®

Check for
updates

Chapter 4

4 Metadata Formats

Abstract Chapter 4 is about metadata formats in the printing in-
dustry. First, XMP (Extensible Metadata Platform) is presented.
Subsequently, the Job Definition Format (JDF), the Exchange JDF
(XJDF) and PrintTalk are explained in detail. The last section of this
chapter is about PDF metadata relevant for print production. The
basic concepts of these metadata formats are explained, not so
much the actual coding.

Keywords JDF, XIDF, XMP, PrintTalk, PDF Metadata, Job Ticket.

Metadata is structured data that describes the characteristics of

other data (such as files). Properties of individual objects are also i Strictly speaking,

called metadata. Such objects could be resources or processes and i metadata describes
much more. In this sense, the job tickets we talked about in Sec- i properties of other data.
tion 2.1.1 are examples of metadata. Other examples may describe i Forexample, if the data
a photo, the copyright status of a text, ISBN numbers, part num- i represents a document
bers, serial numbers, drawing numbers, codes, and so forth. Here i thatincludes text and

¢ formatting rules, the
: corresponding metadata
! might contain properties

e Object descriptions (“The photo has a resolution of 350 ppi”) ;‘;T::Sat?j a‘:ith}:’tr:oﬁce :
e Product descriptions (“Adhesive binding is required”) and the crer;iiogn date..
e Instructions (“Fold signature 1 according to F-16-6 in the fold R

catalog”)
e Operational data (“A warning occurred during the color con-

version of some content file”)

are four typical examples of metadata in the printing industry:

In the graphic arts industry, metadata is often seen in contrast to
content data (also called print data or assets). The latter describes
the artworks that can be looked at on the printing substrate after
printing. They are typically stored as image data, graphic data, text
data, layout data, or coded in a page description language.

Metadata is either embedded in content data or stored separately
from the content data, i.e. in a separate file or in a database. Most
photos do not only contain the color values of pixels, but also a
lot of metadata that the camera automatically generates (such as
information about the camera; camera settings while the picture
was taken; date, time, and GPS location). This kind of metadata is
embedded, but a database might extract and store it internally in
a later stage. Most content data formats allow storing metadata
internally. We will cover XMP as an example of such metadata in
Section 4.1 because it is occasionally used for workflow automa-
tion. If the metadata is stored externally, the data must include

a reference to the content. In Sections 4.2 to 4.5, we will discuss
metadata that is stored separately from the content data. In Sec-
tion 4.6, | will present some less known metadata inside PDF files.

55

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Hoffmann-Walbeck, Workflow Automation, SpringerBriefs in
Applied Sciences and Technology, https://doi.org/10.1007/978-3-030-84782-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84782-1_4&domain=pdf

56

Figure 4.1;
Somple JDF data which
refers to PDF data

Figure 4.2
A print provider's

metadata "hub”

Metadata Formats

Figure 4.1 shows a snippet of a sample JDF file that refers to a PDF
file.

<RunList Run="1" Status="Draft">
<LayoutElement>
<FileSpec MimeType="application/pdf"
URL="file://jobs/...sample.pdf" />
</LayoutElement>
</RunList>

The circle in Figure 4.2 represents the metadata “hub”. This is not
a physical hub like those in network technology, but rather a met-
aphorical one. The sketch shows merely that different instances
use various metadata. The print provider’s production devices use
metadata, but so do the print provider’s business software and his
partners. In a production environment for printed products, differ-
ent metadata formats may be used. The data is frequently convert-
ed from one format to some other.

The most important metadata formats, of course, are JDF, XJDF,
and PrintTalk. We will cover these formats in this chapter. Howev-
er, as mentioned before, there are others as well. The good thing
is that regular operators in a print shop don’t need to worry about
them. Graphical user interfaces of a workflow management sys-
tem, a controller or the like obscure these technical data formats.
You need to learn about these formats only if you want to extend
an existing workflow, integrate a new device into the workflow

Service Provider

Customer Schedular
Supplier X [Reporting

PrmtTalk
Logistics \ priv. XML Preflight
inDi JMF i
Shipping «—— EXIF CFF2 Plate Making
XIDF
Shipping <\ OMF PITF Shipping
XMP
Die Cutting Printing
Cutting Folding

Binding Collecting

B Production Processes
B Management Processes
B Partners

Chapter 4

automation network, or want to find out what is happening under
the hood.

Nowadays, metadata is mostly encoded in XML or JSON. However,
PPF is coded in PostScript, PJTF in PDF, CFF2 is a text format, and
EXIF has its own specific binary structure. All examples in this chap-
ter are encoded in XML; other encodings are ignored.

Figure 4.2 shows a selection of common data formats. Color pro-
files or preflight profiles, for instance, are not mentioned. More-

over, many companies specify private formats on their own. Why
are there so many different formats? One reason is the evolution
of these formats. PPF or PJTF are a bit outdated already, but they
are still around, especially PPF, which is better known as the CIP3
format. Prepress often encodes ink zone presetting values in PPF/
CIP3 before forwarding to press.

Another reason for the large number of metadata formats is the
fact that they inhabit different ecosystems (see Figure 4.3). Some
of them are prepress formats only, such as EXIF and XMP. JDF and
XJDF have the widest habitat. The chart gives the impression that
these formats are not being deployed between print buyer and
print provider, but that is not quite true. A PrintTalk element de-
scribes business objects, which relate to products, of course. The
product description inside the PrintTalk element can be either in
JDF or XJDF.

The most important feature of a metadata format is what exactly it
can describe. CFF2 is used for structural design in packaging, EXIF
data is dedicated to image and audio data only, and XMP mainly

{ PJTF stands for Portable
i Job Ticket Format.

i Adobe published the
specification in 1999.

i CFF2 stands for Common |
¢ File Format Version 2. It

is a text format for CAD

i data.

4 Print Provider

Print Management Information System (MIS)
Buyer Business Workflow

W PPF Production Controller

W JDF/IMF Technical Workflow

XIDF,/XIMF

B XMP, EXIF

MW PITF

[PrintTalk

o
‘U

Figure 4.3: Metadata formats and their ecosystems

57

Xmy

Adding Intelligence to Media

Embedding/

+XMP
Image File

Linkin
< g

~—>
(—P

=)

+XMP

Graphics File

Figure 4.4: XMP metadata of a file often persist when embedded or

Metadata Formats

describes (elements of) a layout. Only JDF, XJDF and their associ-
ated messaging formats JMF and XJMF cover (almost) the entire
print production scope.

In the following, we will look at the most prominent standard
metadata formats only.

4] Extensible Metadata Platform (XMP)

Adobe Systems announced a new metadata format called Extensi-
ble Metadata Platform (XMP) in 2001 and released a specification
in 2004. In 2008 and 2010, they split the specification into three
parts. The currently valid specifications for Part 1, Part 2, and Part
3 can be found in (Adobe 2012), (Adobe 2016) and (Adobe 2020),
respectively. In 2012, XMP Part 1 became also an ISO standard. The
updated standard is (ISO 2019a).

Content elements such as images or graphics as well as layout files
and PDF files often contain metadata entries such as copyright no-
tices, the author’s name and contact details, and keywords. They
are often stored in the XMP data structure.

One application of an XMP workflow involves retrieving a caption
that is registered within an image or a graphic. Often, an author
delivers text and images/graphics to an agency or publisher, which
then performs the layout. Traditionally, the author supplies the
captions in a separate text file, and the layout artist copies them to
the suitable figure. This is inefficient and, above all, error-prone. It
is much more efficient if the author enters the captions in the XMP
structure of the images/graphics, and the layout artist retrieves it
from there.

The basic idea of XMP is that metadata persists when embedded
in or linked to another file and during format conversions. This is
the reason why in our previous example the layout program can
extract the caption from the im-
age/graphic. Figure 4.4 shows
Conversion the concept‘

It should be noted that not only

document files can be tagged
with metadata, but also certain
components of a document.

e}

+XMP +XMP

+XMP

+XMP - This i ;
is includes, for instance,
— — images that are placed in the
+XMP +XMP layout or embedded in a PDF
Layout File PDF File document. However, individual

converted into or another file.

58

pages, paragraphs, words or
even letters are not document
components to which you can
attach your own metadata. The

Chapter 4

XMP structures of the components are still “attached” to the indi-
vidual components. That is, they are not merged into one common
data structure. In addition, the document itself may have XMP
metadata, as indicated in Figure 4.4.

As already mentioned, format conversions should preserve XMP
metadata. An important application for this is the copyright entry

in images. For example, when reprinting a brochure, an advertising

agency may have only the PDF data that was used for printing, but
no longer the image data embedded in it. Nevertheless, the agen-
cy can still extract from the PDF the XMP metadata and thus the
copyright status of the images.

Unfortunately, you cannot rely on the XMP data to be maintained
during a format conversion. There are two reasons for this:

Not all data formats can store XMP. The metadata can be
embedded, for example, in PDF, PostScript, TIFF, JEPG (2000),
GIF, PNG and SVG files. A somewhat more complete list can
be found in (Adobe 2020). The XMP data structure is an
addition to a file. This means that the extensibility of a data
format is a pre-condition for embedding XMP. Since the BMP
image format does not have this property, for instance, it is
not capable of having XMP metadata embedded.

An XMP structure is an uncompressed XML text block within
a mostly binary-encoded and compressed file (see Figure
4.6). This allows XMP reading software to easily extract the
XMP data without knowing the internal structure of the file.
Of course, when including an XMP structure in a binary file,
the structure of the file format must still be respected. The
text cannot be arbitrarily incorporated into the binary file.
Figure 4.5 shows the basic integration of an XMP record into
PDF. In this format, everything is strictly enclosed by PDF
objects. The first object with ID 13 contains the image data.
Moreover, there is a reference to some metadata object 14.
Object 14 holds the corresponding XMP metadata

Accordingly, applications must support the XMP metadata

format, especially when writing the structure into some data.

Since Adobe originally specified XMP, it is not surprising that
Adobe’s applications allow XMP entries. However, many
applications do not support XMP even if they generate data
formats that can embed XMP.

When in doubt, test in advance if a workflow is to be based on

XMP.

i The BMP raster data

i format introduced by

¢ Microsoft in 1990 does
i not support XMP meta-
data up to and including
i version 3.

Metadata in PDF

13 0 obj

<<
/Subtype/Image
Metadata 14 0 R
>>

stream

... (Image Data)
endstream
endobj

Object 12: Image Data

14 0 obj

<<

/Subtype/XML/
/Type/Metadata
... (XMP-Metadata)
>>

stream

endstream

endobj

Object 14: XMP Data

Figure 4.5:

Two internal PDF objects.
Object 12 is an image;
object 14 contains the
corresponding XMP
structure.

59

A namespace and an i
associated prefix is
specified by an xmins
attribute. XML elements
can then be placed inany :
H namespace by a prefix,
which is separated from
the element name by a
colon.

60

Metadata Formats

Where do the XML metadata entries actually come from? There
are various options:

e The most obvious way is to enter values (for example, au-
thor’s name, copyright, keywords, etc.) into a specific file
manually via in an XMP-supporting application.

e Applying XMP entries in batches, for example, in all files in a
specific folder. A few applications allow this approach.

e The XMP entries come from another metadata format. For
example, digital cameras produce metadata about the cam-
era and camera settings while taking the picture. The values
are stored in the EXchangeable Image File (EXIF) format (CIPA
2016), a well-known and widely used metadata format for
digital cameras. These entries are converted to XMP auto-
matically when the photo is imported into certain image pro-
cessing software, provided the software supports it.

e Photos are often stored in a database, such as in a Digital
Asset Management (DAM) or a Media Asset Management
(MAM) system. The database reads XMP or EXIF data from
the pictures and stores the data internally in order to char-
acterize the images. Conversely, data that is added in the
database (e.g., generated automatically by means of Al image
analysis) can be stored in the XMP structure of the images.
Note that XMP does not have to be embedded in the files but
can be saved as a separate text file. These files can also be
used as a backup.

e XMP is extensible, after all the “X” in the name stands for
“eXtensible”. This means that companies can easily extend
the XMP structure with their own metadata. For instance,
image processing software can store correction steps in XMP.
Most importantly, a prepress workflow management system
can store internal production details.

As mentioned earlier, what makes the XMP special is its XML struc-
ture, which can be embedded in different data formats. As known
in XML, the xmlins attribute defines XML namespaces and their
prefixes. This allows new XML elements to be defined without hav-
ing to worry about already existing element names. The prefixes
allow identical element names as long as the prefixes are different.
In Figure 4.6, the prefixes are marked in red. In the example, only
reserved prefix names occur (tiff, exif, photoshop, Iptcdxmpcore).
There are a few more of them. For these, the element names are
fixed.

A software vendor can define its own namespace and thus its own
XML substructure. Other manufacturers will usually ignore these

Chapter 4

<rdf:Description rdf:about=""
xmlns:tiff="http://ns.adobe.com/tiff/1.0/"
xmlns:exif="http://ns.adobe.com/exif/1.0/"
xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/"
xmlns: IptcdxmpCore="http://iptc.org/std/IptcdxmpCore/1.0/xmlns/"

tiff:XResolution="3140000/10000"
tiff:YResolution="3140000/10000"

exif:PixelXDimension="3072"
exif:PixelYDimension="2304"
exif:DateTimeOriginal="2007-07-28T13:39:44+02:00"

photoshop:CaptionWriter="Thomas Hoffmann-Walbeck"
photoshop:Headline="Brooklin™

Iptcd4xmpCore:CiTelWork="+711-7801714"
IptcdxmpCore:CiEmailWork="hofmann@hdm-stuttgart.de"“

</rdf:Description>

entries, but the vendor’s own software can of course access the Figure 4.6

data at any time. This is a proven means of data communication XMP s coded in XML
within a workflow management system. As an example of such

entries, | would like to mention an EAN’s code, size, color, and po-

sition. For a software developer, it is easy to read XMP data from a

file or to write XMP data into a file.

The XMP structure is enclosed by an XML element called rdf. The
term stands for Resource Description Framework. This XML schema ¥ . !
was adopted by the W3C in 1999 as a recommendation for storing i AnXMLschemais a de-

resource metadata : scription of the structure
' i of an XML document type.

¢ In particular, a schema

Let us wrap up: In most cases, XMP data is created to store infor-) E
: defines the names of ele-

mation about a file and/or its components across applications. i : :
R . . . ¢ ments and attributes, the :

This supports search engines as well as contact information and T e :

copyright notices. That is, XMP is a descriptive metadata format for | a4 the data types of

prepress. In the context of this booklet, however, the temporary i attribute values. i

storage of private process data is even more important. It is not e

standardized and therefore incomprehensible for software from

different manufacturers. However, in the end, one could convert

the most relevant of the private XMP data into a standard format

such as JDF (after several internal process phases have been exe-

cuted using XMP).

For testing purposes, you can use Adobe software to create an
XMP extension without programming.

61

62

Figure 4.7:

PPF snippet defining
a preview image in
PPF (PostScript)

Metadata Formats

4.2 Print Production Format (PPF)

We now come to the standard job ticket metadata formats, which
are specifically specified for the description of print products and
for controlling print production.

The Print Production Format (PPF) is considered the predecessor
format of JDF. It was developed by the CIP3 organization, the pre-
decessor organization of CIP4. Therefore, the PPF is often referred
to as the CIP3 format. It is encoded in the PostScript computer
language. New structured elements have been defined to describe
PPF content. They all start with “CIP3” as shown in Figure 4.7.

CIP3BeginPreviewImage

o0 oo

%Page: 1
%PlateColor: Cyan
CIP3BeginSeparation
/CIP3PreviewImageWidth 1490 def
/CIP3PreviewImageHeight 1210 def
/CIP3PreviewImageBitsPerComp 8 def
/CIP3PreviewImageComponents 1 def
/CIP3PreviewImageMatrix [1490 0 0 -1210 0 1210] def
/CIP3PreviewImageResolution [50.800 50.800] def
/CIP3PreviewImageEncoding /Binary def
/CIP3PreviewImageCompression /RunLengthDecode def
/CIP3PreviewImageDataSize 515348 def
CIP3BeginPreviewImage ..pixels of image
CIP3EndPreviewImage
CIP3EndSeparation

..analog for all separations..
CIP3EndPreviewImage

The reasons why it was decided to specify JDF and JMF formats
and not to try to supplement the print production format are many
and manifold. In particular:

e A major shortcoming of the Print Production Format is its
lack of support for order processing (MIS/ERP). PPF is used
almost exclusively for technical production control.

e The PPF does not support shop floor data collection.

e There is no message format for dynamic interaction (such as
the Job Messaging Format).

e PPFis coded in PostScript and therefore relatively difficult to
interpret and edit.

e There is no defined mechanism for separating and merging
parts of a PPF. This makes central PPF storage for different
workflow components cumbersome. Instead, several differ-

Chapter 4

ent PPF files are exchanged from and to different workflow
components via various hot folders.

In essence, JDF has replaced PPF. There is only one application in
which the PPF is still very popular, namely in the transfer of pre-
press data for the ink zone presetting in offset printing. Prepress
provides the low-res image preview and transfer curves. From

this, a press application can calculate the color zone preset by first
applying the transfer curve to the preview, then counting the per-
centage of color pixels in each ink zone and for each separation.
From the percentage of ink zones, the positions of the servomotors
for the ink feed of the press must then be determined, depending
on the paper.

Figure 4.7 shows a PPF file that describes a low-res preview image,
which is suitable for calculating the ink zone presetting values. The
example describes the following:

e A preview image with separations (C/IP3PreviewlmageCompo-
nents).

e The data is run-length compressed (CIP3PreviewlmageCom-
pression) and binary-encoded (C/IP3PreviewlmageEncoding).

e The width (CIP3PreviewlmageWidth) and the height (CI/P-
3PreviewlmageHeight) are given in pixels.

e The resolution (CIP3PreviewlmageResolution) is given in pix-
els per inch (ppi).

The resolution is 50.8 ppi. The CIP3PreviewlmageMatrix specifies
the pixel direction in the image; here it is defined from left to right
and next from top to bottom. The pixel values are stored inside the
PPF after the CIP3Previewimage element.

4.3 Job Definition Format (JDF)

The introduction of JDF and the associated Job Messaging Format
(JMF) by the Cooperation for the Integration of Processes in Pre-
press, Press and Postpress (CIP4) in the year 2000 was a major in-
novation. Through the subsequent JDF implementations, workflow
automation in the print production has increased significantly.

First, let’s take a look at the simple example of JDF integration in
Figure 4.8. The MIS initially records quite a lot of data about the
print product and its production during the estimating of a quote.
If this estimation converts to a print job, some of the data will
eventually be sent to prepress, press, and postpress, such as de-
tails about the intended product and some business data (such as
customer details, delivery date, etc.). First, prepress will process

i Atransfer curve is a

i curve/table that defines
i modifications of tonal

¢ values of the artwork
during RIPing to match

i desired tonal value

¢ increases in print — for
example, to reach an

i offset standard.

63

Figure 4.8: Example of information exchange with JOF

64

HE O N

Metadata Formats

the JDF and add new entries,

such as ink zone presetting
MIS values for the press. The RIP
might also generate compos-
ite previews for press and
postpress, for example, for
quality assurance purposes.
Moreover, the imposition
software might forward
cutting and folding positions
to the guillotine and the
folder. Finally, all these devices
should send operational
data back to the MIS.

Prepress

We’'ll talk about the distribu-
tion of JDF later. For now, it
should be sufficient to have

Order ID, Customer Details, Page Size, Sheet Size, Colors, a JDF pool of some sort as a
Printing Substrate, Run Length, Imposition Scheme,... hub.
Ink Zone Prestting Values

Previews

Cutting Data, Folding Data

What do the arrows in the
Figure 4.8 are present? Note

Operational Data that the information content

can vary regarding its details.
For instance, if only the or-
der number is transmitted, the level of detail is low. If, however,
many production details are transferred so that a subsequent pro-
cess can run fully automatically, the level of detail is high. All JDF
interfaces usually operate between these two extreme positions.

This circumstance also explains why workflow managers in print
shops and at manufacturers should be well versed in interface de-
tails. The benefit of JDF integration depends strongly on the level
of detail in the JDF data.

Before discussing the details of JDF and JMF data structures, it
should be mentioned that JDF workflow systems are usually config-
ured very individually for a print shop. Since JDF workflow systems
tend to affect many areas of a print shop, existing components are
usually integrated.

However, JDF and JMF are merely standardized data formats and
not specifications for workflow systems. This means that compo-
nents from different manufacturers communicate with each other
via JDF/JMF but otherwise actually act independently of each
other. This can lead to incompatibilities that must be solved case
by case (see Section 4.6). In particular, this means that JDF/JMF
integration is not an off-the-shelf software package that can be
purchased and simply installed, but a project that must be pursued
in several stages and over the long term.

Chapter 4

Consequently, setting up a JDF workflow system requires a great
deal of commitment, expertise and project management skills.

In a JDF-based workflow, a specific JDF file is created for each print
job, sometimes in multiple versions as production progresses. As
Figure 4.8 suggests, the MIS often writes the first JDF file. Usu-
ally, it contains a description of the intended product and rough
production definitions without much detail. As processes add
additional data to the JDF during production, the file size will con-
sequently increase.

4.31 JDF Nodes

JDF and JMF are XML-encoded. That is, each JDF or JMF record
consists of a tree of XML elements and their attributes and values.
The permitted XML element names are defined in the JDF specifi-
cation (CIP4 2020). Since JSON has become increasingly popular in
the last decade, CIP4 is currently working on a JSON representation
of JDF/XJDF.

First, let us talk about the XML elements for JDF nodes. They
define the product to be manufactured and, if applicable, its
sub-products, as well as the production processes needed to man-
ufacture this product.

Each JDF node has the attribute Type. The value of this attribute
can be either Product, ProcessGroup, CombinedProcess, or some
specific process name such as ImageSetting, ConventionalPrinting,
or Folding. CIP4 defines over 100 different processes.

For a standard JDF file, the root JDF node has the value Product

Booklet 1 T
{ reparation
Layout Plate Conventional
Prepareation Making Printing
. . [Product Intent Node
RIPing ImageSetting [1Process Group Node
[]Process Node

Figure 4.9 Example of a JDF Node tree for the production of a booklet

65

<FoldingParams

SheetLay="Left"

</FoldingParams>

FoldCatalog="F1l6-6"

/>

Figure 4.10
Resource FoldingParams

Figure 4.11:

Two folding schemes
from the CIP4 fold cata-
log. The catalog contains
almost 100 schemes.

66

Metadata Formats

for the attribute Type. This node is called a Product Intent Node.

It represents the final product. Underneath the root, there can be
more Product Intent Nodes. These represent sub-products such as
cover, content, and the like. Below the Product Intent Nodes there
are Process Group Nodes and Process Nodes. They describe for
each sub-product the processes that are required for its produc-
tion. Please note:

e The node hierarchy is not limited. Figure 4.9 shows merely an
example.

e Asusual, the hierarchy of an XML tree is defined by creating
subnodes. That is, the root node in our example contains two
JDF child nodes of type Product, which in turn contain further
child nodes. A Process Node is always a leaf of the tree (i.e., it
does not contain any further subnodes), while Process Group
Nodes can optionally contain further subnodes (further Pro-
cess Group Nodes or Process Nodes).

e The Process Nodes and the Process Group Nodes below some
Product Intent Node, which represents a product part, refer
only to the production of this product part.

e Not all processes that are needed to produce a print prod-
uct need to be listed in the JDF file. In general, only those
processes which are included in the JDF workflow will be
defined.

e The JDF file reflects only the current situation at a given point
in production. In general, more nodes may be added as pro-
duction progresses.

e Inareal production environment, the node tree is often
much more complex than in this example.

e The resources are not shown in the JDF node tree.

4.3.2 JDF Resources

Each JDF node can contain an XML element with the name Resour-
cePool, in which resources are stored. All resources of a JDF file are
incorporated in a ResourcePool of some node.

CIP4 defines 170 different resources in the latest specification
(CIP4 2020). Each resource is defined in detail with all possible
options. The generally valid descriptions of these processes and
resources are in themselves a valuable source of information.

At the same time, such definitions are not easy to create. For
example, how can you uniquely define a sheet layout? The code
example in 4.10 shows the resource FoldingParams. This resource
looks very simple. It merely defines that the reference edge where
the paper is placed on the folder is on the left-hand side and the
folding scheme is according to catalog number F16-6. The real

Chapter 4

achievement was to define a unique fold catalog. This catalog can
be found in the JDF specification (CIP4 2010). It includes all com-
mon folding schemes, almost 100 different ones in total. Figure
4.11 shows the folding schemes F16-6 and F16-7.

The specification of the folding catalog number does not suffice for
an automatic folding machine preset. In the FoldingParams re-
source, the exact folding position can optionally be specified. Only
then can a folding machine preset itself accurately according to
the specifications in prepress (ignoring the paper distortion during
printing). Again, this shows how important it is to know the infor-
mation details of interfaces.

Input resources of a Process Node or a Process Group Node are
the physical items such as plates, electronic items such as files, or
conceptional items such as a parameter set that a process or pro-
cess group needs to observe. An output resource is an item that
the process or process group generates during execution. That is, a
process consumes input resources and produces output resources.
Thus, JDF is based on the process-resource model that we dealt
with in Chapter 3. But what about Product Intent Nodes? Do they
have input and output resources as well?

The answer to this is yes. The interpretations of those resources
differ, though. The output resource of a Product Intent Node is al-
ways called Component and represents the final product or a prod-
uct part - similar to the node itself. A Component can actually be
an input resource for another Product Intent Node one level up in
the hierarchy. For example, the Component that represents a cover
is an input resource of the Product Intent Node representing the
final booklet. The input resources of a Product Intent Node, which
is not transitional (see Section 3.3, i.e., is not an output node of
another Product Intent Node) is called Intent Resource. An Intent

Component

Product

Component—

Product Product

(Contents) (Cover)

-

Media
Intent

Media
Intent

Color
Intent

Layout
Intent

Color Layout

Intey Intent

: A JDF Component
describes the various

i versions of (semi-)
finished goods. The final
product, product parts,

¢ but also a set of printed
i sheets or a pile of folded
sheets are considered
components.

Figure 4.12:

Example of Product
Intent Nodes and their
input and output re-
sources

67

68

Metadata Formats

Resource specifies the print buyer’s intention for the product
(part), i.e., details of the product (parts) without defining the pro-
cesses needed to make them. Figure 4.12 explains the terminology.
Note that here the arrows do not represent relationships between
JDF nodes as before, but the relationships between resources and
nodes. The Medialntent defines the printing substrate, the Colorin-
tent the separations for this job part, and Layoutintent the number
and dimensions of the pages.

In the remainder of this section, we will talk about Partitionable
Resources. In general, one can talk about things in their entirety, as
certain subsets, or as singularities. For example, one can talk about
books in general, about certain categories of books, or about a par-
ticular book. This is similar to some resources for a print job. For
example, the resource ExposedMedia specifies exposed printing
plates (among other things). You may want to specify all plates for
a print job or only a subset, i.e.:

All plates of the job

All plates of a signature (of the job)

All plates of a sheet (of a signature and the job)

all plates of a side (of a sheet, a signature, and the job)

A specific separation (of a side, a sheet, a signature, and the
job)

These kinds of resources are called Partitionable Resources in JDF
terminology. The specification details how certain resources can be
partitioned. Note that the partitioning may not always be identical
for different resources. For instance, print sheets cannot be par-
titioned up to the separation, as was previously the case with the
printing plates.

Another example is the printing substrate, which can be the same
for the entire job, but often differs based on cover and content.
Of course, the content can also be printed on differing substrates.
With the help of partitions, all this can be defined easily and flexi-
bly.

4.3.3 Structure of a JDF File

Product descriptions and processes are coded via JDF nodes. We
already learned that resources are pooled in XML elements called
ResourcePools, and that those elements are sub-elements of JDF
nodes. Thus, every JDF node, no matter what type, can optionally
contain a ResourcePool. However, not every resource that is either
input or output of a JDF node necessarily resides in the Resource-
Pool of that node. The reason for this is that resources can have
relationships with multiple JDF nodes, in particular transitional
resources. In order to avoid having to keep (and update) resources

Chapter 4

in multiple copies in different JDF nodes, JDF nodes may also have
input or output resources which lie outside of the particular JDF
node.

The logical consequence of this is that there must be some sepa-

<?xml..... >

<JDF Type="..." ...>
<ResourcePool>...
</ResourcePool>

<ResourcelLinkPool>. ..
</ResourcelLinkPool>

<JDF Type="..." ...>
other JDF sub node (s)
</JDF> ... Figure 4.13:

rate information that specifies which resources a JDF node is linked
to. This information is called Resourcelink, where all Resourcelinks
of a JDF node are collected in a ResourceLinkPool. A ResourcelLink-
Pool is a subelement of a JDF node. This results in the JDF file
structure described in Figure 4.13.

4.3.4 Audit Pool

In Figure 4.13, an important pool in the JDF node is missing. In
addition to the ResourcePool and the ResourceLinkPool, a process
node can also contain an AuditPool. Audit Elements are written to
this pool so that the process results can be recorded after execu-
tion. Typical contents of an Audit Element are:

e Generation, modification or deletion of a JDF node
e Process times (Start, End, etc.)
e End status (Completed, Aborted, Stopped, etc.)

</JDF> Structure of a IDF file

<AuditPool>
<ProcessRun
AgentName= "CIP4 JDF Writer Java"
End= "2020-12-05T13:53:52+01:00"
EndStatus= "Completed"
Start= "2020-12-05T13:53:43+01:00"/>| [19ue4l4
Code snippet of a
</Audi££ool> HocesRunAude
Element in an AuditPool

69

Metadata Formats

e Errors (Warning, Fatal, Error, etc.)

e Reaching of a milestone

e Consumed or missing resources

With the contents of the AuditPool, an MIS can post-calculate the
print job, for example. Figure 4.14 shows a small code excerpt of

an AuditPool.

The attribute AgentName holds the name of the application that
added the Audit Element to the AuditPool. Beside the shown Audit
Element of type ProcessRun, there are others, such as:

e PhaseTime for logging start and end times of any process

states and process phases

e Notification for logging events (such as errors) during process

execution

e ResourceAudit for logging the usage of resources during exe-

cution

e C(Created, Modified, and Deleted for logging the creation, mod-
ification, and deletion of a JDF node or a resource

4.3.5 CGrayBoxes

As mentioned before, an MIS normally cannot describe details of

‘ Production
Progress

J

g

Figure 4.15: A Gray Box must become (a group of) processes with all
mandatory entries and resources before it can be executed.

70

the production, only a rough
framework. To describe such
framework, special Process
Group Nodes have been speci-
fied. They are called Gray Box-
es. A Gray Box does not define
all processes or all resources for
the embraced processes, except
for the (final) output resources.
The information contained in

a Gray Box does not suffice to
execute the processes that the
Gray Box holds, which is why

a Gray Box is called non-exe-
cutable. The missing data must
be added as the production
progresses. If all necessary
data is available, the Gray Box
is dissolved and may become

a normal Process Group, for
example.

Chapter 4

You can recognize a Gray Box by the fact that it

a) is a process group, i.e. Type="“ProcessGroup”, and
b) has the attribute Types (note the “s”!).

The value in the Types attribute is normally an (incomplete) list of

processes or sometimes a predefined name. The process list gives

an indication of which processes (among others) the Gray Box

should be resolved to. The predefined names are specified in the

ICS papers (see Section 4.6). The Gray Box name PrePressPrepa-

ration would be such an example. Further options and details are
specified in the ICS papers. i ICS stands for Interop-

i erability Conformance
1 Specification.

43.6 Spawningand Merging e

In a print shop, products are produced by parallel or overlapping
processes. For example, layout elements such as text, images and
graphics are created in parallel (in JDF terms: LayoutElementPro-
duction). An example of overlapping execution is that while the set
of plates for a print product is still being imaged, some of the pre-
viously exposed plates are already used for printing.

This implies that the JDF structures (nodes and resources) of a JDF
file must be sent to different controllers/devices simultaneously.
This would not be a problem in itself, but keep in mind that the
devices (should) provide the AuditPools with fresh audits. Re-
sources might also be updated. For instance, only after RIPing can
values for the ink zone presetting be calculated and stored in the

corresponding resource. However, this can cause conflicts when ’Spawning
the modified JDF structures are merged back into the original JDF

file. This is JDF technology has a process called “Spawning and O
Merging”. This mechanism requires that it must be recorded in

the original JDF file if some part of the JDF structure is copied for a ’ Updating
controller/device (Spawning). Whether the recipient has read-only

or also write permissions is also important. A JDF structure may be

checked out with write permissions only once at any given time. .

If the modified structure is merged back into the original file, it

should be recorded once again. The JDF structure may then be ’ Merging

spawned once more with full write permissions. This way, there
are no more conflicts when merging. Figure 4.16 shows the princi-
ple of this mechanism.

However, if two production lines operate in parallel, the processes
are more likely to be modeled completely separately. For example,

the cover and the contents of a brochure can be printed simulta- Figure 4.16:
neously on two different offset presses. This situation will be mod- Spawning and merging of a
eled via two different ConventionalPrinting processes. IDF node

71

Job Definition Format (JDF)

© (Parts of a) Job Ticket
® Job Ticket Updates, Audits

Job Messaging Format (JMF)

©® Commands, Queries

® Response, Signals

Come)
o] of o| o

‘ Devcice »

72

Figure 4.17:

Key data exchange
between controller and
device

Metadata Formats

437 Job Messaging Format (JMF)

Now that we have discussed what kind of information can be
stored in a JDF file, the question naturally arises: How do workflow
instances exchange this data? In the simplest case, JDF job tickets
are written by a JDF producer (see Figure 4.17-@) and placed into
the hot folder of a JDF consumer, who scans the folder for new
data in certain intervals. This unidirectional interface via file trans-
fer is, of course, quite static, slow, and does not allow real-time in-
teraction. It also can become complex to maintain if many different
workflow instances are involved. Real-time interaction, however,

is necessary, if you think about Job tracking, job changes, instant
error messages, and the display of actual material consumption or
the degree of machine utilization.

Moreover, one should give up on the idea that a JDF file is copied
to the input queue (or hot folder) of a controller/device via file
transfer. The system sends a message containing the location of
the JDF file instead (see Figure 4.17-©). But how should one imag-
ine such a message?

The Job Messaging Format (JMF) is part of the JDF specification.
Like JDF, JMF is also XML-encoded. In the case of JMF, the root ele-
ment is no longer JDF but rather JMF. JMF messages use the HTTP
and HTTPS protocols, i.e., the IMF is the body data of an HTTP(S)

<JMF TimeStamp="..." SenderID="ID4711">
<Command ID="M1" Type="SubmitQueueEntry">
<QueueSubmissionParams>
URL="File://Computer/Directory/job.jdf"/>
</Command>
</JMF>

Figure 4.18: JMF command informing the recipient where to retrieve a JDF file

packet. The JMF code in Figure 4.18 shows an example of a JMF
message. It contains a Command telling the recipient the location
of the submitted JDF file job.jdf. Analogously, the recipient can also
be told how to reach the JDF data via the HTTP protocol instead of
via file transfer. More generally, numerous control messages con-
cerning queues and their entries are important JMF applications.
Others are:

e System bootstrapping and setup — for example, shutting
down or waking up a device (which is in standby mode).

e Dynamic status, resource usage and error tracking for jobs
and devices.

e Pipe control for overlapping processes. One process produces

Chapter 4

resources while at the same time some other process con-
sumes portions of these resources that are already available
(see Section 2.4.5).

e Device setup and job changes — for example, creating new
JDF nodes, which might be necessary if a workflow controller
receives the artwork for a job but the MIS has not yet de-
fined a JDF job ticket. The workflow controller will then send
a NewJDF command to the MIS to initiate a new job. (See
Section 2.2.1)

e Device Capability description for sending technical capabil-
ities of a device to a controller, such as the minimum and
maximum sheet size of a sheet-fed press.

Describing device capabilities can be quite tricky, though. The
device capability might not be a fixed set of properties. Some ma-
chines (for example, a folding machine) can be optionally equipped
with additional units, which changes the properties. In addition,
properties can vary due to other factors. For example, the possible
number of folds that a folding machine can perform depends on
the paper thickness.

From a more abstract point of view, six different kinds of messages
are available (called JMF Message Families):

Query
Command
Response
Acknowledge
Signal
Registration

A Query sends an inquiry to a recipient without changing its state,
for instance, to retrieve information about a device’s status or
material consumption. A Command, however, changes the state
of the addressee. An example is the deletion of a job in a queue or
the submission of a JDF job ticket (see Figure 4.18). Both Queries
and Commands require the receiver to send a Response message
back to the sender. If a command (or query) takes a while to ex-
ecute, it may be necessary to send a separate and asynchronous
Acknowledgment message back to the sender after completion. A
Signal is a unidirectional message, mostly from a device to a con-
troller, usually about a status change. Signals are often forwarded
automatically as “fire and forget” messages; that is, no responses
are required. With a Registration, a controller can subscribe to cer-
tain signals from a device or another controller automatically, for
instance, in certain time intervals. A controller may also request a

73

YJOF

i The workflow logic (also :
called process logic) is the
i description of rules and i
relationships between

i processes and resources
that are needed for print
production. In other
words, it is the

: JDF’s underlying
process-resource model. }

74

Metadata Formats

subscription on behalf of others. For example, an MIS might send a
Registration to a prepress WMS in order to make sure that signals
are sent to a press controller whenever a plate has been produced.

JMF messages are not only quite diverse but can also occur in
large quantities. Therefore, let us conclude this section with the
statement that JMF messages are mostly used for dashboards that
visualize the current state of the shop floor. An MIS, on the other
hand, uses the already summarized results in the AuditPools for
post-calculation.

4.4 Exchange Job Definition Format (XJDF)

The JDF concept is over 20 years old already. Back then, the av-
erage run-lengths of jobs were much higher than today, and the
average number of print jobs processed each day in a print shop
was much lower. With a few dozens of print jobs per day, storing

a separate JDF file for each print job is feasible. Today, however, a
large online printer may run 10,000 jobs per day. Loading all these
files into a workflow system in order to display the current jobs
and their actual status would take much too long. Thus, a workflow
controller such as an MIS operates a private database to speed

up importing job data. This approach has been state-of the art

for quite a while already. At the same time, the JDF handling has
become more centralized. Either the MIS or a workflow controller
is in charge of the JDF job tickets. This JDF master controller has
many tasks. It must monitor hot folders and HTTP ports for incom-
ing data. It must also send out data to other controllers and devic-
es. To do this, it must monitor spawning and merging. It would be
JDF compliant if a complete JDF file were transmitted to a device
or another controller. Each device must be prepared to retrieve the
required data from the file on its own, if necessary. However, this
would be unfavorable since the complete JDF data set would be
“blocked”. Therefore, it is more efficient if the software sends only
those JDF parts to a device that it needs. Thus, the master control-
ler must be able to pick out the relevant parts for each device (usu-
ally one or more JDF nodes and the corresponding resources). In
this case, JDF is a communication protocol between controller and
devices. The workflow logic will be stored partly in the JDF files
and partly in the controller’s private database. Often, the workflow
logic is merely part of the MIS and systems use JDF as a pure infor-
mation interchange technology.

In 2018, the new Exchange JDF (XJDF) was published. The current
version is from 2020 (CIP4 2020b). This new format reflects the
changes in the JDF workflow implementations that we just dis-
cussed. XJDF is not an electronic job ticket like JDF but rather an in-
terface specification. It is merely a protocol between two workflow
components, primarily between controller and devices. It does

not contain the workflow logic anymore, as JDF did. The workflow

Chapter 4

Job tickets
i XJDF
r Production Controller j J Device 1
Imports/exports jobtickets
SQoL e .
- .| Specifies workflow logic

Job table Specifies processes & resources

Device table Reads/writes data from/in DB XIDF .

Attribute table LConverts DB data to XJDF and vice verSj Device 2

Figure 4.19: Simplified XJDF architecture
logic is now hidden in the internal data structure of the workflow

system. This workflow system could be an MIS or some production
control system. The internal data structure is undisclosed.

At first glance, it seems as if nothing of the “old” JDF has remained
after the redesign. This is deceptive, though. The descriptions of
the processes and resources have essentially remained the same.
Only the connections between the processes (using the transition-
al resources) are no longer mentioned in XJDF. Moreover, there is
no complete description for the print production at the end — at
least not in XJDF. In fact, XJDF is only generated at runtime, then
forwarded and read. Afterwards, it is discarded. There is no XJDF
storage.

As a result, XJDF is much less complex:

e Since the XJDF addresses a single device only, an XJDF node
has no children. Therefore, the nested node tree we saw in
JDF no longer exists (see Section 4.3.1).

e All resources for a XJDF node are embedded in the node.
There is no ResourcePool anymore. Similar resources are
compiled in a so-called ResourceSet. There might be more
than one ResourceSet in an XJDF node. Since all resources are
inside the XJDF node, there is no longer the need to define
Resourcelinks, and more searching for a resource in the node
tree using Resourcelinks (see 4.3.2).

e Change orders can be implemented by simply updating a
XJDF node and sending it once again.

e Spawning and merging has been removed (see 4.3.6). In
JDF, Process Nodes and Process Group Nodes are subnodes
of a Product Intent Node. Moreover, a JDF file is only valid
for one product (and its sub-products). In XJDF, the product
description is not directly connected with the production
details anymore. Thus, changing the product structure (add-
ing another product part, for instance) does not affect the

Figure 4.20:
Structure of XJDF data

76

Metadata Formats

production description. In addition, different products can be
written to a Product List if they are all to be processed in the
same way by a single device.

Unlike a JDF node, a XJDF node is not differentiated according to
the attribute Type. It does not even have this attribute at all. There
is, for instance, no difference between a Process and a Process
Group. A XIDF node is, in fact, something like a JDF Gray Box, that
is, it can be incomplete. Consequently, XJDF has the Types attri-
bute, whose values can hold either one or more process names
or the word Product (or both). Unlike a JDF Gray Box, however, an
XJDF node does not need to be expanded with additional infor-
mation before it may be submitted to a device for execution. If an
incomplete XJDF node is submitted, the device is expected to fill
in the missing information on its own with default values. In fact,
almost all XJDF attributes are optional.

<XJDF Types="Process Name (s)" ...>

<AuditPool>...</AuditPool>
<ProductList>...</ProductList>
<ResourceSet>...</ResourceSet>

<ResourceSet>...</ResourceSet>
</XJIDE>

Figure 4.20 shows the structure of XJDF data. As mentioned

above, it contains only a single XJDF node. Since JDF and XJDF are
structurally different, XJDF is not backward-compatible with JDF.
However, an XJDF element can be automatically converted to a JDF
element and vice versa. Of course, XJDF data cannot be converted
into a JDF job ticket containing the complete workflow logic.

XJDF coexist with JDF. The parallel development of both versions
by CIP4 offers options to industry stakeholders wishing to incorpo-
rate JDF, XJDF or both into their product offerings and production
environments. However, several print automation experts believe
that XJDF is the format of the future and will gradually replace JDF.

Figure 4.21 shows a code snippet from an XJDF node that describes
the product only from the print buyer’s point of view, not the
production. The value of the Types attribute is therefore Product.
The code could, for example, come from a web-to-print system
(B2C) or from any other external site (a subsidiary, for instance)

Chapter 4

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<XJDF Category="Web2Print" JobID="4711" Types="Product">
<ProductList>
<Product Amount="300">
<Intent Name="MedialIntent">
<MedialIntent MediaQuality="Lumisilk" MediaType="Paper"/>
</Intent>
<Intent Name="LayoutIntent">
<LayoutIntent FinishedDimensions="240.0 155.0 0.0"
Pages="1" Sides="OneSided"/>
</Intent>
more Intents
</Product>
</ProductList>
<ResourceSet Name="RunList">
<Resource>
<RunList>
<FileSpec URL="asset/Cool.pdf"/>
</RunList>
</Resource>
</ResourceSet>
more ResourceSets
</XJIDF>

Figure 4.27: XIDF Node of Types="Product'

and be addressed to the MIS. In the following section 4.5 we will
learn that such XJDF codes can also be embedded into a PrintTalk
element.

The XJDF node includes a product list, but it contains only a single
product in our example. 300 copies are requested. Intent sub-ele-
ments describe the technical details of the product, similar to the
Intent Resources in JDF. Only Medialntent and Layoutintent are
listed here. Medialntent defines the substrate while Layoutintent
defines the size (FinishedDimension) of the final product, the num-
ber of pages (Pages), and the number of printed surfaces (Sides).
The size is given in DTP points, where the first value specifies the
width and the second value the height. A ResourceSet describes a
set of one or more Resource elements of the same kind (see also

Figure 4.25). In Figure 4.21 there is only one Resource Runlist that

specifies the storage location of the content file. © A RunList defines one or

- . intable logical
The XJDF node in Figure 4.22 is a protocol that travels from a : ?ore printable logica
: documents, e.g., a PDF

controller to a folding machine (Types="Folding”). This example is ! file.
a flyer to be produced 4/4 in a run of 1,000. In ResourceSet Fold- :
ingParams, only the desired fold catalog number is specified. This
catalog was already presented in 4.3.2.

If you want to learn more about XJDF, | would like to recommend

77

Metadata Formats

(Meissner 2017). | would also like to mention the EasyXJDF tool
written by the same author (Meissner 2018), which lets you gener-
ate simple XJDF examples that could be used for W2P.

</XJDF>

<XJDF JobID="Jobl234" Types="Folding"...>

<AuditPool>

... Audits. ..
</AuditPool>
<ProductList>

<Product Amount="1000" DescriptiveName="Flyer">

<Intent Name="ColorIntent">
<ColorIntent>

<SurfaceColor Surface="Front"
ColorsUsed="Cyan Magenta Yellow Black"/>

<SurfaceColor Surface="Back"
ColorsUsed="Cyan Magenta Yellow Black"/>

</ColorIntent>
More Intents
</Product>
</ProductList>
<ResourceSet Name="FoldingParams" Usage="Input">
<Resource>
<FoldingParams FoldCatalog="F2-1"/>
</Resource>
</ResourceSet>
More ResourceSets

Figure 4.22: XIDF Node of Types="Folding"

\[o)]

PRINTE@ TALK

Initially, 16 companies
have announced a project
i named PrintTalk. Next,

NPES (now Association

of Print Technologies or

APTech) organized and :

published the PrintTalk :
 specification. In 2005, the

PrintTalk development :

was transferred to CIP4
for its long-term mainte-
nance and distribution.

45 PrintTalk

PrintTalk is an XML-based, open data format used to describe
commercial/business activities in the graphic industry. It is used
mainly as an interface between the print buyer and the print pro-
vider. As an example, let’s look at the interface between an exter-
nal W2P system and a print provider’s MIS/ERP system. The second
area of application is currently the interaction of print brokers, sub-
contractors and branch offices with a print provider. We discussed
this in Section 2.2.

The root element in a PrintTalk document has the name PrintTalk.
There are two important sub-elements, the Header and the Re-
quest (see Figure 4.23). The Header identifies the original sender
and the recipient of the PrintTalk transaction. The Request is just a
container for a Business Object.

There are 15 different Business Objects altogether (ordered alpha-
betically):

Chapter 4

Cancellation, Confirmation, ContentDelivery, ContentDeliveryRe-
sponse, Invoice, OrderStatusRequest, OrderStatusResponse, Proo-
fApprovalRequest, ProofApprovalResponse, PurchaseOrder,
Quotation, Refusal, RFQ, StockLevelRequest, StockLevelResponse

ﬁ’rintTalk Element

~

(Header

Sender ID, Recipient ID

J

Figure 4.23:
Structure of a PrintTalk
Element

Request Container for Business Object

Business Object Quotation/Purchase Order/...

Product Definition j

(XJDF/JDF
N\

In Figure 2.3 we have already seen the classic business workflow,
which starts on the print buyer’s side with an RFQ (Request for
Quote), followed by a Quotation (PP->PB), Purchase Order (PB->PP),
Confirmation (PP->PB), ContentDelivery (PB->PP), ContentDelivery-
Response (PP->PB), ProofApprovalRequest (PP->PB), ProofApprov-
alResponse (PB->PP), and Invoice (PP->PB). This workflow is drawn
in more detail in Figure 3.3, which also indicates possible refusals
of business objects, for example, if the PP rejects an RFQ or the PB

rejects a quotation.

In (PrintTalk 2020c) you can find PrintTalk workflows (Figures 6.1
to 6.8). Two of them are shown in Figure 4.24. In workflow @, the
print buyer queries the print provider about status of his order us-
ing OrderStatusRequest. This business object can be defined either
for one single or for multiple status requests. It can also specify if

)

PrintTalk is a protocol on

i top of HTTP. HTTP and
protocols further down

i in the protocol stack (like
TCP/IP) are responsible

i for the actual network

¢ routing of the PrintTalk
element. The identifi-

i cation in the PrintTalk

i header is ensured by

i means of the Web URLs
i and the DUNS numbers

i of the companies in-

there should be a unique OrderStatusResponse or if the request
is supposed to be interpreted as a subscription. In this case, an
OrderStatusResponse message should be sent whenever a new

milestone is reached.

Workflow @ represents a con-
venient workflow for B2B. If the
PP maintains a warehouse for

a PB, the PB can use the Stock-
LevelRequest business object to
query whether and how many
products are still available in
the warehouse. The PP should
return a StockLevelResponse
containing the number of items
that are currently available. He

@ OrderStatusRequest

volved. DUNS stands for
i Data Universal Number-
ing System. It is a unique
i nine-digit identifier for
i businesses.

OrderStatusResponse

@ StocklLevelRequest

(gd) 42Ang juiid

StockLevelResponse

o
=,
>
—~+
o
=
o
<.
a
o
=
—
o)
T
~—~

Figure 4.24:

Two different Printlalk workflows between PB and PP

79

80

Metadata Formats

can also return the price of the item. Moreover, he can communi-
cate if new copies are planned for production in case no goods are
currently available in the warehouse.

The very special feature of PrintTalk is that XJDF or JDF can be
embedded (see Figure 4.23). This is what makes this protocol so
powerful. The embedding of JDF and XJDF is described in the (CIP4
2015a) and (CIP4 2020c) specifications, respectively.

Let us take a closer look at the PrintTalk element example in Figure
4.25. For this purpose, the key terms are color-coded (element
names in red, attribute names in green, and attribute values in
blue). The PrintTalk element consists, as usual, of a Header and a
Request. The Request contains the PurchaseOrder business object,
which in turn encloses an XJDF object. This XJDF object consists

of a ProductList and two ResourceSets. In the ProductList, the
purchased product is described. The ProductList, in fact, contains
three products. The first, with the product type Booklet, represents
the final product. It includes two Intents, one for the BindingIn-
tent, the other for the Layoutintent. The Bindingintent defines, in
particular, the ChildRefs attribute. The associated values are the
IDs of the following two semi-products, representing the cover
and the content of the booklet. Both include the Medialntent and
Layoutintent, which determine the paper (MediaQuality) and the
number of pages (Pages), respectively.

One ResourceSet defines the customer’s Contact details, the other
one specifies the PDF files containing the artwork. The latter infor-
mation is located in two RunlList resources. The first PDF file named
Cover.pdf has two pages (NPage), the second named Content.pdf
has eight pages.

The example in Figure 4.25 is a somewhat simplified version of the
original file. For example, the prefix ptk for all PrintTalk element
names is present, while | omitted the prefixes for the XJDF ele-
ments to make the example a bit easier to read. Moreover, | re-
moved a few attributes, such as Amount in the Product elements,
which specifies the desired number of copies.

Many PrintTalk Elements do not contain a ProductList. The busi-
ness object ContentDelivery, for example, only needs to enclose a
RunLlist ResourceSet, specifying the file path and name of the deliv-
ered content file. The delivery must relate to some purchase order,
though. For this purpose, the attribute BusinessRefID is provided in
the element Request.

On the next page - Figure 4.25:
Example of an XJDF element

Chapter 4

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ptk:PrintTalk Version="2.1" Timestamp="2019-09-09T16:27:382"
xmlns:ptk=http://www.printtalk.org/schema 2 0
xmlns="http://www.CIP4.0rg/JDFSchema 2 0">
<ptk:Header> Information about Sender and Recipient
</ptk: Header>
<ptk:Request BusinessID="ID4711">
<ptk:PurchaseOrder Expires="2021-05-12T19:26:412">>
<XJDF JobID="ID4712" Types="Product">
<ProductList>
<Product ID="ID broschur" IsRoot="true" ProductType="Booklet">
<Intent Name="BindingIntent">
<BindingIntent BindingOrder="Collecting" BindingSide="Left"
BindingType="SaddleStitch" ChildRefs ="ID Cover ID Content"/>
</Intent>
<Intent Name="LayoutIntent">
<LayoutIntent NamedDimensions ="A4"/>
</Intent>
</Product>
<Product ID="ID Cover" IsRoot="false" ProductType="Cover">
<Intent Name="MedialIntent">
<MediaIntent MediaQuality="P1" MediaType="Paper"/>
</Intent>
<Intent Name="LayoutIntent">
<LayoutIntent Pages="4"/>
</Intent>
</Product>
<Product ID="ID Content" IsRoot="false" ProductType="Content">
<Intent Name="MediaIntent">
<MedialIntent MediaQuality="P2" MediaType="Paper"/>
</Intent>
<Intent Name="LayoutIntent">
<LayoutIntent Pages="8"/>
</Intent>
</Product>
</ProductList>
<ResourceSet Name="Contact" ProcessUsage="Input'">
<Resource ID="Contact 123">
Contact ContactType="Customer">
<Person FamilyName="Duck" FirstName="Donald"/>
</Contact>
</Resource>
</ResourceSet>
<ResourceSet Name="RunList" ProcessUsage="Input'">
<Resource>
<Part Run="R Cover"/>
<RunList NPage="2" Pages="0 1">
<FileSpec URL="File:///dir/Cover.pdf"/>/>
</RunList>
</Resource>
<Resource>
<Part Run="R Content"/>
<RunList NPage="8" Pages="0 7">
<FileSpec URL="file:///dir/Content.pdf"/>/>
</RunList>
</Resource>
</ResourceSet>
</XJIDF>
</ptk:PurchaseOrder>
</ptk:Request>
</ptk:PrintTalk>

82

ICS

INTEROPERABILITY
CONFORMANCE
SPECIFICATION

Metadata Formats

4.6 Interoperability Conformance Specification
(ICS)

Without a doubt, a JDF/XJDF-compatible system cannot be con-
nected via plug-and-play. Manufacturers test interfaces in advance.
An integration matrix, which can be found on the CIP4 website
(cip4.org), provides an overview of products that have been tested
and integrated with each other.

The reasons for incompatibilities are of different nature. First, let
us look at the fact that JDF and XJDF element names, attribute
names and attribute values can be privately extended. This is to
allow a manufacturer to exchange private information between
its system components based on JDF/XJDF. Such extensions are
ignored by systems from third-party manufacturers. Of course,
companies are urged to not replace standard JDF/XJDF keywords
with their own, but at best to only supplement them. If this is not
properly observed, it can lead to incompatibilities.

The main reason for incompatibilities is probably a different one,
however. In general, languages are complex systems of commu-
nication. This is true not only for a language between humans,

but also for computer languages and even data formats such as
JDF. You can express an issue differently, even if you follow all the
official rules, the grammar, and the official vocabulary. RIPs might
render a PDF file differently. Similar is true for JDF. Some people
say that different JDF dialects have emerged. This terminology,
however, is a bit problematic, because a dialect is a modification of
the grammar and/or vocabulary of a language. However, two JDF
systems may not understand each other, even if they both comply
with the JDF specifications. The reason for this is that the develop-
ers of a system do not implement the entire JDF functionality, but
consciously or unconsciously expect certain prerequisites. A JDF
reading device may simply ignore certain parts of the JDF informa-
tion provided. For example, it is conceivable that a folding machine
reads the resource FoldingParams properly, but then only inter-
prets the information about the FoldCatalog, not the individual
folding operations. After all, both attributes are marked as optional
in the JDF specification.

Of course, there are also new versions of JDF/XJDF published from
time to time. Certain new features are introduced, and old ones
are discontinued. This alone might lead to incompatibilities.

The Interoperability Conformance Specification (ICS) is intended
to remedy this situation. These papers describe which parts of the
specification should be observed for certain production sectors.
There are different papers for different sectors and interfaces. For
example, there is an ICS paper for MIS-to-Prepress, another one
for MIS-to-Finishing, and so on.

The ICS papers also define names of Gray Boxes. For example, you

Chapter 4

will look in vain for information about Gray Box PlateMaking in the
JDF specification. Instead, there is a description in MIS to Prepress
ICS Version 1.5 (CIP4 2015b).

The Gray Box name is noted in the Category attribute of the JDF
node. The ICS papers define which process names must be entered
in the Types attribute of the Gray Box (for example by the MIS) and
which must be read (for example, by the prepress system). These
two indications may be different, because sometimes a process
may be written optionally but must be read if it is present. More-
over, certain conditions can be defined, for example, by saying that
from two possible processes only one should be listed. The ICS
papers also define for Gray Boxes which input and output resourc-
es must be written and read. Here again, conditions can be set. For
example, the attribute FoldCatalog must be written in the Folding-
Params resource if folding positions (Folds) are not specified.

It is part of the nature of a Gray Box that not all required process
resources are defined. For instance, a RunList holding images
(bitmaps) is a necessary input for the ImageSetting process. Fur-
thermore, ImageSetting is a necessary process of the PlateMaking
Gray Box. However, there is no statement in the MIS-To-Prepress
ICS about such a RunlList resource in the PlateMaking Gray Box.
This resource should be generated later during the expansion of the
Gray Box.

Many ICS papers do not describe a single conformance specifica-
tion but rather up to three. They are called levels, where Level 3
includes Level 2, and analogously Level 2 includes Level 1. These
three levels represent different compatibility requirements. In sim-
ple terms, the levels identify low, medium, and higher compatibil-
ity conditions. For example, according to MIS ICS Version 1.5 (CIP4
2015c), an MIS only needs to read the ResourceAudit resource
element in an AuditPool if it is compatible with Level 2, and not if
it is compatible with Level 1. The ResourceAudit element describes
the usage of resources during execution (see Section 4.3.4).

Both JDF and XJDF optionally provide the /ICSVersion attribute

to state which ICS specification they comply with. The attribute
should be entered in the root JDF Node but may also be entered in
others. The entry ICSVersions=“Base_L2-1.5 MIS_L2-1.5” in Figure
4.26 states, for example, that the JDF node meets the conformance
requirements of both Level 2 of the Base ICS Version 1.5 (CIP4
2015d) and Level 2 of the MIS ICS Version 1.5 (CIP4 2015c).

<JDF xmlns="http://www.CIP4.org/JDFSchema 1 1"

Version="1.7" Type="Product" Status="InProgress" Figure 4.26:
JobID="07-0111" ID="4711" ICSVersions= Examp[eoftheopeﬂiﬂg
"Base L2-1.5 MIS L2-1.5"> tag of a JDF root element

83

PDF/X stands for PDF/
i Exchange. A PDF/Xfileis i
i a PDF file with a subset of :
i PDF features. It is geared i
i tothe printing industry.

84

Metadata Formats

If two systems have compatibility problems, it might be a good
idea to check if they comply with the same ICS levels.

47 Portable Document Format (PDF)

Since the earliest days of PDF, the format could contain a Docu-
ment Information Dictionary. This dictionary can only record a few
values such as the document’s title, author’s name, and creation/
modification dates. A Tagged PDF, which was introduced 2001,
contains additional metadata information for the document struc-
ture. This means that PDF is no longer just an amorphous page
description language, but that the content can be structured in
headings, paragraphs, and the like. This logical structure of the
page content allows, for example, automatic reflow of text, PDF
conversion to XML/HTML documents, and defining the reading
order for text-to-speech. In 2004, Adobe published the Extended
Metadata Platform (XMP) specification (see Section 4.1). It is main-
ly used to store information about page components (such as im-
ages) or about the PDF document itself (such as the author’s con-
tact details). Because XMP metadata is much more flexible than
the Document Information Dictionary, the latter was discontinued
with the PDF 2.0 specification (ISO, 2017).

Both PDF tags and XMP metadata are rarely used for specifying the
product or controlling the production processes. The XMP structure
is not suitable for defining properties of product parts. We covered
this in Section 4.1. Tagged PDF structures the layout of the content,
but not in accordance with the requirements of manufacturing
processes.

This changed in 2010 with the introduction of PDF/VT. This format
was designed for document exchange concerning variable data
and transactional (VT) printing. The idea was to reduce the amount
of processing time for printing variable data. This is achieved by
creating another branch for document parts (DPart tree) in parallel
to the PDF page tree. This allows document parts to be identified
within a PDF file by setting page starts and page ends referring to
the classic page tree of the PDF file (see Figure 4.27). Each DPart
object can also be associated with its own Dictionary Document
Part Metadata (DPM), which in turn can hold application-specific
information about the document parts. The standard defines only
the DPM structure that can be populated with basically anything;
it does not define specific entries to be used within that structure.
For a VT application, it may hold the address of every recipient, for
instance. The PDF/VT file must comply with PDF/X-4 or PDF/X-5
specifications.

Chapter 4

Catalog

Figure 4.27:

The DPart tree specifies
sub-documents (parts) of
a PDF file..

471 Print Product Metadata

The product intent of a print buyer is normally described in JDF
and XJDF. That is, both formats can hold properties of the request-
ed product, such as the product type, printing substrate, binding
intent, type of inks to be used, number and dimensions of pages,
and delivery details. In JDF, the Intent Resources define the details
of products to be produced, In XJDF, the Product Intents take over
this role.

Since 2019, there has been third way to store this kind of data — in-
side PDF. The specification for this is in (ISO 2019b). It is based on
(CIP4 2010). See also (Hoffmann-Walbeck, 2018).

Thus, a PDF file contains not only the artwork data but also the
product description. This concept goes far beyond considering PDF
as just a page description language (PDL).

The idea is that the print buyer stores the product intent inside the
PDF file, either by entering the data directly in some layout pro-
gram, or indirectly by using, for instance, a web-to-print systems
that writes this metadata automatically into the PDF file. When
such a PDF file reaches the print provider, it can be split up into
two parts: PDF artwork data and JDF/XIDF product intent data. As
a result, the print shop does not need to change its workflow au-
tomation. On the other hand, the advantage of such an approach
is that both artwork data and product intent data are stored in

one single file during transmission between print buyer and print
provider. There is no need any more to link the artwork and the job
ticket at the print provider’s site. Figure 4.28 illustrates this scenar-
io.

The difference between the classical and the new concept in Figure

85

Classical concept

.......................................

product
intent

Metadata Formats

4.28 seems very subtle,

Prthrowder but the new concept

- duction approach, the

{ PP must link the job

' data with the artwork
data. With the new con-

. . . might boost the print
I ror 1 I . provider’s workflow
Print artwork MIS - . automation. With the

1 gontrolley) | cyrrent standard pro-

e _ cept, thisis no longer

New concept

necessary. Of course,

~ even now it is not al-
i ways a human operator
orkflow} © in the print shop who

Print
Buyer pm connects the job data
artwork) - and the content data
& w " manually, although this
product T is still common practice.
intent By using a portal or a
Figure 4.28: The Product Intent is transported via PDF W2P system, this can

86

also be automated. Af-
ter all, it is still common for the PB to send the job data via e-mail
and the content data via a file transfer service (see Section 2.2.1).
In this context, the new concept might become useful.

Please note that Figure 4.28 does not show all possible conversions
of the PDF file to a job ticket format at the PP’s site. In particular,
the data format CSV should be added that some prepress systems
can process.

How is the product description data stored inside a PDF? It uses
the DPart structure as shown in Figure 4.27 for PDF/VT. This mech-
anism allows to logically split a PDF file into several chunks, for
instance into pages for the cover and others for the content. The
product intents can then be stored in the associated Document
Part Metadata (DPM) using standard keywords. A DPM is not
coded in XML such as JDF and XJDF, but rather in a PDF dictionary.
Figure 4.29 shows a snippet of DPM code. A dictionary in PDF is

a table containing one or several key/value pair(s) — like a normal
dictionary for languages. Each dictionary is wrapped by double an-
gle brackets, that is <<key value key value...>>. Unlike a normal lan-
guage dictionary, the value of a PDF dictionary can be an (almost)
arbitrary object, for example another dictionary. That is why the
structure in Figure 4.29 looks a bit wild. Each dictionary represents
a level in the hierarchy for DPM structure. After all, the keywords
are easy to recognize: they all start with the letters /CIP4_.

Finally, I would like to emphasize that the job submission approach
presented here is a possible concept for the future, but probably
has not yet been implemented on a large scale so far.

Chapter 4

<</DPM
<</CIP4 Root
<</CIP4 Production
<</CIP4 DescriptiveName (Cover)
>>
/CIP4 Intent
<</CIP4 ProductType (WrapAroundCover)
/CIP4 MediaIntent
<</CIP4 MediaQuality(lumisilk 135)
/CIP4 MediaWeight (135)
>>
>>
>>
>>
>>

472 PDF Graphic Objects as Processing Steps

It is common to use graphical objects in PDF as information for
production. Examples can be found especially in the packaging
sector, such as die cutting, gluing, creasing, braille, etc. PDF paths
are not used for drawing but rather for controlling some produc-
tion processes. Normally, the data producer creates separate layers
and/or special colors for this purpose. This works fine, but there is
a catch: the names of the layers and colors are not standardized.
Thus, the data creators must always send a separate note to the
data consumer in order to explain the PDF. Furthermore, an auto-
matic preflight program cannot check the PDF according to these
special requirements. For example, if a color defines a structural
design, it must be a spot color, and the object must be set on over-
print. However, it can easily happen during PDF generation that a
spot color is converted to CMYK or that layers are merged. Some-
times people simply forget to set the graphical object to the over-
print mode. These kinds of data are then no longer useful.

The 1ISO 21812-1 (ISO 2019) standard intends to improve this situ-
ation. It defines how a graphic can be assigned to a process step.
For this purpose, a so-called Optional Content Group (OCG) is cre-
ated which contains a GTS_Metadata Dictionary (see Figure 4.30).
The process step is defined in this GTS_Metadata Dictionary. In the
example shown, this is Cutting. In addition, there are 22 other val-
ues defined in the ISO standard, such as creasing, drilling, gluing,
foil stamping, embossing, folding, etc. It is up to the PDF processor
to use this information appropriately.

Let us conclude this section with a brief summary of the PDF meta-
data that we discussed here:

Figure 4.29:

Code snippet of a DCM

structure

87

Figure 4.30:

The PDF snippet shows

an OCG object with a

GTS_Metadata key in the

88

OCG dictionary

Metadata Formats

7 0 obj
<<
/Name (Die cut)
/GTS_Metadata <<

/GTS_ProcStepsGroup /Structural

/GTS_ProcStepsType /Cutting
>>
>>

endobj

e Document Information Dictionary for storing a small set of
fixed keywords.

e XMP defines metadata on the page and page element level.

e Tags define an HTML or XML kind of structure for PDF, such
as header, section, paragraph, figure, etc.

e Object Content Groups Metadata for packaging and labeling.

e PDF/VT makes it possible to split PDF documents for different
recipients.

e DPart Product Intent allows product descriptions to be de-
fined in PDF. The print buyer can store suitable metadata in
PDF, which is then used to convert it into a job ticket at the
print provider’s site.

References

Adobe Systems Incorporated (2012), XMP Specification Part 1, Data
Model, Serialization, and Core Properties. Available at: https://ww-
wimages2.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/
XMP%20SDK%20Release%20cc-2016-08/XMPSpecificationPart1.
pdf (Accessed: 15 June 2021).

Adobe Systems Incorporated (2016), XMP Specification Part 2,
Additional Properties. Available at: https://www.adobe.com/con-
tent/dam/acom/en/devnet/xmp/pdfs/XMPSDKReleasecc-2020/
XMPSpecificationPart2.pdf (Accessed: 15 June 2021).

Adobe Systems Incorporated (2020), XMP Specification Part 3,
Storage in Files. https://www.adobe.com/content/dam/acom/en/
devnet/xmp/pdfs/XMPSDKReleasecc-2020/XMPSpecificationPart3.
pdf (Accessed: 15 June 2021).

CIP4 2010: ICS — Common Metadata for Document Production
Workflows. Available at: https://confluence.cip4.org/display/PUB/
Common+Metadata+for+Document+Production+Workflow+ICS
(Accessed: 15 June 2021).

https://wwwimages2.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMP%20SDK%20Release%20cc-2016-08/XMPSpecificationPart1.pdf
https://wwwimages2.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMP%20SDK%20Release%20cc-2016-08/XMPSpecificationPart1.pdf
https://wwwimages2.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMP%20SDK%20Release%20cc-2016-08/XMPSpecificationPart1.pdf
https://wwwimages2.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMP%20SDK%20Release%20cc-2016-08/XMPSpecificationPart1.pdf
https://www.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMPSDKReleasecc-2020/XMPSpecificationPart2.pdf
https://www.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMPSDKReleasecc-2020/XMPSpecificationPart2.pdf
https://www.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMPSDKReleasecc-2020/XMPSpecificationPart2.pdf
https://www.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMPSDKReleasecc-2020/XMPSpecificationPart3.pdf
https://www.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMPSDKReleasecc-2020/XMPSpecificationPart3.pdf
https://www.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMPSDKReleasecc-2020/XMPSpecificationPart3.pdf
https://confluence.cip4.org/display/PUB/Common+Metadata+for+Document+Production+Workflow+ICS
https://confluence.cip4.org/display/PUB/Common+Metadata+for+Document+Production+Workflow+ICS

Chapter 4

CIP4 2015a: PrintTalk Specification 1.5 (2015). Available at: https://
confluence.cip4.org/display/PUB/PrintTalk (Accessed: 15 June
2021).

CIP4 2015b: MIS to Prepress ICS Version 1.5 (2015). Available at:
https://confluence.cip4.org/display/PUB/MIS+to+PrePress+ICS
(Accessed: 15 June 2021).

CIP4 2015c: MIS ICS Version 1.5 (2015). Available at: https://conflu-
ence.cip4.org/display/PUB/MIS+ICS (Accessed: 15 June 2021).

CIP4 2015d: Base ICS Version 1.5 (2015). Available at: https://con-
fluence.cip4.org/display/PUB/Base+ICS (Accessed: 15 June 2021).

CIP4 2018: XJDF Specification 2.0 (2018). Available at: https://con-
fluence.cip4.org/display/PUB/XJDF+2.0 (Accessed: 15 June 2021).

CIP4 2020a: JDF Specification 1.7 (2020). Available at:
https://confluence.cip4.org/display/PUB/JIDF
(Accessed: 24 June 2021).

CIP4 2020b: XJDF Specification 2.1 (2020). Available at: https://
confluence.cip4.org/display/PUB/XJDF (Accessed: 15 June 2021)

CIP4 2020c: PrintTalk Specification 2.1 (2020). Available at: https://
confluence.cip4.org/display/PUB/PrintTalk (Accessed: 15 June
2021).

CIPA (2016), CIPA DC- 008-Translation- 2016: Exchangeable image
file format for digital still cameras: Exif Version 2.31, Camera & Im-
aging Products Association, https://www.cipa.jp/std/documents/e/
CIPA_DC-X008-Translation-2016-E.pdf (Accessed: 30 June 2021).

Consignor. Available at: https://www.consignor.com/carriers/ (Ac-
cessed: 15 June 2021).

DIN 66001 (1966), Deutsche Institut fir Normung e.V., Sinnbilder
fir DatenfluR- und Programmblaufpldane, Beuth Verlag GmbH.
Available at https://standards.globalspec.com/std/639497/DIN%20
66001 (Accessed: 15 June 2021).

Hoffmann-Walbeck T (2018): PDF Metadata and Its Conversion

to XJDF, GRID 2018 Proceeding, p. 445-453. Available at:_https://
www.grid.uns.ac.rs/symposium/download/2018/grid_18 p54.pdf
(Accessed: 15 June 2021).

ISO 2010: I1SO 16612- 2: 2010, Graphic technology — Variable data
exchange — Part 2: Using PDF/ X- 4 and PDF/ X- 5 (PDF/ VT- 1 and
PDF/ VT- 2). Available at: https://www.iso.org/standard/46428.
html (Accessed: 15 June 2021).

ISO 2017:1SO 32000-2, 2017, Document Management - Portable
Document Format - Part 2: PDF 2.0. Available at: https://www.iso.
org/standard/63534.html (Accessed: 15 June 2021).

89

https://confluence.cip4.org/display/PUB/PrintTalk
https://confluence.cip4.org/display/PUB/PrintTalk
https://confluence.cip4.org/display/PUB/MIS+to+PrePress+ICS
https://confluence.cip4.org/display/PUB/MIS+ICS
https://confluence.cip4.org/display/PUB/MIS+ICS
https://confluence.cip4.org/display/PUB/Base+ICS
https://confluence.cip4.org/display/PUB/Base+ICS
https://confluence.cip4.org/display/PUB/XJDF+2.0
https://confluence.cip4.org/display/PUB/XJDF+2.0
https://confluence.cip4.org/display/PUB/JDF
https://confluence.cip4.org/display/PUB/XJDF
https://confluence.cip4.org/display/PUB/XJDF
https://confluence.cip4.org/display/PUB/PrintTalk
https://confluence.cip4.org/display/PUB/PrintTalk
https://www.cipa.jp/std/documents/e/CIPA_DC-X008-Translation-2016-E.pdf
https://www.cipa.jp/std/documents/e/CIPA_DC-X008-Translation-2016-E.pdf
https://www.consignor.com/carriers/
https://standards.globalspec.com/std/639497/DIN%2066001
https://standards.globalspec.com/std/639497/DIN%2066001
file:///C:/Users/hoffmann/Documents/Projekte/Buch%20Workflow%20Automation/Text/%20https:/www.grid.uns.ac.rs/symposium/download/2018/grid_18_p54.pdf
file:///C:/Users/hoffmann/Documents/Projekte/Buch%20Workflow%20Automation/Text/%20https:/www.grid.uns.ac.rs/symposium/download/2018/grid_18_p54.pdf
https://www.iso.org/standard/46428.html
https://www.iso.org/standard/46428.html
https://www.iso.org/standard/63534.html
https://www.iso.org/standard/63534.html

90

Metadata Formats

ISO 2018: ISO 19593-1:2018, Graphic technology — Use of PDF
to associate processing steps and content data — Part 1: Process-
ing steps for packaging and labels. Available at: https://infostore.
saiglobal.com/en-us/Standards/ISO-19593-1-2018-1128856_SAIG
ISO_ISO 2618548/ (Accessed: 15 June 2021).

ISO 2019a: I1SO 16684-1:2019, Graphic technology — Extensible
metadata platform (XMP) — Part 1: Data model, serialization and
core properties. Available at: https://webstore.ansi.org/Standards/
ISO/1S0166842019 (Accessed: 15 June 2021).

ISO 2019b: ISO 21812-1:2019 Graphic technology — Print product
metadata for PDF files — Part 1: Architecture and core require-
ments for metadata. Available at: https://www.iso.org/stan-
dard/74407.html (Accessed: 15 June 2021).

Meissner S., XJDF - Exchange Job Definition Format, ISBN 978-3-00-
055604-3 (2017). Published at ricebean.net.

Meissner S., EasyXJDF (2018), available at:_https://
confluence.cip4.org/display/PUB/EasyXJDF?pre-
View=%2F688397%2F29426299%2FCIP4+EasyXJDF+Bolo-
gna-18.03-bin.tar.bz2 (Accessed: 26 June 2021).

https://infostore.saiglobal.com/en-us/Standards/ISO-19593-1-2018-1128856_SAIG_ISO_ISO_2618548/
https://infostore.saiglobal.com/en-us/Standards/ISO-19593-1-2018-1128856_SAIG_ISO_ISO_2618548/
https://infostore.saiglobal.com/en-us/Standards/ISO-19593-1-2018-1128856_SAIG_ISO_ISO_2618548/
https://webstore.ansi.org/Standards/ISO/ISO166842019
https://webstore.ansi.org/Standards/ISO/ISO166842019
https://www.iso.org/standard/74407.html
https://www.iso.org/standard/74407.html
 https://confluence.cip4.org/display/PUB/EasyXJDF?preview=%2F688397%2F29426299%2FCIP4+EasyXJDF+Bolog
 https://confluence.cip4.org/display/PUB/EasyXJDF?preview=%2F688397%2F29426299%2FCIP4+EasyXJDF+Bolog
 https://confluence.cip4.org/display/PUB/EasyXJDF?preview=%2F688397%2F29426299%2FCIP4+EasyXJDF+Bolog
 https://confluence.cip4.org/display/PUB/EasyXJDF?preview=%2F688397%2F29426299%2FCIP4+EasyXJDF+Bolog

	4	Metadata Formats
	4.1	Extensible Metadata Platform (XMP)
	4.2	Print Production Format (PPF)
	4.3	Job Definition Format (JDF)
	4.3.1	JDF Nodes
	4.3.2	JDF Resources
	4.3.3	Structure of a JDF File
	4.3.4	Audit Pool
	4.3.5	Gray Boxes
	4.3.6	Spawning and Merging
	4.3.7	Job Messaging Format (JMF)

	4.4	Exchange Job Definition Format (XJDF)
	4.5	PrintTalk
	4.6	Interoperability Conformance Specification (ICS)
	4.7	Portable Document Format (PDF)
	4.7.1	Print Product Metadata
	4.7.2	PDF Graphic Objects as Processing Steps

	References

