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Abstract In this paper we deal with generalized ψ-uniformly convex functions and
with superquadratic functions and discuss some of their similarities and differences.
Using the techniques discussed here, we obtain reversed and refined Minkowski
type inequalities.

1 Introduction

Convex and convex type functions and their relations to mathematical inequalities
play an important role in science, see, for instance, [3] about electrical engineering
and [5] about statistical applications and their references.

In this paper we deal with generalized ψ-uniformly convex functions and with
superquadratic functions and discuss some of their similarities and differences.

We start quoting the definition and properties of superquadratic functions from
[1] which include the functions f (x) = xp, x ≥ 0, when p ≥ 2, the functions

f (x) = −
(
1 + x

1
p

)p

when p > 0 and f (x) = 1−
(
1 + x

1
p

)p

when p ≥ 1
2 . Also,

we quote from [4] the definition of generalized ψ-uniformly convex functions.
In Sect. 2 we emphasize the importance of the general definition of superquadrac-

ity appearing in [1, Definition 2.1] compared with some of its special cases and with
the generalized ψ-uniformly convex functions defined in [4].

In Sect. 3, by using the results discussed in Sect. 2 we refine and reverse the well
known Minkowski inequality that says

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑
i=1

b
p
i

) 1
p

≤
(

n∑
i=1

(ai + bi)
p

) 1
p

, (1)
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for 0 < p < 1, ai, bi ≥ 0, i = 1, . . . , n.

Definition 1 ([1, Definition 2.1]) A function f : [0, B) → R is superquadratic
provided that for all x ∈ [0, B) there exists a constant Cf (x) ∈ R such that the
inequality

f (y) ≥ f (x) + Cf (x) (y − x) + f (|y − x|) (2)

holds for all y ∈ [0, B) (see [1, Definition 2.1], there [0,∞) instead [0, B)).
f is called subquadratic if −f is superquadratic.

Theorem 1 ([1, Theorem 2.2]) The inequality

∫
f (g (s)) dμ (s) ≥ f

(∫
gdμ

)
+ f

(∣∣∣∣g (s) −
∫

gdμ

∣∣∣∣
)

holds for all probability measures and all non-negative, μ-integrable functions g if
and only if f is superquadratic.

Corollary 1 ([1, 2]) Suppose that f is superquadratic. Let 0 ≤ xi < B, i = 1, 2
and let 0 ≤ t ≤ 1. Then

tf (x1) + (1 − t) f (x2) − f (tx1 + (1 − t) x2)

≥ tf ((1 − t) |x2 − x1|) + (1 − t) f (t |x2 − x1|) (3)

holds.
More generally, suppose that f is superquadratic. Let ξi ≥ 0, i = 1, . . . , m, and

let ξ = ∑m
i=1 piξi where pi ≥ 0, i = 1, . . . , m, and

∑m
i=1 pi = 1. Then

m∑
i=1

pif (ξi) − f
(
ξ
) ≥

m∑
i=1

pif
(∣∣ξi − ξ

∣∣) (4)

holds.
If f is non-negative, it is also convex and Inequality (4) refines Jensen’s

inequality. In particular, the functions f (x) = xr , x ≥ 0, are superquadratic and
convex when r ≥ 2, and subquadratic and convex when 1 < r < 2. Equality holds
in inequalities (3) and (4) when r = 2.

Lemma 1 ([1, Lemma 2.1]) Let f be superquadratic function with Cf (x) as in
Definition 1. Then:

(i) f (0) ≤ 0,
(ii) if f (0) = f ′(0) = 0, then Cf (x) = f ′(x) whenever f is differentiable at

x > 0,
(iii) if f ≥ 0, then f is convex and f (0) = f ′(0) = 0.
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Lemma 2 ([1, Lemma 3.1]) Suppose f : [0,∞) → R is continuously differen-

tiable and f (0) ≤ 0. If f
′
is superadditive or f

′
(x)
x

is non-decreasing, then f is

superquadratic and (according to its proof) Cf (x) = f
′
(x), where Cf (x) is as in

Definition 1.

Lemma 3 ([1, Lemma 4.1]) A non-positive, non-increasing, and superadditive
function is a superquadratic function and (according to its proof) satisfies Cf (x) =
0, where Cf (x) is as in Definition 1.

Example 1 ([1, Example 4.2]) Let

fp (x) = −
(
1 + x

1
p

)p

, x ≥ 0.

Then fp is superquadratic for p > 0 with Cfp(x) = 0 and g = 1 + fp is

superquadratic for p ≥ 1
2 with Cg(x) = g

′
(x) = f

′
p (x).

Lemma 4 ([1, Section 3]) Suppose that f is a differentiable function and f (0) =
f

′
(0) = 0. If f is superquadratic, then f (x)

x2
is non-decreasing.

The definition of generalized ψ-uniformly convex functions as appears in [4]
is the following:

Definition 2 ([4, Page 306]) Let I = [a, b] ⊂ R be an interval and ψ :
[0, b − a] → R be a function. A function f : [a, b] → R is said to be generalized
ψ-uniformly convex if:

tf (x) + (1 − t) f (y) ≥ f (tx + (1 − t) y) + t (1 − t) ψ (|x − y|)
for x, y ∈ I and t ∈ [0, 1] . (5)

If in addition ψ ≥ 0, then f is said to be ψ-uniformly convex.

Paper [4] deals with inequalities that extend the Levin-Stečkin’s theorem. The
main result in [4, Theorem 1] relates to the function ψ as appears in Definition 2,
and depends on the fact that lim

t→0+
ψ(t)

t2
is finite. We discuss this issue in Sect. 2.

In the unpublished [6] a companion inequality to Minkowski inequality is stated
and proved:

Theorem 2 ([6, Th2.1]) For 0 < p < 1, ai, bi > 0, i = 1, . . . , n the inequality

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑
i=1

b
p
i

) 1
p

≤
(

n∑
i=1

(ai + bi)
p

) 1
p

≤
∑n

i=1 aib
p−1
i(∑n

i=1 b
p
i

) p−1
p

+
∑n

i=1 bia
p−1
i(∑n

i=1 a
p
i

) p−1
p

(6)

holds.
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In Sect. 3 we refine Minkowski’s inequality in four ways using generalized ψ-
uniformly convexity, subquadracity and superquadracity properties of the functions
discussed in Sect. 2. The proofs of Theorems 3 and 4 apply the technique employed
in [6] to prove the right hand-side of (6) in Theorem 2, besides using superquadracity
and subquadracity properties of the functions involved there.

2 Superquadracity and Generalized ψ-Uniformly Convexity

We start with emphasizing the importance of the definition of superquadracity as
appears in [1] vis a vis its special cases. Definition 1 does not guarantee that
Cf (x) = f

′
(x). However, from Lemmas 1 and 2 we know that in the case that

f is superquadratic and f (0) = f
′
(0) = 0, and in the case that the derivative

of the superquadratic function is superadditive or f
′
(x)
x

is non-decreasing we get

Cf (x) = f
′
(x). On the other hand when the superquadratic function satisfies

Lemma 3 we get that Cf (x) = 0.

Although the n-th derivative of fp (x) = −
(
1 + x

1
p

)p

, x ≥ 0, 0 < p < 1, as

discussed in Example 1, is continuous on [0,∞), we get when inserting this function

in Definition 1 that Cfp (x) satisfies Cfp (x) = 0 	= f
′
p (x) = −x

1
p

−1
(
1 + x

1
p

)p

.

Therefore whenever

f (y) − f (x) ≥ f
′
(x) (y − x) + f (|y − x|) (7)

is used as the definition of superquadracity, it means that it deals not with the
general case of superquadratic functions but it might, but not necessarily, deal with
those superquadratic functions satisfying Lemma 1(ii) or Lemma 2. The following
function f is an example of a superquadratic function that satisfies (7) but as proved
in [1, Example 3.3] does not satisfy Lemma 2: This function is defined by f (0) = 0
and

f
′
(x) =

{
0, x ≤ 1

1 + (x − 2)3 , x ≥ 1.

For such superquadratic functions, Definition 1 translates into (7), but as explained
above it does not hold for all superquadratic functions.

We point out now a difference between the superquadratic functions and the
generalized ψ-uniformly convex functions:

According to the proof of Theorem 1 [1, Theorem 2.2] and Corollary 1 we get
that inequalities (2) and (3) are equivalent. On the other hand, Inequality (5) that
defines, according to [4], the generalized ψ-uniformly convex function f , when f

is continuously differentiable, leads to the inequality
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f (y) − f (x) ≥ f
′
(x) (y − x) + ψ (|y − x|) , (8)

as proved in [4, Theorem 1], but Inequality (8) does not lead in general to
Inequality (5) but to

tf (x1) + (1 − t) f (x2) − f (tx1 + (1 − t) x2)

≥ tψ ((1 − t) |x2 − x1|) + (1 − t) ψ (t |x2 − x1|) , (9)

for 0 ≤ t ≤ 1.
More generally, it is easy to verify that, similarly to Inequality (4) for

superquadratic functions, when f is a generalized ψ-uniformly convex function,
then

m∑
i=1

pif (ξi) − f
(
ξ
) ≥

m∑
i=1

piψ
(∣∣ξi − ξ

∣∣) , (10)

holds, where ξi ≥ 0, i = 1, . . . , m, ξ = ∑m
i=1 piξi , pi ≥ 0, i = 1, . . . , m, and∑m

i=1 pi = 1.
In addition, ifψ is non-negative, the function f is also convex and Inequality (10)

refines Jensen’s inequality.
Moreover, if instead of (5) in Definition 2 we have a set of functions f which

satisfies

tf (x1) + (1 − t) f (x2) − f (tx1 + (1 − t) x2)

≥ G(t) ψ (|x1 − x2|) , t ∈ [0, 1] , (11)

then (11) still leads to (8) when lim
t→0+

G(t)
t

= 1.

However, for the special case where ψ (x) = kx2, when k is constant, the
inequalities (5) and (9) are the same.

Remark 1 By choosing x = y in (5) or in (8) we get that ψ satisfies ψ (0) ≤ 0.

From now on till the end of this section we deal with functions satisfying
inequalities (7) and (8).

A similarity between convex superquadratic functions and ψ-uniformly convex
functions is shown in Remark 2 below. The set of convex superquadratic functions
f satisfies f (0) = f

′
(0) = 0. Also, the set f of ψ-uniformly convex functions

satisfies ψ (0) = ψ
′
(0) = 0.

For the convenience of the reader a proof of Remark 2 is presented. This can
easily be obtained by following the steps of the proof in [1] of Lemma 1(iii):

Remark 2 For a function ψ : [0, b − a] → R and a continuously differentiable
ψ-uniformly convex function f on [a, b] → R, we get that ψ (0) = ψ

′
(0) = 0.



38 S. Abramovich

Proof If ψ ≥ 0, then ψ (0) = 0 because always as mentioned in Remark 1 ψ (0) ≤
0. Then by choosing in (8) first y > x and then y < x we get that

lim sup
y→x−

(
f (x) − f (y)

x − y
+ ψ (x − y)

x − y

)

≤ f
′
(x) ≤ lim sup

y→x+

(
f (y) − f (x)

y − x
+ ψ (y − x)

y − x

)
,

and hence

lim sup
x→0+

ψ (x)

x
≤ 0.

Since ψ is non-negative, we have

0 ≤ lim sup
x→0−

ψ (x)

x
≤ lim sup

x→0+

ψ (x)

x
≤ 0,

and therefore the one sided derivative at zero exists and ψ
′
(0) = 0.

We deal now with the behavior of ψ(x)

x2
when f is generalized ψ-uniformly

convex function, and with f (x)

x2
when f is superquadratic.

Besides Lemma 4 we get the following lemma which is proved in [4, Proof of
Theorem 1]:

Lemma 5 If f is twice continuously differentiable generalized ψ-uniformly convex
function, then f ′′ (x) ≥ 2 lim

x→0+
ψ(x)

x2
.

Corollary 2 Let I = [a, b] be an interval and ψ : [0, b − a] → R be a twice
differentiable function on [0, b − a]. Let f : [a, b] → R be a continuously twice
differentiable ψ-uniformly convex function, that is ψ ≥ 0. Denote ϕ (x) = ψ(x)

x2
,

x > 0. Then ϕ (0) = lim
x=0+

ψ(x)

x2
is finite and non-negative.

Indeed, Remark 2 says that ψ (0) = ψ
′
(0) = 0. Therefore,

lim
x=0+

ψ (x)

x2 = ϕ (0) = lim
x=0+

ψ
′
(x)

2x
= lim

x=0+
ψ

′′
(x)

2
= ψ

′′
(0)

2
.

Remark 3 It is shown in Remark 1 that ψ satisfies ψ (0) ≤ 0 and therefore when
ψ (0) < 0 we get lim

x→0+
ψ(x)

x2
= −∞. Also, when ψ is differentiable on [0, b − a]

and ψ (0) = 0 but ψ
′
(0) < 0 then again
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lim
x→0+

ψ (x)

x2
= lim

x→0+
ψ

′
(x)

2x
= −∞.

Example 2 shows that the conditions ψ (0) = 0, ψ
′
(0) = 0 do not guarantee that

lim
x→0+

ψ(x)

x2
is finite:

Example 2 The superquadratic function f (x) = x2 ln x for x > 0 and f (0) = 0,
f

′
(0) = 0 is continuously differentiable but not twice continuously differentiable

at x = 0. Therefore we deal now with an interval [a, b], a > 0 for f (x) = x2 ln x

which is twice differentiable and ψ (x) = x2 ln x, 0 < x ≤ b − a. These f and ψ

satisfy (8). In this case lim
x→0+

ψ(x)

x2
= −∞.

We show here an example where lim
x→0+

ψ(x)

x2
is finite, but the generalized ψ-

uniformly convex function g is not necessarily convex.

Example 3 Let g (x) = f (x) − (kx)2 where k is a constant and f is twice
differentiable convex and superquadratic function satisfying lim

x→0+
f (x)

x2
= ϕ (0) and

ϕ (0) ≥ 0. In such cases g(x)

x2
= ϕ (x) − k2 →

x→0+ ϕ (0) − k2 and because ϕ (0) is

finite and non-negative, and because equality holds in (3) for the function x2, the
function g is superquadratic satisfying (7) and therefore also (8) for ψ = f , but is
not necessarily convex.

In addition to the monotonicity of f (x)

x2
as proved in Lemma 4 for superquadratic

functions satisfying f (0) = f
′
(0) = 0, it is easy to prove:

Remark 4 If Inequality (8) when x ≥ 0 holds for ψ ≥ 0 and f (0) = 0, then f

is convex and
(

f (x)
x

)′
≥ ψ(x)

x2
≥ 0. In the special case that f is superquadratic and

convex, we get that
(

f (x)
x

)′
≥ f (x)

x2
≥ 0.

Indeed, from (8) we get that

f (0) − f (x) ≥ −xf
′
(x) + ψ (x)

holds.
From this, because f (0) = 0 we get that

xf
′
(x) − f (x)

x2 =
(

f (x)

x

)′

≥ ψ (x)

x2 ≥ 0.

In the special case that f is superquadratic we get that

(
f (x)

x

)′

≥ f (x)

x2 ≥ 0.
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We finish this section demonstrating a set of continuous differentiable functions
satisfying Inequality (8). As explained above, (8) holds for continuous differen-
tiable generalized ψ-uniformly convex functions.

Example 4 The functions fp = −
(
1 + x

1
p

)p

where ψt (x) = t −
(
1 + x

1
p

)p

,

p ≥ 1
2 , 0 ≤ t ≤ 1, x ≥ 0 are generalized ψt -uniformly convex functions and

satisfy (8). In particular, when t = 0, the function fp is superquadratic and when

t = 1 the function f ∗ (x) = 1−
(
1 + x

1
p

)p

where ψ1 (x) = 1−
(
1 + x

1
p

)p

is also

superquadratic.

Indeed, f ∗ (x) = 1 −
(
1 + x

1
p

)p

, p ≥ 1
2 is superquadratic satisfying

Inequality (7). Specifically as shown in Example 1 [1, Example 4.2] the inequality

1 −
(
1 + y

1
p

)p −
(
1 −

(
1 + x

1
p

)p
)

≥ −
(
1 + x

− 1
p

)p−1
(y − x) +

(
1 −

(
1 + |x − y| 1p

)p
)

holds, which is the same as Inequality (8)

−
(
1 + y

1
p

)p −
(

−
(
1 + x

1
p

)p
)

≥ −
(
1 + x

− 1
p

)p−1
(y − x) +

(
1 −

(
1 + |x − y| 1p

)p
)

,

for fp (x) = −
(
1 + x

1
p

)p

and ψ1 (x) = 1 −
(
1 + x

1
p

)p

.

Therefore, also

−
(
1 + y

1
p

)p −
(

−
(
1 + x

1
p

)p
)

≥ −
(
1 + x

− 1
p

)p−1
(y − x) +

(
t −

(
1 + |x − y| 1p

)p
)

holds when t ≤ 1 and Inequality (8) is satisfied by fp (x) = −
(
1 + x

1
p

)p

and

ψt (x) = t −
(
1 + x

1
p

)p

.

As shown in Example 1, when t = 0, the function fp (x) = −
(
1 + x

1
p

)p

is

also superquadratic but this time satisfying (7) with Cf (x) = 0, that is,
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−
(
1 + y

1
p

)p −
(

−
(
1 + x

1
p

)p
)

≥ −
(
1 + |x − y| 1p

)p

holds.

3 Reversed and Refined Minkowski Inequality

In this section we use the properties discussed in Sect. 2 of superquadracity and of
generalized ψ-uniformly convexity.

In Example 1 [1, Example 4.2] it is shown that fp (x) =
(
1 + x

1
p

)p

for x ≥ 0,

is subquadratic when p > 0. Using this property and Corollary 1 together with the
convexity of fp when p < 1 we get a refinement of Minkowski’s inequality when
0 < p < 1 (see also [1, Theorem 4.1]):

Lemma 6 Let ai, bi ≥ 0, i = 1, . . . , n. Then, when p > 0 the inequality

n∑
i=1

(ai + bi)
p

≤
⎛
⎝

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑
i=1

b
p
i

) 1
p

⎞
⎠

p

+
n∑

i=1

a
p
i

⎛
⎝1 +

∣∣∣∣∣
b

p
i

a
p
i

−
∑n

j=1 b
p
j∑n

j=1 a
p
j

∣∣∣∣∣

1
p

⎞
⎠

p

(12)

holds, and when 0 < p < 1 the inequalities

⎛
⎝

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑
i=1

b
p
i

) 1
p

⎞
⎠

p

≤
n∑

i=1

(ai + bi)
p

≤
⎛
⎝

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑
i=1

b
p
i

) 1
p

⎞
⎠

p

+
n∑

i=1

a
p
i

⎛
⎝1 +

∣∣∣∣∣
b

p
i

a
p
i

−
∑n

j=1 b
p
j∑n

j=1 a
p
j

∣∣∣∣∣

1
p

⎞
⎠

p

(13)

hold.

Proof From the subquadracity of fp =
(
1 + x

1
p

)p

, x ≥ 0, p > 0, according to

Lemma 3 and Example 1 we get that:

n∑
i=1

xi

(
1 +

(
yi

xi

) 1
p

)p

=
n∑

i=1

(
x

1
p

i + y
1
p

i

)p
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≤
⎛
⎝

(
n∑

i=1

xi

) 1
p

+
(

n∑
i=1

yi

) 1
p

⎞
⎠

p

+
n∑

i=1

xi

⎛
⎝1 +

∣∣∣∣∣
yi

xi

−
∑n

j=1 yj∑n
j=1 xj

∣∣∣∣∣

1
p

⎞
⎠

p

(14)

is satisfied. Substituting x
1
p

i = ai and y
1
p

i = bi , i = 1, . . . , n, we get Inequality (12),
and together with the convexity of f for 0 < p < 1 we get from (14) that (13) holds.

The next lemma uses the generalized ψ-uniformly convex functions gp =
−

(
1 + x

1
p

)p

when ψ (x) = t −
(
1 + x

1
p

)p

, 0 ≤ t ≤ 1 for p ≥ 1
2 and the

convexity of fp (x) =
(
1 + x

1
p

)p

when 0 < p < 1 as discussed in Example 4.

Similar to Lemma 6 we get:

Lemma 7 Let ai , bi > 0, i = 1, . . . , n and 0 ≤ t ≤ 1 then when p ≥ 1
2 the

inequality:

n∑
i=1

(ai + bi)
p ≤

⎛
⎝

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑
i=1

b
p
i

) 1
p

⎞
⎠

p

+
n∑

i=1

a
p
i

⎛
⎝1 +

∣∣∣∣∣
b

p
i

a
p
i

−
∑n

j=1 b
p
j∑n

j=1 a
p
j

∣∣∣∣∣

1
p

⎞
⎠

p

− t

n∑
i=1

a
p
i

holds, and when 1
2 ≤ p ≤ 1, the inequalities

⎛
⎝

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑
i=1

b
p
i

) 1
p

⎞
⎠

p

≤
n∑

i=1

(ai + bi)
p

≤
⎛
⎝

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑
i=1

b
p
i

) 1
p

⎞
⎠

p

+
n∑

i=1

a
p
i

⎛
⎝1 +

∣∣∣∣∣
b

p
i

a
p
i

−
∑n

j=1 b
p
j∑n

j=1 a
p
j

∣∣∣∣∣

1
p

⎞
⎠

p

−t

n∑
i=1

a
p
i

hold.

We finish the paper by refining Inequality (6) in Theorem 2, and we get two
new Minkowski type inequalities. In the proofs we use the technique employed in

[6, Theorem 2.1] and the subquadracity of f (x) = x
1
p , x ≥ 0, 1

2 < p < 1, the

superquadracity of f (x) = x
1
p , x ≥ 0, 0 < p ≤ 1

2 .
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Theorem 3 Let 0 < p < 1
2 , ai, bi ≥ 0, i = 1, . . . , n. Then, the inequalities

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑
i=1

b
p
i

) 1
p

≤
(

n∑
i=1

(ai + bi)
p

) 1
p

≤
∑n

i=1 aib
p−1
i(∑n

i=1 b
p
i

) p−1
p

+
∑n

i=1 bia
p−1
i(∑n

i=1 a
p
i

) p−1
p

−
∑n

i=1 a
p
i

∣∣∣∣ (ai+bi )
p

a
p
i

−
∑n

j=1(aj +bj )
p

∑n
j=1 a

p
j

∣∣∣∣
1
p

(∑n
j=1 a

p
j

) 1
p

−
∑n

i=1 b
p
i

∣∣∣∣
a

p
i

b
p
i

−
∑n

j=1 a
p
j∑n

j=1 b
p
j

∣∣∣∣
1
p

(∑n
j=1 b

p
j

) 1
p

(15)

hold. Equality holds in the right hand-side of inequality (15) when p = 1
2 .

Proof We use the superquadracity of g (x) = x
1
p , x ≥ 0, 0 < p ≤ 1

2 which by
Corollary 1 leads to the inequality

n∑
i=1

xi

(
yi

xi

) 1
p =

n∑
i=1

x
1− 1

p

i y
1
p

i

≥
(

n∑
i=1

xi

)1− 1
p

(
n∑

i=1

yi

) 1
p

+
n∑

i=1

xi

∣∣∣∣∣
yi

xi

−
∑n

j=1 yj∑n
j=1 xj

∣∣∣∣∣

1
p

, (16)

and we get from (16) that

∑n
i=1 aib

p−1
i(∑n

i=1 b
p
i

) p−1
p

=
∑n

i=1

(
a

p
i

) 1
p

(
b

p
i

)1− 1
p

(∑n
i=1 b

p
i

) p−1
p

≥
(

n∑
i=1

a
p
i

) 1
p

+
∑n

i=1 b
p
i(∑n

j=1 b
p
j

) p−1
p

∣∣∣∣∣
a

p
i

b
p
i

−
∑n

j=1 a
p
j∑n

j=1 b
p
j

∣∣∣∣∣

1
p

. (17)

By denoting ci = ai + bi , i = 1, . . . , n we get also that
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∑n
i=1 bia

p−1
i(∑n

j=1 a
p
j

) p−1
p

=
∑n

i=1 (ci − ai) a
p−1
i(∑n

j=1 a
p
j

) p−1
p

=
∑n

i=1 cia
p−1
i(∑n

j=1 a
p
j

) p−1
p

−
∑n

i=1 aia
p−1
i(∑n

j=1 a
p
j

) p−1
p

=
∑n

i=1 cia
p−1
i(∑n

j=1 a
p
j

) p−1
p

−
(

n∑
i=1

a
p
i

) 1
p

≥
(

n∑
i=1

c
p
i

) 1
p

+
∑n

i=1 a
p
i(∑n

j=1 a
p
j

) p−1
p

∣∣∣∣∣
c
p
i

a
p
i

−
∑n

j=1 c
p
j∑n

j=1 a
p
j

∣∣∣∣∣

1
p

−
(

n∑
i=1

a
p
i

) 1
p

. (18)

Summing (17) with (18) and using ci = ai + bi , i = 1, . . . , n we get that

∑n
i=1 aib

p−1
i(∑n

i=1 b
p
i

) p−1
p

+
∑n

i=1 bia
p−1
i(∑n

i=1 a
p
i

) p−1
p

≥
(

n∑
i=1

(ai + bi)
p

) 1
p

+
∑n

i=1 a
p
i(∑n

j=1 a
p
j

) p−1
p

∣∣∣∣∣
(ai + bi)

p

a
p
i

−
∑n

j=1

(
aj + bj

)p

∑n
j=1 a

p
j

∣∣∣∣∣

1
p

+
∑n

i=1 b
p
i(∑n

j=1 b
p
j

) p−1
p

∣∣∣∣∣
a

p
i

b
p
i

−
∑n

j=1 a
p
j∑n

j=1 b
p
j

∣∣∣∣∣

1
p

. (19)

From (19) and from Minkowski inequality (1) for 0 < p < 1 we get for 0 < p < 1
2

that (15) holds.
The proof is complete.

Theorem 4 Let 1
2 ≤ p ≤ 1, ai, bi ≥ 0, i = 1, . . . , n. Then, the inequality

max

⎛
⎝

∑n
i=1 aib

p−1
i(∑n

i=1 b
p
i

) p−1
p

+
∑n

i=1 bia
p−1
i(∑n

i=1 a
p
i

) p−1
p

−
∑n

i=1 a
p
i

∣∣∣∣ (ai+bi )
p

a
p
i

−
∑n

j=1(aj +bj )
p

∑n
j=1 a

p
j

∣∣∣∣
1
p

(∑n
j=1 a

p
j

) 1
p

−
∑n

i=1 b
p
i

∣∣∣∣
a

p
i

b
p
i

−
∑n

j=1 a
p
j∑n

j=1 b
p
j

∣∣∣∣
1
p

(∑n
j=1 b

p
j

) 1
p

,
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(
n∑

i=1

a
p
i

) 1
p

+
(

n∑
i=1

b
p
i

) 1
p

⎞
⎠

≤
(

n∑
i=1

(ai + bi)
p

) 1
p

≤
∑n

i=1 aib
p−1
i(∑n

i=1 b
p
i

) p−1
p

+
∑n

i=1 bia
p−1
i(∑n

i=1 a
p
i

) p−1
p

(20)

holds.

Proof The proof of the inequalities in (20) is omitted because it is similar to the

proof of Theorem 3 using here the subquadracity of f (x) = x
1
p , x > 0, 12 < p < 1.
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5. J. Pečarić, F. Proschan and Y. L. Tong, “Convex functions, Partial orderings and statistical
applications”, Academic press, New York (1992).

6. R. Zhou, H. Liu and J. Miao, “Matching form of Minkowski’s inequality”, Unpublished
Manuscript.


	On Generalized Convexity and Superquadracity
	1 Introduction
	2 Superquadracity and Generalized ψ-Uniformly Convexity
	3 Reversed and Refined Minkowski Inequality
	References


