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8.1	 �Laxity Versus Instability

Joint laxity is an objective and measurable 
parameter. Within human joints, we may have 
physiological laxity (normal laxity) or pathologi-
cal laxity (abnormal laxity). Common language 
and definitions are crucial to enable a clear and 
constructive communication and scientific dis-
cussion. Back in 2006, during the works of the 
Anterior Cruciate Ligament (ACL) Study Group, 
John Feagin addressed the audience making a 
simplified but pretty clear distinction between 
instability and joint laxity, often used in an inter-

changeable manner. He stated that “instability is 
a symptom described by a patient, whereas laxity 
is an objective finding” [1]. Instability is present 
when the individual describes the joint as unsta-
ble when moving, walking, running, jumping, or 
twisting. Frequently, patients will refer that the 
joint “gives way”. Biomechanically joint laxity is 
the passive response of a joint to an externally 
applied force or torque [2]. The presence of 
abnormal laxity may or may not exist along with 
instability. The joint laxity profile varies among 
individuals. Differences in joint laxity have been 
reported related to sex [3–5], bone morphology 
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and morphometrics [6–9], in presence of liga-
ment or menisci injury [10–14], and outcomes of 
surgery [15–18], among others.

8.2	 �Measurement of Joint Laxity

When measuring any parameter, or you do it or you 
do not within an acceptable range. Resolution, pre-
cision, and accuracy of the measuring device are 
critical to enable the development of a screening 
system with clinical usefulness supported by its 
sensitivity and specificity. It should not be uncriti-
cally accepted the existence of important dispari-
ties in measurements outcomes (both under 
arthrokinematics and clinical views) that are 
obtained by different professionals, techniques, or 
devices [19] since they may mislead inappropriate 
interventions or absence of it. Both arthrokinematic 
and clinical outcomes may hinder the safety and 
efficacy that should support, by default, the clinical 
interventions. Precision and accuracy of joint laxity 
measurements should fit within physics conformity 
frames and not in general practices frames. Once it 
is considered a specific parameter, testing signifi-
cance and setting, for the same person within a 
determined anatomofunctional status and period of 
human development, the outcomes expected must 
be reproducible and accurate. Methodological rigor 
is indispensable for research validity, usefulness of 
joint laxity measurements, and especially safety 
and effectiveness. We acknowledge though that 
majority of tests and testing principles yield value. 
Even facing different outcomes when assessing a 
same parameter (e.g., knee sagittal joint laxity as a 
quantity under observation) with different tech-
niques or instruments, they may yield clinical use-
ful information if the resolution and precision are 
suitable, and the accuracy is sufficiently close to its 
actual value. This may however be deceptive if the 
outcomes do not comprehend magnitudes indexed 
to normal and abnormal ranges. Take as an exam-
ple that we acquired a thermometer which maxi-
mum scaling is 37 degrees Celsius (98.6 degrees 
Fahrenheit), it may yield an outstanding reliability, 
but there is no room for validity.

Knee joint laxity assessment has several 
angles that are worthy of research. We may allo-

cate factors that interfere with knee joint multi-
planar laxity envelope, to the individual intrinsic 
factors and the interplay of these with the choices 
and actions taken in case of need (e.g., treatment 
option in case of ACL ligament tear). Existing 
knee joint laxity may differ between uninjured 
and injured knees [20–22], either among differ-
ent people in the same clinical condition [23], 
ontogenetic status of development [3, 24], bio-
logical circumstances [24, 25], sex [3–5], and dif-
ferent patterns of ACL tears [19].

There is great clinical and preventive potential 
to characterize and quantify the multiplanar knee 
joint laxity envelope. We are in need of studies 
that accurately assess joint laxity within different 
biological, pathological, or clinical conditions. 
This should be accomplished using 
laximetry—i.e., objective measurement of joint 
laxity—and, eventually, combining tests and/or 
equipment either for screening and to improve 
diagnosis [26]. The two main categories of lax-
imetry are stress imaging and arthrometry. These 
two techniques classically aim to describe and 
quantify the displacement of the tibia in relation 
to the femur within the sagittal and transversal 
planes. These techniques often use cut-off values 
as dichotomic screening tools to elicit one of two 
diagnostic results: ruptured or not ruptured. The 
joint laxity data derive from an applied external 
force that aims to quantify bony displacement, 
either in unilateral or by side-to-side difference 
(SSD). Beyond the dichotomous application, lax-
imetry can become an important diagnosis and 
profiling tool of different patterns of ACL tears 
(partial or total rupture) [19] and their interfer-
ence in knee arthrokinematics, treatment deci-
sion, and surgical planning, prognostic purposes, 
or to quantify post-operative joint laxity.

8.3	 �Clinical Examination 
Combined with Laximetry 
and Imaging

While manual clinical examination is paramount 
for diagnosis, it is subjective both in the tech-
nique and interpretation [27]. The sensitivity and 
specificity of instrumented joint laxity measure-
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ments seem to increase with the combination of 
standard clinical examination in a two-step 
assessment process. Increased accuracy is found 
when combining clinical examination with 
Telos™ stress radiography [28]. The exposure to 
radiation and lack of ability to provide imaging 
evidence of soft tissue injury of stress radiogra-
phy make the combined use of magnetic imaging 
resonance (MRI) and instrumented joint laxity 
testing the obvious next step to accurately mea-
sure knee joint laxity [22, 29].

The MRI alone does not provide for biome-
chanical competence data and joint laxity under-
estimation associated with some laximeters can 
mislead algorithm of treatment. Accurate laxim-
etry combined with MRI will overcome barriers 
in anatomical and biomechanical competence 
assessment of apparent remaining intact ACL 
fibers or bundles or inserted grafts. When com-
bining MRI with instrumented joint laxity, we 
sum up the visualization of anatomical struc-
tural evidence of injury and the ligament func-
tional competence. The devices that are 
compatible with MRI use intrinsic anatomical 
landmarks [30] as references to measure the 
bony displacement and calculate the knee joint 
laxity.

Attempts also have been made, within a 
single-step assessment process, coupling measur-
ing devices with manual elicited testing maneu-
vers, as the pivot shift, to confer objectivity and 
quantification [27]. Yet, the subjective variability 
in the testing technique persists due to disparities 
among professionals when eliciting the motion 
and determining which parameters use. These 
disparities are predominantly dependent on the 
assessor skills, training and experience, being 
present even in the often-used clinical tests as the 
pivot-shift [31].

The quest for accuracy and clinical usefulness 
should be the main goal of researchers and health 
care providers. The type of information is not so 
important—whereas from static or dynamic sag-
ittal and/or rotatory testing, instrumented or not, 
separately or coupled with imaging assessment, 
under anesthesia or unanesthetized—but the 
validity, reliability, and accuracy should remain 
our focus. There are however premises learned 

from decades of research that pinpoint that set-
tings and parameters are critical in joint laxity 
objective assessment and quantification.

8.4	 �Joint Laxity After Single ACL 
or Combined with Other 
Anterolateral Structures 
Injury

The diagnosis of different patterns of ACL tear is 
important for precision health care. New knowl-
edge and evidence gathered in different domains 
as anatomy, biomechanics, pathomechanics, 
reinjury rates, and surgical techniques related to 
ACL injury and treatment should support cus-
tomized risk management interventions and sur-
gical planning.

Observed anterior translation and internal 
rotation of the tibia varies due to different ACL 
injury patterns. Partial or total tears, partial tears 
involving either the anteromedial or the postero-
lateral bundles and, it is also believed, that part of 
the abnormal rotatory joint laxity originates from 
additional injury to the anterolateral soft tissue 
structures. This is well documented in studies of 
biomechanical testing of cadaveric specimens. 
Lagae et al. [32] have recently reported different 
patterns of knee joint laxity after sectioning dif-
ferent anterolateral soft tissue structures which 
potentially mimic injuries subsequent to knee 
trauma, as the anterolateral ligament (ALL) and 
the deep fibers of the iliotibial band (ITB). 
Cutting the ACL did not significantly increase 
tibial internal rotation laxity significantly com-
pared to the intact knee at any flexion angle. In 
the ACL-deficient knee, sectioning the ALL sig-
nificantly increased the anterior laxity only at 20° 
to 30° of knee flexion, and only significantly 
increased internal rotation at 50° of knee flexion. 
A large increase in internal rotatory laxity is 
found however between 20° and 100° of flexion 
after sectioning the deep fibers of the ITB (includ-
ing the Kaplan fibers), specifically the proximal 
and distal bundles [33] and the condylar strap 
[34]. This goes in line with the findings of Godin 
et  al. [33] that support the role of the proximal 
and distal Kaplan fibrous bundles in rotational 
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knee stability. The proximal and distal (Kaplan) 
bundles are 22.5 mm apart at the distal femur and 
revealed a mean maximum load during pull-to-
failure testing of 71.3  N and 170.2  N, respec-
tively. Later, Landreau et  al. [34] identified a 
third and more distal bundle of deep ITB fibers 
attaching to the femur between the distal Kaplan 
fibers and the epicondyle, which they named as 
“condylar strap”. Even lacking biomechanical 
analysis, the qualitative evaluation of behavior in 
internal rotation revealed a tenodesis effect of the 
ITB which may add to anterolateral knee 
stability.

Several legit questions and concerns of transla-
tion to the clinical practice arise when interpreting 
these valuable anatomic and biomechanical stud-
ies. While biomechanical evidence suggests an 
important role of ITB in anterolateral instability 
control, injury frequency of deep ITB fibers in the 
setting of acute ACL tear [35, 36] is low compared 
to that of the ALL [37]. Yet, in presence of Segond 
fractures [38], where the ITB seems to be attached 
approximately in half of the cases and even in the 
absence of a Segond fracture [39], an ITB injury is 
a good marker for ACL injury. In fact, Lagae et al. 
[32] have shown that an isolated ACL anatomic 
reconstruction restored anterior tibial translation, 
but the remaining and significant internal rotatory 
laxity was only normalized after adding an extra-
articular lateral tenodesis. Inderhaug et  al. [40] 
also showed us that isolated ACL reconstruction 
does not restore normal kinematics, ACL com-
bined with ALL reconstruction resulted in abnor-
mal rotational joint laxity and that adding a lateral 
extra-articular tenodesis (MacIntosh or Lemaire) 
restored the knee internal rotation laxity to its 
native values. Other studies have also highlighted 
the importance of deep fibers of the ITB in con-
trolling rotational joint laxity, but with a minimal 
influence of the ALL [41–43]. This makes us think 
of a potential overlooking behavior in MRI pat-
terns in the setting of ACL injury and of the utility 
to combine the assessment of the ligament struc-
tural integrity and its functional competence 
within the same examination.

Correlational studies involving MRI and sur-
gical exploration of the anterolateral complex 
(ALC) have shown high incidence in the setting 

of acute ACL-injured knees. However, MRI alone 
has low sensitivity, specificity, and accuracy for 
the diagnosis of ITB injury. The ITB was consid-
ered abnormal in approximately 31% of the cases 
[36]. Giving the number of cases, low diagnostic 
values of MRI alone, and relevance of ITB injury 
on rotatory joint laxity [32], the PKTD can play a 
role in functional diagnosis workflow of these 
additional injuries through joint laxity profiling. 
Rotatory joint laxity assessment within MRI may 
also be of particular importance in presence of 
Segond fractures since different structures of the 
ALC can be detached along with the bone avulsed 
fragment. The ITB often detaches along with the 
fragment with frequency depending on the 
dimensions and volume of the fragment as dis-
tance sparing it from the center of Gerdy’s tuber-
cle [38, 44]. It is important to identify the patients 
with injury of the anterolateral structures, that if 
combined with increased rotatory joint laxity, are 
candidates to concomitant procedures such as lat-
eral extra-articular tenodesis to better control the 
tibial internal rotation [45] and decrease the risk 
of graft failure [46].

8.5	 �Partial ACL Tears: MRI 
Diagnosis, Instrumented 
Joint Laxity Discrimination 
and Assessment of 
Biomechanical Competence

The MRI has high diagnostic accuracy for com-
plete ACL tears [47]. Even the novel fully auto-
mated deep learning MRI techniques show high 
accuracy in identifying ACL tears [48]. However, 
when used to diagnose partial tears, the MRI is 
not capable to reliably detect partial tears [49] 
showing a high rate of false positives [47], even 
when using 3-Tesla MRI machines [50, 51]. 
Indeed, the MRI has low correlation with 
arthroscopic findings in cases of partial ACL 
tears [28, 52] and does not assess the functional 
competence of the intact ACL bundle. The instru-
mented joint laxity assessment is able to discrim-
inate and document significant differences in 
mean SSD anterior tibial displacement in partial 
ACL tears [28]. Near one-third of patients treated 
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arthroscopically for ACL injuries display a par-
tial tear, being 14.1% classified as intact postero-
lateral bundle, 4.0% as intact anteromedial 
bundle, and 12.4% as posterior cruciate ligament 
healing. The SSD tibial displacement between 
ACL complete tear and all types of partial tears 
was significantly greater with Telos (mean 
7.4 mm in total vs. 4.0 mm in partial ACL tears) 
than with the Rolimiter (mean 5.3 mm in total vs. 
2.6 mm in partial ACL tears) [19]. The underesti-
mation of joint laxity using the Rolimiter can 
hamper the desired accuracy for treatment deci-
sion and follow-up. The GeNouRoB, also com-
paring to Telos device, has showed a reasonably 
high diagnostic accuracy for ACL partial tears 
using a 2.5 mm cut-off (sensitivity of 84% and 
specificity of 81%) [53].

The ability to discriminate total from partial 
tears can be decisive for the surgical planning 
because the preservation of the ACL remnants 
enables anatomical landmarks for tunnel posi-
tioning [54] and provides vascular and mechani-
cal benefits to the graft [55–57]. A selected group 
of patients with partial ACL tears may also 
respond well to conservative treatment [58–61] 
and in these cases it is crucial to assess the intact 
bundle competence. In cases of suspected partial 
tears, we use MRI instrumented-assessment to 
evaluate if there is any associated abnormal joint 
laxity [62].

8.6	 �Post-operative Knee Joint 
Laxity

Residual sagittal [63] and rotatory joint laxity [30, 
64] as well as abnormal rotational motion [65–68] 
often persist after ACLR and are a common cause 
of poor long-term outcomes [69–71]. Residual 
knee joint laxity may disclose differences after 
ACL reconstruction procedures that might be 
related to the surgical technique [72–74], graft 
choice [75], concomitant procedures [16], graft 
tension or fixation angle [76, 77], and healing 
[78]. Residual anterior knee joint laxity 6 months 
following primary ACL reconstruction is associ-
ated with younger age (<30 years old), preopera-
tive anterior laxity (SSD >5  mm), hamstring 

tendon graft, and resection of the medial menis-
cus [79]. Residual rotatory joint laxity measured 
by the pivot shift at 1 year after ACL reconstruc-
tion is associated with knee hyperextension and 
greater preoperative pivot shift under anesthesia. 
Age, gender, Lachman test, KT-1000 measure-
ment, single-bundle vs. double-bundle, meniscus 
injury sites, and meniscus surgery were not pre-
dictors of residual rotational joint laxity [80].

Despite the evolution of surgical techniques, 
residual joint laxity should be a concern because 
it increases the ACL peak strain and has a four-
fold increased risk for ACL injury for every 
1.3  mm increase in SSD in anterior-posterior 
tibial displacement [81]. When athletes display 
residual joint laxity that is combined with neuro-
muscular deficits common in patients who tear 
the ACL [82]—such as weakness of hip external 
rotators—they will be exposed to a higher risk of 
reinjury during sport-specific tasks that involve 
pivoting or landing where the strain applied to 
graft is increased.

The use of accurate multiplanar laximetry 
techniques is important to monitor the post-
operative outcomes. Restoration of knee stability 
is the main goal of surgical reconstruction and 
post-operative joint laxity evaluation should 
therefore always take part of a complete follow-
up assessment. Despite the current literature on 
the importance of knee joint laxity on the treat-
ment outcomes [83], but only 6% of studies use 
laxity-based assessment as a criterion for the 
return to sport decision [84]. In our experience, 
we use the MRI instrumented-assessment [85] 
that, in addition to the other often reported clini-
cal and physical impairment-based objective cri-
teria, supports our decision on when the athlete is 
ready to return to unrestricted sports.

8.7	 �MRI Instrumented-
Assessment of Knee Joint 
Laxity

The Porto Knee Testing Device (PKTD) is an 
MRI-safe knee joint laxity testing device, made 
of polyurethane-based mixed resins, for the mea-
surement of sagittal and rotatory knee joint laxity 
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(Fig. 8.1). The PKTD operates through two mov-
able platforms that are activated by plunger 
mechanisms. One platform induces an antero-
posterior translation and the other internal or 
external rotation of the leg. These two movable 
platforms can operate isolated or in combination, 
allowing to measure isolated sagittal and rotatory 
joint laxity, or the two simultaneously combined. 
The operator can control the magnitude of load 
transmission and adjust for different degrees of 
knee flexion.

We combine the PKTD assessment with MRI 
visualization to objectively assess the knee joint 
laxity. After applying postero-anterior and/or 

rotatory stress, we measure the tibial displace-
ment in the medial and lateral plateaus relative to 
the resting baseline position (Fig. 8.2). The tibial 
displacement is used as an isolated measure—i.e., 
the total amount of displacement—and is also 
compared with the contralateral knee.

The PKTD is a valid tool to assess ACL com-
plete tears. The sagittal joint laxity is correlated 
with the KT-1000 and the rotational joint laxity is 
correlated with the pivot shift results [29]. While 
combining the anterior tibial displacement in 
both the medial and lateral plateaus, we obtain 
the most specific measure (94%); when combin-
ing the tibial internal and external rotation in the 
lateral plateau, we obtain the most sensitive mea-
sure (93%) [22].

The ability to visualize soft tissues concomi-
tantly with accurate objective joint laxity mea-
surement [30] allows to correlate the structural 
integrity of the ligament with its functional 
competence. Eventually, we can establish mul-
tiplanar knee joint laxity cluster profiles that 
may be associated with specific injury patterns 
[37, 86–88], time between injury and surgery 
[89], different ACL reconstruction surgical Fig. 8.1  Photograph of the Porto-Knee Testing Device 

(PKTD)

Fig. 8.2  PKTD exam of an ACL total rupture. MP medial 
plateau, LP lateral plateau, PA posteroanterior translation, 
ER external tibial rotation, IR internal tibial rotation. Blue 

line indicates tangent line to the posterior tibial plateau 
and orange line indicates tangent line to the posterior fem-
oral condyle
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techniques outcomes [68, 90], or anatomic fea-
tures such as bone morphology or morphomet-
rics [91–95]. The PKTD can have an important 
role in establishing these multiplanar knee joint 
laxity cluster profiles as it combines the assess-
ment of both “anatomy” and “function” [96]. 
For instance, the MRI visualization might iden-
tify a partial ACL tear with an intact bundle, 
that after the PKTD assessment can reveal 
incompetent to provide stability to the knee 
(Fig. 8.3) [62]. We may find also injury of the 

anterolateral structures of the knee that, if com-
bined with abnormal rotational joint laxity, may 
require the addition of a lateral extra-articular 
tenodesis. When examining external tibial rota-
tion laxity at 30 degrees of flexion, it may iden-
tify cases with posterolateral corner injury that 
may have been undetected during the dial test 
(Fig. 8.4) [97]. Using the PKTD, we can iden-
tify these subclinical groups that may require 
differentiated or additional surgical interven-
tion and thus refine our surgical indications and 

a b

Fig. 8.3  PKTD exam of two cases of ACL partial rup-
ture. (a) Partial ACL rupture with an intact, but non-
functional bundle; (b) partial ACL rupture with an intact 
and functional bundle. MP medial plateau, LP lateral pla-

teau, PA posteroanterior translation, ER external tibial 
rotation, IR internal tibial rotation. Blue line indicates tan-
gent line to the posterior tibial plateau and orange line 
indicates tangent line to the posterior femoral condyle

Fig. 8.4  PKTD exam showing increased external rota-
tion that was undetected under the dial test. LP lateral pla-
teau, PA posteroanterior translation, ER external tibial 

rotation. Blue line indicates tangent line to the posterior 
tibial plateau and orange line indicates tangent line to the 
posterior femoral condyle
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individualize the treatment. In the follow-up of 
conservative or surgical approaches, the PKTD 
also plays an important role in the prospective 
monitoring of knee joint laxity and identify 
those with residual joint laxity (Fig. 8.5) [98]. It 
will provide useful information for the decision 
to clear the athletes to unrestricted sporting 
activities or those that may require further reha-
bilitation or surgical reintervention [85].

8.8	 �Conclusions

The PKTD is an MRI-safe knee joint laxity testing 
device which enables assessment of isolated or 
combined anteroposterior and rotatory joint laxity. 
Accurate assessment of multiplanar tibial dis-
placement with imaging visualization can estab-
lish joint laxity cluster profiles that may correlate 
with specific injury patterns. Joint laxity can vary 
in quantity and in quality if there is an isolated 
ACL injury or there is additionally injury to 
peripheral structures, such as the ALC (especially 
the ALL and deep fibers of the ITB) or the menisci. 
Combining the MRI visual inspection of anatomi-

cal injury with the mechanical capability using the 
PKTD, we are able to accurately assess and char-
acterize the knee joint multiplanar laxity and thus 
support treatment decisions and customized inter-
ventions while aiming for superior outcomes. The 
restoration of passive sagittal and transversal knee 
stability is the main purpose of surgical interven-
tions addressing ACL reconstruction and pre- and 
post-operative measurements should therefore be 
systematically performed to support orthopedic 
precision medicine.
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