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Visual Processing

As previously mentioned, scientific research has led to various insights in the field
of artificial intelligence (AI). Al models perform a variety of tasks from classifica-
tion to regression, but one area of particular interest is in vision-related tasks; one of
the most common visual models, Convolutional Neural Networks (CNNSs), is
inspired by research in neuroscience (Lindsay, 2020). Visual processing within the
brain is accomplished through a multitude of tasks coordinated mostly by the region
of the brain known as the occipital lobe. By understanding and exploring early
visual processing in mammals, we are able to advance computational technologies
and algorithms.

The occipital lobe is responsible for processing and interpreting the visual data
collected by our eyes, which, over the millennia, our brains have adapted to process
in a specific and efficient manner (Olshausen & Field, 1996). We can understand
sight through a series of analogies that explain how our body functions in a
computer-like fashion. The first step in seeing is when our eyes detect light. The
cornea works like a camera lens to refract the light to a specific location, in our case
the pupil. Our pupils then adjust, much like a camera aperture, to let a certain
amount of light enter our eyes. Next, our lens focuses the light into the back of our
eyeball in order for the retina to sense the light and convert it to electrochemical

R. Moye (P<) - M. V. Albert

Department of Computer Science and Engineering, University of North Texas,
Denton, TX, USA

e-mail: ryanmoye @my.unt.edu; Mark.Albert@unt.edu

C. Liang
Texas Academy of Mathematics and Science, Denton, TX, USA
e-mail: cindyliang @my.unt.edu

© The Author(s), under exclusive license to Springer Nature 187
Switzerland AG 2022

M. V. Albert et al. (eds.), Bridging Human Intelligence and Artificial

Intelligence, Educational Communications and Technology: Issues and

Innovations, https://doi.org/10.1007/978-3-030-84729-6_12


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84729-6_12&domain=pdf
mailto:ryanmoye@my.unt.edu
mailto:Mark.Albert@unt.edu
mailto:cindyliang@my.unt.edu
https://doi.org/10.1007/978-3-030-84729-6_12#DOI

188 R. Moye et al.

Optic Nerve Optic Tract
Optic
Chiasm

/" X ateral
( Geniculate Primary
& Nucleus Visual

Cortex

Fig. 1 The anatomy of sight

Light first enters the cornea and is then redirected from the pupil to the retina. From the retina, the
light is converted into electrochemical signals which are passed down the optic nerve and split off
in the optic chiasm, where the red represents the right side of vision for both eyes and the blue
represents the left side. The signals travel down the optic tract and into the lateral geniculate
nucleus, then finally to the primary visual cortex for processing.

impulses that are sent back to the occipital lobe via the optic nerve (Albert, 2015).
These impulses can be thought of as the “data” which are now being transmitted to
the “processor” or occipital lobe via the optic nerve. Once the retina converts the
optical signals into electrochemical signals the optic nerve transmits this data to the
optic tract, then to the lateral geniculate nucleus (LGN) which finally passes the
signal into the visual cortex as shown in Fig. 1. The visual cortex is the part of the
occipital lobe which processes visual data. The occipital lobe is split up into six sec-
tions, V1-V6, which deal with the various aspects of vision. V1, or the primary
visual cortex, is the “sorting algorithm” of the brain. It is the first stop for all visual
data to be preprocessed before being sent to V2. V1 processes sight and interprets
the information it receives (Albert, 2015), then sorts the data into two categories: the
what and the where. Understanding how our brain interprets and receives visual
data allows us to more accurately imitate these processes in an algorithmic format.

Now that we have a basic idea of how the brain processes visual data, let us look
at the same topic from a computational standpoint. Computers portray images as a
matrix of connected pixels. A single pixel gives no indication as to what we are
looking at. However when viewed as a whole, the pixel matrix portrays an image.
The same is done for videos, where each frame of the video is an individual pixel
matrix that varies slightly over each frame, thus allowing us to see motion and real-
time events. Computers are also able to speed up or slow down the frames per sec-
ond in a video, which produces video content in high definition or slow motion. The
interesting aspect of computer vision is how it “sees” pixels. These pixel values are
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stored in a matrix of digits which the computer can process in order to “see” or
interpret the image. From there, we can perform a variety of tasks such as image
classification, generation, and upscaling. This understanding of how computers
interpret visual data allows us to bridge the gap between computers and an appropri-
ate approximation of human neuroanatomy. For now, we will take a closer look at
the evolution of our brain and how we can relate Al to early visual processing.

How Neural Codes Are Represented

Gabor Filters

Simple cells in the primary visual cortex (V1) use an encoding similar to two com-
mon linear filter transformations of images merging together. While the pixel-based
coding described previously is a common encoding scheme for representing the
light intensity of each pixel in an image, it is too localized to represent neural codes.
There is a similar issue with Fourier codes as the Fourier transform results in the
localized structure of the signal being lost. However, Hubel and Wiesel (1962, 1968)
demonstrated that the simple cell responses of the primary visual cortex, when pre-
sented with a stimulus, can be approximated by a 2D Gabor wavelet code, similar to
the one shown in Fig. 2. This is possible because the wavelet code created by the
Gabor function is both localized and periodic, similar to observed simple cell
responses. It is important to note that the 2D Gabor wavelet code is an oversimpli-
fication and idealization of simple cells and does not fully describe complex cells
(Albert & Field, n.d.). Knowing how simple cell responses look allows for the cre-
ation of computer-generated models, specifically Al generated receptive fields.

A. Gaussian Function B. Sinusoidal Gratin C: Gabor Filter

Fig. 2 Modulation of a Gaussian and sinusoidal grating to create a Gabor filter

(a) shows a Gaussian function from the top down, (b) a sinusoidal grating, and (c) the correspond-
ing Gabor filter. Let G = a Gaussian function and S = a sinusoidal grating. Then, G * S = the
resultant Gabor Filter. Notice that the sinusoid becomes spatially localized when modulated with
the Gaussian function.
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Fig. 3 Gabor filter applied to a natural image

This building (left) represents a natural image as previously discussed. When a horizontal Gabor
filter (middle) is applied to the picture on the left, the resultant image (right) is produced. We can
observe that (right) still maintains the basic structure of the building, but only the horizontal sur-
faces are prevalent in the image.

How Gabor Filters Work

Gabor filters are simply sinusoids multiplied by a Gaussian function (Prasad &
Domke, 2005) as shown in Fig. 2. Gabor filters respond to oriented lines (in our case
a 2D Gabor filter responds to the oriented lines in an image) and are orientation-
sensitive. This means that a picture of a building (Fig. 3), when convolved with a
horizontal Gabor filter, would result in an image that shows the horizontal structures
of the building while ignoring the other orientations (vertical, diagonal, etc.). That
is to say the Gabor filter will only give a strong response if its direction matches the
direction of the lines on the building. This further illustrates why buildings with
straight lines could be called “natural images,” which will be discussed in further
detail in the Natural vs. Non-natural Images section.

Efficient Coding Hypothesis

Upon receiving sensory stimuli (for the purpose of this chapter we will only con-
sider visual data), neurons inside the brain communicate and relay messages to each
other by action potential spikes (Olshausen & Field, 1996). Neurons require energy
in order to produce these neural codes. Thus, if our brains required a neuron to rep-
resent every potential scene we might encounter, there would need to be an infinite
number of neurons in our brain, which is impossible. A solution to this problem
would be to have a set number of neurons that communicate details of an image by
using many different complicated patterns. However, this idea is also implausible
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because solely relying on these patterns to interpret stimuli would still be very
energy-consuming if we need a different set of neurons for each pattern that exists.
Therefore, to conserve energy, a goal in early sensory processing is to reduce redun-
dancy (Field, 1987). The Efficient Coding Hypothesis states that by utilizing sparse
coding, more images can be interpreted with a limited number of neurons in an
energy efficient way (Albert & Field, n.d.).

Over time, animals have evolved to use sparse coding of sensory stimuli as a way
to increase metabolic efficiency. Sparse coding allows for less neuronal firing, which
reduces energy consumption upon receiving external stimuli from natural sources.
While the efficient coding hypothesis was derived from a neuroscience standpoint,
extensive research has been done to understand this concept from a computational
view. Olshausen and Field (1996) showed how simple cells can be represented with
the use of sparse coding, which allowed computationally derived neural filters to be.

Although the efficient coding hypothesis models neuron behavior in a detailed
way, neural codes are actually more complicated and provide more information than
the individual firing rate of a neuron (Albert & Field, n.d.). There is an ongoing
debate as to whether neural coding is a form of rate coding in which the average
firing rate of a neuron is accounted for or temporal coding in that the relative timing
of each neural spike matters. Since neurons have high frequency fluctuations with
respect to their firing rates, we can surmise that the fluctuations are either noise, or
potentially carry information. Rate coding suggests that this is noise, while tempo-
ral coding suggests that the relative timing of the neural spike also carries relevant
information. Thus, while the efficient coding hypothesis gives us an understanding
of the genetic algorithm our brains use to produce neural codes, there is still more
to the process as it is more complex than a firing rate.

Natural Vs. Non-natural Images

Animals’ and humans’ adaptation to an efficient coding paradigm has resulted in an
evolutionarily fit processing of sensory stimuli. This efficient coding has enabled
our brains to process natural stimuli while firing a limited number of neurons, thus
conserving energy (Barlow, 1961). For our purposes, natural stimuli are anything
that humans and animals have seen for many generations such as Fig. 4 (a and b).
These images can range from bodies of water and mountain ranges to manmade
structures such as bridges and statues. However, these are only a few examples of
natural images. To further elaborate on this, natural images are virtually any land-
scape or any scenery that has existed for long enough for the process of evolution to
take place. We consider any structure that has straight edges (horizontal, vertical,
diagonal, etc.) to be “natural” as well. Therefore skyscrapers, houses, cars, and other
manmade structures also constitute “natural” imagery. Figure 3 shows an example
of a manmade structure convolved with a horizontal Gabor filter. Defining what
constitutes a “natural” image helps us understand what visual data applies to the
efficient coding hypothesis and how we can model this concept computationally.
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Fig. 4 Example of natural and non-natural images

(a) shows a natural scene in which brains have evolved to efficiently encode. (b) is a manmade
structure, yet because it is composed of horizontal and vertical lines we still consider it to be a
natural image. (c) shows static, of which our brains have not evolved to process efficiently.

On the other hand, non-natural images are like those in Fig. 4 (c) or psychedelic
imagery. Unlike natural images, non-natural images do not have hard edges or
structures similar to those seen in nature. QR codes are also good examples of non-
natural stimuli, along with TV static that is pictured in Fig. 4 (c). While it may seem
counterintuitive, a cloudless, blue sky is also harder for our brains to efficiently
process as it is missing any of the hard edges needed for Gabor filters to apply, and
thus are also considered non-natural. Essentially, our brains have developed patterns
to recognize natural scenes and stimuli, and thus fire a limited, or sparse, amount of
neurons in response. However, we have no evolutionary traits that help us process
non-natural stimuli (Olshausen & Field, 2000). Thus, these concepts are important
to note as the efficient coding hypothesis can only be applied to natural images.

ICA

As mentioned, the primary visual cortex responds to natural stimuli in a sparse manner,
so to replicate this in an algorithmic manner we need a way to find the representation
of the stimuli. Independent component analysis (ICA) accomplishes this goal as shown
by Hyvirinen & Oja (2000). ICA is an unsupervised learning approach that, similar to
principal component analysis (PCA), uses linear transformations to re-represent the
data with a new set of coordinates, where each representation is as statistically
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ICA Filters On Natural Images ICA Filters On Non-Natural Images

Fig. 5 ICA-encoded filters of grayscale images
Filters produced by ICA when viewing natural image patches left. Filters produced by ICA when
viewing non-natural image patches right

independent as possible. ICA achieves this by searching for components that lead to the
least Gaussian data distributions. As the central limit theorem suggests, the sum of a set
of random variables goes toward a Gaussian distribution (Bell & Sejnowski, 1997).
Thus, the original factors of the data will be less Gaussian than a random selection. The
combinations of mixed components that are least Gaussian will generally draw out the
original sources if it is possible to detect them through a linear combination.

To apply ICA to early visual processing, we can extract small patches as input
from a natural image (small being on the order of 8x8 to 32x32 pixels) such that we
are unable to tell what we are seeing anymore. Once we pass these patches through
ICA, the resultant output closely resembles the neurally encoded filters of the brain.
That is to say, the ICA-encoded filters are Gabor-like and represent the simple cell
filters as described in the Gabor Filters section. The output from applying ICA to
natural and non-natural images is shown in Fig. 5. Urs, Behpour, Georgaras, and
Albert (2020) created an accessible Jupyter notebook that allows users to play around
with ICA and to see how natural vs. non-natural images produce neural-like and non-
neural-like filters respectively. Further research to apply these filters to current models
is under way and the potential applications to computer vision looks promising.

Applications of Neural Modeling

Decoding V1 to See What Images Are Being Perceived

There are currently many studies that focus on the applications of 2D Gabor wavelet
codes for visual processing. One study further elaborates on the ability of 2D Gabor
wavelet codes to reconstruct images using a technique called the Bayesian decoder
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(Naselaris, Prenger, Kay, Oliver, & Gallant, 2009), which utilizes FMRI signals to
predict the image that one is seeing. FMRI focuses on a signal stimulus that research-
ers can easily decode and interpret and images are able to be reconstructed by using
Gabor codes to analyze early visual areas. As mentioned earlier in this chapter, our
brains have adapted to become familiar with natural images. Natural images are
important to this field of study because they are relevant for subjective processes
and daily perception such as imagery and dreaming (Naselaris et al., 2009). This
study combines knowledge of V1 evolution as well as the structural components of
Gabor wavelet codes to explain the process in which our brain executes image anal-
ysis. This ability to recreate images from neural signals utilizing Gabor wavelet
codes demonstrates the current state of technology, but also shows the potential for
future developments.

Furthermore, an elaborate study has been made on the vision of monkeys at
Cornell University to further investigate Gabor wavelet codes and the primary visual
cortex of primate brains (Kindel, Christensen, & Zylberberg, 2017). Researchers
built a convolutional neural network to predict the V1 activity produced by natural
images. This network uses Gabor wavelets to model simple cell response to visual
information. Scientists were able to discover that the rates of firing neurons can be
depicted fairly accurately by the network. This process also allowed scientists to
identify image features that caused the neurons to spike. The researchers suggest
that one potential application of the knowledge accumulated from this study would
be that sight could potentially be restored to the blind (Kindel et al., 2017). The
example given was a camera to brain translator which could be implemented to feed
images into the researchers’ neural networks directly from brain activity. Through
the advancements in computational neuroscience and Al, modern healthcare is con-
tinuing to progress in great strides as illustrated above.

Conclusion

Al and technology have long been modeled after our understanding of neuroanat-
omy, and this chapter bridges some of the gaps between the two subjects. As illus-
trated in the previous section, the applications of 2D Gabor wavelet codes are
immense, and are capable of representing simple cells found in the brain. Upon
further development, these codes have the potential to give sight to the blind (Kindel
etal., 2017), as well as other visual impairments people may experience. With new
knowledge of 2D Gabor wavelet codes, engineers and researchers can find ways to
further enhance their respective fields. Algorithms, such as ICA, have been shown
to produce Gabor-like filters similar to those observed in the brain (Hyvirinen &
Oja, 2000). These oriented and bandpassed neural filters help the brain interpret
visual data; however, they only apply to “natural” images. As stated by the efficient
coding hypothesis, one of the main goals in early visual processing is to reduce
redundancy in neuronal firing, and thus process data in a metabolically efficient
manner. Continued studies on these topics have allowed researchers to apply


https://paperpile.com/c/76Lb7F/9bnE
https://paperpile.com/c/76Lb7F/oWEz

Early Visual Processing: A Computational Approach to Understanding Primary Visual... 195

computational methods to early visual processing and in turn learn more about the
field of computer vision. The ability of computers to model processes that tradition-
ally only occurred within the primary visual cortex of human or animal brains illu-
minates how human intelligence can inspire artificial intelligence and culminates in
new and exciting research.
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