (and so GR is formulated as a higher-order premultisymplectic field
theory with constraints), and second the Einstein–Palatini (metric-affine) model
described by a 1st-order singular Lagrangian (and so GR is formulated as a 1st-
order premultisymplectic field theory with constraints).

2 Geometric Structures: Jet Bundles and Multivector
Fields

First we introduce some fundamental geometrical tools which are used in the expo-
sition.
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Let π : E −→ M be a fiber bundle (with adapted coordinates (xμ, yi )). A section
of π is a map φ : U ⊂ M → E such that π ◦ φ = I dM . The set of sections is denoted
�(π). Two sections φ1,φ2 ∈ �(π) are k-equivalent at x ∈ M if φ1(x) = φ2(x) and
their partial derivatives until order k at x are equal. This is an equivalence relation in
�x (π) and each equivalence class is a jet field at x ; denoted j kx φ. The kth-order jet
bundle of π is the set J kπ := { j kx φ | x ∈ M, φ ∈ �x (π)}. Natural projections are:

πk
r : J kπ −→ Jrπ (r < k) , πk : J kπ −→ E , π̄k : J kπ −→ M .

Definition 1 The kth-prolongation of a section φ ∈ �(π) to J kπ is the section
j kφ ∈ �(π̄k) defined as j kφ(x) := j kx φ ; x ∈ M . A section ψ ∈ �(π̄k) in J kπ is
holonomic if ψ = j kφ; that is, ψ is the kth prolongation of a section φ = πk ◦ ψ ∈
�(π).

If φ = (x, yi (x)), then ψ = j kφ =
(
x, yi (x),

∂yi

∂xμ
(x),

∂2yi

∂xμ∂xν
(x), . . .

)
.

Definition 2 Anm-multivector field in J kπ is a skew-symmetric contravariant ten-
sor of orderm in J kπ. The set ofm-multivector fields in J kπ is denotedXm(J kπ). A
multivector field X ∈ Xm(J kπ) is said to be locally decomposable if, for every p ∈
J kπ, there is an open neighbourhoodUp ⊂ J kπ and X1, . . . , Xm ∈ X(Up) such that
X|Up = X1 ∧ · · · ∧ Xm . Locally decomposable m-multivector fields X ∈ Xm(J kπ)

are locally associated withm-dimensional distributions D ⊂ TJ kπ. Then, X is inte-
grable if its associated distribution is integrable. In particular, X is holonomic if it
is integrable and its integral sections are holonomic sections of π̄k .

If� ∈ �r (J kπ) is a differential r -form in J kπ andX ∈ Xm(J kπ) is locally decom-
posable, the contraction between X and � is i(X)� |U := i(X1) . . . i(Xm)�.

3 Einstein–Hilbert Model (Without Sources)

The configuration bundle for the Einstein–Hilbert model is π : E → M , where M is
an oriented, connected 4-dimensionalmanifold representing space-time,with volume
form ω ∈ �4(M), and E is the manifold of Lorentzian metrics on M . Thus dim E =
14. Adapted fiber coordinates in E are (xμ, gαβ), (with 0 ≤ α ≤ β ≤ 3), where gαβ

are the components of the metric, and such that ω = dx0 ∧ dx1 ∧ dx2 ∧ dx3 ≡ d4x .

(We also use the notation d3xμ ≡ i
( ∂

∂xμ

)
d4x).

The Lagrangian formalism is developed in J 3π, with the induced coordinates
denoted as (xμ, gαβ, gαβ,μ, gαβ,μν, gαβ,μνλ), (0 ≤ α ≤ β ≤ 3; 0 ≤ μ ≤ ν ≤ λ ≤
3). The bundle J 3π has some canonical structures; in particular, the total deriva-
tives are
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Dτ = ∂

∂xτ
+ gαβ,τ

∂

∂gαβ
+ gαβ,μτ

∂

∂gαβ,μ
+ gαβ,μντ

∂

∂gαβ,μν
+ gαβ,μνλτ

∂

∂gαβ,μνλ
.

The Hilbert–Einstein Lagrangian function (without energy-matter) is

LEH = √|det (gαβ)|R ≡ �R = �gαβRαβ ∈ C∞(J 2π) ;

where Rαβ are the Ricci tensor components and R is the scalar curvature (which,
as the Levi–Civita connection is used, it contains 2nd-order derivatives of gμν).
The Hilbert–Einstein Lagrangian density is L = L d4x ∈ �4(J 3π), where L =
(π3

2)
∗LEH ∈ C∞(J 3π). We denote

Lαβ,μν = 1

n(μν)

∂L

∂gαβ,μν
= n(αβ)

2
�(gαμgβν + gανgβμ − 2gαβgμν) ,

Lαβ,μ = ∂L

∂gαβ,μ
−

3∑
ν=0

1

n(μν)
Dν

(
∂L

∂gαβ,μν

)
= ∂L

∂gαβ,μ
−

3∑
ν=0

DνL
αβ,μν .

H =
∑

α≤β;μ≤ν

Lαβ,μνgαβ,μν +
∑
α≤β

Lαβ,μgαβ,μ − L = � gαβ,μgkl,νH
αβklμν ,

Hαβklμν = 1

4
gαβgklgμν − 1

4
gαkgβlgμν + 1

2
gαkglμgβν − 1

2
gαβglνgkμ ,

(where n(μν) = 1 if μ = ν, and n(μν) = 2 if μ �= ν). Then, the Poincaré–Cartan
5-form associated with L is

�L = dH ∧ d4x −
∑
α≤β

dLαβ,μdgαβ ∧ dm−1xμ −
∑
α≤β

dLαβ,μνdgαβ,μ ∧ dm−1xν ∈ �5(J3π) ,

and it is a premultisymplectic form because L is a singular Lagrangian.
The problemstated by theHamilton variational principle for the system (J 3π,�L)

consists in finding holonomic sections ψL = j3φ ∈ �(π̄3) satisfying any of the fol-
lowing equivalent conditions:

(a) ψL is a solution to the equation ψ∗
L i(X)�L = 0, for every X ∈ X(J 3π).

(b) ψL is an integral section of a holonomic multivector field XL ∈ X4(J 3π) satis-
fying the equation i(XL)�L = 0.

As �L is a premultisymplectic form, these field equations have no solution every-
where in J 3π. Applying the premultisymplectic constraint algorithm we obtain the
following constraints (see [6]):

Lαβ := −� n(αβ)

(
Rαβ − 1

2
gαβR

)
= 0 . (1)

Dτ L
αβ = Dτ (−� n(αβ)

(
Rαβ − 1

2
gαβR)

)
= 0 . (2)
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They define the Lagrangian final constraint submanifold S f ↪→ J 3π where solutions
exist and, in particular,

XL =
3∧

τ=0

∑
α≤β

∑
μ≤ν≤λ

(
∂

∂xτ
+ gαβ,τ

∂

∂gαβ
+ gαβ,μτ

∂

∂gαβ,μ
+

gαβ,μντ
∂

∂gαβ,μν
+ Dτ Dλ(gλσ(�

λ
να�σ

μβ + �λ
νβ�σ

μα)) ∂
∂gαβ,μνλ

)

is a holonomic multivector field solution to the equation in (b), tangent to S f (here
�ρ

μν are the Christoffel symbols of the Levi–Civita connection of g). Their integral
sections are the solutionsψL(x) = (xμ, gαβ(x), gαβ,μ(x), gαβ,μν(x), gαβ,μνλ(x)) to
the equation in (a), which gives

gαβ,μ − ∂gαβ

∂xμ
= 0 , (3)

gαβ,μν − 1

n(μν)

(
∂gαβ,μ

∂xν
+ ∂gαβ,ν

∂xμ

)
= 0 , (4)

� n(αβ)(Rαβ − 1

2
gαβR) = 0 . (5)

In this set of Eqs. (3) and (4) are (part of the) holonomy conditions; meanwhile
(5) are the physical relevant equations, which are the constraints (1) evaluated on the
image of sections, Lαβ |ψL = 0, and constitute the Euler–Lagrange equations of the
theory; that is, the Einstein equations.

As a consequence of the singularity of L, the form �L is π3
1-projectable onto a

form in J 1π (but it is not the Poincaré–Cartan form of any 1st-order Lagrangian).
Then, Einstein equations are 2nd-order PDE’s, instead of 4th-order as it correspond
to a 2nd-order Lagrangian. So they are defined as a submanifold of J 3π (and appear
as constraints).

The constraints (2) are of geometrical nature and arise because we are using a
manifold prepared for a theory of a 2nd-order Lagrangian that, really, is physically
equivalent to a 1st-order Lagrangian. These constraints hold automatically when they
are evaluated on the image of the sections ψL which are solutions to the Einstein
equations. Furthermore, the Einstein–Hilbert model is a gauge theory (because LEH

is singular). Then, the constraints (1) and (2) fix partially the gauge. To remove the
remaining gauge degrees of freedom leads to a submanifold of S f diffeomorphic to
J 1π.
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4 Einstein–Palatini (Metric-Affine) Model (Without
Sources)

The configuration bundle of the Einstein–Palatini (metric-affine) model is � : E →
M , where E = E ×M C(LM), where E is the manifold of Lorentzian metrics on M
and C(LM) is the manifold of linear connections in TM . Adapted fiber coordinates
in E are (xμ, gαβ, �λ

μν), (0 ≤ α ≤ β ≤ 3), and the induced coordinates in J 1� are
(xμ, gαβ, �λ

μν, gαβ,μ, �λ
μν,ρ). Thus dim E = 78 and dim J 1� = 374.

The Einstein–Palatini Lagrangian (without energy-matter) is a singular 1st-order
Lagrangian depending on the components of the metric g and of a connection �,

LEP = � gαβRαβ = � gαβ(�
γ
βα,γ − �

γ
γα,β + �

γ
βα�σ

σγ − �
γ
βσ�σ

γα) ∈ C∞(J 1�) .

The Lagrangian density is L = LEP d4x ∈ �4(J 1�), and its Poincaré–Cartan 5-
form is

�L = d

(
∂LEP

∂�α
βγ,μ

�α
βγ,μ − LEP

)
∧ d4x − d

∂LEP

∂�α
βγ,μ

∧ d�α
βγ ∧ d3xμ ∈ �5(J 1�) ,

which is a premultisymplectic form since LEP is also a singular Lagrangian.
The Lagrangian problem for the system (J 1�,�L) consists in finding holonomic

sections ψL = j1φ ∈ �(π̄1) (φ ∈ �(�)) satisfying any of the following equivalent
conditions:

(a) ψL is a solution to the equation ψ∗
L i(X)�L = 0, for every X ∈ X(J 1�).

(b) ψL is an integral section of a holonomic multivector field XL ∈ X4(J 1�) satis-
fying the equation i(XL)�L = 0.

Now, the premultisymplectic constraint algorithm leads to the constraints (see [7]):

0 = ∂H

∂gμν
− ∂Lβγ,σ

α

∂gμν
�α

βγ,σ , (6)

0 = gρσ,μ − gσλ�λ
μρ − gρλ�λ

μσ − 2

3
gρσT

λ
λμ , (7)

0 = Tα
βγ − 1

3
δα
β T

μ
μγ + 1

3
δα
γ T

μ
μβ , (8)

0 = Tα
βγ,ν − 1

3
δα
β T

μ
μγ,ν + 1

3
δα
γ T

μ
μβ,ν , (9)

0 = gργ�
γ
[νλ�λ

μ]σ + gσγ�
γ
[νλ�λ

μ]ρ + gρλ�λ[μσ,ν] + gσλ�λ[μρ,ν] + 2

3
gρσT

λ
λ[μ,ν] . (10)

where T α
βγ ≡ �α

βγ − �α
γβ . They define the submanifold S f ↪→ J 1�, where there are

holonomic multivector fields solution to the equations in (b), tangent to S f .
A consequence of the singularity of L is that �L is �1-projectable onto a form

in E and then, the Euler–Lagrange equations (Einstein’s eqs.) are 1st-order PDE’s,
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instead of 2nd-order. So they are defined as a submanifold of J 1π, and appear as
constraints (6). On the other hand, the equalities (7) are related to the metricity con-
dition for the Levi–Civita connection and they are called pre-metricity constraints.
Furthermore, there are the torsion constraints that impose conditions on the torsion
of the connection (8) and on their derivatives (9). Finally, the additional integrabil-
ity constraints (10) appear as a consequence of demanding the integrability of the
multivector fields which are solutions to the equations in (b).

The Einstein–Palatini model is a gauge theory (asL is singular) with higher gauge
freedom than in the Einstein–Hilbert model. The above constraints fix partially the
gauge. To remove the remaining gauge degrees of freedom leads to a submanifold
of S f diffeomorphic to J 1π in the Einstein–Hilbert model. The conditions of the
connection to be torsionless and metric (which allows us to recover the Einstein–
Hilbert model from the Einstein–Palatini model) are a consequence of the constraints
and a partial fixing of this gauge freedom [5].
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Computing the Distance to the Stochastic
Part of Phylogenetic Varieties

Marina Garrote-López

Abstract Phylogenetics and algebraic geometry are closely related since evolution-
ary models on phylogenetic trees describe algebraic varieties. However, only points
in these varieties corresponding to stochastic parameters are of biological interest.We
study whether restricting to these points could provide insight into the phylogenetic
reconstruction problem.

1 Introduction

Phylogenetic studies the evolutionary relationships among a group of current species.
These relationships are usually expressed in the form of a phylogenetic tree. For phy-
logenetic reconstruction and for theoretical analysis it is common to model evolution
adopting a parametric statisticalmodel. Then, the joint distribution at the leaves of the
trees can be expressed as polynomials in terms of the model parameters, under some
elementary assumptions in the models. The phylogenetic invariants are polynomial
relationships among the entries of the joint distributions that vanish for any choice
of the model parameters. They were introduced in 1987 by Cavender and Felsen-
stein in [5] and by Lake in [12]. Under this construction, algebraic geometry gets an
important role and is used in both the study and computation of the ideals and the
varieties defined by phylogenetic invariants. However, phylogenetic invariants not
only describe points with biological sense and it is necessary to add semi-algebraic
conditions in order to describe the regions of the varieties corresponding with bio-
logically meaningful points.

This paper was originallymotivated by the study of the semi-algebraic description
of the model space that is done in [2]. We wish to investigate if the semi-algebraic
conditions could make a positive contribution to phylogenetic inference. We focus
on a case study close to the long branch attraction phenomenon. Our main goal is
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to understand the region of the varieties with biological meaning and to compute the
Euclidean distance of a point into this subset. We describe this problem as an opti-
mization problem and we propose a method using numerical algebraic geometry and
computational algebra that goes through all critical points of the objective function
and achieves the optimal solution.

2 Phylogenetic Varieties

We refer the reader to [1] for a good general overview into phylogenetic algebraic
geometry. Here we introduce briefly basic concepts that will be needed later. Let T
be a quartet tree topology, that is, an (unrooted) trivalent phylogenetic tree with its
leaves labelled by {1, 2, 3, 4}. We choose an internal vertex as the root r . Suppose the
evolutionary process on that tree follows a Markov process on 4 states {A,C,G,T}
parametrized by a root distribution π = {πA,πC,πG,πT} and Markov matrices Me at
each edge (

∑
i πi = 1 and

∑
j Mi j = 1 ∀i). We denote by ps1···s4 the probability of

observing the state si at leaf i and by ϕT the parametrization map:

ψT : R� → R44

{π, {Me}e∈E(T )} �→ P = (ps1···s4)s1···s4

which maps the � parameters of the model to the vector of joint distribution of T .
Define the phylogenetic variety associated to T as the smallest variety containing the
image of ϕT , VT = ImϕT . These varieties are characterized by the model but also by
the topology of the tree. However only the points coming from stochastic parameters
have biological sense. A vector is stochastic if all its entries are nonnegative and sum
up to 1. A matrix is stochastic if all its rows are stochastic. Given a phylogenetic
variety VT we write V+

T for the subset that contains the distributions arising from
stochastic parameters and we call it the stochastic phylogenetic region: V+

T = {P ∈
VT | P = ϕT (s) and s ∈ S ⊂ [0, 1]�}.

In this paper we restrict to the Jukes–Cantor (JC69) algebraic evolutionary
model which assumes that on each edge, the conditional probabilities of substi-
tution between different nucleotides are the same. The discrete Fourier transform
introduced in [7] is a linear change of coordinates which diagonalizes group-based
models, in particular the Jukes Cantormodel. This simplifies the representation of the
model: each transition matrix can be parametrized by a single parameter xi (called
Fourier parameter), which is the eigenvalue of Mi of multiplicity three different
from 1 and the parametrization turns to be monomial. The coordinates of P after this
transformation are called Fourier coordinates. From now on, for the JC69 model,
we denote by ϕT the parameterization of the phylogenetic varieties from Fourier
parameters xi to Fourier coordinates:
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ϕT : R5 −→ R44

x = (x1, x2, x3, x4, x5) �→ P = ϕT (x1, x2, x3, x4, x5).

A JC69 matrix Mi is stochastic if and only if its Fourier parameter xi lies in I :=
[−1/3, 1].

3 Distance to the Stochastic Phylogenetic Regions

In this paper we deal with the long branch attraction (LBA) problem. This is a
phenomenon which appears when fast evolving lineages are wrongly inferred as
sister lineages even though they have been generated on a tree where they do not
share a common node.

Consider a 4-leaf tree which has a JC69 non-stochastic matrix M at the interior
edge with parameter m, a JC69 stochastic transition matrix K at edges going to
leaves 1 and 3 with parameter k, and the identity matrix at the remaining edges.
Write P := ϕT (k, 1, k, 1,m) for the point in VT corresponding to these parameters.
Then we want to find the closest point(s) ϕT (x) to P in the Euclidean distance. In
other words, finding the closest point(s) on the stochastic phylogenetic region can
be translated into the following optimization problem:

Problem 1 Minimize
x

f (x) := ‖P − ϕT (x)‖22 subject to g1,i (x) := xi − 1 ≤ 0, and

g2,i (x) := −xi − 1/3 ≤ 0 for i = 1, . . . , 5.

Theorem 1 If (k,m) ∈ I × (1,ω], then x∗ = (
x̃(k,m), 1, x̃(k,m), 1, 1

)
is a local

minimum of the optimization Problem1 where x̃(k,m) is the minimum between 1
and the unique (real) critical point of f (x, 1, x, 1, 1).

The value ω ≈ 1.734 is determined by the expression of x̃(k,m), and character-
izes the region I × (1,ω] where x̃ : I × (1,ω] → R is a real continuous function.
Theorem1 can be proved using the Karush-Kuhn-Tucker conditions. We conjecture
that this local minimum is actually the global minimum and we propose an algorithm
to prove our conjecture for specific values of k and m.

Conjecture 2 Under the hypothesis of Theorem1, d(P,V+
T ) = d

(
P,ϕT

(
x∗)

)
.

Algorithm1 To find the global minimum of this optimization problem we find all
critical points in the interior and the boundary of � := I 5 and then pick the one that
minimizes f (x). Similar approaches, where computational and numerical algebraic
geometry are applied in mathematical biology can be found in [9, 11]. The algorithm
falls naturally into two parts: first of all we find the critical points of the objective
function f over all C5 and then we check the boundaries of �.

1The algorithm has been implemented with Macaulay2 [8] and the code can be found in: https://
github.com/marinagarrote/StochasticPhylogeneticVarieties.

https://github.com/marinagarrote/StochasticPhylogeneticVarieties
https://github.com/marinagarrote/StochasticPhylogeneticVarieties
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It is know that the number of critical points of f whose image lies on the non-
singular locus of VT is finite and does not depend on the particular point P (Lemma
2.1 of [6]) and this value is called the Euclidean distance degree (EDd) of the variety.
It is proved in [4] that the singular points of VT are those that are the image of some
null parameter. In other words, ϕT (x1, . . . , x5) is singular if and only if xi = 0 for
some i . Points on the singular locus of VT have not biological sense since they
represent trees with infinite branch length. Hence, we can compute the number of
critical points of our function f in the preimage of the smooth part of the variety as
the degree of the saturation ideal I : (x1 · · · x5)∞, where I is generated by the partial
derivatives of f .

On the other hand, the global minimum of f could be also on the boundary
of �. Thus, we need to restrict f to all possible faces of � and find the critical
points there. Write S := (S1, S2) where S1, S2 ⊆ {1, . . . , 5} are disjoint subsets. Set
x̄ := (xi1 , . . . , xin ) and set F(x̄) := f (x) where xi = 1 if i ∈ S1 and x j = −1

3
if

j ∈ S2. Thus, we find the critical points of F(x̄) for each pair S. Varieties described
by the solutions of these multiple systems of equations are of dimension 0, and the
solutions can be numerically approximated.

Algorithm 1: Projection into stochastic phylogenetic regions
Input: f (x) for k ∈ I and m ≥ 1.
Output: Global minimum of Problem1.

Compute I :=
(

∂ f

∂x1
,

∂ f

∂x2
,

∂ f

∂x3
,

∂ f

∂x4
,

∂ f

∂x5

)

;

d := degree(I : (x1 · · · x5)∞) ;
while #{numerical solutions of ∇ f (x) = 0 < d} do Find the numerical solutions x∗ of
the system ∇ f (x) = 0 ;
foreach S = (S1, S2) do

Take x̄ := (xi1 , . . . , xin ) where i1, . . . , in /∈ S1 ∪ S2 and compute F(x̄);
Find the solutions x̄∗ of ∇F(x̄∗) = 0 and complete the point x∗ = (x1, . . . , x5) with

xi = 1 if i ∈ S1 and xi = −1

3
i ∈ S2;

Evaluate each x∗ ∈ � into f (x) and return the point x∗ with minimum f (x∗).

3.1 Computations and Conclusions

The computations were performed on amachinewith 10Dual Core Intel(R) Xeon(R)
Silver 64 Processor 4114 (2.20 GHz, 13.75 M Cache) equipped with 256 GB RAM
running Ubuntu 18.04.2. We have used Macaulay2 version 1.3, SageMath [13]
version 8.6 and Magma [3] version V2.24-8. The computations of the EDd of VT

where done with Magma and the output degree was 290. To find solutions to the dif-
ferent polynomial systems previously described we have used numerical algebraic
geometry methods, in particularly homotopy continuation based methods. All com-
putations have been done with the package PHCpack.m2 [10, 14] which turned out
to be the only numerical package capable to find the 290 points of I : (x1 · · · x5)∞.
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The Conjecture 2 has been tested for 1000 data points with parameters (k,m) ∈
(0, 1/4] × (1, 3/2] randomly chosen in order to simulate points close to the LBA
phenomenon. Every experiment has verified that the global minimum of the problem
is the point x∗ = (

x̃(k,m), 1, x̃(k,m), 1, 1
)
defined in Theorem1 and which was

proved to be a local minimum. Note that x5 being 1 means that the matrix M at the
interior edge is the identitymatrix and therefore the pointϕT (x∗) is in the intersection
of the three phylogenetic varieties for the three 4-leaf tree topologies.
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Generating Embeddable Matrices Whose
Principal Logarithm is Not a Markov
Generator

Jordi Roca-Lacostena

Abstract Several results seem to point out that the embeddability of a Markov pro-
cess may be determined by checking whether the principal logarithm of its transition
matrix is a rate matrix. In this note, we provide a constructive method to produce a
positive measure subspace of Markov matrices for which this is not true.

1 Introduction and Preliminaries

We introduce here the embedding problem of Markov matrices. A real square matrix
M is aMarkov matrix if its entries are non-negative and all its rows sum to 1. A real
square matrix Q is a rate matrix if its off-diagonal entries are non-negative and its
rows sum to 0. It is known that Q is a rate matrix if and only if M(t) = exp(Qt) is a
Markovmatrix for all t ≥ 0 [6]. In this case, we say thatM = exp(Q) is embeddable
(since it can be embedded into a 1-dimensional semigroup) and we say that Q is a
Markov generator for M . The embedding problem consists on deciding whether a
given Markov matrix is embeddable or not [3]. Note that 1 is an eigenvalue of any
Markov matrix because all its rows sum to 1. In the same way, 0 is an eigenvalue of
any rate matrix.

We say that a matrix Q is a logarithm of a matrix M if eQ = M . It follows from
the exponential series of a matrix eQ = ∑

n≥0
Qn

n! that any matrix that diagonalizes
Q does also diagonalize M , and the eigenvalues of M are the exponential of the
eigenvalues of Q. Moreover, it is known that if det(M) �= 0 there is a unique matrix
logarithm whose eigenvalues are the principal logarithm of the eigenvalues of M
[4]. This is the so-called principal logarithm of a matrix M and will be denoted by
Log(M).

Despite the embedding problem is solved for 2 × 2 and 3 × 3 matrices, it remains
open for bigger matrices. However, several results seem to indicate that Log(M) is
crucial to solve the embedding problem (check Theorems 5.1 and 5.2 in [5] for some
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of these results). In this note, we construct a set with positive measure containing
embeddable matrices whose principal logarithm is not a rate matrix.

Our motivation comes from phylogenetics, where the embeddeding problem is
equivalent to decide if the evolutionary process described by aMarkov matrix can be
explained by homogeneous continuous-time models or not. In this context, we work
with 4 × 4 Markov matrices and the entries of the matrix represent the probability
of mutation between the four different nucleotides. More precisely, we work with
a DNA substitution model known as the Strand Symmetric Model [2], which is
the simpler DNA substitution model that might be suitable for our purpose. DNA
substitutionmodels are given by different structures of theMarkovmatrix. In the case
of the Strand Symmetric Model we will work with real matrices with the following
symmetries : ⎛

⎜
⎜
⎝

a b c d
e f g h
h g f e
d c b a

⎞

⎟
⎟
⎠ .

We will refer to matrices with this structure as SS matrices. A straightforward com-
putation shows that the product and sum of SS matrices is closed within the model.
Hence, the exponential of a rate SS matrix is a Markov SS matrix. Moreover, it fol-
lows from Lemma 6.2 by [1] and Theorem 1.27 in [4] that any logarithm of a SS
matrix with pairwise different eigenvalues is also a SS matrix. It is also immediate
to check that SS matrices commute with each other.

2 SS Embeddable Matrices Whose Principal Logarithm is
Not a Generator

We start by providing a parametrization of all SS matrices with rows summing to 0.
Given v = (v1, . . . , v6) ∈ R6 and θ ∈ R we denote:

Q(θ, v) :=⎛

⎜
⎜
⎝

v1 + v2 − v3 − θv4 −v1 − v2 + θv5 −v1 − v2 − θv5 v1 + v2 + v3 + θv4
−v1 + v2 − θv6 v1 − v2 − v3 + θv4 v1 − v2 + v3 − θv4 −v1 + v2 + θv6
−v1 + v2 + θv6 v1 − v2 + v3 − θv4 v1 − v2 − v3 + θv4 −v1 + v2 − θv6

v1 + v2 + v3 + θv4 −v1 − v2 − θv5 −v1 − v2 + θv5 v1 + v2 − v3 − θv4

⎞

⎟
⎟
⎠.

Note that Q(θ, v) is a SS matrix with rows summing to 0 and hence exp(Q(θ, v))
is amatrixwith rows summing to 1.However, the stochastic conditions ofMarkov and
rate matrices requiring non-negative off-diagonal entries depend on the parameters
θ and v. Further computations show that the spectrum of Q(θ, v) is

σ
(
Q(θ, v)

) =
{

0, 4v1,−2v3 + 2θ
√
v24 − v6v5,−2v3 − 2θ

√
v24 − v6v5

}

. (1)
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Conversely, it can be seen that for any SS Markov matrix M with eigenvalues
1, x, z, z, its real logarithms with rows summing to 0 are all the Q(θ, v) with θ =
Arg(z) + 2πk for some k ∈ Z and v ∈ R6 determined by the entries of the matrix.
Moreover, it holds that v ∈ V where V ⊆ R6 is the algebraic variety

V = {(v1, . . . , v6) ∈ R6 | v24 − v5v6 = −1/4}. (2)

Given θ ∈ R let us denote by P(θ) the set of those v ∈ R6 such that Q(θ, v) is a
rate matrix and byP(θ)c its complementary. Note thatP(θ) is an unbounded convex
polyhedral cone because the entries of Q(θ, v) are linear expressions on the entries
of v and hence if Q(θ, v) is a rate matrix so is Q(θ,λ v) for any λ ≥ 0.

Next theoremuses the algebraic variety and the polyhedral cones introduced above
to show that there are embeddable SS Markov matrices whose principal logarithm
is not a rate matrix.

Theorem 1 For any given θ0 ∈ (−π,π) and k ∈ Z, k �= 0 let us denote θk = θ0 +
2πk. Take v ∈ V ∩ P(θ0)

c ∩ P(θk) and consider the matrices L = Q(θ0, v) and
R = Q(θk, v). Then, the following holds:

(i) M := exp(L) = exp(R) is a Markov matrix.
(ii) L is the principal logarithm of M but it is not a rate matrix.
(iii) R is a rate matrix. In particular, M is embeddable.

Proof Since SS matrices commute with each other, we have that R commutes with
L − R so that exp(R)exp(L − R) = exp(R + (L − R)). A straightforward com-
putation shows that if v ∈ V then exp(L − R) = I d and hence exp(R) = exp(L).
Since v ∈ P(θk) we have that R is a rate matrix and hence exp(R) is a Markov
matrix, which concludes the proof of (i) and proves (iii). To prove statement (ii) we
use the eigenvalues of L , which according to (1) are 0, −4|θk | and −2|θk | ± θ0i . As
M = exp(L), it follows from the uniqueness of the principal logarithm that L is its
principal logarithm of. Moreover, it is not a rate matrix because v ∈ P(θ0)

C . �

Next, we need to check that V ∩ P(θ0)
c ∩ P(θk) is not empty. Using the same

notation as in the previous theorem, consider the vector

v = (−|θk |,−|θk |/2, |θk |, sign(k)/2, 1, 1/2). (3)

It is immediate to check that v ∈ V ∩ P(θ0)
c ∩ P(θk). For instance, if we take

θ0 = π/2 and k = 1 we get v = (−5π/2,−5π/4, 5π/2, 1/2, 1, 1/2) and

L = π

4

⎛

⎜
⎜
⎝

−26 17 13 −4
4 −14 4 6
6 4 −14 4

−4 13 17 −26

⎞

⎟
⎟
⎠ R = π

4

⎛

⎜
⎜
⎝

−30 25 5 0
0 −10 0 10
10 0 −10 0
0 5 25 −30

⎞

⎟
⎟
⎠ .

To determine the dimension of V ∩ P(θ0)
c ∩ P(θk)we will need the next lemma.
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Lemma 2 P(θ0)
c ∩ P(θk) has two connected components C1 and C2, where C1 is

the set of solutions to the following inequalities:

v1 + v2 + v3 + θ0v4 < 0,
v1 + v2 + v3 + θkv4 ≥ 0,
v1 − v2 + v3 − θkv4 ≥ 0,

−v1 − v2 + θkv5 ≥ 0,
−v1 − v2 − θkv5 ≥ 0,
−v1 + v2 + θkv6 ≥ 0,
−v1 + v2 − θkv6 ≥ 0.

(4)

Moreover, (v1, v2, v3, v4, v5, v6) ∈ C1 if and only if (v1,−v2, v3,−v4, v6, v5) ∈ C2.
Proof Since the rows of Q(θ, v) sum to zero, P(θ) is the convex polyhedral cone
arising from the inequation system Q(θ, v)i, j ≥ 0 for all pairs (i, j) with i �= j .
Moreover, due to the symmetries of SSmatrices the sets of inequalitieswith i ∈ {1, 2}
and i ∈ {3, 4} are the same.

As in Theorem 1we take L = Q(θ0, v) and R = Q(θk, v) and denote their entries
by li, j and ri, j respectively. According to the definition of Q(θ, v) we have that
r1,2 + r1,3 = l1,2 + l1,3 = 2(−v1 − v2), r2,1 + r2,4 = l2,1 + l2,4 = 2(−v1 + v2) and
r1,4 + r2,3 = l1,4 + l2,3 = 2(v1 + v3). The off-diagonal entries of R are non-negative
because it is a rate matrix and hence (−v1 − v2), (−v1 + v2), (v1 + v3) ≥ 0. Since
|θ0| < |θk | we have that −v1 − v2 ± θkv5 ≥ 0 implies −v1 − v2 ± θ0v5 ≥ 0 thus
l1,2, l1,3 ≥ 0. Analogously, we can see that l2,1, l2,4 ≥ 0. Since L is not a rate matrix
then l1,4 < 0 or l2,3 < 0 and we know that l1,4 + l2,3 = 2(v1 + v3) ≥ 0 thus either
l1,4 ≥ 0, l2,3 < 0 or l2,3 ≥ 0, l1,4 < 0 showing that P(θ0)

c ∩ P(θk) has two con-
nected components. From the definition of Q(θ, v) one can immediately check that
given v = (v1, v2, v3, v4, v5, v6) such that the only negative off-diagonal entry of Q
and L is l1,4 then we get that for (v1,−v2, v3,−v4, v6, v5) the only negative off-
diagonal entry of Q and L is l2,3. The linear inequalities system in (4) is the reduced
system arising from the assumption that the only negative off-diagonal entry of Q
and L is l1,4. �

If we allow the first expression in (4) to vanish, a straightforward computation
shows that for k �= 0 the solution space is the convexhull of 10different rays including
the ones associated with the vectors

w1 := (−|θk |, 0, |θk |, 0, 1, 1), w2 := (−|θk |, 0, |θk |, 0,−1, 1),
w3 := (−|θk |,−|θk |, |θk |, sign(k), 2, 0).

Among these, w3 satisfies that Q(θ0, w3)1,4 < 0 and hence the interior of the
convex hull of the rays associated withw1,w2 andw3 is included in C1. In particular,
for any v ∈ V such that v = λ1w1 + λ2w2 + λ3w3 with λi > 0 we have that v ∈
V ∩ C1. One example of this is the vector v in (3)

v = (−|θk |,−|θk |/2, |θk |, sign(k)/2, 1, 1/2) = w1

4
+ w2

4
+ w3

2
.

Moreover, it follows from Lemma 2 that dim(P(θ0)
c ∩ P(θk)) = dim(C1) = 6

and so dim(V ∩ P(θ0)
c ∩ P(θk)) ≤ 5. Indeed, any neighbourhood of v includes
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points in V that lie in the interior of P(θ0)
c ∩ P(θk) and hence we deduce that

dim(V ∩ P(θ0)
c ∩ P(θk)) = 5. Therefore, for any k ∈ Z k �= 0, the set of embed-

dable SS matrices whose principal logarithm is not a rate matrices defined as

Uk =
{
exp(Q(θ0, u)) : θ0 ∈ (−π,π), u ∈ V ∩ P(θ0)

c ∩ P(θk)
}

has dimension 6, and hence it has positive measure among SS Markov matrices. Not
only that, but thematrices in exp(Q(θ0, u)) ∈ Uk arising from a point u in the interior
of P(θ0)

c ∩ P(θk) are actually embeddable SS matrix whose principal logarithm
Q(θ0, u) and its Markov generator Q(θk, u) do not have any null entry. For example,
by taking θ0 = π/2, k = −1, v as in (3) and u = v + (−π/4, 0,π/2, 0, 0, 0)we get:

Q(θ0, u) = π

4

⎛

⎜
⎜
⎝

−17 12 8 −3
3 −13 5 5
5 5 −13 3

−3 8 12 −17

⎞

⎟
⎟
⎠ and Q(θ−1, u) = π

4

⎛

⎜
⎜
⎝

−21 4 16 1
7 −9 1 1
1 1 −9 7
1 16 4 −21

⎞

⎟
⎟
⎠ .

Since the entries of these matrices are not 0 and depend continuously on its
eigenvalues and eigenvectors, we can apply a suitable perturbation on them so that
the entries of the resulting matrices keep the same sign but no longer satisfy the
symmetries of SS matrices. In this way, it is possible to construct a positive measure
subset of 4 × 4 Markov matrices containing embeddable matrices whose principal
logarithm is not a rate matrix.
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Hamilton-Jacobi Theory and Geometric
Mechanics

Xavier Gràcia

Abstract From the viewpoint of geometric mechanics, any dynamical system
should be described in a coordinate-independent way, by means of the tools of dif-
ferential geometry. Thinking about the geometric structures involved may lead to
new interesting questions. We focus on Hamilton–Jacobi equation, which is in some
regards equivalent to Hamilton’s equation. In particular, we will give an interpreta-
tion of Hamilton–Jacobi equation on a manifold in terms of a family of differential
equations on a lower-dimensional manifold.

1 The Perspective of Geometric Mechanics

Analytical mechanics and differential geometry are closely related subjects. A cos-
tumary question in geometric mechanics is: “What is the geometric formulation of
this?”

For example, a first-order, autonomous, ordinary, differential equation is described
in elementary terms as a relation x ′ = f (x) where f : U → Rn is a vector function
on an open setU ⊂ Rn , and the solutions are paths x : I → U (I ⊂ R open interval).
The change of dependent variable y = ϕ(x) transforms the equation into y′ = g(y),

where g(y) = Dϕ(ϕ−1(y)) · f (ϕ−1(y)). Whereas f seems to be a vector function,
indeed it is the coordinate expression of a more complex object: a vector field.

The geometric formulation of a first-order, autonomous, ordinary differential
equation on a manifold M is defined by a vector field X (that is, a section of the
tangent bundle τM : TM → M). A solution is an integral curve of X , that is, a path
γ : I → M such that γ′ = X ◦ γ, where γ′ : I → TM is the velocity (or canonical
lift to TM) of γ.
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TM

τM

I
γ

γ′

M

X

In general, there is not a uniqueway to give a geometric formulation of something.
Often one can find several different ways that may correspond to different degrees
of generality in the position of the problem, or in the properties of the solutions.

2 Hamiltonian Mechanics and Hamilton–Jacobi Theory

In this section we recall some notions and fix notations. A (time-independent) hamil-
tonian dynamical system is a triple (M,ω, H), where M is a smooth manifold (the
phase space), ω ∈ �2(M) is a symplectic form (that is, closed and non-degenerate)
and H : M → R is a function (the hamiltonian). The symplectic form defines by left
contraction a vector bundle isomorphism ω̂ : TM → T∗M . With it we construct the
hamiltonian vector field (or symplectic gradient) of H , Z H ∈ X(M), defined by the
relation iZ H ω = dH . Then Hamilton’s equation reads ξ′ = Z H ◦ ξ.

Since ω is closed, it is locally exact: ω = −dθ, where θ ∈ �1(M). By Dar-
boux’s theorem, there exist canonical coordinates (qi ; pi ) (1 ≤ i ≤ n) with which
θ = pi dqi and ω = dqi ∧ dpi .

The basic example of symplectic manifold is the cotangent bundle of a mani-
fold, M = T∗ Q, which is endowed with canonical differential forms θQ ∈ �1(M)

and ωQ = −dθQ ∈ �2(M). Natural coordinates (qi ; pi ) of the cotangent bundle are
canonical. Written in these coordinates, hamiltonian dynamics is just the Hamilton
equations of classical textbooks on analytical mechanics.

In hamiltonianmechanics theHamilton–Jacobi equation is associatedwith the the-
ory of canonical transformations. Its main goal is to write the hamiltonian dynamics
in a particularly simple way, so that one can integrate it. A particularly enlighten-
ing discussion can be found in the classical text by Arnol’d [2, pp. 258–261]. The
time-independent Hamilton–Jacobi equation for a hamiltonian system is

H

(

q,
∂S

∂q

)

= E ,

where E is a constant, and we have the following result:

Theorem 1 (Jacobi) Let S1(q, Q) be a solution of H (q, ∂S1(q, Q)/∂q) = E
depending on n parametres Q j , and such that det

(

∂2S1/∂qi ∂Q j
) 
= 0.

Then Hamilton’s equation is integrable through quadratures, and the functions
Q j (q, p) determined by ∂S1/∂qi (q, Q) = pi are first integrals of it.
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The function S1(q, Q) is called a complete solution of the Hamilton–Jacobi equa-
tion.

On the other hand, we have [1, pp. 381–382]:

Theorem 2 (Hamilton–Jacobi) Let W (q) be a function. The following conditions
are equivalent:

• W is a solution of the Hamilton–Jacobi equation.

• For every solution q(t) of q̇i = ∂H

∂ pi

(

q,
∂W

∂q

)

, the path

(

qi (t),
∂W

∂qi
(q(t))

)

is a

solution of Hamilton’s equation.

The geometric formulation of the Hamilton–Jacobi equation is straightforward.
Consider a function W : Q → R. Its differential is a map dW : Q → T∗ Q, and
Hamilton–Jacobi equation reads

H ◦ dW ≡ (dW )∗(H) = E . (1)

Nevertheless, one can dig deeper on the meaning of the preceding theorems, and
wonder about the relevance of the symplectic structure, or about a lagrangian coun-
terpart of Hamilton–Jacobi theory. For instance, note that the preceding equation is
locally equivalent to α∗(H) = E , with α ∈ �1(Q) a closed 1-form; in other words,
we can write the classical Hamilton–Jacobi equation as

d α∗(H) = 0 . (2)

Notice also that α is closed iff α∗(ωQ) = 0 iff α(Q) ⊂ T∗ Q is a lagrangian subman-
ifold.

3 A General Framework for Hamilton–Jacobi Equation

In a long-term collaboration with Cariñena, Marmo, Martínez, Muñoz-Lecanda and
Román-Roy [3–5]we have studiedHamilton–Jacobi equation aiming to better under-
stand the geometric meaning of its ingredients and properties.

Consider manifolds M and P , with vector fields X ∈ X(M), Z ∈ X(P), and a
map α : M → P . It is well-known that the following conditions are equivalent:

(1) γ integral curve of X =⇒ α ◦ γ integral curve of Z .
(2) Tα ◦ X = Z ◦ α (X is α-related with Z ).

TM
Tα

TP

M
α

X

P

Z
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Suppose moreover that α is an injective immersion, thus inducing a diffeomorphism
α◦ : M → α(M) with an immersed submanifold. We have a third equivalent condi-
tion:

(3) Z is tangent to α(M), and X is given by X = α∗◦(Z |α(M)).

In this case there is a bijection between the integral curves of X and the integral
curves of Z that meet α(M).

Given a dynamical system (P, Z), we say that a triple (M,α, X) satisfying these
conditions is a slicing for (P, Z). We omit X when it is determined by α, as for
instance in condition (3).

A single solution of the slicing equation describes the integral curves of Z con-
tained in α(M) ⊂ P . To describe all of its integral curves we need a complete
solution. A complete slicing of (P, Z) is given by

• a map α : M × N → P and
• a vector field X : M × N → TM along the projection M × N → M

such that:

• α is surjective (or at least its image is an open dense subset), and
• for each c ∈ N , themapαc ≡ α(·, c) : M → P and the vector field Xc ≡ X(·, c) :

M → TM constitute a slicing of Z .

On the other hand, a (generalised) constant of motion is a map F : P → N such
that, for any integral curve ζ : I → P of Z , F ◦ ζ is constant.

The following theorem establishes a relation between both concepts, though a
strong regularity assumption is required:

Theorem 3 Let (P, Z) be a dynamical system, and α : M × N → P a diffeomor-
phism. Then α is a complete slicing for Z iff F = pr2 ◦ α−1 : P → N is a constant
of the motion for Z.

4 Slicing of Hamiltonian Systems

Now we consider a hamiltonian system (P,ω, H), with hamiltonian vector field
Z = Z H .

Proposition 4 Let α : M → P be a map, and X a vector field on M. If this is a
solution of slicing equation (Tα ◦ X − Z ◦ α = 0), then

iX α∗(ω) − d α∗(H) = 0 . (3)

The proof of this statement is a consequence of this partly commutative diagram:
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TM
Tα

M ×α TP
ω̂

M ×α T∗ P
t (Tα)

T∗M

M

Tα◦X−Z◦α
iX α∗(ω)−d α∗(H)

Remarkably, this proposition implies that a slicingα satisfies theHamilton–Jacobi
equation if we impose on it an additional condition,

α∗(ω) = 0 . (4)

When α has constant rank this condition means that, locally, the image α(M) ⊂ P
is an isotropic submanifold. Under which circumstances does the converse hold?

Theorem 5 Let (P,ω, H) be a hamiltonian system. Suppose that α : M → P is an
embedding satisfying the isotropy condition α∗(ω) = 0 and that dim P = 2 dim M.
Then α is a solution of the slicing equation iff it satisfies the classical Hamilton–
Jacobi equation

d α∗(H) = 0 .

The following diagram includes some of the bundles and maps relevant to the proof:

M×αTP0 (M×αTP0)
◦

M ×α TP
ω̂

M ×α T∗ P
t (Tα)

T∗M

M

Z◦α
dH◦α

α∗(dH)=d α∗(H)

Notice that the relation between dimensions means that α(M) ⊂ P is a lagrangian
submanifold. So we say that α is a lagrangian slicing. In the same way, we speak
about complete lagrangian slicings.

5 Slicings in Fibered Manifolds. Lagrangian
and Hamiltonian Mechanics

From now on we consider a dynamical system (P, Z) where π : P → M is a fibre
bundle, and consider the slicing equation only for the sections α of π. In this case
we have an explicit formula that gives X = Tπ ◦ Z ◦ α in terms of α. When the
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system is hamiltonian we have the following results, which improve Proposition 4
and Theorem 5:

Theorem 6 With the preceding hypotheses, let α : M → P be a section of π. Sup-
pose that the fibres of π are isotropic. Then α is a slicing section iff

iX α∗(ω) − d α∗(H) = 0 .

Corollary 7 For a hamiltonian system (P,ω, H) fibred over M, with isotropic
fibres, suppose that α is a section with α∗(ω) = 0. Then α is a slicing section for Z H

iff
d α∗(H) = 0 .

The preceding results apply directly to a hamiltonian system (P = T∗ Q,ω, H)

on a cotangent bundle, with hamiltonian vector field Z = Z H . In this case a section
of P → Q is just a differential 1-form α on Q. Now the vector field X going with
a slicing section α is X = FH ◦ α, where FH : T∗ Q → TQ is the fibre derivative
of H . Since the fibres of T∗ Q are isotropic submanifolds, we are under the hypotheses
of the previous theorem and corollary. In particular, the classical Hamilton–Jacobi
equation is nothing but the slicing equation for a closed 1-formα (since this property
is equivalent to α∗(ω) = 0).

The same applies to the lagrangian formulation of mechanics with a regular
lagrangian function L : TQ → R, where P = TQ is endowed with the symplec-
tic structure ωL = FL∗(ωQ) and the dynamics Z is the Euler–Lagrange vector field
(which is indeed the hamiltonian vector field of the energy function). Then the section
α for the slicing equation is just a vector field on Q, and X = α. When X∗(ωL) = 0
we recover a lagrangian counterpart of the classical Hamilton-Jacobi equation:

d X∗(EL) = 0 . (5)

Of course, when the lagrangian is hyperregular the isomorphism FL : TQ → T∗ Q
establishes an equivalence between the lagrangian and hamiltonian Hamilton–Jacobi
theories.

This broad setting for Hamilton–Jacobi theory has been applied to other gener-
alisations of hamiltonian mechanics, as for instance Poisson and Nambu mechan-
ics, to systems with non-holonomic constraints, or to time-dependent systems, just
to mention a few. Other authors have studied higher order systems, field theories,
etc. —see for instance [6–8], not to speak of the deep connections with quantum
mechanics [9]. So we believe that exploring generalisations of Hamilton–Jacobi the-
ory is significantly clarifying for the purposes of geometric mechanics.
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Legendrian Knots in Contact
3-Manifolds
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TÜBA-GEBİP Award.

Abstract The classification of Legendrian knots is one of the basic questions in 3-
dimensional contact topology. In this note, the classification results for Legendrian
knots are discussed. The first classification result for exceptional non-trivial knot
types is studied and several open problems related to Legendrian knots are listed.

1 Definitions, Examples and Classification Results

A 2-plane field ξ on an orientable 3-manifold is a contact structure if there is a 1-
form α such that locally ξ = kerα and α ∧ dα �= 0. A 3-manifold M with a contact
structure ξ is called a contact 3-manifold and it is denoted by (M, ξ). An embedded
disk D in a contact 3-manifold (M, ξ) is called an overtwisted disk if D is tangent
to the contact planes along its boundary. A contact structure ξ is overtwisted if ξ
contains an overtwisted disk, otherwise ξ is called tight.

Example 1 On R3, the contact structure ξst = ker(dz − y dx) = 〈 ∂
∂x + y ∂

∂z ,
∂
∂y 〉

is the standard contact structure and it is tight. See Fig. 1a. The standard tight contact
structure ξstd on S3 is the contact structure where (S3 − {p}, ξstd |S3−p) is contacto-
morphic to (R3, ξst ).

Example 2 On R3, the contact structure ξot = ker(cos r dz + r sin r dθ) is over-
twisted. The disk D = {(r, θ, z)|z = 0, r ≤ π} is an overtwisted disk in (R3, ξot ).
See Fig. 1b.
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Fig. 1 a (R3, ξst ) and b (R3, ξot )

Fig. 2 Legendrian unknot, right-handed trefoil, left-handed trefoil in (R3, ξst )

Fig. 3 Positive and negative
crossings

A knot L in (M, ξ) is called Legendrian if L is always tangent to ξ, that is
Tx L ∈ ξx for all x ∈ L . There are two types of Legendrian knots in overtwisted
contact 3-manifolds: loose and exceptional/non-loose. A Legendrian knot is loose if
its complement is overtwisted, otherwise it is called exceptional/non-loose.

Example 3 Front projections, projections to the xz-plane, of someLegendrian knots
in (R3, ξst ) are given in Fig. 2.

The classical invariants of a null-homologous Legendrian knot L are the Thurston-
Bennequin invariant and the rotation number. The Thurston-Bennequin invariant
tb(L) measures the contact framing with respect to the framing given by a Seifert
surface of L . The rotation number rot(L) of an oriented Legendrian knot L is
the winding number of T L after trivializing ξ over a Seifert surface for L . For
a Legendrian knot L in (R3, ξst ), the Thurston-Bennequin invariant is computed
by the formula tb(L) = wri the − 1

2#cusps where writhe is the signed count of
crossings given in Fig. 3. The formulae rot(L) = 1

2 (cd − cu) computes the rotation
number where cd/cu denotes the number of down/up cusps in the front projection of
an oriented Legendrian knot L .

For a detailed introduction on contact 3-manifolds and knots in contact 3-
manifolds, see [9].
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Fig. 4 Legendrian unknots

Example 4 For the Legendrian unknots L1, L2 and L3 in Fig. 4, the classical invari-
ants are computed as tb(L1) = −1, rot(L1) = 0; tb(L2) = −2, rot(L2) = 1;
and tb(L3) = −2, rot(L3) = 1.

Since two Legendrian unknots L1 and L2 in Example 4 have different classical
invariants, they are different Legendrian unknots. Since the two Legendrian unknots
L2 and L3 in Example 4 have the same classical invariants, the main question is: Are
they the same or different Legendrian unknots?

Two Legendrian knots L1 and L2 of the same knot type in a contact 3-manifold
(M, ξ) are called coarsely equivalent if there is a contactomorphism φ : (M, ξ) →
(M, ξ) such that φ(L1) = L2. If further, the contactomorphism φ is contact isotopic
to the identity, then the knots L1 and L2 are called Legendrian isotopic. The first
classification result for Legendrian knots is due to Eliashberg and Fraser, [4].

Theorem 5 (Eliashberg and Fraser) (a) Let L be a Legendrian unknot in the stan-
dard tight S3. Then, tb(L) = n < 0 and rot(L) lies in the range {n + 1, n +
3, . . . ,−n − 3,−n − 1}. Any pair (tb,rot) determines L up to Legendrian iso-
topy.
(b) Let L be an exceptional Legendrian unknot in an overtwisted 3-sphere S3. Then,
(tb(L),rot(L)) ∈ {(n,±(n − 1))|n ∈ N}. These invariants determine L up to
coarse equivalence.

After Eliashberg and Fraser, the Legendrian classification problem is studied in
various directions. Legendrian torus knots and the Legendrian figure eight knot in
(S3, ξstd) are classified in [5] and knots in a cabled knot type are studied in [6].
Legendrian knots in other tight contact 3-manifolds are classified in [1, 2, 10, 11,
13, 15].

One of the first classification result for Legendrian knots in overtwisted contact
3-manifolds other than the overtwisted S3 is due to Geiges and Onaran. In [10], the
exceptional Legendrian rational unknots in overtwisted lens spaces are classified.
The rational unknots in lens spaces are the spines of the Heegaard tori.

Theorem 6 (Geiges and Onaran) (a) Let L be a rational unknot in a tight L(p, 1).
Then tbQ(L) = n + 1

p with n negative integer and rotQ(L) = r0 + r1
p where r0

lies in the range {n + 1, n + 3, . . . ,−n − 3,−n − 1}, r1 lies in the range {−p +
2,−p + 4, . . . , p − 4, p − 2}. Any pair (tb,rot) determines L up to coarse equiv-
alence.
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(b) Let L be an exceptional rational unknot in an overtwisted L(p, 1). Then
tbQ(L) = n + 1

p , n ∈ N0. For n = 0, there is a single exceptional knot with
rotQ(L) = 0. For n = 1, there are exactly p + 1 exceptional knots withrotQ(L) in
the range {−1,−1 + 2

p ,−1 + 4
p , . . . , 1}; and for n ≥ 2, there are exactly 2p excep-

tional knots with rotQ(L) in the range {±(n − 2 + 2
p ),±(n − 2 + 4

p ), . . . ,±(n −
2 + 2p

p ) = ±n}. These invariants determine L up to coarse equivalence.

The first classification result for strongly exceptional non-trivial knot types is
achieved by Geiges and Onaran. A Legendrian knot is called strongly exceptional if
its complement has zero Giroux torsion. Strongly exceptional realisations of positive
torus knots in Theorem 7 and negative torus knots in Theorem 8 below are completely
classified and explicitly given in [11].

Theorem 7 (Geiges and Onaran) Up to coarse equivalence, p ≥ 2 and n ≥ 1 there
are exactly 2p strongly exceptional Legendrian realisations L of the (p, np + 1)-
torus knot with tb(L) = np2 + p + 1.

Theorem 8 (Geiges and Onaran) Up to coarse equivalence, for p ≥ 2 and n ≥ 2,
there are exactly 2(p − 1)(n − 1) strongly exceptional Legendrian realisations L of
the (p,−(np − 1))-torus knot with tb(L) = −np2 + p + 1.

The Legendrian classification problem is studied for links in [7, 8, 12]. The first
complete Legendrian classification of a topological link type including Legendrian
realisations in overtwisted contact structures is due to Geiges and Onaran. In [12],
up to coarse equivalence, Legendrian Hopf links are completely classified in any
contact 3-sphere S3.

2 Questions and Open Problems

The classification problem for exceptional non-trivial knot types or link types in
other overtwisted contact 3-manifolds may be studied. Along these lines:

Problem 9 Classify exceptional Legendrian torus knots in overtwisted lens spaces.

Problem 10 Classify Legendrian torus knots in small Seifert fibered 3-manifolds.

Problem 11 Classify exceptional rational Hopf links in lens spaces.

For the classification problem for topological link types other than the Hopf link,
one may try to solve the following problems.

Problem 12 Classify Legendrian Whitehead links in the contact 3-sphere S3.

Problem 13 Classify exceptional Legendrian realisations of the link K ∪ U where
K is the trefoil knot and U is the meridional unknot of K in the contact 3-sphere S3.
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In all classification results mentioned in this note, the classical invariants suffice to
distinguish Legendrian realisations. In general, this is not the case. The first example
of two non-isotopic Legendrian knots in standard tight S3 with the same classical
invariants is given by Chekanov in [3] and Eliashberg. In [14], there are examples
of exceptional non-isotopic knots having the same classical invariants that are con-
structed as connected sums. Thus it would be very interesting to know answers to
the following questions.

Question 14 Are there any examples of exceptional, non-isotopic prime knots in
overtwisted contact 3-manifolds?

Question 15 Are there any examples of exceptional, coarsely equivalent but non-
isotopic knots in overtwisted contact 3-manifolds?

The analogue of Theorem6 is expected to hold for general lens spaces L(p, q) and
the case for L(5, 2) is illustrated in [10]. As a simpler first step towards classification
results:

Problem 16 Construct the explicit diagrams for Legendrian realisations of rational
unknots in arbitrary lens spaces L(p, q).
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Topological Degree and Periodic Orbits
of Semi-dynamical Systems

Pablo Amster and Melanie Bondorevsky

Abstract We study semi-dynamical systems associated to delay differential equa-
tions. Employing guiding type functions and topological degree, we show the exis-
tence of T -periodic closed orbits.

1 Introduction

With population models in mind [5], we consider the delayed differential system

x ′(t) = f (t, x(t), x(t − τ )) (1)

where f : [0,+∞) × [0,+∞)2N → RN is continuous and τ > 0 is the delay. An
initial condition for (1) can be expressed in the following way

x0 = ϕ, (2)

where ϕ : [−τ , 0] → [0,+∞)N is a continuous function and xt ∈ C([−τ , 0],RN )

is defined by xt (s) = x(t + s).
We are interested in the study of the dynamical behaviour of phenomena which,

in this context, must remain non-negative for t > 0. If the solutions are defined over
[0,+∞) and lie in [0,+∞)N then the semi-flow associated to the system:

� : [0,+∞) × C([−τ , 0], [0,+∞)N ) → C([−τ , 0], [0,+∞)N ) (3)
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given by
�(t,ϕ) = xt

induces a semi-dynamical system. An extra assumption is usually required for the
analysis of persistence (see [2]):

(H1) If for some j ∈ {1, 2, ..., N }, x j = 0 and y �= 0, then f j (t, x, y) > 0 for all
t > 0.

This hypothesis assures that non-trivial solutions with non-negative initial data
remain strictly positive.

In order to study the existence of T -periodic closed orbits, we might consider a
guiding-type function

V : (0,+∞)N → (0,+∞),

i.e. there exist t0, r > 0 such that

〈∇V (x), f (t, x, y)〉 > 0 for t > t0 and V (x), V (y) < r

and such that
lim|x |→0

V (x) = 0.

However, the previous condition is not fulfilled in manymodels which satisfy instead
a weaker one, in terms of the vector field f (·, x, x):
(H2) There exist t0, ε>0 such that 〈∇V (x), f (t, x, x)〉>0 for t > t0, V (x) < ε.

We shall also take into account the following monotonicity condition:

(H3) 〈∇V (x), f (t, x, y)〉 ≥ 〈∇V (x), f (t, x, x)〉, whenever V (x) ≤ V (y).

The latter conditions guarantee the strong persistence of species in population
dynamics. Namely,

lim inf
t→+∞ ||�(t,ϕ)||∞ > 0 ∀ϕ ∈ C([−τ , 0], (0,+∞)N ).

Inspired by population models, in order to state our result we shall impose a
condition that allows to find an upper bound for the flow. With this aim, we may
choose a continuous function a : [0,+∞) → (0,+∞) and define:

F(t, x, y) = 〈∇V (x), f (t, x, y)〉 + a(t)V (x),
F∗(t, r) = supV (x),V (y)≤r

F(t,x,y)
a(t) .

To ensure the existence of periodic orbits, we shall require:

(H4) There exist R > 0 such that F∗(t, R) < R for 0 ≤ t ≤ T .

We can now formulate our main result:
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Theorem 1 If f is T -periodic in the first coordinate and there exist positive con-
stants such that ε < R and (H2), (H3) and (H4) hold. Then there exists at least
one T -periodic positive solution of (1)–(2) in� = {x ∈ [0,+∞)N : V (x) ∈ (ε, R)}
provided that the Euler characteristic of � is non-zero.

2 Periodic Orbits

When searching for periodic orbits of an ODE system, it is usual to employ a solution
operator such as the Poincaré map and apply a standard procedure using the Brouwer
degree to obtain fixed points. For the delayed case, since the space of initial conditions
is infinite dimensional, the Brouwer degree cannot be applied: we shall use instead
Leray-Schauder degree techniques. More precisely, inspired by [4], we shall work
on the positive cone X of CT , the Banach space of continuous T -periodic functions,
for some T > 0, and define an appropriate fixed point operator K : X → CT . We
shall see that if f is T -periodic in the first coordinate, then the fixed points of K
determine T -periodic positive orbits of system (3).

Let us recall the Leray-Schauder degree is defined as follows [1]: LetU ⊆ CT be
open and bounded, and let K : U → CT be compact with Kx �= x for x ∈ ∂U . Set
ε = inf x∈∂U ||x − Kx ||. Then define

degL−S(I − K ,U, 0) = degB( (I − Kε)|Vε
,U ∩ Vε, 0),

where Kε is an ε-approximation of K with Im(Kε) ⊆ Vε and dim(Vε) < ∞.
We will show that the Leray-Schauder degree of the operator I − K is non-zero

on an appropriate subset U ⊂ X and therefore the set of fixed points of the compact
operator K is non-empty.

The proof of our main theorem shall be based on the following crucial result (see
e.g. [3]):

Theorem 2 (Hopf Theorem) If ν is the outward normal on a compact, oriented
manifold M, then the degree of ν equals the Euler characteristic of M.

Proof (Proof of Theorem 1)
For convenience, a little of extra notation shall be introduced. For a function

x ∈ CT , let us write

Ix(t) :=
∫ t

0
x(s) ds, x := 1

T
Ix(T ).

Moreover, denote byN the Nemitskii operator associated to the problem, namely

N x(t) := f (t, x(t), x(t − τ )).
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Let us consider the open bounded sets � = {x ∈ [0,+∞)N : V (x) ∈ (ε, R)} ⊆
RN , U = {x ∈ CT : x(t) ∈ � for all t > 0} ⊆ CT and define the compact operator
K : CT → CT by

Kx(t) := x − t N x + IN x(t) − IN x .

Via the Lyapunov-Schmidt reduction, if x ∈ CT is a fixed point of K then x is a
solution of the equation.

Let K0x := x − T
2 N x and consider for s ∈ [0, 1], the homotopy Ks := sK +

(1 − s)K0. We claim that Ks has no fixed points on ∂U . As mentioned, for s > 0 it
is clear that x ∈ U is a fixed point of Ks if and only if x ′(t) = sN x(t), that is:

x ′(t) = s f (t, x(t), x(t − τ )).

Observe that, if we identify RN with the set of constant functions of CT then
U ∩ RN = �. Thus the image of K0 is contained inRN , whence the Leray-Schauder
degree of I − K0 can be computed as the Brouwer degree of its restriction to �.

We apply another homotopy,

H(s, x) = sK0(x) − (1 − s)ν(x), for (s, x) ∈ [0, 1] × �,

where ν is the outward normal, which does not have fixed points on ∂�.
By the homotopy invariance of the degree and Hopf theorem, we conclude that

degLS(I − K ,U, 0) = degB(I − K0, �, 0) = degB(−ν, �, 0) = (−1)Nχ(�) �= 0. ��
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Presentation of Symplectic Mapping
Class Group of Rational 4-Manifolds

Daria Alekseeva

Abstract We study the problem of description of the symplectic mapping class

groupsπ0
(
Symp(X,ω)

)
(SyMCG)of rational 4-manifolds X = CP

2#lCP
2
.We spec-

ify a certain class of symplectic forms ω on such X for which we give a finite pre-
sentation of the SyMCG with generators symplectic Dehn twists along Lagrangian
spheres. This is a joint work with my scientific advisor Vsevolod Shevchishin.

1 Preliminaries and Previous Results

Denote by Symp(X,ω) the symplectomorphism group of a compact symplectic
manifold (X,ω). The symplectic mapping class group (SyMCG) is the group
SMap(X,ω) := π0(Symp(X,ω)). Similarly we define the smoothMCGMap(X) :=
π0(Diff(X)). The pure symplectic MCG (pure SyMCG) is kernel of the natural
homomorphism π0(Symp(X,ω)) → π0(Diff(X)). Some authors called it the sym-
plectic Torelli group.

A rational 4-manifold is either S2 × S2, or CP
2, or an l-fold blow-up Xl =

CP
2#lCP

2
. It is known that two symplectic forms ω1,ω2 on a rational 4-manifold

with equal cohomology classes (i.e., [ω1] = [ω2]) are isomorphic.
The first results on the topology of groups of symplectomorphisms were made

by Gromov in his seminal paper [4]. He shows that the symplectomorphism groups
of CP

2 and S2 × S2 equipped with the standard symplectic forms are homotopy
equivalent to PU(2) and respectively Z2 �

(
SO(3) × SO(3)

)
. The next important

step wasmade by Abreu andMcDuff [1, 8]. They describe rational homotopy type of

the symplectomorphism group of X = S2 × S2 and X = S2 � S2 = CP
2#CP

2
with

arbitrary symplectic form ωλ, and how the rational homotopy type changes when the
cohomology class [ωλ] varies. The key conclusion is that under deformation of ωλ

when the cohomology class [ωλ] varies in a certain way we obtain new elements in
the higher homotopy groups πk(Symp(X,ωλ)), see details in [1, 8].
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Let us compare their results with problems considered in this note. In the
Abreu-McDuff case the manifolds are small (Betti number b2 is 2), the groups
π0(Symp(X,ωλ)) are trivial and interesting phenomena occur in higher homotopy
groupsπk(Symp(X,ωλ)). On the other hand, in our case themanifolds are large (Betti
number b2 = l + 1 is ≥ 6) and already the 0-group π0(Symp(X,ω)) = SMap(X,ω)

could be large enough (e.g., infinite and having sufficiently sophisticated presenta-
tion). And as in the Abreu-McDuff case we study the dependence of the group on
the symplectic form and try to describe this dependence.

By [5] in the case of smaller number of blow-ups l ≤ 4 we still have nothing
interesting: The pure SyMCG of (Xl ,ω) is trivial for each symplectic form ω. But

already for l = 5 the group is non-trivial: By Evans [3], for X5 = CP
2#5CP

2
and

the monotone symplectic form (this means [ω] = c1(X5)) the pure SyMCG is the
MCG Map(S2, 5) of the sphere with 5 marked points. Its another description is the
quotient of the pure braid group of the sphere PBr5(S2) by its center Z2.

I address the problem of finding a full description of the SyMCG (for example, in
a form of a nice presentation) in the case when this group is rather big, in particular
infinite. In this connection let us us notice that by [5] the group SMap(X,ω) is finite
for every symplectic form ω in the case when X is the blow-up of CP

2 at ≤ 4 points.
It turns out that in some cases we have natural generators of SyMCG which are
symplectic Dehn twists TS along Lagrangian spheres S ⊂ (X,ω).

2 Main Results

In this abstract, I describe two particular types of classes of symplectic structures on
rational 4-manifold, denoted by Dl and El , for which can be found a presentation
of SyMCG SMap(X,ω). They are characterised by the property that there exists
a configuration of Lagrangian spheres in (X,ω) with the incidence graph that is a
Dynkin graph of type Dl or resp. El , and such that the symplectic Dehn twists along
those spheres generate the group SMap(X,ω). The class El is the blow-up of CP

2

in l ≤ 8 points with the symplectic form ω of cohomology class c1(X). So, El is a
symplectic analogue of del Pezzo surfaces (see e.g. [9]). The manifolds (X,ω) with
[ω] = λc1(X) are also called monotone symplectic manifolds.

The notation Al , Dl , El means the Dynkin diagram of the corresponding type and
rank. Let usmake here remarks about the classE5.As theDynkin diagram it coincides
with the diagram D5. As the result, the corresponding Weyl and (pure) braid groups
are isomorphic: W (E5) = W (D5) and Br(E5) = Br(D5). However, the classes of
symplectic forms E5 and D5 are not the same. Moreover, even the underlying ratio-
nal manifolds are not diffeomorphic: b2(X) = 6 in the case E5 and b2(X) = 7 in
the case D5.

If Xl is the l-fold blow-up of CP
2 we denote by [L] and [Ei ] (i = 1, . . . , l) the

homology classes of the line in CP
2 and the exceptional curves. We identify the
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homology groups H2(X, R) and the cohomology groups H 2(X, R) by means of the
Poincaré duality.

A precise definition of the types E and D is as follows: A symplectic 4-manifold
(X,ω) has type
• El with l = 4, . . . , 8 if X is l-fold blow up of CP

2 and [ω] = a · c1(X) for some
a > 0;
• Dl with l ≥ 4 if X is (l + 1)-fold blow up of CP

2 and [ω] = λ[L] − ∑
i μi [Ei ]

such that μ2 = · · · = μl = μ, μ1 = λ − 2μ, and

• 0 < μ < λ
3 if l = 4, . . . , 8;

• 0 < μ < 2λ
7 if l = 9;

• 0 < μ < 4λ
l+2 if l ≥ 10.

Theorem 1 ([2]) Let (X,ω) be a rational symplectic 4-manifold of type El or Dl .
(1) There exist Lagrangian spheres S1, . . . , Sl ⊂ X with the incidence diagram El

or Dl .
(2) The group SMap(X,ω) is generated by the Dehn twists TSi along the spheres Si .
In particular, SMap(X,ω) is the quotient of the braid group Br(El) (resp. Br(Dl)).
(3) The image of the SyMCG SMap(X,ω) in the smooth MCG Map(X) is the Weyl
group W (El) (resp. W (Dl)) and the standard generators are images of the twists TSi .
(4) Let (X,ω) be of the type Dl (or resp. E5). Then the pure SyMCG of (X,ω) is
isomorphic to the MCG Map(S2, l) of the sphere with l marked points. This gives
the extension

1 → Map(S2, l) → SMap(X,ω) → W (Dl) → 1.

Let us makes some comments about the meaning of the theorem. The incidence
diagrams of the Lagrangian spheres are

S0 S0

El : S1 S2 S3 · · · Sl−1 Dl : S2 S3 · · · Sl

and the homology classes [Si ] = [Ei ] − [Ei+1], [S0] = [L] − ([E1] + [E2] +
[E3]).

Let us also notice that by Seidel [10] if two Lagrangian spheres Si , Sj intersect
transversally in a single point, then the corresponding Dehn twists satisfy the braid
relation TSi TSj TSi = TSj TSi TSj .

The theorem gives almost complete description of the SyMCG SMap(X,ω) in
the cases Dl and El . What is missing is a system {R1, R2, . . .} normally generating
the kernel of the epimorphism Br(Dl) → SMap(X,ω). Indeed, together with the
commutativity and braid relations those elements Ri will form a defining system of
relations between the generators TSi of the SyMCG, and this would be the desirable
presentation. Let us describe those additional relations in the cases Dl and E5.

The first such relation is the equality T 2
S0

= T 2
S2
in the cases Dl and T 2

S0
= T 2

S4
in

the cases E5. This relation defines an epimorphism PBr(Dl) � PBr(Al−1) = PBrl
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in the sense that its kernel is normally generated in Br(Dl) by the element T 2
S0
T−2
S2

.
Here we recall that the (pure) braid group of A-type is the usual (resp. pure) braid
group.

The next relations arise in the description of the kernel of the epimorphismPBrl �
Map(S2, l). For this purpose we notice that the group PBrl is naturally isomorphic
to the MCG Map(D, ∂D, l) of the disc with fixed boundary and l marked points.
Then the epimorphism PBrl → Map(S2, l) is induced by the embedding of the disc
D in the sphere S2. The kernel Ker

(
PBrl → Map(S2, l)

)
is normally generated by

the elements (TS2 . . . TSl )
l and (TS2 . . . TSl−1)

l−1. The first element is well-known as
the generator of center of Brl . Let us notice that this element is the square of the
Garside element �l of the braid group Brl , (TS2 . . . TSl )

l = �2
l . By this the other

element (TS2 . . . TSl−1)
l−1 is the squared Garside element �2

l−1 in the braid group
Brl−1. So finally we obtain the following presentation of the SyMCG in the case Dl :

Theorem 2 ([2]) In the case Dl the symplectic mapping class group admits a pre-
sentation

SMap(Dl ) = 〈
TS0 ; TS2 , . . . , TSl

∣∣ Dl -braid relations, T 2
S0 = T 2

S2 , �2
l = 1, �2

l−1 = 1
〉
.

Notice thatwe can replace one of the relations�2
l = 1, �2

l−1 = 1by�−2
l−1�

2
l = 1.

The latter is the spherical relation arising in the spherical braid group Brl(S2).

3 Sketch of the Proof

Weuse the approach ofAbreu andMcDuff based onGromov’s theory of pseudoholo-
morphic curves. For a 2-cohomology class η ∈ H 2(X, R) we denote by �(X, η) the
space of all symplectic forms ω on X such that [ω] = η. Further, denote by J (X, η)

the space of almost complex (a.cplx) structures J tamed by some ω ∈ �(X, η).
Finally, J int(X, η) is the subspace of integrable a.cplx structures in J (X, η). Notice
that by Moser’s theorem ([12, Theorem 7.3]) the connected components of �(X, η)

are orbits of the group of isotopies Diff0(X) (the connected component of IdX in
Diff(X) ). Finally, letDiff(X, η) be the stabiliser of the class η inDiff(X). We assume
that the class η = [ω] is of type Dl or El .

The steps of the proof can be explained using the following fundamental dia-
gram.

Claim 1. The homomorphisms φ6 : π1(J (X, η)) → π1(�(X, η)) and φ8 :
π1(J int(X, η)) → π1(J (X, η)) are isomorphisms. (The first one is a classical
result). �
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Claim 2. The action of Diff(X, η) on �(X, η) is transitive and the stabiliser of a
given ω is the symplectomorphism group Symp(X,ω). The first line of the diagram
is a part of the long exact sequence of the fiber bundle Symp(X,ω) → Diff(X, η) →
�(X, η). �

We want to find a long exact sequence of homotopy groups also for the action of
Diff(X, η) on J int(X, η). This is done in the following steps.

Claim 3. There exists a Diff(X, η)-invariant subspace J int
0 (X, η) ⊂ J int(X, η) such

that π1(J int
0 (X, η)) ∼= π1(J int(X, η)) and such that J int

0 (X, η) admits a slice X ⊂
J int
0 (X, η) which is finite-dimensional manifold. Moreover, the slice subgroup G ⊂

Diff(X, η) is a Lie group. The group π0(G) is the Weyl group W = W (Dl) in the
D-case and W = W (El) in the E-case. �
Claim 4. The connected component G0 acts freely on the space X . The quotient
space M̂l(η) is a complex manifold with an action of the Weyl group W . �

For the next step we need the definition of the orbifold fundamental group. We
use approach of Looijenga [6]. Let BW = K (W, 1) be the classifying space of the
Weyl group W and EW → BW the universal covering. Define π̂1(M̂l(η)/W ) as
π1

(
(M̂l(η) × EW ) /W

)
.

Claim 5. The group π̂1(M̂l(η)/W ) includes in the last line of the fundamental
diagram, giving an exact sequence. Moreover, the homomorphism φ is an isomor-
phism. �
Claim 6. In the cases Dl and E5 the fundamental group π1(M̂l(η)) is isomorphic to
Map(S2, l). This gives a short exact sequence of groups

1 −→ π1(M̂l (η)) = Map(S2, l) −→ π̂1(M̂l (η)/W ) = SMap(X,ω) −→ W (Dl) −→ 1.

4 Some Remarks

1.The conditions on the class η in the definition of the typeDl are imposed to exclude
elliptic twists which otherwise could give non-trivial elements in the SyMCG, see
[11].
2. Our presentation of the SyMCG in the cases Dl and E5 resembles the one of
the classical MCG Map(Sg) of surfaces of genus g found by Matsumoto [7]. There
he found a system of generators forming a Dynkin-like graph �, such that the first
group of relations is a braid-like. The secondary relations are equalities between the
Garside elements of certain subgraphs. For example, the so called lantern relation
reads �2(E6) = �(E7).
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On Several Classes of Ricci Tensor

Maryam Samavaki and Jukka Tuomela

Abstract We survey some classes of Riemannian manifolds where the Ricci curva-
ture satisfies some special property. In a local coordinate system the relevant condition
is an overdetermined PDE where the unknowns are the components of the metric.
Using the methods of the theory of overdetermined PDE we can produce a lot of
explicit examples, which seem to be new, of suchmanifolds.Wewill also make some
observations about relationships of various conditions to each other.

1 Introduction

Wewill consider belowRicci recurrentmanifolds, pseudoRicci symmetricmanifolds
and quasi Einstein manifolds. As far as we know these manifolds were introduced in
papers [1–3]. There are of course a lot of articles devoted to these topics since then
but there seems to be only few explicit examples known. In the present note we will
describe large families of metrics which satisfy these conditions.

Let M be a smooth manifold with Riemannian metric g. The pointwise norm of a
tensor T is denoted by |T |. The covariant derivative is denoted by ∇. The curvature
tensor is denoted by R and the Ricci tensor is Ri jk = Ri

i jk and the scalar curvature

is sc = Rikk .
In the following we will consider several classes of Riemannian manifolds. These

classes are defined by requiring that the corresponding Ricci tensor satisfies some
condition P. In this case we can also say that the manifold or the Riemannian metric
is of the type P. Of course we will always assume that Ri �= 0.

The existence of various manifolds or Riemannian metrics on manifolds depend
in general if certain overdetermined PDE have solutions. For a general overview of
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overdetermined PDE we refer to [6]. We will use below the command rifsimpwhich
is implemented in Maple. The rif means reduced involutive form. The details of the
algorithm are explained in [5]. In the examples there are typically several families
of solutions. In the language of differential algebra one could say that typically the
differential ideal corresponding to the relevant PDE system is not prime. Below we
will only give one family of solutions in a given situation.

2 Geometry

Definition 1 Ricci tensor is

• recurrent, RR, if there is a nonzero one form β such that

Rii j;� = β�Rii j . (1)

• pseudo Ricci symmetric, PRS, if there is a nonzero one form α such that

Rii j;� = 2α�Rii j + αiRi�j + α jRii� (2)

• quasi Einstein, QE, if there are functions a and b �= 0, and one form ω such that

Ri = a g + b
ω ⊗ ω

|ω|2 (3)

Let us start with the RR case. A result in [4] implies that there is the following
purely algebraic characterization of the RR condition:

Riki Ri
i
� = 1

2 scRi
k
�

But this leads easily to a complete description of the Ricci tensor.

Theorem 2 Suppose that Ri is recurrent. Then it has a double eigenvalue sc
2 and

eigenvalue zero of multiplicity n − 2. Moreover

β = ∇ ln(sc) , sc2 = 2 |Ri|2 and Riβ = sc
2 β .

It turns out that the associated one form is almost the same in the PRS case.

Lemma 3 Let the Ricci tensor be PRS with associated one form α. Then Riα = 0
and

α = 1
4 ∇ ln(|Ri|2)

If the scalar curvature is not zero then
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α = 1
2 ∇ ln(sc) and sc2 = c |Ri|2

for some constant c.

From this we get immediately that the Ricci tensor cannot be both RR and PRS at
the same time.

Let us then analyze quasi Einstein structure. To this end it is convenient to formu-
late the condition (3) differently. Let us introduce the tensor T = Rii j − a gi j . Now
if the symmetric tensor T is of matrix rank one then all 2 × 2 minors are zero and
this gives us our system of

(n
2

)
PDE. In this way we see that the one form ω and

the function b are actually quite irrelevant in the analysis of the existence of quasi
Einstein structure.

Once the appropriate T is found b and ω can easily be computed. In fact b =
sc − n a and ω can be solved from the linear system

Ti jω
j = (

sc − n a
)
ωi

Another way to characterize the QE case is that Ri has a simple eigenvalue sc −
(n − 1)a corresponding to the eigenvector ω, and all vectors orthogonal to ω are
eigenvectors with eigenvalue a whose multiplicity is thus n − 1. But from this we
get

Theorem 4 If the Ricci tensor is recurrent and n = 3 then it is automatically quasi
Einstein. If n > 3 the Ricci tensor cannot be both recurrent and quasi Einstein.

Theorem 5 Let us suppose that both PRS and QE.
If a �= 0 we have

Rii j = sc
n − 1

(
gi j − αiα j

|α|2
)

If a = 0, then

g(ω,α) = 0 and Rii j = sc
ωiω j

|ω|2 .

3 Examples

Let us consider a three dimensional manifold with the following metric:

g = f1(x
1)(dx1)2 + f2(x

1)h2(x
2)(dx2)2 + f3(x

1)h3(x
2)q(x3)(dx3)2 (4)

Example 1 Let us try to find RR metrics of the form (4). Let us define the tensor

Pi j� = scRii j;� − sc;�Rii j
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According to Theorem 2 the manifold isRR if P = 0. In this three dimensional case
our PDE system P = 0 has a priori 18 independent equations but actually we have
only 14 (not necessarily independent) nonzero equations. Computing with rifsimp
reveals that the system splits into seven subsystems. The most general is as follows.
We have three differential equations; first two are for f j :

f ′′
2 = f ′

2( f
′
1 f2 + f ′

2 f1)

2 f1 f2
and f ′′

3 = f2 f3 f ′
1 f

′
3 + 2 f1 f2( f ′

3)
2 − f1 f3 f ′

2 f
′
3

2 f1 f2 f3

Evidently now one can give f1 arbitrarily and then solve the remaining functions.
However, one can actually eliminate one of the functions by solving f1 and f3 in
terms of f2 which gives the family of solutions

f1 = c2( f ′
2)

2

f2
and f3 = c1 f

m
2 .

Note thatm need not be an integer. Thenwe have the third differential equationwhich
contain h j and f j . However, when we substitute the above formulas the functions
f j disappear and we are left with

h′′
3 = (2m − 1)c2h2(h′

3)
2 + mc2h3h′

2h
′
3 − m2h22h

2
3

2mc2h2h3

Solving this for h2 yields

h2 = c2h
1/m
3 (h′

3)
2

h23(c2c3 − m2h1/m3 )
= c2m2(h′)2

h(c2c3 − m2h)

where we have introduced a new function h3 = hm . Then writing f instead of f2 we
can write our final metric as

g = c2( f ′)2

f
(dx1)2 + m2c2 f (h′)2

h(c2c3 − m2h)
(dx2)2 + c1 f

mhmq(dx3)2

Clearly one can choose constants and functions such that g is positive definite. For
scalar curvature we get sc = (1 − m)c3/(2m f h) and thus β = −∇ ln( f h). Note
that m �= 1 because otherwise also Ri = 0.

Example 2 Let us consider again themetric (4), but nowwe try to findPRSmetrics.
Now our PDE system can be written as

Si j� = 2scRii j;� − 2sc;�Rii j − sc;iRi�j − sc; jRii� = 0

Again we have 14 PDE, and computing with rifsimpwe get three cases whereα �= 0.
In one case h3 should be constant, and for f j we obtain the equations
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f ′′
2 = f1 f2 f ′

2 f
′
3 + f1 f3( f ′

2)
2 + f2 f3 f ′

1 f
′
2

2 f1 f2 f3
and f ′′

3 = f1 f2( f ′
3)

2 − f1 f3 f ′
2 f

′
3 + f2 f3 f ′

1 f
′
3

2 f1 f2 f3

Solving this we obtain

f1 = c2c3( f ′
3)

2ec1 f3

f3
and f2 = c2e

c1 f3 .

Then putting f3 = f , h3 = c4 and h2 = h we can write our metric as

g = c2c3( f ′)2ec1 f

f
(dx1)2 + c2he

c1 f (dx2)2 + c4 f q(dx3)2

In this case sc2 = |Ri|2.
Example 3 Let us finally consider metric (4) and try to find solutions which satisfy
the QE condition. Constructing the appropriate PDE system we obtain five nonzero
equations. Since the function a appears algebraically and in some equations even
linearly we can solve it and substitute back to the equations. rifsimp gives then us
the following system

f ′′′
2 = F1( f1, f2, f3), f ′′′

3 = F2( f1, f2, f3) and h′′
3 = H( f1, f2, f3, h2, h3)

The expressions for Fj and H are so big that we do not write them down explicitly.
We can also solve it explicitly; denoting f2 = f the first two equations give

f1 = c1c3( f ′)2

f3 f
and f3 = c3m

−m f 1−m
(
c2 f − 1)

)m

Substituting this into third equations yields

h′′
3 =

(
(3m − 2)h2h′

3 + 2(m − 1)h3h′
2

)
h′
3

4(m − 1)h2h3
.

Denoting h3 = h and solving for h2 yields

h2 = c4h
(2−3m)/(2m−2)(h′)2.

After this it is straightforward to compute a, b and ω which gives

a = m

8(1 − m)c4 f
h(2−m)/(2m−2) − c22 f

2 + (m − 2)c2 f + (m − 1)2

2c1mm f m
(
c2 f − 1)

)m−2

b = m

8(m − 1)c4 f
h(2−m)/(2m−2) + m(m − 1)

2c1mm f m
(
c2 f − 1)

)m−2

ω = f h′(c2 f − 1)∂x1 + (2 − 2m)h f ′∂x2



64 M. Samavaki and J. Tuomela

References

1. Tyuzi. Adati and Teturo. Miyazawa. "Some properties of P-Sasakian manifolds". TRU Mathe-
matics. Vol. 13. 15 (1977), pp. 33–42

2. M.C. Chaki, On pseudo Ricci symmetric manifolds. Bulg. J. Physics. 15, 526–531 (1988)
3. E.M. Patterson, Some theorems on Ricci-recurrent spaces. The Journal of the London Mathe-

matical Society. 27, 287–295 (1952)
4. W. Roter, Some remarks on infinitesimal projective transformations in recurrent and Ricci-

recurrent spaces. Colloq. Math. 15, 121–127 (1966)
5. Gregory J. Reid, Allan D. Wittkopf and Alan Boulton. "Reduction of systems of nonlinear

partial differential equations to simplified involutive forms". European J. Appl. Math. European
Journal of Applied Mathematics. Vol. 7, (1996), pp. 635–666

6. W. Seiler. "Algorithms and Computation in Mathematics. The formal theory of differential
equations and its applications in computer algebra". Springer-Verlag, Berlin. Vol. 24, (2010)



Rank Conditions on Phylogenetic
Networks

Marta Casanellas and Jesús Fernández-Sánchez

Abstract Less rigid than phylogenetic trees, phylogenetic networks allow the
description of a wider range of evolutionary events. In this note, we explain how to
extend the rank invariants from phylogenetic trees to phylogenetic networks evolving
under the general Markov model and the equivariant models.

1 Introduction and Preliminaries

In order to model the evolution of a set of DNA sequences (each representing a
species), one usually considers a phylogenetic tree (whose leaves are in correspon-
dence with the living species and interior nodes correspond to ancestral species) and
a Markov process governing the substitution of nucleotides on it. In phylogenetics,
invariants is the name given to the polynomials that vanish on every distribution that
arises as a Markov process on the phylogenetic tree. The main idea behind finding
invariants is that they might help to distinguish phylogenetic trees and phylogenetic
networks and they have been successfully used in phylogenetic reconstruction (see
[4, 7]), in solving the identifiability of certain models [2] and in model selection [9].

Nevertheless, trees might be too restrictive to represent the evolutionary history
as they cannot take into account processes such as hybridization or horizontal gene
transfer. In order to incorporate them, one can use phylogenetic networks. Invariants
for phylogenetic networks have been found for the JC69 substitution model [8] (for
networks with a single reticulation vertex) and for the 2-state symmetric model on
networks with four leaves [10, 11].
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Fig. 1 On the left, a 4-leaf phylogenetic networkN with one reticulation vertex w1 painted white.
The clade corresponding to leaves A = {1, 2} has been coloured with gray. On the right, the two
trees obtained when removing the edges e01 and e11 incident on w1

We restrict to tree-child binary networks [13, §10]. That is, throughout the paper a
phylogenetic networkN is a rooted acyclic directed graph (with no edges in parallel)
satisfying:

(1) the root r has out-degree two,
(2) every vertex with out-degree zero has in-degree one and is called a leaf,
(3) all other vertices have either in-degree one and out-degree two (which are called

tree vertices) or in-degree two and out-degree one (which are called reticulation
vertices)

(4) the child of a reticulation vertex is a tree vertex.

Following [8, 12], we introduceMarkov processes on phylogenetic networks. We
denote by V the set of vertices of the network and will assume that there is a discrete
random variable assigned to each vertex taking values in � := {A,C,G, T }. We
assign a distribution π = (πA,πC ,πG,πT ) to the root r and to each edge e, a 4 ×
4-transition matrix Me. We write θ for the whole set of these parameters.

Let N be an n-leaf phylogenetic network and associate a 4 × 4 transition matrix
from a nucleotide substitution model to each directed edge ofN . SupposeN has m
reticulation verticesR = {w1, . . . , wm}. Eachwi has indegree two, andwe denote by
e0i and e

1
i the two edges directed intowi . Figure1 shows an example of a phylogenetic

network with 4 leaves and only one reticulation vertex w1 (painted white).
Each binary vector σ ∈ {0, 1}m encodes the possible choices for the reticulation

edges, where a 0 or a 1 in the i-th coordinate indicates that the edge e0i or e1i was
deleted, respectively. Any σ results in a n-leaf tree Tσ rooted at r with a collection
of transition matrices corresponding to the particular edges in that tree. We call θσ

the restriction of the parameters θ of the network to Tσ .
For 1 ≤ i ≤ m, denote by δi the parameter corresponding to the probability that

a particular site was inherited along edge e1i . We can then define a distribution on the
set �n (corresponding to characters at the leaves of the network) as follows

PN ,θ =
∑

σ∈{0,1}m

(
m∏

i=1

δ1−σi
i (1 − δi )

σi

)
PTσ,θσ

.
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Definition 1 Let A|B be a bipartition of the set of leaves ofN . Given a distribution
vector p on4n states, theflattening of p relative to the bipartition A|B is the 4|A| × 4|B|
matrix f lattA|B(p) whose (i, j)-entry is given by p(k) where k = (i, j) has entries
matching those of i and j in the convenient order.

Let T be a tree and let A|B be a bipartition of the leaves of T induced by removing
an edge e of T . Let w be the vertex of e adjacent to A. If p is a distribution on T
given by a distribution π at w and transition matrices at the edges of T oriented out
from w, then f lattA|B(p) can be written as [1, 6]

f lattA|B(p) = (MA)
t DπMB, (1)

where Dπ is the 4 × 4 diagonal matrix with the entries of π at the diagonal, MA is the
4 × 4|A| matrix whose entry (x, i) is the probability in the subtree TA of observing i
at the leaves A given that the node w is at state x (and similarly for MB). In the next
sections we extend the well known edge invariants to phylogenetic networks. On a
separate work we will study the consequences that this may have in distinguishing
phylogenetic networks and phylogenetic trees.

2 Invariants for the General Markov Model

Assume that there is a clade TA in N that does not contain any reticulation vertex
(this is illustrated in the network of Fig. 1, where the clade TA corresponds to leaves
1 and 2). Thus TA is a subtree of N shared by all Tσ and the transition matrices at
the edges of TA are also shared by all Tσ . We call B the leaves in N that are not in
A.

Theorem 2 If p = PN ,θ is a distribution on a phylogenetic network N evolving
under the GMM and TA is a tree-clade in N , then f lattA|B(p) has rank ≤ 4.

Proof Let v be the root of TA. To keep the proof simple we assume that v is different
from r . By rerooting each Tσ at v, the edges ofN that are not in TA might change their
orientation, but the corresponding transition matrices can also be changed so that the
joint distribution does not change. If μσ is the new set of parameters for Tσ , which is
composed of the distribution πσ at the vertex v and the new transition matrices, then
PTσ,θσ

= PTσ,μσ
. Note that after the rerooting process, the new transition matrices

associated to the clade TA are still the same for all Tσ (even if the distribution πσ at
v might be different for each Tσ). For each Tσ , we write MA for the transition matrix
from v to the leaves in A and write Mσ

B for the transition matrix from v to the leaves
in B (as in Eq. (1)). Then, we have
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f lattA|B (p) =
∑

σ

⎛

⎝
m∏

i=1

δ
1−σi
i (1 − δi )

σi

⎞

⎠ f lattA|B (PTσ ,μσ )

=
∑

σ

⎛

⎝
m∏

i=1

δ
1−σi
i (1 − δi )

σi

⎞

⎠ Mt
ADπσ Mσ

B = Mt
A

∑

σ

⎛

⎝
m∏

i=1

δ
1−σi
i (1 − δi )

σi

⎞

⎠ Dπσ Mσ
B ,

where the secondequality is obtainedbyusing (1) for eachTσ . Therefore, f lattA|B(p)
factorizes as a product of a 4|A| × 4 and a 4 × 4|B| matrix, and hence has rank ≤ 4.

Corollary 3 If N is a phylogenetic network with a tree-clade TA as above and p
is a distribution coming from a Markov process on N , then the 5 × 5 minors of
f lattA|B(p) are invariants for N .

Note that these invariants are shared by all the phylogenetic networks that have
the same clade TA. It is necessary to prove that the 5 × 5 minors above do not vanish
for other networks before using them with the idea of distinguishing networks.

3 Invariants for Equivariant Models

The construction of the first section stands for the general Markov model (GMM),
where no particular structure is assumed for the transition matrices or the root dis-
tribution. This construction can be adapted by taking the substitution model more
restrictive and considering evolutionary submodels of the general Markov model. A
large class of these submodels are the G-equivariant models, where the transition
matrices satisfy some symmetries according to a permutation group G < S4. With
precision, equivariant models only consider transition matrices that remain invari-
ant after permuting rows and columns according to the permutations of some given
permutation group (see [3, 5] for details). Among the G-equivariant models one
finds the well known Jukes-Cantor model, Kimura 2 and 3 parameters and the strand
symmetric model.

The result obtained in the previous section can be extended to G-equivariant
models by using the tools introduced in [3]. We explain briefly the idea. LetN be a
network with a tree-clade TA. If p is a distribution onN arising from aG-equivariant
model, then p actually lies in (C4n )G , the set of points that remain invariant under
the action of G. If we write Ni for the irreducible representations of G, the reg-
ular representation of G induces a decomposition of W = C4 into isotypic com-
ponents: W ∼= ⊕k

i=1 Ni ⊗ Cmi , for some well-defined multiplicities mi ≥ 0, and
similar decompositions for every tensor power W⊗l , l ≥ 1 (Maschke’s theorem).
If | · | stands for cardinality, we can rewrite f lattA|B(p) in a convenient basis of
(C4n )G ∼= HomG(W⊗|A|,W⊗|B|) consistent with these decompositions, so that the
resulting matrix becomes block diagonal:

f latt A|B(p) = (B1, . . . , Bk).
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In this setting, we are able to prove the following result:

Theorem 4 If p arises from the G-equivariant model on N , then rank(Bi ) ≤ mi

for each i = 1, . . . , k.

Corollary 5 IfN is a phylogenetic network with a tree-clade TA as above and p is
a distribution coming from a Markov process on N , then the (mi + 1) × (mi + 1)-
minors of the block Bi of f lattA|B(p) are invariants for N .

The precise technical statement and the proof will be provided in a forthcoming
paper. It will be interesting to check whether these invariants arising from rank
conditions coincide with some of the invariants found in [8] for the Jukes-Cantor
model.
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A Contact Geometry Approach to
Symmetries in Systems with Dissipation

Jordi Gaset

Abstract Systems with dissipation can be described using contact geometry. We
introduce the concepts of symmetries and dissipation laws for contact Hamiltonian
systems and study the relation between them. This is an ongoing collaboration with
Xavier Gràcia, Miguel C. Muñoz-Lecanda, Xavier Rivas and Narciso Román-Roy.

1 Introduction

In many mechanical systems without dissipation, we are interested in quantities (like
energy or the different momenta) which are conserved along a solution. They are an
effective tool to understand and integrate the system. From a physical point of view,
if a system has dissipation, these quantities are not conserved. Since damped systems
rarely have a standard Lagrangian or Hamiltonian formulation, this problem can not
be studied with the usual tools.

There is a growing interest in describing the geometrical framework of dissipated
or damped systems, specifically using contact geometry [1, 3–5]. All of them are
described by ordinary differential equations to which some terms that account for the
dissipation or damping have been added. In order to provide a variational formulation
for these systems, contact geometry introduces a new variable or parameter, together
with a new set of equations. It turns out that this variable is closely related to the action
itself, and some authors consider these theories as described by an action-dependent
Lagrangian. Contact Hamiltonian systems provide us the geometric framework we
will use to analyse symmetries and (non)-conserved quantities.

First wewill present the geometric structures of the contact formalism, and contact
Hamiltonian systems. Then we will define several classes of symmetries for this kind
of systems, which have different properties.

The analogous concept of conserved quantities are called dissipated quantities.
In the contact formalism, the evolution of these quantities is determined by a dissi-
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pation law. We will also show how to construct conserved quantities from dissipated
quantities.

It is possible to relate symmetries with dissipated quantities, in a result inspired
in Noether’s Theorem. We will briefly discuss how this relation works. Finally, we
will apply this tools to the motion in a gravitational field with friction.

This framework can be extended to describe field theories with dissipation intro-
ducing the concept of k-contact structures [2].

2 Contact Manifolds and Contact Hamiltonian Systems

Definition 1 Let M be a (2n + 1)-dimensional manifold. A contact form in M is
a differential 1-form η ∈ �1(M) such that η ∧ (dη)n is a volume form in M . Then,
(M, η) is said to be an (exact) contact manifold.

As a consequence of the condition that η ∧ (dη)n is a volume form we have a
decomposition of TM , induced by η, in the form TM = ker dη ⊕ ker η. Therefore,
there exists a unique vector fieldR ∈ X(M), which is called Reeb vector field, such
that {

i(R)dη = 0,

i(R)η = 1.
(1)

This vector field generates the distribution ker dη, which is called the Reeb dis-
tribution. In a contact manifold one can prove the existence of Darboux-type coor-
dinates:

Theorem 2 (Darboux theorem for contact manifolds) Let (M, η) be a contact man-
ifold. Then around each point p ∈ M there exist a chart (U; qi , pi , s)with 1 ≤ i ≤ n
such that

η|U = ds − pi dq
i .

These are the so-called Darboux or canonical coordinates of the contact manifold
(M, η).

In Darboux coordinates, the Reeb vector field isR|U = ∂

∂s
.

Theorem 3 If (M, η) is a contact manifold and, for everyH ∈ C∞(M), there exists
a unique vector field XH ∈ X(M) such that

{
i(XH)dη = dH − (LRH)η

i(XH)η = −H .
(2)

The vector field XH is the contact Hamiltonian vector field associated toH and
the Eq. (2) are the contact Hamiltonian equations for this vector field. The triple
(M, η,H) is a contact Hamiltonian system.
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As a consequence of the definition of XH we have the following relation, which
expresses the dissipation of the Hamiltonian:

LXHH = −(LRH)H .

Indeed: LXHH = −LXH i(XH)η = −i(XH)LXHη = i(XH)((LRH)η) = −(LRH)H .

Taking Darboux coordinates (qi , pi , s), the contact Hamiltonian vector field is

XH = ∂H
∂ pi

∂

∂qi
−

(
∂H
∂qi

+ pi
∂H
∂s

)
∂

∂ pi
+

(
pi

∂H
∂ pi

− H
)

∂

∂s
;

and its integral curves γ(t) = (qi (t), pi (t), s(t)) are solutions of⎧⎪⎪⎨
⎪⎪⎩
q̇ i = ∂H

∂ pi
,

ṗi = −
(

∂H
∂qi + pi

∂H
∂s

)
,

ṡ = pi
∂H
∂ pi

− H .

(3)

3 Symmetries and Dissipation Laws for Contact
Hamiltonian Systems

One can consider different concepts of symmetry in a dynamical system, which
depend on which structure they preserve. We will define dynamical symmetries,
which preserve the space of solutions, and contact symmetries, which preserve the
geometric structure.

Let (M, η,H) be a contact Hamiltonian system with Reeb vector field R, and
XH the contact Hamiltonian vector field for this system; that is, the solution to the
Hamilton equations (2).

Definition 4 Consider a diffeomorphism � : M −→ M and a vector field Y ∈
X(M):

• � is a dynamical symmetry if �∗XH = XH (it maps solutions into solutions).
Y is an infinitesimal dynamical symmetry if its local flows are dynamical sym-
metries; that is,LY XH = [Y, XH] = 0.

• � is a contact symmetry if

�∗η = η , �∗H = H .

Y is an infinitesimal contact symmetry if its local flows are contact symmetries;
that is,

LYη = 0 , LYH = 0 .
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Every (infinitesimal) contact symmetry preserves the Reeb vector field; that is,
�∗R = R (or [Y,R] = 0). We have that an (infinitessimal) contact symmetry is an
(infinitessimal) dynamical symmetry.

Associated with symmetries of contact Hamiltonian systems are the concepts of
dissipated and conserved quantities:

Definition 5 A function F ∈ C∞(M) is:

• A conserved quantity of a contact Hamiltonian system if LXHF = 0 .
• A dissipated quantity of a contact Hamiltonian system ifLXHF = −(LRH) F .

For contactHamiltonian systems, symmetries are associatedwith dissipated quan-
tities as follows:

Theorem 6 (Dissipation theorem). If Y is an infinitesimal dynamical symmetry, then
F = −i(Y )η is a dissipated quantity.

In particular, the Hamiltonian vector field XH is trivially a dynamical symmetry
and its dissipated quantity is the energy, F = −i(XH)η = H; that is: LXHH =
−(LRH)H.

The Dissipation theorem is similar to the classical Noether’s theorem. The con-
verse of this result, that is, if every dissipated quantity is associated to an infinitesimal
dynamical symmetry, is not true in general. Nevertheless, we can characterize them
as follows: for any function F , we have an associated vector field: F = −i(YF )η,
namely YF = −FR. Then, the results follows using a theorem in [5]:

Theorem 7 Let X be a vector field on M. Then i(X)η is a dissipated quantity if,
and only if, i([X, XH])η = 0.

Every dissipated quantity changes with the same rate (−R(H)), which suggests
that the quotient of two dissipated quantities should be a conserved quantity. Indeed:

Proposition 8 Given two functions F1, F2 ∈ C∞(M):

• If F1 and F2 are dissipated quantities and F2 	= 0, then F1/F2 is a conserved
quantity.

• If F1 is a dissipated quantity and F2 is a conserved quantity, then F1G2 is a
dissipated quantity.

If H 	= 0, it is possible to assign a conserved quantity to an infinitesimal dynamical
symmetry Y . Indeed, from Theorem 6 and Proposition 8, the function −i(Y )η/H is
a conserved quantity.

Finally, contact symmetries can be used to generate new dissipated quantities
from a given dissipated quantity. In fact, as a corollary of Definitions 5 and 4 we
obtain:

Proposition 9 If� : M → M is a contact symmetry and F : M → R is a dissipated
quantity, then so is �∗F.
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4 Example: Motion in a Gravitational Field with Friction

Consider the motion of a particle in a vertical plane under the action of constant
gravity, with friction proportional to velocity. The Hamiltonian system is (M, η,H),
where M = T∗R2 × R. Considering coordinates (x, y, px , py, s) we have that:

η = ds − pxdx − pydy , H = 1

2

p2x + p2y
m

+ mgy + γs .

The contact Hamiltonian vector field is

XH =
(1
2

p2x + p2y
m

− mgy − γs
) ∂

∂s
+ px

m

∂

∂x
+ py

m

∂

∂y
− γ px

∂

∂ px
− (mg + γ py)

∂

∂ py
.

Which leads to the following equations for curves:

ẍ + γ ẋ = 0 , ÿ + γ ẏ + g = 0 , ṡ = 1

2

p2x + p2y
m

− mgy − γs .

One can check that the Energy is dissipated:LXHH = −γH. Moreover, we have
that ∂H

∂x = 0, thus ∂
∂x is a contact symmetry. px is the associated dissipated quantity

and LXH px = −γ px . Finally, we have the following conserved quantity: H/px =
(mp2/2 + mgy + γs)/px .
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Dimension Formulas for the Cohomology
of Arithmetic Groups

Matias V. Moya Giusti

Abstract In this extended abstract we will describe a method to study the dimen-
sion of the cohomology of an arithmetic group. We will mainly use the Borel-Serre
compactification, the theory of cuspidal and Eisenstein cohomology and the Euler
characteristic.

1 Introduction

Let G be a semisimple algebraic group defined over Q and let � ⊂ G(Q) be an
arithmetic subgroup.Given a representationM ofG,we are interested in determining
the dimension of H •(�,M).

Let K∞ ⊂ G(R) be amaximal compact subgroup.We denote by X the symmetric
spaceG(R)/K∞. The arithmetic group� acts on X andwe denote by X� the quotient
space �\X . The representation M of G determines in a natural way a sheaf ˜M on
X� .

One then has the following isomorphism in cohomology

H •(�,M) ∼= H •(X�, ˜M),

where on the left hand side we are considering the group cohomology and on the
right hand side we are considering the sheaf cohomology (see Sect. VII of [5] for a
proof of this statement).

Arithmetic groups play a central role in Number Theory and their cohomology
spaces encode very interesting arithmetic information. Already for the congruence
arithmetic subgroups of SL2, the cohomology is closely related to the space of mod-
ular forms. This is already one important motivation to study these objects.

From now on, we fix a system of simple roots � on G and we denote byMλ the
finite dimensional irreducible representation of G with highest weight λ. This repre-
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sentation will be defined over some number field F (i.e. over some finite extension
of Q).

In the next sections we will describe a method to study the dimension of
H •(�,Mλ) that works mainly when λ is regular.

2 Borel-Serre Compactification

Let X� denote the Borel-Serre compactification of X� (see [4]). This object is a
very important tool in the study of the cohomology of arithmetic groups. We will
not give the precise definition of this compactification but we will list some of its
most important properties. The structure of this compactification is strongly related
with the Q-structure of G. Let �Q be a system of simple Q-roots on G. There is
a natural bijection between the conjugacy classes in the set PQ(G) of Q-parabolic
subgroups and the subsets of �Q. Let rkQG denote the dimension of the maximal
Q-split torus in G. One defines theQ-parabolic rank of P ∈ PQ(G)whose conjugacy
class is associated to I ⊂ �Q by rkQP = rkQG − |I |. The reader can see [3] for a
detailed description of the theory of Q-parabolic subgroups.

The Borel-Serre compactification verifies the following properties,

• Let i : X� ↪→ X� be the inclusion, then i is an homotopy equivalence and one has
an isomorphism in cohomology,

H •(X�, i∗( ˜Mλ)) ∼= H •(X�, ˜Mλ),

where i∗ denotes the direct image functor defined by i . In what follows, we will
denote i∗( ˜Mλ) simply by ˜Mλ.

• Let ∂ X̄� = X̄� \ X� be the boundary of the Borel-Serre compactification. One
can write this boundary as a union

∂ X̄� =
⋃

P∈�\PQ(G)

e′(P)

indexed by the set of �-conjugacy classes of the set PQ(G) of Q-parabolic sub-
groups of G. This expression of the boundary defines a spectral sequence abutting
to the cohomology of the boundary

E p,q
1 =

⊕

rkQP=p+1

Hq(e′(P), ˜Mλ) ⇒ H p+q(∂ X̄�, ˜Mλ).

Finally, one has a decomposition that reduces the study of the cohomology of the
boundary ∂ X̄� to a study of the cohomology of certain arithmetic quotients ofQ-rank
lower than rkQG, that are therefore easier to calculate. In fact, the cohomology of
e′(P) can be decomposed as a direct sum
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Hk(e′(P), ˜Mλ) =
⊕

w∈WP(k)

H p(XMP
� , ˜Mw·λ),

where XMP
� denotes the locally symmetric space associated to the Levy quotient MP

of P,WP(k) is certain subset of the Weyl groupW of G whose elements have length
k and ˜Mw·λ is the sheaf on XMP

� defined by the irreducible representation of MP with
highest weight w · λ. See [11] for the details of this decomposition and [9] for the
definitions of the sets WP(k) and the highest weights w · λ.

3 Eisenstein and Cuspidal Cohomology

The representation Mλ is defined over a number field F and we denote Mλ,C =
Mλ ⊗F C.When extending scalars toC, one has a decomposition of the cohomology
of� into thedirect sumof two subspaces, the cuspidal and theEisenstein cohomology,
defined analytically in terms of automorphic forms

H •(X�, ˜Mλ,C) = H •
cusp(X�, ˜Mλ,C) ⊕ H •

Eis(X�, ˜Mλ,C). (1)

On the other hand, the inclusion ∂X� ↪→ X� defines a morphism in cohomology,
the restriction morphism

r : H •(X�, ˜Mλ) → H •(∂X�, ˜Mλ).

One defines the inner cohomology by H •
! (X�, ˜Mλ) = Ker(r). This space is

defined over F and one has an isomorphism

H •(X�, ˜Mλ) ∼= H •
! (X�, ˜Mλ) ⊕ H •

in f (X�, ˜Mλ)

where H •
in f (X�, ˜Mλ) is the image of r .

In general H •
cusp(X�, ˜Mλ,C) ⊂ H •

! (X�, ˜Mλ,C) and when the highest weight λ
is regular, this inclusion is in fact an equality. This implies that in the regular case
the restriction morphism r defines an isomorphism between H •

Eis(X�, ˜Mλ,C) and
H •
in f (X�, ˜Mλ,C).
Another important fact is that one has the natural nondegenerate pairings, usually

referred to as Poincaré duality (see [7]),

H •(X�, ˜Mλ) × Hd−•
c (X�, ˜Mλ∗) → F,

and
H •(∂X�, ˜Mλ) × Hd−1−•(∂X�, ˜Mλ∗) → F,

where Mλ∗ denotes the dual representation ofMλ and d is the dimension of X .
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These pairings respect some compatibility conditions involving the restriction
morphism r , which implies the following

• The spaces H •
in f (X�, ˜Mλ) aremaximal isotropic subspaces of the boundary coho-

mology under the Poincaré duality. This means that H •
in f (X�, ˜Mλ) is the orthog-

onal space of H •
in f (X�, ˜Mλ∗) under this pairing.

• Poincaré duality induces a duality between H •
! (X�, ˜Mλ) and H •

! (X�, ˜Mλ∗).

The description of the boundary cohomology and this property are very strong
tools to study the Eisenstein cohomology. One could also use some important results
in [12]. These methods to calculate the Eisenstein cohomology will work for most
of the highest weights λ, including all the regular ones. In all the other cases one
should use a study of the residual Eisenstein cohomology classes as in [6].

4 Euler Characteristic

The Euler characteristic of � with coefficients in the representation Mλ is defined
by

χh(�,Mλ) =
∑

k≥0

(−1)kdimF (Hq(�,Mλ)).

One similarly defines the Eisenstein and the cuspidal Euler characteristic to be

χEis(�,Mλ) =
∑

k≥0

(−1)kdimC(Hq
Eis(X�, ˜Mλ,C)),

χcusp(�,Mλ) =
∑

k≥0

(−1)kdimC(Hq
cusp(X�, ˜Mλ,C)),

and because of (1), one has

χcusp(�,Mλ) = χh(�,Mλ) − χEis(�,Mλ).

There is a very useful formula, developed in [8], that can be used to calculate the
Euler characteristic. In fact,

χh(�,Mλ) =
∑

(T )

χ(C�(T ))Tr(T−1,Mλ),

where the sum runs over the�-conjugacy classes (T ) of torsion elements in�,C�(T )

is the centralizer in � of T and χ is the orbifold Euler characteristic.
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The orbifold Euler characteristic χ(�′) of an arithmetic group �′ is determined
by the following two properties:

• If �′ is torsion free, then χ(�′) = χh(�
′), that is, the orbifold Euler characteristic

and the homological Euler characteristic are the same in this case.
• If �′′ ⊂ �′ are arithmetic subgroups such that [�′, �′′] is finite then

χ(�′) = χ(�′′)
[�′, �′′] .

As a final remark, here is a list of two cases in which this theory is very useful in
calculating the cohomology of the arithmetic group:

• If λ is not self dual, then H •
! (∂X�, ˜Mλ) = 0. Therefore

H •(X�, ˜Mλ,C) = H •
Eis(∂X�, ˜Mλ,C) ∼= H •

in f (∂X�, ˜Mλ,C)

and one only has to calculate the dimension of H •
in f (∂X�, ˜Mλ).

• There are positive integers a, b ∈ N such that Hk
cusp(∂X�, ˜Mλ,C) could only be

nonzero if a ≤ k ≤ b (see for example [10]). Evenmore, in some cases the cuspidal
cohomology is concentrated in one degree k. In those cases, one has

(−1)kdimC(Hk
cusp(X�, ˜Mλ,C)) = χh(�,Mλ) − χEis(�,Mλ).
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Do Overtwisted Contact Manifolds
Admit Infinitely Many Periodic Reeb
Orbits?

Cédric Oms

Abstract In this note we discuss an approach to prove existence of infinitely many
periodicReeb orbits in overtwisted contactmanifolds. The result is a combination of a
plug-like construction and an adaptation of Hofer’s J -holomorphic curve techniques
in the case to b-contact manifold.

1 Introduction

The quest for existence results of periodic Reeb orbits associated to a contact form
has a rich history. Weinstein conjectured in [19] that on a closed contact manifold,
there is always at least one periodic Reeb orbit. The conjecture was motivated by
the work of Rabinowitz [16], that proved the result for convex hypersurfaces in the
standard symplectic Euclidean space. Although open in full generality, the question
has seen steady but groundbreaking progress over the last three centuries, opening
the door to influential techniques that are considered to be classical nowadays. One
of the biggest steps in the mentioned development was carried out by Hofer [11],
who established a narrow interplay between certain J -holomorphic curves and Reeb
dynamics, applicable for a large class of contact manifolds, namely overtwisted ones.
One century later, the conjecturewas proved by [18] in full-generality in dimension 3.

A refinement of Weinstein conjecture is about the minimal number of periodic
Reeb orbits. There are examples of compact contactmanifolds exhibiting onlyfinitely
many periodic Reeb orbits, namely ellipsoids of irrational axis in the standard sym-
plectic space. The only other examples known to the author are quotients thereof to
lens spaces. The authors [1] proved the following dichotomy: in dimension 3, there
are two or infinitely many periodic orbits. In the sequel [2], it is shown that there
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are always infinitely many, under the condition that the contact form satisfies some
non-degeneracy condition and being torsion-free.

It is well-known that the two examples of contact manifold admitting finitely
many periodic Reeb orbits are opposite of being overtwisted, namely tight.

Do compact overtwisted contact manifolds always admit infinitely many periodic
Reeb orbits?

Thenovelty of this question is that there is no condition of non-degeneracy or being
torsion-free involved. This short note outlines a strategy to attack this question which
looks as follows. Succeeded by a brief introduction to the necessary definitions in
contact geometry,wewill generalize this notion to distributionswhich are everywhere
non-integrable away from given hypersurface. The hypersurface however consists of
an integrable submanifold. Those manifolds are called b-contact manifold, where b
stands for boundary. We then prove that there exists a trap-like construction for those
kind of manifolds and explain how this possibly can be generalized to a plug. This
would prove that Weinstein conjecture as such is not true for this generalization of
contactmanifolds.We thenoutline a result ofwork in progress of [14] to adaptHofer’s
machinery in this setting. A combination of those results would give a complete
answer to the main question of this note.

2 Contact Geometry

In this section, we cover the basics of contact geometry. For more details see [6].

Definition 1 Let M be a manifold of dimension 2n + 1. A 1-form α is contact if
α ∧ (dα)n �= 0. The hyperplane distribution given by ξ = ker α is called a contact
structure.

Note that the condition α ∧ (dα)n �= 0 implies that ξ is at the opposite of being
integrable (in the Frobenius sense). We include two examples.

• R2n+1 with the 1-form given by αst = dz + ∑n
i=1 xidyi . This form satisfies the

contact condition. This example is important: Darboux theorem states that all
contact forms are locally diffeomorphic to this one and is therefore called standard
contact form.

• Consider the unit sphere S3 in the standard Euclidean space (R4,ωst). It can be
shown that α = ωst(r

∂
∂r , ·) is a contact form, where r ∂

∂r is the radial vector field.

Associated to a contact form α, there is a unique vector field Rα defined by the
equations ιRα

dα = 0 and ιRα
α = 1, called the Reeb vector field. The Reeb vector

field associated to the first example is just the linear vector field ∂
∂z so it does not

admit any periodic orbit. In the second example the Reeb vector field defines the
Hopf fibration, so all the orbits are closed.

Conjecture 2 (Weinstein conjecture) Let (M,α) be a compact contact manifold.
Then the vector field Rα admits at least one periodic orbit.
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As explained before, historically speaking an influential proof for this conjecture
was carried out for overtwisted contact manifolds.

Definition 3 A 3-dimensional contact manifold (M, ξ = ker α) is called over-
twisted if there exists a an embedded disk F2 such that the boundary of T∂F ⊂ ξ|∂F
and T F ∩ ξ defines a 1-dimensional foliation except on a unique elliptic singular
point e ∈ intD with TeF = ξp. The disk F is called overtwisted disk and we denote
the overtwisted disk without the elliptic point by F∗.

Overtwisted contact structures play an important role in the classification of con-
tact structures, see [4]. The two examples mentioned earlier do not admit an over-
twisted disk and are therefore called tight. The only known example of compact
contact manifold with finitely many periodic Reeb orbits are tight. An example is
given by perturbing the contact form of the example on S3.

Example 4 Consider the unit sphere S3 in the symplectic manifold (R4,ω = dx1 ∧
dy1 + εdx2 ∧ dy2) where ε is irrational. As before, the contact form is given by
contracting the symplectic form with the radial vector field. The only two Reeb
orbits that are preserved under the change of the contact form are the ones given in
the (xi , yi )-plane.

3 b-Contact Manifolds

In this section we give a generalization of contact structures, introduced in [13]. The
generalization consists in a distribution that is contact away fromagiven hypersurface
Z . However, Z is an integrable submanifold of the distribution. The casewhere Z = ∅
covers the contact case.

To formalize this definition, it is useful to work in the setting of vector fields that
are tangent to Z and to extend differential calculus for those vector fields, as was
done by Melrose [15] and later in [10].

Assume that the hypersurface Z in the manifold M is defined by the equation
f = 0 for f ∈ C∞(M). Locally, the vector fields that are tangent to Z are spanned
by

〈 f ∂

∂ f
,

∂

∂x1
, . . . ,

∂

∂xm−1
〉

where m = dim M . By a theorem of Serre–Swan [17], there exists a vector bundle
whose sections are given by those vector fields. We denote this vector bundle of rank
m by bT M and call it b-tangent bundle. Here b stands for boundary. We denote the
dual of the b-tangent bundle by bT ∗M , the b-cotangent bundle. Sections of wedge
products of this bundle are called b-forms and denoted b�k(M). We put the structure
of graded differential algebra on b�(M) by expressing b-forms in terms of smooth
forms and extending the de Rham differential using the following lemma.
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Lemma 5 ([10]) Let ω ∈ b�k(M). Then there exists α ∈ �k−1(M) and β ∈ �k(M)

such that ω = d f
f ∧ α + β.

The differential on b�(M) is then defined by dω = d f
f ∧ dα + dβ. We are now

able to formulate the definition of b-contact manifolds.

Definition 6 A manifold M of dimension 2n + 1 with a marked hypersurface Z is
b-contact if there exists α ∈ b�1(M) such that α ∧ (dα)n �= 0.

The differential in the definition is of course the one just defined for b-forms and
the expression being non-zero needs to be understood as section of �2n+1(bT ∗M).
The Reeb vector field is defined analogously by the same equations, however it is
important to note that the Reeb vector field associated to a b-contact form can vanish.

Example 7 Consider R3 with the b-form α = dz
z + xdy. The Reeb vector field is

given by Rα = z ∂
∂z and is vanishing at Z .

This behaviour is in stark contrast to the non-vanishing of the Reeb vector field
makes one wonder whether or not Weinstein conjecture may still hold for b-contact
manifolds. In particular, relaxing the contact condition may permit the existence of
plugs for the associated Reeb flow as we will discuss in the next section.

4 It Is a Trap

The theory of plugs has established many counterexample of compact manifolds
equipped with a flow satisfying some geometric properties without admitting any
periodic orbit, see for instance [9, 12]. The idea of a plug is to locally alter the flow
and thereby break periodic orbits, without changing the global dynamics. Care needs
to be taken to make this local modification satisfy geometry of the flow.

Definition 8 A trap is a smooth vector field on the manifold Dn−1 × [0, 1] such that
(1) the flow of the vector field is given by ∂

∂t near the boundary of ∂D × [0, 1],
where t is the coordinate on [0, 1];

(2) there are no periodic orbits contained in D × [0, 1];
(3) the orbit entering at the origin of the disk D × {0} does not leave D × [0, 1]

again.

If the vector field additionally satisfies entrance-exit matching condition, that is that
the orbit entering at (x, 0) leaves at (x, 1) for all x ∈ D \ {0}, then the trap is called
a plug.

Using the flow-box theorem for non-vanishing vector, traps and plugs can be
locally inserted. It is clear that, due to the matching condition, plugs do not alter the
global dynamics. Placing a plug at an isolated periodic orbit breaks the periodic orbit
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without creating any new ones. Traps, however, may alter the global dynamics and
possibly create new periodic orbits.

It follows from the positive results of Weinstein conjecture that plugs can not
exist for the Reeb vector field. Furthermore it was proved that traps do not exist in
dimension 3 [5], but do exist in higher dimensions [7].

In the case of b-contact manifolds however, the construction of traps is true in any
dimension.

Theorem 9 ([13]) There exists b-contact traps in any dimension.

The idea of the proof is to introduce a sphere in the standard contact form and to
realise it as the critical hypersurface of a b-contact form. The b-contact form agrees
with the standard contact form outside of a local neighbourhood of the sphere. This
construction relies heavily on Giroux’s convex hypersurface theory [8]. It can be
checked that the altered Reeb vector field has an orbit that gets trapped.

Nevertheless, the matching condition is not satisfied and the global dynamics
maybe altered. However the authors in [13] believe that the presence of singularities
in the contact form and the Reeb vector field should make it possible to control this
dynamics.

Conjecture 10 There exists b-contact plugs in any dimension.

In what follows, we will discuss the consequences of b-contact plugs. First of all,
this construction would imply that Weinstein conjecture, stated as such, would not
hold: indeed any example of contact manifold admitting finitely many periodic Reeb
orbits could be changed to a b-contact manifold without any periodic Reeb orbits

We end this note with discussing the repercussion on the main question. �


5 Overtwisted Disk in b-Contact Manifolds

In this last section, we discuss the presence of overtwisted disk in b-contactmanifolds
and discuss the techniques introduced in [11] in this set-up. The result are contained
in an upcoming paper [14]. First, we say that a b-contact manifold is overtwisted if
there exists an overtwisted disk away from the hypersurface Z . Following [11], the
elliptic singularity of the overtwisted disk gives rise to a family of pseudoholomorphic
curves in the symplectization of the b-contact manifold. A careful analysis, similar
to the original techniques, shows that this family either limits to either a finite energy
plane away from the hypersurface, or either gives rise to a 1-parametric family of
finite energy planes in the neighbourhood of the hyperplane, which is due to the R-
invariance in the direction of the hyperplane. Hence, compact overtwisted b-contact
manifolds admit either a periodic Reeb orbits away from Z or a 1-parametric family
of periodic Reeb orbits approaching Z .

This result is non-trivial because of non-compactness issues. However, the authors
can deal with non-compactness using an approach resembling [3].
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Surprisingly, this result in combination with the existence of plugs as conjectured
would answer the main question of this short note. Indeed, assume that there is a
compact overtwisted contact manifold with finitely many periodic Reeb orbits. The
plug can be successively introduced away from the overtwisted disk to break every
periodic Reeb orbit. This would result in a compact overtwisted b-contact manifold
without any periodic Reeb orbits, which contradicts the main result of this section.

Acknowledgements I would like to thank Eva Miranda and Fran Presas for their help in this
project.
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Topological Radiomics (TOPiomics):
Early Detection of Genetic Abnormalities
in Cancer Treatment Evolution

Debora Gil, Oriol Ramos, and Raquel Perez

Abstract Abnormalities in radiomic measures correlate to genomic alterations
prone to alter the outcome of personalized anti-cancer treatments. TOPiomics is
a new method for the early detection of variations in tumor imaging phenotype from
a topological structure in multi-view radiomic spaces.

1 Introduction

In the era of precision medicine, cancer therapies are tailored to the specific genetic
makeup of a tumour. A main challenge during treatment is the early detection of
variations in tumour phenotype that might alter the expected outcome. Radiomics
[1] is an emerging area that converts medical imaging data into large amount of mul-
tiviewmeasures (imaging phenotype) of the whole tumour correlated with genomics.
Although abnormal radiomic features could be predictive early response biomarkers
to cancer treatments, there are no methods specifically developed for detection of
abnormalities (outliers). There are two main types of outliers in radiomic multi-view
spaces [2]. Samples with inconsistent features with respect their class population
(class outliers associated to a change in the mutation type) and samples with abnor-
mal feature values not expected for any of the classes (attribute outlier associated to
new unseen mutations).

Detection of abnormal radiomic features should model multi-view spaces with
Small Sample Size (SSS) data prone to have a complex manifold structure. A main
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pitfall in current state of the art is the use of generic machine learning and statistical
tools borrowed from other fields of application which fall short under the specific
requirements of radiomics [3].

Existing methods for detection of outliers can be categorized into global
approaches and local approaches. Global methods are population based and model
the distribution in the feature space of a set of (annotated) samples.Global approaches
are bad posed in the case of SSS unbalanced problems, which are common in many
application areas like clinical decision support systems or personalizedmodels. Local
methods are based on a description of the structure of each sample’s neighbors in the
feature space. These description is used to compute measures of outlierness. A deli-
cate requirement is the definition of sample’s neighborhoods, which is mostly based
on Euclidean distances. Such an approach can fail in the case of SSS problems in
high dimensional spaces, which are prone to be arranged as a topological manifold.

The goal of TOPiomics is the early detection of variations in tumour imaging
phenotype using a topological signature of abnormality obtained from the topological
structure of SSS data in multi-view radiomic spaces.

2 Methods

TOPiomics is a local approach based on the communities (group of nodeswith a given
specific connectivity) of a graph encoding the structure of radiomics feature space.
Features are given by quantities extracted from medical scans prone to correlate
to treatment outcome, referred to as label. In the context of radiomics multimodal
representations, there are two types of outliers: attribute outliers and class outliers.
Attribute outliers are samples with abnormal feature values not expected for any of
the classes, while class outliers are samples labelled differently across views.

Figure1 sketches the main steps of TOPiomics. First, for each radiomic view (like
the one shown in Fig. 1a), we encode the local structure of samples using the graph
representing their mutual k-nearest neighbor (Fig. 1b). Second, we use methods for
dynamical analysis of social networks to compute the graph communities (Fig. 1c)
that define a set of neighborhoods. Isolated nodes not belonging to any community
are attribute outliers, while class outliers should belong to communities with an het-
erogeneous distribution of labels. Finally, we define a local measure of abnormality
from several probabilistic measures (Fig. 1d) of each sample heterogeneity computed
in its set of neighborhoods.

The graph is given by the adjacency matrix of the mutual k-nearest neighbor of a
set of samples. Let D := {(Vi , �Vi )|Vi = (vi

1, . . . , v
i
n) ∈ Rn, �Vi ∈ {1, . . . , nl}}Ni=1

be a set of N labelled points in an n-dimensional feature space endowed with a
distance, namely d. For any positive integer, k, let kNN(Vi ) denote the set of Vi k-
nearest neighbors. Then, the graph connectivity is given by the following adjacency
matrix:
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Fig. 1 TOPiomics workflow

a(Vi ,V j ) =
{ 1

d(Vi ,V j )+1 if V j ∈ kNN(Vi ) and Vi ∈ kNN(V j )

0 otherwise
(1)

for d(Vi ,V j ) the distance between V j and Vi .
In order to alleviate the impact of the parameters (the number of neighbors in this

case) involved in the computation of (1), communities are computed using criteria
for dynamic computation of communities [4] to extend an initial set of communities.
The initial communities are given by Percolation clusters [5] which are defined as
maximal unions of adjacent k-cliques (fully connected subgraphs of order k sharing
(k-1)-nodes). Percolation communities are prone to exclude many points that are not
actual attribute outliers [6]. An isolated node, W, is added to an initial community,
C, if it fulfills that:

CS(C,W) ≥ δ IC(C) (2)

for δ ∈ [0, 1] a tolerance parameter, IC(C) ameasure of the community internal con-
nectivity andCS(C,W) ameasure of the connectivity betweenW and the community
C. Bothmeasures are computed from a function of the degree of the community nodes
as follows.

Let GC be the subgraph induced by C and Gσ the subgraph induced by all nodes
that belong to the set, namely σ, of initial communities. Then, for all V ∈ C we can
define the following function, ρC(V), measuring its belongingness to the community:

ρC(V) := degC(V)

degσ(V)
(3)

being degC(V) the degree of V in GC and degσ(V) the degree of V in Gσ . The
measure of C internal connectivity is defined from ρC(V) as:

IC(C) :=
∑
V∈C

ρC(V) (4)
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Table 1 Assessment of Performance

DataSet Method Outlier configuration

2-8 5-5 8-2

Iris HOAD 0.167 ± 0.057 0.309 ± 0.063 0.430 ± 0.055

DMOD 0.909 ± 0.044 0.831 ± 0.038 0.799 ± 0.068

TOPiomics 0.975 ± 0.024 0.971 ± 0.023 0.97 ± 0.021

Breast HOAD 0.538 ±0.027 0.597 ± 0.038 0.643 ± 0.008

DMOD 0.657 ± 0.017 0.720 ± 0.013 0.799 ± 0.016

TOPiomics 0.838 ± 0.022 0.897 ± 0.020 0.91 ± 0.014

Ionosphere HOAD 0.489 ± 0.079 0.477 ± 0.072 0.444 ± 0.065

DMOD 0.818 ± 0.018 0.787 ± 0.039 0.784 ± 0.037

TOPiomics 0.854 ± 0.019 0.827 ± 0.025 0.791 ± 0.036

The measure of the connectivity between W and C is defined from ρC(V) as:

CS(C,W) :=
∑
V∈C

ρC(V)
1

d(W,V) + 1
=

∑
V∈C

ρC(V)a(W,V) (5)

For the finalmeasure of outlierness, we define a 2-dimensional feature space given
by functions of node label entropy and probability in the communities it belongs to.
Functions are normalized in [0, 1] in such a way that inliers correspond to values
around (1, 1). A classifier provides our final score of outlier-ness.

3 Experiments

TOPiomics performance has been assessed in UCI1 datasets altered to have dif-
ferent % of attribute and class outliers. We have followed the experimental set-
tings described in [2]. In particular, we considered 3 combinations of percentages
in attribute and class outliers ({(8%, 2%), (5%, 5%), (2%, 8%)}) and a multi-view
setting. For each outlier configuration, we repeated the experiment 30 times for sta-
tistical analysis of results. TOPiomics has been compared to the state-of-art methods
reported in [2] in terms of Area Under the ROC Curve (AUC).

Table1 reports a statistical summary (average± standard deviation) for the results
obtained for TOPiomics, HOAD [7] and DMOD [2] in Iris (2-views), Breast (3-
views) and Ionosphere (3-views) UCI datasets. Ranges indicate that TOPiomics is a
better performance regardless database and outlier configuration.

1 https://archive.ics.uci.edu/ml/datasets.php.

https://archive.ics.uci.edu/ml/datasets.php
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4 Conclusions

TOPiomics description is able to model the complex structure of radiomics SSS
multi-view data. Its non-parametric local description endows TOPiomics with high
robustness to detect abnormalities in SSS contexts, while its view-sensitive approach
allows early detection of abnormal imaging phenotypes. Therefore, TOPiomics could
be a unique specific technique to define robust imaging biomarkers for outcome in
cancer treatment follow-up that will improve cancer patients care by optimizing
treatment selection and sequence.
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Mixed Multiplier Ideals and the
Topological Type of a Plane Curve

Ferran Dachs-Cadefau

Abstract Järviletho (see (Mem Am Math Soc 214(1009):viii+78 pp, (2011) [5]))
and Tucker (see (Jumping numbers and multiplier ideals on algebraic surfaces, PhD
thesis, University of Michigan (2010), [8])) studied in their respective Ph.D. Thesis
the relation between the jumping numbers of a unibranch plane curve and its topo-
logical type. In this paper we study if we can infer the topological type of a general
plane curve from its associated jumping walls.

1 Introduction

Järviletho presented in [5] a formula on how to infer the topological type of a uni-
branch plane curve based on its associated jumping numbers. Later, Tucker presented
in [8] an example that this result no longer holds if we drop the condition of unibrach
curve. The main goal of this paper is to understand the topological information of
a general plane curves that can be deduced from its Jumping Walls, and what is the
minimal information needed to determine it from its Jumping Walls.

2 Some Definitions

In this sectionwewill present the definitions that we need for this short paper. Further
insight can be found in [1, 2]. For this we will consider X to be a smooth complex
surface and m = mX,O the maximal ideal of the local ring OX,O at a point O .

Given a tuple of curves aaa=(( f1), . . . , ( fr )) ⊆ (OX,O)r with fi irreducible, we
will consider a common log-resolution, that is, a birational morphism π : X ′ → X
such that

F. Dachs-Cadefau (B)
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• X ′ is smooth,
• the preimage of each of the ( fi ) are locally principal, i.e., ( fi ) · OX ′ = OX ′ (−Fi )
for some effective Cartier divisor Fi for i = 1, . . . , r , and

• ∑r
i=1 Fi + E is a divisor with simple normal crossings, where E = Exc (π) is the

exceptional locus.

Since the point O is smooth in X , the exceptional locus E is a tree of smooth
rational curves E1, . . . , Es . Moreover, the intersection matrix

(
Ei · E j

)
1≤i, j≤s is

negative-definite. For any exceptional component E j , we define the excess of ( fi ) at
E j as ρi, j = −Fi · E j . We also recall the following notions:

• A component E j of E is a rupture component if it intersects at least three more
components of E (different from E j ).

• We say that E j is dicritical if ρi, j > 0 for some i . Such components correspond
to Rees valuations (see [6]).

Given a tuple of curvesaaa := (( f1), . . . , ( fr )) ⊆ (OX,O)r and apointλλλ := (λ1, . . . ,

λr ) ∈ Rr≥0, the corresponding mixed multiplier ideal is defined as1

J (aaa) := J (
( f1)

λ1 · · · ( fr )λr
) = π∗OX ′ (	Kπ − λ1F1 − · · · − λr Fr
)

where the relative canonical divisor Kπ is a divisor in X ′ defined as

Kπ = KX ′ − π∗(KX ) =
s∑

i=1

ki Ei ∈ Div(X ′)

where KX ′ and KX are the canonical divisors of X ′ and X respectively. Kπ can be
computed using the adjunction formula. As usual �·� and 	·
 denote the operations of
taking the round-down and round-up of a givenQ-divisor. The case r = 1 correspond
to the usual multiplier ideals.

Associated to any point ccc ∈ Rr≥0, we consider:

• The region of ccc:Raaa (ccc) = {
ccc′ ∈ Rr≥0

∣
∣J (

aaaccc
′) ⊇ J (aaaccc)

}

• The constancy region of ccc: Caaa (ccc) = {
ccc′ ∈ Rr≥0

∣
∣J (

aaaccc
′) = J (aaaccc)

}

The boundary of the region Raaa(ccc) is what we call the jumping wall associated to
ccc. One usually refers to the jumping wall of the origin as the log-canonical wall. It
follows from the definition of mixed multiplier ideals that the jumping walls must
lie on supporting hyperplanes of the form

Vj,� : e1, j z1 + · · · + er, j zr = � + k j , (1)

for j = 1, . . . , s and a suitable � ∈ Z>0. Here we assume that the effective divi-
sors Fi such that ( fi ) · OX ′ = OX ′ (−Fi ), for i = 1, . . . , r , are of the form Fi =

1 By an abuse of notation, we will also denote J (aaa) its stalk at O so we will omit the word “sheaf”
if no confusion arises.
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∑s
j=1 ei, j E j . Notice that each supporting hyperplane Vj,� is associated to a compo-

nent E j . Indeed, we may find other components associated to the same hyperplane,
that is, we may find Ei and �′ ∈ Z>0 such that Vj,� = Vi,�′ .

It is proved in ([1], Theorem3.3) that the regionRaaa(ccc) is (the interior of) a rational
convex polytope defined by the inequalities

e1, j z1 + · · · + er, j zr < k j + 1 + ecccj , f or j = 1, . . . , s

corresponding to either rupture or dicritical divisors E j or a divisor intersect-
ing any of the strict transforms and Dccc = ∑

ecccj E j is the antinef closure of
�c1F1 + · · · + cr Fr − Kπ�.

The intersection of the boundary of a connected component of a constancy region
Caaa(ccc)with a supporting hyperplane ofRaaa(ccc) is what we call a C-facet of Caaa(ccc). Every
facet of a jumpingwall decomposes into severalC-facets associated to differentmixed
multiplier ideals.

The main result of [1] is an algorithm to compute all the constancy regions, and
their corresponding mixed multiplier ideals, in any desired range of the positive
orthantRr≥0. In particular the set of jumping walls of aaa, that we will denote from now
on as JWaaa, is precisely described. The points on the jumping walls, which we will
denote withλλλ when we want to emphasize this fact, satisfy that J (aaaccc) � J (

aaaλλλ
)
for

all ccc ∈ {λλλ − Rr≥0} ∩ Bε(λλλ) and ε > 0 small enough. In the sequel, we will refer to
these points as the jumping points of the tuple of ideals aaa.

3 Topological Type

In this section we will briefly discuss the relation between the equisingularity class
and the jumping numbers and jumpingwalls.We begin recalling the following result:

Theorem 1 (Järviletho [5]) The jumping numbers of a unibranch plane curve C
determine its equisingularity class.

The proof of this result is constructive, namely, given a set of jumping numbers
one can characterize the equisingularity class of the curve. However this result does
no longer hold when we drop the condition of being unibranch. Namely, consider
the following two curves given by Tucker in [8]:

• C1 = {(y5 − x2)(y3 − x2)(y3 − x4)(y2 − x7) = 0}
• C2 = {(y5 − x2)(x3 − y2)(x3 − y4)(y2 − x7) = 0}

Even though they have the same jumping numbers, they are not in the same
equisingularity class. This may lead to the following question: “Do the jumping
numbers of the germ of a plane curve determine the equisingularity classes of its
branches?” (Tucker [8]). The answer to this question is no, as we could see from the
following example:
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• C1 = {(y4 − 2x3y2 + x6 − 4x10y − x17)(x4 − 2x2y5 − 4xy8 + y10 − y11) = 0}
• C2 = {(y4 − 2x3y2 + x6 − 4x9y − x15)(x4 − 2x2y5 + y10 − 4xy9 − y13) = 0}

The branches composing C1 are not equisingular to any branch composing C2,
but both C1 and C2 have the same jumping numbers with the same associated mul-
tiplicities.

Our question is then the following:
Given a set of jumping walls, under which assumptions can one determine the

equisingularity class of a plane curve?
It seems clear that a first assumption should be that every axis represents a uni-

branch curve, because, as already mentioned, in the opposite case it is not possible
to determine the equisingularity class of each branch. In this case, using the results
of Järviletho, it is clear that the only piece of information missing is the intersection
number of the branches (see for example [3]).

Theorem 2 The intersection multiplicity of two curves C1 and C2 is equal to the
multiplicity of the branch C1 in the exceptional divisor Ei such that Ei · C̃2 �= ∅,
where C̃2 is the strict transform of C2. Or equivalently, to the multiplicity of the
branch C2 in the exceptional divisor Ei such that Ei · C̃1 �= ∅, where C̃1 is the strict
transform of C1.

Therefore, one can recover the topological type of a plane curve as follows: from
the jumping numbers of each unibranch curve, i.e., the points of each axis, one can
recover the topological type by using the results of Järviletho. Each of those jumping
numbers are associated to a divisor. For a fixed unibranch curveC j , consider the first
jumping number associated to the divisor Ei satisfying Ei · C̃ j �= ∅, for this jumping
number determine the hyperplane containing it. Using the previous Theorem, the
intersection number with the other curves are the coefficients of the zi ’s. Therefore,
we have the following:

Theorem 3 The jumping walls determine the equisingularity class of a plane curve.

To show how it works, we consider the following example

Example 4 Assume thatwehave the jumpingwalls of Fig. 1. The cuts of the jumping
walls with the axis, i.e., the jumping numbers of C1 and C2 are respectively:

• {
5
18 , 25

66 , 14
33 , 31

66 , 17
33 , 37

66 , 20
33 , 11

18 , 43
66 , 23

33 , 47
66 , 49

66 , 25
33 , 26

33 , 53
66 , 5

6 , 28
33 , 29

33 , 59
66 , 61

66 , 31
33 , 17

18 , 32
33 , 65

66 , . . .
}

• {
5
24 , 35

124 , 39
124 , 43

124 , 47
124 , 51

124 , 55
124 , 11

24 , 59
124 , 63

124 , 33
62 , 67

124 , 35
62 , 71

124 , 37
62 , 75

124 , 39
62 , 79

124 , 41
62 , 83

124 , 43
62 , . . .

}

From them, we get that the topological type of the first one has two Puiseux pairs
that are {2, 3}, {3, 7}, and the second has {2, 3}, {4, 11}. Now we have to pick the
last jumping number needed to determine the topological type of one of the curves,
namely 25

66 for the first one. It is contained in the hyperplane

66z1 + 84z2 = 25
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Fig. 1 Jumping Walls

Fig. 2 Dual graph of the
product of C1 and C2

C̃1

C̃2

therefore, the intersection multiplicity is 84. So, the product of C1 and C2 has the
dual graph of Fig. 2, where the rupture divisors are represented by white dots, while
the strict transforms are represented by green dots.
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Geometry of Non-holonomic
Distributions

Miguel-C. Muñoz-Lecanda

Abstract We consider a non integrable regular distribution D in a Riemannian
manifold (M, g). Using the Levi-Civita connection in M we extend the geometric
notions of fundamental forms, curvature and geodesic curves from submanifolds of
(M, g) to the distribution D and characterize the totally geodesic distributions in
several ways.

1 Introduction

A regular distribution in a differentiable manifold M is a subbundleD of the tangent
bundle TM of M . Integrability of distributions can be studied using Lie brackets
of the set of sections �(D). By Frobenius theorem it is known that the distribution
D is integrable if and only if �(D) is closed under the Lie bracket operation. The
non-integrability implies the non existence of integral submanifolds whose dimen-
sion equals the rank of the subbundle, that is submanifolds S ⊂ M such that its
tangent space at every point p ∈ S is Dp ⊂ TpM . They are called maximal integral
submanifolds of D.

Non-integrable distributions appear in physics, were they are called non-
holonomic, as constraints in the velocities in mechanical systems with some kind of
contact between objects but without sliding, or in problems of control of systems
were the controls can be modeled by families of vector fields, see [2, 13]. In math-
ematics, they appear when we have a geometric structure defined by a non closed
differential form or in non null curvature situations.

IfD is non integrable, we could think that there is no geometry as we do not have
any space of points associated to the distribution. In fact this is not the real situation
and it is possible to generalize the notions of fundamental forms, curvature, geodesics
and others from a surface in R3 to non integrable distributions in a Riemannian
manifold. Although we do not have points, we have tangent vectors at every point of
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the manifold, those belonging toD, and hence vector fields, those in �(D), and they
are enough to develop the classical geometric structures associated to a submanifold.

The aim of this communication is to present some recent published results on the
geometry of non integrable distributions in a Riemannian manifold. For other details
see [12]. Previous approaches to this study can be seen in [5, 6, 15, 16], but in all of
them the definition of the second fundamental form is different from the given here
and contains only the symmetric part.

In the following section,wewill generalize the first and second fundamental forms
of a submanifold S of a Riemannian manifold (M, g) to a non integrable distribution;
thenwe decompose the second one into symmetric and skew-symmetric parts andwe
prove thatD is integrable if and only if the skew-symmetric component is identically
zero. To study these propertiesweneed to introduce a natural connection inD induced
by the Levi-Civita connection in (M, g).

In Sect. 3 we study the curvature of curves in D and the characterization, in
different ways, of the so called totally geodesic distributions. In particular we prove
that a distributionD is totally geodesic if and only if the symmetric part of its second
fundamental form is identically zero.

In the last section we comment briefly on other problems studied in [12] and
possible future developments.

2 Notation, Natural Connection and Fundamental Forms

Let (M, g) be a smooth Riemannian manifold, dim M = m, and ∇ the Levi-Civita
connection associated to g. We denote by X(M) the C∞(M)-module of vector fields
on M and by ∇XY , for X,Y ∈ X(M), the covariant derivative of Y with respect to
X . All the manifolds and mappings will be regarded as being of C∞ class.

Let D ⊆ T M be a fixed regular distribution on M with constant rank n. If neces-
sary, we will assume that locally D = span{X1, . . . , Xn}, with Xi ∈ X(M) linearly
independent. If p ∈ M , then Dp ⊂ TpM is the fibre of D at the point p ∈ M . We
call D⊥ the orthogonal distribution of D, rankD⊥ = m − n. Its local generators
will be denoted by Z1, . . . , Zm−n . Clearly, as T M = D ⊕ D⊥, we have natural
projections πD and πD⊥

from T M to D and D⊥ respectively.

2.1 The Metric gD and the Connection ∇D

The first fundamental form of D is the restriction of the metric g to D and will be
denoted by gD, a Riemannian metric on D. Using the Levi-Civita connection ∇ in
(M, g) and the projection πD, one can define a covariant derivative between sections
of D:

∇D
X Y = πD(∇XY ), X,Y ∈ �(D)
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The connection ∇D is usually called the intrinsic connection of D. It extends to
all the tensor fields on the distribution and it is easy to prove that∇D

X gD = 0 for every
X ∈ �(D); that is ∇D is Riemannian with respect to gD, but it is not torsionless
with respect to the ordinary Lie bracket unless the distribution D is involutive.

The initial idea of this connection goes back at least to [18, 19] where the descrip-
tion in geometric terms of the nonholonomic mechanical systems is studied. A mod-
ern view with some other applications can be found in [2, 4, 10].

2.2 The Second Fundamental Form (Gauss, ∼1830,
Reinhart, 1977, 1983)

Consider the following C∞(M)-bilinear application taking values in �(D⊥):

B(X, Y ) = πD⊥
(∇XY ) = ∇XY − ∇D

X Y, X,Y ∈ �(D).

The mapping B is called the second fundamental form ofD. If Z1, . . . , Zm−n is
a local orthonormal basis of �(D⊥), then we obtain the well known Gauss formula
for surfaces:

∇XY = ∇D
X Y +

m−n∑

j=1

g(B(X,Y ), Z j )Z j .

The second fundamental form was introduced by Gauss for a surface in R3 and
generalized for a submanifold of a Riemannian or a pseudo-Riemannian manifold;
see for example [4, 7, 8, 14, 17]. However, the oldest definition for a general distri-
bution is given in [15].

Associated to B we have the map: BZ (X,Y ) = g(B(X,Y ), Z), for Z ∈ D⊥ and
X,Y ∈ D. Other interesting expressions for BZ (X,Y ) are (LZ is the Lie derivative
with respect to Z ):

BZ (X, Y ) = g(B(X, Y ), Z) = g(∇XY − ∇D
X Y, Z) = g(∇XY, Z)

= LX (g(Y, Z)) − g(Y,∇X Z) = −g(∇X Z , Y ) + g(∇Z X, Y ) − g(∇Z X, Y )

= g([Z , X ], Y ) − g(∇Z X, Y ) = g(LZ X − ∇Z X, Y )

The map BZ is called the second fundamental form along Z .
We can decompose BZ into its symmetric Bs

Z and skew-symmetric Ba
Z parts:

(1) Bs
Z (X,Y ) = (1/2)(BZ (Y, X) + BZ (Y, X)) = −(1/2)(LZ g)(X,Y )

(2) Ba
Z (X,Y ) = (1/2)(BZ (X,Y ) − BZ (Y, X)) = −(1/2)(d (iZ g))(X,Y )

(3) BZ (Y, X) = Bs
Z (Y, X) + Ba

Z (Y, X)

as can be easily proved using the different expressions above for BZ (X,Y ).
The same decomposition can be made for B, being B = Bs + Ba , but there are

not elegant expressions for these components of B as for BZ . Observe that
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B = 0, Bs = 0, Ba = 0 ⇐⇒ BZ = 0, Bs
Z = 0, Ba

Z = 0, ∀Z ∈ �(D⊥),
respectively.

A direct consequence of the expression

(d(iZ g))(X,Y ) = −g(Z , [X,Y ]), ∀Z ∈ �(D⊥), X,Y ∈ �(D),

directly obtained from the definition of the exterior differential, is the following
result:

Theorem 1 The distribution D is involutive if and only if for every Z ∈ �(D⊥) the
tensor field BZ is symmetric; that is, d(iZ g) is null on the sections of D.

In the classical theory of submanifolds of a Riemannian manifold, the second
fundamental form is symmetric. In fact, aswe have shown above, the non integrability
of D is encoded in the skew-symmetric part of the second fundamental form.

3 Geodesics and Geodesic Invariance

Let γ : I ⊆ R → M be a smooth curve parametrized by the arc. The curvature of
γ in M is defined as k(γ) = ||∇γ̇ γ̇||.

If γ̇(t) ∈ Dγ(t) for all t ∈ I , we say that γ is a curve of the distribution D, and
we define the following functions of the parameter of the curve:

(1) The geodesic curvature of γ as kD(γ) = ||∇D
γ̇ γ̇||.

(2) The normal curvature of γ as kD⊥
(γ) = ||πD⊥∇γ̇ γ̇|| = ||B(γ̇, γ̇)||.

Using the second fundamental form and the Gauss formula, we have that

(k(γ))2 = (kD(γ))2 + (kD⊥
(γ))2 = (kD(γ))2 + ||B(γ̇, γ̇)||2.

Observe that the normal curvature only depends on the symmetric part of the
second fundamental form B, because we need to calculate only B(γ̇, γ̇).

Let γ : I ⊆ R 
→ M be a smooth curve. We say that

(1) The curve γ is ∇-geodesic if ∇γ̇ γ̇ = 0.
(2) The curve γ is ∇D-geodesic if γ̇(t) ∈ Dγ(t), for all t ∈ I , and ∇D

γ̇ γ̇ = 0.

As usual, the geodesic curves are solutions to a second order ordinary differential
equation whose solutions with initial condition points in T M for the ∇-geodesics or
points in D ⊂ T M for the ∇D-geodesics. The existence of solutions for such equa-
tions is a consequence of their regularity and the appropriate theorem for ordinary
differential equations.

We are interested in the comparison between both classes of geodesics when they
have initial condition in D. The first relation is given by the following proposition
whose proof is an easy consequence of the above formula for (k(γ))2.

Proposition 1 Let γ be a smooth curve in the distribution, that is γ̇(t) ∈ Dγ(t), for
all t ∈ I . Then it is a ∇-geodesic if and only if it is a ∇D-geodesic and B(γ̇, γ̇) = 0.
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3.1 Totally Geodesic Distributions

We say that the distribution D is totally geodesic if every ∇-geodesic with initial
condition in D is contained in D.

For a submanifold of a Riemannian manifold this is a well known property: every
geodesic with initial condition in the submanifold, lies locally in the submanifold,
see [4, 8, 14, 17]. For integrable distributions it corresponds to the study of the
leaves of the foliation defined by the distribution. In the non-integrable situation,
apart from the geometric problems, the property is specially interesting in several
other fields; for example in the study of controllability of dynamical control systems;
see for instance [2] where they use the name geodesically invariant instead of totally
geodesic. The characterization of this important property is given in the following

Theorem 2 For a distribution D, the following conditions are equivalent:

(1) D is totally geodesic.
(2) Every ∇D-geodesic in D is ∇-geodesic.
(3) The symmetric part of the second fundamental form is identically zero.
(4) If X,Y ∈ �(D) then ∇XY + ∇Y X ∈ �(D).
(5) If X ∈ �(D) then ∇X X ∈ �(D).

A sketch of the proof of this important result is the following:

(1) From the expression ∇γ̇ γ̇ = ∇D
γ̇ γ̇ + B(γ̇, γ̇) for a curve γ in M , it is easy to

prove the equivalence between the first three items.
(2) The equivalence between (4) and (5) is direct.
(3) The expression Bs

Z (X,Y ) = (1/2)(BZ (X,Y ) + BZ (Y, X)) = g(∇XY +
∇Y X, Z), for X,Y ∈ �(D) and Z ∈ �(D⊥), proves the equivalence between
(3) and (4).

The above expression ∇XY + ∇Y X , for X,Y ∈ �(D) or for vector fields in a
manifold M with connection, is known as the symmetric product. It was introduced
in [3] and has been deeply studied in [2, 9–11]. For other interpretation see [1].

Condition (3) in the above theorem is not equivalent to stating that the vector fields
Z ∈ �(D⊥) are Killing vector fields for the Riemannian metric g, because it refers
only to the action on sections ofD, and not for every vector field in the manifold M .

4 Other Results and Commentaries

There are other interesting problems to state and solve andwewill only indicate some
of them. A more detailed development can be seen in [12] and references therein.
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(1) To study the notions of curvature and curvature tensors and, as we have two
connections, ∇ and ∇D, on �(D), the comparison of both notions and conse-
quences.

(2) To understand the different formulations of analyticalmechanicswith constraints
in terms of the above defined second fundamental form of the distribution of
constraints. In particular vakonomic mechanics.

(3) To study the actions of the group of isometries of (M, g) on the distribution and
look for the existence of invariants classifying distributions under this action.
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What If It Contains a Linear Subspace?

Paola Supino

Abstract Fano schemes of k-linear subspaces of projective hypersurfaces and com-
plete intersections have been object of study since a long time; in particular, non-
emptiness conditions are known. Iwill report how thenon-emptiness of Fano schemes
for projective hypersurfaces has been a tool in showing unirationality. Moreover, I
will explain a numerical condition, depending on the dimension and the multidegree,
for non-emptiness of Fano schemes of k-linear subspaces of complete intersections
in a projective space.

1 Introduction

Detecting the existenceof linear spaces sitting inside a subvariety of a projective space
is more than a mathematical curiosity, since it can reveals informations on the shape
of the variety. This is evident in the simple case of the two skew pencils of lines in a
quadric surface in P3; or of the 27 lines in the cubic surface, which carries memory of
its being a blown up plane in 6 general points. Thus, as theGrassmannianG(k,m) is a
scheme parametrizing k-linear subspaces in Pm , in general, given a closed subvariety
X ⊂ Pm and an integer k ≥ 1 , it is natural to define the subscheme Fk(X) ofG(k,m)

parametrizing those [�] ∈ G(k,m) such that � is contained in X . Such a Fk(X) is
called a Fano scheme of X . Fano schemes are fundamental in projective algebraic
geometry and widely investigated. Just to mention some absolutely non exhaustive
application in which Fano schemes and their geometry appear, we can cite, among
others, rationality issues [13, 18, 19], Torelli type theorems for smooth cubic of high
dimension (cf. [10, 11, 21]), enumerative formulas [7, 9, 15], covering gonality
of hypersurfaces [2]. Here we report a classical application of non-emptiness of
Fano schemes for complete intersections, and numerical formulas for such a non-
emptiness.
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2 Unirational Hypersurfaces and Complete Intersections

Fix an algebraically closed field k of characteristic zero, a (quasi-projective) variety
X is said to be rational if there is a birational map to some Pn . This is equivalent
to say that the function field k(X) of X is equal to k(Pn) = k(x1, . . . , xn) for some
n; in other words, one could give a parametric representation of X by means of
rational functions. More weakly, one can say that a variety X is unirational if there
is a dominant rational map from Pn to X for some n, equivalently, k(X) can be
embedded into some k(Pn) = k(x1, . . . , xn).

It is very easy to see that, on the complex field, projecting a quadric hypersurface
in Pm from one of its points (a 0-linear subspace) gives a birational map with Pm−1,
proving that the quadric is a rational variety. Another simple example is given by
any smooth cubic hypersurface X ⊂ P2k+1 containing two linear subspaces L1 and
L2 of dimension k. This one is proved to be rational via the birational morphism
p : L1 × L2 → X such that p(x1; x2) = y, where the points x1, x2, y are collinear.
Note that, while any smooth cubic surface in P3 does contain two skew lines, a
dimension count shows that the general cubic fourfold in P5 does not contains two
planes.

In general, it turns out to be very difficult to determine whether a given variety is
rational, or even unirational. Refined techniques have been developed along the times,
for instance involving a closer study of the group of automorphisms of varieties, or
Hodge theory, which associates complex tori to varieties, in particular intermedi-
ate Jacobians [8, 22], or studying cohomological torsion groups as obstruction to
rationality [1].

Going back at pure projective geometry, one can describe some interesting con-
structions of rational and unirational varieties, which give ourselves another moti-
vation to look for linear subspaces in projective varieties. In fact, in the forties of
last century, Ugo Morin [17, 18] suggested to use k-linear subspaces to visualize the
unirationality of a general hypersurface of suitable degree in Pm .

The idea of Morin starts with an observation on a general cubic hypersurface
X ⊂ Pm (m ≥ 3): it contains a k-linear subspace� (where k = 1, orm − 1 > k ≥ 1
if m ≥ 6). Consider now the (k + 1)-planes containing �: they are parametrized by
a projective space B = Pm−k−1. Such a general (k + 1)-plane meets X in the union
of � and a residual quadric hypersurface. Thus X is birational to a quadric bundle
Q → B = Pm−k−1, Q being the blow up of X along �.

The total space of a quadric bundleQ → B over a rational base is not necessarily
rational, unless one can choose rational parametrizations of the fibers consistently
over (at least) a Zariski-open subset of the base, for instance, by finding a rational
section of the bundle. This would furnish a point for any quadric fiber Qb, b ∈ B,
from where to project, so birationally identifying Qb with a projective space. In
the further alternative, one can try to make a base change Q̄ → B for Q → B and
construct a (uni)rational space dominating both Q and Q̄. As a new base Q̄ one can
take the total space of the family over B of the intersections Qb ∩ �, then is a natural
mapQ → Q̄. The fibrationQ ×B Q̄ → Q̄ is now a quadric bundle endowed with a
section, in a natural way. Thus, it remains to prove that the new base Q̄ is rational, in
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order to have Q ×B Q̄ rational, and hence Q unirational, via the natural projection
Q ×B Q̄ → Q. In fact, it is not difficult to prove that Q̄ is rational, since it fibers
over � as a projective bundle. Observe that, with respect to the cubic X we started
with, we are dealing with a problem where the degree is one less and the ambient
space has a smaller dimension.

In some sense, a hypersurface X of any degree d of Pm is (uni)rational, as soon
as it can be given a dominant map π from X to a projective space, whose fibers are
(uni)rational, and the dominant maps from projective spaces to these fibers “glue”
together. We can try to perform an induction on the degree, iterating the above idea,
as follows. If X contains a linear subspace � of dimension k, the projection π� from
� is a dominant map onto B = Pm−k−1, the Zariski closure of the fiber Xb over
the point b ∈ B is the residual of � in the intersection of X with the (k + 1)-linear
span of � and b, hence a hypersurface of degree d − 1 in Pk+1. Now, to perform
the iteration, we have to ask whether, for the general b, Xb itself contains a linear
subspace�′

b of a suitable dimension (smaller than k), the projection fromwhich gives
Xb as fibered over a projective space. We also ask that �′

b is contained in � ∩ Xb, so
that the existence of a section for a dominating bundle, after a suitable base change,
is guaranteed. A detailed description of the procedure can be found in [13].

The result is a recursive formula involving the degree d, the dimension m and the
dimension k which numerically ensures the existence of linear spaces in the sequel
of general hypersurfaces along the iterations. In particular, Morin in [17] asserted in
1940 that a “general” hypersurface of degree d and dimension larger than a certain
(recursively given) bound m(d) is unirational. By necessity, the bound is greatly far
from being optimal, even in low degrees: m(d) = 10 (1001) for d = 3 (4), while
it was known to Morin that the best bound is 3 (7). The technique was extended
to complete intersections by Predonzan [19] in 1949. Predonzan bounds have been
improved by Ciliberto in [6], and then by Ramero in [20]. The story proceeds with
[13], in which the genericity hypothesis drops, at the cost of worsening the bound:
any smooth hypersurface X ⊂ Pm of degree d is unirational, ifm > m(d), an iterated
exponential with respect to d, hence still very large. This has been recently improved
in [4], where the bound is m(d) = 2m!.

It is worth to point out that all the proofs require the non-emptiness of certain
Fano schemes, not only of hypersurfaces, but also of complete intersections.

3 Numerical Conditions for K-Linear Spaces in Complete
Intersections

Consider now a general complete intersection X ⊂ Pm of multi-degree d =
(d1, . . . , ds), with 1 ≤ s ≤ m − 2. Numerical assumptions on d , k and dim X can
be given in order to know if Fk(X) is a non-empty, reduced scheme, and to know its
dimension. Take

S∗
d := ⊕s

i=1

(
H 0

(
Pm,OPm (di )

) \ {0}).
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For any u := (g1, . . . , gs) ∈ S∗
d , set

Xu := V (g1, . . . , gs) ⊂ Pm

the closed subscheme defined by the vanishing of the s homogeneous polynomi-
als g1, . . . , gs . If u ∈ S∗

d is a general point, Xu is a smooth, irreducible complete
intersection of dimension m − s ≥ 2 and multi-degree d .

Consider G := G(k,m), the Grassmannian of k-linear subspaces in Pm , and the
incidence correspondence

J :=
{
([�] , u) ∈ G × S∗

d

∣∣
∣� ⊂ Xu

}
⊂ G × S∗

d

with the two natural projections

J

π1

π2
S∗
d

G

The map π1 : J → G is surjective and, for any [�] ∈ G, one has π−1
1 ([�]) =

⊕s
i=1

(
H 0

(I�/Pm (di )
) \ {0}), where I�/Pm denotes the ideal sheaf of � in Pm . Thus

J is irreducible and non-empty, its dimension can be computed, and compared with
dim S∗

d . Let
t := dim S∗

d − dim J.

Looking now at π2, if u ∈ S∗
d∗ is in the image of π2 its preimage π−1

2 (u) is the Fano
scheme Fk(Xu). Define

Wd, k := π2(J ) =
{
u ∈ S∗

d

∣∣∣ Fk(Xu) �= ∅
}

⊆ S∗
d .

Onecan studyWd, k and look at non-emptiness, smoothness, irreducibility, dimension
and enumerative properties of Fk(X), when X is a general complete intersection of
a given u ∈ Wd, k . Without loss of generality, one can suppose that �s

i=1 di > 2, that
is d �= (1, . . . , 1), the projective space case, and d �= (2, . . . , 1), the quadric case,
this being fully understood (cf. e.g. [5, Prop. 2.1, Cor. 2.2, Thm. 4.1], [9, Thm. 2.1,
Thm. 4.3] and [12, Ch. 6]). It has to be distinguished when t ≤ 0, and when t > 0.
In fact, only if t ≤ 0, i.e. dim S∗

d ≤ dim J , there is room for the projection J
π2−→ S∗

d
to be surjective, so that the k-Fano scheme on the general complete intersection of
multidegree d has room to be non-empty. In fact, it is known the following (cf. [5,
9, 17, 19])
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Theorem 1 With the above notation, let t ≤ 0, then
(a) Wd, k = S∗

d . In particular Wd, k is irreducible and rational. Moreover, for any
u ∈ Wd, k , Fk(Xu) �= ∅.
(b) If u ∈ Wd, k is a general point, Xu ⊂ Pm is a smooth complete intersection of
dimension m − s, and Fk(Xu) is smooth, of (expected) dimension

dim Fk(Xu) = −t = (k + 1)(m − k) −
s∑

i=1

(
di + k

k

)
≥ 0,

when dim Fk(Xu) ≥ 1 it is also irreducible.

For the proofs, the different authors always use vector bundle on Grassmannians
and zero-loci of their global sections. In [9, Thm. 4.3], the authors also compute via
Schubert calculus deg Fk(Xu) under the Plücker embedding Fk(Xu) ⊂ G(k,m) ⊂
PN , extending enumerative formulas of Libgober for Fano scheme of lines, when it
is zero-dimensional (cf. [14]).

If t > 0, that is dim S∗
d > dim J , the projection J

π2−→ S∗
d cannot be surjective, so

the k-Fano scheme on the general complete intersection of multidegree d is empty,
nevertheless, something can be said on the locus Wd, k in which it is not.

Theorem 2 With the above notation, let t > 0, then
(a) Wd, k ⊂ S∗

d is non-empty, irreducible and rational, with

codimS∗
d
Wd, k = t =

s∑

i=1

(
di + k

k

)
− (k + 1)(m − k).

(b) For a general point u ∈ Wd,k , the variety Xu ⊂ Pm is a complete intersection
of dimension m − s whose Fano scheme Fk(Xu) is zero-dimensional of length one.
Moreover, Xu has singular locus of dimension max{−1, 2k + s − m − 1} along its
unique k-dimensional linear subspace (in particular Xu is smooth if and only if
m − s ≥ 2k).

The proof of theorem 2 is contained in [9, Thm. 2.1 (a)], in [16, Cor. 1.2, Rem.
3.4]; and in [2]. The strategy used in [16] involves Flag Hilbert schemes, generalized
normal sheaves and infinitesimal theory. In [2] extending [3, Prop. 2.3] to any k ≥ 1,
Miyazaki’s results in [16, Cor. 1.2] is improved, via easier methods, avoiding his
assumption di ≥ 2, for any 1 ≤ i ≤ s, and showing unicity of the k-linear subspace
contained in Xu , and hence easily proving the rationality of Wd, k .
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Reeb Embeddings and Universality
of Euler Flows

Robert Cardona, Eva Miranda, Daniel Peralta-Salas, and Francisco Presas

Abstract We use a new geometrical approach to the universality of Euler flows.
By proving flexibility results on embeddings for Reeb flows in contact topology, we
deduce some new universal properties for Euler flows. As a byproduct, we deduce
the Turing completeness of stationary Euler flows, answering an open question for
steady solutions. The results contained in this article are an announcement and short
version of [2], where the complete list of results and proofs can be found.

Robert Cardona acknowledges financial support from the Spanish Ministry of Economy and Com-
petitiveness, through theMaría deMaeztuProgramme forUnits ofExcellence inR&D(MDM-2014-
0445). Robert Cardona and Eva Miranda are supported by the grants MTM2015-69135-P/FEDER
and PID2019-103849GB-I00/AEI/10.13039/501100011033, andAGAURgrant 2017SGR932. Eva
Miranda is supported by the Catalan Institution for Research and Advanced Studies via an ICREA
Academia Prize 2016. Daniel Peralta-Salas is supported by the grants MTM PID2019-106715GB-
C21 (MICINN) and Europa Excelencia EUR2019-103821 (MCIU). Francisco Presas is supported
by the grant reference number MTM2016-79400-P (MINECO/FEDER). This work was partially
supported by the ICMAT–Severo Ochoa grant SEV-2015-0554.

R. Cardona (B) · E. Miranda
Laboratory of Geometry and Dynamical Systems, Department of Mathematics EPSEB,
Universitat Politècnica de Catalunya BGSMath Barcelona Graduate School of Mathematics in
Barcelona, Barcelona, Spain
e-mail: robert.cardona@upc.edu

E. Miranda
e-mail: eva.miranda@upc.edu

E. Miranda
IMCCE, CNRS-UMR8028, Observatoire de Paris, PSL University, Sorbonne, Université, 77
Avenue Denfert-Rochereau, 75014 Paris, France

D. Peralta-Salas · F. Presas
Instituto de Ciencias Matemàticas ICMAT-CSIC, Madrid, Spain
e-mail: dperalta@icmat.es

F. Presas
e-mail: fpresas@icmat.es

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Alberich-Carramiñana et al. (eds.), Extended Abstracts GEOMVAP 2019,
Trends in Mathematics 15,
https://doi.org/10.1007/978-3-030-84800-2_19

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84800-2_19&domain=pdf
mailto:robert.cardona@upc.edu
mailto:eva.miranda@upc.edu
mailto:dperalta@icmat.es
mailto:fpresas@icmat.es
https://doi.org/10.1007/978-3-030-84800-2_19


116 R. Cardona et al.

1 Introduction

1.1 Hydrodynamics

The Euler equations model ideal fluids, and can be formulated on a Riemannian
manifold (M, g) as follows,

{
∂t u + ∇uu = − gradg p

divg u = 0
,

where p is the pressure function and u the velocity field. In the articles [9, 10] Tao
anticipated that Euler flows should be flexible enough to show any kind of dynamical
behavior. Instead of using an analytical approach we will use a geometrical one to
prove universality properties. In particular, in [10] the extendibility of flows to Euler
solutions is studied, and existence of Turing complete Euler flows is left open. Turing
completeness of Euler flows means that there is a solution to the Euler equations
associated to a general Riemannian manifold encoding a universal Turing machine.
We will address this question in the stationary case.

If we restrict ourselves to autonomous solutions to the Euler equations in odd
dimensional manifolds, a rich geometric and topological study has been developed
since the monograph [1]. Denoting α = ιug the dual form to the velocity field, the
stationary Euler equations can be written,

{
ιudα = −dB

dιuμ = 0,

where B = P + ιuα is the Bernoulli function and μ is the Riemannian volume
form. This formulation establishes a dichotomy. When the Bernoulli function is
non-constant (and for instance analytical or C2 and Morse-Bott) then by Arnold’s
structural theorem the flow lines have a very rigid structure and dynamics are similar
to those exhibited in integrable systems. However, when B is constant the dynam-
ics can be much more complicated. These solutions satisfy that the velocity field is
parallel to the vorticity field ω defined by the equation

ιωμ = (dα)n.

We call a vector field X a Beltrami field if it preserves μ and is everywhere parallel
to its vorticity field ω. We call it rotational if the function λ ∈ C∞(M) such that
ω = λX satisfies λ �= 0.
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1.2 Contact Geometry

At this point contact geometry appears as one of the interesting geometrical struc-
tures underlying the Euler equations. Let us recall some basic properties of contact
structures.

Definition 1 LetM2n+1 be an odd dimensionalmanifold equippedwith a hyperplane
distribution ξ such that there is a 1-formα ∈ �1(M)with ker α = ξ andα ∧ (dα)n �=
0 everywhere. Then (M2n+1, ξ) is a (cooriented) contact manifold.

The contact structure ξ does not depend on the choice of the defining one form,
called the contact form. There is a unique vector field R for a given α defined by the
equations {

ιRα = 1

ιRdα = 0

called the Reeb vector field.
The relation of Reeb vector fields and the Euler equations is provided by the

following theorem by Etnyre and Ghrist [4].

Theorem 2 Any nonsingular rotational Beltrami field is a reparametrization of a
Reeb vector field defined by some contact form. Any reparametrization of a Reeb
vector field defined by a contact form is a nonsingular rotational Beltrami field for
some metric and volume form.

This theorem allows us to introduce the techniques used in contact geometry in
the study of some steady Euler flows, for instance the flexibility shown through the
h-principle techniques introduced by Gromov [5] (see [3] for a modern text and
extension of these results).

2 Reeb Embeddings

In order to find new universality properties for Euler flows, we adapt the questions of
Tao to this setting. We ask the following question: given an arbitrary non-vanishing
vector field X on a closed manifold N , can we “embed” it in a Reeb flow of a bigger
manifold for instance the standard contact sphere? More precisely, can we find a
contact form α with Reeb vector field R in a bigger closed manifold M such that it
has an invariant submanifold diffeomorphic to N with R|N = X?

As we will see in a moment, X needs to satisfy at least one extra condition. Let
us recall the following definition.

Definition 3 A vector field X in a manifold M is called geodesible if its orbits are
geodesics for some metric in M .
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We will assume from now on that X is geodesible of unit-length (i.e. it is of unit-
length for the metric making its orbits geodesics). It is well known following works
of Gluck [6] that an equivalent condition for X to be geodesible is that there exists
a one form β such that

ιXβ = 1, and ιXdβ = 0.

It becomes now clear that a Reeb vector field R is geodesible: the contact form α
satisfies the necessary conditions. Furthermore if W is an invariant submanifold of
R, then R is also geodesible in W since the restriction of the contact form to W
satisfies also Gluck’s conditions. This implies that vector fields that can potentially
be embedded as a Reeb field need to be geodesible. However, we prove that this is the
only condition: any geodesible vector field can be embedded as a Reeb vector field
of the same manifold: the standard contact sphere. This is contained in the following
theorem, which is a weaker version of the main Theorem 5 that will be discussed
below.

Theorem 4 ([2]) Let N be a closed manifold of dimension n and X a geodesible
flow on it, then there is an embedding of N in (S4n−1, ξstd) and a form β defining
ξstd such that the Reeb field R of β satisfies R|N = X.

The proof of this theorem is less technical than the main theorem, let us give a
sketch. The proofs with all the details can be found in [2].
Sketch of proof. We start with a geodesible vector field X on a closed manifold N .
This means that for some form α we have ιXα > 0 and ιXdα = 0. This implies
that X preserves η = ker α. In fact being geodesible is equivalent to saying that X
preserves a transversal hyperplane field.

(1) We begin constructing an open contact manifold M containing N with a sym-
plectic hyperplane distribution, that contains η when restricted to N . We con-
sider the vector bundle π : η∗ → N over N with the hyperplane distribution
η̃ = π∗(η ⊕ η∗), which is equipped with the canonical symplectic structure.

(2) We now obtain a contact structure that also contains η when restricted to N . To
do this we perturb the symplectic form in an appropriate way and work chart by
chart to find a contact structure ᾱ satisfying ker ᾱ|N ∩ T N = η

(3) We apply an h-principle result by Gromov on isocontact embeddings that tells
us that M embeds isocontactly in (S4n−1, ξstd). This means that there is an
embedding e : N ↪→ S4n−1 such that e∗ξstd = ker α̃. We have that our vector
field X in e(N ) preserves ξstd ∩ T N = η by construction. By a characterization
of Inaba [7], this condition is equivalent to the existence of a contact formdefining
ξstd such that its Reeb vector field R satisfies R|N = X .

�
This theorem is merely geometrical and allows the realization of any geodesible

field on a manifold of dimension n as the Reeb vector field in the standard contact
sphere S4n−1. However, it is a particular instance of the following more general
theorem.
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Theorem 5 ([2]) Let e : (N , X) ↪→ (M, ξ′) be a smooth embedding of N into a
contact manifold (M, ξ′) where X is a geodesible vector field on N. Assume that
dim M ≥ 3n + 2. Then e is isotopic to a Reeb embedding ẽ, and ẽ can be taken
C0-close to e.

This result is stronger, and interesting from the contact topology perspective. It
relies on defining a formal counterpart of a Reeb embedding and proving that it
satisfies a certain h-principle. Then Theorem 5 follows from proving that smooth
embeddings in high enough codimension are formal Reeb embeddings satisfying the
h-principle. We will use this last Theorem to deduce the universality properties of
Euler flows, since the resulting dimension of the ambient manifold is smaller.

3 Applications

Realizing geodesible vector fields as Reeb vector will implies different universality
properties for Euler flows, and we state some of them here. Because of the corre-
spondence of Reeb vector fields and Beltrami fields, we know already that every
geodesible vector field can be embedded in a stationary solution to the Euler equa-
tions. The following corollaries are obtained by finding the appropriate geodesible
vector field and applying Theorem 5.

We define the suspension of a time-periodic vector field X (t) on a manifold
N (of dimension n) as the manifold N × S1 endowed with the vector field Y =
(X (p, θ), ∂θ). It is a geodesible field and hence

Corollary 6 ([2]) Let X (t) any periodic on time vector field on N. Then its suspen-
sion Y in N × S1 can be embedded as a Reeb flow on Sm with m the odd integer in
{3n + 5, 3n + 6}.

In particular this proves that any periodic in time vector field can be extended to
an Euler solution in the sense of [10].

In a similarway, given an orientation preserving diffeomorphism, one can consider
the manifold Ñ = N × [0, 1]/ ∼ identifying (x, 0) with (ϕ(x), 1). Consider the
horizontal flow on it

φt (θ, x) = (θ + t, x).

The vector field obtained by this flow is geodesible and has as return map the given
diffeomorphism.

Corollary 7 ([2]) Let ϕ : N → N be an orientation preserving diffeomorphism. It
can be realized as the return map on some cross section diffeomorphic to N in some
Reeb flow on Sm with m the odd integer in {3n + 5, 3n + 6}.

The Reeb flow can always be obtained on the standard contact sphere (S3n+5, ξstd)
or (S3n+6, ξstd) depending on the parity of n (since the dimension of the sphere needs
to be odd).
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As a byproduct, we obtain the existence of Turing complete Euler flows. This is
a consequence of the fact that there exists an orientation-preserving diffeomorphism
of T4 encoding a universal Turing machine, see [8].

Corollary 8 ([2]) There are Reeb flows (and hence Euler flows) which are Turing
complete. Concretely, there is a Reeb flow on (S17, ξstd) encoding a universal Turing
machine.

In his papers, Tao speculates on using a Turing complete flow to construct a finite
time blow up solution to the Euler or Navier-Stokes equations. We do not know how
this solution evolves when taken as initial condition for the Navier-Stokes equation.
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The Continuous Rank Function
for Varieties of Maximal Albanese
Dimension and Its Applications

Lidia Stoppino

Abstract In this note, I review an aspect of some new techniques introduced recently
in collaboration with Miguel Ángel Barja and Rita Pardini: the construction of the
continuous rank function. I give a sketch of how to use this function to prove theBarja-
Clifford-Pardini-Severi inequalities for varieties ofmaximalAlbanese dimension and
to obtain the classification of varieties satisfying the equalities.

1 Statement of the Results

Wework overC. Let X be a smooth projective n-dimensional variety and a : X → A
a morphism to an abelian q-dimensional variety, such that the pullback homomor-
phism a∗ : Pic0(A) → Pic0(X) is injective; we call a morphismwith such a property
strongly generating. The main case to bear in mind is the one when A = Alb(X) is
the Albanese variety and a = albX is its Albanese morphism: in this case alb∗

X is an
isomorphism. We shall identify α ∈ Pic0(A) with a∗α ∈ Pic0(X).

Suppose moreover that X is of maximal a-dimension, i.e. that a is finite on
its image. In particular this implies that q(X) ≥ q = dim(A) ≥ n, where q(X) =
h0(X,�1

X ) = dim(Pic0(X)) is the irregularity of X .
Let L be any line bundle on X . Consider the following integer, which is called

the continuous rank of L ([1, Def. 2.1]).

h0a(X, L) := min{h0(X, L + α), α ∈ Pic0(A)}. (1)

Remark 1 By semicontinuity, h0a(X, L) coincides with h0(X, L + α) for α general
in Pic0(A), and by Generic Vanishing, if L = KX + D with D nef, then h0a(X, L) =
χ(L), the Euler characteristic of L .
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We need also a restricted version of the rank function: for M ⊆ X a smooth
subvariety, there exists a non empty open subset of Pic0(A) such that h0(X |M , L + α)

is constant.We call this value the restricted continuous rank h0a(X |M , L). A first result
that highlights the importance of this invariant is the following:

Proposition 2 (Barja, [1], Thm 3.6.) If h0a(X, L) > 0 then L is big.

Recall now that the volume volX (L) of L (see for instance [6]) is an invariant
encoding positivity properties of the line bundle: for example volX (L) = Ln if L is
nef, and volX (L) > 0 if and only if L is big.

We start with the following general inequalities between the volume of L and its
continuous rank.

Theorem 3 (Barja-Clifford-Pardini-Severi inequalities) The following inequalities
hold:

(i) volX (L) ≥ n!h0a(L);
(ii) If KX − L is pseudoeffective, then volX (L) ≥ 2n!h0a(L).

For the case n = 1 the inequalities follow from Riemann-Roch and Clifford’s
Theorem ([3] Lem. 6.13). For the case n = 2 and L = KX inequality (ii) was stated
by Severi in 1932, with a wrong proof, and eventually proven by Pardini in 2005
[9]. Barja in [1], proved the inequalities for any n and L nef. In [3] Barja, Pardini
and myself proved the general version Theorem 3 for any line bundle L on X , in the
form stated above. This is done via new techniques introduced in the same paper.
Moreover, with our new methods it is possible to solve the problem of classifying
the couples (X, L) that reach the BCPS equalities, obtaining the following general
result [4].

Theorem 4 [[4], Thm 1.1, Thm 1.2] Suppose h0a(X, L) > 0.

(i) If λ(L) = n!, then q = n and deg a = 1 (i.e. a is birational).
(ii) If KX − L is pseudoeffective and λ(L) = 2n!, then q = n and deg a = 2.

This result was known for n = 2 and L = KX [2, 7] but a general classification
was out of reach.

In this note I describe in particular one of the techniques of [3], i.e. the contin-
uous extension of the continuous rank. I give an idea of the steps of the proof of
Theorem 3 and of Theorem 4 that involve the rank function. Throughout this note, I
make assumptions more restrictive than the ones of loc.cit., in order to simplify the
exposition. Needless to say, I will hide some technicalities under the carpet.

2 Continuous Rank Function

2.1 Set Up: Pardini’s Covering Trick

Let μd : A → A be the multiplication by d on A. For any integer d ≥ 1 consider the
variety X (d) obtained by fibred product as follows:
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X (d) μ̃d−−−−→ X

ad

⏐

⏐

�

⏐

⏐

�
a

A
μd−−−−→ A

(2)

In general, even if we start from a = albX , the morphism ad need not be albX (d) : what
is still true is that ad is strongly generating, as we see from the result below.

Lemma 5 ([3] Sect. 2.2 and [2] Lemma 2.3) The variety X (d) is smooth and
connected and the morphism μ̃d is étale with the same monodromy group of μd

(∼= (Z/d)2q ). We have the following chain of equalities:

ker((ad ◦ μd)
∗) = ker((a ◦ μ̃d)

∗) = Pic0(A)[d] = ker(μ̃∗
d).

In particular, ker(a∗
d) = 0.

Now, call L(d) := μ̃∗
d(L). Fix H a very ample divisor on A; let M := a∗H and let

Md be a general smooth member of the linear system |a∗
d H |. By [8, Chap.II.8(iv)]

we have a∗
d H ≡ d2H mod Pic0(A), and hence

M (d) = μ̃d
∗(a∗H) = a∗

d(μ
∗
d H) ≡ d2Md mod Pic0(A). (3)

Remark 6 Observe that the assumptions we have on X are verified by Md for any
d ≥ 1. Precisely, the morphism ad |Md

: Md → A is strongly generating and Md is of
maximal ad |Md

-dimension. Moreover, if we have the hypothesis of Theorem 3 (ii),
i.e. that KX − L is pseudoeffective, then KMd − L |Md is pseudoeffective.

2.2 Continuous Rank

A basic property of the continuous rank with respect to the construction above is the
following (see [1, Prop. 2.8]):

∀d ∈ N h0ad (X
(d), L(d)) = d2qh0a(X, L). (4)

This just follows from the fact that μ̃d∗(OX (d) ) = ⊕γ∈ker(μ∗
d )
γ by Lemma 5.

Now we define an extension of the continuous rank for R-divisors of the form

Lx := L + xM, x ∈ R.

We start with the definition over the rationals.
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Definition 7 Let x ∈ Q, and let d ∈ N such that d2x = e ∈ Z. We define

h0a(X, Lx ) := 1

d2q
h0ad (X

(d), L(d) + eMd). (5)

Remark 8 Note that by (3) we have that Md is an integer divisor on X (d) equivalent
to e

d2 M (d) modulo Pic0(A). For any k ∈ N, by (3) and (4) we have:

h0adk (X
(dk), L(dk) + ek2Mdk) = h0(ad )k

((X (d))(k), (L(d))(k) + eM (k)
d ) = k2qh0ad (X

(d), L(d) + eMd ).

Using the above equality, it is immediate to see that given d, d ′ ∈ N, e, e′ ∈ Z such
that e

d2 = x = e′
d ′2 , the formula (5) with d and with d ′ agrees with the formula with

dd ′, so the definition is independent of the chosen d.

By studying the properties of this function on Q, we can in particular see that it has
the midpoint property, and thus extend it:

Theorem 9 ([3], Theorem 4.2)With the above assumptions, the function h0a(X, Lx ),
extends to a continuous convex function φ : R → R. For any x ∈ R the left derivative
has the following form:

D−φ(x) = lim
d→∞

1

d2q−2
h0ad (X

(d)
|Md

, (Lx )
(d)), ∀x ∈ R. (6)

Remark 10 Let us here recall the formula for the derivative of the volume function
forR-divisors (see [6, Cor.C]). Fix x0 := max{x | volX (Lx ) = 0}. There is a contin-
uous extension of the volume function for Q-divisors, volX (Lx ) = ψ(x) : R → R,
which is differentiable for x �= x0 and

ψ′(x) =
{

0 x < x0
n volX |M(Lx ) x > x0

(7)

where volX |M(Lx ) is the restricted volume. So, similarly to what happens to the
rank function, also the volume extends and the formula for the derivative involves a
restricted function. We will soon use this formula.

3 Applications

The power of this new perspective is the following: if we study the BCPS inequalities
as a particular case of inequalities between the rank function and the volume function,
the proofs become strikingly simple, and we can apply induction via integration.

Now we state the main technical result (see [3, Sect. 2.4], [4, Sect. 2.5]).
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Lemma 11 There exists a Q-divisor P on X such that for any x ∈ R and d high
and divisible enough we have:

volX |M(Lx ) ≥ volX |M(Px ) = Pn−1
x M = 1

d2q
((Px )

(d))n−1Md ,

volX (d)|Md
(Px

(d)) = ((Px )
(d))n−1Md ,

h0ad (X
(d)|Md , (Lx )

(d)) = h0ad (X
(d)|Md , (Px )

(d))

The key result here is the so-called continuous resolution of the base locus intro-
duced firstly in [1, Sect. 3].

3.1 BCPS Inequalities

Now we see how the induction step of the proof of the BCPS inequalities ends up
in an application of the fundamental theorem of calculus. We prove here inequality
(i) but the proof works exactly in the same way for (ii) (with the right first induction
step). Consider as above the functions ψ(x) := volX (Lx ) and φ(x) := h0a(X, Lx ).

Using Lemma 11 and formula (7) we have that

ψ′(x) = n

d2q
((Px )

(d))n−1Md , D−φ(x) = lim
d→∞

1

d2q−2
h0ad (X

(d)|Md , (Px )
(d)).

Now, by Remark 6 Md and ad |Md
satisfy the assumptions, and we can prove via the

Lemma 11 that inequality (i) in dimension n − 1 implies that

ψ′(x) ≥ n!D−φ(x) for any x ∈ R≤0.

We may thus apply the Fundamental Theorem of Calculus and compute

volX (L) = ψ(0) =
∫ 0

−∞
ψ′(x)dx ≥ n!

∫ 0

−∞
D−φ(x)dx = n! φ(0) = n! h0a(X, L).

3.2 Classification of the Limit Cases

Both the BCPS inequalities are sharp: we have by Hirzebruch-Riemann-Roch theo-
rem that equality in (i) holds for X an abelian variety and L any nef line bundle on
it. As for (ii), consider an abelian variety A and a very ample line bundle N on it. Let
B ∈ |2N | a smooth divisor and let a : X → A be the double cover branched along
B. let L = a∗(N ). We have

volX (L) = 2 volA(H) = 2n!h0idA(A, N ) = 2n!h0a(X, L).
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In Theorem 4 we see that essentially the cases above are the only ones reaching the
equalities. Here we give an idea of a step of the proof of (ii). Consider the function

ν(x) := volX (Lx ) − 2n!h0a(X, Lx ), x ∈ R.

One of the key points in the argument in [4] is to prove that ν(x) ≡ 0 for x ≤ 0. We
have ν(0) = 0 by assumption. From Theorem 3 (with some work) we can prove that
ν(x) ≥ 0 for x ≤ 0. Hence, it suffices to show that the left derivative D−ν(x) is ≥ 0
for x < 0. Using Lemma 11 we have that for any real x smaller or equal than 0

D−ν(x) = lim
d→∞

n

d2q−2

(

volMd (Px
(d)
|Md

) − 2(n − 1)!h0ad (X (d)|Md , (Px )
(d))

)

.

Nowwe prove that the right hand expression is greater or equal to 0 using the relative
version of Theorem 3 again in dimension n − 1.

Remark 12 In Example 7.9 of [3] we proved that for any integer m ≥ 1 there exist
varieties Xm of maximal Albanese dimension such that vol(KXm )/χ(KXm ) is arbi-
trarily close to 2n! but with Albanese morphism of degree 2m , hence far from being
a double cover.

Remark 13 The continuous rank functions can be computed explicitly for abelian
varieties, and in some cases for curves (see the Examples of [3]). There are examples
where this function is not C1 ([3, Exercise 7.3]). The regularity properties of these
functions, as well as the geometrical meaning of the points of discontinuity of their
derivative, still have to be well understood. Some results in this direction can be
found in [5].
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Developable Surfaces with Prescribed
Boundary

Maria Alberich-Carramiñana, Jaume Amorós, and Franco Coltraro

Abstract It is proved that a generic simple, closed, piecewise regular curve in space
can be the boundary of only finitely many developable surfaces with nonvanish-
ing mean curvature. The relevance of this result in the context of the dynamics of
developable surfaces is discussed.

1 Introduction

The work presented here originated in the study by the authors of the motion and
dynamics of pieces of cloth in the real world, with a view towards its robotic manip-
ulation in a domestic, non-industrial, environment. Because in such an environment
cloth is subject to low stresses, it makes sense to model garments as inextensible sur-
faces, and assume that their motion consists of isometries. The authors are currently
developing such an isometric strain model, and its application to the control problem
of cloth garments [2].

The original state of cloth in such a model is flat, so the set of possible states of
a piece of cloth in our model is the set of developable surfaces isometric to a fixed
one, which we may assume to be a domain R in the plane.

To study the dynamics of such a piece of cloth with the Lagrangian formalism, we
need coordinates on the set of its states. This is usually done through a discretization
scheme, but such schemes often introduce artifacts in the dynamics of cloth. Thus
it would be interesting to have intrinsic, analytic coordinates on the space of states
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that are suitable for the formulation of a Lagrangian with a role analogous to that
of the Helfrich Hamiltonian of membrane dynamics (see [3]). As explained in the
concluding section, such coordinates should allow the formulation of discretization
schemes where the resulting mechanics are more independent of how the garment is
meshed, more frugal in computation time, and closer to reality.

Section2 in this note discusses two candidates to the role of generalized coordi-
nates in the space of states of a surface in our isometric strain model, and explains
their common limitation from the viewpoint of their application.

Section3 proposes an alternative approach: to track the motion of the surface by
following its boundary. This is not straightforward because the boundary does not
determine the position of the surface, but as we explain below our Main Theorem 5
is a step in this direction.

2 The Space of Developable Surfaces

Developable surface is a classical name for a smooth surfacewithGaussian curvature
0. These are exactly the surfaces which are locally isometric to a domain in the
Euclidean plane R2. Developability places a strong constrain on a surface (see [5]):

Theorem 1 (structure theorem for developable surfaces, classical)A C3 developable
surface S embedded inR3 has an open subset which is ruled, with unit normal vector
constant along each line of the ruling but varying in a transverse direction. Every
connected component of its complement is contained in a plane.

This structure can be deduced from the Gauss map of the surface: Gaussian cur-
vature 0 makes its rank 0 or 1, the latter rank being reached on an open subset of the
surface. The normal vector is locally constant in the rank 0 subset.

The dichotomy in the rank of the Gauss map, and varied classical notations,
motivate:

Definition 2 A developable surface is torsal if the Gauss map has rank 1 on a dense
open subset.

Flat patches are connected subsets of a developable surfacewith nonempty interior
where the Gauss map is constant, i.e. they are contained in a plane.

The subdivision of a developable surface into torsal and flat patches is given by
the boundary of the vanishing locus of the mean curvature and is not necessarily
simple.

With a view to our intended applications, fix a planar domain R ⊂ R2 which is
compact, contractible and has a piecewise C∞ boundary. Usually R will be a convex
polygon. Define S to be the set of all C3 surfaces inR3 isometric to R. These surfaces
are all developable, and S may be seen as the space of states of an inextensible (i.e.
isometric for the inner distance) deformation of R in Euclidean space.
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The space of states S can also be defined as the set of C2 maps from R to R3

which are isometries with the image. As such, it is endowed with the compact-
open topology derived from the Euclidean one in R and R3. This topology furnishes
valuable tips for the study of S: the set of surfaces containing flat patches has an
empty interior because there exist arbitrarily small deformations making the normal
vector nonconstant on an open set. Torsal surfaces are stably torsal if the mean
curvature function intersects transversely the zero function. These surfaces form an
open subset U ⊂ S, and suffice for our practical study of S.

We can try to develop coordinates for the stably torsal state space U based on the
classical structure theorem. First, let us recall how to identify developable surfaces
among the ruled ones:

Proposition 3 (classical, see [1])A ruled surface parametrized asφ(u, v) = γ(u) +
v · w(u), where γ is a regular parametrized curve and w a vector field over γ, is
developable if and only if the 3 vectors γ′(u), w(u), w′(u) are linearly dependent
for all u.

Given a regular C2 curve γ there is a way to obtain systematically such rulings
over γ resulting in regular torsal surfaces:

Proposition 4 Let n be a unit normal C1 vector field over a regular, C2 curve with
n′ �= 0. Thenw = n × n′ defines a torsal surface in a neighbourhood of γ. Moreover,
all regular, torsal rulings over γ are generated by such w, and only n,−n define the
same torsal surface.

Proof n is normal to γ′ and w by their definitions, and w′ = n × n′′ so at every u
the vectors γ′, w,w′ are normal to n. Also, note that w �= 0 because n′ �= 0.

If ñ is another unit normal vector field such that ñ × ñ′ = μw for some function
μ(u) then note that ñ has to be normal to both w and γ′, hence a multiple of n.

Finally, let us point out that if w is a nonvanishing tangent vector field over γ
defining a torsal surface around it, then we can select a unit vector field n normal to
γ′, w,w′. The fact that n is normal to w and w′ imply that n′ is also normal to w, so
n × n′ is a multiple of w. �

To define coordinates in the space of stably torsal surfaces S isometric to a fixed
bounded domain R, the pairs (γ, n) of Proposition 4 run into a practical difficulty:
the condition that n′ �= 0 forces the Gauss map to have rank 1. If S is a stably torsal
surface with mean curvature H of varying sign, we must subdivide it by the H = 0
curves and parametrize separately each component of the complement. To follow
a motion of the surface, one has to track the boundary shifts, mergers and splits of
these components.

Ushakov proposes in [7] an alternative, PDE based, coordinate scheme viewing
developable surfaces as solutions of the trivial Monge-Ampère equation. But this
requires a parametrization of the surface in the form z = z(x, y). Such parametriza-
tions exist only locally, so their use leads even more intensely to the problem of
tracking boundaries, mergers and splits of their subdomains.
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3 The Boundary of a Developable Surface

There is an alternative approach to study the dynamics of developable surfaces iso-
metric to a fixed bounded planar domain R: follow the motion of the boundary ∂R
in space, and derive from this the developable surface that fills it. This leads to:

Question. Given a piecewise smooth simple closed curve γ in R3, what are the
developable surfaces with boundary γ?

The degeneracy nature of the trivial Monge-Ampère equation makes it fail to
have a unique solution for this kind of boundary problem. Indeed, it is easy to find
examples where there is more than one solution, as shown in Fig. 1.

Nevertheless, for problems such as the study of cloth dynamics it is not necessary
for the boundary problem to have a unique solution. It suffices to know that it will
always have a finite set of solutions, because this solution set is then discrete, with
different solutions separated by a nontrivial jump in any tagging energy, local coor-
dinate …In such case, once one has a developable ruling with a boundary γ0 at time
t = 0, the evolution γt of the boundary will determine the analytic continuation of
the t = 0 developable ruling, and identify a unique ruling for every time t . Herein
lies the interest of the authors in our

Theorem 5 (Main Theorem) Let γ be a simple closed curve inR3 which is piecewise
C2, has nonvanishing curvature, its torsion vanishes at finitely many points, and such
that only for finitely many pairs s �= s̃ does the tangent line to γ at s pass through
γ(s̃). Then, there can be at most finitely many developable surfaces with boundary
γ and nonzero mean curvature in its interior.

Let us point out that the preconditions thatwe impose onγ are generic, i.e. satisfied
by a dense open subset of the embeddings of S1 in R3.

The starting idea to prove the theorem is another classical result, analogous to
Proposition 3:

Lemma 6 Let S be a torsal surface with boundary γ, and l ⊂ S a segment with
endpoints P, Q in γ. Then the common tangent plane to S along l is tangent to γ at
both P, Q.

The proof consists in pointing out that the normal vector to S stays constant over
the segment l, and that γ is tangent to S.

Lemma 6 presents developable rulings as arcs of bitangent planes (i.e., tangent to
γ at 2 points). Such planes are given by pairs s �= s̃ whose tangent lines are coplanar:

Fig. 1 A smooth simple
closed curve (in black)
which is the boundary of two
developable surfaces
(indicated in red and blue
respectively)
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Proposition 7 Let γ : [0, L] ⊂ R3 be a simple, closed, arc-parametrized C3 curve.
The function

D : [0, L]2 −→ R

(s, s̃) �−→ det
(
γ(s) − γ(s̃), γ′(s), γ′(s̃)

)

is a Morse function at a neighbourhood of its zeros (s, s̃) such that: s �= s̃, γ has
nonzero curvature and torsion at both s, s̃, and the tangent line to γ in each one does
not pass through the other point of the curve.

Proof It is a straightforward computation. With coordinates (s, s̃) we have that

dD = (
det

(
γ(s) − γ(s̃), γ′′(s), γ′(s̃)

)
, det

(
γ(s) − γ(s̃), γ′(s), γ′′(s̃)

))

Let (s, s̃) be a zero of D with s �= s̃, which is also a critical point of D. If any
of the linear subspaces spanned by γ(s) − γ(s̃), γ′(s̃) and by γ(s) − γ(s̃), γ′(s) has
dimension less than 2, the tangent line to γ at one of the points γ(s), γ(s̃) contains
the other.

When both linear subspaces have dimension 2, the conditions D(s, s̃) = 0, dD
(s, s̃) = (0, 0) show that γ has the same osculating plane to γ at the points γ(s), γ(s̃).
Because of this, the second differential of D is

d2D =
(

κsτs det
(
γ(s) − γ(s̃), Bs, γ

′(s̃)
)

0
0 κs̃τs̃ det

(
γ(s) − γ(s̃), γ′(s), Bs̃

)
)

Here κ, τ , B are respectively the curvature, torsion, binormal vector of the Frenet
frame, at the point given by their subindex. The determinants in the diagonal of d2D
are nonzero because each consists of a binormal vector and a basis for the osculating
plane at the same point of the curve. �

Proposition 7 has a version for piecewise C3 curves, saying just that D is Morse
under the additional hypothesis that s, s̃ do not correspond to corner points, at which
D has two different definitions. We are now ready for

Proof of Theorem 5.

A torsal developable surface S is foliated by segments which can only end at the
boundary or at points of vanishing mean curvature. Having ruled out the latter, S is
determined by an arc of bitangent planes B(t), with t ∈ [a, b], such that the curves
s(B(t)), s̃(B(t)) formed by the two points of tangency of B(t) cover γ.

Away from the finite set of horizontal and vertical lines in [0, L]2 where one of
the values s, s̃ corresponds to a corner point, point with vanishing torsion, or point
whose tangent line intersects γ again, the pairs of values s �= s̃ for which there exists
at all a bitangent plane to γ through γ(s), γ(s̃) lie by Proposition 7 in the zero set
of a Morse function D from an open subset of [0, L]2 ⊂ R2 to R. The function D
is proper, therefore it is Morse over a suitably small range of values (−ε, ε), which
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implies that D0 is a finite union of smooth curves with transverse intersections in
[0, L]2.

The arc B(t) is determined by its tangency points curve (s(B(t)), s̃(B(t))) ⊂
[0, L]2, which must lie in the union of D0 and finitely many vertical and horizontal
lines, and cover γ, i.e. γ = s(B) ∪ s̃(B). There are only finitely many possibilities
for that, once we specify a beginning point for the curves s(B), s̃(B).

4 Future Continuation

The authors hope to carry out the program outlined in this note: to subdivide a
developable surface S in patches according to the sign of its mean curvature, and
follow its motion in a dynamical system by tracking the boundaries of the patches.

This approach is promising because it works with a 1-dimensional set of space
coordinates which satisfy few restrictions, rather than with a 2-dimensional set of
space coordinates that are heavily restricted because of the assumption of isometry.

There is a second interestwhich ismore analytical: canwe identify the developable
surfaces which minimize a potential such as the gravitational potential? Fixing the
boundary and the area of the surface leads to the Poisson equation which is not as
straightforward to solve as its 1-dimensional analogue ([4]). What equation does one
get if instead of fixing the area one fixes the Gaussian curvature to be zero? It is likely
that global, i.e. parametrized by the fixed domain R, solutions will have in general
singularities along points or curves.

Acknowledgements Research supported by project Clothilde, ERC research grant 741930, and
research grants PID2019-103849GB-I00, from the Kingdom of Spain, 2017 SGR 932 from the
Catalan Government. MAC is also with Institut de Robòtica i Informàtica Industrial (CSIC-UPC),
the Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech) and the Barcelona Graduate
School of Mathematics (BGSMath).

References

1. M.P. do Carmo, Differential Geometry of Curves and Surfaces (Prentice–Hall, 1976)
2. F. Coltraro, Experimental validation of an inextensible cloth model, IRI Technical Report IRI-

TR-20-04 (2020). http://hdl.handle.net/2117/331210
3. M. Deserno, Fluid lipid membranes: from differential geometry to curvature stresses. Chem.

Phys. Lipids 185, 11–45 (2015)
4. Dierkes, H.,The n-dimensional analogue of the catenary. PrescribedArea, inGeometric Analysis

and the Calculus of Variations, ed. by J. Jost, pp. 1–12 (International Press, 1996)
5. P. Fischer, Ruled Varieties. An Introduction to Algebraic Differential Geometry (Vieweg, 2001)
6. V.D. Sedykh, Structure of the convex hull of a space curve. J. Sov. Math. 33, 1140–1153 (1986)
7. V. Ushakov, The explicit general solution of trivial Monge-Ampère equation. Comment. Math.

Helv. 75, 125–133 (2000)

http://hdl.handle.net/2117/331210


Configuration Space of a Textile
Rectangle

F. Strazzeri and C. Torras

Abstract Given a rectangular piece of cloth on a planar surface, we aim to char-
acterise its states based on the robot manipulations they would require. Considering
the cloth as a set of n points in R2, we study its configuration space, Con fn(R2). We
derive a stratification of Con f4(R2) using that of Flag (3), and we present some
techniques that can be used to determine the adjacencies of Con fn(R2) and some
group actions we can define on it.

1 Introduction

Given a rectangular cloth on a planar surface, we could consider it as a surface
embedded in R3 with no self-intersection. Unfortunately considering the different
states of such surface and studying their space bears difficulties, aswe have to impose,
on the already complex space of all possible surfaces with constant area and no self-
intersections, constraints such as gravity force and cloth stiffness. In order to simplify,
we consider instead the cloth as a set of points on the real plane. Since our aim is to
distinguish states based on the types of robot manipulations they permit, we consider
the configuration space of n ordered points in R2, namely Con fn(R2). This space
belongs to the farmore general family of configuration spaces of points onmanifolds,
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Con fk(X) =
{
p = (p1, . . . , pk) ∈ Xk | pi �= p j , for i �= j

}
.

Such spaces are interesting topological objects and their (co)homology type has
been studied by several authors. In [2] some results regarding the homotopy type of
Con fn(X) are obtained, assuming X is of dimension 2, while the real homotopy type
ofCon fn(X), when X is a smooth projective variety, was independently computed by
Kriz [6] and Totaro [11]. Assuming X = Rn , Cohen et al. computed the cohomology
of Con fn(X), and in particular, they proved that Con fn(Rn) is the classifying space
of the n-strand pure braid group [3]. The action of Sn on Con fn(Rn) is also studied
in [3] and, in particular, the quotient of this action gives the configuration space
of n unordered points, which is the classifying space of the n-strand braid group.
Our interest lays mostly on the adjacency relations between the highest dimensional
cells of Con fn(R2), when we regard it as a CW-complex. Such cells are “clusters”
of similar point configurations and their adjacency information permits navigating
between them. A state will then be a set of different cells, each one containing
configurations of points, that permits similar types of robot manipulations.

In Sect. 2 we consider n = 4, for the 4 corner points of the rectangular cloth, and
present a stratification ofCon f4(R2) using that of Flag (3).We thenmove in Sect. 3
to the general case of Con fn(R2) and show some techniques to derive the adjacency
structure of the space together with some group actions that are naturally defined on
Con fn(R2).

2 Configuration Space of a Textile Rectangle Using 4 Points

In order to study the configuration space of the 4 corner points of the rectangular
cloth we will make use of the flag manifold of RP2, Flag (3). If we consider the
configuration p = (p1, p2, p3, p4) with pi ∈ R2, we can embed them in RP2, map-

ping a point p = (x, y) to p̃ = [x : y : 1]. The stratification of Flag (3) induces
another on Con f4(R2), see Fig. 1.

If we consider V = {p1, p1 p2} and V ∗ = {p3, p3 p4}, then the condition v − l∗
corresponds to the alignment of the three points {p1, p3, p4}. Any alignment of three
points pi , p j , pk , with i < j < k can be seen as a pure algebraic condition on the

∅

v - l∗

l - v∗

l - l∗

v - v∗

l − l∗
v − v∗

Fig. 1 We can stratify Flag (3) with respect to two flags, V = {v, l} and V ∗ = {v∗, l∗}, using
their incidence, indicated by—in the figure, see [5, 7]
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Fig. 2 We show the adjacency relations of Con f4(R2) using the stratification of the affine flag
manifold [5] and as flags V1 = {p1, p1, p2}, V ∗

1 = {p3, p3, p4} and V2 = {p2, p2, p1}, V ∗
2 =

{p4, p4, p3}

points coordinates, given by the singularity of the determinant di, j,k = | p̃i p̃ j p̃k |.
The sign of di, j,k depends on the clockwise or counter-clockwise position of the
ordered triple (pi , p j , pk). As the determinant is a continuous map onto R, if two
configurations p and q differ by one determinant sign, say di, j,k , then we know
they belong to different cells. So any continuous path from p to q has to cross the
singularity loci of di, j,k . We identify then a cell σ with the sequence of determinant
signs of all triples of points belonging to any configuration p in σ. For us, the
determinants signs are, in order, of d1,2,3, d1,2,4, d1,3,4 and as last d2,3,4. Moreover, an
odd number of negative determinants tells us that one point lays inside the triangle
spanned by the others. In such cases we call the configuration internal, otherwise
external. One can prove easily that d1,2,3 + d1,3,4 = d1,2,4 + d2,3,4, which means that
not all sign sequences are admissible, as we can see in Fig. 2.

3 Configuration Space of an N-Points Textile Rectangle

Regarding n > 4, if we want to recover the stratification of Con fn(R2), similarly to
Sect. 2, we would not consider more flags, as they will make less clear the description
of the singularity loci. We have that singularities are given by the alignment of three
points and again any cell can be identified by a sequence of

(n
3

)
determinant signs. In

the general case, we do not know exactly which sign sequences are admissible, that
is, how many cells are in Con fn(R2). Consider the arrangement of lines spanned by
pairs of n − 1 points, we could deduce the cells of Con fn(R2) from the regions they
divide R2 into. Line arrangements, both in the real and projective planes, have been
studied extensively in various contexts [4] and references therein. Several authors
have worked on how to bound the number of regions, triangles or polygons [8–
10]. In [1], the authors consider the problem of characterising geometric graphs
using the order type of their vertex set. Using the notion of minimal representation
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Fig. 3 Given any triple of points (not aligned), the lines they span divide the plane in 7 regions,
that can be seen as three couples of dual regions, formed by external and internal configurations,
which are coloured identically, and a self-dual internal region

of a graph, they identify which edges prevent the order type from changing via
continuous deformations of the graph. Even if this approach is the closest to ours, to
our knowledge in the literature there is not a detailed study of the adjacency relations
of Con fn(R2). We present here two theorems that allow us to determine if and how
we canmove continuously a point (ormore if needed) to change only one determinant
sign. Due to lack of space and proof technicality, we give here only sketches of the
proofs. The following theorem gives us a way to discern when an adjacency cannot
exist.

Theorem 1 Consider any configuration p ∈ Con fn(R2) and a triple {pi , p j , pk} ⊂
p. If there exists either a point pu ∈ p in the self-dual region of {pi , p j , pk}, or two
points ps, pr in two regions not dual w.r.t. {pi , p j , pk}, then there does not exist a
continuous movement of p that crosses only the singularity loci di, j,k = 0.

Proof If di, j,k is nullified via a continuous map, the 6 outer regions in Fig. 3 degener-
ate into 2 regions, corresponding to a pair of dual regions, depending on themap used,
while the other ones degenerate to the line pi , p j . In other words, if a point pu ∈ p
is inside the self-dual region then any continuous map that crosses the singularity
loci di, j,k = 0 has to nullify at least one among di, j,u, di,k,u and d j,k,u . Similarly, if
two points ps, pr ∈ p are in regions not dual w.r.t. {pi , p j , pk}, then any continuous
map crossing di, j,k would also cross either di, j,s or di, j,r . �

The following result tells us when instead it is possible to change sign.

Theorem 2 Consider any configuration p ∈ Con fn(R2) and a triple of points
{pi , p j , pk} ⊂ p, such that they belong either to the same region or to two dis-
tinct and dual regions. If there exists a point pu /∈ {pi , p j , pk}, such that for any pair
ps, pr /∈ {pi , p j , pk, pu} in the same region, resp. dual regions, and for any pair
pa, pb ∈ {pi , p j , pk} the configuration of {pa, pb, ps, pr } is external, resp. internal,
then the singularity loci can be crossed uniquely at di, j,k = 0.

Proof If such point pu exists, then the line pu pv , with v = i, j, k, intersects any
other line spanned by another two points outside the self-dual region. Sowe canmove
pu along pu pv till di, j,k changes sign, without crossing any other singularity. �

Note that Theorems 1 and 2 do not cover all cell adjacencies for n > 6. If n ≤ 6
we can compute the exact number of cells. Such number is expected to rise quadrat-
ically [10], thus we want to group cells entailing similar robotic manipulations to
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form states. We consider also the action of the symmetric group Sn . In terms of our
stratification, such action induces an identification between cells whose determinant
signs coincide after a permutation of the point labels, {1, . . . , n}. For n = 4, 5 and
6, we obtain in total 2, 3 and 6 states, respectively, which are a lot fewer than we
would hope for. In other words, such action induces an over-coarsened partition of
the configuration space and we prefer to use instead the following refined partition.
Let σ be a cell, i.e. a sign sequence, we define

τ1 ∼σ τ2 ⇐⇒ ∃g ∈ Sn, g · τ1 = τ2 and d(σ, τ1) = d(σ, τ2),

where d(σ, τi ) for i = 1, 2 is the number of different signs between cells σ and τi .
Let Yσ be the partition of the configuration space induced by the equivalence relation
∼σ , which is a refinement of the one obtained via Sn . That is, any equivalence
class defined by ∼σ belongs to one and only one Sn-equivalence class. The distance
d(σ, ·) is constant inside each class of Yσ . We always have a unique state, −σ,
which is ∼σ-equivalent only to itself, and that realises the maximum distance from
σ. When we consider Gσ , the Hesse diagram of Yσ induced by the adjacency relation
of Con fn(R2), we have that there exists an automorphism of Gσ , that maps σ to −σ.

In conclusion, given a configuration of n points, we are able to determine in which
state τ is and how far it is from another (fixed) state σ. In addition, using Gσ , thanks
to Theorems 1 and 2 and the stratification of Con fn(R2), we could be able to plan
how to change state from one given state to either σ or −σ.
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The 4/3 Problem for Germs of Isolated
Plane Curve Singularities

Patricio Almirón

Abstract In this survey we are going to overview the different approaches and
solutions of a question posed by Dimca and Greuel about the quotient of the Milnor
and Tjurina numbers.

1 Introduction

Analytic and topological invariants of germs of isolated plane curve singularities
are central objects in Singularity Theory, see [8] and the references therein for an
overview. One of the main objects of study is to find relations between them and to
find topological constrains for analytical invariants. As one can see in [5, 8], two
mainstream invariants are the Milnor number μ, and the Tjurina number τ. In fact,
the Milnor number is a topological invariant and the Tjurina number an analytic
invariant. If C := { f (x, y) = 0} is a germ of isolated plane curve singularity, the
easiest way to define these numbers is:

μ := dimC

C{x, y}
(∂ f/∂x, ∂ f/∂y)

, τ := dimC

C{x, y}
( f, ∂ f/∂x, ∂ f/∂y)

.

In 2017 on [5], Dimca and Greuel posed the following question:

Question 1 Is it true that μ/τ < 4/3 for any isolated plane curve singularity?

This guessed bound is inferred by Dimca and Greuel from some families of plane
curves that asymptotically achieve this bound. From this point view, Question 1 can
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be divided into two questions: is it true? If it is true, can the 4/3 bound be inferred
from the geometry of the plane curve singularity?

In this survey, we will try to show the different approaches to this question and
the main problems attached to them.

2 Deformation Theory

In this section, we are going to show that Milnor and Tjurina numbers are closely
related to the theory of deformations. We refer to [8] for general deformation theory.

Definition 1 Let (C, 0) be a germ of isolated plane curve singularity. A deformation
of (C, 0) is a germ of flat morphism (Y, 0) → (S, 0) whose special fibre is isomor-
phic to (C, 0). We call (S, 0) the base space of the deformation. The deformation
is called versal if any other deformation results from it by base change. It is called
miniversal if it is versal and S has minimal possible dimension.

In [8], it is shown that an explicit way to construct versal andminiversal deformations
of a plane curve is by using the Milnor algebra M f , and the Tjurina algebra T f .

M f := C{x, y}
(∂ f/∂x, ∂ f/∂y)

, T f := C{x, y}
( f, ∂ f/∂x, ∂ f/∂y)

.

Theorem 1 ((Tjurina) Corollary 1.17 [8]) Let (C, 0) be a germ of isolated plane
curve singularity defined by f ∈ OC2,0 and g1, . . . , gk ∈ OC2,0 be a C–basis of T f

(resp. of M f ) If we sets,

F(x, t) := f (x) +
k∑

j=1

t j g j (x), (X , 0) := V (F) ⊂ (C2 × Ck, 0),

then (C, 0) ↪→ (X , 0)
ϕ−→ (Ck, 0),with ϕ the projection from the second component,

is a miniversal (resp. versal) deformation of (C, 0).

Inside the base space of a miniversal deformation of a germ of plane curve sin-
gularity there is an interesting closed analytic subspace �μ called the μ–constant
stratum. This stratum can be defined as follows: take the miniversal deformation
ϕ : (Y, 0) → (S, 0) of a plane curve singularity C. Denote by μ the Milnor number
of C and by Ys := ϕ−1(s) a fiber of the deformation, then

�μ := {s ∈ S | μ(Ys) = μ}.

Then it can be proven that this stratum is smooth (see Theorem 2.61 in [8]) and its
codimension can be computed from the embedded resolution of the plane curve by
the following formula given by Wall in Sect. 8 of [11].
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Theorem 2 (Theorem 8.1 in [11], (2.8.36) p. 373 in [8]) If (C, 0) is a germ of plane
curve singularity, ep is the sequence of multiplicities of the strict transform of the
embedded resolution of C and c is the number of free points in the resolution then

codim(�μ) =
∑

p

ep(ep + 1)

2
− c − 1.

3 Solutions to Dimca and Greuel Question

Dimca and Greuel’s question has been completely solved by the author in [3]. How-
ever, before this general solution, there has been several solutions from different
points of view for some families of plane curve singularities. In this section, we
will try to overview in a chronological order the different results until reaching the
general solution of Dimca and Greuel’s question.

The first result about Question 1 was given in 2018 by Blanco and the author
in [2] for semi-quasi-homogeneous singularities. We recall that f is a semi-quasi-
homogeneous singularity with weights w = (n,m) such that gcd(n,m) ≥ 1 and
n,m ≥ 2 if f = f0 + g is a deformation of the initial term f0 = yn − xm such that
degw( f0) < degw(g). For such singularities, Blanco and the author in [2] give a pos-
itive answer to this question. This answer is due to a formula for the minimal Tjurina
number of the family of semi-quasi-homogeneous given by Briançon, Granger and
Maisonobe in [4]. The idea here is to use the upper semicontinuity of the Tjurina
number (Theorem 2.6 in [8]) to reduce the proof to show the inequality for μ/τmin.

In fact, until the appearance of the general solution this was the only non–irreducible
family of plane curve singularities for which Question 1 was solved.

In 2019, a series of three preprints [1, 7, 12] appeared in a short time. They
give a positive answer for the case of irreducible germs of plane curve singularities.
The three approaches are based on the explicit computation of the dimension of the
generic component of the moduli space of irreducible plane curve singularities given
by Genzmer in [6] in terms of the sequence of multiplicities of the strict transform
of a resolution of the irreducible plane curve. It was shown by Zariski in [13] and
Teissier in the appendix to the book of Zariski [9] that to compute the dimension
of the generic component of the moduli space of irreducible plane curves is closely
related to compute the minimal Tjurina number in the equisingularity class of a
branch. The relation of the dimension of the generic component of the moduli and
the minimal Tjurina number of irreducible plane curves is due to the properties of
Teissier monomial curve (see [9]).

In April 2019, Alberich-Carramiñana, Blanco, Melle-Hernández and the author
in [1] gave a positive answer to Question 1 through a formula for the minimal Tjurina
number in an equisingularity class of irreducible plane curve singularities in terms
of the sequence of multiplicities that can be obtained from Genzmer’s formula in [6]
together withWall’s formula (Theorem 2). A few days after, Genzmer andHernandes
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in [7] provided an alternative proof of Dimca and Greuel’s inequality. Even if the
techniques used are quite different, both results are based on the explicit computations
given by Genzmer in [6]. Finally, at the end of April, Wang in [12] gave another
alternative proof for the irreducible case based also in Genzmer’s result about the
dimension of the generic component of the moduli space in [6]. However, Wang’s
approach is very interesting since he proves that 3μ − 4τ is a monotonic increasing
invariant under blow–ups for irreducible plane curve singularities which provides a
nice perspective in the possible applications of Dimca and Greuel’s question.

After the previous discussion one realized that all the answers to Dimca and
Greuel’s question are based on the explicit computation of the minimal Tjurina
number of certain families of singularities. However, they do not provide an answer
to the second question that we formulated in the introduction: can the 4/3 bound
be inferred from the geometry of the plane curve singularity? One may think that
Wang’s approach gives the answer to this question for the irreducible case. However,
one cannot prove that 3μ − 4τ is an increasing monotonic invariant under blow-ups
if one does not have Genzmer’s formula for the dimension of the generic component
of the moduli space. Moreover, implicitly there is no reason to consider aμ − bτ
with (a, b) �= (3, 4). In this way, the reason about 4/3 remained open after Wang’s
result even for irreducible plane curves.

Finally, based on the idea to provide a full answer to Dimca andGreuel’s question,
the author in [3] changed the point of view. This new approach is based on the theory
of deformation for surface singularities. More concretely, in the geometry of nor-
mal two–dimension double point singularities. Normal two–dimension double point
singularities have equation {z2 + f (x, y) = 0} ⊂ C3 with f (x, y) = 0 defining a
germ of plane curve singularity. Moreover, they have the same Milnor and Tjurina
numbers than the associated plane curve singularity. From this point of view, one
can use the upper bound for the difference μ − τ given by Wahl in [10] in terms of
the geometric genus of the double point singularity. After that, the good properties
of the geometric genus of such a surface singularities allow the author to provide a
full answer to Dimca and Greuel’s question.

Theorem 3 ([3]) For any germ of plane curve singularity

μ

τ
<

4

3
.

Moreover, in this setting the bound 4/3 is inferred from the geometric genus of the
surface singularity. Also, the author in [3] provides a general framework that allow to
continue with the problem of finding bounds for the quotient of Milnor and Tjurina
numbers in higher dimension.
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When Is a Complete Ideal in a Rational
Surface Singularity a Multiplier Ideal?

Maria Alberich-Carramiñana, Josep Àlvarez Montaner,
and Víctor González-Alonso

Abstract This is an extended abstract with some of the results that will appear in
the forthcoming paper [1] in which we characterize when a given complete ideal in a
two-dimensional local ring with a rational singularity can be realized as a multiplier
ideal.

1 Introduction

Let X be a complex variety of dimension d which is Q-Gorenstein and OX,O its
corresponding local ring at a point O ∈ X , withm = mX,O being the maximal ideal.
Given an ideal b ⊆ OX,O and a parameter λ ∈ R we may consider its corresponding
multiplier ideal J(bλ) ⊆ OX,O . It follows from its construction that multiplier ideals
are complete so it is natural to wonder how special are multiplier ideals among all
complete ideals.
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When X is smooth and d = 2, it was proved independently by Favre and Jonsson
[2] andLipman andWatanabe [7], that every complete ideal a ⊆ OX,O can be realized
as a multiplier ideal; that is, we may find an ideal b and a parameter λ such that
a = J(bλ). This result is no longer true for d ≥ 3 as it has been proved by Lazarsfeld
and Lee in [4]. Indeed, they show some delicate properties regarding the vanishing
of the syzygies of multiplier ideals which lead to the existence of complete ideals in
higher dimension that cannot be realized as multiplier ideals.

Lazarsfeld, Lee and Smith [5] partially extended the results in [4] to the non-
smooth case by giving some vanishing result on the first syzygy of multiplier ideals.
This condition is still enough to cook up examples of complete ideals that cannot be
realized as multiplier ideals when d ≥ 3. They also quoted in [5, Question 3.12] the
following question regarding the remaining case that is left open: Is every complete
ideal in a complex algebraic surface having a rational singularity a multiplier ideal?
A partial answer to this question was provided by Tucker in [8] by showing that this
is indeed the case when X has a log-terminal singularity. In a forthcoming paper [1]
we will give a characterization of complete ideals that can be realized as multiplier
ideals by means of a new invariant that we introduce, the limiting boundary �∗

D , and
we give examples where a complete ideal cannot be realized.

2 A Reformulation of the Problem via Antinef Closures

Let (Y, O) be a germ of complex surface with at worst a rational singularity. Let
OY,O denote the local ring at O and let m = mY,O ⊆ OY,O be the maximal ideal.
Let π : X → Y be a log-resolution of am-primary complete ideal a ⊆ OY,O . We say
that a is realized as a multiplier ideal in X if there exists another m-primary ideal b
such that π is also a log-resolution for b and there is a rational number λ such that
a = J(bλ). More precisely, let F and G be integral exceptional divisors such that
a · OX = OX (−F) and b · OX = OX (−G). Let Kπ be the relative canonical divisor
which is a Q-divisor with exceptional support. Then we want to find λ such that
a = J(bλ) := π∗OX (�Kπ − λG�), where �·� denotes the round up of any Q-divisor
and is nothing but rounding up its coefficients..

Lipman [6, Sect. 18] gave a correspondence between complete ideals and antinef
divisors that will give us the right framework where we can address this question.
Recall that an effective integral exceptional divisor D ∈ EDiv≥0(X) is antinef if D ·
Ci < 0 for all the irreducible componentsC1, . . . ,Cr of the exceptional locus. Given
any effective rational exceptional divisor D ∈ EDiv≥0

Q
(X) we may either consider

its:
· Integral antinef closure : ˜D := min

{

D′ ∈ EDiv≥0(X) | D′ ≥ D, D′ · Ci ≤ 0 ∀ i
}

,

· Rational antinef closure: ˜DQ = min
{

D′ ∈ EDiv≥0
Q

(X) | D′ ≥ D, D′ · Ci ≤ 0 ∀ i
}

.

The existence of the integral antinef closure can be found in [6, Sect. 18] and it can
be computed using the unloading procedure described next: Set D0 = �D�. For any
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k ≥ 0, whenever there is an exceptional component Ci such that Dk · Ci > 0, define
Dk+1 = Dk + Ci . If there is no such Ci , then ˜D = Dk .

The existence of the Q-antinef closure follows from the cone structure of the set
of antinef divisors. To describe it we use the Q-unloading procedure, which can be
deduced from [3], and is described next: Set D0 = D. For any k ≥ 0, whenever there
is an exceptional componentCi such that Dk · Ci > 0, define Dk+1 = Dk + ∑

xiCi ,
where the xi are the solutions of the system of equations

∑ (

Ci · C j
)

xi = −D ·
C j , ∀i, j. If there are no such Ci , then ˜DQ = Dk .

The main result of this section is a reformulation of our initial problem in terms of
the following boundaryQ-divisors that measure the difference between a divisor and
its Q-antinef closure. Namely, given any rational exceptional divisor D, we define

�D = ˜(D + Kπ)
Q − (D + Kπ) ≥ 0.

Now, given a convenient log-resolution π : X→Y of a such that aOX = OX (−F),
we want to check whether there exists an antinef divisor G and a rational number λ
such that

˜�λG − Kπ
 = F (1)

Notice that the rational divisor λG is antinef as well and, denoting D = �λG − Kπ
,
we have that D + Kπ ≤ λG. Therefore, the Q-antinef closure of D + Kπ satisfies

D + Kπ ≤ ˜(D + Kπ)
Q ≤ λG

and thus

D = �D + Kπ − Kπ
 ≤
⌊

˜(D + Kπ)
Q − Kπ

⌋

≤ �λG − Kπ
 = D.

Under these premises, Eq.1 becomes

˜⌊

˜(D + Kπ)
Q − Kπ

⌋

= ˜�D + �D
 = F. (2)

Our approach to the problem is through the following

Proposition 1 An m-primary complete ideal a is realized as a multiplier ideal if
and only if there is a log-resolution π : X → Y of a with aOX = OX (−F) and an
integral exceptional divisor D such that D ≥ �−Kπ
, ˜D = F, and ��D
 = 0.
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3 Working in a Fixed Log-Resolution

Let’s start with a fixed log-resolution π : X → Y of awith aOX = OX (−F). It might
well happen that we can not find an integral exceptional divisor D satisfying the con-
ditions of Proposition 1. Indeed there are cases in which wemay find such a divisor in
a further log-resolution and caseswhere it will be impossible to find it, and thus giving
examples of complete ideals that can not be realized as multiplier ideals (see Sect. 5).
Even though working in a fixed log-resolution has a lot of shortcomings, the methods
we present in this section will illustrate the main ideas behind our general method.

The starting point of our method comes from the unloading procedure. We can
reach every D ≥ �−Kπ
with ˜D = F by startingwith D = F and then go backwards
replacing D by D − C for any exceptional component with (D − C) · C > 0, and
contained in the support of D − �−Kπ
. If this is the case we say that going from
D to D − C is an admissible subtraction. Moreover, without getting into technical
details, the multiplicities of �D−C are smaller than the multiplicities of �D when
(D + Kπ + �D) · C < 0. We will say in this case that we have a strict subtraction.
If a subtraction is admissible and strict we say that it is a good subtraction.

Our goal would be to find a chain of admissible subtractions F > D1 > · · · >

Dn = D such that ��D
 = 0. In the case that every subtraction in the chain is also
strict, hence good, wewill say that D < F is a good subdivisor and it is characterized
as follows:

Proposition 2 D < F is a good subdivisor if and only ifmultC(�D) < 1 for every
subtracted component C ⊂ supp(F − D).

It leads to the following characterisation:

Proposition 3 Anm-primary complete ideal a is realized as a multiplier ideal if and
only if there is a log-resolution π : X → Y of a with aOX = OX (−F) and a good
subdivisor D < F such that ��D
 = 0.

This provides an efficient algorithm to decide whether a complete ideal can be
realized as multiplier ideal in X . Obviously if ��F
 = 0 then a is a multiplier ideal.
Otherwise, we can take F and consider recursively all the possible strict subtractions,
until we either find some D with ��D
 = 0 or we run out of divisors (in which case a
cannot be realized as multiplier ideal in X ). We point out that we may find examples
of surfaces with a log-terminal singularity and ideals that can not be realized in a
given log-resolution. We already know, by Tucker’s result [8], that they must be
realized in a further log-resolution.

4 Comparing Log-Resolutions

In general, we have to study how the�D behave in different log-resolutions, in order
to obtain the best good chains possible. In order to get a minimal �D we would
consider only strict subtractions D − C and, in the case that they are not admissible,
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it would require to blow-up m = 1 − (D − C) · C ≥ 0 smooth points of C to make
them admissible, and thus good. This process can be quite involved but we can speed
it up using what we call

Standard procedure with length N : Let π : X → Y be a log-resolution of a with
aOX = OX (−F) and consider (X, F) as our starting pair. Given a positive integer
N we will produce a sequence X (N )

n → · · · → X (N )
1 → X → Y , hence a sequence

of pairs (X (N )
n , D(N )

n ) as follows:

• If some initial irreducible component Ci ⊂ X is good-subtractible from D(N )
n ,

then take X (N )
n+1 = X (N )

n and D(N )
n+1 as the result of subtractingCi and all subsequent

possible good subtractions of non-initial components.
• If some initial irreducible component Ci ⊂ X is strict-subtractible but not admis-
sible, set mn,i = 1 − (D(N )

n − Ci ) · Ci . Then blow up Ci at mn,i smooth points,
further blow-up each of the resulting mn,i exceptional components at a smooth
point, and then blow-up each of the newest exceptional components, and so on
until we have added Nmn,i exceptional components, forming mn,i tails of length
N attached to the original exceptional divisor atCi . Then subtractCi and all subse-
quent possible good subtractions of non-initial components (including the newest
ones).

• If no initial component is strict-subtratible, stop.

Remark 1 Each pair (X (N )
n , D(N )

n ) is determined by data on the initial log-resolution
π : X → Y if one also remembers how many tails have been created from each
initial exceptional component. More precisely, each step can be codified by the pair

(D(N )
n ,mn), where D

(N )
n is the image of D(N )

n in X andmn = (

mn,1, . . . ,mn,r
) ∈ Zr≥0

is the vector such that at this step there aremn,i tails attached to the initial components
C1, . . . ,Cr .

At each step we may consider the corresponding �D(N )
n

and its images �D(N )
n

⊂ X
decrease and have a limit �∗

n when N → ∞ that can be computed as follows

Proposition 4 Let
(

X (N ), D(N )
)

be a pair computed using the standard procedure
of length N, and for each i = 1, . . . , r let mi be the number of tails attached to
the initial exceptional component Ci ⊂ X. Then there exists �∗

D = limN→∞ �D(N ) ,
which can be computed as the smallest solution of the system of inequalities

(

D(N ) + K0 + �∗
D

)

· Ci < −mi i = 1, . . . , r.

The fact that the limiting boundary �∗
D can be computed on the initial log-

resolution by taking into account the tail-counting vector m motivates the following
definitions.

Definition 1 A divisor D ⊂ X is an asymptotically good subdivisor of F if for big
enough N ∈ N there is a pair

(

X (N ), D(N )
)

obtained by the standard procedure of
length N such that the image of D(N ) in X is D.



150 M. Alberich-Carramiñana et al.

Let D ≤ F be an asymptotically good subdivisor and C ⊂ X an (initial) excep-
tional component. We say that the subtraction D > D − C is asymptotically good if
for big enough N ∈ N there is a pair

(

X (N ), D(N )
)

obtained by the standard proce-
dure of length N such that the image of D(N ) in X is D and D(N ) > D(N ) − C is a
good subtraction (where we identify C ⊂ X0 with its strict transform in X (N )).

Asymptotically good subtractions can be numerically characterized in the original
log-resolution with the help of the tail-counting vector m ∈ Nr .

Lemma 1 Let (D,m) be a pair given by D ⊂ X and m = (m1, . . . ,mr ) ∈ Nr . The
subtraction D > D − Ci of the exceptional component Ci is asymptotically good
with mi tails constructed from each exceptional component Ci if and only if

(

D + Kπ + �∗
D

) · Ci < −mi

It follows from the definition that a subdivisor D ≤ F ⊂ X is asymptotically good
if it can be reached from F by a chain of asymptotically good subtractions

(F, 0) > (D1,m1) > · · · > (Dn,mn) = (D,m),

where the convention that we follow is that an asymptotic subtraction is (D,m) >
(

D′,m ′) where D′ = D − Ci for some exceptional component Ci , mi ≤ m ′
i and

m j = m ′
j for all j �= i . The main result of this work is

Theorem 1 Let π : X → Y be a log-resolution of an m-primary complete ideal a
with aOX = OX (−F). The ideal a is realized as a multiplier ideal in a further log-
resolution if and only if there is an asymptotically good chain from (F, 0) to a pair
(D,m) such that

⌊

�∗
D

⌋

=0.

Example 1 Consider the rational singularity given by the intersection matrix

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−4 1 1 1 1 1
1 −2 0 0 0 0
1 0 −2 0 0 0
1 0 0 −2 0 0
1 0 0 0 −2 0
1 0 0 0 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with relative canonical divisor Kπ = (−1, −1
2 , −1

2 , −1
2 , −1

2 , 0
)

. In particular it is
a log-canonical singularity. Consider the antinef divisor F = (2, 1, 1, 1, 1, 4) and
let’s look for asymptotically good chains. We first compute �F = �∗

F = −Kπ =
(

1, 1
2 ,

1
2 ,

1
2 ,

1
2 , 0

)

, with

(

F + Kπ + �∗
F

) · M = F · M = (0, 0, 0, 0, 0,−2) ≤ (0, 0, 0, 0, 0, 0) = −m0.

The only asymptotically strict subtraction is that of C6, but since F · C6 = −2 ≤
−1 = C2

6 , two tails need to be added. This means we have to take D1 = F −
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C6 = (2, 1, 1, 1, 1, 3) and m1 = (0, 0, 0, 0, 0, 2). Then we have �∗
D1

= Kπ + C6 =
(

1, 1
2 ,

1
2 ,

1
2 ,

1
2 , 1

)

, with

(

D1 + Kπ + �∗
1

) · M = F · M = (0, 0, 0, 0, 0,−2) = −m1.

No further asymptotically strict subtraction is thus possible. Since both
⌊

�∗
F

⌋

,
⌊

�∗
D1

⌋ �= 0, the ideal defined by F is not a multiplier ideal.

References

1. M. Alberich-Carramiñana, J. ÀlvarezMontaner, V. González-Alonso, Characterization of mul-
tiplier ideals in a rational surface singularity, Preprint

2. C. Favre,M. Jonsson, Valuations andmultiplier ideals. J. Amer.Math. Soc. 18, 655–684 (2005)
3. R. Laface,OnZariski decompositionwith andwithout support. Taiwanese J.Math. 20, 755–767

(2016)
4. R. Lazarsfeld, K. Lee, Local syzygies of multiplier ideals. Invent. Math. 167, 409–418 (2007)
5. R. Lazarsfeld, K. Lee, K.E. Smith, Syzygies of multiplier ideals on singular varieties, special

volume in honor of Melvin Hochster. Michigan Math. J. 57, 511–521 (2008)
6. J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factoriza-

tion. Inst. Hautes Ètudes Sci. Publ. Math. 36, 195–279 (1969)
7. J. Lipman, K.-i. Watanabe, Integrally closed ideals in two-dimensional regular local rings are

multiplier ideals. Math. Res. Lett. 10, 423–434 (2003)
8. K. Tucker, Integrally closed ideals on log terminal surfaces are multiplier ideals. Math. Res.

Lett. 16, 903–908 (2009)


	Preface
	Contents
	 mathbbQ-Hilbert Functions of Multiplier and Test Ideals
	1 Introduction
	2 mathbbQ-Good Filtrations
	3 Poincaré Series of Multiplier and Test Ideals
	3.1 Multiplier Ideals
	3.2 Test Ideals

	References

	 Up-to-Homotopy Algebras with Strict Units
	1 Introduction and Main Result
	2 Ingredients
	2.1 Restriction Operations
	2.2 A Kan-Like Structure

	References

	 Multisymplectic Lagrangian Models in Gravitation
	1 Introduction
	2 Geometric Structures: Jet Bundles and Multivector Fields
	3 Einstein–Hilbert Model (Without Sources)
	4 Einstein–Palatini (Metric-Affine) Model (Without Sources)
	References

	 Computing the Distance to the Stochastic Part of Phylogenetic Varieties
	1 Introduction
	2 Phylogenetic Varieties
	3 Distance to the Stochastic Phylogenetic Regions
	3.1 Computations and Conclusions

	References

	 Generating Embeddable Matrices Whose Principal Logarithm is Not a Markov Generator
	1 Introduction and Preliminaries
	2 SS Embeddable Matrices Whose Principal Logarithm is Not a Generator
	References

	 Hamilton-Jacobi Theory and Geometric Mechanics
	1 The Perspective of Geometric Mechanics
	2 Hamiltonian Mechanics and Hamilton–Jacobi Theory
	3 A General Framework for Hamilton–Jacobi Equation
	4 Slicing of Hamiltonian Systems
	5 Slicings in Fibered Manifolds. Lagrangian and Hamiltonian Mechanics
	References

	 Legendrian Knots in Contact 3-Manifolds
	1 Definitions, Examples and Classification Results
	2 Questions and Open Problems
	References

	 Topological Degree and Periodic Orbits of Semi-dynamical Systems
	1 Introduction
	2 Periodic Orbits
	References

	 Presentation of Symplectic Mapping Class Group of Rational 4-Manifolds
	1 Preliminaries and Previous Results
	2 Main Results
	3 Sketch of the Proof
	4 Some Remarks
	References

	 On Several Classes of Ricci Tensor
	1 Introduction
	2 Geometry
	3 Examples
	References

	 Rank Conditions on Phylogenetic Networks
	1 Introduction and Preliminaries
	2 Invariants for the General Markov Model
	3 Invariants for Equivariant Models
	References

	 A Contact Geometry Approach to Symmetries in Systems with Dissipation
	1 Introduction
	2 Contact Manifolds and Contact Hamiltonian Systems
	3 Symmetries and Dissipation Laws for Contact Hamiltonian Systems
	4 Example: Motion in a Gravitational Field with Friction
	References

	 Dimension Formulas for the Cohomology of Arithmetic Groups
	1 Introduction
	2 Borel-Serre Compactification
	3 Eisenstein and Cuspidal Cohomology
	4 Euler Characteristic
	References

	 Do Overtwisted Contact Manifolds Admit Infinitely Many Periodic Reeb Orbits?
	1 Introduction
	2 Contact Geometry
	3 b-Contact Manifolds
	4 It Is a Trap
	5 Overtwisted Disk in b-Contact Manifolds
	References

	 Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution
	1 Introduction
	2 Methods
	3 Experiments
	4 Conclusions
	References

	 Mixed Multiplier Ideals and the Topological Type of a Plane Curve
	1 Introduction
	2 Some Definitions
	3 Topological Type
	References

	 Geometry of Non-holonomic Distributions
	1 Introduction
	2 Notation, Natural Connection and Fundamental Forms
	2.1 The Metric gmathcalD and the Connection mathcalD
	2.2 The Second Fundamental Form (Gauss, sim1830, Reinhart, 1977, 1983)

	3 Geodesics and Geodesic Invariance
	3.1 Totally Geodesic Distributions

	4 Other Results and Commentaries
	References

	 What If It Contains a Linear Subspace?
	1 Introduction
	2 Unirational Hypersurfaces and Complete Intersections
	3 Numerical Conditions for K-Linear Spaces in Complete Intersections
	References

	 Reeb Embeddings and Universality of Euler Flows
	1 Introduction
	1.1 Hydrodynamics
	1.2 Contact Geometry

	2 Reeb Embeddings
	3 Applications
	References

	 The Continuous Rank Function for Varieties of Maximal Albanese Dimension and Its Applications
	1 Statement of the Results
	2 Continuous Rank Function
	2.1 Set Up: Pardini's Covering Trick
	2.2 Continuous Rank

	3 Applications
	3.1 BCPS Inequalities
	3.2 Classification of the Limit Cases

	References

	 Developable Surfaces with Prescribed Boundary
	1 Introduction
	2 The Space of Developable Surfaces
	3 The Boundary of a Developable Surface
	4 Future Continuation
	References

	 Configuration Space of a Textile Rectangle
	1 Introduction
	2 Configuration Space of a Textile Rectangle Using 4 Points
	3 Configuration Space of an N-Points Textile Rectangle
	References

	 The 4/3 Problem for Germs of Isolated Plane Curve Singularities
	1 Introduction
	2 Deformation Theory
	3 Solutions to Dimca and Greuel Question
	References

	 When Is a Complete Ideal in a Rational Surface Singularity a Multiplier Ideal?
	1 Introduction
	2 A Reformulation of the Problem via Antinef Closures
	3 Working in a Fixed Log-Resolution
	4 Comparing Log-Resolutions
	References




