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Preface

Mathematical Analysis in Interdisciplinary Research provides an extensive account
of research as well as research-expository articles in a broad domain of analysis and
its various applications in a plethora of fields.

The book focuses to the study of several essential subjects, including opti-
mal control problems, optimal maintenance of communication networks, opti-
mal emergency evacuation with uncertainty, cooperative and noncooperative par-
tial differential systems, variational inequalities and general equilibrium models,
anisotropic elasticity and harmonic functions, nonlinear stochastic differential equa-
tions, operator equations, max-product operators of Kantorovich type, perturbations
of operators, integral operators, dynamical systems involving maximal mono-
tone operators, the three-body problem, deceptive systems, hyperbolic equations,
strongly generalized preinvex functions, Dirichlet characters, probability distribu-
tion functions, applied statistics, integral inequalities, generalized convexity, global
hyperbolicity of spacetimes, Douglas-Rachford methods, fixed point problems, the
general Rodrigues problem, Banach algebras, affine group, Gibbs semigroup, relator
spaces, sparse data representation, Meier-Keeler sequential contractions, hybrid
contractions, and polynomial equations.

This collective effort, which ranges over the abovementioned broad spectrum of
topics, is hoped to be useful to both graduate students and researchers who wish to
be informed about the latest developments in the corresponding problems treated.
The works published within this book will be of particular value for both theoretical
and applicable interdisciplinary research.

v



vi Preface

We would like to express our gratitude to the authors who contributed their valu-
able papers in this volume. Last but not least, we wish to extend our sincere thanks
to the staff of Springer for their valuable assistance throughout the preparation of
this book.

Larissa, Greece Ioannis N. Parasidis

Larissa, Greece Efthimios Providas

Athens, Greece Themistocles M. Rassias
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Quasilinear Operator Equation at
Resonance

A. R. Abdullaev and E. A. Skachkova

Abstract This work considers a quasilinear operator equation at resonance. We
obtained solvability theorems and formulated corollaries. The current approach is
based on a special generalization of the classical Schauder Fixed Point Theorem.

1 Introduction

Let us consider the following equation:

Lx = Fx, (1)

with a linear bounded operator L : X → Y and a continuous (generally speaking, a
nonlinear) operator F : X → Y , whereX and Y are Banach spaces. If the operatorL
is non-invertible, Eq. (1) is called a resonance case. In particular, periodic problems
for systems of ordinary differential equations can be considered as forms of Eq. (1)
with non-invertible operator.

In 1970s, an approach, aimed at studying the Eq. (1) at resonance, was intro-
duced. The approach is based on the Lyapunov-Schmidt method, and it reduces the
problem of solvability of Eq. (1) to the problem of the existence of a fixed point of
some auxiliary operator. In the literature, statements obtained in a similar manner
are called “results of the Landesman-Laser theorem type.” However, when applying
this methodology to specific classes of resonant boundary value problems, certain
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complications arise. Therefore, the question of the effective solvability conditions
for Eq. (1) remains relevant.

By now a large number of papers studying Eq. (1) with a non-invertible operator
has been accumulated in the scientific literature. Some intuition about the problems
and development trends in this area of research can be obtained from the following
sources [1–5].

In this paper we propose an approach to study Eq. (1) at resonance based on a
special generalization of the classical Schauder Fixed Point Theorem (Theorem 1).
Further, the current paper is structured as follows. In Sect. 2, we explain the notation
that we use in our paper. Further in the same section, we provide information related
to operators L and F . In Sect. 3, we formulate existence theorems for solutions of
Eq. (1). In Sect. 4, we consider applying our approach to the periodic problem for
an ordinary second-order differential equation.

2 Preliminaries

The following notations and terminology will be used in the rest of the paper. Let
X and Y be Banach spaces. The equality X = X1

⊕
X2 denotes that X is a direct

sum of bounded subspaces X1 and X2. We denote the kernel and the image of the
linear operator L : X → Y as kerL and R(L), respectively. Let P : X → X

be a linear bounded projection on kerL, P c = I − P be an additional projection
operator, Q : Y → Y be a projection on R(L), and Qc be an additional projection
operator. Let L : X → Y be a Fredholm operator. Then X = X0

⊕
kerL, and

Y = Y0
⊕

R(L).
A restriction of operator L is regarded as operator L0 : X → R(L), such that

L0x = Lx, for all x ∈ X.
By U(r) we denote a closed ball of radius r > 0, centered at the zero element of

X or Y . For R(L) �= Y , we assume

UR(L)(r){y | y ∈ R(L), ‖y‖ ≤ r}.

The surjectivity coefficient [6, 7] of an operator L : X → Y is a non-negative
number, defined by

q(L) = inf
ω �=θ

‖L∗ω‖
‖ω‖ ,

where L∗ : Y ∗ → X∗ is the adjoint operator of L.
If q(L) > 0, then the operator L : X → Y is surjective, that is R(L) = Y . If

at the same time dim kerL < ∞, then it holds that U(q(L)r) ⊂ L(U(r)), for all
r > 0.

If R(L) �= Y , then the following characteristic of the linear operator turns out to
be beneficial for studying Eq. (1).
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Assume L0 : X → R(L) is a contraction of L : X → Y . The relative coefficient
of surjectivity of the operator L is the number q0(L) determined by the equality [8],
for all z ∈ (R(L))∗:

q0(L) = inf
z �=θ

∥
∥L∗0z

∥
∥

‖z‖ .

For the Fredholm operator L : X → Y , it holds that UR(L)(q0(L)r) ⊂ L(U(r)),
for all r > 0.

If the calculation of the precise meaning of the relative surjectivity coefficient is
difficult, then its lower estimation is applied. To do this we consider the following
approach.

Operator Kp : R(L) → X is called generalized inverse [9] to the operator
L : X → Y , associated with the projection P , if KpL = P c and LKp = I0 hold,
where I0 : R(L)→ Y is an embedding operator.

The following estimation [8] holds:

∥
∥Kp

∥
∥−1 ≤ q0(L).

For a continuous (generally speaking, a nonlinear) operator, we consider the
following functional characteristic:

bF (r) = sup
‖x‖≤r

‖Fx‖ ,

for all r ≥ 0.
If bF (r) < ∞, then F(U(r)) ⊂ U(bF (r)). For the linear operator L : X → Y ,

it holds that bL(r) = ‖L‖ r . If ‖Fx‖ ≤ a + b ‖x‖ holds for some non-negative
constants a and b, then the estimation bF (r) ≤ a + br holds as well.

3 Existence Theorem

The existence theorems obtained in this section are based on a special modification
of the Schauder Fixed Point Theorem [10] for the Eq. (1). It is formulated as follows.

Theorem 1 Assume the following conditions hold:

1. L : X → Y is a Fredholm operator;
2. the operator F : X → Y is completely continuous;
3. there exists a nonempty closed bounded setM ⊂ X, such that coF(M) ⊂ L(M).

Then there exists at least one solution of the Eq. (1).

Further in the paper, it is assumed that the following conditions hold:
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(A) L : X → Y is a Fredholm an operator with the index indL ≥ 0;
(B) an operator F : X → Y is completely continuous.

Theorem 2 Assume the following conditions hold:

1. inequality bF (r) ≤ q0(L)r has a positive solution r0;
2. for all z ∈ X0 there exists u ∈ kerL such that F(X) ∈ R(L), x = z + u, and
‖x‖ ≤ r0.

Then Eq. (1) has at least one solution.

Proof Let r0 > 0 be the number, the existence of which is assumed in condition 1
of Theorem 2. Let M be a set of elements of the form x = z + u, ‖x‖ ≤ r0, where
z ∈ X0, and u is an element of kerL, which corresponds to the given z. Since for all
x ∈ M it holds that

F(x) ∈ R(L) and ‖Fx‖ ≤ b(r0),

then

F(M) ⊂ UR(L)(b(r0)).

Moreover, it holds that

b(r0) < q0(L)r0 and UR(L)(q0(L)r0) ⊆ L(U(r0)).

Hence,

F(M) ⊂ L(U(r0)).

For a closed set C = M we have that

F(C) ⊂ F(M) ⊂ L(U(r0)).

To this embedding, we apply the convex closure operation, taking into account the
following equality

L(U(r0)) = L(C),

we obtain

coF(C) ⊂ L(C).

Now we apply Theorem 1, which guarantees the existence of at least one solution
of the Eq. (1) under the conditions of Theorem 2. �

Now we provide a statement that in some situations is more efficient in practice.
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Theorem 3 Assume the following conditions hold:

1. For all x ∈ X, there exists u ∈ kerL and u = u(x), such that F(x + u) ∈ R(L),
and ‖u‖ ≤ η(‖x‖);

2. bF (r + η(r)) ≤ q0(L)r has a positive solution.

Then, Eq. (1) has at least one solution.

Proof Let x ∈ X, and u ∈ kerL, such that condition 1 of the theorem holds. Then

‖x + u‖ ≤ ‖x‖ + η(‖x‖).

If x ∈ U(r), then

‖F(x + u)‖ ≤ b(r1),

where r1 = r + η(r). Let r0 be a positive solution of inequality from condition 2 of
the theorem. Assume

M = {x + u | F(x + u) ∈ R(L), ‖x‖ ≤ r0}.

The following embedding holds

F(M) ⊂ U(r1), r1 = r0 + η(r0).

Further we follow the lines of the proof of Theorem 2. �
Corollary 1 Assume the following conditions hold:

1. there exist a, b ≥ 0, such that ‖Fx‖ ≤ a + b ‖x‖;
2. there exist c, d ≥ 0, such that for all x ∈ X there exists u ∈ kerL, such that

u = u(x), F(x + u) ∈ R(L), and ‖u‖ ≤ c + d ‖x‖;
3. it holds that b(1+ d) < q0(L).

Then Eq. (1) has at least one solution.

Proof We have

bF (r + η(r)) ≤ a + b(r + (c + dr)).

If b(1+ d) < q0(L), then

a + b(r + (c + dr)) ≤ q0(L)r

has a positive solution. Thus, all conditions of 3 hold. �
Remark 1 Under the conditions of Corollary 1, the constant b can be replaced by
the following (provided that it exists):
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b(F ) = lim sup
‖Fx‖
‖x‖ , where ‖x‖ → ∞.

Indeed, for a sufficiently small ε > 0, there exists a = a(ε) ≥ 0, such that:

‖Fx‖ ≤ a + (b(F )+ ε) ‖x‖ .

It is easier to check the conditions of Theorem 3 if F has sublinear growth. We
consider it in more details below.

Corollary 2 Assume the following conditions hold:

1. there exist a, b ≥ 0, and 0 ≤ δ < 1, such that for all x ∈ X it holds that
‖Fx‖ ≤ a + b ‖x‖δ;

2. there exist c, d ≥ 0, such that for all x ∈ X there exists u ∈ kerL, such that
u = u(x), F(x + u) ∈ R(L), and ‖u‖ ≤ c + d ‖x‖.

Then Eq. (1) has at least one solution.

Proof It is enough to observe that for 0 ≤ δ < 1 inequality

a + b(r + (c + dr))δ ≤ q0(L)r

has r0 as a positive solution. �
Certain difficulties may arise when one applies the above-mentioned statements

to specific boundary value problems, which can be expressed in the form of Eq. (1)
with a non-invertible operator L. To be more specific, in the said cases it might be
problematic to verify the condition 2 of Theorem 2 (or similar conditions of other
statements).

For the sake of simplicity, let us consider the case when indL = 0. Let n =
dim kerL and J1 : Rn → kerL, and J2 : Y0 → Rn be fixed isomorphisms. For
an arbitrary fixed z ∈ X0 we define the mapping �z : Rn → Rn by the following
equality:

�z(α) = J2Q
cF(z+ J1α),

where Qc = I −Q is an additional projection operator.
Let B(r) = {α | α ∈ Rn, |α| < r} be an open ball of radius r > 0 in Rn. We use

deg(�z, B(r)) to denote the Brouwer degree [11] of �z : Rn → Rn relative to a
ball of radius r > 0 centered at zero. To verify the mentioned above condition, one
may require, for example, that for all x ∈ X0, there exists r = r(z) > 0, such that
deg(�z, B(r)) �= 0 and r ≤ d ‖z‖.

Taking into account the number of the existing approaches to verify the condition
deg(�z, B(r)) �= 0, we can talk about efficient sufficient conditions that ensure the
existence of a solution to the Eq. (1).
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4 Application

As an example of the application of the statements, obtained in Sect. 3, we consider a
periodic boundary value problem for an ordinary second-order differential equation:

x′′(t) = f (t, x(h(t))), t ∈ [0, ω], (2)

x(0) = x(ω), x′(0) = x′(ω), (3)

where f : [0, ω] × R1 → R1 satisfies Carathéodory’s criterion, h : [0, ω] → R1 is
measurable, and h([0, ω]) ⊂ [0, ω].

We consider (2)–(3) on the space W2 = W2[0, ω] of the functions x : [0, ω] →
R1, which have an absolutely continuous derivative and such that x′′ ∈ L2[0, ω].
We define the norm in W2 by

‖x‖W = |x(0)| + |x′(0)| + ∥∥x′′∥∥
L2
.

Consider the space X = {x | x ∈ W2, x(0) = x(ω), x′(0) = x′(ω)} and define the
operators L,F : X → Y, Y = L2 by

(Lx)(t) = x′′(t), (Fx)(t) = f (t, x(h(t))).

Now we consider (2)–(3) as an operator Eq. (1). Obviously:

kerL = {x | x ∈ X, x(t) ≡ const},

R(L) =
{

y | y ∈ Y,

∫ ω

0
y(s) ds = 0

}

.

We define the projection operators P : X → X, Q : Y → Y by

(Px)(t) = x(0),

(Qy)(t) = y(t)− 1

ω

∫ ω

0
y(s) ds.

Further we will be using the following inequalities. For an arbitrary x ∈ W2 the
following estimation holds:

|x(t)| ≤ γ ‖x‖W , t ∈ [0, ω],

where γ = max
{
1, ω, ω

√
ω
3

}
.

Lemma 1 The relative surjectivity coefficient of L : X → Y, Lx = x′′ has the
estimation

(
1+

√
ω
3

−1) ≤ q0(L).
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Proof A direct verification shows that the generalized inverse operator Kp :
R(L)→ X, associated with the projector Px = x(0) has the following form:

(Kpy)(t) =
∫ t

0
(t − s)y(s) ds + t

ω

∫ ω

0
sy(s) ds.

Hence,

∥
∥Kpy

∥
∥
W
≤ ‖y‖L2

+ 1

ω

(
ω

3

) 1
2 ‖y|L2

≤
(

1+
√
ω

3

)

‖y‖L2
.

Thus,
∥
∥Kp

∥
∥ ≤ 1+

√
ω
3 . Since

∥
∥Kp

∥
∥−1 ≤ q0(L), the statement of the lemma holds.

�
Theorem 4 Let the following conditions hold:

1. there exist non-negative constants a, b, such that |f (t, u)| ≤ a + b|u|, and
(t, u) ∈ [0, ω] × R1;

2. there exists u > 0, such that for all u ∈ R1, |u| > u∗, t ∈ [0, ω] it holds that
sign(u)f (t, u) ≥ 0 (sign(u)f (t, u) ≤ 0);

3. bγ
√
ω(1+ γ ) <

(
1+

√
ω
3

)−1
.

Then, there exists at least one solution for (2)–(3).

Proof To prove the theorem, we use Corollary 1. Note that due to condition 1 of
Theorem 4, and since W2 ⊂ L2 is completely continuous, we have that the operator
F : W2 → L2 defined by the equality F(x)(t) = f (t, x(h(t))) is completely
continuous.

It is not hard to verify that |x(h(t))| ≤ γ ‖x‖W . Due to condition 1 of Theorem 4,
we have

|f (t, x(h(t)))| ≤ a + bγ ‖x‖W , x ∈ X, t ∈ [0, ω].

Hence, ‖Fx‖L2
≤ (a + bγ ‖x‖W)

√
ω. Thus, condition 1 of Corollary 1 holds.

For certainty we will check condition 2 of Corollary 1 assuming that:

sign(u)f (t, u) ≥ 0,

for all u ∈ R1, |u| > u∗, t ∈ [0, ω]. We fix x ∈ X and define �x : R1 →1 by

�x(C) =
∫ ω

0
f (s, x(h(s))+ C) ds.

Let C1 = u∗ + γ ‖x‖W . Then for all C ≥ C1 it holds that x(h(t)) + C > u∗,
hence �x(C) ≥ 0. Similarly, �x(C) ≤ 0 for all C ≤ C2 = −u∗ − γ ‖x‖W . Due
to the continuity of �, there exists a constant C̃ = C(x), which satisfies |C̃| ≤
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max {|C1|, |C2|} ≤ γ ‖x‖W + u∗, and such that �x(C̃) = 0. Thus, condition 2 of
Corollary 1 holds.

For the case sign(u)f (t, u) ≤ 0, the proof follows the same lines. �
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A Control Problem for a System of ODE
with Nonseparated Multipoint
and Integral Conditions

V. M. Abdullayev

Abstract Using gradient-type methods is proposed to solve a control problem
with nonseparated multipoint and integral conditions. Therefore, formulas for the
gradient of the objective functional are obtained in this study. For the numerical
solution of nonlocal direct and conjugate boundary value problems, an approach
is proposed that allows folding the integral terms into local ones and then using
an analog of the transfer of conditions. As a result, the solving of nonlocal
boundary value problems is reduced to the solving of specially constructed Cauchy
problems and one system of linear equations. An analysis of the obtained results of
computational experiments is carried out.

1 Introduction

Recently, there has been an increase in research on boundary value problems with
nonlocal conditions and corresponding control problems.

Note that boundary value problems with nonlocal conditions were started in
[1–3] and then continued in the studies of many authors both for equations with
ordinary and partial derivatives [4–10]. Control in boundary value problems with
nonlocal multipoint integral conditions also aroused great interest [11–17]. Various
studies have been carried out in this area, including the necessary conditions for
optimality.

For linear nonlocal boundary value problems, numerical methods based on the
sweep method are proposed in [18–22]. To take into account the integral conditions,
many authors propose to reduce them to problems with multipoint conditions. For
this, it was required to introduce new variables and, accordingly, to increase the
dimension of the system of differential equations.
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We have studied an approach to the numerical solution of boundary value
problems with integral conditions, which does not require an increase in the
dimension of the system, and its application to solving the considered control
problems. Analytical formulas for the gradient of the objective functional are
obtained to use gradient methods for solving optimal control problems. The results
of computational experiments and their analysis are given.

2 An Analysis of the Problem under Investigation
and Obtaining Basic Formulas

Let the controlled process be described by the following ODE system:

ẋ(t) = A (t, u) x(t)+ B (t, u) , t ∈ [t0, T ] . (1)

Here x(t) ∈ En is a phase variable; piecewise continuous function u(t) ∈ U ⊂ Er

is a control vector function, compact set U is admissible values of control, and n-
dimensional square matrix A(t,u) �= const and the n-dimensional vector function
B(t, u) are continuous with respect to t and continuously differentiable with respect
to u.

The following conditions are given:

l1∑

i=1

t2i∫

t2i−1

Di (τ) x (τ ) dτ +
l2∑

j=1

D̃j x
(
t̃j
) = C0. (2)

Here Di (τ), D̃j are (n × n)-dimensional given matrices and Di (τ) is continuous;
C0 is the n-dimensional given vector; t i , t̃j are given time instances from [t0, T];
t i+1 > ti , t̃j+1 > t̃j , i = 1, . . . , 2l1 − 1, j = 1, . . . , l2 − 1; and l1, l2 are given.

We assume that, first,

min
(
t1, t̃1

) = t0, max
(
t2l1 , t̃l2

) = T (3)

and, second, condition

t̃j∈
[
t2i−1, t2i

]
(4)

is satisfied for all i = 1, . . . , 2l1, j = 1, . . . , l2.
It is required to determine the admissible control u(t) ∈ U and the corresponding

solution x(t) to the nonlocal boundary value problem (1), (2), such that the pair (x(t),
u(t)) minimizes the following objective functional:
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J (u) = Φ
(
x̂
(
t̂
))+

T∫

t0

f 0 (x, u, t) dt → min
u(t)∈U, (5)

where the given function � is continuously differentiable and f0(x, u, t) is con-
tinuously differentiable with respect to (x, u) and continuous with respect to t;
t̂ = (

t̂1, t̂2, . . . , t̂2l1+l2
)

is the ordered union of the sets t̃ = (
t̃1, t̃2, . . . , t̃l2

)
and

t = (
t1, t2, . . . , t2l1

)
, i.e., t̂j < t̂j+1, j = 1, . . . , 2l1 + l2 − 1 and x̂

(
t̂
) =(

x
(
t̂1
)
, x
(
t̂2
)
, . . . , x

(
t̂2l1+l2

))
.

The fundamental difference of problem statement (1)–(5) from the optimal con-
trol problems considered, for example, in [12–14] lies in nonseparated nonlocal inte-
gral and multipoint conditions (2). By introducing some new phase variables, prob-
lem (1)–(5) can be reduced to a problem involving multipoint conditions. To demon-
strate this, introduce new phase vector X(t) = (

x1(t), . . . , xl1+1(t)
)
, x1(t) =

x(t), which is the solution to the following differential equations system:

ẋ1(t) = A (t, u) x1(t)+ B (t, u) ,

ẋi+1(t) = Di(t)x
1(t), t ∈ (t2i−1, t2i

]
, i = 1, . . . , 2l1,

(6)

involving the following initial conditions:

xi+1 (t2i−1
) = 0, i = 1, . . . , 2l1. (7)

Then conditions (2) takes the following form:

l1∑

i=1

xi+1 (t2i
)+

l2∑

j=1

D̃j x
1 (t̃j

) = C0. (8)

Systems (6)–(8) are obviously equivalent to (1) and (2). In systems (6) and (7),
there are (l1 + 1)n differential equations with respect to the phase vector X(t), and
there is the same number of conditions in (7) and (8). Obviously, the drawback
of boundary problem (6), (7) is its high dimension. This is an essential point
for numerical methods of solution to boundary problems based, as a rule, on the
methods of sweep or shift of boundary conditions [18–22]. Also, the increase of
the dimension of the phase variable complicates the solution to the optimal control
problem itself due to the increase of the dimension of the adjoint problem.

Note that if we use the approach proposed in [22], then at the expense of
the additional increase of the dimension of the phase variable vector up to
2(l1 + l2 + 1)(l1 + 1)n, problem (6)–(8) can be reduced to a two-point problem
involving nonseparated boundary conditions.

Using the technique of the works [23–26], we can obtain existence and unique-
ness conditions for the solution to problem (1), (2) under every admissible control
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u ∈ U, without reducing it to a problem involving multipoint conditions (8). But this
kind of investigation is not the objective of the present work.

In the present work, we propose an approach to the numerical solution to both
boundary problem (1), (2) and to the corresponding optimal control problem. This
approach does not require increase of the order of the differential equations system
and of the phase vector.

Assume that under every admissible control u(t) ∈U, there is a unique solution to
problem (1), (2). For this purpose, we assume that the parameters of problem (1), (2),
after reducing it to (6)–(8), satisfy the conditions proposed in [2, 23–26] dedicated
to differential equations systems involving multipoint and two-point conditions.

To apply gradient methods to solving optimal control problem (1)–(5), we obtain
the formulas for the gradient of the functional.

Suppose that (u(t), x(t; u)) is an arbitrary admissible process and the control u(t)
has received an increment �u(t): ũ = u + Δu. Then the phase variable x̃(t) =
x(t)+Δx(t) will also receive increments, and the following takes place:

Δẋ(t) = A (t, u)Δx(t)+ΔuA (t, u) x(t)+ΔuB (t, u) , t ∈ [t0, T ] , (9)

l1∑

i=1

t2i∫

t2i−1

Di (τ)Δx (τ) dτ +
l2∑

j=1

D̃jΔx
(
t̃j
) = 0. (10)

Here we use the following designations:

Δx(t)=x (t, ũ)−x (t, u) , ΔuA (t, u)=A (t, ũ)−A (t, u) , ΔuB (t, u)=B (t, ũ)−B (t, u) .

Consider the as-yet arbitrary almost everywhere continuously differentiable
vector function ψ(t) ∈ Rn and vector λ ∈ Rn. To calculate the increment of the
functional, taking into account (9)–(10) and (1)–(2), we have

J (u)=Φ (x̂ (t̂))+
T∫

t0

f 0 (x, u, t) dt+
T∫

t0

ψ∗(t)
[
ẋ(t)−A

(
t, u )x(t)−B( t, u

)]
dt+

+ λ∗
[

l1∑

i=1

t2i∫

t2i−1

Di (τ) x (τ ) dτ +
l2∑

j=1
D̃j x

(
t̃j
)− C0

]

,

J (u+Δu) = Φ
(
x̂
(
t̂
)+Δx̂

(
t̂
))+

T∫

t0

f 0 (x +Δx, u+Δu, t) dt+

+
T∫

t0

ψ∗(t)
[
(ẋ +Δẋ)− A

(
t, u+Δu )(x +Δx)− B( t, u+Δu

)]
dt+

+ λ∗
[

l1∑

i=1

t2i∫

t2i−1

Di (τ) (x (τ )+Δx (τ)) dτ +
l2∑

j=1
D̃j

(
x
(
t̃j
)+Δx

(
t̃j
))− C0

]

,
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where * is the transposition operation. Using the formula for integration by parts,
we obtain

ΔJ(u) =
T∫

t0

[

−ψ̇∗(t)− ψ∗(t)A (t, u)+ λ∗
l1∑

i=1

[
χ
(
t2i
)− χ

(
t2i−1

)]
Di(t)+ f 0

x (x, u, t)

]

Δx(t)dt+

+
T∫

t0

{
f 0
u (x, u, t)+ ψ∗(t)

[
−A∗u (t, u) x(t)− Bu

(
t, u
)]}

Δu(t)dt+

+
2l1+l2−1∑

k=2

[

ψ∗−
(
t̂k
)− ψ∗+

(
t̂k
)+ ∂Φ

(
x̂
(
t̂
))

∂x
(
t̂k
)

]

Δx
(
t̂k
)

+
l2∑

j=1
λ∗D̃jΔx

(
t̃j
)+ ψ∗(T )Δx(T )− ψ∗ (t0)Δx (t0)+

+
T∫

t0

o1 (‖Δx(t)‖) dt +
T∫

t0

o2 (‖Δu(t)‖) dt + o3
(∥
∥Δx̂

(
t̂k
)∥
∥
)
,

(11)

where ψ+ (t̂k
) = ψ

(
t̂k + 0

)
, ψ− (t̂k

) = ψ
(
t̂k − 0

)
, k = 1, . . . , (2l1 + l2),

χ(t)− is the Heaviside function.
o1(‖�x(t)‖), o2(‖�u(t)‖), o3

(∥
∥Δx̂

(
t̂k
)∥
∥
)

are the quantities of less than the first
order of smallness.

Henceforth, the norms of the vector functions ‖x(t)‖ and ‖u(t)‖ are understood
(see [27]) as ‖x(t)‖Ln

2[t0,T ] and ‖u(t)‖Lr
2[t0,T ], respectively.

Au (t, u) =
((

∂Aij (t, u)

∂us

))

and Bu (t, u) =
((

∂Bi (t, u)

∂us

))

are considered as matrices of the dimensions (n × n × r) and (n × r), respectively.
Applying the transposition operation to these matrices, we obtain the matrices
A∗u (t, u) and B∗u (t, u) of the dimensions (n × r × n) and (r × n).

We require that ψ(t) be a solution to the following nonlocal boundary value
problem:

ψ̇(t) = −A∗ (t, u) ψ(t)+
l1∑

i=1

[
χ
(
t2i
)− χ

(
t2i−1

)]
D
∗
(t)λ+ f 0∗

x (x, u, t) ,

(12)

ψ (t0) =
⎧
⎨

⎩

(
∂Φ(x̂(t̂))
∂x(t̃1)

)∗ + D̃∗
1λ, f or t0 = t̃1,

(
∂Φ(x̂(t̂))
∂x(t1)

)∗
, f or t0 = t1,

(13)
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ψ(T ) =

⎧
⎪⎪⎨

⎪⎪⎩

−
(
∂Φ(x̂(t̂))
∂x
(
t̃l2

)

)∗
− D̃∗

l2
λ, f or t̃l2 = T ,

−
(
∂Φ(x̂(t̂))
∂x
(
t2l1

)

)∗
, f or t2l1 = T ,

(14)

ψ+ (t̃j
)− ψ− (t̃j

) =
(
∂Φ
(
x̂
(
t̂
))

∂x
(
t̃j
)

)∗
+ D̃∗

j λ, j = 1, 2, . . . l2, (15)

ψ+ (t i
)− ψ− (t i

) =
(
∂Φ
(
x̂
(
t̂
))

∂x
(
t i
)

)∗
, i = 1, 2, . . . 2l1. (16)

Instead of (12) and (15)–(16), we can use a differential equations system involving
impulse actions:

ψ̇(t) = −A∗ (t, u) ψ(t)+
l1∑

i=1

[
χ
(
t2i
)− χ

(
t2i−1

)]
D
∗
(t)λ

+
l2∑

j=1

[(
∂Φ(x̂(t̂))
∂x
(
t̃ν1

)

)∗
+ D̃∗

j λ

]

δ
(
t − t̃j

)+

+
l1∑

i=1

(
∂Φ(x̂(t̂))
∂x(ti)

)∗
δ
(
t − t i

)+ f 0∗
x (x, u, t) .

(17)

Here δ(·) is the delta function. Problems (12)–(16) and (17), (13), and (14) are
equivalent. Numerical schemes of their approximation and the solution algorithms
used are identical.

To obtain estimates of o1(‖�x(t)‖) and o3
(∥
∥Δx̂

(
t̂
)∥
∥
)

by known methods by
increasing the dimension of the system, we can reduce the considered boundary
value problem (1), (2) to the Cauchy problem and obtain the estimate of the form:

‖Δx(t)‖ ≤ c ‖Δu(t)‖ , (18)

where c = const > 0 does not depend on u(t) [15–17].
From formula (11), taking into account that the gradient of the objective

functional is determined by the linear part of the functional increment, we have

(∇J (u))∗ = f 0
u (x, u, t)+ ψ∗(t)

[
−A∗u (t, u) x(t)− Bu

(
t, u
)]

. (19)

The functions x(t) and ψ(t) here are, for this control, the solutions to nonlocal
boundary value problem (1), (2) and the conjugate boundary value problem (12)–
(16).
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For the numerical solution of the problem, we use methods of minimization of
the gradient type, in particular the well-known method of gradient projection [27]:

uk+1(t) = PU
(
uk(t)− αk ∇ J

(
uk(t)

))
, k = 0, 1, . . . ,

αk = arg min
α≥0

J
(
PU
(
uk(t)− α ∇J (uk(t)))) , (20)

where PU(υ) is the operator of projection of the element υ ∈ Er on the set U.
There are two computational difficulties in calculating the gradient of the

functional. They are related to the problem of solving direct nonlocal boundary
value problem (1), (2) and the conjugate boundary value problem (12)–(16) with an
unknown vector λ. It is clear that in system of relations (1), (2), and (12)–(1.16), for
a given control u(t), we need to determine 2n unknown components of the vector
functions x(t), ψ(t), 2n their initial values, and n component of the vector λ. For
this, there are 2n differential Eqs. (1) and (12), n condition (2), and 2n conditions
(13) and (14).

Proposed below is an algorithm based on the use of the one developed in [13, 18,
21], an operation of shifting conditions for solving systems of ODE with boundary
conditions that also include unknown parameters [28, 29]. The proposed operation
of shifting intermediate conditions generalizes the well-known operation of transfer
of boundary conditions and extends the results of [13, 18, 21] to this class of
problems.

3 Numerical Scheme of Solution to the Problem

One of the approaches to the numerical solution to problem (1), (2) could be the
reduction of (1) and (2) to a problem involving nonseparated point conditions (6)–
(8) by means of introduction of some new variables.

As stated in the first paragraph, the obvious drawback of such an approach is
the need for increasing the order of the system, which complicates carrying out the
operations of sweep and of shift of the functional matrix of the respective order (see
[13, 18, 21]).

Below, we propose and investigate the scheme of the method of reduction of
conditions (2) to initial conditions, which do not require increasing the dimension
of the differential equations system. For this purpose, we transform first (2) to an
integral form.

Introduce the following (n × n) matrix function:

D(t) =
l1∑

i=1

[
χ
(
t2i
)− χ

(
t2i−1

)]
Di(t)+

l2∑

j=1

D̃j δ
(
t − t̃j

)
. (21)

Function Di(t) is as follows:
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Di(t) =
{
Di(t), t ∈ [t2i−1, t2i

]
,

0, t /∈ [t2i−1, t2i
]
.

From (21), it follows that

D(t) ≡ 0 for t /∈ l1∪
i=1

[
t2i−1, t2i

] ∪
(

l2∪
j=1

t̃j

)

.

In view of (3) and (4), conditions (2) can be written in the equivalent matrix form:

T∫

t0

D (τ) x (τ) dτ = C0, (22)

or each of n conditions in (22) can be written separately:

T∫

t0

Dν (τ) x (τ ) dτ = C0ν, ν = 1, . . . , n, (23)

where Dν(τ ) is the ν th n-dimensional row of the matrix function D(τ ).
Now, in order to replace integral conditions (22) with local (point) initial

conditions, we use an operation that is similar to the transfer operation (sweep)
of conditions, which we call a convolution operation.

Introduce n− dimensional vector functions:

C(t) =
t∫

t0

D (τ) x (τ) dτ, C(t) =
T∫

t

D (τ) x (τ ) dτ, (24)

for which, the following relations obviously take place:

C (t0) = C(T ) = 0, C(T ) = C (t0) = C0. (25)

Definition Matrix functions α(t), α(t) of the dimension n × n and n-dimensional
vector functions β(t), β(t) convolve integral conditions (22) into point conditions
at the right and left ends, respectively, if for any solution x(t) to system (1), there
holds the following conditions:

t∫

t0

D (τ) x (τ) dτ = α(t)x(t)+ β(t), t ∈ [t0, T ] , (26)
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T∫

t

D (τ) x (τ ) dτ = α(t)x(t)+ β(t), t ∈ [t0, T ] . (27)

From (26) and (27) in view of (24) and (25), it follows that

α(T )x(T )+ β(T ) = C(T ) = C0, (28)

α (t0) x (t0)+ β (t0) = C (t0) = C0. (29)

Each of conditions (28) and (29) represents a local boundary condition. Pairs
α(t), β(t) and α(t), β(t) are called functions convolving integral conditions (22)
into point conditions from left to right and from right to left, respectively.

Denote by On × n a matrix of the dimension (n × n) with null elements, In × n is
the identity matrix of order n, and by On an n-dimensional vector with null elements.
The following theorem takes place.

Theorem 1 If functions α(t), β(t) are the solution to the following Cauchy
problems:

α̇(t) = −α(t)A(t)+D(t), α (t0) = On×n, (30)

β̇(t) = −α(t)B(t), β (t0) = On, (31)

then these functions convolve integral conditions (22) from left to right into point
condition (28).

Proof Assume that there exists the dependence:

C(t) = α(t)x(t)+ β(t), t ∈ [t0, T ] . (32)

Here α(t), β(t) are as-yet arbitrary matrix and vector functions of the dimensions
n × n and n, respectively, which satisfy conditions (31). Then obviously

α (t0) = On×n, β (t0) = On.

Differentiating (32) and taking (1) and (23) into account, we have

[α̇(t)+ α(t)A(t)−D(t)] x(t)+ [β̇(t)+ α(t)B(t)
] = 0. (33)

Taking the arbitrariness of the functions α(t), β(t) into account, as well as the
fact that (33) must be satisfied for all the solutions x(t) to system (1), then it is
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necessary to set each of the expressions in two brackets (33) equal to 0, i.e., to
satisfy conditions (30) and (31) of the lemma1.

The following theorem is proven similarly.

Theorem 2 If functions α(t), β(t) are the solution to the following Cauchy
problems:

α̇(t) = −α(t)A(t)−D(t), α(T ) = On×n, (34)

β̇(t) = −α(t)B(t), β(T ) = On, (35)

then these functions convolve integral conditions (22) from right to left into point
conditions (29).

Thus, to solve problem (1), (2), it is necessary to solve Cauchy problems (30)
and (31) or (34) and (35), to obtain the n th order of linear algebraic system (28) or
(29), respectively, then x(T) or x(t0) is determined from (28) or (29). They can be
used as initial conditions for solving the Cauchy problem with respect to the main
system (1).

The choice of the convolution scheme applied to conditions (2) from right to left
or vice versa depends on the properties of the matrix A(t), namely, on its eigenvalues.
If they are all positive, then systems (30) and (31) are steady; if they are all negative,
then systems (34) and (35) are steady. If some eigenvalues of the matrix A(t) are
positive, and the other are negative, and their absolute values are large, then both
systems have fast-increasing solutions, and therefore their numerical solution is
unsteady, and it can result in low accuracy. In this case, it is recommended to use the
convolving functions which are proposed in the following theorem and which have
linear growth in time.

Theorem 3 If n-dimensional vector function gν1 (t) and scalar functions gν2 (t) and
mν(t) are the solution to the following nonlinear Cauchy problems:

ġν1 (t) = S(t)gν1 (t)− A∗(t)gν1 (t)+mνDν∗(t), gν1 (t0) = 0n, (36)

ġν2 (t) = S(t)gν2 (t)− B∗(t)gν1 (t), g
ν
2 (t0) = 0, (37)

ṁν(t) = S(t)mν(t), mν (t0) = 1, (38)
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S(t) =
[

1
2(T−t0) + gν

∗
1 (t)A(t)gν1 (t)+mν(t)Dν(t)gν1 (t)− B∗(t)gν1 (t)g

ν
2 (t)

]

[
gν

∗
1 (t)gν1 (t)+

(
gν2 (t)

)2
] ,

(39)

then the functions gν1 (t), g
ν
2 (t) convolve the ν th integral condition (23) from left to

right, and the following relation takes place:

g1
ν∗(t)g1

ν(t)+ (g2
ν(t)
)2 = (t − t0) / (T − t0) , t ∈ [t0, T ] . (40)

Proof Multiply the ν th equality from (32) by as-yet arbitrary function mν(t) that
satisfy the following condition:

mν (t0) = 1, (41)

and obtain

mν(t)C
ν
(t) = mν(t)αν(t)x(t)+mν(t)β

ν
(t).

Introduce the notation

g1
ν(t) = mν(t) αν(t), g2

ν(t) = mν(t) β
ν
(t). (42)

It is clear that

gν1 (t0) = 0n, gν2 (t0) = 0.

Choose the function mν(t) in such a way that condition (40) holds, i.e., we require
the linear growth of the sum of squares of the convolving functions.

Differentiating (40), we obtain

2
(
ġν1 (t), g

ν
1 (t)

)+ 2ġν2 (t)g
ν
2 (t) = 1/ (T − t0) . (43)

Differentiating (42) and taking (30) into account, it is not difficult to obtain

ġν1 (t) =
ṁν(t)

mν(t)
g1

ν(t)− A∗(t)gν1 (t)+mν(t)Dν∗(t), (44)

ġν2 (t) =
ṁν(t)

mν(t)
g2

ν(t)− B∗(t)g1
ν(t). (45)

Substituting the derivatives obtained into (43), we have
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(
ṁν (t)
mν(t)

gν1 (t)− A∗(t)gν1 (t)+mν(t)Dν∗(t), gν1 (t)
)
+

+ ṁν (t)
mν(t)

(
gν2 (t)

)2 − B∗(t)g1
ν(t)gν2 (t) = 1

2(T−t0) .

From here, in view of notation (39), it is not difficult to obtain Eq. (38).
Substituting (38) into (45) and (46), we obtain Eqs. (36) and (37).

For simplicity of notation, we suppose that t̃1 = t0 and t̃l2 = T , and write
conjugate problem (12)–(15) in a sufficiently general form:

ψ̇(t) = A1(t)ψ(t)+
l1∑

i=1

[
χ
(
t2i
)− χ

(
t2i−1

)]
Di(t)λ+ C(t), (46)

G̃1ψ (t0) = K̃1 + D̃1λ, (47)

ψ(T ) = −K̃l2 − D̃l2λ, (48)

ψ+ (t̃j
)− ψ− (t̃j

) = K̃j + D̃jλ, j = 2, 3, . . . , l2 − 1, (49)

and at the points t i , for which t0 < ti < T , i = 1, 2, . . . 2l1:

ψ+ (t i
)− ψ− (t i

) = Ki, i = 1, 2, . . . 2l1. (50)

Here, we used the notation G1 = In – n-dimensional matrix, all elements of which
are equal to 1:

A1(t) = −A∗ (t, u) , C(t) = ∂f 0 (x, u, t) /∂x, K̃j = ∂Φ
(
x̂
(
t̂
))
/∂x

(
t̃j
)
,

D̃∗
j = D̃j , j = 1, . . . , l2, D

∗
i (t) = Di(t), i = 1, 2, . . . ., l1,

Ki = ∂Φ
(
x̂
(
t̂
))
/∂x

(
t i
)
, i = 1, . . . , 2l1.

As indicated above, problem (46)–(51) include n differential Eqs. (46), 2n
boundary conditions, and an unknown vector λ ∈ Rn. It is clear that problems (46)–
(49) are a closed one.

We say that the matrix and vector functions G1(t), D1(t) ∈ Rn × n and K1(t) ∈ Rn

are such that

G1 (t0) = G1
(
t̃1
) = G̃1, K1 (t0) = K1

(
t̃1
) = K̃1, D̃1 (t0) = D̃1

(
t̃1
) = D̃1,

(51)

shift condition (47) to the right if for the solution of (46) – ψ(t) the following takes
place:
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G1(t)ψ(t) = K1(t)+D1(t)λ, t ∈ [t̃1, t̃2
)
. (52)

To obtain the functions of shifting G1(t), D1(t), we use the results of [23]. Using
formula (52), we shift the initial conditions (50) to the point t = t̃2−0 and, thereby,
condition (49) for the point t = t̃2 + 0:

G1
(
t̃2
)
ψ
(
t̃2 + 0

) =
[
K1
(
t̃2
)+G

(
t̃2
)
K̃2

]
+
[
D1
(
t̃2
)+G1

(
t̃2
)
D̃2

]
λ.

Denoting

t̃2=t̃2+0, G̃1
1=G1

(
t̃2
)
, K̃1

1=K1
(
t̃2
)+G (t̃2

)
K̃2, D̃1

1=D1
(
t̃2
)+G1

(
t̃2
)
D̃2,

at the point t̃2, we obtain conditions equivalent to condition (47):

G̃1
1ψ
(
t̃2
) = K̃1

1 + D̃1
1λ.

Repeating the above procedure l2 − 1 times, taking into account (50), we obtain
a system of 2n equations relative to ψ

(
t̃l2
) = ψ(T ) and λ. Determining ψ(T) and

λ from the solution to the Cauchy problem for Eq. (46), the vector function ψ(t) is
determined from right to left.

Let us consider in more detail the implementation of the stages of the process
of shifting condition (47). Suppose

[
t1, t2

] ⊂ [t̃1, t̃2
)

and t̃1 = t0. The shift of the
condition is carried out in stages for the intervals

[
t̃1, t1

)
,
[
t1, t2

)
, and

[
t2, t̃2

)
, using

formula (52).
1) First, at t ∈ [t̃1, t1

)
, we shift initial condition (47) to the point t = t1 − 0.

Then, taking into account jump conditions (50) for the point t = t1, we will obtain

G1
(
t1
)
ψ
(
t1 + 0

) = [K1
(
t1
)+G1

(
t1
)
K1
]+D1

(
t1
)
λ.

Denoting

t1 = t1 + 0, G̃1
1 = G1

(
t1
)
, K̃1

1 = K1
(
t1
)+G1

(
t1
)
K1, D̃1

1 = D1
(
t1
)
,

at the point t1, we obtain conditions equivalent to the initial conditions:

G̃1
1ψ
(
t1
) = K̃1

1 + D̃1
1λ. (53)

2) At t ∈ [t1, t2
)
, we shift condition (53) to the point t = t2 − 0, and taking into

account jump conditions (50) for the point t = t2, we will obtain

G1
(
t2
)
ψ
(
t2 + 0

) = [K1
(
t2
)+G1

(
t2
)
K2
]+D1

(
t2
)
λ.
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Denoting

t2 = t2 + 0, G̃2
1 = G1

(
t2
)
, K̃2

1 = K1
(
t2
)+G1

(
t2
)
K2, D̃2

1 = D1
(
t2
)
,

at the point t2, we obtain conditions equivalent to the condition (53):

G̃2
1ψ
(
t2
) = K̃2

1 + D̃2
1λ. (54)

3) At t ∈ [t2, t̃2
)
, we shift condition (54) to the point t = t̃2 − 0, and taking into

account jump conditions (49) for the point t = t̃2, we will obtain

G1
(
t̃2
)
ψ
(
t̃2 + 0

) = [K1
(
t̃2
)+G1

(
t̃2
)
K2
]+

[
D1
(
t̃2
)+G1

(
t̃2
)
D̃2

]
λ.

Denoting

t̃2 = t̃2 + 0, G̃3
1 = G1

(
t̃2
)
, K̃3

1 = K1
(
t̃2
)+G1

(
t̃2
)
K2, D̃3

1 = D1
(
t̃2
)+G1

(
t̃2
)
D̃2,

at the point t̃2, we obtain conditions equivalent to the conditions (54):

G̃3
1ψ
(
t̃2
) = K̃3

1 + D̃3
1λ. (55)

Obviously, the functions Gj(t), Kj(t), Dj(t), j = 1, . . . , l2 satisfying (51) and
(52) are not uniquely defined. The following theorem includes functions that can be
used to shift conditions.

Theorem 4 Suppose the functions G1(t), K1(t), D1(t) are the solution to the
following Cauchy problems:

Ġ1(t) = Q0(t)G1(t)−G1(t)A1(t), G1
(
t̃1
) = G̃1,

Ḋ1(t) = Q0(t)D1(t)+G1(t)
l1∑

i=1

[
χ
(
t2i
)− χ

(
t2i−1

)]
Di(t), D1

(
t̃1
) = D̃1,

K̇1(t) = Q0(t)K1(t)+G1(t)C(t), K1
(
t̃1
) = K̃1,

Q̇(t) = Q0(t)Q(t), Q
(
t̃1
) = In×n,

Q0(t) =
[

G1(t)A1(t)G
∗
1(t)−G1(t)

l1∑

i=1

[
χ
(
t2i
)− χ

(
t2i−1

)]
Di(t)D

∗
1 (t)−G1(t)C(t)K

∗
1 (t)

]

×

× [G1(t)G
∗
1(t)+D1(t)D

∗
1 (t)+K1(t)K

∗
1 (t)

]−1
.

(56)

Then relation (52) is true for these functions on the half-interval t ∈ [t̃1, t̃2
)
, and

the following condition is satisfied:

‖G1(t)‖2
Rn×n + ‖D1(t)‖2

Rn×n + ‖K1(t)‖2
Rn =

∥
∥
∥G̃1

∥
∥
∥

2

Rn×n +
∥
∥
∥D̃1

∥
∥
∥

2

Rn×n +
∥
∥
∥K̃1

∥
∥
∥

2

Rn

= const, t ∈ (t̃1, t̃2
)
.

(57)
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Proof Differentiating expression (52).
Ġ1(t)ψ(t) + G1(t)ψ̇(t) = K̇1(t) + Ḋ1(t)λ,and taking (46) into account, we

come to the equality.

Ġ1(t)ψ(t)+G1(t)

⎡

⎣A1(t)ψ(t)+
l1∑

i=1

[
χ
(
t2i
)− χ

(
t2i−1

)]
Di(t)λ+ C(t)

⎤

⎦ = K̇1(t)+ Ḋ1(t)λ.

After grouping, we obtain the following equation:

[
Ġ1(t)+G1(t)A1(t)

]
ψ(t)+

[

−Ḋ1(t)+G1(t)

l1∑

i=1

[
χ
(
t2i
)−χ (t2i−1

)]
Di(t)

]

λ

+ [−K̇1(t)+G1(t)C(t)
] = 0.

Setting the expressions in brackets equal to 0, we obtain

Ġ1(t) = −G1(t)A1(t), Ḋ1(t) = G1(t)

l1∑

i=1

[
χ
(
t2i
)− χ

(
t2i−1

)]
Di(t),

K̇1(t) = G1(t)C(t).

(58)

The functions G1(t), K1(t), D1(t), which are the solution to Cauchy problems
(58) and (51), satisfy condition (52), i.e., they shift condition (47) from the point
t̃1 = t0 to the point t̃2. But numerical solution to Cauchy problems (58) and
(51), as is known, confronts with instability due to the presence of fast-increasing
components. This is because the matrix A(t) often has both positive and negative
eigenvalues. That is why we try to find shifting functions that satisfy condition
(2.37).

Multiply both parts of (52) by an arbitrary matrix function Q(t) such that

Q(t0) = In×n, rang Q(t) = n, t ∈ [t̃1, t̃2
)
,

and introduce the notations

g(t) = Q(t)G1(t), q(t) = Q(t)D1(t), r(t) = Q(t)K1(t). (59)

From (52), it follows that

g(t)ψ(t) = r(t)+ q(t)λ. (60)

Differentiating (59) and taking (58) into account, we obtain



26 V. M. Abdullayev

ġ(t) = Q̇(t)G1(t)+Q(t)Ġ1(t) = Q̇(t)Q−1(t)g(t)− g(t)A1(t), (61)

q̇(t)=Q̇(t)D1(t)+Q(t)Ḋ1(t)=Q̇(t)Q−1(t)q(t)+g(t)
l1∑

i=1

[
χ
(
t2i
)−χ (t2i−1

)]
Di(t),

(62)

ṙ(t) = Q̇(t)K1(t)+Q(t)K̇1(t) = Q̇(t)Q−1(t)r(t)+ g(t)C(t). (63)

Transposing relations (61)–(63), we obtain

ġ∗(t) = g∗(t)
(
Q̇(t)Q−1(t)

)∗ − A∗1(t)g∗(t), (64)

q̇∗(t) = q∗(t)
(
Q̇(t)Q−1(t)

)∗ +
l1∑

i=1

[
χ
(
t2i
)− χ

(
t2i−1

)]
D
∗
i (t)g

∗(t), (65)

ṙ∗(t) = r∗(t)
(
Q̇(t)Q−1(t)

)∗ + C∗(t)g∗(t). (66)

Choose the matrix functions Q(t) such that the following relation holds

g(t)g∗(t)+ q(t)q∗(t)+ r(t)r∗(t) = const.

Differentiating it, we obtain

ġ(t)g∗(t)+ g(t)ġ∗(t)+ q̇(t)q∗(t)+ q(t)q̇∗(t)+ ṙ(t)r∗(t)+ r(t)ṙ∗(t) = 0.
(67)

Substituting (61)–(66) into (67), after grouping, we obtain

[
Q(t)Q−1(t) (g(t)g∗(t)+ q(t)q∗(t)+ r(t)r∗(t))+
+
(

−g(t)A1(t)g
∗(t)+ g(t)

l1∑

i=1

[
χ
(
t2i
)− χ

(
t2i−1

)]
Di(t)q

∗(t)+ g(t)C(t)r∗(t)
)]

+
+ [Q(t)Q−1(t) (g(t)g∗(t)+ q(t)q∗(t)+ r(t)r∗(t))+
+
(

−g(t)A1(t)g
∗(t)+ g(t)

l1∑

i=1

[
χ
(
t2i
)− χ

(
t2i−1

)]
Di(t)q

∗(t)+ g(t)C(t)r∗(t)
)]∗

= 0.

Assume that the expression in both square brackets equals 0:

[
Q(t)Q−1(t) (g(t)g∗(t)+ q(t)q∗(t)+ r(t)r∗(t))+
+
(

−g(t)A1(t)g
∗(t)+ g(t)

l1∑

i=1

[
χ
(
t2i
)− χ

(
t2i−1

)]
Di(t)q

∗(t)+ g(t)C(t)r∗(t)
)]

= 0.



A Control Problem for a System of ODE with Nonseparated Multipoint. . . 27

From this, it follows that

Q(t)Q−1(t) = Q0(t), (68)

where

Q0(t)=
[

g(t)A1(t)g
∗(t)− g(t)

l1∑

i=1

[
χ
(
t2i
)− χ

(
t2i−1

)]
Di(t)q

∗(t)− g(t)C(t)r∗(t)
]

×

× [g(t)g∗(t)+ q(t)q∗(t)+ r(t)r∗(t)
]−1

.

,

Substituting (68) into (61)–(63) and renaming the functions g(t) in G1(t), q(t) and
D1(t), r(t) in K1(t), we obtain the statement of the theorem.

Clearly, a similar formula can be obtained for a successive shift of condition (48)
to the left.

Thus, each iteration of procedure (20) for a given control u(t) = uk(t),
t ∈ [t0,T], k = 0, 1, . . . requires the following steps:

1. To find the phase trajectory x(t), t ∈ [t0, T], solve the nonlocal boundary value
problem (1), (2) using the given scheme for shifting the conditions of the solution
to the auxiliary Cauchy problem (36)–(40).

2. To find the conjugate vector function ψ(t), t ∈ [t0,T] and the vector of dual
variables λ, solve problem (46)–(51) using procedure (52) for shifting boundary
conditions.

3. Using the found values of x(t), ψ(t), t ∈ [t0,T], calculate the values of the
gradient of the functional in formula (19).

Obviously, instead of gradient projection method (20), we can use other well-
known first-order optimization methods ([27]).

4 Analysis of the Results of the Computational Experiments

Problem 1 Consider the following optimal control problem:

{
ẋ1(t) = 2tx1(t)− 3x2(t)+ tu− 3t2 + t + 5,
ẋ2(t) = 5x1(t)+ tx2(t)− t3 − 9t + 5,

t ∈ [0; 1] , (69)

0.2∫

0

(
τ

2
3
τ − 1

)

x (τ) dτ +
(

2
3

1
4

)

x(0.5)+
1∫

0.7

(
1
τ

−2τ
3

)

x (τ) dτ =
(

1.16335
6.2377

)

,

D1(t) =
(
t

2
3
t − 1

)

, D2(t) =
(

1
t

−2t
3

)

, D̃1 =
(

2
3

1
4

)

,

(70)
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J (u) =
1∫

0

[x1(t)− u(t)+ 2]2dt + x2
1 (0, 5)+ [x2 (0, 5)− 1.25]2 + [x1(1)− 1]2

+ [x2(1)− 2]2.

(71)

The exact solution to this problem is known: u∗ (t) = 2t + 1, x∗1 (t) = 2t − 1,
x∗2 (t) = t2 + 1, J(u∗ ) = 0.

According to formulas (12)–(16), the adjoint problem is as follows:

ψ̇1(t) = −2tψ1(t)− 5ψ2(t)+ (χ(0.2)− χ(0)) (tλ1 + 2λ2)+
(χ(1)− χ(0.7)) (λ1 + tλ2)+ +2 (x1(t)− u(t)+ 2) ,
ψ̇2(t) = 3ψ1(t)− tψ2(t)+ (χ(0.2)− χ(0)) (3λ1 + (t − 1) λ2)+
(χ(1)− χ(0.7)) (−2tλ1 + 3λ2) , ψ1(0) = 0, ψ2(0) = 0,
ψ1(1) = −2 [x1(1)− 1] , ψ2(1) = −2 [x2(1)− 1] ,
ψ+

1 (0.5)− ψ−
1 (0.5) = 2x1(0.5)+ 2λ1 + 3λ2,

ψ+
2 (0.5)− ψ−

2 (0.5) = 2 [x2(0.5)− 1.25]+ λ1 + 4λ2.

Formula (19) for the gradient of the functional is as the following form:

∇ J (u) = − [x1(t)− u(t)+ 2]− tψ1(t).

For the numerical solution using procedure (20), numerical experiments were
carried out for different initial controls u0(t), different values of the steps for the
Runge-Kutta fourth-order method when solving the Cauchy problems.

Table 1 shows the results of solving the system of nonlocal direct problem
(69), (70), the conjugate problem, and the values of the components of the
normalized gradients. The gradients were calculated both by the proposed formulas

(19)
(
∇norm.
analyt.J

)
and using the finite difference approximation of the functional

(
∇norm.
approx.J

)
by the formula:

∂J (u)/∂uj ≈
(
J
(
u+ δej

)− J (u)
)
/δ. (72)

Here, uj is the value of control u = (u1, u2, . . . , uN) at the j th sampling instant and
ej − N-dimensional vector, all components of which are equal to 0, except the j th,
which is equal to 1. The quantity δ took values 0.1 and 0.001.

Notice that instead of formula (72) it is possible to use the formulas proposed in
the author’s papers [30, 31]. These formulas are most effective at points with small
values of the components of the gradient (in particular, in the neighborhood of the
extremum).

The initial value of the functional is J(u0)= 56.28717, λ1 = 0.2387, λ2 = 0.1781.
The values of the functional obtained in the course of the iterations are as
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Table 1 Initial values of the controls, of the phase variables, and of the normalized gradients
calculated using both the proposed formulas and (72)

∇norm.
approx.J

t u(0)(t) x
(0)
1 (t) x

(0)
2 (t) ψ

(0)
1 (t) ψ

(0)
2 (t) ∇norm.

analyt.J δ = 10−2 δ = 10−3

0 1.0000 1.5886 1.2034 −9.2836 −6.3653 −0.0180 −0.0138 −0.0161
20 2.0000 1.5641 2.4702 −0.5626 3.2122 −0.0107 −0.0104 −0.0107
40 3.0000 1.2382 3.5937 2.9294 14.8639 −0.0037 −0.0049 −0.0052
60 4.0000 0.6657 4.4538 −4.5081 14.2492 0.0140 0.0147 0.0145
80 5.0000 −0.0781 4.9528 −10.9008 11.4433 0.0367 0.0411 0.0410
100 6.0000 −0.8973 5.0218 −15.1806 7.0519 0.0606 0.0688 0.0667
120 7.0000 −1.6767 4.6295 −21.2792 9.1844 0.0911 0.0994 0.0994
140 8.0000 −2.2835 3.7919 −22.7128 2.1275 0.1132 0.1167 0.1168
160 9.0000 −2.5710 2.5845 −14.7216 −0.0383 0.1078 0.1037 0.1038
180 10.0000 −2.3853 1.1544 −6.8798 −0.6530 0.0940 0.0827 0.0826
200 11.0000 −1.5759 −0.2660 0.0000 −0.0000 0.0737 0.0800 0.0800

Table 2 The exact solution to the problem and the solution obtained after the sixth iteration

Solution obtained Exact solution

t u(6)(t) x
(6)
1 (t) x

(6)
2 (t) ψ

(6)
1 (t) ψ

(6)
2 (t) u∗ (t) x∗1 (t) x∗2 (t)

0 0.9999 −1.0000 1.0011 0.0059 −0.0040 1.0000 −1.0000 1.0000
20 1.2000 −0.8003 1.0111 0.0095 0.0027 1.2000 −0.8000 1.0100
40 1.4002 −0.6005 1.0409 0.0089 0.0098 1.4000 −0.6000 1.0400
60 1.6001 −0.4006 1.0906 0.0038 0.0114 1.6000 −0.4000 1.0900
80 1.7999 −0.2007 1.1603 −0.0012 0.0114 1.8000 −0.2000 1.1600
100 1.9997 −0.0005 1.2500 −0.0049 0.0099 2.0000 0.0000 1.2500
120 2.1995 0.1997 1.3598 −0.0055 0.0044 2.2000 0.2000 1.3600
140 2.3998 0.4000 1.4897 −0.0053 0.0025 2.4000 0.4000 1.4900
160 2.6010 0.6006 1.6398 −0.0026 0.0014 2.6000 0.6000 1.6400
180 2.8024 0.8013 1.8103 −0.0008 0.0006 2.8000 0.8000 1.8100
200 3.0041 1.0022 2.0012 0.0000 −0.0000 3.0000 1.0000 2.0000

follows: J(u1) = 1.93187, J(u2) = 0.10445, J(u3) = 0.00868, J(u4) = 0.00023,
J(u5) = 0.00004. On the sixth iteration of conjugate gradient method, we obtain the
results given in Table 2 with the minimal value of the functional J(u6) equal to 10−6.

5 Conclusion

In the work, we propose the technique for numerical solution to optimal con-
trol problems for ordinary differential equations systems involving nonseparated
multipoint and integral conditions. Note that a mere numerical solution to the
differential systems presents certain difficulties. The adjoint problem also has a
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specific character which lies both in the equation itself and in the presence of an
unknown vector of Lagrange coefficients in the conditions.

The formulas proposed in the work, as well as the computational schemes,
make it possible to take into account all the specific characters which occur when
calculating the gradient of the functional. Overall, the proposed approach allows
us to use a rich arsenal of first-order optimization methods and the corresponding
standard software to solve the considered optimal control problems.
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On Generalized Convexity and
Superquadracity

Shoshana Abramovich

Abstract In this paper we deal with generalized ψ-uniformly convex functions and
with superquadratic functions and discuss some of their similarities and differences.
Using the techniques discussed here, we obtain reversed and refined Minkowski
type inequalities.

1 Introduction

Convex and convex type functions and their relations to mathematical inequalities
play an important role in science, see, for instance, [3] about electrical engineering
and [5] about statistical applications and their references.

In this paper we deal with generalized ψ-uniformly convex functions and with
superquadratic functions and discuss some of their similarities and differences.

We start quoting the definition and properties of superquadratic functions from
[1] which include the functions f (x) = xp, x ≥ 0, when p ≥ 2, the functions

f (x) = −
(

1+ x
1
p

)p
when p > 0 and f (x) = 1−

(
1+ x

1
p

)p
when p ≥ 1

2 . Also,

we quote from [4] the definition of generalized ψ-uniformly convex functions.
In Sect. 2 we emphasize the importance of the general definition of superquadrac-

ity appearing in [1, Definition 2.1] compared with some of its special cases and with
the generalized ψ-uniformly convex functions defined in [4].

In Sect. 3, by using the results discussed in Sect. 2 we refine and reverse the well
known Minkowski inequality that says

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑

i=1

b
p
i

) 1
p

≤
(

n∑

i=1

(ai + bi)
p

) 1
p

, (1)
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for 0 < p < 1, ai, bi ≥ 0, i = 1, . . . , n.

Definition 1 ([1, Definition 2.1]) A function f : [0, B) → R is superquadratic
provided that for all x ∈ [0, B) there exists a constant Cf (x) ∈ R such that the
inequality

f (y) ≥ f (x)+ Cf (x) (y − x)+ f (|y − x|) (2)

holds for all y ∈ [0, B) (see [1, Definition 2.1], there [0,∞) instead [0, B)).
f is called subquadratic if −f is superquadratic.

Theorem 1 ([1, Theorem 2.2]) The inequality

∫

f (g (s)) dμ (s) ≥ f

(∫

gdμ

)

+ f

(∣
∣
∣
∣g (s)−

∫

gdμ

∣
∣
∣
∣

)

holds for all probability measures and all non-negative, μ-integrable functions g if
and only if f is superquadratic.

Corollary 1 ([1, 2]) Suppose that f is superquadratic. Let 0 ≤ xi < B, i = 1, 2
and let 0 ≤ t ≤ 1. Then

tf (x1)+ (1− t) f (x2)− f (tx1 + (1− t) x2)

≥ tf ((1− t) |x2 − x1|)+ (1− t) f (t |x2 − x1|) (3)

holds.
More generally, suppose that f is superquadratic. Let ξi ≥ 0, i = 1, . . . , m, and

let ξ =∑m
i=1 piξi where pi ≥ 0, i = 1, . . . , m, and

∑m
i=1 pi = 1. Then

m∑

i=1

pif (ξi)− f
(
ξ
) ≥

m∑

i=1

pif
(∣
∣ξi − ξ

∣
∣
)

(4)

holds.
If f is non-negative, it is also convex and Inequality (4) refines Jensen’s

inequality. In particular, the functions f (x) = xr , x ≥ 0, are superquadratic and
convex when r ≥ 2, and subquadratic and convex when 1 < r < 2. Equality holds
in inequalities (3) and (4) when r = 2.

Lemma 1 ([1, Lemma 2.1]) Let f be superquadratic function with Cf (x) as in
Definition 1. Then:

(i) f (0) ≤ 0,
(ii) if f (0) = f ′(0) = 0, then Cf (x) = f ′(x) whenever f is differentiable at

x > 0,
(iii) if f ≥ 0, then f is convex and f (0) = f ′(0) = 0.
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Lemma 2 ([1, Lemma 3.1]) Suppose f : [0,∞) → R is continuously differen-

tiable and f (0) ≤ 0. If f
′
is superadditive or f

′
(x)
x

is non-decreasing, then f is

superquadratic and (according to its proof) Cf (x) = f
′
(x), where Cf (x) is as in

Definition 1.

Lemma 3 ([1, Lemma 4.1]) A non-positive, non-increasing, and superadditive
function is a superquadratic function and (according to its proof) satisfies Cf (x) =
0, where Cf (x) is as in Definition 1.

Example 1 ([1, Example 4.2]) Let

fp (x) = −
(

1+ x
1
p

)p
, x ≥ 0.

Then fp is superquadratic for p > 0 with Cfp(x) = 0 and g = 1 + fp is

superquadratic for p ≥ 1
2 with Cg(x) = g

′
(x) = f

′
p (x).

Lemma 4 ([1, Section 3]) Suppose that f is a differentiable function and f (0) =
f
′
(0) = 0. If f is superquadratic, then f (x)

x2 is non-decreasing.

The definition of generalized ψ-uniformly convex functions as appears in [4]
is the following:

Definition 2 ([4, Page 306]) Let I = [a, b] ⊂ R be an interval and ψ :
[0, b − a] → R be a function. A function f : [a, b] → R is said to be generalized
ψ-uniformly convex if:

tf (x)+ (1− t) f (y) ≥ f (tx + (1− t) y)+ t (1− t) ψ (|x − y|)
for x, y ∈ I and t ∈ [0, 1] . (5)

If in addition ψ ≥ 0, then f is said to be ψ-uniformly convex.

Paper [4] deals with inequalities that extend the Levin-Stečkin’s theorem. The
main result in [4, Theorem 1] relates to the function ψ as appears in Definition 2,
and depends on the fact that lim

t→0+
ψ(t)

t2
is finite. We discuss this issue in Sect. 2.

In the unpublished [6] a companion inequality to Minkowski inequality is stated
and proved:

Theorem 2 ([6, Th2.1]) For 0 < p < 1, ai, bi > 0, i = 1, . . . , n the inequality

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑

i=1

b
p
i

) 1
p

≤
(

n∑

i=1

(ai + bi)
p

) 1
p

≤
∑n

i=1 aib
p−1
i

(∑n
i=1 b

p
i

) p−1
p

+
∑n

i=1 bia
p−1
i

(∑n
i=1 a

p
i

) p−1
p

(6)

holds.
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In Sect. 3 we refine Minkowski’s inequality in four ways using generalized ψ-
uniformly convexity, subquadracity and superquadracity properties of the functions
discussed in Sect. 2. The proofs of Theorems 3 and 4 apply the technique employed
in [6] to prove the right hand-side of (6) in Theorem 2, besides using superquadracity
and subquadracity properties of the functions involved there.

2 Superquadracity and Generalized ψ-Uniformly Convexity

We start with emphasizing the importance of the definition of superquadracity as
appears in [1] vis a vis its special cases. Definition 1 does not guarantee that
Cf (x) = f

′
(x). However, from Lemmas 1 and 2 we know that in the case that

f is superquadratic and f (0) = f
′
(0) = 0, and in the case that the derivative

of the superquadratic function is superadditive or f
′
(x)
x

is non-decreasing we get

Cf (x) = f
′
(x). On the other hand when the superquadratic function satisfies

Lemma 3 we get that Cf (x) = 0.

Although the n-th derivative of fp (x) = −
(

1+ x
1
p

)p
, x ≥ 0, 0 < p < 1, as

discussed in Example 1, is continuous on [0,∞), we get when inserting this function

in Definition 1 that Cfp (x) satisfies Cfp (x) = 0 �= f
′
p (x) = −x 1

p
−1
(

1+ x
1
p

)p
.

Therefore whenever

f (y)− f (x) ≥ f
′
(x) (y − x)+ f (|y − x|) (7)

is used as the definition of superquadracity, it means that it deals not with the
general case of superquadratic functions but it might, but not necessarily, deal with
those superquadratic functions satisfying Lemma 1(ii) or Lemma 2. The following
function f is an example of a superquadratic function that satisfies (7) but as proved
in [1, Example 3.3] does not satisfy Lemma 2: This function is defined by f (0) = 0
and

f
′
(x) =

{
0, x ≤ 1

1+ (x − 2)3 , x ≥ 1.

For such superquadratic functions, Definition 1 translates into (7), but as explained
above it does not hold for all superquadratic functions.

We point out now a difference between the superquadratic functions and the
generalized ψ-uniformly convex functions:

According to the proof of Theorem 1 [1, Theorem 2.2] and Corollary 1 we get
that inequalities (2) and (3) are equivalent. On the other hand, Inequality (5) that
defines, according to [4], the generalized ψ-uniformly convex function f , when f

is continuously differentiable, leads to the inequality
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f (y)− f (x) ≥ f
′
(x) (y − x)+ ψ (|y − x|) , (8)

as proved in [4, Theorem 1], but Inequality (8) does not lead in general to
Inequality (5) but to

tf (x1)+ (1− t) f (x2)− f (tx1 + (1− t) x2)

≥ tψ ((1− t) |x2 − x1|)+ (1− t) ψ (t |x2 − x1|) , (9)

for 0 ≤ t ≤ 1.
More generally, it is easy to verify that, similarly to Inequality (4) for

superquadratic functions, when f is a generalized ψ-uniformly convex function,
then

m∑

i=1

pif (ξi)− f
(
ξ
) ≥

m∑

i=1

piψ
(∣
∣ξi − ξ

∣
∣
)
, (10)

holds, where ξi ≥ 0, i = 1, . . . , m, ξ = ∑m
i=1 piξi , pi ≥ 0, i = 1, . . . , m, and∑m

i=1 pi = 1.
In addition, ifψ is non-negative, the function f is also convex and Inequality (10)

refines Jensen’s inequality.
Moreover, if instead of (5) in Definition 2 we have a set of functions f which

satisfies

tf (x1)+ (1− t) f (x2)− f (tx1 + (1− t) x2)

≥ G(t) ψ (|x1 − x2|) , t ∈ [0, 1] , (11)

then (11) still leads to (8) when lim
t→0+

G(t)
t
= 1.

However, for the special case where ψ (x) = kx2, when k is constant, the
inequalities (5) and (9) are the same.

Remark 1 By choosing x = y in (5) or in (8) we get that ψ satisfies ψ (0) ≤ 0.

From now on till the end of this section we deal with functions satisfying
inequalities (7) and (8).

A similarity between convex superquadratic functions and ψ-uniformly convex
functions is shown in Remark 2 below. The set of convex superquadratic functions
f satisfies f (0) = f

′
(0) = 0. Also, the set f of ψ-uniformly convex functions

satisfies ψ (0) = ψ
′
(0) = 0.

For the convenience of the reader a proof of Remark 2 is presented. This can
easily be obtained by following the steps of the proof in [1] of Lemma 1(iii):

Remark 2 For a function ψ : [0, b − a] → R and a continuously differentiable
ψ-uniformly convex function f on [a, b] → R, we get that ψ (0) = ψ

′
(0) = 0.
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Proof If ψ ≥ 0, then ψ (0) = 0 because always as mentioned in Remark 1 ψ (0) ≤
0. Then by choosing in (8) first y > x and then y < x we get that

lim sup
y→x−

(
f (x)− f (y)

x − y
+ ψ (x − y)

x − y

)

≤ f
′
(x) ≤ lim sup

y→x+

(
f (y)− f (x)

y − x
+ ψ (y − x)

y − x

)

,

and hence

lim sup
x→0+

ψ (x)

x
≤ 0.

Since ψ is non-negative, we have

0 ≤ lim sup
x→0−

ψ (x)

x
≤ lim sup

x→0+

ψ (x)

x
≤ 0,

and therefore the one sided derivative at zero exists and ψ
′
(0) = 0.

We deal now with the behavior of ψ(x)

x2 when f is generalized ψ-uniformly

convex function, and with f (x)

x2 when f is superquadratic.
Besides Lemma 4 we get the following lemma which is proved in [4, Proof of

Theorem 1]:

Lemma 5 If f is twice continuously differentiable generalized ψ-uniformly convex
function, then f ′′ (x) ≥ 2 lim

x→0+
ψ(x)

x2 .

Corollary 2 Let I = [a, b] be an interval and ψ : [0, b − a] → R be a twice
differentiable function on [0, b − a]. Let f : [a, b] → R be a continuously twice
differentiable ψ-uniformly convex function, that is ψ ≥ 0. Denote ϕ (x) = ψ(x)

x2 ,

x > 0. Then ϕ (0) = lim
x=0+

ψ(x)

x2 is finite and non-negative.

Indeed, Remark 2 says that ψ (0) = ψ
′
(0) = 0. Therefore,

lim
x=0+

ψ (x)

x2 = ϕ (0) = lim
x=0+

ψ
′
(x)

2x
= lim

x=0+
ψ
′′
(x)

2
= ψ

′′
(0)

2
.

Remark 3 It is shown in Remark 1 that ψ satisfies ψ (0) ≤ 0 and therefore when
ψ (0) < 0 we get lim

x→0+
ψ(x)

x2 = −∞. Also, when ψ is differentiable on [0, b − a]

and ψ (0) = 0 but ψ
′
(0) < 0 then again



On Generalized Convexity and Superquadracity 39

lim
x→0+

ψ (x)

x2
= lim

x→0+
ψ
′
(x)

2x
= −∞.

Example 2 shows that the conditions ψ (0) = 0, ψ
′
(0) = 0 do not guarantee that

lim
x→0+

ψ(x)

x2 is finite:

Example 2 The superquadratic function f (x) = x2 ln x for x > 0 and f (0) = 0,
f
′
(0) = 0 is continuously differentiable but not twice continuously differentiable

at x = 0. Therefore we deal now with an interval [a, b], a > 0 for f (x) = x2 ln x
which is twice differentiable and ψ (x) = x2 ln x, 0 < x ≤ b − a. These f and ψ

satisfy (8). In this case lim
x→0+

ψ(x)

x2 = −∞.

We show here an example where lim
x→0+

ψ(x)

x2 is finite, but the generalized ψ-

uniformly convex function g is not necessarily convex.

Example 3 Let g (x) = f (x) − (kx)2 where k is a constant and f is twice
differentiable convex and superquadratic function satisfying lim

x→0+
f (x)

x2 = ϕ (0) and

ϕ (0) ≥ 0. In such cases g(x)

x2 = ϕ (x) − k2 →
x→0+

ϕ (0) − k2 and because ϕ (0) is

finite and non-negative, and because equality holds in (3) for the function x2, the
function g is superquadratic satisfying (7) and therefore also (8) for ψ = f , but is
not necessarily convex.

In addition to the monotonicity of f (x)

x2 as proved in Lemma 4 for superquadratic

functions satisfying f (0) = f
′
(0) = 0, it is easy to prove:

Remark 4 If Inequality (8) when x ≥ 0 holds for ψ ≥ 0 and f (0) = 0, then f

is convex and
(
f (x)
x

)′
≥ ψ(x)

x2 ≥ 0. In the special case that f is superquadratic and

convex, we get that
(
f (x)
x

)′
≥ f (x)

x2 ≥ 0.

Indeed, from (8) we get that

f (0)− f (x) ≥ −xf ′
(x)+ ψ (x)

holds.
From this, because f (0) = 0 we get that

xf
′
(x)− f (x)

x2 =
(
f (x)

x

)′

≥ ψ (x)

x2 ≥ 0.

In the special case that f is superquadratic we get that

(
f (x)

x

)′

≥ f (x)

x2 ≥ 0.
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We finish this section demonstrating a set of continuous differentiable functions
satisfying Inequality (8). As explained above, (8) holds for continuous differen-
tiable generalized ψ-uniformly convex functions.

Example 4 The functions fp = −
(

1+ x
1
p

)p
where ψt (x) = t −

(
1+ x

1
p

)p
,

p ≥ 1
2 , 0 ≤ t ≤ 1, x ≥ 0 are generalized ψt -uniformly convex functions and

satisfy (8). In particular, when t = 0, the function fp is superquadratic and when

t = 1 the function f ∗ (x) = 1−
(

1+ x
1
p

)p
where ψ1 (x) = 1−

(
1+ x

1
p

)p
is also

superquadratic.

Indeed, f ∗ (x) = 1 −
(

1+ x
1
p

)p
, p ≥ 1

2 is superquadratic satisfying

Inequality (7). Specifically as shown in Example 1 [1, Example 4.2] the inequality

1−
(

1+ y
1
p

)p −
(

1−
(

1+ x
1
p

)p)

≥ −
(

1+ x
− 1

p

)p−1
(y − x)+

(

1−
(

1+ |x − y| 1
p

)p)

holds, which is the same as Inequality (8)

−
(

1+ y
1
p

)p −
(

−
(

1+ x
1
p

)p)

≥ −
(

1+ x
− 1

p

)p−1
(y − x)+

(

1−
(

1+ |x − y| 1
p

)p)

,

for fp (x) = −
(

1+ x
1
p

)p
and ψ1 (x) = 1−

(
1+ x

1
p

)p
.

Therefore, also

−
(

1+ y
1
p

)p −
(

−
(

1+ x
1
p

)p)

≥ −
(

1+ x
− 1

p

)p−1
(y − x)+

(

t −
(

1+ |x − y| 1
p

)p)

holds when t ≤ 1 and Inequality (8) is satisfied by fp (x) = −
(

1+ x
1
p

)p
and

ψt (x) = t −
(

1+ x
1
p

)p
.

As shown in Example 1, when t = 0, the function fp (x) = −
(

1+ x
1
p

)p
is

also superquadratic but this time satisfying (7) with Cf (x) = 0, that is,
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−
(

1+ y
1
p

)p −
(

−
(

1+ x
1
p

)p) ≥ −
(

1+ |x − y| 1
p

)p

holds.

3 Reversed and Refined Minkowski Inequality

In this section we use the properties discussed in Sect. 2 of superquadracity and of
generalized ψ-uniformly convexity.

In Example 1 [1, Example 4.2] it is shown that fp (x) =
(

1+ x
1
p

)p
for x ≥ 0,

is subquadratic when p > 0. Using this property and Corollary 1 together with the
convexity of fp when p < 1 we get a refinement of Minkowski’s inequality when
0 < p < 1 (see also [1, Theorem 4.1]):

Lemma 6 Let ai, bi ≥ 0, i = 1, . . . , n. Then, when p > 0 the inequality

n∑

i=1

(ai + bi)
p

≤
⎛

⎝

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑

i=1

b
p
i

) 1
p

⎞

⎠

p

+
n∑

i=1

a
p
i

⎛

⎝1+
∣
∣
∣
∣
∣

b
p
i

a
p
i

−
∑n

j=1 b
p
j

∑n
j=1 a

p
j

∣
∣
∣
∣
∣

1
p

⎞

⎠

p

(12)

holds, and when 0 < p < 1 the inequalities

⎛

⎝

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑

i=1

b
p
i

) 1
p

⎞

⎠

p

≤
n∑

i=1

(ai + bi)
p

≤
⎛

⎝

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑

i=1

b
p
i

) 1
p

⎞

⎠

p

+
n∑

i=1

a
p
i

⎛

⎝1+
∣
∣
∣
∣
∣

b
p
i

a
p
i

−
∑n

j=1 b
p
j

∑n
j=1 a

p
j

∣
∣
∣
∣
∣

1
p

⎞

⎠

p

(13)

hold.

Proof From the subquadracity of fp =
(

1+ x
1
p

)p
, x ≥ 0, p > 0, according to

Lemma 3 and Example 1 we get that:

n∑

i=1

xi

(

1+
(
yi

xi

) 1
p

)p

=
n∑

i=1

(

x
1
p

i + y
1
p

i

)p
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≤
⎛

⎝

(
n∑

i=1

xi

) 1
p

+
(

n∑

i=1

yi

) 1
p

⎞

⎠

p

+
n∑

i=1

xi

⎛

⎝1+
∣
∣
∣
∣
∣

yi

xi
−
∑n

j=1 yj
∑n

j=1 xj

∣
∣
∣
∣
∣

1
p

⎞

⎠

p

(14)

is satisfied. Substituting x
1
p

i = ai and y
1
p

i = bi , i = 1, . . . , n, we get Inequality (12),
and together with the convexity of f for 0 < p < 1 we get from (14) that (13) holds.

The next lemma uses the generalized ψ-uniformly convex functions gp =
−
(

1+ x
1
p

)p
when ψ (x) = t −

(
1+ x

1
p

)p
, 0 ≤ t ≤ 1 for p ≥ 1

2 and the

convexity of fp (x) =
(

1+ x
1
p

)p
when 0 < p < 1 as discussed in Example 4.

Similar to Lemma 6 we get:

Lemma 7 Let ai , bi > 0, i = 1, . . . , n and 0 ≤ t ≤ 1 then when p ≥ 1
2 the

inequality:

n∑

i=1

(ai + bi)
p ≤

⎛

⎝

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑

i=1

b
p
i

) 1
p

⎞

⎠

p

+
n∑

i=1

a
p
i

⎛

⎝1+
∣
∣
∣
∣
∣

b
p
i

a
p
i

−
∑n

j=1 b
p
j

∑n
j=1 a

p
j

∣
∣
∣
∣
∣

1
p

⎞

⎠

p

− t

n∑

i=1

a
p
i

holds, and when 1
2 ≤ p ≤ 1, the inequalities

⎛

⎝

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑

i=1

b
p
i

) 1
p

⎞

⎠

p

≤
n∑

i=1

(ai + bi)
p

≤
⎛

⎝

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑

i=1

b
p
i

) 1
p

⎞

⎠

p

+
n∑

i=1

a
p
i

⎛

⎝1+
∣
∣
∣
∣
∣

b
p
i

a
p
i

−
∑n

j=1 b
p
j

∑n
j=1 a

p
j

∣
∣
∣
∣
∣

1
p

⎞

⎠

p

−t
n∑

i=1

a
p
i

hold.

We finish the paper by refining Inequality (6) in Theorem 2, and we get two
new Minkowski type inequalities. In the proofs we use the technique employed in

[6, Theorem 2.1] and the subquadracity of f (x) = x
1
p , x ≥ 0, 1

2 < p < 1, the

superquadracity of f (x) = x
1
p , x ≥ 0, 0 < p ≤ 1

2 .
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Theorem 3 Let 0 < p < 1
2 , ai, bi ≥ 0, i = 1, . . . , n. Then, the inequalities

(
n∑

i=1

a
p
i

) 1
p

+
(

n∑

i=1

b
p
i

) 1
p

≤
(

n∑

i=1

(ai + bi)
p

) 1
p

≤
∑n

i=1 aib
p−1
i

(∑n
i=1 b

p
i

) p−1
p

+
∑n

i=1 bia
p−1
i

(∑n
i=1 a

p
i

) p−1
p

−
∑n

i=1 a
p
i

∣
∣
∣
∣
(ai+bi )p

a
p
i

−
∑n

j=1(aj+bj )p∑n
j=1 a

p
j

∣
∣
∣
∣

1
p

(∑n
j=1 a

p
j

) 1
p

−
∑n

i=1 b
p
i

∣
∣
∣
∣
a
p
i

b
p
i

−
∑n

j=1 a
p
j∑n

j=1 b
p
j

∣
∣
∣
∣

1
p

(∑n
j=1 b

p
j

) 1
p

(15)

hold. Equality holds in the right hand-side of inequality (15) when p = 1
2 .

Proof We use the superquadracity of g (x) = x
1
p , x ≥ 0, 0 < p ≤ 1

2 which by
Corollary 1 leads to the inequality

n∑

i=1

xi

(
yi

xi

) 1
p =

n∑

i=1

x
1− 1

p

i y
1
p

i

≥
(

n∑

i=1

xi

)1− 1
p
(

n∑

i=1

yi

) 1
p

+
n∑

i=1

xi

∣
∣
∣
∣
∣

yi

xi
−
∑n

j=1 yj
∑n

j=1 xj

∣
∣
∣
∣
∣

1
p

, (16)

and we get from (16) that

∑n
i=1 aib

p−1
i

(∑n
i=1 b

p
i

) p−1
p

=
∑n

i=1

(
a
p
i

) 1
p
(
b
p
i

)1− 1
p

(∑n
i=1 b

p
i

) p−1
p

≥
(

n∑

i=1

a
p
i

) 1
p

+
∑n

i=1 b
p
i

(∑n
j=1 b

p
j

) p−1
p

∣
∣
∣
∣
∣

a
p
i

b
p
i

−
∑n

j=1 a
p
j

∑n
j=1 b

p
j

∣
∣
∣
∣
∣

1
p

. (17)

By denoting ci = ai + bi , i = 1, . . . , n we get also that
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∑n
i=1 bia

p−1
i

(∑n
j=1 a

p
j

) p−1
p

=
∑n

i=1 (ci − ai) a
p−1
i

(∑n
j=1 a

p
j

) p−1
p

=
∑n

i=1 cia
p−1
i

(∑n
j=1 a

p
j

) p−1
p

−
∑n

i=1 aia
p−1
i

(∑n
j=1 a

p
j

) p−1
p

=
∑n

i=1 cia
p−1
i

(∑n
j=1 a

p
j

) p−1
p

−
(

n∑

i=1

a
p
i

) 1
p

≥
(

n∑

i=1

c
p
i

) 1
p

+
∑n

i=1 a
p
i

(∑n
j=1 a

p
j

) p−1
p

∣
∣
∣
∣
∣

c
p
i

a
p
i

−
∑n

j=1 c
p
j

∑n
j=1 a

p
j

∣
∣
∣
∣
∣

1
p

−
(

n∑

i=1

a
p
i

) 1
p

. (18)

Summing (17) with (18) and using ci = ai + bi , i = 1, . . . , n we get that

∑n
i=1 aib

p−1
i

(∑n
i=1 b

p
i

) p−1
p

+
∑n

i=1 bia
p−1
i

(∑n
i=1 a

p
i

) p−1
p

≥
(

n∑

i=1

(ai + bi)
p

) 1
p

+
∑n

i=1 a
p
i

(∑n
j=1 a

p
j

) p−1
p

∣
∣
∣
∣
∣

(ai + bi)
p

a
p
i

−
∑n

j=1

(
aj + bj

)p

∑n
j=1 a

p
j

∣
∣
∣
∣
∣

1
p

+
∑n

i=1 b
p
i

(∑n
j=1 b

p
j

) p−1
p

∣
∣
∣
∣
∣

a
p
i

b
p
i

−
∑n

j=1 a
p
j

∑n
j=1 b

p
j

∣
∣
∣
∣
∣

1
p

. (19)

From (19) and from Minkowski inequality (1) for 0 < p < 1 we get for 0 < p < 1
2

that (15) holds.
The proof is complete.

Theorem 4 Let 1
2 ≤ p ≤ 1, ai, bi ≥ 0, i = 1, . . . , n. Then, the inequality

max

⎛

⎝

∑n
i=1 aib

p−1
i

(∑n
i=1 b

p
i

) p−1
p

+
∑n

i=1 bia
p−1
i

(∑n
i=1 a

p
i

) p−1
p

−
∑n

i=1 a
p
i

∣
∣
∣
∣
(ai+bi )p

a
p
i

−
∑n

j=1(aj+bj )p∑n
j=1 a

p
j

∣
∣
∣
∣

1
p

(∑n
j=1 a

p
j

) 1
p

−
∑n

i=1 b
p
i

∣
∣
∣
∣
a
p
i

b
p
i

−
∑n

j=1 a
p
j∑n

j=1 b
p
j

∣
∣
∣
∣

1
p

(∑n
j=1 b

p
j

) 1
p

,
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(
n∑

i=1

a
p
i

) 1
p

+
(

n∑

i=1

b
p
i

) 1
p

⎞

⎠

≤
(

n∑

i=1

(ai + bi)
p

) 1
p

≤
∑n

i=1 aib
p−1
i

(∑n
i=1 b

p
i

) p−1
p

+
∑n

i=1 bia
p−1
i

(∑n
i=1 a

p
i

) p−1
p

(20)

holds.

Proof The proof of the inequalities in (20) is omitted because it is similar to the

proof of Theorem 3 using here the subquadracity of f (x) = x
1
p , x > 0, 1

2 < p < 1.
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Well-Posedness of Nonsmooth Lurie
Dynamical Systems Involving Maximal
Monotone Operators

S. Adly, D. Goeleven, and R. Oujja

Abstract Many physical phenomena can be modeled as a feedback connection of
a linear dynamical systems combined with a nonlinear function which satisfies a
sector condition. The concept of absolute stability, proposed by Lurie and Postnikov
(Appl Math Mech 8(3), 1944) in the early 1940s, constitutes an important tool in the
theory of control systems. Lurie dynamical systems have been studied extensively in
the literature with nonlinear (but smooth) feedback functions that can be formulated
as an ordinary differential equation. Many concrete applications in engineering
can be modeled by a set-valued feedback law in order to take into account the
nonsmooth relation between the output and the state variables. In this paper, we
show the well-posedness of nonsmooth Lurie dynamical systems involving maximal
monotone operators. This includes the case where the set-valued law is given by
the subdifferential of a convex, proper, and lower semicontinuous function. Some
existence and uniqueness results are given depending on the data of the problem
and particularly the interplay between the matrix D and the set-valued map F . We
will also give some conditions ensuring that the extended resolvent (D + F)−1

is single-valued and Lipschitz continuous. The main tools used are derived from
convex analysis and maximal monotone theory.

1 Introduction

Control problems described by the Lurie (or Lur’e) systems consist of a linear time-
invariant forward path and a feedback path with a static nonlinearity satisfying a
sector condition of the form: ẋ = Ax + Bφ(y) with the output signal y = Cx.
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Due to their importance in practical applications in control theory, this class of
problems has been investigated intensively, in both continuous and discrete time
cases, in the literature of control and applied mathematics. The development of
this topic is closely connected with that of the absolute stability problem, which
consists of studying the stability of a system with a positive real transfer function
and the feedback branch containing a sector static nonlinearity (see Fig. 1). For
more details, we refer to [18]. The general mathematical formalism of Lurie systems
can be written as a negative feedback interconnection of an ordinary differential
equation ẋ = f (x, p), where p is one of the two slack variables, the second one
being q = g(x, p), connected to each other by a possibly set-valued relation of
the form p ∈ F(q), or equivalently q ∈ F−1(p). The main reason for extending
Lurie systems to the case where the feedback nonlinearity is a set-valued map lies
in the fact that many concrete problems in engineering and other field of science
can be modeled by set-valued laws. This is the case, for example, for unilateral
problems in mechanical systems with Coulomb friction or electrical circuits with
nonregular devices such as diodes, transistors, or DC-DC power converters. More
recently, Lurie dynamical systems with a set-valued static feedback part have been
used and studied in [6–8, 12, 13, 16]. It is also known that other mathematical models
used to study nonsmooth dynamical systems (relay systems, evolution variational
inequalities, projected dynamical systems, complementarity systems. . . ) can be
formulated into Lurie dynamical systems with a set-valued feedback nonlinearity
[1, 12].

We are interested in the Lurie systems which are (possibly nonlinear) time-
invariant dynamical systems with static set-valued feedback. Usually, the function
g has the form g(x, p) = Cx + Dp, with C and D two given matrices with
suitable dimensions. The case D = 0 appears in many applications, particularly
in nonregular electrical circuits, while the case D �= 0 is more general but
creates some difficulties when one wants to study the possibly set-valued operator
(−D+F−1)−1(C ◦·). In [12], Brogliato and Goeleven overcome these obstacles by
assuming that F is the subdifferential of some proper, convex, lower semicontinuous
function, to enjoy the nice properties of the Fenchel transform and maximally
monotone operator theory.

In this paper, we study Lurie systems involving maximally monotone set-valued
laws. The problem is formulated into a first-order differential inclusion form where
the set-valued right-hand side is a Lipschitz continuous perturbation of a maximal
monotone operator under composition. We discuss conditions on the data such that
the problem is well-posed in the sense that for every given initial condition, the Lurie
system has a unique solution. Finally, some illustrative examples are presented.

2 Lurie Systems with Maximal Monotone Operators

Let A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, and D ∈ R

m×m be given matrices. Let
F : Rm ⇒ R

m be a set-valued map. Given an initial point x0 ∈ R
n, the problem
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consists to find a function x ∈ W
1,∞
loc (0,+∞) such that

(L)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+ Bp(t), a.e. t ∈ [0,+∞[,
q(t) = Cx(t)+Dp(t),

q(t) ∈ F(−p(t)), t ≥ 0,

x(0) = x0,

(1a)

(1b)

(1c)

(1d)

where p, q : R+ → R
m are two connected unknown mappings.

When the map F : Rm → R
m, x = (x1, x2, . . . , xm) �→ F(x) is single-valued

and such that

F(x) =
(
φ1(x1), φ2(x2), . . . , φm(xm)

)
,

where φi : R → R are some given functions, the above problem is known in
the literature as Lurie system with multiple nonlinearities. In general the nonlinear
feedback function �(·) is always assumed to satisfy a condition known in the
literature as the sector condition. More precisely, we say that the function φi : R→
R is in sector [li , ui] if for all x ∈ R, we have φi(x) ∈ [lix, uix] or [uix, lix] (li
and ui are given in R ∪ {−∞,+∞}). For example, the sector [−1, 1] means that
φi(x) ≤ |x|, ∀x ∈ R, and the sector [0,+∞] means that φi(x)x ≥ 0, ∀x ∈ R (see
Fig. 1 for an illustration). Using this sector condition, it is possible to give some
criteria, expressed in terms of linear matrix inequalities (LMI) for the asymptotic
stability of Lurie systems. It is possible to include a perturbation with a locally
integrable external force f (·) and/or a nonlinear Lipschitz continuous map instead
of the matrix A but, for simplicity, we restrict ourselves to the system (L). To the
best of our knowledge, such a system was first introduced and analyzed in a special
case in [9].

An important example in practice is given when the static set-valued nonlinearity
F : Rm ⇒ R

m, x = (x1, . . . , xm) �→ F(x) is defined componentwise as follows

F(x) =
(
F1(x1),F(x2), . . . ,Fm(xm)

)
, (2)

where for each i = 1, 2, . . . , m, Fi : R ⇒ R are given scalar set-valued
nonlinearities.

In order to illustrate the system (L), we give the following classical scheme
in Fig. 2 (see, e.g., [12]). Here A,B,C,D denote the state, the input, the output,
and the feedthrough matrices, respectively. Most of the previous works concern
the case where the matrix D = 0 [6] or D �= 0 and F is a maximal monotone
operator [7, 8, 12, 13]. The consideration of a nonzero matrix D makes the analysis
of the system more difficult. If F coincides with the normal cone of Rn+ (i.e., F =
NR

n+), then system (L) reduces to the well-known linear complementarity systems
largely studied in the literature [1, 16, 21]. In [12], the authors studied the well-
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Fig. 1 Sector nonlinearities lx ≤ φ(x) ≤ ux

Fig. 2 Set-valued Lurie
block diagram

posedness, stability, and invariance properties of system (L) where F is the inverse
of the subdifferential mapping of a given proper convex and lower semicontinuous
function, or equivalently, the subdifferential mapping of its Fenchel conjugate. The
well-posedness is improved in [13] for a general maximally monotone operator by
using the passivity of the linear system. It is worth noting that in the case D = 0,
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the monotonicity of the set-valued map F is not necessary; in fact, only the local
hypomonotonicity of F is sufficient (see [4] Chapter 5).

In this article, a nonzero matrix D is allowed with a maximal monotone set-
valued map F . The well-posedness of (L) is investigated under various conditions
on the data (A,B,C,D,F).

3 Background from Convex and Set-Valued Analysis

We recall some definitions and some results about maximal monotone operators
theory drawn from [11] (see also [10]). Let H be a real Hilbert space, with scalar
product 〈., .〉 and associated norm ‖ · ‖. For a multivalued operator T : H ⇒ H , we
denote by:

Dom(T ) := {u ∈ H | T (u) �= ∅},

the domain of T ,

Rge(T ) :=
⋃

u∈H
T (u),

the range of T ,

Graph (T ) := {(u, u∗) ∈ H ×H | u ∈ Dom(T ) and u∗ ∈ T (u)},

the graph of T . Throughout the paper we identify operators with their graphs.
We recall that T is monotone if and only if for each u, v ∈ Dom(T ) and u∗ ∈

T (u), v∗ ∈ T (v) we have

〈v∗ − u∗, v − u〉 ≥ 0.

The operator T is maximal monotone if it is monotone and its graph is not properly
contained in the graph of any other monotone operator.

We say that a single-valued mapping A is hemicontinuous (following [10, p. 26])
if, for all x, y ∈ H :

A((1− t)x + ty)→ A(x), as t → 0.

Remark 3.1 A continuous map is therefore hemicontinuous. It can be shown that, if
A : Dom(A) = H → H is monotone and hemicontinuous, then A is maximal
monotone (see [10, Proposition 2.4]). Also, if A : H → H is monotone and
hemicontinuous and B : H ⇒ H is maximal monotone, then A + B is maximal
monotone [10, p. 37].
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Let T : H ⇒ H be a monotone operator. From Minty’s theorem, we know that:

T is maximal ⇐⇒ Rge(I + T ) = H,

where I stands for the identity mapping on H .
The inverse operator T −1 of T : H ⇒ H is the operator defined by

v ∈ T −1(u)⇐⇒ u ∈ T (v).

We note that

Dom(T −1) = Rge(T ). (3)

When T is maximal monotone, the resolvent operator JT = (I + T )−1 is defined
on the whole space H , it is single-valued and Lipschitz continuous with modulus 1;
indeed, it is nonexpansive, i.e.,

‖JT (x)− JT (y)‖ ≤ ‖x − y‖.

Proposition 3.1 Let T : H ⇒ H be a maximal monotone operator (Fig. 3). Then
the resolvent operator is well-defined, single-valued, and Lipschitz continuous with
modulus 1, i.e.,

‖JT (x)− JT (y)‖ ≤ ‖x − y‖,∀x, y ∈ H.

Proof The well-definedness is a consequence of Minty’s Theorem. Let x ∈ H and
suppose that y1, y2 ∈ JT (x). By definition of JT , we have

x − y1 ∈ T (y1) and x − y2 ∈ T (y2).

Fig. 3 Example of monotone operator but not maximal (left) and a maximal monotone operator
(right)
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Using the monotonicity of T , we get

〈(x − y1)− (x − y2), y1 − y2 ≥ 0.

Hence,

‖y1 − y2‖2 ≤ 0,

which means that y1 = y2. The resolvent operator is thus single-valued.
Let x, y ∈ H and set x∗ = JT (x) and y∗ = JT (y). We have,

x − x∗ ∈ T (x∗) and y − y∗ ∈ T (y∗).

Using the monotonicity of T , we get

‖x∗ − y∗‖2 ≤ 〈x∗ − y∗, x − y〉.

Hence,

‖x∗ − y∗‖ ≤ ‖x − y‖,

and the proof of the proposition is thereby completed. �
Moreover, the operators (λI + T )−1 or (I + λT )−1 with λ > 0 are similarly

well-defined, single-valued, and Lipschitz continuous.
The notation �0(H) stands for the set of all convex, lower semicontinuous, and

proper extended real-valued functions ϕ : H → R ∪ {+∞}. The effective domain
of ϕ : H → R ∪ {+∞} is given by

Dom (ϕ) = {u ∈ H : ϕ(u) < +∞}.

For extended real-valued function ϕ : H → R ∪ {+∞} its epigraph, denoted by
epi(ϕ), is defined by

epi(ϕ) = {(u, α) ∈ H × R : ϕ(u) ≤ α}.

Definition 3.1 Let ϕ ∈ �0(H). A point p ∈ H is called a subgradient of ϕ at the
point u ∈ Dom (ϕ) if and only if

ϕ(v) ≥ ϕ(u)+ 〈p, v − u〉, ∀v ∈ H.

We denote

∂ϕ(u) = {p ∈ H : ϕ(v) ≥ ϕ(u)+ 〈p, v − u〉, ∀v ∈ H }

and we say that ∂ϕ(u) is the subdifferential of ϕ at u.
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This means that elements of ∂ϕ are slopes of the hyperplanes supporting the
epigraph of ϕ at (u, ϕ(u)).

Let C be a subset of H . We write IC(x) for the indicator function of C at x ∈ H

defined by

IC(x) =
{

0 if x ∈ C,

l +∞ if x /∈ C.

Then C is a convex set if and only if IC is a convex function.
We define the relative interior of C ⊂ H , denoted by rint(C) as the interior of C

within the affine hull of C, i.e.,

rint(C) = {x ∈ C : ∃ε > 0, B(x, ε) ∩ Aff(C) ⊂ C},

where Aff(C) is the affine hull of C and B(x, ε) the ball of radius ε and centered at
x.

Suppose that C is a closed convex subset of H . For x̄ ∈ C, we define the
(outward) normal cone at x̄ by

NC(x̄) = {p ∈ R
n : 〈p, x − x̄〉 ≤ 0, ∀x ∈ C}.

If x̄ belongs to the interior of C, then NC(x̄) = {0}. It is easy to see that

NC(x) = ∂IC(x), ∀x ∈ H.

An important property of the subdifferential in Convex Analysis (established in
the Hilbert setting by J.-J. Moreau [19, Proposition 12.b]) concerns its maximal
monotonicity:

Theorem 3.1 (J.-J. Moreau [19]) Let H be a real Hilbert space. Then the
subdifferential ∂ϕ of a proper lower semicontinuous and convex function ϕ : H →
R ∪ {+∞} is a maximal monotone operator.
Remark 3.2

(i) The converse of Theorem 3.1 is not true in general, i.e., a maximal monotone
operator is not necessarily the subdifferential of a convex, proper, and lower

semicontinuous function. For example, the operator T =
[

0 −1
1 0

]

is monotone,

and hence maximal by Minty’s theorem. However, there is no ϕ ∈ �0(R
2) such

that: T = ∇ϕ.
(ii) The converse of Theorem 3.1 is true in dimension one. More precisely, for every

maximal monotone operator T : R ⇒ R, there exists ϕ ∈ �0(R) such that:
T = ∂ϕ.
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Let y ∈ R
n be given. We consider the following variational inequality problem:

find x ∈ R
n such that

〈x − y, v − x〉 + ϕ(v)− ϕ(x) ≥ 0,∀v ∈ R
n. (4)

This is equivalent to y−x ∈ ∂ϕ(x), that is, y ∈ (I+∂ϕ)(x), i.e., x = (I+∂ϕ)−1(y).
Since the subdifferential of a proper l.s.c. convex function is a maximal monotone
operator, we may apply the above theory.

Thus, Problem (4) has a unique solution, that we denote by

proxϕ(y) = (I + ∂ϕ)−1(y) = J∂ϕ(y).

The operator proxϕ : Rn → R
n; y �→ proxϕ(y), called the proximal operator, is

well-defined on the whole of Rn and

proxϕ(R
n) ⊂ Dom(∂ϕ). (5)

For instance, if ϕ ≡ IK , where K is a nonempty closed convex set and IK denotes
the indicator function of K , then

proxϕ ≡ proxIK ≡ projK,

where projK denotes the projection operator onto K , which is defined by the
formula:

‖x − projKx‖ = min
w∈K ‖x − w‖.

We may also consider the set-valued operator Aϕ : Rn ⇒ R
n defined by

Aϕ(x) = {f ∈ R
n : 〈x − f, v − x〉 + ϕ(v)− ϕ(x) ≥ 0,∀v ∈ R

n}. (6)

We see that f ∈ Aϕ(x)⇐⇒ f − x ∈ ∂ϕ(x) so that

A−1
ϕ (f ) = proxϕ(f ). (7)

It is also easy to see that

(tAϕ)
−1(tf ) = proxϕ(f ),∀t > 0. (8)

Note that

Aϕ(x) = ∂

{‖.‖2

2
+ ϕ(.)

}

(x),∀x ∈ R
n,
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so that Aϕ is a maximal monotone operator. It results that for any t > 0, the operator
(In + tAϕ)

−1 is a well-defined single-valued operator.
The basic Linear Complementarity Problem, LCP for short, is presented in [14]

(pp. 1–32) as follows. Consider H = R
n with the standard scalar product and the

order relation x ≥ y if and only if xi ≥ yi for all 1 ≤ i ≤ n. This is the order
associated to the cone K = R

n+, since x ≥ y if and only if x − y ∈ K . Then
the LCP problem denoted by LCP(q,M) requires that, given q ∈ R

n and a n × n

matrix M we find z satisfying

z ≥ 0, q +Mz ≥ 0, zT (q +Mz) = 0. (9)

This is often written as

0 ≤ z⊥ q +Mz ≥ 0.

It is easy to verify that this is equivalent to find z such that

− (q +Mz) ∈ NK(z). (10)

More generally, we may consider the Nonlinear Complementarity Problem
(NCP(f )) associated in a similar manner to a function f from R

n into itself: find z

such that

z ≥ 0, f (z) ≥ 0, zT f (z) = 0. (11)

This is equivalent to finding z such that

− f (z) ∈ NK(z), (12)

where again K = R
n+. Since NK(z) = ∂IK(z), this is nothing but a special case of

a variational inequality of first kind.
The NCP(f ) may be generalized as follows. Let K be a closed convex cone in

R
n, with dual cone K�, and f be given as above. Then the nonlinear complemen-

tarity problem over the cone K , denoted CP(K, f ), consists to find z such that

z ∈ K, f (z) ∈ K�, zT f (z) = 0. (13)

If K = R
n+, then it is self-dual, i. e. K� = K , and thus CP(K, f ) reduces to

NCP(f ).
An associated problem is the following variational inequality V I (K, f ): find z

such that

z ∈ K, f (z)T (y − z) ≥ 0, ∀ y ∈ K. (14)

It is worth mentioning that the standard existence result for the LCP is the one
due to Samelson, Thrall, and Wesler, which says that (cf. [14, p. 148]):
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Theorem 3.2 The linear complementarity problem LCP(M, q) : 0 ≤ z⊥ q +
Mz ≥ 0 has a unique solution for all q ∈ R

n if and only M is a P-matrix, i.e.,
all its principal minors are positive.

Notice that if M is symmetric, then M is a P-matrix if and only if it is positive
definite. In this situation, the LCP is equivalent to the quadratic minimization
problem with bound constraint:

min
z≥0

1

2
〈Mz, z〉 + 〈q, z〉.

Let us recall the following existence theorem for a general variational inclusion that
will be useful later.

Theorem 3.3 Let H be a real Hilbert space, T : H ⇒ H a maximal monotone
operator and F : H → H be a Lipschitz continuous and strongly monotone
operator, i.e., ∃k > 0, α > 0 such that for every u, v ∈ H , we have

‖F(u)− F(v)‖ ≤ k‖u− v‖,
and

〈F(u)− F(v), u− v〉 ≥ α‖u− v‖2.

Then for each f ∈ H , there is exists a unique u ∈ H such that:

f ∈ F(u)+ T (u), (15)

i.e., Rge(F + T ) = H .

Proof The existence is a consequence of Corollary 32.25 [22]. The uniqueness
follows immediately from the monotonicity of T and the strong monotonicity of
F . In fact, for a given f ∈ H , let u1 ∈ H and u2 ∈ H be two solutions of the
inclusion (15). We have f − F(u1) ∈ T (u1) and f − F(u2) ∈ T (u2). By the
monotonicity of T , we have

〈(f − F(u1))− (f − F(u2), u1 − u2〉 ≥ 0.

Hence,

〈F(u2)− F(u1), u1 − u2〉 ≥ 0.

Using the strong monotonicity of F , we get

α‖u1 − u2‖2 ≤ 〈F(u1)− F(u2), u1 − u2〉 ≤ 0.

Hence, u1 = u2, which proves the uniqueness. �
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The following existence and uniqueness result is essentially a consequence of
Kato’s theorem [17]. We refer the reader to [15, Corollary 2.2] for more details.

Theorem 3.4 Let H be a real Hilbert space, T : H ⇒ H a maximal monotone
operator and F : H → H be a hemicontinuous operator such that for some ω ≥ 0,
F + ωI is monotone. Let x0 ∈ Dom(T ) be given. Then there exists a unique x ∈
C0([0,+∞[;H) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ ∈ L∞loc([0,+∞[;H),

x is right-differentiable on [0,+∞[,
x(0) = x0,

x(t) ∈ Dom(T ), t ≥ 0,

ẋ(t)+ F(x(t))+ T (x(t)) " 0, a.e. t ≥ 0.

(16a)

(16b)

(16c)

(16d)

(16e)

4 Well-Posedness of Nonsmooth Lurie Systems

Let us first rewrite the nonsmooth system as a differential inclusion. We have

q ∈ F(−p)⇐⇒ Cx +Dp ∈ F(−p),
⇐⇒ Cx ∈ (D + F)(−p),
⇐⇒ −p ∈ (D + F)−1(Cx).

Hence,

ẋ ∈ Ax + Bp ⇐⇒ ẋ ∈ Ax − B(D + F)−1(Cx).

Consequently problem (L) is equivalent to the following differential inclusion: given
an initial point x0 ∈ R

n, find a function x ∈ W
1,∞
loc (0,+∞) such that

ẋ(t) ∈ Ax(t)− B(D + F)−1(Cx(t)), t ≥ 0. (17)

In what follows Ip stands for the identity matrix of order p ∈ N
∗.

Let us suppose that the operator F : Rm ⇒ R
m is a maximal monotone operator.

By Proposition 3.1, the resolvent operator defined by

JF : Rm → R
m, �→ JF (x) = (Im + F)−1(x),
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is single-valued and Lipschitz continuous with modulus 1, i.e.,

‖JF (x)− JF (y)‖ ≤ ‖x − y‖, ∀x, y ∈ R
m.

The single-valuedness of JF means the for every y ∈ R
m, the following inclusion

x + F(x) " y

has a unique solution x (which depends on y).
The main question we treat now is the following: under which conditions on the

matrix D ∈ R
m×m, the following operator

JD,F = (D + F)−1 (18)

is single-valued and Lipschitz continuous. We give in Examples 4.1 and 4.2 some
situations where the computation of the operator JD,F is possible.

Proposition 4.1 Suppose that the matrix D ∈ R
m×m is positive definite and that

F : Rm ⇒ R
m is a maximal monotone operator. Then the operator JD,F = (D +

F)−1 is well-defined, single-valued, and Lipschitz continuous with modulus L =
2

λ1(D+DT )
, where λ1(D +DT ) is the smallest eigenvalue of the matrix D +DT .

Proof Since D is positive definite (hence strongly monotone) and F is maximal
monotone, by Theorem 3.3 for every y ∈ R

m, there exists a unique x ∈ R
m such

that

y ∈ Dx + F(x).

Hence the operator (D + F)−1 is well-defined and single-valued. Let us show that
(D +F)−1 is Lipschitz continuous. Let y1, y2 ∈ R

m and set x1 = (D +F)−1(y1)

and x2 = (D + F)−1(y2). We have

Dx1 + F(x1) " y1 and Dx2 + F(x2) " y2.

Using the fact F is monotone, we get

〈(y1 −Dx1)− (y2 −Dx2), x1 − x2〉 ≥ 0.

Hence,

〈D(x1 − x2), x1 − x2〉 ≤ 〈y1 − y2, x1 − x2〉.

Since the matrix D is positive definite, we have

〈Dx, x〉 ≥ λ1(D +DT )

2
‖x‖2, ∀x ∈ R

m.
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Therefore,

λ1(D +DT )

2
‖x1 − x2‖2 ≤ 〈Dx1 −Dx2, x1 − x2〉

≤ 〈y1 − y2, x1 − x2〉
≤ ‖y1 − y2‖ ‖x1 − x2‖.

Consequently,

‖x1 − x2‖ ≤ 2

λ1(D +DT )
‖y1 − y2‖,

which means that the operator JD,F = (D + F)−1 is Lipschitz continuous with
modulus L = 2

λ1(D+DT )
. �

Remark 4.1

(i) If the matrix D is only positive semidefinite, then the resolvent operator JD,F =
(D + F)−1 may be set-valued. Let us consider the following simple example:

D =
[

0 0
0 1

]

and F : R2 ⇒ R
2, x = (x1, x2) �→ F(x) = (Sign(x1),Sign(x2)),

where Sign : R ⇒ R, α �→ Sign(α) is defined by

Sign(α) = ∂| · |(α) =
⎧
⎨

⎩

1 if α > 0,
[−1, 1] if α = 0,
−1 if α < 0.

We note that F(·) is a maximal monotone operator defined on R
2 and that the

matrix D is positive semidefinite.
It is easy to see that the inverse (in the set-valued sense) of the operator Sign

is defined by S : R ⇒ R, α �→ S(α) := Sign−1(α) (see Fig. 4):

S(α) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∅ if α < −1,
]−∞, 0] if α = −1,
0 if α ∈] − 1, 1[,
[0,+∞[ if α = 1,
∅ if α > 1.

(19)

The inverse of the operator (1+ Sign) is well-known as the soft thresholding
operator T (·) which is used in the FISTA method for sparse optimization (see
Fig. 5):
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Fig. 4 Inverse operator of Sign(·)

Fig. 5 Inverse operator of 1+ Sign(·)

T (α) = sign(α)(|α| − 1)+ =
⎧
⎨

⎩

α − 1 if α ≥ 1,
0 if −1 ≤ α ≤ 1,
α + 1 if α ≤ −1.

(20)

We note that T is a single-valued while S is set-valued operator defined on R.
Let us compute D +F and its inverse. For every x = (x1, x2) ∈ R

2, we have

y = (y1, y2) ∈ (D + F)(x) ⇐⇒ y1 ∈ Sign(x1) and y2 ∈ x2 + Sign(x2)

⇐⇒ x1 ∈ Sign−1(y1) and x2 = (1+ Sign)−1(y2).

⇐⇒ (x1, x2) ∈ (S(y1), T (y2)).
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Hence,

JD,F = (D + F)−1 = (S(·), T (·)),

where S and T are defined, respectively, in (19) and (20). Since S is a set-valued
operator, we conclude that (D + F)−1 is also a set-valued operator.

(ii) Let us consider the following matrix D and operator F : R2 → R
2 defined,

respectively, by

D =
[−1 0

0 1

]

and F(x1, x2) =
[−x2

x1

]

.

It is clear that F is a maximal monotone operator and that the inverse D + F
does not exist.

Example 4.1 In R
m, let us consider the following F : Rm ⇒ R

m, defined by

x = (x1, . . . , xm) �→ F(x) =
(
F1(x1), . . . ,Fm(xm)

)
,

where Fi : R ⇒ R, xi �→ Fi (xi) = Sign(xi), i = 1, 2, . . . , m. If we take
D = Im, then the resolvent operator JD,F = JF can be computed componentwise
by applying the one-dimensional soft thresholding operator T in (20) to each
component. Hence for every x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ R

m, we have

y ∈ (Im + F)(x) ⇐⇒ xi = T (yi) = sign(yi)(|yi | − 1)+, i = 1, 2, . . . m.

Hence,

JF (y) = (Im + F)−1(y) = (T (y1), . . . , T (ym)
)
. (21)

Example 4.2 Let ϕ : Rm → R given by ϕ(x) = r‖x‖2, with r > 0. We have

∂ϕ(x) =
{
r x
‖x‖ if x �= 0,

B(0, r) if x = 0.
(22)

It is easy to show that for D = Im and F = ∂ϕ, we have,

J∂ϕ = (Im + ∂ϕ)−1(x)

=
(

1− r

max{r, ‖x‖}
)
x (23)

=
{

0 if ‖x‖ ≤ r,

(‖x‖ − r) x
‖x‖ if ‖x‖ ≥ r.
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We have the following existence and uniqueness result.

Theorem 4.1 Assume that F : Rm ⇒ R
m is a maximal monotone operator and

that the matrix D ∈ R
m×m is positive definite. Then for each x0 ∈ R

n, there exists
a unique function x ∈ W

1,∞
loc (0,+∞) such that

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = Ax(t)+ Bp(t), a.e. t ∈ [0,+∞[,
q(t) = Cx(t)+Dp(t),

q(t) ∈ F(−p(t)), t ≥ 0,
x(0) = x0.

Proof Since F : Rm ⇒ R
m is a maximal monotone operator and that the matrix

D is positive definite, by Proposition 4.1 the generalized resolvent JD,F = (D +
F)−1 is well-defined, single-valued, and Lipschitz continuous. Using Eq. (17) and
the notation (18), it is clear that the system (L) is equivalent to find a trajectory
satisfying the following ordinary differential equation

ẋ(t) = Ax(t)− BJD,F (Cx(t)), t ≥ 0. (24)

Let us defined the following vector field f : Rn → R
n, x �→ f (x) associated

to (24)

f (x) = Ax − BJD,F (Cx).

It is easy to see that f (·) is Lipschitz continuous. Hence by the classical Cauchy-
Lipschitz theorem, for each x0 ∈ R

n there exists a unique trajectory x(·)
satisfying (24). The proof is thereby completed. �

In the particular case where F coincides with the normal cone to R
m+, i.e., F :

R
m ⇒ R

m, x �→ F(x) = NR
m+(x), we can relax the assumption on the matrix D.

Proposition 4.2 Suppose that D ∈ R
m×m is a P -matrix and that F = NR

m+ . Then

the operator JD,F = (D + NR
m+)
−1 is well-defined, single-valued, and Lipchitz

continuous.

Proof By (10), z = (D + NR
m+)
−1(q) if and only if z is a solution of the linear

complementarity problem LCP(D,−q). Since D is a P -matrix, by Theorem 3.2,
the LCP(D,−q) has a unique solution for every q ∈ R

m. The Lipschitz continuity
property the solution map of a LCP is well-known in the literature (see, e.g.,
[14]). �

We have the following existence result for the Lurie system involving the normal
cone to the nonnegative orthant Rm+ as a set-valued law.

Theorem 4.2 Assume that the matrix D ∈ R
m×m is a P -matrix. Then for each

x0 ∈ R
n, there exists a unique function x ∈ W

1,∞
loc (0,+∞) such that
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = Ax(t)+ Bp(t) a.e. t ∈ [0,+∞[,
q(t) = Cx(t)+Dp(t),

q(t) ∈ NR
m+(−p(t)), t ≥ 0,

x(0) = x0.

Proof Use Proposition 4.2 and the same argument as in the proof of Theo-
rem 4.1. �

In this part, we deal with the general case, i.e., the matrix D is positive
semidefinite but we will impose some other assumptions on the matrices B ∈ R

n×m
and C ∈ R

m×n. By introducing the new set-valued map G : Rm ⇒ R
m, x �→

G(x) = (D + F)−1(x), the last inclusion is of the form

ẋ(t) ∈ Ax(t)− BG(Cx(t)).

We will give now conditions on the data (B,C,F) such that the set-valued map
under composition BGC is maximal monotone. Let us recall the following theorem
(see Theorem 12.43 page 556 in [20]).

Theorem 4.3 Suppose that T (x) = MT S(Mx) for a given maximal monotone
operator S : Rm ⇒ R

m and a given matrixM ∈ R
m×n.

If Rge(M) ∩ rint(Dom(S)) �= ∅, then the operator T is maximal monotone.

The following lemma will be useful.

Lemma 4.1 Let S : Rm ⇒ R
m be a set-valued map and M ∈ R

m×n be a matrix.
Let T : Rn ⇒ R

n defined by: x �→ T (x) = MT S(Mx). Then

Dom (T ) = M−1(Dom(S)),

whereM−1(K) = {x ∈ R
n : Mx ∈ K} for a given nonempty set K ⊂ R

m.

Proof We have,

x ∈ Dom(T ) ⇐⇒ T (x) �= ∅,
⇐⇒ MT S(Mx) �= ∅,
⇐⇒ S(Mx) �= ∅,
⇐⇒ Mx ∈ Dom(S),

⇐⇒ x ∈ M−1(Dom(S)).

Hence,

Dom (T ) = M−1(Dom(S)),

which completes the proof of Lemma 4.1. �
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Proposition 4.3 Assume that there exists a matrix P ∈ R
n×n, P = PT > 0

such that PB = CT and F : R
m ⇒ R

m is a given set-valued map. Then the
dynamic (1a)–(1c) is equivalent to

ż(t) ∈ RAR−1z(t)− R−1CT (D + F)−1(CR−1z(t)), (25)

with R = P
1
2 and z(t) = Rx(t).

Proof Since there exists a symmetric and positive definite matrix P such that:

PB = CT , we set R = P
1
2 . Hence,

PB = CT ⇐⇒ RB = R−1CT . (26)

We set z(t) = Rx(t), which means that ż(t) = Rẋ(t). The inclusion (17) is
equivalent to

ż(t) ∈ RAR−1z(t)− R−1CT (D + F)−1(CR−1z(t)),

which completes the proof. �
Remark 4.2 The existence of a matrix P = PT > 0 such that PB = CT can be
linked to the famous Kalman-Yakubovich-Popov Lemma (see [2]).

We have the following well-posedness result for the nonsmooth Lurie system (L)

involving a maximal monotone set-valued law.

Theorem 4.4 Assume that there exists a matrix R ∈ R
n×n, R = RT > 0 such that

R2B = CT , the matrix D ∈ R
m×m is positive semidefinite and that F : Rm ⇒ R

m

is a maximal monotone operator. Assume also that

Rge(CR−1) ∩ rint
(

Rge(D + F)
)
�= ∅. (27)

Then for each x0 ∈ RC−1
(

Rge(D + F)
)
, there exists a unique function x ∈

W
1,∞
loc (0,+∞) such that

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = Ax(t)+ Bp(t), a.e. t ∈ [0,+∞[,
q(t) = Cx(t)+Dp(t),

q(t) ∈ F(−p(t)), t ≥ 0,
x(0) = x0.

Proof By Proposition 4.3, the dynamic (1a)–(1c) is equivalent to

ż(t) ∈ RAR−1z(t)− R−1CT (D + F)−1(CR−1z(t)),
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with z(t) = Rx(t). We use Theorem 4.3 to show that the operator T : Rn ⇒ R
n

under composition defined by

T (z) = R−1CT (D + F)−1(CR−1z)

is maximal monotone. We set M = CR−1 and S = (D+F)−1. By Lemma 4.1, we
have

Dom(T ) = M−1(Dom(S)) = RC−1
(

Rge(D + F)
)
.

Since, in one hand the matrix D is positive semidefinite (hence monotone and
continuous on R

m) and the other hand F : Rm ⇒ R
m is a maximal monotone

operator, we deduce that the sum (D + F) is also maximal monotone (see
Remark 3.1). Consequently the inverse operator S = (D + F)−1 : Rm ⇒ R

m

is maximal monotone. Using (3), we have

Dom(S) = Rge(D + F).

Using (27), we deduce that T is a maximal monotone operator. Since the perturba-
tion term z �→ RAR−1z is Lipschitz continuous, the existence and uniqueness of a

trajectory for a given x0 ∈ RC−1
(

Rge(D + F)
)

follows from Theorem 3.4. The

proof is thereby completed. �
Remark 4.3

(i) In some applications, the matrices B ∈ R
n×m and C ∈ R

m×n are transpose
to each other, i.e., B = CT . In this case it is sufficient to set R = In in
Theorem 4.4.

(ii) If the matrix C = BT is surjective (or B is injective), then condition (27) is
satisfied.

Example 4.3 We give some examples of the data A, B, C, D, and F satisfying
conditions of Theorem 4.4.

(i) Let consider

A =
[

0 −1
1 −1

]

, B =
[

0 −1
0 0

]

, C =
[

0 0
−1 0

]

, D =
[

0 0
0 1

]

.

Let us consider the following set-valued map F : R2 ⇒ R
2, x = (x1, x2) �→

F(x) =
(
F1(x1),F2(x2)

)
given by

F1(x1) =
⎧
⎨

⎩

α if x1 < 0
[α, β] if x1 = 0
β if x1 > 0

and F2(x2) = ∂(| · |)(x2) = Sign(x2),
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Fig. 6 Illustration of condition (27) with Example 4.3

with α, β ∈ R two given parameters such that α ≤ β.
Since B = CT , according to Remark 4.3, we can take R = I2. One has

Rge(C) = span {(0, 1)} and Rge(D + F) = [α, β] × R.

It is easy to see that condition (27) is satisfied if and only if α < 0 and β > 0.

(ii) If we take, for example, C =
[

a 0
−1 0

]

= BT , with a ∈ R \ {0} and the other

data as in (i). One can easily check that the condition (27) is satisfied for every
α, β ∈ R with α ≤ β (Fig. 6).
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Numerical Method for Calculation
of Unsteady Fluid Flow Regimes
in Hydraulic Networks of Complex
Structure

K. R. Aida-zade and Y. R. Ashrafova

Abstract The problem of calculating flow regimes of transient processes in
complex hydraulic networks with loops is considered in the chapter. Fluid flow
in each linear segment of pipeline network is described by a system of two linear
partial differential equations of the first order. Non-separated boundary conditions
are satisfied at the nodes of the network. These conditions are determined by the first
Kirchhoff’s law and by the continuity of flow. The scheme of numerical solution to
the problem based on the application of grid method is suggested. The formulas
analogous to the formulas of sweep method are derived. The obtained formulas
are independent of the number of nodes, segments, and structure of the pipeline
network. Numerical experiments are carried out with the use of the suggested
approach, and the obtained results are analyzed.

1 Introduction

It’s known that one of the most important technological processes in oil and
gas sector is the transportation of hydrocarbons from deposits to the places of
its processing with further delivery to customers. Pipeline transport networks of
complex loopback structure are used for these purposes. The development of the
networks of trunk pipelines is associated with the wide use of modern facilities of
measuring, computing, and remote control systems. The most difficult situations
arise in the systems of pipeline transportation of hydrocarbon raw material when it
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is necessary to change the pumping regimes which initiate transition processes in
the pipelines [1–14]. Such regimes are undesirable for equipment of the pipeline
systems (in particular, for pumping, compressor stations). They can result in the
break of the pipelines due to the fluid hammer caused by incorrect control over
transition process, when switching from the transient regime to the steady-state
regime.

We study the problem of calculating flow regimes of transient processes in
complex pipeline networks as opposed to many cases of the considered problem-
solving exclusively for separate linear segments of the pipeline, investigated in
[6–13] earlier. The number of linear sections can reach up to several tens and even
hundreds of real pipeline transport networks. In the work, we propose to use the
graph theory, which drastically simplifies the process of computer modeling of
complex pipeline networks. We use the system of two linear partial differential
equations of hyperbolic type to describe the process of fluid flow in every linear
segment of the pipeline network. There are non-separated boundary conditions [15,
16] at the points of connection of linear segments, which makes it impossible
to calculate the flow regimes for every individual segment separately; it must
be done for all segments simultaneously. To solve the problem, we suggest to
use the methods of finite difference approximation (grid method) and special
scheme of sweep (transfer) method to approximate a set of systems of hyperbolic
differential equations interrelated by boundary conditions. Satisfactory results of
numerical experiments are given. In order to switch from the grid problem with non-
separated conditions to a problem with separated boundary conditions, we obtain
the dependencies between boundary values of sought-for functions for every linear
section. We obtained the formulas for the procedure of obtaining such dependencies,
called a sweep (transfer) method, that use the difference equations only for that
section, for which is made the dependencies.

2 Statement of the Problem

We consider the problem of calculating laminar flow regimes in complex pipe
networks for the sufficient general case of complex-shaped hydraulic network with
loops containing M segments and N nodes. Sometimes it is difficult to decide which
direction fluid will flow. The direction of flow is often obvious, but when it is not,
flow direction has to be assumed. We assume that the flow directions in the segments
are given a priori. If he calculated value of flow rate is greater than zero in a segment,
it means that actual flow direction in this segment coincides with the given direction.
If the calculated value of the flow rate is less than zero, then actual flow direction is
opposite to the given one.

To simplify presentation of numerical schemes and to be specific, let us consider
the pipe network, containing eight segments as shown in Fig. 1.

Numbers in brackets identify the nodes (or junctions). We denote the set of
nodes by I: I = {k1, . . . , kN}; where ki, i = 1, N are the nodes; N = |I| is the
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Fig. 1 The scheme of pipe
network with eight nodes

Fig. 2 The case of
introduction of additional
node

numbers of nodes in the network. Two numbers in parentheses identify two-index
numbers of segments. The flow in these segments goes from the first index to the
second (e.g., the flow in segment (1,2) is obviously from node 1 to node 2. Let J:
J = {(ki, kj) : ki, kj ∈ I} denote the set of segments and M = |J| denote its quantity;
lkikj , dkikj , ki, kj ∈ I is the length and diameter of the segment (ki, kj), respectively.

Let I+k denote the set of nodes connected with node k by segments where flow
goes into the node, and let I−k denote the set of nodes connected with node k by
segments where flow goes out of the node; Ik = I+k ∪ I−k denotes the set of total
nodes connected with node k and Nk = |Ik|, Nk+ = ∣

∣I+k
∣
∣, Nk− = ∣

∣I−k
∣
∣, Nk =

Nk−+Nk+ . The arrows in Fig. 1 formally indicate the assumed (not actual) direction
of the fluid flow.

Note that the arrows indicating direction of flow are selected so that each node
may be only inflow or outflow. Such selection facilitates in certain extent the
calculating process, but it is not principal (the reason for this will be clear further).

Such an appointment of directions can be done for any structure of the pipeline
network, at the expense of artificial introduction of an additional node and partition
of the whole segment into two sections in the case of necessity. For example, in the
segment (6, 3), we introduced a new node [3′] as shown in Fig. 2, and the segment
is divided into two sections: (6, 3′) and (3′, 6).

Besides the inflows and outflows in the segments of the network, there can be
external inflows (sources) and outflows (sinks) with the rate q̃i (t) at some nodes
i ∈ I of the network. Positive and negative values of q̃i (t) indicate the existence of
external inflow or outflow at the node i. However, in general case, assuming that
the case q̃i (t) ≡ 0 for the sources is admissible, one can consider all nodes of the
network as the nodes with external inflows or outflows. Let If ⊂ I denote the set of
nodes i ∈ I, where i is such that the set I+i ∪I−i consists of only one segment. It means
that the node i is a node of external inflow or outflow for the whole pipe network
(e.g., If = {1, 4, 5, 8} in Fig. 1). Let Nf = |If | denote the number of such nodes;
it is obviously that Nf ≤ N. Let Iint denote the set of nodes not belonging to If , so
Nint = |Iint|, i.e., Iint = I/If , Nint =N −Nf . In actual conditions, the pumping stations
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are placed, the measuring equipment is installed, and the quantitative accounting is
conducted at the nodes from the set If .

Linearized system of differential equations for unsteady isothermal laminar flow
of dripping liquid with constant density ρ in a linear pipe (k, s) of length lks and
diameter dks of oil pipeline network can be written in the following form [14]:

{
− ∂P ks (x,t)

∂x
= ρ

Sks
∂Qks(x,t)

∂t
+ 2aks ρ

Sks
Qks (x, t) ,

− ∂P ks (x,t)
∂t

= c2 ρ

Sks
∂Qks(x,t)

∂x
, x ∈ (0, lks) , t ∈ (0, T ] ,

s ∈ I+k , k ∈ I. (1)

Here c is the sound velocity in oil; Sks is the area of an internal cross section of
the segment (k, s) and aks is the coefficient of dissipation (we may consider that the
kinematic coefficient of viscosity γ is independent of pressure and the condition
2aks = 32γ

(dks)
2 = const is quite accurate for a laminar flow). Qkikj (x, t) and

P ki,kj (x, t) are the flow rate and pressure of flow, respectively, at the time instance
t in the point x ∈ (0, lki ,kj

)
of the segment (ki, kj) of the pipe network. Pk(t), Qk(t)

are the pressure and flow rate at the node k ∈ I, respectively. The values Qkikj (x, t)

can be positive or negative. The positive or negative value Qkikj (x, t) means that an
actual flow in the segment (ki, kj) is directed from the node ki to the node kj or the
flow direction is from kj to ki, respectively. It is obvious that each segment carries
an inflow and outflow for some nodes and the following conditions are satisfied:

Qki,kj (x, t) = −Qkjki
(
lki ,kj − x, t

)
,

P ki ,kj (x, t) = P kj ki
(
lki ,kj − x, t

)
, x ∈ (0, lkikj ) , ki ∈ I, kj ∈ I+ki ,

(2)

where lkj ki = lkikj .
The equation for each segment of the network appears in the system (1) only

once. Indeed, the first index k takes the values of all nodes from I, and the segments
(k, s) make up the set of all segments-inflows into the node s, s ∈ I+k . Taking into
account that each segment of the network is inflow for some node, consequently,
there is an equation in (1) for each segment of the network, and this equation takes
place in (1) only once.

Instead of using (1), we can write the process of fluid flow in the network for the
segments-outflows in the following form:

{
− ∂P ks (x,t)

∂x
= ρ

Sks
∂Qks(x,t)

∂t
+ 2aks ρ

Sks
Qks (x, t) ,

− ∂P ks (x,t)
∂t

= c2 ρ

Sks
∂Qks(x,t)

∂x
, x ∈ (0, lks) , t ∈ (0, T ] ,

s ∈ I−k , k ∈ I,

because each segment is an outflow for some node.
The conditions of Kirchhoff’s first law (total flow into the node must be equal to

total flow out of the node) are satisfied at the nodes of the network at t ∈ [0,T]:
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∑

s∈I+k
Qks

(
lks , t

)
−
∑

s∈I−k
Qks (0, t) = q̃k(t), k ∈ I. (3)

Also, the following conditions of flow continuity for the nodes of the net (the
equality of the values of pressures on all adjacent ends of the segments of the
network) hold:

P k(t) = P kik
(
lkik, t

)
= P kkj (0, t) , ki ∈ I+k , kj ∈ I−k , k ∈ I, (4)

where q̃k(t) is the external inflow
(
q̃k(t) > 0

)
or outflow

(
q̃k(t) < 0

)
for the node

k and Pk(t) is the value of the pressure in the node k.
It is evident that (3) includes Nf + Nint = N conditions. The number of

independent conditions is (Nk − 1) for every node k from the set Iint in (4) (i.e.,
one less than the total number of adjacent nodes), and two boundary conditions
(4) are associated with every internal segment of the network. The total number of
conditions for all nodes from If is Nf . So, the total number of conditions in (3) and
(4) is [Nf + Nint] + [(2M − Nf ) − Nint] = 2M.

As it was noted above, the number of conditions in (3) is N, but in view of the

condition of material balance

(
∑

k∈I
q̃k(t) = 0

)

for the whole pipeline network, we

conclude that the number of linearly independent conditions is N − 1. So, it is
necessary to add any one independent condition. As a rule the value of pressure at
one of the nodes s ∈ If is given for this purpose, in place of the flow rate qs(t):

P s(t) = P̃ s(t). (5)

In more general case, for every node from If , it is necessary to give the values of
pressure (Ifp ⊂ If denotes the set of such nodes) or the values of flow rate (the set

I
f
q ⊂ If ). So, we will add the following conditions to condition (3):

{
Pn(t) = Pns (0, t) = P̃ n(t), s ∈ I+n , if I−n = ∅,

P n(t) = P sn (lsn, t) = P̃ n(t), s ∈ I−n , if I+n = ∅,
n ∈ I

f
p , (6)

{
Qm(t) = Qms (0, t) = P̃ m(t), s ∈ I+m , if I−m = ∅,

Qm(t) = Qsm (lsm, t) = P̃ m(t), s ∈ I−m , if I+m = ∅.
m ∈ I

f
q , (7)

Here If = I
f
q ∪Ifp and Ifp must not be empty: Ifp �= ∅; Q̃m(t), P̃ n(t), m ∈ I

f
q , and

n ∈ I
f
p are the given functions, which determine the regimes of sources’ operation.

Conditions (3), (4), (6), and (7) are the boundary conditions for the system
of differential Eq. (1). We must note that they have significant specific features,
consisting in the fact that conditions (3) and (4) are non-separated (nonlocal)
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boundary conditions unlike classical cases of boundary conditions for partial
differential equations.

We will assume that initial state of the process at t = 0 is given for all segments
of the network:

Qks (x, 0) = Q̂ks(x), P ks (x, 0) = P̂ ks(x), x ∈
[
0, lks

]
, s ∈ I+k , k ∈ I,

(8)

here Q̂ks(x), P̂ ks(x), (k, s) ∈ J are known functions. We also assume that the
functions defining an initial state of the process and boundary conditions are
continuous and satisfy the consistency conditions on the ends at initial time and
all the conditions of existence and uniqueness of the solution to the corresponding
boundary value problem (1) and (3)–(8) hold.

So, we are given the functions Q̂ks(x), P̂ ks(x), (k, s) ∈ J, Q̃m(t),m ∈ I
f
q , P̃ n(t),

n ∈ I
f
p , and q̃k(t), k ∈ I involved in (3)–(8) which characterize external inflows or

outflows, and we need to find the functions Qks(x, t), Pks(x, t), x ∈ (0, lks), (k, s) ∈ J,
and t ∈ [0,T] (the solutions to the system of differential eqs. (1) with non-separated
boundary conditions (3)–(7) and initial conditions (8)) which determine the regimes
of transient processes for all segments of the network at t ∈ [0,T].

In general, it is impossible to build analytical solution to the considered problem
due to the non-separability of boundary conditions. Thereby in this work, we suggest
to use numerical approach based on application of grid method for solving boundary
value problems (1) and (3)–(8). In what follows we present the implementation of
the proposed numerical approach. The formulas are obtained for this approach; the
algorithms based on the suggested scheme of transfer of non-separated boundary
conditions are developed; numerical experiments are conducted; and an analysis of
the obtained results is given.

3 Numerical Method of the Solution to the Problem

To solve numerically the problem in domain [0, lks] × [0, T], (ks) ∈ J, we introduce
a uniform grid area.

ωks = {(xi , tj
) : xi = ih, tj = jτ, i = 0, nks , j = 0, nt

}
, nks =

[
lks/h

]
, τ = T/nt , (ks) ∈ J,

(9)

where h, τ are the given positive numbers and [Ã] is an integer part of the number
Ã. We use the following notations for grid functions:

P ks
ij = P ks

(
xi , tj

)
, Qks

ij = Qks
(
xi , tj

)
, q̃kj = q̃k

(
tj
)
, (i, j) ∈ ωks, (ks) ∈ J, k ∈ I.

(10)
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Let’s approximate the system of eqs. (1) by implicit scheme of grid method in the
following form [17]:

⎧
⎨

⎩

−P ks
ij −P ks

i−1j
h

= ρ

Sks

Qks
ij −Qks

ij−1
τ

+ 2aks ρ

Sks
Qks

ij ,

− P ks
ij −P ks

ij−1
τ

= c2 ρ

Sks

Qks
ij −Qks

i−1j
h

, i = 1, nks, j = 1, nt ,
s ∈ I+k , k ∈ I.

(11)

The approximation (11) is stable [18]. Let’s approximate initial conditions (1.12):

Qks
i0 = Q̂ks (xi) , P ks

i0 = P̂ ks (xi) , i = 1, nks, (ks) ∈ J (12)

and boundary conditions at j = 1, nt :

{
Qms

0j = Q̃s
(
tj
)
, s ∈ I−m , if I+n = ∅,

Qsm
nsmj

= Q̃s
(
tj
)
, s ∈ I+m , if I−n = ∅,

m ∈ I
f
q , (13)

{
Pns

0j = P̃ s
(
tj
)
, s ∈ I−n , if I+n = ∅,

P sn
nsnj

= P̃ s
(
tj
)
, s ∈ I+n , if I−n = ∅,

n ∈ I
f
p , (14)

P
krk
nkr kj

= P
kks
0j , kr ∈ I+k , ks ∈ I−k , k ∈ I, (15)

∑

s∈I+k
Qsk

nskj
−
∑

s∈I−k
Qks

0j = q̃kj , k ∈ I. (16)

Using the notations ξks = (h
τ
+ 2aksh

)
, μ = h

τ
, η = h

τc2 , and Qks
ij = ρ

Sks
Qks

ij , we

can write the expression (11) for j = 1, nt as follows:

{
P ks
ij = P ks

i−1j − ξksQks
ij + μQks

ij−1,

Qks
ij = Qks

i−1j − ηP ks
ij + ηP ks

ij−1, i = 1, nks,
s ∈ I+k , k ∈ I. (17)

Problem (12)–(17) is the finite-dimensional difference approximations of origi-
nal problem (1) and (3)–(8). System (17) consists of M pairs of difference equations;
(12)–(16) include 2M boundary conditions, some of them are given on the left
ends and some on the right ends of the intervals (0, lks), (ks) ∈ J; and conditions
(15) and (16) are non-separated. To solve problem (12)–(17) numerically, first of
all, it is necessary to bring all of the conditions to one end: (to the left or right
end) of the interval (0, lks) for every time layer. Since conditions (15) and (16) are
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non-separated, it is impossible to use immediately the traditional sweep methods
[17] or the analogues of the sweep methods, introduced for non-separated boundary
conditions in the problems with concentrated parameters [16].

In this work we suggest a modification of sweep method that eventually
constructs the dependences between boundary values of all unknown functions (i.e.,
the values of pressure and flow rate for the case being considered) on the left and
right ends of corresponding intervals (segments) (0, lks). This will afford to express
the values of boundary functions on one end of each (segment) interval in terms
of the values of the functions on the other end of the same (segment) interval.
Consequently, all the boundary conditions will be given on the one end: on the
left ends or right ends, which will allow carrying out the calculations directly by
formulae (17).

Thus, for example, to transfer the conditions from the left end to the right end on
the j− th time layer for the segment (ks), we will obtain the following dependences,
which we will call the formulas for left sweep method:

P ks
0j = R

(
P ks
nksj

,Qks
nksj

)
, Qks

0j = G
(
P ks
nksj

,Qks
nksj

)
, (ks) ∈ J, (18)

whereas to sweep the conditions from the right end to the left end, we will obtain
the following dependences, which we will call the right sweep method:

P ks
nksj

= R
(
P ks

0j ,Q
ks
0j

)
, qksnksj = G

(
P ks

0j ,Q
ks
0j

)
, (ks) ∈ J. (19)

For these purposes, we build the dependences for the left sweep method in the
following form:

P ks
0j = α

ks(r)
p P ks

rj + β
ks(r)
p Qks

rj + θ
ks(r)
p ,

Qks
0j = α

ks(r)
q Qks

rj + β
ks(r)
q P ks

rj + θ
ks(r)
q ,

r = 1, nks, (20)

whereas the analogous dependences for the right sweep method are as follows:

P ks
nksj

= α
ks(r)
p P ks

rj + β
ks(r)
p Qks

rj + θ
ks(r)
p ,

Qks
nksj

= α
ks(r)
q Qks

rj + β
ks(r)
q P ks

rj + θ
ks(r)
q ,

r = nks − 1, 0, (21)

where α
ks(r)
p , βks(r)r , θks(r)p , αks(r)q , βks(r)q , θks(r)q , are the as-yet unknown sweep

coefficients. Let us write (18) in the following form to obtain formulas for sweep
coefficients:

{
P ks
i−1j = P ks

ij + ξksQks
ij − μQks

ij−1,

Qks
i−1j = Qks

ij + ηP ks
ij − ηP ks

ij−1, i = 1, nks, s ∈ I+k , k ∈ I.
(22)

and for i = 1 (22) will be as follows:
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{
P ks

0j = P ks
1j + ξksQks

1j − μQks
1j−1,

Qks
0j = Qks

1j + ηP ks
1j − ηP ks

1j−1, s ∈ I+k , k ∈ I.
(23)

We can build the recurrent relations if we use the method of mathematical induction
and take into account the formulae (20) in (22):

Pks
0j = α

ks(r)
p P ks

rj
+ β

ks(r)
p Qks

rj
+ θ

ks(r)
p =

= α
ks(r)
p

(
Pks
r+1j + ξksQks

r+1j − μQks
r+1j−1

)
+ β

ks(r)
p

(
Qks
r+1j + ηP ks

r+1j − ηP ks
r+1j−1

)
+

+θks(r)p = Pks
r+1j

(
α
ks(r)
p + ηβ

ks(r)
p

)
+Qks

r+1j

(
α
ks(r)
p ξks + β

ks(r)
p

)
+ θ

ks(r)
p −

−αks(r)p μQks
r+1j−1 − β

ks(r)
p ηP ks

r+1j−1

Qks
0 = α

ks(r)
q Qks

rj
+ β

ks(r)
q P ks

rj
+ θ

ks(r)
q =

= α
ks(r)
q

(
Qks
r+1j + ηP ks

r+1j − ηP ks
r+1j−1

)
+ β

ks(r)
q

(
Pks
r+1j + ξksQks

r+1j − μQks
r+1j−1

)
+

+θks(r)q = Qks
r+1j

(
α
ks(r)
q + ξksβ

ks(r)
q

)
+ Pks

r+1j

(
β
ks(r)
q + ηα

ks(r)
q

)
+ θ

ks(r)
q −

−αks(r)q ηP ks
r+1j−1 − β

ks(r)
q μQks

r+1j−1.

(24)

On the other hand, we can write (20) for r + 1 in the following form:

P ks
0j = α

ks(r+1)
p P ks

r+1j + β
ks(r+1)
p Qks

r+1j + θ
ks(r+1)
p ,

Qks
0j = α

ks(r+1)
q Qks

r+1j + β
ks(r+1)
q P ks

r+1j + θ
ks(r+1)
q ,

(25)

So, if we take into account (23) and equate the right sides of (25) with (24), we
obtain the formulas for finding the left sweep coefficients:

⎧
⎪⎨

⎪⎩

α
ks(r+1)
p = α

ks(r)
p + ηβ

ks(r)
p , α

ks(1)
p = 1,

β
ks(r+1)
p = α

ks(r)
p ξks + β

ks(r)
p , β

ks(1)
p = ξks ,

θ
ks(r+1)
p = θ

ks(r)
p − α

ks(r)
p μQks

r+1j−1 − β
ks(r)
p ηP ks

r+1j−1, θ
ks(1)
p = −μQks

1j−1,⎧
⎪⎨

⎪⎩

α
ks(r+1)
q = α

ks(r)
q + ξksβ

ks(r)
q , α

ks(1)
q = 1,

β
ks(r+1)
q = β

ks(r)
q + ηα

ks(r)
q , β

ks(1)
q = η,

θ
ks(r+1)
q = θ

ks(r)
q − α

ks(r)
q ηP ks

r+1j−1 − β
ks(r)
q μQks

r+1j−1, θ
ks(1)
q = −ηP ks

1j−1.

r = 1, nks − 1,
s ∈ I+k , k ∈ I,

(26)

Similarly, we derive the formulas for the sweep coefficients in the case of right
sweep method. Indeed, conducting some uncomplicated transformations and includ-
ing the designation δks = (1 − ξ ksη)−1, (ks) ∈ J, we can write (22) as follows:

{
P ks
ij = δksP ks

i−1j − δksξksQks
i−1j + δksμQks

ij−1 − δksξksηP ks
ij−1.

Qks
ij = δksQks

i−1j − δksηP ks
i−1j + δksηP ks

ij−1 − δksημQks
ij−1, i = nks, 1, s ∈ I+k , k ∈ I.

(27)

and if i = nks (27) will be as follows:
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{
P ks
nks j

= δksP ks
nks−1j − δksξksQks

nks−1j + δksμQks
nks j−1 − δksξksηP ks

nks j−1,

Qks
nks j

= δksQks
nks−1j − δksηP ks

nks−1j + δksηP ks
nks j−1 − δksημQks

nks j−1, s ∈ I+k , k ∈ I.

(28)

We can find the following recurrent relations if we consider (21) in (27):

P ks
nks j

= α
ks(r)
p P ks

rj + β
ks(r)
p Qks

rj + θ
ks(r)
p = α

ks(r)
p

(
δksP ks

r−1j − δksξksQks
r−1j+

+ δksμQks
rj−1 − δksξksηP ks

rj−1

)
+ β

ks(s)
p

(
δksQks

r−1j − δksηP ks
r−1j + δksηP ks

rj−1 − δksημQks
rj−1

)
+

+ θ
ks(r)
p = P ks

r−1j

(
δksα

ks(r)
p − δksηβ

ks(r)
p

)
+Qks

r−1j

(
δksβ

ks(r)
p − δksξksα

ks(r)
p

)
+

+ θ
ks(r)
p + α

ks(r)
p

(
δksμQks

rj−1 − δksξksηP ks
rj−1

)
+ β

ks(r)
p

(
δksηP ks

rj−1 − δksημQks
rj−1

)
,

Qks
nks j

= α
ks(r)
q Qks

rj + β
ks(r)
q P ks

rj + θ
ks(r)
q = α

ks(r)
q

(
δksQks

r−1j − δksηP ks
r−1j + δksηP ks

rj−1−
− δksημQks

rj−1

)
+ β

ks(r)
q

(
δksP ks

r−1j − δksξksQks
r−1j + δksμQks

rj−1 − δksξksηP ks
rj−1

)
+ θ

ks(r)
q =

= Qks
r−1j

(
δksα

ks(r)
q − δksξksβ

ks(r)
q

)
+ P ks

r−1j

(
δksβ

ks(r)
q − δksηα

ks(r)
q

)
+ θ

ks(r)
q +

+ α
ks(r)
q

(
δksηP ks

rj−1 − δksημQks
rj−1

)
+ β

ks(r)
q

(
δksμQks

rj−1 − δksξksηP ks
rj−1

)
.

(29)

On the other hand, we can write (21) for r − 1 in the following form:

P ks
nksj

= α
ks(r−1)
p P ks

r−1j + β
ks(r−1)
p Qks

r−1j + θ
ks(r−1)
p ,

Qks
nksj

= α
ks(r−1)
q Qks

r−1j + β
ks(r−1)
q P ks

r−1j + θ
ks(r−1)
q ,

r = nks, 1. (30)

So, if we consider (28) and equate the right sides of (30) and (29), we obtain the
formulas for finding the right sweep coefficients:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α
ks(r−1)
p = δks

(
α
ks(r)
p − ηβ

ks(r)
p

)
, α

ks(nks )
p = δks ,

β
ks(r−1)
p = δks

(
β
ks(r)
p − ξksα

ks(r)
p

)
, β

ks(nks )
p = −δksξks ,

θ
ks(r−1)
p = θ

ks(r)
p + δks

[
α
ks(r)
p

(
μQks

rj−1 − ξksηP ks
rj−1

)
+ β

ks(r)
p

(
ηP ks

rj−1 − ημQks
rj−1

)]
,

θ
ks(nks )
p = δks

(
μQks

nks j−1 − ξksηP ks
nks j−1

)
,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α
ks(r−1)
q = δks

(
α
ks(r)
q − ξksβ

ks(r)
q

)
, α

ks(nks )
q = δks , r = nks, 1, (ks) ∈ J,

β
ks(r−1)
q = δks

(
β
ks(r)
q − ηα

ks(r)
q

)
, β

ks(nks )
q = −δksη,

θ
ks(r−1)
q = θ

ks(r)
q + δks

[
α
ks(r)
q

(
ηP ks

rj−1 − ημQks
rj−1

)
+ β

ks(r)
q

(
μQks

rj−1 − ξksηP ks
rj−1

)
,

θ
ks(nks )
q = δks

(
ηP ks

nks j−1 − ημQks
nks j−1

)
.

(31)

Consequently, at the end of sweep method, we will find the following expressions
in the case of left sweep method for r = nks:

P ks
0j = α

ks(nks )
p P ks

nksj
+ β

ks(nks )
p Qks

nksj
+ θ

ks(nks )
p ,

Qks
0j = α

ks(nks )
q Qks

nksj
+ β

ks(nks )
q P ks

nksj
+ θ

ks(nks )
q ,

(32)
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and the following expressions in the case of right sweep method for r = 0:

P ks
nksj

= α
ks(0)
p P ks

0j + β
ks(0)
p Qks

0j + θ
ks(0)
p ,

Qks
nksj

= α
ks(0)
q Qks

0j + β
ks(0)
q P ks

0j + θ
ks(0)
q .

(33)

The values of unknown functions in formulae (32), i.e., the values of pressure and
flow rate on the left end (or on the right end in the case of (33)) of the segment (k, s),
are expressed in terms of their values on the right end (or on the left end) of the same
segment. So, after performing the operation of left sweep method and substituting
obtained relations (32) in (13)–(16), we will obtain all 2M conditions only on the
left ends of the intervals (0, lks), (k, s) ∈ J for all segments:

αks(0)q Qks
0j + βks(0)q P ks

0j + θks(0)q = Q̃s

(
tj
)
, s ∈ I+k , k ∈ I

f
q , (34)

αks(0)p P ks
0j + βks(0)p Qks

0j + θks(0)p = P̃s
(
tj
)
, s ∈ I+k , k ∈ I

f
p , (35)

αkrk(0)p P
krk
0j + βkrk(0)p Q

krk
0j + θkrk(0)p = P

kkr
0j , ∀kr ∈ I+k , ks ∈ I−k , k ∈ I, (36)

∑

s∈I+k
αks(0)q Qsk

0j + βks(0)q P ks
0j + θks(0)q −

∑

s∈I−k
Qks

0j = q̃k
(
tj
)
, k ∈ I. (37)

Or we will obtain all 2M conditions only on the right ends of the intervals (0, lks),
(k, s) ∈ J for all segments:

αks(nks )q Qks
nksj

+ βks(nks )q P ks
nksj

+ θks(nks )q = Q̃sj , s ∈ I−k , k ∈ I
f
q , (38)

αsk(nks )p P ks
nksj

+ βks(nks )p Qks
nksj

+ θks(nks )p = P̃sj , s ∈ I−k , k ∈ I
f
p . (39)

P
krk
nkr kj

= α
kks(nkks )
p P

kks
nkks j

+ β
kks(nkks )
p Q

kks
nkks j

+ θ
kks(nkks )
p , ∀kr ∈ I+k , ks ∈ I−k , k ∈ I,

(40)
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∑

s∈I+k
Qsk

nskj
−
∑

s∈I−k
αks(nks )q Qks

nksj
+ βks(nks )q P ks

nksj
+ θks(nks )q = q̃k

(
tj
)
, k ∈ I,

(41)

if we perform the operation of right sweep method and substitute obtained relations
(34) in (13)–(16).

One can write these conditions compactly in terms of the following system of
linear algebraic equations of order 2M:

AX = B, (42)

here X = (x1, . . . , x2M)T : xs = P
rs
nrs

, s = 1, .., M, xs = Q
rs
nrs

, s = M + 1, .., 2M in
the case of conditions (34)–(37) or xs = P

rs
0rs

, s = 1, .., M, xs = Q
rs
0rs

, s = M + 1,
.., 2M in the case of conditions (38)–(41)), A is the matrix of dimension 2M × 2M,
B is the vector of dimension 2M, and T is the sign of transposition. We will find the
values for the pressure and flow rate on the right (or on the left) ends of all intervals
(segments) (0, lks), (ks) ∈ J by solving the system of (42) by any known numerical
method. Consequently, problem (11)–(17) with non-separated boundary conditions
is reduced to the problem with separated boundary conditions which are all linked to
one end, and we will use formulae (17) to solve this problem and to find the values
for the pressure and flow rate at all the points of the (segments) intervals (0, lks),
(ks) ∈ J.

4 The Results of Numerical Experiments

We consider the following test problem for oil pipeline network consisting of five
nodes, as shown in Fig. 3. Here N = 6, M = 5, If = {1, 3, 4, 6}, Nf = 4, Nint = 2.
There are no external inflows and outflows inside the network. The diameter, d, of
pipe segments is 530 (mm), and the lengths of segments are.

l(1,2) = 100 (km), l(5,2) = 30 (km), l(3,2) = 70 (km), l(5,4) = 100 (km), l(5,6) = 60 (km).

Fig. 3 The scheme of oil
pipeline network with five
nodes
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Suppose that oil with kinematic viscosity ν = 1.5 · 10−4(m2/s) and with density
ρ = 920(kg/m3) is transported via the network; 2a = 32ν

d2 = 0.017 for case being
considered; and the sound velocity in oil is 1200(m/s).

There was a steady regime in the pipes at initial time instance t = 0 with the
following values of flow rate and pressure in the pipes:

Q̂1,2(x) = 300
(
m3/hour

)
, Q̂5,2(x) = 200

(
m3/hour

)
, Q̂3,2(x) = 100

(
m3/hour

)
,

Q̂5,4(x) = 120
(
m3/hour

)
, Q̂5,6(x) = 80

(
m3/hour

)
,

(43)

P̂ 1,2(x) = 2300000− 5.8955x (Pa) , P̂ 5,2(x) = 1710451+ 1.17393x (Pa) ,
P̂ 3,2(x) = 1847826− 1.37375x (Pa) , P̂ 5,4(x) = 1592058+ 2.35786x (Pa) ,

P̂ 5,6(x) = 1733429+ 0.94415x (Pa) .
(44)

The pumping stations set on four ending points of oil pipeline provide current
transportation regime which is defined by following values of pressure at t > 0:

P̃ 1
0 (t) = 2000000 (Pa) , P̃ 3

0 (t) = 1800000 (Pa) ,
P̃ 4
l (t) = 1800000 (Pa) , P̃ 6

l (t) = 1790000 (Pa) .
(45)

We use the above-described scheme to obtain numerical solution to the initial
boundary value problems (17) and (43)–(45), i.e., to calculate the values of fluid
flow regimes in the pipe network, where the step for time variable is ht = 10(s)
and the step of spatial variable is hx = 10(m) (these values were determined by the
results of purpose of the conducted experiments to find the effective values of these
parameters). The obtained results of the conducted numerical experiments for the
solution to the test problem are given in Figs. 4 and 5. As may be seen from Figs.
4 and 5 and especially from Fig. 5, the transient process originated at t = 0 has
finished approximately at t = 300(sec), after which the fluid flow proceeds in a new
stationary regime.

5 Conclusion

The mathematical statement for calculation of unsteady fluid (oil) flow regimes in
the pipeline networks of complex structure is given in the work. The number of
linear sections can reach up to several tens and even hundreds of real pipeline trans-
port networks. In the work, we propose to use the graph theory, which drastically
simplifies the process of computer modeling of complex pipeline networks. We use
the system of two linear partial differential equations of hyperbolic type to describe
the process of fluid flow in every linear segment of the pipeline network. There are
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Fig. 4 The plots for pressure at segments Pks(x, t), (ks) ∈ J at time instances t = 0; 60; 120; 300

Fig. 5 The plots for flow rate at segments Qks(x, t), (ks) ∈ J at time instances t = 0; 60; 120; 300

non-separated boundary conditions at the points of connection of linear segments,
which makes it impossible to calculate the flow regimes for every individual
segment separately; it must be done for all segments simultaneously. To solve the
problem, we suggest to use the methods of finite difference approximation (grid
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method) and special scheme of sweep (transfer) method to approximate a set of
systems of hyperbolic differential equations interrelated by boundary conditions.
Satisfactory results of numerical experiments are given. In order to switch from the
grid problem with non-separated conditions to a problem with separated boundary
conditions, we obtain the dependencies between boundary values of sought-for
functions for every linear section. We obtained the formulas for the procedure
of obtaining such dependencies, called a sweep (transfer) method, that use the
difference equations only for that section, for which is made the dependencies.
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Numerical Solution to Inverse Problems
of Recovering Special-Type Source
of a Parabolic Equation

K. R. Aida-zade and A. B. Rahimov

Abstract The chapter investigates inverse problems of recovering a source of
a special type of parabolic equation with initial and boundary conditions. The
specificity of these problems is that the identifiable parameters depend on only
space or time variable and are factors of the coefficients of the right-hand side
of the equation. By applying the method of lines, the problems are reduced to
parametric inverse problems with respect to ordinary differential equations. A
special type of representation of the solution is proposed to solve them. The most
important in this work is that the proposed approach to the numerical solution to
the investigated inverse problems of identifying the coefficients does not require to
construct any iterative procedure. The results of numerical experiments conducted
on test problems are provided.

1 Introduction

Inverse problems of mathematical physics are investigated in different directions,
and the number of studies, from theoretical to specific applied problems, substan-
tially increased in the last years [1–12]. The important class of boundary value
problems with nonlocal conditions considered in the chapter leads to the coefficient
inverse problems under study [1, 11–14]. The nonlocality of the conditions is due
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to the practical impossibility to measure parameters of state of an object (process)
immediately or at its separate points.

One of the most common approaches to the solution of inverse problems is
reducing them to variation statements followed by optimization and use of optimal
control methods [4–6]. Applying this approach is related, first, to problems of
deriving formulas for the gradient of the functional of the variation problem and,
second, to the necessity of using iterative methods of minimization of a functional.

Another approach is to construct the fundamental solution of the problem and
to reduce it to an integral equation. If the functions that appear in the problem are
of general form, there are some difficulties that hinder the use of such approach [3,
9–11].

Application of the finite difference method (explicit or implicit) [15] is also of
interest. A shortcoming of such approach is high dimension of the obtained system
of algebraic equations.

In the chapter, we consider the inverse source problems. The most important is
that the proposed approach to the numerical solution of the inverse source problems
under study does not use iteration algorithms. The apparatus of optimal control
theory and appropriate numerical iterative methods of optimization of first order
were used in [4–6] to solve such problems.

Another specific feature of the considered classes of inverse problems is that,
first, the restored coefficients are for the free term and, second, they depend either
on time or on space variable. This specific feature allows using the method of lines
[16–18] to reduce the solution of initial problems to solution of specially constructed
Cauchy problems [19, 20] with respect to the system of ordinary differential
equations. In the chapter, we present the results of numerical experiments and their
analysis.

2 Study of the Inverse Problem of Determination a Source
Depending on a Space Variable

Let us consider the inverse source problem with respect to the parabolic equation:

∂v(x,t)
∂t

= a (x, t)
∂2v(x,t)

∂x2 + a1 (x, t)
∂v(x,t)
∂x

+ a2 (x, t) v (x, t)+ f (x, t)+ F (x, t) ,

(x, t) ∈ Ω = {(x, t) : 0 < x < l, 0 < t ≤ T } ,
(1)

where

F (x, t) =
L∑

s=1

Bs (x, t) Cs(x), (2)

under the following initial-boundary conditions and additional conditions:
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v (x, 0) = ϕ0(x), x ∈ [0, l] , (3)

v (0, t) = ψ0(t), v (l, t) = ψ1(t), t ∈ [0, T ] , (4)

v
(
x, ts

) = ϕ1s(x), x ∈ [0, l] , ts ∈ (0, T ] , s = 1, . . . , L. (5)

Here, L > 0 is a given integer; t s ∈ (0, T ] , s = 1, . . . , L are given instants of
time; given functions a0(x, t) > 0, a1(x, t), a2(x, t), f (x, t), Bs(x, t), ϕ0(x), ψ0(t), ψ1(t),
and ϕ1s(x), s = 1, . . . L are continuous with respect to x and t; Bs(x, t) are linearly
independent functions differentiable with respect to t and a2(x, t) ≤ 0, Bs(x, t) ≥ 0
and ∂Bs(x,t)

∂t
≥ 0. Functions ϕ0(x), ϕ1s(x), ψ0(t) and ψ1(t) satisfy the consistency

conditions:

ϕ0(0) = ψ0(0), ϕ0(l) = ψ1(0), ϕ1s(0) = ψ0
(
ts
)
, ϕ1s(l) = ψ1

(
ts
)
, s = 1, . . . , L.

Problem (1)–(5) is to find the unknown continuous L-dimensional vector function
C(x) = (C1(x), . . . ,CL(x))T and the respective solution of the boundary value
problem v(x, t), which is twice continuously differentiable with respect to x and once
continuously differentiable with respect to t for (x, t) ∈�, satisfying conditions (1)–
(5). Under the above assumptions, the inverse problem (1)–(5) is known to have a
solution, and it is unique [7, 8].

To solve problem (1)–(5), we propose an approach based on the method of lines.
Problem (1)–(5) is reduced to the system of ordinary differential equations with
unknown parameters.

In the domain �, let us set up the lines xi = ihx, i = 0, 1, . . . , N, hx = l/N.
On these lines, we define functions vi(t) = v(xi, t), t ∈ [0,T], i = 0, 1, . . . , N, for
which according to (3)–(5)

vi(0) = ϕ0 (xi) = ϕ0i , i = 0, . . . , N, (6)

v0(t) = ψ0(t), vN(t) = ψ1(t), t ∈ [0, T ] , (7)

vi
(
t s
) = ϕ1s (xi) = ϕ1s,i , t s ∈ (0, T ] , s = 1, . . . , L, i = 0, . . . , N.

(8)

On the lines x = xi, we approximate the derivatives ∂v/∂x and ∂2v/∂x2 with the use
of central difference schemes:

∂v (x, t)

∂x

∣
∣
∣
∣
x=xi

= vi+1(t)− vi−1(t)

2hx
+O

(
h2
x

)
, i = 1, . . . , N − 1, (9)
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∂2v (x, t)

∂x2

∣
∣
∣
∣
x=xi

= vi+1(t)− 2vi(t)+ vi−1(t)

h2
x

+O
(
h2
x

)
, i = 1, . . . , N − 1.

(10)

Then we use the notations

ai(t) = a (xi, t) , f i(t) = f (xi, t) , a1i (t) = a1 (xi, t) , a2i (t) = a2 (xi, t) ,

Bsi(t) = Bs (xi, t) , Csi = Cs (xi) , s = 1, . . . , L, i = 1, . . . , N − 1.

Substituting (9) and (10) into (1), we obtain the system of ordinary differential
equations of (N − 1) th order with unknown (identifiable) vector of parameters
Cs = (Cs1, . . . ,Cs, N − 1)T :

v′i (t) = ai (t)

h2
x

[vi+1(t)− 2vi(t)+ vi−1(t)]+ a1i (t)
2hx

[vi+1(t)− vi−1(t)]+
+ a2i (t)vi(t)+ f i(t)+

L∑

s=1
Bsi(t)Csi, i = 1, 2, . . . , N − 1.

Taking into account (6) and (7), we can write this system in the vector-matrix form:

v̇(t) = A(t)v(t)+ f (t)+
L∑

s=1

EsB(t)Cs, t ∈ (0, T ] , (11)

v(0) = ϕ0, (12)

v
(
t s
) = ϕ1s , s = 1, . . . , L, (13)

where v(t) = (v1(t), . . . , vN − 1(t))T , Bs(t) = (Bs1(t), . . . ,Bs, N − 1(t))T , ϕ0 =
(ϕ01, . . . , ϕ0, N − 1)T , ϕ1s = (ϕ1s, 1, . . . , ϕ1s, N − 1)T , EsB(t) is the (N − 1)-
dimensional quadratic matrix whose i th element on the principal diagonal is
equal to the i th component of vector Bs(t), i.e., Bsi(t); all the other elements are
zero. The nonzero elements of the quadratic (N − 1)-dimensional three-diagonal
matrix A have the form

ãii (t) = 1
h2
x

[−2ai(t)+ h2
xa2i (t)

]
, i = 1, . . . , N − 1,

ãi,i+1(t) = 1
h2
x

[
ai(t)+ hx

2 a1i (t)
]
, i = 1, . . . , N − 2,

ãi,i−1(t) = 1
h2
x

[
ai(t)− hx

2 a1i (t)
]
, i = 2, . . . , N − 1.

Vector f (t) is defined as follows:

f (t) =
(

f 1(t)+
(
a1(t)

h2
x

− a11(t)

2hx

)

ψ0(t), f 2(t), . . . , f N−2(t), f N−1(t)+
(
aN−1(t)

h2
x

+ a1,N−1(t)

2hx

)

ψ1(t)

)T
.
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Problem (11)–(13) under the conditions imposed on the coefficients of Eq. (1)
and functions in the initial-boundary conditions approximate problem (1)–(5) with
accuracy O

(
h2
x

)
(convergence of the solution of problem (11)–(13) to the solution

of problem (1)–(5) and error estimates are considered in [21]). Note that error
O
(
h2
x

)
can be improved by using schemes of approximation of derivatives with

respect to x of higher order [17, 18].
Denote by 0(N − 1) × (N − 1) zero (N − 1)-dimensional quadratic matrix.

Theorem 1 Let αs(t), s = 1, . . . , L, which is a quadratic matrix function, and γ (t),
which is a vector function of dimension (N − 1), be the solution of the following
Cauchy problems:

α̇s(t) = A(t)αs(t)+ EsB(t), s = 1, . . . , L, (14)

αs(0) = 0(N−1)×(N−1), s = 1, . . . , L, (15)

γ̇ (t) = A(t)γ (t)+ f (t), (16)

γ (0) = ϕ0. (17)

Then for an arbitrary constant (N − 1)-dimensional vector Cs, the solution of the
Cauchy problem (11, 12) is the following vector function:

v(t) =
L∑

s=1

αs(t)Cs + γ (t). (18)

Proof With regard to (15) and (17), it is obvious that function v(t) defined from
(18), for an arbitrary vector Cs ∈ RN − 1, s = 1, . . . , L, satisfies the initial condition
(12). Differentiating both sides of Eq. (18) and taking into account (14) and (16),
we obtain

v̇(t) =
L∑

s=1
α̇s(t)Cs + γ̇ (t) =

L∑

s=1

[
A(t)αs(t)+ EsB(t)

]
Cs + [A(t)γ (t)+ f (t)] =

= A(t)

(
L∑

s=1
αs(t)Cs + γ (t)

)

+
L∑

s=1
EsB(t)Cs + f (t) =

= A(t)v(t)+
L∑

s=1
EsB(t)Cs + f (t).

Hence, function v(t) satisfies Eq. (11). �.
Solving independently the Cauchy matrix problem (14, 15) to find αs(t), s= 1,

. . . , L and the Cauchy problem (16), (17) with respect to the vector function γ (t)
and using condition (13) and representation (18), we obtain the equality
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v
(
t s
) = ϕ1s =

L∑

s=1

αs
(
t s
)
Cs + γ

(
t s
)
, s = 1, . . . , L, (19)

which is an algebraic system of equations of order (N − 1), which can be used to
find the vector Cs, s = 1, . . . , L, being identified.

Then, using the values of components of vector Cs = (Cs(x1), . . . ,Cs(xN − 1))T ,
s = 1, . . . , L, and applying a certain method of interpolation or approximation,
we can restore the required function Cs(x), s = 1, . . . , L, on the given class of
functions.

If it is necessary to find the solution v(x, t) of the boundary value problem (1)–(5),
it will suffice to solve the Cauchy problem (11), (12).

3 Study of the Inverse Problem of Determination a Source
Depending on a Time Variable

Now, let us consider the inverse source problem with respect to the parabolic
equation

∂v(x,t)
∂t

= a (x, t)
∂2v(x,t)

∂x2 + a1 (x, t)
∂v(x,t)
∂x

+ a2 (x, t) v (x, t)+ f (x, t)+ F (x, t) ,

(x, t) ∈ Ω = {(x, t) : 0 < x < l, 0 < t ≤ T } ,
(20)where

F (x, t) =
L∑

s=1

Cs (x, t) Bs(t), (21)

under the following initial-boundary value conditions and overdetermination condi-
tions:

v (x, 0) = ϕ0(x), x ∈ [0, l] , (22)

v (0, t) = ψ0(t), v (l, t) = ψ1(t), t ∈ [0, T ] , (23)

v (xs, t) = ψ2s(t), xs ∈ (0, l) , t ∈ [0, T ] , s = 1, . . . , L. (24)

Here, L > 0 is a given integer that determines the number of identified sources
and overdetermination conditions; xs ∈ (0, l), s = 1, . . . , L are given points;
given functions a(x, t) ≥ μ > 0, a1(x, t), a2(x, t), f (x, t), ϕ0(x), ψ0(t), ψ1(t), ψ2s(t),
Cs(x, t), s = 1, . . . , L, μ = const > 0; are continuous with respect to x and t;
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s= 1, . . . , L, are linearly independent functions, and a2(x, t)≤ 0, ϕ0(x) ∈ C2([0, l]),
ψ2s(t) ∈ C1([0,T]), |Cs (xk, t)| ≥ δ > 0, s, k = 1, . . . , L, t ∈ [0,T], δ = const > 0.
Given points xs, s = 1, . . . , L, xi �= xj for i �= j, i, j= 1, . . . , L are observation
points. Functions ϕ0(x), ψ0(t), ψ1(t) and ψ2s(t) satisfy the consistency conditions:

ϕ0(0) = ψ0(0), ϕ0(l) = ψ1(0), ψ2s(0) = ϕ0 (xs) , s = 1, . . . , L.

Problem (20)–(24) is to determine the unknown continuous L-dimensional vector
function B(t) = (B1(t), . . . ,BL(t))T and the corresponding solution to the boundary
value problem v (x, t) ∈ C2,1 (Ω) ∩ C1,0

(
Ω
)

that satisfy conditions (20)–(24).
Note that under the above assumptions both the initial-boundary value prob-

lem (20), (22), (23) under the given continuous L-dimensional vector function
B(t) = (B1(t), . . . ,BL(t))T , i.e., function F(x, t) [24–27], and inverse problem (20)–
(24) has solutions and they are unique [1, 22, 23, 28].

Now, let us consider an approach to numerical solution of problem (20)–(24),
based on the method of lines. At first, problem (20)–(24) reduces to a system of
ordinary differential equations with unknown parameters.

In the domain �, we set up the lines

tj = jht , j = 0, 1, . . . , N, ht = T/N.

On these lines, we define functions

vj (x) = v
(
x, tj

)
, x ∈ [0, l] , j = 0, 1, . . . , N,

for which the following equalities take place on the basis of (22)–(24):

v0(x) = ϕ0(x), x ∈ [0, l] , (25)

vj (0) = ψ0
(
tj
) = ψ0j , j = 0, . . . , N, (26)

vj (l) = ψ1
(
tj
) = ψ1j , j = 0, . . . , N, (27)

vj (xs) = ψ2s
(
tj
) = ψ2s,j , xs ∈ (0, l) , s = 1, . . . , L, j = 0, . . . , N.

(28)

On the straight lines t = tj, we approximate derivative ∂v(x, t)/∂t with the use of the
difference scheme:

∂v (x, t)

∂t

∣
∣
∣
∣
t=tj

= vj (x)− vj−1(x)

ht
+O (ht ) , j = 1, . . . , N. (29)
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Using (29) in Eq. (20), we obtain N differential equations:

v′′j (x)+ ã1j (x)v
′
j (x)+ ã2j (x)vj (x)+ f̃j (x)+

L∑

s=1

C̃sj (x)Bsj = 0, j = 1, . . . , N, x ∈ (0, l) , (30)

where

Bsj = Bs

(
tj
)
, f̃j (x) = vj−1(x)+htf (x,tj )

a(x,tj )ht
, C̃sj (x) = Cs(x,tj )

a(x,tj )
,

ã1j (x) = a1(x,tj )
a(x,tj )

, ã2j (x) = a2(x,tj )ht−1
a(x,tj )ht

.

Convergence as ht → 0 and error of the method of lines in approximation of the
derivatives with respect to t in Eq. (20) (in this case, in approximation of problem
(20)–(24) by problem (30), (26)–(28) with an error estimated as O(ht)) are analyzed
in [21]. Hence, for the known Bsj, solution to the boundary value problem with
respect to system (30) as ht → 0 converges to the solution of the initial-boundary
value problem (20)–(23). From the existence and uniqueness of solution of the initial
inverse problem (20)–(24), we can show the existence and uniqueness of solution
of inverse problem (30), (26)–(28). Indeed, if solutions of the inverse problem (30),
(26)–(28) do not exist or are nonunique, the initial problem has similar properties.

The equations of system (30) for each j can be solved independently and
sequentially, beginning with j = 1 to N, and hence components of the vector
Bs = (Bs1, . . . ,BsN)T are defined sequentially.

Theorem 2 Let functions αj(x) and βsj(x), s = 1, . . . , L, for x ∈ [0, l], be the
solutions of the following Cauchy problems:

α′′j (x)+ ã1j (x)α
′
j (x)+ ã2j (x)αj (x)+ f̃j (x) = 0, (31)

αj (0) = ψ0j , α
′
j (0) = ψ2j , (32)

β ′′sj (x)+ ã1j (x)β
′
sj (x)+ ã2j (x)βsj (x)+ C̃sj (x) = 0, (33)

βsj (0) = 0, β ′sj (0) = 0. (34)

Then for arbitrary values of parameter Bsj, function

vj (x) = αj (x)+
L∑

s=1

βsj (x)Bsj , x ∈ [0, l] (35)

satisfy the system of differential Eqs. (30) and conditions (26), (27).
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Proof From conditions (32), (34), it is obvious that functions vj(x) defined from
(35), for arbitrary values of Bsj, s = 1, . . . , L, j = 1, . . . , N, satisfy conditions (26),
(27). The fact that vj(x), j = 1, . . . , N satisfy the system of differential eqs. (30)
can be verified by direct differentiation of (35) and substitution of v′j (x) and v′′j (x)
into (30) taking into account (31), (33):

v′′j (x)+ ã1j (x)v
′
j (x)+ ã2j (x)vj (x)+ f̃j (x)+

L∑

s=1
C̃sj (x)Bsj =

= α′′j (x)+
L∑

s=1
β ′′sj (x)Bsj + ã1j (x)α

′
j (x)+ ã1j (x)

L∑

s=1
β ′sj (x)Bsj+

+ ã2j (x)αj (x)+ ã2j (x)
L∑

s=1
βsj (x)Bsj + f̃j (x)+

L∑

s=1
C̃sj (x)Bsj =

=
[
α′′j (x)+ ã1j (x)α

′
j (x)+ ã2j (x)αj (x)+ f̃j (x)

]
+

+
L∑

s=1

(
β ′′sj (x)+ ã1j (x)β

′
sj (x)+ ã2j (x)βsj (x)+ C̃sj (x)

)
Bsj = 0,

j = 1, . . . , N, x ∈ (0, l) .

�
We can easily prove the following theorem.

Theorem 3 Representation (35) for solution of differential eq. (30) with boundary
conditions (26), (27) is unique.

Let us solve separately two Cauchy problem (31)–(34), using condition (28) and
representation (35). We obtain the equality

vj (xs) = αj (xs)+
L∑

s=1

βsj (xs) Bsj = ψ2s,j , s = 1, . . . , L, (36)

which is an algebraic system of equations, which can be used to find the vector Bs,
s= 1, . . . , L, being identified. Considering that L, which is the number of unknown
functions that appear in Eq. (20), is as a rule insignificant in real problems, any
well-known methods, for example, Gauss method or iterated methods, can be used
to solve the algebraic system of eq. (36).

Solvability of system (36) depends on solvability of the inverse problem (30),
(26)–(28) and vice versa; if system (36) has no solution, problem (30), (26)–(28)
and hence initial problem (20)–(24) have no solution neither. Thus, the properties
of existence and uniqueness of the solution of system (36) and of original inverse
problem (20)–(24) are interrelated.

Function vj(x), x ∈ [0, l] can be found from the solution of problem (30), (26),
(27). Then procedure (31)–(36) is repeated on the line t = tj + 1, on which vj + 1(x)
is defined.

Thus, to find components of the parameter vector Bs, s = 1, . . . , L, it
is necessary to solve the Cauchy problem N times with respect to (L + 1)
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independent differential equations of the second order. The calculated vector
Bs = (Bs(t1), . . . ,Bs(tN))T with the application of the methods of interpolation or
approximation can then be used to obtain the analytical form of function Bs(t).

4 Results of Numerical Experiments

Let us present the solution results for the following inverse source problems.

Problem 1 Consider the problem

∂v(x,t)
∂t

= x2 ∂2v(x,t)

∂x2 + etC(x), (x, t) ∈ Ω = {(x, t) : 0 < x < 1, 0 < t ≤ 1} ,
v (x, 0) = x2 cos x, v (x, 1) = ex2 cos x, x ∈ [0, 1] ,

v (0, t) = 0, v (1, t) = et cos 1, t ∈ [0, 1] .

The exact solution of this problem are functions

C(x) = x2
(
x2 − 1

)
cos x + 4x3 sin x, v (x, t) = etx2 cos x.

Numerical experiments were carried out for different number N of lines x = xi,
i= 1, . . . , N. To solve auxiliary Cauchy problems, we used the Runge-Kutta method
of the fourth order for different steps ht. We carried out calculations under the
presence of random noise in function v(x, 1), which was defined as follows:

vσ (x, 1) = v (x, 1) (1+ σ rand) ,

where σ is noise-level percentage, rand are the random numbers generated by means
of the MATLAB function rand for uniform distribution on the interval [−1, 1].

Table 1 presents the results of solution of Problem 1 for N = 20, ht = 0.001 for
the noise levels equal σ = 1%, σ = 3%, and σ = 5%, as well as without noise, i.e.,
σ = 0%.

Figure 1 provides the graphs of exact (analytic solution) and obtained by
numerical methods (presented in Sec. 2) coefficient C(x) under various noise levels
based on data from Table 1 for Problem 1.

The solution accuracy of inverse problems, as one would expect, substantially
depends on the number of lines N used in the method of lines for approximation of
the original boundary-value problem.

In the problem of finding C(x), increase in the number of lines increases the
order of the system of differential equations with ordinary derivatives, equal to
N2. This substantially increases the amount of computation and hence increases
the computing error. Therefore, in solving a specific problem of identification of
coefficient C(x) to choose the number of lines, additional numerical analysis is
necessary.
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Table 1 Values of the coefficient C(x) for Problem 1

Values of C(x)
Obtained values for σ (%)

i xi Exact value σ = 0.0 σ = 1.0 σ = 3.0 σ = 5.0

1 0.05 −0.002466 −0.002459 −0.002474 −0.002504 −0.002535
2 0.10 −0.009451 −0.009427 −0.009610 −0.009978 −0.010345
3 0.15 −0.019729 −0.019675 −0.020085 −0.020904 −0.021724
4 0.20 −0.031277 −0.031182 −0.031389 −0.031803 −0.032217
5 0.25 −0.041309 −0.041165 −0.039985 −0.037625 −0.035264
6 0.30 −0.046326 −0.046126 −0.041688 −0.032811 −0.023934
7 0.35 −0.042170 −0.041910 −0.032199 −0.012779 0.006641
8 0.40 −0.024100 −0.023778 −0.007624 0.024685 0.056993
9 0.45 0.013128 0.013510 0.035243 0.078708 0.122173
10 0.50 0.075166 0.075603 0.098996 0.145783 0.192570
11 0.55 0.167971 0.168454 0.186165 0.221585 0.257006
12 0.60 0.297694 0.298211 0.300125 0.303952 0.307779
13 0.65 0.470558 0.471092 0.446190 0.396386 0.346582
14 0.70 0.692733 0.693263 0.632543 0.511105 0.389666
15 0.75 0.970201 0.970703 0.870646 0.670534 0.470421
16 0.80 1.308624 1.309067 1.174817 0.906317 0.637817
17 0.85 1.713198 1.713549 1.560817 1.255352 0.949888
18 0.90 2.188515 2.188739 2.043520 1.753082 1.462644
19 0.95 2.738424 2.738473 2.633984 2.425005 2.216027

Problem 2 Let us consider the problem

∂v(x,t)
∂t

= a(x)
∂2v(x,t)

∂x2 +
B(t)e2x

[
1
7x − 4a(x) (x + 1)

]
, (x, t) ∈ Ω = {(x, t) : 0 < x < 1, 0 < t ≤ 1} ,

v (x, 0) = xe2x, x ∈ [0, 1] ,
v (0, t) = 0, v (1, t) = e

t
7+2,

∂v(0,t)
∂x

= e
t
7 , t ∈ [0, 1] ,

where a(x) = cos x
ex

. Exact solutions of this problem are functions

B(t) = e
t
7 , v (x, t) = xe

t
7+2x.

Numerical experiments were carried out with different number N of lines t = tj,
j = 1, . . . , N. To solve auxiliary Cauchy problems, the fourth-order Runge-Kutta
method was used at different steps hx.

Table 2 shows the results of solving Problem 2 with the number of lines N = 100,
200, 500.
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Fig. 1 Graphs of exact (Exact) and obtained by numerical methods coefficient C(x) under different
noise levels for Problem 1

Table 2 Obtained and exact values of B(t) for Problem 2

N = 100 N = 200 N = 500
tj B(tj) |�B(tj)| B(tj) |�B(tj)| B(tj) |�B(tj)| Exact B(tj)

0.10 101.403 0.00036 101.425 0.00014 101.433 0.00006 101.439
0.20 102.856 0.00042 102.883 0.00016 102.892 0.00006 102.898
0.30 104.336 0.00043 104.363 0.00016 104.372 0.00007 104.379
0.40 105.837 0.00044 105.864 0.00016 105.874 0.00007 105.881
0.50 107.360 0.00045 107.388 0.00017 107.397 0.00007 107.404
0.60 108.904 0.00045 108.933 0.00017 108.943 0.00007 108.949
0.70 110.471 0.00046 110.500 0.00017 110.510 0.00007 110.517
0.80 112.061 0.00046 112.090 0.00017 112.100 0.00007 112.107
0.90 113.673 0.00047 113.703 0.00018 113.713 0.00007 113.720
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Table 3 Values of the coefficient B(t) for Problem 2

Values of B(t)
Obtained values for σ (%)

j tj Exact value σ = 0.0 σ = 1.0 σ = 3.0 σ = 5.0

25 0.05 1.007168 1.007117 1.004635 0.999671 0.994708
50 0.10 1.014388 1.014331 1.011494 1.005821 1.000148
75 0.15 1.021660 1.021599 1.018857 1.013373 1.007889
100 0.20 1.028984 1.028920 1.026556 1.021827 1.017098
125 0.25 1.036360 1.036295 1.034525 1.030986 1.027446
150 0.30 1.043789 1.043724 1.042709 1.040681 1.038653
175 0.35 1.051271 1.051205 1.051040 1.050710 1.050379
200 0.40 1.058807 1.058741 1.059438 1.060833 1.062228
225 0.45 1.066397 1.066330 1.067822 1.070805 1.073787
250 0.50 1.074041 1.073974 1.076113 1.080392 1.084670
275 0.55 1.081741 1.081673 1.084251 1.089406 1.094561
300 0.60 1.089495 1.089427 1.092191 1.097718 1.103246
325 0.65 1.097305 1.097236 1.099916 1.105275 1.110634
350 0.70 1.105171 1.105102 1.107435 1.112100 1.116766
375 0.75 1.113093 1.113024 1.114782 1.118297 1.121813
400 0.80 1.121072 1.121002 1.122013 1.124035 1.126056
425 0.85 1.129109 1.129038 1.129203 1.129533 1.129862
450 0.90 1.137203 1.137132 1.136434 1.135040 1.133645
475 0.95 1.145355 1.145283 1.143792 1.140810 1.137827

Calculations were carried out under the presence of random noise in function
∂v(0,t)
∂x

, caused by errors of measurement of the state v(0, t) at the left end, which
were defined as follows:

(
∂v (0, t)

∂x

)σ
= σ rand.

Here, σ determines the level of error in measurements, rand is the random number
uniformly distributed on the interval [−1, 1] and obtained with the use of the
MATLAB function rand.

Table 3 shows the results of solution of Problem 2 for the number of straight
lines N = 500, hx = 0.002 for error levels σ = 1%, σ = 3%, and σ = 5% and also
without noise, i.e., σ = 0%.

Figure 2 shows graphs of exact values of the coefficient B(t) (an analytical
solution) and of those obtained by the numerical method proposed in Sec. 3, for
different noise levels σ .

Results of a big number of numerical experiments on solving various inverse test
problems on determining the coefficients B(t) have shown the following. As one
would expect, the accuracy of solution of inverse problems substantially depends on



98 K. R. Aida-zade

Fig. 2 Graphs of exact and numerically obtained coefficient B(t) at different noise levels for
Problem 2

the number of used lines N in the method of lines for approximation of the original
boundary value problem.

For the problem of identification of coefficient B(t), increase in the number of
straight lines has no significant influence on the computing process since problem
(22), (18), (19) on each line t = tj is solved independently and sequentially for j= 1,
2, . . . , N. Solution of this problem is possible with almost any given accuracy with
the use of well-known efficient numerical methods of solution of Cauchy problems.

5 Conclusions

The numerical methods we have proposed in the chapter to solve inverse source
problems for a parabolic equation are expedient since they are reduced to the
solution of auxiliary, well-analyzed Cauchy problems and do not need iterative
procedures to be constructed. To this end, standard software such as MATLAB can
be used. Problems with nonlocal initial and boundary conditions, which are often
met in practice, are reduced to the considered classes of problems.
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Noteworthy is that the proposed technique of construction of numerical methods
can be used for other types of partial differential equations with other given forms
of initial-boundary conditions.
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Using an Integrating Factor to Transform
a Second Order BVP to a Fixed Point
Problem

Richard I. Avery, Douglas R. Anderson, and Johnny Henderson

Abstract Using an integrating factor, a second order boundary value problem is
transformed into a fixed point problem. We provide growth conditions for the
existence of a fixed point to the associated operator for this transformation and
conclude that the index of the operator applying the standard Green’s function
approach is zero; this does not guarantee the existence of a solution, demonstrating
the value and potential for this new transformation.

1 Introduction

Converting boundary value problems to fixed point problems is a standard approach
for existence of solutions arguments, and for finding solutions using iterative
methods. The standard method to transform a boundary value problem to a fixed
point problem is to apply Green’s function techniques, see [12, 16] for a thorough
treatment. Recently, other methods have been developed to bring the operator
inside the nonlinear term, corresponding to a transformation of a transformation
that Burton refers to as the Direct Fixed Point Mapping, see [3, 4, 7, 8] for a
discussion of these transformations. There are also many different transformation
results related to boundary value problems, whose transformations result in sums
or products of operators, see [1, 9, 11, 18] for a discussion of these types of
transformations. While others may not be fundamentally different than the standard
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Green’s function approach, the resulting transformed operator appears different
due to the nature of the boundary value problem itself. For example, p-Laplacian
boundary value problems, where the transformed operator is found by multiple
integration steps while using the boundary conditions, see [2, 14] for some examples
of transformations of this type.

Introducing an integrating factor in the transformation process brings new terms
into the transformed operator, which results in more flexibility (degrees of freedom)
for existence of solutions arguments, as well as iteration arguments. The Leggett–
Williams generalization [17] of the Krasnoselskii fixed point theorem [5, 6, 15]
altered the sets for which to apply index theory, whereas the techniques in this
paper change the operator that the fixed point theorems are applied to, in order
to show existence of solutions or to find solutions to boundary value problems. We
will conclude with an example showing that the transformed operator is invariant
in a ball in which the standard operator transforming a boundary value problem
applying Green’s function techniques is not invariant in a similar ball.

2 Introducing a Term to Create a New Operator

Existence of solutions of the continuous right focal boundary value problem

x′′(t)+ f (x(t)) = 0, t ∈ (0, 1), (1)

x(0) = x′(1) = 0, (2)

will be shown via this new approach. The next result introduces the operator based
on the introduction of an integrating factor into Eq. (1).

Theorem 1 If given a function a ∈ C[0, 1], then x is a solution of (1), (2) if and
only if x is a fixed point of the operator H defined by

Ax(t) =
∫ t

0
e−
∫ t
s a(w) dw

(∫ 1

s

f (x(r)) dr + a(s)x(s)

)

ds.

Proof A function x is a solution of (1), (2) if and only if

∫ 1

t

x′′(r)dr =
∫ 1

t

−f (x(r))dr,

and x satisfies the boundary conditions x(0) = 0 = x′(1). Thus, x is a solution of
the first order boundary value problem
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x′(t) =
∫ 1

t

f (x(r))dr, t ∈ (0, 1), (3)

x(0) = 0. (4)

The equation in (3) is equivalent to

x′(t)+ a(t)x(t) =
∫ 1

t

f (x(r))dr + a(t)x(t);

by introducing the integrating factor e
∫ t

0 a(w)dw, this is equivalent to

d

dt

(
x(t)e

∫ t
0 a(w)dw

)
= e

∫ t
0 a(w)dw

(∫ 1

t

f (x(r))dr + a(t)x(t)

)

.

Hence, (3) is equivalent to

x(t)e
∫ t

0 a(w)dw =
∫ t

0
e
∫ s

0 a(w)dw

(∫ 1

s

f (x(r))dr + a(s)x(s)

)

ds,

since x(0) = 0. Thus, we have that (3), (4) is equivalent to

x(t) =
∫ t

0
e−
∫ t
s a(w)dw

(∫ 1

s

f (x(r))dr + a(s)x(s)

)

ds (5)

for t ∈ [0, 1]. Therefore, if we define the operator A by

Ax(t) =
∫ t

0
e−
∫ t
s a(w)dw

(∫ 1

s

f (x(r))dr + a(s)x(s)

)

ds,

then we have that x is a solution of (1), (2) if and only if x is a fixed point of the
operator A. This ends the proof. �

3 Application of the New Fixed Point Theorem

Define the cone P of the Banach space C[0, 1] by

P = {x ∈ E : x is non-negative and non-decreasing},

with the standard C[0, 1] supnorm given by
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‖x‖ = sup
t∈[0,1]

|x(t)|.

Also, for r > 0, let

Pr = {x ∈ P : ‖x‖ < r}.

Theorem 2 Let λ < 0, a(t) = λ(1− t), and f : [0,∞)→ [0,∞) be a continuous
function with

f (x)+ λx ≥ 0

for all non-negative real numbers x. Then, A : P → P .

Proof Suppose λ < 0, a(t) = λ(1 − t), and f : [0,∞) → [0,∞) is a continuous
function with

f (w)+ λw ≥ 0

for all non-negative real numbers w; moreover, let x ∈ P . Thus, for t ∈ [0, 1],
∫ 1

t

f (x(r))dr + λ(1− t)x(t) ≥
∫ 1

t

−λx(r)dr + λ(1− t)x(t)

≥
∫ 1

t

−λx(t)dr + λ(1− t)x(t)

= −(1− t)λx(t)+ λ(1− t)x(t) = 0.

It follows that

Ax(t) =
∫ t

0
e−
∫ t
s λ(1−w)dw

(∫ 1

s

f (x(r))dr + λ(1− s)x(s)

)

ds ≥ 0

and

(Ax)′(t) =
∫ 1

t

f (x(r))dr + λ(1− t)x(t)

+
∫ t

0
λ(t − 1)e

λ

(
(t−1)2

2 − (s−1)2
2

) (∫ 1

s

f (x(r))dr + λ(1− s)x(s)

)

ds

≥ 0.

Therefore, since Ax is clearly an element of C[0, 1], we have that A : P → P . This
ends the proof. �
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In the following theorem, we will employ some elementary results from index
theory, see [10, 13, 19] for a thorough treatment of index theory.

Theorem 3 Let λ < 0, a(t) = λ(1− t), x0 ≡ r > 0, and let f : [0,∞)→ [0,∞)

be a continuous function with

f (x)+ λx ≥ 0

for all non-negative real numbers x such that

f (r) ≤ −λr
1− e

λ
2

.

Then, A : Pr → Pr , and (1), (2) has at least one positive solution x∗ ∈ Pr .

Proof Let r > 0 and x0 ≡ r . Since

f (r) ≤ −λr
1− e

λ
2

,

we have that for all t ∈ [0, 1]

r ≥
(
f (r)

λ

)(
e
λ
2 − 1

)

≥
(
f (r)

λ

)(

e
−λ((t−1)2−1)

2 − 1

)

.

As a result,

(
f (r)

λ

)(

1− e
λ((t−1)2−1)

2

)

≤ re
λ((t−1)2−1)

2 .

Hence, for all t ∈ [0, 1], we have

Ax0(t) =
∫ t

0
e−
∫ t
s λ(1−w)dw

(∫ 1

s

f (r)dz+ λ(1− s)r

)

ds

= (f (r)+ λr)

∫ t

0
e
λ

(
(t−1)2

2 − (s−1)2
2

)

(1− s) ds

= (f (r)+ λr)e
λ(t−1)2

2

∫ t

0
e
−λ(s−1)2

2 (1− s) ds

= (f (r)+ λr)e
λ(t−1)2

2

∫ −(t−1)2
2

−1
2

eλu du
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= (f (r)+ λr)e
λ(t−1)2

2

⎛

⎝e
−λ(t−1)2

2 − e
−λ
2

λ

⎞

⎠

=
(
f (r)+ λr

λ

)(

1− e
λ((t−1)2−1)

2

)

=
(
f (r)

λ

)(

1− e
λ((t−1)2−1)

2

)

+ r

(

1− e
λ((t−1)2−1)

2

)

≤ re
λ((t−1)2−1)

2 + r

(

1− e
λ((t−1)2−1)

2

)

= r.

Therefore,

‖Ax0‖ = sup
t∈[0,1]

|Ax0(t)| ≤ r,

and by Theorem 2 we have that A : P → P , hence A : Pr → Pr .
If A has a fixed point in the ∂Pr , we are finished, so without loss of generality,

suppose that A does not have a fixed point in ∂Pr . For x ∈ Pr , define H : [0, 1] ×
Pr → Pr by

H(t, x) = tAx.

We have assumed that H(1, x) = Ax �= x for all x ∈ ∂Pr , and for t ∈ [0, 1) and
x ∈ ∂Pr we have that

‖H(t, x)‖ = sup
s∈[0,1]

|tAx(s)| = t sup
s∈[0,1]

Ax(s) ≤ tr < r.

Since ‖x‖ = r , we have that H(t, x) �= x for all (t, x) ∈ [0, 1] × Pr . Thus, by the
homotopy invariance property of the fixed point index, we have

i(A, Pr , P ) = i(0, Pr , P ),

and by the normality property of the fixed point index, we have

i(A, Pr , P ) = i(0, Pr , P ) = 1.

Consequently, by the solution property of the fixed point index, A has a fixed point
x∗ ∈ Pr .

Therefore, regardless of the case, we have that A has a fixed point x∗ ∈ Pr , which
by Theorem 1 is a solution of (1), (2). This ends the proof. �
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Note that the standard approach to showing the existence of a solution of (1), (2)
is to show that

Dx(t) =
∫ 1

0
G(t, s)f (x(s)) ds

has a fixed point, where

G(t, s) = min{t, s}

is the Green’s function and x ∈ Q, with Q being the cone

Q = {x ∈ E : x is non-negative, non-decreasing, and concave}.

Since D : Q → Q, the concavity condition is not restrictive. Thus, whenever
f (w) ≥ −λw and λ < −3, for any r ∈ R and any x ∈ ∂Qr that satisfies

x(s) ≥ sr

for all s ∈ [0, 1] by the concavity of x, hence,

Dx(1) =
∫ 1

0
G(1, s)f (x(s)) ds

=
∫ 1

0
sf (x(s)) ds

≥ −
∫ 1

0
sλx(s) ds

≥ −
∫ 1

0
sλ(sr) ds

= −λr
3

> r.

Therefore, when λ < −3 we have that ‖Ax‖ > ‖x‖ for all x ∈ ∂Qr , which can
be used to show that i(D,Qr,Q) = 0. Then, the solution property cannot be used
with the operator D on sets of the form Qr when λ < −3, which illustrates the
utility of the operator A and the alternative method to convert (1), (2) to a fixed
point problem utilizing an integrating factor.

Moreover, note that the foundational Krasnosleskii [15] arguments and the
Leggett–Williams [17] generalization of these arguments revolve around functional
wedges of the form
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P(β, b) = {x ∈ P : β(x) < b},

and around being able to show that the index of sets of this form are nonzero. The
transformation of Theorem 1 provides a rich opportunity to investigate existence of
solution arguments not only in the choice of the function a leading to the integrating
factor approach, but also in finding conditions for the index of the functional wedges
to be nonzero for the transformed operator. That is, ascertaining what are the most
appropriate functionals to use with Theorem 1.

In the future, we hope to use this method with more general boundary conditions,
and in different applications.
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Volterra Relatively Compact
Perturbations of the Laplace Operator

Bazarkan Biyarov

Abstract In this paper, we distinguish a class of correct restrictions and extensions
with compact inverse operators which do not belong to any of the Schatten classes.
Using such operators, a relatively compact Volterra correct perturbation for the
Laplace operator is constructed.

1 Introduction

Let us present some definitions, notation, and terminology.
In a Hilbert space H , we consider a linear operator L with domain D(L) and

range R(L). By the kernel of the operator L we mean the set

KerL = {f ∈ D(L) : Lf = 0
}
.

Definition 1 An operatorL is called a restriction of an operatorL1, andL1 is called
an extension of an operator L, briefly L ⊂ L1, if:

(1) D(L) ⊂ D(L1),
(2) Lf = L1f for all f from D(L).

Definition 2 A linear closed operator L0 in a Hilbert space H is called minimal if
there exists a bounded inverse operator L−1

0 on R(L0) and R(L0) �= H .

Definition 3 A linear closed operator L̂ in a Hilbert space H is called maximal if
R(L̂) = H and Ker L̂ �= {0}.
Definition 4 A linear closed operator L in a Hilbert space H is called correct if
there exists a bounded inverse operator L−1 defined on all of H .
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Definition 5 We say that a correct operator L in a Hilbert space H is a correct
extension of minimal operator L0 (correct restriction of maximal operator L̂) if
L0 ⊂ L (L ⊂ L̂).

Definition 6 We say that a correct operator L in a Hilbert space H is a boundary
correct extension of a minimal operator L0 with respect to a maximal operator L̂
if L is simultaneously a correct restriction of the maximal operator L̂ and a correct
extension of the minimal operator L0, that is, L0 ⊂ L ⊂ L̂.

Definition 7 A bounded operator A in a Hilbert space H is called quasinilpotent if
its spectral radius is zero, that is, the spectrum consists of the single point zero.

Definition 8 An operator A in a Hilbert space H is called a Volterra operator if A
is compact and quasinilpotent.

Definition 9 A correct restriction L of a maximal operator L̂ (L ⊂ L̂), a correct
extension L of a minimal operator L0 (L0 ⊂ L) or a boundary correct extension L

of a minimal operator L0 with respect to a maximal operator L̂ (L0 ⊂ L ⊂ L̂), will
be called Volterra if the inverse operator L−1 is a Volterra operator.

In a Hilbert space H , we consider a linear operator L with domain D(L) and
range R(L). By the kernel of the operator L we mean the set

KerL = {f ∈ D(L) : Lf = 0
}
.

Let L̂ be a maximal linear operator in a Hilbert space H , let L be any known correct
restriction of L̂, and let K be an arbitrary linear bounded (in H ) operator satisfying
the following condition:

R(K) ⊂ Ker L̂. (1.1)

Then the operator L−1
K defined by the formula (see [1])

L−1
K f = L−1f +Kf (1.2)

describes the inverse operators to all possible correct restrictions LK of L̂, i.e.,
LK ⊂ L̂.

Let L0 be a minimal operator in a Hilbert space H , let L be any known correct
extension of L0, and let K be a linear bounded operator in H satisfying the
conditions

(a) R(L0) ⊂ KerK ,
(b) Ker (L−1 +K) = {0},
then the operator L−1

K defined by formula (1.2) describes the inverse operators to all
possible correct extensions LK of L0, i.e., L0 ⊂ LK (see [1]).
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Let L be any known boundary correct extension of L0, i.e., L0 ⊂ L ⊂ L̂. The
existence of at least one boundary correct extension L was proved by Vishik in [2].
Let K be a linear bounded (in H ) operator satisfying the conditions

(a) R(L0) ⊂ KerK ,
(b) R(K) ⊂ Ker L̂,

then the operator L−1
K defined by formula (1.2) describes the inverse operators to all

possible boundary correct extensions LK of L0, i.e., L0 ⊂ LK ⊂ L̂ (see [1]).
From the description of (1.2) for all correct restrictions of LK we have that

D(LK) ⊂ D(L̂). Then the operator

L̂u = f, for all u ∈ D(LK),

where

D(LK) =
{
u ∈ D(L̂) : (I −KL̂)u ∈ D(L)

}
,

corresponds to the description of the direct operator LK , here I is the identity
operator in H . It is easy to see that the operator K defines the domain of D(LK),
since (see [1])

(I −KL̂)D(LK) = D(L),

(I +KL̂)D(L) = D(LK), I −KL̂ = (I +KL̂)−1.

We have taken the term “boundary correct extension” in connection with the
fact that for differential equations such operators are generated only by boundary
conditions. And this, in turn, is due to that the minimal operator for them is usually
defined using boundary conditions.

If L0 and M0 are minimal operators with dense domains in a Hilbert space H ,
and connected among themselves by the relation

(L0u, v) = (u,M0v), for all u ∈ D(L0), for all v ∈ D(M0),

then L̂ = M∗
0 and M̂ = L∗0 are maximal operators such that L0 ⊂ L̂ and M0 ⊂ M̂ .

Let L be some correct restriction of maximal operator L̂. Then the inverse
operators to all correct restrictions LK of L̂ are described by formula (1.2). The
following is true

Assertion 1 ([1]) The domain of correct restriction LK is dense in H if and only if

D(L∗) ∩ Ker (I +K∗L∗) = {0}.

Note that there exists a correct restriction LK , which the domain is not dense in
H despite the fact that the range R(LK) = H .
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Assertion 2 ([1]) It is obvious that any correct extension M1 of the minimal
operator M0 is the adjoint of some correct restriction L1 of L̂ with dense domain.
And vice versa, that any correct restriction L1 of L̂ with dense domain is the adjoint
of some correct extensionM1 of the minimal operatorM0.

In this regard, it suffices to study the correct restrictions of the maximum
operator.

2 Compact Operators not in the Schatten Classes

We denote by S∞(H,H1) the set of all linear compact operators acting from a
Hilbert space H to a Hilbert space H1. If T ∈ S∞(H,H1), then T ∗T is a non-
negative self-adjoint operator in S∞(H) ≡ S∞(H,H) and, moreover, there is a
non-negative unique self-adjoint root |T | = (T ∗T )1/2 in S∞(H). The eigenvalues
λn(|T |) numbered, taking into account their multiplicity, form a monotonically
converging to zero sequence of non-negative numbers. These numbers are usually
called s-numbers of the operator T and denoted by sn(T ), n ∈ N. The Schatten class
Sp(H,H1) is the set of all compact operators T ∈ S∞(H,H1), for which

|T |pp =
∞∑

j=1

s
p
j (T ) <∞, 0 < p <∞.

The following result shows the breadth of the asymptotic range of the eigenvalues
of the correct constrictions with a discrete spectrum:

Theorem 3 Let L be the fixed correct restriction of the maximal operator L̂ in a
Hilbert space H . If L−1 belongs to the Schatten classSp(H) for some p (0 < p <

+∞), and if sn(K), the s-numbers of the operator K from the representation (1.2)
that are numbered in descending order (taking their multiplicities into account)
satisfy the condition

lim
n→∞ sn(K) = 0, lim

n→∞ s2n(K)/sn(K) = 1, (2.1)

then the operator L−1
K defined by the formula (1.2) is compact but does not belong

to any of the Schatten classes.

Proof Denote by θ(n) = 1/sn(K), n = 1, 2, . . . . Then {θ(n)}∞1 is a positive
monotonically increasing number sequence. Therefore, there exists such a monoton-
ically increasing continuous function f (x) defined on [0, +∞), f (n) = θ(n), n =
1, 2, . . . .

The function l(x) on [a, +∞), where a > 0, is called slowly varying (see [3]),
if l(x) is a positive measurable function and
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lim
x→∞{l(λx)/ l(x)} = 1, for all λ > 0.

In the future, we need the following properties of slowly varying functions l(x),
which proved in [3, p. 16]:

If l(x) is a slowly varying function, then

xαl(x)→∞, x−αl(x)→ 0, x →∞, α > 0. (2.2)

We give the formulation of one affirmation from the monograph of Seneta

Lemma (Seneta [4, p. 41]) Let the function l(x) be positive and monotone on
[A, ∞). If, for some fixed λ0, such that λ0 > 0, λ0 �= 1 takes place

lim
x→∞{l(λ0x)/ l(x)} = 1,

then l is a slowly varying function.

Then it follows from the conditions (2.1) by the Seneta Lemma that the function
f (x) is slowly varying. Using Corollary 2.2 from the monograph of Gohberg and
Krein [5, p. 49], and the representation (1.2) we get

sn+m−1(L
−1
K ) ≤ sn(L

−1)+ sm(K), m, n = 1, 2, . . . .

Notice that

lim
n→∞ f (n)sn(L

−1) = 0,

by virtue of (2.2) and

lim
m→∞ f (m)sm(K) = 1

by construction.
Further, according to the scheme of proof of Theorem 2.3 (K. Fan) from [5, p.

52] it is easy to obtain the validity of the property

lim
n→∞ s2n(L

−1
K )/sn(L

−1
K ) = 1.

Then, by virtue of (2.2) we obtain the statement of Theorem 3. Thus, Theorem 3 is
proved.

Example 1 We take the complete orthonormal system of vectors {ϕi}∞1 from H . Let
{ψi}∞1 be an orthonormal system from the infinite-dimensional subspace Ker L̂ of
H . As the operator K in the representation (1.2) we take the operator (see. [6])
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Kf =
∞∑

n=1

sn(K)(ϕn, f )ψn,

where sn(K) = 1/ log(n + 2), n = 1, 2, . . .. Then, by Theorem 3 the correct
restriction LK of the maximum operator L̂ has the inverse operator L−1

K , which is
compact but does not belong to any of the Schatten classes.

3 Volterra Relatively Compact Perturbations of the Laplace
Operator

In the Hilbert space L2(Ω), where Ω is a bounded domain in R
m with infinitely

smooth boundary ∂Ω , let us consider the minimal L0 and maximal L̂ operators
generated by the Laplace operator

−Δu = −
(
∂2u

∂x2
1

+ ∂2u

∂x2
2

+ · · · + ∂2u

∂x2
m

)

. (3.1)

The closure L0 in the space L2(Ω) of the Laplace operator (3.1) with the domain
C∞0 (Ω) is called the minimal operator corresponding to the Laplace operator.

The operator L̂, adjoint to the minimal operator L0 corresponding to the Laplace
operator is called the maximal operator corresponding to the Laplace operator (see
[7]). Note that

D(L̂) = {u ∈ L2(Ω) : L̂u = −Δu ∈ L2(Ω)}.

Denote by LD the operator, corresponding to the Dirichlet problem with the domain

D(LD) = {u ∈ W 2
2 (Ω) : u|∂Ω = 0}.

Then, by virtue of (1.2), the inverse operators L−1 to all possible correct restrictions
of the maximal operator L̂, corresponding to the Laplace operator (3.1), have the
following form:

u ≡ L−1f = L−1
D f +Kf, (3.2)

where, by virtue of (1.1), K is an arbitrary linear operator bounded in L2(Ω) with

R(K) ⊂ Ker L̂ = {u ∈ L2(Ω) : −Δu = 0}.

Then the direct operator L is determined from the following problem:

L̂u ≡ −Δu = f, f ∈ L2(Ω), (3.3)
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D(L) = {u ∈ D(L̂) : (I −KL̂)u|∂Ω = 0}, (3.4)

where I is the unit operator in L2(Ω).
The operators (L∗)−1, corresponding to the operators L∗

v ≡ (L∗)−1g = L−1
D g +K∗g,

describe the inverses of all possible correct extensions of the minimal operator L0
if and only if K satisfies the condition (see [8]):

Ker(L−1
D +K∗) = {0}.

Note that the last condition is equivalent to the following: D(L) = L2(Ω). If the
operator K in (3.2), satisfies one more additional condition

KR(L0) = {0},

then the operator L, corresponding to problem (3.3)–(3.4), will turn out to be a
boundary correct extension.

Gekhtman’s work (see [9]) proves the existence of a positive definite extension
S of the Laplace operator in a unit disk on a plane whose spectrum is discrete and
asymptotically

λn(S) ∼ Cn1+β, −1 < β < 0, λn(S) ∼ Cn, β > 0. (3.5)

From the formula (3.5) it follows that, in the case of −1 < β < 0 the spectrum of
the operator S is non-classical. It is easy to see that the inverse operator S−1 belongs
to some Shatten class Sp(L2(D)) p > 1/(1+ β).

It follows from Theorem 3 that, in particular, for the Laplace operator there exist
correct restrictions that inverse operators are compact but do not belong to any of
the Schatten classes. This is possible due to the infinite-dimensionality of the kernel
of the maximal operator Ker L̂. In the case of a finite-dimensional kernel, this effect
cannot be achieved.

The author in [8] proved a theorem for a wide class of correct restrictions of the
maximal operator L̂ and the correct extensions of the minimal operator L0 generated
by the Laplace operator that they cannot be Volterra. The compact operators K from
the Schatten class Sp(L2(Ω)) correspond to them, for any p ≤ m/2, where m ≥ 2
is the dimension of the space R

m.
In terms of the smoothness of the domain, this means that the correct restrictions

with domain D(L) ⊂ Ws
2 (Ω), where 2(m − 1)/m < s ≤ 2, cannot be Volterra.

It was noted that under perturbations of the positive operator L−1
D by the finite-

dimensional operator K there are no Volterra restrictions LK . At first glance, this
seems strange against the background of Corollary 8.3 of [10]. However, there are
no contradictions, since, in our case, the eigenvalues of the positive operator L−1

D do
not satisfy the condition of Matsaevs Theorem 11.5 (see [5, p. 273])
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lim
n→∞ n2λn(L

−1
p ) = c < +∞.

And in Corollary 8.3 of [10], the positive operator must satisfy the above condition.
Therefore, Volterra perturbations for the Laplace operator (if they exist) must be
sought among the infinite-dimensional operators K .

Operators generated by ordinary differential equations, equations of hyperbolic
or parabolic type with Cauchy initial data, as a rule, are obtained by Volterra correct
extensions of the minimal operator. But Hadamard’s example shows that the Cauchy
problem for the Laplace equation is not correct. At present, not a single Volterra
correct restriction or extension for elliptic-type equations is known. Correct Cauchy
problems for differential equations remain Volterra under perturbations with the
help of lower terms. The works (see [1, 11]) contain many Volterra problems, except
for the Cauchy problem, which change Volterra under disturbances by the lower
terms. Guided by these guesses, we will try to construct at least some Volterra
perturbation for the Laplace operator.

Theorem 4 LetL be the correct restriction of the maximal operator L̂ generated by
the Laplace operator in L2(Ω), which is determined by the formulas (3.3)–(3.4). We
take the operator K as compact positive in L2(Ω) and its eigenvalues {μj }∞1 that
are numbered in descending order (taking their multiplicities into account) satisfy
the condition

lim
n→∞μ2nμ

−1
n = 1.

Then there exists a compact operator S in L2(Ω) and a relatively compact
perturbation of the Laplace operator

L̂Su = −Δu+ S(−Δu) = f, f ∈ L2(Ω), (3.6)

with the domain

D(LS) = {u ∈ D(L̂) : (I −KL̂)u|∂Ω = 0}, (3.7)

is a Volterra boundary correct problem.

Proof A linear operator acting on a separable Hilbert space H is called complete
if the system of its root vectors corresponding to nonzero eigenvalues is complete
in H . By a weak perturbation of the complete compact self-adjoint operator A we
mean the operator A(I + C), where C is such a compact operator such that the
operator I + C is continuously invertible.

It follows from the conditions of Theorem 4 that the direct operator L, deter-
mined from problems (3.3) and (3.4) is positive, since its inverse operator L−1 of
the form (3.2) is a positive and compact operator in L2(Ω).
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After applying Theorem 3, the operator L−1 satisfies all the conditions of the
theorem of Matsaev and Mogul’skii which states:

Theorem (Matsaev, Mogul’skii [12]) Let the eigenvalues {λn}∞1 of a complete
positive compact operator A numbered in descending order taking into account
their multiplicities satisfy the condition

lim
n→∞ λ2nλ

−1
n = 1.

Then there is a weak perturbation of A which is a Volterra operator.

Using this theorem, we obtain that the operator L−1 has a weak perturbation
L−1
S = L−1(I + S1), which is a Volterra operator. By the definition of a weak

perturbation, the operator S1 is compact and I + S1 is continuously invertible. We
denote

(I + S1)
−1 = I + S,

where S is the compact operator in L2(Ω). Then the problem (3.6)–(3.7) defines the
direct operator LS . Notice that

D(LS) = D(L),

and the action of the operator LS is a relatively compact perturbation of the Laplace
operator. Theorem 4 is proved.

As an example of K satisfying the condition of Theorem 4, we can take the
operator

Kf =
∞∑

n=1

1

log(2+ n)
(ϕn, f )ϕn,

where {ϕn}∞1 is an orthonormal basis in the subspace Ker L̂, with L̂ = −Δ. Then
λn = 1/ log(2 + n), n = 1, 2, . . . are eigenvalues of the positive operator K , and
{ϕn}∞1 are the corresponding eigenvalues vector.

Note that Theorem 4 is not only true for the Laplace operator, it is also true in the
case of an abstract operator when a maximal operator with an infinite-dimensional
kernel has a positive correct restriction with a compact inverse.
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for the coefficients when the eigenvalues of the matrix have double multiplicity
(Theorem 5). An effective computation for a(f )0 (X) is given in the case n = 4.

2010 AMS Subject Classification 22Exx, 22E60, 22E70

1 Introduction
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as in (15), where the coefficients a0(X), . . . , an−1(X) are uniquely defined and
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Section 2 is dealing with a brief review of matrix functions. We recall the
definition of a matrix function by using the Jordan canonical form, by the Cauchy
integral formula, and by the Hermite’s interpolation polynomial. The connection
between these definitions is given in Theorem 2.

Section 3 is devoted to the study of the general Rodrigues problem in terms of
the spectrum of the matrix X and it consists in a short discussion on the case when
the eigenvalues of the matrix X are pairwise distinct (Theorems 3 and 4).

The last section illustrates the importance of the Hermite interpolation polyno-
mial in solving the general Rodrigues problem. The computation complexity of
the Rodrigues problem is discussed in Sect. 4.1, the explicit formulae when the
eigenvalues of X have double multiplicity are given in Theorem 5, and an effective
computation for a(f )0 (X) and n = 4 is given in Sect. 4.3.

2 A Brief Review on Matrix Functions

The concept of matrix function plays an important role in many domains of
mathematics with numerous applications in science and engineering, especially in
control theory and in the theory of the differential equations in which exp(tA) has an
important role. An example is given by the nuclear magnetic resonance described
by the Solomon equations

dM/dt = −RM,M(0) = I,

where M(t) is the matrix of intensities and R is the matrix of symmetrical
relaxation.

Given a scalar function f : D → C, we define the matrix f (A) ∈ Mn(C),
formally replacing z by A, where A ∈ Mn(C) and Mn(C) is the algebra of n × n

square matrices with complex entrees. This direct approach to defining a matrix
function is sufficient for a wide range of functions, but does not provide a general
definition. It also does not necessarily provide a correct way to numerically evaluate
the matrix f (A). The following four definitions are useful for the developments in
this paper.

Any matrix A ∈ Mn(C), not necessarily diagonalizable, can be written using the
Jordan canonical form as

X−1AX = J = diag(J1(λ1), J2(λ2), . . . , Jp(λp)), (1)

where we have
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J =

⎛

⎜
⎜
⎜
⎝

J1

J2
. . .

Jp

⎞

⎟
⎟
⎟
⎠
.

Here the transformation matrix X is non-singular, n1 + n2 + · · · + nk = n, and

Jk = Jk(λk) =

⎛

⎜
⎜
⎜
⎜
⎝

λk 1 · · · 0

0 λk
. . . 0
. . . 1

0 0 · · · λk

⎞

⎟
⎟
⎟
⎟
⎠
∈ Mnk(C), (2)

λk being the eigenvalues of A.
The Jordan matrix J is unique up to a permutation of the blocks Jk , but the

transformation matrix X is not unique.

Definition 1 Let f be defined on a neighborhood of the spectrum of A ∈ Mn(C).
If A has the Jordan canonical form J , then

f (A) = Xf (J )X−1 = Xdiag(f (Jk(λk)))X
−1, (3)

where

f (Jk) = f (Jk(λk)) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

f (λk) f
′(λk) · · · f (nk−1)(λk)

(nk−1)!
0 f (λk)

. . .
...

. . . f ′(λk)
0 0 · · · f (λk)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (4)

The result in the right member of the relation (3) is independent of the choice of X
and J .

Any polynomial p with complex coefficients,

p(t) = a0 + a1t + · · · + am−1t
m−1 + amt

m, am �= 0 (5)

defines a matrix polynomial by simply replacing t with A in (5), and obtain

p(A) = amA
m + am−1A

m−1 + · · · + a0In. (6)

More general [5, p. 565, Theorem 11.2.3], if f is an analytic function defined by
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f (t) =
∞∑

i=0

ait
i

on an open disk containing the spectrum σ(A) of A, then

f (A) =
∞∑

i=0

aiA
i.

To evaluate a polynomial matrix function if A ∈ Mn(C) is diagonalizable, so we
have A = XΛX−1 with Λ = diag(λ1, λ2, . . . , λn), from (4) we obtain

p(A) = p(XΛX−1) = Xp(Λ)X−1,

thus

p(A) = X

⎛

⎜
⎝

p(λ1) 0
. . .

0 p(λn)

⎞

⎟
⎠X−1, (7)

where we have used the property p(XAX−1) = Xp(A)X−1. If A is not necessarily
diagonalizable and has the Jordan canonical form A = XJX−1 with the blocks Jk
defined in (2), then

p(A) = p(XJX−1) = Xp(J )X−1,

so

p(A) = X

⎛

⎜
⎝

p(J1(λ1)) 0
. . .

0 p(Jp(λp))

⎞

⎟
⎠X−1. (8)

Now, we write Jk(λ) = λInk +N,whereN ≡ Jk(0), and obtain

J
j
k (λ) = (λI +N)j =

j∑

i=0

(
j

i

)

λjλ−iNi.

All terms with i ≥ nk are zero, because we have Nnk = O. This takes us to the
relation

p(Jk(λ)) =
m∑

i−0

1

i!p
(i)(λ)Ni =

μ∑

i−0

1

i!p
(i)(λ)Ni,
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where μ = min {m, nk − 1}. Therefore, one obtains

p(Jk) = p(Jk(λ)) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p(λ) p′(λ) 1
2p

′′(λ) · · · p(nk−1)(λ)
(nk−1)!

0 p(λ) p′(λ) . . . p(nk−2)(λ)
(nk−2)!

0 0 p(λ)
. . . 1

2p
′′(λ)

...
... · · · . . . p′(λ)

0 0 0 · · · p(λ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (9)

where all the elements i over the superdiagonal are p(i)(λ)/i!. Notice that only the
derivatives until the order nk − 1 are necessary.

Definition 2 For a differentiable function f defined on a neighborhood of σ(A),
the numbers f (j)(λi), i = 1, . . . , s, j = 0, . . . , ni − 1, are called the values of the
function f and its derivatives on the spectrum of A. If these values exist we say that
f is defined on the spectrum of A.

We notice that the minimal polynomial ψA takes the value zero on the spectrum
of A.

Theorem 1 ([6, p. 5, Theorem 1.3]) For polynomials p and q and A ∈ Mn(C) we
have p(A) = q(A) if and only if p and q take the same values on the spectrum of
A.

The following definition of the matrix function, using the Hermite interpolation,
is important for our presentation.

Definition 3 Let f be defined on the spectrum of A ∈ Mn(C). Then f (A) =
r(A), where r is the Hermite interpolation polynomial that satisfies the interpolation
conditions

r(j)(λi) = f (j)(λj ), i = 1, . . . , s, j = 0, . . . , ni − 1,

where λ1, . . . , λs are the distinct eigenvalues of A with the multiplicities n1, . . . ns ,
respectively.

According to Theorem 1, it follows that the polynomial r depends on A through
the values of the function f on the spectrum of A.

The Cauchy’s integral formula is an elegant result of complex analysis that states
that under certain conditions, the value of a function can be determined using an
integral. Given a function f (z) we can obtain the value f (a) by

f (a) = 1

2πi

∫

Γ

f (z)

z− a
dz,

where Γ is a simple closed curve around a and f is analytic on and inside Γ . This
formula extends to the case of the matrices.
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Definition 4 Let Ω ⊂ C be a domain and let f : Ω → C be an analytic function.
Let A ∈ Mn(C) be diagonalizable so that all eigenvalues of A are in Ω . We define
f (A) ∈ Mn(C) by

f (A) = 1

2πi

∫

Γ

f (z)(zIn − A)−1dz, (10)

where (zIn − A)−1 is the resolvent of A in z and Γ ⊂ Ω is a simple closed clock-
wise oriented curve around the spectrum σ(A).

Let A ∈ Mn(C) be a diagonalizable matrix and f an analytic function on a
domain that contains the spectrum of A. Then we have [8, p. 427, Theorem 6.2.28]

f (A) = Xf (Λ)X−1,

where A = XΛX−1, with Λ = diag(λ1, λ2, . . . , λn), and f (Λ) is defined by the
Cauchy’s integral formula. In conclusion, this result shows that f (A) is similar to
the matrix f (Λ).

The following result allows us to define f (A) if f has a development in power
series [5, p. 565, Theorem 11.2.3]. If the function f is given by

f (z) =
∞∑

k=0

ckz
k

on an open disk containing the spectrum of A, then

f (A) =
∞∑

k=0

ckA
k.

The most popular matrix function defined in this way is the matrix exponential

exp(A) =
∞∑

k=0

1

k!A
k, (11)

obtained for

f (z) = ez =
∞∑

k=0

1

k!z
k.

Another important matrix function defined in this way is the Cayley transform of
the special orthogonal group SO(n) (see, for instance, [2]). Denoted by Cay, it is
obtained from
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f (z) = 1+ 2z+ 2z2 + · · · = 1+ z

1− z
, |z| < 1

and it is given by

Cay(A) = (In + A)(In − A)−1.

The above definitions for the matrix f (A), where A ∈ Mn(C), are equivalent.
More precisely, we have the following result (see, for example, [14]).

Theorem 2 Let be A ∈ Mn(C). Let f be an analytical function defined on a
domain containing the spectrum of A. We denote by

1. fJ (A) the matrix f (A) obtained using the definition with the Jordan canonical
form;

2. fH (A) the matrix f (A) obtained using the definition with the Hermite’s interpo-
lation polynomial;

3. fC(A) the matrix f (A) obtained using the definition with the Cauchy’s integral
formula.

Then

fJ (A) = fH (A) = fC(A). (12)

The following important two properties are satisfied by a matrix function given
by any definition discussed above [10, p. 310, Theorem 1 and Theorem 2].

1. If A,B,X ∈ Mn(C), where B = XAX−1, and f is defined on the spectrum of
A, then

f (B) = Xf (A)X−1. (13)

2. If A ∈ Mn(C) is a matrix given in blocks on the principal diagonal,

A = diag(A1, A2, . . . , As),

where A1, A2, . . . , As are square matrices, then

f (A) = diag(f (A1), f (A2), . . . , f (As)). (14)

3 The General Rodrigues Problem

We have seen in formula (11) the definition of the exponential matrix X ∈ Mn(C).
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According to the well-known Hamilton-Cayley-Frobenius theorem, it follows
that every power Xk , k ≥ n, is a linear combination of powers X0, X1, . . ., Xn−1,
hence we can write

exp(X) =
n−1∑

k=0

ak(X)X
k, (15)

where the coefficients a0(X), . . . , an−1(X) are uniquely defined and depend on the
matrix X. From this formula, it follows that exp(X) is a polynomial of X with
coefficients functions of X. Moreover, it is clear that the coefficients are functions
of the eigenvalues of X.

The problem to find a reduced formula for exp(X) is equivalent to the deter-
mination of the coefficients a0(X), . . . , an−1(X). We will call this problem, the
Rodrigues problem, and the numbers a0(X), . . . , an−1(X) the Rodrigues coeffi-
cients of the exponential map with respect to the matrix X ∈ Mn(C).

The origin of this problem is the classical Rodriques formula

exp(X) = I3 + sin θ

θ
X + 1− cos θ

θ2
X2

obtained in 1840 for the special orthogonal group SO(3) with the Lie algebra so(3)
consisting in the set of all skew-symmetric 3×3 matrices. Here

√
2θ = ‖X‖, where

‖X‖ is the Frobenius norm of the matrix X. From the numerous arguments pointing
out the importance of this formula we only mention here the study of the rigid body
rotation in R

3, and the parametrization of the rotations in R
3.

A natural way to extend this formula is to consider the analytic function f

defined on the domain D ⊆ C. If X ∈ Mn(C) and σ(X) ⊂ D, then according
to the Hamilton-Cayley-Frobenius theorem, we can write the reduced formula of
the matrix f (X) as

f (X) =
n−1∑

k=0

a
(f )
k (X)Xk. (16)

We call the relation (16), the Rodrigues formula with respect to f . The numbers
a
(f )

0 (X), . . . , a
(f )

n−1(X) are the Rodrigues coefficients of f with respect to the matrix

X ∈ Mn(R). Clearly, the real coefficients a
(f )

0 (X), . . . , a
(f )

n−1(X) are uniquely
defined, they depend on the matrix X, and f (X) is a polynomial of X.

An important property of the Rodrigues coefficients is the invariance under the
matrix conjugacy (see [1]). That is, for every invertible matrix U the following
relations hold

a
(f )
k (UXU−1) = a

(f )
k (X), k = 0, . . . , n− 1. (17)
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We call the general Rodrigues problem the determination of the Rodrigues
coefficients for a given analytic function. To understand the complexity of this
problem we mention that Schwerdtfeger (see [7]) proved that for any analytic
function f and for any matrix X ∈ Mn(C) the following formula holds

f (X) =
μ∑

j=1

Xj

nj−1∑

k=0

1

k!f
(k)(λj )(X − λj In)

k, (18)

where μ is the number of distinct eigenvalues λj of X, nj is the multiplicity of λj
and

Xj = 1

2πi

∫

Γj

(sIn −X)−1ds = 1

2πi

∫

Γj

L[etX](s)ds (19)

are the Frobenius covariants of X. Here Γj is a smooth closed curve around the
complex number λj and L is the Laplace transform. A way to compute the Frobenius
covariants is the use of the Penrose generalized inverse of a matrix.

An extension of the formula (18) for the matrix tX, where t ∈ R
∗, is given in

[3].
When the eigenvalues λ1, . . . , λn of the matrix X ∈ Mn(C) are pairwise distinct,

the general Rodrigues problem is completely solved in the paper [1]. More precisely,
in this case the following result holds.

Theorem 3

(1) If the eigenvalues λ1, . . . , λn of the matrix X are pairwise distinct, then the
Rodrigues coefficients a(f )0 (X), . . . , a

(f )

n−1(X) are given by the formulas

a
(f )
k (X) = V

(f )
n,k (λ1, . . . , λn)

Vn (λ1, . . . , λn)
, k = 0, . . . , n− 1, (20)

where Vn (λ1, . . . , λn) is the Vandermonde determinant of order n, and
V
(f )
n,k (λ1, . . . , λn) is the determinant of order n obtained from Vn (λ1, . . . , λn)

by replacing the line k + 1 by f (λ1), . . . , f (λn).
(2) If the eigenvalues λ1, . . . , λn of the matrix X are pairwise distinct, then

the Rodrigues coefficients a(f )0 (X), . . . , a
(f )

n−1(X) are linear combinations of
f (λ1), . . . , f (λn) having the coefficients rational functions of λ1, . . . , λn, i.e.,
we have

a
(f )
k (X) = b

(1)
k (X)f (λ1)+ · · · + b

(n)
k (X)f (λn), k = 0, . . . , n− 1, (21)

where b(1)k , . . . , b
(n)
k ∈ Q [λ1, . . . , λn].
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Expanding the determinant V (f )
n,k (λ1, . . . , λn) in (20) with respect to the line k+1

it follows

a
(f )
k (X) = 1

Vn

n∑

j=1

(−1)k+j+1LVn−1(λ1, . . . , λ̂j , . . . , λn)f (λj ), (22)

where LVn−1(λ1, . . . , λ̂j , . . . , λn)f (λj ) is the (k + 1)-lacunary Vandermonde
determinant in the variables λ1, . . . , λ̂j , . . . , λn, i.e., the determinant obtained from
Vn (λ1, . . . , λn) by cutting out the row k + 1 and the column j . Applying the well-
known formula (see the reference [15])

LVn−1(λ1, . . . , λ̂j , . . . , λn)

= sn−k−1(λ1, . . . , λ̂j , . . . , λn)Vn−1(λ1, . . . , λ̂j , . . . , λn),

where sl is the l-th symmetric polynomial in the n−1 variables λ1, . . . , λ̂j , . . . , λn,
where λj is missing, we obtain the following result which completely solves the
general problem in the case when the eigenvalues λ1, . . . , λn of the matrix X are
pairwise distinct.

Theorem 4 For every k = 0, . . . , n− 1, the following formulas hold

a
(f )
k (X)

=
n∑

j=1

(−1)k+j+1Vn−1(λ1, . . . , λ̂j , . . . , λn)sn−k−1(λ1, . . . , λ̂j , . . . , λn)

Vn(λ1, . . . , λn)
f (λj ),

(23)

where sl denotes the l-th symmetric polynomial, and λ̂j means that in the Vander-
monde determinant Vn−1 the variable λj is omitted.

Remarks

(1) In the paper [1] is given a direct proof to formulas (20) using the “trace method”.
(2) The result in (20) can be obtained applying Theorem 2, therefore f (X) is given

by the Lagrange interpolation polynomial of f on the distinct points λ1, . . . , λn.
That is

f (X) =
n∑

i=1

f (λi)

n∏

j=1
j �=i

X − λj In

λi − λj
, (24)

and a
(f )
k (X) is the coefficient of Xk in the algebraic form of the polyno-

mial (24), k = 0, . . . , n− 1.



Computational Aspects of the General Rodrigues Problem 129

(3) Explicit computations when n = 2, 3, 4 are given in [1]. The case n = 2 also
appears in [11, Theorem 4.7] and in the paper [4].

4 Using the Hermite Interpolation Polynomial

Assume that the function f is defined on spectrum of matrix X ∈ Mn(C).
Considering Theorem 2 we have f (X) = r(X), where r is the Hermite interpolation
polynomial that satisfies the conditions

r(j)(λi) = f (j)(λi), i = 1, . . . , s, j = 0, . . . , ni − 1,

where λ1, . . . , λs are the distinct eigenvalues of X with multiplicities n1, . . . , ns ,
respectively, and n1 + · · · + ns = n.

In this case the Rodrigues coefficients a(f )0 (X), . . . , a
(f )
n (X) of the map f for

the matrix X are the coefficients of the Hermite polynomial defined by the above
interpolation conditions. This polynomial is given by

r(t) =
s∑

i=1

⎡

⎣

⎛

⎝
ni−1∑

j=0

1

j !Φ
(j)
i (λi)(t − λi)

j

⎞

⎠
∏

j �=i
(t − λj )

nj

⎤

⎦ , (25)

where Φi(t) = f (t)/
∏

j �=i
(t − λj )

nj .

If the eigenvalues of the matrix X are pairwise distinct, then the Hermite
polynomial r is reduced to Lagrange interpolation polynomial with conditions
r(λi) = f (λi), i = 1, . . . , n,

r(t) =
n∑

i=1

f (λi)li(t), (26)

where li are the Lagrange fundamental polynomials defined by

li (t) =
n∏

j=1
j �=i

t − λj

λi − λj
, i = 1, . . . , n. (27)

4.1 The Complexity of the Rodrigues Problem

The determination of the algebraic form of the Hermite polynomial given by (25)
is a problem equivalent to the problem of determining the Rodrigues coefficients of
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the map f when the eigenvalues of the matrix X are known. Because the effective
determination of the spectrum of the matrix X is equivalent to the solving of an
algebraic equation of degree n obtained after the computation of a determinant
of order n (see [12] and [13] for a deep analysis), we can say that the Rodrigues
problem has greater complexity than the problem of explicitly determining the
coefficients of the Hermite polynomial in the general context. This is also a difficult
problem if n and the multiplicities n1, . . . , ns are big (see [9]).

On the other hand, the Frobenius covariants Xj are polynomials in X, so we
have Xj = pj (X), j = 1, . . . , μ. Developing (X − λj In)

k in the Schwerdtfeger
formula (18) we obtain

n−1∑

k=0

a
(f )
k (X)Xk =

μ∑

j=1

pj (X)

mj−1∑

k=0

1

k!f
(k)(λj )

k∑

s=0

(−1)s
(
k

s

)

λsjX
k−s .

Identifying the coefficient of Xk in this relation, we obtain the Rodrigues
coefficients a(f )k (X), for k = 0, . . . , n − 1. This approach provides another image
of the complexity of the Rodrigues problem by reducing it to the determination of
the polynomials pj , j = 1, . . . , μ.

If the eigenvalues of the matrixX are pairwise distinct, the formulas (20) and (22)
give the explicit form for the coefficients of the Lagrange polynomial that satisfies
the above interpolation conditions.

4.2 The Solution of the Rodrigues Problem When the
Eigenvalues have Double Multiplicity

In this subsection, we assume that the function f is defined on the spectrum of
the matrix X ∈ M2s(C) and distinct eigenvalues λ1, . . . , λs of X have double
multiplicity, that is n1 = · · · = ns = 2. In this case the Hermite interpolation
polynomial r satisfies the conditions

r(λi) = f (λi), r
′(λi) = f ′(λi), i = 1, . . . , s

and the formula (25) becomes

r(t) =
s∑

i=1

[
f (λi)

(
1− 2l′i (λi)(t − λi)

)+ f ′(λi)(t − λi)
]
l2i (t), (28)

where li are the fundamental Lagrange polynomials defined in (27).
We notice that the formula (28) it can be written in the form
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r(t) =
s∑

i=1

(Ait + Bi)ri(t), (29)

where

Ai = 1
s∏

j=1
j �=i

(λi − λj )2

[
f ′(λi)− 2f (λi)l

′
i (λi)

]
,

Bi = 1
s∏

j=1
j �=i

(λi − λj )2

[
f (λi)

(
1+ 2λil

′
i (λi)

)− λif
′(λi)

]

and ri is the polynomial
s∏

j=1
j �=i

(t − λj )
2, i = 1, . . . , s.

On the other hand we have li (λi) = 1 and

l′i (t)
li(t)

=
s∑

j=1
j �=i

1

t − λj
, i = 1, . . . , s,

so we get

l′i (λi) =
s∑

j=1
j �=i

1

λi − λj
, i = 1, . . . , s. (30)

To obtain the algebraic form of the polynomial ri notice that we can write

ri(t) =
s∏

j=1
j �=i

(t − λj )
2 =

s∏

j=1
j �=i

(t − λj )(t − λj )

= t2s−2 − σi,1t
2s−1 + σi,2t

2s−2 − · · · + σi,2s−2, (31)

where σi,k(λ1, . . . , λs) = sk(λ1, λ1, . . . , λ̂i , λ̂i , . . . , λs, λs) is the symmetric poly-
nomial of order k in 2s − 2 variable λ1, λ1, . . . , λ̂i , λ̂i , . . . , λs, λs , where λi is
missing, for all k = 1, . . . , 2s − 2.

Combining formulas (29) and (31) we obtain
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r(t) =
s∑

i=1

(Ait + Bi)(t
2s−2 − σi,1t

2s−1 + σi,2t
2s−2 − · · · + σi,2s−2)

=
(

s∑

i=1

Ai

)

t2s−1 +
s∑

i=1

(−Aiσi,1 + Bi)t
2s−2 + · · ·

+
s∑

i=1

(Aiσi,2 − Biσi,1)t
2s−3 + · · · +

s∑

i=1

(Aiσi,2s−2 − Biσi,2s−3)t

+
s∑

i=1

Biσi,2s−2.

Thus we get the following result which completely solves the Rodrigues general
problem if the eigenvalues λ1, . . . , λs are distinct and have double multiplicity.

Theorem 5 For any k = 0, 1, . . . , n− 1, we have

a
(f )
k (X) = (−1)k+1

s∑

i=1

1
s∏

j=1
j �=i

(λi − λj )2

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣f

′(λi)− 2f (λi)
s∑

j=1
j �=i

1

λi − λj

⎤

⎥
⎥
⎦ σi,2s−k−1

−

⎡

⎢
⎢
⎣f (λi)

⎛

⎜
⎜
⎝1+ 2λi

s∑

j=1
j �=i

1

λi − λj

⎞

⎟
⎟
⎠− λif

′(λi)

⎤

⎥
⎥
⎦ σi,2s−k−2

⎫
⎪⎪⎬

⎪⎪⎭
. (32)

Corollary 1 If the eigenvalues λ1, . . . , λs of the matrix X ∈ Mn(C), n = 2s,
are pairwise distinct and have double multiplicity, than the Rodrigues coefficients
a
(f )

0 (X), . . . , a
(f )

n−1(X) are linear combinations of f (λ1), . . . , f (λs), f
′(λ1), . . . , f

′
(λs) having the coefficients rational functions of λ1, . . . , λs , that is, we have

a
(f )
k (X) = b

(1)
k (X)f (λ1)+· · ·+ b

(s)
k (X)f (λs)+ c

(1)
k (X)f ′(λ1)+· · ·+ c

(s)
k f ′(λs),

where b(1)k , . . . , b
(s)
k , c

(1)
k , . . . , c

(s)
k ∈ Q[λ1, . . . , λs], k = 0, . . . , n− 1.

4.3 Example for n = 4 and a
(f )

0 (X)

Next we apply the formulas (32) to determine the coefficient a(f )0 (X) in the case
n = 4 for λ1 = λ3, λ2 = λ4 and λ1 �= λ2. In this situation we have
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σ1,1(λ1, λ2) = σ1(λ̂1, λ̂1, λ2, λ2) = 2λ2, σ1,2(λ1, λ2) = σ2(λ̂1, λ̂1, λ2, λ2) = λ2
2,

σ2,1(λ1, λ2) = σ1(λ1, λ1, λ̂2, λ̂2) = 2λ1, σ2,2(λ1, λ2) = σ2(λ1, λ1, λ̂2, λ̂2) = λ2
1.

Applying formula (32), we find the coefficient a(f )0 (X) in the form

a
(f )

0 (X) = 1

(λ1 − λ2)2

[

f (λ1)

(

λ2
2 +

2λ1λ
2
2

λ1 − λ2

)

− λ1λ
2
2f

′(λ1)

+ f (λ2)

(

λ2
1 +

2λ2
1λ2

λ2 − λ1

)

− λ2
1λ2f

′(λ2)

]

= λ2
2(−3λ1 + λ2)

(λ2 − λ1)3
f (λ1)− λ1λ

2
2

(λ2 − λ1)2
f ′(λ1)

+ −λ2
1(λ1 − 3λ2)

(λ2 − λ1)3
f (λ2)− λ2

1λ2

(λ2 − λ1)2
f ′(λ2).
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Approximation by Max-Product
Operators of Kantorovich Type

Lucian Coroianu and Sorin G. Gal

Abstract The main goal of this survey is to describe the results of the present
authors concerning approximation properties of various max-product Kantorovich
operators, fulfilling thus this gap in their very recent research monograph (Bede
et al., Approximation by Max-product type operators. Springer, New York, 2016).
Section 1 contains a short introduction in the topic. In Sect. 2, after presenting
some general results, we state approximation results including upper estimates,
direct and inverse results, localization results and shape preserving results, for
the max-product: Bernstein–Kantorovich operators, truncated and non-truncated
Favard–Szász-Mirakjan—Kantorovich operators, truncated and non-truncated
Baskakov–Kantorovich operators, Meyer–König-Zeller–Kantorovich operators,
Hermite–Fejér–Kantorovich operators based on the Chebyshev knots of first kind,
discrete Picard–Kantorovich operators, discrete Weierstrass–Kantorovich operators
and discrete Poisson–Cauchy–Kantorovich operators. All these approximation
properties are deduced directly from the approximation properties of their
corresponding usual max-product operators. Section 3 presents the approximation
properties with quantitative estimates in the Lp-norm, 1 ≤ p ≤ +∞, for the
Kantorovich variant of the truncated max-product sampling operators based on
the Fejér kernel. In Sect. 4, we introduce and study the approximation properties
in Lp-spaces, 1 ≤ p ≤ +∞ for truncated max-product Kantorovich operators
based on generalized type kernels depending on two functions ϕ and ψ satisfying
a set of suitable conditions. The goal of Sect. 5 is to present approximation in
Lp, 1 ≤ p ≤ +∞, by sampling max-product Kantorovich operators based
on generalized kernels, not necessarily with bounded support, or generated by
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sigmoidal functions. Several types of kernels for which the theory applies and
possible extensions and applications to higher dimensions are presented. Finally,
some new directions for future researches are presented, including applications to
learning theory.

1 Introduction

It is known that the general form of a linear discrete operator attached to f : I →
[0,+∞) can be expressed by

Dn(f )(x) =
∑

k∈In
pn,k(x)f (xn,k), x ∈ I, n ∈ N,

where pn,k(x) are various kinds of function basis on I with
∑

k∈In pn,k(x) = 1, In
are finite or infinite families of indices and {xn,k; k ∈ In} represents a division of I .

With the notation
∨

k∈A ak = supk∈A ak , by the Open Problem 5.5.4, pp. 324–
326 in [17], to eachDn(f )(x), was attached the so-called max-product type operator
defined by

L(M)
n (f )(x) =

∨
k∈In pn,k(x) · f (xn,k)∨

k∈In pn,k(x)
, x ∈ I, n ∈ N. (1)

Note that if, for example, pn,k(x), n ∈ N, k = 0, . . . , n is a polynomial basis, then
the operators L(M)

n (f )(x) become piecewise rational functions.
In a long series of papers, the present authors have introduced and stud-

ied approximation properties (including upper estimates, saturation, localization,
inverse results, shape preservation and global smoothness preservation) of the
max-product operators of the form in (1), attached as follows: to Bernstein-type
operators, like the Bernstein polynomials, Favard–Szász–Mirakjan operators (trun-
cated and non-truncated cases), Baskakov operators (truncated and non-truncated
cases), Meyer–König and Zeller operators, Bleimann–Butzer–Hahn operators, to
interpolation polynomials of Lagrange and Hermite–Feéjer on various special knots
and to sampling operators based on various kernels, like those of Whittaker type
based on sinc-type kernels and those based on Fejér-type kernels.

All these results were collected in the recent research monograph [1] co-authored
by the present authors.

After the appearance of this research monograph, the study of the max-product
operators of the form (1) has been continued by other authors in many papers, like,
for example, [8, 12–14, 18–27].

Remark It is worth noting that the max-product operators can also be naturally
called as possibilistic operators, since they can be obtained by analogy with
the Feller probabilistic scheme used to generate positive and linear operators, by
replacing the probability (σ -additive), with a maxitive set function and the classical
integral with the possibilistic integral (see, e.g., [1], Chapter 10, Section 10.2).
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Now, to each max-product operator L(M)
n , we can formally attach its Kantorovich

variant, defined by

LK(M)
n (f )(x) =

∨
k∈In pn,k(x) · (1/(xn,k+1 − xn,k)) ·

∫ xn,k+1
xn,k

f (t)dt
∨

k∈In pn,k(x)
, (2)

with {xn,k; k ∈ In} a division of the finite or infinite interval I .
The study of these kinds of max-product operators is missing from the research

monograph [1] and has been completed only in the very recent papers [3–6, 9, 11,
12, 15, 16].

The goal of this chapter is to survey the main results for various kinds of
Kantorovich max-product operators, focusing mainly on those obtained by the
present authors in [3–7].

2 Approximation Properties of LK
(M)
n Deduced from Those

of L
(M)
n

Keeping the notations in the formulas (1) and (2), let us denote

C+(I ) = {f : I → R+; f is continuous on I },

where I is a bounded or unbounded interval, and suppose that all pn,k(x) are
continuous functions on I , satisfying pn,k(x) ≥ 0, for all x ∈ I, n ∈ N, k ∈ In
and

∑
k∈In pn,k(x) = 1, for all x ∈ I, n ∈ N.

In this section, from the properties of the max-product operatorsL(M)
n , we present

the properties of their Kantorovich variants LK(M)
n deduced form those of L(M)

n .
All the results in this section are from Coroianu–Gal [5].
After presenting some general results, we state here approximation results for

the max-product Bernstein–Kantorovich operators, truncated and non-truncated
Favard–Szász–Mirakjan–Kantorovich operators, truncated and non-truncated
Baskakov–Kantorovich operators, Meyer–König–Zeller–Kantorovich operators,
Hermite-Fejér–Kantorovich operators based on the Chebyshev knots of first kind,
discrete Picard-Kantorovich operators, discrete Weierstrass–Kantorovich operators
and discrete Poisson–Cauchy–Kantorovich operators. Notice that the moment
results obtained for these max-product type operators parallel somehow those
obtained for the classical positive and linear operators in, e.g., [20].

Firstly, we present the following general results.

Lemma 2.1

(i) For anyf ∈ C+(I ), LK(M)
n (f ) is continuous on I ;

(ii) If f ≤ g, then LK(M)
n (f ) ≤ LK

(M)
n (g);
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(iii) LK
(M)
n (f + g) ≤ LK

(M)
n (f )+ LK

(M)
n (g);

(iv) If f ∈ C+(I ) and λ ≥ 0, then LK(M)
n (λf ) = λLK

(M)
n (f ).

(v) If LK(M)
n (e0) = e0, where e0(x) = 1, for all x ∈ I , then for any f ∈ C+(I ),

we have

∣
∣
∣LK(M)

n (f )(x)− f (x)

∣
∣
∣ ≤

[

1+ 1

δ
LK(M)

n (ϕx)(x)

]

ω1(f ; δ),

for any x ∈ I and δ > 0. Here, ϕx(t) = |t − x|, t ∈ I, and ω1(f ; δ) =
sup{|f (x)− f (y)|; x, y ∈ I, |x − y| ≤ δ};

(vi)
∣
∣
∣LK

(M)
n (f )− LK

(M)
n (g)

∣
∣
∣ ≤ LK

(M)
n (|f − g|).

Lemma 2.2 With the notations in (1) and (2), suppose that, in addition, |xn,k+1 −
xn,k| ≤ C

n+1 for all k ∈ In, with C > 0 an absolute constant. Then, for all x ∈ I

and n ∈ N, we have

LK(M)
n (ϕx)(x) ≤ L(M)

n (ϕx)(x)+ C

n+ 1
.

Corollary 2.3 With the notations in (1) and (2) and supposing that, in addition,
|xn,k+1 − xn,k| ≤ C

n+1 for all k ∈ In, for any f ∈ C+(I ), we have
∣
∣
∣LK(M)

n (f )(x)− f (x)

∣
∣
∣ ≤ 2

[
ω1(f ;L(M)

n (ϕx)(x))+ ω1(f ;C/(n+ 1))
]
, (3)

for any x ∈ I and n ∈ N.

This corollary shows that knowing quantitative estimates in approximation by
a given max-product operator, we can deduce a quantitative estimate for its Kan-
torovich variant. Also, this corollary does not worsen the orders of approximation
of the original operators. Let us exemplify below for several known max-product
operators.

Firstly, let us choose pn,k(x) =
(
n
k

)
xk(1 − x)n−k , I = [0, 1], In = {0, . . . , n −

1} and xn,k = k
n+1 . In this case, L(M)

n in (1) become the Bernstein max-product

operators. Let us denote by BK(M)
n their Kantorovich variant, given by the formula

BK(M)
n (f )(x) =

∨n
k=0

(
n
k

)
xk(1− x)n−k · (n+ 1)

∫ (k+1)/(n+1)
k/(n+1) f (t)dt

∨n
k=0

(
n
k

)
xk(1− x)n−k

. (4)

We can state the following result.

Theorem 2.4

(i) If f ∈ C+([0, 1]), then we have

|BK(M)
n (f )(x)− f (x)| ≤ 24ω1(f ; 1/

√
n+ 1)+ 2ω1(f ; 1/(n+ 1)), x ∈ [0, 1], n ∈ N.
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(ii) If f ∈ C+([0, 1]) is concave on [0, 1], then we have

|BK(M)
n (f )(x)− f (x)| ≤ 6ω1(f ; 1/n), x ∈ [0, 1], n ∈ N.

(iii) If f ∈ C+([0, 1]) is strictly positive on [0, 1], then we have

|BK(M)
n (f )(x)−f (x)| ≤ 2ω1(f ; 1/n) ·

(
nω1(f ; 1/n)

mf

+ 4

)

+2ω1(f ; 1/n),

for all x ∈ [0, 1], n ∈ N, where mf = min{f (x); x ∈ [0, 1]}.
Now, let us choose pn,k(x) = (nx)k

k! , I = [0,+∞), In = {0, . . . , n, . . . , } and

xn,k = k
n+1 . In this case, L(M)

n in (1) become the non-truncated Favard–Szász–

Mirakjan max-product operators. Let us denote by FK(M)
n their Kantorovich variant

defined by

FK(M)
n (f )(x) =

∨∞
k=0

(nx)k

k! · (n+ 1)
∫ (k+1)/(n+1)
k/(n+1) f (t)dt

∨∞
k=0

(nx)k

k!
. (5)

We can state the following result.

Theorem 2.5

(i) If f : [0,+∞) → [0,+∞) is bounded and continuous on [0,+∞), then we
have

|FK(M)
n (f )(x)−f (x)| ≤ 16ω1(f ;√x/√n)+2ω1(f ; 1/n), x ∈ [0,+∞), n ∈ N.

(ii) If f : [0,+∞) → [0,+∞) is continuous, bounded, non-decreasing, concave
function on [0,+∞), then we have

|FK(M)
n (f )(x)− f (x)| ≤ 4ω1(f ; 1/n), x ∈ [0,+∞), n ∈ N.

If we choose pn,k(x) = (nx)k

k! , I = [0, 1], In = {0, . . . , n} and xn,k = k
n+1 , in

this case, L(M)
n in (1) become the truncated Favard–Szász–Mirakjan max-product

operators. Let us denote by TK(M)
n their Kantorovich variant given by the formula

TK(M)
n (f )(x) =

∨n
k=0

(nx)k

k! · (n+ 1)
∫ (k+1)/(n+1)
k/(n+1) f (t)dt

∨n
k=0

(nx)k

k!
. (6)
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We have the following theorem:

Theorem 2.6

(i) If f ∈ C+([0, 1]), then we have

|TK(M)
n (f )(x)− f (x)| ≤ 12ω1(f ; 1/

√
n)+ 2ω1(f ; 1/n), x ∈ [0, 1], n ∈ N.

(ii) If f ∈ C+([0, 1]) is non-decreasing, concave function on [0, 1], then we have

|TK(M)
n (f )(x)− f (x)| ≤ 4ω1(f ; 1/n), x ∈ [0, 1], n ∈ N.

Take now pn,k(x) =
(
n+k−1

k

)
xk/(1+x)n+k , I = [0,+∞), In = {0, . . . , n, . . . , }

and xn,k = k
n+1 . In this case, L(M)

n in (1) become the non-truncated Baskakov max-

product operators. Let us denote by VK(M)
n their Kantorovich variant defined by

VK(M)
n (f )(x) =

∨∞
k=0

(
n+k−1

k

)
xk

(1+x)n+k · (n+ 1)
∫ (k+1)/(n+1)
k/(n+1) f (t)dt

∨∞
k=0

(
n+k−1

k

)
xk

(1+x)n+k
. (7)

The following result holds.

Theorem 2.7

(i) If f : [0,+∞) → [0,+∞) is bounded and continuous on [0,+∞), then for
all x ∈ [0,+∞) and n ≥ 3, we have

|VK(M)
n (f )(x)−f (x)| ≤ 24ω1(f ;

√
x(x + 1)/

√
n− 1)+2ω1(f ; 1/(n+1)).

(ii) If f : [0,+∞) → [0,+∞) is continuous, bounded, non-decreasing, concave
function on [0,+∞), then for x ∈ [0,+∞) and n ≥ 3, we have

|VK(M)
n (f )(x)− f (x)| ≤ 4ω1(f ; 1/n).

For pn,k(x) =
(
n+k−1

k

)
xk/(1 + x)n+k , I = [0, 1], In = {0, . . . , n} and xn,k =

k
n+1 , L(M)

n in (1) become the truncated Baskakov max-product operators. Let us

denote by UK(M)
n their Kantorovich variant defined by

UK(M)
n (f )(x) =

∨n
k=0

(
n+k−1

k

)
xk

(1+x)n+k · (n+ 1)
∫ (k+1)/(n+1)
k/(n+1) f (t)dt

∨∞
k=0

(
n+k−1

k

)
xk

(1+x)n+k
. (8)

The following result holds.

Theorem 2.8

(i) If f ∈ C+([0, 1]), then we have

|UK(M)
n (f )(x)− f (x)| ≤ 48ω1(f ; 1/

√
n+ 1)+ 2ω1(f ; 1/(n+ 1)), x ∈ [0, 1], n ≥ 2.
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(ii) If f ∈ C+([0, 1]) is non-decreasing, concave function on [0, 1], then we have

|UK(M)
n (f )(x)− f (x)| ≤ 6ω1(f ; 1/n), x ∈ [0, 1], n ∈ N.

Now, let us choose pn,k(x) =
(
n+k
k

)
xk , I = [0, 1], In = {0, . . . , n, . . .} and

xn,k = k
n+1+k . In this case, L(M)

n in (1) become the Meyer–König and Zeller max-

product operators. Also, it is easy to see that |xn,k+1 − xn,k| ≤ 1
n+1 , for all k ∈ In.

Let us denote by ZK(M)
n their Kantorovich variant defined by

ZK(M)
n (f )(x) =

∨∞
k=0

(
n+k
k

)
xk · (n+k+1)(n+k+2)

n+1

∫ (k+1)/(n+k+2)
k/(n+1+k) f (t)dt

∨∞
k=0

(
n+k
k

)
xk

. (9)

We have the following theorem:

Theorem 2.9

(i) If f ∈ C+([0, 1]), then for n ≥ 4, x ∈ [0, 1], we have

|ZK(M)
n (f )(x)− f (x)| ≤ 36ω1(f ;√x(1− x)/

√
n)+ 2ω1(f ; 1/n).

(ii) If f ∈ C+([0, 1]) is non-decreasing, concave function on [0, 1], then for x ∈
[0, 1] and n ≥ 2x, we have

|ZK(M)
n (f )(x)− f (x)| ≤ 4ω1(f ; 1/n).

Now, let us choose pn,k(x) = hn,k(x)—the fundamental Hermite–Fejér
interpolation polynomials based on the Chebyshev knots of first kind xn,k =
cos
(

2(n−k)+1
2(n+1) π

)
, I = [−1, 1], and In = {0, . . . , n}. In this case, L(M)

n in (1)

become the Hermite–Fejér max-product operators. Also, applying the mean value
theorem to cos, it is easy to see that |xn,k+1 − xn,k| ≤ 4

n+1 , for all k ∈ In. Let us

denote by HK
(M)
n their Kantorovich variant defined by

HK(M)
n (f )(x) =

∨n
k=0 hn,k(x) · 1

xn,k−xn,k+1
· ∫ xn,k+1

xn,k
f (t)dt

∨∞
k=0 hn,k(x)

, (10)

where xn,k = cos
(

2(n−k)+1
2(n+1) π

)
.

The following result holds.

Theorem 2.10 If f ∈ C+([−1, 1]), then for n ∈ N, x ∈ [−1, 1], we have

|HK(M)
n (f )(x)− f (x)| ≤ 30ω1(f ; 1/n).
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Now, let us consider choose pn,k(x) = e−|x−k/(n+1)|, I = (−∞,+∞), In =
Z—-the set of integers and xn,k = k

n+1 . In this case, L(M)
n in (1) become the Picard

max-product operators. Let us denote by PK
(M)
n their Kantorovich variant defined

by

PK(M)
n (f )(x) =

∨∞
k=0 e

−|x−k/(n+1)| · (n+ 1)
∫ (k+1)/(n+1)
k/(n+1) f (t)dt

∨∞
k=0 e

−|x−k/(n+1)| . (11)

We can state the following result.

Theorem 2.11 If f : R → [0,+∞) is bounded and uniformly continuous on R,
then we have

|PK(M)
n (f )(x)− f (x)| ≤ 6ω1(f ; 1/n), x ∈ R, n ∈ N.

In what follows, let us choose pn,k(x) = e−(x−k/(n+1))2 , I = (−∞,+∞),
In = Z—the set of integers and xn,k = k

n+1 . In this case, L(M)
n in (1) become

the Weierstrass max-product operators. Let us denote by WK
(M)
n their Kantorovich

variant defined by

WK(M)
n (f )(x) =

∨∞
k=0 e

−(x−k/(n+1))2 · (n+ 1)
∫ (k+1)/(n+1)
k/(n+1) f (t)dt

∨∞
k=0 e

−(x−k/(n+1))2
. (12)

We have the following theorem:

Theorem 2.12 If f : R → [0,+∞) is bounded and uniformly continuous on R,
then we have

|WK(M)
n (f )(x)− f (x)| ≤ 4ω1(f ; 1/

√
n)+ 2ω1(f ; 1/n), x ∈ R, n ∈ N.

At the end of this subsection, let us choose pn,k(x) = 1
n2(x−k/n)2+1

, I =
(−∞,+∞), In = Z—the set of integers and xn,k = k

n+1 . In this case, L(M)
n in (1)

become the Poisson–Cauchy max-product operators. Let us denote by CK
(M)
n their

Kantorovich variant

CK(M)
n (f )(x) =

∨∞
k=0

1
n2(x−k/(n+1))2+1

· (n+ 1)
∫ (k+1)/(n+1)
k/(n+1) f (t)dt

∨∞
k=0

1
n2(x−k/(n+1))2+1

. (13)

Concerning these operators, the following result holds.

Theorem 2.13 If f : R → [0,+∞) is bounded and uniformly continuous on R,
then we have
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|CK(M)
n (f )(x)− f (x)| ≤ 6ω1(f ; 1/n), x ∈ R, n ∈ N.

Remark 2.14 All the Kantorovich kind max-product operators LK(M)
n given by (2)

are defined and used for approximation of positive-valued functions. But, they can
be used for approximation of lower bounded functions of variable sign too, by
introducing the new operators

N(M)
n (f )(x) = LK(M)

n (f + c)(x)− c,

where c > 0 is such that f (x)+ c > 0, for all x in the domain of definition of f .
It is easy to see that the operators N(M)

n give the same approximation orders as
LK

(M)
n .

At the end of this section, we present the shape preserving properties, direct
results and localization results of the Bernstein–Kantorovich max-product operators
BK

(M)
n given by (4).

They can be deduced from the corresponding results of B
(M)
n , based on the

remark that the operator BK(M)
n can be obtained from the operator B(M)

n , as follows.
Suppose that f is arbitrary in C+ ([0, 1]). Let us consider

fn(x) = (n+ 1)
∫ (nx+1)/(n+1)

nx/(n+1)
f (t)dt. (14)

It is readily seen that B(M)
n (fn)(x) = BK

(M)
n (f )(x), for all x ∈ [0, 1]. We also

notice that fn ∈ C+ ([0, 1]). What is more, if f is strictly positive then so is fn.
The following two shape preserving results hold.

Theorem 2.15 Let f ∈ C+([0, 1]).
(i) If f is non-decreasing (non-increasing) on [0, 1], then for all n ∈ N,BK(M)

n (f )

is non-decreasing (non-increasing, respectively) on [0, 1].
(ii) If f is quasi-convex on [0, 1], then for all n ∈ N, BK(M)

n (f ) is quasi-convex
on [0, 1]. Here, quasi-convexity on [0, 1] means that f (λx + (1 − λ)y) ≤
max{f (x), f (y)}, for all x, y, λ ∈ [0, 1].

Recall that a continuous function f : [a, b] → R is quasi-concave, if and only if
there exists c ∈ [a, b] such that f is non-decreasing on [a, c] and non-increasing on
[c, b].
Theorem 2.16 Let f ∈ C+([0, 1]). If f is quasi-concave on [0, 1] , then
BK

(M)
n (f ) is quasi-concave on [0, 1].

Let us return now to the functions fn given in (14), and let us find now an upper
bound for the approximation of f by fn in terms of the uniform norm. For some

x ∈ [0, 1], using the mean value theorem, there exists ξx ∈
[

nx
n+1 ,

nx+1
n+1

]
such that

fn(x) = f (ξx). We also easily notice that |ξx − x| ≤ 1
n+1 . It means that
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|f (x)− fn(x)| ≤ ω1(f ; 1/(n+ 1)), x ∈ R, n ∈ N. (15)

In particular, if f is Lipschitz with constant C, then fn is Lipschitz continuous with
constant 3C. These estimations are useful to prove some inverse results in the case
of the operator BK(M)

n by using analogue results already obtained for the operator
B
(M)
n .

Below we present a result that gives for the class of Lipschitz function the order
of approximation 1/n in the approximation by the operator BK

(M)
n , hence an

analogue result that holds in the case of the operator B(M)
n .

Theorem 2.17 Suppose that f is Lipschitz on [0, 1] with Lipschitz constant C, and
suppose that the lower bound of f is mf > 0. Then, we have

∥
∥
∥BK(M)

n (f )− f

∥
∥
∥ ≤ 2C

(
C

mf

+ 5

)

· 1

n
,n ≥ 1.

Here, ‖ · ‖ denotes the uniform norm on C[0, 1].
In what follows, we deal with localization properties for the operators BK(M)

n .
We firstly present a very strong localization property.

Theorem 2.18 Let f, g : [0, 1] → [0,∞) be both bounded on [0, 1] with strictly
positive lower Bounds, and suppose that there exist a, b ∈ [0, 1], 0 < a < b < 1
such that f (x) = g(x) for all x ∈ [a, b]. Then, for all c, d ∈ [a, b] satisfying
a < c < d < b, there exists ñ ∈ N depending only on f, g, a, b, c and d such that
BK

(M)
n (f )(x) = BK

(M)
n (g)(x) for all x ∈ [c, d] and n ∈ N with n ≥ ñ.

As an immediate consequence of the localization result in Theorem 2.18, can be
deduced the following local direct approximation result.

Corollary 2.19 Let f : [0, 1] → [0,∞) be bounded on [0, 1] with the lower bound
strictly positive and 0 < a < b < 1 be such that f |[a,b] ∈ Lip [a, b] with Lipschitz
constant C. Then, for any c, d ∈ [0, 1] satisfying a < c < d < b, we have

∣
∣
∣BK(M)

n (f )(x)− f (x)

∣
∣
∣ ≤ C

n
f or all n ∈ N and x ∈ [c, d],

where the constant C depends only on f and a, b, c, d.

Previously, we presented results which show that BK(M)
n preserves monotonicity

and more generally quasi-convexity. By the localization result in Theorem 2.18 and
then applying a very similar reasoning to the one used in the proof of Corollary 2.19,
one can obtain as corollaries local versions for these shape preserving properties.

Corollary 2.20 Let f : [0, 1] → [0,∞) be bounded on [0, 1] with strictly positive
lower bound, and suppose that there exist a, b ∈ [0, 1], 0 < a < b < 1, such that
f is non-decreasing (non-increasing) on [a, b]. Then, for any c, d ∈ [a, b] with



Approximation by Max-Product Operators of Kantorovich Type 145

a < c < d < b, there exists ñ ∈ N depending only on a, b, c, d and f such that
BK

(M)
n (f ) is non-decreasing (non-increasing) on [c, d] for all n ∈ N with n ≥ ñ.

Corollary 2.21 Let f : [0, 1] → [0,∞) be a continuous and strictly positive
function, and suppose that there exist a, b ∈ [0, 1], 0 < a < b < 1, such that
f is quasi-convex on [a, b]. Then, for any c, d ∈ [a, b] with a < c < d < b,

there exists ñ ∈ N depending only on a, b, c, d and f such that BK(M)
n (f ) is

quasi-convex on [c, d] for all n ∈ N with n ≥ ñ.

Corollary 2.22 Let f : [0, 1] → [0,∞) be a continuous and strictly positive
function, and suppose that there exist a, b ∈ [0, 1], 0 < a < b < 1, such that
f is quasi-concave on [a, b]. Then for any c, d ∈ [a, b] with a < c < d < b,

there exists ñ ∈ N depending only on a, b, c, d and f such that BK(M)
n (f ) is

quasi-concave on [c, d] for all n ∈ N with n ≥ ñ.

Remark 2.23 As in the cases of Bernstein-type max-product operators studied in the
research monograph [1], for the max-product Kantorovich-type operators, we can
find natural interpretation as possibilistic operators, which can be deduced from the
Feller scheme written in terms of the possibilistic integral. These approaches also
offer new proofs for the uniform convergence, based on a Chebyshev-type inequality
in the theory of possibility.

Remark 2.24 The max-product Kantorovich operators LK
(M)
n given by the for-

mula (2) can be generalized by replacing the classical linear integral
∫
dt , with the

nonlinear Choquet integral (C)
∫
dμ(t) with respect to a monotone and submodular

set function μ, obtaining thus the new operators

LK(M)
n,μ (f )(x) =

∨
k∈In pn,k(x) · (1/(xn,k+1 − xn,k)) · (C)

∫ xn,k+1
xn,k

f (t)dμ(t)
∨

k∈In pn,k(x)
.

(16)
It is worth noting that the above max-product Kantorovich–Choquet operators

are doubly nonlinear operators: firstly due to max and secondly due to the
Choquet integral. The study of these max-product Kantorovich–Choquet operators
for various particular choices of pn,k(x), xn,k and μ remains as open questions for
future researches.

3 Max-Product Sampling Kantorovich Operators Based on
Fejér Kernel

Sampling operators are among the best tools in the approximation of signals when
we have information from the past. Starting with the seminal works of Plana,
Wittaker and others, this topic gained a continuous interest in the last century. A
very detailed survey on this topic can be found in, e.g., [2].
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In a series of papers, all included in Chapter 8 of the book co-authored by us [1],
we applied the max-product method to sampling operators, as follows.

Applying this idea to Whittaker’s cardinal series, we have obtained a Jackson-
type estimate in uniform approximation of f by the max-product Whittaker
sampling operator given by

S
(M)
W,ϕ(f )(t) =

∞∨
k=−∞

ϕ(Wt − k)f
(
k
W

)

∞∨
k=−∞

ϕ(Wt − k)

, t ∈ R, (17)

where W > 0, f : R→ R+ and ϕ is a kernel given by the formula ϕ(t) = sinc(t),
where sinc(t) = sin(πt)

πt
, for t �= 0 and at t = 0, sinc(t) is defined to be the limiting

value, that is, sinc(0) = 1.
A similar idea and study was applied to the sampling operator based on the Fejér-

type kernel ϕ(t) = 1
2 · [sinc(t/2)]2.

Applying the max-product idea to the truncated sampling operator based on
Fejér’s kernel and defined by

Tn(f )(x) =
n∑

k=0

sin2(nx − kπ)

(nx − kπ)2
· f
(
kπ

n

)

, x ∈ [0, π ],

we have introduced and studied the uniform approximation by the truncated max-
product operator based on the Fejér kernel, given by

T (M)
n (f )(x) =

∨n
k=0

sin2(nx−kπ)
(nx−kπ)2 · f ( kπ

n

)

∨n
k=0

sin2(nx−kπ)
(nx−kπ)2

, x ∈ [0, π ], (18)

where f : [0, π ] → R+. Here, since sinc(0) = 1, it means that above, for every
x = kπ/n, k ∈ {0, 1, . . . , n}, we have sin(nx−kπ)

nx−kπ = 1.
In the present section, we study the approximation properties with quantitative

estimates in the Lp-norm, 1 ≤ p ≤ ∞, for the Kantorovich variant of the above
truncated max-product sampling operators T (M)

n (f )(x), defined for x ∈ [0, π ] and
n ∈ N by

K(M)
n (f )(x) = 1

π
·
∨n

k=0
sin2(nx−kπ)
(nx−kπ)2 ·

[
(n+ 1)

∫ (k+1)π/(n+1)
kπ/(n+1) f (v) dv

]

∨n
k=0

sin2(nx−kπ)
(nx−kπ)2

, (19)

where f : [0, π ] → R+, f ∈ Lp[0, π ], 1 ≤ p ≤ ∞.
All the results in this section were obtained in the paper by Coroianu–Gal [3].
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Firstly, we present some properties of the operator K(M)
n , which are useful in the

proofs of the approximation results.

Lemma 3.1

(i) For any integrable function f : [0, π ] → R, K(M)
n (f ) is continuous on [0, π ];

(ii) If f ≤ g then K(M)
n (f ) ≤ K

(M)
n (g);

(iii) K(M)
n (f + g) ≤ K

(M)
n (f )+K

(M)
n (g);

(iv)
∣
∣
∣K

(M)
n (f )−K

(M)
n (g)

∣
∣
∣ ≤ K

(M)
n (|f − g|);

(v) If, in addition, f is positive on [0, π ] and λ ≥ 0, then K(M)
n (λf ) = λK

(M)
n (f ).

For the next result, we need the first-order modulus of continuity on [0, π ]
defined for f : [0, π ] → R and δ ≥ 0, by

ω1(f ; δ) = max{|f (x)− f (y)| : x, y ∈ [0, π ], |x − y| ≤ δ}.

Lemma 3.2 For any continuous function f : [0, π ] → R+, we have

∣
∣
∣K(M)

n (f )(x)− f (x)

∣
∣
∣ ≤

[

1+ 1

δ
K(M)
n (ϕx)(x)

]

ω1(f ; δ), (20)

for any x ∈ [0, π ] and δ > 0. Here, ϕx(t) = |t − x|, t ∈ [0, π ].
Our first main result proves that K(M)

n (f )(x) converges to f (x) at any point of
continuity for f .

Theorem 3.3 Suppose that f : [0, π ] → R+ is bounded on its domain and
integrable on any subinterval of [0, π ]. If f is continuous at x0 ∈ [0, π ], then

lim
n→∞K(M)

n (f )(x0) = f (x0).

Also, a quantitative result holds.

Theorem 3.4 Suppose that f : [0, π ] → R+ is continuous on [0, π ]. Then, for any
n ∈ N, n ≥ 1, we have

∥
∥
∥K(M)

n (f )− f

∥
∥
∥ ≤ 10ω1

(

f ; 1

n

)

.

Remark 3.5 The estimate in the statement of Theorem 3.4 remains valid for
functions of arbitrary sign, lower bounded. Indeed, if c ∈ R is such that f (x) ≥ c

for all x ∈ [0, π ], then it is easy to see that defining the new max-product operator

K
(M)

(f )(x) = K
(M)
n (f −c)(x)+c, we get |f (x)−K

(M)
(f )(x)| ≤ 10ω1(f ; 1/n),

for all x ∈ [0, π ], n ∈ N.
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Now, let the Lp-norm, ‖f ‖p = (∫ π
0 |f (t)|pdt)1/p, with 1 ≤ p < +∞. In

this section, we present approximation results by K
(M)
n in the Lp-norm. For this

purpose, firstly, we need the following Lipschitz property of the operator K(M)
n .

Theorem 3.6 We have
∥
∥
∥K(M)

n (f )−K(M)
n (g)

∥
∥
∥
p
≤ 2(1−2p)/pπ2 · ‖f − g‖p ,

for any n ∈ N, n ≥ 1, f, g : [0, π ] → R+, f, g ∈ Lp[0, π ] and 1 ≤ p <∞.

Now, let us define

C1+[0, π ] = {g : [0, π ] → R+; g is differentiable on [0, π ]},

‖ · ‖C[0,π ] the uniform norm of continuous functions on [0, π ] and the Petree K-
functional

K (f ; t)p = inf
g∈C1+[0,π ]

{‖f − g‖p + t‖g′‖C[0,π ]}.

The second main result of this section is the following.

Theorem 3.7 Let 1 ≤ p <∞. For all f : [0, π ] → R+, f ∈ Lp[0, π ], n ∈ N, we
have

‖f −K(M)
n (f )‖p ≤ c ·K

(
f ; a

n

)

p
,

where c = 1+ 2(1−2p)/p · π2, a = 3π1+1/p

2c .

Remark 3.8 The statement of Theorem 3.7 can be restated for functions of arbitrary
sign, lower bounded. Indeed, if c ∈ R is such that f (x) ≥ c for all x ∈ [0, π ],
then it is easy to see that defining the slightly modified max-product operator

K
(M)

(f )(x) = K
(M)
n (f − c)(x) + c, we get |f (x) − K

(M)
(f )(x)| = |(f (x) −

c)−K
(M)
n (f − c)(x)| and since we may consider here that c < 0, we immediately

get the relations

K(f −m; t)p = inf
g∈C1+[0,π ]

{‖f − (g + c)‖p + t‖g′‖C[0,π ]}

= inf
g∈C1+[0,π ]

{‖f − (g + c)‖p + t‖(g + c)′‖C[0,π ]}

= inf
h∈C1+[0,π ], h≥c

{‖f − h‖p + t‖h′‖C[0,π ]}.
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4 Max-Product Kantorovich Operators Based on
(φ,ψ)-Kernels

All the results in this section are from Coroianu–Gal [4].
Suggested by the max-product sampling operators based on sinc-Fejér kernels

presented in the previous section, in this section we introduce truncated max-
product Kantorovich operators based on generalized type kernels depending on two
functions ϕ and ψ satisfying a set of suitable conditions. Pointwise convergence,
quantitative uniform convergence in terms of the moduli of continuity and quantita-
tive Lp-approximation results in terms of a K-functional are obtained. Previous
results in sampling and neural network approximation are recaptured and new
results for many concrete examples are obtained.

In this sense, we introduce the more general Kantorovich max-product operators
based on a generalized (ϕ, ψ)-kernel, by the formula

K(M)
n (f ;ϕ,ψ)(x) = 1

b
·
∨n

k=0
ϕ(nx−kb)
ψ(nx−kb) ·

[
(n+ 1)

∫ (k+1)b/(n+1)
kb/(n+1) f (v) dv

]

∨n
k=0

ϕ(nx−kb)
ψ(nx−kb)

,

(21)
where b > 0, f : [0, b] → R+, f ∈ Lp[0, b], 1 ≤ p ≤ ∞ and ϕ and ψ satisfy
some properties specific to max-product operators and required to prove pointwise,
uniform or Lp convergence, as follows:

Definition 4.1 We say that (ϕ, ψ) forms a generalized kernel if satisfy some (not
necessary all, depending on the type of convergence intended for study) of the
following properties:

(i) ϕ,ψ : R → R+ are continuous on R, ϕ(x) �= 0 for all x ∈ (0, b/2] and
ψ(x) �= 0 for all x �= 0, ϕ(x)

ψ(x)
is an even function on R and limx→0

ϕ(x)
ψ(x)

= α ∈
(0, 1].

(ii) There exists a constant C ∈ R such that ϕ(x) ≤ C · ψ(x), for all x ∈ R.
(iii) There exist the positive constants M > 0 and β > 0, such that ϕ(x)

ψ(x)
≤ M

xβ
, for

all x ∈ (0,∞).

(iv) For any n ∈ N, j ∈ {0, . . . , n} and x ∈
[
jb
n
,
(j+1)b

n

]
,

n∨

k=0

ϕ(nx − kb)

ψ(nx − kb)
= max

{
ϕ(nx − jb)

ψ(nx − jb)
,
ϕ(nx − (j + 1)b)

ψ(nx − (j + 1)b)

}

.

(v)
∫ +∞
−∞

ϕ(y)
ψ(y)

dy = c, where c > 0 is a positive real constant.

Remark 4.2 The properties of ϕ and ψ in Definition 4.1 were suggested by the
methods characteristic in the proofs for various convergence results of max-product
Kantorovich sinc-type operators. The use of the two functions in the generalized
kernels offers a large flexibility in finding many concrete examples.
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Remark 4.3 Let us note that if properties (i) and (iii) hold simultaneously, then (ii)
holds too. Indeed, firstly if (i) holds, clearly that we may extend the continuity of
ϕ(x)
ψ(x)

in the origin too, that is, we take ϕ(0)
ψ(0) = limx→0

ϕ(x)
ψ(x)

. This means that ϕ(x)
ψ(x)

is
continuous on the whole R. Secondly, from (iii), it is readily seen that there exists a
constant a > 0 such that M

xβ
≤ 1, for all x ∈ [a,∞). It means that ϕ(x) ≤ ψ(x),

for all x ∈ [a,∞). This fact combined with the continuity of ϕ(x)
ψ(x)

on [−a, a] easily
implies that (ii) holds.

Remark 4.4 Another important remark is that if (i) and (iii), β > 1 case, hold
simultaneously, then (v) holds too. Indeed, since ϕ(x)

ψ(x)
is an even function on R, it

suffices to prove that
∫ +∞

0
ϕ(y)
ψ(y)

dy is finite. From the continuity of ϕ(x)
ψ(x)

, this later

integral is finite if and only if
∫ +∞

1
ϕ(y)
ψ(y)

dy is finite. Now, since ϕ(x)
ψ(x)

≤ M
xβ

, for all

x ∈ [0,∞), and since we easily note that
∫ +∞

1
M
xβ
dx is finite, we conclude that

∫ +∞
1

ϕ(y)
ψ(y)

dy is finite. Thus,
∫ +∞
−∞

ϕ(y)
ψ(y)

dy is finite, which means that (v) holds.

Remark 4.5 If in the pair (ϕ, ψ), we consider that ψ is a strictly positive constant
function, then in order that (ϕ, ψ) be a generalized kernel satisfying all the
properties (i)–(v) in Definition 1.1, it is good enough if ϕ : R→ R+ is a continuous,
even function, satisfying ϕ(x) > 0, for all x ∈ (0, b/2), ϕ(0) �= 0 (this implies

(i)), ϕ(x) is bounded on R (this implies (ii)), ϕ(x) = O
(

1
xβ

)
, x ∈ [0,+∞),

β > 0 (this implies (iii)), ϕ(x) is non-increasing on [0,+∞) (this implies (iv)) and∫ +∞
0 ϕ(x)dx < +∞ (this implies (v)). Note that this particular type of choice for

the generalized kernel (ϕ, ψ) may cover some sampling approximation operators
(see Application 5.3 in Sect. 5) and neural network operators (see Application 5.6).

Firstly, we present some properties of the operator K(M)
n (·;ϕ,ψ), which will be

useful to prove the approximation results.

Lemma 4.6 Suppose that ϕ and ψ satisfy condition (i) from the end of the previous
section.

(i) For any integrable function f : [0, b] → R, K(M)
n (f ;ϕ,ψ) is continuous on

[0, b];
(ii) If f ≤ g, then K(M)

n (f ;ϕ,ψ) ≤ K
(M)
n (g;ϕ,ψ);

(iii) K
(M)
n (f + g;ϕ,ψ) ≤ K

(M)
n (f ;ϕ,ψ)+K

(M)
n (g;ϕ,ψ);

(iv)
∣
∣
∣K

(M)
n (f ;ϕ,ψ)−K

(M)
n (g;ϕ,ψ)

∣
∣
∣ ≤ K

(M)
n (|f − g| ;ϕ,ψ);

(v) If, in addition, f is positive on [0, b] and λ ≥ 0, then K
(M)
n (λf ;ϕ,ψ) =

λK
(M)
n (f ;ϕ,ψ).

For the next result, we need the first-order modulus of continuity on [0, b] defined
for f : [0, b] → R and δ ≥ 0, by

ω1(f ; δ) = max{|f (x)− f (y)| : x, y ∈ [0, b], |x − y| ≤ δ}.
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Lemma 4.7 Suppose that ϕ and ψ satisfy condition (i) from the end of the previous
section. For any continuous function f : [0, b] → R+, we have

∣
∣
∣K(M)

n (f ;ϕ,ψ)(x)− f (x)

∣
∣
∣ ≤

[

1+ 1

δ
K(M)
n (ϕx;ϕ,ψ)(x)

]

ω1(f ; δ), (22)

for any x ∈ [0, b] and δ > 0. Here, ϕx(t) = |t − x|, t ∈ [0, b].
Our first main result in this section proves that for n → ∞, K(M)

n (f ;ϕ,ψ)(x)
converges to f (x) at any point of continuity for f .

Theorem 4.8 Suppose that f : [0, b] → R+ is bounded on its domain and
integrable on any subinterval of [0, b]. Then, suppose that ϕ and ψ satisfy the
properties (i)–(iii). If f is continuous at x0 ∈ [0, b], then we have

lim
n→∞K(M)

n (f ;ϕ,ψ)(x0) = f (x0).

Corollary 4.9 Suppose that f : [0, b] → R+ is continuous on [0, b] and that ϕ and
ψ satisfy the properties (i)–(iii). Then, K(M)

n (f ;ϕ,ψ) converges to f uniformly on
[0, b].

We present a quantitative estimate that involves the modulus of continuity, as
follows.

Theorem 4.10 Suppose that f : [0, b] → R+ is continuous on [0, b] and that
properties (i), (iii) and (iv) are fulfilled by ϕ and ψ . Then, for any n ∈ N, we have

∥
∥
∥K(M)

n (f ;ϕ,ψ)− f

∥
∥
∥

≤ 2

(

b + M · (2b)1−β
c1

+ 1

)

max

{

ω1

(

f ; 1

n

)

, ω1

(

f ; 1

nβ

)}

.

Here, c1 denotes a constant.

Remark 4.11 The estimate in the statement of Theorem 4.10 remains valid for
functions of arbitrary sign, lower bounded. Indeed, if m ∈ R is such that f (x) ≥ m

for all x ∈ [0, b], then it is easy to see that defining the new max-product operator

K
(M)

n (f ;ϕ,ψ)(x) = K
(M)
n (f −m;ϕ,ψ)(x)+m, for |f (x)−K

(M)

n (f ;ϕ,ψ)(x)|,
we get the same estimate as in the statement of Theorem 4.10.

Now, let the Lp-norm, ‖f ‖p =
(∫ b

0 |f (t)|pdt
)1/p

, with 1 ≤ p < +∞, 0 <

b < +∞. In what follows, we present the approximation properties of K(M)
n in the

Lp-norm. For this purpose, firstly, we need the following Lipschitz property of the
operator K(M)

n .

Theorem 4.12 Supposing that ϕ and ψ satisfy (i), (ii) and (v), we have
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∥
∥
∥K(M)

n (f ;ϕ,ψ)−K(M)
n (g;ϕ,ψ)

∥
∥
∥
p
≤ 1

c1
·
(

2c

b

)1/p

· ‖f − g‖p ,

for all n ∈ N, f, g : [0, b] → R+, f, g ∈ Lp[0, b] and 1 ≤ p <∞.

Now, let us consider by C1+[0, b] the space of all non-negative and continuous
differentiable functions on [0, b] and the K-functional

K (f ; t)p = inf
g∈C1+[0,b]

{‖f − g‖p + t‖g′‖C[0,b]}.

The second main result of this section is the following.

Theorem 4.13 Suppose that ϕ and ψ satisfy (i) (ii) and (v), and let 1 ≤ p < ∞.
For all f : [0, b] → R+, f ∈ Lp[0, b], n ∈ N, we have

‖f −K(M)
n (f ;ϕ,ψ)‖p ≤ d ·K

(

f ; Δn,p

d

)

p

,

where Δn,p = ‖K(M)
n (ϕx;ϕ,ψ)‖p, ϕx(t) = |t − x| and d = 1+ 1

c1
·
(

2c
b

)1/p
.

Corollary 4.14 Let 1 ≤ p < +∞. Suppose now that ϕ and ψ satisfy all the
conditions (i)–(v). For all f : [0, b] → R+, f ∈ Lp[0, b], n ∈ N, we have

‖f −K(M)
n (f ;ϕ,ψ)‖p ≤ d ·K

(

f ;D ·max

{
1

n
,

1

nβ

})

p

,

where D = b1/p

d
·
(
b + M(2b)1−β

c1

)
and d = 1+ 1

c1
·
(

2c
b

)1/p
.

Remark 4.15 The statements of Theorem 4.13 and Corollary 4.14 can be restated
for functions of arbitrary sign, lower bounded. Indeed, if m ∈ R is such that f (x) ≥
m for all x ∈ [0, b], then it is easy to see that defining the slightly modified max-

product operator K
(M)

(f : ϕ,ψ)(x) = K
(M)
n (f −m;ϕ,ψ)(x)+m, we get |f (x)−

K
(M)

(f ;ϕ,ψ)(x)| = |(f (x) − m) − K
(M)
n (f − m;ϕ,ψ)(x)|, and since we may

consider here that m < 0, we immediately get the relations

K(f −m; t)p = inf
g∈C1+[0,b]

{‖f − (g +m)‖p + t‖g′‖C[0,b]}

= inf
g∈C1+[0,b]

{‖f − (g +m)‖p + t‖(g +m)′‖C[0,b]}

= inf
h∈C1+[0,b], h≥m

{‖f − h‖p + t‖h′‖C[0,b]}.
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In the next lines, we present some concrete examples of (ϕ, ψ)-kernels satisfying
the conditions in Definition 4.1.

Application 4.16 Let us choose ϕ(x) = sin2r (x), ψ(x) = x2r , with r ∈ N. In
this case, ϕ(x)

ψ(x)
represents in fact the so-called generalized Jackson kernel. Now, in

Definition 4.1 by taking b = π , condition (i) is evidently satisfied with α = 1,
condition (ii) is evidently satisfied with C = 1, condition (iii) holds with M = 1
and β = 2r and condition (v) is satisfied with c = π

(2r−1)! · er , where er is the
so-called Eulerian number given by

er =
r∑

j=0

(−1)j
(

2r

j

)

(r − j)2r−1.

Due to the fact that sin2r (nx − kπ) = sin2r (nx), the equality in condition (iv) in
Definition 4.1, one reduces to

n∨

k=0

1

(nx − kb)2r
= max

{
1

(nx − jb)2r
,

1

(nx − (j + 1)b)2r

}

, (23)

for all x ∈
[
jb
n
,
(j+1)b

n

]
, which follows by simple calculation.

Concluding, all the results in this chapter are valid for the max-product Kan-
torovich sampling operators based on this kernel (ϕ, ψ) and given by (21).

Application 4.17 Let us choose ϕ(x) = sin(x/2) sin(3x/2), ψ(x) = 9x2/4.
We note that ϕ(x)

ψ(x)
represents in fact the so-called de la Vallée-Poussin kernel

used in approximation by sampling operators. Similar reasonings with those in
Application 4.16 easily lead to the fact that in this case too conditions (i)–(v) in
Definition 4.1 hold and that the max-product Kantorovich sampling operators in (21)
based on this (ϕ, ψ)-kernel satisfy all the results in this chapter.

Application 4.18 Let us choose as ϕ(x) the B-spline of order 3 given by

ϕ(x) = 3

4
− x2, if |x| ≤ 1

2
, ϕ(x) = 1

2

(
3

2
− |x|

)2

, if
1

2
< |x| ≤ 3

2
,

ϕ(x) = 0, if |x| > 3

2
.

Choosing, for example, ψ(x) = 1, for all x ∈ R, it is easy to see that (ϕ, ψ) verifies
all the conditions in Definition 4.1, as follows: condition (1) with b = 1

2 , condition
(ii) with a sufficiently large constant C > 0, condition (iii) with β = 2 and M > 0
sufficiently large, and evidently condition (iv) and condition (v). In conclusion, all
the results in this chapter hold for the max-product Kantorovich operator in (21)
based on this kernel (ϕ, ψ).
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In fact, if we choose for ϕ(x) any B-spline of an arbitrary order n and ψ(x) =
1, x ∈ R, then (ϕ, ψ) verifies, as in the previous lines, all the conditions in
Definition 4.1, which means that all the results in this chapter hold for the max-
product Kantorovich operators in (21) based on this (ϕ, ψ)-kernel.

Application 4.19 Let us consider ϕ(x) = 2 arctan
(

1
x2

)
, x �= 0, ϕ(0) = π and

ψ(x) = π , x ∈ R, where arctan : R → (−π
2 ,

π
2

)
and limy→∞ arctan(y) = π

2 . We
check the conditions in Definition 4.1. Indeed, it is clear that condition (i) is satisfied
for b = 1 and with α = 1, while since 0 ≤ arctan(y) ≤ π

2 for all y ≥ 0, condition
(ii) follows with C = 1. Note here that since arctan(y) ≥ π

4 , for all y ∈ [1,+∞),
putting y = 1

x2 , we can take b = 1. By 2 arctan(1/x2) ≤ 2
x2 , for all x > 0, we

obtain that condition (iii) holds too with β = 2 and M = 2π
Then, since arctan(y) ≤ y for all y ∈ [0+∞), we get

∫ +∞

−∞
ϕ(x)

ψ(x)
dx = 2

π

∫ +∞

0
arctan(1/x2)dx

= 2

π

∫ 1

0
arctan(1/x2)dx+ 2

π

∫ +∞

1
arctan(1/x2)dx ≤ 1+ 2

π

∫ +∞

1
arctan(1/x2)dx

≤ 1+ 2

π

∫ +∞

1

1

x2
dx = 1+ 2

π
< +∞,

which shows that condition (v) holds.
Now, since for x ∈ [j/n, (j + 1)/n], we evidently have (see also the similar

relation (23))

1

(x − k/n)2
≤ 1

(x − j/n)2
and

1

(x − k/n)2
≤ 1

(x − (j + 1)/n)2
, for 0 ≤ k ≤ n,

(24)
applying here the increasing function arctan, we immediately obtain (iv).

In conclusion, for this choice of the (ϕ, ψ)-kernel, all the results in this chapter
remain valid for the max-product operators given by (21).

Application 4.20 Let us choose ϕ(x) = |x| and ψ(x) = e|x| − 1. We will check
the conditions in Definition 4.1. Firstly, it is easy to see that condition (i) is satisfied
with, e.g., b = ln(2), since by using l’Hopital’s rule, we have limx→0

ϕ(x)
ψ(x)

= 1.

Then, by |x| ≤ e|x| −1 for all x ∈ R, it follows that condition (ii) holds with C = 1,
and we can take b = ln(2)). Condition (iii) obviously holds for M = 2 and β = 1.

Then, condition (v) also is satisfied, since

∫ +∞

−∞
|x|

e|x| − 1
dx = 2

∫ +∞

0

x

ex − 1
dx
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= 2
∫ 1

0

x

ex − 1
dx + 2

∫ +∞

1

x

ex − 1
dx = c > 0, c finite ,

since
∫ +∞

1
x

ex−1dx ≤
∫ +∞

1 x · e−x/2dx < +∞.
It remains to check condition (iv). Firstly, by similar reasonings to those used for

the proofs of relations (23) and (24), for all x ∈ [jb/n, (j + 1)b/n], we get

|nx − kb| ≥ |nx − jb| and |nx − kb| ≥ |nx − (j + 1)b|, for all k = 0, . . . , n.

Now, denote F(u) = u
eu−1 , u ≥ 0. If we prove that F is non-increasing on [0,+∞),

then we immediately get that condition (iv) in Definition 4.1 is satisfied.
In this sense, by F ′(u) = eu−1−ueu

(eu−1)2
= G(u)

(eu−1)2
, with G(u) = eu − 1− ueu, since

G(0) = 0 and G′(u) = −ueu ≤ 0, we immediately obtain G(u) ≤ 0, for all u ≥ 0,
and consequently F ′(u) ≤ 0, for all u ≥ 0.

In conclusion, in the case of this (ϕ, ψ)-kernel too, all the results in this chapter
remain valid for the max-product operators given by (21).

Application 4.21 It is worth mentioning that if (ϕ1, ψ1) and (ϕ2, ψ2) are two
kernels satisfying the conditions (i), (ii), (iii) and (v) in Definition 4.1, then the
new kernel (ϕ1 · ϕ2, ψ1 ·ψ2) also satisfies these conditions. This remark is useful in
order to generate new generalized kernels for which at least the convergence results
in Theorem 4.8 and Corollary 4.9 still hold.

The only problem is that, condition (iv) is not, in general, satisfied by the (ϕ1 ·
ϕ2, ψ1 · ψ2)-kernel.

5 Max-Product Sampling Kantorovich Operators Based on
Generalized Kernels

All the results in this section are from Coroianu–Costarelli–Gal–Vinti [6].
The goal of this section is to present generalized kernels, not necessarily with

bounded support or generated by sigmoidal functions, such that the approximation
capability and the approximation quality remain good for the sampling Kantorovich
operators based on them.

It will be revealed that it suffices to consider measurable and bounded kernels,
which in addition have bounded generalized absolute moment of order β, for
some β > 0. These absolute moments are max-product variants of the linear
counterparts by replacing the sum (or series) with the supremum. These assumptions
are sufficient to obtain pointwise and uniform convergence properties of generalized
sampling max-product Kantorovich operators. In addition, a fast Jackson-type
estimation is obtained for the approximation of continuous functions. Also, we
obtain estimations with respect to theLp-norm and in terms of the correspondingK-
functionals and the modulus of continuity. In particular, we obtain the convergence
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to the approximated function in the space of Lp-integrable functions. Several types
of kernels for which the theory applies and possible extensions and applications to
higher dimensions are presented.

In this section, firstly, we present the basic mathematical tools used, as well as
the definition and some general properties of the generalized sampling max-product
Kantorovich operators. We will consider functions f : I → R, the domain being a
compact interval I = [a, b] or I = R. In the first case, C(I) denotes the set of all
continuous functions defined on I , and in the second case C(I) denotes the set of
uniformly continuous and bounded functions defined on I . Furthermore, by C+(I )
we denote the subspace of C(I) of the non-negative functions. We also consider
the larger space B(I) of all bounded real functions defined on I and denote by
B+(I ) the space of all bounded and non-negative functions on I . Then, for some
p ≥ 1, we denote with Lp(I) the set of all Lp-integrable functions defined on I .
For f ∈ B(I), we denote ‖f ‖∞ = supx∈I |f (x)|, while for f ∈ Lp(I), we denote

‖f ‖p =
(∫ |f (x)|p dx)1/p.

Consider a set of indices J and the set of real numbers {xk : k ∈ J }. We denote
the supremum of this set as

∨

k∈J
xk. If J is finite, then

∨

k∈J
xk = maxk∈J xk .

Here, we will consider kernels of the form χ : R→ R, where χ is bounded and
measurable and satisfies the properties:

(χ1)

there exists β > 0 such that mβ(χ) := sup
x∈R

∨

k∈Z
|χ(x − k)| · |x − k|β <∞

(we call mβ(χ) the generalized absolute moment of order β of χ )

(χ2)

we have inf
x∈[−3/2,3/2]

χ(x) =: aχ > 0;

or
(
χ ′2
)

we have inf
x∈[−1/2,1/2]

χ(x) =: aχ > 0;

Here, when we study the max-product sampling Kantorovich operators in the
compact case I = [a, b], we need to assume the slightly stronger assumption (χ2)
in place of (χ ′2), while in the case I = R assumptions (χ ′2) is still enough to prove
the desired results.

The goal of this chapter is to prove that these conditions will generate similar
properties for the Kantorovich type max-product sampling operators. In addition,
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we will obtain qualitative and quantitative convergence properties with respect to
the norm ‖·‖p.

We recall here some useful results.

Lemma 5.1 If χ : R → R is bounded and such that χ(x) = O
(|x|−α), as |x| →

∞, for α > 0, then

mβ(χ) <∞, for every 0 ≤ β ≤ α.

Lemma 5.2 If χ : R→ R is bounded and satisfies (χ1) for some β > 0, then

mυ(χ) <∞, for every0 ≤ υ ≤ β.

In particular, we have m0(χ) ≤ ‖χ‖∞.

Lemma 5.3 Let χ : R → R be a given function, and consider a fixed compact
interval [a, b].

If χ satisfies assumption (χ ′2), for every n ∈ N
+, we have

∨

k∈Z
χ(nx − k) ≥ aχ , for allx ∈ R. (25)

If χ satisfies assumption (χ2), for every n ∈ N
+ sufficiently large, we also have

∨

k∈Jn

χ(nx − k) ≥ aχ , for allx ∈ [a, b]. (26)

Here, Jn := {k ∈ Z : k = %na& , . . . , 'nb( − 1}, where %·& and '·( denote,
respectively, the “ceiling” and the “integral part” of a given number, aχ is the
constant from condition

(
χ ′2
)
and (χ2), respectively.

If we keep condition (χ1) but replace conditions (χ2) and
(
χ ′2
)

with the weaker
condition that both relations (1)–(2) hold, then the main approximation results of
this chapter still hold. It means that we can obtain such results for kernels that are

not necessarily bounded from below by a positive value on
[
− 1

2 ,
1
2

]
or [−3/2, 3/2].

Lemma 5.4 Suppose that χ : R → R is any bounded and measurable function,
which satisfies (χ1) with β > 0. Then, for every γ > 0, we have

∨

k∈Z:|x−k|>γn
|χ(x − k)| = O

(
n−β

)
, as n→∞,

uniformly with respect to x ∈ R.
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We are now in position to introduce the sampling Kantorovich operators. In the
next definition, Jn = Z, if I = R and Jn = {k ∈ Z : k = %na& , . . . , 'nb( − 1},
if I = [a, b].
Definition 5.5 Let f : I → R be a locally integrable function, and let χ : R → R

be a kernel such that
∨

k∈Jn
χ(nx − k) �= 0, for all x ∈ I .

The max-product Kantorovich generalized sampling operator on f based upon
χ is defined as

Kχ
n (f ) (x) :=

∨

k∈Jn

χ(nx − k) n

∫ (k+1)/n

k/n

f (t) dt

∨

k∈Jn

χ(nx − k)
, x ∈ I .

Obviously, if χ satisfies (χ2) or (χ ′2) (if I = [a, b] or I = R, respectively), we
always have

∨
k∈Jn

χ(nx − k) �= 0, for all x ∈ I .

We observe that Kχ
n (f ) is well defined, for instance, if f is bounded. Indeed, it

is easily seen that

∣
∣Kχ

n (f ) (x)
∣
∣ ≤ m0(χ)

aχ
‖f ‖∞ < ∞.

The purpose of this section is to study convergence properties for Kχ
n f without

needing kernels with compact support.
As for other types of max-product operators, we can prove some important

properties for Kχ
n .

Lemma 5.6 Let χ be a kernel satisfying the conditions (χ1) and (χ2) or (χ ′2) for
I = [a, b] and I = R, respectively, and let f , g ∈ B+(I ) be locally integrable
functions on I . For all n ∈ N

+, we have

(i) if f ≤ g, then Kχ
n (f ) ≤ K

χ
n (g);

(ii) K
χ
n (f + g) ≤ K

χ
n (f )+K

χ
n (g) (i.e., K

χ
n is subadditive);

(iii)
∣
∣K

χ
n (f )−K

χ
n (g)

∣
∣ ≤ K

χ
n (|f − g|);

(iv) K
χ
n (λf ) = λK

χ
n (f ), for each λ ≥ 0 (i.e., Kχ

n is positive homogeneous).

We are now in position to present qualitative pointwise and uniform convergence
properties for Kχ

n .
In all that follows in this section, if otherwise not stated, the kernel χ from the

definition of Kχ
n will satisfy properties (χ1) and (χ2) or (χ ′2) for I = [a, b] and

I = R, respectively.

Theorem 5.7 Let χ be a given kernel. Let f : I → [0,∞) be a non-negative and
bounded function. Then,
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lim
n→∞Kχ

n (f )(x) = f (x),

at any point x ∈ I where f is continuous. In addition, if f ∈ C+(I ), then

lim
n→∞

∥
∥Kχ

n (f )− f
∥
∥∞ = 0.

Remark 5.8 If we look carefully over the proof of Theorem 5.7, we notice that
both conclusions hold if instead of assuming that χ satisfies (χ1) and (χ2), we only
assume the weaker hypotheses that χ satisfies (χ2) and that lim

t→∞χ(t) = 0 and

lim
t→−∞χ(t) = 0. First of all, let us notice that without any loss of generality, we may

assume that χ is non-negative because Kχ
n = K

χ+
n , where χ+(t) = max{χ(t), 0},

for all t ∈ R. It means that for any ε > 0 and γ > 0, there exists N ∈ N such
that χ(nx − k) < ε/(2‖f ‖∞), whenever |nx − k| ≥ nγ and n ≥ N . On the other
hand, by the same reasoning as in the proof of Theorem 5, for any ε > 0, there
exists γ > 0 such n

∫ (k+1)/n
k/n

|f (t)− f (x)| dt < ε whenever |nx − k| < nγ . To
sum up, repeating the same steps to estimate I1 and I2 introduced in the proof of
Theorem 5.7, we conclude that for any ε > 0, there exists N ∈ N such that

∣
∣Kχ

n (f )(x)− f (x)
∣
∣ ≤ Kχ

n (|f − fx |)(x)

≤ max

{

ε,
ε

aχ

}

,

for all n ≥ N . From here we easily obtain the same conclusions as in the statement
of Theorem 5.7.

In what follows, we will present a quantitative estimate in terms of the modulus
of continuity of a function f ∈ C(I) denoted by ω(f, ·), where

ω(f, δ) := sup{|f (x)− f (y)| : x, y ∈ I, |x − y| ≤ δ}.

It is well known that ω(f, ·) is non-decreasing, continuous, subadditive and

lim
δ→0+

ω(f, δ) = 0.

Theorem 5.9 Let χ be a given kernel which satisfies (χ1) with β ≥ 1. Then, for
any f ∈ C+(I ) and sufficiently large n ∈ N

+, we have

∥
∥Kχ

n (f )− f
∥
∥∞ ≤ 2m0(χ)+m1(χ)

aχ
ω(f, 1/n).

Remark 5.10 As in the case of other max-product operators, the results of this
section can be extended for functions that are bounded from below, hence not
necessarily positive. Indeed, under the previous assumptions, for f : I → R
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bounded from the below, and by considering the operators
(
T
χ
n (f )

)
n≥1, where

T
χ
n (f )(x) = K

χ
n (f − c)(x)+ c, c = infx∈I f (x), we obtain the same convergence

results and estimations on f by
(
T
χ
n (f )

)
n≥1.

Remark 5.11 We also notice that all the results of this section hold too, if instead
of assuming that the kernel χ satisfies condition (χ2) or (χ ′2), we only assume that∨

k∈Jn

χ(nx − k) ≥ aχ , for all n ∈ N0 and x ∈ R.

In all that follows in this section, if otherwise not stated, the kernel χ from the
definition of Kχ

n will satisfy properties (χ1) and (χ2) or (χ ′2) for I = [a, b] and
I = R, respectively.

Here, in the special case when χ ∈ L1(R) and f ∈ Lp(R), we prove a Lipschitz
property for Kχ

n , which will imply a convergence property of Kχ
n in the norm ‖·‖p.

Theorem 5.12 Suppose that a given kernel χ ∈ L1(R), and let 1 ≤ p < ∞ be
fixed. Then, for any non-negative and Lp-integrable on I functions f and g, we
have

∥
∥Kχ

n (f )−Kχ
n (g)

∥
∥
p
≤ 1

aχ

(
(m0(χ))

p−1 ‖χ‖1

)1/p · ‖f − g‖p.

In the statement of Theorem 5.12, we believe it is natural to assume that χ ∈
L1(R) because in this way the conclusion is valid for any p ≥ 1 and any non-
negative functions f, g ∈ Lp(I). However, considering a fixed p ≥ 1, we can also
obtain a Lipschitz estimation in the case when we assume that χ ∈ Lp(R).

Theorem 5.13 Let 1 ≤ p < ∞ be fixed. If χ ∈ Lp(R), then for any non-negative
and Lp-integrable on I functions f and g, we have

∥
∥Kχ

n (f )−Kχ
n (g)

∥
∥
p
≤ ‖χ‖p

aχ
· ‖f − g‖p.

Now, in order to obtain the Lp-convergence for the max-product sampling
Kantorovich operators in case of Lp-integrable functions on I , we firstly need to
test the Lp convergence in case of functions f ∈ C+(I ), when I = [a, b], and in
case of C+c (I ) when I = R, where C+c (I ) denotes the space of the non-negative
function with compact support on I . We can prove what follows.

Theorem 5.14 Let χ ∈ L1(R) be a fixed kernel. Let f ∈ C+(I ), I = [a, b], be
fixed. Then,

lim
n→+∞‖K

χ
n (f )− f ‖p = 0,

for 1 ≤ p <∞. Moreover, if f ∈ C+c (I ), with I = R, we also have

lim
n→+∞‖K

χ
n (f )− f ‖p = 0,
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for 1 ≤ p <∞.

The following Lp-convergence theorem.

Theorem 5.15 Let χ ∈ L1(R) be a given kernel. For any non-negative Lp-
integrable function f on R, there holds

lim
n→+∞‖K

χ
n (f )− f ‖p = 0,

for 1 ≤ p <∞.

Remark 5.16 Obviously, in view of what has been established in Theorem 5.13, it
is also possible to prove the convergence results of Theorems 5.14 and 5.15 under
the assumption χ ∈ Lp(R).

The next lines present quantitative Lp-estimates in terms of a K-functional and
of a modulus of continuity.

Let us define

C1+(I ) = {g : I → R+; g is differentiable with g′ bounded on I },

and the Petree K-functional

K (f ; t)p = inf
g∈C1+(I )

{‖f − g‖p + t‖g′‖∞}.

Firstly, we can prove an estimate in terms of the above K-functional, for
approximation by Kχ

n (f ) of f , in the ‖·‖p norm.

Theorem 5.17 Suppose that χ ∈ L1(R) satisfies (χ1) for β ≥ 1, and let 1 ≤ p <

∞ be fixed. Also, denote by ϕx(t) = |t − x|, x, t ∈ I . Then, for any non-negative
and Lp-integrable function f on I , we have

∥
∥Kχ

n (f )− f
∥
∥
p
≤ c ·K(f ;Δn,p/c)p,

with c = 1+ 1
aχ

(
(m0(χ))

p−1 ‖χ‖1
)1/p

and Δn,p = ‖Kχ
n (ϕx)‖p.

As a consequence of Theorem 5.17, we immediately get the following.

Corollary 5.18 Let χ ∈ L1(R) be a given kernel which satisfies (χ1) with β ≥ 1,
and let 1 ≤ p <∞ be fixed. Then for any non-negative and Lp-integrable function
f on I = [a, b], we have

‖f −Kχ
n (f )‖p ≤ c ·K

(
f ; cp

n

)

p
,

where cp = (b−a)1/p
c

(
m0(χ)
aχ

+ m1(χ)
aχ

)
and c is the constant given by the statement

of Theorem 5.17.
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Note that the proof of Corollary 5.18 holds only in the case when I = [a, b].
In the case when I = R, we can present a Jackson-type estimate in terms of the

Lp-modulus of continuity defined by

ωp(f, δ) := sup
0<|h|≤δ

‖f (· + h)− f (·)‖p = sup
0<|h|≤δ

(∫

R

|f (u+ h)− f (u)|p du
)1/p

,

with δ > 0, f ∈ Lp(R). It is well known that the above modulus of continuity
satisfies the following inequality:

ωp(f, λ δ) ≤ (1+ λ)ωp(f, δ), λ, δ > 0, (27)

for every f ∈ Lp(R).
We can prove the following.

Theorem 5.19 Let 1 ≤ p <∞ and χ be a kernel satisfying (χ1) and (χ2). Suppose
in addition that

Mp(χ) :=
(∫

R

|x|p |χ(x)| dx
)1/p

< +∞. (28)

Then, for any non-negative and Lp-integrable function f on R, there holds

‖Kχ
n (f )− f ‖p ≤ a−1

χ

(
2‖χ‖(p−1)/p∞ · [‖χ‖1 +Mp(χ)

p
]1/p + ‖χ‖∞

)
ωp(f, 1/n),

for every n ∈ N
+.

Remark 5.20 The modulus of continuity in Theorem 5.19 is equivalent to the
functional given by

K∗(f ; t)p = inf
g′∈ACloc(R)

{‖f − g‖Lp(R) + t‖g′‖Lp(R)},

where ACloc(R) denotes the space of all locally absolutely continuous functions on
R.

Since C1+(R) ⊂ ACloc(R), between K(f ; t)p defined at the beginning of this
section and K∗, we evidently have the inequality

K∗(f ; t)p ≤ K(f ; t)p, for all t ≥ 0.

Note that for f ∈ Lp([a, b]) non-negative, we have that limt→0 K(f ; t)p = 0.
Indeed, there exists a sequence of non-negative polynomials (Pn)n∈N, such that ‖f−
Pn‖p → 0 as n→∞. For arbitrary ε > 0, let Pm be such that ‖f − Pm‖p < ε/2.
Then, for all t ∈ (0, ε/(2‖P ′

m‖∞)), we get

K(f ; t)p ≤ ‖f − Pm‖p + t‖P ′
m‖∞ < ε/2 + ε/2 = ε,

which proves our assertion.
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At the end of this section, we present several types of kernels which satisfy
conditions (χ1) and (χ2) or (χ ′2).

The first example consists in the well known sinc-function, that is,

sinc(x) =

⎧
⎪⎨

⎪⎩

sinπx
πx

, x �= 0,

1, x = 0.

As sinc(x) = O
(|x|−1) as |x| → ∞, we get that (χ1) is satisfied with β = 1

by Lemma 5.1. Moreover,
(
χ ′2
)

is satisfied with asinc =sinc(1/2) ≈ 0.6366, while
(χ2) is not fulfilled. Moreover, it can also be noticed that the sinc function does
not belong to L1(R) and then cannot be used as kernel in order to achieve Lp-
approximation results.

Now, consider the non-negative Fejér kernel, F(x) = 1
2 sinc2 (x/2), x ∈ R.

It is well known that F(x) = O
(|x|−2) as |x| → ∞, which also implies that

F ∈ L1(R) and that (χ1) is satisfied with β = 2. Then, it is easy to check that
(χ2) is satisfied with aF = F(3/2), and then also

(
χ ′2
)

holds. However, in case of
the Fejér Kernel, the continuous moment M1(F ) of assumption (28) is not finite,
and then the p-estimate of Theorem 5.19 cannot be achieved for the max-product
sampling Kantorovich operators based upon F , but only the Lp-convergence and
Corollary 5.18 occur.

Let us now consider the Jackson-type kernels of order k ∈ N0 , where

Jk(x) = cksinc2k
( x

2kπα

)
,x ∈ R,

with α ≥ 1 and ck the normalization coefficient such that

ck =
⎡

⎣
∫

R

sinc2k
( x

2kπα

)
du

⎤

⎦

−1

.

In the above cases, all the assumptions of the previous sections are satisfied, where
assumption (28) holds for suitable 1 ≤ p < +∞.

We may also consider radial kernels such as the well-known Bochner–Riesz
kernels

bγ (x) = 2γ√
2π

Γ (γ + 1) (|x|)− 1
2−γ J 1

2+γ (|x|) ,γ > 0,

where Jλ is the Bessel function of order λ and Γ (x) is Euler’s gamma function. As
in the case of the Jackson-type kernels, also the Bochner–Riesz kernels satisfy all
the assumptions made in the previous sections, where assumption (28) holds again
for suitable 1 ≤ p < +∞.
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Other useful kernels can be obtained by the so-called sigmoidal functions, that
is, functions σ : R→ R, such that

lim
x→−∞ σ(x) = 0 and lim

x→∞ σ(x) = 1.

If in addition σ is such that
(Σ1) σ (x)− 1/2 is an odd function;
(Σ2) σ ∈ C2 (R) is concave for x ≥ 0;
(Σ3) σ (x) = O(|x|−α) as x →−∞, for some α > 0, then

φσ (x) = 1

2
[σ(x + 1)− σ(x − 1)] , x ∈ R,

satisfies (χ1) for every 0 ≤ β ≤ α, and it also satisfies (χ2) with aφσ = φσ (3/2).
Other important kernels can be obtained from the well-known central B-spline

of order s ∈ N0, given by

Ms(x) = 1

(s − 1)!
s∑

i=0

(−1)i
(
s

i

)( s

2
+ x − i

)s−1

+
,

where (x)+ = max{x, 0}. The support of Ms is the interval [−s/2, s/2]. It means
that for s ≥ 2, these central B-splines can be considered as kernels for the
Kantorovich max-product sampling operator, and moreover they satisfy

(
χ ′2
)

and, if
s ≥ 4, they satisfy also (χ2).

Note that we can use as kernels shifted B-splines too. Although they do not
satisfy in general (χ2) or (χ ′2), they satisfy the property mentioned in Remark 5.11.

The kernels presented so far are continuous, but one can also construct kernels
having discontinuities without affecting the main results. For example, we can take
χ(x) = 1 if x ∈ [−2, 2] and χ(x) = 0 otherwise.

Another example can be the so-called de la Valée-Poussin kernel χ , defined by

χ(x) = sin(x/2) sin(3x/2)

9 x2/4
, x �= 0,

and χ(0) = 1
3 . We observe that χ(x) = O

(|x|−2) as |x| → ∞, which means that
(χ1) is satisfied with β = 2. Then, one can easily prove that (χ2) is satisfied with
aχ = 4/3π2.

Finally, consider χ(x) = 2
π

arctan
(

1
x2

)
, if x �= 0 and χ (0) = 1. Again, χ(x) =

O
(|x|−2) as |x| → ∞, and hence, (χ1) is satisfied with β = 2. Then, (χ2) is

satisfied with aχ = 2
π

arctan
(

1
4

)
.



Approximation by Max-Product Operators of Kantorovich Type 165

6 Future Researches

We present here on short some extensions for future researches and applications.
It is known the fact that the approximation results for the multidimensional

linear Bernstein–Durrmeyer operators (polynomials) of degree d with respect to
an arbitrary Borel probability measure, given by the formula

Dd(f )(x) =
∑

|k|≤d

∫
X
f (t)Pd,k(t)dμX(t)
∫
X
Pd,k(t)dμX(t)

· Pd,k(x),

where X denotes the simplex {x = (x1, . . . , xn); xi ≥ 0, i = 1, . . . , n, 1−|x| ≥ 0},
k = (k1, . . . , kn), |x| = ∑n

i=1 |xi |, Pd,k(x) =
(
d
k

)
xk(1 − |x|)d−|k|, |k| ≤ d, xk =

x
k1
1 · . . . · xknn , k! = k1! · . . . · kn!,

(
d
k

) = d!
k!(d−|k|)! and μX is a Borel probability

measure on X, have important applications in learning theory, see Li [25].
Similar problems with applications in learning theory could be considered for the

multidimensional Kantorovich linear operators (polynomials) of degree d, given by

Kd(f )(x) =
∑

|k|≤d
Pd,k(x) ·

∫

X

f

(
k + t

d

)

dμX(t).

Furthermore, one can consider for future researches extensions of the approx-
imation properties and applications to learning theory for the max-product non-
linear operators corresponding to the above defined multidimensional Bernstein–
Durrmeyer linear operators and Kantorovich linear operators, given by the formulas

D
(M)
d (f )(x) =

∨
|k|≤d Pd,k(x) ·

[∫
X
f (t)Pd,k(t)dμX(t)/

∫
X
Pd,k(t)dμX(t)

]

∨
|k|≤d Pd,k(x)

,

K
(M)
d (f )(x) =

∨
|k|≤d Pd,k(x) ·

∫
X
f
(
k+t
d

)
dμX(t)

∨
|k|≤d Pd,k(x)

,

or, more general and to be in accordance with the max-product Kantorovich type
operators studied in the previous sections, for

D
χ,(M)
d (f )(x)

=
∨

k∈Jd
χ(d · x − k) · [∫

X
f (t)χ(d · t − k)dμX(t)/

∫
X
χ(d · t − k)dμX(t)

]

∨
k∈Jd

χ(d · x − k)

and
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K
χ,(M)
d (f )(x) =

∨
k∈Jd

χ(d · x − k) · ∫
X
f
(
k+t
d

)
dμX(t)

∨
k∈Jd

χ(d · x − k)
,

where x ∈ R
n, k = (k1, . . . , kn) is a multi-index, Jd is a family of multi-indices

and χ(d · x − k) is a multidimensional kernel.
Notice that in the very recent paper by Coroianu–Costarelli–Gal–Vinti [7], the

above problems were treated for another variant of the max-product multidimen-
sional Kantorovich operators, defined on short below.

Let f : In → R be a locally integrable function with respect to a Borel
probability measure on In, μIn(t) = μ1(t1)μ2(t2)·. . .·μn(tn), t = (t1, t2, . . . , tn) ∈
In, where each μj , j = 1, . . . , n, is a Borel probability measure on I .

For χ : Rn → R a kernel such that
∨

k∈Jn
χ(dx − k) �= 0 , for all x ∈ In, the

multidimensional max-product Kantorovich sampling operator on f based upon χ
is defined as

K
χ,(M)
d,μIn

(f ) (x)

:=

∨

k∈Jd,n

χ(dx − k)

∫

[k/d,(k+1)/d]
f (t) dμIn (t)/μIn ([k/d, (k + 1)/d])

∨

k∈Jd,n

χ(dx − k)
, x ∈ In,

where for k = (k1, k2, . . . , kn) ∈ Jd,n,

[k/d, (k + 1)/d] = [k1/d, (k1 + 1)/d] × [k2/d, (k2 + 1)/d] × . . .× [kn/d, (kn + 1)/d]

and
∫

[k/d,(k+1)/d]
f (t) dμIn(t)

=
∫

[k1/d,(k1+1)/d]
. . .

∫

[kn/d,(kn+1)/d]
f (t1, . . . , tn)dμ1(t1) . . . dμn(tn).

Remark 6.1 It is worth mentioning that the max-product neural networks of
Kantorovich-type have been studied in the recent papers [9–11, 15, 16]. We do not
enter into details, since this topic does not belong to the present authors.
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Variational Inequalities and General
Equilibrium Models

Maria Bernadette Donato, Antonino Maugeri, Monica Milasi,
and Antonio Villanacci

1 Introduction

We deal with the study of several general equilibrium models by using the
variational inequality theory. The theory of variational inequalities was introduced
in the sixties of the past century by Fichera (1964) [27], and Lions and Stampacchia
(1965) [28], as an innovative and effective method to solve equilibrium problems
arising in mathematical physics. Afterward this theory turned out as a powerful tool,
and it was used to analyze different kinds of equilibrium problems. We mention the
equilibrium problems of the oligopoly, of the market, of the traffic, of Nash, see,
e.g., [9, 12, 26, 29].

Here is the content of this chapter. We first introduce some general equilibrium
economic models; then, after recalling some basic notions on variational inequality
theory, we make use of such a tool to analyze some proposed models. We consider
the exchange economy model, subsequently we study the models with nominal and
numeraire assets, and, finally, we consider the case of restricted participation.
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2 General Equilibrium Economic Models

General Economic Equilibrium (GEE) models analyze equilibria in different
markets, i.e., economic situations described by prices and consumption/production
vectors that are consistent with households’ and firms’ maximizing behaviors and
with demand of goods being smaller than or equal to supply. Standard references
for the economic literature on GEE are Debreu [13] and Arrow and Hahn [4].

One main virtue of the GEE models is the fact that they analyze very complex
frameworks, but they can be described by means of few and simple elements we list
below.

A verbal description of the functioning of the economic environment under anal-
ysis is the starting point of the analysis. A formalization of the above environment
is then provided presenting three main ingredients: a list of exogenous variables, or
parameters, defining the economy; a description of the behavior of economic agents
who are supposed to maximize a goal or objective function under some physical,
institutional, and economic constraints; and an aggregate consistency condition for
agents’ behavior in terms of market clearing, rationing rules, and/or expectation
fulfillment.

The simplest GEE model is the so-called exchange economy model. The
economic environment under analysis is a set of individuals owning goods they want
to exchange on a market in order to maximize their well-being: just think about the
Sunday market square of a village. The exogenous objects are the characteristics of
the main actors in the market, i.e., the consumers or households. H = {1, . . . , H }
is the set of households and each household h ∈ H is described by the endowment
vector eh ∈ R

C of the quantities of C commodities he or she owns and by the
utility function uh defined on a consumption set Xh ⊆ R

C . The consumption set Xh

describes what can be potentially consumed by household h and it is often assumed
to R

C+. The utility function uh represents the preferences of households in choosing
two consumption vectors xh and yh in Xh. We also define e = (eh)h∈H and, then,
an economy is a pair (e, u) ∈ ∏h∈H (Xh × Uh), where Uh is the set of all utility
functions on Xh.

To describe households’ behavior, we introduce prices p := (pc)c∈C ∈ R
C+,

where for any c ∈ C := {1, . . . , C}, pc is the price of good or commodity c, i.e.,
the number of units of account (say euros or dollars) needed to purchase one unit of
good c. Moreover, define the budget constraint set of household h, as follows:

Bh(p) := {xh ∈ Xh : 〈p, xh − eh〉C ≤ 0}.

Observe that the condition 〈p, xh〉C ≤ 〈p, eh〉C imposes that the value of the
expenditure must not exceed the value of household’s wealth.

The assumption about household’s behavior is formalized as follows. For
given (p̃, eh, uh) ∈ R

C+ × Xh × Uh, x̃h solves the household h’s maximization
problem
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max
xh∈Bh(p̃)

uh(xh). (1)

In the above simple framework, the aggregate consistency condition is just a
market clearing condition, which, in its simplest form, requires that the aggregate
demand does not exceeds the aggregate supply, i.e.,

∑

h∈H
x̃h ≤

∑

h∈H
eh. (2)

Given the above structure, we can then present the definition that is central in any
GEE model.

Definition 1 The pair (x̃, p̃) ∈
(∏

h∈HXh

)
× R

C+ is an allocation-price equilib-

rium for an economy ε if

(i) for any h ∈ H, x̃h solves the problem

max
xh∈B(p̃)

uh(xh) = uh(x̃h), (3)

(ii) x̃ satisfies the market clearing conditions, for all c ∈ C
∑

h∈H
(x̃ch − e ch) ≤ 0 if p̃c = 0, (4)

∑

h∈H
(x̃ch − e ch) = 0 if p̃c > 0. (5)

An extremely important generalization of the exchange economy model is
the GEE model with time, uncertainty, and incomplete financial markets. The
description of that framework is as follows. We assume that there are 2 periods of
time, say today and tomorrow: the state of the world today is known to individuals,
and it is called state 0; in the following period, S, with S > 1, states of the
world are possible. We label each state of the world, or spot by s, where s = 0
corresponds to the first period, and we set S0 := {0} ∪ S and S := {1, 2, . . . , S}.
In this framework, a commodity may be defined in terms not only of its physical
or chemical characteristics but also in terms of the period or the state of nature
in which it is available. In other words, presume we consider bananas today and
apples tomorrow, if it rains. Spot commodity markets open in the first and second
period, and there are C, with C > 1, commodities in each spot, labelled by
c ∈ C := {1, 2, . . . , C} and the total number of commodities available in the
economy is G := (S + 1)C. There are H households, H > 1, labelled by h ∈
H := {1, 2, . . . ., H }, and A assets, A ≥ 1, labelled by a ∈ A := {1, . . . , a, . . . , A}.
An asset is an S + 1 dimensional vector whose first component is the price of the
asset, and the other S components are the returns of that asset in each state—
see below for a more precise definition. The time structure of the model is the
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following one. In the first period, commodities and assets are exchanged and first
period consumption takes place. Then uncertainty is resolved, households fulfill
their financial commitments, and, finally, they exchange and consume second period
commodities. Following the standard notation, we have that xsch is the consumption
of commodity c in state s by household h, esch is the endowment of commodity
c in state s owned by household h, and psc denotes the price of commodity c in
state s. Moreover, Xs

h is the consumption set of household h ∈ H in state s ∈ S0,
Xh :=∏s∈S0 X

s
h, X :=∏h∈HXh. Moreover,

xsh := (xsch )c∈C ∈ Xs
h, xh := (xsh)s∈S0 ∈ Xh, x := (xh)h∈H ∈ X,

esh := (esch )c∈C ∈ Xs
h, eh := (esh)s∈S0 ∈ Xh, e := (eh)h∈H ∈ X,

ps := (psc)c∈C ∈ R
C+, p1 := (ps)s∈S ∈ R

SC+ p := (ps)s∈S0 ∈ R
G+.

Household h’s preferences are represented by the utility function uh : Xh → R.
The description of the so-called financial side of the economy is as follows. qa

is the price of asset a ∈ A and q := (qa)a∈A ∈ R
A, bah is the demand of asset a by

household h, with bh :=
(
bah

)
a∈A and b := (bh)h∈H. Moreover,

R : RG++ →MS,A, p �→ R (p) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

r11 (p) · · · r1a (p) · · · r1A (p)

· · ·
rs1 (p) · · · rsa (p) · · · rsA (p)
· · ·

rS1 (p) · · · rSa (p) · · · rSA (p)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

is the return matrix function,1 where rsa (p) is the return of asset a ∈ A in
state s ∈ S . Denote by Rs(p) the s-th row of matrix R (p). Different results
about equilibria are obtained for different specification of the return matrix function
R (p). In the literature, authors distinguish among financial models with nominal,
real, and numeraire assets. Nominal assets promise to deliver units of account,
real assets a vector of goods, and numeraire assets just some amount of a given
good, the so-called numeraire good. In general, ysa denotes the number of units of
economics objects (or yields) delivered by the specific asset under consideration.
More formally, we have what follows.

Assets are nominal if for any (s, a) ∈ S × A, and any p ∈ P , rsa (p) = ysa ,
where ysi ∈ R is the number of units of account that asset i promises to pay in
state s.

Assets are real if rsa (p) = psysa and in each state s ∈ S , asset a pays a vector
ysa ≡ (ysac)Cc=1 ∈ R

C of goods, i.e., ysac ∈ R is the number of units of good c

delivered in state s.

1 Recall that MS,A is the set of all S × A dimensional matrices of real numbers.
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Assets are numeraire if they pay in units of the numeraire commodity, say gold,
only. ysa is the number of units of the numeraire commodity that asset a promises
to pay in state s. Taking the numeraire commodity as commodity C, the return in
state s is rsa (p) = psCysa .

An economy in a financial economy model with numeraire assets is an element
E := (e, R, u) ∈ R

GH++ × R × U , where R is the set of return functions.
Each household chooses the set of most preferred consumption vectors under the
constraints that in period 0 expenditure for goods and assets is smaller than the
value of wealth in that period and, similarly, in each state in the future, expenditure
for consumption is smaller than wealth increased by the value of the asset’s yields.

We can then define a consumption, portfolio holding, commodity, and asset price
vector as an equilibrium vector associated with a given economy described by
commodity endowments, household’s preferences, and financial structure if at those
prices and economies, households maximize, and market clears, i.e., commodities’
demand is smaller than or equal to commodities’ supply and assets’ demand is equal
to zero.

The so-called budget set is defined as follows:

Bh(p, q) := { (xh, bh) ∈ Xh × R
A : 〈p0, x0

h − e0
h〉C + 〈q, bh〉A ≤ 0

and for any s ∈ S,〈ps, xsh − esh〉C − 〈Rs(p1, y), bh〉A ≤ 0 } .

We can finally give the formal definition of equilibrium.

Definition 2 The vector (p̃, q̃, x̃, b̃) ∈ R
G+ × R

A × X × R
AH is an equilibrium

vector for the economy E if

1. for any h ∈ H, (̃xh, b̃h) solves problem

max
(xh,bh)∈Bh(p̃,̃q)

uh(xh) = uh(̃xh);

2. for any s ∈ S0 and c ∈ C,

∑

h∈H
x̃ sc
h ≤

∑

h∈H
esch if p̃sc = 0,

∑

h∈H
x̃ sc
h =

∑

h∈H
esch if p̃sc > 0;

3. for any a ∈ A,

∑

h∈H
b̃ah = 0.

From now on, we assume that for any h ∈ H, Xh = R
C+ and Xh = R

G+.
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An important assumption to economic theories is the concavity of the utility
functions. We conclude this section to recall some basic definitions. Let X be a
nonempty, convex set of Rn and u : X → R a function. We say that u is:

• strongly concave if: there exists τ > 0 such that for any x, y ∈ X and λ ∈ [0, 1]
one has

u(λx + (1− λ)y) ≥ λu(x)+ (1− λ)u(y)− τ

2
λ(1− λ)‖x − y‖2 ;

• strictly concave if: for any x, y ∈ X and λ ∈ (0, 1) one has

u(λx + (1− λ)y) > λu(x)+ (1− λ)u(y) ;

• quasiconcave if: for any x, y ∈ X and λ ∈ [0, 1] one has

u(λx + (1− λ)y) ≥ min{u(x), u(y)} ;

• semistrictly quasiconcave if: for any x, y ∈ X such that u(x) �= u(y) one has

u(λx + (1− λ)y) > min{u(x), u(y)}, ∀λ ∈ (0, 1) .

3 Different Variational Inequality Problems

This section is devoted to recall the definitions and some results about variational
problems. Let us consider a nonempty, closed, and convex subset C of Rn.

(GQVI) Let the set-valued maps S : C → 2R
n

and � : C → 2R
n

be given.
A Generalized Quasi-Variational Inequality associated with C, S,�, denoted by
GQVI, is the following problem:

“Find x̃ ∈ S(̃x) , ϕ ∈ �(̃x) such that 〈ϕ, x − x̃〉n ≥ 0 ∀x ∈ S(̃x) .” (6)

(GVI) Let the set-valued map � : C → 2R
n

be given. A Generalized Variational
Inequality associated with C,�, denoted by GQVI, is the following problem:

“Find x̃ ∈ C , ϕ ∈ �(̃x) such that 〈ϕ, x − x̃〉n ≥ 0 ∀x ∈ C .” (7)

(QVI) Let be given the set-valued map S : C → 2R
n

and the function φ : C →
R
n. A Quasi-Variational Inequality associated with C, S, φ, denoted by QVI, is the

following problem:

“Find x̃ ∈ S(̃x) such that 〈φ(̃x), x − x̃〉n ≥ 0 ∀x ∈ S(̃x) .” (8)
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(VI) Let the function φ : C → R
n be given. A (Classical) Variational Inequality

associated with C, φ, denoted by VI, is the following problem:

“Find x̃ ∈ C such that 〈φ(̃x), x − x̃〉n ≥ 0 ∀x ∈ C .” (9)

We now present some results about the existence of solution to variational
problems.

Theorem 1 (Existence Under Compactness and Continuity, Section 4 of [31])
If C is a compact set and the function φ : C → R

n is continuous, then the VI (9)
admits at least a solution.

Theorem 2 (Existence Under Coercivity, Section 4 of [31]) Let φ satisfy

lim‖x‖→+∞
〈φ(x)− φ(x0), x − x0〉

|x − x0| = +∞ (10)

for some x0 ∈ C. Then there exists a solution to (9).

Theorem 3 (Uniqueness, Section 4 of [31]) Let φ be strictly monotone:

〈φ(x)− φ(x′), x − x′〉n > 0 ∀x, x′ ∈ C, x �= x′ . (11)

Then, if there exists the solution to (9), it is unique.

From Theorems 2 and 3, it follows the following.

Theorem 4 (Existence and Uniqueness) Let φ : C → R
n be strongly monotone;

that is, there exists ν > 0 such that:

〈φ(x)− φ(x′), x − x′〉n ≥ ν‖x − x′‖2 ∀x, x′ ∈ C, x �= x′ . (12)

Then the VI (9) admits a unique solution.

Theorem 5 (Corollary 3.1 of [11]) Let C be a compact set and φ a set-valued map
usc, with compact and convex values. Then there exists the solution to GVI (7).

Theorem 6 ([32]) Let � and S be two set-valued maps satisfying the following
properties:

(i) � is upper semicontinuous with nonempty, convex, and compact values;
(ii) S is closed, lower semicontinuous and with nonempty, convex, and compact

values.

Then, the GQVI problem (6) admits at least a solution.

An important ingredient of our framework is the analysis of the connection
between a well-chosen variational inequality problem and a standard maximization
problem. Let u : X ⊆ R

n → R be a function and C ⊂ R
n be a closed and convex

set; let us consider the following maximization problem:
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max
x∈C u(x) . (13)

When the objective function u is continuous differentiable, if x̃ is a solution to
the maximization problem (13), then x̃ is solution to the following VI:

〈∇u(x̃), x − x̃〉n ≤ 0 ∀x ∈ C. (14)

When u is also concave, VI (14) represents a necessary and sufficient optimality
condition to be x̃ a solution to (13) (see, e.g., [31]). Whereas, under more general
assumptions, if the function u is concave and continuous, without differentiability
assumption, in (14) the operator ∇u is replaced by a supergradient of u in x̃. Hence,
the problem (13) is equivalent to the following generalized variational inequality:

“Find x̃ ∈ Csuch that ∃ k ∈ ∂u(x̃) with 〈k, x − x̃〉n ≥ 0 ∀x ∈ C′′

where ∂u(x) = {l ∈ R
n : u(y) ≤ u(x) + 〈l, y − x〉n ∀ y ∈ R

n} is the
superdifferential of the concave function u and k ∈ ∂u(x̃) is a supergradient of
u in x̃. If the function u is not concave, then the supergradient is not suitable to
characterize a maximum problem. To this aim, in [5, 6, 8] authors introduced a new
operator to obtain necessary and sufficient conditions when the objective function
is quasiconcave. For any α ∈ R, let us denote by U>

α (u) the strict upper level set
associated with u and α, i.e.,

U>
α (u) := {x ∈ R

n+ : u(x) > α},

and, for all x ∈ X, define

N>(x) := {h ∈ R
n : 〈h, z− x〉n ≤ 0 ∀ z ∈ U>

u(x)}.

We recall that a function u is quasiconcave if and only if, for any α ∈ R, the strict
upper level set U>

α (u) is a convex set. Then N>(x) represents the normal cone to
U>
u(x). Hence, one has the following.

Theorem 7 (See Proposition 4.1 in [7]) Let u be continuous and semistrictly
quasiconcave andC nonempty convex. Then x̃ ∈ C is a solution to the maximization
problem (13) if and only if x̃ is solution to GVI:

“Find x̃ ∈ C such that ∃ g ∈ N>(x̃) \ {0}with 〈g, x − x̃〉n ≥ 0 ∀x ∈ C′′.
(15)
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4 Exchange Economy Model

This section deals with the analysis of equilibria in the pure exchange economy
model. The below listed results have been published in [1, 2, 16, 17, 23]. Such results
have been generalized to a model with consumption and production in [10, 25];
a further generalization considers the case in which the market evolves in a time
interval [0, T ]; the last model is studied in the Hilbert space L2([0, T ]) (see, e.g.,
[15, 21, 22, 24]).

In this section, for all h ∈ H, we make the following.

Assumptions on Utility Function uh : RC+ → R:

• Survival assumption: eh >> 0 for any h ∈ H;
• uh is non-satiated: for any x ∈ R

C+ there exists y ∈ R
C+ such that uh(y) > uh(x).

Moreover, without loss of generality, we can consider the prices in the simplex
set:

P := {p ∈ R
C+ :

∑

c∈C
pc = 1} .

4.1 Characterization by Means of a Variational Problem

The goal of this subsection is to reformulate the equilibrium problem by means
of suitable variational inequalities, by considering different assumptions on utility
functions.

Theorem 8 Let uh ∈ C1(RC+) be non-satiated and concave for all h ∈ H. The pair
(x̃, p̃) ∈ R

CH+ × P is a competitive equilibrium of a pure exchange economy if and
only if (x̃, p̃) ∈ B(p)× P is such that:

∑

h∈H
〈∇uh(x̃h), xh−x̃h〉C+

〈
∑

h∈H
(x̃h − eh), p − p̃

〉

C

≤ 0 ∀ (x, p) ∈ B(p̃)×P .

(16)

Remark 1 The vector (x̃, p̃) is a solution to the QVI (16) if and only if

for all h ∈ H 〈∇uh(x̃h), xh − x̃h〉C ≤ 0 ∀xh ∈ Bh(p̃), (17)
〈
∑

h∈H
(x̃h − eh), p − p̃

〉

C

≤ 0 ∀p ∈ P . (18)

Proof of Theorem 8 Firstly, one has:
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(i) Since uh is non-satiated, if x̃h is a solution to problem (3), then 〈p̃, x̃h−eh〉C =
0. Hence, if, for all h ∈ H, x̃h is a maximum, one has

〈

p̃,
∑

h∈H
(x̃h − eh)

〉

C

= 0 . (19)

(ii) Since uh ∈ C1(RC+) and uh is concave, then the maximization problem (3) is
equivalent to (17).

Let (x̃, p̃) be a competitive equilibrium. From items (i) and (ii), conditions (19)
and (17) hold. From (19), (4), and (5), one has

〈
∑

h∈H
(x̃h − eh), p − p̃

〉

C

=
〈
∑

h∈H
(x̃h − eh), p

〉

C

≤ 0 ∀p ∈ P .

Hence, condition (18) holds, and from the Remark 1, (x̃, p̃) is a solution to (16).
Vice versa, let (x̃, p̃) be a solution to (16); that is, (17) and (18) hold. From

item (ii), x̃ is a solution to maximization problem (3) and then from (i), the
condition (19) holds. Then,

〈
∑

h∈H
(x̃h − eh), p

〉

C

≤
〈
∑

h∈H
(x̃h − eh), p̃

〉

C

= 0 .

Then, selecting p = (0, . . . , 0, 1, 0, . . . , 0), with 1 at the c-th position, we get∑
h∈H(x̃ch − ech) ≤ 0 for all c ∈ C. From last inequality and from (19), it follows

that conditions (4) and (5) hold. Hence, (x̃, p̃) is a competitive equilibrium. �
For all h ∈ H, we introduce the map Gh : RC+ → 2R

l
such that

Gh(xh) := conv
(
N>(xh) ∩ S(0, 1)

)
,

where B(0, 1) and S(0, 1) are, respectively, the closed unit ball and the unit sphere
of RC . One has the following.

Theorem 9 Let uh be non-satiated and continuous for all h ∈ H. The pair (x̃, p̃) ∈
R
CH+ ×P is a competitive equilibrium of a pure exchange economy if and only if

(i) if uh are concave, there exist kh ∈ ∂uh(x̃h) such that

∑

h∈H
〈kh, xh− x̃h〉C+

〈
∑

h∈H
(x̃h − eh), p − p̃

〉

C

≤ 0 ∀ (x, p) ∈ B(p̃)×P ;
(20)

(ii) if uh are semistrictly quasiconcave, there exist gh ∈ Gh such that
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∑

h∈H
〈gh, xh− x̃h〉C+

〈
∑

h∈H
(x̃h − eh), p − p̃

〉

C

≥ 0 ∀ (x, p) ∈ B(p̃)×P .

(21)

Proof

(i) The desired result follows from Remark 1 and adapting the Proof of Theorem 8.
(ii) We suppose that x̃h ∈ Bh(p̃) with gh ∈ Gh(x̃h) is a solution to

〈gh, xh − x̃h〉C ≥ 0 ∀ xh ∈ Bh(p̃) . (22)

Since uh is non-satiated, x̃h /∈ argmaxRC uh and it follows that 0 /∈ Gh(x̃h);
hence, gh ∈ N>(x̃h) \ {0}. Clearly, if x̃h ∈ Bh(p̃) with gh ∈ N>(x̃h) \ {0}
is a solution to (22), one has

gh

‖gh‖ ∈ Gh(x̃h). Hence, also in this case the

desired result follows from Remark 1, Theorem 7 and adapting the Proof of
Theorem 8.

�

4.2 Existence of Equilibria

This subsection deals with the existence of equilibrium by means of the variational
problems, thanks to the characterization theorems proven in Sect. 4.1. To prove the
existence, a key role is played by the properties of set-valued map Bh : P → R

C .

Proposition 1 For all h ∈ H, the set-valued map Bh is

(i) lower semicontinuous: for any p ∈ P , for any sequence {pn}n∈N ⊂ P, pn →
p, and for any xh ∈ Bh(p), there exists a sequence of elements {xhn}n∈N ⊂ R

C+,
with xhn ∈ Bh(pn) for all n ∈ N and xhn → xh;

(ii) closed: for any sequences {xhn}n∈N ⊂ R
C+, {pn}n∈N ⊂ P , if pn → p, xhn ∈

Bh(pn) and xhn → xh, then xh ∈ Bh(p).

Proof (i) : Bh is lower semicontinuous.
Let p ∈ P and {pn}n∈N ⊂ P be such that pn → p ∈ P . Let xh ∈ Bh(p). Let us

pose I = {c ∈ C : xch > 0}. We consider the following sequence:

xhn := xh − ηn ∀n ∈ N, (23)

where the sequence {ηn}n∈N ⊂ R
C is such that ηcn = 0 if c /∈ I and ηcn = ηn if c ∈ I

with {ηn}n∈N converging to zero and, if
∑

c∈I
pcn > 0, satisfying

〈pn − p, xh − e h〉C
∑

c∈I pcn
< ηn < min

c∈I {x
c
h}.
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Let us verify that xhn ∈ Bh(pn) for all n ∈ N.

• If
∑

c∈I
pcn = 0: since pcn ≥ 0, one has pcn = 0 for all c ∈ I . Then,

〈pn, x hn−e h〉C =
∑

c∈I
p c
n(x

c
hn−e ch)+

∑

c/∈I
p c
n(x

c
hn−e ch) =

∑

c/∈I
p c
n(−e ch) ≤ 0.

• If
∑

c∈I
pcn > 0: by the choice of ηn and since xh ∈ Bh(p), it results

〈pn, x hn − e h〉C = 〈pn, xh − e h〉C − ηn
∑

c∈C
p c
n < 〈p, xh − eh〉C ≤ 0 .

Then, xhn ∈ Bh(pn) for all n ∈ N. Moreover, we have xhn = (xh − ηn) → xh.
Hence, Bh is lower semicontinuous.

(ii) : Bh is closed.
Let p ∈ P and {pn}n∈N ⊂ P be such that pn → p ∈ P . Let {x hn}n∈N be a sequence
such that x hn ∈ Ba(pn) for all n ∈ N and x hn → xh. Since 〈pn, x hn − e ch〉C ≤ 0
and x hn ≥ 0 ∀n ∈ N, we get 〈p, xh − e ch〉C ≤ 0 and xh ≥ 0; that is, xh ∈ Bh(p).

�
Theorem 10 If uh is strongly concave for all h ∈ H, then there exists a competitive
equilibrium.

Proof We consider the quasi-variational inequality (16), and we prove that there
exists at least one solution. First, for all h ∈ H and p ∈ P we consider the
parametric variational inequality:

“Find x̃h ∈ Bh(p) such that:

〈∇uh(x̃h), xh − x̃h〉C ≤ 0 ∀xh ∈ Bh(p).” (24)

From strong concavity of utility function, it follows that the operator −∇uh(xh) is
strongly monotone; hence, from Theorem 4 there exists a unique solution to (24).
We can introduce the function of solutions:

x̃h : P → R
C+ ,

such that, for all p ∈ P, x̃h(p) is the unique solution to (24). We prove that the
function x̃h is continuous on P . Let p ∈ P and {pn}n∈N ⊂ P be such that pn → p.
We consider the sequence {x̃h(pn)}n∈N such that, for all n ∈ N, x̃(pn) is the unique
solution to variational inequality:

〈∇uh(x̃h(pn)), xhn − x̃h(pn)〉C ≤ 0, ∀xhn ∈ Bh(pn) . (25)
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We prove that x̃h(pn) → x̃h(p). Since Bh is lower semicontinuous, there exists
a sequence {yhn}n∈N ⊆ R

C+ such that:

yhn ∈ Bh(pn) ∀n ∈ N, and lim
n→+∞ yhn = x̃h(p). (26)

Then, from the condition of strong monotonicity of −∇uh, with x̃hn and yhn, one
has

〈−∇uh(x̃h(pn))+ ∇uh(yhn), x̃h(pn)− yhn〉C ≥ ν‖x̃h(pn)− yhn‖2 .

From the last inequality and from (25), with xhn = yhn, we have

ν‖x̃h(pn)− yhn‖2 ≤ 〈−∇uh(x̃h(pn))+ ∇uh(yhn), x̃h(pn)− yhn〉C =

= 〈∇uh(x̃h(pn)), yhn − x̃h(pn)〉C + 〈∇uh(yhn), x̃h(pn)− yhn〉C ≤

≤ ‖∇uh(yhn)‖ · ‖x̃h(pn)− yhn)‖,

namely, ‖x̃h(pn)− yhn‖ ≤ ‖∇uh(yhn)‖
ν

. Then, we have

‖x̃h(pn)‖ ≤ ‖x̃h(pn)− yhn‖ + ‖yhn‖ ≤ ‖∇uh(yhn)‖
ν

+ ‖yhn‖ . (27)

Since yhn → x̃h(p) and, being uh ∈ C1(Rl+), one has ∇uh(yhn) →
∇uh(x̃h(p)); then, there exist s, k ∈ R+ such that ‖∇uh(yhn)‖ ≤ h and ‖yhn‖ ≤
k ∀n ∈ N . So, from (27), it follows that ‖x̃h(pn)|‖ ≤ h

ν
+ k, for all n ∈ N,

where the constant s
ν
+ k does not depend on n. Hence, there exists a subsequence

{x̃h(pkn)} of {x̃h(pn)} converging to an element yh ∈ R
C : lim

n→+∞ x̃h(pkn) = yh.

Since Bh is a closed map, it follows that yh ∈ Bh(p). We prove that yh = x̃h(p).
For all xh ∈ Bh(p), since Bh is lower semicontinuous, there exists {xhn}n∈N such
that xhn ∈ Ba(pn) for all n ∈ N and xhn → xh. From variational inequality (25),
with xhkn , one has

〈∇uh(x̃h(pkn)), xhkn − x̃h(pkn)〉C ≤ 0 ,

and passing to the limit as n→+∞, it follows that

〈∇uh(yh), xh − yh〉C ≤ 0 .

Namely, we have yh = x̃h(p). Hence, since x̃h(pn)→ x̃h(p), we can conclude that
the solutions map x̃h is continuous on P .
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Now, we consider the variational inequality:

“Find p̃ ∈ P such that:
〈

−
∑

h∈H
(x̃h(p)− eh), p − p̃

〉

C

≥ 0, ∀p ∈ P .” (28)

Since P is a compact and convex set and x̃a(p) is a continuous function, by
Theorem 1, there exists at least one p̃ solution to (28).

Finally, we consider the pair (x̃, p̃) ∈ P × B(p̃), where p̃ is a solution to (28)
and x̃ is such that for all h ∈ H, x̃h is the solution to (24) with parameter p̃. It
follows that (x̃, p̃) is a solution to quasi-variational inequality (16). �
Theorem 11 Let uh ∈ C1(RC+) be non-satiated and strictly concave for all h ∈ H,
then there exists the equilibrium.

Proof First, we consider the variational inequality:

“Find (x̃, p̃) ∈ K(p̃)× P :
∑

h∈H
〈∇uh(x̃h), xh−x̃h〉C+

〈
∑

h∈H
(x̃h−eh), p−p̃

〉

C

≤ 0 ∀(x, p) ∈ K(p̃)× P.”, (29)

where K(p) := ∏h∈HKh(p) is the bounded convex set, with Kh(p) := Bh(p) ∩∏
c∈C[0,

∑
h∈H ech]. In order to prove the existence, we can proceed as in the proof

of Theorem 10. Since uh ∈ C1(RC+) and uh is strictly concave, from Theorem 3
there exists a unique solution to the parametric variational inequality (24), hence we
can introduce the function of solutions x̃h(·). For all {pn}n∈N converging to p, we
consider {x̃h(pn)}n∈N; since the sequence is in the bounded set

∏
c∈C[0,

∑
h∈H ech],

there exists a subsequence converging to y. Being uh ∈ C1, x̃h(pn) → y and
∇uh(x̃h(pn)) → ∇uh(y), and for properties of the set-valued map Bh, it follows
that y = x̃h. Hence, the function of solution x̃ is continuous and there exists p̃

solution to (18). Then, there exists (x̃, p̃) solution to (29).
Now, it remains to prove that if x̃h is a solution to the variational inequality:

〈∇uh(x̃h), xh − x̃h〉C ≤ 0 ∀xh ∈ Kh(p̃) , (30)

then x̃h is a solution to the variational inequality in the unbounded set

〈∇uh(x̃h), xh − x̃h〉C ≤ 0 ∀xh ∈ Bh(p̃) . (31)

We suppose that there exists x′ ∈ Bh(p̃) such that 〈∇uh(x̃h), x′ − x̃h〉C > 0. Since
x̃h ∈ Kh(p̃) ⊆ Bh(p̃), x′ ∈ Bh(p̃), and Bh(p̃) is a convex set, then for all λ ∈
(0, 1) , x̄ = λ x′ + (1− λ) x̃h ∈ Bh(p̃). Then,

〈∇uh(x̃h), x̄−x̃h〉C = 〈∇uh(x̃h), λx′+(1−λ)x̃h−x̃h〉C = λ〈∇uh(x̃h), x′−x̃h〉 > 0 .
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We choose λ ∈ (0, 1) such that

λ < min
{

1,− x̃ch −
∑

h∈H ech

(x′)c − x̃ch
, with c ∈ C such that (x′)c − x̃ch > 0

}
,

for all c ∈ C it results

x̄c −
∑

h∈H
ech = λ(x′)c + (1− λ)x̃ch −

∑

h∈H
ech = λ[(x′)c − x̃ch] + x̃ch −

∑

h∈H
ech.

Observe that

– if (x′)c − x̃ch = 0, then x̄c −∑h∈H ech = x̃ch −
∑

h∈H ech ≤ 0;

– if (x′)c − x̃ch < 0, then x̄c −∑i∈H ech < 0;
– if (x′)c − x̃ch > 0, by the choice of λ, we have

x̄c −
∑

h∈H
ech < − x̃ch −

∑
h∈H ech

(x′)c − x̃ch
[(x′)c − x̃ch] + x̃ch −

∑

h∈H
ech = 0 .

Hence, x̄ ∈ ∏
c∈C̃[0,

∑
h∈H ech]. Then, there exists x̄ ∈ Kh(p̃) such that

〈∇uh(x̃h), x̄− x̃h〉 < 0, but this contradicts x̃h solution to (30). Then, x̃ is a solution
to (31) and we can conclude that there exists (x̃, p̃) solution to (16). �
Theorem 12 Let uh be non-satiated, continuous, and semistrictly quasiconcave for
all h ∈ H, then there exists the equilibrium.

Proof As proven in Theorem 11, also under above assumptions, it is sufficient to
prove the existence of a solution to the variational problem in the bounded set:

“Find (x̃, p̃) ∈ K((p̃))× P and g = {gh}h∈H, with gh ∈ Gh(x̃h) ∀h ∈ H :
∑

h∈H
〈gh, xh − x̃h〉C +

〈
∑

h∈H
(x̃h − eh), p − p̃

〉

C

≤ 0 ∀(x, p) ∈ K(p̃)× P.” (32)

from Remark 1, condition (18) and the following hold:

for all h ∈ H 〈gh, xh − x̃h〉 ≤ 0 ∀xh ∈ Kh(p̃) (33)

For all h ∈ H and for all p ∈ P , we consider the parametric generalized variational
inequality:

〈gh, xh − x̃h〉 ≤ 0 ∀xh ∈ Kh(p) . (34)
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Since uh is continuous and semistrictly quasiconcave for all h ∈ H, the set-valued
map Gh is usc with convex and compact values. Then, thanks to Theorem 5, there
exists a solution to (34). So, we can define the set-valued map of solutions:

#h : P ⇒ R
C+

such that for all p ∈ P, #h(p) = {x̃h : x̃h isasolutionto(34)} �= ∅.
The map #h enjoys the following properties.
#h is a closed map:
let {pn} ⊆ P and {x̃h,n} ⊆ R

C+ be two sequences with x̃h,n ∈ #h(pn) and such
that pn → p and x̃h,n → x̃h. We have to prove that x̃h ∈ #h(p).

First, we observe that x̃h ∈ Kh(p), indeed:

x̃h,n ∈ Kh(pn) ⇒ 0 ≤ x̃ch,n ≤
∑

h∈H
ech ∀c ∈ C, 〈pn, x̃h,n − eh〉C ≤ 0 ∀n ∈ N ;

passing to the limit, it results

0 ≤ x̃ c
h ≤

∑

h∈H
ech ∀c ∈ C, 〈p, x̃h − eh〉C ≤ 0 ⇒ x̃h ∈ Kh(p) .

Since x̃h,n is a solution to (34) in Kh(pn), for all n ∈ N, there exists ghn ∈ Gh(x̃h,n)

such that

〈ghn, xhn − x̃hn〉 ≤ 0 ∀xhn ∈ Kh(pn) . (35)

Since the map Gh is a closed set-valued map, the sequence {ghn}n∈N converges to
gh ∈ Gh(x̃). From the lower semicontinuity of Kh for all yh ∈ Kh(p), there exists
{yhn}n∈N converging to yh such that yn ∈ Kh(pn) for all n ∈ N. Hence, replacing
yhn in (35) and passing to the limit, it follows that 〈gh, yh − x̃h〉 ≤ 0; that is,
x̃h ∈ #h(p). We can conclude that #h is closed.

#h is with compact values because, for all p ∈ P , the set Kh(p) is compact.
#h is usc:
since #h(p) ⊆ ∏

c∈C[0,
∑

h∈H ech]. Hence, #h(P ) is compact; that is, #h is
compact. Namely, since #h is closed and compact, it follows that #h is usc.

# is with convex values.
For all p ∈ P , let x̃h, ỹh ∈ #h(p). Being uh semistrictly quasiconcave, it

follows that, for all λ ∈ (0, 1), z = λx̃h + (1− λ)ỹh ∈ K(p̃) and z ∈ #h(p).
Now, we can consider the following generalized variational inequality:

Find p̃ ∈ P such that there existϕh ∈ #h(p̃), withh ∈ H :
〈
∑

h∈H
(ϕh − eh), p − p̃

〉

≤ 0 ∀p ∈ P . (36)
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From properties of #h(·), it follows that the operator of variational problem (36)
is usc with compact and convex values. Then, since P is a compact set, from
Theorem 5 there exists p̃ ∈ P and ϕh ∈ #h(p̃) solutions to (36).

Then, the pair (x̃, p̃) ∈ K(p̃) × P such that p̃ is a solution to (36) and x̃h ∈
#h(p̃), for h ∈ H, is a solution to variational problem (21) and, then, (x̃, p̃) is an
equilibrium. �

4.3 Remark

In this section we analyzed the exchange economy model, by means of a quasi-
variational inequality problem. The characteristic of the quasi-variational inequality
is that the convex set depends on the solution of the problem; and the latter
fact makes the problem more complicated. We gave a procedure that allowed us
to consider H + 1 variational inequalities, instead of a single quasi-variational
inequality. Indeed, it is certainly easier to solve variational problems where the
convex set does not depend on the solution. This method represents a new and useful
methodology not only to provide existence results but also to provide an efficient
computational procedure for the calculus of solutions.

In order to obtain the existence of equilibrium, we firstly considered the
economic model under strong assumptions on utility functions: strong concavity
and continuous differentiability. Even if the convex set Bh(p) might be unbounded,
under those assumptions, there exists a unique solution to the parametric variational
inequality (24); hence, we introduced the demand functions x̃(p) and we proved
that this function is continuous. Moreover, since a solution of the quasi-variational
problem is in a compact set, we solved our problem in a bounded set where the
utility functions are strictly concave instead of strongly concave.

Finally, we considered the utility functions being semistrictly quasiconcave.
Under such assumptions, since the solution of the parametric variational inequality
is not unique, the map of the solution is set-valued. In this more general case, we
present the same procedure by using tools of set-valued analysis and generalized
variational inequalities.

5 Model with Nominal Assets

In this section, we investigate the existence of an equilibrium vector for a finan-
cial economy with incomplete markets and nominal assets. More precisely, we
characterize households’ maximization problems and market clearing conditions in
terms of well-chosen Variational Inequality problems. We then introduce a sequence
of “artificial” price sets and associated Generalized Quasi-Variational Problems
whose solutions have nice properties. We finally show that the sequence admits a
subsequence converging to an equilibrium.
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For this model, we make the following Assumptions.

Assumption 1

1. For any h ∈ H, the utility function uh : RG+ → R is continuously differentiable
and concave.

2. For any h ∈ H and for any s ∈ S0, there exists c ∈ C such that uh is strictly
increasing in xsch , i.e.,

if xh ≥ 2 xh and ∃ c ∈ C : xh
sc > xh

sc , then uh (xh) > uh
(
xh
)
.

3. For any (s, c) ∈ S0 × C, there exists h ∈ H such that uh is strictly increasing in
xsch .

Assumption 2
For every h ∈ H, eh >> 0, i.e., each household is endowed with each

commodity c in each state s.

Assumption 3

1. Y ≥ 0, i.e., ∀s ∈ S and a ∈ A, ysa ≥ 0.
2. For s ∈ S, ys := (Row s of Y ) > 0; that is, ∃a ∈ A such that ysa > 0, i.e., in

each state at least one asset delivers something.
3. rank Y = A < S, i.e., markets are incomplete.

By using Assumption 1.2, we prove the following result.

Proposition 2 If (̃xh, b̃h) ∈ Bh(p̃, q̃) is a solution to household h’s maximization
problem, max(xh,bh)∈Bh(p̃,̃q) uh(xh), then the following statements hold true:

1. For any s ∈ S0, there exists c∗ such that p̃sc
∗
> 0.

2. q̃ ∈ Q :=
{

q ′ ∈ R
A : there is no b ∈ R

Asuch that

[−q
Y

]

b > 0

}

=

=
{
q ′ ∈ R

A : ∃ν = (νs)
s∈S ∈ R

S++such thatq ′ = νY
}
, (37)

where the setQ is open and it is called the set of no-abitrage prices.

Proof See pp. 1356–1357 in [18]. �

2 Following standard notation, for vectors y := (yi)
n
i=1 , z := (zi)

n
i=1 ∈ R

n; y ≥ z means that for
i ∈ {1, . . . , n} , yi ≥ zi ; y >> z means that for i ∈ {1, . . . , n} , yi > zi , and y > z means that
y ≥ z but y �= z.
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5.1 Variational Inequality Approach

From Proposition 2, without loss of generality, we can restrict prices to belong to
the following sets:

�0 :=
{

(ν, p0) ∈ R
S+ × R

C+ :
∑

s∈S
νs +

∑

c∈C
p0c = S + 1

}

,

�C :=
{

ps ∈ R
C+ :
∑

c∈C
psc = 1

}

, � :=
∏

s∈S
�C.

We consider the set-valued map

B∗h : �0 ×� ⇒ R
G+ × R

A,

B∗h
(
(ν, p0), p1

)
:= {(xh, bh) ∈ R

G+ × R
A : 〈(ν, p0), (Ybh, x

0
h − e0

h)〉S+C ≤ 0,

〈ps, xsh − esh〉C − 〈ys, bh〉A ≤ 0, ∀s ∈ S}.

We define B∗
(
(ν, p0), p1

)
:=
∏

h∈H
B∗h
(
(ν, p0), p1

)
.

To study equilibria using the variational approach, we introduce a non-zero lower

bound on prices. For each positive number ε ≤ 1

C
, we define the following prices

sets:

�ε
0 :=

{
(ν, p0) ∈ �0 : p0c ≥ ε, νs ≥ ε, ∀c ∈ C, ∀s ∈ S

}
;

�ε
C :=

{
ps ∈ �C : psc ≥ ε ,∀c ∈ C

} ; �ε :=
∏

s∈S
�ε
C.

In this subsection, we drop ε in the variables for a lighter notation. Now, we present
some properties of the set-valued map Bh.

Proposition 3 Under Assumptions 2 and 3, for any ε ∈
(

0, 1
C

]
and any h ∈ H, the

set-valued map Bh is nonempty, convex, and compact valued, and l.s.c. and closed
in �ε

0 ×�ε.

Proof See p. 1360 in [18]. �
We introduce the following problem:

“ Find
(
(̃x, b̃), (̃ν, p̃ 0), p̃1

)
∈ B∗((̃ν, p̃ 0), p̃1)×�ε

0 ×�ε such that
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∑

h∈H
〈∇uh(̃xh), xh − x̃h〉G + 〈(Y

∑

h∈H
b̃h,
∑

h∈H
(̃x 0

h − e0
h)), (ν, p

0)− (̃ν, p̃ 0)〉S+C

+
∑

s∈S
〈
∑

h∈H
(̃xsh − esh), p

s − p̃ s〉C ≤ 0 (38)

∀
(
(x, b), (ν, p0), p1

)
∈ B∗((̃ν, p̃ 0), p̃1)×�ε

0 ×�ε.”

Remark 2 It is important to observe that solving QVI (38) is equivalent to solving

simultaneously (H + 1 + S) variational inequalities. Indeed,
(
(̃x, b̃), (̃ν, p̃ 0), p̃1

)

is a solution to QVI (38) if and only if

• for all h ∈ H, (̃xh, b̃h) is a solution to VI:

〈∇uh(̃xh), xh − x̃h〉G ≤ 0 ∀(xh, bh) ∈ B∗h((̃ν, p̃ 0), p̃1) (39)

• (̃ν, p̃ 0) is a solution to VI:

〈(

Y
∑

h∈H
b̃h,
∑

h∈H
(̃x 0

h − e0
h)

)

, (ν, p 0)− (̃ν, p̃ 0)

〉

S+C
≤ 0 ∀(ν, p 0) ∈ �ε

0

(40)
• for all s ∈ S , p̃ s is a solution to VI:

〈
∑

h∈H
(̃x s

h − esh), p
s − p̃ s

〉

C

≤ 0 ∀p s ∈ �ε
C. (41)

Clearly, (̃ν, p̃ 0) is solution to VI (40) and for all s ∈ S , p̃ s is solution to VI (41)
if and only if

(
(̃ν, p̃0), p̃1

)
is solution to VI:

〈(

Y
∑

h∈H
b̃h,

∑

h∈H
(̃x0

h − e0
h)

)

, (ν, p0)− (̃ν, p̃0)

〉

S+C
+
∑

s∈S

〈
∑

h∈H
(̃xsh − esh), p

s − p̃s

〉

C

≤ 0

(42)

∀((ν, p0), p1) ∈ �ε
0 ×�ε.

Theorem 13 Under Assumptions 1, 2, and 3, for all ε ∈
(

0,
1

C

]
, QVI (38) admits

at least one solution.
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Proof From Assumptions 1, 2, and 3 and from Proposition 3, it follows that all

Assumptions of Theorem 6 are satisfied. Then, there exists
(
(̃x, b̃), (̃ν, p̃ 0), p̃1

)
∈

B∗((̃ν, p̃0), p̃1)×�ε
0 ×�ε, which is solution to QVI (38). �

Theorem 14 For any ε ∈
(

0, 1
C

]
, let

(
(̃x, b̃), (̃ν, p̃ 0), p̃1

)
∈ B∗((ν, p0), p1) ×

�ε
0 × �ε be a solution to QVI (38). Then, under Assumptions 1, 2, and 3 one

has:

(i) for any h ∈ H:

max
(xh,bh)∈B∗h((̃ν,p̃ 0),p̃1)

uh(xh) = uh(̃xh); (43)

(ii) for any h ∈ H:

〈(̃ν, p̃ 0), (Y b̃h, x̃
0
h − e0

h)〉S+C = 0, (44)

〈p̃ s , x̃sh − esh〉C − 〈ys, b̃h〉A = 0 ∀s ∈ S; (45)

(iii) the following equations hold true:

〈

(̃ν, p̃ 0),

(

Y
∑

h∈H
b̃h,
∑

h∈H
(̃x0

h − e0
h)

)〉

S+C
= 0, (46)

〈

p̃ s ,
∑

h∈H
(̃xsh − esh)

〉

C

−
〈

ys,
∑

h∈H
b̃h

〉

A

= 0 ∀s ∈ S. (47)

Moreover,

〈

(̃ν − 1, p̃ 0),

(

Y
∑

h∈H
b̃h,

∑

h∈H
(̃x0

h − e0
h)

)〉

S+C
+
∑

s∈S

〈

p̃ s ,
∑

h∈H
(̃xsh − esh)

〉

C

= 0,

(48)

where 1 = (1, . . . , 1) ∈ R
S .

(iv) For any h ∈ H, c ∈ C, and s ∈ S ,

0 ≤ x̃sch ≤
∑

s∈S0

∑

c∈C

∑

h∈H
x̃sch ≤

∑

s∈S0

∑

c∈C

∑

h∈H
esch . (49)
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5.2 Existence of Equilibrium

We need now to recall an important result usually called “boundary condition” in
the general equilibrium literature - for a proof, see, for example, Werner, Lemma 2
in [34].

Proposition 4 If the sequence (pn, qn) of strictly positive price vectors converges
to (p, q) that is not strictly positive and such that, for some h ∈ H , either conditions
below holds:

1. 〈p0, e0
h〉C > 0,

2. q �= 0 and for any s ∈ S, 〈ps, esh〉C > 0,

then,

inf

{
∥
∥xh,n

∥
∥ ∈ R+ :

(
xh,n, bh,n

) ∈ argmax
B(pn,qn)

uh(xh,n) for some bh,n ∈ R
A

}
n→+∞.

Theorem 15 Under Assumptions 1, 2, and 3, there exists an equilibrium vector for
any financial economy with incomplete markets and nominal assets.

Proof Let {εn}n∈N be a sequence of positive real numbers such that

lim
n→+∞ εn = 0. (50)

By Theorem 13, for all n ∈ N, there exists
(
(̃xn, b̃n), (̃νn, p̃

0
n), p̃

1,n
)

∈
B∗((̃νn, p̃0

n), p̃
1,n) × �

εn
0 × �εn solution to QVI (38); that is, from Remark 2

one has:

• for all h ∈ H, (̃xh,n, b̃h,n) is a solution to VI

〈∇uh(̃xh,n), xh,n− x̃h,n〉G ≤ 0 ∀(xh,n, bh,n) ∈ B∗h((̃νn, p̃n 0), p̃1,n) (51)

• (̃νn, p̃n
0) is a solution to VI

〈(

Y
∑

h∈H
b̃h,n,

∑

h∈H
(̃x 0

h,n − e0
h)

)

, (νn, p
0
n)− (̃νn, p̃

0
n)

〉

S+C
≤ 0 ∀(νn, p 0

n) ∈ �
εn
0

(52)

• and for all s ∈ S , p̃ s
n is a solution to VI

〈
∑

h∈H
(̃x s

h,n − esh), p
s
n − p̃ s

n

〉

C

≤ 0 ∀p s
n ∈ �

εn
C . (53)

Moreover, from Theorem 14, one has:
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(i) for any h ∈ H:

max
(xh,n,bh,n)∈B∗h((̃νn,p̃ 0

n),p̃
1
n)
uh(xh,n) = uh(̃xh,n); (54)

(ii) for any h ∈ H,

〈(̃νn, p̃ 0
n), (Y b̃h, x̃

0
h,n − e0

h)〉S+C = 0, (55)

〈p̃n s, x̃sh,n − esh〉C − 〈ys, b̃h,n〉A = 0 ∀s ∈ S; (56)

(iv)

0 ≤ x̃sch,n ≤
∑

s∈S0

∑

c∈C

∑

h∈H
x̃sch,n ≤

∑

s∈S0

∑

c∈C

∑

h∈H
esch . (57)

We consider the sequence
{(
(̃xn, b̃n), (̃νn, p̃

0
n), p̃

1
n

)}

n∈N and we prove that this

sequence converges to an equilibrium. Since

{(̃νn, p̃ 0
n)}n∈N ⊆ �0, {p̃ s

n}n∈N ⊆ �C, 0 ≤ x̃ sc
h,n ≤

∑

s∈S0

∑

c∈C

∑

h∈H
esch

with �0 and �C compact sets, without loss of generality, for all s ∈ S0, c ∈ C, and
h ∈ H, it follows that

lim
n→+∞(̃νn, p̃

0
n) = (̃ν, p̃ 0) ∈ �0, lim

n→+∞ p̃sn = p̃ s ∈ �C, lim
n→+∞ x̃ sc

h,n = x̃ sc
h . (58)

From (56), we have 〈Y, b̃h,n〉A =
(
〈p̃n s, x̃sh,n − esh〉C

)

s∈S and taking limits, we
get

〈Y, lim
n→+∞ b̃h,n〉A =

(〈p̃ s , x̃sh − esh〉C
)
s∈S .

Since rank Y = A, for all a ∈ A and h ∈ H, we can conclude that

lim
n→+∞ b̃a h,n = b̃ a

h .

Since B∗h is a closed set-valued map, then (̃x h, b̃ h) ∈ B∗h((̃ν, p̃ 0), p̃1
n).

Now, we prove that the limit point
(
(̃x, b̃),

(
(̃ν, p̃ 0), p̃1

n

) )
is an equilibrium vector.
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Condition 1 of Definition 3
We show that

(
(̃ν, p̃ 0), p̃1

)
>> 0 and q̃ = ν̃Y ∈ Q. (59)

To get the first result, we first show for any h ∈ H, either condition below holds
true:

(a) 〈p̃ 0, e0
h〉C > 0,

(b) q̃ = ν̃Y �= 0RA and for any s ∈ S, 〈p̃ s , esh〉C > 0.

Observe that:

(a) If p̃ 0c �= 0 for some c ∈ C, from Assumptions 2, we have 〈p̃ 0, e0
h〉C > 0.

(b) If p̃ 0c = 0 for any c ∈ C, since (̃ν, p̃ 0) ∈ �0, then there exists s∗ ∈ S such
that νs

∗
> 0. Therefore,

ν̃Y =
⎛

⎝
∑

s �=s∗

(≥0)
ν̃ s ·

(>0)
ys

⎞

⎠+
(>0)

ν̃ s∗ ·
(>0)

ys
∗
> 0 .

Moreover, since p̃ s ∈ �C , then there exists c∗ ∈ C such that p̃sc
∗
> 0 and

from Assumptions 2, we have

∀s ∈ S, 〈p̃s , esh〉C =
⎛

⎝
∑

c �=c∗

(≥0)
p̃sc ·

(>0)
esch

⎞

⎠+
(>0)

p̃sc
∗ ·

(>0)

esc
∗

h > 0.

By Proposition 4, it follows that ((̃ν, p̃0), p̃1)must be strictly positive; otherwise,
{̃xh,n} would be unbounded.

Define q̃ := ν̃Y ∈ Q. Since B∗ is l.s.c., then for any (xh, bh) ∈ Bh(p̃, q̃),
there exists a sequence {(xh,n, bh,n)}n∈N converging to (xh, bh) and such that
(xh,n, bh,n) ∈ B∗h((̃νn, p̃n 0), p̃1

n). Then, from (54), one has that uh(xh,n) ≤
uh(̃xh,n). Hence, taking limits, it follows that uh(xh) ≤ uh(̃xh). We can therefore
conclude that, for any h ∈ H:

max
(xh,bh)∈Bh(p̃,̃q)

uh(xh) = uh(̃xh) . (60)

Condition 2 (a) of Definition 3
We have to prove that for all s ∈ S0 and c ∈ C,

Z̃sc :=
∑

h∈H
(̃x sc

h − esch ) ≤ 0. (61)

We suppose that there exist s∗ ∈ S0 and c∗ ∈ C such that Z̃s∗c∗ > 0; that is,
from (58) there exists k1 ∈ N such that, for all n > k1,

Z̃s∗c∗
n =∑h∈H(̃x s∗c∗

h,n − es
∗c∗
h ) > 0. (62)
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Observe that, since ((̃ν, p̃ 0), p̃1) >> 0, there exists ε̃ = mins∈S0c∈C {̃νs, p̃ sc} > 0,
then there exists k2 ∈ N such that, for all n > k2, ν̃

s
n > ε̃ and p̃n

sc > ε̃. Moreover,
since {εn}n∈N converges to zero, there exists k3 ∈ N such that εn < ε̃ for all n > k3.
Let k := max{k1, k2, k3} and we fix n > k. For any s ∈ S0, such that Z̃sc > 0 for
some c ∈ C, define the sets

C−s := {c ∈ C : Z̃sc
n ≤ 0}, C+s := {c ∈ C : Z̃sc

n > 0}.

We assume that there exists s∗ ∈ S0 such that C+s∗ �= ∅. Then, fixed s∗ ∈ S0, we
need to analyze some cases.

1. C−s∗ �= ∅.
Take ((̂νn, p̂n

0), p̂1
n) ∈ �

εn
0 × �εn such that ν̂n := ν̃n, p̂ s

n := p̃ s
n for all

s �= s∗ and

p̂ s∗c
n :=

⎧
⎪⎪⎨

⎪⎪⎩

p̃ s∗c
n +K if c ∈ C+s∗ ,

p̃ s∗c
n −K

|C+
s∗ |

|C−
s∗ |

if c ∈ C−s∗ ,

with 0 < K ≤ |C−s∗ |
|C+s∗ |

(p̃ s∗c
n − εn) for all c ∈ C. One has

〈(

Y
∑

h∈H
b̃h,n,

∑

h∈H
(̃x0

h,n − e0
h)

)

, (̂νn, p̂
0
n)− (̃νn, p̃

0
n)

〉

S+C
+
∑

s∈S

〈
∑

h∈H
(̃xsh,n − esh), p̂

s
n − p̃sn

〉

C

> 0,

contradicting VI (42).
2. C−s∗ = ∅ and there exist c, c′ ∈ C such that Z̃s∗c

n �= Z̃s∗c′
n .

Let c∗ ∈ C be such that Z̃s∗c∗
n := max

{
Z̃s∗c
n : c ∈ C

}
> 0. Take

((̂νn, p̂n
0), p̂1,n) ∈ �

εn
0 × �εn such that ν̂n := ν̃n, p̂n

s := p̃n
s for all s �= s∗

and

p̂n
s∗c :=

⎧
⎨

⎩

p̃ s∗c∗
n +M if c = c∗,

p̃ s∗c
n − M

C−1 if c �= c∗,

with 0 < M ≤ (C − 1)(p̃ s∗c
n − εn) for all c ∈ C. One has

〈(

Y
∑

h∈H
b̃h,n,

∑

h∈H
(̃x0

h,n − e0
h)

)

, (̂νn, p̂
0
n)− (̃νn, p̃

0
n)

〉

S+C
+
∑

s∈S

〈
∑

h∈H
(̃xsh,n − esh), p̂

s
n − p̃sn

〉

C

> 0,

contradicting VI (42).
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3. C−s∗ = ∅ and Z̃s∗c
n = γ s

∗
n > 0 for all c ∈ C.

a. s∗ = 0. From (46), there exists s′ ∈ S such that 〈ys′ ,∑h∈H b̃h,n〉A < 0. Take
(̂νn, p̂

0
n) ∈ �

εn
0 such that

ν̂s =
⎧
⎨

⎩

ν̃s
′ −D if s = s′

ν̃s if s �= s′
, p̂0c

n = p̃0c
n + 1

C
D ∀c ∈ C

with 0 < D < ν̃s
′ − εn. One has

〈(

Y
∑

h∈H
b̃h,n,

∑

h∈H
(̃x 0

h,n − e0
h)

)

, (̂νn, p̂
0
n)− (̃νn, p̃

0
n)

〉

S+C
= −D

〈

ys
′
,
∑

h∈H
b̃h,n

〉

A

+ γ 0
n D > 0,

contradicting VI (52).
b. s∗ �= 0. From (47), one has that 〈ys∗ ,∑h∈H b̃h,n〉A > 0. Take (̂νn, p̂ 0

n) ∈ �
εn
0

such that

ν̂n
s :=

⎧
⎨

⎩

ν̃s
∗
n + B if s = s∗

ν̃n
s if s �= s∗

, p̂n
0c := p̃ocn − 1

C
B ∀c ∈ C

with 0 < B ≤ C(p̃0c
n − εn) for all c ∈ C. One has

〈(

Y
∑

h∈H
b̃h,n,

∑

h∈H
(̃x 0

h,n − e0
h)

)

, (̂νn, p̂
0
n)− (̃νn, p̃

0
n)

〉

S+C
> 0,

contradicting VI (52).

Condition 2 (b) of Definition 3
From Eq. (47), we get

〈

ν̃sys,
∑

h∈H
b̃h

〉

A

=
〈

ν̃s p̃ s ,
∑

h∈H
(̃xsh − esh)

〉

C

≤ 0 ∀s ∈ S,

where the inequality follows from (61) and the fact that ν̃ ∈ R
S++ and p̃ ∈ R

G++.
Therefore,

〈

ν̃Y,
∑

h∈H
b̃h

〉

A

≤ 0, (63)

and from (61), we get
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〈

p̃ 0,
∑

h∈H
(̃x0

h − e0
h)

〉

C

≤ 0. (64)

From (63), (64), and (46), we get

〈

ν̃Y,
∑

h∈H
b̃h

〉

A

= 0. (65)

From (45), (61), and the fact that for any s ∈ S0, p̃ s ∈ R
C++, we have

Y
∑

h∈H
b̃h =

(〈̃xsh − esh, p̃
s〉C
)
s∈S ≤ 0. (66)

Then, from (65), (66), and the fact that ν >> 0, we have Y
∑

h∈H b̃h = 0.
Since Y has full rank A from Assumption 3, we obtain then for all a ∈ A:

∑

h∈H
b̃ah = 0. (67)

Hence, from (60), (61), and (67), we can conclude that (̃x, b̃, p̃, q̃) is an
equilibrium vector.

�
Remark 3 Observe that since good prices are strictly positive, then (61) holds in the
form of equalities, i.e., for any s ∈ S0 and any c ∈ C

∑

h∈H

(
x̃sch − esch

) = 0 .

Indeed, from (ii) in Theorem 14 and (67), for any s ∈ S0 and any c ∈ C, we
have that

p̃sc
∑

h∈H

(
x̃sch − esch

) = 0 . (68)

Since p̃ >> 0 and from (61),
∑

h∈H
(
x̃sch − esch

) ≤ 0, we get the desired result.

6 Model with Numeraire Assets

In this section, we deal with the existence of an equilibrium vector for a financial
economy with incomplete markets and numeraire assets.
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In the previous section, following a more standard variational inequality
approach, we studied the case of differentiable and concave utility functions.
Consistently with the more demanding assumptions usually made in the economic
literature, in the model presented below, we assume instead that those functions
are continuous and semistrictly quasi-concave. Moreover, the numeraire asset case
is both more economically appealing and more mathematically general than the
nominal one. Indeed, in the latter case, while assets pay in units of “money,” the
model itself describes a barter economy in which there is no role for what is usually
defined as money. In the numeraire case, instead, in a natural and simple manner,
yields are denominated in units of a specific good, which is the unit of measure of
the value, the so-called numeraire good. Moreover, existence of equilibria in the
numeraire case implies existence in the nominal case, but not vice versa. Indeed,
typically in the space of economies, while the cardinality of the equilibrium set is
finite in the numeraire case, in the nominal one, that cardinality is infinite.

For this model, we make the following Assumptions:

Assumption 4

1. For any h ∈ H, eh >> 0.

Assumption 5

1. For any h ∈ H:

a. the utility function uh is continuous and quasi-concave;
b. uh is strictly increasing in the numeraire good sC, for every s ∈ S0.

2. For every s ∈ S0 and c ∈ C, there exists h′ ∈ H such that uh′ is strictly increasing
in sc.

Assumption 6

1. rank Y = A < S.
2. 1 := (1, . . . , 1) ∈ col spanY , i.e., for any h ∈ H, ∃ b∗h ∈ R

A such that Yb∗h = 1.

Assumption 5.1b says that the chosen numeraire good is “highly evaluated”
by each household. It is used to show that if household’s maximization problem
has a solution, then the price of the numeraire good is strictly positive and
budget inequalities are satisfied as equalities, i.e., Walras’ laws do hold true —see
Proposition 5 below.

Assumption 5.2 allows to get strictly positive prices of each good.
Assumption 6.1 means that markets are incomplete.
Assumption 6.2 means that households can store the numeraire good without any

change in its quantity in the second period. In other words, if gold is the numeraire
good, you can keep it as it is in a safe from today until tomorrow.

As shown in the following Proposition, solutions to the household’s maximiza-
tion problem satisfy some properties we are going to use in the remainder of the
paper.
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Proposition 5 Let Assumptions 5.1b and 6.1 be satisfied. If (̃xh, b̃h) is a solution to
household h’s maximization problem at prices p̃, q̃, then

1. (p̃ sC)s∈S0 >> 0.
2. q̃ ∈ Q, where

Q : =
{

q ∈ R
A : there is nobh ∈ R

Asuch that

[ −q
P ·Y

]

bh > 0

}

=
{
q ∈ R

A : ∃ν ∈ R
Ssuch that ν >> 0 and q = νP ·Y

}

and P · := (psj )s,j∈S is an S × S matrix such that psj = 0 for all s �= j and
pss = psC for s ∈ S .

3. For any h ∈ H, 〈p̃ 0, x̃0
h − e0

h〉C + 〈̃q, b̃h〉A = 0 ,

〈p̃ s , x̃sh − esh〉C − p̃ sC〈ys, b̃h〉A = 0 ∀s ∈ S .

4. The following so-called S + 1 Walras laws hold true

〈

p̃ 0,
∑

h∈H
(̃x0

h − e0
h)

〉

C

+
〈

q̃,
∑

h∈H
b̃h

〉

A

= 0,

〈

p̃ s ,
∑

h∈H
(̃xsh − esh)

〉

C

− p̃ sC

〈

ys,
∑

h∈H
b̃h

〉

A

= 0 ∀s ∈ S .

From claim 1 of Proposition 5, without loss of generality, we can consider the
same price sets, introduced in the previous model, see p. 17. In particular here, we
use �s instead of �C on page 17.

It is useful to consider the budget constraints set as the set-valued map
Bh : �0 ×� ⇒ R

G+ × R
A such that

Bh((ν, p
0), p1) : = {(xh, bh) ∈ R

G+ × R
A : 〈p0, x0

h − e0
h〉C +

〈
νP ·Y, bh

〉
A
≤ 0,

〈ps, xsh − esh〉C − psC〈ys, bh〉A ≤ 0 ∀s ∈ S} .

Moreover, we define B((ν, p0), p1) :=
∏

h∈H
Bh((ν, p

0), p1).

Now, we introduce a suitable variational inequality problem, which allows us to
prove the existence of the equilibrium. To this aim, we consider a non-zero lower
bound on prices: for any n ∈ N such that n ≥ C, we define the prices sets

�n
0 :=

{

(ν, p0) ∈ �0 : p0 ≥ 1

n
1, ν ≥ 1

n
1
}

, �n
s :=

{

ps ∈ �s : ps ≥ 1

n
1
}

,
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and �n :=
∏

s∈S
�n
s . To relate the consumer h’s maximization problem with a

variational problem, we use the same operator introduced in Sect. 4, Gh : RG ⇒ R
G

such that

∀xh ∈ R
G Gh(xh) := conv

(
N>
h (xh) ∩ S(0, 1)

)
.

We introduce the following Generalized Quasi-Variational Inequality GQVIn:

“Find
(
(̃xn, b̃n), (̃νn, p̃

0
n), p̃

1
n

)
∈ B((̃νn, p̃

0
n), p̃

1
n)×�n

0 ×�n such that

there exists gn = (gh,n)h∈H ∈
∏

h∈H
Gh(̃xh,n) and

〈−gn, xn − x̃n〉GH + 〈(P̃ ·
nY
∑

h∈H
b̃h,n,

∑

h∈H
(̃x 0

h,n − e0
h)), (νn, p

0
n)− (̃νn, p̃

0
n)〉S+C

+〈
∑

h∈H
(̃xh,n − eh), p

1
n − p̃ 1

n 〉CS ≤ 0

∀
(
(xn, bn), (νn, p

0
n), p

1
n

)
∈ B((ν̃n, p̃

0
n), p̃

1
n)×�n

0 ×�n .” (69)

Under our assumptions, the set-valued maps Bh : �0 ×� ⇒ R
G+ × R

A satisfy the
following nice properties.

Proposition 6 Let Assumptions 4, 5.2, and 6 hold true. For any n ∈ N with
n ≥ C and for any h ∈ H, the set-valued map Bh is lower semicontinuous and
closed with nonempty, convex, compact values in �n

0 ×�n. Moreover Bh is lower

semicontinuous on �+ :=
{(
(ν, p0), p1

)
∈ �0 ×� : (psC)

s∈S0 > 0
}
.

Proof See pp. 432–433 in [19]. �
Remark 4 Also in this case, it is important to observe that

(
(̃xn, b̃n), (̃νn, p̃

0
n), p̃

1
n

)

is a solution to GQVIn (69) if and only if

• for all h ∈ H, (̃xh,n, b̃h,n) is a solution to GVIn

〈−gh,n, xh,n − x̃h,n〉G ≤ 0 ∀(xh,n, bh,n) ∈ Bh((̃νn, p̃n
0), p̃ 1

n), (70)

where gh,n ∈ Gh(̃xh,n)
• (̃νn, p̃n

0) is a solution to VIn
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〈(

P̃ ·
nY
∑

h∈H
b̃h,n,

∑

h∈H
(̃x 0

h,n − e0
h)

)

, (νn, p
0
n)− (̃νn, p̃

0
n)

〉

S+C
≤ 0

∀(νn, p 0
n) ∈ �n

0, (71)

• for all s ∈ S , p̃ s
n is a solution to VIn

〈
∑

h∈H
(̃x s

h,n − esh), p
s
n − p̃ s

n

〉

C

≤ 0 ∀p s
n ∈ �n

s . (72)

For any n ∈ N, with n ≥ C, the solution to GQVIn (69) verifies following
properties.

Theorem 16 Let Assumptions 5 be satisfied. For any n ∈ N such that n ≥ C, let(
(̃xn, b̃n), (̃νn, p̃

0
n), p̃

1
n

)
be a solution to GQVIn (69). Then, one has:

(i) for any h ∈ H, (̃xh,n, b̃h,n) is a solution to maximization problem

max
(xh,n,bh,n)∈Bh((̃νn,p̃ 0

n),p̃
1
n)
uh(xh,n); (73)

(ii) for any h ∈ H,

〈p̃ 0
n, x̃

0
h,n − e0

h〉C + 〈̃νnP̃ ·
nY, b̃h,n〉A = 0, (74)

(〈p̃ s
n, x̃

s
h,n − esh〉C)s∈S = P̃ ·

nY b̃h,n; (75)

(iii)

〈

p̃ 0
n,
∑

h∈H
(̃x0

h,n − e0
h)

〉

C

+
〈

ν̃nP̃
·
nY,

∑

h∈H
b̃h,n

〉

A

= 0, (76)

⎛

⎝

〈

p̃ s
n,
∑

h∈H
(̃xsh,n − esh)

〉

C

⎞

⎠

s∈S
= P̃ ·

nY
∑

h∈H
b̃h,n; (77)

(iv) for any h ∈ H, c ∈ C and s ∈ S0,

0 ≤ x̃sch,n ≤
∑

s∈S0

∑

c∈C

∑

h∈H
esch . (78)
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Proof See pp. 436–437 in [19]. �
Proposition 7 Let Assumptions 4, 5, and 6 be satisfied. Let{(

(̃xn, b̃n), (̃νn, p̃
0
n), p̃

1
n

)}

n∈N be the sequence such that, for all n ∈ N with

n ≥ C,
(
(̃xn, b̃n), (̃νn, p̃

0
n), p̃

1
n

)
is a solution to GQVIn (69). Then,

lim
n→+∞

(
(̃xn, b̃n), (̃νn, p̃

0
n), p̃

1
n

)
=
(
(̃x, b̃), (̃ν, p̃ 0), p̃ 1

)

with p̃ 0 >> 0 and p̃ 1 >> 0.

Proof See pp. 337–341 in [19]. �
Theorem 17 Let (e, Y, u) be a financial economy with incomplete markets and
numeraire assets, which satisfies all Assumptions 4, 5, and 6. Then, (̃x, b̃, p̃, q̃ =
ν̃P̃ ·Y ) is an equilibrium associated with the economy (e, Y, u).

Proof See pp. 441–444 in [19]. �

7 Model with Restricted Participation

In a model with restricted participation, households are allowed to choose portfolios
in a personalized subset Bh of RA; Bh is the financial constrained set of household
h; define B =∏h∈H Bh.

An economy in a financial economy model with numeraire assets and restricted
participation is an element $ := (e, u, Y, B) ∈ R

GH++ ×U×MS,A×B, where MS,A

is the set of S × A dimensional matrices, U is the set of functions uh : RG → R,
and B is the family of all financial constrained sets of households. Each household
maximizes his or her utility under the constraints that in period 0 expenditure for
goods and assets is smaller than the value of wealth in that period and, similarly,
in each state in the future, expenditure for consumption is smaller than wealth
increased by the value of the assets yields. For any h ∈ H, we define the budget
set of h at prices (q, p0, p1) as follows:

�h(q, p
0, p1) : = {(xh, bh) ∈ R

G+ × Bh : 〈p0, x0
h − e0

h〉C + 〈q, bh〉A ≤ 0,

〈ps, xsh − esh〉C − psC〈ys, bh〉A ≤ 0 ∀s ∈ S}

and �(q, p0, p1) :=∏h∈H �(q, p0, p1).

Household h choice variables are his or her consumption vector xh ∈ R
G and

his or her constrained portfolio bh ∈ Bh. We then say that a consumption, portfolio
holding, commodity, and asset price vector is an equilibrium vector for the economy
$ if at those prices, households maximize their utility functions and market clears,
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i.e., commodities demand is smaller than or equal to commodities supply and assets
demand is equal to zero.

The formal definition of equilibrium is presented below.

Definition 3 The vector (̃x, b̃, q̃, p̃) ∈ R
GH ×R

AH ×R
A ×R

G+ is an equilibrium
vector for the economy $ if

1. for any h ∈ H,

max uh (xh) = uh(̃xh)

s.t. (xh, bh) ∈ �h(q̃, p̃
0, p̃1); (79)

2. for any s ∈ S0 and c ∈ C,

∑

h∈H
x̃ sc
h ≤

∑

h∈H
esch if p̃ sc = 0,

∑

h∈H
x̃ sc
h =

∑

h∈H
esch if p̃ sc > 0;

3. for any a ∈ A,

∑

h∈H
b̃ah = 0.

The description of the set of no free lunch good prices and no arbitrage assets
prices is a convenient preliminary step in the process of proving existence of
equilibrium prices: prices outside that set cannot be equilibrium prices. In the case
of unrestricted financial participation and numeraire asset, the set of no-arbitrage
asset prices3 for household h is given by4

Qu(P ·, Y ) :=
{

q ∈ R
A : there is no bh ∈ R

Asuch that

[ −q
P ·Y

]

bh > 0

}

=
{
q ∈ R

A : ∀bh ∈ R
Asuch thatP ·Ybh > 0 we have 〈q, bh〉A > 0

}
.

By using, a form of the Alternative Lemma (for details, see Lemma 14, page 297,
in [33]), one has that

3 In the symbol Qu, the superscript u stays for “unrestricted.”
4 For vectors y, z ∈ R

n, y ≥ z means that for i = 1, . . . , n, yi ≥ zi ; y >> z means that for
i = 1, . . . , n, yi > zi , and y > z means that y ≥ z but y �= z.
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Qu(P ·, Y ) =
{
q ∈ R

A : ∃ν ∈ R
S++suchthat q = νP ·Y

}
.

Observe that if
(
psC

)
s∈S >> 0, then

Qu
(
P ·, Y

) = Qu (Y ) :=
{
q ∈ R

A : ∃ν ∈ R
S++such that q = νY

}
.

In the case of restricted participation, it may be that there is b∗h ∈ R
A such that

[ −q
P ·Y

]

b∗h > 0, but if Bh is bounded in the direction of b∗h, then household h is not

allowed to demand an unbounded amount of that portfolio. Therefore, in the case of
presence of financial restriction, for given

(
psC

)
s∈S ∈ R

S+, Y ∈MS,A, and B ∈ B,
we define the set5 of no-arbitrage asset prices for household h as

Qh(P
·, Y, Bh) :=

{
q ∈ R

A : there is nobh ∈ recBh such that

[ −q
P ·Y

]

bh > 0
}

= {q ∈ R
A : ∀bh ∈ rec Bhsuch thatP ·Ybh > 0 we have 〈q, bh〉A > 0} ,

and the set of no-arbitrage asset prices as

Q(P ·, Y, B) :=
⋂

h∈H
Qh(P

·, Y, Bh)

= {q ∈ R
A : ∀b ∈ ∪h∈H recBhsuch that P ·Yb > 0 we have 〈q, b〉A > 0}.

From an economic viewpoint, prices in Qh are such that if there exists a portfolio
bh that gives a positive return in some state and non-negative return in each state
tomorrow, i.e., such that P ·Ybh > 0, and that can be bought in an unbounded
amount by household h, i.e., bh ∈ recBh, then that portfolio must cost a positive
amount today, i.e., 〈q, bh〉A > 0. Moreover, define

Qh(Y,Bh) :=
{
q ∈ R

A : there is nobh ∈ recBh such that

[−q
Y

]

bh > 0
}
,

Q(Y, B) :=
⋂

h∈H
Qh(Y,Bh).

5 recBh is the recession cone of Bh, which is defined as follows recBh ={
y ∈ R

A : ∀x0 ∈ Bh,∀λ ≥ 0, x0 + λy ∈ Bh

}
.
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Remark 5 For any Y ∈ MS,A, B ∈ B, and
(
psC

)
s∈S ∈ R

S++, one has that
Qh(Y,Bh) = Qh(P

·, Y, Bh).

From now on, we make the following Assumptions.

Assumption 7 For any h ∈ H, eh >> 0.

Assumption 8 For any h ∈ H, the utility function uh is

1. continuous and quasi-concave;
2. strictly increasing in the numeraire good sC, for every s ∈ S , i.e.,

∀x̂h, ̂̂xh ∈ R
G+ : x̂h ≥ ̂̂xh with x̂sCh > ̂̂x

sC
h ⇒ uh(̂xh) > uh(̂̂xh);

3. locally non-satiated in state 0, i.e.,

∀xh = (x0
h, x

1
h, . . . , x

S
h ) ∈ R

G+ and ∀ε > 0, ∃x̂h = (̂x0
h, x

1
h, . . . , x

S
h ) ∈ R

G+

such that ‖x̂0
h − x0

h‖ < ε and uh(̂xh) > uh(xh) .

Assumption 9 For every s ∈ S0 and c ∈ C, ∃h′ ∈ H such that uh′ is strictly
increasing in sc.

Assumption 10 For any h ∈ H,

1. Bh is a convex and closed subset of RA and 0A ∈ Bh;
2. KerY∩rec Bh = {0A};
3. for any p ∈ R

G+ and for any q ∈ Cl(Qh (P
·, Y, B))\ {0A}, there exists bh ∈ Bh

such that 〈−q, bh〉A > 0.

Assumption 7 is a survival assumption on the commodity side of the economy:
it helps ensuring households are able to buy, and consume, some good in each state
of the world.

Assumption 8.1 is relatively general and standard in the general equilibrium
literature.

Assumption 8.2 is based on the fact that, by construction of the model,
households agreed upon choosing the numeraire good as the unit of measure of
asset yields and therefore “they strongly like that good.”

Assumption 8.3 simply says that households care about consumption in period
zero.

Assumption 9 stresses the fact that each good is appreciated at least by one
household.

Assumption 10.1 is quite general and implies that households are allowed to stay
out of the financial market.

Assumption 10.2 is crucial in several steps in the proofs below and it is implied by
any of the following conditions: Bh is bounded (which implies that rec Bh = {0A});
there are no redundant assets, i.e., rank Y = A (which implies that KerY = {0A}).
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Assumption 10.3 is a survival assumption on the financial side of the economy:
it ensures that even if the available endowment at time zero has no value, then there
exists an admissible portfolio that generates positive wealth in state zero itself.

Several reasonable conditions are indeed sufficient for Assumption 10.3 (see
Proposition 2, page 776, in [3]). For example, it is enough that for any households
there is a lower bond on some asset demand, or the origin of RA is an interior point
of the portfolio set.

We now define ρ := ∑s∈S
∑

a∈A ysa . The proposition below says that there is
no loss of generality in assuming ρ ≥ 0, a condition that is crucial in the arguments
below.

Let U∗ be the set of utility functions satisfying Assumptions 8 and 9; let F6

be the family of pairs (Y, B) ∈ MS,A × B satisfying Assumptions 10 and define
E = R

GH++ × U∗ × F to be the set of economies satisfying all our maintained
assumptions.

Proposition 8 For any α ∈ R\ {0},
1. $ = (e, u, Y, B) ∈ E ⇔ $α :=

(
e, u, αY,

(
B
α

))
∈ E;

2.
(
x̃, b̃, q̃, p̃

)
is an equilibrium for$ if and only if

(
x̃, b̃

α
, α q̃, p̃

)
is an equilibrium

for $α .

Proof 1. Economy $ satisfies Assumptions 7, 8, 9, and 10.1 and 10.2 if
and only if $α satisfies Assumptions 7, 8, and 9 and 10.1 and 10.2. About
Assumption 10.3, observe what follows. We assume that economy $ satisfies 10.3.

Taken q̂ ∈ Cl
(
Qh(P

·, αY, Bh
α
)
)
\{0A}, we have that q̂

α
∈ Cl (Qh(P

·, Y, Bh))\{0A}.
Then, by Assumption 10.3, there exists bh ∈ Bh such that 〈 q̂

α
, bh〉A < 0, that is

equivalent to have there exists b̂h = bh
α
∈ Bh

α
such that 〈̂q, b̂h〉A < 0, as desired.

The proof of the opposite implication is symmetric to the above one.

2. Since (̃xh, b̃h) ∈ �h(q̃, p̃
0, p̃ 1) if and only if

(
x̃h,

b̃h
α

)
∈ �h(α q̃, p̃

0, p̃ 1),

then the desired result holds true. �
Remark 6 Thanks to Proposition 8, in order to prove existence of equilibria, we can
assume that ρ ≥ 0. Indeed, let $ = (e, Y, B, u) be an economy with associated
ρ being strictly negative and consider the economy $−1 := (e,−Y,−B, u) , whose
associated ρ is strictly positive. Then, from Proposition 8, if (̃x, b̃, q̃, p̃) is an
equilibrium for$−1, then (̃x,−b̃,−q̃, p̃) is an equilibrium for the original economy
$.

The following proposition gives some preliminary properties of solutions to the
household h’s maximization problem.

Proposition 9 Let Assumption 8 be satisfied. If for any h ∈ H, (̃xh, b̃h) is a solution
to maximization problem (79) at prices (q̃, p̃) ∈ R

A × R
G+, then

6 F stays for financial structure.
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1. p̃ 0 > 0, (p̃ s C)s∈S >> 0;
2. for any h ∈ H,

〈p̃ 0, x̃0
h − e0

h〉C + 〈̃q, b̃h〉A = 0 ,

〈p̃ s , x̃sh − esh〉C − p̃ sC〈ys, b̃h〉A = 0, ∀s ∈ S ;

3. the following so-called S + 1 Walras laws hold true

〈

p̃ 0,
∑

h∈H
(̃x0

h − e0
h)

〉

C

+
〈

q̃,
∑

h∈H
b̃h

〉

A

= 0 ,

〈

p̃ s ,
∑

h∈H
(̃xsh − esh)

〉

C

− p̃ sC

〈

ys,
∑

h∈H
b̃h

〉

A

= 0, ∀s ∈ S ;

4. q̃ ∈ Q(P ·, Y, B) = Q(Y,B).

We consider the following price sets:

�0 :=
{

(q, p0) ∈ Cl (Q (Y,B))× R
C+ :

∑

c∈C
p0c +

∑

a∈A
qa = 1+ ρ

}

,

�s :=
{

ps ∈ R
C+ :
∑

c∈C
psc = 1

}

, �1 :=
∏

s∈S
�s, � :=

∏

s∈S0

�s .

The following proposition describes useful properties of the budget set-valued
function �h : � ⇒ R

G+ × Bh.

Proposition 10 Let Assumptions 10.1 and 10.2 be satisfied. Then, for any h ∈ H,
the set-valued function �h is

1. nonempty and convex valued;
2. closed;
3. compact valued for any

(
q, p0, p1

) ∈ � such that p ∈ R
G++ and q ∈∈ Q(Y,B);

4. lower semicontinuous for any
(
q, p0, p1

) ∈ � such that
(
psC

)
s∈S0 >> 0;

5. upper semicontinuous for any
(
q, p0, p1

) ∈ � such that p ∈ R
G++ and q ∈

Q(Y,B).7

7 Recall that, from Remark 5, if
(
psC

)
s∈S ∈ R

S++, then Qh(Y,Bh) = Qh(P
·, Y, Bh).
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First of all, we observe that, given our assumptions on the utility functions, the no-
free lunch good price set is R

G++. Now, we consider a non-zero lower bound on
prices and to this aim we define the following price sets:

�n
0 :=

{

(q, p0) ∈ �0 : p0 ≥ 1

n
1C, q ∈

{
1

n
1SY

}

+ Cl (∈ Q(Y,B)) , q ≥ −n1A
}

,

�n
s :=

{

ps ∈ �s : ps ≥ 1

n
1C

}

, �n
1 :=

∏

s∈S
�n
s , and �n :=

∏

s∈S0

�s.

Proposition 11 Let
(
q, p0, p1

) ∈ �n be given; the following properties hold
true:

1. Q(P ·, Y, B) = Q(Y,B) := Q andQu (P ·, Y ) = Qu (Y ) := Qu;
2. for any n ∈ N, one has

1

n
1SY ∈ Qu ⊆ Q ⊆ Cl (Q) ,

{
1

n
1SY

}

+ Cl (Q) ⊆ Cl (Q)

and 1SY ∈
{1

n
1SY

}
+ Cl (Q) ;

3. let {qn}n∈N be a sequence such that lim
n→+∞ qn = q and q ∈ Q. Then, there exists

ν ∈ N such that for all n > ν one has qn ∈
{

1
n
1SY

}
+ Cl (Q);

4. q ∈ Q and p0 ∈ R
S++.

Proof See p. 17 in [20]. �

Proposition 12 For any n ≥ C and n2 > max
a∈A

{

−
∑

s∈S
ysa

}

, one has:

1. �n
0 is nonempty, convex, compact;

2. �n
s is nonempty, convex, compact for any s ∈ S;

3. �n is nonempty, convex, compact.

Proof See pp. 18–19 in [20]. �
Now, for any h ∈ H, we consider Gh : RG ⇒ R

G such that

Gh(xh) = conv
(
N>
h (xh) ∩ S(0, 1)

)
∀xh ∈ R

G.

Let f C
C be the element of the canonical base of RC with 1 in the component C.

Now, we introduce the following GQVIn:

Find
(
(̃xn, b̃n), (̃qn, p̃

0
n, p̃

1
n)
)
∈ �(̃qn, p̃

0
n, p̃

1
n) × �n such that there exists

gn = (gh,n)h∈H ∈∏h∈H Gh(̃xh,n) with
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〈−gn, xn − x̃n〉GH +
〈
∑

h∈H
b̃h,n, qn − q̃n

〉

A

+
〈
∑

h∈H
(̃x 0

h,n − e0
h), p

0
n − p̃ 0

n

〉

C

+
∑

s∈S

〈
∑

h∈H
(̃xsh,n − esh − f C

C

〈
ys, b̃h

〉
A
), psn − p̃ s

n

〉

C

≤ 0,

∀
(

(xn, bn), (qn, p
0
n, p

1
n)

)

∈ �(̃qn, p̃
0
n, p̃

1
n)×�n. (80)

Remark 7

(

(̃xn, b̃n), (qn, p̃
0
n, p̃

1
n)

)

is a solution to GQVIn (80) if and only if,

simultaneously we have,
for any h ∈ H,

〈−gh,n, xh,n − x̃h,n〉G ≤ 0, ∀(xh,n, bh,n) ∈ �h(q̃n, p̃
0
n, p̃

1
n); (81)

〈
∑

h∈H
b̃h,n, qn − q̃n

〉

A

+
〈
∑

h∈H
(̃x 0

h,n − e0
h), p

0
n − p̃ 0

n

〉

C

≤ 0 ∀(qn, p0
n) ∈ �n

0;
(82)

for any s ∈ S,
〈
∑

h∈H
(̃xsh,n − esh − f C

C

〈
ys, b̃h

〉
A
), p s

n − p̃ s
n

〉

C

≤ 0, ∀psn ∈ �n
s . (83)

Theorem 18 Let Assumptions 7, 8, and 10 hold true. For any n ∈ N, with n ≥ C

and n2 > maxa∈A{−
∑

s∈S ysa}, GQVIn (80) admits at least one solution.

Proof To get the desired result, we apply Theorem 6. Observe as the variational
inequality in (80) has a simple structure, made up of two parts. A first one, involving
(x, b), relates to the households’ maximization problems, and the second one,
involving (q, p0, p1) to market clearing conditions.

Consistently with Definition 6, the variational problem (80) represents a gener-
alized quasi-variational inequality associated with

C := conv
(
�
(
�n
))×�n

and, for any
(
(xn, bn), (qn, p

0
n, p

1
n)
)
∈ �(qn, p

0
n, p

1
n)×�n,
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S
(
(xn, bn), (qn, p

0
n, p

1
n)
)
:= �

(
qn, p

0
n, p

1
)
×�n

�
(
(xn, bn), (qn, p

0
n, p

1
n)
)
:=

−
(
−
∏

h∈H
Gh(xh,n),

∑

h∈H
bh,n,

∑

h∈H
(x0
h,n−e0

h), (
∑

h∈H
(xsh,n−esh−f CC 〈ys, b̃h〉A))s∈S

)
.

Under our Assumptions, we have that all Assumptions of Theorem 6 are satisfied
(see proof p. 20 in [20]), then GQVIn (80) associated with C, S, and � admits at
least a solution. �
Theorem 19 Let Assumption 8 be satisfied. For any n ∈ N such that n ≥ C, n >

maxa∈A
{−∑s∈S ysa

}
, and n2 > max

a∈A

{

−
∑

s∈S
ysa

}

, let
(
(̃xn, b̃n), (̃qn, p̃

0
n, p̃

1
n)
)

be a solution to GQVIn (80). Then, one has

(i) for any h ∈ H, (̃xh,n, b̃h,n) is a solution to maximization problem

max
(xh,n,bh,n)∈�h((q̃n,p̃ 0

n),p̃
1
n)
uh(xh,n); (84)

(ii) for any h ∈ H and s ∈ S ,

〈p̃ 0
n, x̃

0
h,n − e0

h〉C + 〈̃qn, b̃h,n〉A = 0, (85)

〈p̃ s
n, x̃

s
h,n − esh〉C = p̃ sC

n 〈ys, b̃h,n〉; (86)

(iii) for any s ∈ S ,

〈

p̃ 0
n,
∑

h∈H
(̃x0

h,n − e0
h)

〉

C

+
〈

q̃n,
∑

h∈H
b̃h,n

〉

A

= 0, (87)

〈

p̃ s
n,
∑

h∈H
(̃xsh,n − esh)

〉

C

= p̃ sC
n

〈

ys,
∑

h∈H
b̃h,n

〉

; (88)

(iv) for any h ∈ H, c ∈ C and s ∈ S0,

0 ≤ x̃sch,n ≤
∑

c∈C

∑

h∈H
e0c
h + C

∑

s∈S

∑

c∈C

∑

h∈H
esch . (89)

Proof Thanks to Remark 7, for any h ∈ H, (̃xh,n, b̃h,n) is a solution to GVIn (81),
(q̃n, p̃

0
n) is a solution to (82), and for all s ∈ S, p̃sn is a solution to (83).
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(i). (̃xh,n, b̃h,n) is a solution to maximization problem (84).
(ii) and (iii). Both statements follow from the fact that (̃xh,n, b̃h,n) is a solution

to maximization problem (84) and from Proposition 9.
(iv). From (87), inequality (82) becomes

〈
∑

h∈H
b̃h,n, qn

〉

A

+
〈
∑

h∈H
(̃x 0

h,n − e0
h), p

0
n

〉

C

≤ 0 ∀(qn, p0
n) ∈ �n

0; (90)

and, from (86), for any s ∈ S , inequality (83 ) becomes

〈
∑

h∈H
(̃xsh,n − esh), p

s
n

〉

C

− psCn

〈

ys,
∑

h∈H
b̃h,n

〉

A

≤ 0 ∀psn ∈ �n
s ,

that is,

〈
∑

h∈H
(̃xsh,n − esh),

p s
n

psCn

〉

C

−
〈

ys,
∑

h∈H
b̃h,n

〉

A

≤ 0, ∀psn ∈ �n
s . (91)

Summing up (90) and (91), for any (qn, p0
n, p

1
n) ∈ �n, one has

〈
∑

h∈H
b̃h,n, qn

〉

A

+
〈
∑

h∈H
(̃x 0

h,n − e0
h), p

0
n

〉

C

+
∑

s∈S

〈
∑

h∈H
(̃xsh,n − esh),

p s
n

psCn

〉

C

−
〈
∑

s∈S
ys,
∑

h∈H
b̃h,n

〉

A

≤ 0 . (92)

Now, choose qn = 1SY and p̂ sc = 1

C
8 for any c ∈ C and s ∈ S0. From

Proposition 11.2, 1SY ∈ { 1
n
1SY }+Cl(Q) ; since n > maxa∈A

{−∑s∈S ysa
}
, qn =∑

s∈S ys ≥ −n1A, and
∑

a∈A qan = ρ. Hence, (qn, p̂0
n, p̂

1
n) ∈ �n and replacing

(qn, p
0
n, p

1
n) with (1SY, p̂0

n, p̂
1
n) in (92),

1

C

∑

c∈C

∑

h∈H
(̃x0c

h,n − e0c
h )+

∑

s∈S

∑

c∈C

∑

h∈H
(̃xsch,n − esch ) ≤ 0.

Then,

8 Observe that 1
C
≥ 1

n
since by assumption n ≥ C.
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1

C

∑

c∈C

∑

h∈H
x̃0c
h,n +

∑

s∈S

∑

c∈C

∑

h∈H
x̃sch,n ≤

1

C

∑

c∈C

∑

h∈H
e0c
h +

∑

s∈S

∑

c∈C

∑

h∈H
esch .

Hence, being C > 1, for any s ∈ S0, c ∈ C, and h ∈ H, we have

0 ≤ x̃sch,n ≤
∑

s∈S0

∑

c∈C

∑

h∈H
x̃sch,n ≤

∑

c∈C

∑

h∈H
e0c
h ++C

∑

s∈S

∑

c∈C

∑

h∈H
esch .

�
Proposition 13 Let Assumptions 7, 8, 9, and 10.3 be satisfied.

Let
{(
(̃xn, b̃n), (̃qn, p̃

0
n, p̃

1
n)
)}

n∈N be the sequence such that, for any n ∈ N

with n ≥ C and n2 > max
a∈A

{

−
∑

s∈S
ysa

}

,
(
(̃xn, b̃n), (̃qn, p̃

0
n, p̃

1
n)
)
is a solution to

GQVIn (80). Then, there exists a subsequence converging to ((̃x, b̃), (̃q, p̃ 0, p̃ 1))

such that (q̃, p̃ 0, p̃ 1) ∈ � with p̃ >> 0, q̃ ∈ Q and (̃x, b̃) ∈ �(̃q, p̃ 0, p̃ 1).

Proof See pp. 22–26 in [20]. �
Theorem 20 Let Assumptions 7, 8, 9, and 10 be satisfied. Then, for any financial
economy $ ∈ E , (̃x, b̃, q̃, p̃) is an equilibrium vector with restricted participation
and numeraire assets.

Proof See pp. 26–29 in [20]. �
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The Strong Convergence of
Douglas-Rachford Methods for the Split
Feasibility Problem

Qiao-Li Dong, Lulu Liu, and Themistocles M. Rassias

Abstract In this article, we introduce several Douglas-Rachford method to solve
the split feasibility problems (SFP). Firstly, we propose a new iterative method
by combining Douglas-Rachford method and Halpern iteration. The stepsize is
determined dynamically which does not need any prior information about the
operator norm. A relaxed version is presented for the SFP where the two closed
convex sets are both level sets of convex functions. The strong convergence of
two proposed methods is established under standard assumptions. We also propose
an iterative method by combining Douglas-Rachford method with Haugazeau
algorithm, and show its strong convergence. The numerical examples are presented
to illustrate the advantage of our methods by comparing with other methods.

1 Introduction

In this article, we consider the split feasibility problem (SFP) which is formulated
as finding a point x∗ with the property

x∗ ∈ C and Ax∗ ∈ Q, (1)

where C and Q are the nonempty closed convex subsets of the real Hilbert spaces
H1 and H2, respectively, and A : H1 → H2 is a bounded linear operator. The SFP
was introduced by Censor and Elfving [5] for inverse problems which arise from
phase retrievals and medical image reconstruction [3]. Recently, it was extended to
systems biology [25] and electricity production [26].
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Throughout this article, we assume that SFP (1) is consistent, i.e., its solution set,
denoted by

Γ = {x | x ∈ C and Ax ∈ Q},

is nonempty. It is easy to see that the SFP equals to the following constrained
optimization

min
x∈C f (x), (2)

where

f (x) = 1

2
‖(I − PQ)Ax‖2.

Recall that the objective function f is convex, differentiable and has a Lipschitz
gradient given by

∇f (x) = A∗(I − PQ)Ax,

whose Lipschitz constant is ‖A‖2.

One of the simplest and popular methods for the problem (2) is the gradient-
projection method

xk+1 = PC(x
k − λk∇f (xk)), (3)

where λk is the stepsize. There are three ways to determine the stepsize λk in the
algorithm (3). The first one is to take the stepsize λk ∈ (0, 2

‖A‖2 ) which depends on

the operator (matrix) norm ‖A‖ (see [3, 4]). The second one is to select the stepsize
λk > 0 self-adaptively by adopting Armijo-like (see [28]) searches:

λk‖∇f (xk)− ∇f (yk)‖ ≤ μ‖xk − yk‖, ∀μ ∈ (0, 1).

The third one introduced by López et al. [19] is to dynamically determine the
stepsize by

λk = ρk
f (xk)

‖∇f (xk)‖2
, (4)

where ρk ∈ (0, 4).
The algorithm (3) was firstly introduced to solve the SFP by Byrne [3, 4] and

referred as CQ algorithm since it involves the (metric) projections onto the sets C
and Q. The CQ algorithm has received a great deal of attention by many authors,
who improved it in various ways; see, e.g., [6, 9, 12, 15, 20, 21, 27].
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Under the simple assumptions, it is easy to show that the CQ algorithm with
different stepsizes converges weakly to a solution of the SFP. However, the strong
convergence is often much more desirable than the weak convergence in many
problems that arise in infinite dimensional spaces (see [2] and the references
therein). So, attempts have been made to modify CQ algorithm so that the strong
convergence is guaranteed. By combining Haugazeau’s method [13] and CQ
algorithm, and using the stepsize given in (4), López et al. [19] introduced the
following modification of CQ algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk = PC(x
k − λk∇f (xk)),

Sk =
{

z ∈ H1 : ‖yk − z‖2 ≤ ‖xk − z‖2 − ρk(4− ρk)
f 2(xk)

‖∇f (xk)‖2

}

,

Tk =
{
z ∈ H1 : 〈x0 − xk, z− xk〉 ≤ 0

}
,

xk+1 = PSk∩Tk (x0).

and showed that the sequence {xk}k∈N converges strongly to PΓ x
0. This type of

modification may cost much computation since it involves the projection onto the
intersection of two half-spaces Sk and Tk . Another type of modifications in [19] is
combining CQ algorithm with Halpern iteration as following

xk+1 = βku+ (1− βk)PC(x
k − λk∇f (xk)), (5)

where {βk}k∈N ⊂ [0, 1] and the stepsize λk is given in (4). The algorithm (5)
strongly converges to PΓ u provided that {βk}k∈N satisfies limk→∞ βk = 0 and∑∞

k=1 βk = ∞ and ρk is far away from 0 and 4.
By combining Polyak’s gradient method and Haugazeau’s method, Wang [24]

proposed the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk = xk − λk

[
(xk − PCx

k)+ A∗(I − PQ)Ax
k
]
,

Sk =
{
z ∈ H1 : 〈yk − z, xk − yk〉 ≥ 0

}
,

Tk =
{
z ∈ H1 : 〈xk − x0, z− xk〉 ≥ 0

}
,

xk+1 = PSk∩Tk (x0),

(6)

where λk ∈ (0, 1
1+‖A‖2 ) or λk = ‖xk − PCx

k‖2 + ‖(I − PQ)Ax
k‖2

2‖(xk − PCx
k)+ A∗(I − PQ)Ax

k‖2 and showed

that the sequence {xk}k∈N converges strongly to PΓ x0. By putting Polyak’s gradient
method and Halpern iteration together, Wang [23] introduced an algorithm as
follows:
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xk+1 = βku+ (1− βk)
[
xk − λk((x

k − PCk
xk)+ A∗(I − PQk

)Axk)
]
, (7)

where λk = ρk
‖xk − PCk

xk‖2 + ‖(I − PQk
)Axk‖2

2‖(xk − PCk
xk)+ A∗(I − PQk

)Axk‖2 , ρk ∈ (0, 4) and Ck and

Qk are half-spaces including C and Q, respectively. The algorithm (7) strongly
converges to PΓ u under the similar assumptions with the algorithm (5) for {βk}k∈N
and {ρk}k∈N.

The algorithms (5) and (7) are Halpern-type iteration and their convergence is
generally slow due to the strict conditions on the parameters βk . This results in sel-
dom applications of Halpern iteration method in actual computation. Recently, He et
al. [14] presented two optimal choices of the parameters βk and showed that Halpern
iteration method with their choices of βk highly improves the convergence rate of
Halpern iteration method with the general choice through numerical examples. The
results in [8] also support this conclusion.

Douglas-Rachford method was originally introduced in [10] to solve nonlinear
heat flow problems and later Lions and Mercier [18] extended it to two closed
convex sets with nonempty intersection. It is regarded as one of the most classical
algorithms for finding zeroes of sums of maximally monotone operators (see, e.g.,
[17]). Very recently, Douglas-Rachford method was used to solve the SFP by
transforming the SFP into an optimization problem and linearizing the minimization
problem of the regularization for f (x) (see [7]) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

yk+1 := xk − λk∇f (xk),
zk+1 := PC(2y

k+1 − xk),

xk+1 := xk + α(zk+1 − yk+1),

(8)

where

λk :=
⎧
⎨

⎩

γ
f (xk)

‖∇f (xk)‖2 , if ∇f (xk) �= 0,

0, otherwise,
(9)

and γ ∈ (0, 2). Douglas-Rachford method was shown to have good numerical
performance comparing with other methods.

The aim of this paper is to present some Douglas-Rachford type algorithms with
strong convergence. Firstly, we introduce a new algorithm by combining Douglas-
Rachford method and Halpern iteration, where the stepsize does not involves L.
Secondly, a relaxed variant of the proposed algorithm is presented and the stepsize is
selected by a similar way. The strong convergence of the algorithms is shown under
the standard conditions. Thirdly, we propose an iterative algorithm by combining
Douglas-Rachford method and Haugazeau algorithm. Finally, a numerical example
is provided to illustrate that the proposed algorithms outperform the algorithms (5)
and (7).
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The paper is organized as follows: In Sect. 2, we recall some concepts and
lemmas which will be used in the proof of main results and, in Sect. 3, we present
Halpern-type method and prove its strong convergence. The relaxed version of
Halpern-type method is introduced and shown to strongly converge to a solution
of the SFP. In Sect. 4, we present a Haugazeau-type algorithm and show its
convergence. Finally, in Sect. 5, a preliminary numerical experiment is provided
to illustrate the behavior of the proposed methods.

2 Preliminaries

Let H be a Hilbert space and D be a nonempty closed convex subset of H . We
use the notation:
• ⇀ for weak convergence and → for strong convergence;
• ωw(x

k) = {x : ∃xkl ⇀ x} denotes the weak ω-limit set of {xk}k∈N.
The following inequalities will be used for the main results:

‖αx + (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x − y‖2, (10)

for all x, y ∈ H .
For each point x ∈ H , there exists a unique nearest point in D, denoted by

PD(x). That is,

‖x − PD (x)‖ ≤ ‖x − y‖ for all y ∈ D. (11)

The mapping PD : H → D is called the metric projection of H onto D.
Next two lemmas give the fundamental properties of the metric projection.

Lemma 1 For any x ∈ H and z ∈ D, then z = PDx if and only if

〈x − z, y − z〉 ≤ 0, ∀y ∈ D.

Lemma 2 For any x, y ∈ H and z ∈ D, the following hold:

(i) ‖PD(x)− PD(y)‖2 ≤ 〈PD(x)− PD(y), x − y〉;
(ii) ‖PD(x)− z‖2 ≤ ‖x − z‖2 − ‖PD(x)− x‖2;

(iii) 〈(I − PD)x − (I − PD)y, x − y〉 ≥ ‖(I − PD)x − (I − PD)y‖2.

It follows from Lemma 2 (iii) that

〈x − PDx, x − z〉 ≥ ‖x − PDx‖2, ∀x ∈ H , ∀z ∈ D. (12)

Recall that a mapping T : H → H is called to be nonexpansive if

‖T x − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ H ,
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and firmly nonexpansive

‖T x − Ty‖2 ≤ 〈T x − Ty, x − y〉, ∀x, y ∈ H .

It is obvious that a firmly nonexpansive mapping is nonexpansive. Lemma 2 (i)
implies that PD and I − PD are firmly nonexpansive.

Next lemma shows that the nonexpansive mappings are demiclosed at 0.

Lemma 3 ( [1, Theorem 4.27]) Let D be a nonempty closed convex subset of H
and T : D → H be a nonexpansive mapping. Let {xk}k∈N be a sequence inD and
x ∈ H such that xk ⇀ x and T xk − xk → 0 as k →+∞. Then x ∈ Fix(T ).

3 Halpern-Type Algorithm

In this section, we introduce a Halpern-type algorithm by combining Douglas-
Rachford method with Halpern iteration and establish the strong convergence of
the iterative sequence generated by the proposed method.

Before presenting the method, we assume the sequence of parameters {βk} ⊆
[0, 1] satisfying

(H1) lim
k→∞βk = 0 and (H2)

∞∑

k=1

βk = ∞.

Now we present the first iterative algorithm.

Algorithm 1
Step 0. Input k := 0, x0 ∈ H1 and α ∈ (0, 2).
Step 1. Generate xk+1 by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yk+1 := xk − λk∇f (xk),
zk+1 := PC(2y

k+1 − xk),

wk+1 := xk + α(zk+1 − yk+1),

xk+1 := βku+ (1− βk)w
k+1,

(13)

where

λk := γ
f (xk)

‖∇f (xk)‖2
, (14)

and γ ∈ (0, 2).
Step 2. If ∇f (xk) = 0 and yk+1 = zk+1, then terminate. Otherwise, set k := k + 1 and go to
Step 1.
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The iterative scheme (13) can be rewritten as following:

xk+1 =βku+ (1− βk)
[
xk + α(zk+1 − yk+1)

]

=βku+ (1− βk)

[(

1− α

2

)

xk + α

2
(2λk∇f (xk)− xk)

+ α

2
2PC(x

k − 2λk∇f (xk))
]

=βku+ (1− βk)

[(

1− α

2

)

xk + α

2
(2PC(v

k)− vk)

]

,

(15)

where

vk = xk − 2λk∇f (xk). (16)

In Algorithm 1, we assume that the projections PC and PQ are easily calculated.
However, in some cases, it is impossible or needs too much work to compute
the projection. To deal with this situation, we introduce the relaxed method, in
which the projections onto the approximated half-spaces are adopted in place of
the projections onto C and Q (see, for example, [11]).

In this section, we consider a general case of the SFP (1), where C and Q are
given by level sets of convex functions. Throughout this section, we assume that
each c : H1 → R and q : H2 → R are convex functions and the sets C and Q are
given, respectively, by

C = {x ∈ H1 : c(x) ≤ 0}, and Q = {y ∈ H2 : q(y) ≤ 0}.

We assume that ∂c and ∂q are bounded operators (i.e., bounded on any bounded
set).

Define the sets Ck and Qk by the following half-spaces:

Ck =
{
x ∈ H1 : c(xk)+ 〈ξk, x − xk〉 ≤ 0

}
,

where ξk ∈ ∂c(xk), and

Qk =
{
y ∈ H2 : q(Axk)+ 〈ηk, y − Axk〉 ≤ 0

}
,

where ηk ∈ ∂q(Axk).
By the definition of the subgradient, it is clear that C ⊆ Ck and Q ⊆ Qk . The

projections onto Ck and Qk are easy to compute since Ck and Qk are half-spaces.
Define fk(x) := 1

2‖(I − PQk
)A(x)‖2 and then ∇fk(x) := AT (I − PQk

)A(x).
Below we introduce the relaxed method.
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Algorithm 2
Step 0. Input k := 0, x0 ∈ H1 and α ∈ (0, 2).
Step 1. Generate xk+1 by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yk+1 := xk − λk∇fk(xk),
zk+1 := PCk

(2yk+1 − xk),

wk+1 := xk + α(zk+1 − yk+1),

xk+1 := βku+ (1− βk)w
k+1,

(17)

where

λk := γ
fk(x

k)

‖∇fk(xk)‖2
, (18)

and γ ∈ (0, 2).
Step 2. If ∇fk(xk) = 0 and yk+1 = zk+1, then terminate. Otherwise, set k := k + 1 and go to
Step 1.

Before establishing convergence of Algorithm 1, we need to ascertain the validity
of the stopping criterion used in Step 2.

Lemma 4 If ∇f (xk) = 0 and yk+1 = zk+1 for some k, then xk is a solution of the
SFP (1).

Proof Suppose ∇f (xk) = 0. Then yk+1 = xk and zk+1 = PC(x
k). Using

yk+1 = zk+1, we get xk = PC(x
k) and therefore xk ∈ C. Since I − PQ is firmly

nonexpansive, then we have

〈∇f (xk), xk − x∗〉 =〈(I − PQ)Ax
k,Axk − Ax∗〉

=〈(I − PQ)Ax
k − (I − PQ)Ax

∗, Axk − Ax∗〉
≥‖(I − PQ)Ax

k‖2 = 2f (xk).

(19)

By (19) and ∇f (xk) = 0, we get f (xk) = 0. Then Axk = PQ(Ax
k), i.e., Axk ∈ Q.

Therefore, xk is a solution of the SFP (1).

Next we present two lemmas which play important role in the proof of the main
results.

Lemma 5 The sequence {xk}k∈N generated by Algorithm 1 is bounded.

Proof Let x∗ = PΓ u. Using (12), we have

〈vk − PC(v
k), vk − x∗〉 =〈(vk − PC(v

k))− (x∗ − PC(x
∗)), vk − x∗〉

≥‖vk − PC(v
k)‖2.

(20)
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From (20), it follows

‖2PC(v
k)− vk − x∗‖2

= ‖2(PC(v
k)− vk)+ (vk − x∗)‖2

= 4
[
‖PC(vk)− vk‖2 − 〈vk − PC(v

k), vk − x∗〉
]
+ ‖vk − x∗‖2

≤ ‖vk − x∗‖2.

(21)
By the definition of vk , we get

‖vk − x∗‖2 = ‖(xk − x∗)− 2λk∇f (xk)‖2

= ‖xk − x∗‖2 + 4λ2
k‖∇f (xk)‖2 − 4λk〈∇f (xk), xk − x∗〉

≤ ‖xk − x∗‖2 + 4λ2
k‖∇f (xk)‖2 − 8λkf (x

k)

= ‖xk − x∗‖2 − 4γ (2− γ )
f 2(xk)

‖∇f (xk)‖2
,

(22)

where the inequality comes from (19) and the last equality originates from (14).
By (15),

‖xk+1 − x∗‖ ≤βk‖u− x∗‖ + (1− βk)

∥
∥
∥
∥
α

2
(2PC(v

k)− vk)+
(

1− α

2

)

xk − x∗
∥
∥
∥
∥

≤βk‖u− x∗‖ + (1− βk)
α

2

∥
∥
∥
∥2PC(v

k)− vk − x∗
∥
∥
∥
∥

+ (1− βk)

(

1− α

2

)

‖xk − x∗‖.
(23)

Combining (21)–(23), we obtain

‖xk+1 − x∗‖ ≤βk‖u− x∗‖ + (1− βk)‖xk − x∗‖
≤max{‖u− x∗‖, ‖xk − x∗‖}.

Furthermore, we know

‖xk+1 − x∗‖ ≤ max{‖u− x∗‖, ‖x0 − x∗‖}.

Thus, {xk}k∈N is bounded.

Lemma 6 Let the sequence {xk}k∈N be generated by Algorithm 1. If
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lim
k→∞

f 2(xk)

‖∇f (xk)‖2 = 0 (24)

and

lim
k→∞‖2PC(v

k)− vk − xk‖ = 0, (25)

then ωw(xk) ⊆ Γ .

Proof Since

‖∇f (xk)‖2 ≤ 2‖A‖2f (xk),

from (24), we get

lim
k→∞ f (xk) = 0, (26)

and consequently

lim
k→∞‖∇f (x

k)‖ = 0.

From (24) and the definition of λk , we get

lim
k→∞ λ2

k‖∇f (xk)‖2 = 0. (27)

Combining (16) and (27) above, we get

lim
k→∞‖v

k − xk‖ = 0. (28)

Since ‖PC(vk) − vk‖ ≤ 1
2

(‖2PC(vk)− vk − xk‖ + ‖xk − vk‖) , using (25)
and (28), we have

lim
k→∞‖PC(v

k)− vk‖ = 0. (29)

Since PC is nonexpansive, by (28) and (29), we get

lim
k→∞‖PC(x

k)− xk‖ = 0. (30)

Because {xk}k∈N is bounded, we can take x̂ ∈ ωw(x
k) and let {xkl }l∈N be a

subsequence of {xk}k∈N weakly converging to x̂. By Lemma 3 and (30), we get
x̂ ∈ C. From (26) and the weak lower semicontinuity of f , it follows that
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0 ≤ f (x̂) ≤ lim inf
l→∞ f (xkl ) = lim

k→∞ f (xk) = 0. (31)

Hence f (x̂) = 0, i.e., Ax̂ ∈ Q. Therefore, ωw(xk) ⊆ Γ .

In the proof of the main results, we also need the following technical lemma from
[16].

Lemma 7 Assume {sk}k∈N is a sequence of nonnegative real numbers such that

sk+1 ≤(1− βk)s
k + βkδ

k, k ≥ 0,

sk+1 ≤sk − ηk + γ k, k ≥ 0,

where {βk}k∈N is a sequence in (0, 1), {ηk}k∈N is a sequence of nonnegative real
numbers, and {δk}k∈N and {γ k}k∈N are two sequences in R such that

(i)
∑∞

k=0 βk = ∞,

(ii) limk→∞ γ k = 0,

(iii) liml→∞ ηkl = 0 implies lim supl→∞ δkl ≤ 0 for any subsequence {kl}l∈N ⊆
{k}k∈N.

Then limk→∞ sk = 0.

Theorem 1 Let {xk}k∈N be the sequence generated by Algorithm 1. Then {xk}k∈N
strongly converges to x∗ = PΓ u.

Proof By (15), we have

‖xk+1 − x∗‖2

=
∥
∥
∥
∥βk(u− x∗)+ (1− βk)

[
α

2
(2PC(v

k)− vk − x∗)+
(

1− α

2

)

(xk − x∗)
]∥
∥
∥
∥

2

= β2
k ‖u− x∗‖2 + (1− βk)

2
∥
∥
∥
∥
α

2
(2PC(v

k)− vk − x∗)+
(

1− α

2

)

(xk − x∗)
∥
∥
∥
∥

2

+ 2βk(1− βk)

〈

u− x∗, α
2
(2PC(v

k)− vk − x∗)+
(

1− α

2

)

(xk − x∗)
〉

≤ β2
k ‖u− x∗‖2 + (1− βk)

2
[
α

2
‖2PC(v

k)− vk − x∗‖2 +
(

1− α

2

)

‖xk − x∗‖2
]

+ 2βk(1− βk)

〈

u− x∗, α
2
(2PC(v

k)− vk − x∗)+
(

1− α

2

)

(xk − x∗)
〉

≤ (1− βk)‖xk − x∗‖2 + βk
[
βk‖u− x∗‖2 + α(1− βk)〈u− x∗, 2PC(v

k)− vk − x∗〉
+ (1− βk)(2− α)〈u− x∗, xk − x∗〉],

(32)
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where the first inequality comes from (10) and the second inequality comes
from (21) and (22). On the other hand, from (10) and (15), we get

‖xk+1 − x∗‖2

=
∥
∥
∥
∥βk(u− x∗)+ (1− βk)

[
α

2
(2PC(v

k)− vk − x∗)+
(

1− α

2

)

(xk − x∗)
]∥
∥
∥
∥

2

≤ βk‖u− x∗‖2 + (1− βk)

∥
∥
∥
∥
α

2
(2PC(v

k)− vk − x∗)+
(

1− α

2

)

(xk − x∗)
∥
∥
∥
∥

2

≤ βk‖u− x∗‖2 +
[
α

2
‖2PC(v

k)− vk − x∗‖2 +
(

1− α

2

)

‖xk − x∗‖2

− α

2

(

1− α

2

)

‖2PC(v
k)− vk − xk‖2

]

≤ ‖xk − x∗‖2 + βk‖u− x∗‖2 − 2αγ (2− γ )
f 2(xk)

‖∇f (xk)‖2

− α

2

(

1− α

2

)

‖2PC(v
k)− vk − xk‖2, (33)

where the last inequality comes from (21) and (22). Set

sk = ‖xk − x∗‖2,

γ k = βk‖u− x∗‖2,

ηk = 2αγ (2− γ )
f 2(xk)

‖∇f (xk)‖2
+ α

2

(

1− α

2

)

‖2PC(v
k)− vk − xk‖2,

δk = βk‖u− x∗‖2 + α(1− βk)〈u− x∗, 2PC(v
k)− vk − x∗〉

+ (1− βk)(2− α)〈u− x∗, xk − x∗〉.

From (32) and (33), we derive the inequalities as follows

sk+1 ≤(1− βk)s
k + βkδ

k, k ≥ 0,

sk+1 ≤sk − ηk + γ k, k ≥ 0.

Since βk satisfies assumption (H1), we obtain limk→∞ γ k = 0. To use Lemma 7,
it suffices to verify that, for any subsequence {kl}l∈N ⊆ {k}k∈N, liml→∞ ηkl = 0
implies

lim sup
l→∞

δkl ≤ 0.
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From liml→∞ ηkl = 0, we have

lim
l→∞

f 2(xkl )

‖∇f (xkl )‖2 = 0, (34)

and

lim
l→∞‖2PC(v

kl )− vkl − xkl‖ = 0. (35)

According to (35) and (H2), in order to prove lim supl→∞ δkl ≤ 0, we only need to
prove

lim sup
l→∞

〈u− x∗, xkl − x∗〉 ≤ 0.

Since {xkl }l∈N is bounded by Lemma 5, it is easy to choose a subsequence {xklj }j∈N
which weakly to x̂ and such that

lim sup
l→∞

〈u− x∗, xkl − x∗〉 = lim
j→∞〈u− x∗, xklj − x∗〉 = 〈u− x∗, x̂ − x∗〉.

From (34), (35) and Lemma 6, we get x̂ ∈ ωw(x
kl ) ⊆ Γ . By Lemma 1, 〈u−x∗, x̂−

x∗〉 ≤ 0. Therefore lim supl→∞〈u− x∗, xkl − x∗〉 ≤ 0 and then we get

lim sup
l→∞

δkl ≤ 0.

From Lemma 7, we conclude that xk → x∗. The proof is complete.

Now we will show the convergence of Algorithm 2. It is easy to extend Lemma 5
to Algorithm 2.

Lemma 8 The sequence {xk}k∈N generated by Algorithm 2 is bounded.

Lemma 9 Let the sequence {xk}k∈N be generated by Algorithm 2. If

lim
k→∞

f 2
k (x

k)

‖∇fk(xk)‖2
= 0 (36)

and

lim
k→∞‖2PCk

(vk)− vk − xk‖ = 0, (37)

then ωw(xk) ⊆ Γ .

Proof From (36), (37) and Lemma 6, we get
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lim
k→∞ fk(x

k) = 0, (38)

lim
k→∞ λk‖∇fk(xk)‖ = 0, (39)

and

lim
k→∞‖PCk

(xk)− xk‖ = 0. (40)

By the definition of zk+1,

‖zk+1 − xk‖ = ‖PCk
(2yk+1 − xk)− xk‖

≤ ‖PCk
(2yk+1 − xk)− PCk

(xk)‖ + ‖PCk
(xk)− xk‖

≤ 2‖yk+1 − xk‖ + ‖PCk
(xk)− xk‖

= 2λk‖∇fk(xk)‖ + ‖PCk
(xk)− xk‖.

(41)

Putting (39) and (40) into (41), we obtain

lim
k→∞‖z

k+1 − xk‖ = 0. (42)

By Lemma 8, we know that there exists a subsequence {xkl }l∈N of {xk}k∈N
converging to x̂. Next, we show that x̂ ∈ Γ . In fact, since zkl+1 ∈ Ckl , by the
definition of Ckl , we have

c(xkl )+ 〈ξkl , zkl+1 − xkl 〉 ≤ 0,

where ξkl ∈ ∂c(xkl ). By the assumption that ξkl is bounded and (42), we have

c(xkl ) ≤ −〈ξkl , zkl+1 − xkl 〉 ≤ ‖ξkl‖‖zkl+1 − xkl‖ → 0, l →∞,

which implies c(x̂) ≤ 0, i.e., x̂ ∈ C. Since PQkl
(Aykl ) ∈ Qkl , we have

q(Aykl )+ 〈ηkl , PQkl
(Aykl )− Aykl 〉 ≤ 0,

where ηkl ∈ ∂q(Aykl ). From the boundedness of {ηkl } and (38), it follows that

q(Aykl ) ≤ ‖ηkl‖‖PQkl
(Aykl )− Aykl‖ → 0, l →∞.

Similarly, we can obtain that q(Ax̂) ≤ 0, i.e., Ax̂ ∈ Q and ωw(xk) ⊆ Γ .

Theorem 2 Let {xk}k∈N be generated by Algorithm 2, then {xk}k∈N converges to a
solution of the SFP (1).
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Proof Using similar arguments in the proof of Theorem 1, we have

lim
l→∞

f 2
kl
(xkl )

‖∇fkl (xkl )‖2 = 0, (43)

and

lim
l→∞‖2PCkl

(vkl )− vkl − xkl‖ = 0. (44)

From (43), (44) and Lemma 9, we get x̂ ∈ ωw(x
kl ) ⊆ Γ . Following the rest of the

proof of Theorem 1, we get that {xk}k∈N converges to a solution of the SFP (1). This
completes the proof.

4 Haugazeau-Type Algorithm

By combining Haugazeau method and Douglas-Rachford method, we introduce a
new algorithm with strong convergence.

Algorithm 3
Step 0. Input k := 0, x0 ∈ H1 and α ∈ (0, 2).
Step 1. Generate xk+1 by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk+1 := xk − λk∇f (xk),
zk+1 := PC(2y

k+1 − xk),

wk+1 := xk + α(zk+1 − yk+1),

vk = xk − 2λk∇f (xk)

Sk =
{
z ∈ H1 : ‖wk+1 − z‖2 ≤ ‖xk − z‖2 − 2αγ (2− γ )

f 2(xk)

‖∇f (xk)‖2

−
(

1− α

2

) α

2
‖2PC(v

k)− vk − xk‖2
}
,

Tk =
{
z ∈ H1 : 〈x0 − xk, z− xk〉 ≤ 0

}
,

xk+1 = PSk∩Tk (x0).

(45)

where λk is given by (14).
Step 2. If ∇f (xk) = 0 and xk+1 = xk , then terminate. Otherwise, set k := k+ 1 and go to Step
1.

Now we ascertain the validity of the stopping criterion used in Step 2.
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Lemma 10 If ∇f (xk) = 0 and xk+1 = xk for some k, then xk is a solution of the
SFP (1).

Proof Suppose ∇f (xk) = 0. Then yk+1 = xk and zk+1 = PC(x
k). Observe that

xk+1 = xk implies xk ∈ Sk . By the definition of Sk , wk+1 = xk . So we have
xk = PC(x

k), i.e., xk ∈ C. By (19), we get f (xk) = 0. Then Axk = PQ(Ax
k), i.e.,

Axk ∈ Q. Thus, xk is a solution of the SFP (1).

Lemma 11 It holds

Γ ⊆ Sk ∩ Tk. (46)

Proof Let z ∈ Γ . Similar to the proof of equality (15), from (13) we can get

wk+1 =
(

1− α

2

)

xk + α

2
(2PC(v

k)− vk). (47)

Combining (21), (22) and (47), we get

‖wk+1 − z‖2 =
(

1− α

2

)
‖xk − z‖2 + α

2
‖2PC(v

k)− vk − z‖2

−
(

1− α

2

) α

2
‖2PC(v

k)− vk − xk‖2

≤ ‖xk − z‖2 − 2αγ (2− γ )
f 2(xk)

‖∇f (xk)‖2

−
(

1− α

2

) α

2
‖2PC(v

k)− vk − xk‖2,

which means that Γ ⊂ Sk . Next, we use induction to prove that (46) holds for all
k ≥ 0. It is easy to check that Γ ⊂ T0 = H1. Assume now (46) holds for k = n. It
then turns out that xn+1 = PSn∩Tn(x0) is well defined. By Lemma 1,

〈xn+1 − z, xn+1 − x0〉 ≤ 0.

This implies that z ∈ Tn+1 and hence Γ ⊂ Tn+1. Hence, (46) holds for k = n+ 1,
and thus for all k ≥ 0.

Theorem 3 Let {xk}k∈N be generated by Algorithm 3. Then the following hold:

(i) limk→∞ ‖xk+1 − xk‖ = 0,
(ii) ωw(x

k) ⊆ Γ ,

(iii) xk → x∗ ∈ Γ , where x∗ = PΓ x
0.

Proof

(i) From the definition of Tk , we know that xk = PTkx
0. Then, we obtain
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‖xk − x0‖ =‖PTkx0 − x0‖ ≤ ‖PΓ x0 − x0‖, (48)

which means that {‖xk − x0‖}k∈N is increasing and {xk}k∈N is bounded.
Therefore, limk→∞ ‖xk − x0‖ exists. Using xk = PTkx

0 and xk+1 ∈ Tk , we
have 〈xk+1 − xk, xk − x0〉 ≥ 0. Hence, we get

‖xk+1 − x0‖2 − ‖xk − x0‖2 =‖xk+1 − xk‖2 + 2〈xk+1 − xk, xk − x0〉
≥‖xk+1 − xk‖2.

(49)
Consequently, from (48) and (49), we have

k∑

l=0

‖xl+1 − xl‖2 ≤ ‖PΓ x0 − x0‖2.

Therefore,

∞∑

k=0

‖xk+1 − xk‖2 <∞,

and

lim
k→∞‖x

k+1 − xk‖ = 0.

(ii) Since xk+1 ∈ Sk , by the definition of Sk , we get ‖xk+1 − wk+1‖ ≤ ‖xk+1 −
xk‖ → 0 and also that

f 2(xk)

‖∇f (xk)‖2 → 0, (50)

and

‖2PC(v
k)− vk − xk‖ → 0.

By Lemma 6, we get ωw(xk) ⊆ Γ.

(iii) Take x∗ ∈ ωw(x
k) and let {xkl }l∈N be a subsequence of {xk}k∈N weakly

converging to x∗. From (48), it follows

‖xkl − PΓ x
0‖2 = ‖xkl − x0‖2 + ‖x0 − PΓ x

0‖2 + 2〈xkl − x0, x0 − PΓ x
0〉

≤ 2‖x0 − PΓ x
0‖2 + 2〈xkl − x0, x0 − PΓ x

0〉
= 2〈xkl − PΓ x

0, x0 − PΓ x
0〉.
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This implies that

lim sup
l→∞

‖xkl − PΓ x
0‖2 ≤ 〈x∗ − PΓ x

0, x0 − PΓ x
0〉 ≤ 0.

Therefore, xkl → PΓ x
0, i.e., xk → PΓ x

0. The proof is complete.

Remark 1 It is easy to present a relaxed version of Algorithm 3 and show its
convergence by combining Algorithms 2 and 3.

5 Example Results

In this section, we provide computational experiment and compare our Algorithm 2
with Algorithm 5.1 in [19] and Algorithm 2 in [23]. In addition, we compare
our Algorithm 3 with Algorithm 3.7 in [19]. In the numerical results listed in the
following table, “Iter.” and “CPU time” denote the number of iterations and CPU
times in seconds, respectively.

Example 1 Consider the following LASSO problem [22]:

min

{
1

2
‖Ax − b‖2

2 : x ∈ R
n, ‖x‖1 ≤ τ

}

, (51)

where A ∈ R
m×n, m < n, b ∈ R

n and τ > 0. We generate the system matrix
A from a standard normal distribution with mean zero and unit variance. The true
sparse signal x∗ is generated from uniformly distribution in the interval [−2, 2]with
random K position nonzero while the rest is kept zero. The sample data b = Ax∗.

In this example, we apply the proposed Algorithm 2 to solve the LASSO
problem, which aims to finding a sparse solution of an underdetermined linear
system.

Under certain conditions on matrix A, the solution of the minimization prob-
lem (51) is equivalent to the &0-norm solution of the underdetermined linear system.
For the considered SFP (1), we define C = {x | ‖x‖1 ≤ τ } and Q = {b}. Since the
projection onto the closed convex C does not have a closed form solution and so we
make use of the subgradient projection. Define a convex function c(x) = ‖x‖1 − τ

and denote the level set Ck by:

Ck = {x : c(xk)+ 〈ξk, x − xk〉 ≤ 0},

where ξk ∈ ∂c(xk). Then the orthogonal projection onto Ck can be calculated by
the following:
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PCk
(x) =

⎧
⎨

⎩

x, if c(xk)+ 〈ξk, x − xk〉 ≤ 0,

x − c(xk)+ 〈ξk, x − xk〉
‖ξk‖2 ξk, otherwise.

It is worth noting that the subdifferential ∂c at xk is

∂c(xk) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if xk > 0,

[−1, 1], if xk = 0,

−1, if xk < 0.

We initialize the algorithms at the origin and terminate it when

‖xk − x∗‖
max{1, ‖xk‖} < 10−3.

We took α = 0.8 and γ = 1.9 in the Algorithm 2, ρn = 1 in Algorithm 5.1 of
[19] and λn = 2 in Algorithm 2 of [23]. In addition, the parameter βk is taken as
(3.18) in [14].

The corresponding results are reported in Table 1, where “Max” means that the
number of iterations hits 10,000. We can see from Table 1 that the Algorithm 2
performs better than the other algorithms from the iteration numbers and CPU time.

We took α = 1.9 and γ = 0.3 in the Algorithm 3 and ρn = 0.5 in Algorithm 3.7
of [19]. We initialize the algorithms at the origin and terminate it when

‖xk − x∗‖
max{1, ‖xk‖} < 10−2.

The corresponding results are reported in Table 2. We can see from Table 2 that
the Algorithm 3 is better than Algorithm 3.7 of [19] from the iteration numbers and

Table 1 Computational results of three algorithms for solving SFP (1)

Problem size Iter CPU time

Alg 5.1 in Alg 2 in

m n K Alg 2 [19] [23] Alg 2 Alg 5.1 in [19] Alg 2 in [23]

240 1024 30 795 1135 Max 2.1564 2.9900 26.8720

480 2048 60 818 1050 Max 7.4100 9.0140 84.0586

720 3072 90 921 1156 Max 16.6737 20.1963 174.7703

960 4096 120 735 1001 Max 23.2229 30.3517 301.0742

1200 5120 150 800 1110 Max 36.8285 50.1296 454.7727

1440 6144 180 823 1073 Max 54.7822 71.1720 637.0593

1680 7168 210 859 1244 Max 75.6329 104.4183 840.7035

1920 8192 240 795 1055 Max 85.2829 113.5449 1077.3
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Table 2 Computational results for solving the SFP (1) by the Algorithm 3 and Algorithm 3.7 in
[19]

Problem size Iter CPU time

m n K Alg 3 Alg 3.7 in [19] Alg 3 Alg 3.7 in [19]

240 1024 30 7196 12,555 14.2062 23.2478

480 2048 60 7121 12,845 43.7493 73.3263

720 3072 90 5214 8632 60.4976 99.9253

960 4096 120 6408 11,280 125.4982 213.7182

1200 5120 150 5581 9285 160.8265 262.7904

1440 6144 180 5787 9693 231.0650 383.5354

1680 7168 210 6585 11,102 349.7393 579.9234

1920 8192 240 6144 10,596 416.8434 712.2142

CPU time. We did not compare Algorithm 3 with the algorithm (6) since its error
decreases very slowly comparing Algorithm and Algorithm 3.7 of [19].

Comparing Tables 1 and 2, it concludes that Haugazeau-type algorithm performs
better than Halpern-type algorithm.
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Some Triple Integral Inequalities for
Functions Defined on Three-Dimensional
Bodies Via Gauss-Ostrogradsky Identity

Silvestru Sever Dragomir

Abstract In this paper, by the use of Gauss-Ostrogradsky identity, we establish
some inequalities for functions of three variables defined on closed and bounded
bodies of the Euclidean space R

3. Some examples for three-dimensional balls are
also provided.
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1 Introduction

Recall the following inequalities of Hermite-Hadamard’s type for convex functions
defined on a ball B (C,R) , where C = (a, b, c) ∈ R

3, R > 0 and

B (C,R) :=
{
(x, y, z) ∈ R

3
∣
∣
∣ (x − a)2 + (y − b)2 + (z− c)2 ≤ R2

}
.

The following theorem holds [10].

Theorem 1 Let f : B (C,R) → R be a convex function on the ball B (C,R) .

Then we have the inequality:

f (a, b, c) ≤ 1

V (B (C,R))

∫∫∫

B(C,R)

f (x, y, z) dxdydz
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≤ 1

σ (B (C,R))

∫∫

S(C,R)

f (x, y, z) dS, (1.1)

where

S (C,R) :=
{
(x, y, z) ∈ R

3
∣
∣
∣ (x − a)2 + (y − b)2 + (z− c)2 = R2

}

and

V (B (C,R)) = 4πR3

3
, σ (B (C,R)) = 4πR2.

If the assumption of convexity is dropped, then one can prove the following
Ostrowski type inequality for the center of the ball as well, see [11].

Theorem 2 Assume that f : B (C,R)→ C is differentiable on B (C,R) . Then

∣
∣
∣
∣f (a, b, c)− 1

V (B (C,R))

∫∫∫

B(C,R)

f (x, y, z) dxdydz

∣
∣
∣
∣

≤ 3

8
R

[∥
∥
∥
∥
∂f

∂x

∥
∥
∥
∥
B(C,R),∞

+
∥
∥
∥
∥
∂f

∂y

∥
∥
∥
∥
B(C,R),∞

+
∥
∥
∥
∥
∂f

∂z

∥
∥
∥
∥
B(C,R),∞

]

, (1.2)

provided

∥
∥
∥
∥
∂f

∂x

∥
∥
∥
∥
B(C,R),∞

:= sup
(x,y,z)∈B(C,R)

∣
∣
∣
∣
∂f (x, y, z)

∂x

∣
∣
∣
∣ <∞,

∥
∥
∥
∥
∂f

∂y

∥
∥
∥
∥
B(C,R),∞

:= sup
(x,y,z)∈B(C,R)

∣
∣
∣
∣
∂f (x, y, z)

∂y

∣
∣
∣
∣ <∞

and
∥
∥
∥
∥
∂f

∂z

∥
∥
∥
∥
B(C,R),∞

:= sup
(x,y,z)∈B(C,R)

∣
∣
∣
∣
∂f (x, y, z)

∂y

∣
∣
∣
∣ <∞.

This fact can be furthermore generalized to the following Ostrowski type
inequality for any point in a convex body B ⊂ R

3, see [11].

Theorem 3 Assume that f : B → C is differentiable on the convex body B and
(u, v,w) ∈ B. If V (B) is the volume of B,, then
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∣
∣
∣
∣f (u, v,w)− 1

V (B)

∫∫∫

B

f (x, y, z) dxdydz

∣
∣
∣
∣

≤ 1

V (B)

∫∫∫

B

|x − u|
(∫ 1

0

∣
∣
∣
∣
∂f

∂x
[t (x, y, z)+ (1− t) (u, v,w)]

∣
∣
∣
∣ dt

)

dxdydz

+ 1

V (B)

∫∫∫

B

|y − v|
(∫ 1

0

∣
∣
∣
∣
∂f

∂y
[t (x, y, z)+ (1− t) (u, v,w)]

∣
∣
∣
∣ dt

)

dxdydz

+ 1

V (B)

∫∫∫

B

|z− w|
(∫ 1

0

∣
∣
∣
∣
∂f

∂y
[t (x, y, z)+ (1− t) (u, v,w)]

∣
∣
∣
∣ dt

)

dxdydz

≤
∥
∥
∥
∥
∂f

∂x

∥
∥
∥
∥
B,∞

1

V (B)

∫∫∫

B

|x − u| dxdydz

+
∥
∥
∥
∥
∂f

∂y

∥
∥
∥
∥
B,∞

1

V (B)

∫∫∫

B

|y − v| dxdydz

+
∥
∥
∥
∥
∂f

∂z

∥
∥
∥
∥
B,∞

1

V (B)

∫∫∫

B

|z− w| dxdydz (1.3)

provided
∥
∥
∥
∥
∂f

∂x

∥
∥
∥
∥
B,∞

,

∥
∥
∥
∥
∂f

∂y

∥
∥
∥
∥
B,∞

,

∥
∥
∥
∥
∂f

∂z

∥
∥
∥
∥
B,∞

<∞.

In particular,
∣
∣
∣
∣f (xB, yB, zB)− 1

V (B)

∫∫∫

B

f (x, y, z) dxdydz

∣
∣
∣
∣

≤ 1

V (B)

∫∫∫

B

|x − xB |
(∫ 1

0

∣
∣
∣
∣
∂f

∂x
[t (x, y, z)+ (1− t) (xB, yB, zB)]

∣
∣
∣
∣ dt

)

dxdydz

+ 1

V (B)

∫∫∫

B

|y − yB |
(∫ 1

0

∣
∣
∣
∣
∂f

∂y
[t (x, y, z)+ (1− t) (xB, yB, zB)]

∣
∣
∣
∣ dt

)

dxdydz

+ 1

V (B)

∫∫∫

B

|z− zB |
(∫ 1

0

∣
∣
∣
∣
∂f

∂y
[t (x, y, z)+ (1− t) (xB, yB, zB)]

∣
∣
∣
∣ dt

)

dxdydz

≤
∥
∥
∥
∥
∂f

∂x

∥
∥
∥
∥
B,∞

1

V (B)

∫∫∫

B

|x − xB | dxdydz

+
∥
∥
∥
∥
∂f

∂y

∥
∥
∥
∥
B,∞

1

V (B)

∫∫∫

B

|y − yB | dxdydz

+
∥
∥
∥
∥
∂f

∂z

∥
∥
∥
∥
B,∞

1

V (B)

∫∫∫

B

|z− zB | dxdydz, (1.4)

where

xB := 1

V (B)

∫∫∫

B

xdxdydz, yB = 1

V (B)

∫∫∫

B

ydxdydz,

zB = 1

V (B)

∫∫∫

B

zdxdydz

are the center of gravity coordinates for the convex body B.
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For some Hermite-Hadamard type inequalities for multiple integrals see [2, 6, 8–
10, 17–20, 25–27]. For some Ostrowski type inequalities see [3–5, 7, 11–16, 21–24].

In this paper we establish some error bounds in approximating the triple integral

1

V (B)

∫∫∫

B

f (x, y, z) dxdydz

by either the surface integrals

1

3

[∫ ∫

S

(x − α) f (x, y, z) dy ∧ dz+
∫ ∫

S

(y − β) f (x, y, z) dz ∧ dx

+
∫ ∫

S

(z− γ ) f (x, y, z) dx ∧ dy

]

(1.5)

or by, the possibly simpler, triple integrals

1

3

∫∫∫

B

[

(α − x)
∂f (x, y, z)

∂x
+ (β − y)

∂f (x, y, z)

∂y

+ (γ − z)
∂f (x, y, z)

∂z

]

dxdydz (1.6)

for some α, β, and γ complex numbers.
Examples for functions defined on a ball B (C,R) centered in C = (a, b, c) ∈

R
3 and with the radius R > 0 are also provided.

2 Some Preliminary Facts

Following Apostol [1], consider a surface described by the vector equation

r (u, v) = x (u, v)
−→
i + y (u, v)

−→
j + z (u, v)

−→
k , (2.1)

where (u, v) ∈ [a, b]× [c, d] .
If x, y, z are differentiable on [a, b]× [c, d] we consider the two vectors

∂r

∂u
= ∂x

∂u

−→
i + ∂y

∂u

−→
j + ∂z

∂u

−→
k

and

∂r

∂v
= ∂x

∂v

−→
i + ∂y

∂v

−→
j + ∂z

∂v

−→
k .
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The cross product of these two vectors ∂r
∂u
× ∂r

∂v
will be referred to as the fundamental

vector product of the representation r. Its components can be expressed as Jacobian
determinants. In fact, we have [1, p. 420]

∂r

∂u
× ∂r

∂v
=

∣
∣
∣
∣
∣
∣
∣

∂y
∂u

∂z
∂u

∂y
∂v

∂z
∂v

∣
∣
∣
∣
∣
∣
∣

−→
i +

∣
∣
∣
∣
∣
∣

∂z
∂u

∂x
∂u

∂z
∂v

∂x
∂v

∣
∣
∣
∣
∣
∣

−→
j +

∣
∣
∣
∣
∣
∣
∣

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣
∣
∣
∣
∣
∣
∣

−→
k (2.2)

= ∂ (y, z)

∂ (u, v)

−→
i + ∂ (z, x)

∂ (u, v)

−→
j + ∂ (x, y)

∂ (u, v)

−→
k .

Let S = r(T ) be a parametric surface described by a vector-valued function r

defined on the box T = [a, b]× [c, d] . The area of S denoted AS is defined by the
double integral [1, pp. 424–425]

AS =
∫ b

a

∫ d

c

∥
∥
∥
∥
∂r

∂u
× ∂r

∂v

∥
∥
∥
∥ dudv (2.3)

=
∫ b

a

∫ d

c

√
(
∂ (y, z)

∂ (u, v)

)2

+
(
∂ (z, x)

∂ (u, v)

)2

+
(
∂ (x, y)

∂ (u, v)

)2

dudv.

We define surface integrals in terms of a parametric representation for the surface.
One can prove that under certain general conditions the value of the integral is
independent of the representation.

Let S = r(T ) be a parametric surface described by a vector-valued differentiable
function r defined on the box T = [a, b] × [c, d] and let f : S → C defined and
bounded on S. The surface integral of f over S is defined by Apostol [1, p. 430]

∫ ∫

S

f dS =
∫ b

a

∫ d

c

f (x, y, z)

∥
∥
∥
∥
∂r

∂u
× ∂r

∂v

∥
∥
∥
∥ dudv (2.4)

=
∫ b

a

∫ d

c

f (x (u, v) , y (u, v) , z (u, v))

×
√
(
∂ (y, z)

∂ (u, v)

)2

+
(
∂ (z, x)

∂ (u, v)

)2

+
(
∂ (x, y)

∂ (u, v)

)2

dudv.

If S = r(T ) is a parametric surface, the fundamental vector product N = ∂r
∂u
× ∂r

∂v

is normal to S at each regular point of the surface. At each such point there are two
unit normals, a unit normal n1, which has the same direction as N , and a unit normal
n2 which has the opposite direction. Thus
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n1 = N

‖N‖and n2 = −n1.

Let n be one of the two normals n1 or n2. Let also F be a vector field defined on S

and assume that the surface integral,

∫ ∫

S

(F · n) dS,

called the flux surface integral, exists. Here F · n is the dot or inner product.
We can write [1, p. 434]

∫ ∫

S

(F · n) dS = ±
∫ b

a

∫ d

c

F (r (u, v)) ·
(
∂r

∂u
× ∂r

∂v

)

dudv,

where the sign “+” is used if n = n1 and the “−” sign is used if n = n2.

If

F (x, y, z) = P (x, y, z)
−→
i +Q(x, y, z)

−→
j + R (x, y, z)

−→
k

and

r (u, v) = x (u, v)
−→
i + y (u, v)

−→
j + z (u, v)

−→
k where (u, v) ∈ [a, b]× [c, d] ,

then the flux surface integral for n = n1 can be explicitly calculated as [1, p. 435]

∫ ∫

S

(F · n) dS =
∫ b

a

∫ d

c

P (x (u, v) , y (u, v) , z (u, v))
∂ (y, z)

∂ (u, v)
dudv

+
∫ b

a

∫ d

c

Q (x (u, v) , y (u, v) , z (u, v))
∂ (z, x)

∂ (u, v)
dudv

+
∫ b

a

∫ d

c

R (x (u, v) , y (u, v) , z (u, v))
∂ (x, y)

∂ (u, v)
dudv.

(2.5)

The sum of the double integrals on the right is often written more briefly as [1, p.
435]

∫ ∫

S

P (x, y, z) dy ∧ dz+
∫ ∫

S

Q (x, y, z) dz ∧ dx +
∫ ∫

S

R (x, y, z) dx ∧ dy.

Let B ⊂ R
3 be a solid in 3-space bounded by an orientable closed surface S, and

let n be the unit outer normal to S. If F is a continuously differentiable vector field
defined on B, we have the Gauss-Ostrogradsky identity
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∫∫∫

B

(divF) dV =
∫ ∫

S

(F · n) dS. (GO)

If we express

F (x, y, z) = P (x, y, z)
−→
i +Q(x, y, z)

−→
j + R (x, y, z)

−→
k ,

then (GO) can be written as

∫∫∫

B

(
∂P (x, y, z)

∂x
+ ∂Q (x, y, z)

∂y
+ ∂R (x, y, z)

∂z

)

dxdydz

=
∫ ∫

S

P (x, y, z) dy ∧ dz+
∫ ∫

S

Q (x, y, z) dz ∧ dx

+
∫ ∫

S

R (x, y, z) dx ∧ dy. (2.6)

By taking the real and imaginary part, we can extend the above inequality for
complex valued functions P, Q, R defined on B.

3 Identities of Interest

We have:

Lemma 1 Let B be a solid in the three-dimensional space R
3 bounded by an

orientable closed surface S. If f : B → C is a continuously differentiable function
defined on an open set containing B, then we have the equality

∫∫∫

B

f (x, y, z) dxdydz

= 1

3

∫∫∫

B

[

(α − x)
∂f (x, y, z)

∂x
+ (β − y)

∂f (x, y, z)

∂y

+ (γ − z)
∂f (x, y, z)

∂z

]

dxdydz

+1

3

[∫ ∫

S

(x − α) f (x, y, z) dy ∧ dz+
∫ ∫

S

(y − β) f (x, y, z) dz ∧ dx

+
∫ ∫

S

(z− γ ) f (x, y, z) dx ∧ dy

]

(3.1)

for all α, β, and γ complex numbers.
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In particular, we have

∫∫∫

B

f (x, y, z) dxdydz

= 1

3

∫∫∫

B

[

(xB − x)
∂f (x, y, z)

∂x
+ (yB − y)

∂f (x, y, z)

∂y

+ (zB − z)
∂f (x, y, z)

∂z

]

dxdydz

+1

3

[∫ ∫

S

(x − xB) f (x, y, z) dy ∧ dz

+
∫ ∫

S

(y − yB) f (x, y, z) dz ∧ dx

+
∫ ∫

S

(z− zB) f (x, y, z) dx ∧ dy

]

. (3.2)

Proof We have

∂ [(x − α) f (x, y, z)]

∂x
= f (x, y, z)+ (x − α)

∂f (x, y, z)

∂x
,

∂ [(y − β) f (x, y, z)]

∂y
= f (x, y, z)+ (y − β)

∂f (x, y, z)

∂y

and

∂ [(z− γ ) f (x, y, z)]

∂z
= f (x, y, z)+ (z− γ )

∂f (x, y, z)

∂z
.

By adding these three equalities we get

∂ [(x − α) f (x, y, z)]

∂x
+ ∂ [(y − β) f (x, y, z)]

∂y
+ ∂ [(z− γ ) f (x, y, z)]

∂z

= 3f (x, y, z)

+ (x − α)
∂f (x, y, z)

∂x
+ (y − β)

∂f (x, y, z)

∂y
+ (z− γ )

∂f (x, y, z)

∂z
(3.3)

for all (x, y, z) ∈ B.

Integrating this equality on B we get

∫∫∫

B

(
∂ [(x − α) f (x, y, z)]

∂x
+ ∂ [(y − β) f (x, y, z)]

∂y

+∂ [(z− γ ) f (x, y, z)]

∂z

)

dxdydz
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= 3
∫∫∫

B

f (x, y, z) dxdydz

+
∫∫∫

B

[

(x − α)
∂f (x, y, z)

∂x
+ (y − β)

∂f (x, y, z)

∂y

+ (z− γ )
∂f (x, y, z)

∂z

]

dxdydz. (3.4)

Applying the Gauss-Ostrogradsky identity (2.6) for the functions

P (x, y, z) = (x − α) f (x, y, z) , Q (x, y, z) = (y − β) f (x, y, z)

and

R (x, y, z) = (z− γ ) f (x, y, z)

we obtain

∫∫∫

B

(
∂ [(x − α) f (x, y, z)]

∂x
+ ∂ [(y − β) f (x, y, z)]

∂y

+∂ [(z− γ ) f (x, y, z)]

∂z

)

dxdydz

=
∫ ∫

S

(x − α) f (x, y, z) dy ∧ dz+
∫ ∫

S

(y − β) f (x, y, z) dz ∧ dx

+
∫ ∫

S

(z− γ ) f (x, y, z) dx ∧ dy. (3.5)

By (3.4) and (3.5) we get

3
∫∫∫

B

f (x, y, z) dxdydz

+
∫∫∫

B

[

(x − α)
∂f (x, y, z)

∂x
+ (y − β)

∂f (x, y, z)

∂y

+ (z− γ )
∂f (x, y, z)

∂z

]

dxdydz

=
∫ ∫

S

(x − α) f (x, y, z) dy ∧ dz+
∫ ∫

S

(y − β) f (x, y, z) dz ∧ dx

+
∫ ∫

S

(z− γ ) f (x, y, z) dx ∧ dy,

which is equivalent to the desired result (3.1). �
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Remark 1 For a function f as in Lemma 1 above, we define the points

xB,∂f :=
∫∫∫

B
x
∂f (x,y,z)

∂x
dxdydz

∫∫∫
B

∂f (x,y,z)
∂x

dxdydz
, yB,∂f :=

∫∫∫
B
y
∂f (x,y,z)

∂y
dxdydz

∫∫∫
B

∂f (x,y,z)
∂y

dxdydz
,

and

zB,∂f :=
∫∫∫

B
z
∂f (x,y,z)

∂z
dxdydz

∫∫∫
B

∂f (x,y,z)
∂z

dxdydz

provided the denominators are not zero.
If we take α = xB,∂f , β = yB,∂f and γ = zB,∂f in (3.1), then we get

∫∫∫

B

f (x, y, z) dxdydz

= 1

3

[∫ ∫

S

(
x − xB,∂f

)
f (x, y, z) dy ∧ dz

+
∫ ∫

S

(
y − βyB,∂f

)
f (x, y, z) dz ∧ dx

+
∫ ∫

S

(
z− zB,∂f

)
f (x, y, z) dx ∧ dy

]

, (3.6)

since, obviously,

∫∫∫

B

[
(
xB,∂f − x

) ∂f (x, y, z)

∂x
+ (yB,∂f − y

) ∂f (x, y, z)

∂y

+ (zB,∂f − z
) ∂f (x, y, z)

∂z

]

dxdydz = 0.

We also have the following dual approach:

Remark 2 For a function f as in Lemma 1 above, we define the points

xS,f :=
∫ ∫

S
xf (x, y, z) dy ∧ dz

∫ ∫
S
f (x, y, z) dy ∧ dz

, yS,f :=
∫ ∫

S
yf (x, y, z) dz ∧ dx

∫ ∫
S
f (x, y, z) dz ∧ dx

and

zS,f :=
∫ ∫

S
zf (x, y, z) dx ∧ dy

∫ ∫
S
f (x, y, z) dx ∧ dy

provided the denominators are not zero.
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If we take α = xS,f , β = yS,f and γ = zS,f in (3.1), then we get

∫∫∫

B

f (x, y, z) dxdydz

= 1

3

∫∫∫

B

[
(
xS,f − x

) ∂f (x, y, z)

∂x
+ (yS,f − y

) ∂f (x, y, z)

∂y

+ (zS,f − z
) ∂f (x, y, z)

∂z

]

dxdydz (3.7)

since, obviously,

∫ ∫

S

(
x − xS,f

)
f (x, y, z) dy ∧ dz+

∫ ∫

S

(
y − yS,f

)
f (x, y, z) dz ∧ dx

+
∫ ∫

S

(
z− zS,f

)
f (x, y, z) dx ∧ dy = 0.

4 Integral Inequalities

For a measurable function g : B → C we define the Lebesgue norms

‖g‖B,p :=
(∫∫∫

B

|g (x, y, z)|p dxdydz
)1/p

<∞

for p ≥ 1 and

‖g‖B,∞ := sup
(x,y,z)∈B

|g (x, y, z)| <∞

for p = ∞.

We have:

Theorem 4 Let B be a solid in the three-dimensional space R
3 bounded by an

orientable closed surface S. If f : B → C is a continuously differentiable function
defined on an open set containing B, then for all α, β, γ complex numbers we have
the inequality

∣
∣
∣
∣

∫∫∫

B

f (x, y, z) dxdydz− 1

3

[∫ ∫

S

(x − α) f (x, y, z) dy ∧ dz

+
∫ ∫

S

(y − β) f (x, y, z) dz ∧ dx +
∫ ∫

S

(z− γ ) f (x, y, z) dx ∧ dy

]∣
∣
∣
∣
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≤ 1

3

∫∫∫

B

[

|α − x|
∣
∣
∣
∣
∂f (x, y, z)

∂x

∣
∣
∣
∣+ |β − y|

∣
∣
∣
∣
∂f (x, y, z)

∂y

∣
∣
∣
∣

+ |γ − z|
∣
∣
∣
∣
∂f (x, y, z)

∂z

∣
∣
∣
∣

]

dxdydz =: M (α, β, γ ; f ) . (4.1)

Moreover, we have the bounds

M (α, β, γ ; f )

≤ 1

3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥
∂f
∂x

∥
∥
∥
B,∞

∫∫∫
B |α − x| dxdydz+

∥
∥
∥
∂f
∂y

∥
∥
∥
B,∞

∫∫∫
B |β − y| dxdydz

+
∥
∥
∥
∂f
∂z

∥
∥
∥
B,∞

∫∫∫
B |γ − z| dxdydz;

∥
∥
∥
∂f
∂x

∥
∥
∥
B,p

(∫∫∫
B |α − x|q dxdydz)1/q +

∥
∥
∥
∂f
∂y

∥
∥
∥
B,p

(∫∫∫
B |β − y|q dxdydz)1/q

+
∥
∥
∥
∂f
∂z

∥
∥
∥
B,p

(∫∫∫
B |γ − z| dxdydz)1/q , p, q > 1, 1

p + 1
q = 1;

sup(x,y,z)∈B |α − x|
∥
∥
∥
∂f
∂x

∥
∥
∥
B,1

+ sup(x,y,z)∈B |β − y|
∥
∥
∥
∂f
∂y

∥
∥
∥
B,1

+ sup(x,y,z)∈B |γ − z|
∥
∥
∥
∂f
∂z

∥
∥
∥
B,1

.

(4.2)

Proof From the identity (3.1) we have

∣
∣
∣
∣

∫∫∫

B

f (x, y, z) dxdydz− 1

3

[∫ ∫

S

(x − α) f (x, y, z) dy ∧ dz

+
∫ ∫

S

(y − β) f (x, y, z) dz ∧ dx +
∫ ∫

S

(z− γ ) f (x, y, z) dx ∧ dy

]∣
∣
∣
∣

= 1

3

∣
∣
∣
∣

∫∫∫

B

[

(α − x)
∂f (x, y, z)

∂x
+ (β − y)

∂f (x, y, z)

∂y

+ (γ − z)
∂f (x, y, z)

∂z

]

dxdydz

∣
∣
∣
∣

≤ 1

3

∫∫∫

B

∣
∣
∣
∣

[

(α − x)
∂f (x, y, z)

∂x
+ (β − y)

∂f (x, y, z)

∂y

+ (γ − z)
∂f (x, y, z)

∂z

]∣
∣
∣
∣ dxdydz

≤ 1

3

∫∫∫

B

[∣
∣
∣
∣(α − x)

∂f (x, y, z)

∂x

∣
∣
∣
∣+
∣
∣
∣
∣(β − y)

∂f (x, y, z)

∂y

∣
∣
∣
∣

+
∣
∣
∣
∣(γ − z)

∂f (x, y, z)

∂z

∣
∣
∣
∣

]

dxdydz = M (α, β, γ ; f ) ,

which proves the inequality (4.1).



Some Triple Integral Inequalities for Functions Defined on Three-Dimensional. . . 247

By Hölder’s multiple integral inequality we also have

∫∫∫

B

∣
∣
∣
∣(α − x)

∂f (x, y, z)

∂x

∣
∣
∣
∣ dxdydz

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥
∂f
∂x

∥
∥
∥
B,∞

∫∫∫
B
|α − x| dxdydz;

∥
∥
∥
∂f
∂x

∥
∥
∥
B,p

(∫∫∫
B
|α − x|q dxdydz)1/q , p, q > 1, 1

p
+ 1

q
= 1;

sup(x,y,z)∈ |α − x|
∥
∥
∥
∂f
∂x

∥
∥
∥
B,1

and the other two similar inequalities for the partial derivatives ∂f
∂y

and ∂f
∂z

, which,
by addition, provide the bound from (4.2). �
Corollary 1 With the assumptions of Theorem 4 we have the inequalities

∣
∣
∣
∣

∫∫∫

B

f (x, y, z) dxdydz− 1

3

[∫ ∫

S

(x − xB) f (x, y, z) dy ∧ dz

+
∫ ∫

S

(yB − β) f (x, y, z) dz ∧ dx +
∫ ∫

S

(z− zB) f (x, y, z) dx ∧ dy

]∣
∣
∣
∣

≤ 1

3

∫∫∫

B

[

|xB − x|
∣
∣
∣
∣
∂f (x, y, z)

∂x

∣
∣
∣
∣+ |yB − y|

∣
∣
∣
∣
∂f (x, y, z)

∂y

∣
∣
∣
∣

+ |zB − z|
∣
∣
∣
∣
∂f (x, y, z)

∂z

∣
∣
∣
∣

]

dxdydz =: M (xB, yB, zB; f ) (4.3)

with

M (xB, yB, zB ; f )

≤ 1

3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥
∂f
∂x

∥
∥
∥
B,∞

∫∫∫
B |xB − x| dxdydz+

∥
∥
∥
∂f
∂y

∥
∥
∥
B,∞

∫∫∫
B |yB − y| dxdydz

+
∥
∥
∥
∂f
∂z

∥
∥
∥
B,∞

∫∫∫
B |zB − z| dxdydz;

∥
∥
∥
∂f
∂x

∥
∥
∥
B,p

(∫∫∫
B |xB − x|q dxdydz)1/q +

∥
∥
∥
∂f
∂y

∥
∥
∥
B,p

(∫∫∫
B |yB − y|q dxdydz)1/q

+
∥
∥
∥
∂f
∂z

∥
∥
∥
B,p

(∫∫∫
B |zB − z| dxdydz)1/q , p, q > 1, 1

p + 1
q = 1;

sup(x,y,z)∈ |xB − x|
∥
∥
∥
∂f
∂x

∥
∥
∥
B,1

+ sup(x,y,z)∈ |yB − y|
∥
∥
∥
∂f
∂y

∥
∥
∥
B,1

+ sup(x,y,z)∈ |zB − z|
∥
∥
∥
∂f
∂z

∥
∥
∥
B,1

.

(4.4)
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We also have
∣
∣
∣
∣

∫∫∫

B

f (x, y, z) dxdydz

∣
∣
∣
∣

≤ 1

3

∫∫∫

B

[
∣
∣xS,f − x

∣
∣
∣
∣
∣
∣
∂f (x, y, z)

∂x

∣
∣
∣
∣+
∣
∣yS,f − y

∣
∣
∣
∣
∣
∣
∂f (x, y, z)

∂y

∣
∣
∣
∣

+ ∣∣zS,f − z
∣
∣
∣
∣
∣
∣
∂f (x, y, z)

∂z

∣
∣
∣
∣

]

dxdydz =: M (
xS,f , yS,f , zS,f ; f

)
(4.5)

with

M
(
xS,f , yS,f , zS,f ; f

)

≤ 1

3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥
∂f
∂x

∥
∥
∥
B,∞

∫∫∫
B

∣
∣xS,f − x

∣
∣ dxdydz+

∥
∥
∥
∂f
∂y

∥
∥
∥
B,∞

∫∫∫
B

∣
∣yS,f − y

∣
∣ dxdydz

+
∥
∥
∥
∂f
∂z

∥
∥
∥
B,∞

∫∫∫
B

∣
∣zS,f − z

∣
∣ dxdydz;

∥
∥
∥
∂f
∂x

∥
∥
∥
B,p

(∫∫∫
B

∣
∣xS,f − x

∣
∣q dxdydz

)1/q +
∥
∥
∥
∂f
∂y

∥
∥
∥
B,p

(∫∫∫
B

∣
∣yS,f − y

∣
∣q dxdydz

)1/q

+
∥
∥
∥
∂f
∂z

∥
∥
∥
B,p

(∫∫∫
B

∣
∣zS,f − z

∣
∣ dxdydz

)1/q
, p, q > 1, 1

p
+ 1

q
= 1;

sup(x,y,z)∈
∣
∣xS,f − x

∣
∣
∥
∥
∥
∂f
∂x

∥
∥
∥
B,1

+ sup(x,y,z)∈
∣
∣yS,f − y

∣
∣
∥
∥
∥
∂f
∂y

∥
∥
∥
B,1

+ sup(x,y,z)∈
∣
∣zS,f − z

∣
∣
∥
∥
∥
∂f
∂z

∥
∥
∥
B,1

.

(4.6)

Remark 3 Using the discrete Hölder’s inequality we have

|α − x|
∣
∣
∣
∣
∂f (x, y, z)

∂x

∣
∣
∣
∣+ |β − y|

∣
∣
∣
∣
∂f (x, y, z)

∂y

∣
∣
∣
∣+ |γ − z|

∣
∣
∣
∣
∂f (x, y, z)

∂z

∣
∣
∣
∣

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max {|α − x| , |β − y| , |γ − z|}
[∣
∣
∣
∂f (x,y,z)

∂x

∣
∣
∣+
∣
∣
∣
∂f (x,y,z)

∂y

∣
∣
∣+
∣
∣
∣
∂f (x,y,z)

∂z

∣
∣
∣
]
;

(|α − x|q + |β − y|q + |γ − z|q)1/q
[∣
∣
∣
∂f (x,y,z)

∂x

∣
∣
∣
p +

∣
∣
∣
∂f (x,y,z)

∂y

∣
∣
∣
p +

∣
∣
∣
∂f (x,y,z)

∂z

∣
∣
∣
p]1/p

forp, q > 1, 1
p
+ 1

q
= 1;

max
{∣
∣
∣
∂f (x,y,z)

∂x

∣
∣
∣ ,
∣
∣
∣
∂f (x,y,z)

∂y

∣
∣
∣ ,
∣
∣
∣
∂f (x,y,z)

∂z

∣
∣
∣
}

[|α − x| + |β − y| + |γ − z|]

for all (x, y, z) ∈ B and all α, β, γ complex numbers.
By taking the integral we get

M (α, β, γ ; f )
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≤ 1

3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫∫∫
B

max {|α − x| , |β − y| , |γ − z|}
×
[∣
∣
∣
∂f (x,y,z)

∂x

∣
∣
∣+
∣
∣
∣
∂f (x,y,z)

∂y

∣
∣
∣+
∣
∣
∣
∂f (x,y,z)

∂z

∣
∣
∣
]
dxdydz;

∫∫∫
B

(|α − x|q + |β − y|q + |γ − z|q)1/q

×
[∣
∣
∣
∂f (x,y,z)

∂x

∣
∣
∣
p +

∣
∣
∣
∂f (x,y,z)

∂y

∣
∣
∣
p +

∣
∣
∣
∂f (x,y,z)

∂z

∣
∣
∣
p]1/p

dxdydz

forp, q > 1, 1
p
+ 1

q
= 1;

∫∫∫
B

max
{∣
∣
∣
∂f (x,y,z)

∂x

∣
∣
∣ ,
∣
∣
∣
∂f (x,y,z)

∂y

∣
∣
∣ ,
∣
∣
∣
∂f (x,y,z)

∂z

∣
∣
∣
}

× [|α − x| + |β − y| + |γ − z|] dxdydz

for all α, β, γ complex numbers.
One can separate the factors in the above inequality by using Hölder’s integral

inequality. For instance, we have

∫∫∫

B

(|α − x|q + |β − y|q + |γ − z|q)1/q

×
[∣
∣
∣
∣
∂f (x, y, z)

∂x

∣
∣
∣
∣

p

+
∣
∣
∣
∣
∂f (x, y, z)

∂y

∣
∣
∣
∣

p

+
∣
∣
∣
∣
∂f (x, y, z)

∂z

∣
∣
∣
∣

p]1/p

dxdydz

≤
(∫∫∫

B

[(|α − x|q + |β − y|q + |γ − z|q)1/q
]q

dxdydz

)1/q

×
(∫∫∫

B

([∣
∣
∣
∣
∂f (x, y, z)

∂x

∣
∣
∣
∣

p

+
∣
∣
∣
∣
∂f (x, y, z)

∂y

∣
∣
∣
∣

p

+
∣
∣
∣
∣
∂f (x, y, z)

∂z

∣
∣
∣
∣

p]1/p
)p

dxdydz

)1/p

=
(∫∫∫

B

(|α − x|q + |β − y|q + |γ − z|q) dxdydz
)1/q

×
(∫∫∫

B

[∣
∣
∣
∣
∂f (x, y, z)

∂x

∣
∣
∣
∣

p

+
∣
∣
∣
∣
∂f (x, y, z)

∂y

∣
∣
∣
∣

p

+
∣
∣
∣
∣
∂f (x, y, z)

∂z

∣
∣
∣
∣

p]

dxdydz

)1/p

,

which gives

M (α, β, γ ; f ) ≤ 1

3

(∫∫∫

B

(|α − x|q + |β − y|q + |γ − z|q) dxdydz
)1/q

×
(∫∫∫

B

[∣
∣
∣
∣
∂f (x, y, z)

∂x

∣
∣
∣
∣

p

+
∣
∣
∣
∣
∂f (x, y, z)

∂y

∣
∣
∣
∣

p

+
∣
∣
∣
∣
∂f (x, y, z)

∂z

∣
∣
∣
∣

p]

dxdydz

)1/p

, (4.7)

for p, q > 1, 1
p
+ 1

q
= 1.

We also have:

Theorem 5 Let B be a solid in the three-dimensional space R
3 bounded by an

orientable closed surface S described by the vector equation
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r (u, v) = x (u, v)
−→
i + y (u, v)

−→
j + z (u, v)

−→
k , (u, v) ∈ [a, b]× [c, d] ,

where x (u, v) , y (u, v) , z (u, v) are differentiable. If f : B → C is a continuously
differentiable function defined on an open set containing B, then for all α, β, γ
complex numbers we have the inequality

∣
∣
∣
∣

∫∫∫

B

f (x, y, z) dxdydz− 1

3

∫∫∫

B

[

(α − x)
∂f (x, y, z)

∂x

+ (β − y)
∂f (x, y, z)

∂y
+ (γ − z)

∂f (x, y, z)

∂z

]

dxdydz

∣
∣
∣
∣

≤ 1

3

[∫ b

a

∫ d

c

|f (x (u, v) , y (u, v) , z (u, v))| |x (u, v)− α|
∣
∣
∣
∣
∂ (y, z)

∂ (u, v)

∣
∣
∣
∣ dudv

+
∫ b

a

∫ d

c

|f (x (u, v) , y (u, v) , z (u, v))| |y (u, v)− β|
∣
∣
∣
∣
∂ (z, x)

∂ (u, v)

∣
∣
∣
∣ dudv

+
∫ b

a

∫ d

c

|f (x (u, v) , y (u, v) , z (u, v))| |z (u, v)− γ |
∣
∣
∣
∣
∂ (x, y)

∂ (u, v)

∣
∣
∣
∣ dudv

]

=: N (α, β, γ ; f ) . (4.8)

Moreover, if we put � := [a, b]× [c, d] , then we have the bounds

N (α, β, γ ; f ) ≤ 1

3
‖f ‖S,∞

[∫ b

a

∫ d

c

|x (u, v)− α|
∣
∣
∣
∣
∂ (y, z)

∂ (u, v)

∣
∣
∣
∣

+ |y (u, v)− β|
∣
∣
∣
∣
∂ (z, x)

∂ (u, v)

∣
∣
∣
∣+ |z (u, v)− γ |

∣
∣
∣
∣
∂ (x, y)

∂ (u, v)

∣
∣
∣
∣ dudv

]

≤ 1

3
‖f ‖S,∞

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥
∂(y,z)
∂(·,·)

∥
∥
∥
�,∞ ‖x − α‖�,1 +

∥
∥
∥
∂(z,x)
∂(·,·)

∥
∥
∥
�,∞ ‖y − β‖�,1

+
∥
∥
∥
∂(x,y)
∂(·,·)

∥
∥
∥
�,∞ ‖z− γ ‖�,1 ,

∥
∥
∥
∂(y,z)
∂(·,·)

∥
∥
∥
�,p

‖x − α‖�,q +
∥
∥
∥
∂(z,x)
∂(·,·)

∥
∥
∥
�,p

‖y − β‖�,q

+
∥
∥
∥
∂(x,y)
∂(·,·)

∥
∥
∥
�,p

‖z− γ ‖�,q ,

∥
∥
∥
∂(y,z)
∂(·,·)

∥
∥
∥
�,1

‖x − α‖�,∞ +
∥
∥
∥
∂(z,x)
∂(·,·)

∥
∥
∥
�,p

‖y − β‖�,∞
+
∥
∥
∥
∂(x,y)
∂(·,·)

∥
∥
∥
�,1

‖z− γ ‖�,∞ .

(4.9)

Proof From the identity (3.1) we get
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∫∫∫

B

f (x, y, z) dxdydz

− 1

3

∫∫∫

B

[

(α − x)
∂f (x, y, z)

∂x
+ (β − y)

∂f (x, y, z)

∂y

+ (γ − z)
∂f (x, y, z)

∂z

]

dxdydz

= 1

3

[∫ b

a

∫ d

c

(x (u, v)− α) f (x (u, v) , y (u, v) , z (u, v))
∂ (y, z)

∂ (u, v)
dudv

+
∫ b

a

∫ d

c

(y (u, v)− β) f (x (u, v) , y (u, v) , z (u, v))
∂ (z, x)

∂ (u, v)
dudv

+
∫ b

a

∫ d

c

(z (u, v)− γ ) f (x (u, v) , y (u, v) , z (u, v))
∂ (x, y)

∂ (u, v)
dudv

]

(4.10)

for all α, β, γ complex numbers.
By taking the modulus in (4.10) we get

∣
∣
∣
∣

∫∫∫

B

f (x, y, z) dxdydz− 1

3

∫∫∫

B

[

(α − x)
∂f (x, y, z)

∂x

+ (β − y)
∂f (x, y, z)

∂y
+ (γ − z)

∂f (x, y, z)

∂z

]

dxdydz

∣
∣
∣
∣

≤ 1

3

[∫ b

a

∫ d

c

∣
∣
∣
∣(x (u, v)− α) f (x (u, v) , y (u, v) , z (u, v))

∂ (y, z)

∂ (u, v)

∣
∣
∣
∣ dudv

+
∫ b

a

∫ d

c

∣
∣
∣
∣(y (u, v)− β) f (x (u, v) , y (u, v) , z (u, v))

∂ (z, x)

∂ (u, v)

∣
∣
∣
∣ dudv

+
∫ b

a

∫ d

c

∣
∣
∣
∣(z (u, v)− γ ) f (x (u, v) , y (u, v) , z (u, v))

∂ (x, y)

∂ (u, v)

∣
∣
∣
∣ dudv

]

= 1

3

[∫ b

a

∫ d

c

|x (u, v)− α| |f (x (u, v) , y (u, v) , z (u, v))|
∣
∣
∣
∣
∂ (y, z)

∂ (u, v)

∣
∣
∣
∣ dudv

+
∫ b

a

∫ d

c

|y (u, v)− β| |f (x (u, v) , y (u, v) , z (u, v))|
∣
∣
∣
∣
∂ (z, x)

∂ (u, v)

∣
∣
∣
∣ dudv

+
∫ b

a

∫ d

c

|z (u, v)− γ | |f (x (u, v) , y (u, v) , z (u, v))|
∣
∣
∣
∣
∂ (x, y)

∂ (u, v)

∣
∣
∣
∣ dudv

]

= N (α, β, γ ; f ) ,

which proves the first inequality in (4.8).
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We have

N (α, β, γ ; f ) ≤ 1

3
‖f ‖S,∞

[∫ b

a

∫ d

c

|x (u, v)− α|
∣
∣
∣
∣
∂ (y, z)

∂ (u, v)

∣
∣
∣
∣ dudv

+
∫ b

a

∫ d

c

|y (u, v)− β|
∣
∣
∣
∣
∂ (z, x)

∂ (u, v)

∣
∣
∣
∣ dudv

+
∫ b

a

∫ d

c

|z (u, v)− γ |
∣
∣
∣
∣
∂ (x, y)

∂ (u, v)

∣
∣
∣
∣ dudv

]

and by Hölder’s inequality for each integral we get the last part of (4.9). �
Corollary 2 With the assumptions of Theorem 5 we have

N (α, β, γ ; f ) ≤ 1

3

(∫ ∫

S

|f (x, y, z)|2 dS
)1/2

×
(∫ ∫

S

(
|x − α|2 + |y − β|2 + |z− γ |2

)
dS

)1/2

(4.11)

for all α, β, γ complex numbers.

Proof We have, by Cauchy-Bunyakovsky-Schwarz (CBS) discrete inequality, that

|x (u, v)− α|
∣
∣
∣
∣
∂ (y, z)

∂ (u, v)

∣
∣
∣
∣+ |y (u, v)− β|

∣
∣
∣
∣
∂ (z, x)

∂ (u, v)

∣
∣
∣
∣+ |z (u, v)− γ |

∣
∣
∣
∣
∂ (x, y)

∂ (u, v)

∣
∣
∣
∣

≤
(
|x (u, v)− α|2 + |y (u, v)− β|2 + |z (u, v)− γ |2

)1/2

×
(∣
∣
∣
∣
∂ (y, z)

∂ (u, v)

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂ (z, x)

∂ (u, v)

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂ (x, y)

∂ (u, v)

∣
∣
∣
∣

2
)1/2

for (u, v) ∈ [a, b]× [c, d] .
Therefore we get

N (α, β, γ ; f ) ≤
∫ b

a

∫ d

c

|f (x (u, v) , y (u, v) , z (u, v))|

×
(
|x (u, v)− α|2 + |y (u, v)− β|2 + |z (u, v)− γ |2

)1/2

×
(∣
∣
∣
∣
∂ (y, z)

∂ (u, v)

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂ (z, x)

∂ (u, v)

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂ (x, y)

∂ (u, v)

∣
∣
∣
∣

2
)1/2

dudv

=: P (α, β, γ ; f ) .
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By using CBS weighted integral inequality we get

P (α, β, γ ; f )

≤
(∫ b

a

∫ d

c

|f (x (u, v) , y (u, v) , z (u, v))|2

×
(∣
∣
∣
∣
∂ (y, z)

∂ (u, v)

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂ (z, x)

∂ (u, v)

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂ (x, y)

∂ (u, v)

∣
∣
∣
∣

2
)1/2

dudv

⎞

⎠

1/2

×
(∫ b

a

∫ d

c

(
|x (u, v)− α|2 + |y (u, v)− β|2 + |z (u, v)− γ |2

)

×
(∣
∣
∣
∣
∂ (y, z)

∂ (u, v)

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂ (z, x)

∂ (u, v)

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂ (x, y)

∂ (u, v)

∣
∣
∣
∣

2
)1/2

dudv

⎞

⎠

1/2

=
(∫ ∫

S

|f (x, y, z)|2 dS
)1/2 (∫ ∫

S

(
|x − α|2 + |y − β|2 + |z− γ |2

)
dS

)1/2

,

which proves the desired result (4.11). �
Remark 4 From (4.8) we get

∣
∣
∣
∣

∫∫∫

B
f (x, y, z) dxdydz− 1

3

∫∫∫

B

[

(xB − x)
∂f (x, y, z)

∂x

+ (yB − y)
∂f (x, y, z)

∂y
+ (zB − z)

∂f (x, y, z)

∂z

]

dxdydz

∣
∣
∣
∣

≤ 1

3

[∫ b

a

∫ d

c
|f (x (u, v) , y (u, v) , z (u, v))| |x (u, v)− xB |

∣
∣
∣
∣
∂ (y, z)

∂ (u, v)

∣
∣
∣
∣ dudv

+
∫ b

a

∫ d

c
|f (x (u, v) , y (u, v) , z (u, v))| |y (u, v)− yB |

∣
∣
∣
∣
∂ (z, x)

∂ (u, v)

∣
∣
∣
∣ dudv

+
∫ b

a

∫ d

c
|f (x (u, v) , y (u, v) , z (u, v))| |z (u, v)− zB |

∣
∣
∣
∣
∂ (x, y)

∂ (u, v)

∣
∣
∣
∣ dudv

]

=: N (α, β, γ ; f ) . (4.12)

Moreover, if we put � := [a, b]× [c, d] , then we have the bounds

N (α, β, γ ; f ) ≤ 1

3
‖f ‖S,∞

[∫ b

a

∫ d

c

|x (u, v)− xB |
∣
∣
∣
∣
∂ (y, z)

∂ (u, v)

∣
∣
∣
∣

+ |y (u, v)− yB |
∣
∣
∣
∣
∂ (z, x)

∂ (u, v)

∣
∣
∣
∣+ |z (u, v)− zB |

∣
∣
∣
∣
∂ (x, y)

∂ (u, v)

∣
∣
∣
∣ dudv

]
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≤ 1

3
‖f ‖S,∞

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥
∂(y,z)
∂(·,·)

∥
∥
∥
�,∞ ‖x − xB‖�,1 +

∥
∥
∥
∂(z,x)
∂(·,·)

∥
∥
∥
�,∞ ‖y − yB‖�,1

+
∥
∥
∥
∂(x,y)
∂(·,·)

∥
∥
∥
�,∞ ‖z− zB‖�,1 ,

∥
∥
∥
∂(y,z)
∂(·,·)

∥
∥
∥
�,p

‖x − xB‖�,q +
∥
∥
∥
∂(z,x)
∂(·,·)

∥
∥
∥
�,p

‖y − yB‖�,q

+
∥
∥
∥
∂(x,y)
∂(·,·)

∥
∥
∥
�,p

‖z− zB‖�,q ,

∥
∥
∥
∂(y,z)
∂(·,·)

∥
∥
∥
�,1

‖x − xB‖�,∞ +
∥
∥
∥
∂(z,x)
∂(·,·)

∥
∥
∥
�,p

‖y − yB‖�,∞
+
∥
∥
∥
∂(x,y)
∂(·,·)

∥
∥
∥
�,1

‖z− zB‖�,∞ .

(4.13)

We also observe that under the assumptions of Theorem 5 we have

∣
∣
∣
∣

∫∫∫

B
f (x, y, z) dxdydz

∣
∣
∣
∣

≤ 1

3

[∫ b

a

∫ d

c
|f (x (u, v) , y (u, v) , z (u, v))| ∣∣x (u, v)− xB,∂f

∣
∣
∣
∣
∣
∣
∂ (y, z)

∂ (u, v)

∣
∣
∣
∣ dudv

+
∫ b

a

∫ d

c
|f (x (u, v) , y (u, v) , z (u, v))| ∣∣y (u, v)− yB,∂f

∣
∣
∣
∣
∣
∣
∂ (z, x)

∂ (u, v)

∣
∣
∣
∣ dudv

+
∫ b

a

∫ d

c
|f (x (u, v) , y (u, v) , z (u, v))| ∣∣z (u, v)− zB,∂f

∣
∣
∣
∣
∣
∣
∂ (x, y)

∂ (u, v)

∣
∣
∣
∣ dudv

]

=: N (xB,∂f , yB,∂f , zB,∂f ; f
)
. (4.14)

Moreover, we have the bounds

N
(
xB,∂f , yB,∂f , zB,∂f ; f

) ≤ 1

3
‖f ‖S,∞

[∫ b

a

∫ d

c

∣
∣x (u, v)− xB,∂f

∣
∣
∣
∣
∣
∣
∂ (y, z)

∂ (u, v)

∣
∣
∣
∣

+ ∣∣y (u, v)− yB,∂f
∣
∣
∣
∣
∣
∣
∂ (z, x)

∂ (u, v)

∣
∣
∣
∣+
∣
∣z (u, v)− zB,∂f

∣
∣
∣
∣
∣
∣
∂ (x, y)

∂ (u, v)

∣
∣
∣
∣ dudv

]

≤ 1

3
‖f ‖S,∞
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×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥
∂(y,z)
∂(·,·)

∥
∥
∥
�,∞

∥
∥x − xB,∂f

∥
∥
�,1 +

∥
∥
∥
∂(z,x)
∂(·,·)

∥
∥
∥
�,∞

∥
∥y − yB,∂f

∥
∥
�,1

+
∥
∥
∥
∂(x,y)
∂(·,·)

∥
∥
∥
�,∞

∥
∥z− zB,∂f

∥
∥
�,1 ,

∥
∥
∥
∂(y,z)
∂(·,·)

∥
∥
∥
�,p

∥
∥x − xB,∂f

∥
∥
�,q

+
∥
∥
∥
∂(z,x)
∂(·,·)

∥
∥
∥
�,p

∥
∥y − yB,∂f

∥
∥
�,q

+
∥
∥
∥
∂(x,y)
∂(·,·)

∥
∥
∥
�,p

∥
∥z− zB,∂f

∥
∥
�,q

,

∥
∥
∥
∂(y,z)
∂(·,·)

∥
∥
∥
�,1

∥
∥x − xB,∂f

∥
∥
�,∞ +

∥
∥
∥
∂(z,x)
∂(·,·)

∥
∥
∥
�,p

∥
∥y − yB,∂f

∥
∥
�,∞

+
∥
∥
∥
∂(x,y)
∂(·,·)

∥
∥
∥
�,1

∥
∥z− zB,∂f

∥
∥
�,∞ .

(4.15)

5 Applications for Three-Dimensional Balls

Now, let us compute the surface integral

K (S (C,R) , f ) :=
∫∫

S(C,R)

f (x, y, z) dS,

where

S (C,R) :=
{
(x, y, z) ∈ R

3
∣
∣
∣ (x − a)2 + (y − b)2 + (z− c)2 = R2

}
.

If we consider the parametrization of S (C,R) given by:

S (C,R) :
⎧
⎨

⎩

x = R cosψ cosϕ + a

y = R cosψ sinϕ + b

z = R sinψ + c

; (ψ, ϕ) ∈
[
−π

2
,
π

2

]
× [0, 2π ]

and putting

A :=
∣
∣
∣
∣
∣

∂y
∂ψ

∂z
∂ψ

∂y
∂ϕ

∂z
∂ϕ

∣
∣
∣
∣
∣
= −R2 cos2 ψ cosϕ,

B :=
∣
∣
∣
∣
∣

∂x
∂ψ

∂z
∂ψ

∂x
∂ϕ

∂z
∂ϕ

∣
∣
∣
∣
∣
= R2 cos2 ψ sinϕ,

and
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C :=
∣
∣
∣
∣
∣

∂x
∂ψ

∂y
∂ψ

∂x
∂ϕ

∂y
∂ϕ

∣
∣
∣
∣
∣
= −R2 sinψ cosψ,

we have that

A2 + B2 + C2 = R4 cos2 ψforall (ψ, ϕ) ∈
[
−π

2
,
π

2

]
× [0, 2π ] .

Thus,

K (S (C,R) , f ) =
∫∫

S(C,R)

f (x, y, z) dS

=
∫ π

2

− π
2

∫ 2π

0

[
f (R cosψ cosϕ + a,R cosψ sinϕ + b,R sinψ + c)

×
√
A2 + B2 + C2

]
dψdϕ

= R2
∫ π

2

− π
2

∫ 2π

0
cosψf (R cosψ cosϕ + a,R cosψ sinϕ

+b,R sinψ + c) dψdϕ. (5.1)

We also have

L (S (C,R) , f ) :=
∫ ∫

S(C,R)

(x − a) f (x, y, z) dy ∧ dz

+
∫ ∫

S(C,R)

(y − b) f (x, y, z) dz ∧ dx

+
∫ ∫

S(C,R)

(z− c) f (x, y, z) dx ∧ dy

= −R3
∫ π

2

− π
2

∫ 2π

0
cos3 ψ cos2 ϕ

× f (R cosψ cosϕ + a,R cosψ sinϕ + b,R sinψ + c) dψdϕ

+ R3
∫ π

2

− π
2

∫ 2π

0
cos3 ψ sin2 ϕ

× f (R cosψ cosϕ + a,R cosψ sinϕ + b,R sinψ + c) dψdϕ

− R3
∫ ∫

S

sin2 ψ cosψf (R cosψ cosϕ + a,R cosψ sinϕ

+b,R sinψ + c) dψdϕ. (5.2)
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Let us consider the transformation T2 : R3 → R
3 given by:

T2 (r, ψ, ϕ) := (r cosψ cosϕ + a, r cosψ sinϕ + b, r sinψ + c) .

It is well known that the Jacobian of T2 is

J (T2) = r2 cosψ

and T2 is a one-to-one mapping defined on the interval of R3, [0, R] × [−π
2 ,

π
2

]×
[0, 2π ] , with values in the ball B (C,R) from R

3. Thus we have the change of
variable:

I (B (C,R) , f ) :=
∫∫∫

B(C,R)

f (x, y, z) dxdydz

=
∫ R

0

∫ π
2

− π
2

∫ 2π

0
f (r cosψ cosϕ + a, r cosψ sinϕ

+b, r sinψ + c) r2 cosψdrdψdϕ. (5.3)

We also have

∫∫∫

B(C,R)

|a − x| dxdydz =
∫ R

0

∫ π
2

− π
2

∫ 2π

0
r3 cos2 ψ |cosϕ| drdψdϕ = π

2
R4

and, similarly

∫∫∫

B(C,R)

|b − y| dxdydz =
∫∫∫

B(C,R)

|c − z| dxdydz = π

2
R4.

Therefore
∥
∥
∥
∥
∂f

∂x

∥
∥
∥
∥
B(C,R),∞

∫∫∫

B(C,R)

|xB − x| dxdydz

+
∥
∥
∥
∥
∂f

∂y

∥
∥
∥
∥
B(C,R),∞

∫∫∫

B(C,R)

|yB − y| dxdydz

+
∥
∥
∥
∥
∂f

∂z

∥
∥
∥
∥
B(C,R),∞

∫∫∫

B(C,R)

|zB − z| dxdydz

= π

2
R4

(∥
∥
∥
∥
∂f

∂x

∥
∥
∥
∥
B(C,R),∞

+
∥
∥
∥
∥
∂f

∂y

∥
∥
∥
∥
B(C,R),∞

+
∥
∥
∥
∥
∂f

∂z

∥
∥
∥
∥
B(C,R),∞

)

and by the inequalities (4.3) and (4.4) we get
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∣
∣
∣
∣I (B (C,R) , f )− 1

3
L (S (C,R) , f )

∣
∣
∣
∣

≤ π

6
R4

(∥
∥
∥
∥
∂f

∂x

∥
∥
∥
∥
B(C,R),∞

+
∥
∥
∥
∥
∂f

∂y

∥
∥
∥
∥
B(C,R),∞

+
∥
∥
∥
∥
∂f

∂z

∥
∥
∥
∥
B(C,R),∞

)

(5.4)

provided f : B (C,R)→ C is a continuously differentiable function defined on an
open set containing B (C,R) .

We also consider

T (B (C,R) , f ) :=
∫∫∫

B

[

(xB − x)
∂f (x, y, z)

∂x

+ (yB − y)
∂f (x, y, z)

∂y
+ (zB − z)

∂f (x, y, z)

∂z

]

dxdydz

= −
∫ R

0

∫ π
2

− π
2

∫ 2π

0

(
r3 cos2 ψ cosϕ

)

× ∂f (r cosψ cosϕ + a, r cosψ sinϕ + b, r sinψ + c)

∂x
drdψdϕ

−
∫ R

0

∫ π
2

− π
2

∫ 2π

0

(
r3 cos2 ψ sinϕ

)

× ∂f (r cosψ cosϕ + a, r cosψ sinϕ + b, r sinψ + c)

∂y
drdψdϕ

−
∫ R

0

∫ π
2

− π
2

∫ 2π

0
r3 sinψ cosψ

× ∂f (r cosψ cosϕ + a, r cosψ sinϕ + b, r sinψ + c)

∂z
drdψdϕ. (5.5)

By the inequality (4.11) we obtain

N (a, b, c; f ) ≤ 1

3

(∫ ∫

S(C,R)

|f (x, y, z)|2 dS
)1/2

×
(∫ ∫

S(C,R)

(
|x − a|2 + |y − b|2 + |z− c|2

)
dS

)1/2

= 2

3

√
πR2

[
K
(
S (C,R) , |f |2

)]1/2

and by utilizing (4.12) we also get

∣
∣
∣
∣I (B (C,R) , f )− 1

3
T (B (C,R) , f )

∣
∣
∣
∣ ≤

2

3

√
πR2

[
K
(
S (C,R) , |f |2

)]1/2
.

(5.6)
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20. Neuman, E. and Pec̆arić, J.; Inequalities involving multivariate convex functions, J. Math. Anal.
Appl. 137 (1989), 541–549.

21. Özdemir, M. Emin; Akdemir, Ahmet Ocak; Set, Erhan A new Ostrowski-type inequality for
double integrals. J. Inequal. Spec. Funct. 2 (2011), no. 1, 27–34.

22. Pachpatte, B. G.; A new Ostrowski type inequality for double integrals. Soochow J. Math. 32
(2006), no. 2, 317–322.

https://rgmia.org/papers/v5n1/BCD.pdf
https://www.emis.de/journals/JIPAM/article95.html?sid=95
http://rgmia.org/papers/v22/v22a50.pdf
http://rgmia.org/papers/v22/v22a50.pdf


260 S. S. Dragomir

23. Sarikaya, Mehmet Zeki on the Ostrowski type integral inequality for double integrals.
Demonstratio Math. 45 (2012), no. 3, 533–540.

24. Sarikaya, Mehmet Zeki; Ogunmez, Hasan On the weighted Ostrowski-type integral inequality
for double integrals. Arab. J. Sci. Eng. 36 (2011), no. 6, 1153–1160.

25. Wasowicz, S. and Witkowski, A.; On some inequality of Hermite–Hadamard type. Opusc.
Math. 32 (3)(2012), 591–600

26. Wang, F.-L.;The generalizations to several-dimensions of the classical Hadamard’s inequality,
Mathematics in Practice and Theory, vol. 36, no. 9, pp. 370–373, 2006 (Chinese).

27. Wang, F.-L.; A family of mappings associated with Hadamard’s inequality on a hypercube,
International Scholarly Research Network ISRN Mathematical Analysis Volume 2011, Article
ID 594758, 9 pages https://doi.org/10.5402/2011/594758.

https://doi.org/10.5402/2011/594758


Optimal Emergency Evacuation
with Uncertainty

Georgia Fargetta and Laura Scrimali

Abstract Emergency management after crises or natural disasters is a very impor-
tant issue shared by many countries. In this chapter, we focus on evacuation
planning which is a complex and challenging process able to predict or evaluate
different disaster scenarios. In particular, we present an evacuation model where
a population has to be evacuated from crisis areas to shelters and propose an
optimization formulation for minimizing a combination of the transportation cost
and the transportation time. In addition, we admit uncertainty in the size of the
population to be evacuated and provide a two-stage stochastic programming model.
In order to illustrate the modeling framework, we present a numerical example.

1 Introduction

Natural disasters (earthquakes, hurricanes, landslides, etc.) as well as unnatural ones
(wars, terrorist attacks, etc.) are a serious threat for the humankind. Evacuation of
the disaster region is the most used strategy to save people affected by a disaster.
Generally, disasters cannot be predicted, and it is extremely difficult to estimate their
intensity and damages; hence, evacuation planning must be done under uncertainty.
For this reason, it is generally formulated as a stochastic programming problem
(see [16]). Incomplete information may regard different factors, such as evacuation
demand, link capacity, disruption in the road network, or how much infrastructures
may be impacted by disasters.

In this chapter, we propose a scenario-based evacuation planning model that
provides the optimal flows of evacuees from crisis areas to shelters, in order to
minimize both the transportation cost and the transportation time, under uncertainty
on the evacuation demand and the link capacities. Inspired by [18], we admit real-
time information availability, which makes the evacuation process be divided into
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two stages. In the first stage, people at risk receive the early warning information
about the disaster and escape from the crisis areas; however, they cannot obtain the
exact information of disaster intensity. After a certain time period, accurate real-
time information is observed and the process reaches the second stage, where the
decision relies on the first-stage solution and on the observed scenario. Moreover,
we introduce a penalty to the unmet demand of evacuation which will affect the
second-stage decision.

The importance of an efficient approach to emergency management and evacua-
tion planning has been emphasized in several papers.

In [5], the authors model an escape situation in a labyrinth, where people are
agents that act as two different kinds of ant colonies. Payoff values in both the
competitive and the cooperative framework are studied, merging a game theoretical
approach and Ant Colony Optimization.

In [1], the authors present a two-stage stochastic programming model to plan
the transportation of vital first-aid commodities to disaster-affected areas during
emergency response. A multi-commodity, multi-modal network flow formulation
is then developed. Since it is difficult to predict the timing and magnitude of
any disaster, uncertainty and information asymmetry naturally arise. The authors
introduce randomness as a finite sample of scenarios for capacity, supply, and
demand.

In [2], the authors propose a scenario-based two-stage stochastic evacuation
planning model that optimally chooses shelter sites and assigns evacuees to nearest
shelters within a tolerance degree to minimize the expected total evacuation time.
The model takes into account the uncertainty in the evacuation demand and the
disruption in the road network and shelter sites.

In [12], the authors develop a stochastic optimization model that determines the
order in which patients should be evacuated over time, based on the evolution of the
storm by considering a weighted sum of the expected risk and the expected cost of
evacuation.

In [17], a bi-objective optimization model is proposed, which studies critical
management before and after the disaster. The first level investigates the locations of
shelters and warehouses before the disaster and maximizes the weights of the sites
selected for construction of shelters. The second level minimizes the distances from
warehouses to the shelters and the distances from crisis areas to the shelters.

In [18], the authors study the regional emergency resources storage and, in
particular, the region division. A two-stage stochastic programming model is
proposed to solve the region division problem.

Recently, two-stage stochastic variational inequalities were introduced, where
one seeks a decision vector before the stochastic variables are known and a decision
vector after the scenario has been realized. In [13], Rockafellar and Wets propose the
multistage stochastic variational inequality. In [14], the authors develop progressive
hedging methods for solving multistage convex stochastic programming, see also
[15]. In [4], the authors formulate the two-stage stochastic variational inequality as
a two-stage stochastic programming problem with recourse.



Optimal Emergency Evacuation with Uncertainty 263

In this chapter, we present a two-stage stochastic programming problem for the
evacuation planning and give an equivalent formulation as a two-stage stochastic
variational inequality, using the Lagrangian relaxation approach. We also discuss
the qualitative properties of the two-stage stochastic variational inequality.

The structure of this chapter is as follows. In Sect. 2, we present the deterministic
evacuation model and derive an equivalent variational inequality formulation. In
Sect. 3, we present the two-stage stochastic model. In Sect. 4, we propose an
equivalent two-stage variational inequality formulation. In Sect. 5, we provide a
numerical example, and, finally, we present our conclusions in Sect. 6.

2 The Deterministic Model

We assume that a population of N individuals is located in some crisis areas
and must be evacuated to some shelters. Different modes of transportation are
considered to enhance node accessibility. We denote by A the set of crisis areas,
with typical area denoted by i, by S the set of shelters, with typical shelter denoted
by j , and by M the set of transportation modes, with typical mode denoted by m.
We consider a network representation as in Fig. 1. The links between the levels of
the network represent all the possible connections between the crisis areas and the
shelters. Multiple links between each area and each shelter depict the possibility of
alternative modes of transportation.

Let dmi be the demand of crisis area i for evacuation with mode m, namely,
the number of people to be evacuated from area i with mode m, where∑

i∈A
∑

m∈M dmi ≤ N . We denote by di = ∑
m∈M dmi the demand of area i

on all modes. Moreover, let xij be the flows of evacuees from area i to shelter j . We
also assume that Kj is the maximum number of people that can be hosted in shelter
j , and kj is the minimum number of people required to open shelter j . Thus, the
following conditions have to be satisfied:

Areas
i1 n

j1 l

Shelters

Fig. 1 The network representation
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Table 1 The notation for the deterministic model

Symbols Definitions

A Set of crisis areas, with typical area denoted by i, card(A) = n

S Set of shelters, with typical shelter denoted by j , card(S) = l

M Set of transportation modes, with typical mode denoted by m, card(M) = m̄

dmi Demand of crisis area i for evacuation with mode m

di =∑m∈M dmi The demand of area i on all modes

Kj Maximum number of people that can be hosted in shelter j

kj Recommended number of people to open shelter j

w Weight in [0, 1]
ε Positive balance tolerance

μij Flow capacity on link (i, j)

μ = (μij )i,j Total flow capacity

xij Flow of evacuees from area i to shelter j

x = (xij )i,j Total flow of evacuees

cmij (xij ) Transportation cost from area i to shelter j with mode m

tmij (xij ) Transportation time from area i to shelter j with mode m

∑

i∈A
xij ≤ Kj ,∀j ∈ S,

∑

i∈A
xij ≥ kj ,∀j ∈ S.

We group the flows xij into a column vector x ∈ R
nl . In addition, we introduce

the transportation cost cmij from area i to shelter j with mode m and assume that
it depends on the flow xij , namely, cmij = cmij (xij ). Analogously, we define the
transportation time tmij from area i to shelter j with mode m and assume that it
depends on the flow xij , namely, tmij = tmij (xij ).

We summarize the relevant notations used in the mathematical formulation in
Table 1.

We introduce the total evacuation cost Cm
ij given by

Cm
ij (xij ) = w cmij (xij )+ (1− w) tmij (xij ), ∀i ∈ A , j ∈ S ,m ∈ M.

Our aim is to minimize the total evacuation costs; hence, we seek to solve the
following optimization problem:

min
∑

i∈A

∑

j∈S

∑

m∈M
Cm
ij (xij ) (1)

∑

i∈A
xij ≤ Kj , ∀j ∈ S, (2)
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∑

i∈A
xij ≥ kj , ∀j ∈ S, (3)

xij ≤ μij , ∀i ∈ A, j ∈ S, (4)
∑

i∈A xij
Kj

−
∑

i∈A xij ′
K ′
j

≤ ε, ∀j, j ′ ∈ S, (5)

∑

j∈S
xij ≤ di, ∀i ∈ A, (6)

xij ≥ 0, ∀i ∈ A , j ∈ S. (7)

The objective function (1) is the weighted sum of transportation cost and
transportation time, where w ∈ [0, 1]. Constraint (2) ensures that the capacity of
each shelter j is not exceeded. Constraint (3) guarantees that each shelter j is used.
Constraint (4) requires that the flow on link (i, j) must satisfy the flow capacity on
that link. Constraint (5) states that the number of evacuees is balanced among the
shelters. Constraint (6) establishes that for each area i, the evacuation demand di on
all modes is satisfied, and, finally, (7) represents the non-negativity requirement on
flows.

We now introduce the set of feasible flows

X =
{
x ∈ R

nl : xij ≥ 0,∀i, j ;
∑

i∈A
xij ≤ Kj, ∀j ;

∑

i∈A
xij ≥ kj , ∀j ;

xij ≤ μij , ∀i, j, ;
∑

i∈A xij
Kj

−
∑

i∈A xij ′
K ′
j

≤ ε, ∀j, j ′;
∑

j∈S
xij ≤ di, ∀i

}
.

We assume that the transportation cost and the transportation time functions
are continuously differentiable and convex. In addition, since the set X is closed,
bounded, and convex, we can apply the classical theory on variational inequalities
(see, for instance, [6, 9], or [11]) and formulate problem (1)–(7) as the following
variational inequality:

Findx∗ ∈ X :
∑

i∈A

∑

j∈S

∑

m∈M

[

w
∂cmij (x

∗
ij )

∂xij
+ (1− w)

∂tmij (x
∗
ij )

∂xij

]

×
(
xij − x∗ij

)
, ∀x ∈ X.

The above variational inequality can be put in standard form as follows (see [11]):

Find x∗ ∈ X such that 〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ X, (8)

where 〈·, ·〉 denotes the inner product in the (nl)-dimensional Euclidean space and
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F(x∗) =
[

w
∂cmij (x

∗
ij )

∂xij
+ (1− w)

∂tmij (x
∗
ij )

∂xij

]

i∈A
j∈S
m∈M

.

Under the assumptions on the feasible set X and the objective function, we can
ensure the existence of at least one solution to (8) (see [9]). Moreover, if the function
F(x) in (8) is strictly monotone on X, namely,

〈F(x1)− F(x2), x1 − x2〉 > 0 ∀x1, x2 ∈ X, x1 �= x2,

then variational inequality (8) admits a unique solution.

3 Two-Stage Stochastic Model

In this section, we present a scenario-based stochastic optimization model to
represent the evacuation process after an earthquake. At the occurrence of the
disaster event, affected people receive the early warning information and escape
from the crisis areas. After the event, accurate information is available, for instance,
due to technological communication tools. Since the initial response will depend
on a number of disaster scenarios, we propose a two-stage stochastic programming
model with recourse, where both the first stage and the second stage arise in different
time phases in the same evacuation network. We remark that the first-stage decision
is taken before the realization of the disaster scenario is observed. After that this
information is accessible, the decision process reaches the second stage, where the
decision depends on the first-stage solution and on the observed scenario.

As it is very hard to estimate exactly the impact of a natural disaster, we allow for
uncertainty in the modeling assumptions and introduce some random parameters. In
particular, since the effects of disasters naturally randomize the number of people
who survive, we consider random evacuation demands at the emergency sites.
Moreover, we take into account possible disruptions on network links and deal with
random capacities on links.

We note that, in the first stage, the evacuation demand and the link capacities
are known only from a probabilistic point of view. Thus, in the first stage, people
at risk must be evacuated from crisis areas before observing the real data. Instead,
in the second stage, the evacuation plan will be obtained with the realization of the
evacuation demand and the link capacities.

Our aim is to formulate the random evacuation problem as a two-stage optimiza-
tion problem. In the first stage, we seek for the optimal flows to minimize the penalty
cost generated by the decisions taken before the acquisition of the information plus
the recourse cost for the disaster scenario. In the second stage, another optimization
problem is solved, based on a given realization of each scenario.
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Table 2 The notation for the two-stage stochastic model

Symbols Definitions

μij Flow capacity on link (i, j) in stage one

μij (ω) Random flow capacity in stage two

dmi Evacuation demand of crisis area i with mode m in stage one

di =∑m∈M dmi Demand of area i on all modes in stage one

dmi (ω) Evacuation demand of crisis area i with mode m in stage two

di(ω) =∑m∈M dmi (ω) Demand of area i on all modes in stage two

ξ(ω) Random parameters in stage two resulting from decisions made in stage one

according to ω

xij Flow of evacuees from area i to shelter j in stage one

yij (ω) Flow of evacuees from area i to shelter j in stage two under scenario ω

πij (xij ) The penalty cost on link (i, j)

Let (Ω,F , P ) be a probability space, where the random parameter ω ∈ Ω

represents the typical disaster scenario. For each ω ∈ Ω , we denote by ξ : Ω → R
K

a finite-dimensional random vector and by Eξ the mathematical expectation with
respect to ξ .

In order to formulate the two-stage stochastic evacuation model, we introduce
two types of decision variables. In the first stage, the decision variable xij is used to
represent the flow of evacuees from area i to shelter j in stage one. The second-stage
decision variable yij (ω) represents the flow of evacuees from area i to shelter j in
stage two under scenario ω. From the perspective of the entire system, the decision
planner chooses xij before a realization of ξ is revealed and later selects y(ω) with
known realization.

Table 2 summarizes the relevant notations used in the model formulation.
We denote by πij = πij (xij ) the penalty cost generated by the decisions taken

before obtaining the information. In order to minimize the penalty for the prior
evacuation plan and the expected total evacuation expenses (time and cost) for each
scenario, we formulate the following two-stage evacuation problem:

min
∑

i∈A

∑

j∈S

∑

m∈M
πij (xij )+ Eξ (Φ(x, ξ(ω))) (9)

subject to
∑

i∈A
xij ≤ Kj, ∀j ∈ S, (10)

∑

i∈A
xij ≥ kj , ∀j ∈ S, (11)

xij ≤ μij , ∀i ∈ A, j ∈ S, (12)
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∑
i∈A xij
Kj

−
∑

i∈A xij ′
K ′
j

≤ ε, ∀j, j ′ ∈ S, (13)

∑

j∈S
xij ≤ di, ∀i ∈ A, (14)

xij ≥ 0, ∀i ∈ A, j ∈ S, (15)

where

Φ(x, ξ(ω)) = min
∑

i∈A

∑

j∈S

(
w cmij (yij (ω))+ (1− w) tmij (yij (ω))

)
(16)

subject to
∑

i∈A
yij (ω) ≤ Kj , ∀j ∈ S, P -a.s., (17)

∑

i∈A
ymij (ω) ≥ kj , ∀j ∈ S, P -a.s., (18)

yij (ω) ≤ μij (ω), ∀i ∈ A, j ∈ S, P -a.s., (19)
∑

i∈A yij (ω)
Kj

−
∑

i∈A yij ′(ω)
K ′
j

≤ ε, ∀j, j ′ ∈ S, P -a.s., (20)

∑

j∈S
yij (ω)+

(
di −

∑

j

xij
) ≤ di(ω), ∀i ∈ A, P -a.s., (21)

yij (ω) ≥ 0, ∀i ∈ A, j ∈ S, P -a.s. (22)

Problem (9)–(15) is the first-stage problem. The objective function (9) minimizes
the sum of the penalty for early evacuation plan and the recourse cost Φ(x, ξ(ω)).
Constraints (10)–(11) ensure that the capacity of each shelter j is satisfied.
Constraint (12) is the link flow capacity, constraint (13) is the balance constraint
among the shelters, and constraint (14) states that for each area i, the number of
evacuees cannot exceed the number of affected people. Finally, (15) is the non-
negativity requirements on flows.

For a given realization ω ∈ Ω , Φ(x, ξ(ω)) is the optimal value of the second-
stage problem (16)–(22), where the constraints hold almost surely (P-a.s.). The
objective function (16) minimizes the total evacuation cost and the transportation
time in the second stage. Constraints (17)–(18) are the shelter capacities, con-
straint (19) is the flow capacity, and constraint (20) is the balance constraint among
the shelters. Constraint (21) establishes that the number of evacuees at the second
stage plus the unmet demand of evacuation at the first stage, given by di−∑j∈S xij ,
cannot exceed the two-stage demand of people at risk di(ω). We emphasize that
the connections between stage-wise decision variables x and y are captured by
constraint (21). It is the linking factor between the first and second stages and
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communicates the first-stage decisions to the second one. Finally, (22) is the non-
negativity constraint.

We assume that

1. πij (·) is continuously differentiable and convex for all i, j ;
2. cmij (·, ω) and tmij (·, ω), a.e. in Ω , are continuously differentiable and convex for

all i, j ;
3. for each u ∈ R

pq , cmij (u, ·) and tmij (u, ·) are measurable with respect to the
random parameter in Ω for all i, j ;

4. yij : Ω → R and μij : Ω → R are measurable mappings for all i, j ;
5. dmi : Ω → R is a measurable mapping for all i and all m.

Now, we set

Y =
{

y(ω) ∈ R
nl : yij (ω) ≥ 0,∀i, j ;

∑

i∈A
yij (ω) ≤ Kj , ∀j ;

∑

i∈A
yij (ω) ≥ kj , ∀j ;

yij (ω) ≤ μij (ω), ∀i, j ;
∑

i∈A yij (ω)
Kj

−
∑

i∈A yij ′(ω)
K ′
j

≤ ε, ∀j, j ′, P − a.s.

}

,

which is a closed, convex, and bounded subset of Rpq .
Thus, the two-stage stochastic problem can be stated in a more compact form as

min
x∈X

∑

i∈A

∑

j∈S
πij (xij )+ Eξ (Φ(x, ξ(ω))), (23)

Φ(x, ξ(ω)) = min
y(ω)∈Y

∑

i∈A

∑

j∈S

∑

m∈M

(

w cmij (yij (ω))+ (1− w) tmij (yij (ω))

)

(24)

∑

j∈S
yij (ω)+

(

di −
∑

j

xij

)

≤ di(ω), ∀i ∈ A, P -a.s. (25)

If the random parameter ω ∈ Ω follows a discrete distribution with finite
support Ω = {ω1, . . . , ωr̄ } and probabilities p(ω1), . . . , p(ωr̄ ) associated with each
realization ω1, . . . , ωr̄ , then the two-stage problem can be formulated as the unique
large-scale problem

minπij (xij )+
∑

r∈R
p(ωr)

∑

i∈A

∑

j∈S

∑

m∈M

(
w cmij (yij (ωr))+ (1− w) tmij (yij (ωr))

)

∑

i∈A
xij ≤ Kj,∀j ∈ S,

∑

i∈A
xij ≥ kj ,∀j ∈ S,
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xij ≤ μij ,∀i ∈ A, j ∈ S,
∑

i∈A xij
Kj

−
∑

i∈A xij ′
K ′
j

≤ ε, ∀j, j ′ ∈ S,

∑

j∈S
xijr ≤ di, ∀i ∈ A,

∑

i∈A
yij (ωr) ≤ Kj ,∀j ∈ S, r ∈ R,

∑

i∈A
yij (ωr) ≥ kj ,∀j ∈ S, r ∈ R,

yij (ωr) ≤ μij (ωr),∀i ∈ A, j ∈ S, r ∈ R,
∑

i∈A yij (ωr)
Kj

−
∑

i∈A yij ′(ωr)
K ′
j

≤ ε, ∀j, j ′ ∈ S, r ∈ R,

∑

j∈S
yij (ωr)+ di −

∑

j∈S
xij ≤ di(ωt ), ∀i ∈ A, r ∈ R,

xij ≥ 0,∀i ∈ A, j ∈ S,

yij (ωr) ≥ 0,∀i ∈ A, j ∈ S, r ∈ R,

where R = {1, . . . , r̄}. If the number of scenarios is not excessive, then a possible
approach is to solve directly the linear programming problem using a solver such
as CPLEX. In the next section, we suggest an alternative approach that decomposes
the original problem into two variational inequality subproblems.

4 Two-Stage Variational Inequality Formulation

In this section, we propose an equivalent two-stage variational inequality formula-
tion, using the Lagrangian relaxation approach.

We note that the second-stage problem (24)–(25), due to constraint (25), contains
the variable x that is not yet known at that stage. For this reason, the problem is not
easy to solve. Thus, we suggest to relax (25) into the objective function by the
Lagrangian relaxation approach (see [3, 8, 10]). As a consequence, we decompose
the original problem into two subproblems, which can be easily solved, and provide
a lower bound of the optimal value of the initial model (9)–(22).

Now, we focus on the second-stage problem and give its Lagrangian formulation.
We introduce the Lagrange multiplier vector λ : Ω → R

n, with λi(ω) ≥ 0, i.e.,
ω ∈ Ω , for all i ∈ A, and consider the relaxed constraints
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∑

i∈A
λi(ω)

(∑

j∈S
yij (ω)+ di −

∑

j∈S
xij − di(ω)

)
.

The Lagrange multiplier λi(ω) represents the price or disutility deriving from the
unmet demand at the first stage. Therefore, the Lagrangian of the second-stage
problem with general probability distribution is

L(x, y(ω), λ(ω), ω) =
∑

i∈A

∑

j∈S

∑

m∈M

(
w cmij (yij (ω))+ (1− w) tmij (yij (ω))

)

+
∑

i∈A
λi(ω)

(∑

j∈S
yij (ω)+ di −

∑

j∈S
xij − di(ω)

)
.

We have

inf
y∈Y L(x, y(ω), λ(ω), ω) =

∑

i∈A
λi(ω)

(
di −

∑

j∈S
xij − di(ω)

)

+ inf
y∈Y

(∑

i∈A

∑

j∈S

∑

m∈M

(
w cmij (yij (ω))+ (1− w) tmij (yij (ω))

)
+
∑

i∈A
λi(ω)

∑

j∈S
yij (ω)

)
.

Then, the dual problem is

max
λ≥0

(∑

i∈A
λi(ω)

(
di −

∑

j∈S
xij − di(ω)

)
(26)

+ inf
y∈Y

(∑

i∈A

∑

j∈S

∑

m∈M

(
w cmij (yij (ω))+ (1− w) tmij (yij (ω))

)
+
∑

i∈A
λi(ω)

∑

j∈S
yij (ω)

))

.

(27)

Thus, the two-stage problem becomes

min
x∈X

∑

i∈A

∑

j∈S

∑

m∈M
πm
ij (xij )+ Eξ (Φ

1(x, ξ(ω))),

Φ1(x, ξ(ω)) = max
λ≥0

inf
y∈Y L(x, y(ω), λ(ω), ω).

Under the assumption of discrete probability space, we find

Eξ (Φ
1(x, ξ(ω))) =

∑

r∈R
p(ωr)Φ

1(x, ξ(ωr)),

∇xEξ (Φ
1(x, ξ(ω))) = Eξ (−λ(ω)) = −

∑

r∈R
p(ωr)λ(ωr).
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Theorem 1 The pair (x∗, y∗(ω)), where x∗ ∈ R
nl and y∗ : Ω → R

nl is a
measurable map, is an optimal solution of the two-stage problem if and only if there
exists λ∗ : Ω → R

n measurable such that

1. x∗ is a solution of the variational inequality

∑

i∈A

∑

j∈S

( ∑

m∈M

∂πm
ij (x

∗
ij )

∂xij
−
∑

r∈R
p(ωr)λ

∗
i (ωr)

)

× (xij − x∗ij ) ≥ 0, ∀x ∈ X.

(28)

2. (y∗(ωr), λ∗(ωr)) is a solution of the parametric variational inequality

∑

r∈R

∑

i∈A

∑

j∈S
p(ωr)

(

w
∑

m∈M

∂cmij (y
∗
ij (ωr ))

∂yij
+ (1− w)

∑

m∈M

∂tmij (y
∗
ij (ωr ))

∂yij
+ λi(ωr )

)

× (yij (ωr )− y∗ij (ωr ))

+
∑

r∈R
p(ωr)

∑

i∈A

(∑

j∈S
x∗ij −

∑

j∈S
y∗ij (ωr )− di + di(ωr )

)

× (λi(ωr )− λ∗i (ωr )) ≥ 0, ∀y(ωr ) ∈ Y,∀λi(ωr ) ≥ 0. (29)

Proof Function Φ1(x, ξ(ωr)) is linear w.r.t. x and, hence, is convex for all ωr ∈ Ω .
This implies the convexity of the expectation function Eξ (Φ

1(x, ξ(ωr))). SinceΩ is
finite, for any x0 ∈ ∩r∈RΦ1(x, ξ(ωr)), the expectation function is differentiable at
x0. Then, by interchangeability of the gradient and the expectation operators and by
classical variational inequality theory, we conclude that the first-stage problem (23)
is equivalent to variational inequality (28). Finally, from the optimality conditions
of the dual problem (27), it is easy to see that λ∗(ωr) implies the existence of y∗(ωr)
such that (y∗(ωr), λ∗(ωr)) satisfies (29) .

We observe that problem (28)–(29) can be put in the standard form variational
inequality,

〈G(z∗), z− z∗〉 ≥ 0, ∀z ∈ X × Y × R
n+, (30)

where

z =
⎡

⎢
⎣

x

y

λ

⎤

⎥
⎦ , G(z) =

⎡

⎢
⎢
⎢
⎢
⎣

∑
m∈M

∂πm
ij (xij )

∂xij
−∑r∈R p(ωr )λi (ωr )

∑
r∈R p(ωr )

(

w
∑

m∈M
∂cmij (yij (ωr ))

∂yij
+ (1− w)

∑
m∈M

∂tmij (yij (ωr ))

∂yij
+ λi(ωr )

)

p(ωr )
(∑

j∈S xij −
∑

j∈S yij (ωr )− di + di (ωr )
)

⎤

⎥
⎥
⎥
⎥
⎦

r∈R
i∈A
j∈S

.
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In virtue of Theorem 1, variational inequality (30) represents the optimality
conditions of the decision planner that is faced with the two-stage stochastic
optimization problem (23)–(25). We now highlight the economic interpretation of
these conditions. From variational inequality (28), we can infer that, if there is a
positive evacuation flow between area i and shelter j in the first stage, then the
expected price p(ωr)λr(ωr) is equal to the marginal penalty cost of the unmet
demand at the first stage. From the first term in inequality (29), we have that, if
there is a positive evacuation flow between area i and shelter j in the second stage,
then the marginal evacuation costs plus the price λ(ωr) must be null. From the
second term, we also note that if no flow is positive, then the sum of the marginal
evacuation costs plus the price λ(ωr) can be positive. Finally, from the second term
in inequality (29), we see that the price λ(ωr) serves as the price to balance the
system.

We now discuss some qualitative properties of (30). Since the feasible set
underlying the variational inequality problem is not compact, we cannot derive the
existence of a solution simply from the assumption of continuity of the functions.
Instead, we should require some coercivity conditions (see, for instance, [6]). It is
well known that the uniqueness of the solution to the above variational inequality
is ensured by the strict monotonicity of mapping G(z). The theorem below presents
the sufficient conditions for the uniqueness.

Theorem 2 Let us assume that functions πm
ij (xij ) are strictly convex in xij , and

cmij (yij ) and t
m
ij (yij ) are strictly convex in yij . Then, the vector function G involved

in the variational inequality (30) is strictly monotone, that is,

〈G(z̄)−G(z̃), z̄− z̃〉 > 0,∀z̄, z̃ ∈ X × Y × R
n+, z̄ �= z̃.

Proof For any z̄ = (x̄T , ȳT , λ̄T )T , z̃ = (x̃T , ỹT , λ̃T )T ∈ X × Y × R
n+, and using

the linearity of constraint (21) (see [10], Theorem 2), direct computations lead to

〈(G(z̄)−G(z̃)), z̄− z̃〉 =
∑

i∈A

∑

j∈S

∑

m∈M

(
∂πm

ij (x̄ij )

∂xij
− ∂πm

ij (x̃ij )

∂xij

)

(x̄ij − x̃ij )

+
∑

r∈R

∑

i∈A

∑

j∈S
p(ωr)

(

w
∑

m∈M

(
∂cmij (ȳij (ωr))

∂yij
− ∂cmij (ỹij (ωr))

∂yij

)

+ (1− w)
∑

m∈M

(
∂tmij (ȳij (ωr))

∂yij
− ∂tmij (ỹij (ωr))

∂yij

))

(ȳij − ỹij ).

Since πm
ij , c

m
ij , and tmij are strictly convex functions, the matrices of the second

derivatives of those functions are positive definite, and the functions are strictly
monotone. Thus, G(z) is strict monotone if and only if z̄ �= z̃.
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5 Numerical Results

In this section, we introduce a numerical example for the aim of validating our
approach.

For simplicity, we consider only a single mode of transportation between each
crisis area and each shelter (m = 1). Moreover, we set w = 0.6, ε = 0.01, r̄ = 100.
Then, we choose the random parameter ωr ∈ [0, 1] and fix the following parameters
for i = 1, 2, j = 1, 2, and r = 1, . . . , 100, as follows:

• the probabilities p(ωr) = 1
100 associated with each realization ωr , randomly

taken in [0, 1];
• the recommended number and the maximum number of people that can be hosted

in shelter:

k1 = 4, k2 = 3,

K1 = 40, K2 = 40;

• capacity of flows in stage one and random flow capacity in stage two:

μij = 50 ∀i = 1, 2, j = 1, 2;

• evacuation demand in stage one and random evacuation demand in stage two:

d1 = 50, d1(ωr) = 50ωr ;
d2 = 60, d2(ωr) = 60ωr.

We now describe the two-stage variational inequality formulation, based on the
Lagrangian relaxation approach. The procedure is structured in two steps:

1. we first solve the second-stage parametric variational inequality and find the
solution (y∗(x, ω), λ∗(ω));

2. we write the operator
∑

m∈M
∑

i∈A
∑

j∈S πm
ij (x

∗
ij ) + Eξ (F (x

∗, ξ(ω))),
solve the first-stage variational inequality, and find x∗. We obtain the
solution (x∗, y∗(ω), λ∗(ω)). We remark that

∑
m∈M

∑
i∈A
∑

j∈S πm
ij x

∗
ij +

Eξ (F (x
∗, ξ(ω))) is a lower bound of the optimal value of the original problem.

We apply the extragradient method (see [7]) to compute solutions to our
numerical problem and implement it as M-script files of MatLab.

The first step of this approach consists in solving the second-stage parametric
variational inequality, using the Lagrangian approach. The profit functions Fij for
each area i = 1, 2 and shelter j = 1, 2 are given by

F11 =
100∑

r=1

p(ωr )
(
w(20y11(ωr )

2 − 90y11(ωr )+ 200)+ (1− w)(20y11(ωr )
2 − 180y11(ωr )+ 600)+
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+ λ1(y11(ωr )+ y12(ωr )+ 50− x11 − x12 − 50ωr)
)
+ 2x2

11 + x2
12 − 5x11

2
,

F12 =
100∑

r=1

p(ωr )
(
w(45y12(ωr )

2 − 105y12(ωr )+ 225)+ (1− w)(60y12(ωr )
2 − 180y12(ωr )+ 900)+

+ λ1(y11(ωr )+ y12(ωr )+ 50− x11 − x12 − 50ωr)
)
+ x2

11 + 1.5x2
12 − 5.4x12

2
,

F21 =
100∑

r=1

p(ωr )
(
w(80y21(ωr )

2 − 200y21(ωr )+ 300)+ (1− w)(45y21(ωr )
2 − 120y21(ωr )+ 450)+

+ λ2(y21(ωr )+ y22(ωr )+ 60− x21 − x22 − 60ωr)
)
+ x2

22 + 3x2
21 − 7.4x21

2
,

F22 =
100∑

r=1

p(ωr )
(
w(30y22(ωr )

2 − 110y22(ωr )+ 350)+ (1− w)(54y22(ωr )
2 − 168y22(ωr )+ 675)+

+ λ2(y21(ωr )+ y22(ωr )+ 60− x21 − x22 − 60ωr)
)
+ 2x2

22 + x2
21 − 6.2x22

2
.

We obtain the following solutions:

y11 = −35.9789+ 35.9155ωr + 0.71831x11 + 0.71831x12,

y12 = −14.0211+ 14.0845ωr + 0.28169x11 + 0.28169x12,

y21 = −22.375+ 22.5ωr + 0.375x21 + 0.375x22,

y22 = −37.625+ 37.5ωr + 0.625x21 + 0.625x22,

λ1 = 156515− 143662ωr − 2873.24x11 − 2873.24x12,

λ2 = 312150− 297000ωr − 4950x21 − 4950x22.

For all i and j , each flow yij and the corresponding Lagrange multipliers λi depend
on xij and ωr , for r = 1, . . . , 100.
The second step consists in calculating xij using the profit function of the first stage
Fij ; hence, we obtain the flows of the first and the second stages and the Lagrange
multipliers of the second stage, which depend on ωr . We find

x11(ωr) = 32.9972− 30.8684ωr,

x12(ωr) = 18.3999− 16.1403ωr,

x21(ωr) = 17.6953− 16.3862ωr,

x22(ωr) = 42.7048− 40.9655ωr .

y11(ωr) = 0.940151+ 2.14868ωr,

y12(ωr) = 0.456949+ 0.842619ωr,
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Table 3 Average of flows
xij , yij , and multipliers λij
in each scenarios and the total
profit function Fij

(i, j) (1, 1) (1, 2) (2, 1) (2, 2)

x̄ij 17.6921 10.3973 9.5707 22.3934

λ̄ij 4577.4 4577.4 6669.8 6669.8

ȳij 2.0055 0.8747 0.7674 0.9457

y21(ωr) = 0.275037+ 0.993113ωr,

y22(ωr) = 0.125063+ 1.65519ωr,

λ1(ωr) = 8838.8− 8594.72ωr,

λ2(ωr) = 13169.5− 13109.1ωr .

Thus, the average values of profit functions Fij , for i = 1, 2, j = 1, 2 and
ω1, . . . , ω100, are

F11 = 39602, F12 = 25789,

F21 = 43715, F22 = 60095.

In Table 3, we present the average value of flows xij , yij , and the multipliers λij .
In order to verify the effectiveness of the proposed model, we compare the

deterministic model and the Lagrange relaxation approach.
In the deterministic case, using the same data, we find the solutions:

x11 = 2.82246, x12 = 1.47495,

x21 = 1.177549, x22 = 2.12505.

The values of the deterministic profit functions Fij , i = 1, 2 and j = 1, 2, are
then

F11 = 163.696, F12 = 406.831,

F21 = 253.689, F22 = 357.92.

We note that the values of the deterministic profit functions Fij are greater than
the respective values of the Lagrange relaxation approach. This observation implies
that the stochastic framework and the real-time updating of information allow one
to evaluate more precisely the situation and to lower evacuation costs. Of course,
for small dimensional models, the two-stage stochastic evacuation problem can be
directly solved.

Thus, we consider the two-stage evacuation model without the Lagrange relax-
ation. We define Fij for i = 1, 2 and j = 1, 2 as
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F11 =
100∑

r=1

p(ωr )
(
w(20y11(ωr )

2 − 90y11(ωr )+ 200)+ (1− w)(20y11(ωr )
2 − 180y11(ωr )+ 600)

)
+

+ 2x2
11 + x2

12 − 5x11

2
,

F12 =
100∑

r=1

p(ωr )
(
w(45y12(ωr )

2 − 105y12(ωr )+ 225)+ (1− w)(60y12(ωr )
2 − 180y12(ωr )+ 900)

)
+

+ x2
11 + 1.5x2

12 − 5.4x12

2
,

F21 =
100∑

r=1

p(ωr )
(
w(80y21(ωr )

2 − 200y21(ωr )+ 300)+ (1− w)(45y21(ωr )
2 − 120y21(ωr )+ 450)

)
+

+ x2
22 + 3x2

21 − 7.4x21

2
,

F22 =
100∑

r=1

p(ωr )
(
w(30y22(ωr )

2 − 110y22(ωr )+ 350)+ (1− w)(54y22(ωr )
2 − 168y22(ωr )+ 675)

)
+

+ 2x2
22 + x2

21 − 6.2x22

2
.

We obtain the following average of the flows of the first and second stages over
r = 1, . . . , 100, respectively:

x̄11 = 13.69769, ȳ11 = 3.15,

x̄12 = 13.59372, ȳ12 = 1.32,

x̄21 = 12.85349, ȳ21 = 1.27,

x̄22 = 16.96938, ȳ22 = 1.78.

As a consequence, the values of profit functions Fij , for i = 1, 2, j = 1, 2, and
ω1, . . . , ω100, are

F11 = 43343, F12 = 62724,

F21 = 72244, F22 = 74621.

As expected, the values of the deterministic profit functions Fij , for all i, j , are
greater than the respective values of the two-stage evacuation model without the
Lagrange relaxation. This confirms the efficiency of the stochastic approach.

6 Conclusions

In this chapter, we introduced a two-stage stochastic programming model for the
emergency evacuation problem. We proposed a scenario-based evacuation planning
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model able to provide the optimal flows of evacuees from crisis areas to shelters,
in order to minimize both the transportation cost and the transportation time, and
under uncertainty on the evacuation demand and the link capacities.

We then proposed a variational inequality formulation of the model; in particular,
we reduced our problem to a two-stage stochastic variational inequality, using the
Lagrangian relaxation approach. We also discussed the qualitative properties of
the two-stage stochastic variational inequality. In addition, we analyzed the role
of Lagrange multipliers associated with the relaxed constraints. Finally, in order
to show the applicability and effectiveness of our model, we provided a numerical
example.

Future research may include extending this framework to multistage stochastic
models.
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On Global Hyperbolicity of Spacetimes:
Some Recent Advances and Open
Problems

Felix Finster, Albert Much, and Kyriakos Papadopoulos

Abstract This chapter is an up-to-date account of results on globally hyperbolic
spacetimes and serves as a multitool; we start the exposition of results from a
foundational level, where the main tools are order-theory and general topology, we
continue with results of a more geometric nature, and we finally reach results that
are connected to the most recent advances in theoretical physics. In each case, we
list a number of open questions and we finally introduce a conjecture, on sliced
spaces.

1 Introduction to the Terrain

While in Riemannian geometry it is natural to consider geodesic completeness,
in Lorentzian geometry—and in particular in spacetime geometry—it is more
reasonable to consider global hyperbolicity as a condition that two events, that are
chronologically related, can be joined by a maximal timelike geodesic. This is due
to the validity of the Hopf–Rinow theorem, whose naive analogue fails to exist in
Lorentzian geometry (see [9]).

The advantage of global hyperbolicity is its multifaceted perspectives: for
example, it can be examined from an order-theoretic and topological perspective,
as the strongest of the causal conditions on a spacetime (the causal diamonds are
compact—see [35]) or from a purely geometrical view (existence of a Cauchy
surface—see [12]). The equivalence of such seemingly different statements is what
supplies mathematical physics with mathematical tools and physical insights. The
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importance of such an interdisciplinary work cannot be overstated; in mathematical
physics, this is significant in order to construct quantum field theories in curved
spacetimes in a mathematically rigorous fashion. In particular, the input that comes
from a topological direction is fruitful towards a more abstract formulation. From
a mathematical point of view, it is important to see the applications of general
theorems and in particular examine and push the scope of their validity.

It is worth mentioning that there is a theoretical background behind the notion of
globally hyperbolic spacetimes that uses tools from domain theory and interconnects
mathematical physics with the foundations of mathematics. A recent example
is reference [16], where the authors showed that globally hyperbolic spacetimes
belong to a category,1 which is equivalent to integral domains. Integral domains
are partially ordered sets that carry, intrinsically, notions of completeness and
approximation and were used in theoretical computer science (see [37]). The
equivalence of causality between events to an order on regions of a spacetime
suggests that questions about spacetime can be translated to questions on domain
theory. This is of a great interest, since the type of domains called ω-continuous
are the ideal completions of countable abstract bases, so that a spacetime can be
reconstructed (in a purely order-theoretical manner) from a dense discrete set. In
particular, one can claim that a globally hyperbolic spacetime is linked to something
discrete.

Strongly causal spacetimes, and thus globally hyperbolic ones that are strongly
causal by definition, are conformal to spacetimes in which all null geodesics are
complete; that is, their null geodesics can be extended to infinite values of their
affine parameters, as the following theorem suggests (see [4]).

Theorem 1.1 (Clarke) If M is a strongly causal spacetime with metric g, then
there is aC∞-function�, such that null geodesics with respect to�2g are complete.

As for timelike geodesic completeness, even if there is no obvious relation to
global hyperbolicity, it has been shown that under particular sectional or Ricci
curvature conditions, if a spacelike hypersurface is future-timelike geodesically
complete, then it is globally hyperbolic; see [9]. Next we turn to the spacelike
geodesic completeness of the Cauchy surface of a globally hyperbolic manifold.
An interesting result connecting the spacelike geodesic completeness to global
hyperbolicity was given in [18, Proposition 5.3]. In particular, the author proved
that an ultra-static spacetime (M, g) is globally hyperbolic if and only if the global
Cauchy surface is geodesically complete. The physical advantage of working in
globally hyperbolic manifolds is that the wave equation (in what follows referred to
as the Klein–Gordon equation), i.e. the differential equation describing the dynamics
of a spin zero particle, is well-posed. In particular, given smooth initial data on
the Cauchy hypersurface, there exists a corresponding global smooth solution. For
these manifolds, it is in general possible to rewrite the second order differential
equation as a first order system of equations; this is referred to as the Hamiltonian

1 In the frame of the field of mathematics called Category Theory; see, for example, [25].
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formulation. The generator of the time evolution can then be written as a 2 × 2
matrix differential operator. In order to define a corresponding quantum field
theory using the Hamiltonian formulation a necessary requirement is the essentially
self-adjointness of weighted Laplace–Beltrami operators stemming from the Klein–
Gordon equation. The essential self-adjointness of these operators depends on the
spacelike geodesic completeness of the Cauchy surfaces. In what follows we will
expand more on the obtained results and a still open conjecture.

2 Some Preliminaries

2.1 A Spell of Domain Theory and General Topology

In this section we will list some definitions, which will be needed in Sect. 3, where
we will discuss about a link between a certain type of partially ordered sets (posets)
with globally hyperbolic spacetimes.

Throughout the text, the power set of a set X will be denoted by P(X) and it will
be considered as the set of all subsets of X.

Definition 2.1 If (A,≺) is a poset, then:

1. a nonempty set D ∈ P(A) is called directed, if for every x, y ∈ D, there exists
z ∈ D, such that both x ≺ z and y ≺ z.

2. (dually to (1)) a nonempty set F ∈ P(A) is called filtered, if for every x, y ∈ F ,
there exists z ∈ F , such that z ≺ x and z ≺ y.

3. a nonempty set L ∈ P(A) is called lower set, if for every x ∈ A and for every
y ∈ L, x ≺ y implies that x ∈ L.

4. (A,≺) is a dcpo (directed, complete poset), if every directed set has a supremum;
that is, if D ∈ P(A) is directed, then D has a least upper bound.

5. (A,≺) is continuous, if there exists B ∈ P(A), such that B∩ ↓ x contains a
directed set with supremum, for all x ∈ A, where ↓ x = {a ∈ A : a . x}
and where . is defined as x . y, if for all directed sets D with supremum,
y ≺ supD implies that there exists d ∈ D, such that x ≺ d.

6. (A,≺) is bicontinuous, if it is continuous and for every x, y ∈ A, x . y if for
every filtered set F ∈ A with infimum, infF ≺ x implies that there exists f ∈ F ,
such that f ≺ y and also, for every x ∈ A, ↑ x is filtered, with infimum x (and
where, dually to ↓ x, ↑ x = {a ∈ A : x . a}).

7. if (A,≺) is bicontinuous, then its interval topology is the topology that has a
basis that consists of the intervals (a, b) := {x ∈ A : a . x . b}.

8. (A,≺) is globally hyperbolic, if it is bicontinuous and the closure of the intervals
(a, b), that is (a, b) := [a, b] = {x : a 0 x 0 b}, is compact in the interval
topology on A.

9. A domain is a continuous dcpo. An example of an interval domain is the domain
of compact intervals of the real line.
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10. Let ⇑ x = {a ∈ D : x . a}, where D is a dcpo. Then the class {⇑ x : x ∈ D}
forms a base for the Scott topology on a continuous poset.

2.2 Causal Relations in a Spacetime

It is standard (see [35]) in a spacetime to consider two partial orders, the chrono-
logical order ., which is considered to be irreflexive if one wants to avoid closed
timelike curves, and the causal order ≺, which is reflexive, and are defined,
respectively, as follows:

(1) x . y if and only if y ∈ CT+(x) and
(2) x ≺ y if and only if y ∈ CT+(x) ∪ CL+(x)

where CT+(x) denotes the future time-cone of an event x, CL+(x) its future light-
cone and CT+(L) ∪ CL+(x) its future causal-cone (for an analytical exposition
of time-coordinates, space-coordinates and the spacetime “metric”, that leads
to the definition of these cones, see [12]; for a detailed exposition of these
definitions on Minkowski space, see [2]).

In addition, the reflexive relation horismos → is defined as x → yiffx ≺
ybutnotx . y.

Naturally, in a spacetime M one can define the sets I+(x) = {y ∈ M : x . y}
and J+(x) = {y ∈ M : x ≺ y}; I−(x) and J−(x) are defined dually.

In Sect. 3, we will examine the relation between . in Definition 2.1 (5) and
the chronological order . that will be defined in Definition 2.2 (1). Furthermore,
the interval topology of Definition 2.1 (7), defined for bicontinuous posets, will
be called the Alexandrov topology TA for a spacetime M , whenever . is the
chronological order on M .

2.3 Weighted Riemannian Manifolds and All That

In the following we define a weighted manifold, [48, Chapter 3.6, Definition 3.17].

Definition 2.2 A triple ($, g$,μ) is called a weighted manifold, if ($, g$) is a
Riemannian manifold and μ is a measure on $ with a smooth and everywhere
positive density function ρ, i.e. dμ = ρ d$. A weighted Hilbert space, denoted by
L2($,μ), is given as the space of all square-integrable functions on the manifold
$ with respect to the measure μ. The corresponding weighted Laplace–Beltrami
operator (also called the Dirichlet–Laplace operator), denoted by �g$,μ, is given
by

�g$,μ =
1

ρ
√|g$ |∂i(ρ

√|g$ | gij$∂j ). (2.1)
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In regards to the upcoming discussion on essential self-adjointness, we need an
essential result that was given in [39, Theorem 1].

Theorem 2.1 Let the Riemannian manifold ($, g$) be complete and μ be a
measure on $ with a smooth and everywhere positive density function ρ and
suppose that the potential Y ∈ L2

loc($) point-wise. Furthermore, let A ∈ '1
(1)($)

and let the operator L = −�A
g$,μ

+ Y , where the minimally coupled Laplace
Beltrami operator is defined by

−�A
g$,μ

:= −(ρ√|g$ |)−1(∂ − A)∗i (
√|g$ | ρ gij$ (∂ − A)j )

be semi-bounded from below. Then, the operator L is an essentially self-adjoint
operator on C∞0 ($).

Where we write f ∈ L2
loc($) for a local L2($) function f that is an element of

the Hilbert space L2($) on every compact subset of the manifold $ and we denote
'
p

(k)($) as the set of all k-smooth (i.e. of the class Ck) complex-valued p-forms on
$. Note that the above result is (apart from the potential term and the gauge field) a
reformulation of the result of [1] for weighted Riemannian manifolds.

3 Globally Hyperbolic Spacetimes

Classically, when we talk about global hyperbolicity, in terms of the causal structure
of a spacetime, we consider the definition that follows (see [35]).

Definition 3.1 A spacetime M is globally hyperbolic, if and only if M is strongly
causal and every set J+(x) ∩ J−(y) is compact, for some x, y ∈ M .

In [46] it was proven that any globally hyperbolic spacetime admits a smooth
foliation into Cauchy surfaces [46, Theorem 1.1]. Moreover, the induced metric
of such a globally hyperbolic spacetime admits a specific form [47, Theorem 1.1].

Theorem 3.1 Let (M, g) be an (n+1)-dimensional globally hyperbolic spacetime.
Then, it is isometric to the smooth product manifold R×$ with a metric g, i.e.

g = −N2dt2 + hij dx
idxj , (3.1)

where $ is a smooth n-manifold, t : R × $ �→ R the natural projection, N :
R×$ �→ (0,∞) a smooth function, and h a 2-covariant symmetric tensor field on
R × $, satisfying the following condition: Each hypersurface $t ⊂ M at constant
t is a Cauchy surface, and the restriction h(t) of h to such a $t is a Riemannian
metric (i.e. $t is spacelike).
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Hounnonkpe and Minguzzi have shown that the (strong-)causality condition is
needless in the definition of global hyperbolicity, for a reasonable (meaning non-
compact) spacetime of dimension strictly greater than 2 (see [16]).

Theorem 3.2 (Hounnonkpe–Minguzzi) A non-compact spacetime of dimension
strictly greater than 2 is globally hyperbolic, if and only if the causal diamonds are
compact in the topology, TA.

Recently, there has been a generous step towards an understanding of the nature
of globally hyperbolic spacetimes down to the most fundamental level. In [26], it
has been shown that the structure of such spacetimes is equivalent to the structure
of interval domains, which are purely order-theoretic objects. Let us have a closer
look on the main results.

Definition 3.2 A set B equipped with a transitive relation . is an abstract basis, if
. is −-interpolative; that is, for all S ∈ P(B), such that S is finite, if S . x, then
there exists y ∈ B, such that S . y . x, where by S . x one means that y . x,
for all y ∈ S.

By int (C) one denotes the set {(a, b) : a . b}, where (a, b) . (c, d) if and
only if a . c and d . b. It is easy to see that if (B,.) is an abstract basis, which is
−- and +-interpolative (where +-interpolation is the dual to −-interpolation), then
the set (int (C),.) is an abstract basis.

Definition 3.3 An ideal of an abstract basis (B,.) is a nonempty set I ∈ P(B),
which is lower and directed.

The set (B,⊂) of all ideals of the abstract basis (B,.) is a poset and is called
the ideal completion of B.

Before introducing the main theorems of [26], we remind that since spacetimes
are considered naturally as being second countable and second countability implies
separability, a spacetime admits a countable dense subset. In the theorem that
follows a countable set, which is equipped with a causal relation, determines the
entire space.

Theorem 3.3 (Martin–Panangaden) IfC is a countable dense subset of a globally
hyperbolic spacetime M , where . denotes chronology, then max IC 2 M , where
the maximal elements are equipped with the Scott topology.

Theorem 3.3 can be written more generally as follows.

Theorem 3.4 If C is a countable dense subset of a globally hyperbolic setM , then
max IC 2 M .

The proof of Theorem 3.4 is the same as that of Theorem 3.3. Since M is
bicontinuous by definition, (C,.) will be an abstract basis and so (int (C),.) will
be an abstract basis for IM . Since ideal completions for bases of IM are isomorphic
to IM , the result follows immediately. The result of Theorem 3.3 follows from
the fact that the relation . of Definition 2.1 (5), which reads x . y as “x
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approximates y”, coincides with the chronological partial order . in a globally
hyperbolic spacetime (see [27], Proposition 4.4).

Theorem 3.5 (Martin–Panangaden) The category of globally hyperbolic posets
is equivalent to the category of interval domains.

The proof of Theorem 3.5 depends on several technical results that precede it in
[26], but the result on its own is powerful; within a globally hyperbolic spacetime,
one can convert questions of a physical meaning to questions in domain theory (and
vice versa).

Question 1 Consider a globally hyperbolic poset (A,≺). Does the compactness of
the intervals [a, b], under the interval topology, imply the bicontinuity of (A,≺),
in a similar fashion that the compactness in the closed diamonds in a spacetime
M , under the Alexandrov topology TA, implies the (strong) causality of M (for
dimensions strictly greater than 2)? This is a reasonable question, given the results
in [16] as well as the main result of [26], which guarantees the equivalence (up
to category theory) of interval domains and globally hyperbolic spacetimes. The
only problem, towards [16], of considering a globally hyperbolic poset, is that we
are only left with an order-theoretic structure; what would be, if there is such,
the equivalent condition in [16] of “dimension strictly greater than 2”? Is there
a possibility that the condition on the dimension applies only to globally hyperbolic
spacetimes, while the proposed conjecture holds in globally hyperbolic posets
without any restriction?

In the section that follows, we consider a spacetime, and we discuss how topology
can affect the way that we look at it.

4 Different Candidates for a Topology: Which Is the Most
“Fruitful” One?

When one considers a spacetime manifold (M, g), the spacetime topology is
traditionally, and without any doubt, taken to be the manifold topology TM , a
topology that does not incorporate the causal structure ofM , a structure that is linked
to the Lorentz “metric” g. This problem was first addressed by Zeeman in his papers
[43] and [44], where he restricted the discussion in the Minkowski space. It was then
extended to curved spacetimes by Göbel in [10] and by Hawking–King–McCarthy
in [13], and the discussion was taken into a further level by several authors, including
an important feedback by Low in [23] (for a recent survey on the topologization
of spacetime, see [34]). In particular, Low proved that the Limit Curve Theorem
(LCT) does not hold under the Path topology of Hawking–King–McCarthy and
claimed that this fact gives the right for manifold topology to be called a fruitful one,
against any other known candidate. Given that the LCT plays an important role in
building contradictions in proofs in singularity theorems, in general relativity (see,
for example, [8] and [4]), the authors of [33] posed the question on whether the
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singularity problem is a purely topological one, depending largely on the topology
that one chooses to equip the spacetime with. For example, if one considers the
space of timelike paths, the notion of convergence stays unaffected, if choosing
either the Path topology P or the manifold topology TM , while convergence in the
space of causal paths under TM does not imply convergence in the space of causal
paths under P (see [23]). Consider the causal cone of an event x, in a spacetime
M; that is, consider the time-cone CT (x) of x union its light-cone CL(x). Consider
now an open ball Bd

ε (x), of radius ε, under the manifold topology TM (where the
distance is defined via an appropriate Riemann metric d). Consider the intersection
A = (CT (x) ∪ CL(x)) ∩ Bd

ε (x); the sets A form a local base for a topology ZLT

on M , where the notion of convergence under ZLT and under TM stays unaffected
in the space of causal paths (see [33]). Obviously, this assertion cannot hold if ZLT

is considered in the space of timelike paths.
It is clear that the Path topology P in [13] has several advantages against

the manifold topology on a spacetime; P incorporates the causal, differential and
smooth conformal structure of spacetime and, most importantly, the group of
homeomorphisms of P is the conformal group. According to Göbel (see [10]),
the reason for considering the Euclidean topology as a “natural” topology for the
Minkowski spacetime (and, more generally, the manifold topology for a spacetime
manifold) was that people were mostly concerned with Riemannian spaces and not
with spaces equipped with a Lorentz metric; it really seems that the blind use of
the manifold topology, while proving theorems in spacetime geometry, was due to
ignorance (in the words of Göbel)!

In the frame of globally hyperbolic spacetimes, Low introduced a list of
interesting topological results, including the following two (see [24]).

Proposition 4.1 (Low) A strongly causal spacetime M is globally hyperbolic, if
and ony if the space of smooth endless causal curves C is Hausdorff.

Proposition 4.2 (Low) M is globally hyperbolic, if and only if C is metrizable.

The topologization of the space of smooth endless causal curves C is important,
since it affects the topology induced on C, the space of causal geodesics, by C. C
need not be a manifold but, in particular, if the spacetime M is strongly causal, then
C is a smooth manifold with boundary, with a smooth structure inherited from the
homogeneous tangent bundle UM (see [24]). The canonical lift of a smooth causal
curve from M to CM (where CM is the bundle of causal directions) and the lift
from C to CM results into a foliation of CM; the space of leaves of this foliation is
a topological space, with the quotient topology coming from UM . The topology of
this space need not be Hausdorff, if M is strongly causal. In the case that C, under
this topology, is non-Hausdorff, then M will be nakedly singular (a TIP lies inside
a PIP; see [24] and for more general exposition see [35]).

Low suggests a topology T 0, on C, which can be described as follows. Given
a smooth endless causal curve γ in C, let � be the corresponding curve in M

(which can be considered as a submanifold). Consider x ∈ � and an open set U
in M , under the manifold topology TM , such that x ∈ U . Set U ⊂ C to be the set
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consisting of all (smooth endless causal-) curves which pass through U . T 0 will
then be a topology in which the sets U form a basis. T 0 is obviously a topology
of pointwise convergence. It follows, straightforwardly that, if a spacetime M has a
closed timelike curve (CTC), then (M, T 0) cannot satisfy the T1-separation axiom
and if M is totally vicious,2 then there exists x ∈ C such that x is dense in C under
T 0. For the proof of Proposition 4.2, Low constructed a metric, which induces T 0,
and remarked that one can find metrics that induce the topologies of convergence
to any degree of smoothness (by means of the slicing of the jet bundles over the
spacetime manifold M).

In regards to slicing, in [5], sliced spaces were considered to have uniformly
bounded lapse, shift and spatial metric, in order to achieve the equivalence of global
hyperbolicity of (M, g) with the completeness of the slice ($, g$) (Theorem 2.1).
Being motivated by this result, the authors of [22] considered global topological
conditions, for showing the equivalence of the global hyperbolicity of (M, g) with
a slice ($t , g$t ) being TA-complete. Theorem 4.1, below, differs from Theorem 2.1
of [5] in that the slices in [5] are complete Riemannian manifolds (with uniformly
bounded spatial metric, lapse and shift functions) while in [22] the slices are TA-
complete.

Theorem 4.1 Let (M, g) be a sliced space, equipped with its natural product
topology TP , whereM = R×$, $ is an n-dimensional manifold (n ≥ 2)and g the
n + 1-Lorentz “metric” on M . Let also TA be the Alexandrov spacetime topology
onM . Then, the following statements are equivalent:

(1) (M, g) is globally hyperbolic.
(2) For every basic-open set D ∈ TA, there exists a basic-open set B ∈ TP , such

that D ⊂ B.
(3) (Mt , gt ) is complete with respect to TA.

We will talk, in more detail, about sliced spacetimes in Sect. 5.

Question 2 As we have seen in this section, there are many different candidates for
spacetime topology, other than the manifold one. Is there a fruitful3 and physically
meaningful spacetime topology that we ignore? What are the criteria for choosing
it? For example, how should such a topology be related to the structural levels
of a spacetime? These questions certainly need a more systematic work, since
even if they can touch important problems (for example the singularity problem in
relativity theory as well as Penrose’s cosmic censorship conjecture), they are a bit
underestimated until now.

Question 3 In the light of Theorem 3.5, we wonder whether the topology of a
spacetime can be reconstructed, in some technical and rigorous way, from the
topology of an interval domain. The spacetime topologies that we have mentioned

2 For the definition and properties of (non-) totally vicious spacetimes, see [28].
3 Fruitful in the sense of [10, 44] and [13].
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in this section, like for example the Zeeman Fine topology or its generalization by
Göbel or the one by Hawking–King–McCarthy, are not metrizable; does this give
us any insight about the appropriate candidate for a spacetime topology (other than
the manifold topology), given that interval domains are order-theoretic objects?

5 The Klein–Gordon Equation in Globally Hyperbolic
Manifolds

In what follows, we consider the Klein–Gordon operator on a Lorentzian manifold
(M, g) minimally coupled to an electromagnetic potential A and with a scalar
potential Y :

Kφ :=
(
(
√|g|)−1DA

μ(
√|g|gμνDA

ν )+ Y
)
φ = 0, (5.1)

where |g| = det(gμν) and DA
μ = (i∂ − A)μ. Next, we insert the form of the metric

given in Theorem 3.1 and instead of working with the operator K (from (5.1)), it is
more convenient to work with the operator

K̃ := N K N,

where now K̃ can be expressed as

K̃ = −(Dt +W ∗)(Dt +W)+ L, (5.2)

with

W := −A0 − 1

2
(N |g$ |1/2)−1Dt (N |g$ |1/2)

and L(t) is the spatial Klein–Gordon operator given by

L(t) = −N (
√|g$ |)−1(D − A)∗i (

√|g$ |Ngij$ (D − A)j )+N2 Y. (5.3)

Next, we define the operator B by

B(t) =
(
W(t) I

L(t) W(t)

)

.

Let u1(t) = u(t) and u2(t) = −(Dt +W(t)) u(t) be the Cauchy data for u at time
t , then
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(∂t + iB(t))

(
u1(t)

u2(t)

)

= 0

only if u is a (weak) solution of the Klein–Gordon equation K̃u = 0. Then the
Hamiltonian is given by the multiplication of B with the matrix Q

Q =
(

0 I

I 0

)

i.e. H(t) = QB(t). Since in this case W(t) is equal to a function, the problem of
proving self-adjointness of the Hamiltonian reduces to proving self-adjointness of
L(t) for all (fixed) t .

In order to gain coherence on the nature of this problem, let us assume that the
electromagnetic potential A is equal to zero, the lapse function N is equal to one
and the metric g$ is time independent. Let us further assume time independence
and positivity for the scalar potential Y . By taking the assumptions into account, the
operator L is simply the standard Laplace–Beltrami operator w.r.t. the Riemannian
manifold ($, g$). The results by [1] then state that the geodesic completeness of
the Riemannian manifold implies the essential self-adjointness of Laplace–Beltrami
operator L. Since the Riemannian manifold stems from a globally hyperbolic
spacetime, it is a priori not clear why it should be geodesically complete. At this
point, let us state [18, Proposition 5.3].

Proposition 5.1 Let a Lorentzian manifold (M, g) with metric tensor

g = −dt2 + g$,ij (x)dxidxj (5.4)

be given. Then, the manifold (M, g) is globally hyperbolic if and only if Riemannian
manifold ($, g$) is complete.

Hence back to our problem at hand, it follows from Theorem 2.1 that the simplified
Laplace–Beltrami operator we considered is an essentially self-adjoint operator on
C∞0 ($).

In order to prove essential self-adjointness for the case whereN is unequal to one,
in the absence of the electromagnetic potential, we used techniques from weighted
manifolds and reduced the problem to the following theorem, [31, Theorem 4.1].

Theorem 5.1 Let the Riemannian manifold ($,N−2g$) be geodesically complete
and let the scaled potential N2V ∈ L2

loc($) point-wise. Furthermore, let the
operator L (from Eq. (5.3)) be semi-bounded from below. Then, the operator L
is essentially self-adjoint on C∞0 ($).

Proof For the proof, see [31]. �
Next, we generalize the former result to the case of nonvanishing electromagnetic
potential and lapse function unequal to the unit.
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Theorem 5.2 Let the Riemannian manifold ($, g̃$ := N−2g$) be geodesically
complete and let the scaled potential N2V ∈ L2

loc($) point-wise. Furthermore, let
A ∈ '1

(1)($) and let the operator

L(t) = −N (
√|g$ |)−1(D − A)∗i (

√|g$ |Ngij$ (D − A)j )+N2 Y

be semi-bounded from below. Then, the operator L (from Eq. (5.3)) is essentially
self-adjoint on C∞0 ($) ⊂ L2($, μ̃).

Proof We rewrite the operator L as a weighted Laplace–Beltrami operator multi-
plied with the Lapse function, i.e.

L = −N2�A
g$,μ

+N2Y.

By redefining the metric and measure μ as follows:

g̃$ := N−2g$, dμ̃ = N−2dμ,

the operator L reads (for proof, see [31, Proposition 3.1])

L = −�A
g̃$,μ̃

+N2 Y.

By rewriting the operator as a minimally coupled, weighted Laplace–Beltrami
operator, the condition of positivity of the potential and Theorem 2.1 lead to the
essential self-adjointness. �
Hence, the problem of proving essential self-adjointess ofL on is reduced to proving
geodesic completeness of the Riemannian manifold ($,N−2g$). For all globally
hyperbolic static cases, this can be done by the use of Proposition 5.1. Theorem 5.1
was as well-generalized to the case of stationary spacetimes, see [45].

In the case of nonstatic spacetimes, however, this is still an open problem. In
the following, we simplify the problem. Since any globally hyperbolic spacetime
(M, g) can be brought in to the following form:

g = −N2(t, x)dt2 + g$,ij (t, x)dxidxj ,

and conformal transformations do not change the causal structure of the manifold,
we can consider the conformally transformed globally hyperbolic spacetime (M, g̃)

g̃ = −dt2 +N−2g$,ij (t, x)dxidxj

= −dt2 + g̃$,ij (t, x) dxidxj .

Our strategical reason for the conformal transformation is our interest in
the connection of global hyperbolicity and the geodesic completeness of the
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Riemannian manifold ($t , g̃$t ) for all t ∈ R. For three large classes of Lorentzian
manifolds, the condition of global hyperbolicity is equivalent to the geodesic
completeness.

• Static case. Lapse function and the spatial metric are time independent and thus
Proposition 5.1 leads to the equivalence.

• The case of warped manifolds M = R ×f $, see [50, Theorem 3.66.] or [3,
Lemma A.5.14.],

Theorem 5.3 Let ($, g$) be a Riemannian manifold, and let I = (a, b) with
−∞ ≤ a < b ≤ +∞ be given the negative definite metric −dt2. Furthermore,
let f : I �→ (0,∞) be a smooth function and the metric g be given by

g = −dt2 + f (t)g$.

Then, the Lorentzian warped product (I ×f $, g) is globally hyperbolic iff (H,
h) is complete.

• Sliced spaces. Assume that the metric g$,ij (x, t) is uniformly bounded by the
metric g$,ij (x, 0) for all t ∈ R and tangent vectors u ∈ T$, i.e. that is there
exist constants A,D ∈ R > 0 such that

Ag$,ij (x, 0)ui uj ≤ g$,ij (x, t)ui uj ≤ D g$,ij (x, 0)ui uj .

Then by [5, Theorem 2.1] or Theorem 4.1, the equivalence of globally hyperbolic
spacetimes and geodesic completeness follows.

Due to these various cases, we are led to the following conjecture.

Conjecture 5.1 A Lorentzian manifold (M = R×$, g) with metric tensor

g = −dt2 + g$,ij (x, t)dxidxj (5.5)

is globally hyperbolic if and only if Riemannian manifold ($t , g$t ) is complete.
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Spectrum Perturbations of Linear
Operators in a Banach Space

Michael Gil’

Abstract This chapter is a survey of the recent results of the author on the
spectrum perturbations of linear operators in a Banach space. It consists of three
parts. In the first part, for an integer p ≥ 1, we introduce the approximative
quasi-normed ideal Γp of compact operators A with a quasi-norm NΓp(.) and
the property

∑
k |λk(A)|p ≤ apN

p
Γp
(A), where λk(A) (k = 1, 2, . . .) are the

eigenvalues of A and ap is a constant independent of A. Let I be the unit operator.
Assuming that A ∈ Γp and I − Ap is boundedly invertible, we obtain invertibility
conditions for perturbed operators. Applications of these conditions to the spectrum
perturbations of absolutely p-summing and absolutely (p, 2) summing operators
are also discussed. As examples, in the first part of the chapter, we consider the
Hille–Tamarkin integral operators and Hille–Tamarkin infinite matrices. The second
part of the chapter deals with the ideal of nuclear operators A in a Banach space
satisfying the condition

∑
k xk(A) < ∞, where xk(A) (k = 1, 2, . . .) are the

Weyl numbers of A. The inequality between the resolvent and determinant of A
is derived. That inequality gives us new perturbation results. The third part of the
chapter is devoted to non-compact operators in a Banach space having maximal
chains of invariant subspaces and admitting the so-called triangular representation.
The representation for the resolvents of such operators via multiplicative operator
integrals is established. That representation can be considered as a generalization
of the representation for the resolvent of a normal operator in a Hilbert space.
In addition, a norm estimate for the resolvent of operators admitting triangular
representation is derived. It enables us to obtain a perturbation bound for the
spectral variations and to show that the considered operators are Kreiss-bounded.
Applications to operators in Lp are also discussed. In particular, a new bound for
the spectral radius of an integral operator is obtained. Some of the results presented
in this chapter are new.
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1 Introduction

Roughly speaking, the spectrum perturbation theory for linear operators consists of
two approaches. In the framework of the first one, some structure on the error is
imposed; for example, they may be analytic functions of a complex variable. The
problem is then to determine how this structure affects the perturbed spectrum: for
example, when are they analytic functions of the variable, what kind of paths do they
follow in the complex plane? That approach is well developed. For various results of
this kind, see, for instance, the book by Kato [26]. About the recent relevant results,
see the very interesting book [37] and references given therein.

In the framework of the second approach, the errors are unstructured and
perturbations are bounded in terms of some norm of the errors. That approach
in the case of operators in a Banach space to the best of our knowledge is at an
early stage of development. Below we suggest perturbation results for compact and
non-compact operators in a Banach space, which are connected with the second
approach.

Throughout this chapter, X is a Banach space with the unit operator I = IX ,
a norm ‖.‖ and the approximation property, that is, any compact operator in X is
a limit in the operator norm of a sequence of operators with finite ranks [23, 35].
By B(X ) we denote the algebra of all bounded linear operators in X . For an
A ∈ B(X ), ‖A‖ is the operator norm, A−1 is the inverse operator, σ(A) is
the spectrum and Rλ(A) = (A − λI)−1 (λ �∈ σ(A)) is the resolvent. For a
compact operator A, λk(A) (k = 1, 2, . . .) are the eigenvalues enumerated with
their algebraic multiplicities in the non-increasing order of their absolute values.
A point λ ∈ C is said to be Φ-regular for A if I − λA is boundedly invertible;
σΦ(A) denotes the Fredholm spectrum (the complement of all Φ-regular points in
the closed complex plane).

This chapter consists of three parts. In the first part (Sects. 2–6), for an integer
p ≥ 1, we introduce the approximative quasi-normed ideal Γp of compact operators
A with a quasi-norm NΓp(.) and the property

∑
k |λk(A)|p ≤ apN

p
Γp
(A), where ap

is a constant independent of A. Assuming that A ∈ Γp and I − Ap is boundedly
invertible, we obtain invertibility conditions for perturbed operators. Applications
of these conditions to the spectrum perturbations of absolutely p-summing and
absolutely (p, 2) summing operators are also discussed. As examples, in the first
part, we consider the Hille–Tamarkin integral operators and Hille–Tamarkin infinite
matrices.

Furthermore, Carleman in 1930s has established an inequality between the
resolvent of a Schatten-von Neumann operator and its regularized characteristic
determinant, cf. [33, p. 69, Theorem 4.14] and [7, p. 1023, Theorem XI.6.15]. In
[16], that inequality has been slightly improved (see also [17, Section 7.3]). In the
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case of the nuclear operators in a Hilbert space, the relevant inequality has been
proved in [24, Section V.5]. In the second part of the chapter (Sects. 7 and 8),
an inequality between resolvents and determinants of nuclear operators in X is
derived. That inequality is a generalization of the above-mentioned inequality for
operators in a Hilbert space from [24, Section V.5]. Applications of the obtained
inequality to spectrum perturbations are also discussed.

The third part of the chapter (Sects. 9–16) is devoted to non-compact operators
in a Banach space having maximal chains of invariant subspaces and admitting the
triangular representations.

The deep theory of triangular representations of non-selfadjoint operators in a
Hilbert space H via integrals along maximal chains has been developed in the
works of M.S. Brodskii, I. C. Gohberg, M.G. Krein, L.A. Sakhnovich and other
mathematicians, cf. [3, 4, 22, 25, 38] and references therein. We particularly extend
some of the representations investigated in the mentioned works to operators in X .

In Sect. 9, we introduce the notion of the maximal chain of projections in X and
consider some properties of operators with invariant maximal chains.

Section 10 is devoted to projection functions whose values form continuous
maximal chains and to operators commuting with these projection functions. In
addition, the notion of the triangular representation is introduced for operators
having invariant continuous projection functions.

In Sect. 11, norm estimates are derived for the resolvents of the considered
operators.

An operator T ∈ B(X ) is said to be Kreiss bounded if

‖(λI − T )−1‖ ≤ c0

|λ| − 1
(|λ| > 1, c0 = const > 0),

cf. [34, 40]. In particular, in these papers, it was shown that the operator of the
indefinite integration is Kreiss-bounded. In Sect. 11, we show that the considered
operators are Kreiss-bounded.

Furthermore, the quantity

svA(Ã) := sup
μ∈σ(Ã)

inf
λ∈σ(A) |μ− λ|

is said to be the spectral variation of an operator Ã ∈ B(X ) with respect to
an operator A ∈ B(X ). It should be noted that the spectral variations mainly
investigated in the cases of finite rank operators and operators in a Hilbert space, cf.
[1, 39] (see also [17] and references therein). In Sect. 12, we estimate the spectral
variations of the operators in X admitting the triangular representation.

Sections 13–15 are devoted to applications of the results from Sect. 12 to
operators in Lp. In particular, a new bound for the spectral radius of an integral
operator is obtained.
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In Sect. 16, the representation for the resolvent via multiplicative operator
integral is established. That representation can be considered as a generalization
of the representation for the resolvent of a normal operator in a Hilbert space.

2 The Quasi-normed Ideal �p

For an integer p ≥ 1, introduce the two-sided quasi-normed ideal Γp of compact
operators in B(X ) with a quasi-norm NΓp(.) and the property

∞∑

k=1

|λk(A)|p ≤ apN
p
Γp
(A) (A ∈ Γp), (1)

where ap is a constant independent of A, and Γp is assumed to be approximative.
(i.e. the set of all finite rank operators is dense in in the norm of Γp). Below bp
denotes the quasi-triangle constant in Γp:

NΓp(A+ Ã) ≤ bp (NΓp(A)+NΓp(Ã)) (A, Ã ∈ Γp). (2)

For the theory of the approximative normed and quasi-normed ideals, see [28, 35]
and references given therein. In the sequel, constant ap in (1) will be called the
eigenvalue constant.

Put

Δp(A, Ã) := NΓp(A− Ã) exp

[

apb
p
p

(

1+ 1

2
(NΓp(A+ Ã)+NΓp(A− Ã))

)p]

and

ψp(A) = inf
k=1,2,...

|1− λ
p
k (A)|.

Theorem 1 For an integer p ≥ 1, let A, Ã ∈ Γp and I − Ap be boundedly
invertible. If, in addition,

Δp(A, Ã) exp

[
apN

p
Γp
(A)

ψp(A)

]

< 1,

then I − Ãp is also boundedly invertible.

For the proof of Theorem 1, see [20, Theorem 1.1].
Replacing in Theorem 1 A and Ã by λA and λÃ, respectively, we get the

following result.
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Corollary 1 Let A, Ã ∈ Γp and λp �∈ σΦ(A
p). If, in addition,

Δp(λA, λÃ) exp

[
apN

p
Γp
(λA)

ψp(λA)

]

< 1,

then λp is Φ-regular also for Ãp.

From this corollary, it follows

Corollary 2 Let A, Ã ∈ Γp and μp ∈ σΦ(Ã
p). Then either μp ∈ σΦ(A

p) or

Δp(μA,μÃ) exp

[
apN

p
Γp
(μA)

ψp(μA)

]

≥ 1. (3)

Note that (3) can be rewritten as

|μ|NΓp(A− Ã) exp[
ap|μ|pNp

Γp
(A)

ψp(μA)

+ apb
p
p

(

1+ |μ|
2
(NΓp(A+ Ã)+NΓp(A− Ã))

)p
] ≥ 1. (4)

3 Particular Cases

3.1 Absolutely p-Summing Operators

An operator A ∈ B(X ) is said to be absolutely p-summing (1 ≤ p <∞), if there
is a constant ν, such that regardless of a natural number m and regardless of the
choice x1, . . . , xm ∈ X we have

[
m∑

k=1

‖Axk‖p
]1/p

≤ ν sup

⎧
⎨

⎩

[
m∑

k=1

|〈x∗, xk〉|p
]1/p

: x∗ ∈ X ∗, ‖x∗‖ = 1

⎫
⎬

⎭
,

Here 〈., .〉 means the functional on X , X ∗ means the space adjoint to X [12,
28, 35]. The least ν for which this inequality holds is a norm and is denoted by
πp(A). The set of absolutely p-summing operators in X with the finite norm πp is
a normed ideal in the set of bounded linear operators, which is denoted by Πp, cf.
[35].

As is well known,
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∞∑

k=1

|λk(A)|p ≤ π
p
p (A) (A ∈ Πp; 2 ≤ p <∞), (5)

cf. Theorem 17.4.3 from [12] (see also Theorem 3.7.2 from [35, p. 159]). Thus, Πp

(p ≥ 2) has the properties of ideal Γp. Besides, NΓp(A) = πp(A), bp = 1 and
ap = 1.

3.2 Ideal Ep and Absolutely (p, 2)-Summing Operators

Recall [35, p. 79] that sn(T ) (n = 1.2, . . .) is called the n-th s-number (n-th singular
number) of T ∈ B(X ) if the following conditions are satisfied:

(S1) ‖T ‖ = s1(T ) ≥ s2(T ) ≥ . . . ≥ 0;

(S2) sn+m−1(S+T ) ≤ sm(T )+sn(S) (S ∈ B(X ));

(S3) sn(A1TA2) ≤ ‖A1‖sn(T )‖A2‖ (A1, A2 ∈ B(X ));

(S4) If rank (T ) < n, then sn(T ) = 0;

(S5) sn(Il2n
) = 1.

Here Il2n is the unit operator in the n-dimensional Hilbert space l2n with the traditional
scalar product.

LetL(l2,X ) denote the space of linear operators acting from the Hilbert space l2

with the traditional scalar product into X . The n-th Weyl number of T ∈ B(X ))

is defined by

xn(T ) := sup{an(T Z) : Z ∈ L(l2,X ), ‖Z‖ = 1},

where an(T ) is the n-th approximation number defined by

an(T ) := inf{‖T − Tn‖ : Tn ∈ B(X ), rank Tn < n}.

xn(T ) is an s-number with the sub-multiplicative property

(S6) xn+m−1(T S) ≤ xn(T )xm(S) (S, T ∈ B(X )),

cf. [35, Theorem 2.4.14] and [35, Proposition 2.4.17]. For an integer p ≥ 1, let Ep
be the set of compact operators A acting in X and satisfying

NEp (A) := (

∞∑

k=1

x
p
k (A))

1/p <∞.
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Since xk(A) ≤ xk−1(A) and x2k−1(A+ Ã) ≤ xk(A)+ xk(Ã), we have

∞∑

k=1

x
p
k (A+ Ã) =

∞∑

j=1

x
p

2j−1(A+ Ã)+ x
p

2j (A+ Ã) ≤ 2
∞∑

j=1

x
p

2j−1(A+ Ã)

≤ 2
∞∑

j=1

(xj (A)+ xj (Ã))
p.

By the Minkovsky inequalit

⎛

⎝
∞∑

j=1

(xj (A)+ xj (Ã))
p

⎞

⎠

1/p

≤
⎛

⎝
∞∑

j=1

x
p
j (A)

⎞

⎠

1/p

+
⎛

⎝
∞∑

j=1

x
p
j (Ã)

⎞

⎠

1/p

.

Then

NEp (A+ Ã) ≤ 21/p(NEp (A)+NEp (Ã)).

So Ep is a quasinormed ideal with the quasi-triangular constant bp = 21/p. It is
approximative, cf. [28, 35]. We need the following Weyl type inequality:

∞∑

k=1

|λk(A)|p ≤ c
p
p

∞∑

k=1

x
p
k (A) = c

p
pN

p

Ep
(A)

with

cp = 21/p
√

2e.

cf. [28, Theorem 2.a.6, p. 85].
So Ep is an example of ideal Γp with NΓp(A) = NEp (A), ap = c

p
p and bp =

21/p.
Let us point an estimate for NEp (A). To this end, recall that an A ∈ B(X ) is

said to be absolutely (p, q)-summing (p ≥ q) if there is a constant ν such that
regardless a natural number m and regardless of the choice x1, . . . , xm ∈ X we
have

[
m∑

k=1

‖Axk‖p
]1/p

≤ ν sup

⎧
⎨

⎩

[
m∑

k=1

|〈x∗, xk〉|q
]1/q

: x∗ ∈ X ∗, ‖x∗‖ = 1

⎫
⎬

⎭

cf. [6, 12, 35]. The least ν for which this inequality holds is denoted by πp,q(A).
The set of absolutely (p, q)-summing operators is denoted by Πp,q .
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Due to [12, Theorem 16.3.1], πp,q is a norm and Πp,q with that norm is a Banach
space. If A ∈ Πp,q , then ‖A‖ ≤ πp,q(A) since

‖Ax‖ = [‖Ax‖p]1/p ≤ πp,q(A) sup{[|〈x∗, x〉|q ]1/q : x∗ ∈ X ∗, ‖x∗‖ = 1}
≤ πp,q(A)‖x‖

for any x ∈ X . If, in addition, R and S are bounded operators acting in X , then
πp,q(SAR) ≤ ‖R‖X ‖S‖X πp,q(A).

We need Corollary 2.a.3 from [28, p. 81] (see also Corollary 17.2.2 from [12, p.
293]), which asserts the following: if A ∈ Πp0,2 (2 ≤ p0 <∞), then

xn(A) ≤ πp0,2(A)

n1/p0
(n = 1, 2, . . .).

Hence, for any p > p0, we have

NEp (A) =
( ∞∑

k=1

x
p
n (A)

)1/p

≤ πp0,2(A)

( ∞∑

k=1

1

kp/p0

)1/p

= ζ 1/p(p/p0)πp0,2(A) (A ∈ Πp0,2),

where

ζ(z) =
∞∑

k=1

1

kz
(3z > 1)

is the Riemann zeta-function.

4 Additional Upper Bounds for Determinants

Lemma 1 For an integer p ≥ 1 and A ∈ Γp, one has

| det(I − Ap)| ≤ ψp(A) exp [apNp
Γp(A)].

Proof Evidently,

| det(I − Ap)| = |1− λ
p
m(A)|

∞∏

k=1,k �=m
|1− λ

p
k (A)|

≤ |1− λ
p
m(A)| exp

[ ∞∑

k=1

|λk(A)|p
]
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for any m ≥ 1. Taking into account (1) and choosing m in such a way that |1 −
λ
p
m(A)| = ψp(A), we prove the lemma. �

Furthermore, let Ep(z) be the Weierstrass primary factor:

E1(z) = (1− z); Ep(z) = (1− z) exp

⎡

⎣
p−1∑

m=1

zm

m

⎤

⎦ (p = 2, 3, . . . ; z ∈ C).

Put

γp := p − 1

p
(p �= 1;p �= 3) and γ1 = γ3 = 1.

According to Theorem 1.5.3 [17],

|Ep(z)| ≤ exp[γp|z|p](z ∈ C). (6)

For an A ∈ Γp, p ≥ 2, introduce the p-regularized determinant by

det
p
(I − A) :=

∞∏

k=1

Ep(λk(A)).

Due to (1) and (6)

| det
p
(I − A)| ≤ exp

[

γp

∞∑

k=1

|λk(A)|p
]

≤ exp
[
a0γpN

p
Γp(A)

]
(p ≥ 2),

and therefore the product converges.

Lemma 2 For an integer p ≥ 2 and any A ∈ Γp, one has

| det
p
(I − A)| ≤ ψ1(A) exp

⎡

⎣
p−1∑

k=1

rks (A)

k

⎤

⎦ exp
[
apγpN

p
Γp(A)

]
,

where rs(A) is the spectral radius of A.

Proof By (6) and (1),

| det
p
(I − A)| = |E(λm)|

∞∏

k=1,k �=m
|E(λk)|



306 M. Gil’

≤ |E(λm(A))| exp

⎡

⎣γp

∞∑

k=1,k �=m
|λk(A)|p

⎤

⎦

≤ |E(λm(A))| exp
[
apγpN

p
Γp(A)

]

for any m ≥ 1. But

|Ep(λm(A))| = |1− λm(A)|| exp

⎡

⎣
p−1∑

k=1

λm(A)
k

k

⎤

⎦ |

≤ |1− λm(A)| exp

⎡

⎣
p−1∑

k=1

rks (A)

k

⎤

⎦ .

So

| det
p
(I − A)| ≤ |1− λm(A)| exp

⎡

⎣
p−1∑

k=1

rks (A)

k

⎤

⎦ exp
[
apγpN

p
Γp(A)

]
.

Hence, choosing m in such a way that |1− λm(A)| = ψ1(A), we prove the lemma.
�

5 Hille–Tamarkin Integral Operators “Close” to Volterra
Ones

In this section and in the next one, we consider some concrete integral and matrix
operators. We need the following result.

Corollary 3 Let W ∈ Γp be a quasi-nilpotent operator (i.e. its spectrum is {0}).
Then for an arbitrary Ã ∈ Γp, one has

| det(I − Ãp)− 1| ≤ Δp(W, Ã).

Indeed, this result is due to Lemma 1, and the equality det(I −Wp) = 1.
Let Lp = Lp(0, 1) (2 ≤ p < ∞) be the space of scalar functions f defined on

[0, 1] and endowed the norm

‖f ‖ = [
∫ 1

0
|f (t)|pdt]1/p.



Spectrum Perturbations of Linear Operators in a Banach Space 307

Let K : Lp → Lp be the operator defined by

(Kf )(t) =
∫ 1

0
k(t, s)f (s)ds (f ∈ Lp, 0 ≤ t ≤ 1),

whose kernel k defined on [0, 1]2 satisfies the condition

k̂p(K) :=
[∫ 1

0
(

∫ 1

0
|k(t, s)|p′ds)p/p′dt

]1/p

<∞,

where 1/p+1/p′ = 1. Then K is called a (p, p′)-Hille–Tamarkin integral operator.
As is well known, [6, p. 43], any (p, p′)-Hille–Tamarkin operator K is an

absolutely p-summing operator with πp(K) ≤ k̂p(K). Let the operator V be
defined by

(Vf )(t) =
∫ t

0
k(t, s)f (s)ds (f ∈ Lp).

This operator is quasi-nilpotent. With Γp = Πp, we have

Δp(K, V ) = πp(K − V ) exp

[ (

1+ 1

2
(πp(K + V )+ πp(K − V ))

)p]

≤ Δ̂p(K, V ),

where

Δ̂p(K, V ) := k̂p(K − V ) exp

[ (

1+ 1

2
(k̂p(K + V )+ k̂p(K − V ))

)p]

.

Note that

((K − V )f )(t) =
∫ 1

x

k(t, s)f (s)ds.

The previous corollary implies

Corollary 4 Let K be a (p, p′)-Hille–Tamarkin integral operator in Lp(0, 1) for
an integer p ≥ 2 and 1/p + 1/p′ = 1. If Δ̂p(K, V ) < 1, then

|det (I −Kp)− 1| ≤ Δ̂p(K, V ).

and therefore p
√

1 �∈ σΦ(K), provided Δ̂p(K, V ) < 1.
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6 Hille–Tamarkin Infinite Matrices “Close” to Triangular
Ones

Let us consider the linear operator T in lp (2 ≤ p < ∞) generated by an infinite
matrix (tjk)∞j,k=1, satisfying the condition

τp(T ) :=
⎡

⎣
∞∑

j=1

( ∞∑

k=1

|tjk|p′
)p/p′⎤

⎦

1/p

<∞,

where 1/p + 1/p′ = 1.
Then T is called a (p, p′)-Hille–Tamarkin matrix. As is well known, any (p, p′)-

Hille–Tamarkin matrix T is an absolutely p-summing operator with πp(T ) ≤
τp(T ), cf. [6, p. 43] and [35, Sections 5.3.2 and 5.3.3, p. 230] ). So according to (5),

∞∑

k=1

|λk(T )|p ≤ τ
p
p (T ) ( 2 ≤ p <∞).

Let T+ = (τjk)
∞
j,k=1 be the upper-triangular part of T : τjk = tjk for 1 ≤ j ≤ k ≤ ∞

and τjk = 0 otherwise. Since p > p′, we obtain

( ∞∑

k=1

|tjk|p′
)p/p′

≥
∞∑

k=1

|tjk|p

and thus

∞∑

j=1

∞∑

k=1

|tjk|p <∞.

Since T+ is triangular, its eigenvalues are the diagonal entries and

det
(
I − T

p
+
) = d+,p :=

∞∏

k=1

(1− t
p
kk).

Under consideration,

Δp(T , T+) = πp(T − T+) exp

[ (

1+ 1

2
(πp(T + T+)+ πp(T − T+))

)p]

≤ Δ̂p(T , T+),



Spectrum Perturbations of Linear Operators in a Banach Space 309

where

Δ̂p(T , T+) := τp(T − T+) exp

[ (

1+ 1

2
(τp(T + T+)+ τp(T − T+))

)p]

.

Note that T − T+ is the strictly lower part of T .
Making use of Theorem 1, we arrive at

Corollary 5 Let T be a (p, p′)-Hille–Tamarkin matrix for an integer p ≥ 2 and
1/p + 1/p′ = 1. Then |det(I − T p) − d+,p| ≤ Δ̂p(T , T+), and therefore p

√
1 �∈

σΦ(T ), provided |d+,p| > Δ̂p(T , T+).

7 An Inequality Between Resolvents and Determinants for
Nuclear Operators in a Banach Space

Recall that the s-numbers sn(T ) and Weyl numbers xn(T ) (n = 1, 2, . . .) are
defined in Sect. 3.2. Recall also that the Weyl numbers are s-numbers with the sub-
multiplicative property

(S6) xn+m−1(T S) ≤ xn(T )xm(S) (T , S ∈ B(X )),

cf. [35, Theorem 2.4.14] and [35, Proposition 2.4.17].
Our main object in this section is the set of compact operators A ∈ B(X ) with

the property

NW (A) :=
∞∑

k=1

xk(A) <∞,

which is denoted by W . For A,B ∈ W due to (S2), we have

NW (A+ B) =
∞∑

k=1

xk(A+ B) ≤ 2
∞∑

k=1

x2k−1(A+ B) ≤ 2
∞∑

k=1

(xk(A)+ xk(B))

= 2NW (A)+ 2NW (B)

and thus NW (.) is a quasi-norm, and W is a quasi-normed ideal.
Following [23, Section II.1], we define the determinant det (IX − A) (A ∈

W ) as the continuous extension of the determinants det (IX − An), where An

(n = 1, 2, . . .) are finite rank operators converging to A in the quasi-norm NW (A).
Besides, det (IX −A) := limn→∞ det (IX −An). Below we show that det (IX −
A) exists for any A ∈ W .
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Theorem 2 If A ∈ W and λk(A) �= 1 (k = 1, 2, . . .), then

‖(IX − A)−1 det (IX − A)‖ ≤ c(1+ cx2(A))
3
∞∏

k=3

(1+ cxk(A))
2, (7)

where c = √
2e.

This theorem is proved in [21, Theorem 1.1].
Taking into account that 1+ y ≤ ey (y ≥ 0) and x2(A) ≤ x1(A), from 7 we get

‖(IX − A)−1 det(IX − A)‖ ≤ c exp

[

c(x1(A)+ 2x2(A)+ 2
n∑

k=3

xk(A))

]

≤ c exp [2cNW (A)].
Hence, replacing A by Aλ−1 (λ ∈ C), we arrive at

Corollary 6 If A ∈ W , then for any regular λ �= 0 of A we have

‖(λIX − A)−1 det (IX − λ−1A)‖ ≤ c

|λ| exp [2cNW (A)

|λ| ].

8 Perturbations of Nuclear Operators

Let A, Ã ∈ B(X ) and q = ‖A − Ã‖. If λ �∈ σ(A) and q‖(λI − A)−1‖ < 1, then
it is simple to show that λ �∈ σ(Ã) and

‖(λI − Ã)−1‖ ≤ ‖(λI − A)−1‖
1− q‖(λI − A)−1‖ .

Hence by Corollary 6, we obtain

Corollary 7 If A ∈ W , λ �∈ σ(A) ∪ 0, Ã ∈ B(X ) and

q
c

|λ|
exp [ 2cNW (A)

|λ| ]
| det (I − λ−1A)| < 1.

Then λ is regular for Ã, and

‖(λI − Ã)−1‖ ≤
c exp

[
2cNW (A)

|λ|
]

|λ det (I − λ−1A)| − cq exp
[

2cNW (A)
|λ|

] .
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This corollary supplements the recent investigations of resolvents [2, 5, 11, 29, 32].
To illustrate this corollary, assume that A is a quasinilpotent operator. Then the

spectral radius rs(A) of A is equal to zero and det (I − λ−1A) = 1.
By Corollary 7, if

qc

|λ| exp

[
2cNW (A)

|λ|
]

< 1,

then λ is regular for Ã, and therefore, the spectral radius rs(Ã) of Ã satisfies the
inequality rs(Ã) ≤ y, where y is a unique positive root of the equation

qc

y
exp

[
2cNW (A)

y

]

= 1.

If

qc exp [2cNW (A)] ≤ 1,

then qc < 1, y ≥ 1 and therefore

qc exp

[
2cNW (A)

y

]

≥ 1.

Thus under consideration, we have

rs(Ã) ≤ y ≤ 2cNW (A)

ln (1/(qc))
.

Here we can take X = Lp(0, 1) (1 ≤ p <∞) with the traditional norm,

(Af )(x) =
∫ x

0
K(x, s)f (s)ds and (Ãf )(x) =

∫ 1

0
K(x, s)f (s)ds

(f ∈ Lp(0, 1), 0 ≤ x ≤ 1) with a sufficiently smooth kernel K(., .).
Note also that the following perturbation result for determinants is proved in

section 5 of [21].

Corollary 8 Let A, Ã ∈ W . Then

|det (I−Ã)−det (I−A)| ≤ NW (Ã−A) exp [2+cNW (Ã−A)+cNW (Ã+A)].
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9 Maximal Chains of Projections

For two projections P1, P2 in X ( P1 �= P2), we write P1 < P2 if P1P2 = P2P1 =
P1 (and thus P1X ⊂ P2X ). A set P of projections in X containing at least two
projections is called a chain (of projections), if from P1, P2 ∈ P with P1 �= P2 it
follows that either P1 < P2 or P1 > P2.

Let P−, P+ ∈ P , and P− < P+. If for every P ∈ P we have either P < P−
or P > P+, then the pair (P+, P−) is called a gap of P . Besides, dim (P+−P−)X
is the dimension of the gap. A chain which does not have gaps is called a continuous
chain.

A projection P in X is called a limit projection of a chain P if exists a sequence
Pk ∈ P (k = 1, 2, . . .) which strongly converges to P . A chain is said to be closed
if it contains all its limit projections.

Definition 1 A chain P is said to be maximal if it is closed, contains 0 and I , all
its gaps (if they exist) are one dimensional and

sup
P∈P

‖P ‖ <∞.

We will say that a maximal chain P is invariant for A ∈ B(X ), or A has a
maximal invariant chain P , if PAP = AP for any P ∈ P .

Lemma 3 Let P1, P2 be two invariant projections ofA and P1 < P2. Then, P2−P1
is also an invariant projection of A.

Proof Since P2P1 = P1P2 = P1, we have

(P2 − P1)A(P2 − P1)=P2AP2 − P2AP1 − P1AP2 + P1AP1=AP2 − P2P1AP1

−P1P2AP1 + AP1 = AP2 − P1AP1 − P1AP1 + AP1 = A(P2 − P1).

As claimed. �
Let us prove the following result.

Lemma 4 Let a compact operator V ∈ B(X ) have a maximal invariant chain P .
If, in addition,

(P+ − P−)V (P+ − P−) = 0 (8)

for every gap (P+, P−) of P (if it exists), then V is a quasi-nilpotent operator, i.e.
σ(V ) = {0}.
Proof Indeed, since (P+ − P−)V (P+ − P−) is one dimensional, by the previous
lemma we have (P+ − P−)V (P+ − P−)h = μ(P+ − P−)h = V (P+ − P−)h
(μ ∈ C, h ∈ X ). So μ is an eigenvalue of V and (P+−P−)h is the corresponding
eigenvector. By (8) μ = 0. Moreover, at the points of the continuity of P , operator
V does not have eigenvectors. So V does not have non-zero eigenvalues; but V is
compact. So it is quasi-nilpotent. �
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In particular, if a compact operator has a continuous invariant chain, then it is
quasi-nilpotent.

We need also the following lemma.

Lemma 5 Let V be a compact quasi-nilpotent operator having a maximal invariant
chain P . Then equality (8) holds for every gap (P+, P−) of P (if it exists).

Proof As it is shown in the proof of the previous lemma, (P+ − P−)V (P+ −
P−)h = μ(P2 − P1)h, where μ is an eigenvalue of V . But V is quasi-nilpotent. So
μ = 0. This proves the lemma. �

In the sequel, the expression (P+ − P−)T (P+ − P−) for a T ∈ B(X ) will be
called the block of the gap (P+, P−) of P on T .

Lemma 6 Let V1 and V2 be compact quasi-nilpotent operators having a joint
maximal invariant chain P . Then V1 + V2 is a quasi-nilpotent operator having
the same maximal invariant chain.

Proof Since the blocks of the gaps of P on both V1 and V2, if they exist, are zero
(due to Lemma 5), the blocks of the gaps of P on V1 + V2 are also zero. Now the
required result is due to Lemma 4. �
Lemma 7 Let V and B be bounded linear operators in X having a joint maximal
invariant chain P . In addition, let V be a compact quasi-nilpotent operator. Then
VB and BV are quasi-nilpotent, and P is their maximal invariant chain.

Proof It is obvious that

PVBP = VPBP = VBP (P ∈ P).

Now let Q = P+ − P− for a gap (P+, P−). Then according to Lemma 5,
equality (8) holds. Further, we have QVP− = QBP− = 0,

QVBQ = QVB(P+ − P−) = QV (P+BP+ − P−BP−)

= QV [(P− +Q)B(P− +Q)− P−BP−] = QVQBQ = 0.

Due to Lemma 4, this relation implies that VB is a quasi-nilpotent operator.
Similarly, we can prove that BV is quasi-nilpotent. �
Lemma 8 Let V and B be bounded linear operators in X having a joint maximal
invariant chain P . In addition, let V be a compact quasi-nilpotent operator and the
regular set of B be simply connected. Then σ(B + V ) = σ(B).

Proof We have

PRλ(B)P = −
∞∑

k=0

P
Bk

λk+1
P = Rλ(B)P (|λ| > ‖B‖, P ∈ P).
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Since the set of regular points of B is simply connected, by the resolvent identity
one can extend the equality PRλ(B)P = Rλ(B)P to all regular λ of B (see also
[36, pp. 32–33]).

Put T = B + V . For any λ �∈ σ(B), operator VRλ(B) is quasi-nilpotent due to
Lemma 7. So I + VRλ(B) is boundedly invertible and therefore,

Rλ(T ) = (B + V − λI)−1 = Rλ(B)(I + VRλ(B))
−1 (λ �∈ σ(B)).

Hence, it follows that λ is a regular point for T . Consequently,

σ(T ) ⊆ σ(B). (9)

So the regular set of T is also simply connected.
Now let λ �∈ σ(T ). Since P is invariant for T , as above we can show that P

is invariant for Rλ(T ). Then operator VRλ(T ) is quasi-nilpotent due to Lemma 7.
So I − VRλ(T ) is boundedly invertible. Furthermore, according to the equality
B = T − V , we get

Rλ(B) = (T − V − λI)−1 = Rλ(T )(I − VRλ(T ))
−1.

Hence, it follows that λ is a regular point also for B, and therefore, σ(B) ⊆ σ(T ).
Now (9) proves the result. �

10 Operators Having Continuous Maximal Chains

Definition 2 Let Pt (t ∈ [a, b]) be a function defined on a finite segment [a, b],
whose values form a maximal continuous chain P of projections, such that
Pt2Pt1 = Ps (s = min{t2, t1}), Pa = 0 and Pb = I . Then we will call Pt a
continuous maximal projection function (CMPF).

So Pt is a particular case of a resolution of the identity.
It is assumed that there is a constant mP dependent on Pt only, such that

‖
n∑

k=1

akΔPk‖ ≤ mP max
j
|aj | (10)

(n <∞;ΔPk = Ptk − Pk−1; a = t0 < t1 < . . . < tn = b)

for arbitrary numbers ak and an arbitrary partitioning of [a, b].
Let ψ(t) be a bounded scalar function defined on [a, b] and there exists a limit S

of the operator sums



Spectrum Perturbations of Linear Operators in a Banach Space 315

Sn =
n∑

k=1

ψ(tk)ΔPk

in the operator norm. Then we write

S =
∫ b

a

ψ(t)dPt , (11)

ψ(t) will be called a Pt -integrable function, and S will be called a Pt -scalar
operator. We write S = ψ(T0), where

T0 =
∫ b

a

tdPt

is a scalar type spectral operator [8]. So a Pt -scalar operator is a function of a scalar
type spectral operator.

Due to (10), ‖Sn‖ ≤ mp supt |ψ(t)|; by the Banach-Steinhaus theorem, S is
bounded and ‖S‖ ≤ supn ‖Sn‖ ≤ mP supt |ψ(t)|.

For example, let as usually Lp = Lp(0, 1) (1 ≤ p < ∞) be the space of
scalar-valued functions h defined on [0, 1] and equipped with the norm

|h|Lp = [
∫ 1

0
|h(x)|pdx]1/p.

Let P̂t (0 ≤ t ≤ 1) be the truncation projection function, defined by the relations
P̂0 = 0, P̂1 = I and

(P̂tf )(x) =
{
f (x) if 0 ≤ x < t ,
0 if t < x ≤ 1

(t ∈ (0, 1); f ∈ Lp). (12)

It is simple to check that the values of P̂t form a continuous maximal chain and the
operator Ŝ defined by

(Ŝf )(x) = ψ̂(x)f (x) (0 ≤ x ≤ 1, f ∈ Lp(0, 1))

with an integrable function ψ̂ can be written in the form (11).
Furthermore, if infa≤t≤b |ψ(t)| > 0, then 1/ψ(t) is also Pt -integrable and

according to (11),

S−1 =
∫ b

a

1

ψ(t)
dPt . (13)

Indeed, put
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Bn =
n∑

k=1

1

ψ(tk)
ΔPk.

Then

BnSn = SnBn =
n∑

k=1

ΔPk = I.

So Bn = S−1
n and by (10) ‖S−1

n ‖ ≤ mP

inft |ψ(t)| <∞. Since

S−1
m − S−1

n = −S−1
m (Sm − Sn)S

−1
n → 0 (m, n→∞)

in the operator norm, we have S−1
n → S−1. So (13) is valid and ‖S−1‖ ≤

mP

inft |ψ(t)| <∞.
It is simple to check that

σ(S) = {z ∈ C : z = ψ(t), t ∈ [a, b]}.

Let λ �= ψ(t), t ∈ [a, b]. Then according to (11) and (10),

(S − λI)−1 =
∫ b

a

1

ψ(t)− λ
dPt (14)

and

‖(S − λI)−1‖ ≤ mP

ρ(S, λ)
(λ �∈ σ(S)). (15)

Here and below,

ρ(A, λ) = inf
t∈σ(A) |A− λ|.

Definition 3 Let A ∈ B(X ), Pt be a CMPF. If PtAPt = APt (a ≤ t ≤ b), then
Pt is said to be an invariant CMPF of A, or A has a CMPF Pt .

Definition 4 Let A ∈ B(X ) have a CMPF Pt defined on [a, b] and there be a
bounded Pt -integrable function φ, such that

A = D + V, (16)

where

D =
∫ b

a

φ(t)dPt , (17)
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and V is a compact quasi-nilpotent operator in X . In addition, let the regular set
of A be simply connected. Then we will say that A is a Pt -triangular operator,
equality (16) is its triangular representation, D and V are the diagonal and nilpotent
parts of A, respectively, and φ(.) is a Pt - diagonal function of A.

Note that PtV Pt = Pt(A−D)Pt = VPt (a ≤ t ≤ b).
According to (17), we have

(D − λI)−1 =
∫ b

a

1

φ(t)− λ
dPt (λ �∈ σ(D)). (18)

Corollary 9 Let A be Pt -triangular, D and V be its diagonal part and nilpotent
one, respectively. Then for any regular point λ of D, the operators VRλ(D)

and Rλ(D)V are quasi-nilpotent ones. Besides, Pt is invariant for VRλ(D) and
Rλ(D)V .

Indeed, due to (18), Pt is invariant for Rλ(D). Now Lemma 7 ensures the required
result.

From Lemma 8, it follows

Corollary 10 LetA be Pt -triangular. Then σ(A) = σ(D), whereD is the diagonal
part of A.

Moreover, from (10), we have

Rλ(A) = (D + V − λI)−1 = Rλ(D)(I + VRλ(D))−1 (λ �∈ σ(A)). (19)

Similarly, one can check that

Rλ(A) = (I + Rλ(D)V )−1Rλ(D) (λ �∈ σ(A)).

Note that

ρ(A, λ) = inf
s∈σ(A) |s − λ| = ρ(D, λ) = inf

s∈σ(D)
|s − λ| = inf

t
|φ(t)− λ|.

11 Norm Estimates for Resolvents

Definition 5 Let Pt be a CMPF in X and E be a linear subspace of the set of
compact operators in X endowed with a norm NE(.) having the following property:
for arbitrary Pt -scalar operators S, S1 ∈ B(X ), the inequality

NE(SBS1) ≤ ‖S1‖‖S‖NE(B) (B ∈ E) (20)

is valid. Then E will be called a Pt -subset of compact operators.
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For example, let E be the set of operators B in Lp = Lp(0, 1) (1 ≤ p < ∞)

defined by

(Bh)(x) =
∫ 1

0
k(x, s)h(s)ds (h ∈ Lp, x ∈ [0, 1]),

where k(x, s) is a scalar kernel defined on [0, 1]2 and satisfying the condition

Mp(B) := [
∫ 1

0
[
∫ 1

0
|k(x, s)|p′ds]p/p′dx]1/p

<∞ (1 < p <∞, 1/p + 1/p′ = 1) (21)

or

M1(B) := ess sup
x

∫ 1

0
|k(x, s)|dx <∞.

Operators satisfying condition (21) are called (p, p′)-Hille–Tamarkin operators [35,
p.245].

It is not hard to check that NE(.) = Mp(.) is a norm. Take Pt = P̂t as in (12).
Then arbitrary Pt -scalar type operators S, S1 are the operators of the multiplication
by some scalar bounded measurable functions ψ and ψ1, respectively. In this case,
we have

Mp(SBS1) =
[∫ 1

0

[∫ 1

0
|ψ(x)k(x, s)ψ1(s)|p′ds

]p/p′

dx

]1/p

≤ sup
x
|ψ(x)| sup

x
|ψ1(x)|

[∫ 1

0

[∫ 1

0
|k(x, s)|p′ds

]p/p′

dx

]1/p

= ‖S1‖‖S‖Mp(B).

So condition (20) is satisfied.
Furthermore, let us suppose that for any quasi-nilpotent operator W ∈ E, there

are positive numbers θk (k = 1, 2, . . .) independent of W (but dependent on E),
such that

‖Wk‖ ≤ θkN
k
E(W) (k = 1, 2, . . .)

and

lim
k→∞

k
√
θk = 0. (22)
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Then

‖(I −W)−1‖ = ‖
∞∑

k=0

Wk‖ ≤
∞∑

k=0

θkN
k
E(W) <∞. (23)

Now we are in a position to formulate an prove the main result of this section.

Theorem 3 Let A be a Pt -triangular operator, whose nilpotent part V belongs to
a Pt -subset of compact operators E, such that the conditions

‖V k‖ ≤ θkN
k
E(V ) (k = 1, 2, . . .),

(20), (21) and (22) hold. Then

‖Rλ(A)‖ ≤
∞∑

k=0

mk+1
P θkN

k
E(V )

ρk+1(A, λ)
(λ �∈ σ(A)). (24)

Proof Let D be the diagonal part of A. Due to (15),

‖(D − λI)−1‖ ≤ mP

ρ(D, λ)
(λ �∈ σ(D)). (25)

By Corollary 9, VRλ(D) (λ �∈ σ(D)) is quasi-nilpotent, and according to (20), (21)
and (22),

‖(V Rλ(D))k‖ ≤ θkN
k
E(VRλ(D))) ≤ θk‖Rλ(D)‖kNk

E(V ).

Now (25) implies

‖(V Rλ(D))k‖ ≤ mk(D)θkN
k
E(V )

ρk(D, λ)

and therefore by (23),

‖(I + VRλ(D))−1‖ = ‖
∞∑

k=0

(−VRλ(D))k‖ ≤
∞∑

k=0

mk(D)θkN
k
E(V )

ρk(D, λ)
.

Hence (19) yields

‖Rλ(A)‖ ≤
∞∑

k=0

mk+1(D)θkN
k
E(V )

ρk+1(D, λ)
(λ �∈ σ(D)).

Taking into account that by Corollary 10 ρ(D, λ) = ρ(A, λ), we arrive at the
required result. �
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Observe that (24) implies

‖Rλ(A)‖ ≤
∞∑

k=0

mk+1(D)θkN
k
E(V )

(|λ| − rs(A))k+1 (|λ| > rs(A)),

where rs(A) is the (upper) spectral radius. Assume that rs(A) < 1. Then

‖Rλ(A)‖ ≤ cA

|λ| − 1
(|λ| > 1)

with

cA =
∞∑

k=0

mk+1(D)θkN
k
E(V )

(1− rs(A))k
.

We thus arrive at

Corollary 11 Under the hypothesis of Theorem 3, let rs(A) < 1. Then A is Kreiss-
bounded.

12 Perturbations of Triangularizable Operators

Let A, Ã ∈ B(X ) and q := ‖A − Ã‖. Recall that the spectral variation of Ã with
respect to A is defined in Sect. 1.

Due to the Hilbert identity Rλ(Ã)− Rλ(A) = Rλ(A)(A− Ã)Rλ(Ã), we have

‖Rλ(Ã)‖ ≤ ‖Rλ(A)‖ + q‖Rλ(A)‖‖Rλ(Ã)‖.

So if a λ ∈ C is regular for A and

q‖Rλ(A)‖ < 1, (26)

then λ is also regular for Ã. Moreover,

‖Rλ(Ã)‖ ≤ ‖Rλ(A)‖
1− q‖Rλ(A)‖ .

Assume that

‖Rλ(A)‖ ≤ F

(
1

ρ(A, λ)

)

(λ �∈ σ(A)), (27)

where F(t) is a monotonically increasing non-negative continuous function of a
non-negative variable, such that F(0) = 0 and F(∞) = ∞. We need the following
technical lemma.
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Lemma 9 Let A, Ã ∈ B(X ) and condition (27) hold. Then svA(Ã) ≤ z(F, q),
where z(F, q) is the unique positive root of the equation

qF(1/z) = 1.

For the proof, see [18, Lemma 1.10]. Now Theorem 3 implies

Corollary 12 Let A ∈ B(X ) satisfy the hypothesis of Theorem 3. Then for any
Ã ∈ B(X ), we have svA(Ã) ≤ zE(A, q), where zE(A, q) is the unique positive
root of the equation

q

∞∑

k=0

mk+1(D)θkN
k
E(V )

zk+1
= 1.

13 Powers of Volterra Operators in Lp

The results of this section originally have been particularly published in [15,
Chapters 16 and 17]. Throughout this section, W is a Volterra operator in Lp ≡
Lp(0, 1) (1 ≤ p ≤ ∞) defined by

(Wh)(x) =
∫ x

0
K(x, s)h(s)ds (h ∈ Lp, x ∈ [0, 1]), (28)

where K(x, s) is a scalar kernel defined on 0 ≤ s ≤ x ≤ 1 and satisfying the
inequalities pointed below.

13.1 Hille–Tamarkin Volterra Operators

Let 1 < p <∞ and

Mp(W) :=
[∫ 1

0

[∫ x

0
|K(x, s)|p′ds

]p/p′

dx

]1/p

<∞ (1/p + 1/p′ = 1).

(29)
That is, W is a (p, p′)-Hille–Tamarkin Volterra operator.

Lemma 10 Under condition (29), the operator W defined by (28) satisfies the
inequality

|Wk|Lp ≤ Mk
p(W)

p
√
k! (k = 1, 2, . . .).

For the proof, see Lemma 6.1 from [19].
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13.2 Volterra Operators in L1 and L∞

Lemma 11 Assume that

M1(W) := ess − sup
s∈[0,1]

∫ 1

s

|K(x, s)|dx <∞.

Then the operator defined by (26) satisfies the inequality

|Wk|L1 ≤ Mk
1 (W)

k! (k = 1, 2, . . .).

For the proof, see Lemma 6.2 from [19].
Repeating the arguments of the of Lemma 6.2 from [19] with p = ∞ instead of

p = 1, we arrive at

Lemma 12 Assume that

M∞(W) := ess sup
x∈[0,1]

∫ x

0
|K(x, s)|ds <∞.

Then the operator defined by (26) satisfies the inequality

|W |L∞ ≤ Mk∞(W)

k! (k = 1, 2, . . .).

Various aspects of powers of Volterra operators have been considered in papers
[9, 10, 27, 30, 31, 34, 41], but mainly the convolution operators, in particular the
operators of the indefinite integration, have been considered.

14 Triangularizable Operators in Lp

Consider in Lp[0, 1] (1 ≤ p <∞) the operator A defined by

(Ah)(x) = φ(x)h(x)+
∫ 1

x

k(x, s)h(s)ds (h ∈ Lp, x ∈ [0, 1]), (30)

where k(x, s) is a scalar kernel defined on 0 ≤ x ≤ s ≤ 1 and having the properties
pointed below, and φ(x) is a scalar bounded Riemann-integrable function, whose
values lie on an unclosed Jordan curve. The Volterra operator in (30) is assumed to
be compact.

Let P̂t (0 ≤ t ≤ 1) be the truncation projection function, defined by (12). It is
simple to check that P̂tAP̂t = AP̂t . Define the operators D̂ and V̂ by



Spectrum Perturbations of Linear Operators in a Banach Space 323

(D̂h)(x) = φ(x)h(x) and (V̂ h)(x) =
∫ 1

x

k(x, s)h(s)ds (h ∈ Lp, x ∈ [0, 1]).

Then P̂t V̂ P̂t = V̂ P̂t and

D̂ =
∫ 1

0
φ(s)dP̂s .

Omitting the obvious calculations, we arrive at

Lemma 13 Let A be defined by (30). Then it is a P̂s-triangular operator, its
diagonal part is D̂ and its nilpotent part is V̂ .

Assume that either

Mp(V̂ ) : =
[∫ 1

0

[∫ 1

x

|k(x, s)|p′ds
]p/p′

dx

]1/p

<∞ (1 < p <∞, 1/p + 1/p′ = 1), (31)

or

M1(V̂ ) :=
∫ 1

0
ess − sup

s∈[x,1]
|k(x, s)|dx <∞ (32)

Recall that absolutely p-summing (1 ≤ p < ∞) operators are defined in
Sect. 3.1. As it was mentioned, the set of p-summing operators in X with the finite
norm πp is a two-sided normed ideal in the set of bounded linear operators, which is
denoted by Πp. In addition, any (p, p′)-Hille–Tamarkin operator K is a p-summing
operator with πp(K) ≤ Mp(K), cf. [35, Proposition 7.2.7], [6, p. 43]

Theorem 3 and Lemmas 10 and 11 imply

|Rλ(A)|Lp ≤
∞∑

k=0

Mk
p(V̂ )

p
√
k!ρk+1(A, λ)

(1 ≤ p <∞, λ �∈ σ(A)), (33)

if condition (31) or (32) holds. Besides ρ(A, λ) = ρ(D̂, λ) = inf0≤x≤1 |φ(x)− λ|.
So

|Rλ(A)|L1 ≤ 1

ρ(A, λ)
exp[M1(Ṽ )

ρ(A, λ)
]

if condition (32) holds.
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Let p > 1. Then by the Hölder inequality for any c > 1, we get

∞∑

k=0

ckMk
p(Ṽ )x

k

ck
p
√
k! ≤

( ∞∑

k=0

1

ckp
′

)1/p′ ( ∞∑

k=0

ckpM
pk
p (Ṽ )xkp

k!

)1/p

= c

(cp
′ − 1)1/p′

exp[cpMp
p (Ṽ )x

p/p] (x > 0).

By virtue of (33), we can write

|Rλ(A)|Lp ≤ 1

(1− c−p′)1/p′ρ(A, λ)

× exp

[
cpM

p
p (V̂ )

ρp(A, λ)p

]

(1/p + 1/p′, c > 1, λ �∈ σ(A)).

Take c = p1/p. Then we obtain

|Rλ(A)|Lp ≤ bp

ρ(A, λ)
exp

[
M

p
p (V̂ )

ρp(A, λ)

]

(1 < p <∞, λ �∈ σ(A)),

where

bp := 1

(1− p−p′/p)1/p′
.

Let qp = |A− Ã|Lp and zp(V̂ , qp) be the unique positive root of the equation

qpFp(V̂ , 1/z) = 1, (34)

where

Fp(V̂ , x) = bpx exp[Mp
p (V̂ )x

p] (1 < p <∞)

and

F1(V̂ , x) = x exp[xM1(V̂ )] (x ≥ 0).

Note that one can take b1 = 1. Now Corollary 12 implies

Lemma 14 Let A be defined by (30) and satisfy one of the conditions (31) or (32).
Then for any Ã ∈ B(X ) we have svA(Ã) ≤ zp(V̂ , qp) (1 ≤ p <∞).

To estimate zp(V̂ , qp), we can apply the following lemma.
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Lemma 15 The unique positive root za of the equation

y ey = a (a = const > 0) (35)

satisfies the inequality za ≥ δp(a), where

δp(a) :=
{
ae−1 if ca ≤ e,

1
2 ln (ae) if a ≥ e.

Proof Let a ≥ e. Then za ≥ 1. By the usual calculations, the function f (y) = ey−1

y

has for y ≥ 1 a unique extremum-minimum at y = 1 and f (y) ≥ 1 for y ≥ 1. We
obtain 1 ≤ za ≤ eza−1, and

a = zae
za ≤ e2za−1 and therefore za ≥ 1

2
ln(ea).

Now let a ≤ e. Then za ≤ 1. Thus eza ≤ e and therefore, a = zae
za ≤ eza , as

claimed. �
Rewrite Eq. (34) with p = 1 and z = 1/x as

q1M1(V̂ )x exp[xM1(V̂ )] = M1(V̂ ).

Then we obtain Eq. (35) with y = xM1(V̂ ) and a = M1(V̂ )/q1. So

z1(V̂ , q1) = M1(V̂ )

za
.

Now Lemma 15 implies z1(A, q) ≤ δ1(V̂ , q1), where

δ1(V̂ , q1) :=

⎧
⎪⎨

⎪⎩

q1e if M1(V̂ ) ≤ q1e,
2M1(V̂ )

ln

(
M1(V̂ )e

q1

) if M1(V̂ ) > q1e.

Now let 1 < p <∞. Then Eq. (34) with z = 1/x takes the form

qpbpx exp[xpMp
p (V̂ )] = 1 or bppq

p
px

p exp[pxpMp
p (V̂ )] = 1.

Therefore

(qpbp)
ppM

p
p (V̂ )x

p exp[pxpMp
p (V̂ )] = pM

p
p (V̂ ).
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Hence we obtain Eq. (35) with y = pxpM
p
p (V̂ ) and

a = pM
p
p (V̂ )

(qpbp)p
.

So

zp(V̂ , qp) = p1/pMp(V̂ )

z
1/p
a

.

From Lemma 15 it follows that zp(V̂ , qp) ≤ δp(V̂ , qp), where

δp(V̂ , qp) :=

⎧
⎪⎨

⎪⎩

qpbpe
1/p if Mp(V̂ ) ≤ bpqp(e/p)

1/p,
21/pMp(V̂ )

ln1/p
(
(pe)1/pMp(V̂ )e

qpbp

) if Mp(V̂ ) > bpqp(e/p)
1/p.

Now Lemma 14 implies

Corollary 13 Let A be defined by (30) and satisfy one of the conditions (31)
or (32). Then for any Ã ∈ B(X ), we have svA(Ã) ≤ δp(Ṽ , qp) (1 ≤ p <∞).

15 Integral Operators in Lp

Throughout this section, Ã is a linear operator in Lp = Lp(0, 1) (1 ≤ p < ∞)

defined by

(Ãh)(x) = φ(x)h(x)+
∫ 1

0
k(x, s)h(s)ds (h ∈ Lp, x ∈ [0, 1]), (36)

where φ is the same as in the previous section and k(x, s) is a scalar kernel defined
on [0, 1]2 and having the properties pointed below.

15.1 The Case 1 < p < ∞

Let

[∫ 1

0

[∫ 1

0
|k(x, s)|p′ds

]p/p′

dx

]1/p

<∞ (1 < p <∞; 1/p + 1/p′ = 1).

(37)
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So k is a Hille–Tamarkin kernel. Take A as in (30): A = D̂ + V̂ , where D̂ and V̂

are the same as in the previous section. By (37)

τp := [
∫ 1

0
[
∫ x

0
|k(x, s)|p′ds]p/p′dx]1/p <∞.

So qp = |A− Ã|Lp ≤ τp. Now Lemma 14 implies

Theorem 4 Let Ã be defined by (36) and condition (37) hold. Then

σ(Ã) ⊆ {z ∈ C : |φ(x)− z| ≤ zp(A, τp) ≤ δp(V̂ , τp), x ∈ [0, 1]},

where z(A, τp) is the unique positive root of the equation

bpτp

z
exp[M

p
p (V̂ )

zp
] = 1

and

δp(V̂ , τp) :=

⎧
⎪⎨

⎪⎩

τpbpe
1/p ifMp(V̂ ) ≤ bpτp(e/p)

1/p,
21/pMp(V̂ )

ln1/p
(
(pe)1/pMp(V̂ )e

τpbp

) ifMp(V̂ ) > bpτp(e/p)
1/p.

This result is sharp: if τp = 0, then we have σ(Ã) = {z ∈ C : z = φ(x), x ∈ [0, 1]}.
From Theorem 4, it follows that

Corollary 14 Under condition (37), the (upper) spectral radius rs(Ã) of the
operator Ã defined by ((36) satisfies the inequalities

rs(Ã) ≤ sup
x
|φ(x)| + zp(A, τp) ≤ sup

x
|φ(x)| + δp(V̂ , τp).

If, in addition,

inf
x
|φ(x)| > zp(A, τp),

then the lower spectral radius rlow(Ã) := inf |σ(Ã)| satisfies the inequality

rlow(Ã) ≥ inf
x
|φ(x)| − zp(A, τp).

Moreover, if

inf
x
|φ(x)| > δp(V̂ , τp),

then rlow(Ã) ≥ infx |φ(x)| − δp(V̂ , τp).
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15.2 The Case p = 1

Now suppose that

∫ 1

0
sup

s∈[0,1]
|k(x, s)|dx <∞. (38)

Then according to (30)

|A− Ã|L1 ≤ τ1 :=
∫ 1

0
sup

s∈[0,x]
|k(x, s)|dx.

Now Lemma 14 implies

Theorem 5 Let Ã be defined by (36) and condition (38) hold. Then

σ(Ã) ⊆ {z ∈ C : |φ(x)− z| ≤ z1(A, τ1) ≤ δ1(V̂ , τ1), x ∈ [0, 1]},

where z(A, τ1) is the unique positive root of the equation

τ1

z
exp

[
M1(V̂ )

z

]

= 1

and

δ1(V̂ , τ1) :=

⎧
⎪⎨

⎪⎩

τ1e ifM1(V̂ ) ≤ τ1e,
2M1(V̂ )

ln

(
M1(V̂ )e

τ1

) ifM1(V̂ ) > τ1e.

From this theorem, we obtain the following result.

Corollary 15 Let condition (38) hold. Then

rs(Ã) ≤ sup
x
|φ(x)| + z1(A, τ1) ≤ sup

x
|φ(x)| + δ1(V̂ , τ1).

If, in addition,

inf
x
|φ(x)| > z1(A, τ1),

then rlow(Ã) ≥ infx |φ(x)| − z1(A, τ1). Moreover, if

inf
x
|φ(x)| > δ1(V̂ , τ1),

then rlow(Ã) ≥ infx |φ(x)| − δ1(A, τ1).
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16 Multiplicative Representations for Resolvents of
Operators in a Banach Space

In this section, we suggest a representation for the resolvent of a Pt -triangular
operator. We begin with the following lemma.

Lemma 16 Let a sequence of compact quasi-nilpotent operators Vn ∈ B(X )

(n = 1, 2, . . .) converge in the operator norm to an operator V . Then V is compact
and quasi-nilpotent.

Proof From the approximation property X , it follows that the uniform limit of
compact operators is compact. So V is compact. Assume that V has an eigenvalue
λ0 �= 0. Since V is compact, λ0 is an isolate point of σ(V ). Consequently, there is a
circle L which contains λ0 and does not contain zero and other points of σ(V ). For
z ∈ L we have

‖Rz(Vn)‖ − ‖Rz(V )‖ ≤ ‖Rz(Vn)− Rz(V )‖ ≤ ‖V − Vn‖‖Rz(Vn)‖‖Rz(V )‖.

Hence, for sufficiently large n,

‖Rz(Vn)‖ ≤ ‖Rz(V )‖
1− ‖V − Vn‖‖Rz(Vn)‖‖Rz(V )‖ .

Therefore, ‖Rz(Vn)‖ are uniformly bounded on L. Since Vn (n = 1, 2, . . .) are
quasi-nilpotent operators, we have

∫

L

Rz(Vn)dz = 0

and
∫

L

Rz(V )dz =
∫

L

(Rz(V )− Rz(Vn))dz =
∫

L

Rz(V )(V − Vn)Rz(Vn)dz→ 0.

So
∫
L
Rz(V )dz = 0, but this is impossible, since that integral represents the eigen-

projection corresponding to λ0. This contradiction proves the lemma. �
This lemma is well known for operators in a Hilbert space [4, Lemma 17.1]).
Let ψ(.) be a scalar function defined and bounded on a finite real segment [a, b],

Qt be a resolution of the identity defined on [a, b], B ∈ B(X ) and

Mn =
→∏

1≤k≤n
(I + ψ(tk)BΔQk)

:= (I + ψ(t1)BΔQ1)(I + ψ(t2)BΔQ2) · · · (I + ψ(tn)BΔQn)

(ΔQk = Qtk −Qtk−1, a = t0 < t1 < . . . < tn = b).
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If the sequence of operators Mn converges in the operator norm to some M ∈
B(X ), then M is called the right multiplicative integral. We write

M =
∫ →

[a,b]
(I + ψ(t)BdQt).

Lemma 17 Let V be a compact quasi-nilpotent operator in X having an invariant
CMPF Pt (a ≤ t ≤ b), and

n∑

k=1

ΔPkVΔPk → 0 as n→∞ (39)

(ΔPk = Ptk − Ptk−1 , a = t0 < t1 < . . . < tn = b)

in the operator norm. Then

(I − V )−1 =
∫ →

[a,b]
(I + V dPt ).

Proof Put

Vn =
n∑

k=1

Ptk−1VΔPk.

Since

V =
n∑

j=1

ΔPjV

n∑

k=1

ΔPk =
n∑

k=1

k∑

j=1

ΔPjVΔPk,

we have

V − Vn =
n∑

k=1

ΔPkVΔPk.

Due to (39), the sequence of the operators Vn tends to V in the operator norm since
V is compact. Besides, Vn is nilpotent, since with the notation Pk = Ptk , we have

V n
n = V n

n Pn = V n−1
n Pn−1Vn = V n−2

n Pn−2VnPn−1Vn = . . .

= VnP1 · · ·VnPn−1Vn = 0.
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Due to [17, Lemma 3.14],

(I − Vn)
−1 =

→∏

2≤k≤n
(I + VnΔPk).

That lemma is proved in a Hilbert space, but in X the proof is similar. In addition,
(I − Vn)

−1 → (I − V )−1 in the operator norm, cf. [8, p. 585, Lemma VII.6.3].
Hence the required result follows. �
Theorem 6 Let A be a Pt -triangular operator. Then

(A− λI)−1 =
∫

[a,b]
dPτ

φ(τ)− λ

∫ →

[a,b]

(

I + V dPt

φ(t)− λ

)

(λ �∈ σ(A)),

where V is the nilpotent part of A and φ(.) is its Pt -diagonal function.

Proof Due to Corollary 9, V (D− λI)−1 is quasi-nilpotent. By the previous lemma

(I + V (D − λI)−1)−1 =
∫ →

[a,b]
(I + V (D − λI)−1dPt ).

According to (19), we have

(A− λI)−1 = (D − λI)−1
∫ →

[a,b]
(I + V (D − λI)−1dPt ) (λ �∈ σ(A)).

But

(D − λI)−1 =
∫

[a,b]
dPτ

φ(τ)− λ
and therefore (D − λI)−1dPt = 1

φ(t)− λ
dPt .

This yields the required result. �
Note that in Sect. 10 of the paper [19], in the case of a Hilbert space, the

multiplicative representation for the resolvents of non-selfadjoint operators having
maximal chains and Schatten-von Neumann Hermitian components has been
derived. Besides, we do not assume that the chain is continuous. That representation
generalizes the corresponding result from [18, Section 9.9].

Note that in paper [13], the representation of the resolvent of such operators via
the spectral measure has been suggested without the proof. In [15, Chapter 10] and
[17, Section 9.9], short proofs of the main result from [13] are given. In Sect. 10, we
considerably refine the just mentioned results from [15] and [17].
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Perturbations of Operator Functions: A
Survey

Michael Gil’

Abstract The chapter is a survey of the recent results of the author on the
perturbations of operator-valued functions. A part of the results presented in this
chapter is new. Let A and Ã be bounded linear operators in a Banach space X
and f (.) be a function analytic on neighborhoods of spectra of A and Ã. The
chapter is devoted to norm estimates for ΔA = f (A) − f (Ã) under various
assumptions on functions and operators. In particular, we consider perturbations
of entire operator-valued functions and Taylor series whose arguments are bounded
operators in a Banach space. In the case of the separable Hilbert space, we derive
a sharp perturbation bound for the Hilbert–Schmidt norm of Δf , provided A − Ã

is a Hilbert–Schmidt operator and the function is regular on the convex hull of the
spectra A and Ã. In addition, operator functions in a Hilbert lattice are explored.
Besides, two-sided estimates for f (A) are established. These estimates enable us to
obtain positivity conditions for functions of a given operator and of the perturbed
one. As examples of concrete functions, we consider the operator fractional powers
and operator logarithm. Moreover, applications of our results to infinite matrices
and integral operators are discussed.

AMS (MOS) Subject Classification 47A56, 47A55, 47A60, 46B42, 47G10

1 Introduction

This chapter is a survey of the recent results of the author on the perturbations
of operator-valued functions. Operator functions arise in numerous theoretical and
practical applications, in particular, in the theory of differential and difference
equations [1, 8, 17]. Besides, the solutions of autonomous linear ordinary differ-
ential equations can be represented by operator exponentials, and the solutions of
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autonomous linear difference equations can be represented by the operator powers.
Estimating of an operator function is not always an easy task. In many cases, it is
easier to obtain the norm of a function of a nearby operator and then to obtain the
information about the function of the original operator.

Throughout this chapter, X is a Banach space with a norm ‖.‖ and the unit
operator I = IX . By B(X ) we denote the algebra of all bounded linear operators
in X . For an A ∈ B(X ), ‖A‖ is the operator norm, A−1 is the inverse operator,
A∗ is the adjoint one, σ(A) is the spectrum, and Rλ(A) = (A− λI)−1 (λ �∈ σ(A))

is the resolvent.
Recall the definition of a function of A ∈ B(X ) analytic on a neighborhood

of the spectrum. To this end, denote by F (A) the family of all functions that
are analytic on some neighborhood of σ(A). (The neighborhood need not be
connected.)

Definition 1 Let f ∈ F (A), and letU be an open set whose boundaryL consists of
a finite number of rectifiable Jordan curves, oriented in the positive sense customary
in the theory of complex variables. Suppose that σ(A) ⊂ U and that U ∪ L is
contained in the domain of analyticity of f . Then, the operator f (A) is defined by
the equation

f (A) = − 1

2πi

∫

L

f (z)Rz(A)dz.

The following result is well known, cf. Theorem VII.3.10 from [11].

Theorem 1 If f and f1 are in F (A), and α and β are complex numbers, then

(a) αf + βf1 ∈ F (A) and αf (A)+ βf1(A) = (αf + βf1)(A).

(b) f · f1 ∈ F (A) and f (A)f1(A) = (f · f1)(A).

(c) If f has the power series expansion

f (z) =
∞∑

k=0

ckz
k,

valid in a neighborhood of σ(A), then

f (A) =
∞∑

k=0

ckA
k.

The perturbation theory of operator functions in a Hilbert space has been
developed in the works of M. Birman and M. Solomyak [3], K, Boyadzhiev [4], V.
Matsaev [36], V. Peller [40], and other mathematicians. In particular, the remarkable
results of Birman and Solomyak on double operator integrals reflected in [3] allow
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us to establish bounds for the norm of f (A) − f (Ã) in the case when A and Ã

are selfadjoint and A − Ã belongs to some “nice” ideal. Besides, A and Ã may
be unbounded. The paper [45] should be mentioned; it deals with a trace class
perturbation of a normal operator with the spectrum on a smooth curve. The results
of that paper can be applied to perturbation theory, scattering theory, functional
models, and others. The interesting inequality for f (A) − f (Ã) was derived in [4]
under the assumption that f is a holomorphic function admitting certain integral
representation. Some works are devoted to perturbations of concrete functions, such
as the exponential function, sine and cosine operator functions [39].

Certainly, we could not survey here the whole subject and refer the reader to the
above listed publications and references given therein. It should be noted that in the
mentioned publications mainly it is assumed that A and Ã are selfadjoint or normal
operators in a Hilbert space. At the same time, below, we do not suppose that A
and Ã are selfadjoint or normal. For the simplicity, we have restricted ourselves by
bounded operators, although in the appropriate situations our results can be directly
extended to unbounded operators.

The chapter consists of 15 sections.
In Sect. 2, we have collected norm estimates for resolvents of various operators in

a Hilbert space. Recall that Carleman in the 1930s obtained an estimate for the norm
of the resolvent of operators belonging to the Neumann–Schatten ideal, cf. [10, p.
1038]. That estimate has been refined and extended to some classes of noncompact
operators in [16, 27]. In this chapter, the mentioned estimates for resolvents are
systematically applied to perturbation problems.

In Sect. 3, we present norm estimates for operator functions in a Hilbert
space regular on the convex hull of the spectrum. Recall that in the book [12],
I.M. Gel’fand and G.E. Shilov have established an estimate for the norm of a
matrix-valued function in connection with their investigations of partial differential
equations. However, that estimate is not sharp, it is not attained for any matrix.
The problem of obtaining a precise estimate for the norm of a matrix function has
been repeatedly discussed in the literature, cf. [8]. In the paper [13], the author has
derived a sharp estimate for matrix-valued functions regular on the convex hull of
the spectrum. It is attained for normal matrices. The results of the paper [13] were
generalized to various classes of operators, cf. [16, 27].

Obviously, functions having singular points can be nonregular on the convex hull
of the spectrum. But such functions, in particular, the logarithm, fractional powers,
and meromorphic functions of operators, arise in many applications, cf. [5, 30, 42].
In Sect. 4, we extend some results from Sect. 3 to functions nonregular on the convex
hull of the spectrum.

Sections 5 and 6 are devoted to perturbations of Taylor series whose arguments
are operators in a Banach space.

In Sect. 7, we investigate entire operator-valued functions in a Banach space.
In Sect. 8, we consider perturbations of functions regular on the convex hull of

the spectrum of a non-selfadjoint operator and derive a sharp perturbation bound for
the Hilbert–Schmidt norm.
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Section 9 is devoted to perturbations of analytic functions of infinite matrices.
Sections 10, 11, and 12 deal with operator functions in a Hilbert lattice. Besides,

two-sided estimates are derived for a class of operator functions. These estimates
enable us to obtain positivity conditions for operator functions.

Section 13 deals with perturbations of operators in a Hilbert lattice considered in
Sect. 10.

As examples of concrete functions, in Sects. 14 and 15, we consider the fractional
powers and logarithm, respectively.

The operator logarithm arises in numerous applications; in particular, its impor-
tance can be ascribed to it being the inverse function of the operator exponential.
Moreover, if we consider a vector differential equation with a T -periodic operator,
then according to the Floquet theory, its Cauchy operator U(t) is equal to V (t)eΓ t ,
where V (t) is a T -periodic operator and Γ = 1

T
ln U(T ), cf. [8]. The problems

connected with the operator logarithms continue to attract the attention of many
specialists, cf. the interesting recent papers [6, 43] and the references given therein.
In particular, the paper [43] investigates the conditions under which the considered
logarithm exists, is unique, and belongs to a particular class of operators. Moreover,
the real Schur decomposition is used to compute the logarithm.

2 Norm Estimates for Resolvents of Operators in a Hilbert
Space

Let H be a separable Hilbert space with a scalar product 〈., .〉 and the norm ‖.‖ =√〈., .〉, and B(H ) is the algebra of all bounded linear operators in H . In this
section, we have collected norm estimates for the resolvents of some classes of
operators in H , which will be used below.

For a compact operator A ∈ B(H ), λk(A) (k = 1, 2, . . .) are the eigenvalues
of A taken with their multiplicities and ordered in the non-increasing way of their
absolute values. sk(A) (k = 1, 2, . . .) are the singular numbers (i.e., the eigenvalues
of (A∗A)1/2), taken with their multiplicities and ordered in the decreasing way.

2.1 Properties of Singular Numbers

Throughout the rest of this section, A and B are compact operators in H . The
following results are well known, cf. [28, Section IV.4] and [29, Section II.4.2].

Lemma 1 If C and D are bounded linear operators in H , then

sk(CAD) ≤ ‖C‖‖D‖sk(A) (k ≥ 1).

Moreover,
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j∑

k=1

sk(A+ B) ≤
j∑

k=1

(sk(A)+ sk(B)),

j∑

k=1

s
p
k (AB) ≤

j∑

k=1

s
p
k (A)s

p
k (B) (p ≥ 1)

and

j∏

k=1

sk(AB) ≤
j∏

k=1

sk(A)sk(B) (j = 1, 2, . . .).

Recall that A is said to be normal if AA∗ = A∗A.

Lemma 2 (Weyl’s Inequalities) The inequalities

k∏

j=1

|λj (A)| ≤
k∏

j=1

sj (A)

and

k∑

j=1

|λj (A)| ≤
k∑

j=1

sj (A) (k = 1, 2, . . .)

are true. They become equalities if and only if A is normal.

For the proof, see Theorem IV.3.1 and Corollary IV.3.4 from [28] or Section II.3.1
from [29].

The set of compact operators A ∈ B(H ) satisfying the condition

Np(A) =
[ ∞∑

k=1

s
p
k (A)

]1/p

<∞

for some p ∈ [1,∞) is called the Schatten–von Neumann ideal and is denoted
by SNp. Np(.) is called the Schatten–von Neumann p-norm. Besides, SN1 is the
ideal of nuclear operators (the Trace class), SN2 is the ideal of Hilbert–Schmidt
operators, and N2(A) is the Hilbert–Schmidt norm.

From Lemma 1, we have

Np(DAC) ≤ Np(A)‖D‖‖C‖ (A ∈ SNp;C,D ∈ B(H )).

The following propositions are true (the proofs can be found, for instance, in the
books [29, Section III.7] and [10]).
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Lemma 3 If A ∈ SNp and B ∈ SNq (1 < p, q < ∞), then AB ∈ SNs with
1/s = 1/p + 1/q. Moreover, Ns(AB) ≤ Np(A)Nq(B).

Let {ek} be an orthogonal normal basis in H , and the series

∞∑

k=1

〈Aek, ek〉

converges. Then, the sum of this series is called the trace of A. It is well known
that

Np(A) = p
√

trace (AA∗)p/2.

The Schatten–von Neumann p-norms are non-increasing in p. In other words, for
1 ≤ p ≤ s, we have Np(A) ≥ Ns(A), provided A ∈ SNp.

The Schatten–von Neumann norm is unitarily invariant. This means that
Np(UAU1) = Np(A) for any choice of linear unitary operators U and U1.

For all p, q ∈ (1,∞), satisfying the equation 1
p
+ 1

q
= 1, we have

Np(A) = sup {trace (AB) : B ∈ SNq,Nq(B) ≤ 1}

and

|trace (AB)| ≤ Np(A)Nq(B).

From the Weyl inequalities, it directly follows

Corollary 1 Let A ∈ SNp, 1 ≤ p <∞. Then,

∞∑

j=1

|λj (A)|p ≤ N
p
p (A).

2.2 The Resolvent of a Hilbert–Schmidt Operator

Let A be a Hilbert–Schmidt operator, i.e., A ∈ SN2. The following quantity plays
an essential role in the sequel:

g(A) =
[
N2

2 (A)−
∞∑

k=1

|λk(A)|2
]1/2

.
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Since

∞∑

k=1

|λk(A)|2 ≥ |
∞∑

k=1

λ2
k(A)| = |trace A2|,

one can write

g2(A) ≤ N2
2 (A)− |trace A2|. (1)

If A is a normal Hilbert–Schmidt operator, then g(A) = 0, since

N2
2 (A) =

∞∑

k=1

|λk(A)|2

in this case.
Let AI = (A− A∗)/2i. Due to Corollary 7.2 from [27],

g2(A) = 2N2
2 (AI )− 2

∞∑

k=1

(Im λk(A))
2 ≤ 2N2

2 (AI ) (2)

for any A ∈ SN2. Let ρ(A, λ) be the distance between σ(A) and a point λ ∈ C:

ρ(A, λ) := inf
t∈σ(A) |λ− t |.

Theorem 2 ([27, Theorem 7.1]) Let A be a Hilbert–Schmidt operator. Then, the
inequalities

‖Rλ(A)‖ ≤
∞∑

k=0

gk(A)

ρk+1(A, λ)
√
k! (3)

and

‖Rλ(A)‖ ≤ 1

ρ(A, λ)
exp

[
1

2
+ g2(A)

2ρ2(A, λ)

]

(λ �∈ σ(A)) (4)

are true.

This theorem is sharp: ifA is a normal operator, then ‖Rλ(A)‖ = 1
ρ(A,λ)

and g(A) =
0. So, (3) is attained if we take 00 = 1.
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2.3 The Resolvent of a Schatten–von Neumann Operator

Theorem 3 For some integer p ≥ 2, let

A ∈ SN2p. (5)

Then,

‖Rλ(A)‖ ≤
p−1∑

m=0

∞∑

k=0

(2N2p(A))
pk+m

ρpk+m+1(A, λ)
√
k! (λ �∈ σ(A)). (6)

In addition,

‖Rλ(A)‖ ≤ √
e

p−1∑

m=0

(2N2p(A))
m

ρm+1(A, λ)
exp

[
(2N2p(A))

2p

2ρ2p(A, λ)

]

(λ �∈ σ(A)). (7)

The proof of this theorem can be found in [27, Theorems 7.2 and 7.3].
Note that if (5) holds, then

Ap is a Hilbert–Schmidt operator.

Use the identity

Ap − Iλp = (A− Iλ)

p−1∑

k=0

Akλp−k−1 = (A− Iλ)Tλ,p (λp �∈ σ(Ap)),

where

Tλ,p =
p−1∑

k=0

Akλp−k−1.

Hence,

(A− Iλ)−1 = Tλ,p(A
p − Iλp)−1.

Thus,

‖(A− Iλ)−1‖ ≤ ‖Tλ,p‖ ‖(Ap − Iλp)−1‖.

Applying inequality (3) to the expression (Ap − Iλp)−1 = Rλp(A
p), we obtain
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‖Rλp(A
p)‖ ≤

∞∑

k=0

gk(Ap)

ρk+1(Ap, λp)
√
k! (λp �∈ σ(Ap)),

where

ρ(Ap, λp) = inf
t∈σ(A) |t

p − λp|.

This implies

‖Rλ(A)‖ ≤ ‖Tλ,p‖
∞∑

k=0

gk(Ap)

ρk+1(Ap, λp)
√
k! (λp �∈ σ(Ap)).

Similarly, making use of inequality (4), under condition (5), we obtain

‖Rλ(A)‖ ≤
√
e‖Tλ,p‖

ρ(Ap, λp)
exp

[ g2(Ap)

2ρ2(Ap, λp)

]
(λp �∈ σ(Ap)).

2.4 The Resolvent of an Operator with a Hilbert–Schmidt
Component

In this subsection, we suggest a norm estimate for the resolvent under the conditions

A ∈ B(H ) and AI := (A− A∗)/(2i) ∈ SN2. (8)

To this end, introduce the quantity

gI (A) :=
√

2

[

N2
2 (AI )−

∞∑

k=1

(Imλ̂k(A))
2

]1/2

,

where λ̂k(A) are the nonreal eigenvalues of A taken with their multiplicities and
ordered in the following way: |Im λ̂k+1(A)| ≤ |Im λ̂k(A)| (k = 1, 2, . . .).

Obviously, gI (A) ≤
√

2N2(AI ).

Theorem 4 ([27, Theorem 9.1]) Let the conditions (8) hold. Then,

‖Rλ(A)‖ ≤
∞∑

k=0

gkI (A)

ρk+1(A, λ)
√
k! (9)

and
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‖Rλ(A)‖ ≤
√
e

ρ(A, λ)
exp [ g2

I (A)

2ρ2(A, λ)
] (λ �∈ σ(A)). (10)

2.5 The Resolvent of an Operator with a Schatten–von
Neumann Component

Now, assume that

AI = (A− A∗)/2i ∈ SN2p for an integer p ≥ 2. (11)

Put

τp(A) = (1+ b2p)(N2p(AI )+N2p(DI )),

where b2p is a constant defined in [27, Section 9.4] and dependent on p, only. As is
shown in [27, Section 9.5, formulas (27) and (28)], in the general case, we have

τp(A) ≤ 2(1+ 2p)N2p(AI ).

If A has a real spectrum, then

τp(A) ≤ (1+ 2p)N2p(AI ).

Theorem 5 ([27, Theorem 9.5]) Let A ∈ B(H ) satisfy condition (11). Then,

‖Rλ(A)‖ ≤
p−1∑

m=0

∞∑

k=0

τ
pk+m
p (A)

ρpk+m+1(A, λ)
√
k! (12)

and

‖Rλ(A)‖ ≤ √
e

p−1∑

m=0

τmp (A)

ρm+1(A, λ)
exp

[
τ

2p
p (A)

2ρ2p(A, λ)

]

(λ �∈ σ(A)). (13)

For the norm estimates for the resolvent of compactly perturbed unitary and
unbounded operators, see [27, Section 9.7] and [27, Chapter 11], respectively.

Recall the Hilbert identity

Rz(A)− Rz(Ã) = Rz(A)(Ã− A)Rz(Ã) (A, Ã ∈ B(X ), z �∈ σ(A) ∪ σ(Ã)),

and put q = ‖A− Ã‖. If
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q‖Rz(A)‖ < 1,

then we have

‖Rz(Ã)‖ ≤ ‖Rz(A)‖
1− q‖Rz(A)‖ . (14)

Definition 1 and (14) enable us to investigate perturbations of functions of operators
via resolvents; namely, the following result is valid.

Lemma 4 Let L be a boundary of an open set U , σ(A)∪ σ(Ã) ⊂ U , and U ∪L is
contained in the domain of analyticity of f . If, in addition,

q sup
z∈L

‖Rz(A)‖ < 1,

then

‖f (A)− f (Ã)‖ ≤ q

2π

supz∈L ‖Rz(A)‖2

(1− q supz∈L ‖Rz(A)‖)
∫

L

|f (z)||dz|.

Proof By the Hilbert identity, we have

‖f (A)− f (Ã)‖ ≤ 1

2π

∫

L

|f (z)|||Rz(A)(A− Ã)Rz(Ã)|| |dz|

≤ q sup
z∈L

‖Rz(A)‖ sup
z∈L

‖Rz(Ã))‖ 1

2π

∫

L

|f (z)||dz|.

Now, (14) yields

sup
z∈U

‖Rz(Ã)‖ ≤ supz∈L ‖Rz(A)‖
1− q supz∈L ‖Rz(A)‖ .

This proves the lemma. �

2.6 Resolvents of Finite-Dimensional and Nuclear Operators

Finite-Dimensional Operators

Let Cn be the n-dimensional complex Euclidean space with a scalar product (., .)
and the norm ‖.‖ = √

(., .), Cn×n is the set of n × n-matrices, ‖A‖ denotes the
spectral norm of A ∈ Cn×n, i.e., the norm operator with respect to the Euclidean
vector norm, and N2(A) = (trace (AA∗)1/2) is the Hilbert–Schmidt (Frobenius)
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norm. Recall that s1(A), . . . , sn(A) are the singular numbers of A taken with their
multiplicities and enumerated in the non-increasing order.

Lemma 5 Let V ∈ Cn×n be a nilpotent matrix. Then,

‖(I − V )−1‖ ≤
n−1∏

k=1

(1+ sk(V )).

Proof Put M = (I−V )∗(I−V ). Obviously, sj (M) = s2
j (I−V ). Take into account

that

‖M−1‖ = 1

sn(M)
= s1(M) · · · sn−1(M)

s1(M)s2(M) · · · sn(M)
= s1(M) · · · sn−1(M)

det(M)
.

Clearly, det(M) = det(I−V )∗(I−V ) = det(I−V )∗ det(I−V ) = 1. Consequently,
‖M−1‖ ≤ s1(M) · · · sn−1(M), but M−1 = (I − V )−1((I − V )∗)−1, and therefore

‖((I − V )∗)−1(I − V )−1‖ = ‖(I − V )−1‖2 ≤ s1(M) · · · sn−1(M),

but

s1(M) · · · sn−1(M) = s2
1(I − V ) · · · s2

n−1(I − V ).

Thus,

‖(I − V )−1‖ ≤ s1(I − V ) · · · sn−1(I − V ) ≤
n−1∏

k=1

(1+ sk(V )),

as claimed. �
According to the classical Schur theorem (see, for instance, [27, p. 44]), the

triangular representation A = D + V (σ(A) = σ(D)) is valid with a normal
(diagonal) operator D and a nilpotent operator V . In addition, D and V have
the joint invariant subspaces. Besides, D and V are called the diagonal part and
nilpotent part of A, respectively.

Lemma 6 Let V be the nilpotent part of A ∈ Cn×n. Then,

‖Rλ(A)‖ ≤ 1

ρ(A, λ)

n−1∏

k=1

(
1+ sk(V )

ρ(A, λ)

)
(λ �∈ σ(A)),

where ρ(A, λ) = mink |λ− λk(A)|.
Proof Due to the triangular representation A = D + V , we can write
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A− λI = D + V − λI = (D − Iλ)(I + (D − Iλ)−1V ) (λ �∈ σ(A)).

Hence, Rλ(A) = (I + Rλ(D)V )−1Rλ(D).
Since in the triangular representation of A, D is a diagonal matrix and V is a

strictly upper (lower) triangular one, and Rλ(D)V is a nilpotent operator. By virtue
of the previous lemma,

‖Rλ(A)‖ ≤ ‖Rλ(D)‖‖(I − Rλ(D)V )−1‖ ≤ ‖Rλ(D)‖
n−1∏

k=1

(1+ sk(Rλ(D)V )).

Since D is a normal operator, we have ‖Rλ(D)‖ = ρ−1(D, λ), and therefore

sk(Rλ(D)V ) ≤ ‖Rλ(D)‖sk(V ) = ρ−1(D, λ)sk(V ).

Hence,

‖Rλ(A)‖ ≤
n−1∏

k=1

(1+ ρ−1(D, λ)sk(V ))ρ
−1(D, λ).

Taking into account that σ(A) = σ(D), we get the required result. �
Making use of the inequality between the arithmetical and geometrical means

from the latter lemma, we obtain

‖Rλ(A)‖ ≤ 1

ρ(A, λ)
(1+ 1

(n− 1)ρ(A, λ)

n−1∑

k=1

sk(V ))
1/(n−1).

Hence,

‖Rλ(A)‖ ≤ 1

ρ(A, λ)
(1+ N1(V )

(n− 1)ρ(A, λ)
)1/(n−1). (15)

For an n× n matrix A introduce the quantity (the departure from normality)

g(A) = (N2
2 (A)−

n∑

k=1

|λk(A)|2)1/2,

where λk(A) are the eigenvalues of A taken with their multiplicities. For various
properties of g(A), see [27, Sec. 3.1]. In particular, g(A) = N2(V ) and g2(A) ≤
N2

2 (A)− |trace (A2)|.
Furthermore, due to the Schwarz inequality,
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n−1∑

k=1

sk(V ) ≤ ((n− 1)
n−1∑

k=1

s2
k (V ))

1/2 ≤ (n− 1)1/2N2(V ) = (n− 1)1/2g(A).

Now, (15) implies

Theorem 6 For any A ∈ Cn×n, one has

‖Rλ(A)‖ ≤ 1

ρ(A, λ)

(

1+ g(A)√
n− 1 ρ(A, λ)

)1/(n−1)

(λ �∈ σ(A)).

This theorem is sharp: it is attained when A is normal, since g(A) = 0 in this case.
By the abovementioned Weyl inequalities, N1(D) ≤ N1(A). Consequently,

N1(V ) = N1(A−D) ≤ N1(A)+N1(D) ≤ 2N1(A).

Now, Lemma 6 yields

‖Rλ(A)‖ ≤ 1

ρ(A, λ)
(1+ 2N1(A)

(n− 1)ρ(A, λ)
)1/(n−1). (16)

Furthermore, taking into account that

n∑

k=1

sk(A) ≤
n∑

k=1

‖Adk‖ (A ∈ Cn×n) (17)

for an arbitrary orthonormal basis {dk}, cf. [9, Theorem 4.7], we arrive at the
following corollary.

Corollary 2 For any A ∈ Cn×n and an arbitrary orthonormal basis {dk} in Cn,
one has

‖Rλ(A)‖ ≤ 1

ρ(A, λ)
(1+ 2

(n− 1)ρ(A, λ)

n∑

k=1

‖Adk‖)1/(n−1).

Nuclear Operators

Inequality (16) enables us to prove the following result.

Theorem 7 Let A ∈ SN1. Then,

‖Rλ(A)‖ ≤ 1

ρ(A, λ)
exp

[2N1(A)

ρ(A, λ)

]
(λ �∈ σ(A)).
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Proof Let {An} be the sequence of n-dimensional operators converging to A in the
norm N1(.). In view of the upper continuity of spectra [31], ρ(An, λ) ≥ ρ(A, λ)

(λ �∈ σ(A)) for sufficiently large n. Due to (16), we have

‖Rλ(An)‖ ≤ 1

ρ(An, λ)
exp

[2N1(An)

ρ(An, λ)

]
.

Hence, letting in n→∞, we arrive at the required result. �
Moreover, from (17) and Theorem 7 we get the following corollary.

Corollary 3 For an A ∈ B(H ) and an orthonormal basis d̂ := {dk}∞k=1 in H , let

γ
d̂
(A) :=

∞∑

k=1

‖Adk‖ <∞.

Then,

‖Rλ(A)‖ ≤ 1

ρ(A, λ)
exp

[ 2γ
d̂
(A)

ρ(A, λ)

]
.

3 Norm Estimates for Operator Functions Regular on the
Convex Hull of Spectra

Denote by co(A) the closed convex hull of the spectrum of A.

Theorem 8 ([27, Theorem 7.4]) Let A be a Hilbert–Schmidt operator, and let f
be a function holomorphic on a neighborhood of co(A). Then,

‖f (A)‖ ≤ sup
λ∈σ(A)

|f (λ)| +
∞∑

k=1

sup
λ∈co(A)

|f (k)(λ)| g
k(A)

(k!)3/2
.

This theorem is sharp: it is attained if A is normal because g(A) = 0 in this case.
Note that, if A is normal, then it is required only that f is defined on σ(A).

Now, assume that

A ∈ B(H ) and AI = (A− A∗)/2i ∈ SN2. (18)

Recall that

gI (A) =
√

2
[
N2

2 (AI )−
∞∑

k=1

(Im λk(A))
2
]1/2 ≤ √

2N2(AI ).
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Theorem 9 ([27, Theorem 10.1]) Let condition (18) hold and f (z) be regular on
a neighborhood of co(A). Then,

‖f (A)‖ ≤ sup
λ∈σ(A)

|f (λ)| +
∞∑

k=1

sup
λ∈co(A)

|f (k)(λ)| g
k
I (A)

(k!)3/2 .

This theorem is sharp, it is attained ifA is normal, since ‖f (A)‖ = supλ∈σ(A) |f (λ)|
in this case, while from Theorem 9 we have ‖f (A)‖ ≤ supλ∈σ(A) |f (λ)|.

For the norm estimates for functions of a compactly perturbed unitary and
unbounded operators, see [27, Section 10.5] and [27, Section 11.5], respectively.

Corollary 4 Let condition (18) hold. Then,

‖eAt‖ ≤ eα(A)t
∞∑

k=0

tkgkI (A)

(k!)3/2 (t ≥ 0),

where α(A) = sup Re σ(A). In addition,

‖Am‖ ≤
m∑

k=0

m!rm−ks (A)gkI (A)

(m− k)!(k!)3/2 (m = 1, 2, . . .).

Assuming that 0 �∈ σ(A) and following [8, Section V.1, formula (1.6)], define
ln(A) by

ln(A) = − 1

2πi

∫

C

ln(z)Rz(A)dz, (19)

where the principal branch of the scalar logarithm is used, and the Jordan contour
C surrounds σ(A) and does not surround the origin.

Lemma 7 Let the condition (18) hold and

β̂(A) := min {|z| : z ∈ co(A)} > 0.

Then,

‖ ln(A)‖ ≤ max
k
| ln(λk(A))| +

∞∑

k=1

gk(A)

β̂k(A)k(k!)1/2
.

Proof Since β̂(A) > 0, ln(z) is regular on co(A). Moreover,

| d
k

dzk
ln(z)| = (k − 1)!|z|−k ≤ (k − 1)!

β̂k(A)
(z ∈ co(A); k = 1, 2, . . .).



Perturbations of Operator Functions 351

Thus, due to Theorem 9, we get the required result. �

4 Functions Nonregular on the Convex Hull of the Spectrum

In this section, it is assumed that the spectrum of A ∈ B(H ) is the union of two
sets σ1 and σ2 separated by means of open disjoint simply connected sets M1 and
M2:

σ(A) = σ1 ∪ σ2, σj ⊂ Mj (j = 1, 2) and M1 ∩M2 = ∅. (20)

Note that our arguments below can be easily extended to the case

σ(A) = ∪mj=1σj (2 ≤ m <∞)

with σj ∩ σk = ∅ (j �= k). Let f (z) be a scalar function regular on M = M1 ∪M2.
Then,

f (A) = − 1

2πi

2∑

j=1

∫

Lj

f (λ)Rλ(A)dλ, (21)

where Lj ⊂ Mj are closed Jordan contours surrounding σj and the integration is
performed in the positive direction. It is also assumed that

AI = (A− A∗)/2i ∈ SN2. (22)

Put

δ := distance(σ1, σ2), pt :=
t∑

k=0

t !
((t − k)!k!)3/2 (t = 1, 2, . . .)

and

ξ(A) :=
(

1+
∞∑

k=0

pk(
√

2N2(AI ))
k+1

δk+1

)2

.

Observe that

t !
(t − k)!k! ≤ 2t ,

and consequently,
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pt = 1

(t !)1/2

t∑

k=0

(t !)3/2

((t − k)!k!)3/2
≤ 2t/2

(t !)1/2

t∑

k=0

t !
(t − k)!k! =

23t/2

(t !)1/2
(t = 1, 2, . . .).

So,

ξ(A) ≤
(

1+
∞∑

k=0

22k+1/2Nk+1
2 (AI )

(k!)1/2δk+1

)2

,

and therefore, the series in the definition of ξ(A) converges. Moreover, by the
Schwarz inequality,

( ∞∑

k=0

22kNk
2 (AI )

(k!)1/2δk+1

)2

=
( ∞∑

k=0

23kNk
2 (AI )

2k(k!)1/2δk

)2

≤
∞∑

k=0

26kN2k
2 (AI )

k!δ2k

∞∑

j=0

1

22j
= exp

[
64N2

2 (AI )

δ2

]
4

3
.

Thus,

ξ(A) ≤
(

1+ 2
√

2N2(AI )√
3δ

exp

[
32N2

2 (AI )

δ2

])2

.

Let co(σj ) be the closed convex hull of σj (j = 1, 2).

Theorem 10 Let conditions (20) and (22) hold. Let f (z) be regular on a neighbor-
hood of co(σ1) ∪ co(σ2). Then,

‖f (A)‖ ≤ ξ(A) max
j=1,2

(

sup
s∈σj

|f (s)| +
∞∑

k=1

sup
s∈co(σj )

|f (k)(s)| (
√

2N2(AI ))
k

(k!)3/2

)

.

The proof of this theorem can be found in [26, Theorem 1.1]. In the finite-
dimensional case, it has been proved in [21].

The series in Theorem 10 converges. Indeed, by the Cauchy formula

f (k)(z) = k!
2πi

∫

L

f (s)ds

(s − z)k+1 (z ∈ co(σj )),

where L is a closed Jordan contour surrounding co(σj ) for a fixed j = 1, 2, we have

|f (k)(z)| ≤ k!m0

vk+1
0

(z ∈ co(σj )), where m0 = 1

2π

∫

L

|f (s)||ds|
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and v0 = infs∈L,z∈co(σj ) |s − z|. Since

∞∑

k=1

(
√

2N2(AI ))
k

vk+1
0 (k!)1/2

<∞,

the series in Theorem 10 really converges.
Theorem 10 is sharp: if A is selfadjoint, then ξ(A) = 1, and ‖f ‖ =

sups∈σ(A) |f (s)|.
Example 1 Let

σ(A) = σ1 ∪ σ2, with σ1 ⊆ [−b,−a], σ2 ⊆ [a, b] (23)

(0 < a < b), and

ln(A) = − 1

2πi

2∑

j=1

∫

Lj

ln z Rz(A)dz,

where the principal branch of ln z is used, Lj is a closed Jordan contour surrounding
σj , does not surrounding z = 0 and L1 ∩ L2 = ∅.

Clearly, ln z is regular on co(σ1) ∪ co(σ2), but nonregular on co(A). We have
δ = dist (σ1, σ2) > 2a,

ξ(A) ≤ ξ1(A) :=
(

1+
∞∑

k=0

pk(
√

2N2(AI ))
k+1

(2a)k+1

)2

. (24)

In addition,

sup
s∈σj

| ln s| ≤ [ln2 b + π2]1/2 and sup
s∈σj

|(ln s)(k)|

≤ (k − 1)!(2a)−k (j = 1, 2; k = 1, 2, . . .).

Now, Theorem 10 implies

‖ ln A‖ ≤ ξ1(A)

(

[ln2 b + π2]1/2 +
∞∑

k=1

(
√

2N2(AI ))
k

k(k!)1/2(2a)k

)

.

Example 2 Under condition (23), let
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Aα := − 1

2πi

2∑

j=1

∫

Lj

zαRz(A)dz (0 < α < 1),

where the contours Lj are the same as in the previous example and the principal
branch of zα is used. Clearly, zα is regular on co(σ1) ∪ co(σ2). As above, δ =
distance(σ1, σ2) > 2a. We have

sup
s∈σj

|sα| ≤ bα = eα ln b and sup
s∈σj

|(sα)(k)| ≤ α(1− α) . . . (k − α + 1)(2a)α−k

(j = 1, 2, . . .). Now, Theorem 10 implies

‖Aα‖ ≤ ξ1(A)

(

bα +
∞∑

k=1

(
√

2N2(AI ))
k

(k!)3/2
α(1− α) . . . (k − α + 1)(2a)α−k

)

.

5 Representations of Commutators

For A,B, Ã ∈ B(X ), [A,B] := AB − BA is the commutator, [A,B, Ã] :=
AB − BÃ is the generalized commutator; [f (A), B] := f (A)B − Bf (A) and
[f (A), B, f (Ã)] := f (A)B − Bf (Ã) will be called the function commutator and
generalized function commutator, respectively.

In the present section, we discuss some representations of the generalized
function commutators which will be used in the next section. We begin with the
following lemma.

Lemma 8 Let A, Ã, B ∈ B(X ). Then, for any z �∈ σ(A) ∪ σ(Ã), we have

(zI − A)−1B − B(zI − Ã)−1 = (Iz− A)−1K(Iz− Ã)−1, (25)

where

K := AB − BÃ = [A,B, Ã].

Proof Multiplying the both sides of (25) by zI − A from the left and by zI − Ã

from the right, we have

B(zI − Ã)− (zI − A)B = K.

This proves the lemma. �
Lemma 9 Let A, Ã, B ∈ B(X ). Let f (z) be regular on an open set U with a
smooth boundary L, and let U contain σ(A) ∪ σ(Ã). Then,
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f (A)B − Bf (Ã) = 1

2πi

∫

L

f (z)Rz(A)KRz(Ã)dz. (26)

Proof Lemma 8 implies

f (A)B − Bf (Ã) = − 1

2πi

∫

L

f (z)(Rz(A)B − BRz(Ã))dz

= 1

2πi

∫

L

f (z)Rz(A)KRz(Ã)dz,

as claimed. �
For a positive r < ∞, put Ω(r) = {z ∈ C : |z| ≤ r} and ∂Ω(r) = {z ∈ C :

|z| = r}. In the rest of this section, it is assumed that f (z) is regular on Ω(r) with

r > rs(A, Ã) := max{rs(A), rs(Ã)},

where rs(A) is the spectral radius of A. Take into account that

Rλ(A) = −
∞∑

k=0

Ak

λk+1 (|λ| > rs(A)).

Then, by the previous lemma,

f (A)B − Bf (Ã) = 1

2πi

∫

∂Ω(r)

f (z)Rz(A)KRz(Ã)dz

=
∞∑

j,k=0

1

2πi

∫

∂Ω(r)

f (z)dz

zk+j+2 A
jKÃk.

Or

f (A)B − Bf (Ã) =
∞∑

j,k=0

fj+k+1A
jKÃk, (27)

where fj are the Taylor coefficients of f at zero. If, in particular, f (z) = zm for an
integer m ≥ 1, then we arrive at the following corollary.

Corollary 5 Let A, Ã, B ∈ B(X ). Then,

AmB − BÃm =
m−1∑

j=0

AjKÃm−j−1 (m = 2, 3, . . .). (28)

Take f (z) = ezt , t ≥ 0. Then, the following result is true.
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Lemma 10 Let A,B ∈ B(X ) and K = [A,B]. Then,

[eAt , B] =
∫ t

0
eAsKeA(t−s)ds (t ≥ 0).

Proof We have

d

dt
([eAt , B]e−tA) = d

dt
(eAtBe−At − B) = eAtKe−At .

Integrating this equality, we get

[eAt , B]e−tA =
∫ t

0
eAt1Ke−At1dt1,

as claimed. �

6 Perturbations of Taylor Series with Operator Arguments

Let A, Ã ∈ B(X ),

F(A) =
∞∑

k=0

bkA
k, F (Ã) =

∞∑

k=0

bkÃ
k, (29)

where bk ∈ C (k = 0, 1, 2, . . .) and each series in (29) converges in the operator
norm. Due to Corollary 5 with B = I , we have

F(Ã)− F(A) =
∞∑

k=0

bk(Ã
k − Ak) =

∞∑

k=1

bk

k−1∑

j=0

Ãj (Ã− A)Ak−j−1.

We thus arrive at the following lemma.

Lemma 11 Let F(Ã) and F(A) be defined by (29). Then,

‖F(Ã)− F(A)‖ ≤ ‖Ã− A‖
∞∑

k=1

|bk|
k−1∑

j=0

‖Ãj‖‖Ak−j−1‖,

provided the series converges.
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7 Entire Operator-Valued Functions

Let C, C̃ ∈ B(X ) and

F(C) =
∞∑

k=0

bkC
k, (30)

where bk ∈ C (k = 0, 1, 2, . . .) satisfy the condition

k
√|bk| → 0 (k →∞). (31)

Then,

F(C + λC̃) =
∞∑

k=0

bk(C + λC̃)k (λ ∈ C)

and

k

√

|bk|(‖(C + λC̃)k‖ ≤ ‖C + λC̃‖ k
√|bk| → 0 (k →∞).

So, F(C + λC̃) is entire in λ.

Theorem 11 Let F be defined by (30) and condition (31) hold. Let there be a
monotone non-decreasing function G : [0,∞)→ [0,∞), such that

‖F(B)‖ ≤ G(‖B‖) for any B ∈ B(X ). (32)

Then,

‖F(C)− F(C̃)‖ ≤ ‖C − C̃‖ G
(

1+ 1

2
‖C + C̃‖ + 1

2
‖C − C̃‖

)
.

Proof Put

Z1(λ) = F(
1

2
(C + C̃)+ λ(C − C̃)).

Then,

F(C)− F(C̃) = Z1

(1

2

)
− Z1

(
− 1

2

)
.

Thanks to the Cauchy integral formula,
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Z1(1/2)− Z1(−1/2) = 1

2πi

∫

|z|=1/2+r
Z1(z)

(
1

z− 1/2
− 1

z+ 1/2

)

dz

= 1

2πi

∫

|z|=1/2+r
Z1(z)

dz

(z− 1/2)(z+ 1/2)
(r > 0).

Hence,

‖Z1(1/2)− Z1(−1/2)‖ ≤ (1/2+ r) sup
|z|=1/2+r

‖Z1(z)‖
|z2 − 1/4| ≤

1

r
sup

|z|=1/2+r
|Z1(z)|.

(33)
In addition, by (32),

‖Z1(z)‖ =
∥
∥
∥
∥F

(
1

2
(C + C̃)+ z(C − C̃)

)∥
∥
∥
∥

≤ G

(

‖1

2
(C + C̃)+ z(C − C̃)‖

)

≤ G

(
1

2
‖C + C̃‖ +

(
1

2
+ r

)

‖C − C̃‖
)

(|z| = 1/2+ r).

Therefore, according to (33),

‖F(C)− F(C̃)‖ = ‖Z1(1/2)− Z1(−1/2)‖

≤ 1

r
G

(
1

2
‖C + C̃‖ + (

1

2
+ r)‖C − C̃‖

)

.

Taking

r = 1

‖C − C̃‖ ,

we get the required result. �
For example, due to (30), one can take

‖G(x)‖ =
∞∑

k=0

|bk|xk (x ≥ 0),

and thus (32) holds with

G(‖C‖) =
∞∑

k=0

|bk|‖C‖k.
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8 Perturbations of Operator Functions Regular on the
Convex Hull of the Spectrum

Let A, Ã ∈ B(H ). Denote by co(A, Ã) the closed convex hull of σ(A) ∪ σ(Ã).
In this section, we derive a bound for ‖f (A) − f (Ã)‖ for functions regular on a
neighborhood of co(A, Ã) and the operators having the Hilbert–Schmidt Hermitian
components. We begin with the finite-dimensional case.

8.1 The Finite-Dimensional Operators

In this subsection, A and Ã are operators in an n-dimensional Euclidean space Cn

(n < ∞) with a scalar product (., .) and the Euclidean norm ‖.‖ = √
(., .). As in

the case of the Hilbert–Schmidt operators, put

g(A) = (N2
2 (A)−

n∑

k=1

λk(A)|2)1/2,

where λk(A) are the eigenvalues of A enumerated with their multiplicities taken
into account. For the properties of g(A) in the finite-dimensional setting, see [27,
Section 3.1].

Theorem 12 ([22, Theorem 1.1]) Let A, Ã, and B be operators in Cn and f (λ)
be holomorphic on a neighborhood of co(A, Ã). Then, with the notations

ηj,k := sup
z∈co (A,Ã)

|f (k+j+1)(z)|√
k!j !(k + j + 1)! (j, k = 0, 1, 2, . . .),

we have the inequality

N2(f (A)B − Bf (Ã)) ≤ N2(K)

n−1∑

j,k=0

ηj,kg
j (A)gk(Ã) (K = AB − BÃ).

According to the abovementioned Schur theorem, the triangular representation

A = D + V (σ(A) = σ(D)) (34)

is valid, where D is a normal operator and V is a nilpotent one having the joint
invariant subspaces. Recall that V and D are called the nilpotent and diagonal parts
of A, respectively. Similarly,

Ã = D̃ + Ṽ (σ (Ã) = σ(D̃)),
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where D̃ is a normal operator and Ṽ is a nilpotent one having joint invariant
subspaces. The proof of Theorem 12 is based on the following lemma.

Lemma 12 Under the hypothesis of Theorem 12, one has

N2(f (A)B − Bf (Ã)) ≤ N2(K)

n−1∑

j,k=0

ηj,kN
j

2 (V )N
k
2 (Ṽ ),

where V and Ṽ are the nilpotent parts of A and Ã, respectively.

Proof By (34),

Rλ(A) = (D + V − Iλ)−1 = (I + Rλ(D)V )−1 Rλ(D).

Note that Rλ(D)V is a nilpotent matrix, and therefore (Rλ(D)V )n = 0. Conse-
quently,

Rλ(A) =
n−1∑

k=0

(−1)k(Rλ(D)V )kRλ(D).

Similarly,

Rλ(Ã) =
n−1∑

k=0

(−1)k(Rλ(D̃)Ṽ )kRλ(D̃).

So, by (26), we have

f (A)B − Bf (Ã) =
n−1∑

m,k=0

Cmk, (35)

where

Cmk = (−1)k+m 1

2πi

∫

L

f (λ)(Rλ(D)V )mRλ(D)K(Rλ(D̃)Ṽ )kRλ(D̃)dλ.

Since D is a diagonal matrix in the orthonormal basis of the triangular representa-
tions of A (the Schur basis) {ek}, and D̃ is a diagonal matrix in the Schur basis {ẽk}
of Ã, we can write out

Rλ(D) =
n∑

j=1

Qj

λj − λ
,Rλ(D̃) =

n∑

j=1

Q̃j

λ̃j − λ
,
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where λj = λj (A), λ̃j = λj (Ã), Qk = (., ek)ek, and Q̃k = (., ẽk)ẽk . Besides,

QjVQk = Q̃j Ṽ Q̃k = 0 (j ≥ k).

We can write

Cmk =
n∑

i1=1

Qi1V

n∑

i2=1

Qi2V . . . V

n∑

im+1=1

Qim+1K

n∑

j1=1

Q̃j1 Ṽ

n∑

j2=1

Q̃j2 Ṽ . . .

Ṽ

n∑

jk+1=1

Q̃jk+1Ji1,i2,...,im+1,j1j2...jk+1 . (36)

Here,

Ji1,i2,...,im+1,j1j2...jk+1 =

(−1)k+m

2πi

∫

L

f (λ)dλ

(λi1 − λ) . . . (λim+1 − λ)(λ̃j1 − λ) . . . (λ̃jk+1 − λ)
.

Below, the symbol |V |e means the operator whose entries are absolute values of V
in the basis {ek} and |Ṽ |ẽ means the operator whose entries are absolute values of
Ṽ in the basis {ẽk}. Furthermore, denote Kkj = (Kẽj , ek) and c

(ml)
kj = (Cmlẽj , ek).

Then,

K =
n∑

j,k=1

Kkj (., ẽj )ek and Cml =
n∑

j,k=1

c
(ml)
kj (., ẽj )ek.

Put

|K|eẽ =
n∑

j,k=1

|Kkj |(., ẽj )ek and |Cml |eẽ =
n∑

j,k=1

|c(ml)kj |(., ẽj )ek.

By Gil [27, Lemma 3.8],

|Ji1,i2,...,im+1,j1j2···jk+1 | ≤ η̃m,k := sup
z∈co (A,Ã)

|f (k+m+1)(z)|
(m+ k + 1)! .

Now, (36) and the equality

n∑

k=1

Qk = I
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imply

|Cmk|eẽ ≤ η̃m,k

n∑

i1=1

Qi1 |V |e
n∑

i2=1

Qi2 |V |e · · · |V |e
n∑

im+1=1

Qjm+1 |K|eẽ
n∑

j1=1

Q̃j2 |Ṽ |ẽ . . .

· · · |Ṽ |ẽ
n∑

jk+1=1

Q̃jk+1 = η̃m,k|V |me |K|eẽ|Ṽ |kẽ . (37)

The inequalities are understood in the entry-wise sense. Note that

N2
2 (|K|eẽ) =

n∑

k=1

‖|K|eẽẽk‖2 =
n∑

k=1

n∑

j=1

|Kjk|2 = N2
2 (K).

Hence, (37) yields the inequality

N2(Cmk) ≤ η̃m,k‖|V |me ‖N2(K)‖|Ṽ |kẽ‖.

By Gil [27, Lemma 3.4],

‖ |V |me ‖ ≤
Nm

2 (|V |)√
m! = Nm

2 (V )√
m! .

So,

N2(Cmk) ≤ η̃m,kN2(K)
Nm

2 (V )Nk
2 (Ṽ )√

m!k! .

Now, (35) implies the required result. �
Proof of Theorem 12 By Lemma 3.2 from [27], N2(V ) = g(A). Now, the required
result is due to the preceding lemma. �

If A and Ã are normal, then g(A) = g(Ã) = 0, and with 00 = 1, Theorem 12
yields

N2(f (A)B − Bf (Ã)) ≤ N2(K) sup
z∈co (A,Ã)

|f ′(z)|. (38)

Taking in Theorem 12 B = I—the unit operator, we get the following corollary.

Corollary 6 Let A and Ã be n-dimensional and f (λ) be holomorphic on a
neighborhood of co(A, Ã). Then,
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N2(f (A)− f (Ã)) ≤ N2(A− Ã)

n−1∑

j,k=0

ηj,kg
j (A)gk(Ã).

If A and Ã are normal, then according to (38),

N2(f (A)− f (Ã)) ≤ N2(A− Ã) sup
z∈co (A,Ã)

|f ′(z)|.

8.2 Operators with Hilbert–Schmidt Components

In the present subsection, we consider the generalized function commutator with
A, Ã, B ∈ B(H ) satisfying the conditions

AI := (A− A∗)/2i ∈ SN2, ÃI := (Ã− Ã∗)/2i ∈ SN2, (39)

and

K = AB − BÃ ∈ SN2. (40)

Recall that gI (A) is defined in Sect. 2.4 and gI (A) ≤
√

2N2(AI ). Again, put

ηj,k := sup
z∈co (A,Ã)

|f (k+j+1)(z)|√
k!j !(k + j + 1)! (j, k = 0, 1, 2, . . .).

Theorem 13 Let conditions (39) and (40) hold. Let f (λ) be holomorphic on a
neighborhood of co(A, Ã). Then,

N2(f (A)B − Bf (Ã)) ≤ N2(K)

∞∑

j,k=0

ηj,kg
j
I (A)g

k
I (Ã).

Proof By Corollary 10.1 from [27] under conditions (39), there are sequences An

and Ãn (n = 1, 2, . . .) of n-dimensional operators strongly converging to A and Ã,
respectively, such that f (An)→ f (A) and f (Ãn)→ f (Ã) in the strong topology.
Note that

‖(f (A)B − Bf (Ã)− (f (An)B − Bf (Ãn)))x‖
≤ ‖(f (A)− f (An))Bx‖ + ‖B(f (Ã)− f (Ãn))x‖ → 0 (x ∈ H , n→∞).

So,
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f (An)B − Bf (Ãn)→ [f (A), B, f (Ã)]

in the strong operator topology. Theorem 12 yields

N2(f (An)B − Bf (Ãn)) ≤ N2(AnB − BÃn)

n−1∑

j,k=0

ηj,kg
j (An)g

k(Ãn).

Moreover, making using of [27, Theorem 3.1] and Corollary 10.2 from [27], we
obtain g(An) = gI (An)→ gI (A). Thus,

N2(f (An)B − Bf (Ãn)) ≤ N2(AnB − BÃn)

n−1∑

j,k=0

ηj,kg
j
I (An)g

k
I (Ãn). (41)

Letting n→∞ and taking into account (40), we get the required result. �
If A and Ã are normal operators, then Theorem 13 implies the inequality

N2(f (A)B − Bf (Ã)) ≤ N2(K) sup
z∈co (A,Ã)

|f ′(z)|.

Taking in the previous theorem B = I we get the following corollary.

Corollary 7 Let f (λ) be holomorphic on a neighborhood of co(A, Ã) and the
conditions (39) and

A− Ã ∈ SN2 (42)

hold. Then,

N2(f (A)− f (Ã)) ≤ N2(A− Ã)

∞∑

j,k=0

ηj,kg
j
I (A)g

k
I (Ã).

Example 3 Let f (A) = eAt , t ≥ 0. Then,

sup
z∈co (A,Ã)

∣
∣
∣
∣
dk+j+1ezt

dzk+j+1

∣
∣
∣
∣ = eαt tk+j+1 (j, k = 0, 1, 2, . . . ; t ≥ 0),

where

α := max{α(A), α(Ã)} (α(A) = sup Re σ(A)).

Thus,
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ηj,k = eαt tk+j+1

√
k!j !(k + j + 1)! (j, k = 0, 1, 2, . . .).

Under conditions (39) and (40), due to Theorem 13, we can write

N2(e
AtB − BeÃt ) ≤ eαtN2(K)

∞∑

j,k=0

tk+j+1gkI (A)g
j
I (Ã)√

k!j !(k + j + 1)! (t ≥ 0).

Note that in the appropriate situations, the norm estimates for functions of perturbed
operators can be obtained via the spectral variation svA(Ã) of Ã with respect to A
defined by

svA(Ã) = sup
s∈σ(Ã)

inf
t∈σ(A) |t − s|.

For example, since

α(Ã) ≤ α(A)+ svA(Ã),

due to Corollary 4, we obtain

‖eÃt‖ ≤ eα(A)t+svA(Ã)t
∞∑

k=0

tkgkI (Ã)

(k!)3/2 (t ≥ 0),

provided Ã∗ − Ã ∈ SN2. The classical results on the spectrum perturbations can be
found in [31]. For the recent results, see the books [27, 41] and the references given
therein.

9 Perturbations of Functions of Infinite Matrices

9.1 Statement of the Result

Let {dk} be an orthogonal normal basis in a separable Hilbert space H and A ∈
B(H ) be represented in {dk} by a matrix (ajk)∞j,k=1. Denote that matrix also by A.
We can write A = D + V , where D = diag [a11, a22, . . . ] and V := A − D is
the off-diagonal part of A. That is, the entries vjk of V are vjk = ajk (j �= k) and
vjj = 0 (j, k = 1, 2, . . .).

Recall that in Sect. 8 D and V denote the diagonal and nilpotent parts (in the
Schur basis) of a finite matrix A, respectively.

Furthermore, simultaneously, we consider another matrix
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Ã = (ãjk)
∞
j,k=1 = D̃ + Ṽ ,

where D̃ = diag [ã11, ã22, . . . ], Ṽ = Ã− D̃.
Put |A| = (|ajk|)∞j,l=1, i.e., |A| is the matrix whose entries are the absolute values

of A in basis {dk}. Let B and C be matrices representing bounded operators in H .
In this section, we write C ≥ 0 if all the entries of C are non-negative and C ≥ B if
C − B ≥ 0. Note that

rs(D) = sup
k

|akk| and rs(D̃) = sup
k

|ãkk|,

and denote

a0 = max{rs(D), rs(D̃)} and v0 = max{‖|V |‖, ‖|Ṽ |‖}.

Recall that Ω(r) := {z ∈ C : |z| ≤ r} for an r > 0, and assume that f (λ) is a
function holomorphic on a neighborhood of Ω(a0+ v0). Furthermore, let co(D, D̃)

be the closed convex hull of the diagonal entries a11, a22, . . . and ã11, ã22, . . ..
Obviously,

co(D, D̃) ⊆ Ω(a0) ⊆ Ω(a0 + v0).

Denote

ηj,k := sup
z∈co(D,D̃)

|f (k+j+1)(z)|
(k + j + 1)! (j, k = 0, 1, 2, . . .).

Theorem 14 Let f (λ) be holomorphic on a neighborhood of Ω(a0 + v0). Then,

|f (A)− f (Ã)| ≤
∞∑

j,k=0

ηj,k|V |j |A− Ã||Ṽ |k,

and the series converges in the operator norm.

Theorem 14 is proved in the next subsection. The relevant results can be found in
[14, 15, 18]. Theorem 14 supplements the recent investigations of infinite matrices,
cf. [38, 47] and the references therein.

If A and Ã are diagonal: V = Ṽ = 0, then Theorem 14 implies

|f (A)− f (Ã)| ≤ max
k
|akk − ãkk| sup

z∈co (D,D̃)

|f ′(z)|.

Under the hypothesis of Theorem 14, we have
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‖f (A)− f (Ã)‖ ≤ ‖|f (A)− f (Ã)|‖ ≤ ‖|A− Ã|‖
∞∑

j,k=0

ηj,k‖|V |‖j‖|Ṽ |‖k,

and the series converges. Since |V | ≤ |A|, from Theorem 14, it follows

‖f (A)− f (Ã)‖ ≤ ‖|A− Ã|‖
∞∑

j,k=0

ηj,k‖|A|‖j‖‖|Ã|‖k,

provided the series converges.

9.2 Proof of Theorem 14

First, assume that A and Ã are n-dimensional, n <∞. With r = a0+v0+ε, ε > 0,
let

Cmk = (−1)k+m 1

2πi

∫

|λ|=r
f (λ)(Rλ(D)V )mRλ(D)E(Rλ(D̃)Ṽ )kRλ(D̃)dλ,

where E = Ã− A. Obviously,

f (A)− f (Ã) = − 1

2πi

∫

|λ|=r
f (λ)(Rλ(A)− Rλ(Ã))dλ

= 1

2πi

∫

|λ|=r
f (λ)Rλ(Ã)ERλ(A)dλ. (43)

But

Rλ(A) = (D + V − Iλ)−1 = (I + Rλ(D)V )Rλ(D).

Since |λ| = r = a0 + v0 + ε, we can write

‖Rλ(D)V ‖ ≤ ‖V ‖
minj |λ− ajj | ≤

‖V ‖
v0 + ε

< 1.

Consequently, the series

Rλ(A) =
∞∑

k=0

(−1)k(Rλ(D)V )kRλ(D)

converges in the operator norm. Similarly,
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Rλ(Ã) =
∞∑

k=0

(−1)k(Rλ(D̃)Ṽ )kRλ(D̃).

So, by (43), we have

f (A)− f (Ã) =
∞∑

m,k=0

Cmk. (44)

Since D and D̃ are diagonal matrices, we can write

Rλ(D) =
n∑

j=1

Qj

ajj − λ
,Rλ(D̃) =

n∑

j=1

Qj

ãjj − λ
,

where Qk = (., dk)dk . Recall that (., .) means the scalar product. Therefore,

Cmk =
n∑

i1=1

Qi1V

n∑

i2=1

Qi2V . . . V

n∑

im+1=1

Qim+1E

n∑

j1=1

Qj1 Ṽ

n∑

j2=1

Qj2 Ṽ . . .

Ṽ

n∑

jk+1=1

Qjk+1Ii1,i2,...,im+1,j1j2...jk+1 .

Here,

Ii1,i2,...,im+1,j1j2...jk+1 =

(−1)k+m

2πi

∫

|λ|=r̂
f (λ)dλ

(ai1i1 − λ) . . . (aim+1im+1 − λ)(ãj1j1 − λ) . . . (ãjk+1jk+1 − λ)
.

By Lemma 1.5.1 [16],

|Ii1,i2,...,im+1,j1j2...jk+1 | ≤ ηm,k.

Hence,

|Cmk| ≤ ηmk

n∑

j1=1

Qj1 |V |
n∑

j2=1

Qj2 |V | . . . |V |
n∑

jk=1

Qjm |E|
n∑

l1=1

Qll |Ṽ | . . . |Ṽ |
n∑

lk=1

Qlm.

Thus,

|Cmk| ≤ ηmk|V |m|E||Ṽ |k. (45)
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By the Cauchy inequality with |z| ≤ a0, we have

|f (m)(z)| ≤ 1

2π

∫

|λ|=r̂
|f (λ)|

|λ− z|m+1 |dλ| ≤
c0

(r − a0)m+1 =
c0

(v0 + ε)m+1 ,

where

c0 = 1

2π

∫

|λ|=r
|f (λ)||dλ|.

Thus,

ηmk ≤ c0

(v0 + ε)m+k+1 .

Due to (45),

‖Cmk‖ ≤ ηmk|V |m|E||Ṽ |k c0

(v0 + ε)m+k+1 ‖|V |m‖‖|E|‖‖|Ṽ |k‖ ≤ const tm+k+1
0 ,

where

t0 = 1

v0 + ε
‖|Ṽ |‖‖|Ṽ |‖ < 1.

Thus, the series

∞∑

m,k=1

Cmk

converges. Now, (44) and (45) imply the required result in the finite-dimensional
setting. Letting n → ∞, we get the required result due to the Banach–Schteihaus
theorem. �

10 Positivity Conditions for Operator Functions in a Hilbert
Lattice

Let H be a Hilbert lattice [37, p. 128] with a norm ‖.‖ and the unit operator I , and
let

D =
∫ b

a

sdPs
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be a bounded selfadjoint operator in H . Here, Ps is the orthogonal resolution of the
identity defined on a finite segment [a, b]. In this section, we investigate functions
of a bounded operator of the form

A = D + T , (46)

where T is a positive operator in H . It is assumed that Pt is non-negative; namely,
the operators P(t2) − P(t1) (a ≤ t1 < t2 ≤ b) are non-negative. Put c0 =
max{|a|, |b|}.
Theorem 15 ([23, Theorem 1.1]) Let A be defined by (46) and Pt be non-
negative, and assume that a function f (λ) is real on [a, b] and holomorphic on
a neighborhood of Ω(r0) = {z ∈ C : |z| ≤ r0} with

r0 = c0 + ‖T ‖ + ε for some ε > 0.

Then, with the notations,

αk := min
a≤s≤b

f (k)(s)

k! and βk := max
a≤s≤b

f (k)(s)

k! (k = 0, 1, 2, . . .),

the inequalities

∞∑

k=0

αkT
k ≤ f (A) ≤

∞∑

k=0

βkT
k (T 0 = I ) (47)

hold, and both the series converge in the operator norm.

This theorem is proved in the next section. In the papers [24, 25], the similar results
have been derived for operators in an ordered Banach space.

Corollary 8 Under the conditions of Theorem 15, let αk ≥ 0 (k = 0, 1, 2, . . .).
Then, f (A) ≥ 0.

For the classical results on positive operators, see [32].

11 Proof of Theorem 15

By (46), we get

(A− Iλ)−1 = (D + T − λI)−1 = (I + Rλ(D)T )−1Rλ(D). (48)

If r > ‖T ‖ + ‖D‖, then
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‖T ‖
infa≤t≤b |λ− t | ≤

‖T ‖
|λ| − ‖D‖ < 1

for |λ| = r . Hence,

‖Rλ(D)T ‖ ≤ ‖T ‖
inft∈σ(D) |λ− t | < 1,

and thus (48) implies

Rλ(A) =
∞∑

k=0

(−Rλ(D)T )k Rλ(D) (|λ| = r).

We can write

f (A) = − 1

2πi

∫

|λ|=r
f (λ)Rλ(A)dλ.

Hence,

f (A) = − 1

2πi

∫

|λ|=r
f (λ)Rλ(A)dλ =

∞∑

k=0

Bk, (49)

where

Bk = (−1)k+1 1

2πi

∫

|λ|=r
f (λ)(Rλ(D)T )kRλ(D)dλ.

But

Rλ(D) =
∫ b

a

dP (t)

t − λ

and

(Rλ(D)T )kRλ(D) =
∫ b

a

dP (t1)T

∫ b

a

dP (t2)T . . .

. . . T

∫ b

a

dP (tk)T

∫ b

a

dP (tk+1)
1

(t1 − λ) . . . (tk+1 − λ)
.

We thus have
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Bk =
∫ b

a

dP (t1)T

∫ b

a

dP (t2)T . . . T

∫ b

a

dP (tk)T

∫ b

a

dP (tk+1)J (t1, t2, . . . , tk+1).

(50)
Here,

J (t1, t2, . . . , tk+1) = (−1)k+1

2πi

∫

|λ|=r
f (λ)dλ

(t1 − λ) . . . (tk+1 − λ)
.

Lemma 1.5.2 from [16] gives us the inequalities

αk ≤ J (t1, t2, . . . , tk+1) ≤ βk. (51)

Hence, by (50) and the positivity of the resolution P(.),

Bk ≥ αk

∫ b

a

dP (t1)T

∫ b

a

dP (t2)T . . . T

∫ b

a

dP (tk)T

∫ b

a

dP (tk+1) = αkT
k.

(52)
Similarly,

Bk ≤ βkT
k. (53)

Due to (49), we get (47).
Let us check that both the series in (47) converge. Indeed, f (z) is regular on

Ω(r0). So, the series

f (z) =
∞∑

k=0

f (k)(t)

k! (z− t)k

converges, provided t = c0, |z| ≤ r0. Take z = ‖T ‖ + c0. Then, z − t = ‖T ‖. So,
the series

f (z) =
∞∑

k=0

f (k)(t)

k! ‖T ‖k

converges for any t ∈ σ(D). This proves the theorem. �

12 Examples to Theorem 15

Consider some operators having the form (46).

Example 4 Let A = (ajk) be a real infinite matrix representing a bounded operator
in a real space l2 and ajk ≥ 0, j �= k.
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TakeD = diag (ajj ), T = (tjk)with tjj = 0 and tjk = ajk, j �= k. Then, (46) holds
with a = infj ajj and b = supj ajj . Now, we can directly apply Theorem 15. For
the recent results on infinite matrices and their applications, see the papers [38, 47].

Example 5 Take H = L2[0, 1], where the space L2[0, 1] is real. Consider the
integral operator A defined by

(Au)(x) = h(x)u(x)+
∫ 1

0
K(x, s)u(s)ds (u ∈ L2[0, 1]; x ∈ [0, 1]), (54)

where h(.) is a real bounded measurable scalar-valued function and K is a non-
negative kernel, providing the boundedness of the operator T defined by

(T u)(x) =
∫ 1

0
K(x, s)u(s)ds.

Then, (46) holds with (Du)(x) = h(x)u(x).
Furthermore, for finite real numbers c and d, c < d, let Λ = {c ≤ x ≤ d, 0 ≤

y ≤ 1}, and L2(Λ) is the Hilbert space of real functions defined on Λ with the scalar
product

(f, g) =
∫ d

c

∫ 1

0
f (x, y)g(x, y)dy dx.

Example 6 Our next object is the operator Â defined by

(Âf )(x, y) = w(x, y)f (x, y)+
∫ 1

0
K(x, y, s)f (x, s)ds

(c ≤ x ≤ d; 0 ≤ y ≤ 1; f ∈ L2(Λ)), (55)

where w(x, y) is a real bounded function and K(x, y, s) is a positive function
providing the boundedness in L2(Λ) of the operator T defined by

(Tf )(x, y) =
∫ 1

0
K(x, y, s)f (s)ds.

Taking (Df )(x, y) = w(x, y)f (x, y), we obtain (46) with A = Â.
The operator Â is called a partial integral operator, inasmuch as the integration

is carried out only with respect to some arguments, while the other arguments
of the integrand are “frozen.” Such operators play an essential role in numerous
applications, cf. [2]. The spectrum and norm estimates for functions of the partial
integral operator were considered in [19, 20].
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13 Perturbations of Operator Functions in a Hilbert Lattice

Let Ã be a bounded linear operator on a Hilbert lattice H defined by

Ã = D + T̃ , (56)

where T̃ is a positive operator in H and D is the same as in Sect. 10. Let A and c0
be the same as in Sect. 10 and f (λ) be holomorphic on a neighborhood of

Ω0 := {z ∈ C : |z| ≤ c0 +max{‖T ‖, ‖T̃ ‖}}.

Then, by (49),

f (Ã) =
∞∑

k=0

B̃k

where B̃k are defined by (50) with T̃ instead of T . Due to (50) with E = T̃ −T ≥ 0,
we have

B̃k =
∫ b

a

dP (t1)(T + E)

∫ b

a

dP (t2)(T + E) . . .

. . . (T + E)

∫ b

a

dP (tk)(T + E)

∫ b

a

dP (tk+1)J (t1, t2, . . . , tk+1) ≥ Bk.

Making use of Theorem 15, we arrive at the following result.

Theorem 16 Let A and Ã be defined by (46) and (56), respectively. Let P(.) be
non-negative, T ≤ T̃ , and f (λ) be holomorphic on a neighborhood of Ω0 and real
on [a, b]. Then, f (Ã) ≥ f (A) .

14 Perturbations of Operator Fractional Powers

Let A ∈ B(X ), β(A) = inf Re σ(A) > 0 and

∫ ∞

0
t−ν‖(A+ I t)−1‖dt <∞ (0 < ν < 1), (57)

then the fractional power of A can be defined by the formula

A−ν = sin (πν)

π

∫ ∞

0
t−ν(A+ I t)−1dt, (58)
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cf. [33, Section I.5.2, formula (5.8)]. Let Ã ∈ B(X ) and

q sup
t≥0

‖(A+ I t)−1‖ < 1 (q = ‖A− Ã‖). (59)

Then, by (14),

‖(Ã+ I t)−1‖ ≤ ‖(A+ I t)−1‖
1− q‖(A+ I t)−1‖ (t ≥ 0).

We have β(Ã) > 0, and (57) and (58) are valid with Ã instead of A. Consequently,

Ã−ν − A−ν = − sin (πν)

π

∫ ∞

0
t−ν(Ã+ I t)−1(Ã− A)(A+ I t)−1dt.

Hence,

‖A−ν − Ã−ν‖ ≤ q sin (πν)

π

∫ ∞

0
t−ν‖(Ã+ I t)−1‖‖(A+ I t)−1‖dt.

We thus arrive at the following lemma.

Lemma 13 Let the conditions β(A) > 0, (57), and (59) hold. Then,

‖A−ν − Ã−ν‖ ≤ q sin (πν)|
π

∫ ∞

0
t−ν ‖(A+ I t)−1‖2dt

(1− q‖(A+ I t)−1‖) (0 < ν < 1).

Assume that X = H -separable Hilbert space,

β(A) > 0 and AI = (A− A∗)/2i ∈ SN2. (60)

By Theorem 4,

‖Rλ(A)‖ ≤
√
e

ρ(A, λ)
exp

[ g2
I (A)

2ρ2(A, λ)

]
(λ �∈ σ(A)).

But ρ(A,−t) ≥ t + β(A) (t ≥ 0), and therefore

‖(A+ tI )−1‖ ≤ φ(t) (t ≥ 0),

where

φ(t) :=
√
e

(t + β(A))
exp

[ g2
I (A)

2(t + β(A))2

]
.

Due to (58),
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‖A−ν‖ ≤ sin (πν)

π

∫ ∞

0
t−νφ(t)dt.

Moreover, Lemma 13 implies

Corollary 9 Let the conditions (60) and q supt φ(t) < 1 hold. Then,

‖A−ν − Ã−ν‖ ≤ q sin (πν)

π

∫ ∞

0
t−ν φ2(t)

1− qφ(t)
dt.

For the recent results on fractional powers of linear operators, see the book [35],
papers [34, 44, 46], and the references therein.

15 Perturbations of the Operator Logarithm

Throughout this section, A, Ã ∈ B(X ) and q = ‖A − Ã‖. The results presented
in this section are particularly based on the paper [21].

15.1 Definition via Contour Integral

Assume that 0 �∈ σ(A), and define ln(A) by

ln(A) = − 1

2πi

∫

C

ln(z)Rz(A)dz, (61)

where the principal branch of the scalar logarithm is used, and the Jordan contour
C surrounds σ(A) and does not surround the origin. Hence, it follows that

‖ ln(A)‖ ≤ 1

2π

∫

C

| ln (z)|‖Rz(A)‖|dz| ≤ mC

∫

C

| ln (z)||dz|,

where

mC := sup
z∈C

‖Rz(A)‖.

Lemma 14 Let the conditions 0 �∈ σ(A) and qmC < 1 hold. Then,

‖ ln(A)− ln(Ã)‖ ≤ qm2
C

2π(1− qmC)

∫

C

| ln (z)||dz|.

Proof Due to (14),
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sup
z∈C

‖Rz(Ã)‖ ≤ mC

1− qmC

and sup
z∈C

‖Rz(Ã)− Rz(A)‖ ≤ qm2
C

1− qmC

.

Thus, the integral in (61) with Ã instead of A is finite. Hence, from (61), we get the
required result. �

15.2 Definition via Improper Integrals

Assume that

σ(A) ∩ (−∞, 0] = ∅ (62)

and
∫ ∞

0
‖(tI + A)−1‖ dt

1+ t
<∞. (63)

We need the following formula proved in [7, Theorem 10.1.3]:

ln(A) = (A− I )

∫ ∞

0
(tI + A)−1 dt

1+ t
. (64)

Thus,

‖ ln(A)‖ ≤ ‖(A− I )‖
∫ ∞

0
‖(tI + A)−1‖ dt

1+ t
.

Lemma 15 Let the conditions (62), (63), and

η(A) := sup
t≥0

‖(tI + A)−1‖ < 1

q
(65)

hold. Then,

‖ ln(Ã)− ln(A)‖ ≤ q

1− qη(A)
(1+ ‖A− I‖)

∫ ∞

0
‖(tI + A)−1‖ dt

1+ t
.

Proof Due to (65) and (14),

‖(Ã+ t)−1‖ ≤ ‖(A+ I t)−1‖
1− qη(A)
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and

‖(Ã+ t)−1 − (A+ t)−1‖ ≤ q‖(A+ I t)−1‖
1− qη(A)

, t ≥ 0.

So, conditions (63) and (62) hold with Ã instead of A. Due to (64),

ln(Ã) = (Ã− I )

∫ ∞

0
(tI + Ã)−1 dt

1+ t

and

‖ ln(Ã)− ln(A)‖ ≤
∫ ∞

0
‖(Ã− I )(tI + Ã)−1 − (A− I )(tI + A)−1‖ dt

1+ t
.

≤
∫ ∞

0
(‖Ã− A‖‖(tI + Ã)−1‖ + ‖A− I‖‖(tI + Ã)−1 − (tI + A)−1 dt

1+ t
‖

≤
∫ ∞

0

(

q
‖(A+ t)−1‖
1− qη(A)

+ (
q

1− qη(A)
‖A− I‖‖(tI + A)−1‖

)
dt

1+ t
,

as claimed. �
Finally, note that if rs(A− I ) < 1, then one can use the obvious representation

ln(A) =
∞∑

k=1

1

k
(I − A)k

and Lemma 11 on perturbations of Taylor series.
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Representation Variety for the Rank One
Affine Group

Ángel González-Prieto, Marina Logares, and Vicente Muñoz

Abstract The aim of this chapter is to study the virtual classes of representation
varieties of surface groups onto the rank one affine group. We perform this cal-
culation by three different approaches: the geometric method, based on stratifying
the representation variety into simpler pieces; the arithmetic method, focused on
counting their number of points over finite fields; and the quantum method, which
performs the computation by means of a Topological Quantum Field Theory. We
also discuss the corresponding moduli spaces of representations and character
varieties, which turn out to be non-equivalent due to the non-reductiveness of the
underlying group.

1 Introduction

Let Γ be a finitely presented group and G a complex algebraic group. A represen-
tation of Γ into G is a group homomorphism ρ : Γ −→ G. We shall denote the set
of representations by

XG(Γ ) = Hom (Γ,G),
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which is a complex algebraic variety. Let X be a connected CW-complex with
π1(X) = Γ . Then, XG(Γ ) parametrizes local systems over X, that is, G-principal
bundles P → X, which admit trivializations P |Uα 2 Uα × G, for a covering
X = ⋃

Uα , such that the changes of charts are (locally) constant functions gαβ :
Uα∩Uβ → G. A local system can also be understood as a covering space with fiber
G (with the discrete topology). From another perspective, we can take a principal G-
bundle P → X and fix a base point x0 ∈ X. Then, a local system is equivalent to a
flat connection on P . Certainly, a flat connection∇ on P determines the monodromy
representation ρ∇ : π1(X, x0) → Aut (Px0)

∼= G, given by associating with a
path [γ ] ∈ π1(X, x0) the holonomy of ∇ along γ . Finally, if G admits a faithful
representation κ : G ↪→ GLr (C), this can also be done with the vector bundle
E = P ×κ C

r → X with G structure.
If we forget the trivialization at the base point, then we have the coset space

M̂G(Γ ) = XG(Γ )/G, (1)

which is a topological space with the quotient topology. The action of G changes
the isomorphism Aut (Px0)

∼= G, which corresponds to the action of G on P as
principal bundle. This induces the adjoint action on the monodromy representation.
The space (1) parametrizes isomorphism classes of local systems. In this case, we
can forget the base point, due to the isomorphisms π1(X, x0) ∼= π1(X, x1), for two
points x0, x1 ∈ X. In general, the coset space is badly behaved. It is not an algebraic
variety, and it may be non-Hausdorff. From the algebro-geometric point of view,
it is more natural to focus on the moduli space of representations MG(Γ ). This
is defined as an algebraic variety with a “quotient map” q : XG(Γ ) → MG(Γ )

such that (a) q is constant along orbits, that is, q is G-invariant and (b) it is an
initial object for this property, that is, any other map f : XG(Γ ) → Y , which is
G-invariant factors through MG(Γ ). It turns out that the moduli space is defined by
the GIT quotient

MG(Γ ) = Spec O(XG(Γ ))
G ,

that is, its ring of functions is given by the G-invariant functions on the representa-
tion variety.

In the case where G is a complex reductive group (e.g., G = SLr (C) or GLr (C)),
the GIT quotient has nice properties. Take a faithful representation κ : G ↪→
GLr (C). The natural map

M̂G(Γ )→MG(Γ ) (2)

is a homeomorphism over the locus of irreducible representations (those that have
no G-invariant proper subspaces W ⊂ C

r ). If ρ : Γ → G ⊂ GLr (C) is reducible,
then it has a (maximal) filtration W0 = 0 � W1 � . . . � Wm = C

r , such that
the induced representations ρk on Wk/Wk−1, k = 1, . . . , m, are irreducible. We call
Gr(ρ) = ρ1 ⊕ . . . ⊕ ρm the semi-simplification of ρ, and we say that ρ and ρ′ are
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S-equivalent if they have the same semi-simplification. With all this said, the fibers
of (2) are the S-equivalence classes [25, Theorem 1.28].

On the other hand, fixed an element γ ∈ Γ , we define the associated character as
the map χγ : XG(Γ ) −→ C given by χγ (ρ) = tr ρ(γ ). This defines a G-invariant
function. The character variety is the algebraic space defined by these functions,

χG(Γ ) = Spec C[χγ | γ ∈ Γ ].

By the results of [23] and [25, Chapter 1], for G =n (C),Sp��(C) or SO2n+1(C)

this is isomorphic to M̂G(Γ ).
The main focus of this chapter is the representation varieties for surface groups.

Let Σg be a compact orientable surface of genus g. Its fundamental group is

Γ = π1(Σg) =
〈
a1, b1, . . . , ag, bg

∣
∣
∣

g∏

j=1

[aj , bj ] = 1
〉
. (3)

The representation variety over the surface group π1(Σg), denoted by XG(Σg),
parametrizes local systems over Σg . For G = GLr (C), the variety XG(Σg)//G

is also known as the Betti moduli space in the context of non-abelian Hodge
theory. Let K = U(r) be the maximal compact subgroup of G = GLr (C). The
celebrated theorem by Narasimhan and Seshadri in [33] establishes that if we
give Σg a complex structure, then Xss

U(r)(Σg)/U(r) is isomorphic to the moduli
space of (polystable) holomorphic bundles of degree 0 on Σg , where Xss

U(r)(Σg)

are the semi-simple representations. The Narasimhan–Seshadri correspondence can
be considered an extension to higher ranks of the classical Hodge theorem. A
representation ρ : π1(Σg) → U(1) can be regarded as a cohomology class
[ρ] ∈ H 1(Σg,C). Indeed, the XU(1)(Σ1) is isomorphic to

Hom(π1(Σg)/[π1(Σg), π1(Σg)],U(1)) ∼= Hom(H1(Σg),C) ∼= H 1(Σg,C),

because U(1) is abelian. The classical Hodge theorem then says that there is a
decomposition ρ = η ⊕ ω, where η ∈ H 0,1(Σg) and ω ∈ H 1,0(Σg). Therefore, η
provides us with a holomorphic line bundle, that is, a holomorphic object reflecting
the algebraic structure of Σg .

In general, for a complex reductive group G, MG(Σg) = XG(Σg)//G is a
hyperkähler manifold, that is, a manifold, modelled on the quaternions, with three
complex structures I, J, and K , where I is the complex structure inherited from the
complex structure of the group G, in the same fashion as shown in Sect. 2.1, J is the
complex structure provided by the complex structure of Σg as explained above, and
K is the product JI . Therefore, by focusing on only one of the complex structures,
three moduli spaces are obtained: the moduli space MG(Σg) of representations of
the fundamental group of Σg into G for complex structure I , also known as Betti
moduli space; the moduli space of polystable G-Higgs bundles of degree 0 on Σg

for complex structure J , called the Dolbeault moduli space; and the moduli space
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of polystable flat bundles on Σg with vanishing first Chern class, known as the
de Rham moduli space. Moreover, the work of Corlette, Donaldson, Hitchin, and
Simpson (see [4, 10, 21, 36–38]) proves that there are diffeomorphisms between the
three moduli spaces: Betti, Dolbeault, and de Rham. These diffeomorphisms expand
the Riemann–Hilbert correspondence and Narasimhan–Seshadri theorem into what
is known as the non-abelian Hodge correspondence.

The diffeomorphism between MG(Σg) and the Dolbeault moduli space has been
largely exploited to obtain information on the topology of the character variety since
Hitchin’s work in [21]. Moreover, the rich interaction between string theory and the
moduli space of G-Higgs bundles has driven the most recent research on character
varieties. There exists a map, known as the Hitchin map, that shows the moduli space
of Higgs bundles as a fibration over a vector space. This fibration was proved by
Hausel and Thaddeus in [20] to be the first non-trivial example of mirror symmetry,
following Strominger, Yau, and Zaslow’s definition in [39]. That is, for Langlands
dual groups G and LG, the Hitchin map fibers over the same vector space in such
a way that the fibers for the G-Higgs bundles moduli space are the dual Calabi–
Yau manifolds to the fibers of the Hitchin map for LG-Higgs bundles moduli space.
In order to prove so, Hausel and Thaddeus studied the Hodge numbers for these
moduli spaces. Since our non-abelian Hodge correspondence is not an algebraic
isomorphism, it leads to one of the many motivations to study the Hodge numbers
for character varieties. We introduce the Hodge numbers in Sect. 2.3.

This discussion is at the heart of much recent research that justifies the study
of the geometry of character varieties of surface groups, in particular the Hodge
numbers and E-polynomials (defined in Sect. 2.3), since they are algebro-geometric
invariants associated with the complex structure. The first technique for this was the
arithmetic method inspired in the Weil conjectures. Hausel and Rodríguez-Villegas
started the computation of the E-polynomials of G-character varieties of surface
groups for G = GLn(C), SLn(C) and PGLn(C), using arithmetic methods. In [19],
they obtained the E-polynomials of the Betti moduli spaces for G = GLn(C)

in terms of a simple generating function. Following these methods, Mereb [30]
studied this case for SLn(C), giving an explicit formula for the E-polynomial in
the case G = SL2(C). Recently, using this technique, explicit expressions of the
E-polynomials have been computed [2] for orientable surfaces with G = GL3(C),
SL3(C) and for non-orientable surfaces with G = GL2(C), SL2(C).

A geometric method to compute E-polynomials of character varieties of surfaces
groups was initiated by Logares, Muñoz, and Newstead in [24]. In this method, the
representation variety is chopped into simpler strata for which the E-polynomial
can be computed. Following this idea, in the case G = SL2(C), the E-polynomials
were computed in a series of papers [24, 28, 29] and for G = PGL2(C) in [27].
This method yields all the polynomials explicitly and not in terms of generating
functions. Moreover, it allows to keep track of interesting properties, like the
Hodge–Tate condition (cf. Remark 2) of these spaces.

In the papers [24, 29], the authors show that a recursive pattern underlies the
computations. The E-polynomial of the SL2(C)-representation variety of Σg can
be obtained from some data of the representation variety on the genus g−1 surface.
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The recursive nature of character varieties is widely present in the literature as
in [9, 18]. It suggests that some type of recursion formalism, in the spirit of a
Topological Quantum Field Theory (TQFT for short), must hold. This leads to
the third computational method, the quantum method, introduced in [13], which
formalizes this setup and provides a powerful machinery to compute E-polynomials
of character varieties. Moreover, this technique allows us to keep track of the classes
in the Grothendieck ring of varieties (also known as virtual classes, as defined in
section 2.4) of the representation varieties and had been successfully used in [15, 16]
in the parabolic context, in which we deal with punctured surfaces with prescribed
monodromy around the punctures.

This chapter applies the geometric, arithmetic, and quantum methods to the group
of affine transformation of the line, G = AGL1(C). The representations of this
group parametrize (flat) rank one affine bundles L → Σg , so it is a relevant space
per se. Moreover, despite its simplicity, for G = AGL1(C) the coincidence between
the Bettin moduli space and the character variety is not granted by [5]. Nonetheless,
we will directly prove in Sect. 3.2 that this isomorphism still holds. We shall see how
the three methods apply, performing explicit computations of their virtual classes.
In this way, our main result is the following.

Theorem 1 Let G = AGL1(C) and g ≥ 1. The virtual class for the representation
variety XAGL1(C)(Σg) is

[XAGL1(C)(Σg)] = q2g−1(q − 1)2g + q2g − q2g−1 .

2 General Background

2.1 Character Varieties

Let Γ be a finitely generated group and G an algebraic group over a ground field K.
A representation of Γ into G is a group homomorphism

ρ : Γ −→ G.

We shall denote the set of representations Hom (Γ,G), by XG(Γ ). Since G is
algebraic and Γ finitely presented, XG(Γ ) inherits the structure of an algebraic
variety. Indeed, if we consider a presentation Γ = 〈γ1, . . . , γN |Rj (γ1, . . . , γN)〉,
then the homomorphism

ϕ : XG(Γ ) −→ GN, ρ �→ (ρ(γ1), . . . , ρ(γN)),

describes an injection such that

ϕ(XG(Γ )) =
{
(g1, . . . , gN) ∈ GN

∣
∣Rj(g1, . . . , gN)

}
,
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so that ϕ(XG(Γ )) is an affine algebraic variety.
The group G itself acts on XG(Γ ) by conjugation, that is, g · ρ(γ ) = gρ(γ )g−1

for any g ∈ G, ρ ∈ XG(Γ ) and γ ∈ Γ . We are interested on the orbits by this
action since two representations are isomorphic if and only if they lie in the same
orbit. But parametrizing these orbits requires the use of a subtler technique known
as Geometric Invariant Theory (GIT). Let us explain this in some detail.

Example 1 Consider the simplest case where Γ = Z, and let G = SL2(C). Then,
XSL2(C)(Z) = SL2(C). The quotient SL2(C)/SL2(C) contains the following orbits:
if g ∈ SL2(C) has two different eigenvalues λ and λ−1, then the orbit of g is a
closed one-dimensional space, namely the collection of matrices of trace λ + λ−1.
But in the case λ = λ−1 = ±1, we get a non-closed one-dimensional orbit and an
orbit that consist of a point, which are, respectively,

[(±1 1
0 ±1

)]

,

{(±1 0
0 ±1

)}

.

Moreover, for all t �= 0, we have that the matrices

(±1 t

0 ±1

)

∈
[(±1 1

0 ±1

)]

but become the point orbit for t = 0. Therefore, SL2(C)/SL2(C) is not an algebraic
variety since its topology does not satisfy the T1 separation axiom. The GIT quotient
SL2(C)//SL2(C) solves this problem by collapsing the two 1-dimensional open
orbits with the two orbits consisting on just a point. In this way, SL2(C)//SL2(C) =
C.

In general, for any algebraic group G acting on an affine variety X over K, the
action induces an action on the algebra of regular functions on X, O(X). In this
case, the affine GIT quotient is defined as the morphism

ϕ : X −→ X//G := SpecO(X)G

of affine schemes associated with the inclusion ϕ∗ : O(X)G ↪→ O(X), where
O(X)G is the subalgebra of G-invariant functions.

Remark 1 In general, the GIT quotient X//G is only an affine scheme since O(X)G

might not be finitely generated (for an example of this phenomenon, see [31]).
However, a theorem of Nagata [32] shows that, if G is a reductive group (cf.
[34, Chapter 3]), then O(X)G ⊆ O(X) is finitely generated subalgebra, and,
thus, X//G is an affine variety. Many typical algebraic groups are reductive like
GLr (C),SLr (C), or C∗ with multiplication. However, an easy example of a non-
reductive group is C with the sum.
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The key point of the GIT quotient is that it is a quotient from a categorical point of
view. A categorical quotient forX is aG-invariant regular map of algebraic varieties
ϕ : X → Y such that for any G-invariant regular map of varieties f : X → Z, there
exists a unique f̃ : Y → Z such that the following diagram commutes:

X

π

��

f
�� Z

Y
f̃

���
�

�
�

Using this universal property, it can be shown that if a categorical quotient exists,
it is unique up to regular isomorphism. In this sense, it is straightforward (cf. [34,
Corollary 3.5.1]) to check that the GIT quotient (if it is a variety, see Remark 1) is a
categorical quotient. Thus, it is uniquely determined by this universal property.

Example 2 In Example 1, we have that the trace tr : SL2(C) −→ C is the only
non-trivial SL2(C)-invariant function on SL2(C). Therefore, SL2(C)//SL2(C) =
Spec C[tr] = C. In general rank r > 1, we have that SLr (C)//SLr (C) = C

r−1 with
quotient map given by the coefficients of the characteristic polynomial.

Coming back to our case of study, we have an action of G on XG(Γ ) by
conjugation. The GIT quotient is called the moduli space of representations, and
it is denoted as

MG(Γ ) = XG(Γ )//G.

By construction, there is a natural continuous map from the coset space M̂G(Γ ),
which parametrizes the isomorphisms classes of representations of Γ into G, to this
space M̂G(Γ )→MG(Γ ).

However, if the ground ring is K = C (or, in general, algebraically closed),
we may consider another natural way of parametrize isomorphism classes of
representations. Suppose that G is a linear algebraic group, so that G < GLr (C).
Given a representation ρ : Γ → G, we define its character as the map

χρ : Γ −→ C, γ �→ χρ(γ ) = tr ρ(γ ).

Note that two isomorphic representations ρ and ρ′ have the same character,
whereas the converse is also true if ρ and ρ′ are irreducible (see [5, Proposition
1.5.2]). A representation is irreducible if it has no proper G-invariant subspaces of
C
r ; otherwise, it is called reducible.
If ρ is reducible, let Ck ⊂ C

r be a proper G-invariant subspace. Define ρ1 :=
ρ|Ck , which is a representation on C

k . There is an induced representation ρ2 in the
quotient Cr−k = C

r/Ck . Then, we can write
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ρ =
(
ρ1 M

0 ρ2

)

.

Acting by conjugation by matrices

(
t Id 0

0 Id

)

, we see that ρ is equivalent to

ρt =
(
ρ1 tM

0 ρ2

)

. When taking t → 0, we have that ρ is in the same GIT orbit

as

(
ρ1 0
0 ρ2

)

= ρ1 ⊕ ρ2. This is the same situation of Example 1. Repeating the

argument with ρ2, we have that any ρ is equivalent to some ρ1 ⊕ . . . ⊕ ρl , where
ρj are irreducible. This is called a semi-simple representation. We say that they are
S-equivalent and denote ρ ∼ ρ1⊕. . .⊕ρl . In this way, any point of the GIT quotient
is determined by a unique class of semi-simple representation.

There is a character map

χ : XG(Γ ) −→ C
Γ , ρ �→ χρ

whose image χG(Γ ) = χ(XG(Γ )) is called the G-character variety of Γ .
Moreover, by the results in [5], there exists a collection γ1, . . . , γa of elements of
Γ such that χρ is determined by (χρ(γ1), . . . , χρ(γa)), for any ρ. Such collection
gives a map

φ : XG(Γ ) −→ C
a, φ(ρ) = (χρ(γ1), . . . χρ(γa)),

and we have a bijection χG(Γ ) ∼= φ(XG(Γ )), which endows χG(Γ ) with the
structure of an algebraic variety independent from the collection γ1, . . . , γa chosen.

The character map χ : XG(Γ )→ χG(Γ ) is a regular G-invariant map, so, since
the GIT quotient is a categorical quotient, it induces a map

χ̃ :MG(Γ )→ χG(Γ ).

It is well-known that, when the group G =n (C), this map is an isomorphism
[5]. This is the reason for the fact that sometimes the space M̂G(Γ ) is called the
character variety. For different groups this isomorphism may still hold, as in this
paper for G = AGL1(K), or may not hold as in [11, Appendix A] for G = SO2.
For a general discussion about the relation of M̂G(Γ ) and χG(Γ ), see [23].

2.2 Representation Varieties of Orientable Surfaces

In this section, we shall focus on an important class of representation varieties,
namely, those obtained by considering representations of the fundamental group
of a closed surface, the so-called surface group. Let Σg be a compact orientable
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surface of genus g. We take Γ = π1(Σg), and we will focus on the representation
variety XG(π1(Σg)), which we will shorten as XG(Σg). Using the presentation (3)
of π1(Σg), we get that

XG(Σg) =
{
(A1, B1, . . . , Ag, Bg) ∈ G2g

∣
∣
∣

g∏

j=1

[Aj ,Bj ]
}
⊂ G2g.

The associated moduli space of representations, MG(Σg) = XG(Σg)//G, plays
a fundamental role in the so-called non-abelian Hodge correspondence in the case
G = GLr (C) (respectively, G = SLr (C)). To be precise, consider a complex vector
bundle

π : E → Σg

of rank r and degree 0 (respectively, and trivial determinant line bundle) with a flat
connection ∇ on E. By flatness, there is no local holonomy for ∇, so the holonomy
map does not depend on the homotopy class of the loop, and hence it descends to a
map, called the monodromy

ρ∇ : π1(Σg)→ G.

This is a representation in XG(Σg). The isomorphism class of the pair (E,∇) is
given by changing the basis of the fiber Ex0 = C

r over the base point x0 ∈ Σg . This
produces the action by conjugation of G on XG(Σg).

In this way, the moduli of representations MG(Σg) = XG(Σg)//G parametrizes
the moduli space of classes of pairs (E,∇) of flat connections on a vector bundle
(modulo S-equivalence). In this context, the former space is usually referred to as the
Betti moduli space (it captures topological information of Σg) and the later space is
called the de Rham moduli space (it captures differentiable information of Σg).

2.3 Mixed Hodge Structures

In order to understand the geometry of representation varieties of surface groups,
we will focus on an algebro-geometric invariant that is naturally present in the
cohomology of complex varieties, the so-called Hodge structure. For this reason,
in this section, we will consider that the ground ring is C, and we will sketch briefly
some remarkable properties of Hodge theory. For a more detailed introduction to
Hodge theory, see [35].

A pure Hodge structure of weight k consists of a finite-dimensional rational
vector space H whose complexification HC = H ⊗Q C is equipped with a
decomposition
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HC =
⊕

k=p+q
Hp,q,

such that Hq,p = Hp,q , the bar meaning complex conjugation on H . A Hodge
structure of weight k gives rise to the so-called Hodge filtration, which is a
descending filtration Fp = ⊕

s≥p
Hs,k−s . From this filtration, we can recover the

pieces via the graded complex GrpF (H) := Fp/Fp+1 = Hp,k−p.
A mixed Hodge structure consists of a finite-dimensional rational vector space

H , an ascending (weight) filtration 0 ⊂ . . . ⊂ Wk−1 ⊂ Wk ⊂ . . . ⊂ H and a
descending (Hodge) filtration HC ⊃ . . . ⊃ Fp−1 ⊃ Fp ⊃ . . . ⊃ 0 such that F
induces a pure Hodge structure of weight k on each GrWk (H) = Wk/Wk−1. We
define the associated Hodge pieces as

Hp,q := GrpF GrWp+q(H)C

and write hp,q for the Hodge number hp,q := dimCH
p,q .

The importance of these mixed Hodge structures rises from the fact that
the cohomology of complex algebraic varieties is naturally endowed with such
structures, as proved by Deligne.

Theorem 2 (Deligne [6–8]) Let X be any quasi-projective complex algebraic
variety (maybe non-smooth or non-compact). The rational cohomology groups
Hk(X) and the cohomology groups with compact supportHk

c (X) are endowed with
mixed Hodge structures.

In this way, for any complex algebraic variety X, we define the Hodge numbers
of X by

hk,p,q(X) = hp,q(Hk(Z)) = dim GrpF GrWp+q Hk(X)C,

h
k,p,q
c (X) = hp,q(Hk

c (Z)) = dim GrpF GrWp+q Hk
c (X)C.

The E-polynomial (also called the Deligne–Hodge polynomial) is defined as

e(X) = e(X)(u, v) :=
∑

p,q,k

(−1)khk,p,qc (X)upvq.

The key property of E-polynomials that permits their calculation is that they are

additive for stratifications of X. If X is a complex algebraic variety and X =
n⊔

i=1
Xi ,

where all Xi are locally closed in X, then e(X) =
n∑

i=1
e(Xi). Moreover, if X =

F × B, the Küneth isomorphism implies that e(X) = e(F )e(B).
An easy consequence of these two properties is that, indeed, for an algebraic

bundle (that is, locally trivial in the Zariski topology)
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F −→ X
π−→ B,

we have e(X) = e(F )e(B). For this, just take a Zariski open subset U ⊂ B so that
X|U = π−1(U) ∼= U × B. Then, B1 = B − U is closed, and we can repeat the
argument for F → X|B1 → B1. By the noethereanity, we get a finite chain

Bn+1 = ∅ � Bn � . . . � B1 � B = B0,

where Uk = Bk−1 − Bk is Zariski open in Bk−1 and X|Uk
∼= Uk × B. Then,

e(X) =
∑

k

e(X|Uk
) =

∑

k

e(F )e(Uk) = e(F )
∑

k

e(Uk) = e(F )e(B). (4)

Example 3 Recall that the cohomology of the complex projective space, H •(Pn),
is generated by the Fubini–Study Form, which is of type (1, 1), so we get
h

2p,p,p
c (Pn) = 1 for 0 ≤ p ≤ n, and 0 otherwise. Hence, its E-polynomial is

e(Pn) = 1+uv+u2v2+ . . .+unvn. In particular, since P1 = C{∞}, we get that
e(C) = e(P1)−1 = uv. In this way, we get that e(Cn) = unvn, which is compatible
with the usual decomposition P

n = �  C  C
2  . . .  C

n.

Remark 2 When h
k,p,q
c (X) = 0 for p �= q, the polynomial e(X) depends only on

the product uv. This will happen in all the cases that we shall investigate here. In
this situation, it is conventional to use the variable q = uv. If this happens, we say
that the variety is of Hodge–Tate type (also known as balanced type). For instance,
e(Cn) = qn is Hodge–Tate.

2.4 Grothendieck Ring of Algebraic Varieties

It is well known that from a (skeletally small) abelian category A, it is possible
to construct an abelian group, known as the Grothendieck group of A. It is the
abelian group KA generated by the isomorphism classes [A] of objects A ∈ A,
subject to the relations that whenever there exists a short exact sequence 0 → B →
A → C → 0, we declare [A] = [B] + [C]. Furthermore, if our abelian category
is provided with a tensor product, i.e., A is monoidal, and the functors − ⊗ A :
A → A and A ⊗ − : A → A are exact, then KA inherits a ring structure by
[A] · [B] = [A⊗B] (see [40]), under which it is called the Grothendieck ring of A.
The elements [A] ∈ KA are usually referred to as virtual classes.

In our case, we are interested on the category of algebraic varieties with regular
morphisms VarK over a base field K, which is not an abelian category. Nevertheless,
we can still construct its Grothendieck group, KVarK, in an analogous manner, that
is, as the abelian group generated by isomorphism classes of algebraic varieties with
the relation that [X] = [Y ] + [U ] if X = Y  U , with Y ⊂ X a closed subvariety.
Furthermore, the Cartesian product of varieties also provides KVarK with a ring
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structure. A very important element is the class of the affine line, q = [K] ∈ KVarK,
the so-called Lefschetz motive.

Remark 3 Despite the simplicity of its definition, the ring structure of KVarK is
widely unknown. In particular, for almost 50 years, it was an open problem whether
it is an integral domain. Indeed, the answer is no and, more strikingly, the Lefschetz
motive q is a zero divisor [3].

Observe that, due to its additivity and multiplicativity properties, the E-
polynomial defines a ring homomorphism

e : KVarC → Z[u±1, v±1].

This homomorphism factorizes through mixed Hodge structures. To be precise,
Deligne proved in [6] that the category of mixed Hodge structures MHS is an
abelian category. Therefore, we may as well consider its Grothendieck group,
KMHS, which again inherits a ring structure. The long exact sequence in coho-
mology with compact support and the Künneth isomorphism shows that there exist
ring homomorphisms KVarC → KMHS given by [X] �→ [H •

c (X)], as well as
KMHS → Z[u±1, v±1] given by [H ] �→ ∑

hp,q(H)upvq such that the following
diagram commutes:

KVarC

e ����
���

���
�

�� KMHS

��

Z[u±1, v±1]

Remark 4 From the previous diagram, we get that the E-polynomial of the affine
line is q = e([C]), which justifies denoting by q = [C] ∈ KVarC the Lefschetz
motive. This implies that if the virtual class of a variety lies in the subring of KVarK
generated by the affine line, then the E-polynomial of the variety coincides with the
virtual class, seeing q as a variable. This will have deep implications, as we will
explore in the arithmetic method in Sect. 4.

Example 4 As for E-polynomials, proceeding as in (4), we can show that if F →
E → B is an algebraic bundle, then [E] = [F ]·[B] in KVarK. This enables multiple
computations. For instance, consider the fibration C → SL2(C) → C

2 − {(0, 0)},
f �→ f (1, 0). It is locally trivial in the Zariski topology, and therefore [SL2(C)] =
[C] · [C2 − {(0, 0)}] = q(q2 − 1) = q3 − q.

It is of interest to notice that one can compute e(PGL2(C)) = e(SL2(C)), which
is of no surprise since these groups are Langlands dual.
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3 Geometric Method

Using the previous machinery, let us show in a simple situation how to compute
the virtual classes of representation varieties for surface groups. We will do this
computation by three different approaches, the so-called geometric, arithmetic, and
quantum methods. The first geometric method, which we will follow in this section,
is based on giving an explicit expression of the representation variety and chopping
it into simpler pieces to ensemble the total virtual class. This is the method used in
[24, 28, 29] to compute the SL2(C)-character varieties of surface groups. In Sect. 4,
we shall use the arithmetic methods of [19], based on counting the number of points
of the representation variety over finite fields. Finally, in Sect. 5, we shall use the
machinery of the Topological Quantum Field Theories developed in [13] to offer an
alternative approach.

Let Σg be the closed oriented surface of genus g ≥ 1 as before. As target group
we fix G = AGL1(K), the group of K-linear affine transformations of the affine

line. Its elements are the matrices of the form

(
a b

0 1

)

, with a ∈ K
∗ = K − {0} and

b ∈ K. The group operation is given by matrix multiplication. In this way, AGL1(K)

is isomorphic to the semidirect product K∗
�ϕ K with the action ϕ : K∗ ×K→ K,

ϕ(a, b) = ab.
The representation variety is given by

XAGL1(K)(Σg) =
{
(A1, A2, . . . , A2g−1, A2g) ∈ AGL1(K)

2g
∣
∣
∣

g∏

i=1

[A2i−1, A2i ] = I
}
.

Therefore, if we write

Ai =
(
ai bi

0 1

)

,

then the product of commutators is given by

g∏

i=1

[(
a2i−1 b2i−1

0 1

)

,

(
a2i b2i

0 1

)]

=
⎛

⎜
⎝

1
g∑

i=1

(a2i−1 − 1)b2i − (a2i − 1)b2i−1

0 1

⎞

⎟
⎠ .

(5)
We can identify this variety with a more familiar space. Consider the auxiliary

variety

Xs =
{
(α1, . . . , αs, β1, . . . , βs) ∈ (K− {−1})s ×K

s
∣
∣
∣

s∑

i=1

αiβi = 0
}
, (6)

so that
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XAGL1(K)(Σg) ∼= X2g

via the morphism (a2i−1, b2i−1, a2i , b2i ) �→ (a2i−1 − 1, a2i − 1, . . . , b2i ,−b2i−1).
Take U = (K − {−1})s − {(0, . . . , 0)} and V = U × K

s . We have that Xs |V is
the pullback of the total space of the hyperplane bundle on P

s−1, OPs−1(1), via the
natural quotient map π : U ⊂ K

s − {0} → P
s−1; that is, we have a pullback

Xs |V = π∗OPs−1(1)

��

�� OPs−1(1)

��

U
π

�� Ps−1

On the special fiber, Xs |{(0,...,0)}×Ks = K
s , which corresponds to the natural

completion of the total space of the hyperplane bundle to the origin.

3.1 Stratification Analysis and Computation of Virtual Classes

Using this explicit description, we can compute the virtual class of the representation
variety in a geometric way, by chopping the variety into simpler pieces, as shown in
the following result.

Theorem 3 The virtual class in the Grothendieck ring of algebraic varieties of the
representation variety is

[XAGL1(K)(Σg)] = q2g−1
(
(q − 1)2g + q − 1

)
.

Proof We stratify the varieties Xs in the following manner:

Xs =
{
βs = 1

αs

s−1∑

i=1

αiβi, αs �= 0
}⊔{ s−1∑

i=1

αiβi = 0, αs = 0
}

=
(
((K− {−1})×K)s−1 × (K− {0,−1})

)
 (Xs−1 ×K) .

This gives rise to the recursive formula for the virtual classes

[Xs] = (q − 2)qs−1(q − 1)s−1 + q[Xs−1].

The base case is
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X1 = {(α, β)|αβ = 0} =
{

β = 1

α
, α �= 0,−1

}

 {(0, β)} = (K− {0,−1}) K,

which has [X1] = 2q − 2. The induction gives

[Xs] =
s−1∑

t=1

(q − 2)qs−t (q − 1)s−t qt−1 + qs−1(2q − 2)

= (q − 2)qs−1 (q − 1)s − (q − 1)

(q − 1)− 1
+ 2qs−1(q − 1)

= qs−1((q − 1)s − (q − 1)
)+ 2qs−1(q − 1)

= qs−1(q − 1)s + qs − qs−1.

The representation variety is XAGL1(K)(Σg) ∼= X2g , hence the result.

Remark 5 In the case that K = C, the same formula of Theorem 3 gives the E-
polynomial of the representation variety by seeing q as a formal variable.

3.2 The Moduli Space of the Representations and the
Character Variety

In this section, we will deal with the moduli space of representations, that is, the
GIT quotient

MAGL1(K)(Σg) = XAGL1(K)(Σ1)//AGL1(K).

For that purpose, let us write down the action explicitly. Consider elements

P =
(
λ μ

0 1

)

∈ AGL1(K), ρ =
((

a1 b1

0 1

)

, . . . ,

(
a2g b2g

0 1

))

∈ XAGL1(K)(Σg),

then we have that

PρP−1 =
((

a1 λb1 + μ(a1 − 1)
0 1

)

, . . . ,

(
a2g λb2g + μ(a2g − 1)
0 1

))

.

Remark 6 This action can also be understood in terms of X2g . In these coordinates,
the action of (λ, μ) ∈ K

∗
�ϕ K = AGL1(K) is given by

(λ, μ) · (α1, . . . , α2g, β1, . . . , β2g) =
= (α1, . . . , α2g, λβ1 + μα2, λβ2 − μα1, . . . , λβ2g−1 + μα2g, λβ2g − μα2g−1).
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In particular, if we take μ = 0, we have that the action is given by

PρP−1 =
((

a1 λb1

0 1

)

, . . . ,

(
a2g λb2g

0 1

))
λ→0−→

((
a1 0
0 1

)

, . . . ,

(
a2g 0
0 1

))

.

Therefore, any representation is S-equivalent to a diagonal representation, which
implies that

MAGL1(K)(Σg) = XAGL1(K)(Σ1)//AGL1(K) = (K∗)2g,

so we get that [MAGL1(K)(Σg)] = (q − 1)2g .
On the other hand, we also have the character variety χAGL1(K)(Σg) generated by

the characters of the representations, as described in Sect. 2.1. Observe that given

ρ = (ρ(γ1), . . . , ρ(γ2g)) =
((

a1 b1

0 1

)

, . . . ,

(
a2g b2g

0 1

))

∈ XAGL1(K)(Σg),

where γ1, . . . , γ2g are the standard generators of π1(Σg), its character is determined
by the tuple

(ρ(γ1), . . . , ρ(γ2g)) = (a1 + 1, . . . , a2g + 1) ∈ (K− {1})2g.

Reciprocally, any tuple of (K − {1})2g is the character of an AGL1(K)-
representation, namely, the diagonal one. Hence, we have that

χAGL1(K)(Σg) = φ(XAGL1(K)) = (K− {1})2g .

In particular, this shows that [χAGL1(K)(Σg)] = (q−1)2g . Observe that we indeed
have an isomorphism MAGL1(K)(Σg) ∼= χAGL1(K)(Σg) given by (a1, . . . , a2g) �→
(a1 + 1, . . . , a2g + 1). Notice that this isomorphism is not directly provided by [5],
since the group AGL1(K) is not directly provided by [5].

4 Arithmetic Method

In this section, we explore a different approach to the computation ofE-polynomials
with an arithmetic flavor. This approach was initiated with the works of Hausel and
Rodríguez-Villegas [19]. The key idea is based on a theorem of Katz that, roughly
speaking, states that if the number of points of a variety X over the finite field of q
elements is a polynomial in q, P(q) = |X(Fq)|, then the E-polynomial of X(C) is
also P(q). Under this point of view, the computation of E-polynomials reduces to
the arithmetic problem of counting points over finite fields.
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4.1 Katz Theorem and E-Polynomials

Let us explain the result proved in [19, Appendix]. Start with a scheme X/C over
C. Let R be a subring of C, which is finitely generated as a Z-algebra, and let X be
a separated R-scheme of finite type. We call X a spreading out of X if it yields X
after extension of scalars from R to C.

We say that X is strongly polynomial count if there exists a polynomial PX (T ) ∈
C[T ] such that for any finite field Fq and any ring homomorphism ϕ : R → Fq ,
the Fq -scheme X ϕ obtained from X by base change satisfies that for every finite
extension Fqn/Fq , we have

#X ϕ(Fqn) = PX (q
n).

We say that a scheme X/C is polynomial count if it admits a spreading out X which
is strongly polynomial count.

The following theorem is due to Katz [19, Appendix]. It computes the E-
polynomial of X from the count of points of a spreading X .

Theorem 4 Assume thatX is polynomial count with counting polynomial PX (T ) ∈
C[T ]. Then,

e(X) = PX (q),

where q = uv.

This is a powerful result that computes E-polynomials of varieties via arithmetic.
For instance, it explains easily the equality e(X) = e(U)+ e(Y ), when Y ⊂ X is a
closed subset and U = X − Y is the (open) complement. Certainly, in this case,

#X ϕ(Fqn) =
(

#Yϕ(Fqn)
)
+
(

#Uϕ(Fqn)
)
,

for spreadings X ,Y, and U of X, Y, and Z, respectively. Therefore, PX (T ) =
PY (T ) + PU (T ), because they coincide on an infinity of values T = qn. Note
in particular that if Y and U are strongly polynomial count, then X is also strongly
polynomial count. This also implies that the polynomial count only depends on the
class in the Grothendieck ring.

The drawback of the arithmetic method is that it does not give information on
the finer algebraic structure of the (mixed) Hodge polynomials or the classes in the
Grothendieck ring of varieties. For instance, the E-polynomial of an elliptic curve
X is e(X) = 1 − u − v + uv, which is not a polynomial in q = uv, and thus, X
cannot be polynomial count.

Corollary 1 Suppose thatX has class in the Grothendieck ring [X] = P(q), where
P is a polynomial in the Lefschetz motive q = [C]. Then, X is polynomial count
with e(X) = P(q), q = uv.



398 Á. González-Prieto et al.

Proof As the statement only depends on the class in the Grothendieck ring, it
is enough to prove it for qm, that is, X = C

m, for m ≥ 0, where P(T ) =
T m. The spreading for X is given by X = Spec Z[x1, . . . , xm] and X ϕ =
Spec Fq [x1, . . . , xm] = F

m
q . Therefore, #X ϕ(Fqn) = #Fmqn = (qn)m = P(qn).

Hence, X is of polynomial count and its polynomial is P(T ) = T m. See also
Remark 4.

In our situation, we start with an affine variety, which is of the form

X = Spec
C[x1, . . . , xN ]

I
,

for some ideal I = (p1, . . . , pM), defined by polynomials p1, . . . , pM ∈
C[x1, . . . , xN ]. Take the coefficients of the polynomials, which are complex
numbers, and let R ⊂ C be the Z-algebra generated by them. Then, p1, . . . , pM ∈
R[x1, . . . , xN ]. A spreading of X is given by

X = Spec
R[x1, . . . , xN ]
(p1, . . . , pM)

.

A homomorphism ϕ : R → Fq defines polynomials p̄j = ϕ(pj ) ∈
Fq [x1, . . . , xN ], j = 1, . . . , m, and

X ϕ = Spec
Fq [x1, . . . , xN ]
(p̄1, . . . , p̄M)

.

This variety is

X ϕ = V (p̄1, . . . , p̄M) ⊂ F
N
q ,

and the Fqn -points of X ϕ are the solutions over Fqn to the equations:

p̄1(x1, . . . , xN) = 0, . . . , p̄M(x1, . . . , xN) = 0.

4.2 Representation Variety for the Affine Group

Let us take G = AGL1(C), the group of C-linear affine transformations of the
complex line. As mentioned before, the character variety is XAGL1(C)(Σg) ∼= X2g ,
where

Xs =
{
(α1, . . . , αs, β1, . . . , βs) ∈ (C− {−1})s × C

s
∣
∣
∣

s∑

i=1

αiβi = 0
}
.
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The spreading of Xs is given by taking the base ring R = Z and the Z-variety
defined by

Xs = Spec
Z[α1, (α1 + 1)−1, . . . , αs, (αs + 1)−1, β1, . . . , βs]

(∑
i αiβi

) .

Take a prime q and the quotient map ϕ : Z → Zq = Fq . This is followed by the
embedding (scalar extension) Fq ⊂ Fqn . Hence,

X ϕ
s (Fqn) =

{
(α1, . . . , αs, β1, . . . , βs) ∈ (Fqn − {−1})s × F

s
qn

∣
∣
∣

s∑

i=1

αiβi = 0
}
,

and we want to count the number of points.

Theorem 5 The variety Xs is strongly polynomial count with polynomial
PXs

(T ) = T s−1(T − 1)s + T s − T s−1. In particular, the E-polynomial of
XAGL1(C)(Σg) ∼= X2g is

e(XAGL1(C)(Σg)) = q2g−1(q − 1)2g + q2g − q2g−1 .

Proof Let

L =
{
(α1, . . . , αs, β1, . . . , βs) ∈ F

2s
qn

∣
∣
∣
∑

αiβi = 0
}
.

There is a map

1 : L→ F
s
qn , 1(α1, . . . , αs, β1, . . . , βs) = (α1, . . . , αs).

This is surjective, and 1−1(α) is a hyperplane of (Fqn)s for α �= (0, . . . , 0), and all
the space for α0 = (0, . . . , 0). Hence,

#L = (#1−1(α)) · (#(Fqn)s − 1)+ #(Fqn)
s

= (qn)s−1((qn)s − 1)+ (qn)s

= (qn)2s−1 + (qn)s − (qn)s−1 .

Now, define the hyperplanes for i = 1, . . . , s

Ĥi = {(α1, . . . , αs) ∈ F
s
qn |αi = −1}, Hi = Ĥi × F

s
qn .

We have to remove the contributions to L of these hyperplanes. Observe that Hi1 ∩
. . .∩Hit ∩L = 1−1(Ĥi1 ∩ . . .∩ Ĥit ), for t ≥ 1, and in this case all fibers of 1 are
hyperplanes. Thus,
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#(Hi1 ∩ . . . ∩Hit ∩ L) = (qn)2s−t−1 .

Hence, by the inclusion–exclusion argument,

#
(
(Fqn)

2s − (H1 ∪ . . . ∪Hs)
) ∩ L =

s∑

t=0

(−1)t
(
s

t

)

(qn)2s−t−1 + (qn)s − (qn)s−1

= (qn)s−1(qn − 1)s + (qn)s − (qn)s−1 .

This means that Xs is strongly polynomial count with polynomial

PXs
(T ) = T s−1(T − 1)s + T s − T s−1 .

4.3 Exhaustive Polynomial Count

There is a more computational method for finding the E-polynomial. Suppose that
we know that the variety X is polynomial count. This may happen if we know
that X is of Hodge–Tate type (in the sense of Remark 2) or that its virtual class
[X] ∈ KVarC lies in the subring generated by the Lefschetz motive. Let N be a
bound for the dimension of X; in the case of the representation variety XΓ (G), we
can takeN = s dimG−1, where s is the number of generators of the group Γ . Then,
PX(T ) is a polynomial of degPX ≤ N . We can count the number of solutions to the
defining equations of the variety over Zqi , for a collection of N + 1 prime powers
q1, . . . , qN+1. This will determine uniquely polynomial PX(T ).

Let us see how we can implement this idea for computing e(XAGL1(C)(Σg)) for
arbitrary genus g. For this, we use the quantum method explained in Sect. 5 to gain
some qualitative information on the structure of theE-polynomial and the arithmetic
method to actually compute the E-polynomial. This is a nice combination of two
methods.

As shown in Sect. 5, the quantum method tells us that all the information of the
E-polynomial is encoded in a finitely generated Z[q]-module W given in (8) and
an endomorphism Z(L) on W given in (9). In our case, dimW = 2, so in a certain
basis we can write

Z(L) =
(
A(q) B(q)

C(q) D(q)

)

,

for some polynomials A,B,C,D ∈ Z[q]. The formula in Remark 13 and Eq. (10)
tell us that we can recover the E-polynomial as

e(XAGL1(C)(Σg)) = 1

qg(q − 1)g
(
1 0
)
(
A(q) B(q)

C(q) D(q)

)g (
1
0

)

. (7)
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Observe that the upper-left entry of Z(L)g , which computes e(XAGL1(C)(Σg)),
only depends on the product BC for all g ≥ 1. Hence, without lost of generality, we
can take C(q) = 1. Now, observe that the first powers of Z(L) are given by

Z(L)2 =
(
A2 + B AB + BD

A+D D2 + B

)

, Z(L)3 =
(
A3 + 2AB + BD �

� �

)

.

This implies that A,B, and D are completely determined by the three E-
polynomials e(XAGL1(C)(Σ1)), e(XAGL1(C)(Σ2)), and e(XAGL1(C)(Σ3)), namely

A(q) = q(q − 1)e(XAGL1(C)(Σ1)), B(q) = q2(q − 1)2e(XAGL1(C)(Σ2))− A2,

D(q) = q3(q − 1)3e(XAGL1(C)(Σ3))− A3

B
− 2A.

Now, observe that XAGL1(C)(Σg) is an affine subvariety of AGL1(C)
4g , so it has

dimension at most 4g − 1. Hence, e(XAGL1(C)(Σg)) is a polynomial of degree at
most 4g − 1, and, thus, it is completely determined by its value at 4g points. Since
XAGL1(C)(Σg) is polynomial counting, we can compute the number of points of
XAGL1(Fqi )

(Σg) for 4g different prime powers q1, . . . , q4g . For that purpose, we run
a small counting script [14], and we obtain the results shown in Table 1.

This implies that the corresponding E-polynomials are

e(XAGL1(C)(Σ1)) = q3 − q2,

e(XAGL1(C)(Σ2)) = q7 − 4q6 + 6q5 − 3q4,

e(XAGL1(C)(Σ3)) = q11 − 6q10 + 15q9 − 20q8 + 15q7 − 5q6.

Therefore, we finally obtain that

Z(L) =
(
(q − 1)2q3 (q − 1)3(q − 2)2q6

1
(
q2 − 3 q + 3

)
(q − 1)q3

)

.

Plugging this matrix into Eq. (7), we recover the result of Theorem 3.

Remark 7 The philosophy behind this method is that, with the qualitative infor-
mation provided by the TQFT, the E-polynomial of the representation variety for
arbitrary genus g is completely determined by the result at small genus. And,
moreover, this later value is determined by its number of points at finitely many
genus and prime powers.
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5 Quantum Method

The last approach we will show for the problem of computing virtual classes of
representation varieties is the so-called quantum method. The key idea of this
method is to construct a geometric–categorical device, known as a Topological
Quantum Field Theory (TQFT), and to use it for providing a precise method of
computation.

5.1 Definition of Topological Quantum Field Theories

The origin of TQFTs dates back to the works of Witten [41], in which he showed
that the Jones polynomial (a knot invariant) can be obtained through the Chern–
Simons theory, a well-known Quantum Field Theory. Aware of the importance
of this discovery, Atiyah formulated in [1] a description of TQFTs as a monoidal
symmetric functor. This purely categorical definition is the one that we will review
in this section. For a more detailed introduction, see [12, 22].

We will focus on symmetric monoidal categories (C,⊗, I ), which we recall that,
by definition, are a category C with a symmetric associative bifunctor ⊗ : C ×
C → C and a distinguished object I ∈ C that acts as left and right units for ⊗ (for
further information, see [40]). A very important instance of a monoidal category is
the category of R-modules and R-modules homomorphisms, R-Mod, for a given
(commutative, unitary) ring R. The usual tensor product over R, ⊗R , together with
the ground ring R ∈ R-Mod as a unit, defines a symmetric monoidal category
(R-Mod,⊗R,R).

In the same vein, a functor F : (C,⊗C, IC) → (D,⊗D, ID) is said to be
symmetric monoidal if it preserves the symmetric monoidal structure, i.e., F(IC) =
ID, and there is an isomorphism of functors

Δ : F(−)⊗D F(−) ∼=7⇒ F(−⊗C −).

For our purposes, we will focus on the category of bordisms. Let n ≥ 1. We
define the category of n-bordisms, Bdn, as the symmetric monoidal category given
by the following data:

• Objects: The objects of Bdn are an (n − 1)-dimensional closed manifold,
including the empty set.

• Morphisms: Given objects X1 and X2 of Bdn, a morphism X1 → X2 is an
equivalence class of bordisms W : X1 → X2, i.e., of compact n-dimensional
manifolds with ∂W = X1 X2. Two bordisms W and W ′ are equivalent if there
exists a diffeomorphism F : W → W ′ fixing the boundaries X1 and X2.
For the composition, given W : X1 → X2 and W ′ : X2 → X3, we define
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W ′ ◦W = W ∪X2 W
′ : X1 → X3, where W ∪X2 W

′ is the gluing of bordisms
along X2.

We endow Bdn with the bifunctor given by disjoint union  of both objects and
bordisms. This bifunctor, with the unit ∅ ∈ Bdn, turns Bdn into a symmetric
monoidal category.

Definition 1 Let R be a commutative ring with unit. An n-dimensional Topological
Quantum Field Theory (shortened a TQFT) is a symmetric monoidal functor

Z : Bdn → R-Mod.

Remark 8 This definition slightly differs from others presented in the literature,
especially in those oriented to physics, where the objects and bordisms of Bdn are
required to be equipped with an orientation (which plays an important role in many
physical theories).

The main application of TQFTs to algebraic topology comes from the following
observation. Suppose that we are interested in an algebraic invariant that assigns to
any closed n-dimensional manifold W an element χ(W) ∈ R, for a fixed ring G.
In principle, χ might be very hard to compute and very handcrafted arguments are
needed for performing explicit computations.

However, suppose that we are able to quantize χ . This means that we are able to
construct a TQFT, Z : Bdn → R−Mod such that Z(W)(1) = χ(W) for any closed
n-dimensional manifold. Note that the later formula makes sense since, as W is a
closed manifold, it can be seen as a bordism W : ∅ → ∅ and, since Z is monoidal,
Z(W) : Z(∅) = R → Z(∅) = R is an R-module homomorphism, and, thus, it is
fully determined by the element Z(W)(1) ∈ R.

Such quantization gives rise to a new procedure for computing χ by decomposing
W into simpler pieces. To illustrate the method, suppose that n = 2 and W = Σg

is the closed oriented surface of genus g ≥ 0. We can decompose Σg : ∅ → ∅ as
Σg = D† ◦ Lg ◦ D, where D : ∅ → S1 is the disc, D† : S1 → ∅ is the opposite
disc and L : S1 → S1 is a twice holed torus, as shown in Fig. 1.

In that case, applying Z , we get that

χ(Σg) = Z(D†) ◦ Z(L)g ◦ Z(D)(1).

Fig. 1 Decomposition of Σg into simpler bordisms
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That is, we can compute χ(Σg) for a surface of arbitrary genus just by computing
three homomorphisms, Z(D) : R → Z(S1) (which is determined by an element
of Z(S1)), Z(D†) : Z(S1) → R (which is essentially a projection), and an
endomorphism Z(L) : Z(S1)→ Z(S1).

5.2 Quantization of the Virtual Classes of Representation
Varieties

The aim of this section is to quantize the virtual classes of representation varieties.
However, as we will see, our construction will not give a TQFT on the nose, but a
kind of lax version.

The first ingredient we need to modify is the category of bordisms in order to
include pairs of spaces. This might seem shocking at a first sight, but it is very
natural if we think that we are dealing with fundamental groups of topological
spaces, and the fundamental group is not a functor out of the category of topological
spaces but out of the category of pointed topological spaces. The aim of this version
for pairs is to track these base points.

Fix n ≥ 1. We define the category of n-bordisms of pairs, Bdpn, as the
symmetric monoidal category given by the following data:

• Objects: The objects of Bdpn are pairs (X,A), where X is an (n−1)-dimensional
closed manifold (maybe empty) together with a finite subset of points A ⊆ X

such that its intersection with each connected component of X is non-empty.
• Morphisms: Given objects (X1, A1) and (X2, A2) of Bdpn, a morphism

(X1, A1) → (X2, A2) is an equivalence class of pairs (W,A), where
W : X1 → X2 is a bordism and A ⊆ W is a finite set of points with X1∩A = A1
and X2 ∩A = A2. Two pairs (W,A) and (W ′, A′) are equivalent if there exists a
diffeomorphism of bordisms F : W → W ′ such that F(A) = A′. Finally, given
(W,A) : (X1, A1)→ (X2, A2) and (W ′, A′) : (X2, A2)→ (X3, A3), we define
(W ′, A′) ◦ (W,A) = (W ∪X2 W

′, A ∪ A′) : (X1, A1)→ (X3, A3).

Remark 9 In this form, Bdpn is not exactly a category since there is no unit
morphism in Hom Bdpn((X,A), (X,A)). This can be solved by weakening slightly
the notion of bordism, allowing that (X,A) itself could be seen as a bordism
(X,A) : (X,A)→ (X,A).

In order to construct the TQFT quantizing virtual classes of representation
varieties, we need to introduce some notation. Fix a ground field K (not necessarily
algebraically closed) and G an algebraic group over K (not necessarily reductive).

Given a topological space X and A ⊆ X, we denote by Π(X,A) the fundamental
groupoid of X with base points in A, that is, the groupoid of homotopy classes
of paths in X between points in A. If X is compact and A is finite, we define
the G-representation variety of the pair (X,A), XG(X,A), as the set of groupoids
homomorphisms Π(X,A) → G, i.e., XG(X,A) = Hom (Π(X,A),G). Observe
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that, in particular, if A has a single point, then XG(X,A) is the usual G-
representation variety.

As it happened for representation varieties with a single base point, XG(X,A)

has a natural structure of algebraic variety given as follows. Let X =
r⊔

i=1
Xi be

the decomposition of X into connected components, and let us order them so that
Xi∩A �= ∅ for the first s components. Pick xi ∈ Xi∩A and, for any i, choose a path
αxi between xi and any other x ∈ Xi∩A, x �= xi . Then, a representationΠ(X,A)→
G is completely determined by the usual vertex representations π1(X, xi)→ G for
1 ≤ i ≤ s, together with an arbitrary element of G for any chosen path αxi . There
are |A| − s of such chosen paths, so we have a natural identification

XG(X,A) =
s∏

i=1

XG(X, xi)×G|A|−s .

The right-hand side of this equality is naturally an algebraic variety, so XG(X,A) is
endowed with the structure of an algebraic variety.

The second ingredient needed for quantizing representation varieties has a more
algebraic nature. Given an algebraic variety S over K, let us denote by Var/S the
category of algebraic varieties over Z, that is, the category whose objects are regular
morphisms Z → S and its morphisms are regular maps Z → Z′ preserving the base
projections. As in the usual category of algebraic varieties, together with the disjoint
union  of algebraic varieties, and the fibered product ×S over S, we may consider
its associated Grothendieck ring KVar/S. The element of KVar/S induced by a
morphism h : Z → S will be denoted as [(Z, h)]S ∈ KVar/S, or just by [Z]S
or [Z] when the morphism h or the base variety is understood from the context.
Recall that, in this notation, the unit of KVar/S is 1S = [S, Id S]S and that, if S = �

is the singleton variety, then KVar/� = KVarK is the usual Grothendieck ring of
varieties.

This construction exhibits some important functoriality properties that will be
useful for our construction. Suppose that f : S1 → S2 is a regular morphism.
It induces a ring homomorphism f ∗KVar/S2 → KVar/S1 given by f ∗[Z]S2 =
[Z ×S2 S1]S1 . In particular, taking the projection map c : S → �, we get a ring
homomorphism c∗ : KVarK → KVar/S that endows the rings KVar/S with
a natural structure of KVarK-module that corresponds to the Cartesian product.
Finally, we also have the covariant version f! : KVar/S1 → KVar/S2 given by
f![(Z, h)]S1 = [(Z, f ◦ h)]S2 . In general, f! is not a ring homomorphism, but the
projection formula f!([Z2] ×S2 f

∗[Z1]) = f![Z2] ×S1 [Z1], for [Z1] ∈ KVar/S1
and [Z2] ∈ KVar/S2, implies that f! is a KVarK-module homomorphism.

Remark 10 Some important properties that clarify the interplay between these
two induced morphisms are listed below. They will be very useful for explicit
computations in Sect. 5.3. Their proof is a straightforward computation using fibered
products and it can be checked in [17].
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• The induced morphisms are functorial, in the sense that (g ◦ f )∗ = f ∗ ◦ g∗ and
(g ◦ f )! = g! ◦ f!. In particular, if i : T ↪→ S is an inclusion, then i∗f ∗ = f |∗T .

• Suppose that we have a pullback of algebraic varieties (i.e., a fibered product
diagram)

S′ = S1 ×S S2

f ′
��

g′
�� S1

f

��
S2

g

�� S

Then, it holds that g∗ ◦ f! = (f ′)! ◦ (g′)∗. This property is usually known as
the base-change formula, or the Beck–Chevalley property, and it generalizes the
projection formula.

• Suppose that we decompose S = T U , where i : T ↪→ S is a closed embedding
and j : U ↪→ S is an open subvariety. Then, we have that i!i∗+j!j∗ : KVar/S →
KVar/S is the identity map. This corresponds to the idea that virtual classes are
compatible with chopping the space according to a stratification.

At this point, we are ready to define our TQFT. We take as ground ring
R = KVarK the Grothendieck ring of algebraic varieties. We define a functor
Z : Bdpn → KVarK−Mod as follows:

• On an object (X,A) ∈ Bdpn, we set Z(X,A) = KVar/XG(X,A), the
Grothendieck ring of algebraic varieties over XG(X,A).

• On a morphism (W,A) : (X1, A1) → (X2, A2), let us denote the natural
restrictions i : XG(W,A) → XG(X1, A1) and j : XG(W,A) → XG(X2, A2).
Then, we set

Z(W,A) = j! ◦ i∗ : KVar/XG(X1, A1)→ KVar/XG(W,A)→ KVar/XG(X2, A2).

Remark 11 Recall that, since in general j! is not a ring homomorphism, the induced
map Z(W,A) : KVar/XG(X1, A1) → KVar/XG(X2, A2) is only a KVarK-
module homomorphism.

It can be proven that, since the fundamental groupoid satisfies the Seifert–
van Kampen theorem, Z is actually a functor (see [13, 15] for a detailed proof).
However, it is not monoidal since, in general, for algebraic varieties S1 and S2, we
have KVar/S1 ⊗KVarK KVar/S2 �∼= KVar/S1 × S2. Nevertheless, we still have a
map

ΔS1,S2 : KVar/S1 ⊗KVarK KVar/S2 → KVar/S1 × S2

given by “external product.” That is, it is the map induced by



408 Á. González-Prieto et al.

[Z1] ⊗ [Z2] ∈ KVar/S1 ⊗KVarK KVar/S2 �→ π∗1 [Z1] ×(S1×S2) π
∗
2 [Z2] ∈ KVar/S1 × S2,

where πi : S1×S2 → Si are the projections. In this situation, it is customary to say
that Z is a symmetric lax monoidal functor.

Finally, in order to figure out what invariant is Z computing, first observe
that for the empty set, we have XG(∅) = � is the singleton variety, and thus
Z(∅) = KVar/XG(∅) = KVar/� = KVarK is the usual Grothendieck ring
of algebraic varieties. Now, let us take (W,A) a closed connected n-dimensional
manifold. Seen as a morphism (W,A) : ∅ → ∅, it induces a KVarK-module
homomorphism Z(W,A) = c!c∗ : KVarK → KVarK, where c : XG(W,A) → �

is projection onto a point. Therefore, we have that

Z(W,A)(1�) = c!c∗(1�) = c!1XG(W,A) =
= c![XG(W,A)]XG(W,A) = [XG(W,A)]� = [XG(W,A)],

where the second equality follows from the fact that c∗ is a ring homomorphism.
Therefore, Z quantizes the virtual classes of representation varieties, so we have
proven the following result.

Theorem 6 Let K be a field, G an algebraic group over k, and n ≥ 1. There exists
a symmetric lax monoidal Topological Quantum Field Theory

Z : Bdpn → KVarK−Mod,

which quantizes the virtual classes of G-representation varieties.

Remark 12 To be precise, Z computes virtual classes of G-representation varieties
of pairs. This implies that it computes virtual classes of classical G-representation
varieties up to a known constant. For instance, let W be a compact connected n-
dimensional manifold, and let A ⊆ W be a finite set. Then, we have

Z(W,A)(1�) = [XG(W,A)] = [XG(W)] × [G]|A|−1.

Hence, Z(W,A)(1�) computes [XG(W)] up to the factor [G]|A|−1 (which is not a
big problem since [G] is known for most of the classical groups).

Unravelling the previous construction, we can describe precisely the morphisms
induced by the TQFT. Let us focus on the case n = 2 and orientable surfaces.
As we mentioned above, we need to understand the bordisms D,D†, and L, as
depicted in Fig. 2. Observe that, in order to meet the requirements of Bdp2, we
need to choose a base point on S1, which we will loosely denote by � ∈ S1. In this
way, D : ∅ → (S1, �) and D† : (S1, �) → ∅ have a marked base point, while
L : (S1, �) → (S1, �) has two marked base points, one on each component of the
boundary.



Representation Variety for the Rank One Affine Group 409

Fig. 2 The basic bordisms for orientable surfaces

Fig. 3 Chosen paths for L

With respect to the object (S1, �) ∈ Bdp2, the associated representation variety
is XG(S

1, �) = Hom (Z,G) = G. With respect to morphisms, the situation for D
and D† is very simple since they are simply connected. Therefore, the restriction
maps at the level of fundamental groupoids are, respectively,

�←− �
i−→ G, G

i←− � −→ �,

where i : � ↪→ G is the inclusion of the trivial representation. Hence, under Z , we
have that

Z(D) = i! : KVarK → KVar/G, Z(D†) = i∗ : KVar/G→ KVarK.

For the holed torus L : (S1, �)→ (S1, �), the situation is a bit more complicated.
Let L = (T ,A), where A = {x1, x2} is the set of marked points of L, with x1 in the
in-going boundary and x2 in the out-going boundary. Recall that T is homotopically
equivalent to a bouquet of three circles, so its fundamental group is the free group
with three generators. Thus, we can take γ, γ1, and γ2 as the set of generators of
π1(T , x1) depicted in Fig. 3 and α the path between x1 and x2.

With this description, γ is a generator of π1(S
1, x1) and αγ [γ1, γ2]α−1 is a

generator of π1(S
1, x2), where [γ1, γ2] = γ1γ2γ

−1
1 γ−1

2 is the group commutator.
Hence, since XG(L) = Hom (Π(T ,A),G) = G4, we have that restriction maps at
the level of fundamental groupoids are

G
p←− G4 q−→ G

g ← � (g, g1, g2, h) �→ hg[g1, g2]h−1
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where g, g1, g2, and h are the images of γ, γ1, γ2, and α, respectively. Hence, we
obtain that

Z(L) : KVar/G
p∗−→ KVar/G4 q!−→ KVar/G.

Remark 13 As we mentioned in Remark 12, the TQFT computes virtual classes of
representation varieties of pairs. In particular, observe that if we decompose Σg =
D† ◦Lg ◦D, we are forced to put on Σg a set of g+ 1 base points A ⊆ Σg . Hence,
we have that

[XG(Σg)] × [G]g = Z(Σg,A)(1�) = Z(D†) ◦ Z(L)g ◦ Z(D)(1�).

Or equivalently, if we localize KVarK by [G] ∈ KVarK, we have that

[XG(Σg)] = 1

[G]gZ(D
†) ◦ Z(L)g ◦ Z(D)(1�).

5.3 Representation Varieties via the Quantum Method

In this section, as an application we will consider G = AGL1(K), and we will
focus on AGL1(K)-representation varieties. As in Sects. 3 and 4, we will compute
the virtual classes of these representation varieties over any compact oriented
surface, but, in this case, we will use the TQFT described above for performing
the computation.

As mentioned in Remark 13, we only need to focus on the computation of the
induced morphisms Z(D),Z(D†), and Z(L). For the disc Z(D) = i! : KVarK →
KVar/AGL1(K), the situation is very simple since it is fully determined by the
element Z(D)(1�) = i!1�. Along this section, we will denote the unit of KVar/S by
1S , or just 1 is understood from the context. In particular, 1� ∈ KVarK = KVar/�
is the unit of the ground ring.

In order to compute the morphism Z(L) : KVar/AGL1(K)→ KVar/AGL1(K),
recall that, with the notation of Sect. 5.2, Z(L) = q!p∗. We have a commutative
diagram

AGL1(K)
3

c
��

��

1

�����
���

���
��

�

i

��
AGL1(K) AGL1(K)

4
p

��
q

�� AGL1(K)
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where c is the projection onto a point, the leftmost vertical arrow is given by
(A1, A2, B) �→ (I, A1, A2, B) and 1(A1, A2, B) = B[A1, A2]B−1, being I ∈
AGL1(K) the identity matrix. Moreover, the square is a pullback, so by Remark 10,
we have

Z(L) ◦ Z(D)(1�) = q!p∗i!1� = 1!c∗1� = 1!1AGL1(K)
3 .

In order to compute this later map, observe that, explicitly, the morphism 1 is given
by

1

((
a1 b1

0 1

)

,

(
a2 b2

0 1

)

,

(
x y

0 1

))

=
(

1 (a1 − 1)b2x − (a2 − 1)b1x

0 1

)

.

Therefore, 1 is a projection onto ASO1(K) ⊆ AGL1(K), the subgroup of
orthogonal orientation-preserving affine transformations. Outside I ∈ ASO1(K),
1 is a locally trivial fibration in the Zariski topology with fiber, for α �= 0, given by

F =
{
(a1, a2, x, b1, b2, y) ∈ (K∗)3 ×K

3 | (a1 − 1)b2x − (a2 − 1)b1x = α
}

=
{

b2 = α + (a2 − 1)b1x

(a1 − 1)x
, a1 �= 1

}


{

b1 = − α

(a2 − 1)x
, a1 = 1

}

∼=
(
(K− {0, 1})× (K∗)2 ×K

2
)

(
K− {0, 1} ×K

∗ ×K
2
)
.

Its virtual class is [F ] = (q−2)(q−1)2q2+(q−2)(q−1)q2 = q(q−1)(q3−2q2),
where as always q = [K] ∈ KVarK.

On the other hand, on the identity matrix I, the special fiber is

1−1(I) =
{
(a1, a2, x, b1, b2, y) ∈ (K∗)3 ×K

3 | (a1 − 1)b2 = (a2 − 1)b1

}

=
{

b2 = (a2 − 1)b1

a1 − 1
, a1 �= 1

}

 {a1 = 1, a2 = 1}  {a1 = 1, a2 �= 1, b1 = 0}

∼=
(
(K− {0, 1})× (K∗)2 ×K

2
)

(
K
∗ ×K

3
)

(
K− {0, 1} ×K

∗ ×K
2
)
.

Its virtual class is [1−1(I)] = (q−2)(q−1)2q2+ (q−1)q3+ (q−2)(q−1)q2 =
q(q − 1)(q3 − q2).

Let us denote ASO1(K)
∗ = ASO1(K) − {I } with inclusion j : ASO1(K)

∗ ↪→
AGL1(K). Then, by Remark 10, we have that

1!1 = i!i∗1!1 + j!j∗1!1 = i!(1 |1−1(I))!1 + j!(1 |1−1(ASO1(K)
∗))!1.

For the first map, recall that 1 is locally trivial in the Zariski topology over
ASO1(K)

∗. Thus, (1 |1−1(ASO1(K)
∗))!1AGL1(K)

3 = [F ]1ASO1(K)
∗ . On the other

hand, the map 1 |1−1(I) is projection onto a point, so (1 |1−1(I))!1AGL1(K)
3 =
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[1−1(I)]1�. Hence, putting all together, we obtain that

Z(L) ◦ Z(D)(1�) = i!(1 |1−1(I))!1 + j!(1 |1−1(ASO1(K)
∗))!1

= q(q − 1)(q3 − q2) i!1� + q(q − 1)(q3 − 2q2) j!1ASO1(K)
∗ .

In this way, if we want to apply Z(L) twice, we need to compute the image
Z(L)(j!1ASO1(K)

∗). This computation is quite similar to the previous one. First, we
again have a commutative diagram whose square is a pullback

ASO1(K)
∗ × AGL1(K)

3 ��

��

ϑ

�����
���

���
���

�
ASO1(K)

∗

j

��
AGL1(K) AGL1(K)

4
p

��
q

�� AGL1(K)

The leftmost vertical arrow is the inclusion map and ϑ(A,A1, A2, B) =
BA[A1, A2]B−1. Computing explicitly, we have that

ϑ

((
1 β

0 1

)

,

(
a1 b1

0 1

)

,

(
a2 b2

0 1

)

,

(
x y

0 1

))

=
(

1 (a1 − 1)b2x − (a2 − 1)b1x + βx

0 1

)

.

Hence, ϑ is again a morphism onto ASO1(K) ⊆ AGL1(K). Over I ∈ ASO1(K),
the fiber is

ϑ−1(I) =
{
(β, a1, a2, x, b1, b2, y) ∈ (K∗)4 ×K

3 | (a2 − 1)b1x − (a1 − 1)b2x = β
}

=
(
(K∗)3 ×K

3
)
− {(a1 − 1)b2 − (a2 − 1)b1 = 0}

=
(
(K∗)3 ×K

3
)
−1−1(I).

Thus, [ϑ−1(I)] = (q − 1)3q3 − q(q − 1)(q3 − q2) = q(q − 1)(q4 − 3q3 + 2q2).
Analogously, on ASO1(K)

∗, we have that ϑ is a locally trivial fibration in the
Zariski topology with fiber over α �= 0 given by

F ′ =
{
(β, a1, a2, x, b1, b2, y) ∈ (K∗)4 ×K

3 | (a1 − 1)b2x − (a2 − 1)b1x + β = α
}

=
(
(K∗)3 ×K

3
)
− {(a1 − 1)b2 − (a2 − 1)b1 = α} =

(
(K∗)3 ×K

3
)
− F.

Hence, the virtual class of the fiber is [F ′] = (q − 1)3q3 − q(q − 1)(q3 − 2q2) =
q(q − 1)(q4 − 3q3 + 3q2). Putting together these computations, we obtain that

Z(L)
(
j!1ASO1(K)

∗
) = ϑ!1 = i!(ϑ |ϑ−1(I))!1 + j!(ϑ |ϑ−1(ASO1(K)

∗))!1

= q(q − 1)(q4 − 3q3 + 2q2) i!1� + q(q − 1)(q4 − 3q3 + 3q2) j!1ASO1(K)
∗ .
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Let W ⊆ KVar/AGL1(K) be the submodule generated by the elements i!1� and
j!1ASO1(K)

∗ . The previous computation shows that Z(L)(W) ⊆ W . Furthermore,
indeed we have

W = 〈Z(L)g(i!1�)〉∞g=0 . (8)

On W , the morphism Z(D†) : W → KMHS is given by the projection
Z(D†)(i!1�) = 1� and Z(D†)(j!1ASO1(K)

∗) = 0. Hence, regarding the compu-
tation of virtual classes of representation varieties, we can restrict our attention to
W .

If we want to compute explicitly these classes, observe that, by the previous
calculations, on the set of generators i!1�, j!1ASO1(K)

∗ of W , the matrix of Z(L) :
W → W is

Z(L) = q(q − 1)

(
q3 − q2 q4 − 3q3 + 2q2

q3 − 2q2 q4 − 3q3 + 3q2

)

. (9)

Since [AGL1(K)] = [K∗ ×K] = q(q − 1), using the formula of Remark 13, we
obtain that

[XAGL1(K)(Σg)] =
(
1 0
)
(
q3 − q2 q4 − 3q3 + 2q2

q3 − 2q2 q4 − 3q3 + 3q2

)g (
1
0

)

= (1 0
)
(
q − 1 q − 1
−1 q − 1

)(
q2g 0
0 q2g(q − 1)2g

)(
q − 1 q − 1
−1 q − 1

)−1 (
1
0

)

= q2g−1
(
(q − 1)2g + q − 1

)
.

(10)

Remark 14 Strictly speaking, this is not the virtual class of XAGL1(K)(Σg) on
KVarK but on its localization by the multiplicative set S generated by q and q − 1.
This has some peculiarities since, as mentioned in Remark 3, q = [C] is a zero
divisor of KVarK. Hence, the morphism KVarK → S−1KVarK is not injective,
and indeed, its kernel is the annihilator of q or q − 1. In this way, strictly we have
computed the virtual class of the representation variety up to annihilators of q or
q − 1. This is a common feature of the quantum method, due to the requirement of
Remark 13 of inverting [G].

5.4 Concluding Remarks

The previous calculation agrees with the one of Sects. 3 and 4. It may seem that
this quantum approach is lengthier than the other methods, but its strength lies in on
the fact that it does not depend on finding good geometric descriptions. Therefore,
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it offers a systematic method that can be applied to more general contexts in which
geometric or arithmetic methods fail. For instance, in [16], it is computed the virtual
classes of SL2(C)-parabolic representation varieties in the general case by means of
the quantum method. This result is unavailable using the geometric or the arithmetic
approach due to very subtle interaction between the monodromies of the punctures
that cannot be captured with the classical methods.

This calculation also shows a general feature of the quantum method. In
principle, the KVarK-module Z(S1, �) = KVar/G, in which we have to perform
the computations, is infinitely generated. However, in all the known computations
of Z , it turns out that the computation can be restricted to a certain finitely generated
submodule W ⊆ Z(S1, �) as it happened above.

This fact that Z(S1, �) is infinitely generated is in sharp contract with what
happens for strict monoidal TQFTs. For Z a monoidal TQFT, a straightforward
duality argument shows that Z(X) is forced to be a finitely generated module (see
[22]). Indeed, this observation is the starting point of the later developments toward
the classification of extended TQFTs [26], which show that the whole TQFT is
determined by this “fully dualizable” object.

In this sense, the lax monoidal TQFT for representation varieties exhibits a
mixed behavior, since it takes values in an infinitely generated module, but the
calculations can be performed in a finitely submodule, mimicking a strict monoidal
TQFT. On the other hand, when dealing with parabolic character varieties, the TQFT
quantizing representation varieties is intrinsically infinitely generated. Definitely,
further research is needed for shedding light on the interplay between lax monoidal
and strict monoidal TQFTs.
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A Regularized Stochastic Subgradient
Projection Method for an Optimal
Control Problem in a Stochastic Partial
Differential Equation

Baasansuren Jadamba, Akhtar A. Khan, and Miguel Sama

Abstract This work studies an optimal control problem in a stochastic partial
differential equation. We present a new regularized stochastic subgradient projection
iterative method for a general stochastic optimization problem. By using the
martingale theory, we provide a convergence analysis for the proposed method. We
test the iterative scheme’s feasibility on the considered optimal control problem.
The numerical results are encouraging and demonstrate the utility of a stochastic
approximation framework in control problems with data uncertainty.

2010 Mathematics Subject Classification 35R30, 49N45, 65J20, 65J22, 65M30

1 Introduction

Let D ⊂ R
n be a bounded domain and let ∂D be the sufficiently smooth boundary

of Ω . Given a probability space (Ω,F ,P), and two random fields a : Ω×D �→ R

and f : Ω×D → R, the prototypical stochastic partial differential equation (SPDE)
seeks a random field y : Ω ×D → R that almost surely satisfies:

−∇ · (a(ω, x)∇y(ω, x)) = f (ω, x), in D, (1a)

y(ω, x) = 0, on ∂D. (1b)

The above SPDE appears in important models and has been widely studied.
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Two inverse problems and a control problem are associated with (1). The first one
is a linear inverse problem that estimates the source term f from a measurement of
the solution y of (1). The second is a nonlinear inverse problem that identifies the
parameter a from a measurement of the solution y of (1). The source identification
becomes the optimal control problem when f is related to the control variable.

This work’s primary motivation stems from the two recent papers: Geiersbach
and Pflug [10] and Martin et al. [28]. The main novelty of [10, 28] is the use of
a stochastic approximation framework for finding a deterministic optimal control
in (1). In contrast, the optimal control problem was mostly explored using com-
putationally demanding stochastic Galerkin/Collocation and related methodologies
in the past. Inspired by this new research initiative, we study the same optimal
control problem by means of a new iterative regularization method. For some of
the recent developments in stochastic control problems, we refer the reader to [1, 5–
7, 13, 21, 23, 26, 27, 29, 35, 36].

We pose the control problem as a stochastic optimization problem of the form:

min
a∈K J(a) := E [J (a, ω)] . (2)

Here K is subset of a real Hilbert space H , J (a, ω) is a misfit function, and E is the
expectation with respect to the probability space (Ω,F ,P).

For (2), we develop a new regularized stochastic subgradient projection method
in a Hilbert space setting and apply it for solving the optimal control problem
described above. The proposed scheme falls under the umbrella of stochastic
approximation. We recall that the dynamic field of stochastic approximation began
by Robbins and Monro [31] and it has been used for a wide variety of research
domains. In recent years, stochastic approximation has become very popular
for machine learning algorithms, stochastic variational inequalities, and related
developments. As a small sample, we cite [2–4, 8, 9, 11, 14, 15, 24, 25, 30, 33, 34, 38–
41]. We note that in [22], an iterative regularization for stochastic variational
inequalities posed in finite-dimensional setting was studied.

We organize the contents of this paper into five sections. Section 2 presents
the regularized stochastic subgradient projection method for a general stochastic
optimization problem. We provide a complete convergence analysis for the proposed
method. In Sect. 3, we study the control problem formulated as a convex stochastic
optimization problem. In Sect. 4, we present the numerical results, demonstrating
the feasibility and the efficacy of the developed framework. The paper concludes
with some remarks and open problems.

2 Regularized Stochastic Subgradient Projection Method

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. Given f : H →
R and a closed, and convex set K ⊂ H, we consider the minimization problem:
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min
u∈K f (u). (3)

Given {εn} such that εn+1 < εn ≤ 1 and εn → 0 as n → ∞, we also consider
the following regularized optimization problem of finding yεn ∈ K by solving

min
z∈K fεn(z) := f (z)+ εn

2
‖z‖2, εn > 0. (4)

Let (Ω,F ,P) be a probability space, and {ωn} be a H -valued sequence of
random variables on (Ω,F ,P). Let {αn} be a sequence of positive real step-lengths.

For a numerical solution of the optimization problem (3), we consider the
iterative scheme: Given ε1 > 0, α1 > 0, and u1 ∈ K, at step n, compute un+1 ∈ K

by

un+1 = PK [un − αn (gn + εnun + ωn)] , (5)

where PK is the projection onto K , gn ∈ ∂f (un), and ∂f is the subdifferential of f .
We recall that, given the probability space (Ω,F ,P), a filtration {Fn} ⊂ F is

an increasing sequence of σ -algebras. A sequence of random variables {ωn} is said
to be adapted to a filtration Fn, if and only if, ωn ∈ Fn for all n ∈ N, that is,
ωn is Fn-measurable. Moreover, the natural filtration is the one generated by the
sequence {ωn} and is given by Fn = σ(ωn : m ≤ n).

The following result by Robbins and Siegmund [32] will be used shortly:

Lemma 1 Let Fn be an increasing sequence of σ -algebras, and Vn, an, bn, and

cn be nonnegative random variables adapted to Fn. Assume that
∞∑

n=1

an < ∞ and

∞∑

n=1

bn <∞, almost surely, and

E[Vn+1|Fn] ≤ (1+ an)Vn − cn + bn.

Then {Vn} is almost surely convergent and
∞∑

n=1

cn <∞, almost surely.

The following result provides the convergence of iteration scheme (5):

Theorem 1 Let H be a Hilbert space, K be a nonempty, closed, and convex subset
of H , and f : H �→ R be a convex and lower semicontinuous functional. Let the
solution set S (f,K) of (3) be nonempty. Let {un} be the sequence generated by
iterative scheme (5). Let Fn be a filtration on (Ω,F ,P) such that {un} and {gn}
are Fn-measurable. Assume that the following conditions hold:

(A1) There exists c > 0 such that ‖g‖ ≤ c(1+‖u‖), for every u ∈ K, g ∈ ∂f (u).

(A2) There exists c1 > 0 such that for all gn ∈ ∂f (un), we have
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E [ωn|Fn] = 0, (6)

E

[
‖ωn‖2|Fn

]
≤ c1

(

1+ 1

δn
‖gn‖2

)

, δn > 0. (7)

(A3) The sequences {εn}, {αn}, and {δn} satisfy:
∑

n∈N
εnαn = ∞,

∑

n∈N
α2
n <∞,

∑

n∈N

α2
n

δn
<∞,

∑
αnδn <∞,

∑

n∈N

(
1+ αnεn

αnεn

) ∣
∣
∣
∣
εn−1 − εn

εn

∣
∣
∣
∣

2

<∞.

Then, ‖un+1 − yεn‖ → 0, almost sure, where {yεn} solves (4).

Proof Since fεn in (4) is strongly convex, the regularized optimization problem is
uniquely solvable. Let yn := yεn ∈ K be the unique solution of (4).

Then yn ∈ K satisfies the following variational inequality as a necessary and
sufficient optimality condition:

〈hn + εnyn, z− yn〉 ≥ 0, for every z ∈ K, (8)

where hn ∈ ∂f (yn) is arbitrary. Furthermore, using the fact that S (f,K) �= ∅, it
can be shown that {yn} is uniformly bounded.

Analogously, for an arbitrary hn+1 ∈ ∂f (yn+1), we also have

〈hn+1 + εn+1yn+1, z− yn+1〉 ≥ 0, for every z ∈ K. (9)

We set z = yn+1 in (8), z = yn in (9), and combine the resulting inequalities to get

εn+1〈yn+1, yn − yn+1〉 + εn〈yn, yn+1 − yn〉 ≥ 〈hn+1 − hn, yn+1 − yn〉 ≥ 0,

which implies

(εn − εn+1)〈yn, yn+1 − yn〉 ≥ εn‖yn − yn+1‖2

confirming that there is a constant C > 0 such that

‖yn+1 − yn‖ ≤ C
|εn − εn+1|

εn
. (10)

The variational characterization of the projection map and (8) implies that

yn = PK[yn − αn(hn + εnyn)].
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By using the iterative scheme (5) and the above identity, we obtain

‖un+1 − yn‖2 = ‖PK(un − αn(gn + εkun + ωn))− PK(yn − αn(hn + εnyn))‖2

≤ ‖ [un − αn(gn + εnun + ωn)]− [yn − αn(hn + εnyn)] ‖2

= ‖un − yn − αn(gn − hn)− αnεn(un − yn)− αnωn‖2

= ‖un − yn‖2 + α2
n‖gn − hn‖2 + α2

nε
2
n‖un − yn‖2 + α2

n‖ωn‖2

− 2αnεn‖un − yn‖2 − 2αn〈gn − hn, un − yn〉
− 2αn〈un − yn, ωn〉 + 2α2

n〈gn − hn, ωn〉
+ 2α2

nεn〈un − yn, ωn〉 + 2α2
nεn〈gn − hn, un − yn〉,

and hence by taking the expectation past Fn, we obtain

E [‖ un+1 − yn‖2|Fn] ≤ (1− 2αnεn + α2
nε

2
n)‖un − yn‖2 + α2

n‖gn − hn‖2

+ α2
nE

[
‖ωn‖2|Fn

]
+ 2α2

nεn〈un − yn, gn − hn〉
≤ (1− 2αnεn + 2α2

n)‖un − yn‖2 + 2α2
n‖gn − hn‖2

+ α2
nE

[
‖ωn‖2|Fn

]
. (11)

To find bounds on the terms in (11), we note that the sequence {yn} is bounded,
and hence there exists a constant c0 > 0 such that ‖yn‖ ≤ c0, for every n ∈ N.

Therefore,

‖gn − hn‖ ≤ ‖gn‖ + ‖hn‖
≤ c(1+ ‖un‖)+ c(1+ ‖yn‖)
≤ 2c(1+ ‖yn‖)+ c‖un − yn‖
≤ 2c(1+ c0)(1+ ‖un − yn‖)
≤ k1(1+ ‖un − yn‖), (12)

where k1 := 2c(1+ c0), and hence with k2 := 8c2(1+ c0)
2, we obtain

‖gn − hn‖2 ≤ k2(1+ ‖un − yn‖2). (13)

Furthermore,

α2
nE

[
‖ωn‖2|Fn

]
≤ α2

nc1

(

1+ ‖gn‖2

δn

)
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≤ c1α
2
n

(

1+ k2
1(1+ ‖un − yn‖2)

2δn

)

≤ c1α
2
n +

c1k
2
1α

2
n

2δn
(1+ ‖un − yn‖2),

and hence for a constant k3 := c1 max(1, k2
1/2), we obtain

α2
nE

[
‖ωn‖2|Fn

]
≤ k3α

2
n +

k3α
2
n

δn
+ k3α

2
n

δn
‖un − yn‖2. (14)

Summarizing, due to (11), (13), and (14), there is a constant k > 0 with

E [‖ un+1 − yn‖2|Fn] ≤
(

1− 2αnεn + kα2
n + k

α2
n

δn

)

‖un − yn‖2 + kα2
n + k

α2
n

δn
.

The above inequality, due to the following inequality, which holds for all a, b ∈ R,

(a + b)2 ≤ (1+ αnεn)a
2 +

(

1+ 1

αnεn

)

b2,

yields

E [‖ un+1 − yn‖2|Fn] ≤
(

1− 2αnεn + kα2
n + k

α2
n

δn

)

(1+ αnεn)‖un − yn−1‖2

+ kα2
n + k

α2
n

δn
+
(

1− 2αnεn + kα2
n + k

α2
n

δn

)(

1+ 1

αnεn

)

‖yn − yn−1‖2

≤
(

1− 2αnεn + kα2
n + k

α2
n

δn

)

(1+ αnεn)‖un − yn−1‖2

+ kα2
n + k

α2
n

δn
+
(

1− 2αnεn + kα2
n + k

α2
n

δn

)(

1+ 1

αnεn

) ∣
∣
∣
∣
εn−1 − εn

εn

∣
∣
∣
∣

2

≤
(

1− αnεn − 2α2
nε

2
n + (1+ αnεn)

(

kα2
n + k

α2
n

δn

))

‖un − yn−1‖2

+ kα2
n + k

α2
n

δn

+
(

1− 2αnεn + kα2
n + k

α2
n

δn

)(
1+ αnεn

αnεn

) ∣
∣
∣
∣
εn−1 − εn

εn

∣
∣
∣
∣

2

≤
(

1− αnεn + sα2
n + s

α2
n

δn

)

‖un − yn−1‖2 + kα2
n + k

α2
n

δn
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+ s

(
1+ αnεn

αnεn

) ∣
∣
∣
∣
εn−1 − εn

εn

∣
∣
∣
∣

2

,

where s is constant such that

s = sup
n∈N

(

1+ kα2
n + k

α2
n

δn

)

.

Due to the summability condition on all the sequences involved, the terms in the
above must converge to zero, and hence they must remain bounded.

Consequently, we have

E

[
‖un+1 − yn‖2|Fn

]
≤ (1+ tn)‖un − yn−1‖2 − γn + κn,

where

tn := sα2
n + s

α2
n

δn
,

κn := kα2
n + k

α2
n

δn
+ s

(
1+ αnεn

αnεn

) ∣
∣
∣
∣
εn−1 − εn

εn

∣
∣
∣
∣

2

,

γn := αnεn‖un − yn−1‖.

Since the sequence {tn} and {κn} generate summable series, as a consequence of
Lemma 1, ‖un − yn−1‖ converges almost surely and

∑

n∈N
αnεn‖un − yn−1‖2 < +∞,

which due to the divergence of the series
∑

n∈N
αnεn implies that ‖un − yn−1‖ → 0,

almost surely. �

3 Optimal Control for Stochastic PDEs

We will apply the regularized stochastic subgradient projection method for an
optimal control problem in a stochastic PDE. We first recall some function spaces.
Given a bounded domain D ⊂ R

n with sufficiently smooth boundary ∂D, for
1 ≤ p < ∞, by Lp(D), we represent the space of pth Lebesgue integrable
functions, that is,
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Lp(D) =
{

y : D → R is measurable with
∫

D

|y|p dx < +∞
}

.

The space L∞(D) contains the measurable functions that are bounded almost
everywhere (a.e.) on D. We also recall that the Sobolev spaces are given by

H 1(D) =
{
y ∈ L2(D), ∂xi y ∈ L2(D), i = 1, . . . , n

}
,

H 1
0 (D) =

{
y ∈ H 1(D), y|∂D = 0

}
,

and H−1(D) = (H 1
0 (D))∗ is the dual of H 1

0 (D).

We aim to study the following stochastic unregularized PDE-constrained opti-
mization problem:

min
u∈K J(u) := E [J (u, ω)] := E

[
1

2
‖y − z‖2

L2(D)

]

, (15)

subject to the stochastic PDE:

−∇ · (a(x, ω)∇y(x, ω)) = u(x), (x, ω) ∈ D ×Ω, (16a)

y(x, ω) = 0, (x, ω) ∈ ∂D ×Ω, (16b)

where K is a closed, convex, and bounded set of feasible controls given by

K :=
{
u ∈ L2(D)| 0 < α ≤ u(x) ≤ β, almost everywhere x ∈ D

}
.

In the following, we will assume that there are constants k0 and k1 such that

0 < k0 ≤ a(ω, x) ≤ k1 <∞, almost everywhere in Ω ×D. (17)

In particular, a ∈ L∞(Ω ×D).

We will study (16) in the variational formulation that for a fixed ω ∈ Ω, seeks
y(·, ω) ∈ H 1

0 (D) such that

∫

D

a(x, ω)∇y(x, ω) · ∇v dx =
∫

D

uv dx, for all v ∈ H 1
0 (Ω). (18)

Problem (15) corresponds to unregularized optimal control problem which
leads to non-unique bang-bang solutions. The following result summarizes the
information necessary for (15). A proof of the above result is very similar to the
well-known deterministic optimal control problems, see [10, 28, 37].:

Lemma 2 Let u, z ∈ L2(Ω) and let a satisfy (17). Then, there exists a unique
solution y(·, ω) ∈ H 1

0 (D) of (18). Moreover, there is a constant C1 > 0 such that
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‖y(·ω)‖L2(D) ≤ C1‖u‖L2(D).

Furthermore, the optimization problem (15) has a nonempty solution set. Finally,
for ω ∈ Ω , the stochastic gradient ∇uJ (u, ω) is given by

∇uJ (u, ω) = −p(·, ω),

where p(·, ω) ∈ H 1
0 (Ω) is the unique solution of the adjoint problem:

∫

D

a(x, ω)∇p(x, ω) · ∇v dx =
∫

D

(z(x)− y(x, ω))v dx, for all v ∈ H 1
0 (D).

(19)

We consider the following algorithm:

Algorithm 1 Regularized stochastic projected subgradient scheme
1: At n = 1, start with a random initial point u1 ∈ L2(D).
2: For n = 1, 2, · · · do
3: Generate random a(·, ωn), independent from previous observations, and αn, εn > 0.
4: Solve (18) with a(·, ω) = a(·, ωn).
5: Solve (19) with y = yn and a(·, ω) = a(·, ωn).
6: Set G(un, ωn) := −pn.
7: Compute un+1 ∈ K by

un+1 = PK [un − αn (G(un, ωn)+ εnun)] . (20)

4 A Numerical Example

In this section, we test iterative scheme given in Algorithm 1 for stochastic optimal
control problem (15). Our example is a slight modification of the unregularized
example given in [10]. We set D = [0, 1] × [0, 1] and define the constraint set by

K = {u ∈ L2(D) : −1 ≤ u(x) ≤ 1, for every x ∈ D}.

We consider the parameter

a(x, ω) = a(ω) = 1+ Y (ω),

where Y (ω) ∼ U [0, 1] is uniformly distributed on [0, 1]. As in [10] (see also [37,
Section 2]), we consider a slight modification of the state equation by introducing an
extra term in the right-hand side, where the optimal control and state (ū, ȳ) satisfy
the following equation
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−a(ω)Δȳ(x, ω) = ū(x)+ uD(x), (x, ω) ∈ D ×Ω,

ȳ(x, ω) = 0, (x, ω) ∈ ∂D ×Ω.

Following [10], a deterministic adjoint state is defined by p̄(x) = − sin(2πx) sin
(2πy). The solution set is characterized by the following expression

ū(x) = sign(p̄(x)),

by taking into account sign(0) := [−1, 1], ū can be any value in [−1, 1] on the set
{x ∈ D : p̄(x) = 0}. Since the adjoint state verifies

−a(ω)Δp̄(x, ω) = z(x)− ȳ(x, ω), (x, ω) ∈ D ×Ω,

p̄(x, ω) = 0, (x, ω) ∈ ∂D ×Ω,

the maps are defined by

uD(x) = E [−a(ω)Δp̄(x, ω)− ū(x)]

= 3π2 sin(πx1) sin(πx2)− ū(x),

z(x) = E [−a(ω)Δp̄(x, ω)+ ȳ(x, ω)]

= 3

2
sin(2πx1) sin(2πx2)+ sin(πx1) sin(πx2).

We discretize the problem by using a standard finite-element discretization on a
uniform triangulation of 3600 nodes. The iterative scheme is implemented by using
finite-element library FreeFem++ [12]. In numerical computations, we consider
sign(0) = 0, and take u1 = 0. After running 150 iterations, we get an acceptable
reconstruction of a bang-bang solution, see Figs. 1, 2, 3, and 4.

Fig. 1 A solution ū
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Fig. 2 Iterated u150

Fig. 3 A solution ū

Fig. 4 Iterated u150

5 Concluding Remarks

We presented a regularized stochastic subgradient projection method for a general
optimization problem and gave preliminary numerical results on an optimal control
problem. The given application shows the utility of a stochastic approximation
framework for control problems with uncertainty. It would be of interest to extend
these results for state-constrained PDE-constrained optimization problems, see [16–
20].
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A Survey on Interpolative and Hybrid
Contractions

Erdal Karapınar

Abstract In this chapter, we consider the distinct hybrid type contractions in
various abstract spaces. In this work, hybrid contraction refers to combination of
not only linear and nonlinear contractions, but also interpolative contractions. The
main goal of the chapter is to clarify the metric fixed point theory literature by using
the hybrid type contractions that unify several well-known results.

1 Introduction

Metric fixed point theory was initiated by the outstanding result of Banach [32]
in the context of the complete normed spaces. In this pioneering result, Banach
abstracted the method of successive approximations that was used to solve the
concrete differential equations [94, 102]. The result of Banach was reconsidered
in the setting of metric spaces by Caccioppoli [40] and this version is now known
as the well-known Banach contraction mapping principle: “Every contraction in a
complete metric space has a unique fixed point.” As a second historical remark, we
note that this result was known also Banach–Picard fixed point theorem in the early
years of this century.

As we mention above, the fixed point theorem of Banach is an abstraction of the
method of successive approximations. It is natural to ask the question: “Why such
an abstraction is important/interesting?” The answer to this question may vary from
researcher to researcher. First of all, we can say: It reduces a solution of differential
equations to one point functional analysis problem. Furthermore, it is engaged in
topology in solving this problem. Therefore, applied mathematics, topology, and
functional analysis bring employees together in a common point. This can also
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think the other way around. The fact that a relatively theoretical fixed point theorem
can find a place in applied mathematics also helps it contribute to its development.
Beside all these, the statement and proof of Banach fixed point theorem is amazing.
In a simple way, not only the existence of the fixed point is guaranteed, but also
it is shown “how to derive the desired point.” Notice that most of the real-world
problems can be considered as a fixed point problem, that is, T (x) = x is equivalent
to F(x) = 0 where F(x) = x, for the well-defined concrete mappings T , S. Hence,
the desired fixed point is equivalent to the solution of the real-world problem.

Regarding the attraction of the topic and the wide application potential, a
number of the authors published several fixed point results that improve, extend,
and generalize the outstanding results of Banach in various direction, see, e.g.,
[1, 2, 7, 9–11, 27–31, 33, 34, 36–39, 41, 44–47, 50–52, 55, 58–60, 63, 67, 75–
81, 84, 86–88, 92, 93, 96, 97, 100, 101, 104–107, 109, 112, 113, 115–118, 120, 123].

In this work, we shall deal with one of the recent and interesting fixed point
result via interpolative contraction. The notion of the interpolative contraction was
suggested in [66] to revisit Kannan type contraction in the context of the standard
structure, complete metric spaces. Although interpolation theory is a significant tool
in functional analysis, it was not involved to metric fixed point theory up to the
publication [66]. The notion of the interpolative contraction not only opens a new
frame but enriches the metric fixed point theory. After this initial result [66], this
approach was generalized, extended, and improved in various direction in the setting
of different structures, see e.g. [3, 22, 23, 49, 64, 65]. On the other side, Mitrovic
et al. [99] proposed a new notion, hybrid contraction to combine the well-known
linear contractions with interpolative contractions. The main result of this paper [99]
yields several well-known linear contractions (Banach contraction, Kannan type
contraction, Reich type contraction) and provides some new nonlinear contractions.

In this survey, we first indicate the improvement of interpolative contractions
in different abstract spaces with some concrete examples. Then, we consider the
advances on the hybrid contractions in various abstract contraction together with
some immediate consequences.

2 Preliminaries

In this section we recollect and recall some basic notion, notations, and fundamental
results that will play crucial roles on the upcoming sections and proofs. We presume
that all considered sets and subsets are nonempty throughout the survey. We
underline that the letters N and R reserved for the set of all positive integers and real
numbers. Further, we shall use N� = N ∪ {0}, R+ = (0,∞), and R

+
0 = [0,∞).
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2.1 Simulation Functions

First, we recall the notion of simulation function that was introduced in [89].

Definition 1 (See [89]) A mapping ζ : [0,∞)×[0,∞)→ R is called a simulation
function if it fulfills

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(τ, s) < s − τ for all τ, s > 0;
(ζ3) if {τn}, {sn} are sequences in (0,∞) such that lim

n→∞ τn = lim
n→∞ sn > 0, then

lim sup
n→∞

ζ(τn, sn) < 0. (1)

It was understood that the first axiom (ζ1) is superfluous by Argoubi et al. [15].
Note that (ζ2) yields (ζ1). Therefore, throughout the survey, we presume that any
simulation function ζ satisfies only (ζ2) and (ζ3). Furthermore, we shall use the
letter Z to indicate the class of all simulation functions ζ : [0,∞) × [0,∞) → R

that fulfill (ζ2) and (ζ3). In addition, we underline the following simple observation:
The axiom (ζ2) implies that

ζ(r, r) < 0 for all r > 0. (2)

Example 1 (See e.g. [5, 89, 108]) We suppose that each mapping φi : [0,∞) →
[0,∞), for i = 1, 2, 3, 4, 5, 6, is not only continuous but also satisfies

φi(t) = 0 if, and only if, t = 0.

For i = 1, 2, 3, 4, 5, 6, we define the mappings ζi : [0,∞) × [0,∞) → R, as
follows

(i) ζ1(t, s) = φ1(s) − φ2(t) for all t, s ∈ [0,∞), where φ1(t) < t ≤ φ2(t) for
all t > 0.

(ii) ζ2(t, s) = s− f (t, s)

g(t, s)
t for all t, s ∈ [0,∞), where f, g : [0,∞)2 → (0,∞)

are two continuous functions with respect to each variable such that f (t, s) >
g(t, s) for all t, s > 0.

(iii) ζ3(t, s) = s − φ3(s)− t for all t, s ∈ [0,∞).

(iv) If ϕ : [0,∞) → [0, 1) is a function such that lim supt→r+ ϕ(t) < 1 for all
r > 0, and we define

ζ4(t, s) = s ϕ(s)− t for all s, t ∈ [0,∞).

(v) If η : [0,∞) → [0,∞) is an upper semi-continuous mapping such that
η(t) < t for all t > 0 and η(0) = 0, and we define

ζ5(t, s) = η(s)− t for all s, t ∈ [0,∞).
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(vi) If φ : [0,∞) → [0,∞) is a function such that
∫ ε

0 φ(u)du exists and∫ ε
0 φ(u)du > ε, for each ε > 0, and we define

ζ6(t, s) = s −
∫ t

0
φ(u)du for all s, t ∈ [0,∞).

It is straightforward to see that each ζi forms a simulation function for (i =
1, 2, 3, 4, 5, 6).

For the detailed discussion and more samples on this notion, we refer to [5, 6, 8,
20, 21, 72–74, 89, 108].

2.2 Comparison and c-Comparison Functions

In this section, we shall recollect some basic properties of two interesting auxiliary
function types: comparison and c-comparison functions [113].

The notion of comparison function is a crucial tool for obtained more general
contractions.

Definition 2 ([113]) A mapping φ : [0,∞) → [0,∞) is called a comparison if it
is non-decreasing and

φn(t)→ 0asn→∞ for every t ∈ [0,∞),

where φn is the n-th iterate of φ.

We reserve the letter Φ to denote the class of all comparison functions.
In the sequel, we recall fundamental properties of comparison functions:

Lemma 1 ([113]) Suppose that φ : [0,∞) → [0,∞) is a comparison function.
Then, we have

1. for all k ≥ 1, φk is also a comparison function (k-th iteration of φ );
2. φ is continuous at 0;
3. φ(t) < t for all t > 0.

Let Ψ be the class of functions ψ : [0,∞)→ [0,∞) which are non-decreasing
and satisfying

(Ψ2)
+∞∑

n=1

ψn(t) <∞ for all t > 0, where ψn is the nth iterate of ψ .

Here, each element (function ) ψ ∈ Ψ will be called (c)-comparison functions
[113]. It is worth mentioning that Ψ ⊂ Φ.

Lemma 2 (See e.g. [113]) If ψ ∈ Ψ , then the following hold:
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(i) (ψn (t))n∈N converges to 0 as n→∞ for all t ∈ R
+;

(ii) ψ (t) < t, for any t ∈ R
+;

(iii) ψ is continuous at 0;
(iv) the series

∑∞
k=1 ψ

k (t) converges for any t ∈ R
+.

Now, we shall derive the definition of the b-comparison function:

Definition 3 ([35]) We say that a monotone increasing self-mapping ϕ : [0,∞)→
[0,∞) is called a b-comparison if it satisfies the condition:

there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∞∑
k=1

vk

such that sk+1ϕk+1(t) ≤ askϕk(t)+ vk , for k ≥ k0 and any t ∈ [0,∞),

where s ∈ [1,∞).

Example 2 Let s ≥ 1 and χ : [0,∞)→ [0,∞) be a self-mapping such that

χ(τ) = λτ for each τ ∈ [0,∞) where λ ∈ (0,
1

s
).

Thus, χ is a comparison function.

The upcoming technical result is useful in testing whether a given sequence is
Cauchy.

Lemma 3 ([35]) Suppose that a self-mapping ϕ : [0,∞) → [0,∞) is b-
comparison. Then, we conclude that

(1)
∞∑
k=0

skϕk(t) converges for any t ∈ [0,∞);

(2) Sb : [0,∞) → [0,∞) defined by Sb(t) =
∞∑
k=0

skϕk(t), t ∈ [0,∞), is

increasing and continuous at 0.

It is a trivial observation that any b-comparison function forms a comparison
function.

2.3 Admissible Mappings

Next, we consider the notion of α-admissible mappings and its extension see e.g.
[114], [83], and [103] :

Definition 4 ([103]) Let α : S × S → [0,∞) be a mapping. A self-mapping
T : S → S is said to be an α−orbital admissible if for all s ∈ S, we have

α(s, T s) ≥ 1 ⇒ α(T s, T 2s) ≥ 1. (3)
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Furthermore, an α−orbital admissible mapping T is called triangular α-orbital
admissible if it holds the following condition:

(TO) α(s, t) ≥ 1 and α(s, T t) ≥ 1 implies that α(s, T t) ≥ 1, for all s, t ∈ X.

We underline that all α−admissible mappings form α-orbital admissible mappings.
On the other hand the converse is not true, in general, see, e.g., [103]. and also
[4, 6, 12–19, 42, 54, 56, 57, 70, 71, 83] with the related references therein.

Lemma 4 Let T : X → X be an α−orbital admissible function. If there exists
x0 ∈ X such that α(x0, T x0) ≥ 1 and α(T x0, x0) ≥ 1, then the sequence (xn)n∈N,
defined by xn = T xn−1, n ∈ N satisfies the following relations:

α(xn, xn+1) ≥ 1 and α(xn+1, xn) ≥ 1, for all n ∈ N0.

2.4 Branciari Distance Space

Definition 5 Let d : X ×X → [0,∞) be a function such that for all x, y ∈ X and
all distinct points u, v ∈ X, each distinct from x and y:

(d1)d(x, y) = 0 if and only if x = y (identification);
(d2)d(x, y) = d(y, x) (symmetry);
(d3)d(x, y) ≤ d(x, u)+ d(u, v)+ d(v, y) (quadrilateral inequality).

Then d is called a Branciari distance and the pair (X, d) is called a Branciari
distance space.

In some sources, the authors used “a rectangular metric” or “a generalized metric”
to call Branciari distance. However, it was declared and proved in [119] that the
topology of Branciari distance and standard metric are not comparable.

Definition 6 Let σ := {xn} be a sequence in a Branciari distance space (X, d).

(i) σ is convergent x ∈ X, that is, sigma := {xn} → x if limn→∞ d(xn, x) = 0.
(ii) σ is Cauchy if for every ε > 0, there exists a positive integer N = N(ε) such

that d(xn, xm) < ε for all n,m > N .
(iii) Branciari distance space (X, d) is complete whenever each Cauchy sequence

in X is convergent.

Although the notion the Branciari distance seems very close the concept metric, at
the first glance, they are very different (for more details, see, e.g., [115, 119–122]).
In particular, in the context of Branciari distance space:

1. A Branciari distance function d is not necessarily continuous.
2. A convergent sequence is not necessarily Cauchy sequence.
3. The limit of a sequence is not needed to be unique.
4. The topologies of a Branciari distance space and a metric space are incompatible.
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Lemma 5 A self-mapping T , defined on a Branciari distance space (X, d), is
continuous at u ∈ X, if we have T xn → T u, for any sequence {xn} in X converges
to u ∈ X. That is,

xn → u⇒ lim
n→∞ d(T xn, T u) = 0.

In what follows we state a technical result that is crucial for the uniqueness of a
limit in the setting of Branciari distance spaces.

Proposition 1 ([90]) Let (X, d) be Branciari distance space. We presume that a
Cauchy sequence {xn} satisfies

lim
n→∞ d(xn, u) = lim

n→∞ d(xn, z) = 0,

where u, z ∈ X. Then u = z.

2.5 Partial Metric Spaces

Definition 7 (See [95]) . We say that a mapping p : X × X → [0,∞) is partial
metric if, for each x, y,w ∈ X, we have

(P1) x = y ⇔ p(x, x) = p(y, y) = p(x, y);
(P2) p(x, x) ≤ p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, y) ≤ p(x,w)+ p(w, y)− p(w,w).

(4)

Here, the pair (X, p) is called partial metric space.

Note that there is a close relation between partial metric and standard metric. Indeed,
a mapping dp : X ×X → [0,∞) such that

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) (5)

forms a standard metric on X. The topological concepts, induced by partial
metric, are natural modifications and extensions of the corresponding notions in the
standard metric topology. For more detailed discussion on these notions, we refer to
[24–26] and related references therein.

Definition 8 Let σ : {xn} be a given sequence in a partial metric space (X, p). We
say that

(i) a σ converges to the limit x (i.e., σ : {xn} → x ) if p(x, x) = lim
n→∞p(x, xn);

(ii) a σ is fundamental (or Cauchy) if lim
n,m→∞p(xn, xm) exists and is finite;
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(iii) a (X, p) is complete if each fundamental (Cauchy) sequence {xn} converges
to a point x ∈ X, that is

p(x, x) = lim
n,m→∞p(xn, xm);

(iv) a mapping F : X → X is continuous at a point x0 ∈ X if, for each ε > 0,
there exists δ > 0 such that F(Bp(x0, δ)) ⊆ BP (Fx0, ε).

Next, we state the easily derived technical result (see [95]).

Lemma 6 Let σ : {xn} be a given sequence in a partial metric space (X, p).
Suppose that dp is a standard metric induced by the partial metric p.

(a) A σ is fundamental (Cauchy) in a partial metric (X, p) if and only if it is a
fundamental (Cauchy) sequence in the standard metric space (X, dp).

(b) (X, p) is complete if and only if (X, dp) is complete. Moreover,

lim
n→∞ dp(x, xn) = 0 ⇔ p(x, x) = lim

n→∞p(x, xn) = lim
n,m→∞p(xn, xm). (6)

(c) If xn → w as n → ∞ in a partial metric space (X, p) with p(w,w) = 0,
then we have

lim
n→∞p(xn, y) = p(w, y) f or every y ∈ X.

2.6 b-Metric Spaces

Definition 9 Let X be a nonempty set and let b ≥ 1 be a given real number. A
function d : X ×X → [0,∞) is said to be a b-metric if and only if for all x, y, z ∈
X, the following conditions are satisfied:

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) d(x, z) ≤ b[d(x, y)+ d(y, z)].
A triplet (X, d, b) is called a b-metric space.

The following are the basic interesting examples of b-metric space that show how
such spaces are fruitful.

Example 3 ([43]) Let s ≥ 1 be arbitrary and A be any set that has more than three
elements. Assume that A1, A2 are the subsets of A such that A1 ∩ A2 = ∅ and
A = A1 ∪ A2. Define a functional d : X ×X → [0,∞) such that



A Survey on Interpolative and Hybrid Contractions 439

d(a, b) :=
⎧
⎨

⎩

0, a = b,

2s, a, b ∈ A1,

1, otherwise.

Thus, (X, d, s) is a b-metric space.

Example 4 ([43]) Let X = R. The function d : X ×X → [0,∞), defined as

d(x, y) = |x − y|2, (7)

is a b-metric on R with s = 2. Note that the first two axioms are fulfilled in a
straightway. For the last axiom,

|x − y|2 = |x − z+ z− y|2 = |x − z|2 + 2|x − z||z− y| + |z− y|2
≤ 2[|x − z|2 + |z− y|2],

since

2|x − z||z− y| ≤ |x − z|2 + |z− y|2.

Thus, (X, d, 2) is a b-metric space.

Example 5 ([43]) Let X = {u, v,w} and d : X ×X → R
+
0 such that

d (u, b) = d (v, u) = d (u,w) = d (w, u) = 1,
d (b, c) = d (w, v) = α ≥ 2,
d (u, u) = d (v, v) = d (w,w) = 0.

Then,

d (x, y) ≤ α

2
[d (x, z)+ d (z, y)] , for u, v,w ∈ X.

Thus (X, d, α2 ) forms a b-metric space.

Definition 10 Let (X, d, b) be a b-metric space, {xn} be a sequence in X, and x ∈
X.

(a) The sequence {xn} is said to be convergent in (X, d, b) to x, if for every ε >

0 there exists n0 ∈ N such that d(xn, x) < ε for all n > n0. This fact is
represented by lim

n→∞ xn = x or xn → x as n→∞.

(b) The sequence {xn} is said to be Cauchy in (X, d, b) if for every ε > 0 there
exists n0 ∈ N such that d(xn, xn+p) < ε for all n > n0, p > 0.

(c) (X, d, b) is said to be complete if every Cauchy sequence in X converges to
some x ∈ X.
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The following technical lemma was noted in Miculescu and Mihail [98] (Lemma
2.2) and Suzuki [119] (Lemma 6).

Lemma 7 Let (X, d, b) be a b-metric space and let {xn} be a sequence in X.
Assume that there exists γ ∈ [0, 1) satisfying d(xn+1, xn) ≤ γ d(xn, xn−1) for any
n ∈ N. Then {xn} is Cauchy.

3 Quasi-Metric Spaces

A distance function q : X ×X → [0,∞) is called a quasi-metric on X if

(q1) q(u, v) = 0 ⇔ u = v ;
(q2) q(u,w) ≤ q(u, v)+ q(v,w), for all u, v,w ∈ X.

In addition, the pair (X, q) is called a quasi-metric space.
Let q be a quasi-metric onX. Then, the function q∗ : X×X → [0,∞) defined by

q∗(u, v) = q(v, u) forms a quasi-metric, too. This new quasi-metric is also called
the dual (conjugate) of q. The functions d1, d2 : X ×X → [0,∞), where

d1(v, u) = q(u, v)+ q∗(u, v),
d2(v, u) = max {q(u, v), q∗(u, v)}

form standard metrics on X. Let {un} be a sequence in X, and u ∈ X, where (X, q)
a quasi-metric space. We say that:

1. {un} converges to u if and only if

lim
n→∞ q(un, u) = lim

n→∞ q(u, un) = 0. (8)

2. {un} is left-Cauchy if and only if for every ε > 0 there exists a positive integer
k = k(ε) such that q(un, um) < ε for all n ≥ m > k.

3. {un} is right-Cauchy if and only if for every ε > 0 there exists a positive integer
k = k(ε) such that q(un, um) < ε for all m ≥ n > k.

4. {un} is Cauchy if and only if it is left-Cauchy and right-Cauchy.

We underline that in a quasi-metric space (X, q), the limit for a convergent
sequence is unique. Indeed, if un → u, for all v ∈ X, we have

lim
n→∞ q(un, v) = q(u, v) and lim

n→∞ q(v, un) = q(v, u).

A quasi-metric space (X, q) is called complete (respectively, left-complete or
right-complete) if and only if each Cauchy sequence (respectively, left-Cauchy
sequence or right-Cauchy sequence) in X is convergent. Notice, in this context, that
“right completeness” is equivalent to “Smyth completeness” [110]. See also [111].
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A mapping T : X → X is continuously provided that for any sequence {un} in
X such that un → u ∈ X, the sequence {T un} converges to T u, that is,

lim
n→∞ q(T un, T u) = lim

n→∞ q(T u, T un) = 0 (9)

3.1 Significant Contractions in Metric Fixed Point Theory

In this section we recall some crucial contractions that were published in the early
and mid-twentieth century. The first metric fixed point theorem was given by Banach
[32] in the context of normed spaces. The following characterization was given
by Caccioppoli [40] but, in the literature, it was known as Banach’s contraction
mapping principle.

Theorem 1 ([40]) Let (X, d) be a complete metric spaces and T : X → X be a
contraction mapping, that is,

d (T x, T y) ≤ λd(x, y),

for all x, y ∈ X, where λ ∈ [0, 1). Then T has a unique fixed point.

One of the first early outstanding extension of Banach’s contraction mapping
principle was given by Kannan [61, 62]. Notice that in Banach’s theorem, the
given mapping is necessarily continuous. On the other hand, in the consideration
of Kannan’s theorems, it is not necessary.

Theorem 2 ([61, 62]) Let (X, d) be a complete metric spaces and T : X → X be
a Kannan contraction mapping, that is,

d (T x, T y) ≤ λ [d(x, T x)+ d(y, T y)] ,

for all x, y ∈ X, where λ ∈
[
0, 1

2

)
. Then T has a unique fixed point.

The following renowned results was proved independently by Rus, Reich, and
Ćirić see, for example, [106, 112, 113, 115, 120].

Theorem 3 Let (X, d) be a complete metric spaces and T : X → X be a Rus-
Reich-Ćirić contraction mapping, that is,

d (T x, T y) ≤ λ [d(x, y)+ d(x, T x)+ d(y, T y)] , (10)

for all x, y ∈ X, where λ ∈
[
0, 1

3

)
. Then T has a unique fixed point.

Notice that several variation of Rus-Reich-Ćirić contraction (10) can be stated also
as
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d (T x, T y) ≤ ad(x, y)+ bd(x, T x)+ cd(y, T y),

where a, b, c are nonnegative real numbers such that 0 ≤ a + b + c < 1.
In what follows, we state the well-known Hardy-Rogers [53]

Theorem 4 Let (X, d) be a complete metric space. Let T : X → X be a given
mapping such that

d (T θ, T ϑ) ≤ αd(θ, y)+βd(θ, T θ)+ γ d(y, T ϑ)+ δ[1
2
(d (θ, T ϑ)+ d (ϑ, T θ))],

for all θ, ϑ ∈ X, where α, β, γ, δ are non-negative reals such that α+β+γ+δ < 1.
Then T has a unique fixed point in X.

Let T be a self-mapping on a metric space (X, d) and ζ ∈ Z . We say that T is a
Z-contraction with respect to ζ [89], if

ζ(d(T x, T y), d(x, y)) ≥ 0 for all x, y ∈ X. (11)

Theorem 5 Every Z-contraction on a complete metric space has a unique fixed
point.

4 Interpolative Contraction

4.1 Motivation

We shall begin the section by explaining how the concept of interpolative contrac-
tion emerged. For this purpose, we recall the notion of interpolation triple [91].

Suppose that Banach spaces A and B are algebraically and topologically
imbedded in a separated topological linear space. In this case, the pair of A and
B is called Banach couple and it is denoted by (A,B). If there is a Banach space
E for the Banach couple (A,B) such that the imbedding A ∩ B ⊂ E ⊂ A + B

holds, then E is called and intermediate space of (A,B). Let (C,D) be another
Banach couple. A linear mapping T acting from the space A+B to C+D is called
a bounded operator from (A,B) to (C,D) if the restrictions of T to the spaces A
and B are bounded operators from A to C and B to D, respectively. We denote by
L(AB,CD) the linear space of all bounded operators from the couple (A,B) to the
couple (C,D). This is a Banach space in the norm

‖T ‖L(AB,CD) = max {‖T ‖A→B, ‖T ‖C→D}.

Definition 11 ([91]) Let (A,B) and (C,D) be two Banach couples, and E (respec-
tively F ) be intermediate for the spaces of the Banach couple (A,B) (respectively
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(C,D)). The triple (A,B,E) is called an interpolation triple, relative to (C,D, F ),
if every bounded operator from (A,B) to (C,D) maps E to F .

A triple (A,B,E) is said to be an interpolation triple of type γ (0 ≤ α ≤ 1)
relative to (C,D, F ) if it is an interpolation triple and the following inequality holds:

‖T ‖E→F ≤ c‖T ‖γA→B · ‖T ‖1−γ
C→D,

for some constant c.

For more details on interpolation theory, we refer to [91].

4.2 A Pioneering Notion: An Interpolative Kannan Type
Contraction

Inspired by Definition 11, the interpolation contraction was introduced in [66] by
revisiting the well-known Kannan type contraction.

Definition 12 ([66]) Let (X, d) be a metric space. We say that the self-mapping
T : X → X is an interpolative Kannan type contraction, if there exist a constant
λ ∈ [0, 1) and α ∈ (0, 1) such that

d (T x, T y) ≤ λ [d (x, T x)]α · [d (y, T y)]1−α . (12)

for all x, y ∈ X with x �= T x.

Theorem 6 ([66]) Let (X, d) be a complete metric space and T be an interpolative
Kannan type contraction. Then T has a unique fixed point in X.

Proof For an arbitrary initial point x0 ∈ X, we construct an iterative sequence {xn}
by xn+1 = T nx0 for all positive integer n. In case there exist a nonnegative integer
n0 such that xn0 = xn0+1 = T xn0 , then xn0 forms a fixed point that completes the
proof. Consequently, throughout the proof, we presume that xn �= xn+1 and hence
d(xn, T xn) = d(xn, xn+1) > 0 for each nonnegative integer n. By letting x = xn
and y = xn−1 in (12), we find that

d (xn+1, xn) = d (T xn, T xn−1) ≤ λ [d (xn, T xn)]α · [d (xn−1, T xn−1)]1−α

= λ [d (xn−1, xn)]1−α · [d (xn, xn+1)]α ,
(13)

which turns into

[d (xn, xn+1)]
1−α ≤ λ [d (xn−1, xn)]

1−α . (14)
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So, we conclude that the sequence {d (xn−1, xn)} is non-increasing and non-
negative. So, there is a nonnegative constant L such that lim

n→∞ d (xn−1, xn) = L.

On account of (22), we find that

d (xn, xn+1) ≤ λd (xn−1, xn) ≤ λnd (x0, x1) . (15)

Letting n→∞ in the inequality above, we observe that L = 0.
By using the triangle inequality recursively, we deduce that sequence {xn} is

Cauchy in a standard way. Since (X, d) is a complete metric space, there exists
x ∈ X such that lim

n→∞ d(xn, x) = 0.

To finalize the proof, we substitute x = xn and y = x in (12) which yields

d (T xn, T x) ≤ λ [d (xn, T xn)]
α · [d (x, T x)]1−α . (16)

Taking n → ∞ in the inequality above, we derive that d(x, T x) = 0, that is,
T x = x.

Example 6 Let S = {a, b, c, e} and R
+
0 := [0,∞) be a set endowed with a metric

d such that

d(a, a) = d(b, b) = d(c, c) = d(e, e) = 0,
d(b, a) = d(a, b) = 3,
d(c, a) = d(a, c) = 4,
d(b, c) = d(c, b) = d(e, c) = d(c, e) = 3

2
d(e, a) = d(a, e) = 5

2
d(e, b) = d(b, e) = 2
d(x, a) = d(a, x) = 0 whenever x ∈ R

+
0 and a ∈ S,

d(x, y) = |x − y| otherwise.

We define a self-mapping T on X by T :
(
a b c e

a e a b

)

over S and T x = 0, otherwise.

It is clear that T is not Kannan contraction. Indeed, there is no λ ∈ [0, 1
2 ) such that

the following inequality is fulfilled:

d(T e, T c) = d(b, a) = 3 ≤ λ(d(T e, e)+ d(c, T c)) = 6λ.

On the other hand, for α = 1
8 and λ = 9

10 , the self-mapping T forms an interpolative
Kannan type contraction and a and 0 are the desired unique fixed points of T . Notice
that in the setting of interpolative Kannan type contraction, the constant lies between
0 and 1 although in the classical version it is restricted with 1/2.
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4.3 An Interpolative Rus–Reich–Ćirić Type Contraction [3]

Definition 13 ([3]) Let T be a self-mapping defined on a metric space (X, d). If
there exist ζ ∈ Z , ψ ∈ Ψ , γ, β ∈ (0, 1) with γ + β < 1 and α : X ×X → [0,∞)

such that

ζ(α(x, y)d(T x, T y), ψ(R(x, y))) ≥ 0 for all x, y ∈ X with x �= T x,

(17)
where

R(x, y) := [d (x, y)]β · [d (x, T x)]γ · [d (y, T y)]1−γ−β , (18)

then we say that T is an α-admissible interpolative Rus–Reich–Ćirić type Z-
contraction with respect to ζ .

Theorem 7 ([3]) Let (X, d) be a complete metric space, ζ ∈ Z . If a self-mapping
T : X → X forms an α-admissible interpolative Rus–Reich–Ćirić type Z-
contraction with respect to ζ and satisfying

(i) T is triangular α−orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;
(iii) T is continuous.

Then there exists u ∈ X such that T u = u.

Proof By (ii), there exists x0 ∈ X such that α(x0, T x0) ≥ 1. By a standard way,
we construct an iterative sequence {xn} by xn+1 = T xn for all non-negative integers
n. Regarding the corresponding discussion in the proof of Theorem 6, we suppose
that

d(xn, xn+1) > 0, for all n = 0, 1, . . . . (19)

Since T is α−orbital admissible, assumption (ii) yields that

α(xn, xn+1) ≥ 1, for all n = 0, 1, . . . . (20)

By letting x = xn and y = x in (17), and keeping the inequalities (19) and (20) in
mind, we find that

d(xn, xn+1) ≤ α(xn, xn−1)d(xn, xn+1) < ψ(R(xn, xn−1)) < R(xn, xn−1),

(21)
for all n = 1, 2, . . ., where R(xn, xn−1) = [d (xn, xn+1)]γ · [d (xn−1, xn)]1−γ .

By a simple elimination, the inequality (21) turns into

[d (xn, xn+1)]
1−γ ≤ λ [d (xn−1, xn)]

1−γ . (22)
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which yields that the sequence {d(xn, xn−1)} is non-decreasing and bounded from
below by zero. In addition the monotonicity of the sequence {d(xn, xn−1)} implied
that R(xn, xn−1) ≤ d(xn, xn−1). Accordingly, there exists L ≥ 0 such that
lim
n→∞ d(xn, xn−1) = L ≥ 0. We shall prove that L = 0. Suppose, on the contrary,

that L > 0. Note that from the inequality (13), we derive that

lim
n→∞α(xn, xn−1)d(xn, xn+1) = L, (23)

and

lim
n→∞R(xn, xn+1) = L. (24)

Letting sn = α(xn, xn−1)d(xn, xn+1) and tn = R(xn, xn−1) and taking (ζ3) into
account, we get that

0 ≤ lim sup
n→∞

ζ(α(xn, xn−1)d(xn+1, xn), R(xn, xn−1)) < 0 (25)

which is a contradiction. Thus, we have L = 0.
Now, we shall prove that the iterative sequence {xn} is Cauchy. Again we use

the method of Reductio ad absurdum. Suppose, on the contrary that {xn} is not a
Cauchy sequence. Thus, there exists ε > 0, for all N ∈ N, there exist n,m ∈ N with
n > m > N and d(xm, xn) > ε. On the other hand, from (16), there exists n0 ∈ N

such that

d(xn, xn+1) < ε for all n > n0. (26)

Consider two partial subsequences xnk and xmk
of xn such that

n0 ≤ nk < mk < mk+1 and d(xmk
, xnk ) > ε for all k. (27)

Notice that

d(xmk−1 , xnk ) ≤ ε for all k, (28)

where mk is chosen as a least number m ∈ {nk, nk+1, nk+2, . . .} such that (27) is
satisfied. We also mention that nk + 1 ≤ mk for all k. In fact, the case nk + 1 ≤ mk

is impossible due to (26), (27). Thus, nk + 2 ≤ mk for all k. It yields that

nk + 1 < mk < mk + 1 for all k.

On account of (27) and (28) and the triangle inequality, we derive that
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ε < d(xmk
, xnk ) ≤ d(xmk

, xmk−1)+ d(xmk−1, xnk )

≤ d(xmk
, xmk−1)+ ε for all k.

(29)

Due to (16), we deduce that

lim
k→∞ d(xmk

, xnk ) = ε. (30)

Again by the triangle inequality, together with (29), we derive that

d(xmk
, xnk ) ≤ d(xmk

, xmk+1)+ d(xmk+1, xnk+1)+ d(xnk+1, xnk ) for all k.

Analogously, we have

d(xmk+1, xnk+1) ≤ d(xmk+1, xmk
)+ d(xmk

, xnk )+ d(xnk , xnk+1) for all k.

Combining two inequalities above together with (16), we find that

lim
k→∞ d(xmk+1, xnk+1) = ε. (31)

Particularly, there exists n1 ∈ N such that for all k ≥ n1 we have

d(xmk
, xnk ) >

ε

2
> 0 and d(xmk+1, xnk+1) >

ε

2
> 0. (32)

Moreover, since T is triangular α-orbital admissible, we have

α(xmk
, xnk ) ≥ 1. (33)

Regarding the fact T is an α-admissible Z-contraction with respect to ζ , together
with (32) and (33) we get that

0 ≤ ζ(α(xmk
, xnk )d(T xmk

, T xnk ), ψ(R(xmk
, xnk )))

< ψ(R(xmk
, xnk ))− α(xmk

, xnk )d(xmk+1, xnk+1),
(34)

for all k ≥ n1, where

R(xmk
, xnk ) =

[
d
(
xmk

, xnk
)]β · [d (xmk

, xmk+1
)]γ · [d (xnk , xnk+1

)]1−γ−β
.
(35)

Consequently, we have

0 < d(xmk+1, xnk+1) < α(xmk
, xnk )d(xmk+1, xnk+1)

< ψ(R(xmk
, xnk )) < R(xmk

, xnk ),
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for all k ≥ n1. Letting n,m → ∞ in the inequality above, and keeping the
observations in (16), (36), (31), (34), and (35), we find that

lim
k→∞ d(xmk+1, xnk+1) = 0, (36)

which is a contradiction. Hence, {xn} is a Cauchy sequence. Owing to the fact that
(X, d) is a complete metric space, there exists u ∈ X such that

lim
n→∞ d(xn, u) = 0. (37)

Since T is continuous, we derive (37) that

lim
n→∞ d(xn+1, T u) = lim

n→∞ d(T xn, T u) = 0. (38)

From (37) and (38) and the uniqueness of the limit, we conclude that u is a fixed
point of T , that is, T u = u.

Theorem 8 ([3]) Let (X, d) be a complete metric space and let T : X → X be an
α-admissible Z-contraction with respect to ζ . Suppose that

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then there exists u ∈ X such that T u = u.

Proof Following the proof of Theorem 7, we know that the sequence {xn} defined
by xn+1 = T xn for all n ≥ 0, converges for some u ∈ X. From (20) and condition
(iii), there exists a subsequence {xn(k)} of {xn} such that α(xn(k), u) ≥ 1 for all k.
Applying (17), for all k, we get that

0 ≤ ζ(α(xn(k), u)d(T xn(k), T u), ψ(R(xn(k), u)))

= ζ(α(xn(k), u)d(xn(k)+1, T u), ψ(R(xn(k), u)))

< ψ(R(xn(k), u))− α(xn(k), u)d(xn(k)+1, T u),

(39)

which is equivalent to

d(xn(k)+1, T u) = d(T xn(k), T u) ≤ α(xn(k), u)d(T xn(k), T u) ≤ ψ(R(xn(k), u)).

(40)
Letting k →∞ in the above equality, we have d(u, T u) = 0, that is, u = T u.

Example 7 ([3]) Let X = {1, 3, 4, 7} be a set endowed with a standard metric
d(x, y) = |x − y|.
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d(x, y) 1 3 4 7
1 0 2 3 6
3 2 0 1 4
4 3 1 0 3
7 6 4 3 0

We define a self-mapping T on X by T :
(

1 3 4 7
4 7 4 3

)

. It is clear that T is not

Rus–Reich–Ćirić contraction. Indeed, there is no λ ∈ [0, 1
3 ) such that the following

inequality is fulfilled:

d(T 1, T 3) = d(4, 7) = 3 ≤ λ(d(1, 3)+ d(T 1, 1)+ d(3, T 3))
= λ(d(1, 3)+ d(4, 1)+ d(3, 7))
= λ(2+ 3+ 4) = 9λ.

On the other hand, for γ = β = 1
16 and λ = 4

5 , the self-mapping T forms an
interpolative Rus–Reich–Ćirić type contraction and 4 is the desired unique fixed
point of T .

Consequences

In this section, we shall illustrate that several existing fixed point results in the
literature can be derived from our main results by regarding Example 1.

If ψ ∈ Ψ and we define

ζE(t, s) = ψ(s)− t for all s, t ∈ [0,∞),

then ζBW is a simulation function (cf. Example 1 (v)).

Corollary 1 ([3, 23]) Let (X, d) be a complete metric space, ζ ∈ Z . If a self-
mapping T : X → X satisfies

α(x, y)d(T x, T y) ≤ ψ(R(x, y)), for all x, y ∈ X \ Fix(T ).

Suppose also that

(i) T is triangular α−orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;
(iii) T is continuous.

Then there exists u ∈ X such that T u = u.

Proof Taking ζE(t, s) = ψ(s)− t for all s, t ∈ [0,∞) in Theorem 7, we get that
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α(x, y)d(T x, T y) ≤ ψ(R(x, y)), for all

We skip the details.

Corollary 2 ([3, 23]) Let (X, d) be a complete metric space, ζ ∈ Z . If a self-
mapping T : X → X satisfies

α(x, y)d(T x, T y) ≤ ψ(R(x, y)), for all x, y ∈ X \ Fix(T ).

Suppose also that

(i) T is triangular α−orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Then there exists u ∈ X such that T u = u.

Proof Taking ζE(t, s) = ψ(s)− t for all s, t ∈ [0,∞) in Theorem 8, we get that

α(x, y)d(T x, T y) ≤ ψ(R(x, y)), for all

We skip the details.

By considering α(x, y) = 1 in Corollary 1, we state the following.

Corollary 3 Let T be a self-mapping on a complete metric space (X, d) such that:

d (T x, T y) ≤ ψ
(

[d (x, y)]β · [d (x, T x)]γ · [d (y, T y)]1−γ−β ), (41)

for all x, y ∈ X� Fix(T ), where γ, β > 0 are positive reals satisfying γ + β < 1.
Then, T admits a fixed point.

Corollary 4 Let T be a self-mapping on a complete metric space (X, d) such that:

d (T x, T y) ≤ ψ
(

[d (x, T x)]β · [d (y, T y)]1−β ), (42)

for all x, y ∈ X� Fix(T ), where 0 < β < 1. Then, T admits a fixed point in X.

Taking ψ(t) = λt (where λ ∈ [0, 1)) in Corollary 3, we state:

Corollary 5 Let T be a self-mapping on a complete metric space (X, d) such that:

d (T x, T y) ≤ λ [d (x, y)]β · [d (x, T x)]γ · [d (y, T y)]1−γ−β , (43)

for all x, y ∈ X� Fix(T ), where γ, β are positive reals verifying γ + β < 1 and
λ ∈ [0, 1). Then, T has a fixed point in X.
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Taking ψ(t) = λt (where λ ∈ [0, 1)) in Corollary 4, we state:

Corollary 6 Let T be a self-mapping on a complete metric space (X, d) such that:

d (T x, T y) ≤ λ · [d (x, T x)]β · [d (y, T y)]1−β , (44)

for all x, y ∈ X� Fix(T ), where 0 < β < 1 and λ ∈ [0, 1). Then, there exists a
fixed point of T .

Remark 1 Corollary 5 corresponds to Corollary 2.1 in [85].

Let (X, d,0) be a partially ordered metric space. Let us consider the following
condition.

(G) If {xn} is a sequence in X such that xn 0 xn+1 for each n and xn → x ∈ X

as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that xn(k) 0 x

for each k.

Following [82], we may state the following consequences of Corollary 1.

Corollary 7 Let (X, d,0) be a complete partially ordered metric space. Let T :
X → X be the mapping such that:

α (x, y) d (T x, T y) ≤ ψ
(

[d (x, y)]β · [d (x, T x)]γ · [d (y, T y)]1−γ−β ),

for all x, y ∈ X� Fix(T ) with x 0 y, where ψ ∈ Ψ and γ, β > 0 are positive reals
such that γ + β < 1. Assume that:

(i) T is non-decreasing with respect to 0;
(ii) there exists x0 ∈ X such that x0 0 T x0;
(iii) either T is continuous on (X, d) or (G) holds.

Then, T has a fixed point in X.

Proof It suffices to take,

α(x, y) =
{

1 if (x 0 y) or (y 0 x),

0 otherwise,

in Corollaries 1 and 2.

The following is an immediate consequence of Corollary 7.

Corollary 8 Let (X, d,0) be a complete partially ordered metric space and T :
X → X be a given mapping satisfying:

α (x, y) d (T x, T y) ≤ ψ
(

[d (x, T x)]β · [d (y, T y)]1−β ),
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for all x, y ∈ X� Fix(T ) with x 0 y, where ψ ∈ Ψ and 0 < β < 1. Assume
that:

(i) T is non-decreasing with respect to 0;
(ii) there exists x0 ∈ X such that x0 0 T x0;
(iii) either T is continuous on (X, d) or (G) holds.

Then, T has a fixed point in X.

Corollary 9 Suppose that the subsets A1 and A2 of a complete metric space (X, d)
are closed. Suppose also that T : A1 ∪ A2 → A1 ∪ A2 satisfies:

α (x, y) d (T x, T y) ≤ ψ
(

[d (x, y)]β · [d (x, T x)]γ · [d (y, T y)]1−γ−β )

for all x ∈ A1 and y ∈ A2, such that x, y /∈ Fix(T ), where ψ ∈ Ψ and γ, β > 0
are positive reals such that γ + β < 1. If T (A1) ⊆ A2 and T (A2) ⊆ A1, then there
exists a fixed point of T in A1 ∩ A2.

Proof It suffices to take,

α(x, y) =
{

1 if (A1 × A2) ∪ (A2 × A1),

0 otherwise,

in Corollary 1.

Corollary 10 Let A1 and A2 be two nonempty closed subsets of a complete metric
space (X, d). Suppose that T : A1 ∪ A2 → A1 ∪ A2 satisfies:

α (x, y) d (T x, T y) ≤ ψ
(

[d (x, T x)]β · [d (y, T y)]1−γ−β )

for all x ∈ A1 and y ∈ A2 such that x, y /∈ Fix(T ), where ψ ∈ Ψ and 0 < β < 1.
If T (A1) ⊆ A2 and T (A2) ⊆ A1, then there exists a fixed point of T in A1 ∩ A2.

Proof It suffices to take, in Theorem 10,

α(x, y) =
{

1, if (A1 × A2) ∪ (A2 × A1),

0, otherwise.

Corollary 1 is supported by the following.

Example 8 Let us consider the set X = [0, 2] endowed with d(x, y) = |x − y|. Let
T be a self-mapping on X defined by:

T x =
{

3
2 , if x ∈ [1, 2]
1
3 , if x ∈ [0, 1).
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Take:

α(x, y) =
{

1, if x, y ∈ [1, 2]
0, otherwise.

Let x, y ∈ X be such that x �= T x, y �= Ty and α(x, y) ≥ 1. Then, x, y ∈ [1, 2]
and x, y /∈ { 3

2 }. We have T x = Ty = 3

2
. Hence, (18) holds. For x0 = 2, we have:

α(2, T 2) = α

(

2,
3

2

)

= 1.

Now, let x, y ∈ X be such that α(x, y) ≥ 1. It yields that x, y ∈ [1, 2], so
T x = Ty ∈ [1, 2]. Hence, α(T x, T y) ≥ 1, that is T is ω-orbital admissible. Notice
that T is not continuous. We shall show that (H) holds. Let {xn} be a sequence in
X such that α(xn, xn+1) ≥ 1 for each n ∈ N. Then, {xn} ⊂ [1, 2]. If {xn} → u as
n→∞, we have |xn−u| → 0 as n→∞. Hence, u ∈ [1, 2], and so, α(xn, u) = 1.
All conditions of Corollary 1 hold. Note that 1

3 and 3
2 are two fixed points of T .

Interpolative Rus–Reich–Ćirić Type Contractions on Branciari Distance
Spaces

Theorem 9 ([22]) Let T : X → X be an interpolative Rus–Reich–Ćirić type
contraction on a complete Branciari distance space (X, p), then T has a fixed point
in X.

We skip the proof since it is similar to the proof of Theorem 6.

Theorem 10 ([22]) Let T : X → X be an interpolative Kannan type contraction
on a complete Branciari distance space (X, p), then T has a fixed point in X.

We skip the proof since it is a slight modification of the proof of Theorem 6.
The following example illustrates Theorem 9.

Example 9 ([22]) Let X = {0, 1, 2, 3} be a set endowed with the Branciari distance
ρ given as

ρ(x, y) 0 1 2 3
0 0 0.1 0.8 0.9
1 0.1 0 1 0.7
2 0.8 1 0 0.2
3 0.9 0.7 0.2 0
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Consider the self-mapping T on X as T :
(

0 1 2 3
0 0 1 3

)

. We have ρ(1, 2) >

ρ(1, 3) + ρ(3, 2), so ρ is not a metric. Let x, y ∈ X\Fix(T ). Then (x, y) ∈
{(1, 1), (2, 2), (1, 2), (2, 1)}. By choosing λ ∈ [0.4, 1), α = 0.6 and β = 0.3,
it is obvious that the self-mapping T is an interpolative Reich–Rus–Ćirić type
contraction. Here, T has two fixed points, which are 0 and 3.

On the other hand, the inequality (10) does not hold for x = 0 and y = 3 (by
taking the classical metric d(x, y) =| x− y |). That is, Theorem 3 is not applicable.

Interpolative Rus–Reich–Ćirić Type Contractions on Partial Metric Spaces

Theorem 11 ([65]) In the framework of a partial metric space (X, p), if T : X →
X is an interpolative Reich–Rus–Ćirić type contraction, then T has a fixed point in
X.

The following examples illustrate Theorem 11.

Example 10 ([65]) Let X = {1, 3, 4, 7} be a set endowed with the classical partial
metric d(x, y) = max{x, y}, that is,

d(x, y ) 1 3 4 7
1 1 3 4 7
3 3 3 4 7
4 4 4 4 7
7 7 7 7 7

We define a self-mapping T on X by T :
(

1 3 4 7
1 3 1 3

)

. It is clear that T is not a

Reich–Rus–Ćirić contraction. Indeed, there is no λ ∈ [0, 1
3 ) such that the following

inequality is fulfilled:

d(T 1, T 3) = d(1, 3) = 3 ≤ λ(d(1, 3)+ d(T 1, 1)+ d(3, T 3))

= λ(d(1, 3)+ d(1, 1)+ d(3, 3))

= 7λ.

On the other hand, choose α = 1
2 , β = 2

5 and λ = 7
10 . Let x, y ∈ X\Fix(T );

then, (x, y) ∈ {(4, 7), (7, 4), (4, 4), (7, 7)}. Without loss of generality, we have
Case 1: x = y = 4. Here,

d (T x, T y) = 1 ≤ 4λ = λ [d (x, y)]β · [d (x, T x)]α · [d (y, T y)]1−α−β .

Case 2: x = y = 7. we have
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d (T x, T y) = 3 ≤ 7λ = λ [d (x, y)]β · [d (x, T x)]α · [d (y, T y)]1−α−β .

Case 3: x = 4 and y = 7. Here,

d (T x, T y) =3 ≤ λ71−α4α

=λ [d (x, y)]β · [d (x, T x)]α · [d (y, T y)]1−α−β .

Thus, the self-mapping T is an interpolative Reich–Rus–Ćirić type contraction
and 1, 3 are the desired fixed points. Note that in the setting of interpolative Reich–
Rus–Ćirić type contractions, the constant lies between 0 and 1, although in the
classical version it is restricted by 1/3.

4.4 An Interpolative Hardy-Rogers Type Contraction

We start by introducing the notion of interpolative Hardy-Rogers type contractions.

Definition 14 ([64]) Let (X, d) be a metric space. We say that the self-mapping T :
X → X is an interpolative Hardy-Rogers type contraction if there exists λ ∈ [0, 1)
and α, β, γ ∈ (0, 1) with α + β + γ < 1, such that

d (T x, T y) ≤ λ [d (x, y)]β · [d (x, T x)]α · [d (y, T y)]γ

·
[

1

2
(d (x, T y)+ d (y, T x))

]1−α−β−γ
(45)

for all x, y ∈ X\Fix(T ).
Theorem 12 ([64]) Let (X, d) be a complete metric space and T be an interpola-
tive Hardy-Rogers type contraction. Then, T has a fixed point in X.

The proof is a slight modification of the proof of Theorem 6, and hence we skipped
it.

Example 11 Consider X = {0, 1, 2, 3, 5} endowed with d(x, y) = |x − y|. Choose

λ =
√

2
2 , α = 1

3 , β = 1
2 and γ = 1

7 . It is obvious that

d (T x, T y) ≤ λ [d (x, y)]β · [d (x, T x)]α

· [d (y, T y)]γ ·
[

1

2
(d (x, T y)+ d (y, T x))

]1−α−β−γ
,

for all x, y ∈ X\Fix(T ); that is, (45) holds. All the hypotheses of Theorem 12 are
satisfied, and so T has a fixed point. Here, we have two fixed points, which are 0
and 1.
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On the other hand, for x = 0 and y = 1, we have

d (T x, T y) > λ

[

d (x, y)+ d (x, T x)+ d (y, T y)+ 1

2
(d (x, T y)+ d (y, T x))

]

,

for any λ ∈ [0, 1
4 ), so Theorem 4 (for λ = α = β = γ = δ) is not applicable.

Example 12 ([64]) Let X = [0,∞) be endowed with the metric

d (x, y) =
{

0 if x = y

1 if x �= y.

Define the self-mapping on X as

T x =
{

0 if x ∈ [0, 1)

x if x ≥ 1.

Let x, y ∈ X\Fix(T ). Then x, y /∈ (0, 1), and so d(T x, T y) = 0; that is, (45)
holds. Thus, all the hypotheses of Theorem 12 hold, and so T has a fixed point.
Here, we have an infinite number of fixed points.

On the other hand, Theorem 4 is not applicable (it suffices to take x = 0 and
y = 1).

The following theorem is a characterization of Theorem 12, in the context of
partial metric spaces.

Theorem 13 Let (X, p) be a completed partial metric space. Let T : X → X

be a given mapping. Suppose there exists λ ∈ [0, 1) and α, β, γ ∈ (0, 1) with
α + β + γ < 1, such that

p (T x, T y) ≤ λ [p (x, y)]β · [p (x, T x)]α

· [p (y, T y)]γ ·
[

1

2
(p (x, T y)+ p (y, T x))

]1−α−β−γ
, (46)

for all x, y ∈ X\Fix(T ). Then, T has a fixed point in X.

The proof is a slight modification of the proof of Theorem 6.

5 Hybrid Contractions

The first hybrid contraction was given in [99] where the authors combined both
linear, nonlinear and interpolative contraction in a successful way.
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Definition 15 ([99]) A self-mapping T on b-metric space (X, d, b) is called an
(r, a)-weight type (hybrid) contraction, if there exists λ ∈ [0, 1) such that

d(T x, T y) ≤ λMr(T , x, y, a), (47)

where r ≥ 0, a = (a1, a2, a3), ai ≥ 0, i = 1, 2, 3 such that a1 + a2 + a3 = 1 and

Mr(T , x, y, a) =
{ [a1(d(x, y))

r + a2(d(x, T x))
r + a3(d(y, T y))

r ]1/r , r > 0
(d(x, y))a1(d(x, T x))a2(d(y, T y))a3 , r = 0,

(48)
for all x, y ∈ X\Fix(T ), where Fix(T ) = {u ∈ X, T u = u}.
Example 13 In all following cases, the x, y ∈ X \ Fix(T ).

(i) If r = 1, a = ( 1
3 ,

1
3 ,

1
3 ), we obtain Reich–Rus–Ćirić type contraction,

d(T x, T y) ≤ λ

3
[d(x, y)+ d(x, T x)+ d(y, T y)],

where λ ∈ [0, 1) , see [106, 112, 113, 115, 120].
(ii) If r = 2, a = ( 1

3 ,
1
3 ,

1
3 ), we obtain the following condition,

d(T x, T y) ≤ λ√
3
[d2(x, y)+ d2(x, T x)+ d2(y, T y)]1/2.

where λ ∈ [0, 1).
(iii) If r = 1 and a = (a1, a2, a3), we have a Reich type contraction,

d(T x, T y) ≤ αd(x, y)+ βd(x, T x)+ γ d(y, T y)],

where α = λa1, β = λa2, γ = λa3, α, β, γ, λ ∈ [0, 1), and α + β + γ < 1,
see [115].

(iv) If r = 1 and a = (0, 1
2 ,

1
2 ), we have a Kannan type contraction,

d(T x, T y) ≤ λ

2
[d(x, T x)+ d(y, T y)],

see [61, 62].
(v) If r = 2 and a = (0, 1

2 ,
1
2 ), we have

d(T x, T y) ≤ λ√
2
[d2(x, T x)+ d2(y, T y)]1/2.

(vi) If r = 0 and a = (0, α, 1 − α) with α ∈ (0, 1), we obtain an interpolative
Kannan type contraction,
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d(T x, T y) ≤ λ(d(x, T x))α(d(y, T y))1−α,

see [66].
(vii) If r = 0 and a = (β, α, 1−α−β) with α, β ∈ (0, 1), we have an interpolative

Reich-Rus-Ćirić type contraction,

d(T x, T y) ≤ λ(d(x, y))β(d(x, T x))α(d(y, T y))1−α−β,

see [65].

Lemma 8 ([99]) If r ≤ s, then we have the following weighted inequality:

Mr(T , x, y, a) ≤ Ms(T , x, y, a). (49)

Theorem 14 ([99]) Let (X, d, b) be a complete b-metric space and T : X → X be
an (r, a)-weight type contraction mapping. Then T has a fixed point x∗ ∈ X and for
any x0 ∈ X the sequence {T nx0} converges to x∗ if one of the following conditions
holds:

(i) T is continuous at such point x∗;
(ii) bra2 < 1;
(iii) bra3 < 1.

Proof We built an iterative sequence {xn} by starting with an arbitrary point x0 ∈ X

as follows:

xn+1 = T xn for all non− negative integers n.

Since the existing of an integer n0 with xn0 = xn0+1 yields a fixed point (and hence
complete the proof), we assume that successive terms are different, that is, xn �=
xn+1 for all non-negative integer n.

We shall examine two cases. Case 1. Suppose that r > 0. On (47), we find

d(xn+1, xn) ≤ λ[a1(d(xn, xn−1))
r + a2(d(xn, xn+1))

r + a3(d(xn−1, xn))
r ]1/r .

(50)
After a simple calculation, we get

d(xn+1, xn) ≤
[
λr(a1 + a3)

1− λra2

]1/r

d(xn, xn−1). (51)

Set γ =
[
λr (a1+a3)

1−λra2

]1/r
. We have that γ ∈ [0, 1). It follows from Lemma 7 that {xn}

is a Cauchy sequence in X. By completeness of (X, d, b), there exists x∗ ∈ X such
that

lim
n→∞ xn = x∗. (52)
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The rest is observed in a standard way.
Case 2. We presume that r = 0. By combining (47) and (48), we find

d(T x, T y) ≤ λ(d(x, y))a1(d(x, T x))a2(d(y, T y))1−a1−a2, (53)

for all x, y ∈ X\Fix(T ), where λ ∈ [0, 1) and a1, a2 ∈ (0, 1). By following [65]
(Theorem 2.1 with its metric case), the map T has a fixed point in X.

Remark 2 It is clear that regarding Example 13, we can derive several corollaries
from Theorem 14.

The following can be considered as a sample for this observation.

Corollary 11 Let (X, d, b) be a complete b-metric space and T : X → X be a
mapping such that

d(T x, T y) ≤ λda1(x, y) · da2(x, T x) · da3(y, T y), (54)

for all x, y ∈ X\Fix(T ), where λ ∈ [0, 1) , a1, a2, a3 ≥ 0, and a1 + a2 + a3 = 1.
Then T has a fixed point x∗ and for any x0 ∈ X the sequence {T nx0} converges to
x∗.

Proof It is sufficient to take r = 0 and a = (a1, a2, a3) in Theorem 14.

5.1 Hybrid Contractions in the Context of Quasi-metric Spaces

Definition 16 [48] Let (X, q) be a quasi-metric space. We say that the mapping
T : X → X is a hybrid almost contraction of type I, if there exist ζ ∈ Z , ψ ∈ Ψ ,
p ≥ 0, L ≥ 0, and a1, a2, a3 ∈ [0, 1] with a1 + a2 > 0, a1 + a2 + a3 = 1, such that
for all distinct u, v ∈ X, we have

1
2 min {q(u, T u), q(v, T v)q(T v, v)} ≤ q(u, v) implies

ζ(α(u, v)q(T u, T v), ψ(Ip(u, v)+ LN(u, v))) ≥ 0,
(55)

where

Ip(u, v) =
⎧
⎨

⎩

[a1(q(u, v))
p + a2(q(u, T u))

p + a3(q(v, T v))
p]1/p, for p > 0,

(q(u, v))a1 · (q(u, T u))a2 · (q(v, T v))a3 for p = 0

and

N(u, v) = min {q(u, T v), q(v, T u)} .
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Theorem 15 ([48]) Let (X, q) be a complete quasi-metric space and α : X×X →
[0,∞) be a mapping such that:

(i) u = T u implies α(u, v) > 0 for every v ∈ X;
(ii) v = T v implies α(u, v) > 0 for every u ∈ X.

Suppose that T : X → X is an hybrid almost contraction of type I and

(C1) T is α−orbital admissible;
(C2) there exists u0 ∈ X such that α(u0, T u0) ≥ 1 and α(T u0, u0) ≥ 1;
(C3) T is continuous.

Then, T has a fixed point.

Corollary 12 ([48]) Let (X, q) be a complete quasi-metric space, a function α :
X × X → [0,∞) and a mapping T : X → X such that there exist ζ ∈ Z and
ψ ∈ Ψ such that for p ≥ 0, L ≥ 0 and a1, a2, a3 ∈ [0, 1) with a1 + a2 > 0 and
a1 + a2 + a3 = 1we have

ζ(α(u, v)q(T u, T v), ψ(Ip(u, v)+ LN(u, v))) ≥ 0, for all distinct u, v ∈ X.

(56)
Suppose also that the following assumptions hold:

(i) u = T u implies α(u, v) > 0 for every v ∈ X;
(ii) v = T v implies α(u, v) > 0 for every u ∈ X;
(iii) T is α−orbital admissible;
(iv) there exists u0 ∈ X such that α(u0, T u0) ≥ 1 and α(T u0, u0) ≥ 1;
(v) T is continuous.

Then T has a fixed point.

In particular, letting L = 0 in the above Corollary we find Theorem 2.1 in [3].

Corollary 13 [48] Let (X, q) be a complete quasi-metric space and a mapping
T : X → X such that there exist ζ ∈ Z and ψ ∈ Ψ such that for p ≥ 0, L ≥ 0 and
a1, a2, a3 ∈ [0, 1) with a1 + a2 > 0 and a1 + a2 + a3 = 1 we have

ζ(q(T u, T v), ψ(Ip(u, v)+ LN(u, v))) ≥ 0, for all distinct u, v ∈ X. (57)

Then T has a fixed point.

Proof Let α(u, v) = 1 in Corollary 12.

Corollary 14 ([48]) Let (X, q) be a complete quasi-metric space, a function α :
X × X → [0,∞) and a continuous mapping T : X → X such that there exist
ψ ∈ Ψ such that for p ≥ 0 and a1, a2, a3 ∈ [0, 1) with a1 + a2 > 0 and a1 + a2 +
a3 = 1we have

α(u, v)q(T u, T v) ≤ ψ(Ip(u, v)), for all distinct u, v ∈ X. (58)
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Suppose that there exists u0 ∈ X such that α(u0, T u0) ≥ 1 and α(T u0, u0) ≥ 1.
Then T has a fixed point.

Proof Let ζ(t, s) = ψ(s)− t in Corollary 12.

Moreover, it easy to see that Theorem 7 is a generalization of Theorem 2.1 in [23]
in the context of quasi-metric space. Indeed, if we take L = 0 and p = 0 in
Corollary 14, we find:

Corollary 15 Let (X, q) be a complete quasi-metric space, a function α : X×X →
[0,∞) and a continuous mapping T : X → X such that there exist ψ ∈ Ψ such
that for a1, a2, a3 ∈ [0, 1) with a1 + a2 > 0 and a1 + a2 + a3 = 1 we have

α(u, v)q(T u, T v) ≤ ψ((q(u, v))a1 · (q(u, T u))a2

· (q(v, T v))a3), for all distinct u, v ∈ X. (59)

Suppose that there exists u0 ∈ X such that α(u0, T u0) ≥ 1 and α(T u0, u0) ≥ 1.
Then T has a fixed point.

In particular, for the case p = 0 the continuity condition of T can be replaced
with the regularity condition of the space X.

Theorem 16 ([48]) Let (X, q) be a complete quasi-metric space, a function α :
X ×X → [0,∞) and a mapping T : X → X such that there exist ζ ∈ Z , ψ ∈ Ψ ,
L ≥ 0 and a1, a2, a3 ∈ [0, 1] with a1 + a2 + a3 = 1, such that for all distinct
u, v ∈ X, we have

1

2
min {q(u, T u), q(v, T v), q(T v, v)} ≤ q(u, v) implies

ζ(α(u, v)q(T u, T v), ψ((q(u, v))a1 · (q(u, T u))a2 · (q(v, T v))a3

+ LN(u, v))) ≥ 0, (60)

Suppose also that

(i) u = T u implies α(u, v) > 0 for every v ∈ X;
(ii) v = T v implies α(u, v) > 0 for every u ∈ X;

(C1) T is α−orbital admissible;
(C2) there exists u0 ∈ X such that α(u0, T u0) ≥ 1 and α(T u0, u0) ≥ 1;
(C3) X is regular with respect to the mapping α.

Then, T has a fixed point.

Corollary 16 ([48]) Let (X, q) be a complete quasi-metric space and T : X → X

be a given mapping. Assume that there exist L ≥ 0, ζ ∈ Z and ψ ∈ Ψ such that for
all distinct u, v ∈ X, we have
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1
2 min {q(u, T u), q(v, T v)q(T v, v)} ≤ q(u, v) implies

ζ(q(T u, T v), ψ(Ip(u, v)+ LN(u, v))) ≥ 0,

for all distinct u, v ∈ X. Then T has a fixed point.

Proof It is sufficient to take α(u, v) = 1 for u, v ∈ X in Theorem 15.

Corollary 17 ([48]) Let (X, q) be a complete quasi-metric space and T : X → X

be a given mapping. Assume that there exist L ≥ 0, ζ ∈ Z and ψ ∈ Ψ such that for
all distinct u, v ∈ X, we have

1
2 min {q(u, T u), q(v, T v)q(T v, v)} ≤ q(u, v) impliesq(T u, T v) ≤ kIp(u, v)

for all distinct u, v ∈ X. Then T has a fixed point.

Proof It is sufficient to take L = 0, ζ(t, s) = k1s − t , ψ(u) = k2u with k1, k2 ∈
(0, 1) and k = k1k2 in Corollary 16.

Corollary 18 ([48]) Let (X, q) be a complete quasi-metric space and T : X → X

a continuous mapping such that

1
2 min {q(u, T u), q(v, T v)q(T v, v)} ≤ q(u, v) implies

q(T u, T v) ≤ k√
3
·√(q(u, v))2 + (q(u, T u))2 + (q(v, T v))2

(61)

for all distinct u, v ∈ X and some k ∈ (0, 1). Then T has a fixed point in X.

Proof Let p = 2 and a1 = a2 = a3 = 1
3 in Corollary 17.

In the next theorem, we involve a Jaggi type expression to the hybrid contrac-
tions.

Definition 17 ([48]) Let (X, q) be a quasi-metric space. A mapping T : X → X is
called a hybrid almost contraction of type J, if there exist ζ ∈ Z and ψ ∈ Ψ such
that for p ≥ 0, L ≥ 0 and a1, a2 > 0 with a1 + a2 < 1 we have

1
2 min {q(u, T u), q(v, T v)q(T v, v)} ≤ q(u, v) implies

ζ(α(u, v)q(T u, T v), ψ(Jp(u, v)+ LN(u, v))) ≥ 0,
(62)

for all distinct u, v ∈ X, where

Jp(u, v) =

⎧
⎪⎨

⎪⎩

[a1(q(u, v))
p + a2(

q(u,T u))·(q(v,T v)
q(u,v)

)p]1/p, for p > 0

(q(u, v))a1 · (q(u, T u))a1 · (q(v, T v))1−a1−a2 , for p = 0

and
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N(u, v) = min {q(u, T v), q(v, T u)} .

Theorem 17 ([48]) Let (X, q) be a complete quasi-metric space and α : X×X →
[0,∞) be a mapping such that:

(i) u = T u implies α(u, v) > 0 for every v ∈ X;
(ii) v = T v implies α(u, v) > 0 for every u ∈ X.

Suppose that T : X → X is a hybrid almost contraction of type J such that the
following assumptions hold:

(i) T is α−orbital admissible;
(ii) there exists u0 ∈ X such that α(u0, T u0) ≥ 1 and α(T u0, u0) ≥ 1;
(iii) there exists Δ > 0 such that (a1 + a2Δ

2p)1/p ≤ 1 (where p > 0) and

1

Δ
q(u, v) ≤ q(v, u) ≤ Δq(u, v), for all u, v ∈ X;

(iv) T is continuous.

Then T has a fixed point.

The following is a special case for p = 0.

Corollary 19 ([48]) Let (X, q) be a complete quasi-metric space, a function α :
X × X → [0,∞) and a mapping T : X → X such that there exist ζ ∈ Z and
ψ ∈ Ψ such that for p ≥ 0, L ≥ 0 and a1, a2,∈ [0, 1) with a1 + a2 < 1 we have

ζ(α(u, v)q(T u, T v), ψ(Jp(u, v)+ LN(u, v))) ≥ 0, for all distinct u, v ∈ X.

(63)
Suppose also that the following assumptions hold:

(i) u = T u implies α(u, v) > 0 for every v ∈ X;
(ii) v = T v implies α(u, v) > 0 for every u ∈ X;
(iii) T is α−orbital admissible;
(iv) there exists u0 ∈ X such that α(u0, T u0) ≥ 1 and α(T u0, u0) ≥ 1;
(v) there exists Δ > 0 such that (a1 + a2Δ

2p)1/p ≤ 1 (where p > 0) and

1

Δ
q(u, v) ≤ q(v, u) ≤ Δq(u, v), for all u, v ∈ X;

1. (vi)] T is continuous.

Then T has a fixed point.

Corollary 20 ([48]) Let (X, q) be a complete quasi-metric space and T be a
continuous self-mapping on X. Suppose that there exist ζ ∈ Z , ψ ∈ Ψ such that

ζ(q(T u, T v), ψ(Jp(u, v))) ≥ 0,
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for each distinct u, v ∈ X. If there exists Δ > 0 such that (a1 + a2 · Δ2p)1/p ≤ 1
for p > 0, and 1

Δ
q(u, v) ≤ q(v, u) ≤ Δq(u, v) for all u, v ∈ X then T has a fixed

point.

Proof It is sufficient to take L = 0 and α(u, v) = 1 for u, v ∈ X in Corollary 19.

Corollary 21 ([48]) Let (X, q) be a complete quasi-metric space and T be a self-
mapping on X. Suppose that there exists Δ > 0 such that (a1 + a2 · Δ2p)1/p ≤ 1
for p > 0, and 1

Δ
q(u, v) ≤ q(v, u) ≤ Δq(u, v) for all u, v ∈ X. The mapping T

has a fixed point provided that

q(T u, T v) ≤ c · Jp(u, v)

for each distinct u, v ∈ X and some c ∈ (0, 1).

Proof We set ζ(t, s) = c1s− t , ψ(u) = c2u with c1, c2 ∈ [0, 1) and c = c1 + c2 in
Corollary 20.

Letting p = 0 in Corollary 21 we find Theorem 2.2. in [66].

Corollary 22 ([48]) Let (X, q) be a complete quasi-metric space and T : X → X

a continuous mapping. Then T has a fixed point provided that

q(T u, T v) ≤ k1 · q(u, v)+ k2 · q(u, T u)q(v, T v)
q(u, v)

(64)

for each u, v ∈ X and k1, k2 ∈ (0, 1) with k1 + k2 < 1

Proof Let p = 1 and ki = c · ai , for i ∈ {1, 2} in Corollary 21

Example 14 ([48]) Let (X, q) be the quasi-metric space where X = [1,∞) and

q(u, v) =
{

u− v, for u ≥ v

2(v − u), for u < v

Let

T u =
{
u3 − 8u2 + 19u− 9, for u ∈ [1, 5]
ln(u2 − 24)+ u+ 6, for u ∈ (5,∞).

Consider the function ζ be arbitrary in Z , ψ ∈ Ψ with ψ(t) = t√
3

and α : X×X →
[0,∞) such that

α(u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

u2 + 1, for (u, v) ∈ {(3, 3), (3, 4), (4, 3), (3, 1), (1, 3)}
1, for (u, v) = (2, 1)

0, otherwise.
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It is easily verified that T is α−orbital admissible. Whereas T 1 = T 3 = T 4 = 3,
taking into account the definition of function α we have that the inequality (63)
holds for every pair (u, v) ∈ X2 \ {(2, 1)}. For the case u = 2 and v = 1, choosing
a1 = 1

2 , a2 = 1
48 and p = 2 we find that axiom (iii) holds. On the other hand,

Jp(2, 1) =
√

25
2 ,

and

α(2, 1)q(T 2, T 1) = q(5, 3) = 2 <

√
25

6
= ψ(Jp(2, 1)).

Consequently, by Theorem 19 we have that the mapping T has a fixed point in X.
On the other hand we can observe that for u = 1 and v = 5,

q(T 1, T (4.5)) = q(2, 5.625) = 7.25, q(1, T 1) = q(1, 2) = 2,

q(4.5, T (4.5)) = q(4.5, 5.625) = 1.125,

so that since

q(T 1, T (4.5)) > λ(q(1, T 1))α(q(4.5, T (4.5)))1−α

for any λ ∈ [0, 1) and α ∈ (0, 1), the Theorem 2.2 in [66] cannot be applied.

5.2 Jaggi Type Hybrid Contraction

Definition 18 ([69]) A self-mapping T on a metric space(X, d) is called a Jaggi
type hybrid contraction if there is ψ ∈ Ψ so that

d(T x, T y) ≤ ψ
(
J sT (x, y)

)
, (65)

for all distinct x, y ∈ X where s ≥ 0 and σi ≥ 0, i = 1, 2, such that σ1 + σ2 = 1
and

J sT (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[σ1

(
d(x,T x)·d(y,T y)

d(x,y)

)s + σ2(d(x, y))
s]1/s,

for s > 0, x, y ∈ X, x �= y

(d(x, T x))σ1(d(y, T y))σ2 , for s = 0, x, y ∈ X\FT (X),
(66)

where FT (X) = {z ∈ X : T z = z}.
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Theorem 18 ([69]) A continuous self-mapping T on a complete metric space
(X, d) possesses a fixed point x provided that T is a Jaggi type hybrid contraction.
Moreover, for any x0 ∈ X, the sequence {T nx0} converges to x.
Theorem 19 ([69]) Let (X, d) be a complete metric space and T : X → X be
a Jaggi type hybrid contraction. In the case where for some integer p > 1, T p is
continuous then T has a unique fixed point.

The following are the immediate consequences of Theorems 20 and 19.
Indeed, letting ψ(z) = λz, z ≥ 0 in Theorem 20, for p > 0 we have:

Corollary 23 ([69]) A continuous self-mapping T on (X, d) has a fixed point x∗ if
for any x, y ∈ X, x �= y

d(T x, T y) ≤ λ

[

σ1

(
d(x, T x)d(y, T y)

d(x, y)

)s
+ σ2 (d(x, y))

s

]1/s

, (67)

where σ1, σ2 ≥ 0 with σ1 + σ2 = 1, s > 0 and λ ∈ (0, 1).

Corollary 24 ([69]) A continuous self-mapping T on (X, d) has a fixed point if for
any x, y ∈ X, x �= y

d(T x, T y) ≤ λ√
2

[(
d(x, T x)d(y, T y)

d(x, y)

)2

+ (d(x, y))2

]1/2

, (68)

where λ ∈ (0, 1).

Proof Put in Corollary 23 σ1 = σ2 = 1
2 and s = 2.

Corollary 25 ([69]) A self-mapping T on (X, d) has a fixed point x∗ if for x, y ∈
X\FT (X),

d(T x, T y) ≤ λ[d(x, T x)]α[d(y, T y)]1−α, (69)

where α, λ ∈ (0, 1).

Proof It follows from Theorem 20, letting ψ(z) = λz for any z ≥ 0, p = 0,
respectively, σ1 = α, σ2 = 1− α.

Corollary 26 ([69]) A self-mapping T on (X, d) has a fixed point if it satisfies the
inequality

d(T x, T y) ≤ λ
√
d(x, T x)d(y, T y), (70)

for x, y ∈ X\FT (X), where λ ∈ (0, 1).

Proof Put in Corollary 23 α = 1/2.
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If in Corollary 23, we take p = 1, α = λσ1, β = λσ2, where λ ∈ (0, 1), we
obtain the following:

Corollary 27 ([69]) Let the space (X, d) and T : X → X be a continuous
mapping such that for x, y ∈ X, x �= y,

d(T x, T y) ≤ α
d(x, T x)d(y, T y)

d(x, y)
+ βd(x, y), (71)

where α, β ∈ (0, 1) with α + β < 1. Therefore, T possesses a fixed point.

6 Hybrid Contractions in b-Metric Spaces

Definition 19 A self-mapping T on a complete (b)-metric space (X, b, s) is said to
be a (b)-hybrid contraction, if there is ψ ∈ Ψ so that

b(T x, T y) ≤ ψ
(
Pr
T (x, y)

)
, (72)

where r ≥ 0 and κi ≥ 0, i = 1, 2, 3, 4, such that
∑4

i=1 κi = 1 and

Pr
T (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[κ1(b(x, y))
r + κ2(b(x, T x))

r + κ3(b(y, T y))
r + κ4

(
b(y,T x)+b(x,T y)

2s

)r ]1/r ,
for r > 0, x, y ∈ X

(b(x, y))κ1 (b(x, T x))κ2 (b(y, T y))κ3

(
(b(x,T y)+b(y,T x)

2s

)κ4
,

for r = 0, x, y ∈ X\�T (X),

(73)

where �T (X) = {ω ∈ X : T ω = ω}.
Theorem 20 Suppose that (X, b, s) is a complete (b)-metric space and T : X → X

is a (b)-hybrid contraction. Then T has a fixed point 4 and for any x0 ∈ X, the
sequence {T nx0} converges to 4 if either

(a1) T is continuous at 4;
(a2) or T 2 is continuous at 4;
(a3) or κ1 + κ3 > 0, (or κ2 + κ3 > 0).

Taking s = 1 in the above theorem we find the following corollary.

Corollary 28 Let T be a self-mapping on a complete metric space (X, b) such that

b(T x, T y) ≤ ψ
(
Pr
T (x, y)

)
, (74)

where ψ ∈ Ψ , r ≥ 0 and κi ≥ 0, i = 1, 2, 3, 4, such that
∑4

i=1 κi = 1 and
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Pr
T (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[κ1(b(x, y))
r + κ2(b(x, T x))

r + κ3(b(y, T y))
r + κ4

(
b(y,T x)+b(x,T y)

2

)r ]1/r ,
for r > 0, x, y ∈ X

(b(x, y))κ1 (b(x, T x))κ2 (b(y, T y))κ3

(
(b(x,T y)+b(y,T x)

2

)κ4
,

for r = 0, x, y ∈ X\�T (X),

(75)
where �T (X) = {ω ∈ X : T ω = ω}. Then T has a fixed point 4 ∈ X, if any of the
following statements hold:

(a1) T is continuous at 4;
(a2) or T 2 is continuous at 4;
(a3) or κ1 + κ3 > 0, (or κ2 + κ3 > 0).

7 Admissible Hybrid Z-Contractions in b-Metric Spaces

Definition 20 ([43]) Let (X, d) be a b-metric space with constant s ≥ 1. A self-
mapping f is called an admissible hybrid contraction, if there exist ϕ : [0,∞) →
[0,∞) a b-comparison function and α : X ×X → [0,∞) such that

α(x, y)d(f x, fy) ≤ ϕ
(
Rq

f (x, y)
)
, (76)

where q ≥ 0 and λi ≥ 0, i = 1, 2, 3, 4, 5 such that
∑5

i=1 λi = 1 and

Rq
f d(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

[N(x, y)]1/q , for q > 0, x, y ∈ X,

P (x, y), for q = 0, x, y ∈ X.

(77)

where

N(x, y) := λ1d
q(x, y)+ λ2d

q(x, f x)+ λ3d
q(y, fy)

+λ4

(
d(y,fy)(1+d(x,f x))

1+d(x,y)
)q + λ5

(
d(y,f x)(1+d(x,fy))

1+d(x,y)
)q

,

and

P(x, y) := dλ1(x, y) · dλ2(x, f x) · dλ3(y, fy)

·
(
d(y,fy)(1+d(x,f x))

1+d(x,y)
)λ4 ·

(
d(x,fy)+d(y,f x)

2s

)λ5
.
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Definition 21 ([68]) Let (X, d) be a b-metric space with constant s ≥ 1. A map-
ping f : X → X is called admissible hybrid Z-contraction mapping if there is
ϕ : [0,∞) → [0,∞) a b-comparison function, α : X × X → [0,∞) and ζ ∈ Z
such that

ζ
(
α(x, y)d(f x, fy), ϕ

(
Rq

f (x, y)
))

≥ 0, for all x, y ∈ X, (78)

where Rq
f (x, y) is as above.

Theorem 21 ([43]) Let (X, d) be a complete b-metric space with constant s ≥ 1
and let f : X → X be an admissible hybrid Z-contraction. Suppose also that:

(i) f is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, f (x0)) ≥ 1;
(iii) either, f is continuous or
(iv) f 2 is continuous and α(f x, x) ≥ 1 for any x ∈ Fixf 2(X).

Then, f has a fixed point.

The idea of the proof can be deduced easily from the earlier proof of this chapter.
So, we skipped it.

Theorem 22 In the hypothesis of Theorem 21, if we assume supplementary that

α(x∗, y∗) ≥ 1,

for any x∗, y∗ ∈ Fixf (X), then the fixed point of f is unique.

Theorem 23 ([43]) Let (X, d) be a complete b-metric space with constant s ≥ 1,
f : X → X and α : X × X → [0,∞). Suppose that there exist two functions
φ1, φ2 ∈ Φ, with φ1(t) < t ≤ φ2(t), for all t > 0, such that

φ2 (α(x, y)d(f x, fy)) ≤ φ1

(
Rq

f (x, y)
)
. (79)

Furthermore, we suppose that:

(i) f is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, f (x0)) ≥ 1;
(iii) either, f is continuous or
(iv) f 2 is continuous and α(f x, x) ≥ 1 for any x ∈ Fixf 2(X).
(v) if x∗, y∗ ∈ Fixf (X), then α(x∗, y∗) ≥ 1.

Then, f has a unique fixed point.

Proof Let ζ (t, s) = φ1 (s) − φ2 (t) . According to Example 1, if φ1, φ2 ∈ Φ have
the property φ1(t) < t ≤ φ2(t) for all t > 0, then ζ ∈ Z . Thus, the desired results
follow from Theorems 21 and 22.
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Remark 3 It is clear that we deduce more results for setting ζ properly, as in
Example 1 and choosing admissible mapping α properly, as in Corollaries 7 and 9.

7.1 Hybrid Contractions in Branciari Distance Spaces

Definition 22 A self-mapping T on (X, d) is said to be a (p, c)-weight type ψ-
contraction, if, there exists ψ ∈ Ψ so that the following inequality holds for any s,
t ∈ X which are not fixed points of T

d(T s, T t) ≤ ψ(Wp,c
T (s, t)), (80)

where p ≥ 0, c = (c1, c2, c3), and c1, c2, and c3 are positive numbers such that
c1 + c2 + c3 = 1, and

Wp,c
T (s, t) =

{
(c1d

p(s, t)+ c2d
p(s, T s)+ c3d

p(t, T t))
1
p , if p > 0

dc1(s, t)dc2(s, T s)dc3(t, T t), if p = 0.

Theorem 24 Let (X, d) be a complete Branciari distance spaces and T : X → X

be an (p, c)-weight type ψ-contraction mapping. Then the mapping T possesses a
fixed point 5∗.
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2. J. Achari, On Ćirić’s non-unique fixed points, Mat. Vesnik, 13 (28)no. 3, 255–257 (1976).
3. R. P. Agarwal and E. Karapınar, Interpolative Rus-Reich-Ciric Type Contractions Via

Simulation Functions, An. St. Univ. Ovidius Constanta, Ser. Mat., Volume XXVII (2019)
fascicola 3 Vol. 27(3), 2019, 137–152.
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partial metric spaces, Mathematics 2018, 6, 256.

86. E. Karapınar, O. Alqahtani, H. Aydi, On interpolative Hardy-Rogers type contractions,
Symmetry, 2018, 11, 8.

87. E. Karapınar, A. Pitea, On alpha-psi-Geraghty contraction type mappings on quasi-Branciari,
metric spaces. J. Nonlinear Convex Anal., 2016, 17, 1291–1301.

88. E. Karapınar, A Short Survey on Dislocated Metric Spaces via Fixed-Point Theory, In
Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness; Banas, J.,

https://doi.org/10.3390/sym11010008
https://doi.org/10.3390/math6110256
https://doi.org/10.1007/s11784-018-0582-x
https://doi.org/10.3390/math6110256
https://doi.org/10.3390/sym11010008


474 E. Karapınar

Jleli, M., Mursaleen, M., Samet, B., Vetro, C., Eds.; Springer Nature Singapore Pte Ltd.:
Singapore, 2017; Chapter 13, pp. 457–483, doi:10.1007/978-981-10-3722-1.
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Identifying the Computational Problem
in Applied Statistics

Christos P. Kitsos and C. S. A. Nisiotis

1 Introduction

The problem of computation is it has two different lines of thought. The one is
how to perform calculations, perhaps creating a computer program, or through a
stat/math package. The second line of thought is to create a mathematical approach
to the problem and then when calculations are needed, most of the times a stochastic
model is created.

For the ladder two examples are:
The 13th problem of Hilbert can be stated as “can every continuous function of

3-variables to be expressed as a composition of finitely many continuous functions
of 2-variables.” The Russian Vladimir Arnold (1957–2010) when only 19 years old
solved the problem. For this famous problem Rassias and Simsa [41] offered an
extensively research for it coming across to nice results.

Moreover, part of work of S.L. Sobolev (1908–1989) and Kitsos and Tavoularis
[32] was considered confidential, [4] work as theoretical framework was related to
aeronautics. Moreover Kitsos and Tavoularis [33] working on logarithm Sobolev
Inequalities (LSI) generalizing entropy type Fisher’s information came across the
Generalized Normal Distribution emerged from an LSI.

As far as the former line of thought concerns a simple but nice problem is the
following
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Hack’s law is an empirical relationship between the length l of streams and the
area S of their basins as:

l = cSk

with c a constant and the exponent k around 0.6. The exponent k varies from region
to region.

Moreover Rigon et al. [42] working on Hack’s law were adopting probability
theory to investigate the problem, while Arnold (2011) presented a number of
calculations on Hack’s exponent for different rivers.

2 Computational Difficulties: GLM

Consider the classical General Linear Model (GLM), Graybill [16], Seber [45],
among others, of the form:

Y = Xβ + e (GLM)

where:

Y ∈ Rn×1 the response vector

X ∈ Rn×(p+1) the data matrix known as design matrix where xij = 0or1,i =
1, 2, . . . , n,i = 1, 2, . . . , p.

β ∈ R(p+1)×1 the vector of the involved linear parameters, and

e ∈ Rn×1 the stochastic error usually assumed with i.i.d. (independent identically
distributed) observations, with E(e) = 0, E(ee′) = Iσ 2 and I =
diag(1, 1, . . . , 1) ∈ Rn×n, σ 2 > 0 unknown.

We assume throughout this chapter that rank(X) = p + 1 < n.
It is well known that the Least Square Estimate (LSE) of β and σ 2 are:

β̂ = (XT X)−1XT Y

σ̂ 2 = 1

n− (p + 1)
Y T (I −X(XT X)−1XT )Y := s2.

The well-known Gauss–Markov theorem states that within the class of linear
unbiased estimators of β, the LSE has minimum variance.

Moreover when inference is needed the normal assumption is imposed, namely:

e ∼ N(0, Iσ 2)
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with N(α, β) being the Normal Distribution with mean α and variance β. In such a
case the LSE coincides with the MLE (= Maximum Likelihood Estimator) and they
are complete, sufficient unbiased statistics for β and σ 2, respectively, with

β̂ ∼ N(β, (XT X)−1σ 2) ˆCov(β̂) = (XT X)−1s2

and also β̂ and s2 are independent Grabill [16].
There are a number of techniques and criteria suggesting the way that the “best”

Regression Equation is obtained, based on the early work of Hocking [25], while an
early computer-oriented technique was due to LaMotte [34]. Moreover the difficulty
to overpass the computation problem in Regression Analysis in 1980s is reflected to
Graybill [16] who devotes a number of paragraphs on the subject.

We would like to clarify two important “hidden” calculations as far as a variable
is getting “in the model” or “out of the model.” Recently, in statistical packages are
appeared only the results. Here is what is the theory behind.

At any step the i-th variable from the given set of all variables involving the GLM
is eliminated from the p-term linear model if:

Fi = min
i

RSSp−i − RSSp

σ̂ 2
p

< Fout

where RSSκ is the Residual sum of squares for the κ-term model. Notice that the
value:

Fout = F1,n−p(α)

and Kennedy and Bancraft [28] at their early work recommended as the “best”
significant level α, α = 0.10.

Let d(β, β̂) be the Euclidean distance of the estimate β̂ from the true β, defined
as:

d = d(β, β̂) = (β̂ − β)T (β̂ − β).

If we consider the expected value of d, E(d) as:

L2 = E
[
(β̂ − β)T (β̂ − β)

]

then it holds:

Proposition 1 The expected value of the distance d is minimized when
σ 2tr(XT X)−1 is minimum:

minL2 = min
[
σ 2tr(XT X)−1

]
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Indeed:

L2 = E

[(
(XT X)−1XT Y − β

)T (
(XT X)−1XT Y − β

)]

= E

[

eT X
(
(XT X)−1

)T (
(XT X)−1XT e

)]

= tr
[
X(XT X)−1(XT X)−1XT Iσ 2

]

=+ E(eT )X
(
(XT X)−1

)T
(XT X)−1XE(e)

= σ 2tr
(
(XT X)(XT X)−1(XT X)−1

)
+ 0

= σ 2tr(XT X)T .

Corollary 1 If λi are the eigenvalues of
(
XTX

)
, i = 1, 2, . . . , k, then:

minL2 = σ 2 min
k∑

i=1

λ−1
i

Corollary 2 If there exists λi ≈ 0, then L2 dents to be large as d(β, β̂) is getting
large.

Due to Corollary 2 the corresponding to λi variableXi “does not offer” that much
to the model, so it is not included and a re-calculation of the regression is attempted.
Today computations it is not a problem, due to not only statistical packages, see
Appendix 2, but the problem of getting easy computations can be faced though
iteration techniques. We propose a method in the next paragraph.

2.1 Iterative R̄2
p Calculation

One crucial parameter in Regression Analysis is the coefficient of determination R2
p,

for the p-term model, Seber [45], Draper and Smith [11], Helland [24], Lawrance
[35], and Nelson [39] working on time series. In principle R2

p is “optimistic” in the
sense that might have values, near to 1, but still the model fitted to be a problem.
For n given observations the adjusted coefficient of determination, tries to be more
“realistic,” that is, to reflect the fit of the proposed regression linear model in a more
“accurate manner.” It is defined as:

R̄2
p = 1− n

n− p

(
1− R2

p

)
(1)
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If we let ρ to be the population multiple correlation coefficient, that is, the
correlation between y and

∑p

i=1 βiXi that is ρ2 is eventually equals to:

ρ2 = Var
(∑p

i=1 βiXi

)

Var(y)
(2)

then R̄2 is unbiased to R2 when ρ2 = 0. Notice that
∑p

i=1 βiXi is the linear
combination of p input variables from X1, . . . , Xp, . . . Xk that has the maximal
correlation with the response Y .

Mallow’s Cp-statistic for the p-term model, Mallows [37] has been a very
popular technique in the computation aspect of the Regression Analysis to evaluate
the number of variables in the model, due to its simplicity and to clear picture it
provides thanks to a simple graph. It is:

Cp = RSSp

σ̂ 2 − (n− 2p) (3)

with RSSp being the residual sum of squares for the corresponding p-term model
and σ̂ 2 a suitable estimator of the error, namely:

σ̂ 2 = RSSk+1

n− (k + 1)
(4)

when the “full model” contains k variables plus the constant term.
We state and prove a linear relation between R̄2

p and R̄2
p−1 through the Cp-

statistic.
We suppose that there exist k independent variables and we create a p-term linear

model

Y = β0 + β1X1 + · · · + βpXp + e

with 1 ≤ p ≤ k + 1. The βi , i = 1, . . . , p line parameters are estimated and R̄2
p is

evaluated. Then one variable is deleted and for the p − 1 term model holds:

Proposition 2 There is a linear relation between R̄2
p and R̄2

p−1 of the form:

R̄2
p−1 = α + βR̄2

p 1 ≤ p ≤ k − 1 (5)

Indeed, when the “full model” is fitted the R̄2
k+1 can be evaluated. Then for the

p-term model the following relation holds:

Cp =
1− R̄2

p

1− R̄2
k+1

(n− p)+ p − 1 (6)

see Seber [45, pg 368].
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The Cp-statistic is related to C − p − 1 linearly, Gorman and Toman [17] as:

Cp−1 = FiRSSp

σ̂ 2(n− p)
+ Cp − 2 (7)

with Fi is the corresponding of the F-statistic when the i-th variable is deleted from
the p-term model.

Considering Cp−1 and Cp as in (6) and substituting into (7) we obtain (5) that:

α = 1− FiRSSp
(
1− R̄2

k+1

)

σ̂ 2(n− p)(n− p + 1)
+ 1

n− p + 1

β = n− p

n− p + 1
(8)

Corollary. For values of n much larger than p, n >> p, it holds:

R̄2
p−1 = α∗ + R̄2

p,1 < p ≤ k (9)

Indeed, from Seber [45, pg. 369] it holds

Cp 2 p + 1− R̄2
p

Adopting the same procedure as in the proposition above, it can be proved that:

α∗ = 1− FiRSSp

σ̂ 2(n− p)
, β = 1.

Example 1 Consider the linear model

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + e

with X1 : amount of 3CaOAl2O3
X2 : amount of 3CaOSO2
X3 : amount of 4CaO.Al2O.Fe2O3
X3 : amount of 2CaOSO2
Y : temperature in cal/gr of ciment

See Draper and Smith [11]. The full model is
Y = 62.4 + 7.46X1 + 48.15X2 + 11.7X3 + 29.9X4. Table 1 summarizes the

calculations.

Notice that R̄2
3 = 0.97644747 when variables X1, X2, X3 participate in the

model with corresponding RSS3 = 47.972589 and F = 5.0258974, while s2 =
5.982 so we can evaluate from (7)
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Table 1 Results from
Example 1

Variables in model 100R2
p 100R̄2

p

X1 53.394 49.157

X2 66.626 63.529

X3 28.587 22.2209

X4 67.454 64.495

X1 X2 97.867 97.441

X1 X3 54.816 45.780

X1 X4 97.247 96.695

X2 X3 84.702 81.643

X2 X4 68.006 65.097

X3 X4 93.528 92.234

X2 X3 X4 98.228 97.637

X1 X2 X4 98.233 97.644

X1 X3 X4 98.128 95.504

X2 X3 X4 97.281 96.738

X1 X2 X3 X4 98.237 97.356

α = 0.081628 β = 0.9

so from (4) when variables X1, and X4 participants to the model

R̄2
2 = 0.9669534

which is as in Table 1, so the procedure has been verified correctly.
The “best” linear model can be the one with the maximum R̄2

p. This is equivalent

to the corresponding p-term subset of estimates β̂, and provides the best linear
model. This gives rise to the following algorithm:

A1: Check if n >> p so choose either (4) or (8)
A2: Fit the linear model with all the associated input variables
A3: Subtract one variable—better choose the one that F-test provides evidence to

be subtract.
A4: Do A3 up to one variable model
A5: Choose that model with p-variables which corresponds to

max
{
R̄2
p,p = 1, 2, . . . , k

}
.

The simplicity of the above algorithm and the fact that provides a save in
calculations provide some evidence that can be easily adopted in real-life problems
there is a need of the appropriate package to perform the calculations. Both
SPSS and Minitab are extensively used for the Regression Analysis calculations,
while Minitab provides easy calculations for Experimental Design Theory, Kitsos
[29], among others. For the D-optimal Design for a Copolymer Reactivity ratio
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Estimation, Burke et al. [8] adopted the symbolic algebra package MAPLE. That is,
for real-life problems there is a need of appropriate package to perform the involved
statistical calculations.

3 Difficulties: Adopting HF Calculation

In the sequence we define the Hypergeometric functions and discuss their difficulties
in Applied Statistics.

3.1 Hypergeometric Functions (HF) in Statistics

The Hypergeometric Functions (HF) play an important role in applications, since the
time that Gauss in 1812 presented his pioneering paper on “Disquisitiones Generales
Circa seriem infinitam 1 + α·β

γ ·1 + · · · ,” in Statistics too, Kitsos [31]. It is true that
J.K. Plaff was the first who referred to hypergeometric series, and we shall adopt
the term HF. Let us consider the function

h1/2(α; z) =
∞∑

r=0

Γ
(
α+r

2

)

Γ
(
α
2

)
zr

r! , z ∈ R, α > 0 (10)

Function (10) defines the non-central t distribution with n degrees of freedom
(df) and non-centrality parameter τ ∈ R, Graybill [16] among others.

From (10) we can create:

h1(α; z) =
∞∑

r=0

Γ (α + r)

Γ (α)

zr

r! , z ≥ 0, α > 0 (11)

which is part of the non-central X2
n(δ), δ > 0, the non-centrality parameter.

The confluent Hypergeometric function is “extending” (11) and is defined as:

H1,1(α;β; z) =
∞∑

r=0

Γ (α + r)

Γ (α)

Γ (β)

Γ (β + r)

zr

r! , z ≥ 0, α, β > 0 (12)

Based on H1,1(·, ·) the non-central Fm,n(φ) is defined, with φ the non-centrality
parameter. Eventually the Hypergeometric Function (HF) is defined as:

H2,1(α;β; γ ; z) =
∞∑

r=0

Γ (α + r)

α

Γ (β + r)

Γ (β)

Γ (γ )

Γ (γ + r)

zr

r! , |z| ≤ 1 (13)
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and can be applied to various sequential statistical tests: t , F , X2, T 2, Kitsos [29],
when invariant sequential Probability Ratio Test (SPRT) are considered, Ghosh [15].

The HF can be applied to Linear Optimal Design theory, Kitsos [31].
The following examples clarify the above discussion.

Example 2 Let Xi , i = 1, 2, . . . , n be independent random variables from the
Normal distribution, that is, Xi ∼ N(μi, σ

2
i ), i = 1, 2, . . . , n. We define zi =

xi−μi

σi
∼ N(0, 1). Let us define:

X2∗ :=
n∑

i=1

(
Xi

σi

)2

, t∗n :=
x̄n

sn/
√
n− 1

with:

x̄n = n−1
n∑

i=1

xi, s2
n = (n− 1)−1

n∑

i=1

(xi − x̄n)
2

Then X2∗ follows a non-central chi-square distribution with n df and non-
centrality parameter δ, t∗ν follows a non-central t distribution with n − 1 df and
non-centrality parameter τ , that is,

X2∗ ∼ X2
N(δ), δ2 =

n∑

i=1

(
μi

σi

)2

≥ 0

t∗n ∼ tn−1(τ ), τ 2 = n
μ2

σ 2 ∈ R.

The corresponding probability density function (pdf) follow the scheme:

pdf of non-central = pdf of central * exp
{

1
2

√
non− centralparameter

}
* HF.

Namely they are:

exp
{
− 1

2 sqofnon− centralparameter
}

fX2∗(w) = fX2(w) · exp
(
− δ2

2

)
h1

(
n
2 ; δ

2w
4

)
(14)

ft∗n (w) = ft (w) · exp
(
− τ 2

2

)
h1/2

(

n+ 1; τw
√

2√
n2+w2

)

(15)

Example 3 Consider the ratio of a non-central X2
n(δ) and a central X2

m, namely

F ∗n,m :=
X2
n(δ

2)/n

X2
m/m

∼ Fn,m(δ
2)
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that is, F ∗n,m follows a non-central F with pdf:

fF ∗n,m(w) = fF (w) exp

{

−δ2

2

}

H1,1

(
m+ n

2
,
m

2
; δ2mw

2(m+ n)

)

, δ2 ≥ 0, δ ∈ R

(16)
Notice that fX2(w), ft (w), fF (w) are the pdf of central X2, t , F distributions.

Now, let us consider another optical angle of the computational problem
applying non-central distributions. As non-central distributions are based on HF the
computational effort is clear.

Suppose we have paired observations z = (xi, yi), i = 1, 2, . . . , n coming from
the Bivariate Normal distribution (BND).

Then for n > 2 the pdf fn(r; ρ) of the estimate of r = rn, at stage n of the
sequential procedure for evaluation of the correlation coefficient ρ ∈ (−1, 1) of the
(BND), is a function of the HF H2,1, Kitsos [31], Anderson [2]:

fn(r; ρ) = γnα
ρ
rrα

q
ρρα

s
ρrH2,1

(
1

2
,

1

2
, n− 1

2
; 1+ rρ

2

)

(17)

with:

γn = (n− 2)√
2n

Γ (n− 1)

Γ
(
n− 1

2

) , ακλ = 1−κλ, p = n− 4

2
, q = n− 1

2
, s = −n+ 3

2

See also in Appendix 2, how HF can be evaluated.
Notice that −1 < r, ρ < 1 so H2,1(·; ·) exists. Moreover the SPRT, Ψn say, for

testing H0 : ρ = ρ0 vs H1 : ρ = ρ1, −1 < ρ0 < ρ1 < 1 is also a function of HF,
Ghosh [15], Kitsos [31].

Ψn = n− 1

2
ln
αρ1ρ1

αρ0ρ0

−
(

n− 3

2

)

ln
αρ1rn

αρ0rn

+ ln
A(ρ1, rn)

A(ρ0, rn)
, (18)

with

A(ρi, rn) = H2,1

(
1

2
,

1

2
, n− 1

2
; 1+ ρirn

2

)

, i = 0, 1, n > 2

and ακλ as above.
The above discussion points out the difficulty in computations based on HF.

In Kitsos [31] a number of calculations were proposed. The approximation in a
reasonable accepted number of terms can be a solution, depending on the problem
under investigation.
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3.2 Transformations Can Reduce Calculations

The non-central F distribution appears a computational difficulty therefore an
introduced transformation is reducing the computational effort.

The non-central Fn,m(q) distribution can be approximated by the typical F
distribution, Anderson [2], Patnaik [40], when Multiple—Multivariate—Sequential
T 2—comparisons arise, Kitsos [29].

Indeed: Let X1, X2, . . . , Xn be independent identical distributed (i.i.d) observa-
tions from the k-variate Normal distribution Nk(μ,Σ) with both the mean μ, and
covariance Σ unknown and det(Σ) > 0. An invariant SPRT for testing

H0 : μΣμT ≤ λ0vsH1 : μΣμT ≥ λ1

can be constructed from the statistic:

Vn = x̄(n)S−1(n)x̄T (n) (19)

with X̄k(n) the sample mean at stage n and S−1(n) the sample variance at stage n.
Then Vn follows a non-central F , Kitsos [29] as:

F ∗ = n− k

k
Vn ∼ Fk,n−k(nξ), ξ = μΣ−1μT (20)

with non-centrality parameter φ = nξ . But due to Patnaik [40], it is easier for the
computational burden to work, with F distribution as:

F̃ = n− k

k + nξ
Vn ∼ Fm,n−k, m = (k + nξ)2

k + 2nξ
(21)

That is the transformed F is now a central one but the transformation influence
the df of the distribution F as in (21), see the value m. Based on this result Kitsos
(1994) proceeds and defines the distribution of the sequential likelihood function
based on H1,1 function.

Consider the General Linear Model (GLM).
As far as the application on non-central chi-square recall (2) for the GLM in

Sect. 2 that

ρ2 = Var(
∑p

i=1 βixi)

Var(y)

Then, Helland [24] considered how useful the non-central chi-square distribution
is when estimating the ratio R2/(1− R2), defined as OR2 in this chapter:
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OR2 := R2

1− R2 =
SSR

SSE
= X2

p(δ)

X2
n−p−1

(22)

with the non-centrality parameter δ:

δ = ρ2

1− ρ2
X2
n−1

Eventually it can be proven that:

OR2 = (n− 1)k + p

n− p − 1
Fν,n−p−1 (23)

with ν appropriately and complicatedly defined, Helland [24]. See that the trans-
formation again influences the df as above with m in (21). Moreover in (23) the
approximation has been proved as an accurate one from the computational point of
view, which started from a non-central X2 in (22). That is the evaluation in (23)
avoids eventually the non-central distribution through a theoretical inside, Helland
[24]. This certainly is a real improvement, due to the computations needed to
evaluate a non-central F -distribution, as to evaluate a non-central distribution it is
not an easy task, see Appendix 1, where we elaborate the example.

4 Discussion

To proceed with the HF, Ledenev [36] in statistical problem is really very difficult.
Most of the researchers need the final result and not the theoretical insight. The
computational difficulties are not only computational. It can be mathematically
tedious to proceed with Hyperbolic Functions (HF) which are involved in non-
central distributions, Patnaik [40], as discussed already. That is, the calculations
in non-central distributions is rather complicated and Appendix II might be useful.

Discussing the Industrial Statistics, Baines [6] devoted two sections on statistical
computations and statistical packages. Now it is more easier to proceed on compu-
tations, not only in Statistics. The computation is more important when particular
problems are discussed, Lawrence [35], Nelson [39], Mallows [37, 38].

It is true that “the ancient Greeks mathematicians have believed there is little—if
anything—as unequivocal as a proved theorem”, Chaitin [10].

The Archimedean and Euclidean line of thought, we can say that, has been
transformed to Gödel and Turing line of thought. But still you need calculations!
You need numerical results despite an elegant Mathematical proof, Chaitin [9].

In this chapter we tried to discuss that the calculation problem, Sect. 2, is equally
important as the evaluation problem, through a complicated mathematical form,
Sect. 3.
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The appropriate package support provides an intrinsic effort to the procedure we
adopt to evaluate and the final solution of the problem under consideration.

Appendix 1: On Non-central Chi-Square

Lemma Let the random variable z′ = (z1, . . . , zk) ∼ N(μ,Cov(z))
where the form of Σ = Cov(z) is:

Σ = Cov(z) =

⎛

⎜
⎜
⎜
⎝

1− δ2
1 −δ1δ2 · · · −δ1δk

−δ1δ2 1− δ2
2

...
. . .

−δ1δk 1− δ2
k

⎞

⎟
⎟
⎟
⎠
= (δij

)
(24)

μ = (μ1, . . . , μk)
′ ,

k=1∑

j=1

δ2
j

with δij = −δiδj , i �= j = 1, 2, . . . , n, δii = 1− δ2
ii , i = 1, 2, . . . , n.

We want to prove that if:

ρ =
k∑

j=1

μ2
j −

k∑

j=1

δj , Q = z2
1 + . . .+ z2

k,

Then: Q ∼ X2
k−1(ρ)

Proof We notice that:

Σ = Cov(z) =
⎛

⎜
⎝

1 0
. . .

0 1

⎞

⎟
⎠−

⎛

⎜
⎜
⎜
⎝

δ2
1 δ1δ2 · · · δ1δk

δ1δ2 δ2
2

...
. . .

δ1δk δ2
k

⎞

⎟
⎟
⎟
⎠
= I −Δ (25)

We are looking for rank(Σ). Usually matrices of the form are independent. Let
us check that:

(I −Δ)2 = (I −Δ)(I −Δ) = I − 2Δ+Δ2

if: δ′ = (δ1, . . . , δk) then Δ = δδ′ ⇒ Δ2 = (δδ′)(δδ′) = δ δ′δ︸︷︷︸
Linear
P roduct

δ′ =

δ
(∑

δ2
i

)
δ′ = δδ′ = Δ. Hence from (25)
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(I −Δ)2 = I − 2Δ+Δ2 = I −Δ i.e., independent

Then: rank(Σ) = tr(Σ) = tr(I −Δ) = trI − trΔ = k −∑k
i=1 δ

2
i = k − 1

that is, the matrix Σ is not full of rank. �
We define:

Y0 =
k∑

i=1

δiyi i.e. Y0 = δ′Y

Then, as δδ′ = Δ and δ′δ = 1, thus

Y 2
0 = (δ′Y )′(δ′Y ) = Y ′δδ′Y = Y ′ΔY

then if we let U = Y ′AY ∼ X2
p(ρ), ρ = μ′Aμ.

Now due to ([16] Th. 4.43) AΣ is independent and rank(AΣ) = rank(I−Δ) =
k − 1. So U = Y ′(I −Δ)Y ∼ X2

k−1(ρ) with:

ρ=(μ1, . . . , μk)(I −Δ)

⎛

⎜
⎝

μ1
...

μk

⎞

⎟
⎠=(μ1, . . . , μk)I

⎛

⎜
⎝

μ1
...

μk

⎞

⎟
⎠− (μ1, . . . , μk)Δ

⎛

⎜
⎝

μ1
...

μk

⎞

⎟
⎠

=
k∑

i=1

μ2
i −

(
k∑

i=1

δiμi

)2

We have to prove that U and Y0 are independent.
Recall, ([16] Th. 4.52). If Y ∼ N(μ∼,Σ)withrank(Σ) = n, then:

If BΣA = 0 the quadratic form, U = Y ′AY is independent of the linear form
BY

In this case: Y0 =∑k
i=1 δiyi = δ′Y , that is, B = δ′ and Σ = I −Δ, A = I −Δ

Hence:

BΣA = δ′(I −Δ)(I −Δ) = δ′(I −Δ) = δ′ − δ′Δ = δ′ − δ′ δδ′︸︷︷︸
∑

δ2
i =1

= δ′ − δ′ = 0

So Y0 is independent of U = Y 2
1 +· · ·+Y 2

k −Y 2
0 and as Yi ∼ N(μi, 1) and it holds:

Y0 =
k∑

j=1

δjYj ∼ N

⎛

⎝
k∑

j=1

δjμj ,

k∑

j=1

δ2
j

⎞

⎠ = N(μ0, 1) (26)
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Let us denote:

Y∼
(i) = (Yi, Y0) ∼ N

(
(μi, μ0),Σ

(i)
)

where:

Σ(i) =
(

Var Yi Cov(Yi, Y0)

Cov(Yi, Y0) VarY0

)

=
(

1 Cov(Yi, Y0)

Cov(Yi, Y0) 1

)

We evaluate:

Cov(Y (i)) = Cov(Yi, Y0) = Cov

⎛

⎝Yi,

k∑

j=1

Cov(Yi, δjYj )

⎞

⎠ =
k∑

j=1

δj Cov(Yi, Yj )

= 0+ 0+ · · · + 0+ δi Cov(YiYj )+ 0+ · · · + 0 = δi

Hence:

Σ(i) =
(

1 δi

δi
∑

δ2
i

)

=
(

1 δi

δi 1

)

We evaluate:

E(Yi |Y0) =
∫ α

−α
yif (yi |y0)dyi =

∫ α

−α
yi
f (yi, y0)

fY0(y0)
dyi

As Yi , Y0 are normal it holds:

f (yi, y0) = 1

2π

√
1− δ2

i

exp

{

− 1

2(1− δ2
i )

[
(yi − μi)

2

−2δi(yi − μi)(y0 − μ0)+ (y0 − μ0)
2
]
⎫
⎬

⎭

and:

fY0(y0) = 1√
2π

exp
{
−(y0 − μ0)

2
}

Taking the condition on Y0 = μ0 we calculate:
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f (yi, y0)

fY0(y0)
=

1

2π

√
1−δ2

i

e

1
2(1−δ2

i
)

[
(yi−μi)

2−2δi (yi−μi)(y0−μ0)+(y0−μ0)
2
]

1√
2π
e−(y0−μ0)

2

= 1

2π

√
1− δ2

i

exp

{
1

2(1− δ2
i )

[
(yi − μi)

2 − 2δi(yi − μi)(y0 − μ0)

+(y0 − μ0)
2
]
⎫
⎬

⎭

Hence:

E(Yi |Y0 = μ0) =
∫ ∞

−∞
yi

1
√

2π

√
1− δ2

i

exp

{

− 1

2(1− δ2
i )
(yi − μi)

2

}

dyi

⇒ E(Yi) = μi = E(Zi)

For evaluating the Cov(Yi, Yj |Y0) we evaluate the distribution of (Yi, Yj |Y0).
Notice that (Yi, Yj , Y0)

′ is multivariate normal, with mean vector (μi, μj , μ0)
′

and covariance matrix:

Σ(i,j) =
⎛

⎝
Var(Yi) Cov(Yi, Yj ) Cov(Yi, Y0)

Cov(Yj , Yi) Var(Yj ) Cov(Yj , Y0)

Cov(Yi, Y0) Cov(Yj , Y0) Var(Y0)

⎞

⎠ =
⎛

⎝
1 0 δi

0 1 δj

0 0 1

⎞

⎠

Thus:

Σ−1
(i,j) =

1

1− δ2
i − δ2

j

⎛

⎜
⎝

1− δ2
j −δiδj δi

−δiδj 1− δ2
i δj

δi −δj 1

⎞

⎟
⎠

And hence:

f (yi , yj , y0) = 1

(2π)3/2(1− δ2
i − δ2

j )
1/2

× exp

⎧
⎪⎪⎨

⎪⎪⎩
−1

2
(yi − μi, yj − μj , y0 − μ0)Σ(i,j)(yi − μi, yj − μj , y0 − μ0)

︸ ︷︷ ︸
T

⎫
⎪⎪⎬

⎪⎪⎭
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Conditioning again on y0 − μ0 we evaluate

T = 1

1− δ2
i − δ2

j

(yi − μi, yj − μj , 0)

⎛

⎝
1− δ2

i −δiδj δi

−δiδj 1− δ2
i −δj

δi −δj 1

⎞

⎠

⎛

⎝
yi − μi

yj − μj

0

⎞

⎠

= 1

1− δ2
i − δ2

j

(yi − μi, yj − μj )

(
1− δ2

i −δiδj
−δiδj 1− δ2

i

)(
yi − μi

yj − μj

)

= (yi − μi, yj − μj )Λ

(
yi − μi

yj − μj

)

,withthedefinitionofΛobvious.

Thus fY (y0 = μ0) = 1√
2π
e−(y0−μ0)

2 = 1√
2π

. Hence:

f (yi , yj , y0 = μ0)

fy(y0 = μ0)
=

1
(2π)1/2(1−δ2

i −δ2
j )

1/2 exp
{
− 1

2 (yi − μi, yj − μj )Λ(yi − μi, yj − μj )
}

√
2π

= 1

2π(1− δ2
i − δ2

j )
exp

{

−1

2
(yi − μi, yj − μj )Λ(yi − μi, yj − μj )

}

(27)

If we find matrix Σ∗ such the Σ∗ = Λ−1 it is known from the multivariate
statistics that the (27) will represent multivariate normal.

Indeed:

Σ∗ = Λ−1 =
(

1− δ2
j −δiδj

−δiδj 1− δ2
i

)

Hence:

(Yi, Yj |Y0 = μ0) ∼ N(( ui, μj ),Σ
∗)

That is:

Cov(Yi, Yj |Y0) = Cov(zi, zj )

Now consider a normal random vector (Z1, . . . , Zk) with respective expectations
(μ1, . . . , μk) and the following covariances:

Var(Zj ) = 1− τ 2
j , j = 1, . . . , k, Cov(Zj , Zg) = −τj τg, 1 ≤ j �= g ≤ k

(28)
where τ1, . . . , τk are nonnegative numbers such that
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k∑

j=1

τ 2
j = 1 (29)

Theorem Under the above assumptions the statistic:

Q = Z2
1 + · · · + Z2

k (30)

Has a non-central X2-distribution with k − 1 degrees of freedom and non-
centrality parameter

δ =
k∑

j=1

μ2
j −

⎛

⎝
k∑

j=1

μjτj

⎞

⎠

2

(31)

Proof Let Y1, . . . , Yk be independent normal random variables with respective
expectations μ1, . . . , μk and variances 1. Put:

Y0 =
k∑

j=1

τjYj (32)

Then in view of (29),

Y 2
1 + · · · + Y 2

k − Y 2
0 (33)

has a non-central X2-distribution with k − 1 degrees of freedom and non-centrality
parameter (31), and is independent of Y0. Consequently, (33) has the same distribu-
tion conditionally for Y0 = 0. However for Y0 = 0 the conditional expectations and
covariances of Y1, . . . , Yk coincide with those assumed concerning Z1, . . . , Zk . �

Appendix 2: Numerical Evaluation of Hypergeometric
Function

Statistical and mathematical software available for computers are nowadays the
most convenient way to evaluate the Gauss Hypergeometric Function. There are
more than one software, that is, a user can explore (HF) among which Mathematica
(command Hypergeometric2F1[a, b, c, z]; for both inside and outside
of the unit circle), Maple (command hypergeom([n1, n2, ...], [d1,
d2, ...], z); computes the generalized hypergeometric function), Maxima
(command hypergeometric([a1, ..., ap], [b1, ..., bq], x);

the function supports evaluation outside the unit circle), Sage (command
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hypergeometric([], [], x); the function implements manipulation of
infinite hypergeometric series), and also R.

In the latter, there are three numerical implementations for (HF) included in
packages gsl [21] (command hyperg_2F1(a, b, c, x, give=FALSE,
strict=TRUE); does not cover complex values), appell [7] (command hyp2f1(
a, b, c, z, algorithm = c(“michel.stoitsov”, “forrey”));
fast computation with all the parameters complex) and hypergeo [23]. The third
package, hypergeo (command hypergeo(A, B, C, z, tol = 0,
maxiter=2000)) is offered as an R-centric suite of functionality with emphasis
on multiple evaluation methodologies, and transparent coding with nomenclature
and structure that of Abramowitz and Stegun [1]. The package implements a
generalization of the method of Forrey [13] to the complex case. It utilizes the
observation that the ratio of successive terms approaches z, and thus the strategy
adopted is to seek a transformation which reduces the modulus of z to a minimum
[22].

Recall relation (17). Suppose we are at the fourth iteration to evaluate sequen-
tially ρ = 0.475. In this case n = 5 and we let r4 = r = 0.41 (after loading the
appropriate backage “hypergeo”). Then:

> install.packages("hypergeo", repos = "https://cloud.r-project.org/" )
> library (hypergeo)
> A0 <− 1/2; B0 <− 1/2
> C0 <− 5 − 1/2; z0 <− (1 + 0.41 ∗ 0.475) / 2
> hypergeo(A = A0, B = B0, C = C0, z = z0)
[1] 1.038289+0i

Moving n + 1 = 6 six observations we proceed with n = 6, r = 0.412, and
ρ = 0.475:

> C0 <− 6 − 1/2; z0 <− (1 + 0.412 ∗ 0.475) / 2
> hypergeo(A = A0, B = B0, C = C0, z = z0)
[1] 1.030591+0i

Moving on to n = 7, r = 0.48, and p = 0.475:

> C0 <− 7 − 1/2; z0 <− (1 + 0.48 ∗ 0.475) / 2
> hypergeo(A = A0, B = B0, C = C0, z = z0)
[1] 1.026204+0i

So the evaluate HF through (17) functions are computed in [1], as above.
It should be clarified, however, that although more than enough options are

available, the evaluation of the HF is hard, as evidenced by the extensive literature
concerning its numerical evaluation [22].
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Fractional Integral Operators in Linear
Spaces

Jichang Kuang

Abstract In this chapter, we introduce some new fractional integral operators and
fractional area balance operators in n-dimensional linear spaces. The corresponding
integral operator inequalities are established. They are significant improvement and
generalizations of many known and new classes of fractional integral operators.

Mathematics Subject Classification 26A33, 26D10, 26A51

1 Introduction

It is well-known that fractional integral operator is one of the important operators
in harmonic analysis with background of partial differential equations. In fact,
the solution of the Laplace equation 9g = f for good functions on R

n can
be represented by using the fractional integral operators acting on f . Recently,
different versions of fractional integral operators have been developed which are
useful in the study of different classes of differential and integral equations. These
fractional integral operators act as ready tools to study the classes of differential
and integral equations. Hence, fractional integral inequalities are very important in
the theory and applications of differential equations. Such inequalities are also of
great importance in the mathematical modeling of the fractional boundary value
problems. First, we recall the following definitions and some related results.

Definition 1 (cf. [1, 2, 6, 7]) Let f ∈ L[a, b], then Riemann–Liouville fractional
integrals of f of order α > 0 with a ≥ 0 are defined by

T1(f, x) = 1

�(α)

∫ x

a

(x − t)α−1f (t)dt x > a, (1)
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and

T2(f, x) = 1

�(α)

∫ b

x

(t − x)α−1f (t)dt, x < b, (2)

respectively, where

�(α) =
∫ ∞

0
tα−1e−t dt (3)

is the Gamma function and when α = 0, T1(f, x) = T2(f, x) = f (x).

Definition 2 (cf. [3]) Let f ∈ L[a, b], then Riemann–Liouville k-fractional
integrals of f of order α > 0 with a ≥ 0 are defined by

T3(f, x) = 1

k�k(α)

∫ x

a

(x − t)(α/k)−1f (t)dt, , x > a, (4)

and

T4(f, x) = 1

k�k(α)

∫ b

x

(t − x)(α/k)−1f (t)dt, x < b, (5)

respectively, where

�k(α) =
∫ ∞

0
tα−1e−(tk/k)dt, α > 0, (6)

is the k-Gamma function. Also, �(x) = limk→1 �k(x), �k(α) = k(α/k)−1�(α/k)

and �k(α + k) = α�k(α).

It is well known that the Mellin transform of the exponential function exp−tk/k is
the k-Gamma function.

Definition 3 (cf. [4, 5]) Let f ∈ L1,r [a, b], a ≥ 0, then the generalized Riemann–
Liouville fractional integral of f of order (α, r) is defined by

T5(f, x) = (r + 1)1−α

�(α)

∫ x

a

(xr+1 − t r+1)α−1t rf (t)dt, x > a, (7)

T6(f, x) = (r + 1)1−α

�(α)

∫ b

x

(tr+1 − xr+1)α−1t rf (t)dt, x < b, (8)

and

T7(f, x) = (r + 1)1−(α/k)

k�k(α)

∫ x

a

(xr+1 − t r+1)(α/k)−1t rf (t)dt, x > a, (9)
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T8(f, x) = (r + 1)1−(α/k)

k�k(α)

∫ b

x

(tr+1 − xr+1)(α/k)−1t rf (t)dt, x < b, (10)

respectively, where k, α > 0, r ≥ 0, x ∈ [a, b].
In particular, if r = 0, then definition 3 reduces to definitions 1 and 2.

Definition 4 (cf. [11, 12]) Let f be a conformable integrable function on [a, b] ⊂
[0,∞).The right-sided and left-sided generalized conformable fractional integrals
T9 and T10 of f of order α > 0 are defined by

T9(f, x) = 1

�(α)

∫ x

a

(
xr+s − t r+s

r + s

)α−1

t r+s−1f (t)dt, x > a, (11)

and

T10(f, x) = 1

�(α)

∫ b

x

(
t r+s − xr+s

r + s

)α−1

t r+s−1f (t)dt x < b, (12)

respectively, where r, s ≥ 0, r + s �= 0.

In particular, if s = 1, then T9, T10 reduce to T5, T6 , respectively.

Definition 5 (cf. [8, 9]) Let f ∈ L[a, b], g : [a, b] → (0,∞) be an increasing
function, and g

′ ∈ C[a, b], α > 0.Then g-Riemann–Liouville fractional integrals
of f with respect to the function g on [a, b] are defined by

T11(f, x) = 1

�(α)

∫ x

a

g
′
(t)[g(x)− g(t)]α−1f (t)dt, x > a, (13)

and

T12(f, x) = 1

�(α)

∫ b

x

g
′
(t)[g(t)− g(x)]α−1f (t)dt, x < b, (14)

respectively .

In 2018, S.S. Dragomir [10] introduced the new notion of the area balance function:

Definition 6 ([10]) Let f ∈ L[a, b], then the area balance function of f is defined
by

T13(f, x) = 1

2

{∫ b

x

f (t)dt −
∫ x

a

f (t)dt

}

. (15)

In 2020, Kuang [16] introduced the new notion of the generalized fractional integral
operators and fractional area balance operators :
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Definition 7 ([16]) Let f ∈ L[a, b], g : [a, b] → (0,∞) be an increasing
function, and g ∈ AC[a, b], k, c, α > 0, a ≥ 0 . Then the generalized fractional
integral operator T14 with respect to the function g on [a, b] is defined by

T14(f, x) = c

k�k(α)

∫ b

a

g
′
(t)|g(x)− g(t)|(α/k)−1f (t)dt, (16)

where �k(α) is defined by (6).

Let

T15(f, x) = c

k�k(α)

∫ x

a

g
′
(t)[g(x)− g(t)](α/k)−1f (t)dt, x > a, (17)

and

T16(f, x) = c

k�k(α)

∫ b

x

g
′
(t)[g(t)− g(x)](α/k)−1f (t)dt, x < b. (18)

Then

T14(f, x) = T15(f, x)+ T16(f, x). (19)

In particular, if c = k = 1 in (19), then (19) reduces to

T14(f, x) = T11(f, x)+ T12(f, x). (20)

If c = (r + s)−α, g(t) = t r+s , r, s ≥ 0, r + s �= 0, k = 1 in (19), then (19) reduces
to

T14(f, x) = T9(f, x)+ T10(f, x). (21)

If c = (r + 1)−(α/k), g(t) = t r+1, r ≥ 0, in (19), then (19) reduces to

T14(f, x) = T7(f, x)+ T8(f, x). (22)

If s = 1 in (21), then (21) reduces to

T14(f, x) = T5(f, x)+ T6(f, x). (23)

If r = 0 in (22), then (22) reduces to

T14(f, x) = T3(f, x)+ T4(f, x). (24)
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If k = 1 in (24), then (24) reduces to

T14(f, x) = T1(f, x)+ T2(f, x). (25)

We can also rewrite T9 and T10 as

T9(f, x) = (r + s)1−α

�(α)

∫ x

a

(xr+s − t r+s)α−1t r+s−1f (t)dt, x > a,

and

T10(f, x) = (r + s)1−α

�(α)

∫ b

x

(tr+s − xr+s)α−1t r+s−1f (t)dt, x < b,

and then generalize them to

T17(f, x) = (r + s)1−(α/k)

k�k(α)

∫ x

a

(xr+s − t r+s)(α/k)−1t r+s−1f (t)dt, x > a,

(26)
and

T18(f, x) = (r + s)1−(α/k)

k�k(α)

∫ b

x

(tr+s−xr+s)(α/k)−1t r+s−1f (t)dt, x < b. (27)

If c = (r + s)−(α/k), g(t) = t r+s , r, s ≥ 0, r + s �= 0 in (19), then (19) reduces to

T14(f, x) = T17(f, x)+ T18(f, x). (28)

Definition 8 ([13, 14]) Let f ∈ L[a, b], a ≥ 0. The left-sided and right-sided
Hadamard fractional integrals T19 and T20 of f of order α > 0 are defined by

T19(f, x) = 1

�(α)

∫ x

a

(log x − log t)α−1t−1f (t)dt, x > a,

and

T20(f, x) = 1

�(α)

∫ b

x

(log t − log x)α−1t−1f (t)dt, x < b,

respectively.

We can generalize them to

T21(f, x) = 1

k�k(α)

∫ x

a

(log x − log t)(α/k)−1t−1f (t)dt, x > a,
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and

T22(f, x) = 1

k�k(α)

∫ b

x

(log t − log x)(α/k)−1t−1f (t)dt, x < b.

If c = 1, g(t) = log t in (19), then (19) reduces to

T14(f, x) = T21(f, x)+ T22(f, x).

In particular, if k = 1, then

T14(f, x) = T19(f, x)+ T20(f, x).

Definition 9 Under the assumptions of Definition 7, the fractional area balance
operators T24 with respect to the function g on [a, b] is defined by

T24(f, x) = c

k�k(α)
{
∫ b

x

g
′
(t)[g(t)− g(x)](α/k)−1f (t)dt

−
∫ x

a

g
′
(t)[g(x)− g(t)](α/k)−1f (t)dt}, (29)

where �k(α) is defined by (6).

Using (17) and (18), we have

T24(f, x) = T16(f, x)− T15(f, x). (30)

In particular, if c = (r+ s)−(α/k), g(t) = t r+s , r, s ≥ 0, r+ s �= 0 in (30), then (30)
reduces to

T24(f, x) = T18(f, x)− T17(f, x). (31)

If g(t) = t, α = k = 1, c = 1/2 in (30), then T24 reduces to T13 . If c = k = 1
in (30), then (30) reduces to

T24(f, x) = T12(f, x)− T11(f, x). (32)

If c = (r + s)−α, g(t) = t r+s , r, s ≥ 0, r + s �= 0, k = 1 in (30), then (30) reduces
to

T24(f, x) = T10(f, x)− T9(f, x). (33)

If c = (r + 1)−(α/k), g(t) = t r+1, r ≥ 0 in (30), then (30) reduces to

T24(f, x) = T8(f, x)− T7(f, x). (34)
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If k = 1 in (34), then (34) reduces to

T24(f, x) = T6(f, x)− T5(f, x). (35)

If r = 0 in (34), then (34) reduces to

T24(f, x) = T4(f, x)− T3(f, x). (36)

If k = 1 in (36), then (36) reduces to

T24(f, x) = T2(f, x)− T1(f, x). (37)

If c = 1, g(t) = log t in (30), then (30) reduces to

T24(f, x) = T22(f, x)− T21(f, x).

In particular, if k = 1, then

T24(f, x) = T20(f, x)− T19(f, x).

Hence, Definitions 7 and 9 unified and generalized many known and new classes of
fractional integral operators. In 2020, by using Definition 10 and Lemma 1, Kuang
[16] proves some inequalities for operators T14 and T24 .

Definition 10 ([1]) Let [a, b] ⊂ [0,∞), h : [a, b] → (0,∞) be the given function.
A function f : [a, b] → [0,∞) is called exponentially (β, s, s1, s2, h)-strongly
convex if

f (tx1 + (1− t)x2) ≤
{

t ss1

(
f (x1)

er0x1

)β

+(1− t s2)s
(
f (x2)

er0x2

)β
}1/β

− t (1− t)h(|x1 − x2|), (38)

where x1, x2 ∈ [a, b], t, s, s1, s2 ∈ [0, 1], r0, β ∈ R, β �= 0.

Lemma 1 ([16]) Let [a, b] ⊂ [0,∞), f ∈ L[a, b], g : [a, b] → [0,∞) be an
increasing function, and g ∈ AC[a, b], k, α, c > 0, then

T14(f, x) = [T16(1, x)+ T15(1, x)]f (x)

+
∫ b

x

G16(1, t)f
′
(t)dt −

∫ x

a

G15(1, t)f
′
(t)dt, (39)

and
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T24(f, x) = [T16(1, x)− T15(1, x)]f (x)

+
∫ b

x

G16(1, t)f
′
(t)dt +

∫ x

a

G15(1, t)f
′
(t)dt (40)

where G15(1, t) and G16(1, t) are defined by

G15(1, t) = c

k�k(α)

∫ t

a

g
′
(u)[g(x)− g(u)](α/k)−1du, (41)

and

G16(1, t) = c

k�k(α)

∫ b

t

g
′
(u)[g(u)− g(x)](α/k)−1du, (42)

and T14, T15, T16, T24 and �k(α) are defined by (16), (17), (18), (29), and (6),
respectively.

Theorem 1 ([16]) Under the assumptions of Lemma 1, let f
′ ∈ Lp[a, b], a ≥ 0,

1 ≤ p < ∞, 1
p
+ 1

q
= 1, and for p = 1, define q = ∞, 1

∞ = 0 . If 1 < p < ∞,
then

|T14(f, x)− [T15(1, x)+ T16(1, x)]f (x)|

≤ {(
∫ x

a

|G15(1, t)|qdt)1/q + (

∫ b

x

|G16(1, t)|qdt)1/q}‖f ′ ‖p. (43)

If p = 1, then

|T14(f, x)− [T15(1, x)+ T16(1, x)]f (x)| ≤ ‖G‖∞‖f ′ ‖1, (44)

where

G(t) = G16(1, t)ϕD2(t)−G15(1, t)ϕD1(t), (45)

D1 = [a, x],D2 = [x, b], and ϕD is the characteristic function of the setD, that is,

ϕD(t) =
{

1, t ∈ D

0 x ∈ Dc.

Theorem 2 ([16]) Under the assumptions of Lemma 1, if |f ′ |p is exponentially
(β, s, s1, s2, h)-strongly convex on [a, b], and s

β
+1 > 0. If 1 < p <∞, 1

p
+ 1

q
= 1,

then

|T24(f, x)− [T16(1, x)− T15(1, x)]f (x)|
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≤
(∫ b

x

|G16(1, t)|qdt
)1/q

(b − x)1/p

×
{

Cβ [ β

ss1 + β

|f ′
(b)|p
er0b

+ 1

s2
B(

s

β
+ 1,

1

s2
)
|f ′

(x)|p
er0x

] − 1

6
h(b − x) }1/p

+
(∫ x

a

|G15(1, t)|qdt
)1/q

(x − a)1/p

×
{

Cβ [ β

ss1 + β

|f ′
(x)|p
er0x

+ 1

s2
B(

s

β
+ 1,

1

s2
)
|f ′

(a)|p
er0a

] − 1

6
h(x − a)

}1/p

. (46)

If p = 1, then

|T24(f, x)− [T16(1, x)− T15(1, x)]f (x)|

≤ ‖G16‖∞(b − x)

{

Cβ

[
β

ss1 + β

|f ′
(b)|

er0b

+ 1

s2
B

(
s

β
+ 1,

1

s2

) |f ′
(x)|

er0x

]

− 1

6
h(b − x)

}

+‖G15‖∞(x − a)

{

Cβ

[
β

ss1 + β

|f ′
(x)|

er0x

+ 1

s2
B

(
s

β
+ 1,

1

s2

) |f ′
(a)|

er0a

]

− 1

6
h(x − a)

}

where

Cβ =
{

1 β ≥ 1,
2(1/β)−1, 0 < β < 1.

(47)

and

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt

is the Beta function.
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It is noted that all the fractional integral operators above are established for functions
of one variable .We naturally ask, how do we generalize these results to functions
of several variable? In 2014, Sarikaya [17] gives the definitions Riemann–Liouville
fractional integrals of two variable functions:

Definition 11 ([17, 18]) Let Q = [a, b]×[c, d] =⋃4
k=1 Qk , where Q1 = [a, x]×

[c, y],Q2 = [a, x] × [y, d],Q3 = [x, b] × [c, y],Q4 = [x, b] × [y, d]. The
Riemann–Liouville fractional integrals Ik(1 ≤ k ≤ 4) are defined by

I1(f ; x, y) = 1

�(α)�(β)

∫

Q1

(x − t)α−1(y − s)β−1f (t, s)dsdt,

I2(f ; x, y) = 1

�(α)�(β)

∫

Q2

(x − t)α−1(s − y)β−1f (t, s)dsdt,

I3(f ; x, y) = 1

�(α)�(β)

∫

Q3

(t − x)α−1(y − s)β−1f (t, s)dsdt,

and

I4(f ; x, y) = 1

�(α)�(β)

∫

Q4

(t − x)α−1(s − y)β−1f (t, s)dsdt.

Obviously, the above definition does not apply to general functions on R
n+ . The aim

of this chapter is to introduce some new generalized fractional integral operators
and fractional area balance operators on n-dimensional linear spaces En which
includes Rn+ as the special case. In Sect. 2, we define generalized fractional integral
operators and fractional area balance operators on En. In Sect. 3, some Lemmas are
derived .The corresponding integral operator inequalities are established in Sects. 4
and 5. They are significant improvement and generalizations of many known and
new classes of fractional integral operators.

2 Generalized Fractional Integral Operators and Fractional
Area Balance Operators

Throughout this chapter, we write

En = {x = (x1, x2, · · · , xn) : xk ≥ 0, 1 ≤ k ≤ n, ‖x‖ =
(

n∑

k=1

|xk|r
)1/r

, r > 0}.

En is an n-dimensional linear space, when 1 ≤ r <∞, En is a normed vector space.
In particular, when r = 2,En is an n-dimensional Euclidean space Rn+. When r = 1,
‖x‖ =∑n

k=1 |xk| is a Cartesian norm. Let
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D = {x = (x1, x2, · · · , xn) : xk ≥ 0, 1 ≤ k ≤ n, 0 ≤ a < ‖x‖ < b} ,
D1 = {y = (y1, y2, · · · , yn) : yk ≥ 0, 1 ≤ k ≤ n, 0 ≤ a < ‖y‖ < ‖x‖, x ∈ En},
D2 = {y = (y1, y2, · · · , yn) : yk ≥ 0, 1 ≤ k ≤ n, ‖x‖ < ‖y‖ < b, x ∈ En}.

Definition 12 Let f ∈ L[a, b], g : [a, b] → (0,∞) be an increasing function, and
g ∈ AC[a, b], k, c, α > 0, a ≥ 0.Then the generalized fractional integrals operator
T25 with respect to the function g on D is defined by

T25(f, x) = c

k�k(α)

∫

D

g
′
(‖y‖)|g(‖x‖)− g(‖y‖)|(α/k)−1f (‖y‖)dy, (48)

where �k(α) is defined by (6)

Let

T26(f, x) = c

k�k(α)

∫

D1

g
′
(‖y‖)[g(‖x‖)− g(‖y‖)](α/k)−1f (‖y‖)dy, (49)

and

T27(f, x) = c

k�k(α)

∫

D2

g
′
(‖y‖)[g(‖y‖)− g(‖x‖)](α/k)−1f (‖y‖)dy. (50)

Thus,

T25(f, x) = T26(f, x)+ T27(f, x). (51)

The fractional area balance operator with respect to the function g on D is defined
by

T28(f, x) = T27(f, x)− T26(f, x). (52)

In particular, if n = r = 1 in Definition 12, then Definition 12 reduces to
Definitions 7 and 9.

3 Some Lemmas

We require the following Lemmas to prove our main results.

Lemma 2 ([15]) If ak, bk, pk > 0, 1 ≤ k ≤ n, f be a measurable function on
(0,∞), then
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∫

B(r1,r2)

f

(
n∑

k=1

(xk

ak

)bk

)

x
p1−1
1 · · · xpn−1

n dx1 · · · dxn

=
∏n

k=1 a
pk
k∏n

k=1 bk
·
∏n

k=1 �
(pk
bk

)

�
(∑n

k=1
pk
bk

)

∫ r2

r1

f (t)t
(
∑n

k=1
pk
bk
−1)

dt.

where B(r1, r2) = {x ∈ En : 0 ≤ r1 < ‖x‖ < r2}.
We get the following Lemma 3 by taking ak = 1, bk = r > 0, pk = 1, 1 ≤ k ≤
n, r1 = a, r2 = b in Lemma 2.

Lemma 3 Let f be a measurable function on (0,∞), then

∫

D

f (‖x‖)dx = (�(1/r))n

rn�(n/r)

∫ b

a

f (t1/r )t (n/r)−1dt. (53)

Lemma 4 Let [a, b] ⊂ [0,∞), f ∈ L[a, b], g : [a, b] → [0,∞) be an increasing
function, and g ∈ AC[a, b], k, α, c > 0, then

T25(f, x) = [T26(1, x)+ T27(1, x)]f (‖x‖1/r )

+r
[∫ b

‖x‖
G27(1, t)t

1−(1/r)f ′
(t1/r )dt

−
∫ ‖x‖

a

G26(1, t)t
1−(1/r)f ′

(t1/r )dt

]

, (54)

and

T28(f, x) = [T27(1, x)− T26(1, x)]f (‖x‖1/r )

+r
[∫ b

‖x‖
G27(1, x)t

1−(1/r)f ′
(t1/r )dt

+
∫ ‖x‖

a

G26(1, t)t
1−(1/r)f ′

(t1/r )dt

]

, (55)

where G26(1, t) and G27(1, t) are defined by

G26(1, t) = c

k�k(α)
× �n(1/r)

rn�(n/r)

×
∫ t

a

g
′
(u1/r )

[
g(‖x‖)− g(u1/r )

](α/k)−1
u(n/r)−1du, (56)

and
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G27(1, t) = c

k�k(α)
× �n(1/r)

rn�(n/r)

×
∫ b

t

g
′
(u1/r )

[
g(u1/r )− g(‖x‖)

](α/k)−1
u(n/r)−1du, (57)

and T25, T26, T27, and T28 are defined by (48), (49), (50), and (52), respectively.

Proof From (49), (50) and Lemma 3, we have

T26(f, x) = c

k�k(α)

∫

D1

g
′
(‖y‖)[g(‖x‖)− g(‖y‖)](α/k)−1f (‖y‖)dy

= c

k�k(α)
× �n(1/r)

rn�(n/r)

∫ ‖x‖

a

g
′
(t1/r )

[
g(‖x‖)− g(t1/r )

](α/r)−1

×f (t1/r )t (n/r)−1dt, (58)

and

T27(f, x) = c

k�k(α)

∫

D2

g
′
(‖y‖)[g(‖y‖)− g(‖x‖)](α/k)−1f (‖y‖)dy

= c

k�k(α)
× �n(1/r)

rn�(n/r)

∫ b

‖x‖
g
′
(t1/r )

[
g(t1/r )− g(‖x‖)

](α/r)−1

×f (t1/r )t (n/r)−1dt. (59)

Thus,

G26(1, ‖x‖) = T26(1, x),G27(1, ‖x‖) = T27(1, x). (60)

Then making use of integration by parts, we get

∫ ‖x‖

a

G26(1, t)(rt
1−(1/r))f ′

(t1/r )dt

=
∫ ‖x‖

a

G26df (t
1/r ) = G26(1, t)f (t

1/r )|‖x‖a

−
∫ ‖x‖

a

G
′
26(1, t)f (t

1/r )dt = G26(1, ‖x‖)f (‖x‖1/r )

− c

k�k(α)
× �n(1/r)

rn�(n/r)

∫ ‖x‖

a

g
′ (
t1/r
) [

g(‖x‖)− g(t1/r )
](α/k)−1

t (n/r)−1

×f (t1/r )dt
= T26(1, x)f (‖x‖1/r )− T26(f, x),



512 J. Kuang

which leads to

T26(f, x) = T26(1, x)f (‖x‖1/r )− r

∫ ‖x‖

a

G26(1, t)f
′
(t1/r )t1−(1/r)dt. (61)

Similarly, we have

T27(f, x) = T27(1, x)f (‖x‖1/r )+ r

∫ b

‖x‖
G27(1, t)f

′
(t1/r )t1−(1/r)dt. (62)

Hence, (54) follows from (51), (61) and (62), as well as (55) follows from (52), (61),
and (62). The proof is completed.

4 Some Inequalities for Operator T25

Theorem 3 Under the assumptions of Lemma 4, let f
′ ∈ Lp(D), 1 ≤ p <∞, 1

p
+

1
q
= 1, and for p = 1, define q = ∞, 1

∞ = 0.If 1 < p <∞, then

|T25(f, x)− [T26(1, x)+ T27(1, x)]f (‖x‖1/r )|

≤ r1+(1/p)
{(∫ ‖x‖

a

|G26(1, t)|qdt
)1/q

+
(∫ b

‖x‖
|G27(1, t)|qdt

)1/q}

×
(∫ b1/r

a1/r
|f ′

(u)|pu(r−1)(p+1)

)1/p

. (63)

If p = 1, then

|T25(f, x)− [T26(1, x)+ T27(1, x)]f (‖x‖1/r )| ≤ ‖G‖∞‖f ′ ‖1, (64)

where

G(t) = G27(1, t)ϕD2(t)−G26(1, t)ϕD1(t), (65)

D1 = [a, ‖x‖],D2 = [‖x‖, b], and ϕD is the characteristic function of the set D,
that is,

ϕD(t) =
{

1, t ∈ D,

0, t ∈ Dc,
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Proof For 1 < p <∞, by using Lemma 4, we obtain

|T25(f, x)− [T26(1, x)+ T27(1, x)]f (‖x‖1/r )|

= r|
∫ b

‖x‖
G27(1, t)t

1−(1/r)f ′
(t1/r )dt −

∫ ‖x‖

a

G26(1, t)t
1−(1/r)f ′

(t1/r )dt |

= r|
∫ b

a

G(t)t1−(1/r)f ′
(t1/r )dt |. (66)

Using the Hölder inequality, from (66), we obtain

|T25(f, x)− [T26(1, x)+ T27(1, x)]f (‖x‖1/r )|

≤
(∫ b

a

|G(t)|qdt
)1/q (∫ b

a

|f ′
(t1/r )|ptp(1−(1/r))dt

)1/p

= r1+(1/p)(
∫ b

a

|G(t)|qdt)1/q
(∫ b1/r

a1/r
|f ′

(u)|pu(p+1)(r−1)du

)1/p

and for p = 1, we have

|T25(f, x)− [T26(1, x)+ T27(1, x)]|f (‖x‖1/r )| ≤ ‖G‖∞‖f ′ ‖1

The proof is completed .

Taking r = 1 in Theorem 3, we get

Corollary 1 Under the assumptions of Theorem 3, let r = 1. If 1 < p <∞, then

|T25(f, x)− [T26(1, x)+ T27(1, x)]f (‖x‖)|

≤ {
(∫ ‖x‖

a

|G26(1, t)|qdt
)1/q

+
(∫ b

‖x‖
|G27(1, t)|qdt

)1/q

}‖f ′ ‖p;

If p = 1, then

|T25(f, x)− [T26(1, x)+ T27(1, x)]f (‖x‖)| ≤ ‖G‖∞‖f ′ ‖1

If n = 1 in Theorem 3, then Theorem 3 reduces to Theorem 1.

5 Some Inequalities for Operator T28

Theorem 4 Under the assumptions of Lemma 4, if |f ′ |p is exponentially
(β, s, s1, s2, h)-strongly convex on [a, b], and s

β
+1 > 0.If 1 < p <∞, 1

p
+ 1

q
= 1,

then
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|T28(f, x)− [T27(1, x)− T26(1, x)]f (‖x‖1/r )|

≤ r1+(1/p)
(∫ b

‖x‖
|G26(1, t)|qdt

)1/q (
b1/r − ‖x‖1/r

)1/p

×
{

Cβ

[

I3
|f ′

(b1/r )|p
er0b

1/r

+I4
|f ′

(‖x‖1/r )|p
er0‖x‖1/r

]

− I5h
(
b1/r − ‖x‖1/r

)
}1/p

+r1+(1/p)(
∫ ‖x‖

a

|G25(1, t)|qdt)1/q
(
‖x‖1/r − a1/r

)1/p

×
{

Cβ

[

I3
|f ′

(‖x‖1/r )|p
er0‖x‖1/r

+I4
|f ′

(a1/r )|p
er0a

1/r

]

− I5h
(
‖x‖1/r − a1/r

)
}1/p

. (67)

If p = 1, then

|T28(f, x)− [T26(1, x)− T25(1, x)]f (‖x‖1/r )|

≤ ‖G26‖∞
(
b1/r − ‖x‖1/r

)
{

Cβ

[

I3
|f ′

(b1/r )|
er0b

1/r

+I4
|f ′

(‖x‖1/r )|
er0‖x‖1/r

]

− I5h(b
1/r − ‖x‖1/r )

}

+‖G25‖∞
(
‖x‖1/r − a1/r

)
{

Cβ

[

I3
|f ′

(‖x‖1/r )|
er0‖x‖1/r

+I4
f
′
(a1/r )

er0a
1/r

]

− I5h
(
‖x‖1/r − a1/r

)
}

, (68)

where Cβ is defined by (47), and

I3 =
∫ 1

0
t (ss1)/β

[
a1/r + (‖x‖1/r − a1/r )t

](p+1)(r−1)
dt;

I4 =
∫ 1

0
(1− t s2)s/β

[
a1/r + (‖x‖1/r − a1/r )t

](p+1)(r−1)
dt
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I5 =
∫ 1

0
t (1− t)

[
a1/r + (‖x‖1/r − a1/r )t

](p+1)(r−1)
dt.

In particular, if r = 1, then

I3 =
∫ 1

0
t (ss1)/βdt = β

ss1 + β
;

I4 =
∫ 1

0
(1− t s2)s/βdt = 1

s2
B

(
s

β
+ 1,

1

s2

)

;

I5 =
∫ 1

0
t (1− t)dt = 1

6
.

Thus, we get

Corollary 2 Under the assumptions of Theorem 4, let r = 1. If 1 < p <∞, then

|T28(f, x)− [T27(1, x)− T26(1, x)]f (‖x‖)|

≤
(∫ b

‖x‖
|G26(1, t)|qdt

)1/q

(b − ‖x‖)1/p

×
{

Cβ

[
β

ss1 + β

|f ′
(b)|p
er0b

+ 1

s2
B

(
s

β
+ 1,

1

s2

) |f ′
(‖x‖|)p
er0‖x‖

]

− 1

6
h(b − ‖x‖)

}1/p

+
(∫ ‖x‖

a

|G25(1, t)|qdt
)1/q

(‖x‖ − a)1/p

×
{

Cβ

[
β

ss1 + β

|f ′
(‖x‖)|p
er0‖x‖

+ 1

s2
B(

s

β
+ 1,

1

s2
)
|f ′

(a)|p
er0a

]

− 1

6
h(‖x‖ − a)

}1/p

. (69)

If p = 1, then

|T28(f, x)− [T27(1, x)− T26(1, x)]f (‖x‖)|

≤ ‖G27‖∞(b − ‖x‖)
{

Cβ

[
β

ss1 + β

|f ′
(b)|

er0b
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+ 1

s2
B

(
s

β
+ 1,

1

s2

) |f ′
(‖x‖)|
er0‖x‖

]

− 1

6
h(b − ‖x‖

}

+‖G26‖∞(‖x‖ − a)

{

Cβ

[
β

ss1 + β

|f ′
(‖x‖)|
er0‖x‖

+ 1

s2
B

(
s

β
+ 1,

1

s2

) |f ′
(a)|

er0a

]

− 1

6
h(‖x‖ − a)

}′
(70)

Proof of Theorem 4 For 1 < p < ∞, by using Lemma 4, and the Hölder
inequality, we obtain

|T28(f, x)− [T27(1, x)− T26(1, x)]f (‖x‖1/r )|

≤ r

{∫ b

‖x‖
|G27(1, t)| × |f ′

(t1/r )|t1−(1/r)dt

+
∫ ‖x‖

a

|G26(1, t)| × |f ′
(t1/r )|t1−(1/r)dt

}

≤ r

(∫ b

‖x‖
|G27(1, t)|qdt

)1/q (∫ b

‖x‖
|f ′

(ξ1/r )|pξp(1−(1/r))dξ
)1/p

+r
(∫ ‖x‖

a

|G26(1, t)|qdt
)1/q (∫ ‖x‖

a

|f ′
(ξ1/r )|pξp(1−(1/r))dξ

)1/p

. (71)

Setting ξ = ur , u = ‖x‖1/r + (b1/r − ‖x‖1/r )t and using the exponentially
(β, s, s1, s2, h)-strongly convexity of |f ′ |p on [a, b], we have

∫ b

‖x‖
|f ′

(ξ1/r )|pξp(1−(1/r))dξ = r

∫ b1/r

‖x‖1/r
|f ′

(u)|pu(p+1)(r−1)du

= r(b1/r − ‖x‖1/r )

×
∫ 1

0
|f ′

(tb1/r + (1− t)‖x‖1/r )|p{‖x‖1/r + (b1/r

−‖‖x‖1/r )t}(p+1)(r−1)dt

≤ r
(
b1/r − ‖x‖1/r

) ∫ 1

0

{[

t ss1(
|f ′

(b1/r |p
er0b

1/r )β

+(1− t s2)s(
|f ′

(‖x‖1/r )|p
er0‖x‖1/r ))β

]1/β
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− t (1− t)h(b1/r − ‖x‖1/r )

}

{‖x‖1/r + (b1/r − ‖x‖1/r )t}(p+1)(r−1)dt

≤ r
(
b1/r − ‖x‖1/r

)
{

Cβ

∫ 1

0

[

t (ss1)/β(
|f ′

(b1/r )|p
er0b

1/r )

+(1− t s2)s/β(
|f ′

(‖x‖1/r )|p
er0‖x‖1/r )

]

× [‖x‖1/r + (b1/r − ‖x‖1/r )t](p+1)(r−1)dt

}

−h
(
b1/r − ‖x‖1/r

) ∫ 1

0
t (1− t){‖x‖1/r +

(
b1/r−‖x‖1/r

)
t}(p+1)(r−1)dt

≤ r
(
b1/r − ‖x‖1/r

)
×
{

Cβ

[

I3
|f ′

(b1/r )|p
er0b

1/r

+I4
|f ′

(‖x‖1/r )|p
er0‖x‖1/r

]

− I5h(b
1/r − ‖x‖1/r )

}

. (72)

By letting ξ = ur , u = a1/r + (‖x‖1/r − a1/r )t and similar arguments, we get

∫ ‖x‖

a

|f ′
(ξ1/r )|pξp(1−(1/r))dξ = r

∫ ‖x‖1/r

a1/r
|f ′

(u)|pu(p+1)(r−1)du

≤ r(‖x‖1/r − a1/r )×
{

Cβ

[

I3
|f ′

(‖x‖1/r )|p
er0‖x‖1/r

+I4
|f ′

(a1/r )|p
er0a

1/r

]

− I5h(‖x‖1/r − a1/r )

}

. (73)

Hence, (67) follows from (71), (72) and (73). The case p = 1 can be treated
analogously. The proof is completed.

If n = 1 in Theorem 4, then Theorem 4 reduces to Theorem 2. By giving
particular values to the parameters in Theorem 4, we get the corresponding integral
inequalities for different fractional integral operators. Such as, taking r = c = β =
1 and g(t) = t in Theorem 4, then T28 reduces to T30 − T29, where

T29(f, x) = 1

k(n− 1)!�k(α)
∫ ‖x‖

a

[‖x‖ − u](α/k)−1f (u)un−1du,
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and

T30(f, x) = 1

k(n− 1)!�k(α)
∫ b

‖x‖
[u− ‖x‖](α/k)−1f (u)un−1du.

Let

G29(1, t) = 1

k(n− 1)!�k(α)
∫ t

a

[‖x‖ − u](α/k)−1un−1du,

and

G30(1, t) = 1

k(n− 1)!�k(α)
∫ b

t

[u− ‖x‖](α/k)−1un−1du.

Thus, we have

G29(1, ‖x‖) = T29(1, x);G30(1, ‖x‖) = T30(1, x).

Hence, we get

Corollary 3 Under the assumptions of Theorem 4, let r = c = β = 1, s > −1,
and g(t) = t . If 1 < p <∞, 1

p
+ 1

q
= 1, then

|T28(f, x)− [T30(1, x)− T29(1, x)]f (‖x‖)|

≤
(∫ b

‖x‖
|G30(1, t)|qdt

)1/q

(b − ‖x‖)1/p ×
{

1

ss1 + 1

|f ′
(b)|p
er0b

+ 1

s2
B(s + 1,

1

s2
)
|f ′

(‖x‖)|p
er0‖x‖ − 1

6
h(b − ‖x‖)

}1/p

+
(∫ ‖x‖

a

|G29(1, t)|qdt
)1/q

(‖x‖ − a)1/p ×
{

1

ss1 + 1

|f ′
(‖x‖)|p
er0‖x‖

+ 1

s2
B(s + 1,

1

s2
)
|f ′

(a)|p
er0a

] − 1

6
h(‖x‖ − a)

}1/p

. (74)

If p = 1, then

|T28(f, x)− [T30(1, x)− T29(1, x)]f (‖x‖)|

≤ ‖G30‖∞(b − ‖x‖)
{[

1

ss1 + 1

|f ′
(b)|

er0b
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+ 1

s2
B(s + 1,

1

s2
)
|f ′

(‖x‖)|
er0‖x‖

]

− 1

6
h(b − ‖x‖)

}

+‖G29‖∞(‖x‖ − a)

{[
1

ss1 + 1

|f ′
(‖x‖)|
er0‖x‖

+ 1

s2
B(s + 1,

1

s2
)
|f ′

(a)|
er0a

]

− 1

6
h(‖x‖ − a)

}

. (75)

If n = 1 in Corollary 3, then T28 reduces to T4 − T3, where T3 and T4 are defined
by (4)and (5), respectively. Thus we get

Corollary 4 Under the assumptions of Corollary 3, let n = 1, and s > −1 . If
1 < p <∞, 1

p
+ 1

q
= 1, then

|T4(f, x)− T3(f, x)− 1

α�k(α)

[
(b − x)(α/k) − (x − a)α/k

]
f (x)|

≤ 1

α�k(α)
(

∫ b

x

|(b − x)α/k − (t − x)α/k|qdt)1/q(b − x)1/p

×
{

1

ss1 + 1

|f ′
(b)|p
er0b

+ 1

s2
B(s + 1,

1

s2
)
|f ′

(x)|p
er0x

−1

6
h(b − x)

}1/p

+ 1

α�k(α)

(∫ x

a

|(x − a)α/k − (x − t)α/k|qdt
)1/q

(x − a)1/p

×
{

1

ss1 + 1

|f ′
(x)|p
er0x

+ 1

s2
B

(

s + 1,
1

s2

) |f ′
(a)|p
er0a

−1

6
h(x − a)

}1/p

. (76)

If p = 1, then

|T4(f, x)− T3(f, x)− 1

α�k(α)

[
(b − x)(α/k) − (x − a)(α/k)

]
f (x)|

≤ 1

α�k(α)
(b − x)1+(α/k)

{[
1

ss1 + 1

|f ′
(b)|

er0b
+ 1

s2
B(s + 1,

1

s2
)
|f ′

(x)|
er0x

]

−1

6
h(b − x)

}
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+ 1

α�k(α)
(x − a)1+(α/k)

{
1

ss1 + 1

|f ′
(x)|

er0x
+ 1

s2
B

(

s + 1,
1

s2

) |f ′
(a)|

er0a

−1

6
h(x − a)

}

.

If k = 1 in Corollary 4, then T28 reduce to T2 − T1 . Thus, we get

Corollary 5 Under the assumptions of Corollary 4, let k = 1 . If 1 < p <∞, then

|T2(f, x)− T1(f, x)− 1

α�(α)

[
(b − x)α − (x − a)α

]
f (x)|

≤ 1

α�(α)
(

∫ b

x

|(b − x)α − (t − x)α|qdt)1/q(b − x)1/p

×
{

1

ss1 + 1

|f ′
(b)|p
er0b

+ 1

s2
B(s + 1,

1

s2
)
|f ′

(x)|p
er0x

− 1

6
h(b − x)

}1/p

+ 1

α�(α)

(∫ x

a

|(x − a)α − (x − t)α|qdt
)1/q

(x − a)1/p

×
{

1

ss1 + 1

|f ′
(x)|p
er0x

+ 1

s2
B(s + 1,

1

s2
)
|f ′

(a)|p
er0a

− 1

6
h(x − a)

}1/p

.

If p = 1, then

|T2(f, x)− T1(f, x)− 1

α�(α)

[
(b − x)α − (x − a)α

]
f (x)|

≤ 1

α�(α)
(b − x)1+α

{
1

ss1 + 1

|f ′
(b)|

er0b
+ 1

s2
B

(

s + 1,
1

s2

) |f ′
(x)|

er0x

− 1

6
h(b − x)

}

+ 1

α�(α)
(x − a)1+α

{
1

ss1 + 1

|f ′
(x)|

er0x
+ 1

s2
B

(

s + 1,
1

s2

) |f ′
(a)|

er0a

− 1

6
h(x − a)

}

.
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Anisotropic Elasticity and Harmonic
Functions in Cartesian Geometry

D. Labropoulou, P. Vafeas, and G. Dassios

Abstract Linear elasticity in an isotropic space is a well-developed area of
continuum mechanics. However, the situation is exactly opposite if the fundamental
space exhibits anisotropic behavior. In fact, the area of linear anisotropic elasticity is
not well developed at the quantitative level, where actual closed-form solutions are
needed to be calculated. The present work aims to provide a little progress in this
interesting branch of continuum mechanics. We provide a short review of isotropic
elasticity in order to demonstrate in the sequel how the anisotropy modifies the final
equations, via Hooke’s and Newton’s laws. The eight standard anisotropic structures
are also reviewed for completeness. A simple technique is introduced that generates
homogeneous polynomial solutions of the anisotropic equations in Cartesian form.
In order to demonstrate how this technique is applied, we work out the case of cubic
anisotropy, which is the simplest anisotropic structure, having three independent
elasticities. This choice is dictated by the restricted number of calculations it
requires, but it carries all the basic steps of the method. Isotropic elasticity accepts
the differential representation of Papkovich, which expresses the displacement field
in terms of a vector and a scalar harmonic function. Unfortunately, though, no
such representation is known for the anisotropic elasticity, which can represent the
anisotropic displacement field in terms of solutions of the anisotropic Laplacian, as
also discussed in this work.
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1 Introduction

Modern theoretical mechanics and engineering technology are often involved with
the anisotropic behavior of elastic materials and structures [1–3]. The mathematical
description of the physical quantities, associated with anisotropic media, constitutes
an indivisible component in linear anisotropic elasticity [4, 5]. Classical linear
elasticity, being a first approximation of the more general nonlinear theory of
elasticity [6] and a branch of continuum mechanics, assumes small deformations and
infinitesimal internal strains and stresses on solid bodies or objects, when they are
subject to prescribed loading conditions. That leads to linear relationships between
the components of strain and stress dyadic tensors. On the other hand, anisotropy is
the property of a medium, which allows it to change or assume different properties
in different directions as opposed to isotropy [7, 8]. Both these aspects are evidently
used extensively in structural analysis and engineering design, often with the aid of
standard numerical methods [9], offering a complete and comprehensive survey of
the analysis with respect to anisotropic material theory. Once either the isotropic or
the anisotropic character of linear or even nonlinear media is identified, the next step
is the necessity of studying the elastic or inelastic wave propagation in such domains
[10, 11] and of determining the corresponding scattered fields that are produced. As
it is obvious, not only in the anisotropic theory but also for the isotropic case [12],
the presence of external body forces renders the analysis more elaborate. Along this
concept, it is apparent the continuous need of establishing novel theories of physical
and mathematical interest, concerning the general ideas of elasticity.

The anisotropy of a medium has consequences on its mathematical depiction.
Indeed, the effect of the dependence upon the direction is implied via an increase
of the number of parameters to be used for the description of the phenomenon.
However, the possible geometrical symmetries must be taken into account, because
they significantly simplify the correlated relations. The basic vector function, which
is associated with either isotropic or anisotropic elastic behavior of a medium, is
the displacement field. Upon the introduction of this field, the strain is a linear and
symmetric tensor that is given in terms of the displacement field. Once the strain
is calculated, the stress tensor follows from the well-known Hooke’s law, which
connects the strain and the stress via the stiffness, being a tetratic that embodies the
isotropic character of the medium. All the aforementioned fields are incorporated
into the non-homogeneous (when external forces are present) and time-dependent
fundamental equation of elasticity, i.e. Newton’s law [4], in order to obtain a general
equation of elasticity. Here, we present this analysis for reasons of clarity and
completeness, emphasizing to the particular case where the body forces are absent,
leading to the homogeneity of Newton’s law. Following a handy notation for the
stiffness tensor, we present its isotropic form and the eight systems of anisotropic
elasticity, in order to provide a consistent background.

Historically, the already ample literature is full of references on different physical
topics, which are interrelated with linear elasticity and its general features, most
of them being invoked into the pre-mentioned list [1–12]. On one side, the linear
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isotropic behavior of elastic media has an inherent mathematical interest and has
attracted many scientists due to the fact that even though the related theory is
much simplified, many applications can accept the isotropic character without
loss of robustness. For instance, a class of universal relations in isotropic linear
elasticity theory in the absence of body forces has been studied in [13, 14], while
a series of papers [15–17] demonstrate the efficiency of analytical methods in
isotropic elasticity by dealing with elastic wave scattering at low frequencies around
ellipsoidal solid bodies or cavities. Therein, under the assumption of no external
body forces, the general solution Papkovich provided a closed-form solution for the
displacement field in terms of differential operators, acting on harmonic functions.
On the other side, linear anisotropic elasticity describes perfectly real-life problems
in applied mechanics and engineering science. Indeed, among interesting references,
we distinguish the research work in [18], where it is shown that the cubic symmetry
of the stiffness tensor is the only situation in linear anisotropic elasticity for which
a strain energy density extremum can exist for all stress states, rendering this class
of anisotropy very useful. Reference [19] gathers the basic aspects of anisotropy in
elasticity and their applications to composite materials, providing general relations
for the strain and stress. An interesting paper [20] refers to the incompressible
limit of anisotropic elasticity with applications to surface waves and elastostatics,
meaning time-independent elasticity. Moreover, a new modified couple stress theory
for anisotropic elasticity and microscale laminated Kirchhoff plate model has been
developed in [21], while a very recent study [22] introduces the dynamic stiffness
of three-dimensional anisotropic multi-layered media based on the continued-
fraction method. It is important to mention that the theoretical analysis of wave
propagation in anisotropic media [23] comprises a difficult task and sometimes
numerical methods must be employed [24] in order to obtain solutions of three-
dimensional formulations. Closed-form solutions of elastostatics in spherical and
ellipsoidal geometry can be found in reference [25]. Finally, despite the applicability
of linearity in classical elasticity, it is obvious that several materials have not linear
properties [26] and, consequently, careful attention should be given.

This work includes in a brief manner the main mathematical aspects of the
linear anisotropic elastic theory, whereas our aim is twofold. Primarily, after writing
down Hooke’s law, relating the stress components to the strain components via
the stiffness tensor, we focus on Newton’s law in its generalized formula for both
the isotropic and anisotropic cases, the latter being analyzed by virtue of the most
commonly utilized cubic-type anisotropy system. Henceforth, special attention is
given in elastostatics, neglecting the temporal derivatives as for steady state and
considering no external forces. Under these circumstances, closed-type solutions
for the displacement field are displayed. Even though a general solution in terms of
harmonic functions is valid for the isotropic case, namely the Papkovich differential
representation, this is not the issue with the anisotropic situation, wherein a first
attempt is shown by generating a solution in the form of a homogeneous second
degree polynomial. However, in view of the ambitious goal to obtain such a
representation in the anisotropic regime, we devoted a separate section to our second
involvement, wherein we present a methodology, according to which we insert the
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anisotropic character of any medium into Laplace’s operator and develop an analytic
code in order to obtain the corresponding anisotropic harmonic functions. Our tech-
nique works perfectly for the first four eigenfunctions, but it can be generalized for
any degree greater than four. Thus, we transfer the difficulty in proposing a general
differential representation for the three-dimensional anisotropy into the implicated
harmonic eigenfunctions, associated with this solution. Finally, comparison with the
isotropic case validates the efficiency of the proposed formulation.

Elaborating with the fundamental mathematical formulation of anisotropic elas-
ticity in an analytic or even semi-analytic manner leads to solid solutions that have
important advantages compared to the pure numerical methods, since their validity
can be technically verified. On the other hand, bearing in mind that important
physical laws, such as Newton’s law, can be derived from analytic methodologies,
we can understand the necessity of a stable and secure mathematical basis for
starting a brute computational procedure. Besides, it is to this end that analytic
and numerical methods are considered as complementary. Hence, in this work we
offer the minimum of the necessary mathematical tools, which coexist with pure
numerical codes and can be found in bibliography, solving boundary value problems
with physical applications, associated with anisotropic linear elasticity.

The chapter is planned as follows. In Sect. 2, the theoretical basis of linear
anisotropic elasticity via an analytic mathematical formulation is sketched, while
in Sect. 3, the case of complete isotropy is discussed as a demonstration of the
general theory, recovering the fundamental equation of the displacement field in
linear isotropic elasticity. Section 4 is devoted to the presentation of the special and
commonly appeared type of anisotropic elasticity, which corresponds to the cubic
system, and the relative governing equation is obtained, wherein a solution in a
polynomial form is obtained. Aiming in developing a solid mathematical technique
to produce harmonic functions in anisotropic elasticity, we invoke Sect. 5 in which
we build up eigensolutions of certain degree that belong to the kernel space of
Laplace’s operator. Finally, an outline of our work and future steps follow in Sect. 6.

2 Basic Theory in Anisotropic Elasticity

In what follows, we shall refer to smooth, either bounded or unbounded, three-
dimensional domains V

(
R

3
)
, where every field or property will be generally written

in terms of the position vector r = x1x̂1 + x2x̂2 + x3x̂3, expressed via the Cartesian
basis x̂p, p = 1, 2, 3, in coordinates (x1, x2, x3) and the time variable t , while the
convenient Einstein convention regarding vectors and tensors is frequently used. On
that account, the well-known gradient and Laplacian differential operators assume
the forms

∇ =
3∑

i=1

x̂i
∂

∂xi
and � =

3∑

i=1

∂2

∂x2
i

, (1)

respectively.
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The fundamental field under consideration in solid mechanics is the displacement
field, defined by

u (r, t) = u ≡
3∑

i=1

ui x̂i for every r ∈ V
(
R

3
)
, t > 0, (2)

and it is a measure of deformation of the material. For small displacement gradients,
the linearized theory of elasticity considers the strain dyadic tensor ε̃ to be the linear
and symmetric part of the displacement gradient, that is,

ε̃ = 1

2

[
∇ ⊗ u+ (∇ ⊗ u)<

]
≡

3∑

i,j=1

εij x̂i ⊗ x̂j with ε̃ = ε̃<, (3)

wherein “<” denotes transposition and “⊗” stands for the classical tensor product.
Once ε̃ is determined via (3), the stress dyadic tensor τ̃ is expressed via Hooke’s
law as

τ̃ = ˜̃c : ε̃ ≡
3∑

i,j=1

τij x̂i ⊗ x̂j with ˜̃c ≡
3∑

i,j,k,l=1

cijkl x̂i ⊗ x̂j ⊗ x̂k ⊗ x̂l , (4)

where “:” refers to the double inner product, while ˜̃c is the stiffness tetratic tensor.
If an external force f is applied on the material or the structure, then Newton’s law
yields

∇ · τ̃ + f = ρ
∂2u
∂t2

, (5)

where ∇ · τ̃ are the forces due to deformation and ρ is the constant mass density,

while
∂2

∂t2
≡ ∂tt denotes double derivation with respect to the time variable.

Replacing Eq. (4) with (3) into Newton’s law (5), we can also write

∇ ·
( ˜̃c : ε̃

)
+f = ρ

∂2u
∂t2

⇒ 1

2
∇ ·
{ ˜̃c :

[
∇ ⊗ u+ (∇ ⊗ u)<

]}
+f = ρ

∂2u
∂t2

(6)

or

1

2
∇ ·
{ ˜̃c :

[
∇ ⊗ u+ (∇ ⊗ u)<

]}
= ρ

∂2u
∂t2

, (7)

when f = 0. Hence, in the absence of external forces, the second-order spatial
derivatives are proportional to the second-order temporal derivatives, which is
exactly the meaning of linearity.



528 D. Labropoulou et al.

The tetratic ˜̃c has in total 34 = 81 components, though due to the specific spatial
symmetries

cijkl = cjikl = cij lk = cklij with i, j, k, l = 1, 2, 3, (8)

it holds that the symmetry ij ↔ ji restricts the values of ij from 3 × 3 = 9 to
6, since they correspond to a symmetric 3 × 3 matrix. For the same reason, the
symmetry kl ↔ lk restricts the values of kl to 6, as well. Hence, ij and kl are
equal to 11, 22, 33, 23, 31, 12 and that makes the number of different components
of ˜̃c to be 6 × 6 = 36. Finally, the symmetry ij ↔ kl in (8) reduces the
independent components of ˜̃c to 21. The components cijkl with the symmetries (8)
are called elasticities. The linear anisotropic elastic medium is then characterized in
the invariant Cartesian coordinate system by the 6× 6 symmetric matrix

˜̃ca =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1111 c1122 c1133 c1123 c1131 c1112

c1122 c2222 c2233 c2223 c2231 c2212

c1133 c2233 c3333 c3323 c3331 c3312

c1123 c2223 c3323 c2323 c2331 c2312

c1131 c2231 c3331 c2331 c3131 c3112

c1112 c2212 c3312 c2312 c3112 c1212

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where ˜̃c<a = ˜̃ca, (9)

which, introducing for clarity the notation
11↓
1

22↓
2

33↓
3

23↓
4

31↓
5

12↓
6

, then the general

anisotropy is represented by

˜̃ca =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where ˜̃c<a = ˜̃ca, (10)

providing the initial mathematical tool, in order to construct the basic theory of any
type of linear elasticity.

Under this aim, we introduce the 8 special anisotropies, which are characterized
by 8 stiffness matrices. These are the monoclinic system (with 13 elasticities)

˜̃c1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 0 0 c16

c12 c22 c23 0 0 c26

c13 c23 c33 0 0 c36

0 0 0 c44 c45 0
0 0 0 c45 c55 0
c16 c26 c36 0 0 c66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where ˜̃c<1 = ˜̃c1, (11)
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the rhombic system (with 9 elasticities)

˜̃c2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where ˜̃c<2 = ˜̃c2, (12)

the tetragonal system A (with 7 elasticities)

˜̃c3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 0 0 c16

c12 c11 c13 0 0 −c16

c13 c12 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
c16 −c16 0 0 0 c66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where ˜̃c<3 = ˜̃c3, (13)

the tetragonal system B (with 6 elasticities)

˜̃c4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where ˜̃c<4 = ˜̃c4, (14)

the cubic system (with 3 elasticities)

˜̃c5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where ˜̃c<5 = ˜̃c5, (15)

the hexagonal system A (with 7 elasticities)
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˜̃c6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 c14 c15 0
c12 c11 c13 −c14 −c15 0
c13 c13 c33 0 0 0
c14 −c14 0 c44 0 −c15

c15 −c15 0 0 c44 c14

0 0 0 −c15 c14
1

2
(c11 − c12)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where ˜̃c<6 = ˜̃c6, (16)

the hexagonal system B (with 6 elasticities)

˜̃c7 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 c14 0 0
c12 c11 c13 −c14 0 0
c13 c13 c33 0 0 0
c14 −c14 0 c44 0 0
0 0 0 0 c44 c14

0 0 0 0 c14
1

2
(c11 − c12)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where ˜̃c<7 = ˜̃c7, (17)

and the hexagonal system C (with 5 elasticities)

˜̃c8 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0

0 0 0 0 0
1

2
(c11 − c12)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where ˜̃c<8 = ˜̃c8. (18)

The aforementioned matrices (11)–(18) correspond to simplified cases of the
generalized form (10).

3 Complete Isotropy in Elasticity and Fundamental Equation

Herein, we mention the simplest case of isotropy described by the matrix

˜̃ci =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ+ 2μ λ λ 0 0 0
λ λ+ 2μ λ 0 0 0
λ λ λ+ 2μ 0 0 0
0 0 0 2μ 0 0
0 0 0 0 2μ 0
0 0 0 0 0 2μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where ˜̃c<i = ˜̃ci , (19)
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in which λ,μ ∈ R are the standard elastic parameters of the isotropic theory. In
order to obtain the constitutive relation for example of (19), we work as follows. We
know from definitions (3) and (4) that

τ̃ = ˜̃c : ε̃ = 1

2
˜̃c :
[
∇ ⊗ u+ (∇ ⊗ u)<

]
, (20)

whereas, for notational simplicity, we incorporate each one of the derivatives of u
with respect to the argument within the indexes, such as in terms of its components

up for p = 1, 2, 3 (see also (2)), we may write
∂up

∂xq
≡ up,q for q = 1, 2, 3, keeping

consistency with the forthcoming steps. So, we multiply (19) by the vector

x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1,1 + u1,1

u2,2 + u2,2

u3,3 + u3,3

u2,3 + u3,2

u3,1 + u1,3

u1,2 + u2,1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (21)

we perform some trivial calculations based on the relation

∇ · u =
3∑

i=1

∂ui

∂xi
≡

3∑

i=1

ui,i , (22)

and we obtain the vector

y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2λ∇ · u+ 4μu1,1

2λ∇ · u+ 4μu2,2

2λ∇ · u+ 4μu3,3

2μ
(
u2,3 + u3,2

)

2μ
(
u3,1 + u1,3

)

2μ
(
u1,2 + u2,1

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

or y′ =
⎡

⎣
α11 α12 α31

α12 α22 α23

α31 α23 α33

⎤

⎦ , (23)

considering the fact that the vector y represents the matrix y′, where α11, α22, and
α33 are the 1st, 2nd, and 3rd components of y and α23, α31, and α12 are the 4th, 5th,
and 6th components of y, as given in (23). Consequently, bearing in mind the above
reasoning and in view of Hooke’s law (20), we obtain

2τ̃ = (2λ∇ · u+ 4μu1,1
)
x̂1 ⊗ x̂1 +

(
2λ∇ · u+ 4μu2,2

)
x̂2 ⊗ x̂2

+ (2λ∇ · u+ 4μu3,3
)
x̂3 ⊗ x̂3

+ 2μ
(
u1,2 + u2,1

) (
x̂1 ⊗ x̂2 + x̂2 ⊗ x̂1

)
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+ 2μ
(
u2,3 + u3,2

) (
x̂2 ⊗ x̂3 + x̂3 ⊗ x̂2

)

+ 2μ
(
u3,1 + u1,3

) (
x̂3 ⊗ x̂1 + x̂1 ⊗ x̂3

)
(24)

or in terms of the unit dyadic Ĩ =∑3
i=1 x̂i ⊗ x̂i and after reorganizing the terms of

the tensor (24), it is

2τ̃ = 2λ (∇ · u) Ĩ
+ 2μ

(
u1,1x̂1 ⊗ x̂1 + u1,2x̂1 ⊗ x̂2 + u1,3x̂1 ⊗ x̂3

+u2,1x̂2 ⊗ x̂1 + u2,2x̂2 ⊗ x̂2 + u2,3x̂2 ⊗ x̂3

+u3,1x̂3 ⊗ x̂1 + u3,2x̂3 ⊗ x̂2 + u3,3x̂3 ⊗ x̂3
)

+ 2μ
(
u1,1x̂1 ⊗ x̂1 + u2,1x̂1 ⊗ x̂2 + u3,1x̂1 ⊗ x̂3

+u1,2x̂2 ⊗ x̂1 + u2,2x̂2 ⊗ x̂2 + u3,2x̂2 ⊗ x̂3

+u1,3x̂3 ⊗ x̂1 + u2,3x̂3 ⊗ x̂2 + u3,3x̂3 ⊗ x̂3
)

= 2λ (∇ · u) Ĩ+ 2μ
[
∇ ⊗ u+ (∇ ⊗ u)<

]
, (25)

since ∇ ⊗u =∑3
i,j=1 uj,i x̂i ⊗ x̂j and (∇ ⊗ u)< =∑3

i,j=1 ui,j x̂i ⊗ x̂j . Therefore,
relationship (25) ends up to

τ̃ = λ (∇ · u) Ĩ+ μ
[
∇ ⊗ u+ (∇ ⊗ u)<

]
. (26)

In order to facilitate our final task to recover Newton’s law (6) for this special case,
we proceed by writing the latter in components, i.e.

τpq = λ

(
3∑

i=1

ui,i

)

δpq + μ
(
up,q + uq,p

)
for any p, q = 1, 2, 3, (27)

in view of Kronecker’s delta δ or

τpq = λ

(
3∑

i=1

εi,i

)

δpq + 2μεpq for any p, q = 1, 2, 3, (28)

where the components of (3) imply

εpq = 1

2

(
up,q + uq,p

)
with p, q = 1, 2, 3. (29)

Similarly, the stiffness tetratic for the isotropic case (see matrix (19) with defini-
tion (4) for instance) can be rewritten through its components as
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cijkl = λδij δkl + μ
(
δikδjl + δilδjk

)
for every i, j, k, l = 1, 2, 3. (30)

On the other hand, keeping the same notation and since f =∑3
i=1 fi x̂i , the general

relationship for Newton’s law (6) reads

∂

∂xi

⎛

⎝
3∑

i,j,k,l=1

cijkluk,l

⎞

⎠+ fi = ρ
∂2ui

∂t2
for i = 1, 2, 3, (31)

where, combining all together for the isotropic case, the partial differential equa-
tion (31) reduces to

μ

3∑

j=1

ui,jj + (λ+ μ)

3∑

j=1

uj,ij + fi = ρ
∂2ui

∂t2
for i = 1, 2, 3. (32)

By means of the trivial relations
∑3

j=1 ui,jj ≡ �u and
∑3

j=1 uj,ij ≡ ∇ (∇ · u) for
i = 1, 2, 3, Eq. (32) is equivalently given in its vector form

μ�u+ (λ+ μ)∇ (∇ · u)+ f = ρ
∂2u
∂t2

with λ,μ ∈ R, (33)

which is the well-known Navier equation in isotropic elasticity. The analysis
described earlier in this paragraph to obtain (33) and demonstrate the presented
general theory for anisotropic elastic media was based on calculations among
invariant vectors and matrices, beginning with the isotropic form of the stiffness
matrix (19). Nevertheless, we could also reach (33) using classical dyadic analysis
by virtue of definitions (2)–(6), where our starting point should be mapping
matrix (19) to the corresponding stiffness dyadic tensor in (4), by retaining the
necessary elasticities cijkl with i, j, k, l = 1, 2, 3, as the tetratic ˜̃ci requires.
Definitely, this could lead to a much more elaborate procedure due to the complexity
of Newton’s law.

Nonetheless, many applications concern the case of no body forces (f = 0) and
harmonic time dependence implied for the displacement field, that is, u (r, t) =
U (r) e−iωt for r ∈ V

(
R

3
)

and t > 0, in terms of the angular frequency ω, where
i = √−1 is the imaginary unit, reducing (33) to

μ�U+ (λ+ μ)∇ (∇ · U)+ ρω2U = 0 with λ,μ ∈ R, (34)

which is the non-homogeneous and time-independent linearized equation of
dynamic elasticity. Moreover, if ω = 0, then we recover the homogeneous
analogous of (34), being

μ�U+ (λ+ μ)∇ (∇ · U) = 0 with λ,μ ∈ R, (35)
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whose general solution is given via the Papkovich representation

U = A− λ+ μ

2 (λ+ 2μ)
∇ (r · A+ B) , where �A = 0 and �B = 0, (36)

functions A and B are vector and scalar harmonic functions, respectively. It is not
hard to prove that (36) satisfies (35), bearing in mind the interchange �∇ = ∇�
and the vector identity �(r · A) = �r · A + r · �A + 2 (∇ ⊗ r)< : (∇ ⊗ A) =
2Ĩ< : (∇ ⊗ A) = 2Ĩ : (∇ ⊗ A) = 2∇ · A, since it readily holds �r = �A =
0. The general differential representation (36) provides a powerful analytical tool
for solving the homogeneous and time-independent linearized equation of classical
dynamic elasticity. However, no one of the anisotropic cases (11)–(18), as they were
presented earlier, can accept a Papkovich-type representation, since the harmonic
fields A and B are associated with the special Laplacian operator �, which is solely
characterized of isotropy.

4 Anisotropy in Elasticity and Fundamental Equation: The
Cubic System

Based on the step-by-step procedure of the previous section, our aim is to initially
analyze certain systems among (11)–(18) that carry the particular anisotropy. In the
sequel, we reconstruct the corresponding constitutive equation from Newton’s law
and finally develop a novel mechanism to produce anisotropic harmonics, which
could provide us with the proper mathematical tool for analytic solutions.

The simpler and commonly used form of anisotropic elasticity corresponds to
the stiffness tetratic tensor of cubic type (15), wherein 3 elasticities survive. For
convenience, we rewrite them as

c11 = α, c12 = β and c44 = γ, (37)

and hence, the relative matrix reads

˜̃c5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α β β 0 0 0
β α β 0 0 0
β β α 0 0 0
0 0 0 γ 0 0
0 0 0 0 γ 0
0 0 0 0 0 γ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where ˜̃c<5 = ˜̃c5. (38)

Following similar steps like those in our previous detailed analysis and multiply-
ing (38) by (21) from the right, we obtain
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z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2β∇ · u+ 2 (α − β) u1,1

2β∇ · u+ 2 (α − β) u2,2

2β∇ · u+ 2 (α − β) u3,3

γ
(
u2,3 + u3,2

)

γ
(
u3,1 + u1,3

)

γ
(
u1,2 + u2,1

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where ∇·u =
3∑

i=1

∂ui

∂xi
≡

3∑

i=1

ui,i , (39)

and using the same argument as in the case of the isotropy that led to Eq. (24) by
virtue of (20), we conclude to

τ̃ = (β ∇ · u+ (α − β) u1,1
)
x̂1 ⊗ x̂1 +

(
β ∇ · u+ (α − β) u2,2

)
x̂2 ⊗ x̂2

+ (β ∇ · u+ (α − β) u3,3
)
x̂3 ⊗ x̂3

+ γ

2

(
u1,2 + u2,1

) (
x̂1 ⊗ x̂2 + x̂2 ⊗ x̂1

)

+ γ

2

(
u2,3 + u3,2

) (
x̂2 ⊗ x̂3 + x̂3 ⊗ x̂2

)

+ γ

2

(
u3,1 + u1,3

) (
x̂3 ⊗ x̂1 + x̂1 ⊗ x̂3

)
. (40)

Expression (40) can be reorganized to

τ̃ = β (∇ · u) Ĩ+ γ

2

(
∇ ⊗ u+ (∇ ⊗ u)<

)

+ (α − β − γ )
(
u1,1x̂1 ⊗ x̂1 + u2,2x̂2 ⊗ x̂2 + u3,3x̂3 ⊗ x̂3

)
, (41)

since Ĩ = x̂1 ⊗ x̂1 + x̂2 ⊗ x̂2 + x̂3 ⊗ x̂3 and ∇ ⊗ u = ∑3
i,j=1 uj,i x̂i ⊗ x̂j . Next,

we calculate the equation satisfied by u corresponding to the stress tensor (41) via
Newton’s law (6). Eventually, this is

γ

2
�u+

(
β + γ

2

)
∇ (∇ · u)+ (α − β − γ )

[

x̂1
∂2u1

∂x2
1

+ x̂2
∂2u2

∂x2
2

+ x̂3
∂2u3

∂x2
3

]

+ f

= ρ
∂2u
∂t2

(42)

or in component form

γ

2
�up +

(
β + γ

2

) (
u1,1p + u2,2p + u3,3p

)+ (α − β − γ ) up,pp + fp = ρ
∂2up

∂t2

for p = 1, 2, 3, (43)
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wherein we recall that f =∑3
i=1 fi x̂i and u =∑3

i=1 ui x̂i , while (42) stands for the
constitutive fundamental equation in anisotropic elasticity for the cubic system.

Here, we remark that the stiffness matrix (19) of the isotropic case is identified
with the stiffness matrix (38) of the cubic case by choosing

α = λ+ 2μ, β = λ and γ = 2μ, (44)

where in this case

α − β − γ = 0 (45)

and Eq. (26) is identified with Eq. (41). Then, the constitutive equation (33) follows
straightforwardly from (42), corresponding to isotropic elasticity.

In order to simplify our calculations and focus on the spatial structure of the

solution, we consider the case of elastostatics where
∂2u
∂t2

= 0 and no external forces

applied on the material, i.e. f = 0, and thus (42) is rewritten as

γ

2
�u+

(
β + γ

2

)
∇ (∇ · u)+ (α − β − γ )

[

x̂1
∂2u1

∂x2
1

+ x̂2
∂2u2

∂x2
2

+ x̂3
∂2u3

∂x2
3

]

= 0,

(46)
where α, β, and γ are the three elasticities of the cubic system. Unfortunately, it is
difficult to construct a representation-type solution for (46) such as the Papkovich
general solution, defined by relationship (36). However, in what follows, we will
try to generate a solution of partial differential equation (46) in the form of a
homogeneous second degree polynomial. So, let this solution be

u = ax2
1 + bx2

2 + cx2
3 + dx1x2 + ex2x3 + fx3x1, (47)

in which

a ≡ (a1, a2, a3) = a1x̂1 + a2x̂2 + a3x̂3,

b ≡ (b1, b2, b3) = b1x̂1 + b2x̂2 + b3x̂3,

c ≡ (c1, c2, c3) = c1x̂1 + c2x̂2 + c3x̂3,

d ≡ (d1, d2, d3) = d1x̂1 + d2x̂2 + d3x̂3,

e ≡ (e1, e2, e3) = e1x̂1 + e2x̂2 + e3x̂3,

f ≡ (f1, f2, f3) = f1x̂1 + f2x̂2 + f3x̂3

(48)

are arbitrary constant coefficients. With this solution, we obtain

�u = 2a+ 2b+ 2c (49)

∇ ·u = 2a1x1+d1x2+f1x3+2b2x2+d2x1+e2x3+2c3x3+e3x2+f3x1, (50)



Anisotropic Elasticity and Harmonic Functions in Cartesian Geometry 537

and hence

∇ (∇ · u) = (2a1 + d2 + f3) x̂1+(d1 + 2b2 + e3) x̂2+(f1 + e2 + 2c3) x̂3 (51)

and

x̂1
∂2u1

∂x2
1

+ x̂2
∂2u2

∂x2
2

+ x̂3
∂2u3

∂x2
3

= 2a1x̂1 + 2b2x̂2 + 2c3x̂3. (52)

Then, in view of (49)–(52), Eq. (46) provides the following algebraic linear system
of equations

γ (a1 + b1 + c1)+
(
β + γ

2

)
(2a1 + d2 + f3)+ 2 (α − β − γ ) a1 = 0, (53)

γ (a2 + b2 + c2)+
(
β + γ

2

)
(d1 + 2b2 + e3)+ 2 (α − β − γ ) b2 = 0, (54)

γ (a3 + b3 + c3)+
(
β + γ

2

)
(f1 + e2 + 2c3)+ 2 (α − β − γ ) c3 = 0, (55)

which is also written as

2αa1 + γ (b1 + c1)+
(
β + γ

2

)
(d2 + f3) = 0, (56)

2αb2 + γ (a2 + c2)+
(
β + γ

2

)
(d1 + e3) = 0, (57)

2αc3 + γ (a3 + b3)+
(
β + γ

2

)
(f1 + e2) = 0. (58)

At this point, let us discuss on the system (56)–(58). The solution (47) involves the
6 unknown vectors a, b, c, d, e, and f, given in (48). Thus, we have to calculate
18 scalars. However, the scalars e1, f2, and d3 do not appear in the system (56)–
(58). On the other hand, each one of Eqs. (56)–(58) involves 5 unknown constants.
Hence, each equation leaves 4 constants undetermined. Therefore, we have finally
3 ·4+3 = 15 undetermined constants, that, is 5 constants for each component of the
vector solution u given in (47). This is in accordance to the fact that there are 2n+1
independent solutions in the form of homogeneous polynomials of degree n. In our
case, n = 2, which gives 2·2+1 = 5 independent solutions. These 5 solutions come
from the arbitrary values we can give to the undetermined constants. In fact, we can
use (56) to determine a1 in terms of b1, c1, d2, and f3 and the dummy constant
e1, we can use (57) to determine b2 in terms of a2, c2, d1, and e3 and the dummy
constant f2, and we can use (58) to determine c3 in terms of a3, b3, f1, and e2 and
the dummy constant d3. Note also that each one of the Eqs. (56)–(58) is independent
of the other two, since no unknown constant appears in more than one equation.
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Obviously, we can combine any solution of the x1-direction with any solution in
the x2-direction and with any solution in the x3-direction. Once the system (56)–
(58) is solved as described, the displacement field u, satisfying (46), is given by
relationship (47).

In order to demonstrate our analytical approach, we provide the following
example. Let us assume that

b1 = a2 = a3 = 1 and a1b2c3 �= 0, (59)

while all other constants are equal to zero. Then, the system (56)–(58) becomes

2αa1 + γ b1 = 0, (60)

2αb2 + γ a2 = 0, (61)

2αc3 + γ a3 = 0 (62)

or

a1 = b2 = c3 = − γ

2α
, (63)

where, in this case, we obtain from (47) with (48) the solution

u =
(
− γ

2α
x2

1 + x2
2

)
x̂1 +

(
x2

1 −
γ

2α
x2

2

)
x̂2 +

(
x2

1 −
γ

2α
x2

3

)
x̂3. (64)

In order to verify this solution, we use (64) to calculate in sequence

�u =
(
−γ

α
+ 2
)
x̂1 +

(
2− γ

α

)
x̂2 +

(
2− γ

α

)
x̂3 =

(
2− γ

α

) (
x̂1 + x̂2 + x̂3

)
,

(65)

∇ · u =
(
−γ

α
x1

)
+
(
−γ

α
x2

)
+
(
−γ

α
x3

)
= −γ

α
(x1 + x2 + x3) , (66)

∇ (∇ · u) =
(
−γ

α
x̂1

)
+
(
−γ

α
x̂2

)
+
(
−γ

α
x̂3

)
= −γ

α

(
x̂1 + x̂2 + x̂3

)
, (67)

and

x̂1
∂2u1

∂x2
1

+ x̂2
∂2u2

∂x2
2

+ x̂3
∂2u3

∂x2
3

= −γ

α
x̂1 − γ

α
x̂2 − γ

α
x̂3 = −γ

α

(
x̂1 + x̂2 + x̂3

)
,

(68)
and consequently, we insert (65)–(68) into the following expression, and we obtain
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γ

2
�u+

(
β + γ

2

)
∇ (∇ · u) + (α − β − γ )

[

x̂1
∂2u1

∂x2
1

+ x̂2
∂2u2

∂x2
2

+ x̂3
∂2u3

∂x2
3

]

= γ

2

(
2− γ

α

) (
x̂1 + x̂2 + x̂3

)

+
(
β + γ

2

) (
−γ

α

) (
x̂1 + x̂2 + x̂3

)

+ (α − β − γ )
(
−γ

α

) (
x̂1 + x̂2 + x̂3

)

= (x̂1 + x̂2 + x̂3
)
[

γ − γ 2

2α
− βγ

α
− γ 2

2α
− γ + βγ

α
+ γ 2

α

]

= (x̂1 + x̂2 + x̂3
) · 0 = 0, (69)

a result that readily secures (46). Evidently, the presented analytical methodology is
valid and provides us with a first attempt to obtain closed-form solutions in linear
time-independent cubic-type anisotropic elasticity in the absence of body forces.

5 Anisotropic Harmonic Eigenfunctions

The theory of harmonic functions concerning anisotropic media is associated with
the anisotropy tensor σ̃ , which admits

σ̃ =
3∑

i,j=1

σij x̂i ⊗ x̂j (70)

in Cartesian coordinates. Given the constant dyadic (70) and aiming to find the
so-called anisotropic harmonic functions u = u (r) for r ∈ V

(
R

3
)
, we want to

construct solutions of equation

∇ · (σ̃ · ∇u) = 0 with ∇ =
3∑

i=1

x̂i
∂

∂xi
, (71)

which is the equivalent of Laplacian in anisotropic elasticity. Indeed, if σ̃ = Ĩ,

then (71) reduces to ∇ ·
(
Ĩ · ∇u

)
= 0 ⇒ ∇ ·∇u = 0 or �u = 0. In terms of (70),

the differential operator within relationship (71) yields

∇ · (σ̃ · ∇) =
3∑

k=1

x̂k
∂

∂xk
·
⎡

⎣
3∑

i,j=1

σij x̂i ⊗ x̂j ·
3∑

l=1

x̂l
∂

∂xl

⎤

⎦ =
3∑

i,j=1

σij
∂

∂xi

∂

∂xj

(72)
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or

∇ · (σ̃ · ∇) = σ11
∂2

∂x2
1

+ σ22
∂2

∂x2
2

+ σ33
∂2

∂x2
3

+ (σ12 + σ21)
∂

∂x1

∂

∂x2

+ (σ23 + σ32)
∂

∂x2

∂

∂x3
+ (σ31 + σ13)

∂

∂x3

∂

∂x1
(73)

since σ̃ is constant and x̂k · x̂i ⊗ x̂j · x̂l = 1 when k = i, l = j for any
i, j, k, l = 1, 2, 3 and otherwise zero. In the sequel, we will try to develop a handy
mathematical technique in order to build anisotropic harmonic eigenfunctions,
which are solutions of (71) with (73). To this end, if u belongs to the kernel space
of operator (73), then we assume the expansion

u (r) ≡
+∞∑

n=0

un (r) =
+∞∑

n=0

2n+1∑

m=1

cmn Hm
n (r) for every r ∈ V

(
R

3
)
, (74)

written in terms of the 2n+ 1 linearly independent eigenfunctions Hm
n that must be

evaluated for each degree n ≥ 0 and order m = 1, 2, . . . , 2n + 1, while cmn ∈ R

are the arbitrary constant coefficients of the linear combination. The developed
methodology is established by representing the function u as a homogeneous
polynomial of nth degree via

un (r) =
∑

n1+n2+n3=n
Cn1,n2,n3x

n1
1 x

n2
2 x

n3
3 with n ≥ 0 and r ∈ V

(
R

3
)
, (75)

where the constants Cn1,n2,n3 for np ∈ N, p = 1, 2, 3, are unknown and need to be
calculated after imposing (75) into (71), accompanied by (73). Then, matching (74)
with (75), we are led to eigenfunctions Hm

n for m = 1, 2, . . . , 2n + 1 with n ≥ 0
and an expansion of the form (74) is eventually feasible.

Our starting point is the first two trivial cases with respect to the monomial bases
u0 ∈ {1} and u1 ∈ {x1, x2, x3} that correspond to zeroth and first degree polynomials
of the form (75), respectively, which immediately satisfy relationship (71) and
operator (73). Hence, for n = 0, we have 2 · 0 + 1 = 1 (m = 1) eigenfunction,
i.e.

H 1
0 (r) = 1 (76)

for every r ∈ V
(
R

3
)
, while for n = 1, we readily obtain the 2 · 1 + 1 = 3 (m =

1, 2, 3) eigenfunctions

H 1
1 (r) = x1, (77)

H 2
1 (r) = x2, (78)
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and

H 3
1 (r) = x3 (79)

for every r ∈ V
(
R

3
)
. In order to demonstrate a general methodology, the next three

non-trivial cases for n = 2, 3, 4 follow.
Consequently, for n = 2, we assume the homogeneous second degree polynomial

u2 = A1x
2
1 + A2x

2
2 + A3x

2
3 + A4x1x2 + A5x2x3 + A6x3x1 (80)

from (75) and then by virtue of (73)

∇ · (σ̃ · ∇u2) = 2σ11A1 + 2σ22A2 + 2σ33A3 + (σ12 + σ21)A4

+ (σ23 + σ32)A5 + (σ31 + σ13)A6. (81)

Hence, u2 is an anisotropic harmonic function if the right-hand side of (81) vanishes
(see also (71)) and the 6 coefficients Ap, p = 1, 2, . . . , 6, are connected by the
condition

2σ11A1 + 2σ22A2 + 2σ33A3 + (σ12 + σ21)A4 + (σ23 + σ32)A5

+ (σ31 + σ13)A6 = 0. (82)

Consequently, only 5 coefficients are independent and they define 5 anisotropic
harmonics of degree n = 2. One possible way to construct these 5 harmonics is
given via

A1 A2 A3 A4 A5 A6

σ31+13 0 0 0 0 −2σ11

σ23+32 0 0 0 −2σ11 0
σ12+21 0 0 −2σ11 0 0
σ33 0 −σ11 0 0 0
σ22 −σ11 0 0 0 0

, (83)

which is a useful layout that leads to the following 2 · 2 + 1 = 5 (m = 1, 2, . . . , 5)
anisotropic harmonics of the second degree, those being

H 1
2 (r) = (σ31 + σ13) x

2
1 − 2σ11x3x1, (84)

H 2
2 (r) = (σ23 + σ32) x

2
1 − 2σ11x2x3, (85)

H 3
2 (r) = (σ12 + σ21) x

2
1 − 2σ11x1x2, (86)

H 4
2 (r) = σ33x

2
1 − σ11x

2
3 , (87)
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and

H 5
2 (r) = σ22x

2
1 − σ11x

2
2 . (88)

Any other anisotropic harmonic of degree n = 2 has to be expressed as a linear
combination of Hp

2 , p = 1, 2, . . . , 5.
In the sequel, for n = 3, let us assume the third degree homogeneous polynomial,

which is rendered by

u3 = B1x
3
1 + B2x

3
2 + B3x

3
3 + B4x

2
1x2 + B5x1x

2
2

+ B6x
2
2x3 + B7x2x

2
3

+ B8x
2
3x1 + B9x3x

2
1 + B10x1x2x3 (89)

from expression (75), which, in view of (71) with (73), implies

∇ · (σ̃ · ∇u3)

= [6σ11B1 + 2σ22B5 + 2σ33B8 + 2 (σ12 + σ21) B4

+ (σ23 + σ32) B10 + 2 (σ31 + σ13) B9] x1

+ [2σ11B4 + 6σ22B2 + 2σ33B7 + 2 (σ12 + σ21) B5

+ 2 (σ23 + σ32) B6 + (σ31 + σ13) B10] x2

+ [2σ11B9 + 2σ22B6 + 6σ33B3 + (σ12 + σ21) B10

+ 2 (σ23 + σ32) B7 + 2 (σ31 + σ13) B8] x3 = 0. (90)

Hence, according to (90), the function u3 is anisotropic harmonic if the following
three constrains hold true, i.e.

6σ11B1 + 2σ22B5 + 2σ33B8 + 2 (σ12 + σ21) B4

+ (σ23 + σ32) B10 + 2 (σ31 + σ13) B9 = 0, (91)

2σ11B4 + 6σ22B2 + 2σ33B7 + 2 (σ12 + σ21) B5

+2 (σ23 + σ32) B6 + (σ31 + σ13) B10 = 0, (92)

2σ11B9 + 2σ22B6 + 6σ33B3 + (σ12 + σ21) B10

+2 (σ23 + σ32) B7 + 2 (σ31 + σ13) B8 = 0. (93)

Relations (91)–(92) reduce the independent coefficients Bp, p = 1, 2, . . . , 10, to 7.
In fact, they provide the following values of B1, B2, and B3, respectively.
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− 6σ11B1 = 2σ22B5 + 2σ33B8 + 2 (σ12 + σ21) B4 + (σ23 + σ32) B10

+2 (σ31 + σ13) B9, (94)

− 6σ22B2 = 2σ11B4 + 2σ33B7 + 2 (σ12 + σ21) B5

+2 (σ23 + σ32) B6 + (σ31 + σ13) B10, (95)

− 6σ33B3 = 2σ11B9 + 2σ22B6 + (σ12 + σ21) B10

+2 (σ23 + σ32) B7 + 2 (σ31 + σ13) B8. (96)

Then, we are left with the free to vary independently coefficients B4, B5, B6, B7,

B8, B9, and B10. Choosing the seven cases, where only one of the Bq for q =
4, 5, 6, 7, 8, 9, 10 is nonzero and all the others are equal to zero, we obtain,
recalling (94)–(96),

– 1st Case: B4 �= 0 and Bq = 0 for q = 5, 6, 7, 8, 9, 10, then

B1 = −σ12 + σ21

3σ11
B4, (97)

B2 = − σ11

3σ22
B4. (98)

– 2nd Case: B5 �= 0 and Bq = 0 for q = 4, 6, 7, 8, 9, 10, then

B1 = − σ22

3σ11
B5, (99)

B2 = −σ12 + σ21

3σ22
B5. (100)

– 3rd Case: B6 �= 0 and Bq = 0 for q = 4, 5, 7, 8, 9, 10, then

B2 = −σ23 + σ32

3σ22
B6, (101)

B3 = − σ22

3σ33
B6. (102)

– 4th Case: B7 �= 0 and Bq = 0 for q = 4, 5, 6, 8, 9, 10, then

B2 = − σ33

3σ22
B7, (103)

B3 = −σ23 + σ32

3σ33
B7. (104)
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– 5th Case: B8 �= 0 and Bq = 0 for q = 4, 5, 6, 7, 9, 10, then

B1 = − σ33

3σ11
B8, (105)

B3 = −σ31 + σ13

3σ33
B8. (106)

– 6th Case: B9 �= 0 and Bq = 0 for q = 4, 5, 6, 7, 8, 10, then

B1 = −σ31 + σ13

3σ11
B9, (107)

B3 = − σ11

3σ33
B9. (108)

– 7th Case: B10 �= 0 and Bq = 0 for q = 4, 5, 6, 7, 8, 9, then

B1 = −σ23 + σ32

6σ11
B10, (109)

B2 = −σ31 + σ13

6σ22
B10, (110)

B3 = −σ12 + σ21

6σ33
B10. (111)

We handle now (97)–(111) so as to eliminate the dominators for notational
convenience and without loss of generality as follows. Taking

B4 = −3σ11σ22 (112)

in the 1st case, we obtain from (89) the anisotropic harmonic

H1
3 (r) = (σ12 + σ21) σ22x

3
1 + σ 2

11x
3
2 − 3σ11σ22x

2
1x2. (113)

Taking again

B5 = −3σ11σ22 (114)

in the 2nd case, we have from (89) that

H2
3 (r) = (σ12 + σ21) σ11x

3
2 + σ 2

22x
3
1 − 3σ11σ22x1x

2
2 . (115)

Taking

B6 = −3σ22σ33 (116)
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in the 3rd case, we obtain from (89) the anisotropic harmonic

H3
3 (r) = (σ23 + σ32) σ33x

3
2 + σ 2

22x
3
3 − 3σ22σ33x

2
2x3. (117)

Taking again

B7 = −3σ22σ33 (118)

in the 4th case, we have from (89) that

H4
3 (r) = (σ23 + σ32) σ22x

3
3 + σ 2

33x
3
2 − 3σ22σ33x2x

2
3 . (119)

Taking

B8 = −3σ11σ33 (120)

in the 5th case, we obtain from (89) the anisotropic harmonic

H5
3 (r) = (σ31 + σ13) σ11x

3
3 + σ 2

33x
3
1 − 3σ11σ33x

2
3x1. (121)

Taking again

B9 = −3σ11σ33 (122)

in the 6th case, we have from (89) that

H6
3 (r) = (σ31 + σ13) σ33x

3
1 + σ 2

11x
3
3 − 3σ11σ33x3x

2
1 . (123)

Finally, taking

B10 = −6σ11σ22σ33 (124)

in the 7th case, we recover from (89) the seventh anisotropic harmonic eigenfunction

H7
3 (r) = (σ23 + σ32) σ22σ33x

3
1

+ (σ31 + σ13) σ11σ33x
3
2

+ (σ12 + σ21) σ11σ22x
3
3 − 6σ11σ22σ33x1x2x3, (125)

ending this task of computing the 2 · 3 + 1 = 7 (m = 1, 2, . . . , 7) anisotropic
harmonics of third degree. Any other harmonic function of degree n = 3 has to be
expressed as a linear combination of Hp

3 , p = 1, 2, . . . , 7.
Proceeding to the next degree for n = 4, we consider the fourth degree

homogeneous polynomial
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u4 = Γ1x
4
1 + Γ2x

4
2 + Γ3x

4
3 + Γ4x

3
1x2 + Γ5x

3
1x3 + Γ6x

3
2x3

+Γ7x1x
3
2 + Γ8x

3
3x1 + Γ9x2x

3
3

+Γ10x
2
1x

2
2 + Γ11x

2
3x

2
1 + Γ12x

2
2x

2
3 + Γ13x

2
1x2x3

+Γ14x1x
2
2x3 + Γ15x1x2x

2
3 , (126)

regarding expression (75), which, by virtue of (71) with (73), yields

∇ · (σ̃ · ∇u4)

= [12σ11Γ1 + 2σ22Γ10 + 2σ33Γ11 + 3 (σ12 + σ21) Γ4

+ (σ23 + σ32) Γ13 + 3 (σ31 + σ13) Γ5] x2
1

+ [12σ22Γ2 + 2σ11Γ10 + 2σ33Γ12 + 3 (σ12 + σ21) Γ7

+ 3 (σ23 + σ32) Γ6 + (σ31 + σ13) Γ14] x2
2

+ [12σ33Γ3 + 2σ11Γ11 + 2σ22Γ12 + (σ12 + σ21) Γ15

+ 3 (σ23 + σ32) Γ9 + 3 (σ31 + σ13) Γ8] x2
3

+ [6σ11Γ4 + 6σ22Γ7 + 2σ33Γ15 + 4 (σ12 + σ21) Γ10

+ 2 (σ23 + σ32) Γ14 + 2 (σ31 + σ13) Γ13] x1x2

+ [6σ22Γ6 + 2σ11Γ13 + 6σ33Γ9 + 2 (σ12 + σ21) Γ14

+ 4 (σ23 + σ32) Γ12 + 2 (σ31 + σ13) Γ15] x2x3

+ [6σ11Γ5 + 2σ22Γ14 + 6σ33Γ8 + 2 (σ12 + σ21) Γ13

+ 2 (σ23 + σ32) Γ15 + 4 (σ31 + σ13) Γ11] x3x1 = 0. (127)

Hence, similarly to the previous case, the function u4 is anisotropic harmonic if the
following six constraints hold true, that is,

12σ11Γ1 + 2σ22Γ10 + 2σ33Γ11 + 3 (σ12 + σ21) Γ4

+ (σ23 + σ32) Γ13 + 3 (σ31 + σ13) Γ5 = 0, (128)

12σ22Γ2 + 2σ11Γ10 + 2σ33Γ12 + 3 (σ12 + σ21) Γ7

+3 (σ23 + σ32) Γ6 + (σ31 + σ13) Γ14 = 0, (129)

12σ33Γ3 + 2σ11Γ11 + 2σ22Γ12 + (σ12 + σ21) Γ15

+3 (σ23 + σ32) Γ9 + 3 (σ31 + σ13) Γ8 = 0, (130)
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6σ11Γ4 + 6σ22Γ7 + 2σ33Γ15 + 4 (σ12 + σ21) Γ10

+2 (σ23 + σ32) Γ14 + 2 (σ31 + σ13) Γ13 = 0, (131)

6σ22Γ6 + 2σ11Γ13 + 6σ33Γ9 + 2 (σ12 + σ21) Γ14

+4 (σ23 + σ32) Γ12 + 2 (σ31 + σ13) Γ15 = 0, (132)

6σ11Γ5 + 2σ22Γ14 + 6σ33Γ8 + 2 (σ12 + σ21) Γ13

+2 (σ23 + σ32) Γ15 + 4 (σ31 + σ13) Γ11 = 0. (133)

Relations (128)–(133) reduce the independent coefficients Γp, p = 1, 2, . . . , 15,
to 9. As previously, we suppose that the 6 constants Γ1, Γ2, Γ3, Γ4, Γ6, and
Γ8 within (128)–(133) are calculated in terms of the rest of the arbitrary chosen
constants Γ5, Γ7, Γ9, Γ10, Γ11, Γ12, Γ13, Γ14, and Γ15 (9 constants in total).
Bearing in mind the very same procedure described for the evaluation of the
constants for n = 3, we consider the forthcoming nine cases, where only one of
the Γp, p = 5, 7, 9, 10, 11, 12, 13, 14, 15, is not set to nil and all the others vanish.
Those are

– 1st Case: Γ5 �= 0 and Γq = 0 for q = 7, 9, 10, 11, 12, 13, 14, 15, then

Γ1 = −σ13 + σ31

4σ11
Γ5, (134)

Γ3 = σ11 (σ13 + σ31)

4σ 2
33

Γ5, (135)

Γ8 = −σ11

σ33
Γ5. (136)

– 2nd Case: Γ7 �= 0 and Γq = 0 for q = 5, 9, 10, 11, 12, 13, 14, 15, then

Γ1 = σ22 (σ12 + σ21)

4σ 2
11

Γ7, (137)

Γ2 = −σ12 + σ21

4σ22
Γ7, (138)

Γ4 = −σ22

σ11
Γ7. (139)

– 3rd Case: Γ9 �= 0 and Γq = 0 for q = 5, 7, 10, 11, 12, 13, 14, 15, then

Γ2 = σ33 (σ23 + σ32)

4σ 2
22

Γ9, (140)
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Γ3 = −σ23 + σ32

4σ33
Γ9, (141)

Γ6 = −σ33

σ22
Γ9. (142)

– 4th Case: Γ10 �= 0 and Γq = 0 for q = 5, 7, 9, 11, 12, 13, 14, 15, then

Γ1 = −
[
σ11σ22 − (σ12 + σ21)

2

6σ 2
11

]

Γ10, (143)

Γ2 = − σ11

6σ22
Γ10, (144)

Γ4 = −2 (σ21 + σ12)

3σ11
Γ10. (145)

– 5th Case: Γ11 �= 0 and Γq = 0 for q = 5, 7, 9, 10, 12, 13, 14, 15, then

Γ1 = − σ33

6σ11
Γ11, (146)

Γ3 = −
[
σ11σ33 − (σ13 + σ31)

2

6σ 2
33

]

Γ11, (147)

Γ8 = −2 (σ13 + σ31)

3σ33
Γ11. (148)

– 6th Case: Γ12 �= 0 and Γq = 0 for q = 5, 7, 9, 10, 11, 13, 14, 15, then

Γ2 = −
[
σ22σ33 − (σ23 + σ32)

2

6σ 2
22

]

Γ12, (149)

Γ3 = −σ22

σ33
Γ12, (150)

Γ6 = −2 (σ23 + σ32)

3σ22
Γ12. (151)

– 7th Case: Γ13 �= 0 and Γq = 0 for q = 5, 7, 9, 10, 11, 12, 14, 15, then

Γ1 = −
[
σ11 (σ23 + σ32)− (σ12 + σ21) (σ13 + σ31)

12σ 2
11

]

Γ13, (152)

Γ2 = σ11 (σ23 + σ32)

12σ 2
22

Γ13, (153)
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Γ3 = (σ13 + σ31) (σ12 + σ21)

12σ 2
33

Γ13, (154)

Γ4 = −σ13 + σ31

3σ11
Γ13, (155)

Γ6 = − σ11

3σ22
Γ13, (156)

Γ8 = −σ12 + σ21

3σ33
Γ13. (157)

– 8th Case: Γ14 �= 0 and Γq = 0 for q = 5, 7, 9, 10, 11, 12, 13, 15, then

Γ1 = (σ12 + σ21) (σ23 + σ32)

12σ 2
11

Γ14, (158)

Γ2 = −
[
σ22 (σ13 + σ31)− (σ23 + σ32) (σ21 + σ12)

12σ 2
22

]

Γ14, (159)

Γ3 = σ22 (σ13 + σ31)

12σ 2
33

Γ14, (160)

Γ4 = −σ23 + σ32

3σ11
Γ14, (161)

Γ6 = −σ21 + σ12

3σ22
Γ14, (162)

Γ8 = − σ22

3σ33
Γ14. (163)

– 9th Case: Γ15 �= 0 and Γq = 0 for q = 5, 7, 9, 10, 11, 12, 13, 14, then

Γ1 = σ33 (σ12 + σ21)

12σ 2
11

Γ15, (164)

Γ2 = (σ23 + σ32) (σ13 + σ31)

12σ 2
22

Γ15, (165)

Γ3 = −
[
σ33 (σ21 + σ12)− (σ13 + σ31) (σ23 + σ32)

12σ 2
33

]

Γ15, (166)

Γ4 = − σ33

3σ11
Γ15, (167)

Γ6 = −σ13 + σ31

3σ22
Γ15, (168)

Γ8 = −σ23 + σ32

3σ33
Γ15. (169)
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Similarly, we suggest values for Γp, p = 5, 7, 9, 10, 11, 12, 13, 14, 15
within (134)–(169) so as to eliminate the dominators and obtain handy relations,
and thus we come up with the 2 ·4+1 = 9 (m = 1, 2, . . . , 9) anisotropic harmonics
of fourth degree, given by

H 1
4 (r) = σ 2

33 (σ13 + σ31) x
4
1 − σ 2

11 (σ13 + σ31) x
4
3

−4σ11σ
2
33x3x

3
1 + 4σ 2

11σ33x
3
3x1, (170)

H 2
4 (r) = −σ 2

22 (σ12 + σ21) x
4
1 + σ 2

11 (σ12 + σ21) x
4
2

+4σ11σ
2
22x

3
1x2 − 4σ 2

11σ22x1x
3
2 , (171)

H 3
4 (r) = −σ 2

33 (σ23 + σ32) x
4
2 + σ 2

22 (σ23 + σ32) x
4
3

+4σ22σ
2
33x

3
2x3 − 4σ 2

22σ33x2x
3
3 , (172)

H 4
4 (r) =

[
σ11σ

2
22 − σ22 (σ12 + σ21)

2
]
x4

1 + σ 3
11x

4
2 + 4σ11σ22 (σ21 + σ12) x

3
1x2

−6σ 2
11σ22x

2
1x

2
2 , (173)

H 5
4 (r) = σ 3

33x
4
1 +

[
σ 2

11σ33 − σ11 (σ13 + σ31)
2
]
x4

3 + 4σ11σ33 (σ13 + σ31) x
3
3x1

−6σ11σ
2
33x

2
3x

2
1 , (174)

H 6
4 (r) =

[
σ22σ

2
33 − σ33 (σ23 + σ32)

2
]
x4

2 + σ 3
22x

4
3 + 4σ22σ33 (σ23 + σ32) x

3
2x3

−6σ 2
22σ33x

2
2x

2
3 , (175)

H 7
4 (r) =

[
σ11σ

2
22σ

2
33 (σ23 + σ32)− σ 2

22σ
2
33 (σ12 + σ21) (σ13 + σ31)

]
x4

1

−σ 3
11σ

2
33 (σ23 + σ32) x

4
2

−σ 2
11σ

2
22 (σ13 + σ31) (σ12 + σ21) x

4
3

+4σ11σ
2
22σ

2
33 (σ13 + σ31) x

3
1x2 + 4σ 3

11σ22σ
2
33x

3
2x3

+4σ 2
11σ

2
22σ33 (σ12 + σ21) x

3
3x1 − 12σ 2

11σ
2
22σ

2
33x

2
1x2x3, (176)
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H 8
4 (r) = −σ 2

22σ
2
33 (σ12 + σ21) (σ23 + σ32) x

4
1

+
[

(σ 2
11σ22σ

2
33 (σ13 + σ31)− σ 2

11σ
2
33 (σ23 + σ32) (σ12 + σ21)

]

x4
2

−σ 2
11σ

3
22 (σ13 + σ31) x

4
3 + 4σ11σ

2
22σ

2
33 (σ23 + σ32) x

3
1x2

+4σ 2
11σ22σ

2
33 (σ12 + σ21) x

3
2x3

+4σ 2
11σ

3
22σ33x

3
3x1 − 12σ 2

11σ
2
22σ

2
33x1x

2
2x3, (177)

and

H 9
4 (r) = −σ 2

22σ
3
33 (σ12 + σ21) x

4
1 − σ 2

11σ
2
33 (σ23 + σ32) (σ13 + σ31) x

4
2

+
[
σ 2

11σ
2
22σ33 (σ12 + σ21)− σ 2

11σ
2
22 (σ13 + σ31) (σ23 + σ32)

]
x4

3

+4σ11σ
2
22σ

3
33x

3
1x2 + 4σ 2

11σ22σ
2
33 (σ13 + σ31) x

3
2x3

+4σ 2
11σ

2
22σ33 (σ23 + σ32) x

3
3x1 − 12σ 2

11σ
2
22σ

2
33x1x2x

2
3 . (178)

Obviously, any other harmonic function of degree n = 4 has to be written as a linear
combination of Hp

4 , p = 1, 2, . . . , 9.
Notwithstanding the common sense that we developed mathematically in our

previous steps that could be followed for every degree n ≥ 5 and order m =
1, 2, . . . , 2n + 1, it does not look possible to find a general methodology, incor-
porating the polynomial (75). However, a standard technique has been established,
which could be efficiently used for higher degrees, no matter how complicated the
calculations might be. Nevertheless, most physical applications require the first
terms of series (74) in order for the solution to converge, and hence the above
analysis is more than sufficient when dealing with such problems in anisotropic
elasticity. Completing our analysis, note that while in the isotropic case the harmonic
polynomials have only numerical values, in the anisotropic case the relative
harmonic polynomials include the anisotropic characteristics of the space. Hence,
the anisotropic harmonics are functions of the anisotropy tensor σ̃ , provided by (70).

6 Conclusions and Discussion

In this work, we developed a theoretical study of the basic mathematical components
used in linear anisotropic elastostatics in the absence of body forces. Our survey was
primarily oriented to the investigation of the fundamental equations of elasticity,
i.e. Hooke’s and Newton’s law, in which the displacement field was interconnected
with the strain, the stress, and the stiffness tensors, in order to derive the linearized
equation of dynamic anisotropic elasticity. Henceforth, we considered the special
anisotropies, which were characterized by the corresponding stiffness matrices. For
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the purpose of becoming familiar with the analytic manipulation of the anisotropic
case, we begun elaborating Newton’s law by virtue of the isotropic stiffness tensor,
and we proceeded to the generation of the corresponding form of Newton’s law,
when the cubic-type system of anisotropy was implied. Closed-form solutions were
presented for both the isotropic and anisotropic equations of linear time-independent
elasticity.

Despite the fact that a differential-type representation exists for the complete
spatial isotropy, providing a closed-form solution via harmonic functions, it was
not possible at this stage to find such kind of solutions for the anisotropic
case. Hence, we restricted ourselves in presenting a polynomial-type solution,
referring to the cubic stiffness matrix, whereas we achieved to obtain a handy
principal form. Though, since our intention is to explore the chance to prove the
existence of more practical solution representations in linear anisotropic elasto-
statics, we demonstrated a mathematical technique, based on the definition of the
anisotropic Laplace’s operator. This led to the generation of anisotropic harmonic
eigenfunctions of certain degree, which can be generalized for any degree with
significantly longer calculational effort. Work under progress involves research
directed toward the construction of general differential representations of solutions
for describing the displacement field in anisotropic elastic media, written in terms
of the anisotropic harmonic functions.
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Hyers–Ulam Stability of Symmetric
Biderivations on Banach Algebras

Jung Rye Lee, Choonkil Park, and Themistocles M. Rassias

Abstract In C. Park (Indian J Pure Appl Math 50:413–426, 2019), Park introduced
the following bi-additive s-functional inequality:

‖f (x + y, z− w)+ f (x − y, z+ w)− 2f (x, z)+ 2f (y,w)‖

≤
∥
∥
∥
∥s

(

2f

(
x + y

2
, z− w

)

+ 2f

(
x − y

2
, z+ w

)

− 2f (x, z)+ 2f (y,w)

)∥
∥
∥
∥ ,

(1)

where s is a fixed nonzero complex number with |s| < 1. Using the fixed point
method and the direct method, we prove the Hyers–Ulam stability of symmetric
biderivations and a skew-symmetric biderivation on Banach algebras and unital C∗-
algebras, associated with the bi-additive s-functional inequality (1).

1 Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[25] concerning the stability of group homomorphisms. Hyers [9] gave a first
affirmative partial answer to the question of Ulam for Banach spaces. Hyers’
theorem was generalized by Aoki [1] for additive mappings and by Rassias [24] for
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linear mappings by considering an unbounded Cauchy difference. A generalization
of the Rassias theorem was obtained by Găvruta [8] by replacing the unbounded
Cauchy difference by a general control function in the spirit of Rassias’ approach.
Park [17, 18] defined additive ρ-functional inequalities and proved the Hyers–Ulam
stability of the additive ρ-functional inequalities in Banach spaces and non-
Archimedean Banach spaces. The stability problems of various functional equations
and functional inequalities have been extensively investigated by a number of
authors (see [11, 20, 21]).

We recall a fundamental result in fixed point theory.

Theorem 1 ([3, 6]) Let (X, d) be a complete generalized metric space and J :
X → X be a strictly contractive mapping with Lipschitz constant α < 1. Then, for
each given element x ∈ X, either

d(J nx, J n+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(J nx, J n+1x) <∞, ∀n ≥ n0.
(2) The sequence {Jnx} converges to a fixed point y∗ of J .
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(J n0x, y) <∞}.
(4) d(y, y∗) ≤ 1

1−α d(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [10] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with
applications. By using fixed point methods, the stability problems of several
functional equations have been extensively investigated by a number of authors (see
[4, 5, 7, 19, 23]).

Maksa [13, 14] introduced and investigated biderivations and symmetric
biderivations on rings. Öztürk and Sapanci [16], Vukman [26] and Yazarli [27]
investigated some properties of symmetric biderivations on rings.

Definition 1 ([13, 14]) Let A be a ring. A bi-additive mapping D : A× A→ A is
called a symmetric biderivation on A if D satisfies

D(xy, z) = D(x, z)y + xD(y, z),

D(x, y) = D(y, x)

for all x, y, z ∈ A.

In this chapter, we introduce a symmetric biderivation on a Banach algebra and
a skew-symmetric biderivation on a Banach ∗-algebra.

Definition 2 Let A be a complex Banach algebra. A C-bilinear mapping D : A ×
A→ A is called a symmetric biderivation on A if D satisfies

D(xy, z) = D(x, z)y + xD(y, z),
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D(x, y) = D(y, x)

for all x, y, z ∈ A.

It is easy to show that if D is a symmetric biderivation, then

D(x, zw) = D(zw, x) = D(z, x)w + zD(w, x) = D(x, z)w + zD(x,w)

for all x, z,w ∈ A. So,

D(xy, zw) = D(x, zw)y + xD(y, zw)

= D(x, z)wy + zD(x,w)y + xD(y, z)w + xzD(y,w)

for all x, y, z,w ∈ A.

Definition 3 Let A be a complex Banach ∗-algebra. A bi-additive mapping D :
A × A → A is called a skew-symmetric biderivation on A if D is C-linear in the
first variable and satisfies

D(xy, z) = D(x, z)y + xD(y, z),

D(x, y) = D(y, x)∗

for all x, y, z ∈ A.

It is easy to show that if D is a skew-symmetric biderivation, then D is conjugate
C-linear in the second variable and

D(x, zw) = D(zw, x)∗ = (D(z, x)w + zD(w, x))∗ = w∗D(z, x)∗ +D(w, x)∗z∗

= w∗D(x, z)+D(x,w)z∗

for all x, z,w ∈ A. So,

D(xy, zw) = D(x, zw)y + xD(y, zw)

= w∗D(x, z)y +D(x,w)z∗y + xw∗D(y, z)+ xD(y,w)z∗

for all x, y, z,w ∈ A.
This chapter is organized as follows: in Sects. 2 and 3, we investigate symmetric

biderivations on Banach algebras and unital C∗-algebras associated with the bi-
additive s-functional inequality (1) by using the direct method. In Sects. 4 and 5,
we investigate skew-symmetric biderivations on Banach ∗-algebras and unital C∗-
algebras associated with the bi-additive s-functional inequality (1) by using the fixed
point method.
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Throughout this chapter, let X be a complex normed space and Y be a complex
Banach space. Let A be a complex Banach algebra. Assume that s is a fixed nonzero
complex number with |s| < 1.

2 Hyers–Ulam Stability of Symmetric Biderivations and
Skew-Symmetric Derivations on Banach Algebras: Direct
Method

In [22], Park solved the bi-additive s-functional inequality (1) in complex normed
spaces.

Lemma 1 ([22, Lemma 2.1] ) If a mapping f : X2 → Y satisfies f (0, z) =
f (x, 0) = 0 and

‖f (x + y, z− w)+ f (x − y, z+ w)− 2f (x, z)+ 2f (y,w)‖

≤
∥
∥
∥
∥s

(

2f

(
x + y

2
, z− w

)

+ 2f

(
x − y

2
, z+ w

)

− 2f (x, z)+ 2f (y,w)

)∥
∥
∥
∥

(2)

for all x, y, z,w ∈ X, then f : X2 → Y is bi-additive.

Using the direct method, we prove the Hyers–Ulam stability of the bi-additive
s-functional inequality (2) in complex Banach spaces.

Theorem 2 ([22, Theprem 2.2]) Let ϕ : X2 → [0,∞) be a function satisfying

Ψ (x, y) :=
∞∑

j=1

2j ϕ
( x

2j
,
y

2j

)
<∞

for all x, y ∈ X. Let f : X2 → Y be a mapping satisfying f (x, 0) = f (0, z) = 0
and

‖f (x + y, z− w)+ f (x − y, z+ w)− 2f (x, z)+ 2f (y,w)‖

≤
∥
∥
∥
∥s

(

2f

(
x + y

2
, z− w

)

+ 2f

(
x − y

2
, z+ w

)

− 2f (x, z)+ 2f (y,w)

)∥
∥
∥
∥

+ϕ(x, y)ϕ(z,w) (3)

for all x, y, z,w ∈ X. Then, there exists a unique bi-additive mapping P : X2 → Y

such that

‖f (x, z)− P(x, z)‖ ≤ 1

2
Ψ (x, x)ϕ(z, 0)

for all x, z ∈ X.
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Using the direct method, we prove the Hyers–Ulam stability of symmetric
biderivations on complex Banach algebras and unital C∗-algebras associated with
the bi-additive s-functional inequality (1).

Lemma 2 ([2, Lemma 2.1]) Let f : X2 → Y be a bi-additive mapping such that
f (λx, μz) = λμf (x, z) for all x, z ∈ X and λ,μ ∈ S1 := {ν ∈ C : |ν| = 1}.
Then, f is C-bilinear.

Theorem 3 Let ϕ : A2 → [0,∞) be a function satisfying

∞∑

j=1

4j ϕ
( x

2j
,
y

2j

)
<∞ (4)

for all x, y ∈ A and f : A2 → A be a mapping satisfying f (x, 0) = f (0, z) = 0
and

‖f (λ(x + y), μ(z− w))+ f (λ(x − y), μ(z+ w))− 2λμf (x, z)+ 2λμf (y.w)‖

≤
∥
∥
∥
∥s

(

2f

(
x + y

2
, z− w

)

+ 2f

(
x − y

2
, z+ w

)

− 2f (x, z)+ 2f (y,w)

)∥
∥
∥
∥

+ϕ(x, y)ϕ(z,w) (5)

for all λ,μ ∈ S1 and all x, y, z,w ∈ A. Then, there exists a unique C-bilinear
mapping D : A2 → A such that

‖f (x, z)−D(x, z)‖ ≤ 1

2
Ψ (x, x)ϕ(z, 0) (6)

for all x, z ∈ A, where

Ψ (x, y) :=
∞∑

j=1

2j ϕ
( x

2j
,
y

2j

)

for all x, y ∈ A.
If, in addition, the mapping f : A2 → A satisfies f (2x, z) = 2f (x, z) and

‖f (xy, z)− f (x, z)y − xf (y, z)‖ ≤ ϕ(x, y)ϕ(z, 0), (7)

‖f (x, z)− f (z, x)‖ ≤ ϕ(x, z) (8)

for all x, y, z ∈ A, then the mapping f : A2 → A is a symmetric biderivation.



560 J. R. Lee et al.

Proof Let λ = μ = 1 in (5). By Theorem 2, there is a unique bi-additive mapping
D : A2 → A satisfying (6) defined by

D(x, z) := lim
n→∞ 2nf

( x

2n
, z
)

for all x, z ∈ A.
Letting y = w = 0 in (5), we get f (λx, μz) = λμf (x, z) for all x, z ∈ A and

all λ,μ ∈ S1. By Lemma 2, the bi-additive mapping D : A2 → A is C-bilinear.
If f (2x, z) = 2f (x, z) for all x, z ∈ A, then we can easily show that D(x, z) =

f (x, z) for all x, z ∈ A.
It follows from (7) that

‖D(xy, z)−D(x, z)y − xD(y, z)‖
= lim

n→∞ 4n
∥
∥
∥f
( xy

2n · 2n
, z
)
− f

( x

2n
, z
) y

2n
− x

2n
f
( y

2n
, z
)∥
∥
∥

≤ lim
n→∞ 4nϕ

( x

2n
,
y

2n

)
ϕ(z, 0) = 0

for all x, y, z ∈ A. Thus,

D(xy, z) = D(x, z)y + xD(y, z)

for all x, y, z ∈ A.
It follows from (8) that

‖D(x, z)−D(z, x)‖ = lim
n→∞ 4n

∥
∥
∥D
( x

2n
,
z

2n

)
−D

( z

2n
,
x

2n

)∥
∥
∥

= lim
n→∞ 4n

∥
∥
∥f
( x

2n
,
z

2n

)
− f

( z

2n
,
x

2n

)∥
∥
∥

≤ lim
n→∞ 4nϕ

( x

2n
,
z

2n

)
= 0

for all x, z ∈ A. Thus,

D(x, z) = D(z, x)

for all x, z ∈ A. Hence, the mapping f : A2 → A is a symmetric biderivation.

Corollary 1 Let r > 2 and θ be nonnegative real numbers, and let f : A2 → A be
a mapping satisfying f (x, 0) = f (0, z) = 0 and

‖f (λ(x + y), μ(z− w))+ f (λ(x − y), μ(z+ w))− 2λμf (x, z)+ 2λμf (y,w)‖

≤
∥
∥
∥
∥s

(

2f

(
x + y

2
, z− w

)

+ 2f

(
x − y

2
, z+ w

)

− 2f (x, z)+ 2f (y,w)

)∥
∥
∥
∥

+θ(‖x‖r + ‖z‖r )(‖y‖r + ‖w‖r ) (9)
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for all λ,μ ∈ S1 and all x, y, z,w ∈ A. Then, there exists a unique C-bilinear
mapping D : A2 → A such that

‖f (x, z)−D(x, z)‖ ≤ 2θ

2r − 2
‖x‖r‖z‖r (10)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies f (2x, z) = 2f (x, z) and

‖f (xy, z)− f (x, z)y − xf (y, z)‖ ≤ θ(‖x‖r + ‖y‖r )‖z‖r , (11)

‖f (x, z)− f (z, x)‖ ≤ θ(‖x‖r + ‖z‖r ) (12)

for all x, y, z ∈ A, then the mapping f : A2 → A is a symmetric biderivation.

Proof The proof follows from Theorem 3 by taking ϕ(x, y) = √
θ(‖x‖r + ‖y‖r )

for all x, y ∈ A.

Theorem 4 Let ϕ : A2 → [0,∞) be a function satisfying

Ψ (x, y) :=
∞∑

j=0

1

2j
ϕ
(

2j x, 2j y
)
<∞ (13)

for all x, y ∈ A, and let f : A2 → A be a mapping satisfying f (x, 0) = f (0, z) =
0 and (5). Then, there exists a unique C-bilinear mapping D : A2 → A such that

‖f (x, z)−D(x, z)‖ ≤ 1

2
Ψ (x, x)ϕ(z, 0) (14)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies f (2x, z) = 2f (x, z), (7) and

(8), then the mapping f : A2 → A is a symmetric biderivation.

Proof The proof is similar to the proof of Theorem 3.

Corollary 2 Let r < 1 and θ be nonnegative real numbers, and let f : A2 → A be
a mapping satisfying (9) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then, there
exists a unique C-bilinear mapping D : A2 → A such that

‖f (x, z)−D(x, z)‖ ≤ 2θ

2− 2r
‖x‖r‖z‖r (15)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (11), (12) and f (2x, z) =

2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a symmetric
biderivation.
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Proof The proof follows from Theorem 4 by taking ϕ(x, y) = √
θ(‖x‖r + ‖y‖r )

for all x, y ∈ A.

From now on, assume that A is a unital C∗-algebra with unit e and unitary group
U(A).

Theorem 5 Let ϕ : A2 → [0,∞) be a function satisfying (4) and f : A2 → A be
a mapping satisfying (5) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (6).

If, in addition, the mapping f : A2 → A satisfies (8), f (2x, z) = 2f (x, z) and

‖f (uy, z)− f (u, z)y − uf (y, z)‖ ≤ θ(1+ ‖y‖r )‖z‖r (16)

for all u, v ∈ U(A) and all x, y, z ∈ A, then the mapping f : A2 → A is a
symmetric biderivation.

Proof By the same reasoning as in the proof of Theorem 3, there is a unique C-
bilinear mapping D : A2 → A satisfying (6) defined by

D(x, z) := lim
n→∞ 2nf

( x

2n
, z
)

for all x, z ∈ A.
If f (2x, z) = 2f (x, z) for all x, z ∈ A, then we can easily show that D(x, z) =

f (x, z) for all x, z ∈ A.
By the same reasoning as in the proof of Theorem 3, D(uy, z) = D(u, z)y +

uD(y, z) for all u, v ∈ U(A) and all y, z ∈ A.
Since D is C-linear in the first variable and each x ∈ A is a finite linear

combination of unitary elements (see [12]), i.e., x = ∑m
j=1 λjuj (λj ∈ C,

uj ∈ U(A)),

D(xy, z) = D

⎛

⎝
m∑

j=1

λjujy, z

⎞

⎠=
m∑

j=1

λjD(ujy, z)=
m∑

j=1

λj (D(uj , z)y+ujD(y, z))

=
⎛

⎝
m∑

j=1

λj

⎞

⎠D(uj , z)y +
⎛

⎝
m∑

j=1

λjuj

⎞

⎠D(y, z) = D(x, z)y + xD(y, z)

for all x, y, z ∈ A. So, by the same reasoning as in the proof of Theorem 3,
D : A2 → A is a symmetric biderivation. Thus, f : A2 → A is a symmetric
biderivation.

Corollary 3 Let r > 2 and θ be nonnegative real numbers, and let f : A2 → A be
a mapping satisfying (9) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (10).
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If, in addition, the mapping f : A2 → A satisfies (11), f (2x, z) = 2f (x, z) and

‖f (uy, z)− f (u, z)y − uf (y, z)‖ ≤ θ(1+ ‖y‖r )‖z‖r (17)

for all u, v ∈ U(A) and all x, y, z ∈ A, then the mapping f : A2 → A is a
symmetric biderivation.

Theorem 6 Let ϕ : A2 → [0,∞) be a function satisfying (13) and f : A2 → A

be a mapping satisfying f (x, 0) = f (0, z) = 0 for all x, z ∈ A and (5). Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (14).

If, in addition, the mapping f : A → A satisfies (8), (16) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a symmetric biderivation

Proof The proof is similar to the proof of Theorem 5.

Corollary 4 Let r < 1 and θ be nonnegative real numbers, and let f : A2 → A be
a mapping satisfying (9) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (15).

If, in addition, the mapping f : A → A satisfies (11), (17) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a symmetric
biderivation.

3 Hyers–Ulam Stability of Skew-Symmetric Biderivations on
Banach ∗-Algebras: Direct Method

In this section, using the direct method, we prove the Hyers–Ulam stability of skew-
symmetric biderivations on complex Banach ∗-algebras and unital C∗-algebras
associated with the bi-additive s-functional inequality (1).

Theorem 7 Let ϕ : A2 → [0,∞) be a function satisfying (4) and f : A2 → A be
a mapping satisfying f (x, 0) = f (0, z) = 0 for all x, z ∈ A and (5). Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (6).

If, in addition, the mapping f : A2 → A satisfies (7), f (2x, z) = 2f (x, z) and

‖f (x, z)− f (z, x)∗‖ ≤ ϕ(x, z) (18)

for all x, z ∈ A, then the mapping f : A2 → A is a skew-symmetric biderivation.

Proof By Theorem 3, there is a unique C-bilinear mapping D : A2 → A

satisfying (6) defined by

D(x, z) := lim
n→∞ 2nf

( x

2n
, z
)

for all x, z ∈ A.
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If f (2x, z) = 2f (x, z) for all x, z ∈ A, then we can easily show that D(x, z) =
f (x, z) for all x, z ∈ A.

It follows from (18) that

‖D(x, z)−D(z, x)∗‖ = lim
n→∞ 4n

∥
∥
∥D
( x

2n
,
z

2n

)
−D

( z

2n
,
x

2n

)∗∥∥
∥

= lim
n→∞ 4n

∥
∥
∥f
( x

2n
,
z

2n

)
− f

( z

2n
,
x

2n

)∗∥∥
∥

≤ lim
n→∞ 4nϕ

( x

2n
,
z

2n

)
= 0

for all x, z ∈ A. Thus,

D(x, z) = D(z, x)∗

for all x, z ∈ A.
The rest of the proof is similar to the proof of Theorem 3 and so the mapping

f : A2 → A is a skew-symmetric biderivation.

Corollary 5 Let r > 2 and θ be nonnegative real numbers, and let f : A2 → A be
a mapping satisfying (9) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (10).

If, in addition, the mapping f : A2 → A satisfies (10), f (2x, z) = 2f (x, z) and

‖f (x, z)− f (z, x)∗‖ ≤ θ‖x‖r‖z‖r (19)

for all x, y, z ∈ A, then the mapping f : A2 → A is a skew-symmetric biderivation.

Theorem 8 Let ϕ : A2 → [0,∞) be a function satisfying (13) and f : A2 → A

be a mapping satisfying f (x, 0) = f (0, z) = 0 and (5). Then, there exists a unique
C-bilinear mapping D : A2 → A satisfying (14).

If, in addition, the mapping f : A2 → A satisfies f (2x, z) = 2f (x, z) for
all x, z ∈ A, (7) and (18), then the mapping f : A2 → A is a skew-symmetric
biderivation.

Proof The proof is similar to the proof of Theorem 7.

Corollary 6 Let r < 1 and θ be nonnegative real numbers, and let f : A2 → A be
a mapping satisfying (9) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (15).

If, in addition, the mapping f : A2 → A satisfies (10), (19) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a skew-symmetric
biderivation.
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4 Hyers–Ulam Stability of Symmetric Biderivations and
Skew-Symmetric Derivations on Banach Algebras: Fixed
Point Method

Using the fixed point method, we prove the Hyers–Ulam stability of the bi-additive
s-functional inequality (1) in complex Banach spaces.

Theorem 9 Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1
with

ϕ
(x

2
,
y

2

)
≤ L

4
ϕ (x, y) ≤ L

2
ϕ (x, y) (20)

for all x, y ∈ X. Let f : X2 → Y be a mapping satisfying (3) and f (x, 0) =
f (0, z) = 0 for all x, z ∈ X. Then, there exists a unique bi-additive mapping
P : X2 → Y such that

‖f (x, z)− P(x, z)‖ ≤ L

2(1− L)
ϕ(x, x)ϕ(z, 0) (21)

for all x, z ∈ X.

Proof Letting w = 0 and y = x in (3), we get

‖f (2x, z)− 2f (x, z)‖ ≤ ϕ(x, x)ϕ(z, 0) (22)

for all x, z ∈ X.
Consider the set

S := {h : X2 → Y, h(x, 0) = h(0, z) = 0 ∀x, z ∈ X},

and introduce the generalized metric on S:

d(g, h) = inf {μ ∈ R+ : ‖g(x, z)− h(x, z)‖ ≤ μϕ (x, x) ϕ(z, 0), ∀x, z ∈ X} ,

where, as usual, infφ = +∞. It is easy to show that (S, d) is complete (see [15]).
Now, we consider the linear mapping J : S → S such that

Jg(x, z) := 2g
(x

2
, z
)

for all x, z ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then,

‖g(x, z)− h(x, z)‖ ≤ εϕ (x, x) ϕ(z, 0)
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for all x, z ∈ X. Since

‖Jg(x, z)− Jh(x, z)‖ =
∥
∥
∥2g

(x

2
, z
)
− 2h

(x

2
, z
)∥
∥
∥ ≤ 2εϕ

(x

2
,
x

2

)
ϕ(z, 0)

≤ 2ε
L

2
ϕ (x, x) ϕ(z, 0) = Lεϕ (x, x) ϕ(z, 0)

for all x, z ∈ X, d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (22) that

∥
∥
∥f (x, z)− 2f

(x

2
, z
)∥
∥
∥ ≤ ϕ

(x

2
,
x

2

)
ϕ(z, 0) ≤ L

2
ϕ(x, x)ϕ(z, 0)

for all x, z ∈ X. So, d(f, Jf ) ≤ L
2 .

By Theorem 1, there exists a mapping P : X2 → Y satisfying the following:

(1) P is a fixed point of J , i.e.,

P (x, z) = 2P
(x

2
, z
)

(23)

for all x, z ∈ X. The mapping P is a unique fixed point of J . This implies
that P is a unique mapping satisfying (23) such that there exists a μ ∈ (0,∞)

satisfying

‖f (x, z)− P(x, z)‖ ≤ μϕ (x, x) ϕ(z, 0)

for all x, z ∈ X;
(2) d(J lf, P )→ 0 as l →∞. This implies the equality

lim
l→∞ 2lf

( x

2l
, z
)
= P(x, z)

for all x, z ∈ X;
(3) d(f, P ) ≤ 1

1−Ld(f, Jf ), which implies

‖f (x, z)− P(x, z)‖ ≤ L

2(1− L)
ϕ (x, x) ϕ(z, 0)

for all x, z ∈ X. So, we obtain (21).
It follows from (3) and (20) that

‖P(x + y, z− w)+ P(x − y, z+ w)− 2P(x, z)+ 2P(y,w)‖
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= lim
n→∞

∥
∥
∥
∥2n

(

f

(
x + y

2n
, z− w

)

+ f

(
x − y

2n
, z+ w

)

−2f
( x

2n
, z
)
+ 2f

( y

2n
,w
))∥
∥
∥

≤ lim
n→∞

∥
∥
∥
∥2ns

(

2f

(
x + y

2n+1 , z− w

)

+ 2f

(
x − y

2n+1 , z+ w

)

−2f
( x

2n
, z
)
+ 2f

( y

2n
,w
))∥
∥
∥+ lim

n→∞ 2nϕ
( x

2n
,
x

2n

)
ϕ(z, 0)

≤
∥
∥
∥
∥s

(

2P

(
x + y

2
, z− w

)

+ 2P

(
x − y

2
, z+ w

)

−2P(x, z)+ 2P(y,w))‖

for all x, y, z,w ∈ X, since 2nϕ
(
x
2n ,

x
2n
)
ϕ(z, 0) ≤ 2nLn

2n ϕ(x, x)ϕ(z, 0) tends to
zero as n→∞. So,

‖P(x + y, z− w)+ P(x − y, z+ w)− 2P(x, z)+ 2P(y,w)‖

≤
∥
∥
∥
∥s

(

2P

(
x + y

2
, z− w

)

+ 2P

(
x − y

2
, z+ w

)

−2P(x, z)+ 2P(y,w))

∥
∥
∥
∥

for all x, y, z,w ∈ X. By Lemma 1, the mapping P : X2 → Y is bi-additive.

Using the fixed point method, we prove the Hyers–Ulam stability of symmetric
biderivations on complex Banach algebras and unital C∗-algebras associated with
the bi-additive s-functional inequality (1).

Theorem 10 Let ϕ : A2 → [0,∞) be a function satisfying (20) with A = X

and f : A2 → A be a mapping satisfying (5) and f (x, 0) = f (0, z) = 0 for all
x, z ∈ A. Then, there exists a unique C-bilinear mapping D : A2 → A satisfying
(21) with X = A.

If, in addition, the mapping f : A2 → A satisfies (7), (8) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a symmetric
biderivation.

Proof Let λ = μ = 1 in (5). By Theorem 9, there is a unique bi-additive mapping
D : A2 → A satisfying (21) defined by

D(x, z) := lim
n→∞ 2nf

( x

2n
, z
)

for all x, z ∈ A.
Letting y = w = 0 in (5), we get f (λx, μz) = λμf (x, z) for all x, z ∈ A and

all λ,μ ∈ S1. By Lemma 2, the bi-additive mapping D : A2 → A is C-bilinear.
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The rest of the proof is similar to the proof of Theorem 3.

Corollary 7 Let r > 2 and θ be nonnegative real numbers, and let f : A2 → A be
a mapping satisfying (9) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (10).

If, in addition, the mapping f : A2 → A satisfies (11), (12) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a symmetric
biderivation.

Proof The proof follows from Theorem 10 by taking L = 21−r and ϕ(x, y) =√
θ(‖x‖r + ‖y‖r ) for all x, y ∈ A.

Theorem 11 Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1
with

ϕ (x, y) ≤ 2Lϕ
(x

2
,
y

2

)
(24)

for all x, y ∈ X. Let f : X2 → Y be a mapping satisfying (3) and f (x, 0) =
f (0, z) = 0 for all x, z ∈ X. Then, there exists a unique bi-additive mapping
P : X2 → Y such that

‖f (x, z)− P(x, z)‖ ≤ 1

2(1− L)
ϕ (x, x) ϕ(z, 0)

for all x, z ∈ X.

Proof Let (S, d) be the generalized metric space defined in the proof of Theorem 9.
Now, we consider the linear mapping J : S → S such that

Jg(x, z) := 1

2
g (2x, z)

for all x ∈ X.
It follows from (22) that

∥
∥
∥
∥f (x, z)−

1

2
f (2x, z)

∥
∥
∥
∥ ≤

1

2
ϕ(x, x)ϕ(z, 0)

for all x, z ∈ X.
The rest of the proof is similar to the proof of Theorem 9.

Theorem 12 Let ϕ : A2 → [0,∞) be a function satisfying (24) with X = A and
f : A2 → A be a mapping satisfying f (x, 0) = f (0, z) = 0 and (5). Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (6).

If, in addition, the mapping f : A2 → A satisfies f (2x, z) = 2f (x, z), (7) and
(8), then the mapping f : A2 → A is a symmetric biderivation.

Proof The proof is similar to the proof of Theorem 10.
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Corollary 8 Let r < 1 and θ be nonnegative real numbers, and let f : A2 → A be
a mapping satisfying (9) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (15).

If, in addition, the mapping f : A2 → A satisfies (11), (12) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a symmetric
biderivation.

Proof The proof follows from Theorem 12 by taking L = 2r−1 and ϕ(x, y) =√
θ(‖x‖r + ‖y‖r ) for all x, y ∈ A.

From now on, assume that A is a unital C∗-algebra with unit e and unitary group
U(A).

Theorem 13 Let ϕ : A2 → [0,∞) be a function satisfying (20) with X = A

and f : A2 → A be a mapping satisfying (5) and f (x, 0) = f (0, z) = 0 for all
x, z ∈ A. Then, there exists a unique C-bilinear mapping D : A2 → A satisfying
(21) with X = A.

If, in addition, the mapping f : A2 → A satisfies (8), (16) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a symmetric
biderivation.

Proof By the same reasoning as in the proof of Theorem 9, there is a unique C-
bilinear mapping D : A2 → A satisfying (21) defined by

D(x, z) := lim
n→∞ 2nf

( x

2n
, z
)

for all x, z ∈ A.
The rest of the proof is similar to the proofs of Theorems 3 and 5.

Corollary 9 Let r > 2 and θ be nonnegative real numbers, and let f : A2 → A be
a mapping satisfying (9) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (10).

If, in addition, the mapping f : A2 → A satisfies (11), (17) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a symmetric
biderivation.

Theorem 14 Let ϕ : A2 → [0,∞) be a function satisfying (24) with X = A and
f : A2 → A be a mapping satisfying f (x, 0) = f (0, z) = 0 for all x, z ∈ A and
(5). Then, there exists a unique C-bilinear mappingD : A2 → A satisfying (6) with
X = A.

If, in addition, the mapping f : A → A satisfies (8), (16) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a symmetric
biderivation.

Proof The proof is similar to the proof of Theorem 13.
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Corollary 10 Let r < 1 and θ be nonnegative real numbers, and let f : A2 → A

be a mapping satisfying (9) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (15).

If, in addition, the mapping f : A → A satisfies (11), (17) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a symmetric
biderivation.

5 Hyers–Ulam Stability of Skew-Symmetric Biderivations on
Banach ∗-Algebras: Fixed Point Method

Using the fixed point method, we prove the Hyers–Ulam stability of skew-
symmetric biderivations on complex Banach ∗-algebras and unital C∗-algebras
associated with the bi-additive s-functional inequality (1).

Theorem 15 Let ϕ : A2 → [0,∞) be a function satisfying (20) with X = A and
f : A2 → A be a mapping satisfying f (x, 0) = f (0, z) = 0 for all x, z ∈ A and
(5). Then, there exists a unique C-bilinear mapping D : A2 → A satisfying (21)
with X = A.

If, in addition, the mapping f : A2 → A satisfies (7), (18) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a skew-symmetric
biderivation.

Proof By Theorem 10, there is a unique C-bilinear mapping D : A2 → A

satisfying (21) defined by

D(x, z) := lim
n→∞ 2nf

( x

2n
, z
)

for all x, z ∈ A.
The rest of the proof is similar to the proof of Theorem 7.

Corollary 11 Let r > 2 and θ be nonnegative real numbers, and let f : A2 → A

be a mapping satisfying (9) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (10).

If, in addition, the mapping f : A2 → A satisfies (10), (19) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a skew-symmetric
biderivation.

Theorem 16 Let ϕ : A2 → [0,∞) be a function satisfying (24) with X = A and
f : A2 → A be a mapping satisfying f (x, 0) = f (0, z) = 0 and (5). Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (6) with X = A.

If, in addition, the mapping f : A2 → A satisfies f (2x, z) = 2f (x, z) for
all x, z ∈ A, (7) and (18), then the mapping f : A2 → A is a skew-symmetric
biderivation.
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Proof The proof is similar to the proof of Theorem 15.

Corollary 12 Let r < 1 and θ be nonnegative real numbers, and let f : A2 → A

be a mapping satisfying (9) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then, there
exists a unique C-bilinear mapping D : A2 → A satisfying (15).

If, in addition, the mapping f : A2 → A satisfies (10), (19) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a skew-symmetric
biderivation.

6 Conclusions

In this chapter, using the fixed point method and the direct method, we have
proved the Hyers–Ulam stability of symmetric biderivations and a skew-symmetric
biderivation on Banach algebras and unital C∗-algebras, associated with the bi-
additive s-functional inequality (1).

References

1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2
(1950), 64–66.

2. J. Bae and W. Park, Approximate bi-homomorphisms and bi-derivations in C∗-ternary
algebras, Bull. Korean Math. Soc. 47 (2010), 195–209.
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Some New Classes of Higher Order
Strongly Generalized Preinvex Functions

Muhammad Aslam Noor and Khalida Inayat Noor

Abstract In this chapter, we define and introduce some new concepts of the higher
order strongly generalized preinvex functions and higher order strongly monotone
operators with respect to two auxiliary bifunctions. Some new relationships among
various concepts of higher order strongly generalized preinvex functions have been
established. As special cases, one can obtain various new and known results from
our results. Results obtained in this chapter can be viewed as refinement and
improvement of previously known results.

1 Introduction

In recent years, several extensions and generalizations have been considered for
classical convexity. Hanson [10] introduced the concept of invex function for
the differentiable functions, which played significant part in the mathematical
programming. Ben-Israel and Mond [5] introduced the concept of invex set and
preinvex functions. It is known that the differentiable preinvex functions are invex
functions. The converse also holds under certain conditions, see [13]. Noor [18]
proved that the minimum of the differentiable preinvex functions on the invex set
can be characterized by a class of variational inequalities, which is known as the
variational-like inequality. For the recent developments, see [16, 18–26, 29–33], and
the references therein. Noor [22–24] proved that a function f is preinvex function,
if and only if it satisfies the Hermite–Hadamard-type integral inequality. This result
has inspired a great deal of subsequent work which has expanded the role and
applications of the invexity in nonlinear optimization and engineering sciences.

Strongly convex functions were introduced and studied by Polyak [32], which
play an important part in the optimization theory and related areas, see, for example,
[2–4, 11, 14, 19, 24, 27, 34], and the references therein. Noor et al. [25–29]
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investigated the properties of the strongly preinvex functions and their variant forms.
Adamek [1] introduced another class of convex function with respect to an arbitrary
non-negative function, called relative strongly convex functions. With appropriate
choice of non-negative function, one can obtain various known classes of convex
functions. For the properties of the relative strongly convex functions, see [1, 2, 28].

Lin and Fukushima [12] introduced the concept of higher order strongly convex
functions and used it in the study of mathematical program with equilibrium
constraints. These mathematical programs with equilibrium constraints are defined
by a parametric variational inequality or complementarity system and play an
important role in many fields such as engineering design, economic equilibrium,
and multilevel game. It is worth mentioning that the characterizations of the higher
order strongly convex functions discussed in Lin and Fukushima [12] are not correct.
To overcome this drawback, Noor and Noor [29] and Mohsen et al. [14] introduced
and studied some classes of higher order strongly convex functions. These higher
order strongly convex functions can be used to characterize the Banach spaces by
the parallelogram laws. The parallelogram laws were obtained by Bynum [6] and
Chen et al. [7–9] in the Lp-spaces and discussed their applications in the prediction
theory. Xu [35] obtained these parallelogram laws using the function ‖.‖p, p > 1,
to characterize the Banach spaces.

Inspired by the research work going in this field, we introduce some new classes
of higher order strongly preinvex functions involving two arbitrary bifunctions.
For suitable and appropriate choice of these arbitrary bifunctions, one can obtain
several new and known classes of strongly convex and strongly preinvex functions.
Several new concepts of monotonicity are introduced. We establish the relationship
between these classes and derive some new results under some mild conditions. As
special cases, one can obtain various new and refined versions of known results. It is
expected that the ideas and techniques of this chapter may stimulate further research
in this field.

2 Preliminary Results

Let K be a nonempty closed set in a real Hilbert space H . We denote by 〈·, ·〉 and
‖ · ‖ the inner product and norm, respectively. Let F : Kη → R be a continuous
function, and let η(., .) : Kη ×Kη → R be an arbitrary continuous bifunction. Let
h : [0,∞)→ R be a non-negative function.

Definition 1 ([3]) The setKη inH is said to be invex set with respect to an arbitrary
bifunction η(·, ·), if

u+ tη(v, u) ∈ Kη, ∀u, v ∈ Kη, t ∈ [0, 1].

The invex set Kη is also called η-connected set. Note that the invex set with
η(v, u) = v − u is a convex set K, but the converse is not true. For example,
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the set Kη = R − (− 1
2 ,

1
2 ) is an invex set with respect to η, where

η(v, u) =
{
v − u, for v > 0, u > 0 or v < 0, u < 0
u− v, for v < 0, u > 0 or v < 0, u < 0.

It is clear that K is not a convex set.
From now onward, Kη is a nonempty closed invex set in H with respect to the

bifunction η(·, ·), unless otherwise specified.

Definition 2 The function F on the invex set Kη is said to be higher order strongly
generalized preinvex with respect to the bifunctions η(·, ·) and G(., .), if there exists
a constant μ > 0, such that

F(u+ tη(v, u)) ≤ (1− t)F (u)+ tF (v)

−μ{tp(1− t)+ t (1− t)p}‖G(v, u)‖p,∀u, v ∈ Kη, t ∈ [0, 1], p ≥ 1. (1)

The function F is said to be higher order strongly generalized preconcave, if and
only if −F is higher order strongly generalized preinvex. Note that every higher
order strongly convex function is a higher order strongly preinvex function, but the
converse is not true.

We now discuss some special cases.

I. If G(v, u) = η(v, u), then the higher order strongly generalized preinvex
function becomes higher order strongly preinvex functions, that is,

F(u+ tη(v, u)) ≤ (1− t)F (u)+ tF (v)− μ{tp(1− t)+ t (1− t)p}‖η(v, u)‖p,
∀u, v ∈ Kη, t ∈ [0, 1].

For the properties of the higher order strongly preinvex functions in variational
inequalities and equilibrium problems, see Noor [13, 14, 16, 23, 24].

II. If η(v, u) = v − u. G(v, u) = ξ(v − u), then the invex set becomes a
convex set, and the preinvex function reduces to the convex function. In this
case, Definition 2 becomes:

Definition 3 The function F on the convex set K is said to be higher order strongly
convex function with respect to the arbitrary bifunction ξ(. − .), if there exists a
constant μ > 0, such that

F((1− t)u+ tv) ≤ (1− t)F (u)+ tF (v)− μ{tp(1− t)+ t (1− t)p}‖ξ(v − u)‖p,
∀u, v ∈ K, t ∈ [0, 1],

which was introduced and studied by Noor and Noor [29].

For the properties and other aspects of the higher order strongly functions, see Noor
[17].
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III. If η(v, u) = v − u, G(v, u) = v − u, then the invex set becomes a convex
set, and the preinvex function reduces to the convex function. In this case,
Definition 2 becomes:

Definition 4 The function F on the convex set K is said to be higher order strongly
convex function, if there exists a constant μ > 0, such that

F((1− t)u+ tv) ≤ (1− t)F (u)+ tF (v)− μ{tp(1− t)+ t (1− t)p}‖v − u‖p,
∀u, v ∈ K, t ∈ [0, 1],

which was introduced and studied by Noor and Noor[].

IV. If p = 2, then Definition 2 becomes

F(u+ tη(v, u)) ≤ (1− t)F (u)+ tF (v)− μ
1

2p
‖G(v, u)‖p, (2)

∀u, v ∈ Kη, t ∈ [0, 1], p ≥ 1.

(3)

The function F is known as the higher order Jensen preinvex function.

Definition 5 The function F on the invex set Kη is said to be higher order strongly
generalized affine preinvex with respect to the bifunctions η(·, ·) and G(., .), if there
exists a constant μ > 0, such that

F(u+ tη(v, u)) = (1− t)F (u)+ tF (v)

−μ{tp(1− t)+ t (1− t)p}‖G(v, u)‖p,∀u, v ∈ Kη, t ∈ [0, 1], p ≥ 1. (4)

Definition 6 The function F on the invex set K is said to be higher order strongly
generalized quasi-preinvex with respect to the bifunctions η(·, ·) and G(., .), if there
exists a constant μ > 0, such that

F(u+ tη(v, u)) ≤ max{F(u), F (v)} − μ{tp(1− t)+ t (1− t)p}‖G(v, u)‖p,
∀u, v ∈ Kη, t ∈ [0, 1].p ≥ 1.

Definition 7 The function F on the invex set K is said to be higher order strongly
generalized log-preinvex with respect to the bifunctions η(·, ·) and G(., .), if there
exists a constant μ > 0, such that

F(u+ tη(v, u)) ≤ (F (u))1−t (F (v))t − μ{tp(1− t)+ t (1− t)p}‖G(v, u)‖p,
∀u, v ∈ Kη, t ∈ [0, 1],

where F(·) > 0.
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From the above definitions, we have

F(u+ tη(v, u)) ≤ (F (u))1−t (F (v))t − μ{tp(1− t)+ t (1− t)p}‖G(v, u)‖p
≤ (1− t)F (u)+ tF (v)− μ{tp(1− t)+ t (1− t)p}‖G(v, u)‖p
≤ max{F(u), F (v)} − μ{tp(1− t)+ t (1− t)p}‖G(v, u)‖p.

This shows that every higher order strongly generalized log-preinvex function is a
higher order strongly generalized preinvex function and every higher order strongly
generalized preinvex function is a higher order strongly generalized quasi-preinvex
function. However, the converse is not true.

For t = 1, Definitions 2 and 7 reduce to the following condition, which is mainly
due to Noor and Noor [5].

Condition A

F(u+ η(v, u)) ≤ F(v), ∀v ∈ Kη.

For the applications of Condition A, see [2, 4, 7, 8].

Definition 8 The differentiable function F on the invex set Kη is said to be higher
order strongly invex function with respect to the bifunctions η(·, ·) and G(., .), if
there exists a constant μ > 0, such that

F(v)− F(u) ≥ 〈F ′(u), η(v, u)〉 + μ‖G(v, u)||p, ∀u, v ∈ Kη,

where F ′(u)) is the differential of F at u.

It is noted that, if μ = 0, then Definition 8 reduces to the definition of the invex
function as introduced by Hanson [4]. It is well known that the concepts of preinvex
and invex functions play a significant role in the mathematical programming and
optimization theory, see [1–9], and the references therein.

Remark 1 Note that, if μ = 0, then Definitions 2–7 reduce to the ones in [3, 5].

Definition 9 An operator T : Kη → H is said to be

(i). higher order strongly generalized η-monotone, iff there exists a constant α > 0
such that

〈T u, η(v, u)〉 + 〈T v, η(u, v)〉 ≤ −α{G(v, u)+G(u, v)}, u, v ∈ Kη.

(ii). η-monotone, iff

〈T u, η(v, u)〉 + 〈T v, η(u, v)〉 ≤ 0, u, v ∈ Kη.

(iii). higher order strongly generalized η-pseudomonotone, iff
there exists a constant ν > 0 such that
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〈T u, η(v, u)〉 + νG(v, u) ≥ 0 ⇒ −〈T v, η(u, v)〉 ≥ 0, u, v ∈ Kη.

(iv). higher order strongly generalized relaxed η-pseudomonotone, iff
there exists a constant μ > 0 such that

〈T u, η(v, u)〉 ≥ 0 ⇒ −〈T v, η(u, v)〉 + μG(u, v) ≥ 0, u, v ∈ Kη.

(v). strictly η-monotone, iff

〈T u, η(v, u)〉 + 〈T v, η(u, v)〉 < 0, u, v ∈ Kη.

(vi). η-pseudomonotone, iff

〈T u, η(v, u)〉 ≥ 0 ⇒ 〈T v, η(u, v)〉 ≤ 0, u, v ∈ Kη.

(vii). quasi-η-monotone, iff

〈T u, η(v, u)〉 > 0 ⇒ 〈T v, η(u, v)〉 ≤ 0, u, v ∈ Kη.

(viii). strictly η-pseudomonotone, iff

〈T u, η(v, u)〉 ≥ 0 ⇒ 〈T v, η(u, v)〉 < 0, u, v ∈ Kη.

Note that, if η)v, u) = v − u, then the invex set Kη is a convex set K. This clearly
shows that Definition 9 is more general than and includes the ones in [4–8] as special
cases.

Definition 10 A differentiable function F on the invex set Kη is said to be higher
order strongly generalized η-pseudo-invex function, iff, if there exists a constant
μ > 0 such that

〈F ′(u), η(v, u)〉 + μG(u, v) ≥ 0 ⇒ F(v)− F(u) ≥ 0, ∀u, v ∈ Kη.

Definition 11 A differentiable function F on Kη is said to be higher order strongly
generalized quasi-invex function, iff, if there exists a constant μ > 0 such that

F(v) ≤ F(u)⇒ 〈F ′(u), η(v, u)〉 + μG(u, v) ≤ 0, ∀u, v ∈ Kη.

Definition 12 The function F on the set Kη is said to be pseudo-invex, if

〈F ′(u), η(v, u)〉 ≥ 0 ⇒ F(v) ≥ F(u), ∀u, v ∈ Kη.

Definition 13 The differentiable function F on the Kη is said to be quasi-invex
function, if
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F(v) ≤ F(u)⇒ 〈F ′(u), η(v, u)〉 ≤ 0, ∀u, v ∈ Kη.

If η(v, u) = −η(v, u),∀u, v ∈ Kη, that is, the function η(·, ·) is skew-symmetric,
then Definitions 9–13 reduce to the ones in [6–8]. This shows that the concepts
introduced in this chapter represent an improvement of the previously known
ones. All these new concepts may play an important and fundamental part in the
mathematical programming and optimization.

We also need the following assumption regarding the bifunction η(·, ·), which is
due to Mohan and Neogy [8].

Condition C Let η(·, ·) : Kη ×Kη → H satisfy assumptions

η(u, u+ tη(v, u)) = −tη(v, u)
η(v, u+ tη(v, u)) = (1− t)η(v, u), ∀u, v ∈ Kη, t ∈ [0, 1].

Clearly, for t = 0, we have η(u, v) = 0, if and only if u = v,∀u, v ∈ Kη. One can
easily show that η(u+ tη(v, u), u) = tη(v, u),∀u, v ∈ Kη.

3 Main Results

In this section, we consider some basic properties of higher order strongly general-
ized preinvex functions on the invex set Kη.

Theorem 1 Let F be a differentiable function on the invex set Kη in H , and let
the condition C hold. Then, the function F is a higher order strongly generalized
preinvex function, if and only if F is a higher order strongly generalized invex
function.

Proof Let F be a higher order strongly generalized preinvex function on the invex
set Kη. Then,

F(u+ tη(v, u)) ≤ (1− t)F (u)+ tF (v)− μ{tp(1− t)+ t (1− t)p}‖G(v, u)‖p,
∀u, v ∈ Kη,

which can be written as

F(v)− F(u) ≥
{
F(u+ tη(v, u))− F(u)

t

}

+ μ{tp−1(1− t)+ (1− t)p}‖G(v, u)‖p.

Taking the limit in the above inequality as t → 0 , we have

F(v)− F(u) ≥ 〈F ′(u), η(v, u))〉 + μ‖G(v, u)‖p.
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This shows that F is a higher order strongly generalized invex function.
Conversely, let F be a higher order strongly generalized invex function on the

invex set Kη. Then, ∀u, v ∈ Kη, t ∈ [0, 1], vt = u+ tη(v, u) ∈ Kη, and using the
condition C, we have

F(v)− F(u+ tη(v, u))

≥ 〈F ′(u+ tη(v, u)), η(v, u+ tη(v, u))〉 + μ‖G(v, u+ tη(v, u))‖p
= (1− t)F ′(u+ tη(v, u)), η(v, u)〉 + μ(1− t)p‖G(v, u)‖p. (5)

In a similar way, we have

F(u)− F(u+ tη(v, u))

≥ 〈F ′(u+ tη(v, u)), η(u, u+ tη(v, u))〉 + μ‖G(u, u+ tη(v, u))‖p
= −tF ′(u+ tη(v, u)), η(v, u)〉 + μtp‖G(v, u)‖p. (6)

Multiplying (5) by t and (6) by (1− t) and adding the resultant, we have

F(u+ tη(v, u)) ≤ (1− t)F (u)+ tF (v)− {tp(1− t)+ t (1− t)p}‖G(v, u)‖p,

showing that F is a higher order strongly generalized preinvex function. �
Theorem 2 Let F be a differentiable higher order strongly generalized preinvex
function on the invex set Kη. If F is a higher order strongly generalized invex
function, then

〈F ′(u), η(v, u))〉 + 〈F ′(v), η(u, v)〉 ≤ −μ{‖G(v, u)+G(u, v)‖p},∀u, v ∈ Kη. (7)

Proof Let F be a higher order strongly generalized invex function on the invex set
Kη. Then,

F(v)− F(u) ≥ 〈F ′(u), η(v, u))〉 + μ‖G(v, u)‖p ∀u, v ∈ Kη. (8)

Changing the role of u and v in (8), we have

F(u)− F(v) ≥ 〈F ′(v), η(u, v)〉 + μ‖G(u, v)‖p ∀u, v ∈ Kη. (9)

Adding (8) and (9), we have

〈F ′(u), η(v, u))〉 + 〈F ′(v), η(u, v)〉 ≤ −μ{‖G(v, u))+G(u, v)‖p},∀u, v ∈ Kη, (10)

which shows that F ′(.) is a higher order strongly η-monotone operator. �
We note that the converse of Theorem 2 is true only for p = 2. However, we have
the following theorem:
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Theorem 3 If the differential F ′(.) is a higher order strongly η-monotone, then

F(v)− F(u) ≥ 〈F ′(u), η(v, u)〉 + 2

p
μ‖G(v, u‖p).

Proof Let F ′(.) be higher order strongly η-monotone. From (10), we have

〈F ′(v), η(u, v)〉 ≥ 〈F ′(u), η(v, u))〉 − μ{‖G(v, u))‖p + ‖G(u, v)‖p)}, (11)

Since K is an invex set, ∀u, v ∈ Kη, t ∈ [0, 1] vt = u + tη(v, u) ∈ Kη. Taking
v = vt in (11) and using Condition C, we have

〈F ′(vt ), η(u, u+ tη(v, u))〉 ≤ 〈F ′(u), η(u+ tη(v, u), u))〉 − μ{‖G(u+ tη(v, u), u)‖p
+‖G(u, u+ tη(v, u)‖p}

= −t〈F ′(u), η(v, u)〉 − 2tpμ‖G(v, u)‖p,

which implies that

〈F ′(vt ), η(v, u)〉 ≥ 〈F ′(u), η(v, u)+ 2μtp−1‖G(v, u)‖p. (12)

Let ξ(t) = F(u+ tη(v, u)). Then, from (12), we have

ξ ′(t) = 〈F ′(u+ tη(v, u)), η(v, u)〉
≥ 〈F ′(u), η(v, u)+ 2μtp−1‖G(v, u)‖p. (13)

Integrating (13) between 0 and 1, we have

ξ(1)− ξ(0) ≥ 〈F ′(u), η(v, u)+ 2

p
μ‖G(v, u)‖p;

that is,

F(u+ tη(v, u))− F(u) ≥ 〈F ′(u), η(v, u)+ 2

p
μ‖G(v, u‖p).

By using Condition A, we have

F(v)− F(u) ≥ 〈F ′(u), η(v, u)+ 2

p
μ‖G(v, u)‖p,

the required result. �
We now give a necessary condition for strongly η-pseudo-invex function.
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Theorem 4 Let F ′ be a higher order strongly generalized relaxed η- pseudomono-
tone operator, and Conditions A and C hold. Then, F is a higher order strongly
generalized η-pseudo-invex function.

Proof Let F ′ be higher order strongly generalized relaxed η-pseudomonotone.
Then, ∀u, v ∈ Kη,

〈F ′(u), η(v, u)〉 ≥ 0

implies that

− 〈F ′(v), η(u, v)〉 ≥ α‖G(u, v)‖p. (14)

Since K is an invex set, ∀u, v ∈ Kη, t ∈ [0, 1], vt = u + tη(v, u) ∈ Kη. Taking
v = vt in (14) and using Condition C, we have

− 〈F ′(u+ tη(v, u)), η(u, v)〉 ≥ tα‖G(v, u)‖p. (15)

Let

ξ(t) = F(u+ tη(v, u)), ∀u, v ∈ Kη, t ∈ [0, 1].

Then, using (15), we have

ξ ′(t) = 〈F ′(u+ tη(v, u)), η(u, v)〉 ≥ tα‖G(v, u)‖p.

Integrating the above relation between 0 and 1, we have

ξ(1)− ξ(0) ≥ α

2
‖G(v, u)‖p,

that is,

F(u+ tη(v, u))− F(u) ≥ α

2
‖G(v, u)‖p,

which implies, using Condition A,

F(v)− F(u) ≥ α

2
‖G(v, u)‖p,

showing that F is a higher order strongly generalized η-pseudo-invex function. �
As special cases of Theorem 4, we have the following:

Theorem 5 Let the differentiable F ′(u) of a function F(u) on the invex setKη be a
higher order strongly η-pseudomonotone operator. If Conditions A and C hold, then
F is a higher order strongly generalized η-pseudo-invex function.
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Theorem 6 Let the differential F ′(u) of a function F(u) on the invex set Kη be
higher order strongly generalized η-pseudomonotone. If Conditions A and C hold,
then F is a relative strongly η-pseudo-invex function.

Theorem 7 Let the differential F ′(u) of a function F(u) on the invex set Kη be
higher order strongly generalized η-pseudomonotone. If Conditions A and C hold,
then F is a higher order strongly generalized η-pseudo-invex function.

Theorem 8 Let the differential F ′(u) of a function F(u) on the invex set Kη be
η-pseudomonotone. If Conditions A and C hold, then F is a higher order strongly
generalized pseudo-invex function.

Theorem 9 Let the differential F ′(u) of a differentiable preinvex function F(u) be
Lipschitz continuous on the invex set Kη with a constant β > 0. Then,

F(u+ η(v, u))− F(u) ≤ 〈F ′(u), η(v, u)〉 + β

2
‖η(v, u)‖2, u, v ∈ Kη.

Proof Its proof follows from Noor and Noor [21]. �
Definition 14 The function F is said to be sharply higher order strongly general-
ized pseudo-preinvex, if there exists a constant μ > 0, such that

〈F ′(u), η(v, u)〉 ≥ 0

⇒
F(v) ≥ F(v + tη(v, u))+ μt(1− t)‖Gη(v, u)‖p,∀u, v ∈ Kη, t ∈ [0, 1].

Theorem 10 Let F be a sharply higher order strongly generalized pseudo-preinvex
function on Kη with a constant μ > 0. Then,

−〈F ′(v), η(v, u)〉 ≥ μ‖G(v, u)‖p. ∀u, v ∈ Kη.

Proof Let F be a sharply higher strongly generalized pseudo-preinvex function on
Kη. Then,

F(v) ≥ F(v + tη(v, u))+ μt(1− t)‖G(v, u)‖p, ∀u, v ∈ Kη, t ∈ [0, 1],

from which we have

F(v + tη(v, u))− F(v)

t
+ μt(1− t)‖G(v, u‖p) ≤ 0.

Taking limit in the above inequality, as t → 0, we have

−〈F ′(v), η(v, u)〉 ≥ μ‖G(v, u)‖p,

the required result. �
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Definition 15 A function F is said to be a higher order strongly generalized
pseudo-preinvex function, if there exists a strictly positive bifunction B(., .), such
that

F(v) < F(u)

⇒
F(u+ tη(v, u)) < F(u)+ t (t − 1)B(v, u),∀u, v ∈ Kη, t ∈ [0, 1].

Theorem 11 If the function F is a higher order strongly generalized preinvex
function such that F(v) < F(u), then the function F is higher order strongly
generalized pseudo-preinvex.

Proof Since F(v) < F(u) and F is a higher order strongly generalized preinvex
function, then ∀u, v ∈ Kη, t ∈ [0, 1], we have

F(u+ λη(v, u)) ≤ F(u)+ t (F (v)− F(u))− μ{tp(1− t)+ t (1− t)p})‖G(v, u)‖p
< F(u)+ t (1− t)(F (v)− F(u))− μ{tp(1− t)+ t (1− t)p}‖G(v, u)‖p
= F(u)+ t (t − 1)F (u)− F(v))− μ{tp(1− t)+ t (1− t)p}‖G(v, u)‖p
< F(u)+ t (t − 1)B(u, v)− μ{tp(1− t)+ t (1− t)p}‖G(v, u)‖p,

where B(u, v) = eF(u) − eF(v) > 0 . This shows that F is a higher order strongly
exponentially generalized preinvex function

�
We now discuss the optimality condition for the differentiable higher order

strongly generalized preinvex functions, which is the main motivation of our next
result.

Theorem 12 Let F be a differentiable higher order strongly preinvex function with
modulus μ > 0. If u ∈ Kη is the minimum of the function F, then

F(v)− F(u) ≥ μ‖G(v, u)|p, ∀u, v ∈ Kη. (16)

Proof Let u ∈ Kη be a minimum of the function F. Then,

F(u) ≤ F(v),∀v ∈ Kη. (17)

Since Kη is an invex set, so, ∀u, v ∈ Kη, t ∈ [0, 1], vt = u+ tη(v, u) ∈ Kη.

Taking v = vt in (17), we have

0 ≤ lim
t→0

{
F(u+ tη(v, u))− F(u)

t

}

= 〈F ′(u), η(v, u)〉. (18)

Since F is a differentiable higher order strongly preinvex function, so
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F(u+ tη(v, u)) ≤ F(u)+ t (F (v)− F(u))

−μ{tp(1− t)+ t (1− t)p}‖G(v, u‖p, u, v ∈ Kη, t ∈ [0, 1],

from which, using (18), we have

F(v)− F(u) ≥ lim
t→0

{
F(u+ tη(v, u))− F(u)

t

}

+ μ{tp−1(1− t)+ (1− t)p}‖G(v, u)‖p.

= 〈F ′(u), v − u〉 + μ‖G(v, u)‖p)
≥ μ‖G(v, u)‖p,

the required result (5). �
Remark 2 If

〈eF(u)F ′(u), η(v, u)〉 + μ‖η(v, u)‖p ≥ 0, ∀u, v ∈ Kη, (19)

then u ∈ Kη is the minimum of the function F.

We would like to emphasize that inequality (19) is called the higher order strongly
variational-like inequality and appears to be a new one. It is an interesting problem
to study the existence of a unique solution of the variational-like inequality (19) and
its applications [15, 36–38].

4 Applications

In this section, we discuss the relationship between the parallelogram law and higher
order strongly generalized preinvex functions. From Definition 5 with F(u) =
‖u‖p, and G(v, u) = v − u,we have

‖u+ tη(v, u)‖p = (1− t)‖u‖p + t‖v‖p − μ{tp(1− t)+ t (1− t)p}‖v − u‖p,
∀u, v ∈ Kη, t ∈ [0, 1], p ≥ 1. (20)

At t = 1
2 , we obtain

∥
∥
∥
∥

2u+ η(v, u)

2

∥
∥
∥
∥

p

= 1

2
{‖u‖p + ‖v‖p} − μ

{
1

2p

}

‖v − u‖p,∀u, v ∈ Kη, p ≥ 1, (21)

from which, it follows that

‖2u+ η(v, u)‖p ++μ‖v − u‖p = 2p−1{‖u‖p + ‖v‖p},∀u, v ∈ Kη, p ≥ 1. (22)
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which is called the parallelogram-like law involving the preinvex functions and
appears to the new one.

In particular, for η(v, u) = v − u, we obtain

‖u+ v‖p ++μ‖v − u‖p = 2p−1{‖u‖p + ‖v‖p},∀u, v ∈ Kη, p ≥ 1, (23)

which is well known as parallelogram law for Banach spaces. Bynum [7] and
Chen et al. [8–10] have studied the properties and applications of the parallelogram
laws (23) for the Banach spaces. Xu [31] discussed the characteristics of p-uniform
convexity and q-uniform smoothness of a Banach space via the functionals ‖.‖p
and ‖.‖q, respectively. These results can be obtained from the concepts of higher
order strongly affine convex(concave) functions, which can be viewed as novel
application.

5 Conclusion

In this chapter, we have introduced and studied a new class of preinvex functions
with respect to two arbitrary bifunctions. It is shown that several new classes of
strongly preinvex and convex functions can be obtained as special cases of these
relative strongly preinvex functions. We have studied the basic properties of these
functions. We have shown that the optimality conditions of the higher order strongly
generalized preinvex functions can be characterized by variational-like inequalities.
This result motivated us to introduce higher order strongly variational inequalities.
It is an interesting problem to investigate the analytical and numerical aspects of
these variational-like inequalities. As novel applications of the higher order strongly
generalized preinvex functions, one obtain the parallelogram-like laws for the Lp-
spaces, which is itself a significant contribution. It is expected that the ideas and
techniques of this chapter may motivate further research.
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Existence of Global Solutions and
Stability Results for a Nonlinear Wave
Problem in Unbounded Domains

P. Papadopoulos, N. L. Matiadou, S. Fatouros, and G. Xerogiannakis

Abstract We investigate the asymptotic behavior of solutions for the nonlocal
quasilinear hyperbolic problem of Kirchhoff type

utt − φ(x)‖∇u(t)‖2Δu+ δut = |u|3u, x ∈ RN, t ≥ 0,

with initial conditions u(x, 0) = u0(x) and ut (x, 0) = u1(x), in the case where
N ≥ 3, δ > 0, and (φ(x))−1 = g(x) is a positive function lying in LN/2(RN) ∩
L∞(RN). It is proved that when the initial energy E(u0, u1), which corresponds
to the problem, is nonnegative and small, there exists a unique global solution in
time in the space X0 =: D(A) × D1,2(RN). When the initial energy E(u0, u1)

is negative, the solution blows up in finite time. For the proofs, a combination of
the modified potential well method and the concavity method is used. Also, the
existence of an absorbing set in the space X1 =: D1,2(RN)×L2

g(R
N) is proved and

that the dynamical system generated by the problem possess an invariant compact
set A in the same space.

Finally, for the generalized Kirchhoff’s string problem with no dissipation

utt = −‖A1/2u‖2
HAu+ f (u), x ∈ RN, t ≥ 0,

with the same hypotheses as above, we study the stability of the trivial solution
u ≡ 0. It is proved that if f ′(0) > 0, then the solution is unstable for the initial
Kirchhoff’s system, while if f ′(0) < 0, the solution is asymptotically stable.
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1 Introduction: Preliminaries

We study the following quasilinear hyperbolic initial value problem:

utt − φ(x)‖∇u(t)‖2Δu+ δut − |u|3u = 0, (1.1)

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ RN, t ≥ 0, (1.2)

with initial conditions u0, u1 in appropriate function spaces, N ≥ 3 and δ ≥ 0.
Throughout the chapter, we assume that the function φ and g : RN → R satisfy the
following condition:

(G)φ(x) > 0, for all x ∈ RN, and (φ(x))−1 = g(x) ∈ LN/2(RN) ∩ L∞(RN).

This class will include functions of the form:

φ(x) ∼ c0 + ε|x|α, ε > 0 and α > 0,

resembling phenomena of slowly varying wave speed around the constant speed c0.
G. Kirchhoff in 1883 proposed the so-called Kirchhoff’s string model in the study
of oscillations of stretched strings and plates

ph∂2u
∂t2

+ δ ∂u
∂t
=
{
p0 + Eh

2L

∫ L
0 ( ∂u

∂x
)2
}
∂2u
∂x2 + f for 0 < x < L, t ≥ 0,

where u = u(x, t) is the lateral displacement at the space coordinate x and the time
t , E the Young modulus, p the mass density, h the cross-section area, L the length,
p0 the initial axial tension, δ the resistance modulus, and f the external force (see
[5]). When p0 = 0, the equation is considered to be of degenerate type; otherwise,
it is of nondegenerate type.

In the case of bounded domain, T. Kobayashi [6] constructed a unique weak
solution by a Faedo-Galerkin method for a quasilinear wave equation with strong
dissipation (see also [1], [8]). K. Nishihara [9] has derived a decay estimate
from below of the potential of solutions. Also R. Ikehata [4] has shown that for
sufficiently small initial data global existence can be obtained, even when the
influence of the source terms is stronger than that of the damping terms. Finally K.
Ono [10] for δ ≥ 0 has proved global existence and blow up results for a degenerate
nonlinear wave equation of Kirchhoff type with strong dissipation.

In the case of unbounded domain, P. DAncona and S. Spagnolo [2] have shown
the global existence of a unique solution for the nondegenerate type with small
C∞ data. T. Mizumachi (see [7]) studied the asymptotic behavior of solutions to
the Kirchhoff equation with a viscous damping term with no external force. In
our previous work (see [11]), we prove global existence and blow-up results of an
equation of Kirchhoff type in all of RN . Also, in [12] we prove the existence of
compact invariant sets for the same equation. Finally, in [13] we study the stability
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of the trivial solution u = 0 for the generalized Kirchhoff’s string equation, using
the central manifold theory.

As we will see, the space setting for the initial conditions and the solutions of our
problem is the product space X0 =: D(A)×D1,2(RN).

By D1,2(RN), we denote the closure of the C∞0 (RN) functions with respect to
the energy norm:

‖u‖D1,2 =:
∫

RN

|∇u|2dx.

It is known that

D1,2(RN) =
{
u ∈ L

2N
N−2 (RN) : ∇u ∈ (L2(RN))N

}
.

The weighted Lebesgue spaceL2
g(R

N) is the closureC∞0 (RN) function with respect
to the inner product

(u, v)L2
g(R

N ) =:
∫

RN

guvdx (cf.[3]).

We also have that the operator A = −φΔ is self-adjoint and therefore graph closed.
Its domain D(A) is a Hilbert space with respect to the norm:

‖Au‖L2
g
=:
{∫

RN

φ|Δu|2dx
}1/2

.

Thus, we construct the following evolution quartet, with compact and dense
embeddings:

D(A) ⊂ D1,2(RN) ⊂ L2
g(R

N) ⊂ D−1,2(RN).

For the positive self-adjoint operator A = −φΔ, we may define the fractional
powers in the following way. For every s > 0, As is an unbounded self-adjoint
operator in L2

g(R
N) with its domain D(As) to be a dense subset in L2

g(R
N). The

operator As is strictly positive and injective. Also D(As) , endowed with the scalar
product

(u, v)D(As ) = (u, v)L2
g
+ (Asu,Asv)L2

g
,

becomes a Hilbert space. We write as usual V2s = D(As) and we have the following
identifications:

D(A−1/2) = D−1,2(RN), D(A0) = L2
g, D(A1/2) = D1,2(RN).
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Moreover the mapping As/2 : Vx → Vx−s is an isomorphism. Furthermore, we
have that the injection D(As1) ⊂ D(As2) is compact and dense, for every s1, s2 ∈
R, s1 > s2. In order to clarify the kind of solutions we are going to obtain for our
problem, we give the definition of the weak solution for the problem.

Definition 1.1 A weak solution of the problem (1.1) and (1.2) is a function u such
that

u ∈ L2[0, T ;D(A)], ut ∈ L2[0, T ;D1,2],
(i)

utt ∈ L2[0, T ;L2
g],

for all v ∈ C∞0
([0, T ] × (RN)

)
, (ii)

satisfies the generalized formula:

∫ T

0
(utt (τ ), v(τ ))L2

g
dτ +

∫ T

0

(

‖∇u(τ)‖2
∫

RN

∇u(τ)∇v(τ)dx
)

dτ

+ δ

∫ T

0
(ut (τ ), v(τ ))L2

g
dτ −

∫ T

0
f (u(τ), v(τ ))L2

g
dτ = 0, (1.3)

where f (s) = |s|3 s, and (iii) satisfies the initial conditions:

u(x, 0) = u0(x) ∈ D(A), ut (x, 0) = u1(x) ∈ D1,2(RN).

In the following section we briefly discuss the results concerning the asymptotic
behavior of solutions for the problems (1.1) and (1.2). Among the global existence
and blow-up results, we also prove the existence of a compact functional invariant
set. We would like to mention that up to our knowledge, this is the first result
concerning the existence of functional invariant sets for mathematical models of
Kirchoff’s string type.

2 Global Existence, Blow-Up Results, and Invariant Sets

In this section we provide global existence and blow-up results for the prob-
lems (1.1) and (1.2) in the space X0. We also prove the existence of an attractor-like
set. For the proofs, we refer on [12] and [13]. In order to obtain a local existence
result for the problems (1.1) and (1.2), we need information concerning the
solvability of the corresponding nonhomogeneous linearized problem around the
function v, where (v, vt ) ∈ C(0, T ;D(A) × D1,2) is given restricted in the sphere
BR ,
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utt − φ(x)‖∇v‖2Δu+ δut = |v|3v, (x, t) ∈ BR × (0, T ), u(x, 0)

= u0(x), ut (x, 0) = u1(x),

x ∈ BR, u(x, t) = 0, (x, t) ∈ ∂BR × (0, T ),

v ∈ C(0, T ;D(A)) and vt ∈ C(0, T ;D1,2).

(2.1)

Proposition 2.1 Assume that u0 ∈ D(A), u1 ∈ D1,2(RN), and 0 ≤ N ≤
10/3, then the linear wave equation (2.1) has a unique solution such that u ∈
C(0, T ;D(A)) and ut ∈ C(0, T ;D1,2).

Proof The proof follows the spirit of [11]. The Galerkin method is used, based on
the information taken from the eigenvalue problem.

Next, we have the following theorem (for the proof, see also [13]). �
Theorem 2.2 If (u0, u1) ∈ C(0, T ;D1,2) and satisfy the nondegenerate condition
‖∇u0‖2 > 0, then there exists T > 0 such that the problems (1.1) and (1.2) admit a
unique local weak solution u satisfying

u ∈ C(0, T ;D(A)), ut ∈ C(0, T ;D1,2). Moreover, at least one of the following
statements holds true, either

T = +∞, or (i)
e(u(t)) =: ‖ut‖2

D1,2 + ‖u‖2
D(A) →∞, as t → T−. (ii)

The next theorem deals with the global existence, blow-up results, and the energy
decay property of the problem.

First we define as the energy of the problems (1.1) and (1.2) the quantity

E(t) =: E(u(t), ut (t)) =: ‖u(t)‖2
L2
g
+ 1

2
‖u(t)‖4

D1,2 − 2

5
‖u(t)‖5

L5
g
. (2.2)

Also, we introduce the potential of the problems (1.1) and (1.2), as

J (u) =: 1

2
‖u(t)‖4

D1,2 − 2

5
‖u(t)‖5

L5
g
. (2.3)

Thus we derive the following relation:

E(t) =: ‖u(t)‖2
L2
g
+ J (u). (2.4)

Finally, we introduce a modified version of the modified potential well used in [11]
(see also [12]), by
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W =:
{
u ∈ D(A);K(u) = ‖u‖4

D1,2 − ‖u‖5
L5
g
> 0
}
∪ {0}. (2.5)

Theorem 2.3 Assume that N = 3, u0 ∈ W(⊂ D(A)), and u1 ∈ D1,2. Also
suppose that the following inequality holds:

E(u0, u1) ≤
(

1

C0μ
p1
0

)1/p2

and p2 > 0. (2.6)

Then (a) for p1 =: 1
2 and p2 =: 1

8 , there exists a unique global solution u ∈
W of the problems (1.1) and (1.2) satisfying u ∈ C([0,+∞);D(A)) and ut ∈
C([0,+∞);D1,2).
(b) Moreover, this solution obeys the following energy estimates:

‖u(t)‖2
L2
g
+ d−1∗ ‖∇u‖4 ≤ E(u, ut ) ≤ {E(u0, u1)

−1/2 + d−1
0 [t − 1]+}−2, (2.7)

where d∗ = 10 and d0 ≥ 1; that is,

‖∇u‖4 ≤ C∗(1+ t)−1, (2.8)

where C∗ is some constant depending on ‖u0‖4
D1,2 and ‖u1‖L2

g
.

(c) Suppose that N ≥ 3 and the initial energy E(u0, u1) is negative. Then there
exists a time T , where

0 < T ≤ 3−2(−E(u0, U1))
−1
[{(

2δ‖u0‖2
L2
g
− 3(u0, u1)L2

g

)2

+9(−E(u0, u1))‖u0‖2
L2
g

} 1
2

+2δ‖u0‖2
L2
g
− 3(u0, u1)L2

g

]
, (2.9)

such that the (unique) solution of the problems (1.1) and (1.2) blows up at T , i.e.,

lim
t→T−

‖u(t)‖2
L2
g
= +∞. (2.10)

The existence of an absorbing set in X0 is given below. See also [12].

Lemma 2.4 Assume that p1 > 4 · 3−1/2R2c2
3, N > 3, and ‖∇u0‖ > 0. Then the

unique local solution defined by Theorem 2.2 exists globally in time.

Remark 2.5 (Global Solutions) From the last Lemma 2.4, we may observe that
solutions of the problems (1.1) and (1.2) (given by Theorem 2.2 ) belong to the
space Cb(R+, X0), i.e., we have achieved global solutions for the given problem.
Let us remark that, in Theorem 2.3, using a modified potential well technique, we
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have proved global existence results under the condition N = 3 and the initial
energy E(0) been nonnegative and small. On the other hand, in Lemma 2.4, we
could achieve global results for different type of nonlinearities, i.e., for any N ≥ 3
and independent of the sign of the initial energy E(0).

Lemma 2.4 has an immediate consequence:

Remark 2.6 A nonlinear semigroup S(t) : X0 → X0, t ≥ 0, may be associated to
the problems (1.1) and (1.2) such that for

ψ = {u0, u1} ∈ X0, S(t)ψ = {u(t), ut (t)}

is the weak solution of the problems (1.1) and (1.2). Moreover the ball B0 =:
BX0(0, R∗) for any R∗ > R∗, where R∗ is defined by Lemma 2.4 and is an
absorbing set for the semigroup S(t) in the energy space X0 ⊂ X1 , compactly.

In the rest of the chapter we show that the ω-limit set of the absorbing set B0
is a compact invariant set. To this end, we need to decompose the semigroup S(t),
in the form S(t) = S1(t) + S2(t), where for a suitable bounded set B ⊂ X0, the
semigroups S1(t), S2(t) satisfy the following properties:

(S1) S1(t) is uniformly compact for t large, i.e., ∪t≥t0S1(t)B is relatively compact
in X1.

(S2) supk∈B‖S2(t)k‖X1
→ 0, as t →∞.

As a consequence of the above properties, we have the following result:

Theorem 2.7 Let φ satisfy hypothesis (G). Then the semigroup S(t) associated
with the problems (1.1) and (1.2) possesses a functional invariant set A = ω(B0),
which is compact in the weak topology of X1.

Remark 2.8 We have that X0 is compactly embedded in X1, so the set ∪t≥t0S1(t)B

is compact with respect to the strong topology in X1. For the functional invariant
compact set A = ω(B0), we observe that

(u0, u1) ∈ A, if ‖∇u0‖ > 0.

Then, A is an attractor-like set.

Remark 2.9 The above set A = ω(B0) is a positively invariant set in the space X0,
because we have that S(t)A ⊂ A, from the definition of the absorbing set. This set
is not invariant in the space X0 because the semigroup S(t) is weakly continuous in
X0 (see the following lemma), but it is not continuous in X0. At the end, we prove
the following lemma.

Lemma 2.10 For every t ∈ R, the mapping S(t) is weakly continuous fromX0 into
X0.

Proof Let {un} be a weakly convergent sequence in X0 and u its (weak) limit. We
fix t ∈ R; we have that the sequence {S(t)un} is bounded in X0. We extract a
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subsequence {S(t)un′ } that converges weakly to v ∈ X0. On the other hand, the
compactness of the injection of X0 into X1 ensures that {un} converges strongly to
u in X1. Hence, {S(t)un} converges strongly to S(t)u in X1 and then v = S(t)u.
Therefore, the whole sequence {S(t)un} weakly converges to S(t)u in X0 and the
lemma is proved. �

Finally, in the following section we study the stability of the initial solution u = 0
for the generalized Kirchhoff equation with no dissipation.

3 Stability Results

We consider the generalized quasilinear Kirchhoff’s string problem with no dissipa-
tion

utt = −‖A1/2u‖2
HAu+ f (u), x ∈ RN, t ≥ 0,

under the same initial conditions as above and H is a Hilbert space. First, we prove
the existence of solution for our problem, under small initial data (for the proof, we
follow the lines of [12]).

Theorem 3.1 (Local Existence) Let f (u) be a C1− function such that

|f (u)| ≤ k1|u|α+1, |f ′(u)| ≤ k2|u|α, 0 ≤ α ≤ 4/(N − 2), N ≥ 3.

Consider that (u0, u1) ∈ D(A)× V and satisfy the nondegenerate condition

‖A1/2u0‖ > 0. (3.1)

Then there exists T0 > 0 such that our problem admits a unique local weak solution
u satisfying u ∈ C(0, T ;V ) and ut ∈ C(0, T ;H).

Proof The proof follows the spirit of [11, Theorem 3.2]. In this case, because of the
compact embedding X0 ⊂ X1 =: V × H , we obtain for the associated norms that
e1(u(t)) ≤ e(u(t)), where

e1(u(t)) = ‖u‖2
V + ‖u′‖2

H and e(u(t)) = ‖u‖2
D(A) × ‖u′‖2

V .

Following the same steps as in [11, Theorem 3.2], we take the inequality:

e1(u(t)) ≤ e(u(t)) ≤ R2,

where R is a positive parameter. Therefore, u is a solution such that

u ∈ L∞(0, T ;V ), u′ ∈ L∞(0, T ;H).
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The continuity properties are also proved with the methods indicated in [15, sections
II.3 and II.4]. Finally, the uniqueness of the solution can also be taken from [15,
Proposition 4.1, p. 215].

Now, we have that the linearized equation of the system around the solution
u = 0 is

ut + A∗u = 0, (3.2)

where

ut = (w, v)T and A∗ =
[

0 −f ′(0)
−1 0

]

. (3.3)

Hence, in order to study the stability of the solution, we investigate the spectrum of
the operator A∗. The characteristic polynomial of A∗ is

[
μj f

′(0)
1 μj

]

= 0 or equivalently μ2
j − f ′(0) = 0.

Then according to the sign of f ′(0), we have the following cases (see also [14],
Theorem 5.1.1 and Theorem 5.1.3):

(I) Let f ′(0) > 0, then we have that 0 is unstable for the initial Kirchhoff’s sys-
tem, because we have two real eigenvalues of different sign μj = ±(f ′(0))1/2

and we can easily see that the continuous spectrum of the operator A∗ is
empty.

(II) Let f ′(0) < 0. This implies that the operator A∗ admits two complex
eigenvalues. Thus we obtain that the solution u = 0 is asymptotically stable
for the initial Kirchhoff’s system.

(III) Let f ′(0) = 0. In this case we have that the initial solution is stable using the
fact that the continuous spectrum of the operator A∗ is equal to zero.

The above linearized equation in (3.2) and (3.3) can also be studied in an alternative
way. Since ut = (w, v)T and u = (wt, vt)T = ut t , the linearized equation (3.2)
can be factorized as

ut + A∗u = (I + tA∗)ut = 0. (3.4)

The eigenvalues λj of the matrix pencil (I + tA∗) are equal to

λj = −μ−1
j . (3.5)

A distribution of the eigenvalues λj for several real values of f ′(0) is shown in the
following graphs. �
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Congestion Control and Optimal
Maintenance of Communication
Networks with Stochastic Cost Functions:
A Variational Formulation

Mauro Passacantando and Fabio Raciti

Abstract We consider a game theory model of congestion control in communica-
tion networks, where each player is a user who wishes to maximize his/her flow
over a path in the network. We allow for stochastic fluctuations of the cost function
of each player, which consists of two parts: a pricing and a utility term. The solution
concept we look for is the mean value of the (unique) variational Nash equilibrium
of the game. Furthermore, we assume that it is possible to invest a certain amount of
money to improve the network by enhancing the capacity of its links and, because
of limited financial resources, an optimal choice of the links to improve has to be
made. We model the investment problem as a nonlinear knapsack problem with
generalized Nash equilibrium constraints in probabilistic Lebesgue spaces and solve
it numerically for some examples.

1 Introduction

In this paper we first model a congestion control problem in communication
networks within a game theory approach which permits to treat stochastic costs
functions and then consider the problem of improving the overall network perfor-
mance in an optimal way, by investing a given amount of money. The cost function
of each player is the difference of a pricing term, which promotes congestion
control, and a utility term which describes the user’s profit.

Game theoretical models for network equilibrium problems are very popular
and, in the case of communication networks, an interesting approach has been
developed in the papers [1, 2, 19, 22]. Our starting point is the model introduced
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in [1], where the players are network users who compete to send their flow from
a given origin to a certain destination node along a route that has been computed
previously by a routing algorithm. The fact that some links in the network are
used by more than one player implies that the strategy space of each player also
depends on the variables of other players. As a result, the game under consideration
falls in the class of Generalized Nash Equilibrium Problems (GNEPs) with shared
constrained, introduced by Rosen a long time ago [21], and further developed
recently by using the theory of variational inequalities (see, e.g., [3, 4, 16, 18]).
Indeed, it is well known (see, e.g., [6]) that GNEPs are equivalent to quasi-
variational inequalities which are considered very difficult problems (for an L2

approach to quasi-variational inequalities see, for instance, [20]). In our approach
we allow for stochastic fluctuations of the players’ cost function and apply the
theory of variational inequalities in probabilistic Lebesgue spaces (see, e.g., [5, 7–
12]), to find the unique variational equilibrium of the game, which is considered the
most desirable from an economic point of view among the multiple equilibria [3].
Let us also mention that the theory of variational inequalities in probabilistic
Lebesgue spaces has been recently applied to study the efficiency of road traffic
networks [13, 17] and that a different approach to stochastic variational inequalities
has been applied to communication networks in [15].

In our model the bandwidth is the most important characteristic of the network
and, in this respect, a system manager may wish to improve the network by investing
financial resources to enhance the capacity of the links. In a typical real situation
the investment cannot cover all the links and a choice has to be made to decide
which links to improve. The system manager makes his/her decision with the help
of a network cost function associated with each set of improvements, which has
the role of maximizing the aggregate utility, while minimizing the total delay at
the links. Since this system function depends on the stochastic price and utility
functions, the quantity of interest is its mean value. Thus, once the sets of variational
equilibria, for all feasible improvements, is computed, we have to solve a knapsack-
type problem which, for instances of reasonable dimensions can be solved by direct
inspection, that is by ordering all the solutions according to their corresponding
relative variation of the above mentioned system function.

The paper is organized in four sections and an appendix. In Sect. 2, we introduce
some notations and the congestion control model proposed in [1], which we modify
to include stochastic fluctuations of the cost functions; we also introduce the
variational inequality whose (unique) solution gives the desired Nash equilibrium
of the game, and define a system function which describes a global property of
the network. Section 3 is devoted to describe the optimal investment strategy.
In Sect. 4, we apply our model to some small-size problems which are solved
numerically. The appendix has the role of providing the frame of stochastic
variational inequalities in probabilistic Lebesgue space, but for the details of the
numerical approximation scheme the interested reader can refer to the references
mentioned in this introduction.
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2 The Congestion Control Model and Its Stochastic
Variational Inequality Formulation

Throughout the paper, vectors of Rn are thought of as rows, but in matrix operations
they will be considered as columns and the superscript < will denote transposition.
The scalar product between two Euclidean vectors a and b will be denoted by a<b,
while the scalar product between two square integrable functions f and g will be
denoted in compact form by 〈f, g〉L2 . The notation EP [f ] will be used to denote
the mean value of a random function f with respect to the probability measure P .
The network topology consists of a set of links L = {1, . . . , L} connecting the
nodes in the set N = {n1, . . . , nN }. The users of the network belong to the set
G = {g1, . . . , gM }. A route R in the network is a set of consecutive links and each
user gi wishes to send a flow xi between a given pair Oi −Di of origin-destination
nodes; x ∈ R

M is the (route) flow of the network; the notation x = (xi, x−i ),
common in game theory, will be used in the sequel when we need to distinguish
the flow component of player gi from all the others. We assume that the routing
problem has already been solved and that there is only one route Ri assigned to user
gi . Each link l has a fixed capacity Cl > 0, so that user i cannot send a flow greater
than the capacity of every link of his/her route, and we group these capacities into a
vector C ∈ R

L. To describe the link structure of each route, it is useful to introduce
the link-route matrix whose entries are given by

Ali =
{

1, if link l belongs to route Ri,

0, otherwise.
(1)

Using the link-route matrix the set of feasible flows can be written in compact form
as

X :=
{
x ∈ R

M : x ≥ 0, Ax ≤ C
}
. (2)

In order to better specify the feasible set of each player, we write by components the
conservation of flow in X as

M∑

i=1

Alixi ≤ Cl, ∀ l ∈ L .

Therefore, because users share some links, the possible amount of flow xi depends
on the flows sent by the other users and is bounded from above by the quantity

mi(x−i ) = min
l∈Ri

⎧
⎨

⎩
Cl −

M∑

j=1, j �=i
Alj xj

⎫
⎬

⎭
≥ 0.
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Now, let (Ω,A , P ) be a probability space, and define the cost function Ji : Ω ×
R
M → R of player gi as

Ji(ω, x) = Pi(ω, x)− Ui(ω, xi), (3)

where Ui represents the utility function of player gi , which only depends on the flow
that he/she sends through the network, while Pi is a pricing term which represents
some kind of toll that gi pays to exploit the network resources and depends on the
flows of the players with common links to gi . Stochastic fluctuations of both Pi
and Ui are described by the random parameter ω ∈ Ω . Players compete in a non-
cooperative manner, as it is assumed that they do not communicate, and act selfishly
to increase their flow. Because the conservation law in X implies that users share
the constraints, the solution concept adopted is the equilibrium introduced by Rosen
in his seminal paper [21], which in the modern literature is known as generalized
Nash equilibrium (with coupled constraints). Due to the presence of ω ∈ Ω , the
Nash equilibrium is a random vector, according to the following definition:

x∗ = (x∗i (ω), x∗−i (ω)) : Ω → R
M is a generalized Nash equilibrium if

for each i ∈ {1, . . . ,M} and P−a.s. :
Ji(ω, x

∗
i (ω), x

∗−i (ω)) = min
xi∈Xi(x

∗−i (ω))
Ji(ω, xi, x

∗−i (ω)),
(4)

where

Xi(x
∗−i (ω)) :=

{
xi ∈ R : (xi, x∗−i (ω)) ∈ X

} = {xi ∈ R : 0 ≤ xi ≤ mi(x
∗−i (ω))}

and

mi(x
∗−i (ω)) = min

l∈Ri

⎧
⎨

⎩
Cl −

M∑

j=1, j �=i
Alj x

∗
j (ω)

⎫
⎬

⎭
.

For each fixed ω, it is well known (see, e.g., [6]) that, under standard differentiability
and convexity assumptions, the above problem is equivalent to a quasi-variational
inequality and that a particular subset of solutions (called variational equilibria) can
be found by solving the variational inequality V I (F,X), where X is the feasible set
defined in (2) and F is the so-called pseudogradient of the game, defined by

F(ω, x) =
(
∂J1(ω, x)

∂x1
, . . . ,

∂JM(ω, x)

∂xM

)

. (5)

More precisely, the variational inequality under consideration is the problem of
finding, for each ω ∈ Ω , a vector x∗(ω) ∈ X such that:
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F(ω, x∗(ω))<(x − x∗(ω) ) ≥ 0, ∀x ∈ X,P − a. s. (6)

In (4) and (6) the solution is a random vector, i.e., a vector function which is merely
measurable with respect to the probability measure P on Ω . Since we wish to
compute statistical quantities associated with the solution, it is natural to require
that x∗ has finite first- and second-order moments. Following [7], we provide an L2

formulation of both (4) and (6).
We will posit the following assumptions on the cost functions Ji , for each i ∈

{1, . . . ,M}:
(A) Ji(·, x) is a random variable for each x ∈ R

M , and Ji(ω, ·) ∈ C1(RM), P -a.s.;
(B) Ji(ω, 0) ∈ L1(Ω, P );
(C) Ji(ω, ·, x−i ) is convex P -a.s. and ∀ x−i ∈ R

M−1;
(D) |∇xJi(ω, x)| ≤ c(1+ |x|), ∀x ∈ R

M, P − a.s. .

Let us now introduce, for each i ∈ {1, . . . ,M}, the mapping Ti : L2(Ω, P,RM)→
R defined by

Ti(ui, u−i ) =
∫

Ω

Ji(ω, ui(ω), u−i (ω) ) dPω. (7)

The following Lemma specifies some fundamental properties of Ti and can be
proved along the same lines as in [6].

Lemma 1 Let us assume that, for each i ∈ {1, . . . ,M}, Ji satisfies assumptions
(A) − (D). Then, for each i ∈ {1, . . . ,M}, Ti is well defined in L2(Ω, P,RM),
Ti(·, u−i ) is convex and Gateaux-differentiable in L2(Ω, P ), for each u−i , and its
derivative is given by

DiTi(ui, u−i )(vi) =
∫

Ω

∂

∂xi
[Ji(ω, ui(ω), u−i (ω)] vi(ω) dPω, ∀ vi ∈ L2(Ω, P ).

(8)

In order to provide the L2-formulation of (4) and (6), we need to introduce the
following sets:

K :=
{
u ∈ L2(Ω, P,RM) : u(ω) ≥ 0, Au(ω) ≤ C, P − a.s.

}

and

Ki(u−i ) :=
{
ui ∈ L2(Ω, P ) : (ui(ω), u−i (ω)) ∈ K, P − a. s.

}
.

Thus, a vector u∗ = (u∗i , u∗−i ) ∈ L2(Ω, P,RM) is a generalized Nash equilibrium
iff, for each i ∈ {1, . . . ,M}:



604 M. Passacantando and F. Raciti

∫

Ω

Ji(ω, u
∗
i (ω), u

∗−i (ω) ) dPω = min
ui∈Ki(u

∗−i )

∫

Ω

Ji(ω, ui(ω), u
∗−i (ω) ) dPω.

(9)
The variational solutions of (9) can be obtained by solving the following variational
inequality V I (Γ,K): find u∗ ∈ K such that

∫

Ω

M∑

i=1

[
∂

∂xi
Ji(ω, u

∗(ω))
]

(vi(ω)− u∗i (ω) )dPω ≥ 0, ∀ v ∈ K, (10)

where Γ : L2(Ω, P,RM)→ L2(Ω, P,RM) is given by

Γ (u) = (Γ1(u), . . . , ΓM(u)) =
(

∂

∂x1
J1(ω, u(ω)), . . . ,

∂

∂xM
JM(ω, u(ω))

)

.

(11)
It can be useful to write (10) in compact form by using the following notation:

〈Γ (u), v − u〉L2 ≥ 0, ∀ v ∈ L2(Ω, P,RM).

Problem (10) is a random (or stochastic) variational inequality in L2 and the
interested reader can refer to the articles mentioned in the introduction for a
comprehensive treatment of this relatively new methodology as well as for several
applications. In order to be self-consistent, we give in the appendix a short outline
of the topic, in the general Lp setting (p ≥ 2).

In what follows, we consider the specific functional form of Pi and Ui treated in
[1], with a slight modification, and allowing for stochastic fluctuations. Furthermore,
we show the existence of a unique variational equilibrium of the game. Specifically,
the utility function Ui of player gi is given by

Ui(ω, xi) = ai(ω) log(xi + 1), (12)

where ai ∈ L∞(Ω, P ) and is bounded away from zero from below for each i ∈
{1, . . . , m}. The route price function Pi of player gi is the sum of the price functions
of the links associated with route Ri :

Pi(ω, x) =
∑

l∈Ri

Pl

⎛

⎝ω,

M∑

j=1

Aljxj

⎞

⎠ . (13)

Let us notice that Pl is modeled so as to only depend on the variables of players who
share the link l, namely:

Pl

⎛

⎝ω,

M∑

j=1

Aljxj

⎞

⎠ = k(ω)

Cl −∑M
j=1 Aljxj + e

, (14)
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where k ∈ L∞(Ω, P ) is a network function, bounded away from zero from below,
and e is a small positive number which we introduce to allow capacity saturation,
while obtaining a well behaved function. The price function of gi is thus given by

Pi(ω, x) =
∑

l∈Ri

k(ω)

Cl −∑M
j=1 Aljxj + e

, (15)

and the resulting expression of the cost for gi is

Ji(ω, x) =
∑

l∈Ri

k(ω)

Cl −∑M
j=1 Aljxj + e

− ai(ω) log(xi + 1). (16)

The following properties of the above functions are easy to check, for each fixed
ω: (i) Ui(ω, ·) is twice continuously differentiable, non-decreasing, and strongly
concave on any compact interval [0, b] (the last condition means that there exists
τ > 0 such that ∂2Ui(ω, xi)/∂x

2
i ≤ −τ for any xi ∈ [0, b]); (ii) Pi(ω, ·)

is twice continuously differentiable, convex and Pi(ω, ·, x−i ) is non-decreasing.
These properties of Ui and Pi entail an important monotonicity property of the
pseudogradient F defined in (5), as the following theorem shows.

Theorem 1 LetUi and Pi be given as in (12) and (15), then F is strongly monotone
on X, uniformly with respect to ω ∈ Ω , i.e., there exists α > 0 such that

(F (ω, x)− F(ω, y))<(x − y) ≥ α‖x − y‖2, ∀ x, y ∈ X,∀ ω ∈ Ω.

Proof Similarly to [1], it can be shown that the Jacobian matrix of F is positive
definite on X, uniformly with respect to x. Moreover, since the random parameters
k and ai are bounded, the Jacobian is positive definite, uniformly with respect to ω.
Thus, F is strongly monotone on X, uniformly with respect to ω. �
The unique solvability of V I (Γ,K) is based on standard arguments, as the
following theorem shows.

Theorem 2 There exists a unique variational equilibrium of the GNEP (9).

Proof The variational equilibria of (9) are the solutions of (10), i.e., of V I (Γ,K).
Under assumptions (A)–(D), the operator Γ generated by F maps L2 in L2 and
is norm-continuous, being P a probability measure. Moreover, the uniform strong
monotonicity of F implies the uniform strong monotonicity of Γ . At last, the set K
is a closed and convex subset of L2(Ω, P,RM) and is norm-bounded, hence weakly
compact. Then, applying monotone operator theory we get that (10) admits a unique
solution (see, e.g., [14]), which is the unique variational equilibrium of (9). �

We now introduce a function f which describes a global property of the game:



606 M. Passacantando and F. Raciti

f (ω, x) =
∑

l∈L

Pl

⎛

⎝ω,

M∑

j=1

Aljxj

⎞

⎠−
M∑

i=1

Ui(ω, xi), (17)

which represents the aggregate delay at the links minus the sum of the utilities of all
players.

The Carathéodory function f generates a functional Π : L2(Ω, P,RM) → R

through the position:

Π(u(ω)) := EP [f ] =
∫

Ω

f (ω, u(ω))dPω, ∀ u ∈ K ⊂ L2(Ω, P,RM).

(18)
The theorem which follows shows that Π plays the role of a potential for the game
described by (9).

Theorem 3 The unique variational equilibrium of the GNEP (9) coincides with the
optimal solution of the system problem min

u∈K Π(u).

Proof Since both Π and K are convex, ū is a minimizer of Π on K if and only if

〈DΠ(ū), v − ū〉L2 ≥ 0, ∀ v ∈ K,

where DΠ(ū) stands for the Gateaux derivative of Π in ū. Since DΠ = Γ , the
expression above is nothing else that the variational inequality V I (Γ,K), whose
solution gives the variational equilibrium of (9). �

To study our model from a numerical point of view, we need to pass from
the abstract probability space (Ω,A , P ) to the probability space generated by
the random variables under consideration: (k, a1, . . . , aM). The new probability
space is then (RM+1,B,P), where B represents the Borel σ -algebra on R

M+1 and
P = Pk ⊗Pa1⊗, . . . ,⊗PaM = Pk ⊗Pa , where we assumed independence of all the
random variables involved. In what follows, with a slight abuse of notation, we will
continue to denote with K and Ki(u−i ) the sets previously defined but expressed
now with new variables (k, a). The cost functions are thus expressed as Ji(k, a, x),
and problem (9) now reads as

∫

RM+1
Ji(k, a, u

∗
i (k, a), u

∗−i (k, a) ) dPk dPa

= min
ui∈Ki(u

∗−i )

∫

RM+1
Ji(k, a, ui(k, a), u

∗−i (k, a) ) dPk dPa,
(19)

while the variational solutions of (19) can be obtained by solving the following
variational inequality: find u∗ ∈ K such that
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∫

RM+1

M∑

i=1

[
∂

∂xi
Ji(k, a, u

∗(ω))
]

(vi(k, a)− u∗i (k, a) )dPk dPa ≥ 0, ∀ v ∈ K.

(20)
Analogously, the system function, as a function of the random variables, reads as

f (k, a, x) =
∑

l∈L

Pl

⎛

⎝k, a,

M∑

j=1

Aljxj

⎞

⎠−
M∑

i=1

Ui(k, a, xi), (21)

and its mean value is expressed by

EP[f ] = Π(u(k, a)) :=
∫

RM+1
f (k, a, u(k, a))dPk dPa. (22)

Thus, the quantities of interest in our model are EP[u∗] =
∫
RM+1 u

∗(k, a)dPk dPa
and Π(u∗(k, a)).

3 The Optimal Network Improvement Model

We now suppose that the network system manager has a budget B available to
improve the network performance. He/she can only increase the capacity of a subset
L̃ ⊆ L of links and knows that Il is the investment required to enhance the
capacity of link l by a given ratio γl . Since the available budget is generally not
sufficient to enhance the capacities of all the links of L̃ , he/she has to decide which
subset of links to invest in, in order to improve as much as possible the system cost
Π computed at the variational equilibrium of the game with new link capacities,
while satisfying the budget constraint. This problem can be formulated as an integer
nonlinear program.

To this end, we define a binary variable yl , for any l ∈ L̃ , which takes on the
value 1 if the investment is actually carried out on link l, and 0 otherwise. A vector
y = (yl)l∈L̃ is feasible if the budget constraint

∑
l∈L̃ Ilyl ≤ B is satisfied. Given

a feasible vector y, the new capacity of each link l ∈ L̃ is equal to

C′l (y) := γlClyl + (1− yl)Cl,

i.e., C′l (y) = γlCl if yl = 1 and C′l (y) = Cl if yl = 0. The network manager aims
to maximize the percentage relative variation of the system cost defined as

ϕ(y) := 100 · Π(u∗0(k, a))−Π(u∗y(k, a))
Π(u∗0(k, a))

,
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where u∗0(k, a) is the variational equilibrium of the GNEP before the investment,
while u∗y(k, a) is the variational equilibrium of the GNEP on the improved network
according to y. Therefore, the proposed optimization model is

max ϕ(y)

subject to
∑

l∈L̃

Ilyl ≤ B,

yl ∈ {0, 1} l ∈ L̃ .

(23)

The above model can be considered a generalized knapsack problem because the
computation of the nonlinear function ϕ at a given y requires to find the variational
equilibrium of the GNEP both for the original and the improved network. Notice
that, since the variational equilibrium of the GNEP is the minimizer of Π (see
Theorem 3), the optimization problem (23) can be reformulated as the following
mixed integer nonlinear program:

min
∑

l∈L̃

∫

RM+1

k

γlClyl + (1− yl)Cl −
M∑

i=1
Aliui(k, a)+ e

dPk dPa

+
∑

l∈L \L̃

∫

RM+1

k

Cl −
M∑

i=1
Aliui(k, a)+ e

dPk dPa

−
M∑

i=1

∫

RM+1
ai log(ui(k, a)+ 1)dPk dPa

subject to
M∑

i=1

Aliui(k, a) ≤ γlClyl + (1− yl)Cl l ∈ L̃ ,

M∑

i=1

Aliui(k, a) ≤ Cl l ∈ L \ L̃ , P− a.s.

∑

l∈L̃

Ilyl ≤ B,

ui(k, a) ≥ 0, i = 1, . . . ,M, P− a.s.

yl ∈ {0, 1} l ∈ L̃ .
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4 Numerical Experiments

In this section, we show some preliminary numerical experiments on two test
networks for the stochastic formulation of the congestion control problem and the
optimal network improvement problem. The numerical approximation of random
variational equilibria was performed by implementing in Matlab 2020a the dis-
cretization procedure described in [9, 10] and exploiting the Matlab Optimization
toolbox. The nonlinear knapsack problem (23) has been solved evaluating the
objective function at all the feasible solutions.

Example 1 We consider the network shown in Fig. 1 (see also [1]) with nine
nodes and nine links. The origin-destination pairs of the users and their routes are
described in Table 1. We set e = 0.01 and Cl = 10 for any l ∈ L . Moreover, we
assume that the random parameter k is equal to k = 100+ δk , where δk is a random
variable which varies in the interval [−90, 90] with either uniform distribution or
truncated normal distribution with mean 0 and standard deviation 9. Moreover,
for any i ∈ {1, . . . , m}, the random parameters ai are equal to ai = 100 + δa ,
where δa is a random variable which varies in the interval [−90, 90] with either
uniform distribution or truncated normal distribution with mean 0 and standard
deviation 9. Both intervals [−90, 90] have been partitioned into Nd subintervals
in the approximation procedure. Tables 2, 3, 4, 5 show the convergence of the
approximated mean values of the variational equilibrium u∗ for different values of
Nd by using the four different combinations of probability densities.

We now consider the optimal network improvement problem. We set e = 0.01
and Cl = 10 for any l ∈ L . The random parameters are of the form: k = 100+ δk
and ai = 100 + δa , where δk and δa vary in the interval [−90, 90] with uniform

Fig. 1 Network topology of
Example 1

8 5

4

6 9

7

31 2
l7 l6

l3 l4

l5

l1

l2

l9

l8

Table 1 Origin-Destination
pairs and routes (sequence of
links) of the users in
Example 1

User Origin Destination Route

1 8 2 l2, l3, l6
2 8 7 l2, l5, l9
3 4 7 l1, l5, l9
4 2 7 l6, l4, l9
5 9 7 l8, l9
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Table 2 Convergence of the
approximated mean values of
the variational equilibrium of
Example 1; δk and δa vary in
the interval [−90, 90] with
uniform distribution

EP[u∗] Nd = 10 Nd = 25 Nd = 50 Nd = 100

(EP[u∗])1 4.4478 4.4440 4.4434 4.4433

(EP[u∗])2 1.6458 1.6433 1.6429 1.6428

(EP[u∗])3 2.1001 2.0970 2.0965 2.0964

(EP[u∗])4 1.7110 1.7081 1.7077 1.7076

(EP[u∗])5 2.3924 2.3891 2.3886 2.3884

Table 3 Convergence of the approximated mean values of the variational equilibrium of Exam-
ple 1; δk varies in the interval [−90, 90] with uniform distribution, δa varies in the interval
[−90, 90] with truncated normal distribution with mean 0 and standard deviation 9

EP[u∗] Nd = 10 Nd = 25 Nd = 50 Nd = 100

(EP[u∗])1 4.7310 4.7326 4.7328 4.7328

(EP[u∗])2 1.7183 1.7183 1.7183 1.7183

(EP[u∗])3 2.2025 2.2026 2.2025 2.2025

(EP[u∗])4 1.7811 1.7811 1.7811 1.7811

(EP[u∗])5 2.4633 2.4634 2.4634 2.4634

Table 4 Convergence of the approximated mean values of the variational equilibrium of Exam-
ple 1; δk varies in the interval [−90, 90] with truncated normal distribution with mean 0 and
standard deviation 9, δa varies in the interval [−90, 90] with uniform distribution

EP[u∗] Nd = 10 Nd = 25 Nd = 50 Nd = 100

(EP[u∗])1 4.2698 4.2636 4.2627 4.2624

(EP[u∗])2 1.6233 1.6203 1.6198 1.6196

(EP[u∗])3 2.0642 2.0604 2.0598 2.0596

(EP[u∗])4 1.6945 1.6912 1.6906 1.6905

(EP[u∗])5 2.3775 2.3736 2.3730 2.3728

Table 5 Convergence of the approximated mean values of the variational equilibrium of Exam-
ple 1; δk and δa vary in the interval [−90, 90] with truncated normal distribution with mean 0 and
standard deviation 9

EP[u∗] Nd = 10 Nd = 25 Nd = 50 Nd = 100

(EP[u∗])1 4.5685 4.5680 4.5679 4.5679

(EP[u∗])2 1.6995 1.6993 1.6993 1.6993

(EP[u∗])3 2.1726 2.1723 2.1722 2.1722

(EP[u∗])4 1.7679 1.7677 1.7677 1.7677

(EP[u∗])5 2.4504 2.4502 2.4502 2.4502
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Table 6 Capacity
enhancement factors and
investments for links of
Example 1

Links l1 l2 l3 l4 l5 l6 l7 l8 l9

γl 1.2 1.5 1.1 1.6 1.3 1.4 1.1 1.7 1.3

Il (ke) 3 8 2 10 4 5 2 12 4

Table 7 The ten best
feasible solutions for the
optimal network
improvement model in
Example 1

Ranking y ϕ(y) I (y)

1 (0,1,1,0,0,1,0,0,1) 28.0619 19

2 (1,1,0,0,0,1,0,0,1) 27.2448 20

3 (0,1,0,0,0,1,1,0,1) 26.8262 19

4 (0,1,0,0,0,1,0,0,1) 26.6207 17

5 (1,0,1,0,1,1,1,0,1) 23.2752 20

6 (0,1,1,0,1,0,1,0,1) 23.0862 20

7 (1,0,1,0,1,1,0,0,1) 23.0697 18

8 (0,1,1,0,1,0,0,0,1) 22.8807 18

9 (1,1,0,0,1,0,0,0,1) 22.8453 19

10 (0,0,1,0,1,1,1,0,1) 22.5908 17

Fig. 2 Network topology of
Example 2

6 7 8 9 10

1 2 3 4 5
l1 l2 l3 l4

l5 l6 l7 l8 l9

l10 l11 l12 l13

distribution. Each interval [−90, 90] has been partitioned into 25 subintervals in the
approximation procedure. We assume that the available budget is B = 20 ke, the
set of links to be improved is L̃ = L , while the values of γl and Il are shown in
Table 6.

Table 7 shows the ten best feasible solutions together with the percentage of total
cost improvement ϕ(y) and the corresponding investment I (y) =∑

l∈L̃ Ilyl .

Example 2 We now consider the network shown in Fig. 2 with 10 nodes and 13
links. The O-D pairs of the ten users and their routes are described in Table 8. We
report numerical experiments similar to Example 1. First, we show the convergence
of the approximated mean values of the variational equilibrium with respect to
different probability distributions of the random parameters k and a. Then, the
solution of the optimal network improvement problem is reported.

We set e = 0.01 and Cl = 10 for any l ∈ L . Moreover, we assume that
the random parameter k is equal to k = 10 + δk , where δk is a random variable
which varies in the interval [−9, 9] with either uniform distribution or truncated
normal distribution with mean 0 and standard deviation 0.9. Moreover, for any
i ∈ {1, . . . , m}, the random parameters ai are equal to ai = 10 + δa , where δa is a
random variable which varies in the interval [−9, 9] with either uniform distribution
or truncated normal distribution with mean 0 and standard deviation 0.9. Both
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Table 8 Origin-Destination pairs and routes (sequence of links) of the users in Example 2

User Origin Destination Route User Origin Destination Route

1 1 5 l1, l2, l3, l4 6 5 1 l4, l3, l2, l1
2 6 10 l10, l11, l12, l13 7 10 6 l13, l12, l11, l10

3 2 10 l6, l11, l12, l13 8 5 8 l9, l13, l12

4 8 5 l7, l3, l4 9 4 6 l8, l12, l11, l10

5 6 5 l5, l1, l2, l3, l4 10 8 1 l7, l2, l1

Table 9 Convergence of the
approximated mean values of
the variational equilibrium of
Example 2; δk and δa vary in
the interval [−9, 9] with
uniform distribution

EP[u∗] Nd = 10 Nd = 25 Nd = 50 Nd = 100

(EP[u∗])1 1.3364 1.3342 1.3338 1.3337

(EP[u∗])2 1.3470 1.3450 1.3447 1.3446

(EP[u∗])3 1.4515 1.4491 1.4487 1.4486

(EP[u∗])4 2.7526 2.7499 2.7495 2.7493

(EP[u∗])5 1.2546 1.2523 1.2519 1.2518

(EP[u∗])6 1.3364 1.3342 1.3338 1.3337

(EP[u∗])7 1.3470 1.3450 1.3447 1.3446

(EP[u∗])8 1.8810 1.8773 1.8768 1.8766

(EP[u∗])9 1.6685 1.6652 1.6646 1.6645

(EP[u∗])10 2.7526 2.7499 2.7495 2.7493

Table 10 Convergence of
the approximated mean
values of the variational
equilibrium of Example 2; δk
varies in the interval [−9, 9]
with uniform distribution, δa
varies in the interval [−9, 9]
with truncated normal
distribution with mean 0 and
standard deviation 0.9

EP[u∗] Nd = 10 Nd = 25 Nd = 50 Nd = 100

(EP[u∗])1 1.4076 1.4076 1.4076 1.4076

(EP[u∗])2 1.4204 1.4206 1.4206 1.4206

(EP[u∗])3 1.5275 1.5276 1.5276 1.5276

(EP[u∗])4 2.8993 2.9003 2.9004 2.9004

(EP[u∗])5 1.3380 1.3380 1.3380 1.3380

(EP[u∗])6 1.4076 1.4076 1.4076 1.4076

(EP[u∗])7 1.4204 1.4206 1.4206 1.4206

(EP[u∗])8 1.9536 1.9532 1.9532 1.9531

(EP[u∗])9 1.7588 1.7585 1.7584 1.7584

(EP[u∗])10 2.8993 2.9003 2.9004 2.9004

intervals [−9, 9] have been partitioned into Nd subintervals in the approximation
procedure. Tables 9, 10, 11, 12 show the convergence of the approximated mean
values of the variational equilibrium for different values of Nd by using the four
different combinations of probability densities.

Let us consider the optimal network improvement problem. We set e = 0.01 and
Cl = 10 for any l ∈ L . The random parameters are k = 10+ δk and ai = 10+ δa ,
where δk and δa vary in the interval [−9, 9] with uniform distribution. Each interval
[−90, 90] has been partitioned into 25 subintervals in the approximation procedure.
We assume that the available budget is B = 20 ke, the set of links to be improved
is L̃ = L , while the values of γl and Il are shown in Table 13.
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Table 11 Convergence of
the approximated mean
values of the variational
equilibrium of Example 2; δk
varies in the interval [−9, 9]
with truncated normal
distribution with mean 0 and
standard deviation 0.9, δa
varies in the interval [−9, 9]
with uniform distribution

EP[u∗] Nd = 10 Nd = 25 Nd = 50 Nd = 100

(EP[u∗])1 1.3135 1.3109 1.3104 1.3103

(EP[u∗])2 1.3123 1.3098 1.3094 1.3093

(EP[u∗])3 1.4258 1.4229 1.4224 1.4223

(EP[u∗])4 2.6674 2.6632 2.6625 2.6624

(EP[u∗])5 1.2263 1.2235 1.2231 1.2230

(EP[u∗])6 1.3135 1.3109 1.3104 1.3103

(EP[u∗])7 1.3123 1.3098 1.3094 1.3093

(EP[u∗])8 1.8871 1.8831 1.8824 1.8823

(EP[u∗])9 1.6590 1.6552 1.6546 1.6545

(EP[u∗])10 2.6674 2.6632 2.6625 2.6624

Table 12 Convergence of
the approximated mean
values of the variational
equilibrium of Example 2; δk
and δa vary in the interval
[−9, 9] with truncated normal
distribution with mean 0 and
standard deviation 0.9

EP[u∗] Nd = 10 Nd = 25 Nd = 50 Nd = 100

(EP[u∗])1 1.3892 1.3890 1.3889 1.3889

(EP[u∗])2 1.3888 1.3887 1.3886 1.3886

(EP[u∗])3 1.5059 1.5057 1.5056 1.5056

(EP[u∗])4 2.8207 2.8205 2.8204 2.8204

(EP[u∗])5 1.3157 1.3155 1.3155 1.3155

(EP[u∗])6 1.3892 1.3890 1.3889 1.3889

(EP[u∗])7 1.3888 1.3887 1.3886 1.3886

(EP[u∗])8 1.9665 1.9662 1.9661 1.9661

(EP[u∗])9 1.7584 1.7580 1.7579 1.7579

(EP[u∗])10 2.8207 2.8205 2.8204 2.8204

Table 13 Capacity enhancement factors and investments for links of Example 2

Links l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13

γl 1.2 1.5 1.1 1.6 1.3 1.4 1.1 1.7 1.3 1.5 1.1 1.8 1.3

Il (ke) 3 8 2 10 4 5 2 12 4 8 2 13 4

Table 14 The ten best
feasible solutions for the
optimal network
improvement model in
Example 2

Ranking y ϕ(y) I (y)

1 (0,0,0,0,0,0,0,0,0,0,1,1,1) 19.3768 19

2 (1,0,0,0,0,0,0,0,0,0,0,1,1) 18.9122 20

3 (0,0,1,0,0,0,0,0,0,0,0,1,1) 18.1916 19

4 (0,0,0,0,0,0,1,0,0,0,0,1,1) 17.6307 19

5 (0,0,0,0,0,0,0,0,0,0,0,1,1) 17.0483 17

6 (1,0,1,0,0,0,0,0,0,0,1,1,0) 15.8179 20

7 (1,0,0,0,0,0,1,0,0,0,1,1,0) 15.2526 20

8 (1,0,0,0,0,0,0,0,0,0,1,1,0) 14.6397 18

9 (1,0,1,0,0,0,1,0,0,0,0,1,0) 14.5318 20

10 (0,0,1,0,0,0,1,0,0,0,1,1,0) 14.5210 19

Table 14 shows the ten best feasible solutions together with the value of ϕ and
the corresponding investment.
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Appendix

Let (Ω,A , P ) be a probability space, A,B : Rk → R
k two given mappings, and

b, c ∈ R
k two given vectors in R

k . Moreover, let R and S be two real-valued random
variables defined on Ω , D a random vector in R

m, and G ∈ R
m×k a given matrix.

For ω ∈ Ω, we define a random set

M(ω) :=
{
x ∈ R

k : Gx ≤ D(ω)
}
.

Consider the following stochastic variational inequality: for almost every ω ∈ Ω,

find x̂ := x̂(ω) ∈ M(ω) such that

(S(ω)A(x̂)+B(x̂) )<(z− x̂) ≥ (R(ω) c+ b )<(z− x̂), ∀ z ∈ M(ω). (24)

To facilitate the foregoing discussion, we set T (ω, x) := S(ω)A(x) + B(x). We
assume that A,B, and S are such that the map T : Ω×R

k �→ R
k is a Carathéodory

function. We also assume that T (ω, ·) is monotone for every ω ∈ Ω . Since we
are only interested in solutions with finite first- and second-order moments, our
approach is to consider an integral variational inequality instead of the parametric
variational inequality (24).

Thus, for a fixed p ≥ 2, consider the Banach space Lp(Ω,P,Rk) of random
vectors V from Ω to R

k such that the expectation (p-moment) is given by

EP (‖V ‖p) =
∫

Ω

‖V (ω)‖pdP (ω) <∞.

For subsequent developments, we need the following growth condition

‖T (ω, z)‖ ≤ α(ω)+ β(ω)‖z‖p−1, ∀ z ∈ R
k, (25)

where α ∈ Lq(Ω,P ) and β ∈ L∞(Ω, P ). Due to the above growth condition, the
Nemytskii operator T̂ associated with T acts from Lp(Ω,P,Rk) to Lq(Ω,P,Rk),

where p−1 + q−1 = 1, and is defined by T̂ (V )(ω) := T (ω, V (ω)), for any ω ∈ Ω.

Assuming D ∈ L
p
m(Ω) := Lp(Ω,P,Rm), we introduce the following nonempty,

closed, and convex subset of Lp
k (Ω):

MP := {V ∈ L
p
k (Ω) : GV (ω) ≤ D(ω), P − a.s.

}
.

Let S(ω) ∈ L∞, 0 < s < S(ω) < s, and R(ω) ∈ Lq . Equipped with these
notations, we consider the following Lp formulation of (24): find Û ∈ MP such
that for every V ∈ MP , we have
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∫

Ω

(S(ω)A[Û (ω)] + B[Û (ω))]<(V (ω)− Û (ω)) dP (ω)

≥
∫

Ω

(b + R(ω) c)<(V (ω)− Û (ω))dP (ω).

(26)

Classical theorems for the solvability of (26) can be found in [14].
To get rid of the abstract sample space Ω , we consider the joint distribution

P of the random vector (R, S,D) and work with the special probability space
(Rd ,B(Rd),P), where d := 2 + m and B is the Borel σ -algebra on R

d . For
simplicity, we assume that R, S, and D are independent random vectors. We set

r = R(ω), s = S(ω), t = D(ω), y = (r, s, t).

For each y ∈ R
d , we define the set

M(y) :=
{
x ∈ R

k : Gx ≤ t
}
.

Consider the space Lp(Rd ,P,Rk) and introduce the closed and convex set

MP := {v ∈ Lp(Rd ,P,Rk) : Gv(r, s, t) ≤ t, P− a.s.}.

Without any loss of generality, we assume that R ∈ Lq(Ω,P ) and D ∈
Lp(Ω,P,Rm) are non-negative. Moreover, we assume that the support (i.e., the
set of possible outcomes) of S ∈ L∞(Ω, P ) is the interval [s, s[⊂ (0,∞). With
these ingredients, we consider the variational inequality problem of finding û ∈ MP

such that for every v ∈ MP we have

∫ ∞

0

∫ s

s

∫

R
m+
(s A[û(y)] + B[û(y)])<(v(y)− û(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫

R
m+
(b + r c)<(v(y)− û(y)) dP(y).

(27)

For the details on the numerical approximation of the solution û the interested
reader can refer to the references in the introduction. Here, we only recall that
the set MP can be approximated by a sequence {Mn

P
} of finite dimensional sets,

and the functions r and s can be approximated by the sequences {ρn} and {σn}
of step functions, with ρn → ρ in Lp and σn → σ in L∞, respectively, where
ρ(r, s, t) = r and σ(r, s, t) = s. When the solution of (27) is unique, we can
compute a sequence of step functions ûn which converges strongly to û, under
suitable hypotheses, by solving, for n ∈ N, the following discretized variational
inequality: find ûn := ûn(y) ∈ Mn

P
such that, for every vn ∈ Mn

P
, we have
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∫ ∞

0

∫ s

s

∫

R
m+
(σn(y)A[ûn(y)] + B[ûn(y)])<(vn(y)− ûn(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫

R
m+
(b + ρn(y) c)

<(vn(y)− ûn(y)) dP(y).

(28)

In absence of strict monotonicity, the solution of (26) and (27) can be not unique and
the previous approximation procedure must be coupled with a regularization scheme
as follows. We choose a sequence {εn} of regularization parameters and choose the
regularization map to be the duality map J : Lp(Rd ,P,Rk)→ Lq(Rd ,P,Rk). We
assume that εn > 0 for every n ∈ N and that εn ↓ 0 as n→∞.

We can then consider the following regularized stochastic variational inequality:
for n ∈ N, find wn = w

εn
n (y) ∈ Mn

P
such that, for every vn ∈ Mn

P
, we have

∫ ∞

0

∫ s

s

∫

R
m+

(
σn(y)A[wn(y)] + B[wn(y)] + εnJ (wn(y))

)<
(vn(y)− wn(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫

R
m+
(b + ρn(y) c)

<(vn(y)− wn(y)) dP(y).

(29)

As usual, the solution wn will be referred to as the regularized solution. Weak and
strong convergence of wn to the minimal-norm solution of (27) can be proved under
suitable hypotheses (see, e.g., [10]).

Acknowledgments The authors are members of the Gruppo Nazionale per l’Analisi Matema-
tica, la Probabilità e le loro Applicazioni (GNAMPA - National Group for Mathematical Analysis,
Probability and their Applications) of the Istituto Nazionale di Alta Matematica (INdAM - National
Institute of Higher Mathematics).

References
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Nonlocal Problems for Hyperbolic
Equations

L. S. Pulkina

Abstract In this chapter, we consider nonlocal problems for hyperbolic equations
with integral conditions and discuss methods which can be applied to justify
solvability. The chapter is based on some published papers and aims to introduce the
reader to effective methods for investigating nonlocal problems. We also propose
certain modifications in proving a unique solvability of nonlocal problems with
integral conditions.

1 Introduction

Systematic studies of nonlocal problems with integral conditions originated with the
papers by J.R. Cannon [6] and L.I. Kamynin [13] in 1963–1964. In these papers,
both authors consider nonlocal problems for heat equation. Integral conditions
often arise in practice when it is impossible to get boundary conditions by direct
measurements. The most familiar examples are inverse problems. In this connection,
we may observe that many papers deal with inverse problems for parabolic
equations with over-determination of integral conditions (see for example [1, 7, 14]
and elsewhere).

Here we focus our attention on nonlocal problems for hyperbolic equations with
integral conditions. The study of nonlocal problems for hyperbolic equations started
at the very end of the twentieth century. In the course of our discussion, we will
mention many papers dealing with them.
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Nowadays, various nonlocal problems for partial differential equations have been
actively studied. Investigations of nonlocal problems show that classical methods
most widely used to prove solvability of initial-boundary problems break down as a
rule when applied to nonlocal problems. The main reason of this is that the operators
generated by nonlocal conditions are not self-adjoint. For this, several methods
have been developed for overcoming the difficulties due to nonlocal conditions. We
present here one of the most effective approaches and show how it works in various
situations.

2 Nonlocal Problems for Hyperbolic Equations with Integral
Conditions

In this section, we consider nonlocal problems for the hyperbolic equation

Lu ≡ utt − (a(x, t)ux)x + c(x, t)u = f (x, t). (1)

The problem is to find a solution of (1) in QT = (0, l) × (0, T ), l, T < ∞,

satisfying the initial data

u(x, 0) = 0, ut (x, 0) = 0, (2)

and the nonlocal conditions

l1u+
l∫

0
k1(x, t)u(x, t)dx = 0,

l2u+
l∫

0
k2(x, t)u(x, t)dx = 0,

(3)

where liu are boundary operators:

liu = ai1ux(0, t)+ ai2ux(l, t)+ bi1u(0, t)+ bi2u(l, t)

+ci1ut (0, t)+ ci2ut (l, t)+ di1utt (0, t)+ di2utt (l, t), i = 1, 2.

Definition 1 If ∀t ∈ [0, T ], liu = 0, i = 1, 2, then nonlocal conditions (3) are
called first-kind integral conditions; otherwise, (3) are called second-kind integral
conditions.

It appears that the choice of an effective method to show solvability of a problem
with integral conditions depends on the kind of integral conditions and in particular
on the form of liu.
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2.1 A Problem with Second-Kind Integral Conditions

Let

l1u ≡ a1ux(0, t)+ b1ux(l, t)+ a0u(0, t)+ b0u(l, t),

l2u ≡ c1ux(0, t)+ d1ux(l, t)+ c0u(0, t)+ d0u(l, t).

Then the conditions (3) are of the second-kind. It is natural to ask why we begin
with second-kind conditions. It will be clear soon.

Let in (3), ∀t ∈ [0, T ], Δ = a1d1 − b1c1 �= 0. Then we can solve (3) with
respect to ux(0, t), ux(l, t) to get

a(0, t)ux(0, t)+ α11(t)u(0, t)+ α12(t)u(l, t)+
∫ l

0 K1(x, t)u(x, t)dx = 0,
a(l, t)ux(l, t)+ α21(t)u(l, t)+ α22(t)u(l, t)+

∫ l
0 K2(x, t)u(x, t)dx = 0,

(4)
where

α11(t) = a0d1 − c0b1

Δ
a(0, t), α12(t) = b0d1 − d0b1

Δ
a(0, t),

α21(t) = a0c1 − c0a1

Δ
a(l, t), α22(t) = b0c1 − d0a1

Δ
a(l, t),

K1(x, t)= d1k1(x, t)−b1k2(x, t)

Δ
a(0, t), K2(x, t)= c1k1(x, t)−a1k2(x, t)

Δ
a(l, t).

Problem 1 Find a solution u(x, t) to Eq. (1) satisfying the initial data (2) and the
nonlocal conditions (4).

Consider the Sobolev space W 1
2 (QT ) and denote

Ŵ 1
2 (QT ) =

{
v(x, t) : v ∈ W 1

2 (QT ), v(x, T ) = 0
}
.

Let u(x, t) be a solution to the Problem 1 and v ∈ Ŵ 1
2 (QT ). Using the standard

method [18, p. 92] and taking into account (4) and ut (x, 0) = 0, we obtain the
equality

∫ T

0

∫ l

0
(−utvt + auxvx + cuv)dxdt −

∫ T

0
v(0, t)[α11u(0, t)+ α12u(l, t)]dt

+
∫ T

0
v(l, t)[α21u(0, t)+ α22u(l, t)]dt −

∫ T

0
v(0, t)

∫ l

0
K1(x, t)u(x, t)dxdt

+
∫ T

0
v(l, t)

∫ l

0
K2(x, t)u(x, t)dxdt =

∫ T

0

∫ l

0
f vdxdt. (5)
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Definition 2 A function u ∈ W 1
2 (QT ) is said to be a weak solution to the Problem 1

if u(x, 0) = 0, and for every v ∈ Ŵ (QT ), the identity (5) holds.

Theorem 1 Let

(i) a, at ∈ C(Q̄T ), c ∈ C(Q̄T ), a(x, t) > 0, ∀(x, t) ∈ Q̄T ,

(ii) Ki ∈ C(Q̄T ), f ∈ L2(QT ),

(iii) α12 + α21 = 0, αij ∈ C1[0, T ].
Then there exists a unique weak solution to the Problem 1.

Proof Uniqueness. Let u1(x, t) and u2(x, t) be two different solutions to the
Problem 1. Then u(x, t) = u1(x, t)−u2(x, t) satisfies the initial condition u(x, 0) =
0 and the identity

∫ T

0

∫ l

0
(−utvt + auxvx + cuv)dxdt

−
∫ T

0
v(0, t)[α11u(0, t)+α12u(l, t)]dt+

∫ T

0
v(l, t)[α21u(0, t)+ α22u(l, t)]dt

−
∫ T

0
v(0, t)

∫ l

0
K1udxdt +

∫ T

0
v(l, t)

∫ l

0
K2udxdt = 0. (6)

Let us substitute in (6)

v(x, t) =
⎧
⎨

⎩

t∫

τ

u(x, η)dη, 0 ≤ t ≤ τ,

0, τ ≤ t ≤ T ,

where τ ∈ [0, T ] is arbitrary. We make some calculations.

−
∫ T

0
α11(t)v(0, t)u(0, t)dt = −

∫ τ

0
α11(t)v(0, t)vt (0, t)dt

= 1

2

∫ τ

0
α′11v

2(0, t)dt + 1

2
α11(0)v

2(0, 0).

In a similar way, we get

−
∫ T

0
α12v(0, t)u(l, t)dt = −

∫ τ

0
α12v(0, t)vt (l, t)dt,

∫ T

0
α21v(l, t)u(0, t)dt = −

∫ τ

0
α′21v(l, t)v(0, t)dt −

∫ τ

0
α21vt (l, t)v(0, t)dt,

∫ T

0
α22(t)v(l, t)u(l, t)dt = −1

2

∫ τ

0
α′22v

2(l, t)dt − 1

2
α22(0)v

2(l, 0).
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Taking into account that α12 + α21 = 0, we get

∫ l

0
[u2(x, τ )+ a(x, 0)v2

x(x, 0)]dx

= [α11(0)v
2(0, 0)− 2α21v(0, 0)v(l, 0)− α22v

2(l, 0)]

+2
∫ τ

0

∫ l

0
cuvdxdt −

∫ τ

0

∫ l

0
atv

2
xdxdt −

+
∫ τ

0
[α′11v

2(0, t)− 2α′21v(0, t)v(l, t)− α′22v
2(l, t)]dt

−2
∫ τ

0
v(0, t)

∫ l

0
K1(x, t)u(x, t)dxdt

+2
∫ τ

0
v(l, t)

∫ l

0
K2(x, t)u(x, t)dxdt.

It follows at once

∫ l

0
[u2(x, τ )+ a(x, 0)v2

x(x, 0)]dx

≤ |α11(0)|v2(0, 0)+ 2|α21v(0, 0)v(l, 0)| + |α22(0)|v2(l, 0)

+ 2|
∫ τ

0

∫ l

0
cuvdxdt | +

∫ τ

0

∫ l

0
|at |v2

xdxdt

+
∫ τ

0
[|α′11|v2(0, t)+ 2|α′21v(0, t)v(l, t)| + |α′22|v2(l, t)]dt

+ 2|
∫ τ

0
v(0, t)

∫ l

0
K1(x, t)u(x, t)dxdt |

+ 2|
∫ τ

0
v(l, t)

∫ l

0
K2(x, t)u(x, t)dxdt |. (7)

Under the conditions of Theorem 1, the left side of (7) is nonnegative and there
exist positive numbers a0, a1, a2, c0, k0 such that

a(x, t) ≥ a0, max
Q̄T

|c(x, t)| ≤ c0, max
Q̄T

|at (x, t)| ≤ a1,

max
ij

max[0,T ] |αij , α
′
ij | ≤ a2, max

i
max[0,T ]

∫ l

0
K2

1idx ≤ k0.

Hence, it follows from (7) by means of Cauchy and Cauchy–Bunyakovskii-
Schwartz inequalities:
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2|
∫ τ

0

∫ l

0
cuvdxdt | ≤ c0

∫ τ

0

∫ l

0
(u2 + v2)dxdt;

2|
∫ τ

0
v(0, t)

∫ l

0
K1(x, t)u(x, t)dxdt | + 2|

∫ τ

0
v(l, t)

∫ l

0
K2(x, t)u(x, t)dxdt |

≤
∫ τ

0
[v2(0, t)+ v2(l, t)]dt + 2k0

∫ τ

0

∫ l

0
u2dxdt;

|α11(0)|v2(0, 0)+ 2|α21v(0, 0)v(l, 0)| + |α22(0)|v2(l, 0)

≤ 2a2[v2(0, 0)+ v2(l, 0)];
∫ τ

0
[|α′11|v2(0, t)+ 2|α′21v(0, t)v(l, t)| + |α′22|v2(l, t)]dt

≤ 2a2

∫ τ

0
[v2(0, t)+ v2(l, t)]dt.

Thus

∫ l

0
[u2(x, τ )+ a0v

2
x(x, 0)]dx

≤ 2a2[v2(0, 0)+ v2(l, 0)] + (2a2 + 1)
∫ τ

0
[v2(0, t)+ v2(l, t)]dt

+ c0

∫ τ

0

∫ l

0
(u2 + v2)dxdt + 2k0

∫ τ

0

∫ l

0
u2dxdt + a1

∫ τ

0

∫ l

0
v2
xdxdt.

To estimate the terms containing values of v on the boundary, we use the inequalities
[21]:

v2(zi, t) ≤ 2l
∫ l

0
v2
x(x, t)dx +

2

l

∫ l

0
v2(x, t)dx, z1 = 0, z2 = l, (8)

and in the special case for n = 1 of the trace inequality [18] in the form

v2(zi, t) ≤ ε

∫ l

0
v2
x(x, t)dx + c(ε)

∫ l

0
v2(x, t)dx, z1 = 0, z2 = l (9)

and the obvious inequality

v2(x, t) ≤ τ

∫ τ

0
u2dt, (10)

which follows from the definition of v(x, t).
From (7), we get
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∫ l

0
[u2(x, τ )+ a0v

2
x(x, 0)]dx ≤ 4a2ε

∫ l

0
v2
x(x, 0)dx +M

∫ τ

0

∫ l

0
(u2 + v2

x)dxdt,

(11)
where M is a constant depending only on a0, a1, a2, c0, k0, l, T . Choose ε such that
ν = a0 − 4a2ε > 0 and carry out 4a2ε

∫ l
0 v

2
x(x, 0)dx into the left side. Then

∫ l

0
[(u2(x, τ ))+ ν(v2

x(x, 0))]dx ≤ M

∫ τ

0

∫ l

0
(u2 + v2

x)dxdt.

Introduce a function w(x, t) = ∫ t0 ux(x, η)dη. It is easy to see that

vx(x, t) = w(x, t)− w(x, τ), vx(x, 0) = −w(x, τ).

With the aid of these equalities, we obtain

∫ l

0
[u2(x, τ )+νw2(x, τ )]dx ≤ 2M

∫ τ

0

∫ l

0
[u2+w2]dxdt+2Mτ

∫ l

0
w2(x, τ )dxdt.

As τ is arbitrary, we choose it so that ν−2Mτ > 0. To be specific, let ν−2Mτ ≥ ν
2 .

Then for all τ ∈ [0, ν
4M ]

m0

∫ l

0
[u2(x, τ )+ w2(x, τ )]dx ≤ 2M

∫ τ

0

∫ l

0
(u2 + w2)dxdt,

where m0 = min{1, ν/2}. From Gronwall’s lemma, it follows immediately that
∫ l

0 [u2(x, τ ) + w2(x, τ )]dx = 0. Hence u(x, τ ) = 0 ∀τ ∈ [0, ν
4M ]. Considering

now t = ν
4M as a line where initial data is given, we get u(x, τ ) = 0 for [ ν

4M , ν
2M ].

Continuing this process, we convince ourselves that u(x, t) = 0 in QT . This means
that there cannot be more than one weak solution to the Problem 1.

Existence We prove the solution existence in several steps. First, we construct
approximations of the weak solution by the Faedo-Galerkin method. Second, we
obtain a priori estimates to guarantee weak convergence of approximations. Finally,
we show that the limit of approximations is the required solution.

Step 1 Let wk(x) ∈ C2[0, l] be a basis in W 1
2 (0, l). We define the approximations

as follows

um(x, t) =
m∑

k=1

ck(t)wk(x), (12)

and shall seek ck(t) from relations
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∫ l

0
(umttwj + aumx w

′
j + cumwj )dx + wj(l)

∫ l

0
K1(x, t)u

m(x, t)dx

− wj(0)
∫ l

0
K1(x, t)u

m(x, t)dx + wj(l)[α21u
m(0, t)+ α22u

m(l, t)]

− wj(0)[α11u
m(0, t)+ α12u

m(l, t)] =
∫ l

0
fwjdx. (13)

For every m, (13) represents a system of second-order ODEs with respect to ck(t).

Indeed, by substituting (12), we can rewrite (13) in the form

m∑

k=1

Akj c
′′
k (t)+ Bkj ck(t) = Fj (t), (14)

where

Akj =
∫ l

0
wkwjdx,

Bkj (t) =
∫ l

0
(aw′kw′j + cwkwj )dx + wj(l)

∫ l

0
wkK1dx − wj(0)

∫ l

0
wkK1dx

+ wj(l)[α21wk(0)+ α22wk(l)] − wj(0)[α11wk(0)+ α12wk(l)],

Fj (t) =
∫ l

0
f (x, t)wj (x)dx.

Adding the initial data, ck(0) = c′k(0) = 0, we obtain the Cauchy problem. As
wk(x) are linearly independent, the system (14) is solvable with respect to c′′k (t). The
conditions of Theorem 1 imply that the coefficients of (14) are bounded and Fj ∈
L1(0, T ). These facts guarantee the solvability of the Cauchy problem. Moreover,
c′′k ∈ L1(0, T ). Thus, the approximation {um(x, t)} is constructed.

Step 2 To derive a priori estimate, we multiply (13) by c′j (t), sum with respect to
j = 1, . . . , m, integrate over (0, τ ) and obtain

∫ τ

0

∫ l

0
(umtt u

m
t + aumx u

m
xt + cumumt )dxdt +

∫ τ

0
umt (l, t)

∫ l

0
K2(x, t)u

m(x, t)dxdt

−
∫ τ

0
umt (0, t)

∫ l

0
K1(x, t)u

m(x, t)dxdt

+
∫ τ

0
umt (l, t)[α21u

m(0, t)+ α22u
m(l, t)]dt

−
∫ τ

0
umt (0, t)[α11u

m(0, t)+ α12u
m(l, t)]dt =

∫ τ

0

∫ l

0
f umt dxdt.
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Integrating by parts and taking into account um(x, 0) = umt (x, 0) = 0 and α12 +
α21 = 0, we get

1

2

∫ l

0
[(umt (x, τ ))2 + a(umx (x, τ ))

2]dx +
∫ τ

0

∫ l

0
cumumt dxdt

− 1

2

∫ τ

0

∫ l

0
ax(u

m
x )

2dxdt

−
∫ τ

0
um(l, t)

∫ l

0
K2(x, t)u

m
t (x, t)dxdt

−
∫ τ

0
um(l, t)

∫ l

0
K2t (x, t)u

m(x, t)dxdt

+ um(l, τ )

∫ l

0
K2(x, τ )u

m(x, τ )dx +
∫ τ

0
um(0, t)

∫ l

0
K1(x, t)u

m
t (x, t)dxdt

+
∫ τ

0
um(0, t)

∫ l

0
K1t (x, t)u

m(x, t)dxdt − um(0, τ )
∫ l

0
K1(x, τ )u

m(x, τ )dx

− 1

2

∫ τ

0
[α′22(u

m(l, t))2 + α′11(u
m(0, t))2 + 2α′12u

m(0, t)um(l, t)]dt

+ 1

2
α22(τ )(u

m(l, τ ))2 − α12(τ )u
m(0, τ )um(l, τ )− 1

2
α11(τ )(u

m(0, τ ))2

=
∫ τ

0

∫ l

0
f umt dxdt.

It follows from this equality, the inequality

∫ l

0
[(umt (x, τ ))2 + a(umx (x, τ ))

2]dx ≤
∣
∣
∣

∫ τ

0

∫ l

0
ax(u

m
x )

2dxdt

− 2
∫ τ

0

∫ l

0
cumumt dxdt

+ 2
∫ τ

0
um(l, t)

∫ l

0
K2u

m
t dxdt + 2

∫ τ

0
um(l, t)

∫ l

0
K2t u

mdxdt

− 2um(l, τ )
∫ l

0
K2u

m(x, τ )dx

− 2
∫ τ

0
um(0, t)

∫ l

0
K1u

m
t dxdt − 2

∫ τ

0
um(0, t)

∫ l

0
K1t u

mdxdt

+ 2um(0, τ )
∫ l

0
K1u

m(x, τ )dx
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+
∫ τ

0
α′22(u

m(l, t))2dt −
∫ τ

0
α′11(u

m(0, t))2dt

− 2
∫ τ

0
α′12u

m(0, t)um(l, t)dt

+ α22(τ )(u
m(l, τ ))2 − 2α12(τ )u

m(0, τ )um(l, τ )

− α11(τ )(u
m(0, τ ))2

− 2
∫ τ

0

∫ l

0
f (x, t)umt (x, t)dxdt

∣
∣
∣. (15)

To estimate the right side of (15), we follow in essence the procedure demonstrated
in the subsection uniqueness. Aside from basic inequalities used there, we also need
the Cauchy inequality “with ε” :

2|um(0, τ )
∫ l

0
K1u

m(x, τ )dx| + 2|um(l, τ )
∫ l

0
K2u

m(x, τ )dx|

≤ ε[(um(0, τ ))2 + (um(l, τ ))2] + 2k0c(ε)

∫ l

0
(um(x, τ ))2dx.

The conditions of Theorem 1, inequalities (8), (9), and (10) and ε chosen with
due care enable us to obtain the following inequality

∫ l

0
[(um(x, τ ))2 + (umt (x, τ ))

2 + (umx (x, τ ))
2]dx

≤ M

∫ τ

0

∫ l

0
[(um)2 + (umt )

2 + (umx )
2]dxdt +N

∫ l

0
f 2(x, t)dxdt (16)

where M and N do not depend on m. An application to this inequality of Gronwall’s
lemma leads to

||um||W 1
2 (QT )

≤ P (17)

where P = eMT T ||f ||2L2(QT )
.

Step 3 As W 1
2 (QT ) is Hilbert space, then the estimate (17) enables us to state that

we can extract from approximations {um(x, t)} a subsequence weakly convergent in
W 1

2 (QT ). It remains to show that the limit of this subsequence is the required weak
solution to the Problem 1. To do this, multiply (13) by dj (t) ∈ W 1

2 (0, T ), dj (T ) =
0, sum with respect to j = 1, . . . , m and integrate over (0, T ). After some
manipulations, we get
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∫ T

0

∫ l

0
(−unt ηt + aunxηx + cunη)dxdt −

∫ T

0
η(0, t)[α11u

n(0, t)+ α12u
n(l, t)]dt

+
∫ T

0
η(l, t)[α21u

n(0, t)+ α22u
n(l, t)]dt

−
∫ T

0
η(0, t)

∫ l

0
K1(x, t)u

n(x, t)dxdt

+
∫ T

0
η(l, t)

∫ l

0
K2(x, t)u

n(x, t)dxdt =
∫ T

0

∫ l

0
f ηdxdt (18)

where we denote η(x, t) =
m∑

j=1
dj (t)wj (x).

Passing to the limit in (18), we get (5) for v(x, t) = η(x, t) and limit function

u(x, t). Since the union of all functions of the form
m∑

j=1
dj (t)wj (x) is dense in

◦
W 1

2

(QT ), then the limit function u(x, t) is the required weak solution to the Problem 1.
This completes the proof. �
Remark 1 The special case of this problem with αij = 0 in (4) is considered in
[21].

2.2 A Problem with First-Kind Integral Conditions

Let now ∀t ∈ [0, T ], ai = bi = ci = di = 0, i = 0, 1. Then (3) are first-kind
integral conditions as both of them include only integral terms. We will assume that
ki depend only on x to simplify calculations.

Problem 2 Find a solution u(x, t) to the Eq. (1) satisfying the initial data (2) and
the nonlocal conditions

∫ l

0
ki(x)u(x, t)dx = 0, i = 1, 2. (19)

Such conditions like (19) cause a considerable difficulties when we try to show
that the problem (1), (3), and (19) is solvable. In [21], a method has been developed
for overcoming this difficulty. The essential idea of this technique is as follows.
We transform the first-kind integral conditions to the second-kind ones. To do this,
we suppose that u(x, t) is a solution to (1), (2) and (19), multiply (1) by ki(x) and
integrate over (0, l) and get

ki(0)a(0, t)ux(0, t)− ki(l)a(l, t)ux(l, t)

− kix(0)a(0, t)u(0, t)+ kix(l)a(l, t)u(l, t)
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−
l∫

0

[(kix(x)a(x, t))x − ki(x)c(x, t)]u(x, t)dx

=
l∫

0

ki(x)f (x, t)dx. (20)

Denote

a1(t) = k1(0)a(0, t), b1(t) = −k1(l)a(l, t),

a0(t) = −k1x(0)a(0, t), b0(t) = k1x(l)a(l, t),

c1(t) = k2(0)a(0, t), d1(t) = −k2(l)a(l, t),

c0(t) = −k2x(0)a(0, t), d0(t) = k2x(l)a(l, t),

hi(x, t) = (kix(x)a(x, t))x − ki(x, t)c(x, t),

gi(t) =
∫ l

0
ki(x)f (x, t)dx

and write now (20) (omitting the arguments of coefficients) as follows

a1ux(0, t)+ b1ux(l, t)+ a0u(0, t)+ b0u(l, t)−
l∫

0
h1udx = g1(t),

c1ux(0, t)+ d1ux(l, t)+ c0u(0, t)+ d0u(l, t)−
l∫

0
h2udx = g2(t).

(21)

Thus we arrive at second-kind integral conditions.
The reverse is also true. Indeed, let u(x, t) be a solution of (1) and (21) holds.

Then (20) holds too. Multiplying (1) by ki(x), integrating over (0, l) and taking into
account (20), we easily arrive to

d2

dt2

∫ l

0
ki(x)u(x, t)dx = 0.

Since from (2)
∫ l

0 ki(x)u(x, 0)dx = 0 and d
dt

(∫ l
0 ki(x)u(x, t)dx

) ∣
∣
t=0 = 0, it

follows that
∫ l

0 ki(x)u(x, t)dx = 0 as a solution to Cauchy problem. Thus the
nonlocal conditions (19) and (21) are equivalent.

The form (21) of nonlocal conditions enables us to introduce a notation of a weak
solution as in subsection 2.1 and use all results of 2.1. Due to equivalence of (19)
and (21), the solution of the problem with second-kind integral conditions (21) is
the solution to the Problem 2.
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Theorem 2 Let

(i) a, at ∈ C(Q̄T ), c ∈ C(Q̄T ), a(x, t) > 0, ∀(x, t) ∈ Q̄T ,

(ii) ki, kit , kitt ∈ C(Q̄T ), f ∈ L2(QT ), k1(0, t)k2(l, t)− k1(l, t)k2(0, t) �= 0,
(iii) αij ∈ C1([0, T ]), α12 + α21 = 0.

Then there exists a unique weak solution to the problem (1), (2), and (19).

Note that under the conditions of Theorem 2, coefficients in (21) satisfy

Δ = a1d1 − b1c1 �= 0.

Indeed,

Δ = a1d1 − b1c1

= k1(0)a(0, t)k2(l)a(l, t)− k1(l)a(l, t)k2(0)a(0, t)

= a(0, t)a(l, t)[k1(0)k2(l)− k1(l)k2(0)] �= 0,

and we can use all results of 2.1.

3 A Problem with Dynamical Nonlocal Conditions

Let now second-kind nonlocal conditions contain derivatives with respect to t. Such
conditions are called dynamical ones. Dynamical boundary conditions arise in many
applications [8, 17, 28].

Problem 3 Find a solution of Eq. (1), satisfying the initial conditions (2) and the
following nonlocal conditions

a(0, t)ux(0, t) = α11u(0, t)+ α12u(l, t)+ β11utt (0, t)+ β12utt (l, t)

+
l∫

0
H1(x, t)u(x, t)dx,

a(l, t)ux(l, t) = α21u(0, t)+ α22u(l, t)+ β21utt (0, t)+ β22utt (l, t)

+
l∫

0
H2(x, t)u(x, t)dx.

(22)

Denote

Γ0 = {(x, t) : x = 0, t ∈ [0, T ]},
Γl = {(x, t) : x = l, t ∈ [0, T ]}, Γ = Γ0 ∪ Γl,
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W(QT ) = {u : u ∈ W 1
2 (QT ), ut ∈ L2(Γ )},

Ŵ (QT ) = {v(x, t) : v(x, t) ∈ W(QT ), v(x, T ) = 0}.

Using the similar approach as in 2.1, we get the equality

T∫

0

l∫

0

(−utvt + auxvx + cuv)dxdt +
T∫

0

v(0, t)[α11u(0, t)+ α12u(l, t)]dt

+
T∫

0

v(0, t)

l∫

0

H1(x, t)u(x, t)dxdt −
T∫

0

vt (0, t)[β11ut (0, t)+ β12ut (l, t)]dt

−
T∫

0

v(l, t)[α21u(0, t)+ α22u(l, t)]dt −
T∫

0

v(l, t)

l∫

0

H2(x, t)u(x, t)dxdt

+
T∫

0

vt (l, t)[β21ut (0, t)+ β22ut (l, t)]dt =
T∫

0

l∫

0

f (x, t)v(x, t)dxdt. (23)

Definition 3 A function u(x, t) ∈ W(QT ) is said to be a weak solution to the
Problem 3 if u(x, 0) = 0 and for every v ∈ Ŵ (QT ) (23) holds.

Theorem 3 Suppose

(i) a ∈ C(Q̄T ), at ∈ C(Q̄T ), a(x, t) > 0, c ∈ C(Q̄T ), ∀(x, t) ∈ Q̄T ,

(ii) Hi ∈ C(Q̄T ), Si ∈ C[0, l], f ∈ L2(QT ), ft ∈ L2(QT ),

(iii) βij ∈ C1[0, T ], β11(t) > 0, β22(t) < 0, β11 − |β21| > 0, −β22 −
|β21| > 0,

(iv) αij ∈ C1[0, T ], α12 + α21 = 0, β12 + β21 = 0.

Then there exists a unique weak solution to Problem 3.

Proof Uniqueness. Suppose that u1 and u2 are two different solutions of Problem 3.
Then u = u1 − u2 satisfies initial condition u(x, 0) = 0 and the identity

T∫

0

l∫

0

(−utvt + auxvx + cuv)dxdt +
T∫

0

v(0, t)[α11u(0, t)+ α12u(l, t)]dt

−
T∫

0

vt (0, t)[β11ut (0, t)+ β12ut (l, t)]dt +
T∫

0

v(0, t)

l∫

0

H1udxdt
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−
T∫

0

v(l, t)[α21u(0, t)+ α22u(l, t)]dt

+
T∫

0

vt (l, t)[β21ut (0, t)+ β22ut (l, t)]dt −
T∫

0

v(l, t)

l∫

0

H2udxdt = 0.

(24)

Set in (24)

v(x, t) =
⎧
⎨

⎩

t∫

τ

u(x, η)dη, 0 ≤ t ≤ τ,

0, τ ≤ t ≤ T ,

τ ∈ [0, T ] is arbitrary. After elementary manipulations and taking into account (iv)
of Theorem 3, we get

l∫

0

[u2(x, τ )+ a(x, 0)v2
x(x, 0)]dx = −

τ∫

0

l∫

0

atv
2
xdxdt

+
τ∫

0

[α′22v
2(l, t)+ 2α′21v(0, t)v(l, t)− α′11v

2(0, t)]dt

+ α22(0)v
2(l, 0)+ 2α21v(0, 0)v(l, 0)− α11(0)v

2(0, 0)

+ β22u
2(l, τ )− 2β21u(0, τ )u(l, τ )− β11u

2(0, τ )

+
τ∫

0

v(0, t)

l∫

0

H1udxdt −
τ∫

0

v(l, t)

l∫

0

H2udxdt +
τ∫

0

l∫

0

cvvtdxdt. (25)

Under the assumptions of Theorem 3, it follows that there exist positive numbers
c0, h0, a1, a2, b1 such that

max
Q̄T

|c(x, t)| ≤ c0, max[0,T ] |αij , α
′
ij | ≤ a2, max[0,T ] |βij , β

′
ij | ≤ b1, i, j = 1, 2,

max
Q̄T

|at (x, t)| ≤ a1, max[0,T ]

l∫

0

H 2
i (x, t)dx ≤ h0.

Using Cauchy, Cauchy–Bunyakovskii-Schwartz inequalities, trace inequalities (8),
(9), and (10), we get
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l∫

0

[u2(x, τ )+ a(x, 0)v2
x(x, 0)]dx ≤ A1

τ∫

0

l∫

0

v2
xdxdt +A2

τ∫

0

l∫

0

u2dxdt, (26)

where Ai depends only on c0, h0, a1, a2, b1.

As in 2.1 we introduce a functionw(x, t) =
t∫

0
ux(x, η)dη and as above we obtain

for such τ that a0 − 2A1τ > 0

m0

l∫

0

[u2(x, τ )+ w2(x, τ )]dx ≤ A3

τ∫

0

l∫

0

[u2(x, t)+ w2(x, t)]dxdt,

where m0 = min{1, a0
2 }, A3 = max{2A1, A2}. Now from Gronwall’s lemma

u(x, t) = 0, t ∈ [0, a0
4A1

]. Proceeding as in 2.1, we can see that u(x, t) =
0 ∀(x, t) ∈ QT .

Existence We work in steps as in the proof of Theorem 1.

Step 1 Let wk(x) ∈ C2[0, l] be the basis in W 1
2 (0, l). We seek approximations

um(x, t) =
m∑

k=1

ck(t)wk(x) (27)

from

l∫

0

(umttwj + aumx w
′
j + cumwj )dx

+ wk(0)[α11u
m(0, t)+ α12u

m(l, t)

+ β11u
m
tt (0, t)+ β12u

m(l, t)+
l∫

0

H1(x, t)u(x, t)dx]

− wk(l)[α21u
m(0, t)+ α22u

m(l, t)

+ β21u
m
tt (0, t)+ β22u

m(l, t)+
l∫

0

H2(x, t)u(x, t)dx]

=
l∫

0

f (x, t)wj (x)dx. (28)
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With initial conditions ck(0) = 0, c′k(0) = 0, (28) becomes the Cauchy problem
with respect to ck(t). We can write (28) in the form

m∑

k=1

Akj c
′′
k (t)+

m∑

k=1

Bkj (t)ck(t) = fj (t),

where

Akj =
l∫

0

wk(x)wj (x)dx

+ β11wk(0)wj (0)+ β12wk(l)wj (0)−β21wk(0)wj (l)− β22wk(l)wj (l),

Bkj (t) =
l∫

0

(a(x, t)w′k(x)w′j (x)+ c(x, t)wk(x)wj (x))dx

+ α11wk(0)wj (0)+ α12wk(l)wj (0)−α21wk(0)wj (l)−α22wk(0)wj (0),

fj (t) =
l∫

0

f (x, t)wj (x)dx.

To show that the Cauchy problem has a solution, we consider a quadratic form

q =
m∑

k,l=1
Aklξkξl, where ξi are coefficients of z =

m∑

i=1
ξiwi(x). Substituting Akj ,

we get

q =
l∫

0

|z(x)|2dx + β11|z(0)|2 + 2β12|z(0)||z(l)| − β22|z(l)|2.

It is easy to see that under the condition (iii) of Theorem 3 q ≥ 0, moreover,
q = 0 only if z = 0. In turn, z = 0 if ξi = 0 ∀i = 1, . . . , m only. Thus, q
is positive definite. Therefore, the matrix (Akj ) is as well positive definite. Hence,
(28) is solvable with respect to c′′k (t). It is clear now that under the conditions of
Theorem 3, the Cauchy problem for (28) has a solution and its approximation is
constructed.

Step 2 To derive the estimate, we multiply (28) by c′j (t), sum over j = 1, . . . , m
and integrate over (0, τ ), where τ ∈ [0, T ] is arbitrary:

τ∫

0

l∫

0

(umtt u
m
t + aumx u

m
xt + cumumt )dxdt
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+
τ∫

0

umt (0, t)[α11u
m(0, t)+ α12u

m(l, t)+ β11u
m
tt (0, t)+ β12u

m
tt (l, t)]dt

+
τ∫

0

umt (0, t)

l∫

0

H1(x, t)u
m(x, t)dxdt

−
τ∫

0

umt (l, t)[α21u
m(0, t)+ α22u

m(l, t)+ β21u
m
tt (0, t)+ β22u

m
tt (l, t)]dt

τ∫

0

umt (l, t)

l∫

0

H2(x, t)u
m(x, t)dxdt =

τ∫

0

l∫

0

f (x, t)umt (x, t)dxdt. (29)

Integration by parts and condition (iii) lead to

∫ l

0
[(umt (x, τ ))2 + a(x)(umx (x, τ ))

2]dx + β11(u
m
t (0, τ ))

2 − β22(u
m
t (l, τ ))

2

=
∫ τ

0

∫ l

0
at (u

m
x )

2dxdt − 2
∫ τ

0

∫ l

0
cumumt dxdt − 2β21u

m
t (0, τ )u

m
t (l, τ )

− [α11(u
m(0, τ ))2 + 2α21u

m(0, τ )um(l, τ )− α22(u
m(l, τ ))2]

+ 2
∫ τ

0
um(0, t)

∫ l

0
H1(x, t)u

m
t (x, t)dxdt

+ 2
∫ τ

0
um(0, t)

∫ l

0
H1t (x, t)u

m(x, t)dxdt

− 2
∫ τ

0
um(l, t)

∫ l

0
H2(x, t)u

m
t (x, t)dxdt

− 2
∫ τ

0
um(l, t)

∫ l

0
H2t (x, t)u

m
t (x, t)dxdt

− 2um(0, τ )
∫ l

0
H1(x, τ )u

m(x, τ )+ 2um(l, τ )
∫ l

0
H2(x, τ )u

m(x, τ )dx

+
∫ τ

0
[α′11(u

m(0, t))2 + 2α′21u
m(0, t)um(l, t)− α′22(u

m(l, t))2]dt

+
∫ τ

0
[β ′11(u

m
t (0, t))

2 + 2β ′21u
m
t (0, t)u

m
t (l, t)− β ′22(u

m
t (l, t))

2]dt

+ 2
∫ τ

0

∫ l

0
f umt dxdt. (30)
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As β11 > 0, β22 < 0 due to (iii) the left side of (30) is positive. To estimate the
right-hand side of (30), we use in main the same technique as in subsection unique-
ness. Since from (iii) 2|β21u

m
t (0, τ )u

m
t (l, τ )| ≤ |β21((u

m
t (0, τ ))

2+(umt (0, τ ))2) and
γ1 = β11 − |β21| > 0, γ2 = β22 − |β21| > 0 then

∫ l

0
[(umt (x, τ ))2 + a(x)(umx (x, τ ))

2]dx + γ1(u
m
t (0, τ ))

2 + γ2(u
m
t (l, τ ))

2

≤
∫ τ

0

∫ l

0
|at |(umx )2dxdt + 2|

∫ τ

0

∫ l

0
cumumt dxdt |

+ |α11(u
m(0, τ ))2 + 2α21u

m(0, τ )um(l, τ )− α22(u
m(l, τ ))2|

+ 2|
∫ τ

0
um(0, t)

∫ l

0
H1(x, t)u

m
t (x, t)dxdt |

+ 2|
∫ τ

0
um(0, t)

∫ l

0
H1t (x, t)u

m(x, t)dxdt |

+ 2|
∫ τ

0
um(l, t)

∫ l

0
H2(x, t)u

m
t (x, t)dxdt |

+ 2|
∫ τ

0
um(l, t)

∫ l

0
H2t (x, t)u

m
t (x, t)dxdt |

2|um(0, τ )
∫ l

0
H1(x, τ )u

m(x, τ )| + 2|um(l, τ )
∫ l

0
H2(x, τ )u

m(x, τ )dx|

+
∫ τ

0
|α′11(u

m(0, t))2 + 2α′21u
m(0, t)um(l, t)− α′22(u

m(l, t))2|dt

+
∫ τ

0
|β ′11(u

m
t (0, t))

2 + 2β ′21u
m
t (0, t)u

m
t (l, t)

− β ′22(u
m
t (l, t))

2|dt + 2|
∫ τ

0

∫ l

0
f umt dxdt |.

Firstly, we use trace inequalities (8) to estimate the terms containing boundary
values of um under integrals. Then we consider

|α11(u
m(0, τ ))2 + 2α21u

m(0, τ )um(l, τ )− α22(u
m(l, τ ))2|

and use (9):

|α11(u
m(0, τ ))2 + 2α21u

m(0, τ )um(l, τ )− α22(u
m(l, τ ))2|

≤ 2a1[(um(0, τ ))2 + (um(l, τ ))2]
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≤ 8a1ε

∫ l

0
(umx (x, t))

2dx + c(ε)

∫ l

0
um(x, t)dx.

Choosing ε such that ν = a0 − 8a1ε > 0, we can carry out 8a1ε
∫ l

0 (u
m
x (x, t))

2dx

into the left side. Using Cauchy and Cauchy–Bunyakovskii-Schwartz inequalities
and (10) to estimate the rest terms, we obtain

∫ l

0
[(um(x, τ ))2 + (umt (x, τ ))

2 + ν(umx (x, τ ))
2]dx

+ γ1(u
m
t (0, τ ))

2 + γ2(u
m
t (l, τ ))

2

≤ M1

∫ τ

0

∫ l

0
((um)2 + (umt )

2 + (umx )
2)dxdt

+M2

∫ τ

0
(umt (0, t))

2dt +M2

∫ τ

0
(umt (l, t))

2dt

+N

∫ τ

0

∫ l

0
f 2dxdt, (31)

where γi,Mi, ν,N do not depend on m. Denote m0 = min{1, ν}, γ =
max{γ 1, γ2},M = max{M1,M2}. Now from Gronwall’s lemma

∫ l

0
[(um(x, τ ))2 + (umt (x, τ ))

2 + (umx (x, τ ))
2]dx + γ [(umt (0, τ ))2 + (umt (l, τ ))

2]

≤ NeMT

∫ τ

0

∫ l

0
f 2dxdt.

We integrate this inequality over (0, T ) to obtain

||um||W 1
2 (QT )

+ ||umt ||L2(Γ ) ≤ P. (32)

Thus, the approximation {um(x, t)} is bounded in W(QT ) and there exists a sub-
sequence {uμ(x, t)} which converges weakly to a function u ∈ W(QT ).

Step 3 The result of Step 2 enables us to use the standard technique [18, pp. 214–
215] to show that the limit of {uμ} is the required weak solution to the Problem 3.
The proof is completed. �

In concluding, only some of the results regarding the solvability of nonlocal
problems with integral conditions have been included here. One can find more
information in the papers (by no means not an exhaustive list) [2–5, 9–12, 15, 16,
19, 20, 22–27], and the references therein.
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On the Solution of Boundary Value
Problems for Loaded Ordinary
Differential Equations

E. Providas and I. N. Parasidis

Abstract This chapter is devoted to the solution of the so-called loaded ordinary
differential equations which arise in applications in sciences and engineering. We
propose a direct operator method for examining existence and uniqueness and
constructing the solution in closed form to a class of boundary value problems
for loaded nth-order ordinary differential equations with multipoint and integral
boundary conditions.

Mathematics Subject Classification: 34B10, 34L40

1 Introduction

The study of general differential boundary value problems has a long history and
goes back to the early part of the twentieth century. A class of such problems are
those involving the differential-boundary equations or loaded differential equations.
The term differential-boundary equations is used by Krall; see, for example, his
survey paper [13] where the development of this kind of problems is described
from the beginning of the twentieth century until 1975. In 1971, Iskenderov
published two articles [10, 11] referring to this type of problems by the name
loaded differential equations (as it has been translated from Russian to English
language). Specifically, Iskenderov states that a loaded differential equation is a
differential equation which also includes the values of the desired function and
its derivatives, taken at fixed points of the domain. Nakhushev in a series of
papers investigates systematically boundary value problems for loaded functional,
differential and integral equations, see [17, 19]. Moreover, he and his co-authors
contemplate applications in engineering and sciences such as in heat transfer [6],
ground fluid mechanics [18, 21], biology [20] and physics [22], where physical
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phenomena and processes are modelled by loaded equations. Further applications
are reported in [4, 8, 32] and [33]. For some very recent results on various aspects
on the subject, one can look at, for example, [5, 12, 14, 29] and [30].

Loaded ordinary differential equations which model heat transfer phenomena
and solved by the finite difference method are considered in [2]. Systems of loaded
first-order ordinary differential equations and their solution by numerical methods
are studied in [1, 3, 7], and the references therein. Exact explicit solutions to
loaded ordinary differential equations are sporadically referred to the literature;
see two examples of loaded first-order differential equations in [9] and [23] and
a loaded second-order boundary value problem in [18]. Closed-form solutions to
loaded ordinary linear and nonlinear difference equations are given in [26] and
[27], respectively. Characteristic examples of general loaded even-order ordinary
differential operators are presented in the works [15] and [16] where their spectral
properties are investigated.

The aim of this study is to develop a method for establishing existence and
uniqueness solvability criteria and obtaining the solution in closed form of boundary
value problems for a loaded nth-order ordinary differential equation coupled with
multipoint and integral boundary conditions. We consider the linear loaded nth-
order ordinary differential equation of the most general type,

a0(x)u
(n)(x)+ a1(x)u

(n−1)(x)+ · · · + an(x)u(x)

−
m1∑

s=1

n∑

k=0

gsk(x)u
(k)(x̌s) = f (x), (1)

for x ∈ (a, b), where the coefficients ak(x), k = 0, . . . n, the functions gsk(x), s =
1, . . . , m1, k = 0, . . . , n, and the nonhomogeneous term f (x) are continuous
functions on [a, b], and the leading coefficient a0(x) does not vanish at any point
of that interval. The fixed points a ≤ x̌1 < x̌2 < · · · < x̌m1 ≤ b designate the
loading points. Equation (1) is subjected to the following nonlocal point and integral
boundary conditions,

l1∑

j=1

n−1∑

k=0

μijku
(k)(x̄j )+

n−1∑

k=0

b∫

a

γik(x)u
(k)(x)dx = βi, i = 1, . . . , n, (2)

where γik(x), i = 1, . . . , n, k = 0, . . . , n − 1, are continuous functions on [a, b],
μijk, j = 1, . . . , l1, k = 0, . . . , n− 1 and βi, i = 1, . . . , n, are real constants and
a ≤ x̄1 < x̄2 < · · · < x̄l1 ≤ b are fixed points where boundary conditions are
applied. The loading points x̌s , s = 1, . . . , m1, may or may not be boundary points.

The method proposed is in analogy to the approach followed in [24] and [25]
where an integro-differential operator is contemplated as a perturbation of a linear
ordinary differential operator by an integral functional. Likewise, the nonlocal
multipoint and integral boundary conditions are treated as perturbations of simpler
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conventional boundary conditions [28, 31]. Then the solution to the loaded boundary
value problem can be constructed in closed form if the exact solution of the
unperturbed boundary value problem is known.

The remainder of the chapter is organized as follows. In Sect. 2, the problem is
formulated in an operator form in a Banach space and the notation used is explained.
The main results including two key theorems are presented in Sect. 3. In Sect. 4,
selected examples are solved to demonstrate the implementation and efficiency of
the method suggested. Some conclusions are drawn in Sect. 5.

2 Formulation of the Problem

Let X, Y be complex Banach spaces and A : X → Y a linear ordinary differential
operator of order n defined by

Au = a0(x)u
(n)(x)+ a1(x)u

(n−1)(x)+ · · · + an(x)u(x). (3)

Usually, X = C[a, b], or X = Lp(a, b), p ≥ 1, and X = Y . The coefficients
ak(x), k = 0, . . . , n are continuous functions on [a, b] and the leading coefficient
a0(x) does not vanish at any point of that interval. Let D(A) and R(A) indicate the

domain and the range of A, respectively. We denote by Xn
A =

(
D(A), ‖ · ‖Xn

A

)
the

Banach space of n times differentiable functions with the norm

‖u(x)‖Xn
A
=

n∑

i=0

‖u(i)(x)‖X. (4)

Let gsk(x) ∈ Y, s = 1, . . . , m1, k = 0, . . . , n. We combine like terms and write
the loading summands in (1) in vector form as

g6(u) =
m∑

i=1

gi6i(u) =
m1∑

s=1

n∑

k=0

gsk(x)u
(k)(x̌s), (5)

where m ≤ m1 ∗ (n + 1) and the m elements of the vector g = (g1, . . . , gm) =
(g1(x), . . . , gm(x)), gi ∈ Y , are linearly independent; the m components of the
vector 6 = col(61, . . . , 6m) are linear functionals, 6i ∈ [Xn

A]∗ and each 6i(u)

may contain the values of the function u(x) and its up to nth-order derivatives at the
m1 fixed and ordered loading points a ≤ x̌1 < x̌2 < · · · < x̌m1 ≤ b. By means
of (3) and (5), Eq. (1) is written as

Au− g6(u) = f, (6)

where f = f (x) ∈ Y.
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Likewise, the boundary conditions (2) may be recast meaningfully in terms of
matrices as

M�(u)+ N#(u) = b, (7)

where the n components of the vector � = col(�1, . . . , �n) and the l components
of the vector # = col(#1, . . . , #l), l ≤ (l1 + 1) ∗ n, are linear functionals,
�1, . . . , �n,#1, . . . , #l ∈ [Xn−1

A ]∗, M and N are respectively n × n and n × l

constant matrices and the constant vector b = col(β1, . . . , βn). The functionals
�i, i = 1, . . . , n, are chosen such that to formulate an initial or boundary value
problem

Au = f, �(u) = 0, (8)

which can be solved uniquely for any f ∈ Y . The matrix M may be the identity
matrix, any other constant matrix, or even the zero matrix; see the example problems
in Sect. 4.

As a consequence, we define the correct operator

Âu = Au,

D(Â) = {u : u ∈ D(A), �(u) = 0} (9)

to be a restriction of A, viz. Â ⊂ A. We recall here that an operator Â : X → Y is
called correct if R(Â) = Y and the inverse operator Â−1 exists and it is continuous
on Y .

Finally, we define the operator B : X → Y by

Bu = Au− g6(u),

D(B) = {u : u ∈ D(A), M�(u)+ N#(u) = b}. (10)

Thus, the boundary value problem (1) and (2) may be written compactly in operator
form as

Bu = Au− g6(u) = f, f ∈ Y. (11)

It is understood that throughout the chapter, bold face lower case Latin letters
like z = (z1, . . . , zn) and capital Greek letters as 6 denote vectors, whereas bold
face capital Latin letters such as M symbolize matrices. We also use the notations
6(u) and 6(z) to indicate the vector and matrix,

6(u) =
⎛

⎜
⎝

61(u)
...

6m(u)

⎞

⎟
⎠ , 6(z) =

⎡

⎢
⎣

61(z1) · · · 61(zn)
...

. . .
...

6m(z1) · · · 6m(zn)

⎤

⎥
⎦ ,
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respectively. The zero vector is signified by 0, while the n× n zero and unit matrix
by 0n and In, respectively.

3 Main Results

We first consider the general boundary value problem (11) with homogeneous
boundary conditions, namely

B0u = Au− g6(u) = f, f ∈ Y, (12)

where the operator B0 : X → Y is defined by

B0u = Au− g6(u),

D(B0) = {u : u ∈ D(A), M�(u)+ N#(u) = 0}. (13)

We assume that a fundamental set of solutions z1, . . . , zn of the homogeneous
problem Au = 0 is known and that they are biorthogonal to functionals �1, . . . , �n,
i.e. �i(zj ) = δij , where δij is the Kronecker delta.

Theorem 1 Let X, Y be complex Banach spaces, A : X → Y a linear operator
defined by (3) and Â a correct restriction of A defined by (9). Further, let the
components of the vector z = (z1, . . . , zn) constitute a basis of kerA and that
�(z) = In. Then:

(i) The operator B0 defined in (13) is injective if and only if

detV = det

[
Im −6(Â−1g) −6(z)
N#(Â−1g) M+ N#(z)

]

�= 0. (14)

(ii) If (i) is true, then B0 is correct, and for all f ∈ Y , the unique solution to
boundary value problem (12) is given by

u = B−1
0 f

= Â−1f + ( Â−1g z
)
V−1

(
6(Â−1f )

−N#(Â−1f )

)

. (15)

Proof

(i) Suppose detV �= 0 and we will show that the operator B0 is injective, or
equivalently kerB0 = {0}, which is to say the complete homogeneous boundary
value problem

B0u = Au− g6(u) = 0, M�(u)+ N#(u) = 0, (16)
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possesses precisely one solution u = 0. Because z ∈ [kerA]n and �(z) = In,
and by noticing that A(u−z�(u)) = Au−Az�(u) = Au and �(u−z�(u)) =
�(u) − �(z)�(u) = 0, it follows that for every u ∈ D(B0), the element
u − z�(u) ∈ D(A) and moreover u − z�(u) ∈ D(Â). Therefore, the first
equation in (16) can be written as

B0u = A (u− z�(u))− g6(u)

= Â (u− z�(u))− g6(u) = 0. (17)

Since Â is correct, there exists the inverse Â−1. Multiplying by Â−1 both sides
of (17), we get

u− z�(u)− Â−1g6(u) = 0. (18)

Acting by the vector 6 on both sides of (18), we obtain successively

6(u)−6(z)�(u)−6(Â−1g)6(u) = 0,
[
Im −6(Â−1g)

]
6(u)−6(z)�(u) = 0. (19)

Solving (18) with respect to u and then substituting into the second equation
in (16) and taking into account that the operator Â is correct, we get

M�(u)+ N#(z)�(u)+ N#(Â−1g)6(u) = 0. (20)

Combining (19) and (20), we have the system

[
Im −6(Â−1g) −6(z)
N#(Â−1g) M+ N#(z)

](
6(u)

�(u)

)

= V
(
6(u)

�(u)

)

=
(
0
0

)

. (21)

Since detV �= 0, it is implied that 6(u) = 0, �(u) = 0 and so u = 0 by (18).
Thus, kerB0 = {0}, and hence, the operator B0 is injective.

Conversely, assume that B0 is injective and we will prove that detV �= 0,
or equivalently let detV = 0 and we will show that B0 is not injective. Since
detV = 0, there exists a vector of constants c = col(c1, c2), where c1 =
col(c11, . . . , c1m) and c2 = col(c21, . . . , c2n), such that

Vc =
[
Im −6(Â−1g) −6(z)
N#(Â−1g) M+ N#(z)

](
c1

c2

)

=
(
0
0

)

. (22)

Consider the element u0 = Â−1gc1+zc2 ∈ D(A) and observe that u0 �= 0 since
the components of the vectors g and z are linearly independent. Furthermore,
notice that
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M�(u0)+ N#(u0) = M�(Â−1gc1 + zc2)+ N#(Â−1gc1 + zc2)

= N#(Â−1g)c1 + (M+ N#(z)) c2

= 0, (23)

by Eq. (22). Thus, u0 ∈ D(B0), and therefore,

B0u0 = Au0 − g6(u0)

= A(Â−1gc1 + zc2)− g6(Â−1gc1 + zc2)

= gc1 − g6(Â−1gc1 + zc2)

= g
[(

Im −6(Â−1g)
)
c1 −6(z)c2

]

= g0 = 0, (24)

by using Eq. (22). Hence, u0 ∈ kerB0 and consequently kerB0 �= {0} which
means that the operator B0 is not injective.

(ii) Let detV �= 0. Consider the problem B0u = f , or explicitly

B0u = Au− g6(u) = f, f ∈ Y, M�(u)+ N#(u) = 0. (25)

Following the same procedure as in (i), we have

u− z�(u)− Â−1g6(u) = Â−1f, (26)

and then
[
Im −6(Â−1g)

]
6(u)−6(z)�(u) = 6(Â−1f ). (27)

Also, substitution of (26) into the second equation of (25) yields

N#(Â−1g)6(u)+ [M+ N#(z)]�(u) = −N#(Â−1f ). (28)

From (27) and (28), we obtain the system

V
(
6(u)

�(u)

)

=
(

6(Â−1f )

−N#(Â−1f )

)

, (29)

where the matrix V is as in (21). Inverting (29) and substituting into (26), we
get the solution formula (15).

Because f in (15) is arbitrary, we have R(B0) = Y . Since the operator Â−1

and the functionals 61, . . . , 6m, #1, . . . , #l involved in (15) are bounded, it
is implied that B−1

0 is bounded too. Hence, the operator B0 is correct if and
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only if (14) holds, and in this case, the unique solution to the boundary value
problem (12) is given explicitly by (15). The theorem is proved. �

Next, we look into the general boundary value problem (11) with nonhomoge-
neous boundary conditions, namely

Bu = Au− g6(u) = f,

D(B) = {u : u ∈ D(A), M�(u)+ N#(u) = b}. (30)

We prove the following theorem.

Theorem 2 Let X, Y be complex Banach spaces, A : X → Y a linear operator
defined by (3) and Â a correct restriction of A defined by (9). Further, let the
components of the vector z = (z1, . . . , zn) constitute a basis of kerA and that
�(z) = In. Then:

(i) The operator B defined in (30) is injective if and only if

detV = det

[
Im −6(Â−1g) −6(z)
N#(Â−1g) M+ N#(z)

]

�= 0. (31)

(ii) Under (i) the homogeneous in action but with nonhomogeneous conditions
boundary value problem,

Bu = 0, (32)

has a unique solution

u = ( Â−1g z
)
V−1

(
0
b

)

. (33)

(iii) Under (i) the operator B is correct and the unique solution to the complete
nonhomogeneous boundary value problem,

Bu = f, ∀f ∈ Y, (34)

is given by

u = Â−1f + ( Â−1g z
)
V−1

(
6(Â−1f )

b− N#(Â−1f )

)

. (35)

Proof

(i) Let detV �= 0 and we will prove that the operator B is injective. Suppose there
exist u1, u2 ∈ D(B) such as Bu1 = Bu2. Then
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Au1 − g6(u1) = Au2 − g6(u2), M�(u1)+ N#(u1) = b,

M�(u2)+ N#(u2) = b. (36)

By subtracting, we get

A(u1−u2)−g6(u1−u2) = 0, M�(u1−u2)+N#(u1−u2) = 0. (37)

Setting v = u1 − u2, we obtain

Av − g6(v) = 0, M�(v)+ N#(v) = 0, (38)

and hence

B0v = 0, (39)

by (13). Then from Theorem 1 follows that B0 is injective and so v = 0.
Subsequently, u1 = u2, and hence, the operator B is injective.

Conversely, we assume B is injective and we will show that detV �= 0, or
equivalently let detV = 0 and we will prove that B is not injective. Suppose
there exist u1, u2 ∈ D(B) with Bu1 = Bu2. Repeating the same sequence
of operations as above, we obtain (39). Then from Theorem 1 follows that
the operator B0 is not injective and so the complete homogeneous equation
B0v = 0 has a nonzero solution v = u1 − u2 �= 0. That is, u1 �= u2, and
therefore, the operator B is not injective.

(ii) From (32), we have

Bu = Au− g6(u) = A
(
u− Â−1g6(u)

)
= 0, M�(u)+ N#(u) = b.

(40)
We recall that the complementary solution to the homogeneous equation
Au = 0 is given by u = zc, where the components of c = col(c1, . . . , cn)

are arbitrary constants, and therefore

u− Â−1g6(u) = zc. (41)

By applying the vector 6 on the both sides of (41), we have

[
Im −6(Â−1g)

]
6(u)−6(z)c = 0. (42)

Moreover, solving (41) with respect to u and then substituting into the second
equation of (40), we acquire

M�
(
zc+ Â−1g6(u)

)
+ N#

(
zc+ Â−1g6(u)

)
= b, (43)
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or, taking into account that �(z) = In and �(Â−1g) = 0n,

N#(Â−1g)6(u)+ [M+ N#(z)] c = b. (44)

From (42) and (44), we have the system made up of the m+ n equations

[
Im −6(Â−1g) −6(z)
N#(Â−1g) M+ N#(z)

](
6(u)

c

)

= V
(
6(u)

c

)

=
(
0
b

)

. (45)

Since detV �= 0, Eq. (45) can be inverted to get

(
6(u)

c

)

= V−1
(
0
b

)

. (46)

Writing (41) in matrix form and substituting (46), we obtain the solution
formula (33).

(iii) By the principle of superposition, the solution of the completely nonhomoge-
neous boundary value problem (34) can be constructed as the sum u = v +w,
where v and w are solutions of the boundary value problems

Av − g6(v) = f, M�(v)+ N#(v) = 0, or B0v = f, (47)

and

Aw − g6(w) = 0, M�(w)+ N#(w) = b, or Bw = 0, (48)

respectively. Thus, using Theorem 1 and in particular (15) and (33), we obtain
the solution formula (35).

Finally, the correctness of the operator B follows by the same arguments
as for the operator B0 in Theorem 1, i.e. because f in (35) is arbitrary,
and hence R(B0) = Y , and the operator Â−1 as well as the functionals
61, . . . , 6m, #1, . . . , #l involved are bounded, it is implied that B−1 is
bounded too.

�

4 Applications

In this section, we implement the method presented in the previous section to solve
some characteristic model problems which have been appeared in the literature.
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4.1 Three-Point BVP with Nonhomogeneous Boundary
Conditions

We begin by letting the following boundary value problem for a second-order
integro-differential equation coupled with nonhomogeneous Dirichlet type bound-
ary conditions,

u′′(x)+ λ

∫ 1

0
u(t)dt = 0, λ = constant, 0 < x < 1,

u(0) = u0, u(1) = u1, (49)

proposed by Nakhushev [18]. If the integral term is replaced by

∫ 1

0
u(t)dt ≈ u(0)+ u(1)

6
+ 2

3
u(

1

2
),

according to Simpson’s integration rule, the problem (49) degenerates to the three-
point loaded differential boundary value problem

u′′(x)+ λ

6

[

u(0)+ 4u(
1

2
)+ u(1)

]

= 0, λ = constant, 0 < x < 1,

u(0) = u0,

u(1) = u1. (50)

To find the exact solution to problem (50), we apply Theorem 2. Thus, we take
X = Y = C[0, 1] and X2

A = C2[0, 1] and put the problem (50) in the form

Bu = Au− g6(u) = 0, D(B) = {u : u ∈ D(A), M�(u)+ N#(u) = b},
(51)

where

Au = u′′(x), D(A) = {u : u(x) ∈ X2
A},

g = (g1
) = (−λ

6

)
,

6(u) = (61(u)
) = (u(0)+ 4u( 1

2 )+ u(1)
)
,

Âu = Au, D(Â) = {u : u(x) ∈ D(A), �(u) = 0},

�(u) =
(
�1(u)

�2(u)

)

=
(
u(0)
u′(0)

)

,

#(u) = (#1(u)
) = (u(1) ) ,
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M =
[

1 0
0 0

]

,

N =
[

0
1

]

,

b =
[
u0

u1

]

. (52)

Since for obvious reasons λ �= 0, the requirement for linear independence of g1 is
fulfilled. It is easy to verify that z = (1, x) is a fundamental set of solutions to
homogeneous problem Au = 0, 61 ∈ [X2

A]∗, �1, �2, #1 ∈ [X1
A]∗ and �(z) =

I2. Also, it is known that the unique solution to the correct problem Âu = f is given
by

Â−1f =
∫ x

0
(x − t)f (t)dt, for any f ∈ Y. (53)

From (52) and (53), we construct the following matrices,

Â−1g = ( Â−1g1
) = (−λ

6

∫ x
0 (x − t)dt

) = (− λ
12x

2
)
,

6(Â−1g) = [61(Â
−1g1)

] = [−λ
6

]
,

6(z) = [61(z1) 61(z2)
] = [6 3

]
,

#(Â−1g) = [#1(Â
−1g1)

] = [− λ
12

]
,

#(z) = [#1(z1) #1(z2)
] = [1 1

]
, (54)

and then the 3× 3 matrix

V =
[
I1 −6(Â−1g) −6(z)
N#(Â−1g) M+ N#(z)

]

=
⎡

⎣
1+ λ

6 −6 −3
0 1 0
− λ

12 1 1

⎤

⎦ . (55)

Notice that detV = 12−λ
12 , and therefore, the operator B is injective if λ �= 12.

If this is the case, then the unique solution to the boundary value problem (51)
and hence to (50) follows from (33), viz.

u(x) = ( Â−1g z
)
V−1

(
0
b

)

(56)

=
(
−λx2

12 1 x

)
V−1

⎛

⎝
0
u0

u1

⎞

⎠ (57)
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= 3λ

λ− 12
(u1 + u0)x

2 − 1

λ− 12
[2λ(u1 + 2u0)+ 12(u1 − u0)] x + u0.

4.2 Two-Point BVP with Point and Integral Boundary
Conditions

Let us consider the loaded differential operator B0 generated by the differential
operation l and the boundary conditions,

lu(x) = u′′(x)+ α(x)u(0)+ β(x)u(1), x ∈ (0, 1),

u′(0) = 0,

u′(1) =
∫ 1

0
γ (x)u(x)dx, (58)

where α(x), β(x) and γ (x) are real continuous functions on [0, 1], as it is has been
presented by Lomov [15]. Here we examine the existence and uniqueness of the
solution to the problem B0u = f , for any f ∈ C[0, 1], and find it in closed form.

Since the boundary conditions are homogeneous, Theorem 1 is applicable.
Accordingly, we take X = Y = C[0, 1], X2

A = C2[0, 1] and

Au = u′′(x), D(A) = {u : u(x) ∈ X2
A},

g = (g1 g2
) = (−α(x) −β(x) ) ,

6(u) =
(
61(u)

62(u)

)

=
(
u(0)
u(1)

)

,

Âu = Au, D(Â) = {u : u(x) ∈ D(A), �(u) = 0},

�(u) =
(
�1(u)

�2(u)

)

=
(
u(0)
u′(0)

)

,

#(u) =
(
#1(u)

#2(u)

)

=
(

u′(1)
∫ 1

0 γ (x)u(x)dx

)

,

M =
[

0 1
0 0

]

,

N =
[

0 0
1 −1

]

. (59)

We assume that g1 = −α(x) and g2 = −β(x) are linearly independent; otherwise,
we have to combine them to one function and reformulate the problem. It is easy
to verify that z = (1, x) consists a fundamental set of solutions to homogeneous
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problem Au = 0, 61, 62 ∈ [X2
A]∗, �1, �2, #1, #2 ∈ [X1

A]∗ and �(z) = I2.
Lastly, notice that the unique solution to the correct problem Âu = f is given by

Â−1f =
∫ x

0
(x − t)f (t)dt, for any f ∈ Y. (60)

From (59) and (60), we construct the following matrices,

Â−1g = ( Â−1g1 Â
−1g2

)

= (− ∫ x0 (x − t)α(t)dt − ∫ x0 (x − t)β(t)dt
)
,

6(Â−1g) =
[
61(Â

−1g1) 61(Â
−1g2)

62(Â
−1g1) 62(Â

−1g2)

]

=
[

0 0
− ∫ 1

0 (1− t)α(t)dt − ∫ 1
0 (1− t)β(t)dt

]

,

6(z) =
[
61(z1) 61(z2)

62(z1) 62(z2)

]

=
[

1 0
1 1

]

,

#(Â−1g) =
[
#1(Â

−1g1) #1(Â
−1g2)

#2(Â
−1g1) #2(Â

−1g2)

]

=
[

− ∫ 1
0 α(t)dt − ∫ 1

0 β(t)dt

− ∫ 1
0 γ (x)

∫ x
0 (x − t)α(t)dtdx − ∫ 1

0 γ (x)
∫ x

0 (x − t)β(t)dtdx

]

,

#(z) =
[
#1(z1) #1(z2)

#2(z1) #2(z2)

]

=
[

0 1
∫ 1

0 γ (x)dx
∫ 1

0 xγ (x)dx

]

, (61)

and eventually the 4× 4 matrix

V =
[
I2 −6(Â−1g) −6(z)
N#(Â−1g) M+ N#(z)

]

. (62)

If detV �= 0, then the given boundary value problemB0u = f has a unique solution.
In this case, by computing the inverse matrix V−1 and the vectors

6(Â−1f ) =
(
61(Â

−1f )

62(Â
−1f )

)

=
(

0
∫ 1

0 (1− t)f (t)dt

)

,
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#(Â−1f ) =
(
#1(Â

−1f )

#2(Â
−1f )

)

=
( ∫ 1

0 f (t)dt
∫ 1

0 γ (x)
∫ x

0 (x − t)f (t)dtdx

)

, (63)

and substituting, along with (60), the vector Â−1g in (61), the vector z and the
matrix N, into (15), we obtain the unique solution in closed form of the boundary
value problem B0u = f generated by (58) for an input function f ∈ C[0, 1].

4.3 Four-Point BVP with Integral Boundary Conditions

From [15], consider the next loaded differential operator B0 generated by the
differential operation l and the homogeneous integral boundary conditions,

lu(x) = u′′(x)+ α(x)u(
1

4
)+ β(x)u(

1

2
)+ u(1), x ∈ (0, 1),

u(0) =
∫ 1

0
γ (x)u(x)dx,

u′(1) =
∫ 1

0
ν(x)u(x)dx, (64)

where α(x), β(x), γ (x) and ν(x) are real continuous functions on [0, 1]. Observe
that the differential operation l encompasses loaded terms with values of the
unknown function u(x) at two interior points and one boundary point, specifically
x̌1 = 1

4 , x̌2 = 1
2 and x̌3 = 1. We establish solvability conditions and find the unique

solution to the problem B0u = f , for any f ∈ C[0, 1].
Theorem 1 is applicable. Let X = Y = C[0, 1], X2

A = C2[0, 1] and

Au = u′′(x), D(A) = {u : u(x) ∈ X2
A},

g = (g1 g2 g3
) = (−α(x) −β(x) −1

)
,

6(u) =
⎛

⎝
61(u)

62(u)

63(u)

⎞

⎠ =
⎛

⎝
u( 1

4 )

u( 1
2 )

u(1)

⎞

⎠ ,

Âu = Au, D(Â) = {u : u(x) ∈ D(A), �(u) = 0},

�(u) =
(
�1(u)

�2(u)

)

=
(
u(0)
u′(0)

)

,

#(u) =
⎛

⎝
#1(u)

#2(u)

#3(u)

⎞

⎠ =
⎛

⎜
⎝

∫ 1
0 γ (x)u(x)dx

u′(1)
∫ 1

0 ν(x)u(x)dx

⎞

⎟
⎠ ,
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M =
[

1 0
0 0

]

,

N =
[−1 0 0

0 1 −1

]

. (65)

It is assumed that g1 = −α(x), g2 = −β(x) and g3 = −1 are linearly independent;
otherwise, we have to reduce them in number and reformulate the problem. The
vector z = (1, x) is a fundamental set of solutions to homogeneous problem Au =
0, 61, 62, 63 ∈ [X2

A]∗, �1, �2, #1, #2, #3 ∈ [X1
A]∗ and �(z) = I2. Finally,

recall that the unique solution to the correct problem Âu = f is given by

Â−1f =
∫ x

0
(x − t)f (t)dt, for any f ∈ Y. (66)

Using (65) and (66), we put up the following matrices,

Â−1g = ( Â−1g1 Â
−1g2 Â

−1g3
)

= (− ∫ x0 (x − t)α(t)dt − ∫ x0 (x − t)β(t)dt − ∫ x0 (x − t)dt
)
,

6(Â−1g) =
⎡

⎣
61(Â

−1g1) 61(Â
−1g2) 61(Â

−1g3)

62(Â
−1g1) 62(Â

−1g2) 62(Â
−1g3)

63(Â
−1g1) 63(Â

−1g2) 63(Â
−1g3)

⎤

⎦ ,

6(z) =
⎡

⎣
61(z1) 61(z2)

62(z1) 62(z2)

63(z1) 63(z2)

⎤

⎦ =
⎡

⎣
1 1

4
1 1

2
1 1

⎤

⎦ ,

#(Â−1g) =
⎡

⎣
#1(Â

−1g1) #1(Â
−1g2) #1(Â

−1g3)

#2(Â
−1g1) #2(Â

−1g2) #2(Â
−1g3)

#3(Â
−1g1) #3(Â

−1g2) #3(Â
−1g3)

⎤

⎦ ,

#(z) =
⎡

⎣
#1(z1) #1(z2)

#2(z1) #2(z2)

#3(z1) #3(z2)

⎤

⎦ =
⎡

⎢
⎣

∫ 1
0 γ (x)dx

∫ 1
0 xγ (x)dx

0 1
∫ 1

0 ν(x)dx
∫ 1

0 xν(x)dx

⎤

⎥
⎦ , (67)

and hence the 5× 5 matrix

V =
[
I3 −6(Â−1g) −6(z)
N#(Â−1g) M+ N#(z)

]

. (68)

If detV �= 0, then the given boundary value problemB0u = f has a unique solution.
To obtain the exact solution, we substitute (66), the vector Â−1g in (67), the

vector z, the inverse matrix V−1, the matrix N and the vectors
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6(Â−1f ) =
⎛

⎝
61(Â

−1f )

62(Â
−1f )

63(Â
−1f )

⎞

⎠ =
⎛

⎜
⎝

∫ 1/4
0 ( 1

4 − t)f (t)dt
∫ 1/2

0 ( 1
2 − t)f (t)dt

∫ 1
0 (1− t)f (t)dt

⎞

⎟
⎠ ,

#(Â−1f ) =
⎛

⎝
#1(Â

−1f )

#2(Â
−1f )

#3(Â
−1f )

⎞

⎠ =
⎛

⎜
⎝

∫ 1
0 γ (x)

∫ x
0 (x − t)f (t)dtdx
∫ 1

0 f (t)dt
∫ 1

0 ν(x)
∫ x

0 (x − t)f (t)dtdx

⎞

⎟
⎠ , (69)

into formula (15).

5 Conclusions

Loaded differential equations appear in sciences, engineering, applied mathematics
and economics. Recently, there has been a renewed interest in the study of their
properties and solutions.

In this chapter, we have derived ready-to-use formulae for solving exactly general
boundary value problems consisting of a loaded nth-order ordinary differential
equation and nonlocal boundary conditions which may incorporate a finite number
of interior points and integrals of the unknown function and its derivatives. The
technique presented requires the knowledge of a set of fundamental solutions of
the corresponding homogeneous differential equation and the exact solution of a
simpler auxiliary correct problem such as a Cauchy problem.

The execution and the capability of the process have been shown by considering
several boundary value problems and obtaining their solutions in closed form.
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23. Öztürk, İ., On the nonlocal boundary value problem for one order loaded differential equation,
Indian J. Pure Appl. Math., 26 (1995), 309–314.

24. I.N. Parasidis, E. Providas, Extension operator method for the exact solution of integro-
differential equations, In: Pardalos, P.M., Rassias, T.M., Eds, Contributions in Mathematics
and Engineering, Berlin: Springer, 2016. https://doi.org/10.1007/978-3-319-31317-7

25. I.N. Parasidis, E. Providas, Resolvent operators for some classes of integro-differential
equations, In: Rassias T.M., Gupta V., Eds., Mathematical Analysis, Approximation Theory
and Their Applications, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-31281-1

https://doi.org/10.1134/S0965542517120089
https://doi.org/10.1134/S0965542517120089
https://doi.org/10.1002/mma.4674
https://doi.org/10.1090/S1061-0022-2015-01348-4
https://doi.org/10.1090/S1061-0022-2015-01348-4
https://doi.org/10.12988/ijma.2014.48263
https://doi.org/10.12988/ijma.2014.48263
https://doi.org/10.1216/RMJ-1975-5-4-493
https://doi.org/10.1216/RMJ-1975-5-4-493
https://doi.org/10.13108/2017-9-2-92
https://doi.org/10.13108/2017-9-2-92
https://doi.org/10.1134/S0012266114080060
https://doi.org/10.1134/S0012266115070046
https://doi.org/10.1007/978-3-319-31317-7
https://doi.org/10.1007/978-3-319-31281-1


On the Solution of Boundary Value Problems for Loaded ODEs 659

26. I.N. Parasidis, E. Providas, Closed-form solutions for some classes of loaded difference
equations with initial and nonlocal multipoint conditions, In: Daras N., Rassias T.M., Eds.,
Modern Discrete Mathematics and Analysis, Cham: Springer, 2018. https://doi.org/10.1007/
978-3-319-74325-719

27. I.N. Parasidis, E. Providas, An exact solution method for a class of nonlinear loaded difference
equations with multipoint boundary conditions, J. Difference Equ. Appl., 24 (2018), 1649–
1663. https://doi.org/10.1080/10236198.2018.1515928

28. I.N. Parasidis E. Providas, Exact Solutions to Problems with Perturbed Differential and
Boundary Operators, In: Rassias T., Zagrebnov V., Eds., Analysis and Operator Theory.
Springer Optimization and Its Applications, vol. 146, Cham: Springer, 2019. https://doi.org/
10.1007/978-3-030-12661-2

29. K.B. Sabitov, The Dirichlet problem for higher-order partial differential equations, Math.
Notes, 97 (2015), 255–267. https://doi.org/10.1134/S0001434615010277

30. Y.K. Sabitova, Dirichlet problem for Lavrent’ev–Bitsadze equation with loaded summands,
Russ. Math. 62 (2018), 35–51. https://doi.org/10.3103/S1066369X18090050

31. M.A. Sadybekov, N.S. Imanbaev, A regular differential operator with perturbed boundary
condition, Math. Notes., 101 (2017), 878–887. https://doi.org/10.1134/S0001434617050133

32. J. Wiener, L. Debnath, Partial differential equations with piecewise constant delay, Internat. J.
Math. and Math. Scz., 14 (1991), 485–496 .

33. E.N. Zhuravleva, E.A. Karabut, Loaded complex equations in the jet collision problem, Com-
put. Math. and Math. Phys., 51 (2011), 876–894. https://doi.org/10.1134/S0965542511050186

https://doi.org/10.1007/978-3-319-74325-719
https://doi.org/10.1007/978-3-319-74325-719
https://doi.org/10.1080/10236198.2018.1515928
https://doi.org/10.1007/978-3-030-12661-2
https://doi.org/10.1007/978-3-030-12661-2
https://doi.org/10.1134/S0001434615010277
https://doi.org/10.3103/S1066369X18090050
https://doi.org/10.1134/S0001434617050133
https://doi.org/10.1134/S0965542511050186


Set-Theoretic Properties of Generalized
Topologically Open Sets in Relator
Spaces

Themistocles M. Rassias, Muwafaq M. Salih, and Árpád Száz

Abstract A family R of binary relations on a set X is called a relator on X, and the
ordered pair X(R) = (X,R) is called a relator space. Sometimes relators on X to
Y are also considered.

By using an obvious definition of the generated open sets, each generalized
topology T on X can be easily derived from the family RT of all Pervin’s preorder
relations RV =V2 ∪ (Vc×X) with V ∈ T , where V2 =V ×V and Vc=X \V .

For a subset A of the relator space X(R), we define

A◦ = intR (A) = {x ∈ X : ∃ R ∈ R : R (x) ⊆ A
}

and A− = clR (A) = intR (Ac)c. And, for instance, we also define

TR = {A ⊆ X : A ⊆ A◦
}

and FR = {A ⊆ X : Ac ∈ TR
}
.

Moreover, motivated by some basic definitions in topological spaces, for a subset
A of the relator space X(R) we shall write

(1) A ∈ T r
R if A=A−◦ ;

(2) A ∈ T
p

R if A⊆A−◦ ; (3) A ∈ T s
R if A⊆A◦− ;

(4) A ∈ T α
R if A⊆A◦−◦ ; (5) A ∈ T

β

R if A⊆A− ◦ − ;
(6) A ∈ T a

R if A⊆A−◦∩A◦−; (7) A ∈ T b
R if A⊆A−◦∪A◦−;

(8) A ∈ T
q

R if there exists V ∈ TR such that V ⊆A⊆V−;
(9) A ∈ T

ps

R if there exists V ∈ TR such that A⊆V ⊆A−;
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(10) A ∈ T
γ

R if there exists V ∈ T s
R such that A⊆V ⊆A− ;

(11) A ∈ T δ
R if there exists V ∈ T

p

R such that V ⊆A⊆V−.

And, the members of the above families will be called the topologically regular
open, preopen, semi-open, α-open, β-open, a-open, b-open, quasi-open, pseudo-
open, γ -open, and δ-open subsets of the relator space X(R), respectively.

In a former paper, we have systematically investigated the various relationships
among the families T κ

R . Moreover, we have tried to establish several illuminating
characterizations of the families T κ

R .
Here, we shall mainly be interested in the most simple set-theoretic properties

of the families T κ
R . First of all, we shall briefly investigate their dual families

F κ
R = {A ⊆ X : Ac ∈ T κ

R}.
Then, we shall establish some intrinsic characterizations of the families T κ

R .
Moreover, we shall give some necessary and sufficient conditions in order that ∅,
{x}, with x∈X, and X could be contained in T κ

R .
Finally, we shall show that, with the exception of T r

R , the families T κ
R are closed

under arbitrary unions. Moreover, for every T κ
R , we shall try to determine those

subsets A of X which satisfy A ∩ B ∈ T κ
R for all B ∈ T κ

R .
Furthermore, we shall indicate that, analogously to the family TR of all

topologically open subsets of the relator spaces X(R), the families T κ
R can also

be used to introduce some interesting classifications of relators.

1 Introduction

If T is a family of subsets of a set X such that T is closed under finite intersections
and arbitrary unions, then the family T is called a topology on X, and the ordered
pair X(T ) = (X,T ) is called a topological space.

The members of T are called the open subsets of X. While, the members of
F = {Ac : A ∈ T }, where Ac=X \A, are called the closed subsets of X. And, the
members of T ∩F are called the clopen subsets of X.

Since, ∅ = ⋃ ∅ and X = ⋂ ∅, we necessarily have {∅, X} ⊆ T ∩ F .
Therefore, if, in particular, T = {∅, X}, then T is called minimal [73] instead
of indiscrete. While, if T ∩F = {∅, X}, then T is called connected [102, p. 31].

For a subset A of X (T ), the sets A◦ = int(A) =⋃(T ∩P(A)
)
,

A− = cl(A) = int(Ac)c and A† = res(A) = cl(A) \ A

are called the interior, closure, and residue of A, respectively.
Thus, − is a Kuratowski closure operation on P(X). That is, ∅− =∅, and −

is extensive, idempotent, and additive in the sense that, for any A, B⊆X, we have
A⊆A−, A−− =A− and (A ∪ B)− =A−∪B−.
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In particular, the members of the families

D = {A ⊆ X : A− = X
}

and N = {A ⊆ X : A−◦ = ∅ }

are called the dense and rare (or nowhere dense) subsets of X(T ), respectively.
In 1922, a subset A of a closure space X(−) was called regular open by

Kuratowski [50] if A=A−◦. While, in 1937, a subset A of a topological spaceX (T )

was called regular open by Stone [77] if A=B◦ for some B ∈ F .
The importance of regular open subsets of X (T ) lies mainly in the fact that their

family forms a complete Boolean algebra [38, p. 66] with respect to the operations
defined by A

′ =A−c, A∧B=A∩B, and A∨B= (A ∪ B)
′ ′
.

In 1982, a subset A of X(T ) was called preopen by Mashhour et al. [60] if
A⊆A−◦. However, by Dontchev [28], preopen sets, under different names, were
much earlier studied by several mathematicians.

For instance, in 1964, Corson and Michael [11] called a subset A ofX(T ) locally
dense if it is a dense subset of some V ∈ T in the sense that A⊆V ⊆A−. Moreover,
they noted that this property is equivalent to the inclusion A⊆A−◦.

This equivalence was later also stated by Jun at al. [48]. Moreover, Ganster [35]
proved that A is preopen if and only if there exist V ∈ T and B ∈ D such that
A=V ∩B. (See also Dontchev [28].)

In 1963, a subset A of X (T ) was called semi-open by Levine [54] if there exists
V ∈ T such that V ⊆A⊆V−. First of all, he showed that the set A is semi-open if
and only if A⊆A◦−.

Moreover, he also proved that if A is a semi-open subset of X(T ), then there
exist V ∈ T and B ∈ N such that A=V ∪B and V ∩B=∅. In addition, he also
noted that the converse statement is false.

Levine’s statement closely resembles to a famous stability theorem of Hyers
[43] which says that an ε–approximately additive function of one Banach space
to another is the sum of an additive function and an ε–small function.

Analogously to the paper of Hyers, Levine’s paper has also attracted the interest
of a surprisingly great number of mathematicians. For instance, by the Google
Scholar, it has been cited by 3096 works.

Moreover, the above statement of Levine was improved by Dlaska et al. [27] who
observed that a subset A of X(T ) is semi-open if and only if there exist V ∈ T and
B⊆V† such that A=V ∪B.

The latter observation was later reformulated, in a more convenient form, by
Duszyńki and Noiri [29] who noted that a subset A of X(T ) is semi-open if and
only if there exists B⊆A◦ † such that A=A◦∪B.

In particular, in 1965 and 1971, Njåstad [63] and Isomichi [44], being not
aware of the paper of Levine, studied semi-open sets under the names β-sets and
subcondensed sets, respectively.

Moreover, Njåstad called a subset A of X(T ) to be an α–set if A⊆A◦−◦. And,
he proved that the set A is an α–set if and only if there exist V ∈ T and B ∈ N
such that A=V \B.
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He also proved that A is an α–set if and only if its intersection with every β–set
is a β–set. Thus, the family of all α–sets is a topology. The fact that the semi-open
sets form only a generalized topology was already noticed by Levine.

A further important property of α-sets was established by Noiri [65] and Reilly
and Wamanamurthy [71], in 1984 and 1985, respectively, who proved that a set is
α–open if and only if it is both preopen and semi-open.

In 1983, the subset A was called β–open by Abd El-Monsef et al. [1] if A⊆A−◦−.
Moreover, in 1986 Andrijević [3] used the term semi-preopen instead of β–open
without knowing of [1].

Actually, Andrijević called a subset A of X(T ) to be semi-preopen if there exists
a preopen subset V of X(T ) such that V ⊆A⊆V−. And, he showed that this is
equivalent to the inclusion A⊆A−◦−.

Moreover, in 1996, a subset A of X(T ) was called b–open by Andrijević [4] if
A⊆A◦−∪A−◦. He proved that A is b–open if and only if there exist a preopen subset
B and a semi-open subset C of X(T ) such that A=B∪C.

In a former paper [70], we have shown that the above definitions and several
characterization theorems of generalized open sets can be naturally extended not
only to generalized topological and closure spaces but also to relator spaces.

In the sequel, following a terminology introduced by the third author [78], a
family R of binary relations on a set X will be called a relator on X, and the ordered
pair X (R) = (X, R) will be called a relator space.

Thus, relator spaces are generalizations of not only ordered sets [25] and uniform
spaces [34] but also topological, closure, and proximity spaces [62]. However, to
include context spaces [36] a further generalization is needed [83, 84].

For instance, by Száz [87], each generalized topology T on X can be easily
derived from the family RT of all Pervin’s preorder relations RV =V2 ∪ (Vc ×X)
with V ∈ T . Thus, generalized topologies need not be studied separately.

Here, we shall mainly be interested in the most simple set-theoretic properties of
the various families T κ

R of generalized topologically open subsets of X (R). First
of all, we shall briefly investigate their dual families F κ

R = {A ⊆ X : Ac ∈ T κ
R}.

Then, we shall establish some intrinsic characterizations of the families T κ
R .

Moreover, we shall give some necessary and sufficient conditions in order that ∅,
{x}, with x∈X, and X could be contained in T κ

R .
Finally, we shall show that, with the exception of T r

R , the families T κ
R are closed

under arbitrary unions. Moreover, for every T κ
R , we shall try to determine those

subsets A of X which satisfy A ∩ B ∈ T κ
R for all B ∈ T κ

R .
Furthermore, we shall indicate that, analogously to the family TR of all

topologically open subsets of a relator spaces X(R), the families T κ
R can also be

used to introduce some interesting classifications of relators.
The necessary prerequisites on relations and relators, which are certainly unfa-

miliar to the reader, will be briefly laid out in the subsequent preparatory sections
which will also contain several new observations.

These sections may also be useful for all those readers who are not very much
interested in the various generalizations of open sets having been studied, as the
extensive References show, by a surprisingly great number of topologists.
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2 A Few Basic Facts on Relations

A subset F of a product set X×Y is called a relation on X to Y . In particular, a
relation on X to itself is called a relation on X. And, ΔX ={(x, x) : x∈X} is called
the identity relation of X.

If F is a relation on X to Y , then by the above definitions we can also state that F
is a relation on X ∪Y . However, for several purposes, the latter view of the relation
F would be quite unnatural.

If F is a relation on X to Y , then for any x∈X and A⊆X the sets F(x)={y∈ Y :
(x, y)∈F} and F [A ] =⋃ {F (x) : x ∈ A} are called the images or neighborhoods
of x and A under F, respectively.

If (x, y)∈F, then instead of y∈F (x), we may also write x F y. However, instead
of F [ A ], we cannot write F (A). Namely, it may occur that, in addition to A⊆X,
we also have A∈X.

Now, the sets DF ={x∈X : F(x) �=∅} and RF =F [ X ] may be called the domain
and range of F, respectively. If, in particular, DF =X, then we may say that F is a
relation of X to Y , or that F is a non-partial relation on X to Y .

In particular, a relation f on X to Y is called a function if for each x∈Df there
exists y∈ Y such that f (x)={y}. In this case, by identifying singletons with their
elements, we may simply write f (x)= y instead of f (x)={y}.

Moreover, a function � of X to itself is called a unary operation on X. While, a
function * of X2 to X is called a binary operation on X. And, for any x, y∈X, we
usually write x� and x * y instead of � (x) and *((x, y)), respectively.

If F is a relation on X to Y , then a function f of DF to Y is called a selection
function of F if f (x)∈F(x) for all x∈DF . By using the Axiom of Choice, it can be
shown that every relation is the union of its selection functions.

For a relation F on X to Y , we may naturally define two set-valued functions ϕF

of X to P(Y ) and ΦF of P(X) to P(Y ) such that ϕF(x)=F(x) for all x∈X and
ΦF(A)=F [ A ] for all A⊆X.

Functions of X to P(Y ) can be naturally identified with relations on X to Y .
While, functions of P(X) to P(Y ) are more general objects than relations on X to
Y . In [91, 97, 98], they were briefly called corelations on X to Y .

However, a relation on P(X) to Y should be rather called a super relation on X
to Y , and a relation on P(X) to P(Y ) should be rather called a hyper relation on
X to Y . Thus, clR is a super relation and ClR is a hyper relation on Y to X.

If F is a relation on X to Y , then one can easily see that F =⋃x∈X
({x}×F(x)).

Therefore, the images F(x), where x∈X, uniquely determine F. Thus, a relation F
on X to Y can also be naturally defined by specifying F(x) for all x∈X.

For instance, the complement Fc and the inverse F−1 can be defined such that
Fc(x)=F (x)c=Y \F(x) for all x∈X and F−1(y)={x∈X : y∈F(x)} for all y∈ Y .
Thus, it can be easily seen that Fc = (X × Y

) \ F .
Moreover, if in addition G is a relation on Y to Z, then the composition G ◦F can

be defined such that (G ◦F)(x)=G [ F(x) ] for all x∈X. Thus, it can be easily seen
that (G ◦F)[ A ]=G [ F [ A ] ]=⋃y ∈ F[A]G (y) for all A⊆X.
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While, if G is a relation on Z to W, then the box product F � G can be defined
such that (F � G)(x, z) = F(x) × G(z) for all x∈X and z∈ Z. Thus, it can be
shown that (F �G)[A ] = G ◦ A ◦ F−1 for all A ⊆ X×Z [89].

Hence, by taking A={(x, z)}, and A=ΔY if Y =Z, one can at once see that
the box and composition products are actually equivalent tools. However, the box
product can be immediately defined for any family of relations.

Now, a relation R on X may be briefly defined to be reflexive on X if ΔX ⊆R,
and transitive if R ◦R⊆R. Moreover, R may be briefly defined to be symmetric if
R⊆R−1, and antisymmetric if R∩R−1 ⊆ΔX .

Thus, a reflexive and transitive (symmetric) relation may be called a preorder
(tolerance) relation. And, a symmetric (antisymmetric) preorder relation may be
called an equivalence (partial order) relation.

For any relation R on X, we may also naturally define R0 =ΔX and Rn=R ◦Rn−1

if n ∈ N. Moreover, we may also naturally define R∞ =⋃∞
n=0 R

n. Thus, R∞ is the
smallest preorder relation on X containing R [39].

For A⊆X, the Pervin relation RA = A2 ∪ (Ac×X) is an important preorder on
X [69]. While, for a pseudometric d on X, the Weil surrounding Br ={(x, y)∈X2 :
d(x, y) < r}, with r > 0, is an important tolerance on X [103].

Note that SA = RA ∩R−1
A = RA ∩RAc = A2 ∩ (Ac

)2 is already an equivalence
relation on X. And, more generally if A is a cover (partition) of X, then SA =⋃

A∈A A2 is a tolerance (equivalence) relation on X.
As an important generalization of the Pervin relation RA, for any A⊆X and

B⊆Y , we may also naturally consider the Hunsaker-Lindgren relation R(A,B) =
(A×B) ∩ (Ac×Y ) [42]. Namely, thus we evidently have RA=R(A,A).

The Pervin relations RA and the Hunsaker-Lindgren relations R(A,B) were actually
first used by Davis [26] and Császár [15, pp. 42 and 351] in some less explicit and
convenient forms, respectively.

3 A Few Basic Facts on Relators

A family R of relations on one set X to another Y is called a relator on X to Y , and
the ordered pair (X, Y )(R) = ((X, Y ), R

)
is called a relator space. For the origins

of this notion, see [78, 83], and the references in [78].
If, in particular, R is a relator on X to itself, then R is simply called a relator

on X. Thus, by identifying singletons with their elements, we may naturally write
X(R) instead of (X, X)(R). Namely, (X, X)={{X}, {X, X}}= {{X}}.

Relator spaces of this simpler type are already substantial generalizations of the
various ordered sets [25] and uniform spaces [34]. However, they are insufficient
for some important purposes. (See, for instance, [36] and [83].)

A relator R on X to Y , or the relator space (X, Y )(R), is called simple if R =
{R} for some relation R on X to Y . Simple relator spaces of the forms (X, Y )(R) and
X(R) were called formal contexts and gosets in [36] and [93], respectively.
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Moreover, a relator R on X, or the relator space X(R), may, for instance, be
naturally called reflexive if each member of R is reflexive on X. Thus, we may also
naturally speak of preorder, tolerance, and equivalence relators.

For instance, for a family A of subsets of X, the family RA = {RA : A ∈ A },
where RA = A2 ∪ (Ac×X

)
, is an important preorder relator on X. Such relators

were first used by Pervin [69] and Levine [57]. (See also [87, 8].)
While, for a family D of pseudo-metrics on X, the family RD = {Bd

r : r >

0, d ∈ D}, where Bd
r = {(x, y) : d(x, y) < r}, is an important tolerance relator

on X. Such relators were first considered by Weil [103].
Moreover, if S is a family of partitions of X, then the family RS = {SA :

A ∈ S}, where SA = ⋃A∈A A2, is an equivalence relator on X. Such practically
important relators were first investigated by Levine [56].

If � is a unary operation for relations on X to Y , then for any relator R on X to
Y we may naturally define R� = {R� : R ∈ R

}
. However, this plausible notation

may cause some confusions whenever, for instance, �= c.
In particular, for any relator R on X, we may naturally define R∞ = {

R∞ :
R ∈ R

}
. Moreover, we may also naturally define R∂ = {S ⊆ X2 : S∞ ∈ R

}
.

These operations were first introduced by Mala [58, 59] and Pataki [67, 68].
While, if * is a binary operation for relations, then for any two relators R and

S we may naturally define R ∗S = {R ∗ S : R ∈ R, S ∈ S
}
. However, this

plausible notation may again cause some confusions whenever, for instance, *=∩.
Therefore, in general, we rather write R ∧S = {R ∩ S : R ∈ R, S ∈ S

}
.

Moreover, for instance, we also write R9R−1 = {R ∩ R−1 : R ∈ R
}
. Note that

thus R9R−1 is a symmetric relator such that R9R−1⊆ R ∧R−1.
A function � of the family of all relators on X to Y is called a direct (indirect)

unary operation for relators if, for every relator R on X to Y , the value R� =
� (R) is a relator on X to Y (on Y to X).

For instance, c and − 1 are involution operations for relators. While, ∞ and ∂

are projection operations for relators. Moreover, the operation � = c, ∞ or ∂ is
inversion compatible in the sense that R�−1 = R−1�.

More generally, a function F of the family of all relators on X to Y is called a
structure for relators if, for every relator R on X to Y , the value FR = F (R) is in
a power set depending only on X and Y .

For instance, if clR (B) =⋂ {R−1[B ] : R ∈ R} for every relator R on X to Y
and B⊆Y , then the function F, defined by F (R) = clR , is a structure for relators
such that F (R) ⊆ P (Y )×X, and thus F (R) ∈ P

(
P (Y )×X

)
.

A structure F for relators is called increasing if R ⊆ S implies FR ⊆ FS for
any two relators R and S on X to Y . And, F is called quasi-increasing if R ∈ R
implies FR ⊆ FR for any relator R on X to Y . Note that here FR = F{R}.

Moreover, the structure F is called union-preserving if F⋃
i∈I Ri

=⋃i∈I FRi
for

any family (Ri )i∈I of relators on X to Y . It can be shown that F is union-preserving
if and only if FR =⋃R∈R FR for every relator R on X to Y [91].
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In particular, an increasing operation � for relators on X to Y is called a
projection or modification operation for relators if it is idempotent in the sense that
R�� = R� holds for any relator R on X to Y .

Moreover, a projection operation � for relators on X to Y is called a closure or
refinement operation for relators if it is extensive in the sense that R ⊆ R� holds
for any relator R on X to Y . (For the origins, see [82].)

By using Pataki connections [67, 99], several closure operations can be derived
from union-preserving structures. However, more generally, one can find first the
Galois adjoint G of such a structure F, and then take �F = G ◦ F [86].

Now, for an operation � for relators, a relator R on X to Y may be naturally
called �–fine if R� = R. And, for some structure F for relators, two relators R
and S on X to Y may be naturally called F–equivalent if FR = FS .

Moreover, for a structure F for relators, a relator R on X to Y may, for instance,
be naturally called F–simple if FR = FR for some relation R on X to Y . Thus, in
particular, singleton relators have to be actually called properly simple.

4 Structures Derived from Relators

Definition 1 If R is a relator on X to Y , then for any A⊆X, B⊆Y and x∈X, y∈ Y
we define :

(1) A ∈ IntR (B) if R [ A ] ⊆B for some R ∈ R ;
(2) A ∈ ClR (B) if R [ A ] ∩B�=∅ for all R ∈ R ;
(3) x ∈ intR (B) if {x} ∈ IntR (B) ; (4) x ∈ σR (y) if x ∈ intR

({y}) ;
(5) x ∈ clR (B) if {x} ∈ ClR (B) ; (6) x ∈ ρR (y) if x ∈ clR

({y}) ;
(7) B ∈ ER if intR (B) �= ∅ ; (8) B ∈ DR if clR (B) = X.

Remark 1 The relations IntR , intR and σR are called the proximal, topological,
and infinitesimal interiors generated by R, respectively. While, the members of
the families, ER and DR are called the fat and dense subsets of the relator space
(X, Y )(R), respectively.

The origins of the relations ClR and IntR go back to Efremović’s proximity δ

[30] and Smirnov’s strong inclusion � [76], respectively. While, the convenient
notations ClR and IntR , and family ER , together with its dual DR , were first
explicitly used by the third author [78, 80, 81, 85].

The following theorem shows that the big interior and closure are equivalent tools
in a relator space.

Theorem 1 If R is a relator on X to Y , then for any B⊆Y we have

(1) ClR (B) = IntR (Bc)c ; (2) IntR (B) = ClR (Bc)c.

Remark 2 By using the notation CY (B) = Bc, assertion (1) can be expressed in the
more concise form that ClR = ( IntR ◦CY

)c or ClR = ( IntR
)c ◦ CY .
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From Theorem 1, we can easily derive the following

Theorem 2 If R is a relator on X to Y , then for any B⊆Y we have

(1) clR (B) = intR (Bc)c ; (2) intR (B) = clR (Bc)c.

Remark 3 By using the convenient notations B− = clR (B) and B◦ = intR (B),
assertion (1) can be expressed in the more concise form that −= c ◦ c, or
equivalently − c= c ◦.

The small closures and interiors are, in general, much weaker tools than the big
ones. Namely, we can only prove

Theorem 3 If R is a relator on X to Y , then for any A⊆X and B⊆Y

(1) A ∈ IntR (B) implies A ⊆ intR (B) ;
(2) A ∩ clR (B) �= ∅ implies A ∈ ClR (B).

Concerning closures and interiors, we can also prove the following two theorems
which show that, despite their equivalences, closures are sometimes more conve-
nient tools than interiors.

Theorem 4 For any relator R on X to Y , we have

(1) ClR−1 = Cl−1
R ; (2) IntR−1 = CY ◦ Int−1

R ◦CX.

Theorem 5 If R is a relator on X to Y , then for any B⊆Y , we have

(1) clR (B) =⋂R∈R R−1[B ] ; (2) intR (B) =⋃R∈R R−1[Bc]c.
From the B={y} particular case of this theorem, we can easily derive

Corollary 1 For any relator R on X to Y , we have

ρR =
⋂

R−1 = (
⋂

R
)−1

.

Moreover, by using the R = {R} particular case of Theorem 5, we can prove

Theorem 6 If R is a relation on X to Y , then for any A⊆X and B⊆Y

A ⊆ intR(B) ⇐⇒ clR−1 (A) ⊆ B.

Remark 4 This shows that the mappings A �→ clR−1 (A) and B �→ intR(B)
establish a Galois connection between the posets P(X) and P(Y ).

The above important closure-interior Galois connection, used first in [96], is not
independent from the upper and lower bound Galois connection [88].

The following two closely related theorems show that the fat and dense sets are
also equivalent tools in a relator space.

Theorem 7 If R is a relator on X to Y , then for any B⊆Y we have

(1) B ∈ DR ⇐⇒ Bc /∈ ER ; (2) B ∈ ER ⇐⇒ Bc /∈ DR .
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Theorem 8 If R is a relator on X to Y , then for any B⊆Y we have

(1) B ∈ DR if and only if B∩E �=∅ for all E ∈ ER ;
(2) B ∈ ER if and only if B∩D�=∅ for all D ∈ DR .

Remark 5 By the corresponding definitions, we have R (x) ∈ ER , and thus also
R (x)c /∈ DR , for all x∈X and R ∈ R.

While, by using the notation UR (x) = int−1
R (x) = {B ⊆ Y : x ∈ intR (B)},

we can note that ER =⋃x∈X UR (x).

By using Definition 1, we may easily introduce several further important
definitions. For instance, we may also naturally have the following

Definition 2 If R is a relator on X to Y , then for any B⊆Y , we define

(1) bndR (B) = clR (B) \ intR(B).
Moreover, if, in particular, R is a relator on X, then for any A⊆X we also define

(2) resR (A) = clR (A) \ A ; (3) borR (A) = A \ intR (A).

Remark 6 Somewhat differently, the border, boundary, and residue of a set in neigh-
borhood and closure spaces were also introduced by Hausdorff and Kuratowski [50,
pp. 4–5]. (See also Elez and Papaz [33] for a recent treatment.)

If, in particular, R is a reflexive relator on X, then by Definition 1, for any A⊆X,
we have A◦⊆A⊆A− . Therefore,

bndR (A) = resR (A) ∪ borR (A) = resR (A) ∪ resR (Ac).

Namely, by using Definition 2 and Theorem 2, we can easily see that

resR (Ac) = Ac− \ Ac = Ac− ∩ Acc = A◦c ∩ A = A \ A◦ = borR (A).

Note that if, in particular, A ∈ TR in the sense that A⊆A◦, then borR (A) = ∅.
Therefore, in this particular case, by the above equality, we can simply state that
bndR (A) = resR (A).

5 Further Structures Derived from Relators

By using Definition 1, we may also naturally introduce the following

Definition 3 If R is a relator on X, then for any A⊆X we also define :

(1) A ∈ τR if A ∈ IntR (A) ; (2) A ∈ τ-R if Ac /∈ ClR (A) ;
(3) A ∈ TR if A ⊆ intR (A) ; (4) A ∈ FR if clR (A) ⊆ A ;
(5) A ∈ NR if clR (A) /∈ ER ; (6) A ∈ MR if intR (A) ∈ DR .
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Remark 7 The members of the families, τR and TR and NR , are called the
proximally open, topologically open, and rare (or nowhere dense) subsets of the
relator space X(R), respectively.

The family τR was first introduced by the third author in [80, 81]. While,
the practical notation τ-R was suggested by János Kurdics who first noticed that
“connectedness” is a particular case of “well-chainedness.” (See [52, 53, 68, 73].)

By using the corresponding results of Section 4, we can easily establish the
following theorems.

Theorem 9 If R is a relator on X, then for any A⊆X, we have

(1) A ∈ τ-R ⇐⇒ Ac ∈ τR; (2) A ∈ τR ⇐⇒ Ac ∈ τ-R.

Theorem 10 For any relator R on X, we have

(1) τ-R = τR−1 ; (2) τR = τ-R−1 .

Theorem 11 If R is a relator on X, then for any A⊆X, we have

(1) A ∈ FR ⇐⇒ Ac ∈ TR ; (2) A ∈ TR ⇐⇒ Ac ∈ FR .

Corollary 2 If R is a relator on X and A⊆X and V ∈ TR such that A∩V=∅,
then clR (A) ∩ V = ∅ also hold.

Proof By Theorem 11, we have V c ∈ FR . Thus, by Definition 3, we also have
Vc−⊆Vc. Hence, by using the increasingness of the operation −, we can see that
A∩V =∅⇒ A⊆Vc ⇒ A−⊆Vc − ⇒ A−⊆Vc ⇒ A−∩V =∅.

Remark 8 Note that if R is a reflexive relator on X, then A⊆A− for any A⊆X.
Therefore, A−∩V =∅ trivially implies A∩V =∅ for any A, V ⊆X.

Theorem 12 For any relator R on X, we have

(1) τR ⊆ TR ; (2) τ-R ⊆ FR .

Remark 9 In particular, for any relation R on X, we have

(1) τR = TR; (2) τ-R = FR .

Theorem 13 For any relator R on X, we have

(1) TR \ {∅} ⊆ ER ; (2) DR ∩FR ⊆ {X}.
Remark 10 Hence, by using global complementations, we can easily infer that
FR ⊆ (DR

)c ∪ {X} and DR ⊆ (FR
)c ∪ {X}.

Theorem 14 If R is a relator on X, then for any A⊆X we have

(1) A ∈ ER if V⊆A for some V ∈ TR \ {∅};
(2) A ∈ DR only if A \W �=∅ for allW ∈ FR \ {X}.
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Remark 11 The fat sets are frequently more convenient tools than the topologically
open ones. For instance, if ≤ is a relation on X, then T≤ and E≤ are the families of
all ascending and residual subsets of the goset X(≤), respectively.

Moreover, if, in particular, X = R and R (x)={x− 1}∪ [ x, +∞ [ for all x∈X,
then R is a reflexive relation on X such that TR = {∅, X}, but ER is quite a large
family. Namely, the supersets of each R(x) are also contained in ER .

However, the importance of fat and dense lies mainly in the following

Definition 4 If R is a relator on X to Y , and ϕ and ψ are functions of a relator
space �(U ) to X and Y , respectively, then using the notation

(ϕ, ψ)(γ ) = (ϕ(γ ), ψ(γ ))

for all γ ∈Γ , we may also naturally define

(1) ϕ ∈ LimR (ψ) if (ϕ, ψ)−1[R ] ∈ EU for all R ∈ R,
(2) ϕ ∈ AdhR (ψ) if (ϕ, ψ)−1[R ] ∈ DU for all R ∈ R.

Moreover, for any x∈X, we may also naturally define:
(3) x ∈ limR (ψ) if x�∈ LimR (ψ), (4) x ∈ adhR (ψ) if x�∈ AdhR (ψ),

where xΓ is a function of Γ to X such that xΓ (γ )= x for all γ ∈Γ .

Remark 12 Fortunately, the small limit and adherence relations are equivalent to
the small closure and interior ones.

However, the big limit and adherence relations, suggested by Efremović and
Švarc [31], are usually stronger tools than the big closure and interior ones.

In this respect, it seems convenient to only mention here the following

Theorem 15 If R is a relator on X to Y , then for any A⊆X and B⊆Y the following
assertions are equivalent:

(1) A ∈ ClR (B) ;
(2) there exist functions ϕ and ψ of the poset R (⊇) to A and B, respectively, such

that ϕ ∈ LimR (ψ) ;
(3) there exist functions ϕ and ψ of a relator space � (U ) to A and B, respectively,

such that ϕ ∈ LimR (ψ).

Hint. If (1) holds, then for each R ∈ R, we have R [ A ]∩B�=∅. Therefore, there
exist ϕ (R)∈A and ψ (R)∈B such that ψ (R)∈R (ϕ (R)). Hence, we can see that
(ϕ, ψ)(R)= (ϕ(R), ψ(R))∈R, and thus R ∈ (ϕ � ψ)−1[R ].

Therefore, if R ∈ R, then for any S ∈ R, with R⊇ S, we have

S ∈ (ϕ, ψ)−1[ S ] ⊆ (ϕ, ψ)−1[R ].

This shows that (ϕ, ψ)−1[ R ] is a fat subset of R (⊇), and thus ϕ ∈ LimR (ψ).
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Remark 13 Finally, we note that if R is a relator on X to Y , then according to
[84], for any A⊆X and B⊆Y , we may also naturally write A ∈ LbR (B) and
B ∈ UbR (A) if there exists R ∈ R such that A×B ⊆ R.

However, the algebraic structures LbR and UbR , and the structures derivable
from them, are not independent of the former topological ones. Namely, it can be
easily shown that LbR = IntRc◦CY and IntR = LbRc◦CY .

6 Reflexive, Non-partial, and Non-degenerated Relators

Definition 5 A relator R on X is called reflexive if each member R of R is a
reflexive relation on X.

Remark 14 Thus, the following assertions are equivalent :

(1) R is reflexive ;
(2) x∈R(x) for all x∈X and R ∈ R ;
(3) A⊆R [ A ] for all A⊆X and R ∈ R.

The importance of reflexive relators is also apparent from the following two
obvious theorems.

Theorem 16 For a relator R on X, the following assertions are equivalent:

(1) ρR is reflexive; (2) R is reflexive;
(3) A ⊆ clR (A)

(
intR (A) ⊆ A

)
for all A⊆X.

Proof To prove the equivalence of (1) and (2), recall that by Corollary 1 we have
ρR = (⋂ R

)−1.

Remark 15 Thus, the relator R is reflexive if and only if A◦⊆A (A⊆A−) for all
A⊆X.

Therefore, if R is a reflexive relator on X, then for any A⊆X we have A ∈ TR
(A ∈ FR) if and only if A◦ =A (A− =A).

Theorem 17 For a relator R on X, the following assertions are equivalent:

(1) R is reflexive;
(2) A ∈ IntR (B) implies A⊆B for all A, B⊆X;
(3) A∩B�=∅ implies A ∈ ClR (B) for all A, B⊆X.

Remark 16 In addition to the above two theorems, it is also worth mentioning that
if R is a reflexive relator on X, then

(1) IntR is a transitive relation on P(X) ;
(2) B ∈ ClR (A) implies P(X) = ClR (A)c ∪ Cl−1

R (B) ;
(3) intR

(
borR (A)

) = ∅ and intR
(

resR (A)
) = ∅ for all A⊆X.

Thus, for instance, for any A⊆X we have resR (A) ∈ TR if and only if A ∈ FR .
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Analogously to Definition 5, we may also naturally have the following

Definition 6 A relator R on X to Y is called non-partial if each member R of R is
a non-partial relation on X to Y .

Remark 17 Thus, the following assertions are equivalent :

(1) R is non-partial ;
(2) R−1[ Y ]=X for all R ∈ R ;
(3) R(x) �=∅ for all x∈X and R ∈ R.

The importance of non-partial relators is apparent from the following

Theorem 18 For a relator R on X to Y , the following assertions are equivalent:

(1) R is non-partial;
(2) ∅ /∈ ER ; (3) DR �= ∅; (4) Y ∈ DR ; (5) ER �= P(Y ).

In the sequel, we shall also need the following localized form of Definition 6.

Definition 7 A relator R on X will be called locally non-partial if for each x∈X
there exists R ∈ R such that for any y∈R (x) and S ∈ R we have S (y) �=∅.

Remark 18 Thus, if either X=∅ or R is nonvoid and non-partial, then R is locally
non-partial.

Moreover, by using the corresponding definitions, we can also easily prove

Theorem 19 For a relator R on X, the following assertions are equivalent:

(1) R is locally non-partial; (2) X = intR
(

clR (X)
)
.

Proof To prove the implication (1) ⇒ (2), note that if (1) holds, then for each
x∈X there exists R ∈ R such that for any y∈R (x) and for any S ∈ R we have
S (y)∩X= S (y) �=∅, and thus y ∈ clR (X).

Therefore, for each x∈X there exists R ∈ R such that R (x) ⊆ clR (X), and
thus x ∈ intR

(
clR (X)

)
. Hence, we can already see that X ⊆ intR

(
clR (X)

)
, and

thus (2) also holds. (Therefore, by a former notation, X ∈ T r
R .)

In addition to Definition 6, it is also worth introducing the following

Definition 8 A relator R on X to Y is called non-degerated if X �=∅ and R �= ∅.

Thus, analogously to Theorem 18, we can also easily establish the following

Theorem 20 For a relator R on X to Y , the following assertions are equivalent:

(1) R is non-degenerated;
(2) ∅ /∈ DR ; (3) ER �= ∅; (4) Y ∈ ER ; (5) DR �= P(Y ).

Remark 19 In addition to Theorems 18 and 20, it is also worth mentioning that if a
relator R on X to Y is paratopologically simple in the sense that ER = ER for some
relation R on X to Y , then the stack ER has a base B with card (B) ≤ card (X).
(See [66, Theorem 5.9] of Pataki.)
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The existence of a non-paratopologically simple (actually finite equivalence)
relator, proved first by Pataki [66, Example 5.11], shows that in our definitions of
the relations LimR and AdhR we cannot restrict ourselves to functions of gosets
(generalized ordered sets) without some loss of generality.

7 Topological and Quasi-Topological Relators

The following improvement of [79, Definition 2.1] was first considered in [80].

Definition 9 A relator R on X is called :

(1) quasi-topological if x ∈ intR
(
intR

(
R (x)

))
for all x∈X and R ∈ R ;

(2) topological if for any x∈X and R ∈ R there exists V ∈ TR such that
x∈V ⊆R (x).

The appropriateness of these definitions is already quite obvious from the
following four theorems.

Theorem 21 For a relator R on X, the following assertions are equivalent:

(1) R is quasi-topological;
(2) intR

(
R (x)

) ∈ TR for all x∈X and R ∈ R ;
(3) clR (A) ∈ FR

(
intR (A) ∈ TR

)
for all A⊆X.

Remark 20 Hence, by Definition 3, we can see that the relator R is quasi-
topological if and only if A◦⊆A◦◦ (A−−⊆A−) for all A⊆X.

Theorem 22 For a relator R on X, the following assertions are equivalent:

(1) R is topological; (2) R is reflexive and quasi-topological.

Remark 21 By Theorem 21, the relator R may be called weakly (strongly) quasi-
topological if ρR (x) ∈ FR

(
R (x) ∈ TR

)
for all x∈X and R ∈ R.

Moreover, by Theorem 22, the relator R may be called weakly (strongly)
topological if it is reflexive and weakly (strongly) quasi-topological.

Theorem 23 For a relator R on X, the following assertions are equivalent:

(1) R is topological;
(2) intR (A) =⋃(TR ∩P(A)

)
for all A⊆X;

(3) clR (A) =⋂(FR ∩P−1(A)
)
for all A⊆X.

Now, as an immediate consequence of this theorem, we can also state

Corollary 3 If R is topological relator on X, then for any A⊂X, we have

(1) A ∈ ER if and only if there exists V ∈ TR \ {∅} such that V⊆A;
(2) A ∈ DR if and only if for allW ∈ FR \ {X} we have A \W �=∅.
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However, it is now more important to note that we can also prove the following

Theorem 24 For a relator R on X, the following assertions are equivalent:

(1) R is topological;
(2) R is topologically equivalent to a preorder relator on X.

Proof To prove the implication (1) ⇒ (2), note that if (1) holds, then by Definition
9, for any x∈X and R ∈ R, there exists V ∈ TR such that x∈V ⊆R(x). Thus, by
using the Pervin preorder relator

S = RTR
= {RV : V ∈ TR

}
, where RV = V 2 ∪ (V c×X),

we can show that intR (A) = intS (A) for all A⊆X, and thus (2) also holds.
For this, we have to note that

RV (x) = V if x ∈ V and RV (x) = X if x ∈ V c.

Remark 22 In addition to Theorems 21 and 22, it is also worth proving that a relator
R on X is quasi-topological if and only if its topological closure

R∧ = {
S ⊆ X2 : ∀ x ∈ X : x ∈ intR

(
S (x)

)}

is topologically transitive in the sense that R∧ ⊆ (R∧◦R∧)∧.

This property can be reformulated in the simpler form that R ⊆ (
R∧ ◦ R

)∧.
That is, for each x∈X and R ∈ R there exist S ∈ R and T ∈ R∧ such that
T [ S (x)]⊆R (x).

Remark 23 Analogously to Definition 9, the relator R may be called

(1) quasi-proximal if A ∈ IntR
[
τR ∩ IntR

(
R [ A ] ) ] for all A⊆X and R ∈ R ;

(2) proximal if for any A⊆X and R ∈ R there exists V ∈ τR such that
A⊆V ⊆R [ A ].

Thus, in addition to the counterparts of our former theorems, we can prove that
R is topological if and only if its topological refinement R∧ is proximal.

Therefore, several theorems on topological relators can be derived from those on the
proximal ones by using that τR∧ = TR whenever R �= ∅.

8 A Few Basic Facts on Filtered Relators

Intersection properties of relators were also first investigated in [79, 80].

Definition 10 A relator R on X to Y is called

(1) properly filtered if for any R, S ∈ R we have R ∩ S ∈ R ;
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(2) uniformly filtered if for any R, S ∈ R there exists T ∈ R such that T ⊆R∩ S ;
(3) proximally filtered if for any A⊆X and R, S ∈ R there exists T ∈ R such that

T [ A ]⊆R [ A ]∩ S [ A ] ;
(4) topologically filtered if for any x∈X and R, S ∈ R there exists T ∈ R such

that T (x)⊆R (x)∩ S (x).

Remark 24 By using the binary operation ∧ and the basic closure operations on
relators, the above properties can be reformulated in some more concise forms.

For instance, we can see that R is topologically filtered if and only if any one of
the properties R ∧R ⊆ R∧, (R ∧R)∧ = R∧ and R∧ ∧R∧ = R∧ holds.

However, in general, we only have (R∩ S)[ A ]⊆R [ A ]∩ S [ A ]. Therefore, the
corresponding proximal filteredness properties are, unfortunately, not equivalent.

Despite this, we can easily prove the following theorem which shows the
appropriateness of the above proximal filteredness property.

Theorem 25 For a relator R on X to Y , the following assertions are equivalent:

(1) R is proximally filtered;
(2) ClR (A ∪ B) = ClR (A) ∪ ClR (B) for all A, B⊆Y ;
(3) IntR (A ∩ B) = IntR (A) ∩ IntR (B) for all A, B⊆Y .

Proof To prove the implication (3)⇒ (1), note that if A⊆X and R, S ∈ R, then by
the definition of IntR we trivially have A ∈ IntR

(
R [A ] ) and A ∈ IntR

(
S [A ] ).

Therefore, if (3) holds, then we also have A ∈ IntR
(
R [A ] ∩ S [A ] ). Thus, by the

definition of IntR , there exists T ∈ R such that T [ A ]⊆R [ A ]∩ S [ A ].

Now, as an immediate consequence of this theorem, we can also state

Corollary 4 If R is a proximally filtered relator on X, then the families τ-R and τR

are closed under binary unions and intersections, respectively.

Analogously to Theorem 25, we can also easily prove the following

Theorem 26 For a relator R on X to Y , the following assertions are equivalent:

(1) R is topologically filtered;
(2) clR (A ∪ B) = clR (A) ∪ clR (B) for all A, B⊆Y ;
(3) intR (A ∩ B) = intR (A) ∩ intR (B) for all A, B⊆Y .

Thus, in particular, we can also state the following

Corollary 5 If R is a topologically filtered relator on X, then the families FR and
TR are closed under binary unions and intersections, respectively.

The following example shows that, for a non-topological relator R, the converse
of the above corollary need not be true.

Example 1 If X={1, 2, 3} and Ri is relation on X, for each i= 1, 2, such that

Ri(1) = {1, i + 1} and Ri(2) = Ri(3) = {2, 3},
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then R = {R1, R2
}

is reflexive relator on X such that TR is closed under arbitrary
intersections, but R is still not topologically filtered.

By the corresponding definitions, it is clear that TR = {∅, {2, 3}, X
}
.

Moreover, we can note that Ri(1)�R1(1)∩R2(1) for each i= 1, 2, and thus by
Definition 10 the relator R is not topologically filtered.

9 A Few Basic Facts on Quasi-Filtered Relators

Since R⊆R∞ for every relation R on X, in addition to Definition 10, we may also
naturally introduce the following

Definition 11 A relator R on X is called

(1) quasi-uniformly filtered if for any R, S ∈ R there exists T ∈ R such that
T ⊆R∞∩ S∞;

(2) quasi-proximally filtered if for any A⊆X and R, S ∈ R there exists T ∈ R
such that T [ A ]⊆R∞[ A ]∩ S∞[ A ] ;

(3) quasi-topologically filtered if for any x∈X and R, S ∈ R∧ there exists T ∈ R
such that T (x)⊆R∞(x)∩ S∞(x).

Remark 25 Analogously to Remark 24, the above quasi-filteredness properties can
also be reformulated in some more concise forms.

For instance, we can see that R is quasi-topologically filtered if and only if
R∧∞∧R∧∞ ⊆ R∧, (R∧∞∧R∧∞)∧∞ = R∧∞ or R∧∞ ∧R∧∞ = R∧∞.

However, it is now more important to note that, by using some former results, we
can also prove the following two theorems which show the appropriateness of the
above quasi-proximal and quasi-topological filteredness properties.

Theorem 27 For any relator R on X, the following assertions are equivalent:

(1) R is a quasi-proximally filtered;
(2) τ-R is closed under binary unions;
(3) τR is closed under binary intersections.

Theorem 28 For any relator R on X, the following assertions are equivalent:

(1) R is a quasi-topologically filtered;
(2) FR is closed under binary unions;
(3) TR is closed under binary intersections.

Remark 26 In this respect it is also worth mentioning that if R is a relator on X to
Y , then the family ER is closed under binary intersections if and only if R is quasi-
directed in the sense that for any x, y∈X and R, S ∈ R we have R (x)∩S (y) ∈ ER .
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From the above two theorems, by using Corollaries 4 and 5, we can derive

Corollary 6 If R is a proximally (topologically) filtered relator on X, then R is
also quasi-proximally (quasi-topologically) filtered.

Now, by using Theorem 27, we can also easily prove the following

Theorem 29 If R is a quasi-proximally filtered, proximal relator on X, then R is
proximally filtered.

Proof Suppose that A⊆X and R, S ∈ R. Then, by Remark 23, there exist U, V ∈
τR such that A⊆U⊆R [ A ] and A⊆V ⊆ S [ A ]. Moreover, by Theorem 27, we
can state that U ∩ V ∈ τR. Therefore, by the definition of τR, there exists T ∈ R
such that T [ U ∩V ]⊆U ∩V . Hence, we can already see that

T [A ] ⊆ T [U ∩ V ] ⊆ U ∩ V ⊆ R [A ] ∩ S [A ].

Moreover, by using Theorem 28, we can quite similarly prove the following

Theorem 30 If R is a quasi-topologically filtered, topological relator on X, then
R is topologically filtered.

Remark 27 Our former Example 1 shows that even a quasi-proximally filtered,
reflexive relator need not be topologically filtered.

Namely, if X and R are as in Example 1, then by the corresponding definitions
it is clear that τR = {∅, {2, 3}, X

}
, and thus by Theorem 27 the relator R is

quasi-proximally filtered.

10 Some Further Theorems on Topologically Filtered
Relators

In our former paper [70], by using the arguments of Kuratowski [51, pp. 39, 45],
we have proved the following basic theorems whose slightly shortened proofs are
included here for the reader’s convenience.

Theorem 31 If R is a topologically filtered relator on X to Y , then for any A, B⊆Y
we have

clR (A) \ clR (B) = clR (A \ B) \ clR (B).

Proof By using Theorem 26, we can see that

A− ∪ B− = (A ∪ B)− = ((A \ B) ∪ B
)− = (A \ B)− ∪ B−.

Hence, because of the identity (U ∪V ) \V =U \V , the required equality follows.
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This theorem can be derived from its subsequent corollary which can be proved
directly, without using Theorem 26.

Corollary 7 If R is a topologically filtered relator on X to Y , then for any A, B⊆Y
we have clR (A) \ clR (B) ⊆ clR (A \ B).

This corollary already allows us to easily prove the following

Theorem 32 If R is a topologically filtered relator on X, then for any A⊆X and
U ∈ TR we have

clR (A) ∩ U = clR (A ∩ U) ∩ U.

Proof By Definition 3 and Theorem 2, we have U⊆U◦ =Uc−c. Hence, by using
Corollary 7, we can infer that

A− ∩ U ⊆ A− ∩ Uc−c = A− \ Uc− ⊆ (A \ Uc)− = (A ∩ U)−.

Therefore, A−∩U=A−∩U ∩U⊆ (A ∩ U)−∩U.
Moreover, by using the increasingness of −, we can see that (A ∩ U)−⊆A−, and

thus (A∩U)−∩U⊆A−∩U is always true. Therefore, we actually have A−∩U= (A
∩ U)−∩U.

Hence, we can see that this theorem can also be derived from its

Corollary 8 If R is a topologically filtered relator on X, then for any A⊆X and
U ∈ TR we have clR (A) ∩ U ⊆ clR (A ∩ U).

A direct proof. Assume that x∈A−∩U and R ∈ R. Then, since x ∈ U ∈ TR ,
there exists S ∈ R such that S (x)⊆U. Moreover, since R is topologically filtered,
there exists T ∈ R such that T (x)⊆R (x)∩ S (x). Furthermore, since x∈A−, there
exists y∈A such that y∈ T (x). Hence, we can already infer that

y ∈ A ∩ T (x) ⊆ A ∩ S (x) ⊆ A ∩ U and y ∈ T (x) ⊆ R (x).

Therefore, R (x)∩ (A∩U) �=∅, and thus x∈ (A ∩ U)− also holds.

Remark 28 The importance of the closure space counterpart of Corollary 8 was also
recognized Császár [16–19, 22, 23] and Sivagami [75] who assumed it as an axiom
for an increasing set-to-set function γ .

Moreover, it is also worth noticing that, by using Theorem 2, Corollary 8 can be
reformulated in the dual form that if R is a topologically filtered relator on X, then
for any A⊆X and V ∈ FR we have intR (A ∪ V ) ⊆ intR (A) ∪ V .
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11 Some More Particular Theorems on Topologically
Filtered Relators

By using Corollary 8, we can also easily prove the following

Theorem 33 If R is a topologically filtered, topological relator on X, then for any
A⊆X and U ∈ TR we have

clR (A ∩ U) = clR
(

clR (A) ∩ U
)
.

Proof By Corollary 8 we have A−∩U⊆ (A ∩ U)−. Hence, by using Theorems 22
and 21, we can infer that

(A− ∩ U)− ⊆ (A ∩ U)−− ⊆ (A ∩ U)−.

On the other hand, by Theorem 16, we have A⊆A−, and thus also A∩B⊆A−∩B.
Hence, we can infer that (A ∩ B)−⊆(A−∩B)−. Therefore, the corresponding
equality is also true.

From this theorem, we can immediately derive

Corollary 9 If R is a topologically filtered, topological relator on X, then for any
A ∈ DR and U ∈ TR we have

clR (U) = clR (A ∩ U).

Proof By Definition 1 and Theorem 33, we evidently have

U− = (X ∩ U)− = (A− ∩ U)− = (A ∩ U)−.

Now, by modifying an argument of Levine [55], we can also prove

Theorem 34 If R is a nonvoid, topological relator on X and A⊆X such that
clR (U) = clR (A ∩ U) for all U ∈ TR , then A ∈ DR .

Proof Assume on the contrary that A /∈ DR . Then, by Definition 1, there exists
x∈X such that x �∈A−. Thus, by Definition 1, there exists R ∈ R such that A∩R
(x)=∅. Moreover, by Definition 9, there exists U ∈ TR such that x∈U⊆R (x).
Thus, in particular, we also have A∩U=∅.

Hence, by using the assumptions of the theorem, we can infer that

U− = (A ∩ U)− = ∅− = ∅.

Note that the latter equality already requires that R �= ∅.
On the other hand, from the inclusion x∈U, by using Theorems 22 and 16 and

the increasingness of −, we can infer that x∈{x}−⊆U−, and thus U−�=∅. This
contradiction proves that A ∈ DR .
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Remark 29 If R is a nonvoid, reflexive relator on X and A⊆X such that

clR
(
R (x)

) = clR
(
A ∩ R (x)

)

for all x∈X and R ∈ R, then we can even more easily prove that A ∈ DR .

In addition to Theorem 34, we can also prove the following

Theorem 35 If R is a topologically filtered, topological relator on X, then for any
U ∈ TR we have

resR (U) ∈ FR \ ER .

Proof By Theorem 11, we have Uc ∈ FR . Moreover, by Theorems 22 and 21, we
also have U− ∈ FR . Hence, by using the notation U† = resR (U) and Corollary
5, we can already infer that

U† = U− \ U = U− ∩ Uc ∈ FR .

Moreover, by using Theorems 26 and 16 and the increasingness of −, we can also
see that

U† ◦ = (U− \ U
)◦ = (U− ∩ Uc

)◦ = U−◦ ∩ Uc ◦ = U−◦ ∩ U−c ⊆ U− ∩ U−c = ∅,

and thus U† ◦ =∅. Therefore, U† /∈ ER , and thus U† ∈ FR \ ER .

Now, as an immediate consequence of this theorem, we can also state

Corollary 10 If R is a topologically filtered, topological relator on X, then
resR (U) ∈ NR for all U ∈ TR .

Remark 30 Note that if R is a topological relator on X and U ∈ TR , then by
Theorems 22, 21, and 16 we have U=U◦. Therefore, under the notation U‡ =
bndR (U), we have U† =U−\U=U−\U◦ =U‡.

Moreover, in Theorem 35 and Corollary 10, it is also enough to assume only that
R is a quasi-topologically filtered, topological relator on X. Namely, in this case, R
is already topologically filtered by Theorem 30.

12 Some Generalized Topologically Open Sets

Notation 1 In the sequel, we shall always assume that X is a set and R is a relator
on X.

Moreover, to shorten the subsequent proofs, we shall again use the notations

A− = clR (A), A◦ = intR (A) and A† = resR (A).
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Motivated by the corresponding definitions in topological spaces, listed in the
Introduction, we shall use the following

Definition 12 For a subset A of the relator space X(R), we shall write

(1) A ∈ T s
R if A ⊆ clR

(
intR (A)

)
;

(2) A ∈ T
p

R if A ⊆ intR
(

clR (A)
)
;

(3) A ∈ T α
R if A ⊆ intR

(
clR

(
intR (A)

))
;

(4) A ∈ T
β

R if A ⊆ clR
(
intR

(
clR (A)

))
;

(5) A ∈ T a
R if A ⊆ clR

(
intR (A)

) ∩ intR
(

clR (A)
)
;

(6) A ∈ T b
R if A ⊆ clR

(
intR (A)

) ∪ intR
(

clR (A)
)
;

(7) A ∈ T
q

R if there exists V ∈ TR such that V ⊆ A ⊆ clR (V ) ;
(8) A ∈ T

ps

R if there exists V ∈ TR such that A ⊆ V ⊆ clR (A) ;
(9) A ∈ T

γ

R if there exists V ∈ T s
R such that A ⊆ V ⊆ clR (A) ;

(10) A ∈ T δ
R if there exists V ∈ T

p

R such that V ⊆ A ⊆ clR (V ).

And, the members of the above families will be called the topologically semi-
open, preopen, α-open, β-open, a-open, b-open, quasi-open, pseudo-open, γ -open,
and δ-open subsets of the relator space X(R), respectively.

Remark 31 The inclusions A⊆A◦− and A⊆A−◦ mean only that the set A is open
with respect to the composite operations ◦ − and − ◦, respectively.

While, the inclusions V ⊆A⊆V− and A⊆V ⊆A− mean that A is near to V from
above and below or can be approximated by V from below and above.

Concerning the families T κ
R , in our former paper [70], we have proved the

following simple, but important theorems, with substantial references to the enor-
mous literature on generalized open sets in topological and closure spaces and their
straightforward generalizations.

Theorem 36 We have

(1) T
q

R ⊆ T s
R ; (2) T

ps

R ⊆ T
p

R ;

(3) T a
R = T s

R ∩T
p

R ; (4) T s
R ∪T

p

R ⊆ T b
R ; (5) T

γ

R ∪T δ
R ⊆ T

β

R .

Theorem 37 If R is a reflexive relator on X, then

(1) T α
R ⊆ T a

R ; (2) T b
R ⊆ T

β

R ; (3) T s
R ∪T

p

R ⊆ T
β

R ;
(4) T s

R ∪T
ps

R ⊆ T
γ

R ; (5) T
p

R ∪T
q

R ⊆ T δ
R ; (6) T α

R ⊆ T
γ

R ∩T δ
R .

Theorem 38 If R is a reflexive relator on X, then TR ⊆ T κ
R for all κ = s, p, α, β,

a, b, q, ps, γ , and δ.

Remark 32 Note that, by Theorems 36 and 37, it is enough to prove the inclusion
TR ⊆ T κ

R only for κ = q, ps and α.
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Theorem 39 If R is a quasi-topological relator on X and A, B⊆X such that

A ⊆ B ⊆ clR (A),

then

(1) A ∈ T s
R implies B ∈ T s

R ; (2) A ∈ T
q

R implies B ∈ T
q

R .

Theorem 40 If R is a quasi-topological relator on X and A, B⊆X such that

B ⊆ A ⊆ clR (B),

then

(1) A ∈ T
p

R implies B ∈ T
p

R ; (2) A ∈ T
ps

R implies B ∈ T
ps

R .

Corollary 11 If R is a topological relator on X and A⊆X, then

(1) A ∈ T s
R implies clR (A) ∈ T s

R ; (2) clR (A) ∈ T
p

R implies A ∈ T
p

R .

Theorem 41 If R is a topological relator on X, then for any A⊆X, the following
assertions are equivalent:

(1) A ∈ T s
R ;

(2) clR (A) ⊆ clR
(

intR (A)
)
; (3) clR (A) = clR

(
intR (A)

)
;

(4) there exists V ∈ TR such that V⊆A and clR (A) = clR (V ).

Theorem 42 If R is a topological relator on X, then

(1) T
q

R = T s
R ; (2) T

ps

R = T
p

R ;

(3) T α
R = T a

R ; (4) T
γ

R = T
β

R .

Theorem 43 If R is a topological relator on X, then

(1) TR = { intR (A) : A ∈ T s
R

}
; (2) TR = { intR (A) : A ∈ T

p

R

}
.

Theorem 44 If R is a topologically filtered, topological relator on X, then T δ
R =

T
β

R .

13 The Duals of the Families T κ
R
with κ = q, ps, s, and p

To introduce the corresponding generalized topologically closed sets, we shall use
the following plausible notation.

Definition 13 For any κ = s, p, α, β, a, b, q, ps, γ , and δ, we define

F κ
R = {A ⊆ X : Ac ∈ T κ

R

}
.
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Thus, by using Theorem 2 and Remark 3, we can easily prove the following
theorems

Theorem 45 For any A⊆X the following assertions are equivalent:

(1) A ∈ F
q

R ;
(2) there existsW ∈ FR such that intR (W) ⊆ A ⊆ W .

Proof To prove that (1) ⇒ (2), note that if (1) holds, then Ac ∈ T
q

R . Thus, by
Definition 12, there exists V ∈ TR such that

V ⊆ Ac ⊆ V −.

Hence, by using that c ◦=− c, we can infer that

V c ◦ = V − c ⊆ A ⊆ V c.

Thus, by taking W =Vc, we can see that W ∈ FR such that

W ◦ ⊆ A ⊆ W,

and thus assertion (2) also holds.

Theorem 46 For any A⊆X the following assertions are equivalent:

(1) A ∈ F
ps

R ;
(2) there existsW ∈ FR such that intR (A) ⊆ W ⊆ A.

Proof To prove that (2) ⇒ (1), note that if (2) holds, then there exists W ∈ FR
such that

A◦ ⊆ W ⊆ A.

Hence, by using that ◦ c= c −, we can infer that

Ac ⊆ Wc ⊆ A◦c = Ac−.

Thus, by taking V =Wc, we can see that V ∈ TR such that

Ac ⊆ V ⊆ Ac−.

Therefore, by Definition 12, we have Ac ∈ T
ps

R , and thus (1) also holds.

Theorem 47 For any A⊆X, the following assertions are equivalent:

(1) A ∈ F s
R ; (2) intR

(
clR (A)

) ⊆ A.
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Proof By the corresponding definitions, we have

(1) ⇐⇒ Ac ∈ T s
R ⇐⇒ Ac ⊆ Ac ◦− ⇐⇒ Ac ◦− c ⊆ A.

Moreover, by using the equalities − c= c ◦ and c ◦ c=−, we can see that

Ac ◦− c = Ac ◦ c ◦ = A−◦.

Therefore, we actually have (1) ⇐⇒ A− ◦⊆A ⇐⇒ (2).

Theorem 48 For any A⊆X, the following assertions are equivalent:

(1) A ∈ F
p

R ; (2) clR
(

intR (A)
) ⊆ A.

Proof By the corresponding definitions, we have

(1) ⇐⇒ Ac ∈ T
p

R ⇐⇒ Ac ⊆ Ac−◦ ⇐⇒ Ac−◦ c ⊆ A.

Moreover, by using the equalities c −=◦ c and c ◦ c=−, we can see that

Ac−◦ c = A◦ c ◦ c = A◦−.

Therefore, we actually have (1) ⇐⇒ A◦−⊆A ⇐⇒ (2).

Now, by using Theorem 41, we can also easily establish the following

Theorem 49 If R is a topological relator on X, then for any A⊆X the following
assertions are equivalent:

(1) A ∈ F s
R ;

(2) intR
(

clR (A)
) ⊆ intR (A) ; (3) intR

(
clR (A)

) = intR (A) ;
(4) there existsW ∈ FR such that A⊆W and intR (A) = intR (W).

14 The Duals of the Families T κ
R
with κ = γ , δ, α, β, a, and b

Analogously to Theorems 46 and 45, we can also prove the following two theorems.

Theorem 50 For any A⊆X the following assertions are equivalent:

(1) A ∈ F
γ

R ;
(2) there existsW ∈ F s

R such that intR (A) ⊆ W ⊆ A.

Theorem 51 For any A⊆X the following assertions are equivalent:

(1) A ∈ F δ
R ;

(2) there existsW ∈ F
p

R such that intR (W) ⊆ A ⊆ W .
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Proof To prove that (1) ⇒ (2), note that if (1) holds, then Ac ∈ T δ
R . Thus, by

Definition 12, there exists V ∈ T
p

R such that

V ⊆ Ac ⊆ V −.

Hence, by using that c ◦=− c, we can infer that

V c ◦ = V − c ⊆ A ⊆ V c.

Thus, by taking W =Vc, we can see that W ∈ F
p

R such that

W ◦ ⊆ A ⊆ W,

and thus (2) also holds.

Moreover, analogously to Theorems 47 and 48, we can also prove the following
two theorems.

Theorem 52 For any A⊆X, the following assertions are equivalent:

(1) A ∈ F α
R ; (2) clR

(
intR

(
clR (A)

)) ⊆ A.

Theorem 53 For any A⊆X the following assertions are equivalent:

(1) A ∈ F
β

R ; (2) intR
(
clR

(
intR (A)

)) ⊆ A.

Proof By the corresponding definitions, we have

(1) ⇐⇒ Ac ∈ T
β

R ⇐⇒ Ac ⊆ Ac−◦− ⇐⇒ Ac−◦− c ⊆ A.

Moreover, by using the equalities c −=◦ c, − c= c ◦, and c ◦ c=−, we can see
that

Ac−◦− c = A◦ c ◦− c = A◦ c ◦ c ◦ = A◦−◦.

Therefore, we actually have (1) ⇐⇒ A◦ − ◦⊆A ⇐⇒ (2).

No, by using Theorem 36, we can also easily prove the following

Theorem 54 We have

F a
R = F s

R ∩F
p

R .

Proof By the corresponding definitions and Theorem 36, for any A⊆X, we have

A ∈ F a
R ⇐⇒ Ac ∈ T a

R ⇐⇒ Ac ∈ T s
R , Ac ∈ T

p

R

⇐⇒ A ∈ F s
R , A ∈ F

p

R ⇐⇒ A ∈ F s
R ∩F

p

R .

Therefore, the required equality is true.
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Hence, by using Theorems 46 and 47, we can immediately derive

Corollary 12 For any A⊆X, the following assertions are equivalent:

(1) A ∈ F a
R ; (2) intR

(
clR (A)

) ∪ clR
(

intR (A)
) ⊆ A.

The latter statement can also be easily proved directly, by using only the
corresponding definitions.

Moreover, by using a direct argument, we can also easily prove the following
counterpart of this corollary.

Theorem 55 For any A⊆X, the following assertions are equivalent:

(1) A ∈ F b
R ; (2) intR

(
clR (A)

) ∩ clR
(

intR (A)
) ⊆ A.

Proof By the corresponding definitions, we have

(1) ⇐⇒ Ac ∈ T b
R ⇐⇒ Ac ⊆ Ac◦− ∪ Ac−◦ ⇐⇒ (

Ac◦− ∪ Ac−◦)c ⊆ A.

Moreover, by using De Morgan’s law and the equalities established in the proofs of
Theorems 46 and 47, we can see that

(
Ac◦− ∪ Ac−◦)c = Ac◦−c ∩ Ac−◦c = A−◦ ∩ A◦−.

Therefore, we actually have (1) ⇐⇒ A−◦∩A◦−⊆A ⇐⇒ (2).

15 Topologically Regular Open Sets

Regular open sets were first introduced by Kuratowski [50] with reference to a paper
of Henri Lebesgue. However, their importance became completely clear only after
the considerations of Stone [77].

Following Kuratowski’s definition, in our former paper [70], we have also
introduced the following

Definition 14 A subset A of the relator space X(R) will be called topologically
regular open if

A = intR
(

clR (A)
)
.

And, the family of all such subsets of X(R) will be denoted by T r
R .

Thus, in contrast to the topological case, T r
R need not be a subfamily of TR . To

show this, we can use the following

Example 2 If X={1, 2} and R is a relation on X such that

R (1) = {2} and R (2) = {1},
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then R = {R} is a symmetric relator on X such that

TR = {∅, X} and T r
R = P(X).

Of course, by Theorem 21, we evidently have the following

Theorem 56 If R is a quasi-topological relator on X, then T r
R ⊆ TR .

Moreover, by using Theorem 16, we can easily establish the following

Theorem 57 If R is a reflexive relator on X, then TR ∩FR ⊆ T r
R .

Proof If A ∈ TR ∩ FR , then A ∈ TR and A ∈ FR . Thus, by Definition 3
and Theorem 16, we have A◦ =A and A=A−. Therefore, A◦ =A◦ =A, and thus by
Definition 14 we also have A ∈ T r

R .

From the above two theorems, by using Theorem 22, we can derive

Corollary 13 If R is a topological relator on X, then

TR ∩FR ⊆ T r
R ⊆ TR .

The appropriateness of Definition 14 is also apparent from the following
generalization of a statement of Dontchev [28, p. 4].

Theorem 58 We have

T r
R = T

p

R ∩F s
R .

Proof Namely, by the corresponding definitions and Theorem 47,

A ∈ T r
R ⇐⇒ A = A−◦ ⇐⇒ A ⊆ A−◦, A−◦ ⊆ A

⇐⇒ A ∈ T
p

R , A ∈ F s
R ⇐⇒ A ∈ T

p

R ∩F s
R .

Remark 33 Now, if R is a reflexive relator on X, then by Theorems 38 and 58, we
can also state that TR ∩F s

R ⊆ T r
R .

Thus, by Definition 3 and Theorem 47, we can also state

Corollary 14 If R is a reflexive relator on X and A⊆X such that

intR
(

clR (A)
) ⊆ A ⊆ intR (A),

then A ∈ T r
R .

Now, by using our former results, we can also easily prove

Theorem 59 If R is a topological relator on X, then

T r
R = TR ∩F s

R .
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Proof By Theorem 22, the relator R is reflexive and quasi-topological. Thus, by
Theorems 38 and 56, we have

TR ⊆ T
p

R and T r
R ⊆ TR .

Hence, by using Theorem 58, we can already infer that

T r
R = TR ∩T r

R = TR ∩T
p

R ∩F s
R = TR ∩F s

R .

From this theorem, by using Definition 3 and Theorem 47, we can obtain

Corollary 15 If R is a topological relator on X, then for any A⊆X the following
assertions are equivalent:

(1) A ∈ T r
R ; (2) intR

(
clR (A)

) ⊆ A ⊆ intR (A).

From Theorems 59 and 58, by using Theorem 42, we can also derive

Theorem 60 If R is a topological relator on X, then

(1) T r
R = TR ∩F

q

R ; (2) T r
R = T

ps

R ∩F
q

R .

Proof Namely, by Theorem 42, we have not only T
p

R = T
ps

R but also

A ∈ F s
R ⇐⇒ Ac ∈ T s

R ⇐⇒ Ac ∈ T
q

R ⇐⇒ A ∈ F
q

R ,

and thus F s
R = F

q

R .

Remark 34 Counterparts of Theorem 58 were also proved by Ekici [32, Theorem
8] and Jamunarani et al. [46, Theorem 2.2] by using the weak structures of Császár
[24] and the generalized weak structures of Ávila and Molina [9]. Classes of regular
open sets, in various generalized topological spaces introduced by Császár, have
also been intensively investigated in [45] and [40].

16 Some Further Theorems on the Family T r
R

By using Theorem 59, we can also prove the following generalization of a statement
of Kuratowski [50].

Theorem 61 If R is a topological relator on X, then for any A ∈ T s
R we have

clR (A)c ∈ T r
R .

Proof By Theorems 22 and 21, we have A− ∈ FR . Hence, by Theorem 11, we
infer that A− c ∈ TR .
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Moreover, by Corollary 11, we have A− ∈ T s
R , and thus A− c ∈ F s

R . Hence, by
Theorem 59, we can see that A− c ∈ T r

R .

From this theorem, by using that TR ⊆ T s
R whenever R is reflexive, we can

easily derive the following

Corollary 16 If R is a topological relator on X and A = TR or T s
R , then

T r
R = { clR (A)c : A ∈ A

}
.

Proof Namely, if, for instance, B ∈ T r
R , then by choosing A=Bc ◦, we can see that

A ∈ TR , and thus also A ∈ T s
R , such that

A− c = Bc ◦− c = Bc ◦ c ◦ = B−◦ = B.

Remark 35 Following an observation of Halmos [38, p. 61], it is also worth noticing
that, for a topological relator R on X, we have TR = { clR (A)c : A ⊆ X

}
.

Namely, if, for instance, V ∈ TR , then by choosing A=Vc, we can see that
A ∈ FR , and thus A=A−. Therefore, V =Ac=A−c even if R is assumed to be
only reflexive.

From Theorem 61, by Theorem 2, we can see that A−◦ = A−c−c ∈ F r
R for all

A ∈ T s
R . However, this fact is of no importance for us. Namely, by using Theorem

59, we can prove a better statement.

Theorem 62 If R is a topological relator on X, then for any A⊆X we have

intR
(

clR (A)
) ∈ T r

R .

Proof By Theorems 22 and 21, we have A−◦ ∈ TR . Moreover, quite similarly, we
also have Ac◦ ∈ TR . Hence, by using Theorem 38 and Corollary 11, we can infer
that Ac◦− ∈ T s

R , and thus Ac◦−c ∈ F s
R . However, by using the equalities c ◦=−

c and c − c=◦, we can see that Ac◦−c=A−c−c=A−◦. Therefore, we actually have
A−◦ ∈ F s

R . Hence, by Theorem 59, we can already see that A−◦ ∈ T r
R .

Remark 36 The topological counterparts of Theorems 61 and 62 are usually proved
directly, by using only the corresponding properties of the operations − and ◦.

Now, by using Theorem 62, we can also easily establish the following

Corollary 17 If R is a topological relator on X, then

T r
R = { intR (A) : A ∈ FR

} = { intR
(

clR (A)
) : A ⊆ X

}
.

Remark 37 Hence, it is clear that Stone’s definition [77, p. 376] of a regular open
set coincides with that of Kuratowski [50, p. 9].
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However, it is now more important to note that, by using Theorem 59 we can also
prove the following counterpart of [32, Theorem 7] of Ekici and [46, Theorem 2.1]
of Jamunarani et al.

Theorem 63 If R is a topological relator on X, then

T r
R = T α

R ∩F
β

R .

Proof By Theorems 38 and 37, we have TR ⊆ T α
R and T s

R ⊆ T
β

R , and thus also

F s
R ⊆ F

β

R . Hence, by Theorem 59, we can see that

T r
R = TR ∩F s

R ⊆ T α
R ∩F

β

R .

On the other hand, if A ∈ T α
R ∩F

β

R , and thus A ∈ T α
R and A ∈ F

β

R , then by
Definition 12 and Theorem 53 we have A⊆A◦−◦ and A◦−◦⊆A, and thus A=A◦−◦.
Hence, by using Theorem 62, we can infer that A ∈ T r

R . Therefore, T α
R ∩F

β

R ⊆
T r

R , and thus the required equality is also true.

Finally, we note that, analogously to Theorem 48, we can also prove

Theorem 64 For any A⊆X, the following assertions are equivalent:

(1) A ∈ F r
R ; (2) A = clR

(
intR (A)

)
.

Remark 38 Several further properties of the family F r
R can be directly derived

from those of the family T r
R .

17 Characterizations of the Families T κ
R
with κ = s, p, α, β,

and b

In our former paper [70], we have also proved the following theorems.

Theorem 65 If R is a reflexive relator on X, then for any A⊆X the following
assertions are equivalent:

(1) A ∈ T s
R ;

(2) there exists B⊆X such that

A = intR (A) ∪ B and B ⊆ resR
(

intR (A)
)
.

Theorem 66 If R is a topological relator on X, then for any A⊆X the following
assertions are equivalent:

(1) A ∈ T s
R ;

(2) there exist V ∈ TR and B⊆X such that
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A = V ∪ B and B ⊆ resR (V ).

Theorem 67 If R is a topologically filtered, topological relator on X and A ∈ T s
R ,

then there exist V ∈ TR and B ∈ NR such that

A = V ∪ B and V ∩ B = ∅.

The above theorems are straightforward generalizations of [29, Lemma 1 ] of
Duszyński and Noiri, an observation of Dlaska et al. [27, p. 1163 ] and [54, Theorem
7 ] of Levine, respectively.

While, the following theorem is a counterpart of [35, Proposition 1] of Ganster.

Theorem 68 If R is a topologically filtered, topological relator on X, then for any
A⊆X the following assertions are equivalent:

(1) A ∈ T
p

R ;
(2) there exist V ∈ TR and B ∈ DR such that A=V∩B;
(3) there exists V ∈ TR such that A⊆V and clR (A) = clR (V ).

Remark 39 In this theorem, we may write T r
R instead of TR .

The following theorem is an improvement of [63, Proposition 4] of Njåstad.

Theorem 69 If R is a topologically filtered, topological relator on X, then for any
A⊆X the following assertions are equivalent:

(1) A ∈ T α
R ;

(2) there exist V ∈ TR and B ∈ NR such that A=V \B;
(3) there exist V ∈ TR and B ⊆ resR

(
intR (A)

)
such that A=V \B.

The following two theorems are closely related to [32, Theorems 26 and 23] of
Ekici and [46, Theorem 3.7 and 3.5] of Jamunarani et al.

Theorem 70 If R is a topological relator on X, then for any A⊆X the following
assertions are equivalent:

(1) A ∈ T
β

R ; (2) clR (A) ∈ T s
R ;

(3) there exists V ∈ TR such that clR (A) = clR (V ) ;
(4) there exist V ∈ TR and B⊆X such that

clR (A) = V ∪ B and B ⊆ resR (V ).

Remark 40 In assertion (2), instead of T s
R , we may write not only T

q

R but also T r
R .

Theorem 71 If R is a topological relator on X and A ∈ T
β

R , then there exist
V ∈ T s

R and B ∈ DR such that A=V∩B.

Remark 41 In [70], it was also shown that, analogously to Theorem 67, the converse
of Theorem 71 need not as well be true.
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Moreover, in accordance, with [4, Remark 1] Andrijević, we have also proved

Theorem 72 If R is a topologically filtered, topological relator on X, then for any
A⊆X the following assertions are equivalent:

(1) A ∈ T b
R ;

(2) there exist B ∈ T s
R and C ∈ T

p

R such that A=B∪C.

Remark 42 Now, from the equalities

T a
R =T s

R ∩T
p

R , T r
R =T

p

R ∩F s
R and T a

R =T s
R ∩T

p

R , T r
R =T α

R ∩F
β

R

one can also derive some characterization theorems.

18 Intrinsic Characterizations of the Families TR and T κ
R

with κ = q, ps, s, p

By the corresponding definitions, we evidently have the following

Theorem 73 For any A⊆X, the following assertions are equivalent:

(1) A ∈ TR ;
(2) for each x∈A there exists R ∈ R such that R (x)⊆A.

By using the corresponding definitions, we can also easily prove

Theorem 74 For any A⊆X, the following assertions are equivalent:

(1) A ∈ T
q

R ;
(2) there exists V ∈ TR such that V⊆A and, for any x∈A and R ∈ R, we have

R (x)∩V �=∅.
Proof By the definition of T

q

R , assertion (1) means only that there exists V ∈ TR
such that V ⊆A and A⊆V−.

Moreover, by using the definition of −, we can see that the following assertions
are equivalent :

(a) A⊆V− ;
(b) ∀ x∈A : x∈V− ;
(c) ∀ x ∈ A : ∀ R ∈ R : R (x) ∩ V �= ∅.

Therefore, assertions (1) and (2) are also equivalent.

Quite similarly, we can also prove the following

Theorem 75 For any A⊆X, the following assertions are equivalent:

(1) A ∈ T
ps

R ;
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(2) there exists V ∈ TR such that A⊆V and, for any x∈V and R ∈ R, we have
R (x)∩A�=∅.

Remark 43 Note that if R is a reflexive relator on X and A ∈ TR , then by taking
V =A we can see that V ∈ TR such that V ⊆A and, for any x∈A and R ∈ R, we
have x∈R (x)∩V , and thus R (x)∩V �=∅. Therefore, by Theorem 74, we also have
A ∈ T

q

R .
A quite similar application of Theorem 75 shows that now A ∈ T

ps

R also holds.

By using the corresponding definitions, we can also easily prove the following
two theorems.

Theorem 76 For any A⊆X, the following assertions are equivalent:

(1) A ∈ T s
R ;

(2) for each x∈A and R ∈ R, there exist y∈R (x) and S ∈ R such that S (y)⊆A.

Proof By using the corresponding definitions, assertion (1) can be reformulated in
the following equivalent forms :

(a) A⊆A◦−;
(b) ∀ x∈A : x∈A◦− ;
(c) ∀ x ∈ A : ∀ R ∈ R : R (x) ∩ A◦ �= ∅ ;
(d) ∀ x ∈ A : ∀ R ∈ R : ∃ y ∈ R (x) : y ∈ A◦ ;
(e) ∀ x ∈ A : ∀ R ∈ R : ∃ y ∈ R (x) : ∃ S ∈ R : S (y) ⊆ A.

Therefore, assertions (1) and (2) are also equivalent.

Theorem 77 For any A⊆X, the following assertions are equivalent:

(1) A ∈ T
p

R ;
(2) for each x∈A, there exists R ∈ R such that, for any y∈R (x) and S ∈ R, we

have S (y)∩A�=∅.
Proof By using the corresponding definitions, assertion (1) can be reformulated in
the following equivalent forms :

(a) A⊆A−◦;
(b) ∀ x∈A : x∈A−◦ ;
(c) ∀ x ∈ A : ∃ R ∈ R : R (x) ⊆ A− ;
(d) ∀ x ∈ A : ∃ R ∈ R : ∀ y ∈ R (x) : y ∈ A− ;
(e) ∀ x ∈ A : ∃ R ∈ R : ∀ y ∈ R (x) : ∀ S ∈ R : S (y) ∩ A �= ∅.

Therefore, assertions (1) and (2) are also equivalent.

Remark 44 Note that if A ∈ T
q

R , then by Theorem 74 there exists V ∈ TR such
that V ⊆A and, for any x∈A and R ∈ R, we have R (x)∩V �=∅. Therefore, there
exists y∈R (x) such that y∈V . Now, by Theorem 73, we can also state that there
exists S ∈ R such that S (y)⊆V . Thus, by Theorem 76, we also have A ∈ T s

R .
A quite similar application of Theorems 75, 73, and 77 shows that A ∈ T

ps

R also
implies A ∈ T

p
p .
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19 Intrinsic Characterizations of the Families T κ
R

with κ = γ , δ, α, β, a, b

Analogously, to Theorems 75 and 74, we can also easily establish the following two
theorems.

Theorem 78 For any A⊆X, the following assertions are equivalent:

(1) A ∈ T
γ

R ;
(2) there exists V ∈ T s

R such that A⊆V and, for any x∈V and R ∈ R, we have
R (x)∩A�=∅.

Theorem 79 For any A⊆X, the following assertions are equivalent:

(1) A ∈ T δ
R ;

(2) there exists V ∈ T
p

R such that V⊆A and, for any x∈A and R ∈ R, we have
R (x)∩V �=∅.

Moreover, by using the corresponding definitions and the proofs of Theorems 76
and 77, we can also easily prove the following two theorems.

Theorem 80 For any A⊆X, the following assertions are equivalent:

(1) A ∈ T α
R ;

(2) for every x∈A, there exists R ∈ R such that, for any y∈R (x) and S ∈ R, there
exist z∈ S (y) and T ∈ R such that T (z)⊆A.

Proof By using the corresponding definitions, assertion (1) can be reformulated in
the following equivalent forms :

(a) A⊆A◦−◦ ;
(b) ∀ x∈A : x∈A◦−◦ ;
(c) ∀ x ∈ A : ∃ R ∈ R : R (x) ⊆ A◦− ;
(d) ∀ x ∈ A : ∃ R ∈ R : ∀ y ∈ R (x) : y ∈ A◦−.

Moreover, from the proof of Theorem 76, we can see that

y ∈ A◦− ⇐⇒ ∀ S ∈ R : ∃ z ∈ S (y) : ∃ T ∈ R : T (z) ⊆ A.

Therefore, assertions (1) and (2) are also equivalent.

Theorem 81 For any A⊆X, the following assertions are equivalent:

(1) A ∈ T
β

R ;
(2) for each x∈A and R ∈ R, there exist y∈R (x) and S ∈ R such that, for any

z∈ S (y) and T ∈ R we have T (z)∩A�=∅.
Proof By using the corresponding definitions, assertion (1) can be reformulated in
the following equivalent forms :

(a) A⊆A−◦− ;
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(b) ∀ x∈A : x∈A−◦− ;
(c) ∀ x ∈ A : ∀ R ∈ R : R (x) ∩ A−◦ �= ∅ ;
(d) ∀ x ∈ A : ∀ R ∈ R : ∃ y ∈ R (x) : y ∈ A−◦.

Moreover, from the proof of Theorem 77, we can see that

y ∈ A−◦ ⇐⇒ ∃ S ∈ R : ∀ z ∈ S (y) : ∀ T ∈ R : T (z) ∩ A �= ∅.

Therefore, assertions (1) and (2) are also equivalent.

Now, as an immediate consequence of Theorem 36, 76 and 77, we can also state
the following

Theorem 82 For any A⊆X, we haveA ∈ T a
R if and only if the following assertions

hold:

(1) for each x∈A and R ∈ R, there exist y∈R (x) and S ∈ R such that S (y)⊆A;
(2) for each x∈A, there exists R ∈ R such that, for any y∈R (x) and S ∈ R, we

have S (y)∩A�=∅.
Moreover, by using the corresponding definitions and the proofs of Theorems 76

and 77, we can also easily prove the following

Theorem 83 For any A⊆X, we have A ∈ T b
R if and only if for each x∈A, any one

of the following assertions holds:

(1) for each R ∈ R, there exist y∈R (x) and S ∈ R such that S (y)⊆A;
(2) there existsR ∈ R such that, for any y∈R (x) and S ∈ R, we have S (y)∩A�=∅.
Proof By using the corresponding definitions, the assertion A ∈ T b

R can be
reformulated in the following equivalent forms :

(a) A⊆A◦−∪ A−◦ ;
(b) ∀ x∈A : x∈A◦−∪ A−◦ ;
(c) ∀ x∈A : x∈A◦− or x∈ A−◦.

Moreover, from the proofs of Theorems 76 and 77, we can see that

x ∈ A◦− ⇐⇒ ∀ R ∈ R : ∃ y ∈ R (x) : ∃ S ∈ R : S (y) ⊆ A,

and

x ∈ A−◦ ⇐⇒ ∃ R ∈ R : ∀ y ∈ R (x) : ∀ S ∈ R : S (y) ∩ A �= ∅.

Therefore, the assertion of the theorem is also true.
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20 Intrinsic Characterizations of the Family T r
R

From Theorems 58, 59, 60, and 63, by using the corresponding results of Sects. 18
and 19, we can immediately derive several intrinsic characterizations of the family
T r

R .

Theorem 84 For any A⊆X, we have A ∈ T r
R if and only if

(1) for each x∈Ac and R ∈ R, there exist y∈R (x) and S ∈ R such that
S (y)∩A=∅ ;

(2) for each x∈A, there exists R ∈ R such that, for any y∈R (x) and S ∈ R, we
have S (y)∩A�=∅.

Proof By Theorem 58, we have A ∈ T r
R if and only if A ∈ T

p

R and A ∈ F s
R , i.

e., Ac ∈ T s
R . Hence, by using Theorems 77 and 76, we can see that the A ∈ T r

R if
and only if both (2) and (1) hold.

Theorem 85 If R is a topological relator on X, then for any A⊆X we have A ∈
T r

R if and only if

(1) for each x∈A there exists R ∈ R such that R (x)⊆A;
(2) for each x∈Ac and R ∈ R, there exist y∈R (x) and S ∈ R such that

S (y)∩A=∅ ;

Proof By Theorem 59, we have A ∈ T r
R if and only if A ∈ TR and Ac ∈ T s

R .
Hence, by using Theorems 73 and 76, we can see that A ∈ T r

R if and only if both
(1) and (2) hold.

Theorem 86 If R is a topological relator on X, then for any A⊆X we have A ∈
T r

R if and only if

(1) for each x∈A there exists R ∈ R such that R (x)⊆A;
(2) there exists W ∈ FR such that A⊆W and for any x∈Ac and R ∈ R we have

R (x) \W �=∅.
Proof By Theorem 60, we have A ∈ T r

R if and only if A ∈ TR and Ac ∈ T
q

R .
Hence, by using Theorems 73 and 74, we can see that A ∈ T r

R if and only if (1)
holds and

(a) ∃ V ∈ TR : V ⊆ Ac and ∀ x ∈ Ac : ∀ R ∈ R : R (x) ∩ V �= ∅.

Moreover, by noticing that

(
V ∈ TR ⇐⇒ V c ∈ FR

)
and

(
V ⊆ Ac ⇐⇒ A ⊆ V c

)
,

and R (x)∩V =R (x)∩Vcc=R (x) \Vc, we can see that assertion (a) can be
reformulated in the form that

(b) ∃ W ∈ FR : A ⊆ W and ∀ x ∈ Ac : ∀ R ∈ R : R (x) \W �= ∅.

Therefore, A ∈ T r
R if and only if both (1) and (2) hold.
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Theorem 87 If R is a topological relator on X, then for any A⊆X we have A ∈
T r

R if and only if

(1) there exists V ∈ TR such that A⊆V and, for any x∈V and R ∈ R, we have
R (x)∩A�=∅;

(2) there exists W ∈ FR such that A⊆W and for any x∈Ac and R ∈ R we have
R (x) \W �=∅.

Proof By Theorem 60, we have A ∈ T r
R if and only if A ∈ T

ps

R and Ac ∈ T
q

R .
Hence, by using Theorem 75 and the proof of Theorem 86, we can see that A ∈ T r

R
if and only if both (1) and (2) hold.

Theorem 88 If R is a topological relator on X, then for any A⊆X we have A ∈
T r

R if and only if

(1) for each x∈Ac and R ∈ R, there exist y∈R (x) and S ∈ R such that, for any
z∈ S (y) and T ∈ R, we have T (z) \A�=∅;

(2) for every x∈A, there exists R ∈ R such that, for any y∈R (x) and S ∈ R, there
exist z∈ S (y) and T ∈ R such that T (z)⊆A.

Proof By Theorem 63, we have A ∈ T r
R if and only if A ∈ T α

R and Ac ∈ T
β

R .
Hence, by using Theorem 80 and 81, we can see that A ∈ T r

R if and only if both
(2) and (1) hold.

Remark 45 In principle each of the above characterizations can be used to prove
several properties of the family T r

R .
However, for instance, these characterizations cannot certainly be used to easily

prove our former Theorems 61 and 62.

21 Conditions in Order That ∅ Could Be in T κ
R

By using the corresponding definitions, we can easily establish the following

Theorem 89 We have

(1) ∅ ∈ TR ; (2) ∅ ∈ T s
R ∩T

p

R ;

(3) ∅ ∈ T a
R ∩T b

R ; (4) ∅ ∈ T α
R ∩T

β

R .

Proof Clearly, ∅⊆A for all A⊆X. Therefore, by the corresponding definitions, the
required assertions are true.

For instance, from the inclusions ∅⊆∅◦ and ∅⊆∅◦−◦, we can at once see that
∅ ∈ TR and ∅ ∈ T α

R are true.

Now, by using this theorem, we can also easily prove the following

Theorem 90 We have

(1) ∅ ∈ T
q

R ∩T
ps

R ; (2) ∅ ∈ T
γ

R ∩T δ
R .
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Proof By taking V =∅, we have V ∈ TR , V ∈ T
p

R and V ∈ T s
R . Moreover, we

also have

V ⊆ ∅ ⊆ V − and ∅ ⊆ V ⊆ ∅−.

Therefore, by the corresponding definitions, the required assertions are also true.
For instance, from V ∈ T s

R and ∅⊆V ⊆∅−, we can see that ∅ ∈ T
γ

R .

The next simple example shows that, in contrast to the above theorems, ∅ need
not be contained in T r

R

Example 3 If X={1, 2} and R is a relation on X such that

R (1) = ∅ and R (2) = {2},

then ∅ /∈ T r
R .

Namely, by the corresponding definitions, we have ∅− =∅ and ∅◦ = {1}. There-
fore, ∅−◦ = ∅◦ = {1}�=∅, and thus ∅ /∈ T r

R .

Remark 46 Note that if R is a nonvoid, non-partial relator on X, then by the
corresponding definitions we have ∅− =∅ and ∅◦ =∅. Therefore, ∅−◦ = ∅◦ =∅,
and thus ∅ ∈ T r

R .

However, by using Theorem 73, we can now prove a much better statement.

Theorem 91 The following assertions are equivalent:

(1) ∅ ∈ T r
R ; (2) R is non-partial.

Proof By using the corresponding definitions, assertion (2) can be reformulated in
the form :

(a) ∀ x ∈ X : ∀ R ∈ R : ∃ y ∈ R (x).

Moreover, from Theorem 73, we can see that assertion (1) is equivalent to the
statement :

(b) ∀ x ∈ X : ∀ R ∈ R : ∃ y ∈ R (x) : ∃ S ∈ R : S (y) ∩ ∅ = ∅.

Clearly, (b) implies (a), and thus (1) implies (2). On the other hand, if (a) holds and
R �= ∅, then by taking any S ∈ R, we can see that (b) also holds. While, if R = ∅,
then (b) trivially holds. Therefore, (2) also implies (1).

From this theorem, by using Theorem 18, we can immediately derive

Corollary 18 The following assertions are equivalent:

(1) ∅ ∈ T r
R ; (2) ∅ /∈ ER ; (3) X ∈ DR .

Actually, by using the corresponding definitions and Theorems 2 and 7, we can
also prove the following

Theorem 92 The following assertions are equivalent:
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(1) ∅ ∈ T r
R ; (2) ∅ ∈ NR ;

(3) clR (∅) /∈ ER ; (4) intR (X) ∈ DR .

Proof By the corresponding definitions, it is clear that each of the assertions (1),
(2), and (3) is equivalent to the equality ∅−◦ =∅. Therefore, assertions (1), (2), and
(3) are equivalent.

Moreover, by using Theorem 7 and the equality − c= c ◦, we can see that

∅− /∈ ER ⇐⇒ ∅−c ∈ DR ⇐⇒ ∅c ◦ ∈ DR ⇐⇒ X◦ ∈ DR .

Therefore, assertions (3) and (4) are also equivalent.

Thus, in addition to Theorem 18, we can also state

Corollary 19 The following assertions are equivalent:

(1) R is non-partial; (2) clR (∅) /∈ ER ; (3) intR (X) ∈ DR .

22 Conditions in Order That a Singleton Could Be in T κ
R

By specializing the results of Sects. 15, 16, and 17 to a singleton, we can easily
establish the following theorems.

Theorem 93 For any x∈X, the following assertions are equivalent:

(1) {x} ∈ TR ; (2) there exists R ∈ R such that R (x)⊆{x}.
Theorem 94 For any x∈X, the following assertions are equivalent:

(1) {x} ∈ T
q

R ;
(2) there exists V ∈ TR such that V⊆{x} and, for each R ∈ R, we have

R (x)∩V �=∅.
Theorem 95 For any x∈X, the following assertions are equivalent:

(1) {x} ∈ T
ps

R ;
(2) there exists V ∈ TR such that x∈V and, for each y∈V and R ∈ R we have

x∈R (y).

Theorem 96 For any x∈X, the following assertions are equivalent:

(1) {x} ∈ T s
R ;

(2) for every R ∈ R there exist y∈R (x) and S ∈ R such that S (y)⊆{x}.
Theorem 97 For any x∈X, the following assertions are equivalent:

(1) {x} ∈ T
p

R ;
(2) there exists R ∈ R such that for any y∈R (x) and S ∈ R we have x∈ S (y).
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Theorem 98 For any x∈X, we have {x} ∈ T r
R if and only if

(1) there exists R ∈ R such that for any y∈R (x) and S ∈ R we have x∈ S (y) ;
(2) for each y∈{x}c and U ∈ R there exist z∈U (y) and V ∈ R such that

x∈V(z).

Theorem 99 If R is a topological relator on X, then for any x∈X we have
{x} ∈ T r

R if and only if

(1) there exists V ∈ TR such that x∈V and, for any y∈{x}c and R ∈ R, we have
R (y)∩V �=∅;

(2) there exists W ∈ TR such that x∈W and, for any y∈W and R ∈ R, we have
x∈R (y).

Theorem 100 For any x∈X, the following assertions are equivalent:

(1) {x} ∈ T
γ

R ;
(2) there exists V ∈ T s

R such that x∈V and, for any y∈V and R ∈ R we have
x∈R (y).

Theorem 101 For any x∈X, the following assertions are equivalent:

(1) {x} ∈ T δ
R ;

(2) there exists V ∈ T
p

R such that V⊆{x} and, for any R ∈ R, we have
R (x)∩V �=∅.

Theorem 102 For any x∈X, the following assertions are equivalent:

(1) {x} ∈ T α
R ;

(2) there exists R ∈ R such that for any y∈R (x) and S ∈ R there exist z∈ S (y)
and T ∈ R such that T (z)⊆{x}.

Theorem 103 For any x∈X, the following assertions are equivalent:

(1) {x} ∈ T
β

R ;
(2) for each R ∈ R there exist y∈R (x) and S ∈ R such that for any z∈ S (y) and

T ∈ R we have x∈ T (z).

Theorem 104 For any x∈X, we have {x} ∈ T a
R if and only if

(1) for every R ∈ R there exist y∈R (x) and S ∈ R such that S (y)⊆{x};
(2) there exists R ∈ R such that for any y∈R (x) and S ∈ R we have x∈ S (y).

Corollary 20 If x∈X such that {x} ∈ T a
R , then there exist R ∈ R, y∈R (x) and

S ∈ R such that S (y)={x}.
Theorem 105 For any x∈X, we have {x} ∈ T b

R if and only if any one of the
following assertions holds:

(1) for every R ∈ R there exist y∈R (x) and S ∈ R such that S (y)⊆{x};
(2) there exists R ∈ R such that for any y∈R (x) and S ∈ R we have x∈ S (y).
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23 Some Further Conditions in Order That a Singleton
Could Be in T κ

R

In addition to Theorem 93, we can also prove the following

Theorem 106 If R is a reflexive relator on X, then for any x∈X the following
assertions are equivalent:

(1) {x} ∈ TR ; (2) intR
({x}) �= ∅.

Proof If (1) holds, then by Definition 3, we have {x}⊆{x}◦. Hence, we can infer that
x∈{x}◦, and thus {x}◦�=∅. Therefore, (2) also holds even if R is not assumed to be
reflexive.

Conversely, if (2) holds, then there exists y∈X such that y∈{x}◦. Thus, by
Definition 1, there exists R ∈ R such that R (y)⊆{x}. Hence, by using that y∈R (y),
we can infer that y∈{x}, and thus y= x. Therefore, we have x∈{x}◦, and thus also
{x}⊆{x}◦. Consequently, (1) also holds.

From Theorem 94, we can easily derive the following

Theorem 107 If R is a nonvoid relator on X, then for any x∈X, the following
assertions are equivalent:

(1) {x} ∈ T
q

R ; (2) {x} ∈ TR and, for any R ∈ R, we have x∈R (x).

Proof If (1) holds, then by Theorem 94, there exists V ∈ TR such that V ⊆{x} and,
for each R ∈ R, we have R (x)∩V �=∅. Hence, by choosing an arbitrary R ∈ R, we
can infer that V �=∅. Therefore, we necessarily have V ={x}. Hence, we can already
see that {x} ∈ TR . Moreover, we can also note that, for any R ∈ R, we have R
(x)∩{x}=R (x)∩V �=∅, and thus x∈R (x). Therefore, (2) also holds.

Conversely, if (2) holds, then by choosing V ={x}, we can see that V ∈ TR such
that V ⊆{x}, and for each R ∈ R we have x∈R (x)∩V , and thus R (x)∩V �=∅.
Therefore, by Theorem 94, assertion (1) also holds even if R is not supposed to be
nonvoid.

Now, as an improvement of [74, Proposition 3.1], of Sarsak, we can also prove

Theorem 108 If R is a nonvoid, reflexive relator on X, then for any x∈X, the
following assertions are equivalent:

(1) {x} ∈ TR ; (2) {x} ∈ T
q

R ; (3) {x} ∈ T s
R .

Proof From Theorem 36, we can see that (2) always implies (3). While, from
Theorem 38, we can see that (1) implies (2) even if R is assumed to be only
reflexive. Therefore, we need to only prove that (3) also implies (1).

For this, note that if (3) holds, then by Theorem 96, for every R ∈ R, there exist
y∈R (x) and S ∈ R such that S (y)⊆{x}. Hence, by using that y∈ S (y), we can infer
that y∈{x}, and thus y= x. Therefore, S (x)⊆{x}. Thus, by Theorem 73, assertion
(1) also holds.
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By using an argument of Sarsak [74], we can also prove the following analogue
of Theorem 106.

Theorem 109 If R is a topological relator on X, then for any x∈X the following
assertions are equivalent:

(1) {x} ∈ T
p

R ; (2) intR
(
clR

({x})) �= ∅.

Proof If (1) holds, then by Definition 12, we have {x}⊆{x}−◦. Hence, it is clear that
x∈{x}−◦, and thus (2) also holds even if R is not assumed to have any particular
property. Therefore, we need actually prove the converse implication.

For this, note that if (1) does not hold, then {x}�{x}−◦. Hence, we can infer that
x �∈{x}−◦, and thus

{x} ∩ {x}−◦ = ∅.

Moreover, from Theorems 22 and 21, we can see that {x}−◦ ∈ TR . Hence, by using
Corollary 2, we can infer that

{x}− ∩ {x}−◦ = ∅.

Moreover, from Theorems 22 and 16, we can see that {x}−◦⊆{x}−. Therefore, we
actually have

{x}−◦ = {x}− ∩ {x}−◦ = ∅,

and thus (2) does not also holds.

Now, as a counterpart of [74, Proposition 3.3], of Sarsak, we can also prove

Theorem 110 If R is a nonvoid topological relator on X, then for any x∈X the
following assertions are equivalent:

(1) {x} ∈ T
p

R ; (2) {x} ∈ T b
R ; (3) {x} ∈ T

β

R .

Proof From Theorem 36, we can see that (1) always implies (2). Moreover, from
Theorem 37, we can see that (2) implies (3) even if R is assumed to be reflexive.
Therefore, we need to only prove that (3) also implies (1).

For this, note that if (1) does not hold, then by Theorem 109 we have {x}−◦ =∅.
Hence, by using that R �= ∅, we can already infer that {x}−◦− = ∅− =∅. Therefore,
{x}�{x}−◦−, and thus (3) does not also hold.

Moreover, by using Theorem 109, we can also easily establish the following two
theorems.

Theorem 111 If R is a topological relator on X, then for any x∈X we have
{x} ∈ N

p

R ∪T
p

R .
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Theorem 112 If R is a topological relator on X, then for any x∈X we have
{x} ∈ T

p

R ∪F α
R .

Proof If {x} /∈ T
p

R , then by Theorem 109 we have {x}−◦− = ∅⊆{x}. Thus, by
Theorem 52, we also have {x} ∈ F α

R .

Remark 47 If R is a reflexive relator on X, then by Theorems 36 and 37, we have
T α

R ⊆ T s
R ∪T

p

R , and thus also F α
R ⊆ F s

R ∪F
p

R ,

Therefore, as an immediate consequence of Theorem 112, we can also state

Corollary 21 If R is a topological relator on X, then for any x∈X we have
{x} ∈ T

p

R ∪F
p

R .

Remark 48 Note that Theorem 111 is a generalization of [47, Lemma 2] of Janković
and Reilly.

While, Corollary 21 can be used to obtain a generalization of [72, Theorem 3] of
Reilly and Vamanamurthy and [61, Theorem 2] of Mukharjee and Roy.

24 Conditions in Order That X Could Be in T κ
R

By Theorem 73, we evidently have the following

Theorem 113 The following assertions are equivalent:

(1) X ∈ TR ; (2) either X=∅ or R �= ∅.

In addition to Theorem 91, we can also prove the following

Theorem 114 The following assertions are equivalent:

(1) X ∈ T
q

R ; (2) TR ∩DR �= ∅;
(3) X ∈ T s

R ; (4) R is non-partial; (5) X ∈ T
γ

R .

Proof By using the corresponding definitions, assertion (1) can be reformulated in
the following equivalent forms:

(a) ∃ V ∈ TR : V ⊆ X ⊆ V − ;
(b) ∃ V ∈ TR : X = V − ; (c) ∃ V ∈ TR : V ∈ DR .

Therefore, assertions (1) and (2) are equivalent.

On the other hand, from Theorem 36, it is clear that (1) implies (3). Moreover,
by using Theorems 89, 58, and 91, we can see that

(3) ⇐⇒ ∅c ∈ T s
R ⇐⇒ (∅ ∈ T

p

R , ∅c ∈ T s
R

) ⇐⇒ ∅ ∈ T r
R ⇐⇒ (4).

Now, to obtain the equivalence of assertions (1)–(4), we need to only show that
if (4) holds, then (1) also holds. That is, by Theorem 74,
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(d) there exists V ∈ TR such that V ⊆X and, for any x∈X and R ∈ R, we have R
(x)∩V �=∅.

For this, note that if R = ∅, then by taking V =∅ condition (d) can be trivially
satisfied. While, if R �= ∅, then by taking V =X condition (d) can be trivially
satisfied.

Finally, to complete the proof, we note that, by Theorem 78, assertion (5) holds if
and only if
(e) there exists V ∈ T s

R such that X⊆V and, for any x∈V and R ∈ R, we have R
(x)∩X �=∅.

That is, X ∈ T s
R and for any x∈X and R ∈ R we have R (x) �=∅. Therefore, (5)

holds if and only if both (3) and (4) hold. Hence, since (3) and (4) are equivalent, it
is clear that assertions (4) and (5) are also equivalent.

Now, by using Theorem 19 and 80, we can also prove

Theorem 115 The following assertions are equivalent:

(1) X ∈ T r
R ; (2) X ∈ T

p

R ;
(3) X ∈ T α

R ; (4) R is locally non-partial.

Proof From Definition 12 and Theorem 19, we can see that

(1) ⇐⇒ X = X−◦ ⇐⇒ (4).

Moreover, by the corresponding definitions, it is clear that

(1) ⇐⇒ X = X−◦ ⇐⇒ X ⊆ X−◦ ⇐⇒ (2).

Therefore, we need to only prove that (3) and (4) are also equivalent. For this,
note that, by Theorem 80, assertion (3) holds if and only if for every x∈X there
exists R ∈ R such that, for any y∈R (x) and S ∈ R, there exist z∈ S (y) and T ∈ R
such that T (z)⊆X. Hence, since the latter inclusion gives no requirement, it is clear
that assertions (3) and (4) are also equivalent.

Moreover, by using our former results, we can also prove the following theorems.

Theorem 116 The following assertions are equivalent:

(1) X ∈ T a
R ; (2) R is non-partial and locally non-partial.

Proof From Theorems 36, 114, and 115, we can see that

(1) ⇐⇒ (
X ∈ T s

R , X ∈ T
p

R

) ⇐⇒ (2).

Theorem 117 The following assertions are equivalent:

(1) X ∈ T
ps

R ; (2) R is non-partial and either X=∅ or R �= ∅.
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Proof From Theorem 75, we can see that (1) holds if and only if there exists V ∈
TR such that X⊆V and, for any x∈V and R ∈ R we have R (x)∩X �=∅.

However, this is equivalent to the requirement that X ∈ TR and, for any x∈X
and R ∈ R, we have R (x) �=∅. Hence, by Theorem 113 and Definition 7, it is clear
that assertions (1) and (2) are equivalent.

Theorem 118 The following assertions are equivalent:

(1) X ∈ T δ
R ;

(2) there exists V ∈ T
p

R such that for any x∈X and R ∈ R we have R (x)∩V �=∅.
Proof From Theorem 79, we can see that assertion (1) holds if and only if there
exists V ∈ T

p

R such that V ⊆X and, for any x∈X and R ∈ R, we have R
(x)∩V �=∅. Therefore, assertions (1) and (2) are also equivalent.

From the latter three theorems, by using Remark 18 and Theorem 115, we can
derive the following

Corollary 22 If R is a nonvoid relator on X, then the following assertions are
equivalent:

(1) X ∈ T a
R ; (2) X ∈ T

ps

R ; (3) X ∈ T δ
R ; (4) R is non-partial.

Proof To prove the equivalence of (3) and (4), note that if (3) holds, then by
Theorem 118 and Definition 6 assertion (4) also holds.

While, if (4) holds, then Remark 18 the relator R is locally non-partial. Thus, by
Theorem 115, we have X ∈ T

p

R . Therefore, by choosing V =X, we can state that
V ∈ T

p

R such that, for every x∈X and R ∈ R, we have R (x)∩V =R (x) �=∅. Thus,
by Theorem 118, assertion (3) also holds.

Moreover, in addition to Theorems 81 and 114, we can also prove

Theorem 119 The following assertions are equivalent:

(1) X ∈ T
β

R ; (2) R is non-partial.

Proof From Theorem 81, we can see that assertion (1) holds if and only if for each
x∈X and R ∈ R there exist y∈R (x) and S ∈ R such that for any z∈ S (y) and
T ∈ R we have T (z)∩X �=∅, i. e., T (z) �=∅. Therefore, assertions (1) and (2) are
also equivalent.

25 Union Properties of the Families T κ
R

By using the corresponding definitions and the increasingness of the operations ◦
and −, we can easily prove the following

Theorem 120 The families TR and T κ
R , with κ = s, p, α, and β, are closed under

arbitrary unions.
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Proof Note that if ♦=◦, ◦−, −◦, ◦−◦ or −◦−, then ♦ is an increasing unary
operation on P(X).

Moreover, if Ai ⊆ ABi for all i∈ I, then we also have

⋃

i∈I
Ai ⊆ ⋃

i∈I
ABi ⊆

⋃

i∈I

( ⋃

i∈I
Ai

)B ⊆
( ⋃

i∈I
Ai

)B
.

Hence, it is clear that the required assertions are true.

Theorem 121 The families T κ
R , with κ = q, ps, γ , and δ, are also closed under

arbitrary unions.

Proof For instance, if Ai ∈ T
q

R for all i∈ I, then by Definition 12, for each i∈ I,
there exists Vi ∈ TR such that

Vi ⊆ Ai ⊆ V −
i .

Hence, by using the increasingness of the operation −, we can infer that

⋃

i∈I
Vi ⊆ ⋃

i∈I
Ai ⊆ ⋃

i∈I
V −
i ⊆ ⋃

i∈I

( ⋃

i∈I
Vi

)− ⊆
( ⋃

i∈I
Vi

)−
.

Moreover, by Theorem 93, we also have
⋃

i∈I Vi ∈ TR . Therefore, by Definition
12, we also have

⋃
i∈I Ai ∈ T

q

R .
While, if, for instance, Ai ∈ T

γ

R for all i∈ I, for each i∈ I, there exists Vi ∈ T s
R

such that

Ai ⊆ Vi ⊆ A−i .

Hence, by using the increasingness of the operation −, we can infer that

⋃

i∈I
Ai ⊆ ⋃

i∈I
Vi ⊆ ⋃

i∈I
A−i ⊆

⋃

i∈I

( ⋃

i∈I
Ai

)− ⊆
( ⋃

i∈I
Ai

)−
.

Moreover, by Theorem 93, we also have
⋃

i∈I Vi ∈ T s
R . Therefore, by Definition

12, we also have
⋃

i∈I Ai ∈ T
γ

R .

The next simple example shows that, in contrast to the above theorems, the family
T r

R need not be closed even under pairwise unions.

Example 4 If X = R and

Rn =
{
(x, y) ∈ X2 : d (x, y) < n−1 }

for all n ∈ N, then R = {Rn : n ∈ N} is a properly filtered, strongly topological,
tolerance relator on X such that, for the sets
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A = ] 0, 1 [ and B = ] 1, 2 [,

we have A, B ∈ T r
R such that A ∪ B /∈ T r

R .
To check the latter statement, note that

A−◦ = ] 0, 1 [ −◦ = [ 0 1 ]◦ = ] 0, 1 [ = A,

and quite similarly B−◦ =B. Therefore, A, B ∈ T r
R .

However, for the set C=A∪B, we have

C− = A− ∪ B− = [ 0, 1 ] ∪ [ 1, 2 ] = [ 0, 2], and thus C−◦ = [ 0, 2]◦ = ] 0, 2 [.

Therefore, C−◦�C, and thus C /∈ T r
R , despite that C ∈ TR , and thus by Theorem

38 we have C ∈ T κ
R for all κ �=r.

Now, in addition to Theorems 93 and 94, we can also easily prove

Theorem 122 The families T a
R and T b

R are also closed under arbitrary unions.

Proof By Theorem 36, we have T a
R = T s

R ∩ T
p

R . Moreover, by Theorem 93, the
families T s

R and T
p

R are closed under unions. Hence, it can be easily seen that T a
R

is also closed under unions.
While, if Ai ∈ T b

R for all i∈ I, then by Definition 12 we have

Ai ⊆ A◦−i ∪ A−◦i

for all i∈ I. Hence, by using the increasingness of the operations ◦ − and − ◦, we
can infer that

⋃

i∈I
Ai ⊆

⋃

i∈I

(
A◦−i ∪ A−◦i

)

⊆ ⋃

i∈I

(( ⋃

i∈I
Ai

)◦− ∪
( ⋃

i∈I
Ai

)−◦) ⊆
( ⋃

i∈I
Ai

)◦− ∪
( ⋃

i∈I
Ai

)−◦
.

Therefore, by Definition 12, we also have
⋃

i∈I Ai ∈ T b
R .

Remark 49 From the above three theorems, by taking I=∅, we can also infer that
∅ ∈ TR and ∅ ∈ T κ

R for all κ = s, p, α, β, q, ps, γ , δ, a, and b.
Therefore, TR and T κ

R , with κ = s, p, α, β, q, ps, γ , δ, a, and b, are generalized
topologies in the sense of a recent terminology of Császár [20, 21].

However, it is now more important to note that, as an immediate consequence of
the results of the present and the previous sections, we can also state the following

Theorem 123 If R is a nonvoid, non-partial relator on X, then TR and T κ
R , with

κ = s, p, α, β, q, ps, γ , δ, a, and b, are generalized topologies on X in the narrower
sense that they are closed under arbitrary unions and contain X.
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Namely, from this theorem, by using [87, Theorem 3.9], we can immediately
derive the following

Theorem 124 If R is a nonvoid, non-partial relator on X and A = TR or T κ
R ,

with κ = s, p, α, β, q, ps, γ , δ, a, and b, then

S = RA = {RA : A ∈ A
}
,

with RA = A2 ∪Ac×X, is a nonvoid preorder relator on X such that TS = A .

Remark 50 Therefore, the properties of the generalized topologically open sets with
respect to a nonvoid, non-partial relator can, in principle, be derived from those of
the topologically open sets with respect to a nonvoid, preorder relator.

26 An Illustrating Example to Theorem 124

For an instructive illustration of Theorem 124, we can now easily establish an
improvement of [13, Example 1.1] of Crossley and Hildebrandt.

This example was later used by Hamlett [41] to show that [54, Theorem 10] of
Levine, who used the same interior sign for different topologies, is false.

Example 5 If X={1, 2, 3}, and R1, R2 , and R3 are relations on X such that

R1(1) = {1} , R1(2) = X, R1(3) = X;
R2(1) = {1, 2} , R2(2) = {1, 2} , R2(3) = X;
R3(1) = {1, 3} , R3(2) = X, R3(3) = {1, 3} ;

then

R = {R1, R2
}

and S = {R1, R2, R3
}

are topologically filtered preorder relators on X such that, under the notations

V1 = {1}, V2 = {1, 2}, V3 = {1, 3},

we have

(1) T r
R = {∅, X} ; (2) T r

S = {∅, X} ;
(3) TR = {∅, V1, V2, X} ; (4) TS = {∅, V1, V2, V3, X} ;
(5) T s

R = T
q

R = T
p

R = T
ps

R = T α
R = T

β

R = T
γ

R = T δ
R =T a

R =T b
R =TS ;

(6) T s
S = T

q

S = T
p

S = T
ps

S = T α
S = T

β

S = T
γ

S = T δ
S = T a

S = T b
S =

TS .

To prove assertions (1), (3), and (5), note that
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Ri = RVi = V 2
i ∪ V c

i ×X

for i= 1, 2, and

R1(1) ⊆ R1(1) ∩ R2(1), R2(2) ⊆ R1(2) ∩ R2(2), R1(3) ⊆ R1(3) ∩ R2(3).

Moreover, for any x∈X and A⊆X, we have

x ∈ A◦ ⇐⇒ ∃ R ∈ R : R (x) ⊆ A

and

x ∈ A− ⇐⇒ ∀ R ∈ R : R (x) ∩ A �= ∅.

Therefore, concerning the operations ◦ and − with respect to R, we have :

A A◦ A− A◦− A−◦ A◦−◦ A−◦−

∅ ∅ ∅ ∅ ∅ ∅ ∅
{1} {1} X X X X X

{2} ∅ {2, 3} ∅ ∅ ∅ ∅
{3} ∅ {3} ∅ ∅ ∅ ∅
{1, 2} {1, 2} X X X X X

{1, 3} {1} X X X X X

{2, 3} ∅ {2, 3} ∅ ∅ ∅ ∅
X X X X X X X

Remark 51 To determine topological interiors and closures, with respect to Pervin
relators, instead of the corresponding definitions, we can also use Theorem 5 or 23.

For instance, if A is a family of subsets of X and

R = {RA : A ∈ A
}
,

then by Theorem 5 and the corresponding results of [87], for any B⊆X, we have

clR (B) =
⋂

A∈A

R−1
A [B ] =

⋂

A∈A

RAc [B ]

with

RAc [B ] = Ac if B ⊆ Ac, B �= ∅ and RAc [B ] = X if B �⊆ Ac, B ⊆ X.
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Remark 52 [13, Example 1.1] of Crossley and Hildebrandt shows only that two
different topologies on the same set may have the same collection of semi-open
sets.

While, our Example 5 shows that two different topologically filtered preorder
relators on the same set may have the same collections of various generalized
topologically open sets.

27 Intersection Properties of the Families T
q

R
and T s

R

Levine [54, Remark 5] already noticed that the intersection of two semi-open subsets
of a topological space need not be semi-open. Thus, the family of all semi-open sets
of a topological space does not, in general, form a topology.

While, Crossley and Hildebrand [13, Theorem 1.9 ] proved that, in a topological
space, the intersection of an open and a semi-open set is semi-open. Later, this
statement was also proved independently by Noiri [64, Lemma 1 ].

In the proofs the subsequent two generalizations of [13, Theorem 1.9 ] of Crosley
and Hildebrand, we shall rather use the more simple argument of Noiri.

Theorem 125 If R is a topologically filtered relator on X, and moreover U ∈ TR
and A ∈ T

q

R , then U ∩ A ∈ T
q

R also holds.

Proof By Definition 12, there exists V ∈ TR such that

V ⊆ A ⊆ V −.

Hence, by using Corollaries 5 and 8, we can infer that U ∩ V ∈ TR and

U ∩ V ⊆ U ∩ A ⊆ U ∩ V − ⊆ (U ∩ V )−.

Therefore, by Definition 12, the required assertion is also true.

Theorem 126 If R is a topologically filtered relator on X, and moreover U ∈ TR
and A ∈ T s

R , then U ∩ A ∈ T s
R also holds.

Proof By the corresponding definitions, we have

U ⊆ U◦ and A ⊆ A◦−.

Hence, by using Corollary 8, the increasingness of the operation −, and Theorem
26, we can see that

U ∩ A ⊆ U ∩ A◦− ⊆ (U ∩ A◦
)− ⊆ (U◦ ∩ A◦

)− = (U ∩ A)◦−.

Therefore, by Definition 12, the required assertion is true.
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The fact that the families T
q

R and T s
R are not, in general, closed under pairwise

intersections can be easily demonstrated with the help of the following

Example 6 If X and R are as in Example 4 and

A = [ 0, 1 ] and B = [1, 2 ],

then R is a properly filtered, strongly topological, tolerance relator on X such that
A, B ∈ T s

R , but A ∩ B /∈ T s
R .

Namely, we evidently have

A◦− = [ 0, 1]◦ = ] 0, 1[− = [ 0, 1] = A

and quite similarly B◦− =B. Thus, in particular, A, B ∈ T s
R . However,

(
A ∩ B

)◦− = {1}◦− = ∅− = ∅,

and thus A ∩ B /∈ T s
R .

Note that R is a topological relator on X. Therefore, by Theorem 43, the same
assertions hold for the family T

q

R .

Curiously enough, [13, Theorem 1.9] of Crossley and Hildebrand is actually a
very particular case of a part of a former [63, Proposition 1] of Njåstad who used
the term “β–set” instead of “semi-open set.”

He defined a subset A of a topological space X to be an α–set if A⊆A◦−◦. And,
he proved that A is an α–set if and only if A∩B is β–subset of X for all β–subset B
of X.

Now, by using a more simple argument than that of Njåstad, we can also prove
the following

Theorem 127 If R is a topologically filtered, topological relator on X, A ∈ T α
R

and B ∈ T s
R , then A ∩ B ∈ T s

R also holds.

Proof By the corresponding definitions, we have

A ⊆ A◦−◦ and B ⊆ B◦−.

Hence, by using Corollary 8 and Theorem 26 and some basic properties of
topological relators, we can see that

A ∩ B ⊆ A◦−◦ ∩ B◦− ⊆ (A◦−◦ ∩ B◦
)− ⊆ (A◦− ∩ B◦

)−

⊆ (A◦ ∩ B◦
)−− = (A◦ ∩ B◦

)− = (A ∩ B
)◦−

.

Therefore, the corresponding definition, the required assertion is also true.
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Remark 53 Note that, by Theorem 42, in Theorem 127 we may again write T
q

R in
place of T s

R .

28 Intersection Properties of the Families T
ps

R
and T

p

R

Analogously, to Theorems 125 and 126, we can also prove the following two
theorems.

Theorem 128 If R is a topologically filtered relator on X, and moreover U ∈ TR
and A ∈ T

ps

R , then U ∩ A ∈ T
ps

R also holds.

Proof By Definition 12, there exists V ∈ TR such that

A ⊆ V ⊆ A−.

Hence, by using Corollaries 5 and 8, we can infer that U ∩ V ∈ TR and

U ∩ A ⊆ U ∩ V ⊆ U ∩ A− ⊆ (U ∩ A)−.

Therefore, by Definition 12, the required assertion is also true.

Theorem 129 If R is a topologically filtered relator on X, U ∈ TR and A ∈ T
p

R ,
then U ∩ A ∈ T

p

R also holds.

Proof By the corresponding definitions, we have

U ⊆ U◦ and A ⊆ A−◦.

Hence, by using Theorem 26 and Corollary 8, and the increasingness of the
operation ◦, we can see that

U ∩ A ⊆ U◦ ∩ A−◦ = (U ∩ A−
)◦ ⊆ (U ∩ A

)−◦
.

Thus, by Definition 12, the required assertion is true.

The fact that the families T
ps

R and T
p

R are also not, in general, closed under
binary intersections can now be easily demonstrated with the help of the simple
observation that dense sets with respect to a nonvoid relator are, in particular,
topologically preopen.

Example 7 If X and R are as in Example 4 and

A = Q and B = {1} ∪Q
c,
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then R is a properly filtered, strongly topological, tolerance relator on X such that
A, B ∈ T

p

R , but A ∩ B /∈ T
p

R .
To check this, recall that families of all rational and irrational numbers are dense

in R. Therefore,

A−◦ = R
◦ = R = X

and quite similarly B−◦ =X. Thus, in particular, A, B ∈ T
p

R . However,

(
A ∩ B

)−◦ = {1}−◦ = {1}◦ = ∅,

and thus A ∩ B /∈ T
p

R .
Note that R is a topological relator on X. Therefore, by Theorem 42, the same

assertions hold for the family T
ps

R .

Now, analogously to Theorem 127, we can also prove the following theorem
whose topological counterpart was already stated by Dontchev [28, p. 3].

Theorem 130 If R is a topologically filtered, topological relator on X, A ∈ T α
R

and B ∈ T
p

R , then A ∩ B ∈ T
p

R also holds.

Proof By the corresponding definitions, we have

A ⊆ A◦−◦ and B ⊆ B−◦.

Hence, by using Theorem 26 and the equality ◦◦=◦, we can infer that

A ∩ B ⊆ A◦−◦ ∩ B−◦ = (A◦− ∩ B−◦
)◦
.

Moreover, by using Corollary 8 and some basic properties of topological relators,
we can see that

A◦− ∩ B−◦ ⊆ (A◦ ∩ B−◦
)− ⊆ (A◦ ∩ B−

)−

⊆ (A◦ ∩ B
)−− = (A◦ ∩ B

)− ⊆ (A ∩ B
)−
.

Therefore,

A ∩ B ⊆ (A◦−◦ ∩ B−◦
)◦ ⊆ (A ∩ B

)−◦
.

Thus, by the corresponding definition, the required assertion is also true.

Remark 54 Note that, by Theorem 42, in Theorem 130 we may again write T
ps

R in
place of T

p

R .
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29 Intersection Properties of the Family T r
R

In contrast to Examples 4, 6, and 7, we can prove a counterpart of the dual of the
first part of [50, Theorem 10] of Kuratowski.

Theorem 131 If R is a topologically filtered, topological relator on X and A, B ∈
T r

R , then A ∩ B ∈ T r
R also holds.

Proof Define C=A∩B. From Theorem 22, we know that R is reflexive and quasi-
topological. Therefore, by Theorem 56, we have T r

R ⊆ TR , and thus A, B ∈ TR .
Hence, by using Corollary 5, we can infer that C ∈ TR , and thus C⊆C◦. Therefore,
to prove that C ∈ T r

R , by Corollary 14 it is enough to show only that C−◦⊆C.
For this, define D=C−◦. Then, by Theorem 21, we have D ∈ TR , and thus

D⊆D◦. Moreover, by using Theorem 16 and the increasingness of −, we can see
that

D = C−◦ ⊆ C− ⊆ A−

and quite similarly D⊆B−. Hence, by using the increasingness of ◦ and Definition
12, we can infer that

D ⊆ D◦ ⊆ A−◦ = A

and quite similarly D⊆B. Therefore, D⊆A∩B, and thus C−◦⊆C.

Somewhat more generally, we can also prove the following

Theorem 132 If R is a topological relator on X and Ai ∈ T r
R for all i∈ I, then

intR
(⋂

i∈I Ai

) ∈ T r
R also holds.

Proof Define C = (⋂ i∈I Ai

)◦. From Theorem 22, we know that R is reflexive and
quasi-topological. Therefore, by Theorem 21, we have C ∈ TR , and thus C⊆C◦.
Now, to prove that C ∈ T r

R , by Corollary 14 it is enough to show only that C−◦⊆C.
For this, define D=C−◦. Then, by Theorem 21, we have D ∈ TR , and thus

D⊆D◦. Moreover, by using Theorem 16 and the incresingness of −, we can see
that

D = C−◦ ⊆ C− =
( ⋂

i∈I
Ai

)◦− ⊆
( ⋂

i∈I
Ai

)− ⊆ A−i

for all i∈ I. Hence, by using the increasingness of ◦ and Definition 12, we can infer
that

D ⊆ D◦ ⊆ A−◦i = Ai

for all i∈ I, and thus D⊆⋂i ∈ IAi. Hence, by using the increasingness of ◦, we can
infer that



Generalized Topologically Open Sets 717

D ⊆ D◦ ⊆
(⋂

i∈I Ai

)◦
,

and thus C−◦⊆C.

Remark 55 Note that if, in particular, R and A, B are as in Theorem 131, then by
Theorems 22, 21, 16, 26 and Theorem 132 we have

A ∩ B = A◦ ∩ B◦ = (A ∩ B)◦ ∈ T r
R .

Therefore, Theorem 131 can be derived from Theorem 132.

Finally, we note that, for the family T r
R , an analogue of Theorems 126 and 129

need not be true.

Example 8 If X and R are as in Example 4 and

U = {1}c and A = ] 0, 2 [ ,

then R is a properly filtered, strongly topological, tolerance relator on X, such that
U ∈ TR and A ∈ T r

R , but U ∩ A /∈ T r
R .

To check this, note that, by Theorem 73, we have U, A ∈ TR . Thus, by Theorem
38, we also have U, A ∈ T κ

R for all κ �=r. Moreover, as in Example 4, we can see
that A ∈ T r

R also holds.
However, we evidently have

U ∩ A = {1}c∩ ] 0, 2 [ = ] 0, 1 [ ∪ ] 1, 2 [,

and thus by Example 4 we can also state that U ∩A /∈ T r
R , despite that U ∩A ∈ T κ

R
for all κ �=r.

30 Intersection Properties of the Families T α
R

and with T
β

R

Analogously to Theorems 126, 127, 129, and 130, we can also prove the following
theorems.

Theorem 133 If R is a topologically filtered relator on X, U ∈ TR and A ∈ T α
R ,

then U ∩ A ∈ T α
R .

Proof By Definitions 3 and 12, we have

U ⊆ U◦ and A ⊆ A◦−◦.

Hence, by using Theorem 26, an inclusion established in the proof of Theorem 126
and the increasingness of ◦, we can see that
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U ∩ A ⊆ U◦ ∩ A◦−◦ = (U ∩ A◦−
)◦ ⊆ (U ∩ A)◦−◦.

Thus, by Definition 12, the required assertion is true.
Theorem 134 If R is a topologically filtered, topological relator on X and A, B ∈
T α

R , then A ∩ B ∈ T α
R .

Proof By Definition 12, we have

A ⊆ A◦−◦ and B ⊆ B◦−◦.

Hence, by using Theorem 26 and the equality ◦ ◦=◦, we can see that

A ∩ B ⊆ A◦−◦ ∩ B◦−◦ = (A◦−◦ ∩ B◦−◦
)◦
.

Moreover, by using Theorem 16 and an inclusion established in the proof of
Theorem 127, we can see that

A◦−◦ ∩ B◦−◦ ⊆ A◦−◦ ∩ B◦− ⊆ (A ∩ B)◦−.

Hence, by using the increasingness of the operation ◦, we can see that

A ∩ B ⊆ (A◦−◦ ∩ B◦−◦
)◦ ⊆ (A ∩ B)◦−◦.

Thus, by Definition 12, the required assertion is true.

Now, as an immediate consequence of Theorems 123 and 134, we can also state
the following counterpart of [63, Proposition 2] of Njåstad.

Corollary 23 If R is a nonvoid, topologically filtered, topological relator on X,
then T α

R is a topology on X.

Theorem 135 If R is a topologically filtered relator on X, U ∈ TR and A ∈ T
β

R ,

then U ∩ A ∈ T
β

R .

Proof By Definition 12, we have A⊆A−◦−. Hence, by using an inclusion estab-
lished in the proof of Theorem 126, and moreover Corollary 8, we can see that

U ∩ A ⊆ U ∩ A−◦− ⊆ (U ∩ A−
)◦− ⊆ (U ∩ A

)−◦−
.

Thus, by Definition 12, the required assertion is also true.

Theorem 136 If R is a topologically filtered, topological relator on X, A ∈ T α
R

and B ∈ T
β

R , then A ∩ B ∈ T
β

R .

Proof By Definition 12, we have

A ⊆ A◦−◦ and B ⊆ B−◦−.
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Hence, by using Corollary 8, Theorem 26 and the equality ◦ ◦=◦, an inclusion
established in the proof of Theorem 130 and the increasingness of the operation
◦ −, we can see that

A ∩ B ⊆ A◦−◦ ∩ B−◦−

⊆ (A◦−◦ ∩ B−◦
)− = (A◦−◦ ∩ B−◦

)◦− ⊆ (A ∩ B)−◦−.

Therefore, by Definition 12, the required assertion is also true.

31 Intersection Properties of the Families T κ
R
with κ = γ , δ,

a, and b

Theorem 137 If R is a topologically filtered relator on X, U ∈ TR and A ∈ T
γ

R ,
then U ∩ A ∈ T

γ

R .

Proof By Definition 12, there exists V ∈ T s
R such that

A ⊆ V ⊆ A−.

Hence, by using Theorem 126 and Corollary 8, we can see that U ∩ V ∈ T s
R and

U ∩ A ⊆ U ∩ V ⊆ U ∩ A− ⊆ (U ∩ A)−.

Thus, by Definition 12, the required assertion is also true.

Theorem 138 If R is a topologically filtered, topological relator on X, A ∈ T α
R

and B ∈ T
γ

R , then A ∩ B ∈ T
γ

R .

Proof By Theorem 42, we have T
γ

R = T
β

R . Therefore, Theorem 136 can be
applied to obtain the required assertion.

Theorem 139 If R is a topologically filtered relator on X, U ∈ TR and A ∈ T δ
R ,

then U ∩ A ∈ T δ
R .

Proof By Definition 12, there exists V ∈ T
p

R such that

V ⊆ A ⊆ V −.

Hence, by using Theorem 129 and Corollary 8, we can see that U ∩ V ∈ T
p

R and

U ∩ V ⊆ U ∩ A ⊆ U ∩ V − ⊆ (U ∩ V )−.

Thus, by Definition 12, the required assertion is also true.
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Theorem 140 If R is a topologically filtered, topological relator on X, A ∈ T α
R

and B ∈ T δ
R , then A ∩ B ∈ T δ

R .

Proof By Theorem 44, we have T δ
R = T

β

R . Therefore, Theorem 136 can be applied
to obtain the required assertion.

Theorem 141 If R is a topologically filtered relator on X, U ∈ TR and A ∈ T a
R ,

then U ∩ A ∈ T a
R .

Proof By Theorem 36, we have A ∈ T s
R and A ∈ T

p

R . Hence, by using Theorems
114 and 121, we can infer that U ∩ A ∈ T s

R and U ∩ A ∈ T
p

R . Thus, by Theorem
36, the required assertion is also true.

Theorem 142 If R is a topologically filtered, topological relator on X, A ∈ T α
R

and B ∈ T a
R , then A ∩ B ∈ T a

R .

Proof By Theorem 36, we have B ∈ T s
R and B ∈ T

p

R . Hence, by using Theorems
127 and 130, we can infer that A ∩ B ∈ T s

R A ∩ B ∈ T
p

R . Therefore, by Theorem
36, the required assertion is also true.

Theorem 143 If R is a topologically filtered relator on X, U ∈ TR and A ∈ T b
R ,

then U ∩ A ∈ T b
R .

Proof By Definition 3 and 12, we have

U ⊆ U◦ and A ⊆ A◦− ∪ A−◦.

Hence, by using the inclusions established in the proofs of Theorems 126 and 129,
we can see that

U ∩ A ⊆ U ∩ (A◦− ∪ A−◦
) = (U ∩ A◦−

) ∪ (U ∩ A−◦
) ⊆ (U ∩ A

)◦− ∪ (U ∩ A
)−◦

.

Thus, by Definition 12, the required assertion is also true.

Theorem 144 If R is a topologically filtered, topological relator on X, A ∈ T α
R

and B ∈ T b
R , then A ∩ B ∈ T b

R .

Proof By Definition 12, we

A ⊆ A◦−◦ and B ⊆ B◦− ∪ B−◦.

Hence, by using the corresponding inclusions established in the proofs of Theorems
127 and 130, we can see that

A ∩ B ⊆ A◦−◦ ∩ (B◦− ∪ B−◦
)

= (A◦−◦ ∩ B◦−
) ∪ (A◦−◦ ∩ B−◦

) ⊆ (A ∩ B)◦− ∪ (A ∩ B)−◦.

Therefore, by Definition 12, the required assertion is also true.
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32 A Further Intersection Property of the Families T s
R

and T α
R

To prove the following converse of Theorem 127, we could not simplify the
argument of Njåstad used in the second part of the proof of [63, Proposition 1].

Theorem 145 If R is a nonvoid, topologically filtered, topological relator on X
and A⊆X such that A ∩ B ∈ T s

R for all B ∈ T s
R , then A ∈ T α

R .

Proof Assume, on the contrary, that A /∈ T α
R . Then, by Definition 12, we have

A�A◦−◦. Therefore, there exists x∈X such that

x ∈ A and x /∈ A◦−◦.

Hence, by using that ◦ c= c −, we can infer that

x ∈ A◦−◦ c = A◦− c−.

Thus, by defining

V = A◦− c,

we can note that x∈V−. Moreover, by Theorems 22 and 21, we can also state that
A◦− ∈ FR , and thus V ∈ TR .

Now, by defining

B = V ∪ {x},

we can note that V ⊆B. Moreover, by Theorems 22, 16 and 26, we can also state
that

B ⊆ B− = (V ∪ {x})− = V − ∪ {x}−.

Now, since {x} ⊆ V − ∈ FR , and thus {x}−⊆V−−⊆V−, we can also note that

V − ∪ {x}− ⊆ V −.

Therefore, B⊆V− also holds. Thus, by Definition 12 and Theorem 42, we have
B ∈ T

q

R = T s
R . Hence, by using the assumptions of the theorem, we can infer that

A ∩ B ∈ T s
R .

However, by the corresponding definitions, we also have

A ∩ B = A ∩ (V ∪ {x}) = (A ∩ V ) ∪ (A ∩ {x}) = (A ∩ A◦− c
) ∪ {x}.
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Moreover, by Theorems 22 and 114, we can also state thatX ∈ T s
R . Hence, by using

the assumption of the theorem, we can infer that A = A ∩ X ∈ T s
R . Therefore, by

Definition 12, A⊆A◦−, and thus

A ∩ A◦− c = ∅.

Thus, we actually have A∩B={x}, and thus {x} ∈ T s
R .

Hence, by using Theorems 22 and 107, we can infer that {x} ∈ TR , and thus
{x}⊆{x}◦. On the other hand, from the former inclusions {x}⊆A and A⊆A◦− we
can infer that {x}◦⊆A◦⊆A◦−◦. Therefore, we also have {x}⊆{x}◦⊆A◦−◦, and thus
x∈A◦−◦. This contradiction proves the required assertion.

Now, as an immediate consequence of Theorems 127 and 145, we can also state
the following counterpart of [63, Proposition 1] of Njåstad.

Corollary 24 If R is a nonvoid, topologically filtered, topological relator on X,
then

T α
R = {A ⊆ X : ∀ B ∈ T s

R : A ∩ B ∈ T s
R

}
.

Remark 56 This corollary can also be used to prove Corollary 23 which says that
if R is a nonvoid, topologically filtered, topological relator on X, then T α

R is a
topology on X.

Namely, if B is a generalized topology on X in the Császár sense that it is closed
under arbitrary unions, and moreover T = {A ⊆ X : ∀ B ∈ B : A ∩ B ∈ B},
then T is already an ordinary topology on X.

However, in contrast to [63, Proposition 2] of Njåstad, this fact seems to be of no
particular importance for us now. Since the induced topologically open sets cannot,
in general, play an essential role in the theory of relator spaces.

Also, it seems now not to be an important question that which relators can be
quasi-topologically equivalent to a relator derived from a metric. Namely, we can
usually more easily work with the induced surroundings than with a metric.

33 Minimality Properties of the Families T κ
R

The following definition has been mainly suggested by the papers of Reilly and
Vamanamuthy [72], Mukharjee and Roy [61], and Salih and Száz [73].

Definition 15 For κ = s, p, α, β, a, b, q, ps, γ ,and δ, a relator R on X, will be
called

(1) κ–minimal if T κ
R ⊆ {∅, X};

(2) relatively κ–minimal if T κ
R ⊆ TR .
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Thus, by the results of Sections 22 and 24 and Theorems 38 and 37, we can at
once state the following three theorems.

Theorem 146 If R is a nonvoid, κ–minimal relator on X, then R is also relatively
κ–minimal.

Theorem 147 If R is a nonvoid, non-partial relator on X, then R is κ–minimal if
and only if T κ

R = {∅, X}.
Theorem 148 If R is a reflexive relator on X, then R is relatively κ–minimal if
and only if TR = T κ

R .

Remark 57 In [73], following the terminologies of Bourbaki [10, p. 139] and Kelley
[49, p. 76], a relator R on X has been called a quasi-topologically

(1) submaximal relator if DR ⊆ TR ;
(2) door relator if P(X) = TR ∪FR .

Hence, it is clear that R is a quasi-topologically door relator if and only if P(X) \
TR ⊆ FR , or equivalently P(X) \FR ⊆ TR .

Moreover, it can be shown that R is quasi-topologically submaximal if and only
if any one of the assertions DR \TR = ∅, P(X) = FR ∪ER , P(X) \ER ⊆ FR
and P(X) \FR ⊆ ER holds.

Now, by using the above definitions, we can also prove the following counterparts
of [72, Theorems 2, 3 and 4] of Reilly and Vamanamuthy and [61, Theorems 1, 3
and 5] of Mukharjee and Roy.

Theorem 149 If R is a quasi-topologically door relator on X, then R is relatively
p–minimal.

Proof If A ∈ T
p

R , then A⊆A−◦. While, if A /∈ TR , then by the assumed
door property of R we have A ∈ FR , and thus A−⊆A. Hence, by using the
increasingness of ◦, we can infer that A⊆A−◦⊆A◦, and thus A ∈ TR . This
contradiction proves that A ∈ TR . Therefore, we have T

p

R ⊆ TR , and thus R
is relatively p-minimal.

Theorem 150 If R is a nonvoid, relatively p–minimal, reflexive relator on X, then
for any x∈X we have {x} ∈ TR ∪FR .

Proof If this is not the case, then there exists x∈X such that {x} /∈ TR and {x} /∈
FR . Thus, in particular, by Theorem 106 we necessarily have {x}◦ =∅. Hence, by
using that R �= ∅, we can infer that {x}◦− = ∅− =∅⊆{x}. Therefore, by Theorem
48, we have {x} ∈ F

p

R . Hence, by using that T
p

R ⊆ TR , and thus also F
p

R ⊆ FR ,
we can already infer that {x} ∈ FR . This contradiction proves the theorem.

Theorem 151 If R is a nonvoid, relatively p–minimal relator on X, then R is
quasi-topologically submaximal.

Proof If A ∈ DR , then A−◦ =X◦ =X. Therefore, we trivially have A⊆A−◦, and
thus A ∈ T

p

R . Hence, by the assumed p–minimality of R, it follows that A ∈ TR .
Therefore, DR ⊆ TR , and thus R is quasi-topologically submaximal.
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Theorem 152 If R is a topologically filtered, quasi-topologically submaximal,
topological relator on X, then R is relatively p–minimal.

Proof If A ∈ T
p

R , then by Theorem 68 there exists V ∈ TR such that

A ⊆ V and A− = V −.

Now, by using Theorems 26 and 18, we can see that

(
A ∪ V c

)− = A− ∪ V c− = V − ∪ V c− = (V ∪ V c
)− = X− = X,

and thus A ∪ V c ∈ DR . Hence, by using the assumed submaximality of R, we can
infer that A ∪ V c ∈ TR . Now, by using Corollary 5, we can also see that

A = V ∩ A = (V ∩ A
) ∪ (V ∩ V c

) = V ∩ (A ∪ V c
) ∈ TR .

Therefore, T
p

R ⊆ TR , and thus R is relatively p–minimal.

Remark 58 Hence, we see that a nonvoid, topologically filtered, topological relator
R is relatively p–minimal if and only if it is quasi-topologically submaximal.

Now, by using Theorem 69, we can also prove the following improvement of [63,
Corollary] of Njåstad.

Theorem 153 For a nonvoid, topologically filtered, topological relator R on X, the
following assertions are equivalent:

(1) R is relatively α–minimal;
(2) TR = T α

R ; (3) NR ⊆ FR ; (4) NR = FR \ ER .

Proof From Theorem 147, we can see that (1) and (2) are equivalent even if R is
only reflexive.

Moreover, if A ∈ NR , then we can note that A◦⊆A−◦ =∅, and thus A◦ =∅.
Therefore, A /∈ ER . Moreover, if (3) holds, then we also have A ∈ FR . Therefore,
A ∈ FR \ ER , and thus NR ⊆ FR \ ER .

On the other hand, if A ∈ FR \ ER , then A ∈ FR and A /∈ ER . Therefore,
A−⊆A and A◦ =∅. Hence, we can see that A−◦⊆A◦ =∅, and so A−◦ =∅. Therefore,
A ∈ NR , and thus FR \ ER ⊆ NR is always true. Hence, we can see that (3)
implies (4) even if R is only reflexive. Now, since, (4) trivially implies (3), it is
clear that (3) and (4) are also equivalent even if R is only reflexive.

Thus, to complete the proof, we need to only show that now (1) and (3) are also
equivalent. For this, note that X ∈ TR . Therefore, if B ∈ NR , then by Theorem 69
we also have Bc = X \B ∈ T α

R . Hence, if (1) holds, i. e., T α
R ⊆ TR , we can infer

that Bc ∈ TR , and thus B ∈ FR . Therefore, (3) also holds.
On the other hand, if A ∈ T α

R , then by Theorem 69 there exist V ∈ TR and
B ∈ NR such that A=V \B. Moreover, if (3) holds, we can also state that B ∈ FR ,
and thus Bc ∈ TR . Hence, by using Corollary 5, we can infer that A = V \ B =
V ∩ Bc ∈ TR . Therefore, T α

R ⊆ TR , and thus (1) also holds.
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34 Maximality Property of the Families T κ
R

Analogously to Definition 15, we may also naturally introduce the following

Definition 16 For κ = s, p, α, β, a, b, q, ps, γ , and δ, a relator R on X, will be
called

(1) κ–maximal if T κ
R = P (X) ;

(2) relatively κ–maximal if T
β

R ⊆ T κ
R .

Remark 59 Thus, every κ–maximal relator is evidently also relatively κ–maximal.

Moreover, by Theorems 36, 37, 42 and 44, we can at once state the following
three theorems.

Theorem 154 If R is a reflexive relator on X, then R is relatively κ–maximal if
and only if T κ

R = T
β

R .

Theorem 155 If R is a topological relator on X, then R is relatively γ –maximal.

Theorem 156 If R is a topologically filtered, topological relator on X, then R is
relatively δ–maximal.

Now, as a generalization of [72, Theorem 5] of Reilly and Vamanamurthy and
[61, Theorem 5] of Mukharjaee and Roy, we can also prove the following

Theorem 157 If R is a topological relator on X, then the following assertions are
equivalent:

(1) R is p–maximal;
(2) TR ⊆ FR ; (3) FR ⊆ TR ; (4) TR = FR .

Proof If V ∈ TR , then V c ∈ FR . Moreover, if (1) holds, then V c− ∈ T
p

R also
holds. Hence, by using Corollary 11, we can infer that V c ∈ T

p

R . Now, by the
corresponding definitions, it is clear that

V c ⊆ V c−◦ = V c◦,

and thus V c ∈ TR . Therefore, V ∈ FR , and thus (2) also holds.
On the other hand, if A⊆X, then A− ∈ FR , and thus A−c ∈ TR . Moreover,

if (2) holds, then we also have A−c ∈ FR . Hence, by using the corresponding
definitions and the equality c −=◦ c, we can see that

A− c = A− c− = A−◦ c, and thus A− = A−◦.

Therefore, in particular, we have A⊆A−◦, and thus A ∈ T
p

R . Consequently,
P(X) ⊆ T

p

R , and thus (1) also holds.
Hence, since assertions (3) and (4) are immediate formulations of (2), it is clear

that the assertion of the theorem is true.
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Remark 60 Note that if R is a p–maximal relator on X, then by Theorem 36 R is
also b–maximal.

While, if R is a p-maximal reflexive relator on X, then by Theorem 37 R is both
β-maximal and δ–maximal.

Moreover, if R is a topological relator on X, then by Theorem 42 R is p–maximal
if and only if it is ps-maximal.

The following example shows that the latter assertion need not be true for a non-
topological relator.

Example 9 If X and R are as in Example 2, then R is a symmetric, p–maximal
relator on X such that R is ps–minimal.

Namely, by using the corresponding definitions, we can see that A−◦ =A for all
A⊆X, and thus T

p

R = P(X). Moreover, TR = {∅, X}, and thus also T
ps

R =
{∅, X}.
Remark 61 Quite similarly, we can also show that R is, in addition, s–maximal and
q–minimal.

Concerning the relative p–maximality of a relator R, we can only prove

Theorem 158 If R is a topological relator on X such that T r
R ⊆ FR , then R is

relatively p–maximal.

Proof If A ∈ T
β

R , then by Definition 12 we have A⊆A−◦−. Moreover, by Theorem
62, we have A−◦ ∈ T r

R . Hence, by using the assumption T r
R ⊆ FR , we can infer

that A−◦ ∈ FR , and thus A−◦−⊆A−◦. Therefore, A⊆A−◦, and thus A ∈ T
p

R

also holds. Consequently, T
β

R ⊆ T
p

R , and thus by Definition 16 the relator R is
relatively p–maximal.

Remark 62 In this respect, it is also worth noticing that if R is an arbitrary relator
on X, then we already have T

p

R ∩F α
R ⊆ FR , and thus also T r

R ∩F α
R ⊆ FR .

Namely, if A ∈ T
p

R ∩ F α
R , then A ∈ T

p

R and A ∈ F α
R . Hence, by using

Definition 12 and Theorem 52, we can infer that A⊆A−◦ and A−◦−⊆A. Therefore,
A−⊆A−◦−⊆A, and thus A ∈ FR also holds.

Note 1 By [2, Theorem 2.1] of Aho and Nieminen, for some κ1 and κ2 , the inclusion
T κ1

R ⊆ T κ2
R could also be investigated.

Moreover, by Andrijević [5, 6], Andrijević and Ganster [7], Crossley [12],
Crossley and Hildebrandt [13, 14], and Njåstad [63], for any two relators R and
S on X, the inclusion T κ

R ⊆ T κ
S could also be investigated.

More generally, by using the families T κ
R , we can introduce several interesting

continuity properties of relations on one space to another.
These continuity properties cannot certainly be included in the general frame-

works worked out in the former papers [83, 90, 92, 94, 95, 101].
Moreover, we note that, by using the ideas of Gargouri and Rezgui [37] and the

third author [100], our present results could also be generalized.



Generalized Topologically Open Sets 727

References

1. M. E. Abd El-Monsef, S.N. El-Deeb, R. A. Mahmoud, β–open sets and β–continuous
mappings. Bull. Fac. Sci. Assiut Univ. 12, 77–90 (1983)

2. T. Aho, T. Nieminen, Spaces in which preopen subsets are semiopen. Richerche Mat. 43,
45–49 (1994)
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Abstract It is shown that for the asymmetric diffusion operator the case when the
characteristic determinant is identically equal to zero is impossible and the only
possible degenerate boundary conditions are the Cauchy conditions. In the case of
a symmetric diffusion operator, the characteristic determinant is identically equal to
zero if and only if the boundary conditions are false–periodic boundary conditions
and is identically equal to a constant other than zero if and only if its boundary
conditions are generalized Cauchy conditions. All degenerate boundary conditions
for a spectral problem with a third-order differential equation y′′′(x) = λ y(x) are
described. The general form of degenerate boundary conditions for the fourth-order
differentiation operator D4 is found. Twelve classes of boundary value eigenvalue
problems are described for the operator D4, the spectrum of which fills the entire
complex plane. It is known that spectral problems whose spectrum fills the entire
complex plane exist for differential equations of any even order. John Locker posed
the following problem (eleventh problem): Are there similar problems for odd-
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1 Introduction

The boundary conditions in a spectral problem are said to be degenerate if the
characteristic determinant Δ(λ) of the problem is identically constant [1, p. 35].
Direct and inverse problems with nondegenerate boundary conditions are suffi-
ciently well studied (e.g., see [2, 3]). The case of degenerate boundary conditions
has been studied much less. Apparently, only the Stone’s example of a second-order
differential operator whose spectrum fills the entire complex plane is well known
[4]. Namely, Stone showed that if the potential function q(x) is symmetric (i.e.,
q(x) = q(π − x)) and a = 1, then every complex number belongs to the spectrum
of the boundary value problem

− y′′ + q(x) y = λ y, y(0)± a y(π) = 0, y′(0)∓ a y′(π) = 0; (1)

i.e., its spectrum coincides with the entire complex plane. The first results about
degenerate boundary conditions for differential operators of arbitrary even order
were obtained by Sadovnichii and Kanguzhin [5] (see also the monograph [6,
pp.273–275]) who showed that there exist differential operators of arbitrary even
order n whose spectrum fills the entire complex plane. These boundary conditions
have the form

Uj (y) = y(j−1)(0)+ (−1)j−1 y(j−1)(1) = 0, j = 1, 2, . . . , n. (2)

It was shown in [7] that the boundary conditions

Uj (y) = y(j−1)(0)+ d · (−1)j−1 y(j−1)(1) = 0, j = 1, 2, . . . , n

for differential equations of even order n are degenerate for d �= ±1 as well, but
in this case the spectrum of the corresponding boundary value problem is empty
(Δ(λ) ≡ C = const �= 0). It was shown in [8] that there also exist degenerate
boundary conditions for boundary value problems with a differential equation of
arbitrary odd order. The question of describing all boundary value problems with
degenerate boundary conditions is related to a description of all Volterra problems.
The problem for operator L is called Volterra problem if the inverse operator L−1 is
Volterra operator (see [9, p. 208]). In the case of nondegenerate boundary conditions
for an arbitrary continuous function q(x), the system of eigen-vectors of the operator
L is complete in L2(0, π) (see [1, p. 29]). Therefore, Volterra problems are among
problems with degenerate boundary conditions. In [10] it is shown that all Volterra
problems for operator D2 with common boundary conditions have the form

y(0)∓ a y(π) = 0, y′(0)± a y′(π) = 0, (3)

where a �= 1. A similar result is obtained in [11] for Sturm–Liouville problems with
the differential equation −y′′ + q(x) y = λ y and the symmetric potential (q(x) =
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q(π − x)). All degenerate boundary conditions for the Sturm–Liouville problem
were described in [12]. More precisely, it was shown in [12] that the following
assertions are true. If q(x) �= q(π − x) for x in some subinterval of [0,π ], then
the case of Δ(λ) ≡ 0 is impossible and the only possible degenerate boundary
conditions are the Cauchy conditions y(0) = y′(0) = 0 and y(π) = y′(π) = 0. If
q(x) = q(π − x) a.e. on [0,π ], then the case of Δ(λ) ≡ 0 is realized if and only
if the boundary conditions of problem (1) are pseudoperiodic boundary conditions
with a = 1 and the case of Δ(λ) ≡ C �= 0 is realized if and only if the boundary
conditions (1) are the generalized Cauchy conditions (1) with a �= 1. The second
section is devoted to the degenerate boundary conditions of the Sturm–Liouville
problem. In [13] the diffusion operator is considered:

ly = y′′ + (λ2 − 2 λp(x)− q(x)
)
y = 0, (4)

Ui(y) = ai1 y(0)+ ai2 y
′(0)+ ai3 y(π)+ ai4 y

′(π) = 0, i = 1, 2, (5)

where p(x) ∈ W 1
2 (0, π) and q(x) ∈ L2(0, π) are real functions and aij , i = 1, 2,

j = 1, 2, 3, 4, are complex constants.
If p(x) �= p(π − x) and/or q(x) �= q(π − x) on some subinterval of the closed

interval [0,π ], then the case of Δ(λ) ≡ 0 is impossible and the only possible
degenerate boundary conditions are the Cauchy conditions y(0) = y′(0) = 0
and y(π) = y′(π) = 0. If p(x) = p(π − x) and q(x) = q(π − x),
then the case of Δ(λ) ≡ 0 is realized if and only if the boundary conditions
ai1 y(0) + ai2 y

′(0) + ai3 y(π) + ai4 y
′(π) = 0 are the falsely periodic boundary

conditions y(0) ∓ y(π) = 0, y′(0) ± y′(π) = 0 and the case of Δ(λ) ≡ C �= 0
is realized if and only if conditions ai1 y(0)+ ai2 y

′(0)+ ai3 y(π)+ ai4 y
′(π) = 0

are the generalized Cauchy conditions y(0) ∓ a y(π) = 0, y′(0) ± a y′(π) = 0
with a �= 0. The third section is devoted to the degenerate boundary conditions of
the diffusion operator.

Only the differential operator of any even order for which the spectrum fills the
whole complex plane is rather well known [5, 6]. The question was posed by Jogn
Locker [6]: Do there exist similar differential operators of odd order? We give an
answer to this question. It is shown that, for any odd integer n, there exist differential
operators of order n whose spectrum fills the whole complex plane. The fourth
section is devoted to questions of degenerate boundary conditions for boundary
value problems with an odd-order differential equation. The fifth section is devoted
to questions of degenerate boundary conditions for boundary value problems with a
three-order differential equation. It is well known, perhaps the only one, an example
for differential operator of any even order for which the spectrum fills the entire
complex plane [5] (see also [6]). In this example the boundary conditions have the
following form:

Uj(y) = y(j−1)(0)+ (−1)j−1 y(j−1)(1) = 0, j = 1, 2, 3, 4.
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However, in connection with this, the question arises: Are there other examples of
such operators? In the sixth section, for operator D4 we find other examples of such
operators and describe all boundary value problems for operatorD4 whose spectrum
fills the entire complex plane. The form of degenerate boundary conditions is found
too. In the seventh section, we study the boundary conditions of the Sturm–Liouville
problem posed on a star-shaped geometric graph consisting of three edges with
a common vertex. We show that the Sturm–Liouville problem has no degenerate
boundary conditions in the case of pairwise distinct edge lengths. However, if
the edge lengths coincide and all potentials are the same, then the characteristic
determinant of the Sturm–Liouville problem cannot be a nonzero constant and the
set of Sturm–Liouville problems whose characteristic determinant is identically
zero and whose spectrum accordingly coincides with the entire plane is infinite (a
continuum). It is shown that, for one special case of the boundary conditions, this
set consists of eighteen classes, each having from two to four arbitrary constants,
rather than of two problems as in the case of the Sturm–Liouville problem on an
interval.

The case of finite spectrum of boundary eigenvalue problem has not been
studied well enough. It was shown in [6] and [14, p. 556] that the differentiation
operators D2 and D4 with the corresponding boundary conditions cannot have a
finite spectrum. In 2008, Locker [6] posed the following question for the boundary
problem:

y(n) + a1(x) y
n−1 + · · · + an−1(x) y

′ + an(x) y = λ y(x), x ∈ [0, 1] (6)

Uj(y) =
n−1∑

k=0

bjk y
(k)(0)+

n−1∑

k=0

bj k+n y(k)(1) = 0, j = 1, 2, . . . , n, (7)

where rank ||bjk||n×2n = n, bjk ∈ C. Can the boundary value problem (6) and
(7) have finite spectrum? In the same year, Kalmenov and Suragan [15] proved
that the spectrum of regular partial differential boundary value problems, including
problems (6) and (7) is either empty or infinite. The eighth section is devoted to
the study of a finite spectrum of boundary value problems. We consider boundary
value problems with spectral parameter polynomially occurring in the differential
equation or the boundary conditions. It is shown that some of these problems have a
prescribed finite spectrum. A wide class of boundary value problems which do not
have finite spectrum is found.

2 On Degenerate Boundary Conditions in the
Sturm–Liouville Problem

We describe all degenerate boundary conditions in the homogeneous Sturm–
Liouville problem.
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By L we denote the Sturm–Liouville problem

ly = −y′′ + q(x) y = λ y = s2 y, (8)

Ui(y) = ai1 y(0)+ ai2 y
′(0)+ ai3 y(π)+ ai4 y

′(π) = 0, i = 1, 2, (9)

where q(x) ∈ L1(0, π) is a real function and the aij , i = 1, 2, j = 1, 2, 3, 4, are
complex constants.

The boundary conditions in the problem L are said to be nondegenerate if the
characteristic determinant of the problem L is not a constant [1, p. 35]. If the
boundary conditions of the problem L are such that the characteristic determinant
of the problem L is a constant, then such conditions are said to be degenerate. In the
present paper, we find all degenerate boundary conditions in the problem L.

We denote the matrix consisting of the coefficients alk in the boundary condi-
tions (9) by A and the minor consisting of the ith and j th columns of this matrix by
Mij :

A =
∥
∥
∥
∥
a11 a12 a13 a14

a21 a22 a23 a24

∥
∥
∥
∥ , Mij =

∣
∣
∣
∣
a1i a1j

a2i a2j

∣
∣
∣
∣ , i, j = 1, 2, 3, 4. (10)

In what follows, we assume that the rank of the matrix A is equal to 2, rankA=2.
The eigenvalues of the problem L are the roots of the entire function [1, pp. 33–

36], [16, p. 29]

Δ(λ) = M12 +M34 +M32 y1(π, λ)+M42 y
′
1(π, λ)

+M13 y2(π, λ)+M14 y
′
2(π, λ), (11)

where y1(x, λ) and y2(x, λ) are the linearly independent solutions of Eq. (8)
satisfying the conditions

y1(0, λ) = 1, y′1(0, λ) = 0, y2(0, λ) = 0, y′2(0, λ) = 1.

The asymptotic formulas

y1(x, λ) = cos sx + 1
s
u(x) sin sx + O

(
1
s2

)
,

y2(x, λ) = 1
s

sin sx − 1
s2 u(x) cos sx + O

(
1
s3

)
,

y′1(x, λ) = −s sin sx + u(x) cos sx + O
(

1
s

)
,

y′2(x, λ) = cos sx + 1
s
u(x) sin sx + O

(
1
s2

)
,

(12)

where u(x) = 1
2

∫ x
0 q(t) dt hold for λ ∈ R and for sufficiently large λ ([16, pp. 62–

65]).



736 V. A. Sadovnichii et al.

The identity y1(π, λ) ≡ y′2(π, λ) holds if and only if q(x) = q(x − π) almost
everywhere on [0,π ] [17, Lemma 4].

If q(x) �= q(π − x) in some interval contained in [0,π ] and Δ(λ) ≡ C = const,
then it follows from relations (11) and (12) that

M12 +M34 = C, M32 = 0, M42 = 0, M13 = 0, M14 = 0. (13)

To find the minors M12 and M34 we use the fact that the minors of a matrix cannot
be arbitrary numbers. Given numbers M12, M13, M14, M23, M24, and M34 are the
minors of some matrix if and only if the following Plücker relations hold [18]:

M12 M34 −M13 M24 +M14 M23 = 0. (14)

The minors M23, M24 occurring in relations (14) differ from the minors M32 and
M42 in relations (13) only in sign. From relations (13) and (14), we obtain two sets
of minors,

M12 = C �= 0, M34 = 0, M32 = 0,
M42 = 0, M13 = 0, M14 = 0; (15)

M12 = 0, M34 = C �= 0, M32 = 0,
M42 = 0, M13 = 0, M14 = 0.

(16)

The case in which C = 0 (and hence Δ(λ) ≡ 0) cannot be realized, because the
vanishing of all second-order determinants contradicts the condition rankA = 2.
With the use of methods for the reconstruction of a matrix from its minors [18],
the sets of minors (15) and (16) uniquely determine the boundary conditions (9)
(i.e., the matrix A can be found up to a linear transformation of its rows). The set of
minors (15) corresponds to the Cauchy conditions y(0) = y′(0) = 0, and the set of
minors (16) corresponds to the Cauchy conditions y(π) = y′(π) = 0.

We have thereby proved the following assertion.

Theorem 2.1 If q(x) �= q(π−x) on some interval, then the case in whichΔ(λ) ≡ 0
is impossible, and the Cauchy conditions y(0) = y′(0) = 0 and y(π) = y′(π) = 0
are the only possible degenerate boundary conditions.

If q(x) = q(π − x) almost everywhere and Δ(λ) ≡ C = const, then it follows
from relations (11) and (12) that

M12 +M34 = C, M32 +M14 = 0, M42 = 0, M13 = 0. (17)

From relations (14) and (17), we obtain two sets of minors

M12 = C1, M34 = C − C1, M32 = ∓√C1 (C1 − C),

M42 = 0, M13 = 0, M14 = ±√C1 (C1 − C).
(18)
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If C = 0 [the case in which Δ(λ) ≡ 0], then from (18) we obtain the relations

M12 = C1, M34 = −C1, M32 = ∓C1,

M42 = 0, M13 = 0, M14 = ±C1.
(19)

By using methods for the reconstruction of a matrix from its minors [18], for these
sets of minors we uniquely find two forms of boundary conditions

y(0)∓ y(π) = 0, y′(0)± y′(π) = 0. (20)

Conditions (20) are said to be falsely periodic, because they are degenerate and
differ from nondegenerate periodic or antiperiodic boundary conditions by the
change of only one sign (plus is replaced by minus, or minus is replaced by plus).

If C �= 0 [the case in which Δ(λ) �≡ 0], then the form of boundary conditions
depends on nonzero minors in (18). If C − C1 = 0, then we obtain the Cauchy
conditions y(0) = y′(0) = 0; if C1 = 0, we have the Cauchy conditions y(π) =
y′(π) = 0; and if C − C1 �= 0 and C1 �= 0, then we obtain the conditions

y(0)∓ a y(π) = 0, y′(0)± a y′(π) = 0, (21)

where a =
√

C1−C
C1

. We have thereby proved the following assertion.

Theorem 2.2 If q(x) = q(π − x) almost everywhere, then the condition Δ(λ) ≡ 0
is realized in the only case where the boundary conditions (9) are the falsely periodic
boundary conditions (20), and the case Δ(λ) ≡ C �= 0 is realized only in the
case where conditions (9) are generalized Cauchy conditions, i.e., conditions of the
form (21), where 0 ≤ a <∞ and a �= 1.

3 Degenerate Boundary Conditions for the Diffusion
Operator

We describe all degenerate two-point boundary conditions possible in a homoge-
neous spectral problem for the diffusion operator. We show that the case in which
the characteristic determinant is identically zero is impossible for the nonsymmetric
diffusion operator and that the only possible degenerate boundary conditions are the
Cauchy conditions. For the symmetric diffusion operator, the characteristic deter-
minant is zero if and only if the boundary conditions are falsely periodic boundary
conditions; the characteristic determinant is identically a nonzero constant if and
only if the boundary conditions are generalized Cauchy conditions.

Let L be the following problem for the diffusion operator:

ly = y′′ + (λ2 − 2 λp(x)− q(x)
)
y = 0, (22)
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Ui(y) = ai1 y(0)+ ai2 y
′(0)+ ai3 y(π)+ ai4 y

′(π) = 0, i = 1, 2, (23)

where p(x) ∈ W 1
2 (0, π) and q(x) ∈ L2(0, π) are real functions and aij , i = 1, 2,

j = 1, 2, 3, 4, are complex constants.
We denote the matrix formed by the coefficients alk of the boundary condi-

tions (23) by A and its minors formed by the ith and j th columns by Mij :

A =
∥
∥
∥
∥
a11 a12 a13 a14

a21 a22 a23 a24

∥
∥
∥
∥ , Mij =

∣
∣
∣
∣
a1i a1j

a2i a2j

∣
∣
∣
∣ , i, j = 1, 2, 3, 4. (24)

In what follows, we assume that the rank of A is equal to two, rank A=2.
The eigenvalues of the problem L are the zeros of the following entire function

[1, pp. 33–36], [16, p. 29]:

Δ(λ) = M12 +M34 +M32 y1(π, λ)+M42 y
′
1(π, λ)

+M13 y2(π, λ)+M14 y
′
2(π, λ), (25)

where y1(x, λ) and y2(x, λ) are the linearly independent solutions of Eq. (22)
satisfying the conditions

y1(0, λ) = 1, y′1(0, λ) = 0, y2(0, λ) = 0, y′2(0, λ) = 1.

The following asymptotic formulas hold for sufficiently large λ ∈ R ([19, 20]):

y1(x, λ) = cosπ (λ− a)− a1
cosπ (λ− a)

λ

+ π c1
sinπ (λ− a)

λ
+ 1

λ

∫ π

−π
ψ1(t) e

i λ t dt,

y2(x, λ) = sinπ (λ− a)

λ
+ a0

sinπ (λ− a)

λ2

− π c1
cosπ (λ− a)

λ2 + 1

λ2

∫ π

−π
ψ2(t) e

i λ t dt,

y′1(x, λ) = −λ sinπ (λ− a)+ a0 sinπ (λ− a)

+ π c1 cosπ (λ− a)+
∫ π

−π
ψ3(t) e

i λ t dt,

y′2(x, λ) = cosπ (λ− a)+ a1
cosπ (λ− a)

λ

+ π c1
sinπ (λ− a)

λ
+ 1

λ

∫ π

−π
ψ4(t) e

i λ t dt,
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where

a = 1

π

∫ π

0
p(t) dt,

a0 = 1

2

(
p(0)+ p(π)

)
, a1 = 1

2

(
p(0)− p(π)

)
,

c1 = 1

2π

∫ π

0

(
q(t)+ p2(t)

)
dt,

ψi(t) ∈ L2[0, π ], i = 1, 2, 3, 4.

It follows from these relations that the functions y1(π, λ), y′1(π, λ), y2(π, λ),
and 1, which occur in the representation (25) of the function Δ(λ), are linearly
independent. If we supplement these functions with the function y′2(π, λ), then the
resulting function system will be independent if and only if p(x) �= p(π−x) and/or
q(x) �= q(π−x) on some subinterval of the closed interval [0,π ]. This follows from
the fact that the identity y1(π, λ) ≡ y′2(π, λ) holds if and only if p(x) = p(π − x)

and q(x) = q(π − x) [21, Lemma 3] (equalities of functions are understood as
equalities in the function spaces where these functions are given).

If p(x) �= p(π − x) and/or q(x) �= q(π − x) and if Δ(λ) ≡ C = const, then
the representation (25) and the linear independence of the corresponding functions
imply the relations

M12 +M34 = C, M32 = 0, M42 = 0, M13 = 0, M14 = 0. (26)

To find the minors M12 and M34, we use the fact that not every finite sequence of
numbers can be represented as the sequence of minors of a matrix. A necessary and
sufficient condition that numbers M12, M13, M14, M23, M24, M34 be the minors of
a 2× 4 matrix is that the following Plücker relations be satisfied [18]:

M12 M34 −M13 M24 +M14 M23 = 0. (27)

The minors M23 and M24 in (27) differ only in sign from the minors M32 and M42
in (26). Relations (26) and (27) imply that only the following two sequences of
minors are possible:

M12 = C �= 0, M34 = 0, M32 = 0, M42 = 0, M13 = 0, M14 = 0;
(28)

M12 = 0, M34 = C �= 0, M32 = 0, M42 = 0, M13 = 0, M14 = 0.
(29)

The case of C = 0 [and hence the case of Δ(λ) ≡ 0] cannot be realized, because all
the second-order determinants being zero contradicts the condition that rankA=2.
One can uniquely determine the boundary conditions (28) and (29) of minors by
methods for the identification of a matrix from its minors [18]. The sequence



740 V. A. Sadovnichii et al.

(23) of minors corresponds to the Cauchy conditions y(0) = y′(0) = 0, and the
sequence (29) corresponds to the Cauchy conditions y(π) = y′(π) = 0.

Thus, the following theorem holds.

Theorem 3.1 If p(x) �= p(π − x) and/or q(x) �= q(π − x) on some subinterval of
the closed interval [0,π], then the caseΔ(λ) ≡ 0 is impossible and the only possible
degenerate boundary conditions are the Cauchy conditions y(0) = y′(0) = 0 and
y(π) = y′(π) = 0.

If p(x) = p(π − x), q(x) = q(π − x), and Δ(λ) ≡ C = const, then the
representation (25) and the linear independence of the corresponding functions
imply the relations

M12 +M34 = C, M32 +M14 = 0, M42 = 0, M13 = 0. (30)

It follows from Eqs. (27) and (30) that only the following two sequences of
minors are possible:

M12 = C1, M34 = C − C1, M32 = ∓√C1 (C1 − C),

M42 = 0, M13 = 0, M14 = ±√C1 (C1 − C).
(31)

(where one takes either the upper or the lower signs in both occurrences simultane-
ously).

If C = 0 (the case of Δ(λ) ≡ 0), then relations (31) imply that

M12 = C1, M34 = −C1, M32 = ∓C1,

M42 = 0, M13 = 0, M14 = ±C1.
(32)

We uniquely determine the following two forms of boundary conditions from these
sequences of minors by methods for the identification of a matrix from its minors
[18]

y(0)∓ y(π) = 0, y′(0)± y′(π) = 0. (33)

Conditions (33) were named falsely periodic in the paper [12], because they are
degenerate and differ from the nondegenerate periodic or antiperiodic boundary
conditions by a change in exactly one sign (from plus to minus or from minus to
plus).

If C �= 0 (the case of Δ(λ) �≡ 0), then the form of the boundary conditions
depends on which of the minors (31) are nonzero. If C − C1 = 0, then we obtain
the Cauchy conditions y(0) = y′(0) = 0; if C1 = 0, then we obtain the Cauchy
conditions y(π) = y′(π) = 0; and if C − C1 �= 0 and C1 �= 0, then we obtain the
conditions

y(0)∓ a y(π) = 0, y′(0)± a y′(π) = 0, (34)
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where a =
√

C1−C
C1

�= 1.
These conditions (conditions of the form (34) with 0 ≤ a ≤ ∞ and a �= 1) were

dubbed generalized Cauchy conditions in the paper [12].
Consequently, the following theorem holds.

Theorem 3.2 If p(x) = p(π−x) and q(x) = q(π−x), then the case ofΔ(λ) ≡ 0
is realized if and only if the boundary conditions are defined by (23), and the case
Δ(λ) ≡ C �= 0 is realized if and only if conditions (33) are the generalized Cauchy
conditions (34).

4 The Degenerate Boundary Conditions for Boundary Value
Problems with an Odd-Order Differential Equation

Operators generated by a differential expression on a finite closed interval are
considered. It is shown that, for any odd integer n, there exist differential operators
of order n whose spectrum fills the whole complex plane.

Consider the following spectral problem for the differential operator:

i−n y(n)(x) = λ y(x) = sn y(x), x ∈ [0, 1] (35)

of odd order n with the boundary conditions

y(0)+ α0 y(1) = 0, y′(0)+ α1 y
′(1) = 0, . . . ,

y(n−1)(0)+ αn−1 y
(n−1)(1) = 0.

(36)

Theorem 4.1 The spectrum of problem (35) and (36) fills the whole complex plane
if

αk = eπ i = −1, αk+1 = eπ i+ 2π i
n , αk+2 = eπ i+ 4π i

n , . . . ,

αn−1 = eπ i+ 2π k i
n ,

α0 = eπ i+ 2π (k+1) i
n , α1 = eπ i+ 2π (k+2) i

n , . . . ,

αk−1 = eπ i+ 2π (n−1) i
n

(
k = n−1

2

)
.

Proof Problem (35) and (36) has the following characteristic determinant Δ(λ) [16,
p. 26]:
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(0)+ α0 y1(1) y2(0)+ α0 y2(1) . . . yn(0)+ α0 yn(1)
y′1(0)+ α1 y

′
1(1) y

′
2(0)+ α1 y

′
2(1) . . . y

′
n(0)+ α1 y

′
n(1)

...
...

. . .
...

y
(n−1)
1 (0) y

(n−1)
2 (0) . . . y

(n−1)
n (0)

+αn−1 y
(n−1)
1 (1) +αn−1 y

(n−1)
2 (1) +αn−1 y

(n−1)
n (1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (37)

where

yj (x, λ) =
{

xj−1

(j−1)! , if λ = 0,

eωj s x, if λ �= 0,
ωj = e

π i
2 + 2π i (j−1)

n , j = 1, 2, . . . , n.

Consider the case λ �= 0. Expanding the determinant (37) in the sum [26, p. 41],
we obtain

Δ(λ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(0) y2(0) . . . yn(0)
y′1(0) y′2(0) . . . y′n(0)
...

...
. . .

...

y
(n−1)
1 (0) y(n−1)

2 (0) . . . y(n−1)
n (0)

∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(0) y2(0) . . . α0 yn(1)
y′1(0) y′2(0) . . . α1 y

′
n(1)

...
...

. . .
...

y
(n−1)
1 (0) y(n−1)

2 (0) . . . αn−1 y
(n−1)
n (1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

+ . . .

+

∣
∣
∣
∣
∣
∣
∣
∣
∣

α0 y1(1) α0 y2(1) . . . α0 yn(1)
α1 y

′
1(1) α1 y

′
2(1) . . . α1 y

′
n(1)

...
...

. . .
...

αn−1 y
(n−1)
1 (1) αn−1 y

(n−1)
2 (1) . . . αn−1 y

(n−1)
n (1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (38)

Since

∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(0) y2(0) . . . yn(0)
y′1(0) y′2(0) . . . y′n(0)
...

...
. . .

...

y
(n−1)
1 (0) y(n−1)

2 (0) . . . y(n−1)
n (0)

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(1) y2(1) . . . yn(1)
y′1(1) y′2(1) . . . y′n(1)
...

...
. . .

...

y
(n−1)
1 (1) y(n−1)

2 (1) . . . y(n−1)
n (1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
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and α0 · α1 · · · · · αn−1 = −1, it follows that the sum of the first and last summands
in the last sum is zero. All the other determinant summands in (38) vanish, because
there are proportional columns in these determinants. �

Let us prove that proportional columns exist. In each of the determinants
summands in the sum (38), except the first and the last one, there is at least one
column with values of the linearly independent solutions at the point x = 0 and at
least one column with values of the solutions at the point x = 1. Moreover, among
them, there are two adjacent columns, the left one containing values of the solution
at the point x = 1 and the right one containing values of the solution at the point
x = 0. Denote this left column vector (with values of the function yp at the point
x = 1) by yp and the right column vector (with values of yp+1 at the point x = 0)
by yp+1. If yp is the right column of the corresponding determinant, then for the
column yp+1 we take the first column of the corresponding determinant. Let us
show that these columns are linearly independent. We have

yp = (α0 yp(1), α1 y
′
p(1), . . . , αn−1 y

(n−1)
p (1))T

= eωp s (α0, α1 ωp, . . . , αn−1 ω
n−1
p (1))T

yp+1 = (yp+1(0), y
′
p+1(0), . . . , y

(n−1)
p+1 (0))T

= (1, ωp+1, . . . , ωn−1
p+1(1))

T .

It is easy to see that

(α0, α1 ωp, . . . , αn−1 ω
n−1
p (1))T

= α0 (1, ωp+1, . . . , ωn−1
p+1(1))

T .

Indeed, let us verify this equality component-wise. For the first coordinate, the
equality is obvious: α0 = α0 · 1. For the second coordinate, we also have the valid
equality:

α1 ωp = eπ i+ 2π (k+2) i
n · e π i

2 + 2π i (p−1)
n = eπ i+ 2π (k+1) i

n · e π i
2 + 2π i p

n = α0 ωp+1.

For the third component, we have

α2 ω
2
p = eπ i+ 2π (k+3) i

n · eπ i+ 4π i (p−1)
n = eπ i+ 2π (k+1) i

n · eπ i+ 4π i p
n = α0 ωp+2.

For the subsequent components, we will also have the valid equalities. Indeed, for
an arbitrary m ∈ N we have

αm ωm
p = eπ i+ 2π (k+m+1) i

n · e mπ i
2 + 2mπ i (p−1)

n

= eπ i+ 2π (k+1) i
n · e mπ i

2 + 2mπ i p
n = α0 ω

m
p+1.
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Therefore,

yp = α0 e
ωp s yp+1

and, in the case λ �= 0 the theorem is proved.
Now let λ = 0. Then the functions

y1(x) = 1, y2(x) = x, y3(x) = x2

2 , . . . , yk(x) = xk

k! ,
. . . , yn−1 = xn−1

(n−1)! ,

will be the linearly independent solutions of Eq. (35), while the characteristic
determinant Δ(λ) for problem (35) and (36) will be of upper-triangular form (there
will be zeros below of the main diagonal). In addition, since αk = −1, we will
have zero in the middle of the main diagonal (in the row and column numbered
k + 1). Therefore, the characteristic determinant is zero in the case λ = 0 as
well. Therefore, for problem (35) and (36), the characteristic determinant Δ(λ) is
identically zero for all λ ∈ C. The theorem is proved.

Example 4.1 For the third-order differential equation

−i y′′′(x) = λ y(x), x ∈ [0, 1]

the characteristic determinant is identically zero for the problem with the boundary
conditions

y(0)+ 1− i
√

3

2
y(1) = 0, y′(0)− y′(1) = 0,

y′′(0)+ 1+ i
√

3

2
y′′(1) = 0

and for the problem with the boundary conditions

y(0)+ 1+ i
√

3

2
y(1) = 0, y′(0)− y′(1) = 0,

y′′(0)+ 1− i
√

3

2
y′′(1) = 0.

5 The Degenerate Boundary Conditions for Boundary Value
Problems with a Third-Order Differential Equation

We consider the spectral problem y′′′(x) = λ y(x) with general two-point boundary
conditions that do not contain the spectral parameter λ.We prove that the boundary
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conditions in this problem are degenerate if and only if their 3×6 coefficient matrix
can be reduced by a linear row transformation to a matrix consisting of two diagonal
3 × 3 matrices, one of which is the identity matrix and the diagonal entries of the
other are all cubic roots of some number. Further, the characteristic determinant of
the problem is identically zero if and only if that number is −1. We also show that
the problem in question cannot have finite spectrum.

Consider the two-point boundary value problem

y′′′(x) = λ y(x) = s3 y(x), x ∈ [0, 1], (39)

Uj (y) =
3∑

k=1

ajk y
(k−1)(0)+

3∑

k=1

aj k+n y(k−1)(1) = 0, j = 1, 2, 3. (40)

The coefficient matrix of the boundary conditions (40) will be denoted by

A =
∥
∥
∥
∥
∥
∥

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

∥
∥
∥
∥
∥
∥
, (41)

where ajm ∈ C, j = 1, . . . , 3, m = 1, . . . , 6, and

rankA = 3. (42)

In this section, we obtain the following results.

Theorem 5.1 The boundary value problem (39) and (40) cannot have a spectrum
consisting of finitely many eigenvalues.

Theorem 5.2 The boundary conditions (40) can be degenerate only for problems
with matrices (41), that are reduced to the following two types using linear
transformation

A1 =
∥
∥
∥
∥
∥
∥

1 0 0 a1 0 0
0 1 0 0 a2 0
0 0 1 0 0 a3

∥
∥
∥
∥
∥
∥
, (43)

and

A2 =
∥
∥
∥
∥
∥
∥

a1 0 0 1 0 0
0 a2 0 0 1 0
0 0 a3 0 0 1

∥
∥
∥
∥
∥
∥
. (44)

Theorem 5.3 The boundary conditions in problem (39) and (40) are degenerate if
and only if the coefficient matrix (41) of the boundary conditions (40) are reduced
to the matrix (43) or (44) using linear transformation, (43) or with the matrix (44),
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where {a1, a2, a3} is the set of cubic roots of some number, and, Δ(λ) ≡ 0 if and
only if the numbers a1, a2, and a3 are three distinct cubic roots of −1.

These theorems are proved by the next scheme.
Consider the characteristic determinant Δ(λ) of the spectral problem (39) and (40),
i.e., the determinant

Δ(λ) =
∣
∣
∣
∣
∣
∣

U1(y1) U1(y2) U1(y3)

U2(y1) U2(y2) U2(y3)

U3(y1) U3(y2) U3(y3)

∣
∣
∣
∣
∣
∣
, (45)

where yj = yj (x, s), j = 1, 2, 3, are the linearly independent solutions of Eq. (39)
with the conditions

y
(k−1)
j (0, λ) =

{
1, if k = j

0, if k �= j

where j, k = 1, 2, 3. It is easily seen that

y1 = 1

3
exp(−s x)+ 2

3
exp

(1

2
s x
)

cos
(√3

2
s x
)
,

y2 = − 1

3 s
exp(−s x)+

√
3

3 s
exp

(1

2
s x
)

sin
(√3

2
s x
)

+ 1

3 s
exp

(1

2
s x
)

cos
(√3

2
s x
)
,

y3 = 1

3 s2
exp(−s x)+

√
3

3 s2
exp

(1

2
s x
)

sin
(√3

2
s x
)

− 1

3 s2
exp

(1

2
s x
)

cos
(√3

2
s x
)
.

Lemma 5.1 The functions y(k−1)
j−1 (1, λ) and y(k)j (1, λ) coincide identically; i.e.,

y
(k−1)
j−1 (1, λ) ≡ y

(k)
j (1, λ), k = 1, 2, 3, j = 2, 3. (46)

Lemma 5.1 can be verified by straightforward computations.
Let B be the matrix

B =
∥
∥
∥
∥
∥
∥

y1(0) y′1(0) y′′1 (0) y1(1) y′1(1) y′′1 (1)
y2(0) y′2(0) y′′2 (0) y2(1) y′2(1) y′′2 (1)
y3(0) y′3(0) y′′3 (0) yn(1) y′3(1) y′′3 (1)

∥
∥
∥
∥
∥
∥
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=
∥
∥
∥
∥
∥
∥

1 0 0 y1(1) y′1(1) y′′1 (1)
0 1 0 y2(1) y′2(1) y′′2 (1)
0 0 1 y3(1) y′3(1) y′′3 (1)

∥
∥
∥
∥
∥
∥
= ‖B1, B2‖.

Thus, B consists of two 3 × 3 block matrices B1 and B2, where B1 is the
identity matrix. The determinants of these matrices give the Wronskian W(x) of
the fundamental solution system yj (x, s), k, j = 1, 2, 3 of Eq. (39) calculated at
the points x = 0 and x = 1, respectively; i.e., det(B1) = W(0), det(B2) = W(1). It
follows from the Liouville formula for the Wronskian [22, p. 95–96] that

det(B1) = W(0) = 1, det(B2) = W(1) = 1.

We use the matrices A and B to represent the determinant (45) as

Δ(λ) ≡ det(A · BT ).

We expand this determinant with the use of the Binet–Cauchy formula and obtain
[27, section 1.14, p.41–42]

Δ(λ) =
∑

1≤i1<i2<i3≤2 n

Ai1,i2,i3 Bi1,i2,i3(s) = 0. (47)

Here Ai1,i2,i3 is the minor formed by the i1th, i2th, and i3th columns of the matrix
A and Bi1,i2,i3 is the minor formed by the i1th, i2th, and i3th columns of the matrix
B, or, which is the same, by the corresponding rows of the transpose matrix BT .

Let P(s) be the sum A123 B123 + A456 B456 of the first and last terms in the
expansion (47), and let S(s) be the sum of all other terms; i.e.,

Δ(λ) = S(s)+ P(s).

The function P(s) is identically constant,

P(s) ≡ A123 ·W(0)+ A456 ·W(1) = A123 + A456 = const.

Each term in the sum S(s) contains linear combinations of eωj s x or e
∑

j ωj s x .
The exponents of these exponentials do not vanish, and the coefficients multiplying
the exponentials do not coincide. In what follows, we show that the characteristic
determinant (47) is identically constant only if S(s) ≡ 0, the constant being
A123 + A456.

It follows that

Δ(λ) = A123 + A456 + A124 B124

+ A125 B125 + A126 B126
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+ A134 B134 + A135 B135 + A136 B136

+ A145 B145 + A146 B146 + A156 B156

+ A234 B234 + A235 B235

+ A236 B236 + A245 B245 + A246 B246 + A256 B256

+ A345 B345 + A346 B346 + A356 B356.

From Lemma 5.1, we obtain

B2 =
∥
∥
∥
∥
∥
∥

y1(1) y′1(1) y′′1 (1)
y2(1) y1(1) y′1(1)
y3(1) y2(1) y1(1)

∥
∥
∥
∥
∥
∥
.

Moreover, we have y′1(1) y2(1) = y′′1 (1) y3(1). Thus, the characteristic determinant
becomes

Δ(λ) = (A123 + A456)+ A124 y3(1)+ (A125 − A134) y2(1)

+ (A126 − A135 + A234) y1(1)+ (−A136 + A235) y
′
1(1)

+ (A156 − A246 + A345) (y
2
1(1)− y′1(1) y2(1))

+ A145 (y
2
2(1)− y1(1) y3(1))+ (A146 − A245) (y1(1) y2(1)− y′1(1) y3(1))

+ A236 y
′′
1 (1)+ (−A256 + A346) (y1(1) y

′
1(1)− y′′1 (1) y2(1))

+ A356 ((y
′
1(1))

2 − y1(1) y
′′
1 (1)),

where

y1(1) = 1

3
e−s + 2

3
e
s
2 cos

(√
3

2
s

)

,

y2(1) = − 1

3s
e−s +

√
3

3s
e
s
2 sin

(√
3s

2

)

+
√

3

3s
e
s
2 cos

(√
3s

2

)

,

y3(1) = 1

3s2 e
−s +

√
3

3s2 e
s
2 sin

(√
3s

2

)

−
√

3

3s2 e
s
2 cos

(√
3s

2

)

,

y′1(1) = − s

3
e−s + s

3
e
s
2 cos

(√
3

2
s

)

−
√

3s

3
e
s
2 sin

(√
3

2
s

)

,

y′′1 (1) =
s2

3
e−s − s2

3
e
s
2 cos

(√
3s

2

)

−
√

3s2

3
e
s
2 sin

(√
3

2
s

)

,
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y2
1(1)− y′1(1) y2(1) = 1

3
es + 2

3
e−

s
2 cos

(√
3

2
s

)

,

y2
1(1)− y1(1) y3(1) = − 1

9 s2

(

−e−2 s s2 − 4 e−
s
2 s2 cos

(
s
√

3

2

)

+ e−2 s + e−
s
2 cos

(
s
√

3

2

)

+ e−
s
2 sin

(
s
√

3

2

) √
3

− 2 es cos2

(
s
√

3

2

)

(2 s2 + 1)

+2
√

3 es cos

(
s
√

3

2

)

sin

(
s
√

3

2

))

,

y1(1) y2(1)− y′1(1) y3(1) =
1

3s
e
s
2

(

e−s sin

(
s
√

3

2

) √
3− e−s cos

(
s
√

3

2

)

+ e
s
2

)

,

y1(1) y
′
1(1)− y′′1 (1) y2(1) =

− s

3
e
s
2

(

e−s cos

(
s
√

3

2

)

+ e−s sin

(
s
√

3

2

) √
3− e

s
2

)

,

(y′1(1))2 − y′′1 (1) y1(1) =
s2

3
e
s
2

(√
3 e−s sin

(
s
√

3

2

)

− e−s cos

(
s
√

3

2

)

+ e
s
2

)

.

It follows from the representation of the characteristic determinant Δ(λ) that
it is an entire function of the class K [23, 24] and hence it has infinitely many
roots, whose asymptotic representations can be found in [23, 24]. The proof of
Theorem 5.1 is complete.

We need the following three definitions.

1. Characteristic sum r0 of the determinant Bi1, i2, i3 (and of the corresponding
determinant Ai1, i2, i3 ) is the sum of all of its indices; i.e., r0 = i1 + i2 + i3.

2. Let the number of indices ik of the determinant Bi1, i2, i3 that satisfy the inequality
1 ≤ ik ≤ 3 be r1, and let the number of indices ikof the determinant Bi1, i2, i3 that
satisfy the inequality 4 ≤ ik ≤ 6 be r2. Then the ordered triple (r0, r1, r2) is
called the characteristic index of the determinant Bi1, i2, i3 (Ai1, i2, i3 ).

3. It follows from the expansion obtained above for the characteristic determinant
and from Lemma 5.1 that the determinants Bi1, i2, i3 with distinct characteristic
indices are linearly independent and differ in the exponents sk , while the
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determinants Bi1, i2, i3 with the same characteristic indices coincide or differ only
in the sign. The determinants Bi1, i2, i3 (Ai1, i2, i3 )) with the same characteristic
indices are said to be similar.

If S(s) ≡ 0, then one of the minors A123 and A456 is nonzero. Otherwise, all
third-order minors of the matrix A would be zero, which contradicts the condition
rankA = 3. Indeed, the representation of the characteristic determinant and the
linear independence of the corresponding functions imply the relations

A124 = A145 = A236 = A356 = 0,
A126 − A135 + A234 = A156 − A246 + A345 = 0,

A125 − A134 = A235 − A136 = A146 − A245 = A346 − A256 = 0.
(48)

It is well known in algebraic geometry that given numbers Ai1i2i3 are the minors
of a matrix A if and only if the Pücker relations are satisfied (e.g., see [18]). For the
3× 6 matrix A, these relations read

Ai1i4i5Ai1i2i3 − Ai1i4i3Ai1i2i5 + Ai1i5i3Ai1i2i4 = 0,
Ai1i4i6Ai1i2i3 − Ai1i4i3Ai1i2i6 + Ai1i6i3Ai1i2i4 = 0,
Ai1i5i6Ai1i2i3 − Ai1i5i3Ai1i2i6 + Ai1i6i3Ai1i2i5 = 0,
Ai2i4i5Ai1i2i3 − Ai2i4i3Ai1i2i5 + Ai2i5i3Ai1i2i4 = 0,
Ai2i4i6Ai1i2i3 − Ai2i4i3Ai1i2i6 + Ai2i6i3Ai1i2i4 = 0,
Ai2i5i6Ai1i2i3 − Ai2i5i3Ai1i2i6 + Ai2i6i3Ai1i2i5 = 0,
Ai3i4i5Ai1i2i3 − Ai2i4i3Ai1i3i5 + Ai2i5i3Ai1i3i4 = 0,
Ai3i4i6Ai1i2i3 − Ai2i4i3Ai1i3i6 + Ai2i6i3Ai1i3i4 = 0,
Ai3i5i6Ai1i2i3 − Ai2i5i3Ai1i3i6 + Ai2i6i3Ai1i3i5 = 0,
Ai4i5i6Ai1i2i3 − Ai1i2i4Ai3i5i6 + Ai1i2i5Ai3i4i6 − Ai1i2i6Ai3i4i5 = 0,

where (i1, i2, i3, i4, i5, i6) is a permutation such that Ai1,i2,i3 �= 0. If A123 = A456 =
0, then it follows from these relations and from (48) that all minors Ai1i2i3 of the
matrixA are zero, which contradicts the relation rankA = 3. Therefore, if S(s) ≡ 0,
then one of the minors A123 and A456 is nonzero.

Let A123 �= 0. Then, up to linear row transformations, the matrix (41) has the
form

A =
∥
∥
∥
∥
∥
∥

1 0 0 a14 a15 a16

0 1 0 a24 a25 a26

0 0 1 a34 a35 a36

∥
∥
∥
∥
∥
∥
.

Here the entries aij of the matrix A do not generally coincide with the entries
aij of the matrix (41). We do not denote them by different symbols, because it is
always clear from the context which matrix entries we mean. Let us show that the
condition S(s) ≡ 0 implies that, up to linear row transformations, the matrix A has
the form (43), i.e., that the submatrix composed of the last three columns is diagonal.
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Note that the sum S(s) of determinants Bi1, i2, i3 does not contain determinants
similar to B236 = y′′1 (1), and hence B236 is linearly independent of any other term
in the sum S(s). Then the identity S(s) ≡ 0 implies that A236 = 0. Let us calculate
this determinant. Using A, we obtain

A236 =
∣
∣
∣
∣
∣
∣

0 0 a16

1 0 a26

0 1 a36

∣
∣
∣
∣
∣
∣
= a16 = 0. (49)

Now let us show that the entries a15 and a26 on the upper secondary diagonal
of the matrix A are zero as well. In the sum S(s) of the determinants Bi1i2i3 , there
are no determinants similar to B356 = (y′1(1))2 − y1(1) y′′1 (1), and hence B356 is
linearly independent of any other term in the sum S(s). Then the identity S(s) ≡ 0
implies that A356 = 0. Let us calculate this determinant. Using A, we obtain

A356 =
∣
∣
∣
∣
∣
∣

0 a15 0
0 a25 a26

1 a35 a36

∣
∣
∣
∣
∣
∣
= a15 a26 = 0;

i.e.,

a15 a26 = 0. (50)

Further, the determinants B235 = y′1(1) and B136 are similar. No other determi-
nants Bi1, i2, i3 in the sum S(s) are similar to them. Therefore, we have

A235 + A136 =
∣
∣
∣
∣
∣
∣

0 0 a15

1 0 a25

0 1 a35

∣
∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
∣

1 0 0
0 0 a26

0 1 a36

∣
∣
∣
∣
∣
∣
= 0,

a15 + a26 = 0. (51)

Obviously, it follows from (50) and (51) that

a15 = a26 = 0, (52)

i.e., the diagonal consisting of the entries a15 and a26 is zero.
We can show in a similar way that any diagonal below the main diagonal consists

of zeros. If A456 �= 0, then it follows from the condition that S(s) ≡ 0 for all
λ = s2 �= 0 that the matrix A has the form (44), i.e., that the submatrix composed
of the first n columns is diagonal. This can be proved by analogy with the case of
A123 �= 0. Thus, the proof of Theorem 5.2 is complete.

By Theorem 5.2, in the set of all boundary value problems (39) and (40) only
the boundary value problems with matrices A, up to linear row transformations,



752 V. A. Sadovnichii et al.

coincide with the matrices of one of the two forms (43) or (44). The spectral
problem (39) and (40) with the matrix A1 has the characteristic determinant

Δ(λ) = (a1 a2 + a1 a3 + a2 a3
) ( (

y′′3 (1)
)2 − y′3(1) y′′′3 (1)

)

+ (a1 + a2 + a3
)
y′′3 (1)+ a1 a2 a3 + 1.

The identity

Δ(λ) ≡ C = const

holds if and only if the numbers a1, a2, and a3 are a solution of the system of
equations

a1+a2+a3 = 0, a1 a2+a1 a3+a2 a3 = 0, a1 a2 a3+1 = C = const. (53)

By the Vieta theorem, the set {a1, a2, a3} coincides with the set of roots of the
cubic equation λ3−(C−1) = 0, i.e., with the set of cubic roots of the number C−1.
In particular, Δ(λ) ≡ 0 for problem (39) and (40) with coefficient matrix (43) if and
only if the numbers a1, a2, and a3 are the cubic roots of −1. Since the endpoints
are equivalent, we see that similar conclusions can be made for problem (39) and
(40) with coefficient matrix (44). Thus, the degenerate boundary conditions (40 for
Eq. 39) can only be the boundary conditions with coefficient matrix (5) or (6), where
the set {a1, a2, a3} coincides with the set of cubic roots of some number, andΔ(λ) ≡
0 if and only if the numbers a1, a2, and a3 are three distinct cubic roots of −1.

6 On Degenerate Boundary Conditions for Operator D4

The common form for degenerate boundary conditions for the operator D4 (Dn) is
found. It is shown that the matrix for coefficients of degenerate boundary conditions
has a two diagonal form and the elements for one of the diagonal are units. Operator
D4 whose spectrum fills the entire complex plane are studied too. Earlier, examples
of eigenvalue problems for the differential operator of even order with common
boundary conditions (not containing a spectral parameter) whose spectrum fills
the entire complex plane were given. However, in connection with this, another
question arises whether there are other examples of such operators. In this paper
we show that such examples exist. Moreover, all eigenvalue boundary problems for
the operator D4 whose spectrum fills the entire complex plane are described. It is
proved that the characteristic determinant is identically equal to zero if and only
if the matrix of coefficients of boundary conditions has a two diagonal form. The
elements of this matrix for one of the diagonal are units, and the elements of the
other diagonal are 1, −1 and an arbitrary constant.
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Consider the following problem for operator D4:

y(4)(x) = λ y(x) = s4 y(x), x ∈ [0, 1], (54)

Uj(y) =∑4
k=1 ajk y

(k−1)(0)+∑4
k=1 aj k+4 y(k−1)(1) = 0,

j, k = 1, 2, 3, 4.
(55)

We denote the matrix consisting of the coefficients alk in the boundary condi-
tions (55) by A and the minor consisting of the i1th, i2th, i3th, and i4th columns of
this matrix A by Ai1,i2,i3,i4 ,

A =

∥
∥
∥
∥
∥
∥
∥
∥

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

∥
∥
∥
∥
∥
∥
∥
∥

, (56)

Ai1,i2,i3,i4 =

∣
∣
∣
∣
∣
∣
∣
∣

a1,i1 a1,i2 a1,i3 a1,i4
a2,i1 a2,i2 a2,i3 a2,i4
a3,i1 a3,i2 a3,i3 a3,i4
a4,i1 a4,i2 a4,i3 a4,i4

∣
∣
∣
∣
∣
∣
∣
∣

. (57)

In what follows, we assume that the rank of the matrix A is equal to 4,

rankA = 4. (58)

The aim of this paper is to prove the following theorems:

Theorem 6.1 ( Matrix (56)) for coefficients of degenerate boundary condi-
tions (55) has the following form:

A1 =

∥
∥
∥
∥
∥
∥
∥
∥

1 0 0 0 a1 0 0 0
0 1 0 0 0 a2 0 0
0 0 1 0 0 0 a3 0
0 0 0 1 0 0 0 a4

∥
∥
∥
∥
∥
∥
∥
∥

(59)

or

A2 =

∥
∥
∥
∥
∥
∥
∥
∥

a1 0 0 0 1 0 0 0
0 a2 0 0 0 1 0 0
0 0 a3 0 0 0 1 0
0 0 0 a4 0 0 0 1

∥
∥
∥
∥
∥
∥
∥
∥

, (60)

where ai (i = 1, 2, 3, 4) are some numbers.
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Proof The eigenvalues of the problem (54) and (55) are the roots of the entire
function [16, P. 26] Δ(λ):

Δ(λ) =

∣
∣
∣
∣
∣
∣
∣
∣

U1(y1) U1(y2) U1(y3) U1(y4)

U2(y1) U2(y2) U2(y3) U2(y4)

U3(y1) U3(y2) U3(y3) U3(y4)

U4(y1) U4(y2) U4(y3) U4(y4)

∣
∣
∣
∣
∣
∣
∣
∣

, (61)

where

y1 = 1

4
exp(s x)+ 1

4
exp(−s x)+ 1

2
cos(s x),

y2 = 1

4 s
exp(s x)− 1

4 s
exp(−s x)+ 1

2 s
sin(s x),

y3 = 1

4 s2 exp(s x)+ 1

4 s2 exp(−s x)− 1

2 s2 cos(s x),

y4 = 1

4 s3
exp(s x)− 1

4 s3
exp(−s x)− 1

2 s3
sin(s x),

are the linearly independent solutions of Eq. (54) satisfying the conditions

y
(r−1)
j (0, λ) =

{
0 for j �= r,

1 for j = r,
j, r = 1, 2, 3, 4. (62)

By B, B1 and B2 denote the following matrixes:

B =

∥
∥
∥
∥
∥
∥
∥
∥

y1(0) y′1(0) y′′1 (0) y′′′1 (0) y1(1) y′1(1) y′′1 (1) y′′′1 (1)
y2(0) y′2(0) y′′2 (0) y′′′2 (0) y2(1) y′2(1) y′′2 (1) y′′′2 (1)
y3(0) y′3(0) y′′3 (0) y′′′3 (0) y3(1) y′3(1) y′′3 (1) y′′′3 (1)
y4(0) y′4(0) y′′4 (0) y′′′4 (0) y4(1) y′4(1) y′′4 (1) y′′′4 (1)

∥
∥
∥
∥
∥
∥
∥
∥

,

B1 =

∥
∥
∥
∥
∥
∥
∥
∥

y1(0) y′1(0) y′′1 (0) y′′′1 (0)
y2(0) y′2(0) y′′2 (0) y′′′2 (0)
y3(0) y′3(0) y′′3 (0) y′′′3 (0)
y4(0) y′4(0) y′′4 (0) y′′′4 (0)

∥
∥
∥
∥
∥
∥
∥
∥

,

B2 =

∥
∥
∥
∥
∥
∥
∥
∥

y1(1) y′1(1) y′′1 (1) y′′′1 (1)
y2(1) y′2(1) y′′2 (1) y′′′2 (1)
y3(1) y′3(1) y′′3 (1) y′′′3 (1)
y4(1) y′4(1) y′′4 (1) y′′′4 (1)

∥
∥
∥
∥
∥
∥
∥
∥

,



On Degenerate Boundary Conditions 755

where

y1(1) = 1
4

(
es + e−s + 2 cos(s)

)
, y′1(1) = 1

4 s
(
es − e−s − 2 sin(s)

)
,

y′′1 (1) = 1
4 s

2
(
es + e−s − 2 cos(s)

)
, y′′′1 (1) = 1

4 s
3
(
es − e−s + 2 sin(s)

)
,

y2(1) = 1
4 s

(
es − e−s + 2 sin(s)

)
, y′2(1) = 1

4

(
es + e−s + 2 cos(s)

)
,

y′′2 (1) = 1
4 s
(
es − e−s − 2 sin(s)

)
, y′′′2 (1) = 1

4 s
2
(
es − e−s − 2 cos(s)

)
,

y3(1) = 1
4 s2

(
es − e−s − 2 cos(s)

)
, y′3(1) = 1

4 s

(
es − e−s + 2 sin(s)

)
,

y′′3 (1) = 1
4

(
es + e−s + 2 cos(s)

)
, y′′′3 (1) = 1

4 s
(
es − e−s − 2 sin(s)

)
,

y4(1) = 1
4 s3

(
es − e−s − 2 sin(s)

)
, y′4(1) = 1

4 s2

(
es + e−s − 2 cos(s)

)
,

y′′4 (1) = 1
4 s

(
es − e−s + 2 sin(s)

)
, y′′′4 (1) = 1

4

(
es + e−s + 2 cos(s)

)
.

Note that

y
(k−1)
j−1 (1, λ) ≡ y

(k)
j (1, λ), j = 2, 3, 4, k = 1, 2, 3, 4. (63)

From (62) and (63), it follows that

B = ‖B1, B2‖ =

∥
∥
∥
∥
∥
∥
∥
∥

1 0 0 0 y1(1) y′1(1) y′′1 (1) y′′′1 (1)
0 1 0 0 y2(1) y1(1) y′1(1) y′′1 (1)
0 0 1 0 y3(1) y2(1) y1(1) y′1(1)
0 0 0 1 y4(1) y3(1) y2(1) y1(1)

∥
∥
∥
∥
∥
∥
∥
∥

. (64)

�
Using A and B the determinant (61) represents in the form

Δ(λ) ≡ det(A · BT ).

It follows from Cauchy–Binet formula [27, 1.14] that

Δ(λ) =
∑

1≤i1<i2<i3<i4≤8

Ai1,i2,i3,i4 Bi1,i2,i3,i4 = 0. (65)

Here we denote by Bi1,i2,i3,i4 = Bi1,i2,i3,i4(λ) the minor consisting of the i1th, i2th,
i3th, and i4th columns of the matrix B (lines of the matrix BT ).

By P(s) denote P(s) = A1234 B1234 + A5678 B5678. From the Liouville–
Ostrogradsky formula for the Wronskian determinant it follows that ([22], 17.1)
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B1234 = det(B1) = W(0) = 1, B5678 = det(B2) = W(1) = 1, and P(s) =
A1234 + B5678 = const.

All other functions Bi1,i2,i3,i4 = Bi1,i2,i3,i4(s) (except B1234 and B5678) are not
constants. So if Δ(λ) ≡ C = const, then Δ(λ)−P(s) ≡ 0 and one of minors A1234
or A5678 are not equal to zero. Assume the converse. Then all minors Ai1,i2,i3,i4 of
the matrix are equal to zero. This contradicts the condition rankA = 4. Suppose
that A1234 �= 0. Then the matrix (56) have the following form:

A =

∥
∥
∥
∥
∥
∥
∥
∥

1 0 0 0 a15 a16 a17 a18

0 1 0 0 a25 a26 a27 a28

0 0 1 0 a35 a36 a37 a38

0 0 0 1 a45 a46 a47 a48

∥
∥
∥
∥
∥
∥
∥
∥

.

(In order not to introduce new notations by aij we denote other coefficients aij
than (56)). Let us remark that the determinant B2348 = y′′′1 (1) and any other
determinant Bi1,i2,i3,i4 are linear independent. Suppose Δ(λ) ≡ C = const, then
Δ(λ)− P(s) ≡ 0 and A2348 = 0. From this it follows that

A2348 =

∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 a18

1 0 0 a28

0 1 0 a38

0 0 1 a48

∣
∣
∣
∣
∣
∣
∣
∣

= −a18 = 0. (66)

Let us show that a17 and a28 are equal to zero too. Indeed, B3478 = y′1(1) y′′′1 (1)−
(y′′1 (1))2 and any other determinant Bi1,i2,i3,i4 are linear independent. Suppose
Δ(λ) ≡ C = const, then Δ(λ)− P(s) ≡ 0 and A3478 = 0. From this it follows that

A3478 =

∣
∣
∣
∣
∣
∣
∣
∣

0 0 a17 0
0 0 a27 a28

1 0 a37 a38

0 1 a47 a48

∣
∣
∣
∣
∣
∣
∣
∣

= a17 · a28 = 0. (67)

In addition, B2347 = −B1348 = −y′′1 (1) and any other determinant Bi1,i2,i3,i4 are
linear independent. This implies that

A2347 − A1348 = −(a17 + a28) = 0. (68)

Combining (67) and (68), we get

a17 = a28 = 0.

Likewise,

a16 = a27 = a38 = 0.
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Further, B1235 = y4(1) and any other determinant Bi1,i2,i3,i4 are linear independent.
So if Δ(λ)− P(s) ≡ 0, then the minor A1235 = a45 = 0. As before, we have

a34 = a46 = a25 = a36 = a47 = 0.

Therefore if A1234 �= 0, then the matrix A has the form A1.
Arguing as above, we see that if A5678 �= 0, then the matrix A has the form A2.

This completes the proof of Theorem 6.1.

Theorem 6.2 The characteristic determinant of problem (54) and (55) is identi-
cally equal to zero if and only if the matrix (56) has the form (59) or (60), where
{ai} (i = 1, 2, 3, 4) are the sets:

1. a1 = C1, a2 = −1, a3 = C−1
1 , a4 = 1,

2. a1 = C2, a2 = 1, a3 = C−1
2 , a4 = −1,

3. a1 = C3, a2 = −1, a3 = 1, a4 = −1,
4. a1 = C4, a2 = 1, a3 = −1, a4 = 1,
5. a1 = −1, a2 = C5, a3 = −1, a4 = 1,
6. a1 = −1, a2 = C6, a3 = 1, a4 = C−1

6 ,

7. a1 = 1, a2 = C7, a3 = −1, a4 = C−1
7 ,

8. a1 = 1, a2 = C8, a3 = 1, a4 = −1,
9. a1 = −1, a2 = 1, a3 = C9, a4 = 1,
10. a1 = 1, a2 = −1, a3 = C10, a4 = −1,
11. a1 = −1, a2 = 1, a3 = −1 a4 = C11,

12. a1 = 1, a2 = −1, a3 = 1, a4 = C12,

(69)

where Cj (j = 1, 2, . . . , 12) are arbitrary constants.

Proof If A1234 �= 0 and Δ(λ) ≡ 0 it follows from Theorem 6.1 that

0 ≡ Δ(λ) = det(A1 · BT ) = 1+ 1

2
(a1 a2 + a1 a4 + a2 a3 + a3 a4)

+ a1 a2 a3 a4

+ 1

4
(a1 a2 + a1 a4 + a2 a3 + a3 a4 + 2 a1 a3 + 2 a2 a4)

(
es + e−s

)
cos s

(70)

+ 1

4
(a1 + a2 + a3 + a4 + a1 a2 a3

+ a1 a2 a4 + a1 a3 a4 + a2 a3 a4)
(
es + e−s + 2 cos s

)
.

The functions 1,
(
es + e−s

)
cos s and

(
es + e−s + 2 cos s

)
are linear indepen-

dent. So characteristic determinant (70) is identically equal to zero if and only if the
coefficients a1, a2, a3, a4 are the solutions of the following system of the equations:
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2+ a1 a2 + a1 a4 + a2 a3 + a3 a4 + 2 a1 a2 a3 a4 = 0,

a1 a2 + a1 a4 + a2 a3 + a3 a4 + 2 a1 a3 + 2 a2 a4 = 0,

a1 + a2 + a3 + a4 + a1 a2 a3 + a1 a2 a4 + a1 a3 a4 + a2 a3 a4 = 0.

(71)

By direct calculation we find the solutions of the system of the Eqs. (71). This
solutions are (69).

If A5678 �= 0 and Δ(λ) ≡ 0 it follows from Theorem 6.1 that

0 ≡ Δ(λ) = det(A2 · BT ). (72)

From this we have the system of Eqs. (71), the solutions of whose are (69). This
concludes the proof of Theorem 6.2. �
Remark 6.1 Theorem 6.1 may be generalized for any order n ≥ 2. If n is an
order of the differential equation, then the matrix A for coefficients of the boundary
conditions has the following form:

A =

∥
∥
∥
∥
∥
∥
∥
∥
∥

a11 a12 . . . a1n a1 n+1 a1 n+2 . . . a1 2n

a21 a22 . . . a2n a2 n+1 a2 n+2 . . . a2 2n
...

...
. . .

...
...

...
. . .

...

an1 an2 . . . ann ann+1 ann+2 . . . an 2n

∥
∥
∥
∥
∥
∥
∥
∥
∥

, (73)

where rankA = n.

If the matrix A determines degenerate boundary conditions, then it has the forms:

A1 =

∥
∥
∥
∥
∥
∥
∥
∥
∥

1 0 . . . 0 a1 0 . . . 0
0 1 . . . 0 0 a2 . . . 0
...
...
. . .

...
...

...
. . .

...

0 0 . . . 1 0 0 . . . an

∥
∥
∥
∥
∥
∥
∥
∥
∥

(74)

or

A2 =

∥
∥
∥
∥
∥
∥
∥
∥
∥

a1 0 . . . 0 1 0 . . . 0
0 a2 . . . 0 0 1 . . . 0
...

...
. . .

...
...
...
. . .

...

0 0 . . . an 0 0 . . . 1

∥
∥
∥
∥
∥
∥
∥
∥
∥

. (75)

This statement can be proved similarly as in Theorem 6.1.

Remark 6.2 Equation (2) is associated only with the four solutions: 1, 3, 8, 10 in
Theorem 6.2.
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In this section we proved that the characteristic determinant is identically equal
to zero if and only if the matrix of coefficients of boundary conditions has a two
diagonal form. The elements of this matrix for one of the diagonal are units, and
the elements of the other diagonal are numbers (69). Also is shown that the matrix
for coefficients of degenerate boundary conditions has a two diagonal form and the
elements for one of the diagonal are units. All eigenvalue boundary problems for
the operator D4 whose spectrum fills the entire complex plane are described.

Let us remark that if

2+ a1 a2 + a1 a4 + a2 a3 + a3 a4 + 2 a1 a2 a3 a4 = C �= 0

in (71), then solving of the new system of equations reduces to solving a sixth-
degree equation, and therefore is no longer analytical. Therefore, we cannot write
specific expressions for the coefficients in Theorem 6.1. The system (71) can be
solved analytically in view of the fact that the coefficients of odd powers vanish,
and therefore the sixth-degree equation reduces to a three-degree equation. Such
specific expressions for the coefficients are given in Theorem 6.2.

7 Degenerate Boundary Conditions for the Sturm–Liouville
Problem on a Geometric Graph

We study the boundary conditions of the Sturm–Liouville problem posed on a
star-shaped geometric graph consisting of three edges with a common vertex. We
show that the Sturm–Liouville problem has no degenerate boundary conditions in
the case of pairwise distinct edge lengths. However, if the edge lengths coincide
and all potentials are the same, then the characteristic determinant of the Sturm–
Liouville problem cannot be a nonzero constant and the set of Sturm–Liouville
problems whose characteristic determinant is identically zero and whose spectrum
accordingly coincides with the entire plane is infinite (a continuum). It is shown that,
for one special case of the boundary conditions, this set consists of eighteen classes,
each having from two to four arbitrary constants, rather than of two problems as in
the case of the Sturm–Liouville problem on an interval.

By L we denote the following Sturm–Liouville problem on the graph Γ :

ly = −y′′i + qi(x) yi = λ yi = s2 yi, i = 1, 2, 3, (76)

y1(0) = y2(0) = y3(0), y′1(0)+ y′2(0)+ y′3(0) = 0, (77)

ai1 y1(l1)+ai2 y2(l2)+ai3 y3(l3)+ai4 y
′
1(l1)+ai5 y

′
2(l2)+ai6 y

′
3(l3) = 0, (78)

where λ is a spectral parameter, the real function qi(·) belongs to the space L1(0, π),
and the aij (i = 1, 2, 3, j = 1, . . . , 6) are complex constants.
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Let A be the matrix of the coefficients aij in the boundary conditions (78) and let
the Almn be its minor consisting of the lth, mth, and nth columns,

A =
∥
∥
∥
∥
∥
∥

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

∥
∥
∥
∥
∥
∥
, Almn =

∣
∣
∣
∣
∣
∣

a1l a1m a1n

a2l a2m a2n

a3l a3m a3n

∣
∣
∣
∣
∣
∣
. (79)

Throughout the paper, we assume that the following condition is satisfied:

rankA = 3. (80)

The problem is to find coefficients aij for which the boundary conditions (78)
are degenerate.

By zi1(x, λ) and zi2(x, λ) we denote the linearly independent solutions of
Eqs. (76) satisfying the conditions

zi1(0, λ) = 1, z′i1(0, λ) = 0, zi2(0, λ) = 0, z′i2(0, λ) = 1.

Then the general solutions (76) can be written as

yi = Ci1 zi1 + Ci2 zi2, i = 1, 2, 3. (81)

From the transmission conditions (77), we obtain

C11 = C21 = C31 = C, C32 = −C12 − C22. (82)

By substituting the representations (81) into the boundary conditions (78) into
the boundary conditions (82), we obtain the linear algebraic system

ai1 (C z11(l1)+ C12 z12(l1))+ ai2 (C z21(l2)+ C22 z22(l2))

+ ai3 (C z31(l3)− (C12 + C22) z32(l3))

+ ai4 (C z′11(l1)+ C12 z
′
12(l1))+ ai5 (C z′21(l2)+ C22 z

′
22(l2)) (83)

+ ai6 (C z′31(l3)− (C12 + C22) z
′
32(l3)) = 0, i = 1, 2, 3,

with determinant

Δ(λ) =
∣
∣
∣
∣
∣
∣

d11 d12 d13

d21 d22 d23

d31 d32 d33

∣
∣
∣
∣
∣
∣
, (84)

where

di1 = ai1 z11(l1)+ ai2 z21(l2)+ ai3 z31(l3)+ ai4 z
′
11(l1)

+ ai5 z
′
21(l2)+ ai6 z

′
31(l3),

di2 = ai1 z12(l1)− ai3 z32(l3)+ ai4 z
′
12(l1)− ai6 z

′
32(l3),

di3 = ai2 z22(l2)− ai3 z32(l3)+ ai5 z
′
22(l2)− ai6 z

′
32(l3), i = 1, 2, 3.
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The Liouville formula ([25]) implies the relations

zi1(li) z
′
i2(li)− z′i1(li) zi2(li) =

∣
∣
∣
∣
zi1(li) zi2(li)

z′i1(li) z′i2(li)

∣
∣
∣
∣ =

∣
∣
∣
∣
zi1(0) zi2(0)
z′i1(0) z′i2(0)

∣
∣
∣
∣ = 1. (85)

We calculate the determinant (84) with regard to notation (79) and relations (85)
and obtain the following representation of the characteristic determinant of prob-
lem L

Δ(λ) =
∑

l<m<n

Almn Zlmn, (86)

where

Z123 = z11(l1) z22(l2) z32(l3)+ z12(l1) z21(l2) z32(l3)

+z12(l1) z22(l2) z31(l3),

Z124 = −z11(l1) z
′
12(l1) z22(l2)+ z′11(l1) z12(l1) z22(l2) = −z22(l2),

Z125 = −z21(l2) z12(l1) z
′
22(l2)+ z12(l1) z

′
21(l2) z22(l2) = −z12(l1),

Z126 = z11(l1) z22(l2) z
′
32(l3)+ z12(l1) z21(l2) z

′
32(l3)

+z12(l1) z22(l2) z
′
31(l3),

Z134 = z11(l1) z
′
12(l1) z32(l3)− z′11(l1) z12(l1) z32(l3) = z32(l3),

Z135 = −z11(l1) z
′
22(l2) z32(l3)− z12(l1) z

′
22(l2) z31(l3)

−z12(l1) z
′
21(l2) z32(l3),

Z136 = z12(l1) z31(l3) z
′
32(l3)− z12(l1) z

′
31(l3) z32(l3) = z12(l1),

Z145 = z11(l1) z
′
12(l1) z

′
22(l2)− z′11(l1) z12(l1) z

′
22(l2) = z′22(l2),

Z146 = −z11(l1) z
′
12(l1) z

′
32(l3)+ z′11(l1) z12(l1) z

′
32(l3) = −z′32(l3),

Z156 = z11(l1) z
′
22(l2) z

′
32(l3)+ z12(l1) z

′
21(l2) z

′
32(l3)

+z12(l1) z
′
22(l2) z

′
31(l3),

Z234 = z′12(l1) z21(l2) z32(l3)+ z′12(l1) z22(l2) z31(l3)

+z′11(l1) z22(l2) z32(l3),

Z235 = −z21(l2) z
′
22(l2) z32(l3)+ z′21(l2) z22(l2) z32(l3) = −z32(l3),

Z236 = −z22(l2) z31(l3) z
′
32(l3)+ z22(l2) z

′
31(l3) z32(l3) = −z22(l2),

Z245 = z′12(l1) z21(l2) z
′
22(l2)− z′12(l1) z

′
21(l2) z22(l2) = z′12(l1),

Z246 = −z′12(l1) z21(l2) z
′
32(l3)− z′11(l1) z22(l2) z

′
32(l3)

−z′12(l1) z22(l2) z
′
31(l3),

Z256 = z21(l2) z
′
22(l2) z

′
32(l3)− z′21(l2) z22(l2) z

′
32(l3) = z′32(l3),

Z345 = z′12(l1) z
′
22(l2) z31(l3)+ z′11(l1) z

′
22(l2) z32(l3)

+z′12(l1) z
′
21(l2) z32(l3),

Z346 = −z′12(l1) z31(l3) z
′
32(l3)+ z′12(l1) z

′
31(l3) z32(l3) = −z′12(l1),

Z356 = z′22(l2) z31(l3) z
′
32(l3)− z′22(l2) z

′
31(l3) z32(l3) = z′22(l2),

Z456 = z′12(l1) z
′
21(l2) z

′
32(l3)+ z′12(l1) z

′
22(l2) z

′
31(l3)

+z′11(l1) z
′
22(l2) z

′
32(l3).

(87)
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The asymptotic formulas

zi1(li , λ) = cos s li + 1
s
ui(li) sin s + O

(
1
s2

)
,

zi2(li , λ) = 1
s

sin s li − 1
s2 ui(li) cos s li + O

(
1
s3

)
,

z′i1(li , λ) = −s sin s li + ui(li) cos s li + O
(

1
s

)
,

z′i2(li , λ) = cos s li + 1
s
ui(li) sin s li + O

(
1
s2

)
,

(88)

where ui(li) = 1
2

∫ li
0 q(t) dt , hold for sufficiently large λ ∈ R ([16, pp. 62–65]).

It follows that

Z124 = Z236 = −z22(l2) ∼ − sin s l2
s

,

Z125 = −Z136 = −z12(l1) ∼ − sin s l1
s

,

Z134 = −Z235 = z32(l3) ∼ sin s l3
s

,

Z145 = Z356 = z′22(l2) ∼ cos s l2,
Z146 = −Z256 = −z′32(l3) ∼ − cos s l3,
Z245 = −Z346 = z′12(l1) ∼ cos s l1,

(89)

Z126 ∼ 1
s
(sin s l1 cos s l2 cos s l3 + sin s l2 cos s l1 cos s l3 − a(s)),

Z135 ∼ 1
s
(− sin s l1 cos s l2 cos s l3 − sin s l3 cos s l1 cos s l2 + a(s)),

Z234 ∼ 1
s
(sin s l2 cos s l1 cos s l3 + sin s l3 cos s l1 cos s l2 − a(s)),

(90)

where a(s) = sin s l1 sin s l2 sin s l3,

Z156 ∼ b(s)− sin s l1 sin s l2 cos s l3 − sin s l1 sin s l3 cos s l2,
Z246 ∼ −b(s)+ sin s l1 sin s l2 cos s l3 + sin s l2 sin s l3 cos s l1,
Z345 ∼ b(s)− sin s l1 sin s l3 cos s l2 − sin s l2 sin s l3 cos s l1,

(91)

where b(s) = cos s l1 cos s l2 cos s l3,

Z123 ∼ 1
s2 (sin s l1 sin s l2 cos s l3 + sin s l1 sin s l3 cos s l2
+ sin s l2 sin s l3 cos s l1),

Z456 ∼ −s (cos s l1 cos s l2 sin s l3 + cos s l1 cos s l3 sin s l2,
+ cos s l2 cos s l3 sin s l1).

(92)

If the numbers li (i = 1, 2, 3) are pairwise distinct, then these asymptotic relations
imply the linear independence of the functions

Z124 = Z236, Z125 = −Z136, Z134 = −Z235,

Z145 = Z356, Z146 = −Z256, Z245 = −Z346,

Z126, Z135, Z234, Z126, Z135, Z234, Z156, Z246, Z345.

(93)
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It follows from the asymptotic relations (89)–(92) that the identity

Δ(λ) ≡
∑

l<m<n

Almn Zlmn ≡ C �= 0 (94)

is impossible, and the linear independence of the functions (93) implies that the
identity

Δ(λ) ≡
∑

l<m<n

Almn Zlmn ≡ 0 (95)

is possible if and only if

A124 + A236 = A125 − A136 = A134 − A235 = 0,
A123 = 0, A456 = 0,
A145 + A356 = A146 − A256 = A245 − A346 = 0,
A126 = A135 = A234 = A156 = A246 = A345 = 0.

(96)

It is well known that given numbers Ai1i2i3 are the minors of a matrix A if and
only if the Plücker relations are satisfied [18]. For the 3×6 -matrix A, these relations
are

Ai1i4i5Ai1i2i3 − Ai1i4i3Ai1i2i5 + Ai1i5i3Ai1i2i4 = 0,
Ai1i4i6Ai1i2i3 − Ai1i4i3Ai1i2i6 + Ai1i6i3Ai1i2i4 = 0,
Ai1i5i6Ai1i2i3 − Ai1i5i3Ai1i2i6 + Ai1i6i3Ai1i2i5 = 0,
Ai2i4i5Ai1i2i3 − Ai2i4i3Ai1i2i5 + Ai2i5i3Ai1i2i4 = 0,
Ai2i4i6Ai1i2i3 − Ai2i4i3Ai1i2i6 + Ai2i6i3Ai1i2i4 = 0,
Ai2i5i6Ai1i2i3 − Ai2i5i3Ai1i2i6 + Ai2i6i3Ai1i2i5 = 0,
Ai3i4i5Ai1i2i3 − Ai2i4i3Ai1i3i5 + Ai2i5i3Ai1i3i4 = 0,
Ai3i4i6Ai1i2i3 − Ai2i4i3Ai1i3i6 + Ai2i6i3Ai1i3i4 = 0,
Ai3i5i6Ai1i2i3 − Ai2i5i3Ai1i3i6 + Ai2i6i3Ai1i3i5 = 0,
Ai4i5i6Ai1i2i3 − Ai1i2i4Ai3i5i6 + Ai1i2i5Ai3i4i6 − Ai1i2i6Ai3i4i5 = 0,

(97)

where(i1, i2, i3, i4, i5, i6) is a permutation of the numbers 1, 2, 3, 4, 5, 6 such that
Ai1,i2,i3 �= 0.

Assume that A124 = 1 �= 0. Then by the fifth relation in (97)

A236 A124 − A234 A126 + A264 A123 = 0

which implies that A124 = 0. This is a contradiction.
In a similar way, assuming that one of the minors Aijk is nonzero, we see

that relations (96) and (97) imply that Aijk = 0. Therefore, if the li are pairwise
distinct, then all third-order minors of the matrix A are zero, and this contradicts
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the condition (80). Therefore, the identity Δ(λ) ≡ 0 is impossible, and we have the
following assertion.

Theorem 7.1 If the lengths li (i = 1, 2, 3) are pairwise distinct, then the boundary
value problem (76)–(78) has no degenerate boundary conditions.

Now consider the case in which li = l and qi(x) = q(x) (i = 1, 2, 3). Then
zi1 = z11, zi2 = z12,

Z126 = −Z135 = Z234 = 2 z11(l) z12(l) z
′
12(l)

−z′11(l) z
2
12(l),

Z156 = −Z246 = Z345 = 2 z′11(l) z12(l) z
′
12(l)

+z11(l) (z
′
12(l))

2,

Z124 = Z236 = Z125 = Z235 = −Z136 = −Z134 = −z12(l),

Z145 = Z356 = Z256 = Z245 = −Z146 = −Z346 = z′12(l).

It follows from the asymptotic relations that (94) is impossible, and identity (95)
is possible if and only if

A123 = 0, A456 = 0,
A126 − A135 + A234 = 0, A156 − A246 + A345 = 0,
A124 + A236 + A125 + A235 − A136 − A134 = 0,
A145 + A356 + A256 + A245 − A146 − A346 = 0,

(98)

and relations (97) are satisfied. Equations (97) and (98) form an algebraic system of
equations that must be satisfied by the minors of the matrix A to ensure identity (95).
Equations (97) depend on which of the minors Aijk is nonzero. If A124 = 1 �= 0,
then we obtain precisely 18 solutions of system (97) and (98):

1. A125 = 1, A126 = 1, A134 = 0,

A135 = 0, A136 = 0, A145 = C2,

A146 = C1, A156 = C1 − C2, A234 = −1, A235 = −1,

A236 = −1, A246 = C1,

A245 = C2, A256 = C1 − C2, A345 = C2, A346 = C1,

A356 = C1 − C2.

2. A125 = −C1, A126 = 1,
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A134 = 0,

A135 = 0, A136 = 0, A145 = C3,

A146 = 0, A156 = −C3, A234 = −1, A235 = C1,

A236 = −1, A245 = C2,

A246 = 0,

A256 = −C2, A345 = C3, A346 = 0, A356 = −C3.

3. A125 = −1+ C1, A126 = −C1, A134 = 0, A135 = 0, A136 = 0,

A145 = −C3/C1, A234 = C1, A146 = C2, A156 = −C2 + C1 · C2 − C3,

A235 = −C1 + C2
1 , A236 = −C2

1 ,

A245 = −(−1+ C1) · C3/C1, A246 = −C2 + C1 · C2,

A256 = C3 − C3 · C1 + C2 − 2 · C1 · C2 + C2
1 · C2, A345 = C3,

A346 = −C1 · C2, A356 = C1 · C2 − C2
1 · C2 + C3 · C1.

4. A125 = −1, A126 = 0,

A134 = 0, A135 = 0, A136 = 0, A145 = −C1,

A146 = −C2, A156 = C2,

A234 = 0, A235 = 0, A236 = 0, A245 = C1,

A246 = C2, A256 = −C2,

A345 = 0, A346 = 0, A356 = 0.

5. A125 = 1, A126 = 1,

A134 = C1, A135 = C1, A136 = C1, A145 = C2,
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A146 = C3, A156 = −C2 + C3,

A234 = −1+ C1, A235 = −1+ C1, A236 = −1+ C1,

A245 = C2, A246 = C3, A256 = −C2 + C3,

A345 = C2, A346 = C3, A356 = −C2 + C3.

6. A125 = C2/C1, A126 = −C1 + C2 + 1,

A134 = C1, A135 = C2,

A136 = C1 · C2 − C2
1 + C1, A145 = C3/C1,

A146 = C3, A156 = C3 · (−1+ C1)/C1,

A234 = −1+ C1, A235 = C2 · (−1+ C1)/C1,

A236 = −C2 + C1 · C2 − 1+ 2 · C1 − C2
1 ,

A245 = C4/C1, A246 = C4,

A256 = C4 · (−1+ C1)/C1,

A345 = −(−C3 + C3 · C1 − A246 · C1)/C1,

A346 = C3 − C3 · C1 + C4 · C1,

A356 = −(C3 − 2 · C3 · C1 + C3 · C2
1 + C4 · C1 − C4 · C2

1)/C1.

7. A125 = (−2+ C1)/(C1 + 1), A126 = −(−1+ 2 · C1)/(C1 + 1),

A134 = C1,

A135 = C1 · (−2+ C1)/(C1 + 1), A136 = −C1 · (−1+ 2 · C1)/(C1 + 1),

A145 = (C1 + 1) · C3/(−2+ C1), A146 = C2,

A156 = (4 · C2 − C3 + C3 · C1 − 4 · C2 · C1+

2 · C3 · C2
1 + C2 · C2

1)/((C1 + 1) · (−2+ C1)),
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A234 = −1+ C1, A235 = (2− 3 · C1 + C2
1)/(C1 + 1),

A236 = −(−1+ C1) · (−1+ 2 · C1)/(C1 + 1),

A245 = C3, A246 = C2 · (−2+ C1)/(C1 + 1),

A256 = (4 · C2 − C3 + C3 · C1 − 4 · C2 · C1+

2 · C3 · C2
1 + C2 · C2

1)/(C1 + 1)2,

A345 = −C3 · (−1+ 2 · C1)/(−2+ C1),

A346 = −C2 · (−1+ 2 · C1)/(C2 + 1),

A356 =
−(−1+ 2 · C1) · (4 · C2 − C3 + C3 · C1 − 4 · C2 · C1 + 2 · C3 · C2

1 + C2 · C2
1)

(C1 + 1)2 · (−2+ C1)
.

8. A125 = −C1, A126 = C1 − 1, A134 = −1,

A135 = C1, A136 = 1− C1,

A145 = −C2, A146 = C2, A156 = −C2,

A234 = 1, A235 = −C1, A236 = C1 − 1,

A245 = −C3, A246 = C3, A256 = −C3, A345 = C2 + C3,

A346 = −C3 − C2, A356 = C2 + C3.

9. A125 = C2/C1, A126 = −(C1 + C2)/C1, A134 = C1, A135 = C2,

A136 = −C2 − C1, A145 = C3 · C1/C2,

A146 = C4 · C1/C2,

A156 = (C4 · C2 + C3 · C1 + C3 · C2)/C2,

A234 = (C1 · C2 + C1 + C2)/C1,

A235 = (C1 · C2 + C1 + C2) · C2/C
2
1 ,
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A236 = −(C1 · C2 + C1 + C2) · (C2 + C1)/C
2
1 ,

A245 = C3, A246 = C4,

A256 = (C4 · C2 + C3 · C1 + C3 · C2)/C1,

A345 = −(C1 + C2) · C3/C2,

A346 = −C4 · (C1 + C2)/C2,

A356 = −(C1 + C2) · (C4 · C2 + C3 · C1 + C3 · C2)/(C1 · C2).

10. A125 = (−1+ C1)/C1, A126 = 0,

A134 = C1, A135 = −1+ C1, A136 = 0,

A145 = C2/C1, A146 = C2,

A156 = C2 · (−1+ C1)/C1, A234 = −1+ C1,

A235 = (1− 2 · C1 + C2
1)/C1, A236 = 0,

A245 = C3/C1, A246 = C3,

A256 = C3 · (−1+ C1)/C1,

A345 = −(−C2 + C1 · C2 − C1 · C3)/C1,

A346 = C2 − C2 · C1 + C3 · C1,

A356 = −(C2 − 2 · C1 · C2 + C2 · C2
1 + C3 · C1 − C3 · C2

1)/C1.

11. A125 = C2/C1, A126 = −C1 + C2 + 1,

A134 = C1, A135 = C2,

A136 = C1 · C2 − C2
1 + C1, A145 = C3/C1,

A146 = C3, A156 = C3 · (−1+ C1)/C1,
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A234 = −1+ C1, A235 = C2 · (−1+ C1)/C1,

A236 = −C2 + C1 · C2 − 1+ 2 · C1 − C2
1 ,

A245 = 0, A246 = 0, A256 = 0, A345 = −C3 · (−1+ C1)/C1,

A346 = −C3 · (−1+ C1), A356 = −C3 · (−1+ C1)
2/C1.

12. A125 = (−2+ C1)/C1, A126 = −1,

A134 = C1, A135 = −2+ C1,

A136 = −C1, A145 = C2/C1, A146 = C2,

A156 = C2 · (−1+ C1)/C1,

A234 = −1+ C1,

A235 = (2− 3 · C1 + C2
1)/C1,

A236 = 1− C1, A245 = 0,

A246 = 0, A256 = 0,

A345 = −C2 · (−1+ C1)/C1,

A346 = −C2 · (−1+ C1),

A356 = −C2 · (−1+ C1)
2/C1.

13. A125 = 1, A126 = 1, A134 = C1,

A135 = C1, A136 = C1, A145 = C2,

A146 = 0, A156 = −C2, A234 = −1+ C1,

A235 = −1+ C1, A236 = −1+ C1,

A245 = C2, A246 = 0, A256 = −C2,

A345 = C2, A346 = 0, A356 = −C2.
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14. A125 = (−2+ C1)/(C1 + 1),

A126 = −(−1+ 2 · C1)/(C1 + 1), A134 = C1,

A135 = C1 · (−2+ C1)/(C1 + 1),

A136 = −C1 · (−1+ 2 · C1)/(C1 + 1),

A145 = −C2 · (C1 + 1)/(−1+ 2 · C1),

A146 = 0, A156 = −C2, A234 = −1+ C1,

A235 = (2− 3 · C1 + C2
1)/(C1 + 1),

A236 = −(−1+ C1) · (−1+ 2 · C1)/(C1 + 1),

A245 = −C2 · (−2+ C1)/(−1+ 2 · C1),

A246 = 0, A256 = −C2 · (−2+ C1)/(C1 + 1),

A345 = C2, A346 = 0,

A356 = C2 · (−1+ 2 · C1)/(C1 + 1).

15. A125 = 0, A126 = −1,

A134 = C1, A135 = 0,

A136 = −C1, A145 = −C3,

A146 = C2, A156 = −C3,

A234 = 1, A235 = 0, A236 = −1, A245 = 0,

A246 = 0, A256 = 0, A345 = C3,

A346 = −C2, A356 = C3.

16. A125 = 0, A126 = −1, A134 = −1,

A135 = 0, A136 = 1, A145 = C1 − C2,
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A146 = −C1 + C2, A156 = C1 − C2, A234 = 1,

A235 = 0, A236 = −1,

A245 = −C1, A246 = C1, A256 = −C1,

A345 = C2, A346 = −C2, A356 = C2.

17. A125 = −2, A126 = 1, A134 = −1,

A135 = 2, A136 = −1, A145 = C1 − C2,

A146 = −C1 + C2, A156 = C1 − C2,

A234 = 1, A235 = −2, A236 = 1,

A245 = −C1, A246 = C1,

A256 = −C1,

A345 = C2, A346 = −C2, A356 = C2.

18. A125 = −2, A126 = 1, A134 = C1,

A135 = −2 · C1, A136 = C1, A145 = C3,

A146 = −(1/2) · C2, A156 = C2 − C3,

A234 = −2 · C1 − 1, A235 = 2+ 4 · C1,

A236 = −2 · C1 − 1, A245 = −2 · C3,

A246 = C2, A256 = 2 · C3 − 2 · C2,

A345 = C3, A346 = −(1/2) · C2, A356 = C2 − C3.

Here C1, C2, C3, C4 are arbitrary constants. If the solution components 1–18
are known, then one can readily calculate the coefficient matrix of the boundary
conditions and the boundary conditions themselves (e.g., see [18]). We show this
for the components of solution 2 (which contains three arbitrary constants). If
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x = (x1, x2, x3, x4, x5, x6) is an arbitrary row of the desired matrix A, then it must
satisfy condition (80); i.e.,

rank

∥
∥
∥
∥
∥
∥
∥
∥

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

x1 x2 x3 x4 x5 x6

∥
∥
∥
∥
∥
∥
∥
∥

= 3. (99)

Since the minor A124 is nonzero, it follows that the fourth-order minors bordering it
must be zero. This implies the equations

∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

x1 x2 x3 x4

∣
∣
∣
∣
∣
∣
∣
∣

= −x1 ·A234 + x2 ·A134 − x3 ·A124 + x4 ·A123 = 0, (100)

∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 a14 a15

a21 a22 a24 a25

a31 a32 a34 a35

x1 x2 x4 x5

∣
∣
∣
∣
∣
∣
∣
∣

= −x1 ·A245 + x2 ·A145 − x4 ·A125 + x5 ·A124 = 0, (101)

∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 a14 a16

a21 a22 a24 a26

a31 a32 a34 a36

x1 x2 x4 x6

∣
∣
∣
∣
∣
∣
∣
∣

= −x1 ·A246 + x2 ·A146 − x4 ·A126 + x6 ·A124 = 0. (102)

Since A124 �= 0, we can assume that A124 = 1. Moreover, A123 = 0. By substituting
these values of the minors and the solution 2 into Eqs. (100)–(102), we obtain the
system of equations

x1 − x3 = 0,

−x1 C2 + x2 · C3 + x4 · C1 + x5 = 0, (103)

−x4 + x6 = 0.

Taking into account relations (103) and the fact that A124 = 1, for linearly
independent rows we can take the rows with elements

x1 = 1, x2 = 0, x4 = 0, x3 = 1, x5 = C2, x6 = 0,
x1 = 0, x2 = 1, x4 = 0, x3 = 0, x5 = −C3, x6 = 0,
x1 = 0, x2 = 0, x4 = 1, x3 = 0, x5 = −C1, x6 = 1.

(104)
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Therefore, the desired degenerate boundary conditions have the form

y1(l)+ y3(l)+ C2 y
′
2(l) = 0,

y2(l)− C3 y
′
2(l) = 0, (105)

y′1(l)− C1 y
′
2(l)+ y′3(l) = 0.

By substituting the other components of the solutions into Eqs. (100)–(102), we
obtain 17 additional classes of degenerate boundary conditions,

y1(l)+ y3(l)+ C2 y
′
2(l)+ C1 y

′
3(l) = 0,

y2(l)− C2 y
′
2(l)− C1 y

′
3(l) = 0, (106)

y′1(l)+ y′2(l)+ y′3(l) = 0.

y1(l)− C1 y3(l)− (−1+ C1)
C3

C1
y′2(l)+ (C1 C2 − C2) y

′
3(l) = 0,

y2(l)− C3

C1
y′2(l)− C2 y

′
3(l) = 0, (107)

y′1(l)+ (−1+ C1) y
′
2(l)− C1 y

′
3(l) = 0.

y1(l)+ C1 y
′
2(l)+ C2 y

′
3(l) = 0,

y2(l)+ C1 y
′
2(l)+ C2 y

′
3(l) = 0, (108)

y′1(l)− y′2(l) = 0.

y1(l)+ (C1 − 1) y3(l)+ C2 y
′
2(l)+ C3 y

′
3(l) = 0,

y2(l)+ C1 y3(l)− C2 y
′
2(l)− C3 y

′
3(l) = 0, (109)

y′1(l)+ y′2(l)+ y′3(l) = 0.

y1(l)+ (1− C1) y3(l)+ C4

C1
y′2(l)+ C4 y

′
3(l) = 0,

y2(l)+ C1 y3(l)− C3

C1
y′2(l)− C3 y

′
3(l) = 0, (110)

y′1(l)+
C2

C1
y′2(l)+ (1+ C2 − C1) y

′
3(l) = 0.
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y1(l)+ (1− C1) y3(l)+ C3 y
′
2(l)+

(C1 − 2) C2

C1 + 1
y′3(l) = 0,

y2(l)+ C1 y3(l)− (C1 + 1) C3

C1 − 2
y′2(l)− C2 y

′
3(l) = 0, (111)

y′1(l)+
C1 − 2

C1 + 1
y′2(l)+

1− C1

C1 + 1
y′3(l) = 0.

y1(l)− y3(l)− C3 y
′
2(l)+ C3 y

′
3(l) = 0,

y2(l)− y3(l)+ C2 y
′
2(l)− C2 y

′
3(l) = 0, (112)

y′1(l)− C1 y
′
2(l)+ (C1 − 1) y′3(l) = 0.

y1(l)− (C1 C2 + C1 + C2) y3(l)+ C3 y
′
2(l)+ C4 y

′
3(l) = 0,

y2(l)+ C1 y3(l)− C1 C3

C2
y′2(l)−

C1 C4

C2
y′3(l) = 0, (113)

y′1(l)+
C2

C1
y′2(l)−

C1 + C2

C1
y′3(l) = 0.

y1(l)+ (1− C1) y3(l)+ C3

C1
y′2(l)+ C3 y

′
3(l) = 0,

y2(l)+ C1 y3(l)− C2

C1
y′2(l)− C2 y

′
3(l) = 0, (114)

y′1(l)+
C1 − 1

C1
y′2(l) = 0.

y1(l)+ (C1 − 1) y3(l) = 0,

y2(l)+ C1 y3(l)− C3

C1
y′2(l)− C3 y

′
3(l) = 0, (115)

y′1(l)+
C2

C1
y′2(l)+ (1+ C2 − C1) y

′
3(l) = 0.

y1(l)+ (C1 − 1) y3(l) = 0,

y2(l)− C1 y3(l)− C2

C1
y′2(l)− C2 y

′
3(l) = 0, (116)

y′1(l)+
C1 − 2

C1
y′2(l)− y′3(l) = 0.
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y1(l)+ (1− C1) y3(l)+ C2 y
′
2(l) = 0,

y2(l)+ C1 y3(l)− C2 y
′
2(l) = 0, (117)

y′1(l)+ y′2(l)+ y′3(l) = 0.

y1(l)+ (C1 − 1) y3(l)− (C1 − 2) C2

2C1 − 1
y′2(l) = 0,

y2(l)+ C1 y3(l)+ (C1 + 1) C2

2C1 − 1
y′2(l) = 0, (118)

y′1(l)+
C1 − 2

C1 + 1
y′2(l)+

1− 2C1

C1 + 1
y′3(l) = 0.

y1(l)− y3(l) = 0,

y2(l)+ C1 y3(l)+ C3 y
′
2(l)− C2 y

′
3(l) = 0, (119)

y′1(l)− y′3(l) = 0.

y1(l)− y3(l)− C1 y
′
2(l)+ C1 y

′
3(l) = 0,

y2(l)− y3(l)+ (C2 − C1) y
′
2(l)+ (C1 − C2) y

′
3(l) = 0, (120)

y′1(l)− y′3(l) = 0.

y1(l)− y3(l)− C1 y
′
2(l)+ C1 y

′
3(l) = 0,

y2(l)− y3(l)+ (C2 − C1) y
′
2(l)+ (C1 − C2) y

′
3(l) = 0, (121)

y′1(l)− 2 y′2(l)+ y′3(l) = 0.

y1(l)+ (2C1 + 1) y3(l)− 2C3 y
′
2(l)+ C2 y

′
3(l) = 0,

y2(l)+ C1 y3(l)− C3 y
′
2(l)+

1

2
C2 y

′
3(l) = 0, (122)

y′1(l)− 2 y′2(l)+ y′3(l) = 0.

Thus, the following assertion holds.

Theorem 7.2 If li = l (i = 1, 2, 3) and qi(x) = q(x), then identity (94) is
impossible for the boundary value problem (76)–(78) and identity (95) is possible
for infinitely many problems (76)–(78). In particular, for A124 = 1 �= 0 the set
of degenerate boundary conditions on the star-shaped graph consists not of two
problems as in the case of the Sturm–Liouville problem posed on an interval but of
the eighteen classes (105)–(122), each of which contains from two to four arbitrary
constants.
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8 Finiteness of the Spectrum of Boundary Value Problems

We consider boundary value problems with spectral parameter polynomially occur-
ring in the differential equation or the boundary conditions. It is shown that some
of these problems have a prescribed finite spectrum. A wide class of boundary value
problems which do not have finite spectrum is found.

For the differential equation

y(n)+a1(x, λ) y
n−1+· · ·+an−1(x, λ) y

′+an(x, λ) y = 0, x ∈ [0, 1] (123)

consider the boundary value problem

Uj (y) =
n−1∑

k=0

bjk y
(k)(0)+

n−1∑

k=0

bj k+n y(k)(1) = 0,

j = 1, 2, . . . , n, (124)

where rank ||bjk||n×2n = n, the functions aq(x, λ) (q = 1, . . . , n) are continuous
in x on the interval [0,1] and polynomial in the parameter λ, bjk ∈ C, and the
coefficients bjk are complex. It is well known [16, p. 27] that the following two
situations are only possible for the spectrum of problem (123) and (124): (1) there
exists at most countably many eigenvalues, and they have no limit points in C; (2)
every λ ∈ C is an eigenvalue.

The direct and inverse problems for the case in which the spectrum consists of
infinitely many eigenvalues have been studied sufficiently well [2, 3], but the case
of finite spectrum of problem (123) and (124) has not been studied well enough.

It was shown in [14, p. 556] and [6] that the differentiation operators D2 and D4

with the corresponding boundary conditions (124) cannot have a finite spectrum. In
2008, Locker [6] posed the following question for the equations:

y(n)+a1(x) y
n−1+· · ·+an−1(x) y

′ +an(x) y = λ y(x), x ∈ [0, 1]. (125)

Can the boundary value problem (125) and (124) have finite spectrum? In the
same year, Kalmenov and Suragan [15] proved that the spectrum of regular partial
differential boundary value problems including problems (125) and (124) is either
empty or infinite. The following assertion shows that this result also holds for one
general class of problems (123) and (124).

Theorem 8.1 If the functions aq(x, λ) have the form

aq(x, λ) = λq
∑q

j=0 λ
−j aqj (x), aq0(x) = aq0 · r(x),

r(x) > 0, q = 1, 2, . . . , n,
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and the polynomial π(λ) = λn+ a10 λ
n−1 + · · ·+ aq0 does not have multiple roots,

then the spectrum of boundary value problem (123) and (124) is either empty or
infinite.

The proof of Theorem 8.1 follows from the results obtained by Lidskii and
Sadovnichii [23, 24], who showed that the characteristic determinant Δ(λ) of
problem (123) and (124) satisfying the assumptions of Theorem 8.1 is an entire
function of class K and the number of roots (if any) of this function is infinite.
(Their asymptotic representations are given in [23, 24] as well.). Now assume that
the polynomial π(λ) has multiple roots. The following question arises: Can the
boundary value problem (123) and (124) have finite spectrum in this case? It is
shown below that the answer is yes. Moreover, we prove that there exist boundary
value problems (123) and (124) with any prescribed finite spectrum.

Theorem 8.2 Let λ1, λ2, . . . , λn be given complex numbers. There exists a
boundary value problem (123) and (124), whose spectrum consists precisely of the
numbers λ1, λ2, . . . , λn.

Proof We denote the product (λ− λ1) · . . . · (λ− λn) by p(λ), p(λ)− 1 by d, and
for the differential equation

y′′ − 2 d(λ) y′ + d2(λ) y = 0, (126)

we consider the boundary value problem

U1(y) = y(0) = 0, U2(y) = y′(1) = 0. (127)

Equation (126) has the characteristic equation (ω − d)2 = 0. Therefore, if
d �= 0, then the following functions are linearly independent solutions of Eq. (126):
y1 = exp(d x), y2 = x exp(d x). Then the characteristic determinant Δ(λ) of
problem (126) and (127) is

Δ(λ) =
∣
∣
∣
∣
y1(0) y2(0)
y′1(1) y′2(1)

∣
∣
∣
∣ =

∣
∣
∣
∣

1 0
d ed (1+ d) ed

∣
∣
∣
∣

= (1+ d) ed = p(λ) ed(λ).

Thus, if p(λ)−1 �= 0, Δ(λ) = p(λ) ed(λ). If p(λ)−1 = 0, then, substituting the
linearly independent solutions y1 = 1, y2 = x of Eq. (126) into the characteristic
determinant, we obtain Δ(λ) �= 0. Therefore, the roots of the characteristic
determinant Δ(λ) are precisely the roots of the polynomial p(λ). The proof of the
theorem is complete. �

It follows from Theorem 8.2 that, varying the polynomial p(λ) one can ensure
that the corresponding boundary value problem has a prescribed finite spectrum.
The following question arises: If the polynomial p(λ) occurs in the boundary
conditions (124) rather than in the differential equation, can one ensure that the
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boundary value problem has a prescribed finite spectrum by varying p(λ)? It was
shown that if the characteristic determinant of the boundary value problem is not
identically zero, then, varying one of the boundary conditions of the problem, one
can ensure that the spectral problem has a prescribed (and finite) spectrum. But the
boundary condition considered can contain a function that is not a polynomial in
general. Our question is different: Can the boundary value problem (125) and (124),
where the coefficients bjk in the boundary conditions are polynomials of the spectral
parameter λ, have a prescribed finite spectrum?

Theorem 8.3 Let λ1, λ2, . . . , λn be given complex numbers. There exists a
problem (125) and (124), that the coefficients bjk in the boundary conditions are
polynomials of the spectral parameter λ and the spectrum of the problem consists
precisely of the numbers λ1, λ2, . . . , λn.

Proof By zj (x) we denote the linearly independent solutions of Eq. (125) satisfying

the conditions z(j−1)
i (x) = δij (i, j = 1, 2, . . . , n), where δij is the Kronecker delta.

Assume that the boundary conditions (124) have the form

U1(y) = p(λ) y(0) = 0, Uk(y) = y(k−1)(0) = 0, k = 2, 3, . . . , n.
(128)

Then for the characteristic determinant of problem (125) and (128) we have

Δ(λ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

p(λ) 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

= p(λ).

The proof of the theorem is complete. �
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Deceptive Systems of Differential
Equations

Martin Schechter

Abstract We study nonlinear steady state Schrödinger systems of equations arising
in the study of photonic lattices.

1 Introduction

We study a system of equations arising in optics describing the propagation of a light
wave in induced photonic lattices. This leads to the following system of equations
over a periodic domain Ω ⊂ R

2 :

Δv = Pv

1+ v2 + w2
+ λv, (1)

Δw = Qw

1+ v2 + w2 + λw, (2)

where P,Q, λ are parameters. The solutions v,w are to be periodic in Ω with the
same periods. One wishes to obtain intervals of the parameter λ for which there
are nontrivial solutions. This will provide continuous energy spectrum that allows
the existence of steady state solutions. This system was studied in [2], where it was
shown that

1. If P,Q, λ are all positive, then the only solution is trivial.
2. If P < 0 and 0 < λ < −P, then the system (1) and (2) has a nontrivial solution.
3. If P,Q > 0, there is a constant δ > 0 such that the system (1) and (2) has a

nontrivial solution provided 0 < −λ < δ.

4. All of these statements are true if we replace P by Q.
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Wave propagation in nonlinear periodic lattices has been studied by many
researchers (cf., e.g., [1–10, 18–21] and their bibliographies.)

The system (1) and (2) has some interesting properties. If one has solved this
system, it can very well be that all that one has solved is the system

Δv = Pv

1+ v2 + λv, (3)

Δw = Qw

1+ w2 + λw, (4)

even if we are guaranteed that we have a nontrivial solution. As noted in [2], to
prove the existence of a nontrivial solution of system (1) and (2), it suffices to obtain
a nontrivial solution of either

Δv = Pv

1+ v2
+ λv, (5)

or

Δw = Qw

1+ w2 + λw. (6)

This stems from the fact that (v, 0) is a solution of (1),(2) if v is a solution of (5)
and (0, w) is a solution of (1),(2) if w is a solution of (6). As a consequence, when
one has solved system (1) and (2), it is not clear whether one has solved system (1)
and (2) or system (5) and (6). For this reason we have called the system (1) and (2)
“deceptive.” This raises the question whether there are values of P,Q, λ for which
the system (1) and (2) has a solution (v,w) where v �= 0, w �= 0.

It is clear that any set of hypotheses that does not involve both P and Q can
solve only (5) and (6). If it involves only P, then it can solve only (5) with a similar
statement for Q. Even if the hypotheses involve both P and Q, will the method of
solution fail unless both of them satisfy the hypotheses? Therefore, we shall only
consider theorems in which the hypotheses involve all three parameters in such a
way that the method of solution fails otherwise.

We consider the following situation. Let Ω be a bounded periodic domain
in R

n, n ≥ 1. Consider the operator −Δ on functions in L2(Ω) having the
same periods as Ω. The spectrum of −Δ consists of isolated eigenvalues of finite
multiplicity:

0 = λ0 < λ1 < · · · < λ& < · · · ,

with eigenfunctions in L∞(Ω). Let λ&, & ≥ 0, be one of these eigenvalues, and
define
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N =
⊕

λ≤λ&
E(λ), M = N⊥.

We shall prove

Theorem 1 If 0 < P ≤ σ = −λ < min[P + λ1,Q], then (1) and (2) has a
nontrivial solution.

Theorem 2 If 0 < Q ≤ σ = −λ < min[Q + λ1, P ], then (1) and (2) has a
nontrivial solution.

Theorem 3 If 0 < P + λ& ≤ σ = −λ < min[P + λ&+1,Q], then (1) and (2) has
a nontrivial solution.

Theorem 4 If 0 < Q+ λ& ≤ σ = −λ < min[Q+ λ&+1, P ], then (1) and (2) has
a nontrivial solution.

Proofs of these theorems will be given after a series of lemmas.

2 Some Lemmas

In proving our results we shall make use of the following lemmas (cf., e.g., [11, 14,
17]). For the definition of linking, cf. [11].

Lemma 1 LetM,N be closed subspaces such that dimN <∞ and E = M ⊕N .
Let w0 �= 0 be an element ofM , and take

A = {v ∈ N : ‖v‖ ≤ R} ∪
{sw0 + v : v ∈ N, s ≥ 0, ‖sw0 + v‖ = R},

B = ∂Bδ ∩M, 0 < δ < R.

Then A and B link each other.

Lemma 2 If A links B, and G(u) ∈ C1(E,R) satisfies

a0 = sup
A

G ≤ b0 = inf
B
G, (7)

then there is a sequence {uk} such that

G(uk)→ c ≥ b0, (1+ ‖uk‖E)‖G′(uk)‖ → 0. (8)

We let E be the subspace of H 1,2(Ω) consisting of those functions having the
same periodicity as Ω with norm given by



784 M. Schechter

‖w‖2
E = ‖∇w‖2 + ‖w‖2.

Assume P �= 0,Q �= 0, λ �= 0. Let

a(u) = 1

P
[ ‖∇v‖2 + λ ‖v‖2] + 1

Q
[ ‖∇w‖2 + λ ‖w‖2], v, w ∈ E (9)

and

G(u) = a(u)+
∫

Ω

ln(1+ u2) dx. (10)

We have

Lemma 3 If G(u) is given by (10), then every sequence satisfying (8) has a
subsequence converging in E. Consequently, there is a u ∈ E such that G(u)=c
and G′(u) = 0.

Proof The sequence satisfies

G(uk) = 1

P
‖∇vk‖2 + λ

P
‖vk‖2 + 1

Q
‖∇wk‖2 + λ

Q
‖wk‖2 (11)

+
∫

Ω

ln{1+ |uk|2} dx → c,

(G′(uk), q)/2 = 1

P
(∇vk,∇g)+ λ

P
(vk, g) (12)

+ 1

Q
(∇wk,∇h)+ λ

Q
(wk, h)

+
∫

Ω

ukq

1+ u2
k

dx → 0, q = (g, h),

(G′(uk), vk)/2 = 1

P
(∇vk,∇vk)+ λ

P
(vk, vk) (13)

+
∫

Ω

ukvk

1+ u2
k

dx → 0.

and

(G′(uk), wk)/2 = 1

Q
(∇wk,∇wk)+ λ

Q
(wk,wk) (14)

+
∫

Ω

ukwk

1+ u2
k

dx → 0.
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Thus,

∫

Ω

H(x, uk) dx → c, (15)

where

H(x, t) = ln(1+ t2)− t2

1+ t2
. (16)

Let ρk = ‖uk‖H , where

‖u‖2
H = 1

|P | [‖∇v‖
2 + |λ| ‖v‖2] (17)

+ 1

|Q| [‖∇w‖
2 + |λ| ‖w‖2], u = (v,w) ∈ E.

Assume first that ρk → ∞. Let ũk = uk/ρk. Then ‖ũk‖H = 1. Hence, there is a
renamed subsequence such that ũk ⇀ ũ in E, and ũk → ũ in L2(Ω) and a.e. Now

‖uk‖2
H = 1

|P | [‖∇vk‖
2 + |λ| ‖vk‖2] + 1

|Q| [‖∇wk‖2 + |λ| ‖wk‖2]. (18)

By (13) and (14),

‖uk‖2
H ≤ |(G′(uk), vk)|/2+ |(G′(uk), wk)|/2

+ |λ| − λ

|P | ‖vk‖2 + |λ| − λ

|Q| ‖wk‖2

+
∫

Ω

u2
k

1+ u2
k

dx.

Hence,

1 = ‖ũk‖2
H ≤ [|(G′(uk), vk)|/2+ |(G′(uk), wk)|/2]/ρ2

k + C‖ũk‖2. (19)

In the limit we have,

1 ≤ C‖ũ‖2.

This shows that ũ �≡ 0. Let Ω0 be the subset of Ω where ũ(x) �= 0. Then |Ω0| �= 0.
Thus

∫

Ω

H(x, uk) dx =
∫

Ω0

H(x, uk) dx +
∫

Ω\Ω0

H(x, uk) dx
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≥
∫

Ω0

H(x, uk) dx →∞.

This contradicts (15). Thus, the sequence satisfying (8) is bounded in E. Hence,
there is a renamed subsequence such that uk ⇀ u0 in E, and uk → u0 in L2(Ω)

and a.e. Taking the limit in (13), we obtain

(G′(u0), q)/2 = 1

P
(∇v0,∇g)+ λ

P
(v0, g) (20)

+ 1

Q
(∇w0,∇h)+ λ

Q
(w0, h)

+
∫

Ω

u0q

1+ u2
0

dx = 0, q = (g, h),

Thus, u0 satisfies G′(u0) = 0. Since u0 ∈ E, it satisfies

(G′(u0), u0)/2 = 1

P
(∇v0,∇v0)+ λ

P
(v0, v0) (21)

+ 1

Q
(∇w0,∇w0)+ λ

Q
(w0, w0)

+
∫

Ω

u2
0

1+ u2
0

dx = 0.

Also, from the limit in (13), we have

lim
1

P
‖∇vk‖2 = lim(G′(uk), vk)/2

− lim[ λ
P
‖vk‖2 +

∫

Ω

v2
k

1+ u2
k

dx]

= −[ λ
P
‖v‖2 +

∫

Ω

v2

1+ u2
dx]

= 1

P
‖∇v‖2,

with a similar statement for ‖∇w‖2. Consequently, ∇uk → ∇u in L2(Ω). This
shows that G(uk)→ G(u0). Hence, G(u0) = c.

Lemma 4 If G′(u) = 0, then u = (v,w) is a solution of (1) and (2).
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Proof It satisfies

(G′(u), q)/2 = 1

P
(∇v,∇g)+ λ

P
(v, g)

+ 1

Q
(∇w,∇h)+ λ

Q
(w, h)

+
∫

Ω

uq

1+ u2 dx,

where u = (v,w), q = (g, h) ∈ H. If G′(u) = 0, this expression vanishes for all
q = (g, h). This implies that u = (v,w) is a solution of (1) and (2).
Lemma 5

∫

Ω

ln(1+ u2)dx/‖u‖2
H → 0, ‖u‖H →∞. (22)

Proof Suppose uk ∈ H is a sequence such that ρk = ‖uk‖H → ∞. Let ũk =
uk/ρk. Then ‖ũk‖H = 1. Hence, there is a renamed subsequence such that ũk ⇀ ũ

in H, and ũk → ũ in L2(Ω) and a.e. Now

ln(1+ u2
k)

ρ2
k

= ln(1+ u2
k)

u2
k

ũ2
k → 0 a.e.

and it is dominated a.e. by ũ2
k → ũ2 in L1(Ω). Thus

∫

Ω

ln(1+ u2
k)

ρ2
k

dx → 0.

Since this is true for any sequence satisfying ‖uk‖H →∞, we see that (22) holds.

Corollary 1 If

I (u) = ‖u‖2
H −

∫

Ω

ln(1+ u2) dx,

then

I (v)→∞ as ‖v‖H →∞. (23)

Proof We have

I (u)/‖u‖2
H = 1−

∫

Ω

ln(1+ u2)dx/‖u‖2
H → 1, ‖u‖H →∞

by Lemma 5. This gives (23).



788 M. Schechter

Lemma 6
∫

Ω

[u2 − ln(1+ u2)]dx/‖u‖2
H → 0, ‖u‖H → 0. (24)

Proof Suppose uk ∈ H is a sequence such that ρk = ‖uk‖H → 0. In particular,
there is a renamed subsequence such that uk → 0 a.e. Let ũk = uk/ρk. Then
‖ũk‖H = 1. Hence, there is a renamed subsequence such that ũk ⇀ ũ ∈ H, and
ũk → ũ in L2(Ω) and a.e. Now

u2
k − ln(1+ u2

k)

ρ2
k

≤ u2
k

1+ u2
k

ũ2
k → 0 a.e.

and it is dominated a.e. by ũ2
k → ũ2 in L1(Ω). Thus

∫

Ω

u2
k − ln(1+ u2

k)

ρ2
k

dx → 0.

Since this is true for any sequence satisfying ‖uk‖H → 0, we see that (24) holds.

3 Proofs

Proof of Theorem 1 We let E be the subspace of H 1,2(Ω) consisting of those
functions having the same periodicity as Ω with norm given by

‖w‖2
E = ‖∇w‖2 + ‖w‖2.

Let u = (v,w), where v,w ∈ E and u2 = v2 + w2. If q = (g, h), we write
uq = vg + wh. Define

‖u‖2
H = 1

|P | [‖∇v‖
2 + |λ| ‖v‖2] (25)

+ 1

|Q| [‖∇w‖
2 + |λ| ‖w‖2], v, w ∈ E.

Assume that P,Q, λ do not vanish. Then ‖u‖2
H is a norm on H = E × E having a

scalar product (u, h)H .
Let a(u) and G(u) be defined by (9) and (10), respectively. If G′(u) = 0, then

u = (v,w) satisfies (1) and (2) (Lemma 4). Let Y be the subspace of E consisting
of the constants. We let N = {c, 0) ∈ H, c ∈ Y }. First, we note that

G(u) ≤ 0, u ∈ N,
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if σ ≥ P. To see this, let u = (c, 0) ∈ N. Then

a(c, 0) = − σ

P
c2|Ω|

and
∫

Ω

ln(1+ c2)dx ≤ c2|Ω|.

Thus,

G(u) ≤ [1− σ

P
]c2|Ω|.

This means that

G(u) ≤ 0, u ∈ N, (26)

provided σ ≥ P.

Next, let M = N⊥ and let u = (v,w) be any function in M. Then ‖∇v‖2 ≥
λ1‖v‖2. Then

a(u)+ ‖u‖2 ≥ 1

P
[1− σ − P

λ1
] ‖v‖2

H

+ 1

Q
[‖∇w‖2 + (Q− σ)‖w‖2].

Thus, there is an ε > 0 such that

a(u)+ ‖u‖2 ≥ 2ε‖u‖2
H , u ∈ M, (27)

when 0 < σ < min[P + λ1,Q].
Now

∫

Ω

[u2 − ln(1+ u2)]dx/‖u‖2
H → 0, ‖u‖H → 0 (28)

by Lemma 6. If we combine (27) and (28), we see that there is an ε > 0 such that

G(u) ≥ ε‖u‖2
H , u ∈ M, (29)

when ‖u‖2
H ≤ ρ is small and 0 < σ < min[P + λ1,Q].

Next, let u = (c, d), where c, d ∈ Y. Then

a(c, d) = − σ

P
c2|Ω| − σ

Q
d2|Ω|.
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Thus,

G(u) ≤ − σ

P
c2|Ω| − σ

Q
d2|Ω| +

∫

Ω

ln(1+ c2 + d2)dx.

By Lemma 5,

∫

Ω

ln(1+ c2 + d2)dx/(c2 + d2)→ 0

as R2 = c2 + d2 → ∞. Hence lim infG(c, d) < 0 as R2 = c2 + d2 → ∞ when
σ > 0.

Let B = M ∩ ∂Bρ. Then for ρ sufficiently small there is an ε > 0 such that

inf
B
G ≥ ε > 0.

Take

A = N ∩BR ⊕ {(c, d) ∈ H : c, d ∈ Y, R2 = c2 + d2}.

Then

sup
A

G ≤ 0.

By Lemma 1, A links B. Now we can apply Lemmas 2, 3, and 4 to reach the
conclusion that (1) and (2) has a solution u such that G(u) ≥ ε > 0. Since
G(0, 0) = 0, we see that u is a nontrivial solution.

The proof of Theorem 2 is similar to that of Theorem 1 and is omitted.

Proof of Theorem 3 We let N = {v, 0) ∈ H, v ∈⊕λ≤λ& E(λ)}. First, we note that

G(u) ≤ 0, u ∈ N,

if σ ≥ P + λ&. To see this, let u = (v, 0) ∈ N. Then

G(u) ≤ 1

P

[
1− σ − P

λ&

]
‖v‖2

H .

This means that

G(u) ≤ 0, u ∈ N, (30)

provided σ ≥ P + λ&.

Next, let M = N⊥ and let u = (v,w) be any function in M. Then ‖∇v‖2 ≥
λ&+1‖v‖2 and
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a(u)+ ‖u‖2 ≥ 1

P
[1− σ − P

λ&+1
] ‖v‖2

H

+ 1

Q
[‖∇w‖2 + (Q− σ)‖w‖2].

Thus, there is an ε > 0 such that

a(u)+ ‖u‖2 ≥ 2ε‖u‖2
H , u ∈ M, (31)

when σ < min[P + λ&+1,Q].
Now

∫

Ω

[u2 − ln(1+ u2)]dx/‖u‖2
H → 0, ‖u‖H → 0 (32)

by Lemma 6. If we combine (31) and (32), we see that there is an ε > 0 such that

G(u) ≥ ε‖u‖2
H , u ∈ M, (33)

when ‖u‖2
H ≤ ρ is small and σ < min[P + λ&+1,Q].

Next, let u = (v, d), where (v, 0) ∈ N and d ∈ Y. Then

a(v, d) = 1

P
[ ‖∇v‖2 − σ ‖v‖2] − σ

Q
d2|Ω|.

Thus,

G(u) ≤ 1

P

[
1− σ − P

λ&

]
‖v‖2

H − σ

Q
d2|Ω| +

∫

Ω

ln(1+ v2 + d2)dx.

By Lemma 5,

∫

Ω

ln(1+ v2 + d2)dx/(‖v‖2
H + d2)→ 0

as R2 = ‖v‖2
H + d2 →∞. Hence lim infG(v, d) < 0 as R2 = ‖v‖2

H + d2 →∞
when σ > 0.

Let B = M ∩ ∂Bρ. Then for ρ sufficiently small there is an ε > 0 such that

inf
B
G ≥ ε > 0.

Take

A = N ∩BR ⊕ {(v, d) ∈ H : (v, 0) ∈ N, d ∈ Y, R2 = ‖v‖2
H + d2}.
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Then

sup
A

G ≤ 0.

By Lemma 1, A links B. Now we can apply Lemmas 2, 3 and 4 to reach the
conclusion that (1) and (2) has a solution u such that G(u) ≥ ε > 0. Since
G(0, 0) = 0, we see that u is a nontrivial solution.

The proof of Theorem 4 is similar to that of Theorem 3 and is omitted.
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Some Certain Classes of Combinatorial
Numbers and Polynomials Attached to
Dirichlet Characters: Their Construction
by p-Adic Integration and Applications
to Probability Distribution Functions

Yilmaz Simsek and Irem Kucukoglu

Abstract The aim of this chapter is to survey on old and new identities for some
certain classes of combinatorial numbers and polynomials derived from the non-
trivial Dirichlet characters and p-adic integrals. This chapter is especially motivated
by the recent papers (Simsek, Turk J Math 42:557–577, 2018; Srivastava et al., J
Number Theory 181:117–146, 2017; Kucukoglu et al. Turk J Math 43:2337–2353,
2019; Axioms 8(4):112, 2019) in which the aforementioned combinatorial numbers
and polynomials were extensively investigated and studied in order to obtain new
results. In this chapter, after recalling the origin of the aforementioned combinatorial
numbers and polynomials, which goes back to the paper (Simsek, Turk J Math
42:557–577, 2018), a compilation has been made on what has been done from the
paper (Simsek, Turk J Math 42:557–577, 2018) up to present days about the main
properties and relations of these combinatorial numbers and polynomials. Moreover,
with the aid of some known and new formulas, relations, and identities, which
involve some kinds of special numbers and polynomials such as the Apostol-type,
the Peters-type, the Boole-type numbers and polynomials the Bernoulli numbers
and polynomials, the Euler numbers and polynomials, the Genocchi numbers and
polynomials, the Stirling numbers, the Cauchy numbers (or the Bernoulli numbers
of the second kind), the binomial coefficients, the falling factorial, etc., we give
further new formulas and identities regarding these combinatorial numbers and
polynomials. Besides, some derivative and integral formulas, involving not only
these combinatorial numbers and polynomials, but also their generating functions,
are presented in addition to those given for their positive and negative higher-
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order extensions. By using Wolfram programming language in Mathematica, we
present some plots for these combinatorial numbers and polynomials with their
generating functions. Finally, in order to do mathematical analysis of the results
in an interdisciplinary way, we present some observations on a few applications
of the positive and negative higher-order extension of the generating functions for
combinatorial numbers and polynomials to the probability theory for researchers to
shed light on their future interdisciplinary studies.

1 Introduction and Preliminaries

When we look at the developments in the history of mathematics, we see that in
almost every period, the mystery of numbers, problems involving numbers and
games involving numbers, have always remained the leading role of the historical
period. With what was discovered at every stage of development of mathematics,
every branch of science was also naturally affected by this development. This
interaction has led scientists to study interdisciplinary and has brought them together
in order to develop new mathematical models, algorithms, and other mathematical
techniques and methods. In the construction of mathematical modeling, it has been
realized that it is possible to take advantage of some concepts such as polynomials,
generating functions for numbers and polynomials, moment-generating functions,
differential calculus and equations, and matrices, etc. In recent years, it has been
seen that special numbers and polynomials are used frequently in almost all fields
of mathematics, physics, engineering, medical sciences, economics, and social
sciences. So, it is well known that the special numbers and polynomials have
many vital applications in almost all branches of mathematics, physics, engineering,
and other relevant areas. Due to which, it is pretty easy to perform mathematical
calculations and operations by using polynomials and their generating functions
with their functional equations are commonly used inside of the techniques of math-
ematics, physics, biology, and engineering in order to solve real-world problems.
Therefore, studying on properties and relations regarding any family of polynomials
is pretty important to provide a technical infrastructure in order to solve real-world
problems. In this context, with this chapter, we give survey on some certain classes
of combinatorial numbers and polynomials constructed with the aid of non-trivial
Dirichlet character and the p-adic integral methods including the p-adic bosonic
(Volkenborn) integral and the p-adic fermionic integral. These combinatorial-type
numbers and polynomials and their generating functions are especially associated
with some special numbers and polynomials such as the Apostol-type numbers and
polynomials, the Bernstein basis functions, the Poisson–Charlier polynomials, the
Peters polynomials, the Boole numbers and polynomials, the Changhee numbers
and polynomials, the Daehee numbers and polynomials, the Stirling numbers, the
Bell polynomials (i.e., exponential polynomials), the Bernoulli numbers, the Euler
numbers, the Cauchy numbers (or the Bernoulli numbers of the second kind), the
binomial coefficients, the falling factorial, etc.
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Thus, here we present some evaluations on what has been studied from the
past to the present and what can be found new for the aforementioned classes of
combinatorial numbers and polynomials are given here.

After giving a brief explanation about the motivation of this chapter, we continue
with presenting the notations and definitions needed to be more clearly understood
in the results:

Let N, Z, N0, Q, R, and C denote as usual the set of natural numbers, the set
of integers, the set of nonnegative integers, the set of rational numbers, the set of
real numbers, and the set of complex numbers, respectively. Let log z denote the
principal branch of the multi-valued function log z with the imaginary part Im(log z)
constrained by the interval (−π, π ]. We also assume that

0n =
{

1 if n = 0
0 if n ∈ N.

Besides,

(
z

w

)

= (z)w

w! = (−1)w (−z)(w)
w! (w ∈ N0,z ∈ C), (1)

in which (z)w and (z)(w) denote, respectively, the falling factorial and the rising
factorial defined, respectively, by

(z)w = z (z− 1) (z− 2) . . . (z− w + 1)

and

(z)(w) = z (z+ 1) (z+ 2) . . . (z+ w − 1)

such that (z)0 = 1 and (z)(0) = 1 (cf. [5–113]).
Since the main motivation of this chapter is to survey on the results on some

certain classes of combinatorial numbers and polynomials including the generalized
Apostol-type polynomials, let us recall some members from the class of Apostol-
type polynomials with their generating functions:

The Apostol–Bernoulli polynomials, Bn(x; λ), are defined by Apostol in [2]
with the following generating function:

tetx

λet − 1
=

∞∑

n=0

Bn(x; λ) t
n

n! , (2)

where |t | < 2π when λ = 1 and |t | < |log λ| when λ �= 1 and λ ∈ C. One can
easily see that for x = 0, these polynomials are reduced to the Apostol–Bernoulli
numbers Bn(λ), which are given by the following generating function:
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t

λet − 1
=

∞∑

n=0

Bn(λ)
tn

n! (3)

(cf. [2, 68, 108, 111, 112]), and for λ = 1, these numbers are reduced to the classical
Bernoulli numbers (the Bernoulli numbers of the first kind):

Bn = Bn(1),

which is defined by means of the following generating function:

t

et − 1
=

∞∑

n=0

Bn

tn

n! , (t < |2π |) , (4)

which arise in not only analytic number theory, but also other related areas (cf. [2–
112], and the references cited therein).

By using the above generating functions for the Apostol–Bernoulli numbers and
polynomials with the method of umbral calculus convention, few of these numbers
and polynomials are computed as follows, respectively:

B0 (λ) = 0, B1 (λ) = 1

λ− 1
,

B2 (λ) = −2λ

(λ− 1)2
, B3 (λ) = 3λ (λ+ 1)

(λ− 1)3
, . . .

and

B0 (x; λ) = 0, B1 (x; λ) = 1

λ− 1
,

B2 (x; λ) = 1

λ− 1
x − 2λ

(λ− 1)2
,

B3 (x; λ) = 3

λ− 1
x2 − 6λ

(λ− 1)2
x + 3λ (λ+ 1)

(λ− 1)3
,

and so on (cf. [2–112]; and the references cited therein).
The Apostol–Bernoulli numbers of higher order, B(k)

n (λ), are defined by the
following generating function:

(
t

λet − 1

)k
=

∞∑

n=0

B(k)
n (λ)

tn

n! , (5)

where |t | < 2π when λ = 1 and |t | < |log (λ)| when λ �= 1 so that in the special
case when k = 1, (5) reduces (3) (cf. [2–112]; and the references cited therein).
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The Apostol–Euler polynomials, En(x; λ), are given by the following generating
function:

2etx

λet + 1
=

∞∑

n=0

En(x; λ) t
n

n! , (6)

|t | < π when λ = 1 and |t | < |log (−λ)| when λ �= 1 and λ ∈ C (cf. [11, 39, 74,
108, 110, 111]; and the references cited therein). One can easily see that for x = 0,
these polynomials are reduced to the Apostol–Euler numbers En(λ) = En(0; λ)
which are given by the following generating function:

2

λet + 1
=

∞∑

n=0

En(λ)
tn

n! , (7)

and also for λ = 1, the Apostol–Euler polynomials are reduced to the classical (the
first kind) Euler polynomials:

En (x) = En (x; 1) (8)

(cf. [12–112]; and the references cited therein), and it is clear that for λ = 1, we
have

En = En(1), (9)

where En denotes the Euler numbers of the first kind defined by means of the
following generating function:

2

et + 1
=

∞∑

n=0

En

tn

n! , (t < |π |) (10)

(cf. [12–112]; and the references cited therein).
By using the above generating functions for the Apostol–Euler polynomials and

numbers with the method of umbral calculus convention, few of these numbers are
computed as follows, respectively:

E0 (λ) = 2

λ+ 1
, E1 (λ) = − 2λ

(λ+ 1)2
,

E2 (λ) = 2λ (λ− 1)

(λ+ 1)3
, E3 (λ) = −2λ

(
λ2 − 4λ+ 1

)

(λ+ 1)4
,

and so on (cf. [12–112]; and the references cited therein).
The Apostol–Euler numbers of higher order, E (k)

n (λ), are defined by the
following generating function:
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(
2

λet + 1

)k
=

∞∑

n=0

E (k)
n (λ)

tn

n! , (11)

where |t | < |log (−λ)| so that in the special case when k = 1, (11) reduces (7) (cf.
[2–112]; and the references cited therein).

The Apostol–Genocchi polynomials of higher order, G (k)
n (x; λ), are defined by

the following generating function:

(
2t

λet + 1

)k
ext =

∞∑

n=0

G (k)
n (x; λ) t

n

n! , (12)

where λ ∈ C and |t | < |log (−λ)|, so that

G (k)
n (λ) = G (k)

n (0; λ),
Gn(x; λ) = G (1)

n (x; λ),
Gn(λ) = G (1)

n (λ)

Gn = Gn(1)

in which G (k)
n (λ), Gn(x; λ), Gn(λ), and Gn denote, respectively, the Apostol–

Genocchi numbers of higher order, the Apostol–Genocchi polynomials, the
Apostol–Genocchi numbers, and the Genocchi numbers (cf. [8, 63, 65, 68, 73,
74, 83, 103, 112]; and see also the references cited therein).

For n, k ∈ N0 and 0 ≤ k ≤ n, the relation among higher-order versions of the
Apostol–Bernoulli polynomials, the Apostol–Euler polynomials, and the Apostol–
Genocchi polynomials is given as follows (cf. [68, Lemma 2–3, p. 5707]):

G (k)
n (x; λ) = (n)k E (k)

n−k(x; λ) = (−2)k B(k)
n (x;−λ), (13)

which, for x = 0, yields

G (k)
n (λ) = (n)k E (k)

n−k(λ) = (−2)k B(k)
n (−λ) (14)

(cf. [68, 112]; and cited reference therein).

1.1 Basic Properties of Dirichlet Characters

One of the most frequently used concepts in this chapter is the Dirichlet characters.
Thus, let us recall its definition below:

Let d ∈ N and (Z/dZ)∗ denote the unit group of reduced residue class modulo
d. Throughout of this chapter, χ is a Dirichlet character with modulo d, which is a
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group homomorphism, i.e.,

χ : (Z/dZ)∗ → C\ {0}

(cf. [3]).
Let ϕ denote the Euler totient function. Note that there are ϕ (d) distinct Dirichlet

characters with modulo d, each of which is completely multiplicative and periodic
with period d (cf. [3, Theorem 6.15]).

Some of the Dirichlet characters are given by Tables 1, 2, 3, 4, and 5 as follows
(see, for detail, [3, Theorem 6.15]):

When d = 1 or d = 2, then ϕ (d) = 1 and the only Dirichlet character is the
principal character χ1. For d ≥ 3, there are at least two Dirichlet characters since
ϕ (d) ≥ 2.

Tables 1, 2, and 3 display all the Dirichlet characters with conductors d = 3, 4,
and 5 (see, for detail, [3]):

Table 1 All the Dirichlet
characters with conductor
d = 3 since ϕ (d) = 2

n 0 1 2

χ1 (n) 0 1 1

χ2 (n) 0 1 −1

Table 2 All the Dirichlet
characters with conductor
d = 4 since ϕ (d) = 2

n 0 1 2 3

χ1 (n) 0 1 0 1

χ2 (n) 0 1 0 −1

Table 3 All the Dirichlet
characters with conductor
d = 5 since ϕ (d) = 4

n 0 1 2 3 4

χ1 (n) 0 1 1 1 1

χ2 (n) 0 1 −1 −1 1

χ3 (n) 0 1 i −i −1

χ4 (n) 0 1 −i i −1

Tables 4 and 5 display all the Dirichlet characters with conductors d = 6 and
d = 7 (see, for detail, [3]):

Dirichlet characters are used in the construction of many special numbers and
polynomial families. Let us briefly give some of special numbers and polynomials
attached to the Dirichlet character as follows:

The generalized Apostol–Bernoulli numbers attached to the Dirichlet character,
Bn,χ (λ), are defined as follows:
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Table 4 d = 6, ϕ (d) = 2 n 0 1 2 3 4 5

χ1 (n) 0 1 0 0 0 1

χ2 (n) 0 1 0 0 0 −1

Table 5 d = 7, ϕ (d) = 6,
ω = exp (πi/3)

n 0 1 2 3 4 5 6

χ1 (n) 0 1 1 1 1 1 1

χ2 (n) 0 1 1 −1 1 −1 −1

χ3 (n) 0 1 ω2 ω −ω −ω2 −1

χ4 (n) 0 1 ω2 −ω −ω ω2 1

χ5 (n) 0 1 −ω ω2 ω2 −ω 1

χ6 (n) 0 1 −ω −ω2 ω2 ω −1

d−1∑

j=0

λj etj tχ(j)

λdetd − 1
=

∞∑

n=0

Bn,χ (λ)
tn

n! (15)

(cf. [2, 32, 40, 41, 45, 111], and the references cited therein).
By combining (15) with (2), one can easily get

Bn,χ (λ) = dn−1
d−1∑

j=0

λjχ(j)Bn

(
j

d
; λd
)

.

If χ is a trivial character in (15), then the numbers Bn,χ (λ) reduce to the Apostol–
Bernoulli numbers, that is

Bn(λ) = Bn,1(λ)

(cf. [2, 32, 40, 41, 61, 71, 111], and the references cited therein).
The generalized Apostol–Euler numbers attached to the Dirichlet character,

En,χ (λ), are defined as follows:

2
d−1∑

j=0

λj etjχ(j)

λdetd + 1
=

∞∑

n=0

En,χ (λ)
tn

n! (16)

(cf. [40, 41, 111], and the references cited therein).
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By combining (16) with (6), one easily see that

En,χ (λ) = dn
d−1∑

j=0

λjχ(j)En

(
j

d
; λd
)

.

When χ ≡ 1 in (16), one has

En(λ) = En,1(λ)

(cf. [40, 41, 111]).

1.2 Some Basic Properties of p-Adic Integration Method

One of the most frequently used methods in this chapter is the method of p-adic
integrals including Volkenborn integral and fermionic integral. We now give a brief
introduction about notations of the p-adic integrals. Thus, we next recall some
definitions and notations associated with p-adic integrals as follows:

Let Zp, Qp, and Cp denote, respectively, the ring of p-adic integers, the set of
p-adic rational numbers, and the set of the completion of algebraic closure of Qp.
Let K be a field with a complete valuation and C1(Zp → K) be a set of continuous
differentiable functions. Namely, C1(Zp → K) is contained in the following set:

{

f : Zp → K : f (x) is differentiable and
d

dx
{f (x)} is continuous

}

.

The p-adic q-integral of a function f ∈ C1(Zp → K) is defined by Kim [35] as
follows:

∫

Zp

f (x)dμq(x) = lim
N→∞

1

[pN ]
pN−1∑

x=0

f (x)qx, (17)

where q ∈ Cp with | 1 − q |p< 1, μq(x) denotes the q-Haar distribution defined
by Kim [35] as follows:

μq(x) = μq(x + pNZp) = qx
[
pN
] ,

and

[x] = [x : q] =
{

1−qx
1−q if q �= 1

x if q = 1,
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such that

lim
q→1

[x : q] = x.

Taking limit q → 1, (17) reduces to the Volkenborn integral (the p-adic bosonic
integral) of the uniformly differentiable function f on Zp as follows:

∫

Zp

f (x)dμ1(x) = lim
N→∞

1

pN

pN−1∑

x=0

f (x), (18)

where

μ1(x) = μ1(x + pNZp) = 1

pN

(cf. [81, Definition 55.1, p. 167]; see also [33, 35, 39, 41, 98]).
The Volkenborn integral in terms of the Mahler coefficients is given by the

following formula:

∫

Zp

f (x) dμ1 (x) =
∞∑

n=0

(−1)n

n+ 1
an,

where

f (x) =
∞∑

n=0

an

(
x

j

)

∈ C1(Zp → K)

(cf. [81, p. 168, Proposition 55.3]). Due to the above fact, in the case when

f (x) =
(
x

j

)

, (19)

(18) yields

∫

Zp

(
x

j

)

dμ1 (x) = (−1)j

j + 1
(20)

(cf. [81, p. 168, Proposition 55.3]).

Let f : Zp → K be an analytic function and f (x) =
∞∑
n=0

anx
n with x ∈ Zp.

The Volkenborn integral of this analytic function is given by
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∫

Zp

( ∞∑

n=0

anx
n

)

dμ1 (x) =
∞∑

n=0

an

∫

Zp

xndμ1 (x)

(cf. [81, p. 168, Proposition 55.4]).
The following identity is very important to derive results for special numbers:

∫

Zp

f (x +m)dμ1 (x) =
∫

Zp

f (x)dμ1 (x)+
m−1∑

j=0

f ′ (j) , (21)

where

f ′(j) = d

dx
{f (x)}

∣
∣
∣
∣
x=j

(cf. [35, 39, 81]; see also the references cited therein).
It is well known that the p-adic bosonic integral enables to construct Bernoulli-

type numbers. For example, in the case when f (x) = xn, we have (cf. [35, 81])

Bn =
∫

Zp

xndμ1 (x) , (22)

which is called Witt’s formula for the Bernoulli numbers, and the Witt’s formula for
the Bernoulli polynomials is given as follows:

Bn(y) =
∫

Zp

(y + x)n dμ1 (x) (23)

(cf. [35, 39, 81]; see also the references cited therein).
Kim [39] also defined the p-adic fermionic integral of the function f as follows:

∫

Zp

f (x) dμ−1 (x) = lim
N→∞

pN−1∑

x=0

(−1)x f (x) (24)

where p �= 2 and

μ−1(x) = μ−1

(
x + pNZp

)
= (−1)x

(cf. [33, 39]).
It is well known that the p-adic fermionic integral enables to construct Euler-type

numbers. For example, in the case when f (x) = xn, we have (cf. [35])
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En =
∫

Zp

xndμ−1 (x) . (25)

By setting

Ed{f (x)} = f (x + d),

Kim [41, Theorem 1] defined the following functional equation for the q-bosonic
p-adic Volkenborn integral on Zp as follows:

qn
∫

Zp

En{f (x)}dμq (x)−
∫

Zp

f (x) dμq (x)

= q − 1

log q

⎛

⎝
n−1∑

j=0

qjf ′(j)+ log q
n−1∑

j=0

qjf (j)

⎞

⎠ , (26)

where n is a positive integer.
Also, Kim gave the following integral equation for the q-fermionic p-adic

integral on Zp as follows [41, Theorem 3]:

qd
∫

Zp

Ed {f (x)}dμ−q (x)− (−1)d
∫

Zp

f (x) dμ−q (x) = [2]
d−1∑

j=0

(−1)d−l−1qj f (j), (27)

where d is a positive integer. Substituting d = 1 into (27), one has

∫

Zp

(qf (x + 1)+ f (x)) dμ−q (x) = (q + 1) f (0).

When q → 1 in the above integral equation, one may easily see that

∫

Zp

(f (x + 1)+ f (x)) dμ−1 (x) = 2f (0)

(cf. [41]). Substituting (19) into the above integral equation yields

∫

Zp

(
x

j

)

dμ−1 (x) = (−1)j

2j
, (28)

which was given by Kim et al. [25].
In order to give integral of a function associated with the Dirichlet character with

conductor d, the following notations are also needed:
Let p be a fixed prime. Let d be a fixed positive integer with (p, d) = 1; we have
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X = Xd = lim←
N

Z/dpNZ,

X1 = Zp

X
∗ =

⋃

0 < a < dp

(a, p) = 1

a + dpZp

and

a + dpNZp =
{
x ∈ X | x ≡ a

(
mod

(
dpN

))}

such that a ∈ Z satisfies the condition 0 ≤ a < dpN . Thus, we have

∫

Zp

f (x)dμ1(x) =
∫

X

f (x)dμ1(x) (29)

for the uniformly differentiable function f : Zp → Cp (cf. [32, 33, 35, 37, 81]).

1.3 Other Needed Notations and Definitions

In order to give the results in this chapter, we next recall other needed notations and
definitions regarding the well-known classical numbers and polynomials with their
generating functions:

The Stirling numbers of the first kind, S1(n, k), are defined as follows:

(x)n =
n∑

k=0

S1 (n, k) x
k (30)

and

(log(1+ t))k

k! =
∞∑

n=k
S1(n, k)

tn

n! ; (k ∈ N0) , (31)

and also these numbers satisfy the following recurrence relation:

S1(n+ 1, k) = −nS1(n, k)+ S1(n, k − 1)

such that S1(0, 0) = 1, S1(0, k) = 0 if k > 0, S1(n, 0) = 0 if n > 0, S1(n, k) = 0 if
k > n (cf. [5, 7, 9, 10, 77, 79, 85, 109, 110, 112]; and the references cited therein).
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The Stirling numbers of the first kind have the following well-known computa-
tion formula:

S1(n, k) =
n−k∑

j=0

j∑

m=0

(−1)m
(

2n− k

n− k − j, n− k + j, k

)(
j

m

)
kmj+n−k

(n+ j)j ! , (32)

where

(
2n− k

n− k − j, n− k + j, k

)

= (2n− k)!
(n− k − j)! (n− k + j)!k!

(cf. [10, 95]; and the references cited therein).
The λ-Stirling numbers of the second kind, S2 (n, k; λ), are defined with

generating function given below (cf. [85, 112]):

FS2(t; v; λ) =
(
λet − 1

)v

v! =
∞∑

n=0

S2 (n, v; λ) t
n

n! , (v ∈ N0), (33)

which, for λ = 1, reduces to the Stirling numbers of the second kind, S2(n, k), given
by

FS(t, k) =
(
et − 1

)k

k! =
∞∑

n=0

S2(n, k)
tn

n! , (34)

and for these numbers, the following explicit formula holds true:

S2(n, k) = 1

k!
k∑

j=0

(−1)k−j
(
k

j

)

jn. (35)

A relation between the Stirling numbers of the second kind, S2(n, k), and the
combinatorial numbers y6(n, k; λ, p), defined in [96], is given as follows:

S2(n, k) = (−1)ky6(n, k;−1, 1),

where

y6(n, k; λ, p) = 1

k!
k∑

j=0

(
k

j

)p
λj jn. (36)

Also these numbers satisfy the following recurrence relation:

S2(n+ 1, k) = S2(n, k − 1)+ kS2(n, k)
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such that S2(0, 0) = 1, S2(n, k) = 0 if k > n, S2(n, 0) = 0 if n > 0 (cf. [5, 12, 79,
85, 112]; and the references cited therein).

The Bell polynomials (i.e., exponential polynomials), Bln (x), is defined by

Bln (x) =
n∑

v=1

S2 (n, v) x
v (37)

so that the generating function for the Bell polynomials is given by

FBell (t, x) = e(e
t−1)x =

∞∑

n=0

Bln (x)
tn

n! (38)

(cf. [10, 79]).
The Daehee numbers Dn and the Daehee polynomials Dn (x) are defined,

respectively, by the following generating function:

FD (t) = log (1+ t)

t
=

∞∑

n=0

Dn

tn

n! (39)

and

FD (x, t) = FD (t) (1+ t)x =
∞∑

n=0

Dn (x)
tn

n! (40)

(cf. [24, 90, 91]).
By using (39), the explicit formula for the Daehee numbers is given by

Dn = Dn (0) = (−1)n n!
n+ 1

(41)

(cf. [13, 24]).
The Peters polynomials sk(x; λ,μ), which is a member of the family of the

Sheffer polynomials, are given by the following generating functions:

1
(
1+ (1+ t)λ

)μ (1+ t)x =
∞∑

n=0

sn(x; λ,μ) t
n

n! (42)

(cf. [4, p.128], [22, 26, 28, 29, 31, 36, 54, 79, 84, 92, 95, 99, 102, 105, 106]; and also
see cited references therein).

In the special case of (42) when μ = 1, the Peters polynomials are reduced to
the Boole polynomials ξn (x; λ) = sn(x; λ, 1) (cf. [22, 79, 99]).

Setting x = 0 into (42) yields the generating functions for the Peters numbers
denoted by sn(λ, μ) = sn(0; λ,μ) (cf. [22, 79, 99]).
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Setting λ = μ = 1 into (42) yields the numbers rn (x) = sn(x; 1, 1) studied by
Jordan [22].

In addition, for λ = μ = 1, we also have the Changhee polynomials Chn (x) =
2sn(x; 1, 1) defined by

FCh (x, t) = FCh (t) (1+ t)x =
∞∑

n=0

Chn (x)
tn

n! (43)

(cf. [25, 46, 49]). Observe that substituting x = 0 into (43) yields

FCh (t) = 2

t + 2
=

∞∑

n=0

Chn
tn

n! (44)

in which Chn denotes the Changhee numbers whose explicit formula is given by

Chn = (−1)n n!
2n

(45)

(cf. [25, 46]).
The Bernoulli numbers of the second kind bn(0) (also called the Cauchy

numbers) are defined by means of the following generating function (cf. [79,
p. 116]):

t

log(1+ t)
=

∞∑

n=0

bn(0)
tn

n! , (46)

and these numbers are also calculated by the definite integral of the falling factorial
(x)n, from 0 to 1, as follows:

bn (0) =
∫ 1

0
(x)n dx

(cf. [79, pp. 113–117]). By using the above formula, few of the Cauchy numbers are
given as follows:

b0(0) = 1, b1(0) = 1

2
, b2(0) = − 1

12
, b3(0) = 1

24
, b4(0) = − 19

720
,

and so on (cf. [48, 51, 77, 79]; and the references cited therein).
The Humbert polynomials Π

(λ)
n,m (x) are defined by Humbert in [19] with the

following generating function:

(
1−mxt + tm

)−λ =
∞∑

n=0

Π(λ)
n,m (x) tn
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(cf. [19], [109, p. 86, Eq-(26)], [72]), and the recurrence relation for these
polynomials is given as follows:

(n+ 1)Π(λ)
n+1,m (x)−mx (n+ λ)Π(λ)

n,m (x)−(n+mλ−m+ 1)Π(λ)
n−m+1,m (x) = 0

(cf. [12, 70]; and the references cited therein).
The generalized Humbert polynomials Pn(m, x, y, p,C) are defined by the

following generating functions:

(
C −mxt + ytm

)p =
∞∑

n=0

Pn(m, x, y, p,C)t
n,

and it is clear that

Pn(m, x, 1,−λ, 1) = Π(λ)
n,m (x)

(cf. [12, 15, 70, 72]).
The Poisson–Charlier polynomials Cn (x; a), which are members of the family

of Sheffer-type sequences, are defined as below:

Fpc (t, x; a) = e−t
(
t

a
+ 1

)x
=

∞∑

n=0

Cn (x; a) t
n

n! , (47)

where

Cn (x; a) =
n∑

j=0

(−1)n−j
(
n

j

)
(x)j

aj
(48)

(cf. [79, p. 120], [97]).
Let t ∈ C, x ∈ [0, 1], and k ∈ N0. Then, the generating function for the Bernstein

Basis functions, Bn
k (x), is given as follows:

(xt)k e(1−x)t

k! =
∞∑

n=0

Bn
k (x)

tn

n! , (49)

where

Bn
k (x) =

(
n

k

)

xk(1− x)n−k, (k = 0, 1, . . . , n; n ∈ N0) , (50)

which have relationships with a large number of concepts including the Catalan
numbers, the binomial distribution, the Poisson distribution, etc.; see, for details,
[1, 60, 86–88, 104] and also cited references therein.
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2 A Certain Class of Combinatorial Numbers Yn,χ(λ, q) and
Polynomials Yn,χ(z;λ, q) Attached to Dirichlet Characters

In this section, we recall a certain class of combinatorial numbers and polynomials
attached to Dirichlet characters as follows:

Let x, λ ∈ Zp and χ be a non-trivial Dirichlet character with conductor d.
With the application of the p-adic q-integrals to the following continuous

differentiable function on the ring of p-adic integers,

f (x, t; λ) = λx(1+ λt)xχ(x), (51)

Simsek [93] gave the construction of the generating functions for the generalized
Apostol-type numbers and polynomials attached to the Dirichlet character, respec-
tively, with odd and even conductors.

Substituting (51) into (27), we get

∫

X

λx(1+ λt)xχ(x)dμ−q (x) = 1+ q

(λq)d (1+ λt)d − (−1)d

×
d−1∑

j=0

(−1)jχ(j) (λq)j (1+ λt)j , (52)

where λ ∈ Zp.
In [93], Simsek investigated (52) in two-folds:
In the first fold, by selecting the conductor d as odd number and using the integral

formula arising from this selection, Simsek defined the generalized Apostol–
Changhee numbers and polynomials, see, for details, [93].

Furthermore, in the second fold, by selecting the conductor d as even number,
Simsek also defined the generalized Apostol-type numbers attached to the Dirichlet
character with even conductor whose construction is given below in detail:

Let d be an even integer. If χ is the Dirichlet character with even conductor d,
then Eq. (52) reduces to the following integral equation:

∫

X

λx(1+λt)xχ(x)dμ−q (x) = 1+ q

(λq)d (1+ λt)d − 1

d−1∑

j=0

(−1)jχ(j) (λq)j (1+λt)j .

By the aid of the right-hand side of the above equation, Simsek constructed
the generating functions for the family of the generalized Apostol-type numbers
Yn,χ (λ, q) and the generalized Apostol-type polynomials Yn,χ (z; λ, q), respec-
tively, as follows:
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H(t; λ, q, χ) = 1+ q

(λq)d (1+ λt)d − 1

d−1∑

j=0

(−1)jχ(j) (λq)j (1+ λt)j

=
∞∑

n=0

Yn,χ (λ, q)
tn

n! , (53)

and

H(t, z; λ, q, χ) = (1+ λt)zH(t; λ, q, χ) =
∞∑

n=0

Yn,χ (z; λ, q) t
n

n! , (54)

where d is an even positive integer and λ ∈ Zp with λ �= 1.
By (53) and (54), we have the relation between the numbers Yn,χ (λ, q) and the

polynomials Yn,χ (z; λ, q) given by the following theorem:

Theorem 1 (cf. [93]) Let n ∈ N0. Let d be an even positive integer. Then we have

Yn,χ (z; λ, q) =
n∑

j=0

(
n

j

)

λn−j (z)n−jYj,χ (λ, q). (55)

Observe that

Yn,χ (λ, q) = Yn,χ (0; λ, q).

Remark 1 For further properties regarding the numbers Yn,χ (λ, q) and the polyno-
mials Yn,χ (z; λ, q), the interested reader may refer to [93].

In the special case when q → 1, (53) reduces to the following generating
functions for the numbers Yn,χ (λ):

2
d−1∑

j=0
(−1)jχ(j)λj (1+ λt)j

λd(1+ λt)d − 1
=

∞∑

n=0

Yn,χ (λ)
tn

n! . (56)

Some numerical applications of (56) are given as follows:
Let Fn be the Fibonacci numbers. It is known from [50, Lemma 5.1, p. 78] that

the Fibonacci numbers satisfy

(
1+√

5

2

)n

=
(

1+√
5

2

)

Fn + Fn−1 (57)
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and

(
1−√

5

2

)n

=
(

1−√
5

2

)

Fn + Fn−1 (58)

where n ∈ N. Thus, by substituting

λ = 1+√5

2
and λ = 1−√5

2
(59)

into (56), we, respectively, get

2
d−1∑

j=0
(−1)jχ(j)

j∑

l=0

(
j
l

) (( 1+√5
2

)
Fj+l + Fj+l−1

)
t l

d∑

l=0

(
d
l

) (( 1+√5
2

)
Fd+l + Fd+l−1

)
t l − 1

=
∞∑

n=0

Yn,χ

(
1+√5

2

)
tn

n! ,

and

2
d−1∑

j=0
(−1)jχ(j)

j∑

l=0

(
j
l

) (( 1−√5
2

)
Fj+l + Fj+l−1

)
t l

d∑

l=0

(
d
l

) (( 1−√5
2

)
Fd+l + Fd+l−1

)
t l − 1

=
∞∑

n=0

Yn,χ

(
1−√5

2

)
tn

n! .

Therefore, we obtain the generating functions for the numbers Sn,χ :

Sn,χ = Yn,χ

(
1+√

5

2

)

+ Yn,χ

(
1−√5

2

)

, (60)

as follows:

∞∑

n=0

Sn,χ
tn

n! =
2
d−1∑

j=0
(−1)jχ(j)

j∑

l=0

(
j
l

) (( 1+√5
2

)
Fj+l + Fj+l−1

)
t l

d∑

l=0

(
d
l

) (( 1+√5
2

)
Fd+l + Fd+l−1

)
t l − 1

+
2
d−1∑

j=0
(−1)jχ(j)

j∑

l=0

(
j
l

) (( 1−√5
2

)
Fj+l + Fj+l−1

)
t l

d∑

l=0

(
d
l

) (( 1−√5
2

)
Fd+l + Fd+l−1

)
t l − 1

.
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Here, we note that investigation of the fundamental properties of the numbers
Sn,χ and their relationships with other special numbers are not addressed in this
chapter.

We now set

W(t, χ) =
2
d−1∑

j=0
(−1)jχ(j)

j∑

l=0

(
j
l

) (( 1+√5
2

)
Fj+l + Fj+l−1

)
t l

d∑

l=0

(
d
l

) (( 1+√5
2

)
Fd+l + Fd+l−1

)
t l − 1

+
2
d−1∑

j=0
(−1)jχ(j)

j∑

l=0

(
j
l

) (( 1−√5
2

)
Fj+l + Fj+l−1

)
t l

d∑

l=0

(
d
l

) (( 1−√5
2

)
Fd+l + Fd+l−1

)
t l − 1

,

and

V (t, x, χ) = W(t, χ)(1+ t)x . (61)

Then, by using the above functions we define a new class of special polynomials
Sn,χ (x), which are a linear combination of the numbers Sn,χ , by the following
generating functions:

V (t, x, χ) =
∞∑

n=0

Sn,χ (x)
tn

n! . (62)

Here, we also state that investigation of the fundamental properties of the poly-
nomials Sn,χ (x) and their relationships with other special numbers and polynomials
are not addressed in this chapter.

3 Illustrations of the Generating Functions for the Numbers
Yn,χ(λ) by Dirichlet Characters with Different Conductors
d

In this section, by using Wolfram programming language in Mathematica [114], we
also provide some two-dimensional and three-dimensional illustrations, involving
surface plots and parametric plots, for the generating functions given by (56).

Let χ
d,m

denote the m-th Dirichlet character with conductor d. In the case when
d = 8, due to the fact that ϕ (8) = 4, there exist four distinct Dirichlet characters
with conductor 8, namely χ8,1 , χ8,2 , χ8,3 , and χ8,4 , which are, respectively, given in
each row of Table 6 by using the following Mathematica code:
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Implementation 1 Mathematica code to create the rows of Table 6
Table[DirichletCharacter [8, j ,n ],{ j ,1,EulerPhi [8]},{n ,0,7}]

Table 6 All Dirichlet
characters with conductor 8

n 0 1 2 3 4 5 6 7

χ8,1 (n) 0 1 0 1 0 1 0 1

χ8,2 (n) 0 1 0 −1 0 −1 0 1

χ8,3 (n) 0 1 0 −1 0 1 0 −1

χ8,4 (n) 0 1 0 1 0 −1 0 −1

Thus, in conjunction with the Dirichlet characters given by Table 6, we have
exactly four different cases of the generating functions for the numbers Yn,χ (λ).

Here, let us rewrite (56) as in the following equation:

H(t; λ, χ
d,m

) :=
2
d−1∑

j=0
(−1)jχ

d,m
(j)λj (1+ λt)j

λd(1+ λt)d − 1
=

∞∑

n=0

Yn,χ
d,m

(λ)
tn

n! , (63)

where χ
d,m

denotes the m-th Dirichlet character with conductor d.
By application of Table 6 to Eq. (63), we get the following generating functions

for the numbers Yn,χ
d,m

(λ) for d = 8 and m = 1, m = 2, m = 3, and m = 4:

Implementation 2 Let the letter l denote the parameter λ. Then, the following Mathematica code
including the procedure GenFuncH returns the generating functions H(t; λ, χ

d,m
)

GenFuncH[l_,t_,d_,m_]:=(2/((l^d)∗(1+l∗t)^d−1))∗ Sum[((−1)^j)∗ DirichletCharacter[d,m,j]
∗( l ^ j )∗(1+l∗t )^ j , { j ,0,d−1}].

By using the Mathematica code given in Implementation 2, in the case when
d = 8, we have the following four different generating functions for the numbers
Yn,χ8,m

(λ) with m = 1, m = 2, m = 3, and m = 4 (or equivalently all
generating functions for the numbers Yn,χ (λ) attached to the Dirichlet characters
with conductor 8 so that χ ≡ {χ8,1, χ8,2 , χ8,3 , χ8,4}):

H(t; λ, χ8,1) =
2
(−λ(1+ λt)− λ3(1+ λt)3 − λ5(1+ λt)5 − λ7(1+ λt)7

)

λ8(1+ λt)8 − 1

=
∞∑

n=0

Yn,χ8,1
(λ)

tn

n! ,

H(t; λ, χ8,2) =
2
(−λ(1+ λt)+ λ3(1+ λt)3 + λ5(1+ λt)5 − λ7(1+ λt)7

)

λ8(1+ λt)8 − 1
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=
∞∑

n=0

Yn,χ8,2
(λ)

tn

n! ,

H(t; λ, χ8,3) =
2
(−λ(1+ λt)+ λ3(1+ λt)3 − λ5(1+ λt)5 + λ7(1+ λt)7

)

λ8(1+ λt)8 − 1

=
∞∑

n=0

Yn,χ8,3
(λ)

tn

n! ,

and

H(t; λ, χ8,4) =
2
(−λ(1+ λt)− λ3(1+ λt)3 + λ5(1+ λt)5 + λ7(1+ λt)7

)

λ8(1+ λt)8 − 1

=
∞∑

n=0

Yn,χ8,4
(λ)

tn

n! .

Observe that the number of the generating functions H(t; λ, χ) is based upon the
number of the Dirichlet characters in conjunction with the image of the conductor d
by the Euler totient function.

By implementing the above special generating functions in Mathematica (See
Implementation 3), we present Fig. 1 that includes three-dimensional plots (Plot3D)
of the functions H(t; λ, χ

d,m
) for the randomly selected special cases d = 8, t ∈

[−1, 1] and λ ∈
[
− 1

2 ,
1
2

]
for all possible cases of the Dirichlet characters with

conductor 8.

Implementation 3 Let the letter l denote the parameter λ. Then, the following Mathematica code
returns three-dimensional plots (Plot3D) of the generating functionsH(t; λ, χ

d,m
) for the randomly

selected special cases. For plots, see Fig. 1

Plot3D[GenFuncH[l,t,8,1], { l ,−0.5,0.5}, { t ,−1,1}, AxesLabel−>{ToString[
ToExpression["{HoldForm}[\\lambda]",TeXForm],TraditionalForm],"t",ToString[
ToExpression["{HoldForm}[H\\left(\\lambda;t,\\chi_{_{8,1}}\\right)]", TeXForm],
TraditionalForm]}, LabelStyle−>Directive[Black, Bold], ColorFunction−>"
BlueGreenYellow"]

Plot3D[GenFuncH[l,t,8,2], { l ,−0.5,0.5}, { t ,−1,1}, AxesLabel−>{ToString[
ToExpression["{HoldForm}[\\lambda]",TeXForm],TraditionalForm],"t",ToString[
ToExpression["{HoldForm}[H\\left(\\lambda;t,\\chi_{_{8,2}}\\right)]", TeXForm],
TraditionalForm]}, LabelStyle−>Directive[Black, Bold], ColorFunction−>"
BlueGreenYellow"]

Plot3D[GenFuncH[l,t,8,3], { l ,−0.5,0.5}, { t ,−1,1}, AxesLabel−>{ToString[
ToExpression["{HoldForm}[\\lambda]",TeXForm],TraditionalForm],"t",ToString[
ToExpression["{HoldForm}[H\\left(\\lambda;t,\\chi_{_{8,3}}\\right)]", TeXForm],
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TraditionalForm]}, LabelStyle−>Directive[Black, Bold], ColorFunction−>"
BlueGreenYellow"]

Plot3D[GenFuncH[l,t,8,4], { l ,−0.5,0.5}, { t ,−1,1}, AxesLabel−>{ToString[
ToExpression["{HoldForm}[\\lambda]",TeXForm],TraditionalForm],"t",ToString[
ToExpression["{HoldForm}[H\\left(\\lambda;t,\\chi_{_{8,4}}\\right)]", TeXForm],
TraditionalForm]}, LabelStyle−>Directive[Black, Bold], ColorFunction−>"
BlueGreenYellow"]

Fig. 1 Three-dimensional plots (Plot3D) of the functions H(t; λ, χ
d,m

) for the randomly selected

special cases d = 8, t ∈ [−1, 1] and λ ∈
[
− 1

2 ,
1
2

]
with (a) m = 1; (b) m = 2; (c) m = 3;

(d) m = 4

Implementation 4 The following Mathematica code returns two-dimensional plots of the gener-
ating functions H(t; λ, χ

d,m
) for the randomly selected special cases. For plots, see Fig. 2

Plot[GenFuncH[1.5,t,8,1], {t , −1,1}, AxesLabel −> {Style["t", Bold, 10],Style[ToString
[ToExpression["{HoldForm}[H\\left(\\frac{3}{2}; t ,\\ chi_{_ {8,1}}\\ right ) ] " ,
TeXForm], TraditionalForm], Bold, 10] }, LabelStyle −> Directive[Black, Bold],
PlotStyle −> {Red, Thick}]

Plot[GenFuncH[1.5,t,8,2], {t , −1,1}, AxesLabel −> {Style["t", Bold, 10],Style[ToString
[ToExpression["{HoldForm}[H\\left(\\frac{3}{2}; t ,\\ chi_{_ {8,2}}\\ right ) ] " ,
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TeXForm], TraditionalForm], Bold, 10] }, LabelStyle −> Directive[Black, Bold],
PlotStyle −> {Red, Thick}]

Plot[GenFuncH[1.5,t,8,3], {t , −1,1}, AxesLabel −> {Style["t", Bold, 10],Style[ToString
[ToExpression["{HoldForm}[H\\left(\\frac{3}{2}; t ,\\ chi_{_ {8,3}}\\ right ) ] " ,
TeXForm], TraditionalForm], Bold, 10] }, LabelStyle −> Directive[Black, Bold],
PlotStyle −> {Red, Thick}]

Plot[GenFuncH[1.5,t,8,4], {t , −1,1}, AxesLabel −> {Style["t", Bold, 10],Style[ToString
[ToExpression["{HoldForm}[H\\left(\\frac{3}{2}; t ,\\ chi_{_ {8,4}}\\ right ) ] " ,
TeXForm], TraditionalForm], Bold, 10] }, LabelStyle −> Directive[Black, Bold],
PlotStyle −> {Red, Thick}]

Fig. 2 Surface plots of the functions H(t; λ, χ
d,m

) for the randomly selected special cases d = 8,
λ = 3

2 and t ∈ [−1, 1] with (a) m = 1; (b) m = 2; (c) m = 3; (d) m = 4

Figure 2 includes some two-dimensional plots of the functions H(t; λ, χ
d,m

) for
the randomly selected special cases d = 8, λ = 3

2 and t ∈ [−1, 1] for all possible
cases of the Dirichlet characters with conductor 8.

As another example, in the case when d = 14, due to the fact that
ϕ (14) = 6, there exist six distinct Dirichlet characters with conductor 14, namely
χ14,1 , χ14,2 , . . . , χ14,6 , which are, respectively, given in each row of Table 7 below:
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Table 7 For
ω = exp (πi/3), all Dirichlet
characters with conductor 14

n 1 3 5 9 11 13

χ14,1 (n) 1 1 1 1 1 1

χ14,2 (n) 1 ω −ω2 ω2 −ω −1

χ14,3 (n) 1 ω2 −ω −ω ω2 1

χ14,4 (n) 1 −1 −1 1 1 −1

χ14,5 (n) 1 −ω ω2 ω2 −ω 1

χ14,6 (n) 1 −ω2 ω −ω ω2 −1

In conjunction with the Dirichlet characters given by Table 7 and using Eq. (63),
we get the following generating functions for the numbers Yn,χ

d,m
(λ) for d = 14

and m = 1, m = 2, m = 3, m = 4, m = 5, and m = 6:
In the case when d = 14, we have the following six different generating

functions for the numbers Yn,χ14,m
(λ) with m = 1, m = 2, m = 3, m = 4,

m = 5, and m = 6 (or equivalently all generating functions for the numbers
Yn,χ (λ) attached to the Dirichlet characters with conductor 14 so that χ ≡
{χ14,1 , χ14,2 , χ14,3 , χ14,4 , χ14,5 , χ14,6}):

Let ω = exp (πi/3). Then we have

H(t; λ, χ14,1) =
(

2

λ14(1+ λt)14 − 1

)

×
(
−λ(1+ λt)− λ3(1+ λt)3 − λ5(1+ λt)5 − λ9(1+ λt)9

−λ11(1+ λt)11 − λ13(1+ λt)13
)

=
∞∑

n=0

Yn,χ14,1
(λ)

tn

n! ,

H(t; λ, χ14,2 ) =
(

2

λ14(1+ λt)14 − 1

)

×
(
−λ(1+ λt)− ωλ3(1+ λt)3 + ω2λ5(1+ λt)5 − ω2λ9(1+ λt)9

+ωλ11(1+ λt)11 + λ13(1+ λt)13
)

=
∞∑

n=0

Yn,χ14,2
(λ)

tn

n! ,

H(t; λ, χ14,3) =
(

2

λ14(1+ λt)14 − 1

)

×
(
−λ(1+ λt)− ω2λ3(1+ λt)3 + ωλ5(1+ λt)5 + ωλ9(1+ λt)9
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−ω2λ11(1+ λt)11 + λ13(1+ λt)13
)

=
∞∑

n=0

Yn,χ14,3
(λ)

tn

n! ,

H(t; λ, χ14,4) =
(

2

λ14(1+ λt)14 − 1

)

×
(
−λ(1+ λt)+ λ3(1+ λt)3 + λ5(1+ λt)5 − λ9(1+ λt)9

−λ11(1+ λt)11 + λ13(1+ λt)13
)

=
∞∑

n=0

Yn,χ14,4
(λ)

tn

n! ,

H(t; λ, χ14,5 ) =
(

2

λ14(1+ λt)14 − 1

)

×
(
−λ(1+ λt)+ ωλ3(1+ λt)3 − ω2λ5(1+ λt)5 − ω2λ9(1+ λt)9

ωλ11(1+ λt)11 − λ13(1+ λt)13
)

=
∞∑

n=0

Yn,χ14,5
(λ)

tn

n! ,

and

H(t; λ, χ14,6) =
(

2

λ14(1+ λt)14 − 1

)

×
(
−λ(1+ λt)+ ω2λ3(1+ λt)3 − ωλ5(1+ λt)5 + ωλ9(1+ λt)9

−ω2λ11(1+ λt)11 + λ13(1+ λt)13
)

=
∞∑

n=0

Yn,χ14,6
(λ)

tn

n! .

By implementing the above special generating functions in Mathematica (See
Implementation 6), we present Fig. 3 that contains two parametric plots (Paramet-
ricPlot) and (ParametricPlot3D) derived from the real and imaginary parts of the
functions H(t; λ, χ

d,m
) for the third Dirichlet character with conductor 14, χ14,3 in

the cases when λ = 3
2 and t ∈ [−1, 1]. The reason why we select χ14,3 to plot is that

χ14,3 is one of the Dirichlet characters with complex numbers.
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Implementation 5 The following Mathematica code returns two-dimensional parametric plot
and three-dimensional space curve derived from the real and imaginary parts of the generating
functions H(t; λ, χ

d,m
) for the randomly selected case. For plots, see Fig. 3

ParametricPlot[{Re[GenFuncH[1.5,t,14,3]], Im[GenFuncH[1.5,t,14,3]]}, {t, −1,1},
LabelStyle −> Directive[Black, Bold], PlotStyle −> {Red, Thick}]

ParametricPlot3D[{Re[GenFuncH[1.5,t,14,3]], Im[GenFuncH[1.5,t,14,3]], t}, {t, −1,1},
LabelStyle −> Directive[Black, Bold],ColorFunction −> Function[{x, y, z, u}, Hue
[u]]]

Fig. 3 For the case when d = 14, λ = 3
2 , and t ∈ [−1, 1]. (a) Two-dimensional parametric plot, as

a function of t , derived from the real and imaginary parts of the generating functions H(t; λ, χ
d,m

).
(b) Three-dimensional space curve parametrized by the variable t , which runs from the real part of
the generating functions H(t; λ, χ

d,m
) to its imaginary part

Potential applications of the curves given especially in Fig. 3 may be investigated
in the theory of the splines including the B-Spline, Euler spline, and other
spline functions. Such an investigation to be done contributes some branches of
computational geometry, such as computer-aided geometric design and other related
areas, in the phase of method development for the mathematical description of some
concepts.
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Implementation 6 The following Mathematica code returns two-dimensional parametric plot
and three-dimensional space curve derived from the real and imaginary parts of the generating
functions H(t; λ, χ

d,m
) for the randomly selected case. For plots, see Fig. 4

Plot3D[Re[GenFuncH[x+ I y,1,14,3]], {x,−10, 10}, {y, −10, 10}, LabelStyle −> Directive[
Black, Bold], ColorFunction −>"BlueGreenYellow"]

Plot3D[Im[GFYX[x+ I y,1,14,3]], {x,−10, 10}, {y, −10, 10}, LabelStyle −> Directive[
Black, Bold], ColorFunction −>"BlueGreenYellow"]

Fig. 4 For the case when d = 14, m = 3, t = 3, λ = x+iy with x ∈ [−10, 10] and y ∈ [−10, 10]
(a) Three-dimensional plot of the real part of the functions H(t; λ, χ

d,m
). (b) Three-dimensional

plot of the imaginary part the functions H(t; λ, χ
d,m

)

4 Derivative and Integral Formulas for the Polynomials
Yn,χ(z;λ, q)

Here, derivative and integral formulas for the polynomials Yn,χ (x; λ, q) are given.
Moreover, by the aid of p-adic Volkenborn integral, some identities and combinato-
rial sums are derived.

Theorem 2 (cf. [93]) Let n be a positive integer. Then we have

∂

∂z
{Yn+1,χ (z; λ, q)} =

n∑

j=0

(−1)j
(
n+ 1

j + 1

)

j !λj+1Yn−j,χ (z; λ, q).

Proof (cf. [93]) We shall give just a brief sketch of the proof as the details are
similar to those in [93]: Differentiating (54) with respect to the parameter z yields
the following partial differential equation:

∂

∂z
{H(t, z; λ, q, χ)} = H(t, z; λ, q, χ) log(1+ λt).
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The above partial differential equation gives us the following series equation:

∞∑

n=0

∂

∂z
{Yn,χ (z; λ, q)} t

n

n! =
∞∑

n=0

(−1)n
(λt)n+1

n+ 1

∞∑

n=0

Yn,χ (z; λ, q) t
n

n! .

After some algebraic calculations with the aid of the Cauchy product rule for the
related series and comparing the coefficients of tn

n! on both sides of the final equation,
the desired result is obtained.

If we integrate both sides of (55), from 0 to 1, then we get a formula for the
Riemann integral of the polynomials Yn,χ (z; λ, q) by the following theorem:

Theorem 3 (cf. [93])

∫ 1

0
Yn,χ (z; λ, q)dz =

n∑

j=0

(
n

j

)

λn−j bn−j (0)Yj,χ (λ, q).

The p-adic bosonic integral representation for the polynomials Yn,χ (z; λ, q) is
given as follows:

∫

X

Yn,χ (z; λ, q)dμ1 (z) =
n∑

j=0

(
n

j

)

λn−jDn−j Yj,χ (λ, q)

(cf. [93]). With the combination of (41), the following combinatorial sum is
obtained:

∫

X

Yn,χ (z; λ, q)dμ1 (z) =
n∑

j=0

(−1)n−j
(
n

j

)
(n− j)!λn−j
n+ 1− j

Yj,χ (λ, q)

(cf. [93]).
The p-adic fermionic integral representation for the polynomials Yn,χ (z; λ, q) is

given as follows:

∫

X

Yn,χ (z; λ, q)dμ−1 (z) =
n∑

j=0

(
n

j

)

λn−jChn−j Yj,χ (λ, q).

With the combination of (45), we also get the following combinatorial sums:

∫

X

Yn,χ (z; λ, q)dμ−1 (z) =
n∑

j=0

(−1)n−j
(
n

j

)
(n− j)!λn−j

2n−j
Yj,χ (λ, q)

(cf. [93]).



Some Certain Classes of Combinatorial Numbers and Polynomials. . . 825

5 Reduction to the Numbers Yn (λ) and the Polynomials
Yn (x;λ)

The occurrence and identification of the numbers Yn (λ) and the polynomials
Yn (x; λ) are as follows:

When q → 1 and χ ≡ 1, the family of the numbers Yn,χ (λ, q) and the
polynomials Yn,χ (z; λ, q) reduces another family of the numbers Yn (λ) and the
polynomials Yn (x; λ) defined, respectively, by the following generating functions:

F (t, λ) = 2

λ (1+ λt)− 1
=

∞∑

n=0

Yn (λ)
tn

n! , (64)

and

F (t, x, λ) = 2 (1+ λt)x

λ (1+ λt)− 1
=

∞∑

n=0

Yn (x; λ) t
n

n! (65)

(cf. [93]).
By (64) and (65), we have the relation between the numbers Yn(λ) and the

polynomials Yn(x; λ) given by

Yn(x; λ) =
n∑

j=0

(
n

j

)

λn−j (x)n−j Yj (λ) (66)

(cf. [93]).
Observe that

Yn(λ) = Yn(0; λ).

As stated by Simsek in [93] that there exist some significant combinatorial
identities essentially associated with the numbers Yn (λ), the polynomials Yn (x; λ)
and some special numbers and polynomials such as the Apostol-type numbers and
polynomials, the Stirling numbers and the Bernoulli numbers of the second kind.
Recently, many applications of these numbers and polynomials have been studied
and investigated by many researchers (cf. [23, 30, 93, 105, 106, 113]). Among others,
in [23], Khan et al. called the polynomials Yn (x; λ) as “Simsek polynomials,” and
they constructed a 2-variable extension of the Simsek polynomials by the following
generating functions (cf. [23]):

H (x, y, t; λ, δ) = 2 (1+ λt)x
(
1+ δt2

)y

λ (1+ λt)− 1

=
∞∑

n=0

Yn(x, y; λ, δ) t
n

n! ,
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which, for x = y = 0, yields the Simsek numbers, i.e.:

Yn(0, 0; λ, δ) = Yn(λ),

in which the parameter δ acts as a free variable.

Remark 2 In [23], Khan et al. gave not only quasimonomial properties of the 2-
variable Simsek polynomials Yn(x, y; λ, δ) on the Weyl group structure, but also
differential equations satisfied by these polynomials. The interested reader may refer
to [23] to see further details regarding these polynomials.

6 Some Properties of the Numbers Yn (λ) and the
Polynomials Yn (x;λ) with Their Generating Functions

In this section, we give some properties of the numbers Yn (λ) and the polynomials
Yn (x; λ).

With the application of the umbral calculus convention to (64), a recurrence
relation for the numbers Yn(λ) is obtained as in the following theorem:

Theorem 4 (cf. [93]) Let n ∈ N. Then the numbers Yn(λ) are given by the
following recurrence relation:

Yn(λ) = nλ2

1− λ
Yn−1(λ), (67)

with the initial condition:

Y0(λ) = 2

λ− 1
.

In addition to the recurrence relation in (67), by using (64), an explicit formula
for the number Yn(λ) is given as in the following theorem:

Theorem 5 (cf. [93]) Let n ∈ N0. Then we have

Yn(λ) = 2(−1)n
n!

λ− 1

(
λ2

λ− 1

)n

. (68)

Thus, by using not only (67), but also (68), first few values of the numbers Yn (λ)
are computed as follows:

Y0(λ) = 2

λ− 1
, Y1(λ) = − 2λ2

(λ− 1)2
, Y2(λ) = 4λ4

(λ− 1)3
,

Y3(λ) = − 12λ6

(λ− 1)4
, Y4(λ) = 48λ8

(λ− 1)5
,
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and so on (cf. [93]).

Theorem 6 (cf. [93]) Let n ∈ N0. Then the polynomials Yn(x; λ) are given by the
following recurrence relation:

2 (x)n λ
n = nλ2Yn−1(x; λ)+ (λ− 1) Yn(x; λ). (69)

Proof (cf. [93]) Here, we shall give just a brief sketch of the proof as the details are
similar to those in [93]. By making cross multiplication in (65), and then using the
binomial theorem, we have

2
∞∑

n=0

(x)n λ
n t

n

n! = λ2
∞∑

n=0

Yn(x; λ) t
n+1

n! + (λ− 1)
∞∑

n=0

Yn(x; λ) t
n

n! .

Comparing the coefficients of tn

n! on both sides of the equation just above, the desired
result is obtained.

Thus, by using not only (69), but also (66), first few values of the polynomials
Yn (x; λ) are computed as follows:

Y0(x; λ) = 2

λ− 1
,

Y1(x; λ) = 2λ

λ− 1
x − 2λ2

(λ− 1)2
,

Y2(x; λ) = 2λ2

λ− 1
x2 − 6λ3 − 2λ2

(λ− 1)2
x + 4λ4

(λ− 1)3
,

Y3(x; λ) = 2λ3

λ− 1
x3 − 12λ4 − 6λ3

(λ− 1)2
x2 + 22λ5 − 14λ4 + 4λ3

(λ− 1)3
x − 12λ6

(λ− 1)4
,

and so on (cf. [93]).
By (65), one has the following functional equation:

F(t, x + w; λ) = F(t, x; λ)(1+ λt)w,

which yields the following result:

Theorem 7 (cf. [93]) Let n ∈ N0. Then we have

Yn(x + w; λ) =
n∑

j=0

(
n

j

)

λn−j (w)n−j Yj (x; λ). (70)
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7 Illustrations for the Numbers Yn (λ) and the Polynomials
Yn (x;λ)

Here, we give some illustrations for the numbers Yn (λ) and the polynomials
Yn (x; λ) as follows:

Note that the numbers Yn (λ) are rational functions of real variable λ. Thus,
by (68), we shall give some plots of the rational functions Yn (λ) in Fig. 5. Observe
that there exists a vertical asymptote for all curves in Fig. 5, and its equation is
λ = 1.

The implementation of Eq. (68) in Mathematica is given in Implementation 8:

Implementation 7 Let the letter l denote the parameter λ. Then, the following Mathematica code
returns the rational functions Yn (λ)
YNum[l_,n_]:=2∗((−1)^n)∗ (Factorial[n]/(l−1))∗((( l ^2) /( l−1))^n)

Implementation 8 Let the letter l denote the parameter λ. Then, the following Mathematica code
returns plots of the rational functions Yn (λ) for randomly selected special cases. For plots, see
Fig. 5

Plot[Evaluate[Table[YNum[l,n],{n,0,4}] ], { l ,−5,5},AxesLabel −> {Style[lparameter,
Bold, 10],Style[expr2, Bold, 10] }, PlotLegends −> {ToString[ToExpression["{
HoldForm}[{Y}_{0}\\left(\\lambda\\right)]",TeXForm],TraditionalForm], ToString[
ToExpression["{HoldForm}[{Y}_{1}\\left(\\lambda\\right)]",TeXForm],
TraditionalForm], ToString[ToExpression["{HoldForm}[{Y}_{2}\\left(\\lambda\\
right)]",TeXForm], TraditionalForm], ToString[ToExpression["{HoldForm}[{Y}_
{3}\\left(\\lambda\\right)]",TeXForm],TraditionalForm], ToString[ToExpression["{
HoldForm}[{Y}_{4}\\left(\\lambda\\right)]",TeXForm], TraditionalForm]}, LabelStyle
−> Directive[Black, Bold]]

Fig. 5 Plots of the rational functions Yn (λ) for randomly selected special cases when λ ∈ [−5, 5]
and n ∈ {0, 1, 2, 3, 4}
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By (68) and (66), we shall give some two-dimensional plots of the polynomials
Yn (x; λ) in Figs. 6 and 7.

The implementation of Eq. (66) in Mathematica is given in Implementation 11:

Implementation 9 Let the letter l denote the parameter λ. Then, the following Mathematica code
returns the polynomials Yn (x; λ)
YPoly[x_,l_,n_]:=Sum[Binomial[n,j]∗(l^(n−j))∗FactorialPower[x, n−j, 1]∗YNum[l,j], { j ,0,

n}]

Implementation 10 Let the letter l denote the parameter λ. Then, the following Mathematica
code returns plots of the polynomials Yn (x; λ) for the randomly selected special cases. For plots,
see Figs. 6 and 7

Plot[Evaluate[Table[YPoly[3,l,n ],{n ,0,4}]], { l ,−5,5}, AxesLabel −> {Style[lparameter,
Bold, 10],Style[ToString[ToExpression["{HoldForm}[{Y}_{n}\\left(3;\\lambda\\right)
]" ,TeXForm], TraditionalForm], Bold, 10] }, PlotLegends −> {ToString[
ToExpression["{HoldForm}[{Y}_{0}\\left(3;\\lambda\\right)]",TeXForm],
TraditionalForm], ToString[ToExpression["{HoldForm}[{Y}_{1}\\left(3;\\lambda\\
right)]",TeXForm], TraditionalForm], ToString[ToExpression["{HoldForm}[{Y}_
{2}\\left(3;\\lambda\\right)]",TeXForm], TraditionalForm], ToString[ToExpression[
"{HoldForm}[{Y}_{3}\\left(3;\\lambda\\right)]",TeXForm], TraditionalForm],ToString
[ToExpression["{HoldForm}[{Y}_{4}\\left(3;\\lambda\\right)]",TeXForm],
TraditionalForm]}, LabelStyle −> Directive[Black, Bold]]

Plot[Evaluate[Table[YPoly[x,0.5,n],{n ,0,4}]], {x,−5,5}, AxesLabel −> {Style["x", Bold,
10],Style[ToString[ToExpression["{HoldForm}[{Y}_{n}\\left(x;\\frac {1}{2}\\ right ) ]
" ,TeXForm], TraditionalForm], Bold, 10] }, PlotLegends −> {ToString[
ToExpression["{HoldForm}[{Y}_{0}\\left(x;\\frac{1}{2}\\ right ) ] " ,TeXForm],
TraditionalForm], ToString[ToExpression["{HoldForm}[{Y}_{1}\\left(x;\\frac{1}{2}\\
right) ] " ,TeXForm], TraditionalForm], ToString[ToExpression["{HoldForm}[{Y}_
{2}\\left(x;\\frac{1}{2}\\right) ] " ,TeXForm], TraditionalForm], ToString[
ToExpression["{HoldForm}[{Y}_{3}\\left(x;\\frac{1}{2}\\right) ] " ,TeXForm],
TraditionalForm], ToString[ToExpression["{HoldForm}[{Y}_{4}\\left(x;\\frac{1}{2}\\
right) ] " ,TeXForm], TraditionalForm]}, LabelStyle −> Directive[Black, Bold]]

Fig. 6 Plots of the polynomials Yn (x; λ) for the case when x = 3 and λ ∈ [−5, 5] with n ∈
{0, 1, 2, 3, 4}
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Fig. 7 Plots of the polynomials Yn (x; λ) for randomly selected case when λ = 1
2 and x ∈ [−5, 5]

with n ∈ {0, 1, 2, 3, 4}

In Fig. 8, we also give surface plots of the polynomials Yn (x; λ).
Implementation 11 Let the letter l denote the parameter λ. Then, the following Mathematica
code returns surface plots of the polynomials Yn (x; λ) for the randomly selected special cases. For
plots, see Fig. 8

Plot3D[YPoly[x,l ,0],{ x,−5,5},{ l ,−0.5,0.5}, AxesLabel −>{"x",ToString[ToExpression[
"{HoldForm}[\\lambda]",TeXForm], TraditionalForm], ToString[ToExpression["{
HoldForm}[{Y}_{0}\\left(x;\\lambda\\right)]",TeXForm], TraditionalForm]},
LabelStyle −> Directive[Black, Bold], ColorFunction −>"BlueGreenYellow"]

Plot3D[YPoly[x,l ,1],{ x,−5,5},{ l ,−0.5,0.5}, AxesLabel −>{"x",ToString[ToExpression[
"{HoldForm}[\\lambda]",TeXForm], TraditionalForm], ToString[ToExpression["{
HoldForm}[{Y}_{1}\\left(x;\\lambda\\right)]",TeXForm], TraditionalForm]},
LabelStyle −> Directive[Black, Bold], ColorFunction −>"BlueGreenYellow"]

Plot3D[YPoly[x,l ,2],{ x,−5,5},{ l ,−0.5,0.5}, AxesLabel −>{"x",ToString[ToExpression[
"{HoldForm}[\\lambda]",TeXForm], TraditionalForm], ToString[ToExpression["{
HoldForm}[{Y}_{2}\\left(x;\\lambda\\right)]",TeXForm], TraditionalForm]},
LabelStyle −> Directive[Black, Bold], ColorFunction −>"BlueGreenYellow"]

Plot3D[YPoly[x,l ,3],{ x,−5,5},{ l ,−0.5,0.5}, AxesLabel −>{"x",ToString[ToExpression[
"{HoldForm}[\\lambda]",TeXForm], TraditionalForm], ToString[ToExpression["{
HoldForm}[{Y}_{3}\\left(x;\\lambda\\right)]",TeXForm], TraditionalForm]},
LabelStyle −> Directive[Black, Bold], ColorFunction −>"BlueGreenYellow"]
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Fig. 8 Surface plots of the polynomials Yn (x; λ) for the randomly selected special cases when

λ ∈
[
− 1

2 ,
1
2

]
and x ∈ [−5, 5] (a) n = 0; (b) n = 1; (c) n = 2; (d) n = 3

8 Some Identities Derived from Derivative Formulas of the
Generating Functions for the Numbers Yn (λ) and the
Polynomials Yn (x;λ)

Derivation of some partial derivative formulas involving the generating functions
F (t, x, λ) is given as follows.

Differentiating both sides of (65), with respect to the parameter t , yields the
following partial differential equations:

∂F (t, x, λ)

∂t
= F (t, x, λ)

(
λx

1+ λt
− λ2

2
F (t, λ)

)

(71)

and

∂F (t, x, λ)

∂t
= F (t, x, λ)

(

λ(λt + 1)−1x − λ2
(
λ2t + λ− 1

)−1
)

(72)

(cf. [113]).
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If the above second derivative operation is repeated v times, we obtain a higher-
order partial differential equation as in the following theorem:

Theorem 8 (cf. [113]) Let v ∈ N0. Then

∂(v)F (t, x, λ)

∂tv
= F (t, x, λ)

v∑

j=0

(−1)j (v)j (x)v−j λv+j (1+ λt)j−v

×
(
λ2t + λ− 1

)−j
.

Theorem 9 (cf. [113])

Yn+1 (x; λ) = 1

2

n∑

k=0

(
n

k

)

Yk (x; λ)
(

2 (−1)n−k λn−k+1x (n− k)! − λ2Yn−k (λ)
)
.

Proof (cf. [113]) We shall give just a brief sketch of the proof as the details are
similar to those in [113]: Combining (65) and (64) with (71), such that |λt | < 1, and
using the Cauchy product in the final equation yield

∞∑

n=0

Yn+1 (x; λ) t
n

n! = λx

∞∑

n=0

(
n∑

k=0

(−1)n−k λn−kYk (x; λ)
k!

)

tn

−λ2

2

∞∑

n=0

(
n∑

k=0

(
n

k

)

Yk (x; λ) Yn−k (λ)
)
tn

n! .

Comparing the coefficients of tn

n! on both sides of the equation just above, the desired
result is obtained.

Corollary 1 (cf. [113])

Yn+1 (x; λ) =
n∑

k=0

(
n

k

)

Yk (x; λ)
(
(−1)n−k λn−k+1x (n− k) !

−2n−k
(

λ2

λ− 1

)n−k+1

Chn−k

)

.

Proof (cf. [113]) We shall give just a brief sketch of the proof as the details are
similar to those in [113]: By using (64), one has the following functional equation:

λ2

2
F (t, λ) = λ2

λ− 1
FCh

(
2λ2

λ− 1
t

)

. (73)
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Combining (73) with Eq. (71) such that |λt | < 1 gives us the following series
equations:

∞∑

n=0

Yn+1 (x; λ) t
n

n! =
∞∑

n=0

Yn (x; λ) t
n

n!

(

λx

∞∑

n=0

(−1)n λntn

− λ2

λ− 1

∞∑

n=0

(
2λ2

λ− 1

)n

Chn
tn

n!

)

.

After some elementary calculations with the Cauchy product and comparing the
coefficients of tn

n! on both sides of the final equation, the desired result is obtained.

Theorem 10 (cf. [113]) Let n ∈ N. Then we have

Yn−1 (x; λ) = 1

λn

n∑

k=0

(
n

k

)
∂

∂x
{Yk (x; λ)}λn−kbn−k (0) .

Proof (cf. [113]) We shall give just a brief sketch of the proof as the details are
similar to those in [113]: If we differentiate both sides of (65), with respect to the
parameter x, we have the following partial differential equation:

∂F (t, x, λ)

∂x
= F (t, x, λ) log (1+ λt) , (74)

which, by using (46), yields

∞∑

n=0

(
n∑

k=0

(
n

k

)
∂

∂x
{Yk (x; λ)}λn−kbn−k (0)

)
tn

n! =
∞∑

n=0

λnYn−1 (x; λ) t
n

n! .

Comparing the coefficients of tn

n! on both sides of the equation just above, the desired
result is obtained.

Differentiating both sides of (72), with respect to the parameter x, yields the
following partial differential equation:

∂2

∂x∂t
{F (t, x, λ)} = F (t, x, λ) {λ(λt + 1)−1x log (λt + 1)

−λ2
(
λ2t + λ− 1

)−1
log (λt + 1)

+λ(λt + 1)−1}. (75)
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Moreover, differentiating both sides of (72), with respect to the parameter λ,
yields the following another partial differential equation:

∂2

∂λ∂t
{F (t, x, λ)} = F (t, x, λ) {λt (λt + 1)−2 (x − 1) x + (λt + 1)−1x

−λ2t(λt + 1)−1
(
λ2t + λ− 1

)−1
x

−λ(λt + 1)−1
(
λ2t + λ− 1

)−1
(2λt + 1) x − 2λ

(
λ2t + λ− 1

)−1

+2λ2
(
λ2t + λ− 1

)−2
(2λt + 1)}. (76)

On the other hand, differentiating both sides of Eq. (74), with respect to the
parameter λ, yields the following another partial differential equation:

∂2F (t, x, λ)

∂λ∂x
= F (t, x, λ) {tx(λt + 1)−1 log (λt + 1)

− (2λt + 1)
(
λ2t + λ− 1

)−1
log (λt + 1)

+t(λt + 1)−1}. (77)

Remark 3 To see further formulas derived from the above partial differential equa-
tions involving the generating functions for the numbers Yn (λ) and the polynomials
Yn (x; λ), the interested reader may refer to [113].

9 Other Relations of the Numbers Yn (λ) and the
Polynomials Yn (x;λ) with Some Special Numbers and
Polynomials

Here, we give other relations of some special numbers and polynomials with the
numbers Yn (λ) and the polynomials Yn (x; λ).

Substituting λ = −1 into (65) yields the following relation between the
polynomials Yn (x; λ) and the Changhee polynomials:

Yn (x;−1) = (−1)n+1 Chn (x) (78)

(cf. [113]).
Moreover, substituting x = 0 into (78), we have the following relation between

the numbers Yn (λ) and the Changhee numbers:

Yn (−1) = (−1)n+1 Chn (79)

(cf. [113]).
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Substituting λt = eu−1 into (64) yields a computation formula for the Apostol–
Bernoulli numbers: Let m ∈ N. Then we have

Bm (λ) = m

λ− 1

m−1∑

n=0

n∑

k=0

(−1)k
(
n

k

)(
λ

λ− 1

)n
km−1 (80)

(cf. [93]).
Notice that the different proofs of the above formula were also given by Apostol

[2, Eq (3.7)] and Boyadzhiev [6].
Combining (68) with (80), another relation between the numbers Yn (λ) and the

Apostol–Bernoulli numbers is obtained as in the following theorem:

Theorem 11

Bm

(
λ2
)
= m

2

m−1∑

n=0

n∑

k=0

(−1)k−n km−1

(n− k)!k!
(

1

λ+ 1

)n+1

Yn(λ). (81)

The relation among the numbers Yn (λ), the Stirling numbers of the first kind,
and the Apostol–Bernoulli numbers is given by (cf. [113])

Yn(λ) = 2λn
n∑

k=0

S1 (n, k)Bk+1 (λ)

k + 1
; (n ∈ N0) . (82)

By combining (32) with (82), we arrive at the following theorem:

Theorem 12 Let n ∈ N0. Then we have

Yn(λ) = 2λn
n∑

k=0

Bk+1 (λ)

k + 1

×
n−k∑

j=0

j∑

m=0

(−1)m
(

2n− k

n− k − j, n− k + j, k

)(
j

m

)
kmj+n−k

(n+ j)j ! . (83)

The relation among the numbers Yn (λ), the Stirling numbers of the first kind,
and the Apostol–Euler numbers is given by (cf. [113])

Yn(−λ) = (−1)n+1 λn
n∑

k=0

Ek (λ) S1 (n, k) ; (n ∈ N0) . (84)

By combining (32) with (84), we arrive at the following theorem:

Theorem 13 Let n ∈ N0. Then we have
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Yn(−λ) = (−1)n+1 λn
n∑

k=0

Ek (λ) (85)

×
n−k∑

j=0

j∑

m=0

(−1)m
(

2n− k

n− k − j, n− k + j, k

)(
j

m

)
kmj+n−k

(n+ j)j ! .

Remark 4 Setting λ = 1 in Eq. (85) and combining the final equation with (32),
(79), and (9) give the following formula:

Chn =
n∑

k=0

EkS1 (n, k) ,

which was proven by Kim et al. [25, Theorem 2.7].

In addition, by combining the case of (14) when k = 1 with not only (82), but
also (84), we get a relation among the numbers Yn (λ), the Stirling numbers of the
first kind, and the Apostol–Genocchi numbers as in the following theorem:

Theorem 14 Let n ∈ N0. Then we have

Yn(λ) = −λn
n∑

k=0

S1 (n, k)Gk+1 (−λ)
k + 1

; (n ∈ N0) . (86)

By combining (32) with (86), we arrive at by the following theorem:

Theorem 15 Let n ∈ N0. Then we have

Yn(λ) = −λn
n∑

k=0

Gk+1 (−λ)
k + 1

×
n−k∑

j=0

j∑

m=0

(−1)m
(

2n− k

n− k − j, n− k + j, k

)(
j

m

)
kmj+n−k

(n+ j)j ! . (87)

The relation among the polynomials Yn (x; λ), the Stirling numbers of the first
kind, and the Apostol–Euler polynomials is given by (cf. [113])

Yn(x;−λ) = (−1)n+1 λn
n∑

k=0

Ek (x; λ) S1 (n, k) ; (n ∈ N0) . (88)

By combining (32) with (88), we arrive at the following theorem:
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Theorem 16 Let n ∈ N0. Then we have

Yn(x;−λ) = (−1)n+1 λn
n∑

k=0

Ek (x; λ)

×
n−k∑

j=0

j∑

m=0

(−1)m
(

2n− k

n− k − j, n− k + j, k

)(
j

m

)
kmj+n−k

(n+ j)j ! . (89)

Remark 5 Setting λ = 1 in Eq. (89) and combining the final equation with (32),
(78), and (8) give the following formula:

Chm(x) =
m∑

n=0

En (x) S1 (m, n) ,

which was proven by Kim et al. [25, Theorem 2.5].

By combining the case of (13) when k = 1 with not only (88), we get a relation
among the polynomials Yn (x; λ), the Stirling numbers of the first kind, and the
Apostol–Genocchi polynomials as in the following theorem:

Theorem 17 Let n ∈ N0. Then we have

Yn(x;−λ) = (−1)n+1 λn
n∑

k=0

S1 (n, k)Gk+1 (x; λ)
k + 1

. (90)

By combining (32) with (90), we arrive at the following theorem:

Theorem 18 Let n ∈ N0. Then we have

Yn(x;−λ) = (−1)n+1 λn
n∑

k=0

Gk+1 (x; λ)
k + 1

×
n−k∑

j=0

j∑

m=0

(−1)m
(

2n− k

n− k − j, n− k + j, k

)(
j

m

)
kmj+n−k

(n+ j)j ! . (91)

10 Some Relations on Hypergeometric Functions Derived
from the Integral of the Numbers Yn(λ) and the
Polynomials Yn(x;λ)

Here, we give some relations on hypergeometric functions derived from the integral
of the numbers Yn(λ) and the polynomials Yn(x; λ).
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Theorem 19 (cf. [113])

∫ u

0
Yn(λ)dλ = −2n!u2n+1

2n+ 1
2F1 (−n− 1,−2n− 1;−2n− 2;−u) ,

where 2F1 denotes the Gauss hypergeometric functions.

Theorem 20 (cf. [113])

∫ u

0
Yn(x; λ)dλ = −2n!u2n+1

n∑

k=0

(
x

k

)
u−k

2n− k + 1

×2F1 (k − n− 1, k − 2n− 1; k − 2n− 2;−u) .

11 Some Infinite Series Containing the Numbers Yn (λ)

Here, we present some infinite series containing the numbers Yn (λ), the Changhee
numbers, the Daehee numbers, and the Lucas numbers. In addition, relations of
these infinite series with the Humbert polynomials are given.

By (68), an infinite series representation for the reciprocal of the numbers Yn (λ)
is obtained as in the following theorem:

Theorem 21 (cf. [113])

∞∑

n=0

1

Yn (λ)
= λ− 1

2
e

1−λ
λ2 .

By (68) and (41), an infinite series, including the ratio of the numbers Yn (λ) to
the Daehee numbers, is obtained as in the following theorem:

Theorem 22 (cf. [113]) Let
∣
∣
∣ λ2

λ−1

∣
∣
∣ < 1. Then

∞∑

n=0

Yn (λ)

Dn

= 2λ2

(
1− λ+ λ2

)2 −
2

1− λ+ λ2 . (92)

In addition, by (68) and (41), another infinite series, including the ratio of the
Daehee numbers to the numbers Yn (λ), is obtained as in the following theorem:

Theorem 23 (cf. [113])

∞∑

n=0

Dn

Yn (λ)
= −λ2

2
log

(

1+ 1− λ

λ2

)

. (93)

We next give some examples for Eq. (93) as follows:
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By substituting

λ = −1+√5

2
and λ = −1−√

5

2

into (93), we get, respectively, the following two infinite series:

∞∑

n=0

Dn

Yn

(
− 1+√5

2

) = −3+√5

4
log 2

and

∞∑

n=0

Dn

Yn

(
− 1−√5

2

) =
√

5− 3

4
log 2.

Let Ln be the Lucas numbers. Then, it is well known that

∞∑

n=1

Ln

n2n
= 2 log 2

(cf. [69, p. 7]). Combining the above identity with the previous two infinite series,
we get

∞∑

n=0

Dn

Yn

(
− 1+√5

2

) +
(

1+√
5

2

)2 ∞∑

n=1

Ln

n2n+2 = 0

and

∞∑

n=0

Dn

Yn

(
− 1−√5

2

) +
(

1−√5

2

)2 ∞∑

n=1

Ln

n2n+2 = 0.

Thus, we get

∞∑

n=1

⎛

⎝ Dn

Yn

(
− 1+√5

2

) +
(

1+√
5

2

)2
Ln

n2n+2

⎞

⎠ = 3+√
5

4

and

∞∑

n=1

⎛

⎝ Dn

Yn

(
− 1−√5

2

) +
(

1−√5

2

)2
Ln

n2n+2

⎞

⎠ = 3−√5

4
.
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By (68) and (45), an infinite series, including the ratio of the numbers Yn (λ) to
the Changhee numbers, is obtained as in the following theorem:

Theorem 24 (cf. [113]) Let
∣
∣
∣ λ2

λ−1

∣
∣
∣ < 1

2 . Then

∞∑

n=0

Yn (λ)

Chn
= 2

λ− 1− 2λ2 . (94)

Likewise, by (68) and (45), an infinite series, including the ratio of the Changhee
numbers to the numbers Yn (λ), is obtained as in the following theorem:

Theorem 25 (cf. [113]) Let
∣
∣
∣λ−1

2λ2

∣
∣
∣ < 1. Then

∞∑

n=0

Chn

Yn (λ)
= λ2 (λ− 1)

2λ2 − λ+ 1
. (95)

In addition to the above infinite series, by (41) and (45), an infinite series,
including the ratio of the Changhee numbers to the Daehee numbers, is obtained
as in the following theorem:

Theorem 26 (cf. [113])

∞∑

n=0

Chn

Dn

= 4.

By rewriting the right-hand side of equation (92) in terms of the Humbert
polynomials, one has

∞∑

n=0

Yn (λ)

Dn

= 2λ2
∞∑

n=0

Π
(2)
n,2

(
1

2

)

λn − 2
∞∑

n=0

Π
(1)
n,2

(
1

2

)

λn

(cf. [113]).
Similarly, by rewriting the right-hand side of equation (94) and (95) in terms of

the generalized Humbert polynomials, one has

∞∑

n=0

Yn (λ)

Chn
= −2

∞∑

n=0

Pn

(

2,
1

2
, 2,−1, 1

)

λn (96)

and

∞∑

n=0

Chn

Yn (λ)
= λ2 (λ− 1)

∞∑

n=0

Pn

(

2,
1

2
, 2,−1, 1

)

λn (97)

(cf. [113]).
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Remark 6 As seen above, the infinite series obtained from the ratios of the numbers
Yn (λ) to other special numbers have become the ordinary generating functions for
a case of the generalized Humbert polynomials. Undoubtedly, many more infinite
series not covered here but involving the numbers Yn (λ) will lead to obtaining
different applications and usage areas.

12 Positive Higher-Order Extension of the Numbers Yn (λ)

and the Polynomials Yn (x;λ) with Their Generating
Functions

Generating functions for positive higher-order extension of the numbers Yn (λ) and
the polynomials Yn (x; λ) have been constructed in [56] as follows:

Let k ∈ N0 and λ ∈ R (or C). Generating functions for the numbers Y (k)
n (λ) and

the polynomials Y (k)
n (x; λ) are given by

F (t, k; λ) =
(

2

λ (1+ λt)− 1

)k
=

∞∑

n=0

Y (k)
n (λ)

tn

n! (98)

and

F (t, x, k; λ) = F (t, k; λ) (1+ λt)x =
∞∑

n=0

Y (k)
n (x; λ) t

n

n! (99)

(cf. [56]).
By (98) and (99), we have

Y (k)
n (λ) = Y (k)

n (0; λ) . (100)

Therefore,

Yn (λ) = Y (1)
n (λ)

and

Yn (x; λ) = Y (1)
n (x; λ) .

By using (98), the computation formula for the numbers Y (k)
n (λ) is given as in

the following theorem:
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Theorem 27 (cf. [56])

Y (k)
n (λ) = (−1)n

(
n+ k − 1

n

)
2kn!λ2n

(λ− 1)k+n
. (101)

Notice that in the case when k = 1, (101) reduces to (68).
By making use of (101), few values of the numbers Y (k)

n (λ) are computed by

Y
(2)
0 (λ) = 4

(λ− 1)2
, Y

(2)
1 (λ) = − 8λ2

(λ− 1)3
,

Y
(2)
2 (λ) = 24λ4

(λ− 1)4
, Y

(2)
3 (λ) = − 96λ6

(λ− 1)5
, . . .

Y
(3)
0 (λ) = 8

(λ− 1)3
, Y

(3)
1 (λ) = − 24λ2

(λ− 1)4
,

Y
(3)
2 (λ) = 96λ4

(λ− 1)5
, Y

(3)
3 (λ) = − 480λ6

(λ− 1)6
,

and so on (cf. [56]).
By using (101), we also obtain a recurrence relation of the numbers Y (k)

n (λ) by
the following theorem:

Theorem 28 (cf. [56]) Let n ∈ N. Then, the numbers Y (k)
n (λ) are given by the

following recurrence relation:

Y (k)
n (λ) = λ2

1− λ
(n+ k − 1) Y (k)

n−1 (λ) ,

with the initial condition:

Y
(k)
0 (λ) = 2k

(λ− 1)k
.

Another recurrence relation for the numbers Y (k)
n (λ) is given as follows (cf. [56]):

k∑

j=0

(−1)k−j (n)j
(
k

j

)

λ2j (1− λ)k−j Y (k)
n−j (λ) = 0. (102)

Remark 7 The interested reader may refer to [56] to see a computational algorithm
that gives the values of the polynomials Y (k)

n (x; λ).
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First few values of the polynomials Y (k)
n (x; λ) are given as follows:

Y
(k)
1 (x; λ) = λ

(
2

λ− 1

)k (

x − kλ

λ− 1

)

,

Y
(k)
2 (x; λ) = λ2

(
2

λ− 1

)k
(

x2 −
(

1+ 2kλ

λ− 1

)

x + k (k + 1)

(
λ

λ− 1

)2
)

,

Y
(k)
3 (x; λ) = λ3

(
2

λ− 1

)k (

x3 − 3

(

1+ kλ

λ− 1

)

x2 +
(

2+ 3kλ

λ− 1

+3k (k + 1)

(
λ

λ− 1

)2
)

x

−k (k + 1) (k + 2)

(
λ

λ− 1

)3
)

,

and so on (cf. [56]).
The relation among the numbers Y (k)

n (λ), the Stirling numbers of the first kind,
and the Apostol–Bernoulli numbers of positive higher order is given by

Y (k)
n (λ) = (−1)k+1 2kλn

n∑

m=0

S1 (n,m)B
(k)
m+1 (λ)

m+ 1
; (n ∈ N) (103)

(cf. [56]).
By combining (32) with (103), we arrive at the following theorem:

Theorem 29 Let n ∈ N. Then we have

Y (k)
n (λ) = (−1)k+1 2kλn

n∑

m=0

B
(k)
m+1 (λ)

m+ 1

×
n−m∑

j=0

j∑

r=0

(−1)r
(

2n−m

n−m− j, n−m+ j,m

)(
j

r

)
mrj+n−m

(n+ j)j ! . (104)

The relation among the numbers Y (k)
n (λ), the Stirling numbers of the first kind,

and the Apostol–Euler numbers of positive higher order is given by

Y (k)
n (−λ) = (−1)n+k λn

n∑

m=0

E (k)
m (λ) S1 (n,m) (105)

(cf. [56]).
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By combining (32) with (105), we arrive at the following theorem:

Theorem 30 Let n ∈ N. Then we have

Y (k)
n (−λ) = (−1)n+k λn

n∑

m=0

E (k)
m (λ) (106)

×
n−m∑

j=0

j∑

r=0

(−1)r
(

2n−m

n−m− j, n−m+ j,m

)(
j

r

)
mrj+n−m

(n+ j)j ! .

Remark 8 Notice that in the special case when k = 1, (103) reduces to (82)
and (105) reduces to (84). Also, in the special case when k = 1, (104) reduces
to (83) and (106) reduces to (85).

In addition, by combining (14) with not only (103), but also (105), we get a
relation among the numbers Y (k)

n (λ), the Stirling numbers of the first kind, and the
Apostol–Genocchi numbers of positive higher order as in the following theorem:

Theorem 31 Let n ∈ N. Then we have

Y (k)
n (λ) = −λn

n∑

m=0

S1 (n,m)G
(k)
m+1 (−λ)

m+ 1
; (n ∈ N) . (107)

Remark 9 Notice also that substituting k = 1 into (107) yields (86).

By using the partial derivatives of the functions F (t, k; λ), with respect to the
parameters t and λ, some derivative formulas and identities for the numbers Y (k)

n (λ)

were obtained in [56] as follows:
Differentiating the functions F (t, k; λ) with respect to the parameter t , we have

d

dt
{F (t, k; λ)} = −k

2
λ2F (t, k + 1; λ) ,

which yields a formula given by the following theorem:

Theorem 32 (cf. [56]) Let n, k, v ∈ N0. Then we have

Y
(k)
n+v (λ) =

(−1)v (k)(v) λ2v

2v
Y (k+v)
n (λ) . (108)

Differentiating the functions F (t, k; λ) with respect to the parameter λ, we
obtain the following derivative formula:

d

dλ
{F (t, k; λ)} = −k

2
(2λt + 1)F (t, k + 1; λ) ,
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which yields a formula given by the following theorem:

Theorem 33 (cf. [56])

d

dλ
Y (k)
n (λ) = −k

2

(
2λnY (k+1)

n−1 (λ)+ Y (k+1)
n (λ)

)
.

Remark 10 The well-known Chu–Vandermonde identity is given as follows:

(
x + a

k

)

=
k∑

j=0

(
x

j

)(
a

k − j

)

(109)

(cf. [15, 22, 88]). The interested reader may refer to [56] for some Chu–
Vandermonde-type convolution formulas derived from the functional equations
of the generating function for the numbers Y (k)

n (λ).

13 Negative Higher-Order Extension of the Numbers Yn (λ)

and the Polynomials Yn (x;λ) with Their Generating
Functions

Generating functions for negative higher-order extension of the numbers Yn (λ) and
the polynomials Yn (x; λ) have been constructed in [58] as follows:

Let k ∈ N0 and λ ∈ R (or C). Generating functions for the numbers Y (−k)
n (λ)

and the polynomials Qn (x; λ, k) are given by

G (t, k; λ) = 2−k (λ (1+ λt)− 1)k =
∞∑

n=0

Y (−k)
n (λ)

tn

n! (110)

and

G (t, x, k; λ) = G (t, k; λ) (1+ λt)x =
∞∑

n=0

Qn (x; λ, k) t
n

n! (111)

(cf. [58]).
By (110) and (111), we have

Qn (x; λ, k) =
n∑

j=0

(
n

j

)

λn−j Y (−k)
j (λ) (x)n−j , (112)
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and

Y (−k)
n (λ) =

{
2−kn!(k

n

)
λ2n (λ− 1)k−n if n ≤ k

0 if n > k
(113)

where k, n ∈ N0 (cf. [58]).
By (113), first few values of the numbers Y (−k)

n (λ) are given as follows:

Y
(−k)
0 (λ) = 2−k (λ− 1)k ,

Y
(−k)
1 (λ) = 2−k

(
k

1

)

λ2 (λ− 1)k−1 ,

Y
(−k)
2 (λ) = 2−k2!

(
k

2

)

λ4 (λ− 1)k−2 ,

...

Y
(−k)
j (λ) = 2−kj !

(
k

j

)

λ2j (λ− 1)k−j for j ≤ k,

...

Y
(−k)
k (λ) = 2−kk!λ2k,

Y
(−k)
j (λ) = 0 for j > k

(cf. [58]).
By (112) and (113), we also have the following first few values of the polynomi-

als Qn (x; λ, k):

Q0 (x; λ, k) = 2−k (λ− 1)k ,

Q1 (x; λ, k) = 2−k (λ− 1)k λx + 2−kkλ2 (λ− 1)k−1 ,

Q2 (x; λ, k) = 2−k (λ− 1)k λ2x2 +
(
−2−k (λ− 1)k λ2 + 2−k+1kλ3 (λ− 1)k−1

)
x

+2−kk (k − 1) λ4 (λ− 1)k−1 ,

and so on (cf. [58]).

Remark 11 It follows from (50) and (113) that there exists a relationship between
the numbers Y (−k)

n (λ) and the Bernstein basis functions as follows:

Y (−k)
n (λ) = (−1)k−n n!

2k
λnBk

n(λ), (114)
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where n, k ∈ N0 and λ ∈ [0, 1] (cf. [58]). The interested reader may refer to
[58] for further identities containing the numbers Y (−k)

n (λ), the Poisson–Charlier
polynomials, the Bell polynomials (i.e., exponential polynomials), and other kinds
of combinatorial numbers.

13.1 Derivative Formulas and Recurrence Relations Derived
from Partial Derivatives of the Functions G (t, k;λ) and
G (t, x, k;λ)

By using partial derivatives of the generating functions G (t, k; λ) and G (t, x, k; λ),
with respect to the parameters t , λ, and x, some derivative formulas and recurrence
relations for the numbers Y (−k)

n (λ) and the polynomials Qn (x; λ, k) were obtained
in [58] as follows:

Differentiating both sides of (110) with respect to the parameter λ, we have the
following partial derivative equation:

∂

∂λ
{G (t, k; λ)} = k

2
(2λt + 1)G (t, k − 1; λ) , (115)

which, combining the right-hand side of (110), yields a derivative formula given by
the following theorem:

Theorem 34 (cf. [58]) Let n ∈ N. Then, we have

d

dλ
{Y (−k)

n (λ)} = k

2

(
2nλY (−k+1)

n−1 (λ)+ Y (−k+1)
n (λ)

)
. (116)

Differentiating both sides of (110) with respect to the parameter t , we also have
the following another partial derivative equation:

∂

∂t
{G (t, k; λ)} = kλ2

2
G (t, k − 1; λ) , (117)

which, combining the right-hand side of (110), yields a formula given by following
theorem:

Theorem 35 (cf. [58]) Let n ∈ N0. Then, we have

Y
(−k)
n+1 (λ) = kλ2

2
Y (−k+1)
n (λ) . (118)

Differentiating both sides of (111) with respect to the parameter λ, we also have
the following another partial derivative equation:
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∂

∂λ
{G (t, x, k; λ)} = k

2
(2λt + 1)G (t, x, k − 1; λ)+ xtG (t, x − 1, k; λ) ,

(119)
which, combining the right-hand side of (111), yields a derivative formula given by
the following theorem:

Theorem 36 (cf. [58]) Let n ∈ N. Then, we have

∂

∂λ
{Qn (x; λ, k)} = knλQn−1 (x; λ, k − 1)+ k

2
Qn (x; λ, k − 1)

+ xnQn−1 (x − 1; λ, k) . (120)

Differentiating both sides of (111) with respect to the parameter t , we also have
the following another partial derivative equation:

∂

∂t
{G (t, x, k; λ)} = kλ2

2
G (t, x, k − 1; λ)+ xλG (t, x − 1, k; λ) , (121)

which, combining the right-hand side of (111), yields a formula given by the
following theorem:

Theorem 37 (cf. [58]) Let n ∈ N0. Then, we have

Qn+1 (x; λ, k) = kλ2

2
Qn (x; λ, k − 1)+ xλQn (x − 1; λ, k) . (122)

Moreover, when we differentiate both sides of (111) with respect to the parameter
x, we also have the following another partial derivative equation:

∂

∂x
{G (t, x, k; λ)} = log (1+ λt)G (t, x, k; λ) , (123)

which, combining the right-hand side of (111), yields a derivative formula given by
the following theorem:

Theorem 38 (cf. [58]) Let n ∈ N. Then, we have

∂

∂x
{Qn (x; λ, k)} = n

n−1∑

j=0

(−1)j
(
n− 1

j

)
j !λj+1

j + 1
Qn−1−j (x; λ, k) . (124)

Notice that setting (41) into (124) gives us the following formula:

∂

∂x
{Qn (x; λ, k)} = n

n−1∑

j=0

(
n− 1

j

)

λj+1DjQn−1−j (x; λ, k) (125)

(cf. [58]).
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By combining (40) with (123), we also have

∂

∂x
{G (t, x, k; λ)} = λtG (t, k; λ) FD (x, λt) , (126)

which, combining the right-hand side of (40) and (111), yields a derivative formula
given by the following theorem:

Theorem 39 (cf. [58]) Let n ∈ N. Then, we have

∂

∂x
{Qn (x; λ, k)} = n

n−1∑

j=0

λj+1
(
n− 1

j

)

Y
(−k)
n−j (λ)Dj (x) .

14 Some Applications to the Probability Distribution
Functions

Generating functions and moment-generating functions play a vital role in theory of
probability and statistics. For this reason, special numbers and special polynomials
have very important application areas in theory of probability and statistics.

The above observations show that combinatorial-type numbers and polynomials
and their generating functions have a wide range of applications. Among others,
some relations of combinatorial-type numbers and polynomials with probability
distribution functions have been investigated by Kucukoglu et al. in their recent
papers [56] and [58] by using positive and negative higher-order extension of
combinatorial-type numbers and polynomials.

One of the mentioned applications is related to the probability functions for
negative hypergeometric-type probability distribution, and we shall give just a brief
sketch of its construction as the details are similar to those in [56]:

Multiplying the generating functions for the positive higher-order extension of
combinatorial-type numbers given by (98), a Chu–Vandermonde- type convolution
formula is obtained as in the following theorem:

Theorem 40 (cf. [56]) Let m ∈ N, k1, k2, . . . , km ∈ N and n ∈ N0. Then we have

(
k1 + k2 + · · · + km + n− 1

n

)

=
∑

v1+v2+···+vm−1=n

(
km + vm−1 − 1

vm−1

)(
km−1 + vm−2 − 1

vm−2

)

· · ·

×
(
k1 + v1 − 1

v1

)(
k2 + n− v1 − v2 − · · · − vm−1 − 1

n− v1 − v2 − · · · − vm−1

)

.
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By using the Chu–Vandermonde- type convolution formula given in Theorem 40,
if we set

f (v1, . . . , vn; k1+ . . .+km+n− 1, n, k1, . . . , kn)

=
(
km+vm−1−1

vm−1

)(
km−1+vm−2−1

vm−2

) · · · (k1+v1−1
v1

)(
k2+n−v1−v2−···−vm−1−1

n−v1−v2−···−vm−1

)

(
k1+k2+···+km+n−1

n

) , (127)

then due mainly to the fact that

∑

v1+v2+···+vm−1=n
f (v1, . . . , vn; k1 + · · · + km + n− 1, n, k1, . . . , kn) = 1,

the function f (v1, . . . , vn; k1 + · · · + km + n− 1, n, k1, . . . , kn) is the probabil-
ity functions for negative hypergeometric-type distribution with the parameters
k1, k2, . . . , km and n with the random variable (v1, v2, . . . , vn) (cf. [56]).

Remark 12 In the case when m = 2, (127) reduces to the well-known probability
function for negative hypergeometric distribution given by

f (v1, k1 + k2 + n− 1, n, k1) =
(
v1+k1−1

v1

)(
k2+n−v1−1

n−v1

)

(
k1+k2+n−1

n

) , (128)

where k1 + k2 + n − 1 is the population size, n is the number of success states in
the population, k1 is the number of failures, v1 is the number of observed successes
for 0 ≤ v1 ≤ n; 0 ≤ k1 ≤ n (cf. [56]). For further details about the negative
hypergeometric distribution, the reader may refer to [21, 59].

The aforementioned negative hypergeometric-type distribution (with the param-
eters k1, k2, . . . , km and n with the random variable (v1, v2, . . . , vn)) has the
following moment-generating function (cf. [56]):

M (t; k1, . . . , km, n) =
∑

v1+v2+···+vm−1=n
et(v1+v2+···+vm−1)

×f (v1, . . . , vn; k1 + · · · + km + n− 1, n, k1, . . . , kn) ,

whose j -th moment (or the j -th derivative of M (t; k1, . . . , km, n) computed at t =
0) is given as follows (cf. [56]):

dj

dtj
{M (t; k1, . . . , km, n)}

∣
∣
∣
∣
t=0

= μj ,

which, in the special case when m = 2, yields
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μ1 = nk1

k1 + k2
,

μ2 = nk1 (n (1+ k1)+ k2)

(k1 + k2) (1+ k1 + k2)
,

because of the reduction to the negative hypergeometric distribution given in (128),
see, for details, [21, 59].

Second application mentioned above is especially related to an approach to the
binomial (or Newton) distribution and the Poisson distribution by negative higher-
order extension of combinatorial-type numbers and polynomials. Next, we shall give
just a brief sketch of its construction as the details are similar to those in [58]:

With assumption of 0 < p ≤ 1 and n = 0, 1, 2, . . . , k, if we set

f (p; k, n) = (−1)k−n 2k

n!pn Y (−k)
n (p) , (129)

then the above function is corresponding to the discrete probability distribution
such that p is a probability of success, k is the number of trials, n is the number
of successes in k trials, and n = 0, 1, 2, . . . , k. Thus, the discrete probability
distribution function f (p; k, n) is binomially distributed with parameters (k, p),
which leads us to conclude that the probability distribution function f (p; k, n) is
a binomial-type probability distribution function with parameters (k, p); see, for
details, [58].

Some properties of the discrete probability distribution function f (p; k, n), with
a random variable with parameters k, n, and p, are given as follows:

• For all k, n, p with 0 ≤ n ≤ k and 0 < p ≤ 1, 0 ≤ f (p; k, n) ≤ 1. Thus,

f (p; k, n) ≥ 0.

• For the discrete probability distribution function f (p; k, n), the following
equality

∞∑

n=0

f (p; k, n) = 1

holds true.
• With the assumption that X denotes a binomial random variable with parameters

(k, p). The distribution function of the random variable X is computed by

P(X ≤ j) =
j∑

n=0

f (p; k, n) ; (j = 0, 1, . . . , k) .



852 Y. Simsek and I. Kucukoglu

• The expected value and variance for random variable with parameters k and p

are computed with the aid of

E
[
Xv
] =

k∑

n=0

nvf (p; k, n) ,

which, respectively, gives the expected value as

E [X] = kp

and the variance as

E
[
X2
]
− (E [X])2 = kp (1− p) .

• In the case when k → ∞, the discrete probability distribution function
f (p; k, n) goes to the Poisson distribution, according to which the Poisson–
Charlier polynomials are orthogonal polynomials; see, for details, [79, 97].

Remark 13 For further applications of generating functions for Apostol-type,
Peters-type, Boole-type combinatorial numbers and polynomials related to the
generating functions for the numbers Yn (λ) and the polynomials Yn (x; λ) and their
positive and negative higher-order extension, the interested reader may glance at the
recent papers [93, 100, 105, 105, 106], which will shed light on the readers for their
future studies.

15 Further Remarks and Observations

In this chapter, we deal with old and new results arising from the generating
functions for some certain classes of combinatorial numbers and polynomials
attached to Dirichlet characters that are one of the most important tools of the
analytic number theory. In addition, we also present a mathematical analysis on the
construction of these generating functions by p-adic integration, which is an elegant
method allowing us to obtain results to be potentially used in mathematical physics.
Besides, the applications of some results were thoroughly examined within the
probability theory. As a result of these examinations, it has been seen that the afore-
mentioned applications are based upon the probability distribution functions such
as negative hypergeometric-type probability distribution, binomial-type probability,
and Poisson distribution. Hence, the results given about the classes of combinatorial
numbers and polynomials are the outputs of an interdisciplinary study conducted
with the blending of many fields such as analytic number theory, mathematical
physics, and probability theory. There is no doubt that the results covered here
will lead future studies, potential applications, and new interdisciplinary usage



Some Certain Classes of Combinatorial Numbers and Polynomials. . . 853

areas. Overall, this chapter and its content will serve as a resource for scientists
to study interdisciplinary and have brought them together in order to develop
new mathematical models, algorithms, and other mathematical techniques and
methods. In future studies, the further applications of the combinatorial numbers and
polynomials in combinatoric analysis and discrete mathematics can be explored. As
a result of this exploration very useful results can be presented.
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12. G. B. Djordjevic, G. V. Milovanović, Special Classes of Polynomials (Faculty of Technology,
University of Nis, Leskovac, Serbia, 2014).

13. B. S. El-Desouky, A. Mustafa, New results and matrix representation for Daehee and
Bernoulli numbers and polynomials, arXiv:1412.8259v1.

14. R. Golombek, Aufgabe 1088, El. Math. 49 (1994), 126–127.
15. H. W. Gould, Inverse series relations and other expansions involving Humbert polynomials,

Duke Math. J. 32(4) (1965), 697–712.
16. H. W. Gould, Combinatorial Identities: Table I: Intermediate Techniques for Summing Finite

Series; http://math.wvu.edu/~hgould/Vol.4.PDF.
17. H. W. Gould, Fundamentals of Series: Table III: Basic Algebraic Techniques; http://math.

wvu.edu/~hgould/Vol.3.PDF.
18. H. Haruki, Th. M. Rassias, New integral representations for Bernoulli and Euler polynomials,

J. Math. Anal. Appl., 175 (1993), 81–90.
19. P. Humbert, Some extensions of Pincherle’s polynomials, Proc. Edinburgh Math. Soc., 39(1)

(1921), 21–24.
20. L. C. Jang, H. K. Pak, Non-archimedean integration associated with q-Bernoulli numbers,

Proc. Jangjeon Math. Soc., 5 (2002), 125–129.
21. N. L Johnson, A. W. Kemp, S. Kotz, Univariate Discrete Distributions (3rd ed.) (Wiley Series

in Probability and Statistics, New Jersey, USA, 2005).

https://doi.org/10.1063/1.3497855
http://math.wvu.edu/~hgould/Vol.4.PDF
http://math.wvu.edu/~hgould/Vol.3.PDF
http://math.wvu.edu/~hgould/Vol.3.PDF


854 Y. Simsek and I. Kucukoglu

22. C. Jordan, Calculus of Finite Differences (2nd ed.) (Chelsea Publishing Company, New York,
1950).

23. S. Khan, T. Nahid, M. Riyasat, Partial derivative formulas and identities involving 2-variable
Simsek polynomials, Bol. Soc. Mat. Mex., 26 (2020), 1–13.

24. D. S. Kim, T. Kim, Daehee numbers and polynomials, Appl. Math. Sci. (Ruse), 7(120) (2013),
5969–5976.

25. D. S. Kim, T. Kim, J. Seo, A note on Changhee numbers and polynomials, Adv. Stud. Theor.
Phys. 7 (2013), 993–1003.

26. D. S. Kim, T. Kim, A note on Boole polynomials, Integral Transforms Spec. Funct., 25(8)
(2014), 627–633.

27. D. S. Kim, T. Kim, Some identities of degenerate special polynomials, Open Math 13 (2015),
380–389.

28. D. S. Kim, T. Kim, J.-W. Park, J. J. Seo, Differential equations associated with Peters
polynomials, Glob. J. Pure Appl. Math., 12(4) (2016), 2915–2922.

29. D. S. Kim, T. Kim, T. Komatsu, H. I. Kwon, S.-H. Lee, Barnes-type Peters polynomials
associated with poly-Cauchy polynomials of the second kind, J. Comput. Anal. Appl., 20(1)
(2016), 151–174.

30. D. S. Kim, T. Kim, Differential equations associated with degenerate Changhee numbers of
the second kind, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113(3) (2019),
1785–1793.

31. D. S. Kim, T. Kim, H. I. Kwon, T. Mansour, J. Seo, Barnes-type Peters polynomial with
umbral calculus view point, J. Inequal. Appl., 2014(324) (2014), 1–16.

32. M. S. Kim, J. W. Son, Analytic properties of the q-Volkenborn integral on the ring of p-adic
integers, Bull. Korean Math. Soc., 44 (2007), 1–12.

33. M. S. Kim, On Euler numbers, polynomials and related p-adic integrals, J. Number Theory,
129 (2009), 2166–2179.

34. T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number
Theory, 76 (1999), 320–329.

35. T. Kim, q-Volkenborn integration, Russ. J. Math. Phys., 19 (2002), 288–299.
36. T. Kim, An invariant p-adic integral associated with Daehee numbers, Integral Transforms

Spec. Funct., 13 (2002), 65–69.
37. T. Kim, Non-archimedean q-integrals associated with multiple Changhee q-Bernoulli poly-

nomials, Russ. J. Math. Phys. 10 (2003), 91–98.
38. T. Kim, p-adic q-integrals associated with the Changhee-Barnes’ q-Bernoulli polynomials,

Integral Transform Spec. Funct. 15 (2004), 415–420.
39. T. Kim, q-Euler numbers and polynomials associated with p-adic q-integral and basic q-zeta

function, Trends Math. (Information Center for Mathematical Sciences), 9 (2006), 7–12.
40. T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral

on Zp at q = 1, J. Math. Anal. Appl., 331 (2007), 779–792.
41. T. Kim, An invariant p-adic q-integral on Zp , Appl. Math. Letters, 21 (2008), 105–108.
42. T. Kim, p-adic l-functions and sums of powers, arXiv:math/0605703v1.
43. T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl., 326 (2007),

1458–1465.
44. T. Kim, S. H. Rim, Some q-Bernoulli numbers of higher order associated with the p-adic

q-integrals, Indian J. Pure Appl. Math., 32 (2001), 1565–1570.
45. T. Kim, S. H. Rim, Y. Simsek, D. Kim, On the analogs of Bernoulli and Euler numbers,

related identities and zeta and l-functions, J. Korean Math. Soc., 45 (2008), 435–453.
46. T. Kim, D. S. Kim, T. Mansour, S. H. Rim, M. Schork, Umbral calculus and Sheffer sequences

of polynomials, J. Math. Phys., 54 (2013), 083504; https://doi.org/10.1063/1.4817853.
47. T. Kim, T. Mansour, S. H. Rim, J. J. Soo, A note on q-Changhee polynomials and numbers,

Adv. Studies Theor. Phys., 8 (2014), 35–41.
48. T. Kim, D. S. Kim, D. V. Dolgy, J.-J. Seo, Bernoulli polynomials of the second kind and their

identities arising from umbral calculus, J. Nonlinear Sci. Appl., 9 (2016), 860–869.

https://doi.org/10.1063/1.4817853


Some Certain Classes of Combinatorial Numbers and Polynomials. . . 855

49. T. Kim, D. V. Dolgy, D. S. Kim, J. J. Seo, Differential equations for Changhee polynomials
and their applications, J. Nonlinear Sci. Appl., 9 (2016), 2857–2864.

50. T. Koshy, Fibonacci and Lucas numbers with applications (John Wiley & Sons, Inc., New
York, 2001).

51. T. Komatsu, Convolution identities for Cauchy numbers, Acta Math. Hungar., 144 (2014),
76–91.

52. I. Kucukoglu, Y. Simsek, Combinatorial identities associated with new families of the
numbers and polynomials and their approximation value, arXiv:1711.00850v1.

53. I. Kucukoglu, A note on combinatorial numbers and polynomials, Proceedings Book of the
Mediterranean International Conference of Pure & Applied Mathematics and Related Areas
2018 (MICOPAM 2018), 103–106.

54. I. Kucukoglu, Derivative formulas related to unification of generating functions for Sheffer
type sequences, AIP Conf. Proc., 2116 (2019), 100016; https://doi.org/10.1063/1.5114092

55. I. Kucukoglu, Y. Simsek, Observations on identities and relations for interpolation functions
and special numbers, Adv. Stud. Contemp. Math., 28 (2018), 41–56.

56. I. Kucukoglu, B. Simsek, Y. Simsek, An approach to negative hypergeometric distribution by
generating function for special numbers and polynomials, Turk. J. Math., 43 (2019), 2337–
2353.

57. I. Kucukoglu, Y. Simsek, On a family of special numbers and polynomials associated with
Apsotol-type numbers and polynomials and combinatorial numbers, Appl. Anal. Discrete
Math., 13(2) (2019), 478–494.

58. I. Kucukoglu, B. Simsek, Y. Simsek, Generating Functions for New Families of Combinato-
rial Numbers and Polynomials: Approach to Poisson–Charlier Polynomials and Probability
Distribution Function, Axioms, 8(4) (2019), 112; https://doi.org/10.3390/axioms8040112.

59. L. Lawrence, Univariate Distribution Relationships-Negative hypergeometric distribution;
http://www.math.wm.edu/~leemis/chart/UDR/UDR.html.

60. G. G. Lorentz, Bernstein Polynomials (Chelsea Pub. Comp., New York, NY, USA, 1986).
61. D. Q. Lu, H. M. Srivastava, Some series identities involving the generalized Apostol type and

related polynomials, Comput. Math. Appl., 62 (2011), 3591–3602.
62. Q.-M. Luo, Apostol-Euler polynomials of higher order and Gaussian hypergeometric func-

tions, Taiwanese J. Math., 10 (2006), 917–925.
63. Q.-M. Luo, Fourier expansions and integral representations for the Genocchi polynomials, J.

Integer Seq., 12 (2009), Article 09.1.4.
64. Q.-M. Luo, The multiplication formulas for the Apostol–Bernoulli and Apostol–Euler poly-

nomials of higher order, Integral Transforms Spec. Funct., 20 (2009), 377–391.
65. Q.-M. Luo, Extension for the Genocchi polynomials and its Fourier expansions and integral

representations, Osaka J. Math., 48(2) (2011), 291–309.
66. Q.-M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-

Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290–302.
67. Q.-M. Luo, H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-

Euler polynomials, Comput. Math. Appl., 51 (2006), 631–642.
68. Q. M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials and

the Stirling numbers of the second kind, Appl. Math. Comput., 217 (2011), 5702–5728.
69. I. Mezo, Several Generating Functions for Second-Order Recurrence Sequences, J. Integer

Sequences, 12 (2009), Article 09.3.7.
70. G. V. Milovanovic, G. P. Djordevic, On some properties of Humbert’s polynomials, Fibonacci

Quart., 25 (1987), 356–360.
71. M. A. Özarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math.

Appl., 62 (2011), 2452–2462.
72. G. Ozdemir, Y. Simsek, G. V. Milovanovic, Generating functions for special polynomials

and numbers including Apostol-type and Humbert-type polynomials, Mediterr. J. Math., 14
(2017), 117; https://doi.org/10.1007/s00009-017-0918-6.

73. H. Ozden, Y. Simsek, I. N. Cangul, V. Kurt, On the higher-order w-q-Genocchi numbers,
Adv. Stud. Contemp. Math., 19(1) (2009), 39–57.

https://doi.org/10.1063/1.5114092
https://doi.org/10.3390/axioms8040112
http://www.math.wm.edu/~leemis/chart/UDR/UDR.html
https://doi.org/10.1007/s00009-017-0918-6


856 Y. Simsek and I. Kucukoglu

74. H. Ozden, Y. Simsek, H. M. Srivastava, A unified presentation of the generating functions of
the generalized Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 60 (2010),
2779–2787.

75. H. Ozden, Y. Simsek, A new extension of q-Euler numbers and polynomials related to their
interpolation functions, Appl. Math. Letters, 21 (2008), 934–939.

76. H. Ozden, Y. Simsek, Modification and unification of the Apostol-type numbers and polyno-
mials and their applications, Appl. Math. Compute. 235 (2014), 338–351.

77. F. Qi, Explicit formulas for computing Bernoulli numbers of the second kind and Stirling
numbers of the first kind, Filomat, 28(2) (2014), 319–327.

78. Th. M. Rassias, H. M. Srivastava, Some classes of infinite series associated with the Riemann
zeta and polygamma functions and generalized harmonic numbers, Appl. Math. Comput. 131
(2–3) (2002), 593–605.

79. S. Roman, The Umbral Calculus (Dover Publ. Inc., New York, 2005).
80. S. M. Ross, A First Course in Probability (8th ed.) (Pearson Education, Inc., London, UK,

2010).
81. W. H. Schikhof, Ultrametric Calculus: an introduction to p-adic analysis (Cambridge

University Press, Cambridge Studies in Advanced Mathematics 4, Cambridge, 1984).
82. Y. Simsek, q-analogue of the twisted l-series and q-twisted Euler numbers, J. Number

Theory, 100 (2005), 267–278.
83. Y. Simsek, q-Hardy-Berndt type sums associated with q-Genocchi type zeta and q-l-

functions, Nonlinear Analysis, 71 (2009), e377–e395.
84. Y. Simsek, p-adic (h, q)-L-functions, Comput. Math. Appl. 59(6) (2010), 2097–2110.
85. Y. Simsek, Generating functions for generalized Stirling type numbers, array type polynomi-

als, Eulerian type polynomials and their applications, Fixed Point Theory Appl., 87 (2013),
343–355.

86. Y. Simsek, Functional equations from generating functions: A novel approach to deriving
identities for the Bernstein basis functions, Fixed Point Theory Appl., 2013 (2013), 1–13.

87. Y. Simsek, Generating functions for the Bernstein type polynomials: A new approach to
deriving identities and applications for the polynomials, Hacet. J. Math. Stat., 43(1) (2014),
1–14

88. Y. Simsek, Analysis of the Bernstein basis functions: an approach to combinatorial sums
involving binomial coefficients and Catalan numbers, Math. Methods Appl. Sci., 38(14)
(2015), 3007–3021.

89. Y. Simsek, Analysis of the p-adic q-Volkenborn integrals: An approach to generalized
Apostol-type special numbers and polynomials and their applications, Cogent Math. Stat.,
3 (2016), 1269393; https://doi.org/10.1080/23311835.2016.1269393.

90. Y. Simsek, Apostol type Daehee numbers and polynomials, Adv. Studies Contemp. Math.,
26(3) (2016), 1–12.

91. Y. Simsek, Identities on the Changhee numbers and Apostol-Daehee polynomials, Adv. Stud.
Contemp. Math., 27(2) (2017), 199–212.

92. Y. Simsek, Computation methods for combinatorial sums and Euler-type numbers related to
new families of numbers, Math. Methods Appl. Sci., 40(7) (2017), 2347–2361.

93. Y. Simsek, Construction of some new families of Apostol-type numbers and polynomials via
Dirichlet character and p-adic q-integrals, Turk. J. Math., 42 (2018), 557–577.

94. Y. Simsek, New families of special numbers for computing negative order Euler numbers and
related numbers and polynomials, Appl. Anal. Discr. Math., 12 (2018), 1–35.

95. Y. Simsek, Construction method for generating functions of special numbers and polynomials
arising from analysis of new operators, Math. Methods Appl. Sci., 41 (2018), 6934–6954.

96. Y. Simsek, Generating functions for finite sums involving higher powers of binomial
coefficients: Analysis of hypergeometric functions including new families of polynomials and
numbers, J. Math. Anal. Appl., 477 (2019), 1328–1352.

97. Y. Simsek, Formulas for Poisson–Charlier, Hermite, Milne-Thomson and other type poly-
nomials by their generating functions and p-adic integral approach, Rev. R. Acad. Cienc.
Exactas Fís. Nat. Ser. A Mat. RACSAM, 113 (2019), 931–948.

https://doi.org/10.1080/23311835.2016.1269393


Some Certain Classes of Combinatorial Numbers and Polynomials. . . 857

98. Y. Simsek, Explicit formulas for p-adic integrals: Approach to p-adic distributions and some
families of special numbers and polynomials, Montes Taurus J. Pure Appl. Math., 1(1) (2019),
1–76.

99. Y. Simsek, Peters type polynomials and numbers and their generating functions: Approach
with p-adic integral method, Math. Meth. Appl. Sci., 42 (2019), 7030–7046.

100. Y. Simsek, Remarks and some formulas associated with combinatorial numbers, AIP Conf.
Proc., 2116 (2019), 100002; https://doi.org/10.1063/1.5114078.

101. Y. Simsek, Analysis of Apostol-type numbers and polynomials with their approximations and
asymptotic behavior, In: Rassias T.M. (eds) Approximation Theory and Analytic Inequalities.
Springer, Cham, pp. 435–486, https://doi.org/10.1007/978-3-030-60622-0_23.

102. Y. Simsek, Peters type polynomials and numbers and their generating functions: Approach
with p-adic integral method, Math Meth Appl Sci., 42 (2019), 7030–7046.

103. Y. Simsek, I. N. Cangul, V. Kurt, D. Kim, q-Genocchi numbers and polynomials associated
with q-Genocchi-type l-functions, Adv. Difference Equ., 2008 (2008), Article ID 815750;
https://doi.org/10.1155/2008/815750.

104. Y. Simsek, M. Acikgoz, A new generating function of (q-) Bernstein-type polynomials and
their interpolation function, Abstr. Appl. Anal., 2010 (2010), 769095; https://doi.org/10.1155/
2010/769095.

105. Y. Simsek, J. S. So, Identities, inequalities for Boole-type polynomials: approach to generat-
ing functions and infinite series, J. Inequal. Appl., 2019 (2019), 62; https://doi.org/10.1186/
s13660-019-2006-x.

106. Y. Simsek, J. S. So, On generating functions for Boole type polynomials and numbers of
higher order and their applications, Symmetry, 11(3) (2019), 352; https://doi.org/10.3390/
sym11030352.

107. H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational
arguments, Math. Proc. Cambridge Philos. Soc., 129 (2000), 77–84.

108. H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler
and Genocchi polynomials, Appl. Math. Inf. Sci., 5 (2011), 390–444.

109. H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions (Ellis Horwood
Limited Publisher, Chichester, 1984).

110. H. M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions (Kluwer
Academic Publishers, Dordrecht, Boston, London, 2001).

111. H. M. Srivastava, T. Kim, Y. Simsek, q-Bernoulli numbers and polynomials associated with
multiple q-zeta functions and basic L-series, Russ. J. Math. Phys., 12 (2005), 241–268.

112. H. M. Srivastava, J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals
(Elsevier Science Publishers, Amsterdam, London and New York, 2012).

113. H. M Srivastava, I. Kucukoglu, Y. Simsek, Partial differential equations for a new family of
numbers and polynomials unifying the Apostol-type numbers and the Apostol-type polynomi-
als, J. Number Theory, 181 (2017), 117–146.

114. Wolfram Research Inc., Mathematica Online (Wolfram Cloud), Champaign, IL, 2020; https://
www.wolframcloud.com

https://doi.org/10.1063/1.5114078
https://doi.org/10.1007/978-3-030-60622-0_23
https://doi.org/10.1155/2008/815750
https://doi.org/10.1155/2010/769095
https://doi.org/10.1155/2010/769095
https://doi.org/10.1186/s13660-019-2006-x
https://doi.org/10.1186/s13660-019-2006-x
https://doi.org/10.3390/sym11030352
https://doi.org/10.3390/sym11030352
https://www.wolframcloud.com
https://www.wolframcloud.com


Pathwise Stability and Positivity of
Semi-Discrete Approximations of the
Solution of Nonlinear Stochastic
Differential Equations

Ioannis S. Stamatiou

Abstract We use the main idea of the semi-discrete method, originally proposed
in (N. Halidias, International Journal of Computer Mathematics, 89(6) (2012),
780–794), to reproduce qualitative properties of a class of nonlinear stochastic
differential equations with non-negative, non-globally Lipschitz coefficients and
a unique equilibrium solution. The proposed fixed-time step method preserves
the positivity of the solution and reproduces the almost sure asymptotic stability
behavior of the equilibrium with no time-step restrictions. In particular, we are
interested in the following class of scalar stochastic differential equations,

xt = x0 +
∫ t

0
xsa(xs)ds +

∫ t

0
xsb(xs)dWs,

where a(·), b(·) are non-negative functions with b(u) �= 0 for u �= 0, x0 ≥ 0 and
{Wt }t≥0 is a one-dimensional Wiener process adapted to the filtration {Ft }t≥0.

1 Introduction

We are interested in the following class of scalar stochastic differential equations
(SDEs),

xt = x0 +
∫ t

0
xsa(xs)ds +

∫ t

0
xsb(xs)dWs, (1)

where a(·), b(·) are non-negative functions with b(u) �= 0 for u �= 0, x0 ≥ 0 and
{Wt }t≥0 is a one-dimensional Wiener process adapted to the filtration {Ft }t≥0. We
want to reproduce dynamical properties of (1). We use a fixed-time step explicit

I. S. Stamatiou (�)
Department of Biomedical Sciences, University of West Attica, Athens, Greece
e-mail: istamatiou@uniwa.gr

© Springer Nature Switzerland AG 2021
I. N. Parasidis et al. (eds.), Mathematical Analysis in Interdisciplinary Research,
Springer Optimization and Its Applications 179,
https://doi.org/10.1007/978-3-030-84721-0_34

859

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84721-0_34&domain=pdf
mailto:istamatiou@uniwa.gr
https://doi.org/10.1007/978-3-030-84721-0_34


860 I. S. Stamatiou

numerical method, in particular the exponential truncated semi-discrete method
(expTSD), see [15], which reads

yΔn+1 = yΔn exp

{(

a(πΔ(y
Δ
n ))−

b2(πΔ(y
Δ
n ))

2

)

Δ+ b(πΔ(y
Δ
n ))ΔWn

}

(2)

with y0 = x0 a.s., where Δ = tn+1 − tn is the time step-size and ΔWn := Wtn+1 −
Wtn are the increments of the Wiener process. The function πΔ appearing in the
argument of a and b stands for

πΔ(x) :=
(
|x| ∧ μ−1(h(Δ))

) x

|x| , (3)

where the strictly increasing function μ and the strictly decreasing function h are
defined later on, in Sect. 2. For the derivation of (2) see Sect. 2.

The scopes of this article are two. Our main goal is to reproduce the almost sure
(a.s.) stability of the unique equilibrium solution of (1), i.e., for the trivial solution
xt ≡ 0. The positivity of the drift pushes the solution to explosive situations and the
diffusion stabilizes this effect in a way we want to mimic.

On the other hand, SDE (1) has unique positive solutions when x0 > 0. The
truncated semi-discrete scheme (2) preserves positivity; the assertion is obvious for
the (expTSD) scheme by construction.

Explicit fixed-step Euler methods fail to strongly converge to solutions of (1)
when the drift or diffusion coefficient grows superlinearly [5, Theorem 1]. A
proposed fix to this problem is the so-called Tamed Euler methods, c.f. [6, (4)],
[16, (3.1)], [11] and the references therein. However, they usually do not preserve
positivity. On the other hand, adaptive time-stepping strategies applied to explicit
Euler method are an alternative way to address the problem and there is an ongoing
research on that approach, see [2, 8], and [9]. The fixed-step method we propose
reproduces the almost sure asymptotic stability behavior of the equilibrium with no
time-step restrictions, compare Theorem 2 with [9, Theorem 4.1], respectively.

Our proposed fixed-step method is explicit, strongly convergent, non-explosive,
and positive. The semi-discrete method (SD) was originally proposed in [3] and
recently in [12] and [13]; see also [14] for a review of the method. The key idea
behind the SD method is freezing on each integration interval of size Δ, parts of
the drift and diffusion coefficients of the solution at the endpoints of the subinterval,
obtaining explicitly solved SDEs. Here, we freeze the nonlinear parts in (1), that is
a and b, obtaining a linear SDE with explicit solution of exponential type, see (2).

Let us now assume some minimal additional conditions for the functions a(·) and
b(·). In particular, we assume locally Lipschitz continuity of a(·) and b(·), which in
turn implies the existence of a unique, continuous Ft -measurable process x (cf. [10,
Chapter 2]) satisfying (1) up to the explosion time τx0

e , i.e., on the interval [0, τ x0
e ),

where

τx0
e := inf{t > 0 : |xx0

t | /∈ [0,∞)}.
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Denoting θx0
e the first hitting time of zero, i.e.,

θx0
e := inf{t > 0 : |xx0

t | = 0},

it was shown in [1, Section 3] that in the case

sup
u�=0

2a(u)

b2(u)
= β < 1, (4)

then τ
x0
e = θ

x0
e = ∞, i.e., there exist unique positive solutions. The equilibrium

zero solution of (1) is a.s. stable if (see again [1, Section 3])

lim
u→0

2a(u)

b2(u)
< 1, (5)

i.e., for all x0 > 0

P({ω : lim
t→∞ xt (ω) = 0}) > 0.

Condition (5) shows how condition (4) is close to being sharp. Furthermore, the
presence of a sufficiently intense stochastic perturbation (because of the positivity
of the function a(·)) is necessary for the existence of a unique global solution and
stability of the zero equilibrium. The proposed fixed-time step method (expTSD)
reproduces the almost sure asymptotic stability behavior of the equilibrium with no
time-step restrictions, as stated in Theorem 2. Moreover, as already discussed, it
preserves the positivity of the solution.

The outline of the article is the following. In Sect. 2 we present some preliminar-
ies and our main results, that is Theorems 1 and 2, the proofs of which are deferred
to Sects. 3 and 4, respectively. Theorem 1 concerns the convergence properties of
the proposed scheme and Theorem 2 deals with its stability properties. Section 5
provides a numerical example.

2 Setting and Main Results

Let T > 0 and let (Ω,F , {Ft }0≤t≤T ,P) be a complete probability space. Let also
Wt,ω : [0, T ] × Ω → R be a one-dimensional Wiener process adapted to the
filtration {Ft }0≤t≤T . The notation and the setting is standard and we refer the reader
in [14] and the references therein.

We recall the semi-discrete scheme. The auxiliary functions f (x, y), g(x, y) :
R
+×R

+ → R
+ are such that f (x, x) = xa(x) and g(x, x) = xb(x). In particular,

we take
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f (x, y) = a(x)y and g(x, y) = b(x)y. (6)

We discretize [0, T ] in N equidistant intervals [tj , tj+1] of size Δ and in each
subinterval consider the following SDEs for n = 0, 1, . . . , N − 1

yt = ytn +
∫ t

tn

f (ytn , ys)ds +
∫ t

tn

g(ytn , ys)dWs

= ytn + a(ytn)

∫ t

tn

ysds + b(ytn)

∫ t

tn

ysdWs

= ytn exp

{(

a(ytn)−
b2(ytn)

2

)

(t − tn)+ b(ytn)(Wt −Wtn)

}

, (7)

where t ∈ (tn, tn+1] with y0 = x0 a.s. The construction of the truncated
semi-discrete scheme, see [15], uses the truncated functions fΔ and gΔ where
fΔ(x, y) := f (πΔ(x), y), gΔ(x, y) := g(πΔ(x), y), for x, y ∈ R

+ where we set
x/|x| = 0 when x = 0 and πΔ is defined in (3). The strictly increasing function
μ : R+ → R

+ is such that

sup
|x|≤u

(|f (x, y)| ∨ |g(x, y)|) ≤ μ(u)(1+ |y|), u ≥ 1, (8)

and the strictly decreasing function h : (0, 1] → [μ(1),∞) satisfies

lim
Δ→0

h(Δ) = ∞ and Δ1/4h(Δ) ≤ ĥ for every Δ ∈ (0, 1], (9)

for a constant ĥ ≥ 1 ∨ μ(1). We end up with the process defining the (expTSD)
scheme (2), that is

yΔt = yΔtn exp

{(

a(πΔ(y
Δ
tn
))− b2(πΔ(y

Δ
tn
))

2

)

(t − tn)+ b(πΔ(y
Δ
tn
))(Wt −Wtn)

}

,

(10)
where t ∈ (tn, tn+1]. We make the following hypotheses for the coefficients in (1).

Assumption 2.1 The locally Lipschitz continuous functions a(·) and b(·) in (1) are
non-negative with b(u) �= 0 for u �= 0. Moreover there exists β < 1 such that (4)
holds, i.e., supu�=0

2a(u)
b2(u)

= β < 1.

At this point we may tell more about the function μ satisfying (8). Note that

sup
|x|≤u

|f (x, y)| = sup
|x|≤u

a(x)y ≤ β

2
sup
|x|≤u

b2(x)y

and
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sup
|x|≤u

|g(x, y)| = sup
|x|≤u

b(x)y ≤ (1+ sup
|x|≤u

b2(x))y,

which suggests that μ should be such that 1 + sup|x|≤u b2(x) ≤ μ(u). Moreover,
πΔ(x) reads

πΔ(x) = |x| ∧ μ−1(h(Δ)). (11)

We present the compact form of the approximation process (10)

yΔt = y0 +
∫ t

0
a(πΔ(y

Δ
ŝ
))yΔs ds +

∫ t

0
b(πΔ(y

Δ
ŝ
))yΔs dWs, (12)

where ŝ = tn when s ∈ [tn, tn+1) which is used in the statement of our first
convergence result.

Theorem 1 (Positivity and Convergence) Let a(·) and b(·) satisfy Assumption 2.1
and define for γ > 0

μ(u) = Cu1+γ , u ≥ 1 and h(Δ) = C +√lnΔ−ε, Δ ∈ (0, 1], (13)

with ε ∈ (0, 1/4), where Δ ≤ 1 and ĥ are such that (9) holds. The truncated semi-
discrete numerical scheme (12) converges to the true solution of (1) in the L1-sense
with order arbitrarily close to 1−β

4(1+γ ) , i.e.,

lim
Δ→0

E sup
0≤t≤T

|yΔt − xt | ≤ CΔ
1−β

4(1+γ ) (1−ε). (14)

We proceed with a Lemma related to a notion of stability of a stochastic
difference equation.

Lemma 1 (c.f. [4], Lemma 5.1) Given a sequence (Ψn)n∈N of non-negative,
independent, and identically distributed random variables define a sequence of
random variables (Mn)n∈N by

Mn =
(
n−1∏

i=0

Ψi

)

Z0,

withM0 = θ > 0. Assume that ln(Ψi) are square-integrable for all i. Then

lim
n→∞Mn = 0, a.s. iff E ln(Ψi) < 0 for all i.

The following result provides sufficient conditions for solutions of the truncated
semi-discrete scheme (2) to demonstrate a.s. stability.
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Theorem 2 (a.s. stability) Let a(·) and b(·) satisfy Assumption 2.1. Let μ and h be
as in (13) with ε ∈ (0, 1/4). Let also {yΔn }n∈N be a solution of (2) with yΔ0 = x0 > 0.
Then for all Δ < 1,

lim
n→∞ yΔn = 0, a.s. (15)

Note that there is no time-step restriction in the result of Theorem 2, that is (15)
holds for all Δ < 1.

3 Proof of Convergence

In this section we provide the proof of Theorem 1. Note that since a and b are locally
Lipschitz the same applies to the auxiliary functions f and g, see (6). Denote the
truncated version of the auxiliary functions with a subscript Δ, that is fΔ(x, y) =
a(πΔ(x))y and gΔ(x, y) = b(πΔ(x))y. Note that

|fΔ(x1, y1)− fΔ(x2, y2)| ≤ h(Δ)(|x1 − x2| + |y1 − y2|) (16)

and

|fΔ(x, y)| ∨ |gΔ(x, y)| ≤ h(Δ)(1+ |y|). (17)

In the next subsection we prove the L1-convergence result for the expTSD scheme
(yΔn ). To avoid heavy notation, we occasionally write y instead of yΔ.

3.1 Convergence of (yΔ
n )

We essentially follow the proof in [15] pointing out the main differences. Defining
the stopping time

ρΔ,R = inf{t ∈ [0, T ] : |yΔt | > R or |yΔ
t̂
| > R}, (18)

we provide the error bound for the truncated semi-discrete scheme, see Lemma 2 in
[15].

Lemma 2 Let R > 1, and ρΔ,R as in (18). Then the following estimate holds

E|ys∧ρΔ,R − yŝ∧ρΔ,R |p̂ ≤ C(Δ1/2h(Δ)R)p̂,

for any p̂ > 0, where C does not depend on Δ.
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We next show moment bounds for the approximation process (yΔt ).

Lemma 3 For any R ≤ h(Δ) and any p ≤ 1− β

sup
0≤Δ≤1

sup
0≤t≤T

E|yΔt |p ≤ C, (19)

for all T > 0.

Proof We fix a Δ ∈ (0, 1] and a T > 0. We take advantage of the analytic
expression of the approximation process. We rewrite (2) as

|yΔn+1|p = |yΔn |p exp

{
pb2(πΔ(y

Δ
n ))

2

(
2a(πΔ(yΔn ))

b2(πΔ(yΔn ))
− 1+ p

)

Δ

}

× exp

{

−p2b2(πΔ(y
Δ
n ))

2
Δ+ pb(πΔ(y

Δ
n ))ΔWn

}

= |yΔn |pE(yΔn )ξn+1, (20)

where we used the notation yΔn for yΔtn and the exponential function E(·) reads

E(u) = exp

{
pb2(u)

2

(
2a(u)

b2(u)
− 1+ p

)

Δ

}

and for t ∈ (tn, tn+1] we consider the SDE

dξt = pb(πΔ(y
Δ
n ))dWt ,

with ξn = 1. Therefore Eξn+1 = 1, (cf. [10], [7]) and for 0 < p ≤ 1 − β, with the
β appearing in Assumption 2.1 we get that E(u) ≤ 1 for any Δ > 0 implying the
boundness of the moments of (yn)n∈N since

E|yΔn+1|p ≤ E(|yΔn |pξn+1) ≤ E|yΔn |p ≤ . . . ≤ E|yΔ0 |p ≤ C.

�
We proceed with the proof of Theorem 1.

Proof We denote the difference EΔt := yΔt − xt and define the stopping times

τR = inf{t ∈ [0, T ] : |xt | > R}, θΔ,R := τR ∧ ρΔ,R, (21)

for some R > 1 big enough. Moreover the events ΩR are

ΩR := {ω ∈ Ω : sup
0≤t≤T

|xt | ≤ R, sup
0≤t≤T

|yΔt | ≤ R}.
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We have that

E sup
0≤t≤T

|Et | = E sup
0≤t≤T

|Et |IΩR
+ E sup

0≤t≤T
|Et |Δm/2Δ−m/2

I(ΩR)
c

≤ E sup
0≤t≤T

|Et∧θΔ,R | +
Δm

2
E sup

0≤t≤T
|Et | + Δ−m

2
EI(ΩR)

c

≤ E sup
0≤t≤T

|Et∧θΔ,R | +
Δ−m

2
P(ΩR)

c, (22)

where we applied Young’s inequality with m > 0. It holds that

P(ΩR)
c ≤ P( sup

0≤t≤T
|yt | > R)+ P( sup

0≤t≤T
|xt | > R)

≤ (E sup
0≤t≤T

|yt |k)R−k + (E sup
0≤t≤T

|xt |k)R−k,

for any k > 0 by the subadditivity of the measure P and the Markov inequality.
Setting k = (1− β) we get

P(ΩR)
c ≤ 2AR−(1−β). (23)

Now, we turn to the estimation of the difference |Et∧θΔ,R |. Using the triangle
inequality we get

|Et∧θΔ,R | =
∣
∣
∣
∣

∫ t∧θΔ,R

0
(fΔ(yŝ , ys)− f (xs, xs)) ds

+
∫ t∧θΔ,R

0
(gΔ(yŝ, ys)− g(xs, xs)) dWs

∣
∣
∣
∣

≤
∫ t∧θΔ,R

0
|fΔ(yŝ, ys)− fΔ(xs, ys)+ fΔ(xs, ys)− f (xs, xs)| ds + |Mt |,

where Mt := ∫ t∧θΔ,R
0 (gΔ(yŝ, ys)− g(xs, xs)) dWs. By (16) and the fact that

fΔ(xs, xs) = f (xs, xs) when R ≤ μ−1(h(Δ)) we arrive at

|Et∧θΔ,R | ≤ h(Δ)

∫ t∧θΔ,R

0
(|yŝ − ys | + 2|Es |) ds + |Mt |. (24)

It holds that

E sup
0≤t≤T

|Mt | ≤
√

32 · E
√
∫ T∧θΔ,R

0
(gΔ(yŝ , ys)− g(xs, xs))

2 ds
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≤ E

√

64h2(Δ)

∫ T∧θΔ,R

0

(|yŝ − ys |2 + 4|Es |2
)
ds

≤ 8h(Δ)E

√
∫ T∧θΔ,R

0
|yŝ − ys |2ds

+E
√

sup
0≤s≤T

|Es∧θΔ,R | · 256h2(Δ)

∫ T∧θΔ,R

0
|Es |ds

≤ 8h(Δ)E

√
∫ T∧θΔ,R

0
|yŝ − ys |2ds + 1

2
E sup

0≤s≤T
|Es∧θΔ,R |

+256h2(Δ)

∫ T∧θΔ,R

0
E|Es |ds,

by the Young inequality. Taking the supremum and then expectations in (24) and
rearranging the terms we reach

E sup
0≤t≤T

|Et∧θΔ,R | ≤ 2h(Δ)E
∫ T∧θΔ,R

0
E|yŝ − ys |ds + 4h(Δ)

∫ T∧θΔ,R

0
E sup

0≤l≤s
|El |ds

+8h2(Δ)Δλ + 1

2
Δ−λ

∫ T∧θΔ,R

0
E|yŝ − ys |2ds

+512h2(Δ)

∫ T∧θΔ,R

0
E sup

0≤l≤s
|El |ds, (25)

for any λ > 0. Using two times Lemma 2 and collecting the terms we arrive at

E sup
0≤t≤T

|Et∧θΔ,R | ≤ CΔ1/2h2(Δ)R + Ch(Δ)

∫ T∧θΔ,R

0
E sup

0≤l≤s
|El |ds

+CΔλh2(Δ)+ CΔ1−λh2(Δ)R2 + Ch2(Δ)

∫ T∧θΔ,R

0
E sup

0≤l≤s
|El |ds

≤ CΔ1/2h3(Δ)+ CΔλh2(Δ)+ CΔ1−λh4(Δ)

+Ch2(Δ)

∫ T∧θΔ,R

0
E sup

0≤l≤s
|El |ds

≤ C
(
Δ1/2h3(Δ)+Δλh2(Δ)+Δ1−λh4(Δ)

)
eh

2(Δ), (26)

where we used that 1 < R ≤ h(Δ) and in the last step applied the Gronwall
inequality and C is a constant independent of Δ and R varying from line to line.
Plugging estimates (26) and (23) in (22) we have

E sup
0≤t≤T

|Et | ≤ C
(
Δ1/2h3(Δ)+Δλh2(Δ)+Δ1−λh4(Δ)

)
eh

2(Δ) + CΔ−mR−(1−β)
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≤ CΔ1/2h4(Δ)eh
2(Δ) + CΔ−mR−(1−β), (27)

where we chose λ = 1/2. Bearing in mind the definitions of μ and h, see (13), we
have

CΔ1/2h4(Δ)eh
2(Δ) ≤ CΔ1/2(lnΔ−ε)2Δ−ε ≤ CΔ

1
2−2ε,

by choosing ε < 1/4, where we used the fact that 0 ≤ z(ln z)2 ≤ z2 for big enough
z. Moreover, by

ĥ > Δ1/4h(Δ) > CΔ1/4 > Δ
1+γ
4q ,

whenever (1+ γ ) < q, which implies

h(Δ) ≥ Δ
1+γ
4q − 1

4 .

By the monotone property of μ−1 we have

μ−1(h(Δ)) ≥ C
− 1

1+γ Δ
1

4q− 1
4(1+γ ) = R.

Estimate (27) becomes

E sup
0≤t≤T

|Et | ≤ CΔ
1
2 (1−4ε) + CΔ

1−β
4(1+γ )

q−(1+γ )
q

−m
. (28)

Taking big q > 1+ γ and small m we reach inequality (14). �

4 Proof of Stability

In this section we provide the proof of Theorem 2. We examine the stability behavior
of the equilibrium solution of the expTSD scheme (yΔn ).

4.1 Stability of (yΔ
n )

Using representation (20) we may write

|yΔn+1|p = |yΔn |pE(yΔn )ξn+1 = |yΔn−1|pE(yΔn )E(yΔn−1)ξn+1ξn

= . . . = |yΔ0 |p
n∏

i=0

E(yΔi )ξi+1,
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or using the notation Mn := |yΔn |p and Ψi := E(yΔi )ξi+1 we have

Mn =
(
n−1∏

i=0

Ψi

)

M0. (29)

Obviously, Ψi are non-negative, independent random variables such that

lnΨi = pb2(πΔ(y
Δ
n ))

2

(
2a(πΔ(yΔn ))

b2(πΔ(yΔn ))
− 1+ p

)

Δ

−p2b2(πΔ(y
Δ
n ))

2
Δ+ pb(πΔ(y

Δ
n ))ΔWn

≤ pb2(πΔ(y
Δ
n ))

2
(β − 1+ p)Δ+ pb(πΔ(y

Δ
n ))ΔWn

≤ pb(πΔ(y
Δ
n ))ΔWn,

for any 0 < p ≤ 1−β, therefore taking expectations in the above inequality implies
E lnΨi ≤ 0 which in turn by application of Lemma 1 leads to limn→∞Mn = 0 a.s.
and consequently (15).

5 Numerical Illustration

We will use the numerical example of [9, Section 5], that is we take a(x) = x2 and
b(x) = σx and x0 = 1 in (1), i.e.,

xt = 1+
∫ t

0
(xs)

3ds + σ

∫ t

0
(xs)

2dWs, t ≥ 0. (30)

Note that the value of σ determines the value of the ratio 2a(u)/b2(u) = 2/σ 2.

Moreover, (13) holds with μ(u) = (1+ σ 2)|u|2 since

sup
|x|≤u

(
|x2| ∨ σ |x|

)
≤ (1+ σ 2)|u|2, u ≥ 1.

In the notation of Theorem 1, γ = 1 and C = 1 + σ 2. Finally, h(Δ) = 1 + σ 2 +√
lnΔ−ε for any Δ ∈ (0, 1]. Clearly h(1) ≥ μ(1) and

Δ1/6h(Δ) ≤ (1+ σ 2)Δ1/6 +
√
Δ1/3 lnΔ−ε1 ≤ 2+ σ 2,

for any Δ ∈ (0, 1] and 0 < ε ≤ 1/4. Therefore we take ĥ = 2+σ 2. The exponential
truncated semi-discrete method (2) reads
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yΔn+1 = yΔn exp

{(

1− σ 2

2

)

π2
Δ(y

Δ
n )Δ+ σπΔ(y

Δ
n )ΔWn

}

, (31)

with y0 = 1 where

πΔ(x) = x ∧
√

h(Δ)

1+ σ 2

and therefore

π2
Δ(x) = x2 ∧ h(Δ)

1+ σ 2 .

First, we examine numerically the order of convergence of the truncated semi-
discrete method. The numerical results suggest that the expTSD scheme converges
in the L1-sense with order at least 1−β

4(1+γ ) , see Fig. 1. Actually we see that it is close
to 1/2.

We also examine the stability behavior of the method. In this case, we also use
the exponential semi-discrete method

yn+1 = yn exp

{(

1− σ 2

2

)

(yn)
2Δ+ σynΔWn

}

. (32)

We begin with the stable case, that is when β < 1 or σ >
√

2. Figure 2 displays
trajectories of the expTSD method (31) for the cases σ = 2 and σ = 3 accordingly.
We observe the asymptotic stability in each case as well as the positivity of the
paths. There is no need for time-step restriction for scheme (31) as in [9, Fig. 2].
Note that as σ takes bigger values the paths go to zero faster.
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Fig. 1 Convergence of the truncated semi-discrete method (31) for the approximation of (30) for
different σ . (a) σ = 2. (b) σ = 3
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Fig. 2 Trajectories of (31) for different values of σ,Δ. (a) Trajectory of (31) with σ = 2,Δ = 0.2.
(b) Trajectory of (31) with σ = 2,Δ = 0.5. (c) Trajectory of (31) with σ = 3,Δ = 0.2. (d)
Trajectory of (31) with σ = 3,Δ = 0.5

Figures 3 and 4 display the case when σ <
√

2. We consider the cases σ = 0
and σ = 1 accordingly. Now, we observe instability and an apparent finite-time
explosion. The apparent explosion time in the ordinary differential equation (case
σ = 0) is very close to the computed one

τ 1
e :=

∫ ∞

1
u−3du = 0.5,

and becomes closer as we lower the step-sizeΔ. In fact, the exponential scheme (32)
can better detect this behavior. In the case σ = 1 we observe again the apparent
explosion time for the SDE which is now random.
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Fig. 3 Trajectories of (32) and (31) for σ = 0 and different values of Δ. (a) Paths of (31) and (32)
with σ = 0,Δ = 0.1. (b) Paths of (31) and (32) with σ = 0,Δ = 0.01
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Fig. 4 Trajectories of (31) and (32) for σ = 1 and different values of Δ. (a) Paths of (31) and (32)
with σ = 1,Δ = 0.1. (b) Paths of (31) and (32) with σ = 1,Δ = 0.01

6 Discussion and Future Work

In this paper we studied a class of SDEs with non-globally Lipschitz coefficients,
non-negative solutions and a unique equilibrium solution. We proposed a numerical
scheme that preserves the domain of the solution process and reproduces the
asymptotic stability behavior of the equilibrium without imposing restrictions on
the time-step size. In particular we applied the truncated semi-discrete method
producing an exponential scheme. We proved the L1-convergence of the scheme
to the solution of the SDE and its asymptotic stability behavior. The non-truncated
scheme works better if our aim is to detect instability. One may argue about the
computational time consumed by application of the exponential scheme, mainly
because of the exponential calculations. We aim to answer to that question in future
work.
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Solution of Polynomial Equations

N. Tsirivas

Abstract We present a method for the solution of polynomial equations. We do not
intend to present one more method among several others, because today there are
many excellent methods. Our main aim is educational. Here we attempt to present a
method with elementary tools in order to be understood and useful by students and
educators. For this reason, we provide a self-contained approach. Our method is a
variation of the well-known method of resultant, which has its origin back to Euler.
Our goal, in the present chapter, is in the spirit of calculus and secondary school
mathematics.

MSC (2010) 65H04

1 Introduction

It is well known that many problems in Physics, Chemistry, and Science lead
generally to a polynomial equation.

In pure mathematics also, there are classical problems that lead to a polynomial
equation.
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Let us give two examples:

1. If we are to compute the integral
∫ β

α

p(x)

q(x)
dx, where α, β ∈ R, α < β,

p(x), q(x) are two real polynomials of one variable, and q(x) is a nonzero
polynomial that does not have any root in the interval [α, β], then we are led
to the problem of finding the real roots of q(x).

2. Let n ∈ N, ai ∈ R for i = 1, . . ., n, where N,R are the sets of natural and real
numbers, respectively.

We can consider the differential equation

any
(n) + an−1y

(n−1) + · · · + a1y + a0 = 0,

where y is the unknown function.
In order to solve this simple equation we have to find all the roots of the

polynomial

p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0.

So, the utility to solve a polynomial equation, or in other words to find the roots
of a polynomial, is undoubted. This problem is a very old classical problem in
mathematics and Numerical Analysis, especially. For this reason, there exist many
methods that solve it.

However, if a scientist wants to solve an equation for his work, it is sufficient
to use programs as “mathematica” and “maple,” nowadays. So, the utility of
the problem has another direction, which is the finding of better algorithms and
programs. This is the main line of research among the area experts, nowadays.

We are moving in another direction in this chapter.
Our main aim is educational.
In this chapter we present a method of solving a polynomial equation with full

details for educational reasons, so that a student of positive sciences can improve the
level of knowledge in the subject. First of all, let us state our problem. We denote C
as the set of complex numbers. Let n ∈ N and ai ∈ C for i = 0, 1, . . ., n. We then
consider the polynomial

p(z) = anz
n + an−1z

n−1 + · · · + a1z+ a0,

which is a polynomial of one complex variable z with complex coefficients. We
suppose that an �= 0. The natural number n is called the degree of p(z) and it is
denoted by degp(z) = n. The number a ∈ C is a root of p(z) when it is applicable:
p(a) = 0. Our problem is to find all the roots of p(z), or in other words to solve
the equation p(z) = 0. Polynomials are simple and specific functions that have the
following fundamental property.
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Fundamental Theorem of Algebra Every polynomial of one complex variable
with complex coefficients and a degree greater than or equal to one has at least one
root in C.

This result is central. It is the basis of our method.
However, even if this theorem is fundamental, its proof is not trivial. Its simplest

proof comes from complex analysis that many students do not learn in university. In
the appendix we give one of the simplest proofs of the fundamental theorem.

Many of the best methods of our problem are iterative. They are based on
the construction of specific sequences that approach to the roots of the supposed
polynomial. Our method here uses algebra as much as possible, and when algebra
cannot go further, analysis takes its role in solving the problem. Here we do not deal
with the problem of speed of convergence. We use numerical analysis as little as
we can. It is sufficient for us to use the simplest method in order to find a root in a
specific real open interval, the bisection method.

Most of the books on numerical analysis describe the bisection method with
details. For example, see [8, 11].

There are some formulas that provide bounds for the roots of a polynomial.
Cauchy had given such a bound; see [8]. In the frame of our method we provide
such a bound.

There are some results that give information about the number of positive or
real roots, for example Descart’s law of signs and Sturm’s sequence [11]. A basic
problem is to find disjoint real intervals, so that every one of them contains one root
exactly. There are, also, many methods for this.

An extensive discussion of the theory of zeros of polynomials and extremal
problems for polynomials the reader can find in the books [10] and [13].

Let us describe now, roughly, the stages of our method:

1. In the first stage we find all the real roots of a polynomial. For this reason, we
are based on two results. First of all the bisection method and second by the
following result:

If we have a polynomial p of one real variable with real coefficients with a
degree greater than or equal to one for which we know the roots of p′, then using
the bisection method we can find all the real roots of p.

The first stage is simple. It uses only elementary knowledge and it is also
convenient for students of secondary school!

We think that it is very useful for students of secondary school to know a
method that finds all the real roots of an arbitrary real polynomial with their
knowledge base.

2. In the second stage, we provide a method that gives all the real roots of a system
of the form:

⎧
⎨

⎩

p(x, y) = 0

q(x, y) = 0
, (A)
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where p(x, y), q(x, y) are polynomials of two real variables x and y with
real coefficients. Our method here is a variation of the well-known method of
resultant (see [6, 13]), which has its origin in Euler. With this method, the solution
of the above system A is reduced to the first stage. As in the first stage, the
second stage is also convenient for students of secondary school (except for
Theorem 4.17 in our prerequisites).

3. In the third stage we show that the solution of our problem is reduced to the
second stage.

So, roughly speaking, our main aim in this chapter is to present a method that is
in the frame of the usual lessons of calculus in secondary school or in university and
present it with all the necessary details in order for it to be understood by students.

As for the notation. Let p(x, y) be a polynomial of two real variables x and
y, with real coefficients. We denote by degxp(x, y) the greatest degree of p(x, y)
with respect to x and degyp(x, y) the greatest degree of p(x, y) with respect to y.
If degxp(x, y) ≥ 1 and degyp(x, y) ≥ 1, we call the polynomial p(x, y) a pure
polynomial. If p(z), q(z) are two complex polynomials, we write p(z) ≡ q(z),
when they are equal by identity. We also write p(z) ≡ 0, when p(z) is equal to zero
polynomial by identity. We write p(z) �≡ q(z) when polynomials p(z), q(z) are not
equal by identity and p(z) �≡ 0 when p(z) is not the zero polynomial.

There are many methods and algorithms to the solution of polynomial equations.
Some of them are very old like the methods of Horner, Graeffe, and Bernoulli,
whereas today there are some others like the methods of Rutishauser, Lehmer, Lin,
Bairstow, Bareiss, and many others. Another method, similar to Bernoulli method,
is the QD method. A classical and popular method today is that of Muller. It is a
general method, not only for polynomials.

The interested reader can find the details of some of the above methods in the
books of our references; see [1, 3, 4, 7, 9–11], and [12, 14, 15]. As we said, there
exist many algorithms and programs to our problem.

One of the best is the subroutine ZEROIN. One can find the details of this
program in [4].

As we said formerly, the basis of our method is the resultant (or eliminent). With
this method we can convert a system of polynomial equations in one equation with
only one unknown!

Theoretically, we can succeed in that, but the complexity of calculations is
enormous, so its value today is only for polynomial equations with a low degree,
and is used as a theoretical tool. For details of the resultant, see [6, 12]. Apart from
this, there are some cases where the resultant fails. This can happen, for example,
when we have to solve a system of two equations with two unknowns and one of
the two equations is a multiple of the other, and the system has a finite number of
solutions. See, for example, the equation: (x2 − 1)2 + (y2 − 2)2 = 0, which has the
set of solutions

L = {(1,√2), (1,−√2), (−1,
√

2), (−1,−√2)}.
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We describe with details how we handle these cases in our method here. An alternate
method for our problem is to solve it with Gröbner bases. Gröbner bases is a method
that was developed in 1960 for the division of polynomials with more than one
variable. With Gröbner bases, we can also convert a system of equations in an
equation with only one unknown, as the resultant does. This is the main application
of Gröbner bases. This can be done in most cases.

However, there are some cases where Gröbner bases fail to succeed, like the
above case.

For Gröbner bases, see [2]. Many books of secondary school contain the
elementary theory of polynomials and Euclidean division that we refer to in our
prerequisites.

The structure of our chapter is as follows:
In Sect. 2 we give a rough description of our method. In Sect. 3 we give the

complete description of our method. In Sect. 4 we collect all the prerequisite tools
of our method from Algebra and Analysis and present them with all the necessary
proofs, especially for results that someone cannot find easily in books.

Finally, in Appendix we give one of the simplest proofs of the Fundamental
Theorem of Algebra that one cannot find easily in books.

We, also, give a short description of the solution of binomial equation: xn = a,
where n ∈ N, n ≥ 2, and a is a positive number.

2 General Description of the Solution of Our Problem

For methodological reasons, we divide the solution of our problem into the
following three stages.

2.1 First Stage

In this stage we find all the real roots of the polynomial equation

avx
v + av−1x

v−1 + · · · + a1x + a0 = 0,

where ai ∈ R, for every i = 0, 1, . . ., v, where v ∈ N.

2.2 Second Stage

Let p1(x, y), p2(x, y) be two polynomials of two real variables x and y whose
coefficients are in R. We consider the system of equations:
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⎧
⎨

⎩

p1(x, y) = 0 (1)

p2(x, y) = 0 (2)
(A)

Let LA be the set of solutions of the above system (A), in R
2. That is, we consider

the set

LA := {(x, y) ∈ R
2|p1(x, y) = 0 and p2(x, y) = 0},

of solutions of the above system (A), in R
2. In the second stage we find the set LA

under the following supposition (S):

(S): Supposition We suppose that the set LA is finite.

That is, we solve the above system (A), in R
2, in case if supposition (S) holds.

We note that we succeed the second stage using first stage.

2.3 Third Stage

In the third stage we completely solve our initial problem of finding all the roots of
the polynomial equation anz

n + an−1z
n−1 + · · · + a1z + a0 = 0, where n ∈ N,

ai ∈ C, for every i = 0, 1, . . ., n, using the previous two stages.
The first stage is the analytical part, whereas the second and third stages are the

algebraic parts of our method. The prerequisites of our method are few. Elementary
calculus and the elementary linear algebra of secondary school are enough, except
only for a specific case, where we use Theorem 4.17 from our prerequisites (a very
well-known result from calculus of several variables).

In the following paragraph, we give the complete description of our method.

3 Complete Description of Our Method

3.1 First Stage

Let ai ∈ R, for i = 0, 1, . . ., v, v ∈ N and a polynomial

p(x) = avx
v + av−1x

v−1 + · · · + a1x + a0,

where av �= 0, so degp(x) = v.
Here we find all the real roots of p(x). If v = 1, or v = 2, we know how to find

the real roots of p(x) from secondary school. Let us suppose that v ≥ 3. We find
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all the real roots of p′ (if any) and then we find the roots of p by applying basic
Lemma 4.8 or Corollaries 4.9 and 4.10.

More generally, we suppose that p has degree v ∈ N, v ≥ 3. We consider
polynomials p′, p′′, . . ., p(v−3) p(v−2). Polynomial p′ has degree v − 1, p′′ has
degree v − 2, and polynomial p(v−2) has degree 2.

We find the roots of p(v−2) (if any). After using basic Lemma 4.8, or Corollar-
ies 4.9 and 4.10, we find the roots of p(v−3) and going inductively, after a finite
number of steps, we find the roots of p′ and finally in the same way the roots of p,
and thus we complete our first stage.

3.2 Second Stage

We will now consider the system of two polynomials p1(x, y), p2(x, y) of two real
variables x and y with coefficients in R. We solve the system (A), where

⎧
⎨

⎩

p1(x, y) = 0 (1)

p2(x, y) = 0 (2)
. (A)

We solve system (A) with the following supposition.

Supposition We suppose that system (A) has a finite number of solutions; that is,
the set

LA = {(x, y) ∈ R
2|p1(x, y) = p2(x, y) = 0}

is nonvoid and finite.

First, we notice that one of the polynomials p1(x, y), p2(x, y), at least, is
nonzero, or else if p1(x, y) ≡ p2(x, y) ≡ 0 for every (x, y) ∈ R, then we have
LA = R

2, which is false because the set LA is finite. We will examine some cases.
First of all, we suppose that at least one of the polynomials is of one variable

only. We can distinguish some cases here. Let p1(x, y) ≡ q1(x), p2(x, y) ≡ q2(x).
Then, we solve the equations q1(x) = 0 and q2(x) = 0 with the method of the first
stage and later we conclude that set LA is the set of all (x, y), where x is one of the
common solutions of equations q1(x) = 0 and q2(x) = 0 and y ∈ R; that is, LA

is an infinite set, which is false by our supposition. So this case itself cannot occur.
Similarly, we cannot have the case where p1(x, y) ≡ r1(y) and p2(x, y) ≡ r2(y).
Now we consider the case where:

p1(x, y) ≡ q1(x) and p2(x, y) ≡ q2(y).

Then, we can solve the equations q1(x) = 0 and q2(y) = 0 with the method
of the first stage, and we find the finite sets A1 = {ρ1, ρ2, . . ., ρv} and B1 =



882 N. Tsirivas

{λ1, λ2, . . ., λm}, A1 ∪ B1 ⊆ R, where A1 is the set of roots of q1 and B1 is the
set of roots of q2, v,m ∈ N. Then, we have LA = {(ρi, λj ), i = 1, . . ., v, j =
, . . ., m}. In a similar way, we can solve the system A, when p1(x, y) = r1(y) and
p2(x, y) = r2(x), for some polynomials r1(y), r2(x).

Now, we consider the case where p1(x, y), p2(x, y) are two pure polynomials.

(i) The simplest case is when degyp1(x, y) = degyp2(x, y) = 1. Then we have

p1(x, y) = α1(x)y + α2(x) and

p2(x, y) = β1(x)y + β2(x),

where α1(x), α2(x), β1(x), β2(x) are some polynomials of real variable x only
and α1(x) �≡ 0 an β1(x) �≡ 0, because p1(x, y), p2(x, y) are pure polynomials.

So we have to solve the system:

⎧
⎨

⎩

α1(x)y + α2(x) = 0 (3)

β1(x)y + β2(x) = 0 (4)
.

We can distinguish some cases here. There exists a (x0, y0) ∈ LA, so that:

1. α1(x0) = β1(x0) = 0. Then with (3) and (4), we get α2(x0) = β2(x0) = 0. We
get (x0, y) ∈ LA for every y ∈ R, which is false because LA is finite. So, this
case cannot occur.

2. α1(x0) = 0 and β1(x0) �= 0. Then with (4) we take

y0 = −β2(x0)

β1(x0)
(5). With (3), we have α2(x0) = 0.

So, in this case we find the common roots of polynomials α1(x) and α2(x),
and for every common root x0 of α1(x) and α2(x), so that β1(x0) �= 0, the couple
(x0, y0) ∈ LA, where y0 is given from (5). Of course we find the real roots of
polynomials α1(x) and α2(x) with the method of our first stage. In a similar way
we find the roots (x0, y0) ∈ LA, so that α1(x0) �= 0 and β1(x0) = 0.

3. α1(x0) �= 0 and β1(x0) �= 0.
Here, we have some cases:

(i) α2(x0) = β2(x0) = 0. Then with (3), (4), and our supposition, we get y = 0.
So, in this case we find the common roots of polynomials α2(x) and β2(x),
so that they are not roots of polynomials α1(x) and β1(x), with the method
of the first stage. If x0 is such a root, that is, α2(x0) = β2(x0) = 0 and
α1(x0) �= 0 and β2(x0) �= 0, then (x0, 0) ∈ LA.

(ii) α2(x0) = 0 and β2(x0) �= 0.
Then, with (3), and the facts α2(x0) = 0 and α1(x0) �= 0, we get y = 0.

Then, because y = 0, by (4) we get β2(x0) = 0, which is a contradiction by
our supposition. So, this case cannot occur.
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(iii) α2(x0) �= 0 and β2(x0) = 0. As in the previous case (ii), this case cannot
occur.

(iv) α2(x0) �= 0 and β2(x0) �= 0.
Then, with (3) and (4) we get

y0 = −α2(x0)

α1(x0)
(6) and y0 = −β2(x0)

β1(x0)
(7).

With (6) and (7), we get

−α2(x0)

α1(x0)
= −β2(x0)

β1(x0)
⇔ α2(x0)β1(x0)− α1(x0)β2(x0) = 0. (8)

Now, we can consider two systems of relations (A1) and (A2) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

α1(x)y + α2(x) = 0, (i)

β1(x)y + β2(x) = 0, (ii)

α1(x) �= 0, α2(x) �= 0, β1(x) �= 0, β2(x) �= 0

(A1)

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α2(x)β1(x)− α1(x)β2(x) = 0, (i)

y = −α2(x)

α1(x)
, (ii)

α1(x) �= 0, α2(x) �= 0, β1(x) �= 0, β2(x) �= 0

(A2)

Let LA1 , LA2 be the two set of solutions of systems A1 and A2, respectively. We
prove that LA1 = LA2 .

By previous procedure and equalities (6) and (8), we get

LA1 ⊆ LA2 . (9)

Now let (x, y) ∈ LA2 . Then equality (ii) of A2 gives equality (ii) of A1. By equality
(i) of (A2), we get α2(x)β1(x) = α1(x)β2(x) and by the fact that α1(x) �= 0 and
β1(x) �= 0, we get

− α2(x)

α1(x)
= −β2(x)

β1(x)
. (10)

Through the equality (ii) of (A2) and (10), we get

y = −β2(x)

β1(x)
. (11)

Equality (11) gives equality (ii) of (A1). So we have (x, y) ∈ LA1 ; that is, LA2 ⊆
LA1 (12).

By (9) and (12), we get LA1 = LA2 .
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So, we proved that in order to solve system (A1) it suffices to solve system (A2).
Thus, we solve equation (i) of (A2) with the method of the first stage, and for every
root x of polynomial α2(x)β1(x) − α1(x)β2(x) so that α1(x) �= 0, α2(x) �= 0,
β1(x) �= 0, β2(x) �= 0, we get the respective y from equality (ii) of (A2).

So far we have completely solved the system (A), in the case of
degyp1(x, y) = degyp2(x, y) = 1.

For the sequel, we solve the case ii) where degyp1(x, y) ≤ 2 and
degyp2(x, y) ≤ 2 and p1(x, y), p2(x, y) are two pure polynomials. Of course,
we have degyp1(x, y) ≥ 1 and degyp2(x, y) ≥ 1, because p1(x, y), p2(x, y) are
pure polynomials.

We have already examined the case degyp1(x, y) = degyp2(x, y) = 1.
So we, here, examine the case where at least one of natural numbers degyp(x, y),

degyp2(x, y) is equal to 2.
We examine, firstly, the case where:

degyp1(x, y) = 2 and degyp1(x, y) = 1.

Then, we can write the system (A) as follows:

⎧
⎨

⎩

α2(x)y
2 + α1(x)y + α0(x) = 0 (13)

β1(x)y + β0(x) = 0 (14)
. (A)

If α2(x) ≡ 0, we have the previous system. So we suppose that α2(x) �≡ 0.
Now let some (x0, y0) ∈ LA as above. We distinguish some cases:

1. α2(x0) = 0. Then, we solve the system

{
α1(x)y + α0(x) = 0
β1(x)y + β0(x) = 0

as previously, and

we take only the solutions (x, y) of this system so that α2(x) = 0 holds, solving
the equation α2(x) = 0 with the method of the first stage.

2. α2(x0) �= 0. We distinguish some cases:

(i) α1(x0) = β1(x0) = 0. Then we have to solve the system:

⎧
⎨

⎩

α2(x)y
2 + α2(x) = 0 (15)

β0(x) = 0 (16)
. (B1)

By (15), we take

y2 = −α0(x)

α2(x)
. (17)

So, in order to solve this system we do the following.
First of all, we find all the common roots x of three polynomials α1(x),

β1(x), and β0(x) that are not roots of polynomial α2(x).
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If x ∈ R and α1(x) = β1(x) = β0(x) = 0 and α2(x) �= 0, we consider

the number −α0(x)

α2(x)
. If −α0(x)

α2(x)
≥ 0, then we set

(

y1 =
√

−α0(x)

α2(x)
and y2 = −

√

−α0(x)

α2(x)
, if −α0(x)

α2(x)
> 0

)

and

(y = 0 if α0(x) = 0), and then under the above conditions (x, y) ∈ LA.
We find the roots of polynomials α1(x), β1(x), β0(x) with the method of

the first stage.
Of course, if we cannot find couples (x, y) ∈ R

2 so that all the above
conditions hold, this means that we do not have solutions to this case.

(ii) α1(x0) = 0, β1(x0) �= 0.
We consider the system:

⎧
⎨

⎩

α2(x)y
2 + α0(x) = 0 (17)

β1(x)y + β0(x) = 0 (18)
. (B1)

Through (17) and (18), we get

y2 = −α2(x)

α2(x)
, (19)

y = −β0(x)

β1(x)
(20) ⇒ y2 =

(
β0(x)

β1(x)

)2

, (21)

Through (19) and (21), we get

− α0(x)

α2(x)
=
(
β0(x)

β1(x)

)2

⇔ α2(x)β0(x)
2 + α0(x)β1(x)

2 = 0. (22)

From the above, in order to find a solution of system (B2) we do the
following.

We find all the common roots of two polynomials α2(x)β0(x)
2 +

α0(x)β1(x)
2 and α1(x), which are not roots of polynomials α2(x) and β1(x)

(if any). Let x be such a root. We set y = −β0(x)

β1(x)
, and then (x, y) is a

solution of (B2) and we get all the other solutions of (B2) in the same way.
(iii) α1(x0) �= 0, β1(x0) = 0.

Then, through (14) we get β0(x0) = 0. So, in order to solve system (A)
in this case, we do the following.

We find all the common roots (if any) x of polynomials β1(x), β0(x), so
that α2(x) �= 0 and α1(x) �= 0. Of course this is a finite set of numbers x.

For such a root x0, we solve the equation α2(x0)y
2+α1(x0)y+α0(x) =

0 and we find the respective number y (if any).
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All these couples (x, y) ∈ R
2 (if any) are the set of solutions of

system (A) in this case.
(iv) α1(x0) �= 0, β1(x0) �= 0.

We leave this case for later. In a similar way we examine the case where
degyp1(x, y) = 1 and degyp2(x, y) = 2.

Now, we examine the case where:

degyp1(x, y) = degyp2(x, y) = 2.

We have the system:

⎧
⎨

⎩

α2(x)y
2 + α1(x)y + α0(x) = 0 (23)

β2(x)y
2 + β1(x)y + β0(x) = 0 (24)

. (B3)

Here we examine some cases:

1. Let (x0, y0) ∈ LB3 .
If α2(x0) = 0, or β2(x0) = 0, we have a system as in the previous case.
So, we suppose that:

α2(x0) �= 0 and β2(x0) �= 0.

Now, we can distinguish some cases:

(i) α1(x0) = β1(x0) = 0.
So, we are to solve the system:

α2(x0)y
2 + α0(x0) = 0 (25) and

β2(x0)y
2 + β0(x0) = 0 (26).

Through (25), we have y2 = −α0(x0)

α2(x0)
(27), and by (26), we get

y2 = −β0(x0)

β2(x0)
. (28)

Through (27) and (28), we get

− α0(x0)

α2(x0)
= −β0(x0)

β2(x0)
⇔ α0(x0)β2(x0)− β0(x0)α2(x0) = 0. (29)

From the above, we have the following solution:
We find the common roots of polynomials

α1(x), β1(x), α0(x)β2(x)− β0(x)α2(x), so that α2(x) �= 0 and β2(x) �= 0.
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We suppose that there exists such a root x0. If α0(x0) = 0, we get y0 = 0.

If
α0(x0)

α2(x0)
< 0, we consider

y1 =
√

−α0(x0)

α2(x0)
, y2 = −

√

−α0(x0)

α2(x0)
,

and (x0, y1), (x0, y2) ∈ LB3 . We get all the other solutions of B3 in the
same way. Of course, if (x, y) does not exist with the above conditions, we
do not have solutions of B3 in this case.

(ii) α1(x0) = 0 and β1(x0) �= 0.
We will postpone this case for later.

(iii) α1(x0) �= 0 and β1(x0) = 0.
We will also postpone this case for later.

(iv) α1(x0) �= 0 and β1(x0) �= 0.
This is the central case of system (B3).

We consider the number:

D = α2(x0)β1(x0)− α1(x0)β2(x0) =
∣
∣
∣
∣
∣
∣

α2(x0) α1(x0)

β2(x0) β1(x0)

∣
∣
∣
∣
∣
∣

that we call it: the determinant of system (B3).
We distinguish two cases:

(a) D �= 0.

We consider the linear system:

⎧
⎨

⎩

α2(x0)z+ α1(x0)ω = −α0(x0) (30)

β2(x0)z+ β1(x0)ω = −β0(x0) (31)
. (B4)

This linear system has determinant D �= 0, so it has exactly one solution.
We set

D1 =
∣
∣
∣
∣
∣
∣

−α0(x0) α1(x0)

−β0(x0) β1(x0)

∣
∣
∣
∣
∣
∣
= α1(x0)β0(x0)− α0(x0)β1(x0) (32)

and
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D2 =
∣
∣
∣
∣
∣
∣

α2(x0) −α0(x0)

β2(x0) −β0(x0)

∣
∣
∣
∣
∣
∣
= α0(x0)β2(x0)− α2(x0)β2(x0) (33)

Through Cramer’s law of linear algebra, we get the unique solution (z, ω) of system
B4, that is:

z = D1

D
and ω = D2

D
.

From our supposition, the couple (x0, y0) ∈ LB3 . This means that the numbers
y2

0 and y0 satisfy equations (23) and (24) of (B3), or differently, in other words
the couple (y2

0 , y0) is a solution of the linear system (B4). But because of our

supposition D �= 0, the couple (z, ω), where z = D1

D
(34) and ω = D2

D
(35),

is the unique solution of system (B4), as it is well known in linear algebra. So, we
have z = y2

0 and ω = y0, and by (34) and (35), we get

y2
0 =

D1

D
(36) and y0 = D2

D
. (37)

Now, we exploit the inner relation that numbers y0 and y2
0 have, that is:

y2
0 = y0 · y0. (38)

Replacing (36) and (37) in relation (38), we get

D1

D
= y0 · D2

D
⇒ D1 − y0D2 = 0. (39)

By (37), we have

Dy0 −D2 = 0. (40)

So, the couple (x0, y0) ∈ LB3 also satisfies the system:

⎧
⎨

⎩

D1 − yD2 = 0 (39)

Dy −D2 = 0 (40)

From the above, we have the two systems:



Solution of Polynomial Equations 889

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α2(x)y
2 + α1(x)y + α0(x) = 0

β2(x)y
2 + β1(x)y + β0(x) = 0

α2(x) �= 0, β2(x) �= 0, α1(x) �=, β1(x) �= 0,

D =
∣
∣
∣
∣
∣
∣

α2(x) α1(x)

β2((x) β1(x)

∣
∣
∣
∣
∣
∣
�= 0

(B5)

and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D1 = yD2 = 0

Dy −D2 = 0

α2(x) �= 0, β2(x) �= 0, α1(x) �= 0, β1(x) �= 0,

D �= 0

. (B6)

Let LB5 , LB6 be the set of solutions of systems (B5) and (B6). We now show that
LB5 = LB6 . Of course we have LB5 ⊆ LB6 from the previous procedure, because
we obtained equalities (39) and (40) of system (B6) from system B5.

Reversely, let (x0, y0) ∈ LB6 . From the first two equalities of (B6), we get

y0 = D1

D2
and y0 = D2

D
. (37)

We multiply these equalities and we take y2
0 =

D1

D
(36).

Now, we consider the linear system (B4). Because D �= 0 (by our supposition),

this system has a unique solution (z, ω) =
(D1

D
,
D2

D

)
, (41) as it is well known, in

Cramer’s law.
From (36), (37), and (41), we have z = y2

0 (42) and ω = y0 (43).
Replacing (42) and (43) in (30) and (31) of (B4), we get the first two equalities

of (B5); that is, (x0, y0) ∈ LB5 . So, we have LB6 ⊆ LB5 .
From the above, we have LB5 = LB6 . So, we are led to solve system B6,

which we have examined previously, in the system:
p1(x, y) = 0

p2(x, y) = 0

}

, where

degyp1(x, y) ≤ 1 and

degyp2(x, y) ≤ 1.

(b) D = 0

The solution of these cases is taken as follows.
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We take the roots of polynomial D x1; that is, α2(x1)β1(x1)−α1(x1)β2(x1) = 0,
so that α2(x1) �= 0, β2(x1) �= 0, α1(x1) �= 0, and β1(x1) �= 0. We get y that satisfies
one of the Eqs. (23), or (24) of (B3); that is:

α2(x1)y
2 + α1(x1)y + α0(x1) = 0.

This holds because the two Eqs. (23) and (24) are equivalent (as we have shown in
prerequisites of linear algebra), and each of them is a multiple of the other.

Remark 3.1 We note that the three remaining cases we have left are similar to case
(a) above where D �= 0.

So far, we have examined system (A), where degyp1(x, y) ≤ 2 and
degyp2(x, y) ≤ 2. We set

m0 := max{degyp1(x, y), degyp2(x, y)}.

We solve system (A) in the general case with induction above the number m0. We
have examined the cases where m0 = 1 or m0 = 2.

We suppose that for k0 ∈ N, k0 ≥ 3, we have solved system (A) for every system,
so that m0 ≤ k1 − 1. We now solve system (A) when m0 = k0.

We can write polynomials p1(x, y), p2(x, y) as follows:

αm0(x)y
m0 + αv0(x)y

v0 + q1(x, y) = p1(x, y) and βn0(x)y
n0

+ βμ0(x)y
μ0 + q2(x, y)

= p2(x, y),

where v0 < m0, v0,m0 ∈ N, degyq1(x, y) < v0 and μ0 < n0, μ0, n0 ∈ N,
n0 ≤ m0, degyq2(x, y) < μ0.

So, the initial system can be written as follows:

⎧
⎨

⎩

αm0(x)y
m0 + αv0(x)y

v0 + q1(x, y) = 0 (1)

βn0(x)y
n0 + βμ0(x)y

μ0 + q2(x, y) = 0 (2)
, (A)

where αm0(x), qv0(x), βn0(x), and βμ0(x) are polynomials of the real variable x

only and q1(x, y), q2(x, y) be polynomials of real variables x and y.
We, also, suppose that am0(x) �≡ 0. We can distinguish some cases as previ-

ously:

1. Let αv0(x) ≡ q1(x, y) ≡ βn0(x) ≡ βμ0(x) ≡ q2(x, y) ≡ 0. Then we have the
system: αm0(x)y

m0 = 0. If m0 = 0 and αm0(x) = c ∈ R, then every couple
(x, 0) ∈ LA and the system has an infinite set of solutions, which is false. So,
this case cannot occur.

2. βn0(x) ≡ βμ0(x) ≡ q2(x, y) ≡ 0.
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We will examine this case later.
3. βn0(x) �≡ 0, αv0(x) ≡ q1(x, y) ≡ βμ0(x) ≡ q2(x, y) ≡ 0.

We have the system:

⎧
⎨

⎩

αm0(x)y
m0 = 0

βn0(x)y
n0 = 0

. (A)

If degαm0(x) = degβn0(x) = 0, then any couple (x, 0) ∈ LA and the set of
solutions is infinite, which is false. So, this case cannot occur.

4. βn0(x) �≡ 0, αv0(x) ≡ βμ0(x) ≡ 0 ≡ q1(x, y) and q2(x, y) ≡ r(x) �≡ 0.
So, we have the system:

⎧
⎨

⎩

αm0(x)y
m0 = 0 (3)

βn0(x)y
n0 + r(x) = 0 (4)

. (A)

We can distinguish some cases here.
First, we suppose that (A) has a solution (x0, y0) ∈ LA.

(i) αm0(x0) = 0 = βn0(x0). Then, of course r(x0) = 0. So, if the polynomials
αm0(x), βn0(x), r(x) have a common root x0, then any couple (x0, y) ∈ LA,
for every y ∈ R, which is false of course.

So, this case cannot happen.
(ii) αm0(x0) = 0, βn0(x0) �= 0.

By (4), we take y0 = − r(x0)

βn0(x0)
.

Thus, in this case we solve the system as follows.
We find the roots x of αm0(x), so that βn0(x) �= 0. For every such root,

the couple (x, y) =
(
x,− r(x)

βn0(x)

)
∈ LA.

We get all the other solutions of this system in the same way.
(iii) αm0(x0) �= 0 and βn0(x0) = 0.

Through (3), we get y = 0. By (4), we take r(x0) = 0.
So, in this case we can solve the system as follows: We find the roots of

r(x) such that αm0(x) �= 0 and βn0(x) = 0. For every such root x, the couple
(x, 0) ∈ LA.

(iv) αm0(x0) �= 0 and βn0(x0) �= 0.
By (3), we get y0 = 0, and by (4), for y0 = 0 we get r(x0) = 0.
So, in this case we can solve the system as follows: We find the roots x of

r(x), so that αm0(x) �= 0 and βn0 �= 0. Then the couple (x, 0) is a solution
of (A).

(v) In a similar way we can solve a system of the form:
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⎧
⎨

⎩

αm0(x)y
m0 + r(x) = 0

βn0(x)y
n0 = 0.

5. βn0(x) �≡ 0, αv0(x) ≡ βμ0(x) ≡ 0, q1(x, y) ≡ rv(x) �≡ 0, q2(x, y) ≡ r2(x) �≡ 0.
So, we have the system:

⎧
⎨

⎩

αm0(x)y
m0 + r1(x) = 0

βn0(x)y
n0 + r2(x) = 0

. (A)

Let (x0, y0) ∈ LA.
If r1(x0) = 0 or r2(x0) = 0, then we have the system of the previous case

4. So, we suppose that r1(x0) �= 0 and r2(x0) �= 0. We can distinguish some
cases:

(i) αm0(x0) = βn0(x0) = 0.
So, we have the system:

⎧
⎨

⎩

r1(x) = 0

r2(x) = 0
. (A)

Let x0 be a common root of r1(x), r2(x). Then, we have (x0, y) ∈ LA, for
every y ∈ R, which is false of course, because the set LA is finite.

So, this case cannot occur.
(ii) αm0(x0) = 0 and βn0(x0) �= 0. Then, we get r1(x0) = 0 and y

n0
0 =

− r2(x0)

βn0(x0)
, and if n0 is odd, we have y0 = n0

√

− r2(x0)

βn0(x0)
if

r2(x0)

βn0(x0)
≤ 0

and y0 = − n0

√
r2(x0)

βn0(x0)

if
r2(x0)

βn0(x0)
> 0.

If n0 is even and
r2(x0)

βn0(x0)
≤ 0, we have

y1 = n0

√

− r2(x0)

βn0(x0)
and y2 = − n0

√

− r2(x0)

βn0(x0)
.

So, in this case we solve the system as follows.
We find the common roots of polynomials αm0(x) and r1(x0), such that

βn0(x) �= 0. Let x0 be such a root.
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Then, if n0 is odd and
r2(x0)

βn0(x0)
≤ 0, then the couple (x0, y0) ∈ LA,

where

y0 = n0

√

− r2(x0)

βn0(x0)
,

whereas if
r2(x0)

βn0(x0)
> 0, then the couple (x0, y0) ∈ LA, where

y0 = − n0

√
r2(x0)

βn0(x0)
.

If n0 is even, we set

y1 = n0

√

− r2(x0)

βn0(x0)
and y2 = − n0

√

− r2(x0)

βn0(x0)
,

and the couples (x0, y1), (x0, y2) ∈ LA, where
r2(x0)

βn0(x0)
≤ 0. This case can

happen if the above conditions hold, of course.
(iii) αm0(x0) �= 0, βn0(x0) = 0.

This case is similar to the previous case (ii).
(iv) αm0(x0) �= 0 and βn0(x0) �= 0.

Through the equations of (A), we get

y
m0
0 = − r1(x0)

αm0(x0)
and y

n0
0 = − r2(x0)

βn0(x0)
.

Through these equations, we get

y
n0m0
0 = (−1)n0

(
r1(x0)

αm0(x0)

)n0

and y
n0m0
0 = (−1)m0

(
r2(x0)

βn0(x0)

)m0

and by these equations, we get

(−1)n0

(
r1(x0)

αm0(x0)

)n0

= (−1)m0

(
r2(x0)

βn0(x0)

)m0

⇔ (−1)m0−n0r2(x0)
m0αm0(x0)

n0

− r1(x0)
n0βn0(x0)

m0 = 0.

So, we solve this case as follows:
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We find the real roots of polynomial (−1)m0−n0r2(x)
m0αm0(x)

n0 −
r1(x)

n0βn0(x)
m0 , so that αm0(x) �= 0 and βn0(x) �= 0.

For every x0, we get y0, so that ym0
0 = − r1(x0)

αm0(x0)
as in the previous case

(ii).

6. βn0(x) �≡ 0, αv0(x) ≡ βμ0(x) ≡ 0, q1(x, y), q2(x, y) are two pure polynomials.
So, we have to solve the system:

⎧
⎨

⎩

αm0(x)y
m0 + q1(x, y) = 0

βn0(x)y
n0 + q2(x, y) = 0

, (A)

where degyq1(x, y) ≥ 1, degyq2(x, y) ≥ 1, and q1(x, y), q2(x, y) are two
monomials. So, in this case we have the system:

⎧
⎨

⎩

αm0(x)y
m0 + α0(x)y

λ1 = 0

βn0(x)y
n0 + β0(x)y

λ2 = 0
,

where α0(x), β0(x) are two polynomials, so that one of them (at least) is nonzero
and λ1, λ2 ∈ N, so that λ1 < m0 and λ2 < n0. We can write the system as
follows:

⎧
⎨

⎩

yλ1(αm0(x)y
m0−λ1 + α0(x)) = 0

yλ2(βn0(x)
n0−λ2 + β0(x)) = 0

, (A)

so for every x ∈ R, the couple (x, 0) ∈ LA, which is false, because LA is finite.
Thus, this cannot occur.

7. We suppose that βn0(x) �≡ 0 q1(x, y) ≡ r1(x), αv0(x) �≡ 0 or βμ0(x) �≡ 0,
q2(x, y) ≡ r2(x), where r1(x) �≡ 0 or r2(x) �≡ 0. So, we get the system:

⎧
⎨

⎩

αm0(x)y
m0 + αv0(x)y

v0 + r1(x) = 0

βn0(x)y
n0 + βμ0(x)y

μ0 + r2(x) = 0
. (A)

We distinguish some cases:

(i) r1(x) ≡ 0 and r2(x) �≡ 0. So, we get the system:

⎧
⎨

⎩

αm0(x)y
m0 + αv0(x)y

v0 = 0

βn0(x)y
n0 + βμ0(x)y

μ0 + r2(x) = 0
. (A)

Let (x0, y0) ∈ LA.
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Through the first equation, we get

yv0(αm0(x)y
m0−v0 + αv0(x)) = 0.

If y = 0, by the second equation we get r2(x0) = 0. So, if x0 is a root of
r2(x), then the couple (x0, 0) ∈ LA.

Let y0 �= 0. Then we get

αm0(x0)y
m0−v0
0 +αv0(x0) = 0 and βn0(x0)y

n0
0 +βμ0(x0)y

μ0
0 + r2(x0) = 0.

If r2(x0) = 0, we have some of the previous cases that we have already
examined. So, we suppose that r2(x0) �= 0. If n0 < m0, we have a system
that we supposedly can solve through the induction step. Thus, we suppose
that n0 = m0. So we have the system:

⎧
⎨

⎩

αm0(x0)y
m0−v0
0 + αv0(x0) = 0

βn0(x0)y
m0
0 + βμ0(x0)y

μ0 + r2(x0) = 0
.

We will postpone this case, because we will examine a more general case
later, which covers this case.

(ii) r1(x) �≡ 0 and r2(x) ≡ 0.
This case is similar to the previous.

(iii) r1(x) �≡ 0 and r2(x) �≡ 0.

Let (x0, y0) ∈ LA. If r1(x0) = 0, or r2(x0) = 0, we have some of the previous
cases. So, we suppose that r1(x0) �= 0 and r2(x0) �= 0. We have some cases:

(i) αv0(x) �≡ 0 and βμ0(x) ≡ 0.
So, we have the system:

⎧
⎨

⎩

αm0(x)y
m0 + αv0(x)y

v0 +r1(x) = 0

βn0(x)y
m0 +r2(x) = 0

. (A)

We consider some cases:

(a) Let (x0, y0) ∈ LA, αm0(x0) = βn0(x0) = 0. We have examined this
case previously.

(b) αm0(x0) = 0 and βn0(x0) �= 0. We have examined this case previously.
(c) αm0(x0) �= 0 and βn0(x0) = 0.

If αv0(x0) = 0, we have examined this case previously. So, we
suppose that αv0(x0) �= 0. Then we get r2(x0) = 0 by the second
equation of (A) because βn0(x0) = 0, which is false by our supposition.
So, this case cannot occur.

(d) αm0(x0) �= 0 and βn0(x0) �= 0.
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If αv0(x0) = 0, we have examined this case previously. So, we suppose
that αv0(x0) �= 0. We will examine this case later.

(ii) αv0(x) ≡ 0 and βμ0(x) �≡ 0.
This case is similar to the previous one.

(iii) αv0(x) �≡ 0 and βμ0(x) �≡ 0.
We have some cases here:

(a) We suppose that βn0(x0) = βμ0(x0) = 0, and αm0(x0) �= 0, αv0(x0) �=
0. So, we have the system:

⎧
⎨

⎩

αm0(x0)y
m0 + αv0(x0)y

v0 + r1(x0) = 0

r2(x0) = 0
. (A)

This cannot happen because r2(x0) �= 0 by our supposition.
(b) We suppose that αm0(x0) = αv0(x0) = 0. Then we get that r1(x0) = 0,

which is false by our supposition. Thus, this case cannot occur.
(c) If αm0(x0) = 0, or αv0(x0) = 0, or βn0(x0) = 0, or βμ0(x0) = 0, then

we get some of the previous cases.
(d) αm0(x0) �= 0 and αv0(x0) �= 0 and βn0(x0) �= 0 and βμ0(x0) �= 0.

We have to solve the system:

⎧
⎨

⎩

αm0(x0)y
m0 + αv0(x0)y

v0 + r1(x0) = 0

βn0(x0)y
m0 + βμ0(x0)y

μ0 + r2(x0) = 0
. (A)

We have here the basic case of this system.
We will examine this case later in a more general case.

Now, we will examine the system:

⎧
⎨

⎩

αm0(x)y
m0 + αv0(x)y

v0 + q1(x, y) = 0

βn0(x)y
n0 + βμ0(x)y

μ0 + q2(x, y) = 0
,

where αm0(x) �≡ 0, m0 ≥ 3, v0 < m0, n0 ≤ m0 n0 > μ0, q1(x, y), q2(x, y) are two
pure polynomials, αv0(x) �≡ 0, and βμ0(x) �≡ 0.

We can distinguish the following cases:
(1) βn0(x) ≡ 0.
We get (x0, y0) ∈ LA.
If αm0(x0) = 0, then we have a system from the induction step. So, we suppose

αm0(x0) �= 0.
We have some cases:

(i) αv0(x0) = βμ0(x0) = 0.
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Then, we analyze polynomials q1(x, y), q2(x, y) and we reach a system of
the following form:

⎧
⎨

⎩

αm0(x0)y
m0 + αv1(x0)y

v1 + q3(x0, y0) = 0

βm1(x0)y
μ1 + q3(x0, y0) = 0

, (A)

where αv1(x0) �= 0, βμ1(x0) �= 0, v1 < m0, μ1 ∈ N, degyq3(x, y) < v1,
degyq3(x, y) < μ1.

We will see later how we can solve such a system.
(ii) αv0(x0) �= 0 and βμ0(x0) = 0.

Then, we analyze polynomial q2(x, y) and we reach a system of the
following form:

⎧
⎨

⎩

αv0(x0)y
m0
0 + αv0(x0)y

v0
0 + q1(x0, y0) = 0 (1)

βμ1(x0)y
μ1
0 + r2(x0) = 0 (2)

. (B)

If βμ1(x0) = 0, we get from (2) that r2(x0) = 0.
In this case we solve system (B) as follows.
We take x0 that is a common root of polynomials in the second equation of

Eq. (B), so that αm0(x0) �= 0 and αv0(x0) �= 0, and we find y0 from the first
equation of Eq. (B).

(iii) αv0(x0) �= 0 and βμ0(x0) �= 0. We will see later how we solve this system.
After all the above cases, we reach now to the most important case.
We have the system:

⎧
⎨

⎩

αm0(x)y
m0 + αv0(x)y

v0 + q1(x, y) = 0

βn0(x)y
n0 + βμ0(x)y

μ0 + q2(x, y) = 0
, (A)

where we have

m0 > v0 > degyq1(x, y),

n0 > μ0 > degyq2(x, y),

αm0(x) �≡ 0, αv0(x) �≡ 0, βn0(x) �≡ 0, βμ0(x) �≡ 0, and q1(x, y), q2(x, y) be
two pure polynomials.

We distinguish some cases:
(i) m0 = n0.

We also have some cases here:

(a) v0 = μ0.
So, we have the system:
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⎧
⎨

⎩

αm0(x)y
m0 + αv0(x)y

v0 + q1(x, y) = 0

βm0(x)y
m0 + βv0(x)y

v0 + q2(x, y) = 0
. (A)

First, we examine the case where:

(x0, y0) ∈ LA and αm0(x0) · αv0(x0) · βm0(x0) · βm0(x0) · βv0(x0) �= 0.

Let

D =
∣
∣
∣
∣
∣
∣

αm0(x0) αv0(x0)

βm0(x0) βv0(x0)

∣
∣
∣
∣
∣
∣
= αm0(x0)βv0(x0)− αv0(x0)βm0(x0).

We suppose that D �= 0.
This exactly is the first basic case. We will study three basic cases

overall. We consider the linear system:

⎧
⎨

⎩

αm0(x0)z+ αv0(x0)ω = −q1(x0, y0) (1)

βm0(x0)z+ βv0(x0)ω = −q2(x0, y0) (2)
. (B)

We set

D1 =
∣
∣
∣
∣
∣
∣

−α1(x0, y0) αv0(x0)

−q2(x0, y0) βv0(x0)

∣
∣
∣
∣
∣
∣

and D2 =
∣
∣
∣
∣
∣
∣

αm0(x0) −q1(x0, y0)

βm0(x0) −q2(x0, y0)

∣
∣
∣
∣
∣
∣
.

That is, we have

D1 = αv0(x0)q2(x0, y0)− βv0(x0)q1(x0, y0) and

D2 = βm0(x0)q1(x0, y0)− αm0(x0)q2(x0, y0).

Because D �= 0, by our supposition, we take it that system (B) has only one

solution (z0, ω0), where z0 = D1

D
(3) and ω0 = D2

D
(4), as it is well known by

linear algebra by Cramer’s law.
Because (x0, y0) ∈ LA (by our supposition), this means that the couple

(y
m0
0 , y

v0
0 ) is a solution of system (B).

But, (z0, ω0) is the unique solution of system (B). So, we have (z0, ω0) =
(y

m0
0 , y

v0
0 )⇔ z0 = y

m0
0 (5) and ω0 = y

v0
0 (6). By (3), (4), (5), and (6), we get

y
m0
0 = D1

D
(7) and y

v0
0 = D2

D
(8).
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Now, we use the obvious relation of numbers ym0
0 and yv0

0 ; that is, ym0
0 = y

m0−v0
0 ·yv0

0
(9), where v0 < m0, by our supposition.

Replacing by (7) and (8) in (9), we get

D1

D
= y

m0−v0
0 · D2

D
⇔ D2y

m0−v0
0 −D1 = 0. (10)

From the above, we see that (x0, y0) satisfies the two equations:

⎧
⎨

⎩

Dy
v0
0 −D2 = 0 (11)

D2y
m0−v0
0 −D1 = 0 (12)

. (C)

We notice that polynomials in (11) and (12) have degree with respect to y lower
than m0.

Let us consider now the following systems:

⎧
⎪⎪⎨

⎪⎪⎩

αm0(x)y
m0 + αv0(x)y

v0 + q1(x, y) = 0 (13)

βm0(x)y
m0 + βv0(x)y

v0 + q2(x, y) = 0 (14)

y · αm0(x) · αv0(x)βm0(x) · βv0(x)D �= 0

, (A)

⎧
⎪⎪⎨

⎪⎪⎩

Dyv0 −D2 = 0 (15)

D2y
m0−v0 −D1 = 0 (16)

y · αm0(x) · αv0(x) · βm0(x) · βv0(x) ·D �= 0

, (B)

where D = αm0(x)βv0(x)− αv0(x)βm0(x).

D1 = αv0(x)q2(x, y)− βv0(x)q1(x, y),

D2 = βm0(x)q1(x, y)− αm0(x)q2(x, y).

It is obvious that degy(Dyv0) = v0 < m0, because D �= 0 and degy(D2y
m0−v0) <

m0, as degyD2 < v0, by our suppositions. We will prove now that LA = LB . It is
obvious that LA ⊆ LB (17) from the previous procedure, because we got Eqs. (11)
and (12) of system (�) from equations of system (A).

Now, let (x0, y0) ∈ LB .
Through Eqs. (15) and (16) of (B) and the fact that y0 �= 0, we get

y
v0
0 = D2

D
(18) and y

m0−v0
0 = D1

D2
. (19)
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Through Eqs. (18) and (19), we get ym0
0 = D1

D
(20). Now, we consider system (B).

Because D �= 0, this system has a unique solution (z0, ω0) =
(D1

D
,
D2

D

)
(21), from

Cramer’s law. Through (18), (20), and (21), we get z0 = y
m0
0 (22) and ω0 = y

v0
0

(23).
Replacing (22) and (23) in equations of (B), we take it that (x0, y0) ∈ LA, so

LB ⊆ LA (24). By (17) and (24), we have LA = LB (25). The equality (25) means
that: in order to solve system (A), it suffices to solve system (B), whose degree with
respect to y is smaller than m0, that is the degree of system (A) with respect to y.
But with the induction step, we can solve a system whose degree with respect to y

is smaller than m0, and thus we complete this case.
The second basic case is the following D �≡ 0, but

D(x0) = αm0(x0)βv0(x0)− αv0(x0)βm0(x0) = 0.

In this case the two equations of system (A) are equivalent to those of linear algebra,
as we have shown in prerequisites.

So, we can solve this case as follows.
We find the roots of polynomial D = αm0(x)βv0(x) − αv0(x)βm0(x), so that:

αm0(x) · αv0(x) · βn0(x) · βμ0(x).
For every such root x0, we find y0 from one of the equations of (A) that are

equivalent. We can complete this case by finding the solutions of the form (x, 0) (if
any).

Third Basic Case (Singular Case)
We suppose that D ≡ 0 ≡ αm0(x)βv0(x) − αv0(x)βm0(x). We call this case the
singular case.

We consider the system:

⎧
⎪⎪⎨

⎪⎪⎩

αm0(x)y
m0 + αv0(x)y

v0 + q1(x, y) = 0 (1)

βm0(x)y
m0 + βv0(x)y

v0 + q2(x, y) = 0 (2)

αm0(x)αv0(x)βm0(x)βv0(x) �= 0

. (A)

We consider our general supposition. That is, we suppose LA �= ∅. Let (x0, y0) ∈
LA. Then we get

⎧
⎨

⎩

αm0(x0)y
m0
0 + αv0(x0)y

v0
0 = −q1(x0, y0) (3)

βm0(x0)y
m0
0 + βv0(x0)y

v0
0 = −q2(x0, y0) (4)

. (B)

We get

D(x0) = αm0(x0)βv0(x0)− αv0(x0)βm0(x0) = 0.
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Let

D1(x0, y0) = αv0(x0)q2(x0, y0)− βv0(x0)q1(x0.y0),

D2(x0, y0) = βm0(x0)q1(x0, y0)− αm0(x0)q2(x0, y0).

We now consider the following system:

⎧
⎨

⎩

αm0(x0)z+ αv0(x0)ω = −q1(x0, y0) (5)

βm0(x0)z+ βv0(x0)ω = −q2(x0, y0) (6)
. (�)

Through the previous system (B), we have that (ym0
0 , y

v0
0 ) is a solution of (�). That

is, (�) is a linear system that has a solution and D(x0) = 0. So, we have that
D1(x0, y0) = 0 through linear algebra.

We consider now the following two systems: (A) and the following:

⎧
⎪⎪⎨

⎪⎪⎩

αm0(x)y
m0 + αv0(x)y

v0 + q1(x, y) = 0 (7)

αv0(x)q2(x, y)− βv0(x)q1(x, y) = 0 (8)

y · αm0(x)αv0(x)βm0(x)βv0(x) �= 0

. (�)

From the above, we have LA ⊆ L� (9).
We can now prove the reverse inclusion of (9).
Let (x0, y0) ∈ L�. Of course (x0, y0) satisfies Eq. (1) of (A). We distinguish two

cases:

(i) q1(x0, y0) �= 0.
We can consider linear system (�). This system has D = D1 = 0

by our supposition D ≡ 0 and D1 = 0 because (8) holds for (x0, y0);
that is, D1(x0, y0) = 0. So, system (�) has an infinity of solutions and
D2(x0, y0) = 0, because D = D1(x0, y0) = 0. Of course we have
αm0(x0)qv0(x0)βm0(x0)βv0(x0) �= 0, by our supposition.

By relation D(x0) = 0, we take

αm0(x0)βv0(x0)− αv0(x0)βm0(x0) = 0 ⇔ αm0(x0)

βm0(x0)
= αv0(x0)

βv0(x0)
. (10)

By equation D1(x0, y0) = 0, we take

αv0(x0)q2(x0, y0) = βv0(x0)q1(x0, y0)⇒ αv0(x0)

βv0(x0)
= q1(x0, y0)

q2(x0, y0)
. (11)

We have q2(x0, y0) �= 0 or else if q2(x0, y0) = 0 ⇒ q1(x0, y0) = 0, which is
false by our supposition. So, (11) holds. By (10) and (11), we set



902 N. Tsirivas

0 �= λ = αm0(x0)

βm0(x0)
= αv0(x0)

βv0(x0)
= q1(x0, y0)

q2(x0, y0)
⇒ βm0(x0) = 1

λ
αm0(x0),

(12)

βv0(x0) = 1

λ
αv0(x0), (13)

q2(x0, y0) = 1

λ
q1(x0, y0). (14)

By (12), (13), and (14), we get

βm0(x0)y
m0
0 + βv0(x0)y

v0
0 + q2(x0, y0)

= 1

λ
αm0(x0)y

m0
0 + 1

λ
αv0(x0)y

v0
0 + 1

λ
q1(x0, y0)

= 1

λ
(αm0(x0)y

m0
0 + αv0(x0)y

v0
0 + q1(x0, y0)

= 1

λ
· 0 = 0,

because (x0, y0) ∈ L�, which means that (x0, y0) satisfies equality (7). So, we
proved that if (x0, y0) ∈ L� and q1(x0, y0) �= 0, then (x0, y0) ∈ LA.

(ii) q1(x0, y0) = 0.

Then, because (x0, y0) ∈ L�, through equality (8) we get q2(x0, y0) = 0,
because αv0(x0) �= 0, by our supposition.

As previously, because D(x0) = 0 and βm0(x0)βv0(x0) �= 0, we take it that (12)
and (13) hold, so

βm0(x0)y
m0
0 + βv0(x0)y

v0
0 + q2(x0, y0)

= 1

λ
αm0(x0)y

m0
0 + 1

λ
αv0(x0)y

v0
0 + 0

= 1

λ
(αm0(x0)y

m0
0 + αv0(x0)y

v
0 + q1(x0, y0) = 0,

by equality (7) of (�) because (x0, y0) ∈ L� by our supposition.
So, equality (2) of (A) holds; that is, (x0, y0) ∈ LA. So, we have L� ⊆ LA

(15). Through (9) and (15), we get LA = L�. So, in order to solve system (A), it
suffices to solve system (�). What is the profit from system (�)? The profit is that
polynomial in Eq. (8) of (�); that is, D1 has degyD1(x, y) < v0 or D1(x, y) ≡ 0.
We examine now how we exploit these facts.

We leave the case D1(x, y) ≡ 0 for the end.
We examine now the case where D1(x, y) �≡ 0. We can write D1(x, y) in the

following form:



Solution of Polynomial Equations 903

D1(x, y) = αv1(x)y
v1 + αv2(x)y

v2 + q3(x, y),

where v0 > v1 > v2, degyq3(x, y) < v2, or q3(x, y) ≡ 0. This is the general case.
We suppose, also, that αv1(x) �≡ 0, αv2(x) �≡ 0, and q3(x, y) is a pure

polynomial.
We get

ym0−v1D1(x, y) = αv1(x)y
m0 + αv2(x)y

m0−v1+v2 + ym0−v1q3(x, y),

where degy(ym0−v1q3(x, y)) < m0 − v1 + v2 because degyq3(x, y) < v2 by our
supposition.

We consider the system:

⎧
⎪⎪⎨

⎪⎪⎩

αm0(x)y
m0 + αv0(x)y

v0 + q1(x, y) = 0

αv1(x)y
m0 + αv2(x)y

m0−v1+v2 + ym0−v1q3(x, y) = 0

yαm0(x)αv0(x)βm0(x)βv0(x) �= 0

. (E)

If αv1(x) = 0, or αv2(x) = 0 for x ∈ R, we examine whether system (E) has a
root of αv1(x) or αv2(x) that satisfies system (E). So, we examine the case where
αv1(x) · αv2(x) �= 0.

Let

D =
∣
∣
∣
∣
∣
∣

αm0(x) αv0(x)

αv1(x) αv2(x)

∣
∣
∣
∣
∣
∣
= αm0(x)αv2(x)− αv0(x)αv1(x).

Then, system (E) is a system similar to system (A).
So, we examine the similar cases in the same way.
Here, we examine only the case where D = αm0(x)αv2(x)− αv0(x)αv1(x) ≡ 0.

In this case we again reach a system similar to (�), so that the respective Eq. (8) of
the new system has D1(x, y) �≡ 0.

We handle this case as follows.
In system (A) of page 23, we can take any of the two equations in order to get an

equivalent system as (�). So it helps us to take the equation in which the respective
pure polynomial q1(x, y) or q2(x, y) has the smallest number of terms. For this
reason in system (E) (that is similar to A), we take as a first equation (of system
(�)) the second equation because this polynomial ym0−v1q3(x, y) has at most v2
terms with respect to y (by its definition), where v2 < v1 < v0 ⇒ v2 ≤ v0 − 2.

In the new system (�) we take that the respective D1(x, y) polynomial of (�)
has degyD1(x, y) < v0, so if we write this polynomial again in the form:

D1(x, y) = αv1(x)y
v1 + αv2(x)y

v2 + q4(x, y),

the new polynomial q4(x, y) has at most v2 ≤ v0 − 2 terms.
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So, the profit, is that the new polynomials q1(x, y), q2(x, y) of the new system
(�) will have at most v0 − 2 terms each one of them and the respective new
polynomial D1(x, y) also. So, the profit is the following.

In system (�) polynomial D1(x, y) has at most v0 terms with respect to y,
whereas in a new system like (�) in a following stage the respective polynomial
D1(x, y) of the new system (�) will have at most v0 − 2 terms with respect to y.

With the same procedure, we can see that the terms of the respective polynomials
D1(x, y) are decreasing, so that after a finite number of steps we reach a polynomial
D1(x, y) ≡ 0 or D1(x, y) ≡ r(x) for polynomial r(x) �≡ 0. If D1(x, y) ≡ 0, we
solve this case in the final step, or else if r(x) �≡ 0, it suffices to find the roots
of polynomial r(x); otherwise, we have some of the previous cases that we have
already examined.

Now we will examine the remaining case. In system (A), page 21, if v0 �= μ0
and n0 = m0, we have the first basic case where D(x0) �= 0.

Now, let m0 �= n0; that is, n0 < m0. If n0 ≥ v0, we have the first basic case. So,
we can examine the case v0 > n0. In this case we have

ym0−n0(βn0(x)y
n0 + βμ0(x)y

μ0 + q2(x, y)) = 0

⇔ βn0(x)y
m0 + βμ0(x)y

m0−n0+μ0 + ym0−n0q2(x, y) = 0

and instead of (A) we examine the system:

⎧
⎨

⎩

αm0(x)y
m0 + αv0(x)y

v0 + q1(x, y) = 0

βn0(x)y
m0 + βμ0(x)y

m0−n0+μ0 + ym0−n0q2(x, y) = 0
.

This system is of the case where m0 = n0, which we have already examined. So,
up to now, we have examined all the possible cases of the initial system except only
one, which we will examine now.

In the third basic case we will examine now the case where D1(x, y) ≡ 0. Then,
as in pages 23, 24 we take it that D2(x, y) ≡ 0, also that for every (x, y) ∈ R

2 there
exists c ∈ R, such that

αm0(x)y
m0+αv0(x)y

v0+q1(x, y) = c ·(βm0(x)y
m0+βv0(x)y

v0+q2(x, y)) (∗)

and c �= 0. The number c depends on the couple (x, y), so it is better to write
c(x, y), instead of c.

Now, we will consider system (A∗)

⎧
⎨

⎩

αm0(x)y
m0 + αv0(x)y

v0 + q1(x, y) = 0

αm0(x)αv0(x)βm0(x)βv0(x) �= 0
. (A∗)

Equality (∗) gives us that
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LA = LA∗ .

So, in order to solve system (A) it suffices to solve the “simpler” system (A∗) that
has only one equation.

Now, it is the time to exploit the unique supposition that we have not used up to
now.

That is, the set LA = LA∗ is finite. As we have seen in the prerequisites, there
are polynomials p(x, y) of two real variables that have a finite set of roots only.
For example, let:

p(x, y) = (x2 − 4)2 + (y2 − 9)2.

It is easy to see that

Lp(x,y) = {(2, 3), (2,−3), (−2, 3), (−2,−3)}.

We denote

R(x, y) = αm0(x)y
m0 + αv0(x)y

v0 + q1(x, y),

for simplicity.
So, we solve the system:

⎧
⎨

⎩

R(x, y) = 0

αm0(x)αv0(x)βm0(x)βv0(x) �= 0
. (A∗)

Of course, we get R(x, y) �≡ 0, because αm0 �≡ 0.
Now, it is the time to use the results of our prerequisites.
By the suppositions of the third case, we get αm0(x) �≡ 0 and m0 > 1, which

gives that R(x, y) is a pure polynomial that has a finite set of roots, nonempty.
We apply Corollary 4.16 by our prerequisites and we take it that 0 is the global

maximum or minimum of R(x, y).
Without loss of generality, we suppose that 0 is the global minimum of R(x, y).

This means that if we consider the function F : U→R (where
U = {(x, y) ∈ R

2 | αm0(x)αv0(x)βm0(x)βv0(x) �= 0} is an open subset of R2)
F((x, y)) = R(x, y) for every (x, y) ∈ U , then it holds F((x, y)) ≥ 0 for every
(x, y) ∈ U , and there exists (x0, y0) ∈ U , so that F((x0, y0)) = 0.

Let (x0, y0) ∈ R
2, so that (x0, y0) ∈ LA∗ . Then, we have F((x0, y0)) = 0

and function F has a global minimum in (x0, y0). Then, by Theorem 4.17, we get

∇F(x0, y0) = (0, 0). So we have
∂F

∂y
((x0, y0)) = 0.

We can now consider the system:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F((x, y)) = 0

∂F

∂y
((x, y)) = 0

αm0(x)αv0(x)βm0(x)βv0(x) �= 0

. (A1)

Of course we get LA1 ⊆ LA∗ = LA and by the above we also get L∗A ⊆ LA1 . So
we get

LA1 = LA.

So, in order to solve system (A∗) it suffices to solve system (A1). We need to write
a more analytic system (A1). We get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αm0(x)y
m0 + αv0(x)y

v0 + q1(x, y) = 0

m0αm0(x)y
m0−1 + v0αv0(x)y

v0−1 + ∂q1

∂y
(x, y) = 0

αm0(x)αv0(x)βm0(x)βv0(x) �= 0

. (A1)

Because m0 > v0 ⇒ m0 − 1 ≥ v0. This shows that system (A1) is the first basic
case, and so we can transfer system (A1) to a system that has smaller than m0 degree
with respect to y, which we can solve with the induction step. So, inductively we
have managed to solve the initial system in any case. So, we have completed our
second stage.

3.3 Third Stage

Let a polynomial

p(z) = α0 + α1z+ · · · + αv−1z
v−1 + αvz

v,

for v ∈ N, α1 ∈ C, for i = 0, 1, . . ., v, αv �= 0, of one complex variable.
We are now ready to solve completely the equation p(z) = 0, or in other words

to find the roots of polynomial p(z) with degree v.
We distinguish two cases:

(i) αi ∈ R for every i = 0, 1, . . ., v, and (ii) αi ∈ C, i = 0, 1, . . ., v. First, we prove
the following lemma.

Lemma 3.3.1 (A Well-Known Lemma) Let p(z), be a polynomial as above with
degree v = degp(z) ∈ N. Then, there exist two polynomials p1(x, y), p2(x, y) of
two real variables with real coefficients, so that it holds
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p(x + yi) = p1(x, y)+ ip2(x, y)

for every (x, y) ∈ R
2.

Proof We can prove this lemma with induction above the degree v of p(z). Let
p(z) = α0 + α1z, α0, α1 ∈ R, α1 �= 0. Let (x, y) ∈ R

2. We get

p(x + yi) = α0 + α1(x + yi) = (α0 + α1x)+ α1yi, for v = 1

so for p1(x, y) = α0 + α1x and p2(x, y) = α1y, the result holds.
For v = 2.

Let p(z) = α0 + α1z+ α2z
2, where α0, α1, α2 ∈ R, α2 �= 0.

Let z = x + yi, (x, y) ∈ R
2. We get

p(z) = p(x + yi) = α0 + α1(x + yi)+ α2(x + yi)2

= (α0 + α1 + α2x
2 − α2y

2)+ (α1y + 2α2xy)i,

so for p1(x, y) = α0 + α1x + α2x
2 − α2y

2 and p2(x, y) = α1y + 2αxy, the result
holds. We suppose now that the result holds for any 1 ≤ i ≤ k0 ∈ N. We can prove
that the result holds for k0 + 1.

Let

p(z) = α0 + α1z+ · · · + αn0z
k0 + αk0+1z

k0+1

be a polynomial with αk0+1 �= 0, αi ∈ R, for every i = 0, 1, . . ., k0 + 1.
Let (x, y) ∈ R

2. We have

p(z) = q(z)+ αk0+1z
k0+1,

and we distinguish two cases:

(a) q(z) �≡ 0. Then, through the induction step we can show that there exist
two polynomials p1(x, y), p2(x, y) of two real variables x and y with real
coefficients, so that:

q(x + yi) = p1(x, y)+ p2(x, y)i forevery (x, y) ∈ R
2. (1)

We get

αk0+1z
k0+1 =αk0+1(x + yi)k0+1 = αk0+1

k0+1∑

j=0

(
k0 + 1

j

)

xj · (yi)k0+1−j

=αk0+1

k0+1∑

j=0

(
k0 + 1

j

)

xjyk0+1−j ik0+1−j
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=
∑

k0 + 1− j = 2ρ
ρ ∈ N

α < j ≤ k0 + 1

αk0+1

(
k0 + 1

j

)

xjyk0+1−j (−1)(n0+1−j)/2

+
∑

k0 + 1− j = 2ρ + 1
ρ ∈ N

0 ≤ j ≤ k0 + 1

αk0+1x
jyk0+1−j ik0+1−j

= q1(x, y)+ iq2(x, y), (2)

where

q1(x, y) =
∑

k0 + 1− j = 2ρ
ρ ∈ N

0 ≤ j ≤ k0 + 1

αk0+1

(
k0 + 1

j

)

xjyk0+1−j (−1)(n0+1−j)/2 and

iq2(x, y) =
∑

k0 + 1− j = 2ρ + 1
ρ ∈ N

0 ≤ j ≤ k0 + 1

αk0+1x
jyk0+1−j ik0+1−j ,

where q1(x, y), q2(x, y) are two polynomials of the two real variables with real
coefficients because i2v+1 = i or −i, v ∈ N.

So, we get αk0+1z
k0+1 = q1(x, y)+ iq2(x, y). So, we get by (1) and (2),

p(z) = q(z)+ αk0+1z
k0+1 = (p1(x, y))+ p2(x, y)i)+ (q1(x, y)+ q2(x, y)i)

= (p1(x)y)+ q1(x, y))+ (p2(x, y)+ q2(x, y))i

and the result also holds for every (x, y) ∈ R
2.

(b) q(z) ≡ 0. Then, with the above equality (2) we get
p(z) = αk0+1z

k0+1 = q1(x, y)+ iq2(x, y) for every (x, y) ∈ R
2 and the result

also holds. So, by induction we see that the result holds in this case.

Now, we suppose that αi ∈ C for every i = 0, 1, . . ., v.
Let αj = βj + γj i for every j = 0, 1, . . ., v, where βj , γj ∈ R for every

j = 0, 1, . . ., v. Let z = x + yi ∈ C, (x, y) ∈ R
2. We get

p(z) = p(x + yi) = α0 + α1z+ · · · + αv−1z
v−1 + αvz

v

= (β0 + γ0i)+ (β1 + γ1i)z+ · · · + (βv−1 + γv−1i)z
v−1 + (βv + γvi)z

v

= (β0 + β1z+ · · · + βv−1z
v−1 + βvz

v)
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+ (γ0 + γ1z+ · · · + γv−1z
v−1 + γvz

v)i. (3)

In the previous case (i), we see that there exist polynomials p1(x, y), p2(x, y),
q1(x, y), q2(x, y) of the two real variables x and y with real coefficients, so that:

β0 + β1z+ · · · + βv−1z
v−1 + βvz

v = p1(x, y)+ p2(x, y)i (4)

and

γ0 + γ1z+ · · · + γv−1z
v−1 + γvz

v = q1(x, y)+ q2(x, y)i (5)

for every (x, y) ∈ R
2.

By (3), (4), and (5), we get

p(z) = (p1(x, y)+ p2(x, y)i)+ (q1(x, y)+ q2(x, y)i)i

= (p1(x, y)− q2(x, y))+ (p2(x, y)+ q1(x, y))i

and the result also holds. �
With the help of this lemma, we can now solve the equation p(z) = 0 as follows.
We examine the general case where

p(z) = α0 + α1z+ · · · + αv−1z
v−1 + αvz

v, v ∈ N, αv �= 0, αi ∈ C,

for every i = 0, 1, . . ., v.
With the help of the above lemma, we write

p(x + yi) = q1(x, y)+ q2(x, y)i, (∗)

for every (x, y) ∈ R
2, where q1(x, y), q2(x, y) are two polynomials of two real

variables x and y with real coefficients.
Let A be the set of roots of p(z). We consider the system:

⎧
⎨

⎩

q1(x, y) = 0

q2(x, y) = 0
. (B)

It is obvious from the above equality (∗) that A = LB . So, in order to find all the
roots of A, it suffices to find all the real roots of system (B).

So, we solve system B with the method we have developed in the second stage,
and thus we find all the roots of polynomial p(z).

Our method has been completed now because our supposition (S) (that system
(B) has a solution) is satisfied because the same holds for (A). So, in all the cases
we can reduce our initial system to a system in which the two polynomials have a
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lower degree than that of the polynomials of the initial system. Thus, we apply the
induction step and the system is solved inductively.

4 Prerequisites

(a) Prerequisites from Algebra.
We use some basic tools and results from the theory of polynomials.
We denote C[z] as the set of complex polynomials. We denote R[x] as the

set of real polynomials, which is the set of polynomials of one real variable with
coefficients in the set of real numbers R.

We begin with the following basic result, which is a simple implication of the
algorithm of Euclidean division.

Proposition 4.1 Let p(z) ∈ C[z], degp(z) ≥ 1. The number r ∈ C is a root of
p(z) if and only if there exists a unique polynomial q(z) ∈ C[z], so that:

p(z) = (z− r)q(z). �

We need the definition of multiplicity of a root of a polynomial.

Definition 4.2 Let p(z) ∈ C[z]. Let ρ ∈ C be a root of p(z). The natural number m
is a multiplicity of the root ρ of p(z) if polynomial (z− ρ)m divides p(z), whereas
polynomial (z− ρ)m+1 does not divide p(z).

As consequence of Proposition 4.1, there is the following proposition.

Proposition 4.3 Every root of a polynomial p(z) ∈ C[z] has a multiplicity, which
is unique. �

We state now the fundamental theorem of algebra, whose proof is not simple and
needs some tools from analysis.

Theorem 4.4 Every complex polynomial p(z), with degp(z) ≥ 1, has at least one
root. �

From Theorem 4.4 and Proposition 4.1, we get the following fundamental result.

Theorem 4.5 Let p(z) ∈ C[z] be a complex polynomial with degp(z) ≥ 1. Then
p(z) has a finite number of different roots.

Let ρ1, ρ2, . . ., ρv be the different roots of p(z) with respect to multiplicities
m1,m2, . . ., mv . Then, the following formula holds:

p(z) = α · (z− ρ1)
m1(z− ρ2)

m2 · · · (z− ρv)
mv ,

where α �= 0 and α is the coefficient of the monomial of greater grade m0 =
degp(z), and m0 = m1 +m2 + · · · +mv . �
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Now, we describe a simple algorithm in order to find the multiplicity of a root of
a complex polynomial.

4.1 An Algorithm for the Multiplicity of a Root

Let p(z) ∈ C[z] be a complex polynomial of degree degp(z) ≥ 1.
By Theorem 4.5, polynomial p(z) has a finite number of roots. Let ρ be a root of

p(z). We describe with details a way in order to find the multiplicity of ρ.
By Proposition 4.1, there exists a unique polynomial q(z), so that:

p(z) = (z− ρ)q(z). (1)

We find the polynomial q(z) through the algorithm of Euclidean division, for
example, using Horner’s scheme.

Afterwards, we compute the number q(ρ), for example, with Horner’s scheme.
If q(ρ) �= 0, then the root ρ has multiplicity 1. In order to prove this, we suppose that
the root ρ does not have multiplicity 1. By Proposition 4.3, the root ρ has a unique
multiplicity, m ∈ N (see Definition 4.2). Because of m �= 1, we have that m ≥ 2. By
the definition of multiplicity, we have that polynomial (z − ρ)m divides p(z). This
means (by the definition of division) that there exists a polynomial R(z) ∈ C[z],
such that:

p(z) = (z− ρ)mR(z). (2)

By relations (1) and (2), we get

(z− ρ)q(z) = (z− ρ)mR(z)⇔ (z− ρ)(q(z)− (z− ρ)m−1R(z) = 0. (3)

The expressions z−ρ and q(z)−(z−ρ)m−1R(z) are polynomials in C[z] of course,
because m ≥ 2 (as we have seen). Because of z− ρ �≡ 0, we take it that

q(z)− (z− ρ)m−1R(z) = 0, (4)

because the Ring of polynomials C[z] is an integer neighborhood, as is well known
from Algebra. Relation (4) gives q(ρ) = 0 (because m ≥ 2), which is false because
we have supposed that q(ρ) �= 0. So, if q(ρ) �= 0, then root ρ has multiplicity 1.

Whereas if q(ρ) = 0, then through Proposition 4.1, we take it that there exists a
polynomial q1(z) ∈ C[z], so that:

q(z) = (z− ρ)q1(z). (5)

By (1) and (5), we take that
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p(z) = (z− ρ)2q1(z). (6)

Relation (6) tells us that polynomial (z − ρ)2 divides p(z). Afterwards, we find
polynomial q1(z) by (5) with the Euclidean Algorithm, for example, from Horner’s
scheme, because we have found polynomial q(z) previously. After that, we compute
number q1(ρ), for example, with Horner’s scheme. If q1(ρ) �= 0, then the
multiplicity of ρ is 2, with a proof similar to what we had found previously. Or
otherwise if q1(ρ) = 0, then again through Proposition 4.1 there exists a polynomial
q2(z) ∈ C[z], so that:

q1(z) = (z− ρ)q2(z). (7)

Through (6) and (7), we take it that

p(z) = (z− ρ)3q2(z). (8)

We inductively continue this procedure of finding a sequence of polynomials

qj (z) ∈ C[z],

for j = 1, 2, . . ., where qj (z) = (z− ρ)qj+1(z), for j = 1, 2, . . ., and

p(z) = (z− ρ)j+1qj (z).

If p(z) = (z − ρ)j+1qj (z) for j ∈ N (where qj (ρ) �= 0), then the multiplicity of
ρ is j + 1, with a proof similar to what we have shown previously. This procedure
stops if some natural number j ∈ N, or if degp(z) = v0 ∈ N, then we take it that
p(z) = (z − ρ)v0+1qv0(z), where qv0(z) �= 0 (or else p(z) = 0, which is false
because degp(r) ≥ 1, by supposition), so deg((z− ρ)v0+1qv0(z)) ≥ v0 + 1, which
is false of course because degp(z) = v0.

That is, we take it that p(z) = (z− ρ)j+1qj (z) for some j ∈ N, j < v0 − 1, and
qj (ρ) �= 0, which gives that the multiplicity of ρ is j + 1 < v0; otherwise, we take
it that

p(z) = (z− ρ)v0qv0−1(z). (9)

Relation (9) gives that qv0−1(z) �= 0 (or else p(z) = 0, which is false of course), and
by relation (9), we take it also that qv0−1(z) is a constant polynomial with value, say
c0. That is, p(z) = (z − ρ)v0c0. Of course, polynomial (z − ρ)v0+1 cannot divide
p(z), because this polynomial has a degree deg((z − ρ)v0+1) > v0 = degp(z),
which gives that multiplicity of ρ is v0 (by the definition of multiplicity). So we have
described a complete algorithm that gives us the multiplicity of a root of a complex
polynomial. �
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Remark 4.7 We can combine Proposition 4.1 with Theorem 4.4 and the previous
algorithm (and of course Proposition 4.3), in order to prove Theorem 4.5. We leave
it as an easy exercise for the reader. So far we have developed all we need from
polynomials of one complex variable. We also obtained some basic results from
Linear Algebra. Here we will now consider the following linear system of two
equations:

⎧
⎨

⎩

α1x + β1y = γ1 (1)

α2x + β2y = γ2 (2)
, (A)

where αi, βi, γi ∈ C for i = 1, 2. We consider the determinants D,Dx,Dy where

D =
∣
∣
∣
∣
∣

α1 β1

α2 β2

∣
∣
∣
∣
∣
= α1β2 − α2β1,

Dx =
∣
∣
∣
∣
∣

γ1 β1

γ2 β2

∣
∣
∣
∣
∣
= γ1β2 − β1γ2,Dy =

∣
∣
∣
∣
∣

α1 γ1

α2 γ2

∣
∣
∣
∣
∣
= α1γ2 − α2γ1.

When D �= 0, then system (A) has only one solution (x0, y0), where x0 = Dx

D
,

y0 = Dy

D
. When D = 0 and Dx �= 0, or Dy �= 0, then system (A) does not have

any solution, whereas when D = Dx = Dy = 0, then system (A) has an infinite
number of solutions except only in the case where α1 = α2 = β1 = β2 = 0 and
only one of the numbers γ1, γ2 is nonzero. We need the case where D �= 0 and the
case where D = Dx = Dy = 0. We consider the case where D = Dx = Dy = 0.
We suppose that system (A) is a pure system of two variables x and y; that is, we
suppose that at least one of the numbers α1, α2 is also nonzero. That is, α1 �= 0 or
α2 �= 0 and β1 �= 0 or β2 �= 0; otherwise, we do not have a system of equations of
two different variables.

We have two cases:

(i) One from the six numbers αi, βi, γi , i = 1, 2 is zero.
Let α1 = 0 (3). We have D = 0; that is, α1β2 − α2β1 = 0 ⇒ α1β2 = α2β1

(4). Through (3) and (4), we have α2β1 = 0 (5). Because of α1 = 0 and our
hypothesis, we have α �= 0 (6). By (5) and (6), we get β1 = 0 (7).

Through (3) and the fact that Dy = 0, we get in a similar way that γ1 = 0.
That is, Eq. (1) is the equation 0 · x + 0 · y = 0, with set of solutions in the set
R

2. This means that system (A) is equivalent to Eq. (2) of (A) only. If β1 = 0,
or γ1 = 0, we get in a similar way that α1 = β1 = γ1 = 0 and we have similarly
the same implication; that is, system (A) is equivalent to Eq. (2) of (A) only. If
α2 = 0, or β2 = 0, or γ2 = 0, we take it that α2 = β2 = γ2 = 0 in an analogous
way and finally system (A) is equivalent to Eq. (1) of (A) only.
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Now, we suppose that α1β1γ1α2β2γ2 �= 0; that is, none of the six numbers

αi, βi, γi , i = 1, 2, is zero. We have D = 0 ⇔ α1β2 − α2β1 = 0 ⇔ α2

α1
=

β2

β1
(α1 �= 0, β1 �= 0). We set λ = α2

α1
= β2

β1
(8).

We have Dx = 0 ⇔ γ1β2 − β1γ2 = 0 ⇔ λ = β2

β1
= γ2

γ1
(9). With (8)

and (9), we get α2 = λα1, β2 = λβ1, λ2 = λγ1; that is, α2x + β2y = γ2 ⇔
(λα1)x + (λβ1)y = (λγ1) ⇔ λ · (α1x + β1y) = λγ1

λ�=0⇔ α1x + βy = γ1; that
is, Eqs. (1) and (2) of (A) are equivalent, which means that they have the same
set of solutions, meaning that system (A) is equivalent to one only from Eqs. (1)
and (2), whichever of the two.

So, we have proved that in the case of D = Dx = Dy = 0, system (A) has
an infinite number of solutions and it is equivalent to only one from Eqs. (1) and
(2). So we have stated our prerequisites from Algebra.

(b) Prerequisites from Analysis
As it is well known, by Galois theory, that there are no formulas that give the roots
of an arbitrary polynomial as a function of its coefficients with radicals. So, for an
arbitrary polynomial the only way to find its roots is to approximate them with a
numerical method. Perhaps, the simplest numerical method for algebraic equations
is the bisection method, which is presented in all classical books of Numerical
Analysis.

It is a simple method, and here we have based in it in our problem. The bisection
method has very weak suppositions, and it is convenient for secondary students also.

Let α, β ∈ R, α < β, and f : [α, β]→R be a continuous function. We suppose
that f (α) ·f (β) < 0. Then, function f has a root, at least in the interval (α, β), and
bisection method approximates a root of f in (α, β), as closely as we want with a
specific minor error.

There are many different numerical methods that find the roots in a specific
interval. We will not discuss this subject. This is a vast subject in Numerical
Analysis. In this text, it is enough for us to find only one root in a specific interval
and approximate it using bisection method.

The solution to all the real roots of a polynomial will be based on the following
basic lemma.

Basic Lemma 4.8 Let v ∈ N, v ≥ 3, p(x) = αvx
v + αv−1x

v−1 + · · · + α1x + α0,
be a polynomial p(x) ∈ R[x], with degree degp(x) = v.

Let ρ1, ρ2, . . ., ρk be all the different real roots of polynomial p′(x), k ∈ N,
k ≥ 2, ρi �= ρj , for all i, j ∈ {1, 2, . . ., k}, i �= j .

Then, we can find, with an algorithm, all the real roots of p(x) with their
multiplicities.

Proof Let L = {ρ1, ρ2, . . ., ρk} be the set of all real roots of p′(x). We suppose,
also, without loss of generality that ρ1 < ρ2 < · · · < ρk .
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Let i0 ∈ {1, . . ., k − 1}. Then p′(x) > 0 for every x ∈ (ρi0 , ρi0+1) or p′(x) <
0 for every x ∈ (ρi0 , ρi0+1). This gives that p is a strictly decreasing or strictly
increasing function on [ρi0, ρi0+1]. If p(ρi0) = 0, then ρi0 is the unique root of p in
[ρi0 , ρi0+1]. The same holds if p(ρi0+1) = 0; that is, ρi0+1 is the unique root of p
in [ρi0 , ρi0+1], if p(ρi0+1) = 0.

Of course polynomial p cannot have the numbers ρi0 and ρi0+1 as roots
simultaneously, by its monotonicity. We suppose now that p(ρi0) · p(ρi0+1) �= 0.
Then, if p(ρi0) · p(ρi0+1) > 0, polynomial p does not have any root in [ρi0, ρi0+1].
If p(ρi0) · p(ρi0+1) < 0, then p has one root exactly in the interval [ρi0 , ρi0+1], and
more specifically this root belongs in (ρi0 , ρi0+1).

Applying the bisection method, we find this root, because the suppositions of
bisection method are satisfied now. We do the same in every interval [ρi, ρi+1].

So we find all the roots of p in the interval [ρ1, ρk]. We examine the roots in
[ρk,+∞). Because αv �= 0, we have two cases:

(i) If αv > 0, then lim
x→+∞p(x) = +∞.

Then p is a strictly increasing function in [ρk,+∞).

(a) p(ρk) = 0, then ρk is the unique root of p in [ρk,+∞).
(b) If p(ρk) > 0, then p does not have any root in [ρk,+∞).
(c) If p(ρk) < 0, then p has one root exactly (say ρk+1) in [ρk,+∞) and more

specifically ρk+1 ∈ (ρk,+∞).

Because lim
x→+∞p(x) = +∞, there exists some x0 ∈ R, x0 > ρk , so that

p(x0) > 0. Then p(ρk) · p(x0) < 0 and thus ρk+1 ∈ (ρk, x0).
Applying bisection method in [ρk+1, x0], we approximate the root ρk+1.

Later, we will see how we compute a number like x0, in order to apply bisection
method.

(ii) If αv < 0, then lim
x→+∞p(x) = −∞. Polynomial p is a strictly decreasing

function in [ρk,+∞).

(a) If p(ρk) = 0, then ρk is the unique root of p in [ρk,+∞).
(b) If p(ρk) < 0, then p does not have any root in [ρk,+∞).
(c) If p(ρk) > 0, then p has unique one root in [ρk,+∞) (say ρk+1) and more

specifically ρk+1 ∈ (ρk,+∞).

Because lim
x→+∞p(x) = −∞, there exists some x0 ∈ (ρk,+∞), so that

p(x0) < 0.
Then, p(ρk) · p(x0) < 0, and ρk+1 ∈ (ρk, x0), and applying bisection

method, we approximate the unique root ρk+1 in (ρk, x0). Now we examine
the roots in (−∞, ρ1]. Whether p(ρ1) = 0, then ρ1 is the unique root of p in
(−∞, ρ1].

Now we suppose that p(ρ1) �= 0. We examine two cases:
(i) lim

x→−∞p(x) = +∞.
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This happens when v is even and αv > 0, or v is odd and αv < 0. Then p is
a strictly decreasing function in (−∞, ρ1].

(i), (1) If p(ρ1) > 0, then p does not have any root in (−∞, ρ1].
(i), (2) If p(ρ1) < 0, then p has a unique root in (−∞, ρ1] (say ρk+2) and

more specifically ρk+2 ∈ (−∞, ρ1). Because lim
x→−∞p(x) = +∞, there exists

some
x0 < ρ1, so that p(x0) > 0. Then ρk+2 ∈ (x0, ρ1) and applying bisection
method in [x0, ρ1], we approximate root ρk+2.

(ii) lim
x→−∞p(x) = −∞. This is happened when v is even and αv < 0, or v is odd

and αv > 0. Then p is a strictly increasing function in (−∞, ρ1].
We have two cases:
(ii), (1)p(ρ1) < 0. Then, p does not have any root in (−∞, ρ1].
(ii), (2) p(ρ1) > 0. Then p has unique root in (−∞, ρ1] (say ρk+2) and more

specifically ρk+2 ∈ (−∞, ρ1). Because lim
x→−∞p(x) = −∞, there exists some

x0 < ρ1, such that p(x0) < 0. Then p(x0) · p(ρ1) < 0 and ρk+2 ∈ (x0, ρ1).
Applying bisection method in [x0, ρ1], we approximate root ρk+2. All the

implications of this lemma are easy to prove and are left as an easy exercise for
the interested reader. The proofs are of secondary school.

Corollary 4.9 Basic Lemma 4.8 holds again, in the case when polynomial p′ has
only one root.

Proof The proof is similar to that of basic lemma for the intervals (−∞, ρ1] and
[ρ1,+∞), where p′(ρ1) = 0. �
Corollary 4.10 Let v ∈ N, v ≥ 3, p(x) = αvx

v + αv−1x
v−1 + · · · + α1x + α0, be

a polynomial p(x) ∈ R[x], with degree degp(x) = v.
We suppose that p′ does not have any root. Then p has unique real root and we

can construct an algorithm in order to find it.

Proof Of course p′ is a polynomial of even degree degp′ = v − 1, so p is a
polynomial of odd degree. Thus p has, at least, one real root. Because p′ does not
have any root, we have p′(x) �= 0, for every x ∈ R. Thus, p′(x) > 0 for every
x ∈ R, or p′(x) < 0 for every x ∈ R, or else if there exist α, β ∈ R, so that
p′(α) < 0 and p′(β) > 0 (of course α �= β), then because p′ is a continuous
function (as a polynomial) and p′(α) · p′(β) < 0, we take it that there exists
γ ∈ (α, β) (if α < β) or γ ∈ (β, α) (if β < α), so that p′(γ ) = 0; that is, a
contradiction because p′(x) �= 0 for every x ∈ R. Thus, p is a strictly increasing
function in R, if p′(x) > 0, for every x ∈ R, or else p is a strictly decreasing
function in R if p′(x) < 0 for every x ∈ R. If p is a strictly increasing function,
then lim

x→+∞p(x) = +∞ and lim
x→−∞p(x) = −∞, or else if p is a strictly decreasing

function in R, then lim
x→+∞p(x) = −∞ and lim

x→−∞p(x) = +∞.

Polynomial p is a strictly increasing function if αv > 0, or else if αv < 0, then p
is a strictly decreasing function.
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If αv > 0, then because lim
x→+∞p(x) = +∞, there exists y0 ∈ R, so that

p(y0) > 0, and because lim
x→−∞ = −∞, there exists x0 ∈ R, x0 < y0, so that

p(x0) < 0. So p(x0) · p(y0) < 0 and p has unique root in R (say ρ), so that
ρ ∈ (x0, y0).

If αv < 0, then because lim
x→+∞p(x) = −∞, there exists y0 ∈ R, so that p(y0) <

0. Because lim
x→−∞p(x) = +∞, there exists x0 ∈ R, x0 < y0, so that p(x0) > 0.

Thus p(x0) · p(y0) < 0, and p has unique root in R (say ρ), so that ρ ∈ (x0, y0).
We will see later how we compute numbers x0, y0 as above.
In any of the cases above we apply the bisection method in the interval [x0, y0],

to find the unique real root of p. �
Remark 4.11 The multiplicity of a root is found with the algebraic algorithm 3.6.

However, we can find the multiplicity of a root in an analytic way.
More specifically,

Let p(x) ∈ C[x] be a polynomial and ρ be a root of p, where degp(x) = v ∈ N.
Then, there exists a unique natural number k ∈ N ∪ {0} k ≤ v − 1, so that:

p(ρ) = 0, p′(ρ) = 0, . . ., p(k)(ρ) = 0 and p(k+1)(ρ) �= 0, that is p(i)(ρ) = 0, for
all i = 0, 1, . . ., k and p(k+1)(ρ) = 0, where p(0)(ρ) = p(ρ).

The natural number k + 1 is the multiplicity of root ρ of p. (Of course we have
always p(v)(ρ) �= 0.)
This is a classical result in calculus, which is proven easily.

Now, we cover the gap from basic Lemma 4.8, computing a number like x0 in
this lemma.

Remark 4.12 Let p(x) ∈ R[x] be a real polynomial:

p(x) = α0 + α1x + · · · + αv−1x
v−1 + αvx

v, v = degp(x), v ≥ 3.

We suppose that αv > 0 and that p′(x) has real roots.

Proof Let ρ be the greater real root of p′(x). We suppose that p(ρ) < 0. We
consider an arbitrary real number x0, so that x0 > ρ, x0 > 1 and

x0 >
|α0| + |α1| + · · · + |αv−1|

αv
. We prove that p(x0) > 0.

We have of course −|y| ≤ y for every y ∈ R (1). We apply (1) for

y = α0

xv
+ α1

xv−1 + · · · +
αv−1

x
(1)

for some x ∈ R− {0} and we have

−
∣
∣
∣
∣
α0

xv
+ α1

xv−1 + · · · +
αv−1

x

∣
∣
∣
∣ ≤

α0

xv
+ α1

xv−1 + · · · + αv−1

x
. (2)

Adding the number αv in two members of (2), we get
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αv −
∣
∣
∣
∣
α0

xv
+ α1

xv−1 + · · · +
αv−1

x

∣
∣
∣
∣ ≤ αv + α0

xv
+ α1

xv−1 + · · · + av−1

x
. (3)

By the triangle inequality, we take for x > 0

∣
∣
∣
∣
α0

xv
+ α1

xv−1
+ · · · + αv−1

x

∣
∣
∣
∣ ≤

∣
∣
∣
∣
α0

xv

∣
∣
∣
∣+
∣
∣
∣
∣
α1

xv−1

∣
∣
∣
∣+ · · · +

∣
∣
∣
∣
αv−1

x

∣
∣
∣
∣

⇔ −
( |α0|
xv

+ |αv|
xv−1 + · · · + |αv−1|

x

)

≤ −
∣
∣
∣
∣
α0

xv
+ α1

xv−1
+ · · · + αv−1

x

∣
∣
∣
∣. (4)

Adding the number αv in two members of (4), we get

αv −
( |α0|
xv

+ |α1|
xv−1 + · · · + |αv−1|

x

)

≤ αv −
∣
∣
∣
∣
α0

xv
+ α1

xv−1 + · · · + αv−1

x

∣
∣
∣
∣,

for x > 0. (5)

Let some x > 1. Then we have

x ≥ x, x2 ≥ x, . . ., xv ≥ x ⇒ 1

x
≤ 1

x
,

1

x2
<

1

x
, . . .,

1

xv
<

1

x

⇒ |αv−1|
x

≤ |αv−1|
x

,
|αv−2|
x2

≤, |αv−2|
x

, . . .,
|α1|
xv−1

≤ |α1|
x

,
|α0|
xv

≤ |α0|
x

.

Adding the above inequalities in pairs, we get

|αv−1|
x

+ · · · + |α1|
xv−1 +

|α0|
xv

≤ |α0| + |α1| + · · · + |αv−1|
x

⇒

− |α0| + |α1| + · · · + |αv−1|
x

≤ −
( |αv−1|

x
+ · · · + |α1|

xv−1
+ |α0|

xv

)

⇒

αv − |α0| + |α1| + · · · + |αv−1|
x

≤ αv −
( |αv−1|

x
+ · · · + |α1|

xv−1 +
|α0|
xv

)

. (6)

Through inequalities (3), (5), and (6), we get

αv− |α0| + |α1| + · · · + |αv−1|
x

≤ αv+ α0

xv
+ α1

xv−1 +· · ·+
αv−1

x
for x > 1. (7)

Now, for every x > 1, x >
|α0| + |α1| + · · · + |αv−1|

αv
, we take
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αv >
|α0| + |α1| + · · · + |αv−1|

x
⇒ αv − |α0| + |α1| + · · · + |αv−1|

x
> 0. (8)

Through (7) and (8), we take it that for every x > 1, x >
|α0| + |α1| + · · · + |αv−1|

αv
we get

αv + αv−1

x
+ · · · + α1

xv−1 +
α0

xv
> 0. (∗)

This gives

xv ·
(

αv + αv − 1

x
+ · · · + α1

xv−1
+ α0

xv

)

> 0

⇔ p(x) > 0 (by the definition of p(x)). (9)

We apply (9) for the number x0 ∈ R, so that x0 > ρ, x0 > 1 and

x0 >
|α0| + |α1| + · · · + |αv−1|

αv
and we take it that p(x0) > 0.

Thus, we have p(ρ) · p(x0) < 0. This means that the unique real root of p(x) in
[ρ,+∞) belongs in (ρ, c0). Applying the bisection method in the interval [ρ, x0],
we compute the unique real root x∗0 of p(x) in [ρ,+∞); that is, x∗0 ∈ (ρ, x0). Of
course if p(ρ) > 0, polynomial p does not have any real root in [ρ,+∞) as we
have seen in basic Lemma 4.8, and if p(ρ) = 0, then ρ is the unique real root of p
in [ρ,+∞).

Now, we suppose that αv < 0 and that p′(x) has real roots.
Let ρ be the greatest real root of p′(x). We suppose that p(ρ) > 0. We consider

an arbitrary real number x0, so that x0 > ρ, x0 > 1, and

x0 >
|α0| + |α1| + · · · + |αv−1|

−αv = |α0| + |α1| + · · · + |αv−1|
|αv| . (10)

By (10), we get (because |αv| > 0 and x > 0)

|αv| > |α0| + |α1| + · · · + |αv−1|
x0

⇒ αv + |α0| + |α1| + · · · + |αv−1|
x0

< 0.

(11)
Let x > 1. Because of x > 1, we get

x ≥ x, x2 ≥ x, . . ., xv−1 ≥ x, xv ≥ x ⇒ 1

xv
≤ 1

x
,

1

xv−1 ≤
1

x
, . . .,

1

x
≤ 1

x
⇒

|α0|
xv

≤ |α0|
x

,
|α1|
xv−1 ≤

|α1|
xv−1 , . . .,

|αv−1|
x

≤ |αv−1|
x

.

Adding by pairs the previous inequalities, we get
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|α0|
xv

+ |α1|
xv−1 + · · · + |αv−1|

x
≤ |α0|

x
+ |α1|

x
+ · · · + αv−1|

x
⇒

αv + |α0|
xv

+ αv|
xv−1 + · · · +

|α0 − 1|
x

≤ αv + |α0| + |α1| + · · · + |αv−1|
x

. (12)

Of course we get

α0 ≤ |α0|, α1 ≤ |α1|, . . ., αv−1 ≤ |αv−1| x>07⇒ α0

xv
≤ |α0|

xv
,

α1

xv−1

≤ |α1|
xv−1 , . . .,

αv−1

x
≤ |αv−1|

x

and adding by pairs the previous inequalities, we get

α0

xv
+ α1

xv−1 · · · +
αv−1

x
≤ |α0|

xv
+ |α1|

xv−1 + · · · +
|αv−1|
x

⇒

αv + α0

xv
+ α1

xv−1 + · · · +
αv−1

x
≤ αv + |α0|

xv
+ |α1|

xv−1 + · · · + |αv−1|
x

. (13)

Of course as we have seen in basic Lemma 4.8 if p(ρ) < 0, then p does not have
any root in [ρ,+∞), and if p(ρ) = 0, then number ρ is the unique real root of p in
[ρ,+∞). So far we have seen how we compute the unique real root of p (if any) in
[ρ,+∞), when ρ is the greatest real root of p′.

In a similar way we compute the unique real root of p in (−∞, ρ∗] (if any),
where ρ∗ is the smallest real root of p′. It suffices to observe the following.

We simply write p(x) = p(−(−x)) and we find easily a polynomial q ∈ R[x],
such that p(x) = q(−x) (it is trivial to find such a polynomial q).

Now, for x0 > 1, x0 > ρ, and x0 >
|α0| + |α1| + · · · + |αv−1|

|αv| the previous

inequalities (11), (12), and (13) hold simultaneously for x = x0; thus, we get

αv + αv−1

x0
+ · · · + α1

xv−1
0

+ α0

av0
< 0 ⇒

xv0

(

αv + αv−1

x0
+ · · · + α1

xv−1
0

+ α0

xv0

)

< 0 ⇒ p(x0) < 0 (by the definition of p).

So, we get p(ρ) · p(x0) < 0 and p has a root exactly in (ρ, x0) (say x∗0 ), where x∗0
is the unique real root of p in [ρ,+∞).

We apply the bisection method in the interval [ρ, x0] and we compute the unique
real root x∗0 ∈ (ρ, x0) of p in [ρ,+∞).

Now we suppose that p has real roots, and let ρ be the smallest real root of p. Let
r be an arbitrary real root of p. Then p(r) = 0 and by (14), we take that q(−r) = 0;
that is, −r is a real root of q. This gives that −ρ is the biggest real root of q.
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By (14), we also get that p′(x) = −q ′(−x), which gives that if α is a real root
of p′, then −α is a real root of q ′. Thus, because by supposition p′ has real roots,
the same holds for q ′. Then, we apply the previous procedure and we compute the
greatest real root of q (say −ρ), which means that ρ is the smallest real root of p.
Thus, we compute the smallest real root of p also in any case. Now, we consider a
polynomial p ∈ R[x], with degp(x) = v ∈ N, v ≥ 3, so that polynomial p′ does not
have any real root. Because p′ does not have any root and degp′(x) ≥ 2 (because
degp(x) ≥ 3), we conclude that p′ is a polynomial of even degree (because any
polynomial of odd degree has a real root at least). This means that p is a polynomial
of odd degree that has one real root at least. Because p′(x) �= 0 for every x ∈ R,
we take it that p′(x) > 0 for every x ∈ R or p′(x) < 0 for every x ∈ R. If αv > 0,
then p′(x) > 0 for every x ∈ R and p is a strictly increasing function in R, such
that lim

x→+∞p(x) = +∞ and lim
x→−∞p(x) = −∞. Thus, there exists x0 < 0 so that

p(x0) < 0 and y0 > 0 so that p(y0) > 0, which gives that p has a real root in
(x0, y0), say ρ. Because p is a strictly monotonous function, we take it that the root
ρ is the unique real root of p.

We can now compute some numbers x0, y0 with the above properties. By
inequality (∗) in page 40, we take it that if x ∈ R, so that x > 1 and x >
|α0| + |α1| + · · · + |αv−1|

αv
, then we get αv + αv − 1

x
+ · · · + α1

xv−1 +
α0

xv
> 0. We

choose some y0 > 1, so that y0 >
|α0| + |α1| + · · · + |αv − 1|

αv
, then by inequality

(∗) in page 40 we get

αv + αv − 1

y0
+ · · · + α1

yv−1
0

+ α0

yv0
> 0 ⇒

yv0

(

αv + αv − 1

y0
+ · · · + α1

yv−1
0

+ · · · + α0

yv0

)

> 0 ⇔ p(y0) > 0. (15)

Now, let some x < −1. Then we have (x �= 0)

α0

xv
≥ −

∣
∣
∣
∣
α0

xv

∣
∣
∣
∣,

α1

xv−1
≥ −

∣
∣
∣
∣
α1

xv−1

∣
∣
∣
∣, . . .,

αv−1

x
≥ −

∣
∣
∣
∣
αv−1

x

∣
∣
∣
∣.

Adding these inequalities, we get

α0

xv
+ α1

xv−1 + · · · + αv − 1

x
≥ −

(∣
∣
∣
∣
α0

xv

∣
∣
∣
∣+
∣
∣
∣
∣
α1

xv−1

∣
∣
∣
∣+ · · · +

∣
∣
∣
∣
αv−1

x

∣
∣
∣
∣

)

. (16)

We get also

|x| > 1 ⇒ |x| ≥ |x|, |x2| > |x|, . . ., |xv−1| > |x|, |xv| > |x|
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⇒ 1

|x| ≤
1

|x| , . . .,
1

|xv−1| <
1

|x| ,
1

|xv| <
1

|x|

⇒
∣
∣
∣
∣
αv−1

x

∣
∣
∣
∣ ≤

∣
∣
∣
∣
αv−1|
|x| , . . .,

∣
∣
∣
∣
α1

xv−1

∣
∣
∣
∣ <

|α1|
|x| ,

∣
∣
∣
∣
α0

xv

∣
∣
∣
∣ <

∣
∣
∣
∣
α0

x

∣
∣
∣
∣

⇒ −
∣
∣
∣
∣
αv−1

x

∣
∣
∣
∣ ≥ −

∣
∣
∣
∣
αv−1

x

∣
∣
∣
∣, . . .,−

∣
∣
∣
∣
α1

xv−1

∣
∣
∣
∣ > −|α1|

|x| ,−
∣
∣
∣
∣
α0

xv

∣
∣
∣
∣ > −

∣
∣
∣
∣
α0

x

∣
∣
∣
∣.

Adding by pairs the previous inequalities, we get

−
(∣
∣
∣
∣
α0

xv

∣
∣
∣
∣+
∣
∣
∣
∣
α1

xv−1

∣
∣
∣
∣+ · · · +

∣
∣
∣
∣
αv−1

x

∣
∣
∣
∣

)

≥ −|α0| + |α1| + · · · + |αv−1|
|x| . (17)

By (16) and (17), we get

αv + αv−1

x
+ · · · + αv

xv−1
+ α0

xv
≥ αv + |α0| + |α1| + · · · + |αv−1|

|x| (18)

for every x ∈ R, x < −1.
Now we get x0 ∈ R, so that:

x0 < −1 and x0 < −|α0| + |α1| + · · · + |αv−1|
αv

. (19)

Then by (19), we get

− x0 >
|α0| + |α1| + · · · + |αv−1|

αv
> 0 (becauseαv > 0)

⇒ |x0| > |α0| + |α1| + · · · + |αv−1|
αv

⇒ αv − |α0| + |α1| + · · · + |αv−1|
|x0| > 0. (20)

So, for x < −1, x0 < −|α0| + |α1| + · · · + |αv−1|
αv

we get from (20) that

αv + αv−1

x0
+ · · · + α1

xv−1
0

+ α0

xv0
> 0 ⇒

(because x0 < 0 and v is odd xv0 < 0)

xv0 · · ·
(

αv + αv−1

x0
+ · · · + α1

xv−1
0

+ α0

xv0

)

< 0 ⇔ p(x0) < 0.
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Thus, for some x0 < −1, x0 < −|α0| + |α1| + · · · + |αv−1|
αv

we get p(x0) < 0

(21).
So with (15) and (12), we get p(x0) · p(y0) < 0, and by applying the bisection

method, we can compute the unique real root ρ of p, so that ρ ∈ (x0, y0).
Finally in the case of αv < 0, we consider the polynomial −p(x). Then,

(−p)′(x) = −p′(x) �= 0 for every x ∈ R

and the coefficient of the monomial of greater degree of −p is positive now. We
apply the previous for −p and we compute the unique real root ρ of −p, which is
the unique real root of p also.

So in this remark we have covered the gap, we have left from basic Lemma 4.8
and Corollaries 4.9 and 4.10, and we have computed specific numbers x0, y0. For
the sequel, we also need some tools from real polynomials of two real variables.

Before this, let us give some specific examples for the roots of polynomials.
As it is well known, from elementary calculus, any polynomial of odd degree has

a real root at least.
On the contrary, there are many polynomials of any even degree that do not have

any real root. For example, let p(x) be any polynomial that is nonconstant, let k ∈ N,
and θ > 0. Then polynomial q(x) = p(x)2k + θ does not have any real root, as we
can easily see, and has degree 2k · v, where v = degp(x).

Of course for every finite set of real numbers A = {ρ1, ρ2, . . ., ρv}, v ∈ N, ρi �=
ρj , for i, j ∈ {1, 2, . . ., v}, i �= j , polynomial p(x) = (x − ρ1)(x − ρ2). . .(x − ρv)

has roots the numbers ρi , i = 1, . . ., v, and polynomial

q(x) = ((x − ρ1)(x − ρ2). . .(x − ρv))
2k = p(x)2k

is a polynomial of even degree degq(x) = 2kv, with roots the numbers ρi ,
i = 1, 2, . . ., v, also. Now we consider polynomials of two real variables with real
coefficients, that is we consider the set

R
2[x, y] = {p(x, y) : p(x, y)

is a polynomial of two real variables x and y with coefficients in R}.
Let p(x, y) ∈ R

2[x, y]. We say that polynomial p(x, y) is a pure polynomial,
when degxp(x, y) ≥ 1 and degyp(x, y) ≥ 1, where degxp(x, y), degyp(x, y) are
the greatest degree of its monomials with respect to x (or y, respectively).

The set of roots of p(x, y) is the set

Lp(x, y) = {(x, y) ∈ R
2 | p(x, y) = 0}.

As in polynomials of one real variable, we can easily see that there are many pure
polynomials p(x, y) ∈ R

2[x, y], which do not have any roots.
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For example, let p(x, y) be any pure polynomial. Then polynomial
q(x, y) = p(x, y)2k + θ , where k ∈ N, θ > 0, is a pure polynomial that does
not have any real root, as we easily see. Of course these polynomials are of even
degree for x and y.

On the contrary let A = {α1, α2, . . ., αv}, B = {β1, β2, . . ., βm}, A ∪ B ⊆ R,
v,m ∈ N, αi �= αj for every i, j ∈ {1, . . ., v} i �= j and βi �= βj for every
i, j ∈ {1, 2, . . ., m}, i �= j . Let also k ∈ N. We consider the pure polynomial

p(x, y) = ((x − α1)(x − α2). . .(x − αv))((y − β1)(y − β2). . .(y − βm))
2k.

Then p is a pure polynomial of even degree with respect to x and y, such that

L0 = {(αi, βj ), i ∈ {1, . . ., v}, j ∈ {1, 2, . . ., m}} � Lp(x, y).

We remark also that for ever y ∈ R, the couple (αi, y) is a root of p(x, y). This fact
differentiates pure polynomials p(x, y) from polynomials of one variable.

That is, there exist uncountable pure polynomials, each one having uncountable
set of real roots. Especially, this holds for pure polynomials of an odd degree with
respect to x and y. We have the following proposition.

Proposition 4.13 Let p(x, y) be a pure polynomial such that degx(x, y) = v is
odd or degpy(x, y) is odd. Then for every r ∈ R the set Lr = {(x, y) ∈ R

2 :
p(x, y) = r} is uncountable.
Proof We suppose, without loss of generality, that number v = degpx(x, y) is odd.
Then, as we can see easily, we can write polynomial p(x, y) as follows:

p(x, y) = αv(y)x
v + αv−1(y)x

v−1 + · · · + α1(y)x + α0(y),

where αi(y) ∈ R[y] for every i = 0, 1, . . ., v, and αv(y) �= 0, because v =
degpx(x, y). Because αv(y) �= 0, polynomial αv(y) has a finite set of roots. Let
Av be the set of roots of αv(y); that is, Av = {y ∈ R | αv(y) = 0}. Let y0 ∈ R	Av .
Then αv(y0) �= 0. Also let r ∈ R. We consider the polynomial

pr(x) = αv(y0)x
v + αv−1(y0)x

v−1 + · · · + α1(y0)x + α0(y0)− r.

Then, pr(x) is a polynomial of odd degree degpr(x) = v; thus, polynomial pr(x)
has a real root, say x0, at least; that is, we have

pr(x0) = 0 ⇒ αv(y0)x
v
0 + αv−1(y0)x

v−1
0 + · · · + α1(y0)x0 + α0(y0) = r ⇔

p(x0, y0) = r ⇒ (x0, y0) ∈ Lr.

That is, we proved that for every y ∈ R	Av , we have that there exists some x ∈ R,
such that (x, y) ∈ Lr . Of course, if y1, y2 ∈ R	Av , y1 �= y2 and (x1, y1), (x2, y2) ∈
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Lr , we have (x1, y1) �= (x2, y2) so the set Lr is uncountable, and the proof of this
proposition is complete. �
Corollary 4.14 Let p(x, y) be a pure polynomial such that degxp(x, y) or
degyp(x, y) is odd. Then the set of real roots of p(x, y) is uncountable.

Proof It is a simple application of the previous Proposition 4.13 for r = 0. �
As we have noticed previously, there are also such pure polynomials that

the numbers degxp(x, y) and degyp(x, y) are even whose set of real roots is
uncountable, as well as there being polynomials that do not have any roots.

Of course here we have the natural question: Are there pure polynomials p(x, y)
whose set of real roots p(x, y) is nonempty and finite? Of course, let us give a
simple example.

We consider the polynomial: p(x, y) = (x2 − 1)2 + (y2 − 4)2. It is easy to see
that

Lp(x, y) = {(1, 2), (1,−2), (−1, 2), (−1,−2)}.

More generally, let p1(x) be a polynomial with real roots α1, α2, . . ., αv , and p2(y)

be a polynomial with real roots β1, β2, . . ., βm.
We consider the pure polynomial p(x, y) = p1(x)

2k1+p2(y)
2k2 , where k1, k2,∈

N. Then, it is easy to see that:

Lp(x, y) = {(αi, βj ), i ∈ {1, . . ., v}, j ∈ {1, . . ., m}}.

Of course by Corollary 4.14 only pure polynomials whose numbers degxp(x, y),
degyp(x, y) are even can have finite set of roots, as in the previous examples. From
the previous results, we also have a significant observation.

These polynomials have the number zero as a global minimum!
For the sequel, we have to concentrate our attention to pure polynomials p(x, y)

that have a finite set of roots. So, from the previous observation we are led to ask
whether the reverse result holds. That is, does any pure polynomial that has a global
minimum have a finite set of real roots? The answer is no, and we can give a simple
example. We consider the pure polynomial p(x, y) = ((x − 1)(y − 2))2 − 7. It is
easy to check that polynomial p(x, y) has the number−7 as a global minimum. For
this polynomial, we get

p(x, 3) = (x − 1)2 − 7 forevery x ∈ R

so p(1, 3) = −7 < 0 and p(4, 1) = 2 > 0; thus, there exists x0 ∈ (1, 4), so that
p(x0, 3) = 0. Similarly take any real number y0 ∈ (3, 4). That is, 3 < y0 < 4 ⇒
1 < y0 − 2 < 2 ⇒ 1 < (y0 − 2)2 < 4 (1).
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We get

p(1, y0) = −7 < 0

p(8, y0) = 72(y0 − 2)2 > 72 > 0

by (1), so there exists x1 ∈ (1, 8) such that p(x1, y0) = 0.
Thus, for every y ∈ (3, 4), there exists x ∈ R, so that p(x, y) = 0, and of

course if y1, y2 ∈ (3, 4), x1, x2 ∈ R, p(x1, y1) = p(x2, y2) = 0 and y1 �= y2,
we have (x1, y1) �= (x2, y2), so the set of real roots of p is uncountable even
if polynomial p(x, y) has a global minimum. However, the property of a pure
polynomial to have a global minimum (or maximum also) is a crucial property that
have all pure polynomials that have a finite number of roots, as we will prove now
with the following proposition.

Proposition 4.15 (Topological Lemma) Let p(x, y) be a pure polynomial.
We suppose that there exist two couples (x1, y1), (x2, y2) ∈ R

2 such that
p(x1, y1) · p(x2, y2) < 0. Then, set Lp(x, y) is uncountable.

Proof We set A = (x1, y1), B = (x2, y2). We get A �= B, or otherwise we have
A = B and p(x1, y1) · p(x2, y2) = p(A) · p(B) = p(A)2 ≥ 0, which is false.
So we get A �= B. We consider the mid-perpendicular & of segment [A,B]. For
every point � ∈ &, we consider the union of two segments [A,�]∪ [�,B]. We write
A�B = [A,�] ∪ [�,B] for simplicity. Of course A�B ⊆ R

2. We consider the
restriction p|A�B for simplicity, and we write p = p|A�B also for simplicity.

Of course the set A�B is a compact and connected subset of R
2. So the set

p(A�B) is a closed interval of R.
We suppose that p(A) < 0 and p(B) > 0, without loss of generality. So

p(A), p(B) ∈ p(A�B) and gives that 0 ∈ p(A�B); that is, there exists some
point � ∈ A�B, so that p(�) = 0. Of course � �= A and � �= B. So, for every
� ∈ & and every curve A�B, there exists some � ∈ A�B, � �= A, � �= B, such
that p(�) = 0.

Because the set A = {A�B,� ∈ &} is an uncountable supset of P(R2) (the
powerset of R2), and for every �1, �2 ∈ &, �1 �= �2, we have that A�1B∩A�2B =
{A,B}; this means that the set

B = {� ∈ A�B | � ∈ & and p(�) = 0}
is uncountable, which gives that the set Lp(x, y) of roots of p(x, y) is uncountable
and the proof of this proposition is complete. �
Corollary 4.16 Let p(x, y) be a pure polynomial that has a finite set of roots,
nonempty. Then, number 0 is the global minimum or maximum of p(x, y), or in
other words polynomial p(x, y) has a global maximum or minimum, and when this
holds, then this global maximum or minimum is number 0.

Proof There exist no two points (x1, y1), (x2, y2) ∈ R
2, so that:

p(x1, y1) · p(x2, y2) < 0.
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Or else, if there exist two points (x1, y1), (x2, y2)∈R2, so that p(x1, y1)·p(x2, y2) <

0, then set Lp(x, y) is uncountable (by the previous Proposition 4.13), which is false
by our supposition.

This means that we have

(i) p(x, y) ≥ 0 for every (x, y) ∈ R
2, or

(ii) p(x, y) ≤ 0 for every (x, y) ∈ R
2.

We suppose that (i) holds. Because set Lp(x, y) is nonempty, this means that
there exists (x0, y0) ∈ R

2 so that p(x0, y0) = 0, so we get p(x, y) ≥ p(x0, y0) for
every (x, y) ∈ R

2. So, polynomial p(x, y) has in point (x0, y0) its global minimum
the number 0, because p(x0, y0) = 0. If (ii) holds, then we take with a similar way
that p has global maximum the number 0 in a point, and the proof of corollary is
complete. �

The above corollary is a basic result that we use in the second stage of our
method.

Finally, we refer here the most advanced result that we use in our method.
This result is called many times as Fermat’s theorem in calculus of several

variables.

Theorem 4.17 Let U ⊆ R
2, U open, and f : U→R be a differentiable function

in x0 ∈ U , where x0 is a point of local maximum or local minimum of f . Then the
following holds:

�

f (x0) = 0; that is, x0 is a crucial point of f , where ∇f (x0) is
the gradient of f in x0.

Acknowledgement Many thanks to Vasilli Karali for his contribution in the presentation of this
paper.

Appendix

Fundamental Theorem of Algebra is a powerful and basic result in the theory of
polynomials, especially in polynomial equations.

Gauss gave the first complete proof of this result in his Ph.D. There are many
proofs for this important theorem, but none of them is trivial in order to be presented
in books of secondary school.

Its simplest proof comes from complex analysis and uses an advanced theorem
of complex analysis, Liouville’s theorem. Here we give a proof that uses the most
elementary tools that an undergraduate student learns.

We think that it is difficult for an undergraduate student to find this proof in
books, so we try to present it with details for educational reasons.

For this reason, we give firstly some elementary lemmas.
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Lemma A.1 Let p(z) ∈ C[z] be a complex polynomial, and z0 ∈ C. We consider
polynomial Q(z) = p(r + z0), z ∈ C. If p(z) ≡ 0, then of course Q(z) ≡ 0. If
p(z) �≡ 0, then degQ(z) = degp(z).

Proof If degp(z) = 0, then the result is obvious. Let degp(z) = n ∈ N, n ≥ 1.
We suppose that n = 1, so we get p(z) = az + b, where a, b ∈ C, a �= 0. We get
Q(z) = p(z + z0) = a(r + z0)+ b = az + (az0 + b), and degQ(z) = 1, because
a �= 0. So, the result holds for n = 1. We prove the result inductively. We suppose
z0 �= 0.

For n = 1, the result holds.
We suppose that result holds for k ∈ N, k ≥ 1 and for every j ∈ N, 1 ≤ j ≤ k.

We prove that result holds for k + 1.
We suppose that

p(z) = a0 + a1z+ · · · + akz+ ak+1z
k+1 and ak+1 �= 0, so degp(z) = k + 1.

We distinguish two cases:

(i) q(z) = a0 + a1z+ · · · + akz
k �≡ 0.

Then we have p(z) = q(z)+ ak+1z
k+1.

We have

Q(z) = p(z+ z0) = q(z+ z0)+ ak+1(z+ z0)
k+1. (1)

We set r(z) = q(z + z0), z ∈ C. Because q(z) �≡ 0, by induction step we have
degr(z) = degq(z) ≤ k (2).

We have by Newton’s binomial

ak+1(z+ z0)
k+1 = ak+1

k+1∑

j=0

zk+1−j zj0 =
k+1∑

j=0

an+1z
j

0z
k+1−j . (3)

Because z0 �= 0 (by our supposition) and ak+1 �= 0, we have degak+1(z +
z0)

k+1 = k + 1 (4), by equality (3).
By (1), (2), and (4), we get degQ(z) = k + 1 and the result holds.

(ii) q(z) = a0 + a1z+ · · · + akz
k ≡ 0. The proof is similar to case (i), so the result

holds by induction.
Of course if z0 = 0, the result is obvious, because Q(z) = p(z), so

degQ(z) = degp(z).

Lemma A.2 We consider polynomial p(z) ∈ C[z]. Of course we have |p(z)| ≥ 0
for every z ∈ C. So the set

A = {x ∈ R | ∃ z ∈ C : x = |p(z)|}

is low bounded by 0.
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We set m = inf(A). Then there exists R > 0, so that:

m = inf({x ∈ R | ∃z ∈ D(0, R) : x = |p(z)|}),

where D(0, R) = {z ∈ C : |z| ≤ R}.
Proof We set BR = {x ∈ R | ∃z ∈ D(0, R) : x = |p(z)|} for some R > 0.

The result is obvious when p(z) ≡ 0, so we suppose that p(z) �≡ 0. It is obvious
that BR ⊆ A by definitions of sets A and BR for R > 0. Let x ∈ BR for some
R > 0. Then x ∈ A. So m ≤ x, because m is a lower bound of A. So we have
m ≤ x for every x ∈ BR . This means that m is a lower bound of BR , so m ≤ m∗

R

(1), where m∗
R = inf(BR). That is, we get m ≤ m∗

R for every R > 0.
We suppose that:

p(z) = a0 + a1z+ · · · + anz
n, where n ∈ N ∪ {0}, an �= 0. When n = 0, we get of

course m∗
R = m = |p(z)| for every z ∈ C and every R > 0, and the result is also

obvious. So we suppose that n ≥ 1.
Then for every z ∈ C	{0} we get

p(z) = zn ·
(
a0

zn
+ a1

zn−1
+ · · · + an−1

z
+ an

)

.

By calculus of the elementary limits in complex analysis, we have

lim
z→∞

a0

zn
= lim

z→∞
a1

zn−1
= · · · = lim

z→∞
an−1

z
= 0 and lim

z→∞ zn = ∞, so we have:

(an �= 0) lim
z→∞p(z) = ∞. By definition of lim

z→∞p(z), this means that for m + 1,

there exists R0 > 0, so that: |p(z)| > m+ 1 for every z ∈ C, |z| > R
(∗)
0 .

From (1), we have of course m ≤ m∗
R0

(2). Take w ∈ C: |w| > R0. Then, by the
above we have |p(w)| > m+ 1 (3).

Now there exists z1 ∈ C so that |p(z1)| < m + 1 (4), or otherwise we have
|p(z)| ≥ m + 1 for every z ∈ C, so m + 1 is a lower bound of A; that is,
m = inf(A) ≥ m + 1, which is false. Of course z1 ∈ D(0, R0) by implication
(∗), or else |z1| > R0 that means |p(z1)| > m + 1 (5), which is false by the above
inequalities (4) and (5). So we have m∗

R0
≤ |p(z1)| < m + 1 < |p(w)| ⇒ m∗

R0
≤

|p(w)|.
So we get m∗

R0
≤ |p(z)| for every z ∈ C : |z| > R0. Of course we have also

m∗
R0
≤ |p(z)| for every z ∈ D(0, R0) by definition of m∗

R0
. So we get m∗

R0
≤ |p(z)|

for every z ∈ C, which means that m∗
R0

is a lower bound of A; that is, m∗
R0
≤ m (6).

From (2) and (6), we get m = m∗
R0

; that is, Lemma A.2 has been proven. �
Remark A.3 (De Moivre Theorem) We remind here the following result.
Let n ∈ N, n ≥ 2. Then every nonzero complex number has exactly n roots; that
is, if w ∈ C, w �= 0, then equation zn = w has exactly n solutions: This result is
proven easily by elementary properties of complex numbers and it is well known as
De Moivre’s theorem, using properties of functions sine and cosine. We also need a
topological theorem.
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Theorem A.4 Let K ⊆ C be compact and f : K→R be continuous. Then f

attains its supremum and its infimum and both are finite. For this theorem, see [5].
After the above, we are now ready to give the proof of Fundamental Theorem of
Algebra.

Fundamental Theorem of Algebra A.5
Proof We consider polynomial

p(z) = a0 + a1z+ · · · + anz
n, ai ∈ C for every

i = 0, 1, . . ., n, n ∈ N, an �= 0, n ≥ 1.

We prove that p(z) has a root; that is, there exists z0 ∈ C, so that p(z0) = 0. First
of all, we examine the case of an = 1.

Of course we have |p(z)| ≥ 0 for every z ∈ C. We set

A = {x ∈ R | ∃z ∈ C : x = |p(z)|}.

Set A is low bounded by 0. We set m = inf(A). Of course m ≥ 0. For every R > 0,
we set

BR = {x ∈ R | ∃z ∈ D(0, R) : x = |p(z)|}, and

m∗
R = inf(BR),D(0, R) = {z ∈ C : |z| ≤ R}.

Applying Lemma A.2, we take that there exists R0 > 0, so that: m = m∗
R0

(1).

By Theorem 4.3, page 233 [5], Ball D(0, Ro) = {z ∈ C : |z| ≤ R0} is a compact
set as a set closed and bounded. Polynomial p is a continuous function in C. This
is a well-known result in elementary complex analysis. Usual norm | | : C→R is a
continuous function also in C, by elementary complex analysis. So, the composition
function F : C→R, F = | · | ◦ p, where p : C→C, | · | : C→R with formula
F(z) = (| · | ◦ p)(z) = |p(z)| for every z ∈ C is a continuous function as the
composition of continuous functions | · | and p. Applying now Theorem A.4 for
K = D(0, R0) and f = F , we take it that function F attains its infimum in some
point z0 ∈ D(0, R0). This means that |p(z0)| = m∗

R0
(2). By (1) and (2), we have

m = |p(z0)| (3). We argue that m = 0. To take a contradiction, we suppose that
m > 0. Because |p(z0)| = m > 0, we see that p(z0) �= 0.

We consider polynomial Q(z) = p(z+ z0)

p(z0)
, which is well-defined because

p(z0) �= 0.
Applying Lemma A.1, we see that degp(z + z0) = degp(z) = n, and by

definition of Q(z), we get degQ(z) = n. We have Q(0) = p(0+ z0)

p(z0)
= 1, so

polynomial Q(z) has constant term equal to 1.
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Let

Q(z) = 1+ckzk+· · ·+cnzn, cn �= 0, for every z ∈ C, where k ∈ N, 1 ≤ k ≤ n

and k be the smallest natural number such that ck �= 0 (maybe k = n of course).
So, we get −|ck|/ck �= 0. From Remark A.3, there exists j ∈ C, so that

jk = −|ck|/ck (4). (Of course there are k different complex numbers such that
(4) holds.) By (4), we take |jk| = | − |ck|/ck| = 1 ⇒ |j | = 1 (5).

By choice of j , we have for r ∈ C |1 + ckr
kjk| (4)= |1 + ckr

k · (−|ck|/ck) =
1− |ck|rk (6).

By definition of Q(z), we compute for z = rj for r ∈ C:

Q(z) = Q(rj) = 1+ ck(rj)
k + · · · + cn(rj)

n

= 1+ ckr
kjk + ck+1r

k+1jk+1 + · · · + cnr
njn. (7)

By (7) and triangle inequality, we get

|Q(rj)| ≤ |1+ ckr
kjk| + |ck+1r

k+1jk+1| + · · · + |cnrnjn|. (8)

Applying (6), we get by (8)

|Q(rj)| ≤ 1− |ck||rk| + |ck+1||r|k+1 + · · · + |cn||rn|
= 1− |rk|(|ck| − |ck+1||r| − · · · − |cn||r|n−k), for every r ∈ C.

(10)

By definition of m, we get

m ≤ |p(z+ z0)| for every z ∈ C. (11)

By (3) and (11), we get

|p(z0)| ≤ |p(z+ z0)| for every z ∈ C

⇒
∣
∣
∣
∣
p(z+ z0)

p(z0)

∣
∣
∣
∣ ≥ 1 for every z ∈ C

⇒ |Q(z)| ≥ 1 for every z ∈ C (by definition of Q). (12)

Now, we distinguish two cases:

(i) k = n. Then, from (10) we get

|Q(rj)| ≤ 1− |r|k|ck|. (11)
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So, for every r �= 0, we get by (12)

|Q(rj)| ≥ 1 and (13)

|Q(rj)| ≤ 1− |rk||ck| < 1 (14)

and we take a contradiction from (13) and (14).
(ii) k < n.

By properties of complex limits, we get

lim
r→0

(|ck| − |ck+1||r| − · · · − |cn|r|n−k) = |ck| > 0.

This limit shows us that there exists some small r0, so that:

|ck| − |ck+1||r0| − · · · − |cn||r0|n−k > 0. (15)

We set θ := |ck| − |ck+1||r0| − · · · − |cn||r0|n−k . So we have θ0 > 0. From (10)
and (15), we get

|Q(r0j)| ≤ 1− |r0|kθ0 < 1. (16)

From (12), we get |Q(r0j)| ≥ 1 (17). By (16) and (17), we get a contradiction.
So, our supposition that m > 0 is false. So we have m = 0, and from (3), we get
0 = p(z0); that is, polynomial p has, as a root number, z0. If an �= 1, we write
1

an
p(z) = a0

an
+ a1

an
z+ · · · + zn, and applying the previous result, we take it that

there exists some w ∈ C such that
1

an
p(w) = 0 ⇔ p(w) = 0, so polynomial p

has a root again. The proof of fundamental theorem has completed now.

�
Remark A.6 Inside our work we have used the well-known binomial equation
xn = a, where a > 0. We remind how we solve this equation here, for n ≥ 2,
n ∈ N. We will distinguish two cases:

(i) a > 1. We consider function f : [1, a]→R, with the formula f (x) = xn − a

for every x ∈ [1, a]. We get f (1) = 1n − a < 1, from our supposition and
f (a) = an − a = a(an−1 − 1) > 0. So we have f (1) · f (a) < 0, and
because f is continuous, we understand from Bolzano theorem that there exists
x0 ∈ (1, a), so that f (x0) = 0 ⇔ xn0 − a = 0 ⇔ x0 = n

√
a. Because f is

strictly increasing in [1, a] (because f ′(x) = nxn−1 > 0 for every x ∈ [1, a]),
equation f (x) = 0 has unique root in [1, a], that is number n

√
a. Applying

bisection method, we approximate number n
√
a, or in other words we solve the

equation xn = a.
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(ii) a ∈ (0, 1). Then we apply the above procedure similarly to the function
g : [0, 1]→R with the formula g(x) = xn − a, for every x ∈ [0, 1].
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Meir–Keeler Sequential Contractions
and Pata Fixed Point Results

Mihai Turinici

Abstract The (contractive) maps introduced by Pata [J. Fixed Point Th. Appl., 10
(2011), 299–305] are in fact Meir–Keeler sequential maps. This allows us treating
in a unitary manner all fixed point results of this type.

AMS Subject Classification 47H17 (Primary), 54H25 (Secondary)

1 Introduction

Let X be a nonempty set. Call the subset Y of X, almost-singleton (in short:
asingleton) provided y1, y2 ∈ Y implies y1 = y2; and singleton if, in addition,
Y is nonempty; note that in this case Y = {y}, for some y ∈ X. Take a metric
d : X ×X → R+ := [0,∞[ over X; the couple (X, d) will be then referred to as a
metric space. Then, let T ∈ F (X) be a self-map of X. [Here, for each couple A,B
of nonempty sets, F (A,B) denotes the class of all functions from A to B; when
A = B, we write F (A) in place of F (A,A)]. Denote Fix(T ) = {x ∈ X; x = T x};
each point of this set is referred to as fixed under T . Concerning the existence and
uniqueness of such points, a basic result (referred to as: Banach fixed point theorem;
in short: (B-fpt)) may be stated as follows. Call the self-map T , (d;α)-contractive
(where α ≥ 0), if

(con) d(T x, T y) ≤ αd(x, y), for all x, y ∈ X.

Theorem 1 Assume that T is Banach (d;α)-contractive, for some α ∈ [0, 1[. In
addition, let X be d-complete. Then,

(11-a) Fix(T ) is a singleton, {z}
(11-b) T nx

d−→ z as n→∞, for each x ∈ X.
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This result, established in 1922 by Banach [1], found some important applica-
tions to the operator equations theory. Consequently, a multitude of extensions for
it were proposed. From the perspective of this exposition, the set implicit ones are
of interest. These, roughly speaking, may be written as

(i-s-con) (d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(T x, y)) ∈ M ,
for all x, y ∈ X with xRy;

where M ⊆ R6+ is a (nonempty) subset and R is a relation over X. In particular,
when M is the zero-section of a certain function F : R6+ → R; i.e.,

M = {(t1, . . . , t6) ∈ R6+;F(t1, . . . , t6) ≤ 0},
the implicit contractive condition above has the functional form:

(i-f-con) F(d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(T x, y)) ≤ 0,
for all x, y ∈ X, with xRy;

(where R is taken as before). Note that, when R = X × X (the trivial relation
over X), some basic contributions in the area were obtained, in the explicit case,
by Boyd and Wong [4], Reich [36], Matkowski [26], and Rhoades [37]; in addition,
for the implicit setting above, certain technical aspects have been considered by
Leader [25] and Turinici [43]. Further, when R is an order on X, a couple of 1986
results was established—in the realm of Matkowski type contractions—by Turinici
[46, 47]. Two decades later, these fixed point statements have been re-discovered—
over the Banach contractive setting—by Ran and Reurings [35]; see also Nieto
and Rodriguez-Lopez [32]; and since then, the number of papers devoted to the
precise topic increased rapidly. Finally, when R is an amorphous relation over X,
some appropriate statements of this type were obtained—in a graph setting—by
Jachymski [15], and—in a general context—by Samet and Turinici [40].

Returning to the trivial (modulo R) setting, a basic particular case of the implicit
set contractive property above is

(2-i-s-con) (d(T x, T y), d(x, y)) ∈ M , for all x, y ∈ X;

where M ⊆ R2+ is a (nonempty) subset. The classical example in this direction
is the one due to Meir and Keeler [28]. Further refinements of the method were
proposed by Cirić [7] and Matkowski [27].

Recently, a new contractive condition of the type (2-i-s-con) was introduced by
Pata [34]. His methods were appreciated as interesting enough to be used in various
fixed point and/or coincidence point problems; see, for example, the survey paper
by Choudhury et al. [5]. Having these precise, we may ask about the effectiveness
of such methods with respect to the (sketched) old ones. It is our main aim in the
present exposition to give a negative answer to this; precisely, to establish that all
these results are obtainable via Meir–Keeler sequential contractions. Further aspects
will be delineated in a future paper.
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2 Dependent Choice Principles

Throughout this exposition, the axiomatic system in use is Zermelo-Fraenkel’s
(abbreviated: (ZF)), as described by Cohen [8, Ch 2]. The notations and basic facts
to be considered are standard; some important ones are discussed below.

(A) Let X be a nonempty set. By a relation over X, we mean any (nonempty) part
R ⊆ X × X; then, (X,R) will be referred to as a relational structure. Note
that R may be regarded as a mapping between X and exp[X] (=the class of all
subsets in X). In fact, let us simplify the string (x, y) ∈ R as xRy; and put

X(x,R) = {y ∈ X; xRy} (the section of R through x), x ∈ X;

then, the desired mapping representation is (R(x) = X(x,R); x ∈ X). A basic
example of such object is

I = {(x, x); x ∈ X} [the identical relation over X].

Given the relations R, S over X, define their product R ◦S as

(x, z) ∈ R ◦S , if there exists y ∈ X with (x, y) ∈ R, (y, z) ∈ S .

Also, for each relation R in X, denote

R−1 = {(x, y) ∈ X ×X; (y, x) ∈ R} (the inverse of R).

Finally, given the relations R and S on X, let us say that R is coarser than S
(or, equivalently: S is finer than R), provided

R ⊆ S ; i.e.: xRy implies xS y.

Given a relation R on X, the following properties are to be discussed here:

(P1) R is reflexive: I ⊆ R
(P2) R is irreflexive: I ∩R = ∅
(P3) R is transitive: R ◦R ⊆ R
(P4) R is symmetric: R−1 = R
(P5) R is anti-symmetric: R−1 ∩R ⊆ I .

This yields the classes of relations to be used; the following ones are important
for our developments:

(C0) R is amorphous (i.e. it has no properties at all)
(C1) R is a quasi-order (reflexive and transitive)
(C2) R is a strict order (irreflexive and transitive)
(C3) R is an equivalence (reflexive, transitive, symmetric)
(C4) R is a (partial) order (reflexive, transitive, anti-symmetric)
(C5) R is the trivial relation (i.e.: R = X ×X).

(B) A basic example of relational structure is to be constructed as below. Let

N = {0, 1, 2, . . .}, where (0 = ∅, 1 = {0}, 2 = {0, 1}, . . .)
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denote the set of natural numbers. Technically speaking, the basic (algebraic
and order) structures over N may be obtained by means of the (immediate)
successor function suc : N → N , and the following Peano properties
(deductible in our axiomatic system (ZF)):

(pea-1) (0 ∈ N and) 0 /∈ suc(N)

(pea-2) suc(.) is injective (suc(n) = suc(m) implies n = m)
(pea-3) if M ⊆ N fulfills [0 ∈ M] and [suc(M) ⊆ M], then M = N .

(Note that, in the absence of our axiomatic setting, these properties become the
well known Peano axioms, as described in Halmos [12, Ch 12]; we do not give
details). In fact, starting from these properties, one may construct, in a recurrent
way, an addition (a, b) �→ a + b over N , according to

(∀m ∈ N ): m+ 0 = m; m+ suc(n) = suc(m+ n).

This, in turn, makes possible the introduction of a (partial) order (≤) over N ,
as

(m, n ∈ N ): m ≤ n iff m+ p = n, for some p ∈ N .

Concerning the properties of this structure, the most important one writes

(N,≤) is well ordered:
any (nonempty) subset of N has a first element.

Denote, for simplicity

N(r,≤) = {n ∈ N; r ≤ n} = {r, r + 1, . . . , }, r ≥ 0,
N(r,>) = {n ∈ N; r > n} = {0, . . . , r − 1}, r ≥ 1;

the latter one is referred to as the initial interval (in N ) induced by r . Any set
P with N ∼ P (in the sense: there exists a bijection from N to P ) will be
referred to as effectively denumerable. In addition, given some natural number
n ≥ 1, any (nonempty) set Q with N(n,>) ∼ Q will be said to be n-finite;
when n is generic here, we say that Q is finite. As a combination of these, we
say that the (nonempty) set Y is (at most) denumerable iff it is either effectively
denumerable or finite.

Having these precise, let the notion of sequence (in X) be used to designate
any mapping x : N → X. For simplicity reasons, it will be useful to denote it
as (x(n); n ≥ 0), or (xn; n ≥ 0); moreover, when no confusion can arise, we
further simplify this notation as (x(n)) or (xn), respectively. Also, any sequence
(yn := xi(n); n ≥ 0) with

(i(n); n ≥ 0) is strictly ascending (hence: i(n)→∞ as n→∞)

will be referred to as a subsequence of (xn; n ≥ 0). Note that, under such a
convention, the relation “subsequence of" is transitive; i.e.

(zn)=subsequence of (yn) and (yn)=subsequence of (xn)
imply (zn)=subsequence of (xn).
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(C) Remember that, an outstanding part of (ZF) is the Axiom of Choice (abbrevi-
ated: (AC)); which, in a convenient manner, may be written as

(AC) For each couple (J,X) of nonempty sets and each function
F : J → exp(X), there exists a (selective) function
f : J → X, with f (ν) ∈ F(ν), for each ν ∈ J .

(Here, exp(X) stands for the class of all nonempty elements in exp[X]).
Sometimes, when the ambient set X is endowed with denumerable type
structures, the existence of such a selective function (over J = N ) may be
determined by using a weaker form of (AC), referred to as: Dependent Choice
principle (in short: (DC)). Call the relation R over X, proper when

(X(x,R) =)R(x) is nonempty, for each x ∈ X.

Then, R is to be viewed as a mapping between X and exp(X); and the couple
(X,R)will be referred to as a proper relational structure. Further, given a ∈ X,
let us say that the sequence (xn; n ≥ 0) in X is (a;R)-iterative, provided

x0 = a, and xnRxn+1 (i.e. xn+1 ∈ R(xn)), for all n.

Proposition 1 Let the relational structure (X,R) be proper. Then, for each a ∈ X

there is at least an (a;R)-iterative sequence in X.

This principle—proposed, independently, by Bernays [3] and Tarski [42]—is
deductible from (AC), but not conversely; cf. Wolk [51]. Moreover, by the devel-
opments in Moskhovakis [30, Ch 8], and Schechter [41, Ch 6], the reduced system
(ZF-AC+DC) is comprehensive enough so as to cover the “usual" mathematics; see
also Moore [29, Appendix 2].

Let (Rn; n ≥ 0) be a sequence of relations on X. Given a ∈ X, let us say that
the sequence (xn; n ≥ 0) in X is (a; (Rn; n ≥ 0))-iterative, provided

x0 = a, and xnRnxn+1 (i.e. xn+1 ∈ Rn(xn)), for all n.

The following Diagonal Dependent Choice principle (in short: (DDC)) is available.

Proposition 2 Let (Rn; n ≥ 0) be a sequence of proper relations on X. Then, for
each a ∈ X there exists at least one (a; (Rn; n ≥ 0))-iterative sequence in X.

Clearly, (DDC) includes (DC); to which it reduces when (Rn; n ≥ 0) is constant.
The reciprocal of this is also true. In fact, letting the premises of (DDC) hold, put
P = N ×X; and let S be the relation over P introduced as

S (i, x) = {i + 1} ×Ri (x), (i, x) ∈ P .

It will suffice applying (DC) to (P,S ) and b := (0, a) ∈ P to get the conclusion
in our statement; we do not give details.

Summing up, (DDC) is provable in (ZF-AC+DC). This is valid as well for its
variant, referred to as: the Selected Dependent Choice principle (in short: (SDC)).

Proposition 3 Let the map F : N → exp(X) and the relation R over X fulfill
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(∀n ∈ N ): R(x) ∩ F(n+ 1) �= ∅, for all x ∈ F(n).

Then, for each a ∈ F(0) there exists a sequence (x(n); n ≥ 0) in X, with

x(0) = a, x(n) ∈ F(n), x(n+ 1) ∈ R(x(n)), ∀n.

As before, (SDC) 7⇒ (DC) (⇐⇒ (DDC)); just take (F (n) = X; n ≥ 0). But,
the reciprocal is also true, in the sense: (DDC) 7⇒ (SDC). This follows from

Proof (Proposition 3) Let the premises of (SDC) be true. Define a sequence of
relations (Rn; n ≥ 0) over X as: for each n ≥ 0,

Rn(x) = R(x) ∩ F(n+ 1), if x ∈ F(n),
Rn(x) = {x}, otherwise (x ∈ X \ F(n)).

Clearly, Rn is proper, for all n ≥ 0. So, by (DDC), it follows that for the starting
a ∈ F(0), there exists an (a, (Rn; n ≥ 0))-iterative sequence (x(n); n ≥ 0) in
X. Combining with the very definition above, one derives that conclusion in the
statement is holding. �

In particular, when R = X × X, the regularity condition imposed in (SDC)
holds. The corresponding variant of the underlying statement is just (AC(N)) (=the
Denumerable Axiom of Choice). Precisely, we have

Proposition 4 Let F : N → exp(X) be a function. Then, for each a ∈ F(0) there
exists a function f : N → X with f (0) = a and f (n) ∈ F(n), ∀n ∈ N .

As a consequence of the above facts, (DC) 7⇒ (AC(N)) in (ZF-AC). A direct
verification of this is obtainable by taking Q = N ×X and introducing the relation
S over it, according to:

S (n, x) = {n+ 1} × F(n+ 1), n ∈ N , x ∈ X;

we do not give details. The reciprocal of the written inclusion is not true; see, for
instance, Moskhovakis [30, Ch 8, Sect 8.25].

3 Conv-Cauchy Structures

Let X be a nonempty set; and S (X) stand for the class of all sequences (xn) in X.
By a (sequential) convergence structure on X we mean any part C of S (X) × X,
with the properties (cf. Kasahara [23]):

(conv-1) C is hereditary:
((xn); x) ∈ C 7⇒ ((yn); x) ∈ C , for each subsequence (yn) of (xn)

(conv-2) C is reflexive: for each u ∈ X,
the constant sequence (xn = u; n ≥ 0) fulfills ((xn); u) ∈ C .
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For each sequence (xn) in S (X) and each x ∈ X, we write ((xn); x) ∈ C as

xn
C−→ x; this reads:

(xn), C -converges to x (also referred to as: x is the C -limit of (xn)).

The set of all such x is denoted C − limn(xn); when it is nonempty, we say that (xn)
is C -convergent. The following condition is to be optionally considered here:

(conv-3) C is separated:
C − limn(xn) is an asingleton, for each sequence (xn);

when it holds, xn
C−→ z will be also written as C − limn(xn) = z.

Further, by a (sequential) Cauchy structure on X we shall mean any part H of
S (X) with (cf. Turinici [48])

(Cauchy-1) H is hereditary:
(xn) ∈ H 7⇒ (yn) ∈ H , for each subsequence (yn) of (xn)

(Cauchy-2) H is reflexive: for each u ∈ X,
the constant sequence (xn = u; n ≥ 0) fulfills (xn) ∈ H .

Each element of H will be referred to as a H -Cauchy sequence in X.
Finally, given the couple (C ,H ) as before, we shall say that it is a conv-Cauchy

structure on X. The optional conditions about the conv-Cauchy structure (C ,H )

to be considered here are

(CC-1) (C ,H ) is regular: each C -convergent sequence is H -Cauchy
(CC-2) (C ,H ) is complete: each H -Cauchy sequence is C -convergent.

A standard way of introducing such structures is the (pseudo) metrical one. By a
pseudometric over X we shall mean any map d : X×X → R+. Fix such an object,
with, in addition,

(r-s) d is reflexive sufficient: x = y ⇐⇒ d(x, y) = 0;

in this case, (X, d) is called a rs-pseudometric space. Given the sequence (xn) in

X and the point x ∈ X, we say that (xn), d-converges to x (written as: xn
d−→ x)

provided d(xn, x)→ 0 as n→∞; i.e.,

∀ε > 0, ∃i = i(ε): i ≤ n 7⇒ d(xn, x) < ε.

By this very definition, we have the hereditary and reflexive properties:

(d-conv-1) (
d−→) is hereditary:

xn
d−→ x implies yn

d−→ x, for each subsequence (yn) of (xn)

(d-conv-2) (
d−→) is reflexive: for each u ∈ X,

the constant sequence (xn = u; n ≥ 0) fulfills xn
d−→ u.

As a consequence, (
d−→) is a sequential convergence on X. The set of all such

limit points of (xn) will be denoted limn(xn); if it is nonempty, then (xn) is called
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d-convergent. Finally, note that (
d−→) is not separated, in general. However, this

property holds, provided (in addition)

(sym) d is symmetric: d(x, y) = d(y, x), for all x, y ∈ X

(tri) d is triangular: d(x, y) ≤ d(x, z)+ d(z, y), ∀x, y, z ∈ X;

i.e. when d is a metric on X.
Further, call the sequence (xn), d-Cauchy when d(xm, xn) → 0 as m, n → ∞,

m < n; i.e.,

∀ε > 0, ∃j = j (ε): j ≤ m < n 7⇒ d(xm, xn) < ε;

the class of all these will be denoted as Cauchy(d). As before, we have the
hereditary and reflexive properties

(d-Cauchy-1) Cauchy(d) is hereditary: (xn) is d-Cauchy
implies (yn) is d-Cauchy, for each subsequence (yn) of (xn)

(d-Cauchy-2) Cauchy(d) is reflexive: for each u ∈ X,
the constant sequence (xn = u; n ≥ 0) is d-Cauchy;

hence, Cauchy(d) is a Cauchy structure on X.

Now, the couple ((
d−→), Cauchy(d)) will be referred to as a conv-Cauchy

structure on X generated by d. Note that, by the imposed (upon d) conditions,
this conv-Cauchy structure is not (regular or complete), in general. But, when d

is symmetric triangular (hence, a metric) the regularity condition holds, as it can be
directly seen.

Finally, let us say that (xn; n ≥ 0) is d-asymptotic, provided

d(xn, xn+1)→ 0 as n→∞.

In this case, for each γ > 0,

S ((xn); γ ) := {k ∈ N; n ∈ N(k,≤) 7⇒ d(xn, xn+1) < γ }
is nonempty; hence, n(γ ) := min S ((xn); γ ) exists;

we then say that n(γ ) is the asymptotic rank attached to γ . Clearly,

γ �→ n(γ ) is decreasing: γ1 ≤ γ2 7⇒ n(γ1) ≥ n(γ2).

It is immediate that each d-Cauchy sequence appears as d-asymptotic too; the
reciprocal of this is not in general true.

We close this section with a few remarks involving convergent real sequences.
For each sequence (rn) in R, and each element r ∈ R, denote

rn → r+ (resp., rn → r−), when rn → r and [rn > r (resp., rn < r), ∀n].

Proposition 5 Let the sequence (rn; n ≥ 0) in R and the number ε ∈ R be such
that rn → ε+. Then, there exists a subsequence (r∗n := ri(n); n ≥ 0) of (rn; n ≥ 0)
with

(r∗n ; n ≥ 0) is strictly descending and r∗n → ε+.
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Proof Put i(0) = 0. As ε < ri(0) and rn → ε+, we have that

A(i(0)) := {n > i(0); rn < ri(0)} is not empty;
hence, i(1) := min(A(i(0))) is an element of it, and ri(1) < ri(0).

Likewise, as ε < ri(1) and rn → ε+, we have that

A(i(1)) := {n > i(1); rn < ri(1)} is not empty;
hence, i(2) := min(A(i(1))) is an element of it, and ri(2) < ri(1).

This procedure may continue indefinitely and yields (without any choice technique)
a strictly ascending rank sequence (i(n); n ≥ 0) (hence, i(n)→∞ as n→∞) for
which the attached subsequence (r∗n := ri(n); n ≥ 0) of (rn; n ≥ 0) fulfills

r∗n+1 < r∗n , for all n; hence, (r∗n) is (strictly) descending.

On the other hand, by this very subsequence property,

(r∗n > ε, ∀n), and limn r
∗
n = limn rn = ε.

Putting these together, we get the desired conclusion. �
A bi-dimensional counterpart of these facts may be given along the lines below.

Let π(t, s) (where t, s ∈ R) be a logical property involving pairs or real numbers.
Given the couple of real sequences (tn; n ≥ 0) and (sn; n ≥ 0), call the
subsequences (t∗n ; n ≥ 0) of (tn) and (s∗n; n ≥ 0) of (sn), compatible when

(t∗n = ti(n)n ≥ 0), and (s∗n = si(n); n ≥ 0),
for the same strictly ascending rank sequence (i(n); n ≥ 0).

Proposition 6 Let the couple of real sequences (tn; n ≥ 0), (sn; n ≥ 0), and the
pair of real numbers (a, b) be such that

tn → a+, sn → b+ as n→∞ and (π(tn, sn) is true, ∀n).
There exists then a compatible couple of subsequences (t∗n ; n ≥ 0) of (tn; n ≥ 0)
and (s∗n; n ≥ 0) of (sn; n ≥ 0) respectively, with

(32-1) (t∗n ; n ≥ 0) and (s∗n; n ≥ 0) are strictly descending, compatible
(32-2) (t∗n → a+, s∗n → b+, as n→∞), and (π(t∗n , s∗n) holds, for all n).

Proof By the preceding statement, (tn; n ≥ 0) admits a subsequence (Tn :=
ti(n); n ≥ 0), with

(Tn; n ≥ 0) is strictly descending, and (Tn → a+, as n→∞).

Denote (Sn := si(n); n ≥ 0); clearly,

(Sn; n ≥ 0) is a subsequence of (sn; n ≥ 0) with Sn → b+ as n→∞.

Moreover, by this very construction [π(Tn, Sn) holds, for all n]. Again by the
statement above, there exists a subsequence (s∗n := Sj(n) = si(j (n)); n ≥ 0) of
(Sn; n ≥ 0) (hence, of (sn; n ≥ 0) as well), with
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(s∗n; n ≥ 0) is strictly descending, and (s∗n → b+, as n→∞).

Denote further (t∗n := Tj(n) = ti(j (n)); n ≥ 0); this is a subsequence of (Tn; n ≥ 0)
(hence, of (tn; n ≥ 0) as well), with

(t∗n ; n ≥ 0) is strictly descending, and (t∗n → a+, as n→∞);

Finally, by this very construction (and a previous relation) [π(t∗n , s∗n) holds, for all
n]. Summing up, the couple of subsequences (t∗n ; n ≥ 0) and (s∗n; n ≥ 0) has all
needed properties; and the conclusion follows. �

Note that further extensions of this result are possible, in the framework of quasi-
metric spaces, taken as in Hitzler [13, Ch 1, Sect 1.2]; we shall discuss them in a
separate paper.

4 Meir–Keeler Relations

Let Ω ⊆ R0+ × R0+ be a relation over R0+; as a rule, we write (t, s) ∈ Ω as tΩs.
The starting global property to be considered upon this object is

(u-diag) Ω is upper diagonal: tΩs implies t < s.

Denote the class of all upper diagonal relations as udiag(R0+). Our exposition below
is essentially related to this basic condition.

To begin with, let us consider the global properties over udiag(R0+)

(1-decr) Ω is first variable decreasing:
t1, t2, s ∈ R0+, t1 ≥ t2 and t1Ωs imply t2Ωs

(2-incr) Ω is second variable increasing:
t, s1, s2 ∈ R0+, s1 ≤ s2 and tΩs1 imply tΩs2.

Then, define the sequential condition below (for upper diagonal relations)

(M-ad) Ω in Matkowski admissible:
(tn; n ≥ 0) in R0+ and (tn+1Ωtn, ∀n) imply limn tn = 0.

To discuss it, the geometric conditions involving udiag(R0+) are in effect:

(g-mk) Ω has the geometric Meir–Keeler property:
∀ε > 0, ∃δ > 0: tΩs, ε < s < ε + δ 7⇒ t ≤ ε

(g-bila-sep) Ω is geometric bilateral separable:
∀β > 0, ∃γ ∈]0, β[, ∀(t, s): t, s ∈]β − γ, β + γ [ 7⇒ (t, s) /∈ Ω .

The former of these local conditions—related to the developments in Meir and
Keeler [28]—is strongly related to the Matkowski admissible property we just
introduced. Precisely, the following basic fact is available.

Theorem 2 Under these conditions, one has in (ZF-AC+DC):
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(41-a) (for each Ω ∈ udiag(R0+)):
Ω is geometric Meir–Keeler implies Ω is Matkowski admissible

(41-b) (for each first variable decreasing Ω ∈ udiag(R0+)):
Ω is Matkowski admissible implies Ω is geometric Meir–Keeler.

Hence, summing up

(41-c) (for each first variable decreasing Ω ∈ udiag(R0+)):
Ω is geometric Meir–Keeler iff Ω is Matkowski admissible.

Proof Three basic stages must be passed.

(i) Suppose that Ω ∈ udiag(R0+) is geometric Meir–Keeler; we have to establish
that Ω is Matkowski admissible. Let (tn; n ≥ 0) be a sequence in R0+, fulfilling
(tn+1Ωtn, for all n). By the upper diagonal property, we get

(tn+1 < tn, for all n); i.e. (tn) is strictly descending.

As a consequence, τ = limn tn exists in R+; with, in addition: (tn > τ , ∀n).
Assume by contradiction that τ > 0; and let σ > 0 be the number assured by
the geometric Meir–Keeler property. By definition, there exists an index n(σ),
with

(tn+1Ωtn and) τ < tn < τ + σ , for all n ≥ n(σ).

This, by the quoted property, gives (for the same ranks)

τ < tn+1 ≤ τ ; contradiction.

Hence, necessarily, τ = 0; and the conclusion follows.
(ii) Suppose that the first variable decreasing Ω ∈ udiag(R0+) is Matkowski

admissible; we have to establish that Ω is geometric Meir–Keeler. Suppose
by contradiction that this is not true; i.e. (for some ε > 0)

H(δ) := {(t, s) ∈ Ω; ε < s < ε + δ, t > ε} is nonempty, for each δ > 0.

Taking a zero converging sequence (δn; n ≥ 0) in R0+, we get by the
Denumerable Axiom of Choice (AC(N)) [deductible, as precise, in (ZF-
AC+DC)], a sequence ((tn, sn); n ≥ 0) in R0+ × R0+, so as

(∀n): (tn, sn) is an element of H(δn);

or, equivalently (by definition and upper diagonal property)

(tnΩsn and) ε < tn < sn < ε + δn, for all n.

Note that, as a direct consequence,

(tnΩsn, for all n), and tn → ε+, sn → ε+, as n→∞.

Put i(0) = 0. As ε < ti(0) and sn → ε+ as n→∞, we have that
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A(i(0)) := {n > i(0); sn < ti(0)} is not empty;
hence, i(1) := min(A(i(0))) is an element of it, and si(1) < ti(0);
wherefrom, si(1)Ωsi(0) (as Ω is first variable decreasing).

Likewise, as ε < ti(1) and sn → ε+ as n→∞, we have that

A(i(1)) := {n > i(1); sn < ti(1)} is not empty;
hence, i(2) := min(A(i(1))) is an element of it, and si(2) < ti(1);
wherefrom, si(2)Ωsi(1) (as Ω is first variable decreasing).

This procedure may continue indefinitely and yields (without any choice
technique) a strictly ascending rank sequence (i(n); n ≥ 0) in N for which
the attached subsequence (rn := si(n); n ≥ 0) of (sn; n ≥ 0) fulfills

rn+1Ωrn, for all n; whence rn → 0 (as Ω is Matkowski admissible).

On the other hand, by our subsequence property,

(rn > ε, ∀n) and limn rn = limn sn = ε; that is: rn → ε+.

The obtained relation is in contradiction with the previous one. Hence, the
working condition cannot be true; and we are done.

(iii) Evident, by the above.
�

In the following, equivalent (sequential) conditions are given for the properties
appearing in our (geometric) concepts above. Given the upper diagonal relation Ω

over R0+, let us introduce the (asymptotic type) conventions

(a-mk) Ω is asymptotic Meir–Keeler:
there are no strictly descending sequences (tn) and (sn) in R0+ and no
elements ε in R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn → ε+, sn → ε+)

(a-bila-sep) Ω is asymptotic bilateral separable:
there are no sequences (tn; n ≥ 0) and (sn; n ≥ 0) in R0+ and no
elements β ∈ R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn → β, sn → β).

Remark 1 The inclusion between these two concepts may be described as

(for each upper diagonal relation Ω ⊆ R0+ × R0+):
Ω is asymptotic bilateral separable implies Ω is asymptotic Meir–Keeler.

In fact, let the upper diagonal relation Ω ⊆ R0+ × R0+ be asymptotic bilateral
separable; and assume by contradiction that Ω is not asymptotic Meir–Keeler:

there exist strictly descending sequences (tn) and (sn) in R0+ and elements ε in R0+,
with ((tn, sn) ∈ Ω , ∀n) and (tn → ε+, sn → ε+); hence, (tn → ε, sn → ε).

This tells us that Ω is not asymptotic bilateral separable; in contradiction with the
working hypothesis; and the assertion follows.

Concerning the relationships between the introduced asymptotic concepts and
their corresponding geometric concepts, the following statement is to be noted.
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Theorem 3 The following generic relationships are valid (for an arbitrary upper
diagonal relation Ω ⊆ R0+ × R0+), in the reduced system (ZF-AC+DC):

(42-a) geometric Meir–Keeler equals asymptotic Meir–Keeler
(42-b) geometric bilateral separable equals asymptotic bilateral separable
(42-c) geometric bilateral separable implies geometric Meir–Keeler.

Proof

(i) Firstly, we discuss the case of Meir–Keeler property.
(i-1) Let Ω ∈ udiag(R0+) be a geometric Meir–Keeler relation; but—contrary to

the conclusion—assume that Ω does not have the asymptotic Meir–Keeler
property:

there exist two strictly descending sequences (tn) and (sn) in R0+ and an
element ε in R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn → ε+, sn → ε+).

Let δ > 0 be the number given by the geometric Meir–Keeler property of Ω .
By definition, there exists a (common) rank n(δ), such that

n ≥ n(δ) implies ε < tn < ε + δ, ε < sn < ε + δ.

From the second relation, we must have (by the hypothesis about Ω) tn ≤ ε,
for all n ≥ n(δ). This, however, contradicts the first relation above. Hence, Ω
is asymptotic Meir–Keeler; as asserted.

(i-2) Let Ω ∈ udiag(R0+) be an asymptotic Meir–Keeler relation; but—contrary
to the conclusion—assume that Ω does not have the geometric Meir–Keeler
property; i.e. (for some ε > 0)

H(δ) := {(t, s) ∈ Ω; ε < s < ε + δ, t > ε} �= ∅, for each δ > 0.

Taking a zero converging sequence (δn; n ≥ 0) in R0+, we get by the
Denumerable Axiom of Choice (AC(N)) [deductible, as precise, in (ZF-
AC+DC)], a sequence ((tn, sn); n ≥ 0) in R0+ × R0+, so as

(∀n): (tn, sn) is an element of H(δn);

or, equivalently (by definition and upper diagonal property)

((tn, sn) ∈ Ω and) ε < tn < sn < ε + δn, for all n.

Note that, as a direct consequence,

(tnΩsn, for all n), and tn → ε+, sn → ε+, as n→∞.

By a previous result, there exists a compatible couple of subsequences (t∗n :=
ti(n); n ≥ 0) of (tn; n ≥ 0) and (s∗n := si(n); n ≥ 0) of (sn; n ≥ 0), with

(t∗nΩs∗n , ∀n); (t∗n ), (s∗n) are strictly descending; t∗n → ε+ and s∗n → ε+.

This, however, is in contradiction with respect to the posed hypothesis upon
Ω; wherefrom, our assertion follows.

(ii) Secondly, we discuss the case of bilateral separable property.
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(ii-1) Let Ω ∈ udiag(R0+) be a geometric bilateral separable relation; we have to
establish that Ω is asymptotic bilateral separable. Suppose—contrary to this
conclusion—that Ω is not endowed with such a property; that is

there are two sequences (tn; n ≥ 0) and (sn; n ≥ 0) in R0+ and an element
β ∈ R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn → β, sn → β).

Let γ ∈]0, β[ be the number given by the geometric bilateral separable
property of Ω . By definition, there exists a (common) rank n(γ ), such that

n ≥ n(γ ) implies β − γ < tn < β + γ and β − γ < sn < β + γ .

This, along with [tnΩsn, ∀n ≥ n(γ )] contradicts the geometric bilateral
separable property of Ω . Hence, Ω is asymptotic bilateral separable.

(ii-2) Let Ω ∈ udiag(R0+) be an asymptotic bilateral separable relation; we have to
establish that Ω is geometric bilateral separable. Suppose—contrary to this
conclusion—that Ω is not endowed with such a property; that is (for some
β > 0)

K(γ ) := {(t, s) ∈ Ω; t, s ∈]β − γ, β + γ [} �= ∅, for each γ ∈]0, β[.
Taking a strictly ascending sequence (γn; n ≥ 0) in ]0, β[ with γn → 0, we
get by the Denumerable Axiom of Choice (AC(N)) [deductible, as precise, in
(ZF-AC+DC)], a sequence ((tn, sn); n ≥ 0) in Ω , so as

(∀n): (tn, sn) is an element of K(γn);

or, equivalently (by the very definition above)

(∀n): (tn, sn) ∈ Ω and tn, sn ∈]β − γn, β + γn[.
As a consequence of the latter, we must have (tn → β, sn → β); and
this, along with the former, contradicts the imposed hypothesis. Hence,
necessarily, Ω is geometric bilateral separable.

(iii) Finally, it remains to establish the relationships between the underlying
geometric properties. This, however, is evident, by the preceding stages and
a previous remark; wherefrom, we are done.

�
In the following, some basic examples of (upper diagonal) Matkowski admissible

and geometric Meir–Keeler relations are given. The general scheme of constructing
these is described along the lines below.

Let R(±∞) := R∪{−∞,∞} stand for the set of all extended real numbers. For
each relation Ω over R0+, let us associate a function ξ : R0+ × R0+ → R(±∞), as

ξ(t, s) = 0, if (t, s) ∈ Ω; ξ(t, s) = −∞, if (t, s) /∈ Ω .

It will be referred to as the function generated by Ω; clearly,

(t, s) ∈ Ω iff ξ(t, s) ≥ 0.
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Conversely, given a function ξ : R0+×R0+ → R(±∞), we may associate it a relation
Ω over R0+ as

Ω = {(t, s) ∈ R0+ × R0+; ξ(t, s) ≥ 0} (in short: Ω = [ξ ≥ 0]);
referred to as: the positive section of ξ .

Note that the correspondence between the function ξ and its associated relation
[ξ ≥ 0] is not injective; because, for the function η := λξ (where λ > 0), its
associated relation [η ≥ 0] is identical with the relation [ξ ≥ 0] attached to ξ .

Now, call the function ξ : R0+ × R0+ → R(±∞), upper diagonal provided:

(u-diag) ξ(t, s) ≥ 0 implies t < s.

All subsequent constructions are being considered within this setting. This, in
particular, includes the sequential condition for upper diagonal functions ξ :

(M-ad) ξ in Matkowski admissible:
(tn; n ≥ 0) in R0+ and (ξ(tn+1, tn) ≥ 0, ∀n) imply limn tn = 0.

The following geometric conditions involving our functions are—in particular—
useful for discussing this property

(g-mk) ξ is geometric Meir–Keeler:
∀ε > 0, ∃δ > 0: ξ(t, s) ≥ 0, ε < s < ε + δ 7⇒ t ≤ ε

(g-bila-sep) ξ is geometric bilateral separable:
∀β > 0, ∃γ ∈]0, β[, ∀(t, s): t, s ∈]β − γ, β + γ [ 7⇒ ξ(t, s) < 0.

The relationships between the geometric Meir–Keeler condition and the Matkowski
one attached to upper diagonal functions are nothing else than a simple translation
of the previous ones involving upper diagonal relations; we do not give details.

Summing up, the duality principles below are holding:

(DP-1) any concept (like the ones above) about (upper diagonal) relations over R0+
may be written as a concept about (upper diagonal) functions in the class
F (R0+ × R0+, R(±∞))

(DP-2) any concept (like the ones above) about (upper diagonal) functions in the
class F (R0+ × R0+, R(±∞)) may be written as a concept about (upper
diagonal) relations over R0+.

For the rest of our exposition, it will be convenient working with relations over R0+,
and not with functions in F (R0+ × R0+, R(±∞)); this, however, is nothing but a
methodology question.

We may now pass to the description of some basic objects in this area.

Part-Case I) Let F (re)(R0+, R) stand for the subclass of all ϕ ∈ F (R0+, R) with

ϕ is regressive: ϕ(t) < t , for all t > 0.

Call ϕ ∈ F (re)(R0+, R), Meir–Keeler admissible if

(mk-adm) ∀γ > 0, ∃β > 0, ∀t : γ < t < γ + β 7⇒ ϕ(t) ≤ γ .
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Some important examples of such functions may be given along the lines below.
For any ϕ ∈ F (re)(R0+, R) and any s ∈ R0+, put

Λ+ϕ(s) = inf0<ε<s Φ(s+)(ε); where Φ(s+)(ε) = supϕ(]s, s + ε[)
Λ±ϕ(s) = inf0<ε<s Φ(s±)(ε); where Φ(s±)(ε) = supϕ(]s − ε, s + ε[).

From the regressive property of ϕ, these limit quantities fulfill

(−∞ ≤) Λ+ϕ(s) ≤ Λ±ϕ(s) ≤ s, ∀s ∈ R0+
but the case of such limits having infinite values cannot be avoided.

The following auxiliary fact will be useful.

Proposition 7 Let ϕ ∈ F (re)(R0+, R) and s ∈ R0+ be arbitrary fixed. Then,

(41-1) lim supn(ϕ(tn)) ≤ Λ+ϕ(s),
for each sequence (tn) in R0+ with tn → s+

(41-2) lim supn(ϕ(tn)) ≤ Λ±ϕ(s),
for each sequence (tn) in R0+ with tn → s.

Proof

(i) Given ε ∈]0, s[, there exists a rank p(ε) ≥ 0 such that s < tn < s + ε, for all
n ≥ p(ε); hence

lim supn(ϕ(tn)) ≤ sup{ϕ(tn); n ≥ p(ε)} ≤ Φ(s+)(ε).
It suffices taking the infimum over ε in this relation to get the desired fact.

(ii) Given ε ∈]0, s[, there exists a rank p(ε) ≥ 0 such that s − ε < tn < s + ε, for
all n ≥ p(ε); hence

lim supn(ϕ(tn)) ≤ sup{ϕ(tn); n ≥ p(ε)} ≤ Φ(s±)(ε).
Taking the infimum over ε in this relation, we get the desired conclusion.

�
Call ϕ ∈ F (re)(R0+, R), Boyd–Wong admissible [4], if

(bw-adm) Λ+ϕ(s) < s, for all s > 0.

In particular, ϕ ∈ F (re)(R0+, R) is Boyd–Wong admissible provided it is upper
semicontinuous at the right on R0+:

Λ+ϕ(s) ≤ ϕ(s), for each s ∈ R0+.

This, e.g., is fulfilled when ϕ is continuous at the right on R0+; for, in such a case,

Λ+ϕ(s) = ϕ(s), for each s ∈ R0+.

On the other hand, ϕ ∈ F (re)(R0+, R) is Boyd–Wong admissible when

ϕ is strongly Boyd–Wong admissible: Λ±ϕ(s) < s, ∀s ∈ R0+.

Further, let F (re, in)(R0+, R) stand for the class of all ϕ ∈ F (re)(R0+, R), with

ϕ is increasing on R0+ (0 < t1 ≤ t2 implies ϕ(t1) ≤ ϕ(t2)).
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Then, let us say that ϕ ∈ F (re, in)(R0+, R) is Matkowski admissible [26],
provided

(m-adm) (∀t > 0): limn ϕ
n(t) = 0, as long as (ϕn(t); n ≥ 0) exists.

Here, as usual, we denoted for each t > 0

ϕ0(t) = t , ϕ1(t) = ϕ(t), . . ., ϕn+1(t) = ϕ(ϕn(t)), n ≥ 1.

Note that such a construction may be non-effective; e.g.,

ϕ2(t) = ϕ(ϕ(t)) is undefined whenever ϕ(t) ≤ 0.

Remark 2 Under these conventions,

(BW-mk) each Boyd–Wong admissible function in F (re)(R0+, R)
is Meir–Keeler admissible

(M-mk) each Matkowski admissible function in F (re, in)(R0+, R)
is Meir–Keeler admissible.

The verification of this is as follows.

(i) (cf. Boyd and Wong [4]). Suppose that ϕ ∈ F (re)(R0+, R) is Boyd–Wong
admissible, and fix γ > 0; hence Λ+ϕ(γ ) < γ . By definition, there exists
β = β(γ ) > 0 with [γ < t < γ + β implies ϕ(t) < γ ], proving that ϕ is
Meir–Keeler admissible.

(ii) (cf. Jachymski [14]). Assume that ϕ ∈ F (re, in)(R0+, R) is Matkowski
admissible. If the underlying property fails, then (for some γ > 0):

∀β > 0, ∃t ∈]γ, γ + β[, such that ϕ(t) > γ .

Combining with the increasing property of ϕ, one gets

(∀t > γ ): ϕ(t) > γ [whence (by induction): ϕn(t) > γ , for each n].

Fixing some t > γ and passing to limit as n → ∞, one derives 0 ≥ γ ;
contradiction; hence the claim. Further aspects may be found in Turinici [44].

Having these precise, take a function χ ∈ F (re)(R0+, R) and define the
associated relation Ω := Ω[χ ] over R0+, as

(t, s ∈ R0+): (t, s) ∈ Ω iff t ≤ χ(s).

Clearly, Ω is upper diagonal. In fact, let t, s ∈ R0+ be such that tΩs; i.e. t ≤ χ(s).
As χ is regressive, one has χ(s) < s; and this yields t < s; whence the conclusion
follows. Further properties of this relation are deductible from

Proposition 8 Let the function χ ∈ F (re)(R0+, R) be given, and Ω := Ω[χ ]
stand for the associated upper diagonal relation over R0+. Then,
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(42-1) Ω is geometric/asymptotic Meir–Keeler when the starting function χ is
Meir–Keeler admissible.

(42-2) Ω is geometric/asymptotic bilateral separable (hence, necessarily, geomet-
ric/asymptotic Meir–Keeler) when χ is strongly Boyd–Wong admissible.

Proof

(i) Let ε > 0 be given; and δ > 0 be the number associated with it, via Meir–
Keeler admissible property for χ . Given t, s ∈ R0+ with tΩs, ε < s < ε + δ,
we have [t ≤ χ(s), ε < s < ε+ δ]. This, according to the underlying property
of χ , gives χ(s) ≤ ε [hence, t ≤ ε]; wherefrom: Ω has the geometric Meir–
Keeler property.

(ii) Suppose, by absurd, that Ω is not asymptotic bilateral separable:

there are sequences (tn; n ≥ 0) and (sn; n ≥ 0) in R0+ and elements β ∈ R0+,
with ((tn, sn) ∈ Ω , ∀n) and (tn → β, sn → β).

By the definition of our relation,

(tn ≤ χ(sn), ∀n), and tn → β, sn → β.

Passing to lim sup as n→∞, yields (by a previous result)

β ≤ Λ±χ(β) < β; contradiction;

and this proves our assertion.
�

Part-Case II) Let (ψ, ϕ) be a couple of functions over F (R0+, R), with

(norm) (ψ, ϕ) is normal:
ψ is increasing and ϕ is strictly positive [ϕ(t) > 0, ∀t > 0].

(This concept may be related to the one introduced by Rhoades [38]; see also Dutta
and Choudhury [10]). Then, define the relation Ω = Ω[ψ, ϕ] in exp(R0+ × R0+), as

(t, s) ∈ Ω iff ψ(t) ≤ ψ(s)− ϕ(s).

We claim that, necessarily, Ω is upper diagonal. In fact, let t, s ∈ R0+ be such that

(t, s) ∈ Ω; i.e. ψ(t) ≤ ψ(s)− ϕ(s).

By the strict positivity of ϕ, one gets ψ(t) < ψ(s); and this, along with the
increasing property of ψ , shows that t < s; whence the conclusion follows. Further
properties of this relation are available under certain supplementary conditions
about the normal couple (ψ, ϕ), like below:

(as-pos) ϕ is asymptotic positive:
for each strictly descending sequence (tn; n ≥ 0) in R0+ and each ε > 0
with tn → ε+, we must have lim supn(ϕ(tn)) > 0.
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(bd-osc) (ψ, ϕ) is limit-bounded oscillating:
for each sequence (tn; n ≥ 0) in R0+ and each β > 0 with tn → β,
we have lim supn(ϕ(tn)) > ψ(β + 0)− ψ(β − 0).

Clearly

(for each normal couple (ψ, ϕ)):
(ψ, ϕ) is limit-bounded oscillating implies ϕ is asymptotic positive.

On the other hand, sufficient conditions under which the first property holds are
obtainable (under the same normality setting) via

(ϕ=increasing or continuous) implies ϕ=asymptotic positive.

In fact, let the strictly descending sequence (tn; n ≥ 0) in R0+ and the number ε > 0
be such that tn → ε+. When ϕ=increasing, we have (by normality)

ϕ(tn) ≥ ϕ(ε) > 0, ∀n; whence lim supn(ϕ(tn)) ≥ ϕ(ε) > 0.

On the other hand, when ϕ=continuous, the same normality condition yields

lim supn(ϕ(tn)) = limn(ϕ(tn)) = ϕ(ε) > 0, and conclusion follows.

Proposition 9 Let (ψ, ϕ) be a normal couple of functions over F (R0+, R); and
Ω := Ω[ψ, ϕ] be the associated upper diagonal relation. Then,

(43-1) If ϕ is asymptotic positive, then the associated relation Ω is asymptotic/ge-
ometric Meir–Keeler.

(43-2) If (ψ, ϕ) is limit-bounded oscillating, then the associated relation Ω
is asymptotic/geometric bilateral separable (hence, asymptotic/geometric
Meir–Keeler as well).

Proof

(i) Suppose by contradiction that Ω is not asymptotic Meir–Keeler:

There exist strictly descending sequences (tn) and (sn) in R0+
and elements ε in R0+ with ((tn, sn) ∈ Ω , ∀n) and (tn → ε+, sn → ε+).

By the former of these, we get

(0 <)ϕ(sn) ≤ ψ(sn)− ψ(tn), ∀n.

Passing to limit as n→∞, and noting that limn ψ(sn) = limn ψ(tn) = ψ(ε+
0), one gets limn ϕ(tn) = 0; in contradiction with the asymptotic positivity of
ϕ. So, necessarily, Ω has the asymptotic Meir–Keeler property; as claimed.

(ii) Suppose by contradiction that Ω is not asymptotic bilateral separable; i.e.

there exist sequences (tn) and (sn) in R0+ and elements β in R0+,
with ((tn, sn) ∈ Ω , ∀n) and (tn → β, sn → β).

By the former of these, we get

(0 <)ϕ(sn) ≤ ψ(sn)− ψ(tn), ∀n.
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Passing to lim sup as n →∞ yields lim supn ϕ(sn) ≤ ψ(β + 0) − ψ(β − 0),
in contradiction with (ψ, ϕ) being limit-bounded oscillating. This tells us that
Ω is asymptotic bilateral separable, as claimed.

�
In the following, some basic (and useful) particular choices for the couple (ψ, ϕ)

above are to be discussed.

Part-Case II-a) The construction in the preceding step (involving a certain χ ∈
F (re)(R0+, R)) is nothing else than a particular case of this one, corresponding to
the choice

ψ(t) = t , ϕ(t) = t − χ(t), t ∈ R0+.

Since the verification is immediate, we do not give details.

Part-Case II-b) Let λ : R0+ →]1,∞[ and μ : R0+ →]0, 1[ be a couple of
functions, with λ=increasing. Define a relation Ω := Ω[[λ,μ]] over R0+ as

tΩs iff λ(t) ≤ [λ(s)]μ(s).
This will be referred to as the Jleli–Samet relation attached to λ(.) and μ(.).
(The proposed conventions come from the developments in Jleli and Samet [18],
corresponding to μ(.)=constant). By a direct calculation, it is evident that

tΩs iff tΩ[ψ, ϕ]s; where ψ(t) = log[log(λ(t))], ϕ(t) = − log(μ(t)), t > 0.

Hence, this construction is entirely reducible to the standard one in this series.

Part-Case II-c) Let the couple (ψ, α) over F (R0+, R) be admissible; i.e.

(admi-1) ψ(.) is increasing, right continuous, strictly positive.
(admi-2) −α(.) is right lsc on R0+, and γ := ψ − α is strictly positive.

Proposition 10 Let the functions (ψ, α) be as before. Then,

(44-1) The couple (ψ, γ ) (where γ = ψ − α) is a normal couple over F (R0+, R),
with γ=asymptotic positive.

(44-2) The associated with (ψ, γ ) relation

tΩs iff ψ(t) ≤ ψ(s)− γ (s) (that is: ψ(t) ≤ α(s))

is upper diagonal and asymptotic (hence, geometric) Meir–Keeler.

Proof

(i) By definition, ψ is increasing and γ is strictly positive.
(ii) Suppose by contradiction that γ (.) is not asymptotic positive: There exist ε > 0

and a strictly descending sequence (tn) in R0+, with

tn → ε+ and lim supn(γ (tn)) = 0; whence, limn(γ (tn)) = 0.

The last relation gives
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limn(−α(tn)) = −ψ(ε) (as ψ is right continuous).

Combining with −α(.) being right lsc on R0+, yields (by this limit process)

−α(ε) ≤ −ψ(ε); or, equivalently: γ (ε) ≤ 0;

in contradiction with the strict positivity of γ . Hence, our working assumption
is not acceptable, and the claim follows.

(iii) Evident, by our previous facts.
�

Part-Case II-d) Let ψ ∈ F (R0+, R) and Δ ∈ F (R) be a couple of functions. The
following regularity condition involving these objects will be considered here:

(BV-c) (ψ,Δ) is a Bari–Vetro couple:
ψ is increasing and Δ is regressive (Δ(r) < r , for all r ∈ R).

In this case, by definition,

ϕ(t) := ψ(t)−Δ(ψ(t)) > 0, for all t > 0;

so that, (ψ, ϕ) is a normal couple of functions over F (R0+, R). Let Ω := Ω[ψ,Δ]
be the (associated) Bari–Vetro relation over R0+, introduced as

tΩs iff ψ(t) ≤ Δ(ψ(s)).

(This convention is related to the developments in Di Bari and Vetro [9]). From (BV-
c), Ω is an upper diagonal relation over R0+. It is natural then to ask under which
extra assumptions about our data we have that Ω is an asymptotic Meir–Keeler
relation. The simplest one may be written as

(a-reg) Δ is asymptotic regressive:
for each descending sequence (rn) in R and each α ∈ R with rn → α,
we have that lim infn Δ(rn) < α.

Note that, by the non-strict character of the descending property above, one has

Δ is asymptotic regressive implies Δ is regressive.

Proposition 11 Let the functions (ψ ∈ F (R0+, R),Δ ∈ F (R)) be such that

(ψ,Δ) is an asymptotic Bari–Vetro couple; i.e.
ψ is increasing and Δ is asymptotic regressive.

Then,

(45-1) the above defined function ϕ is asymptotic positive.
(45-2) the associated relation Ω is upper diagonal, and asymptotic Meir–Keeler

(hence, geometric Meir–Keeler).

Proof

(i) Let the strictly descending sequence (tn; n ≥ 0) in R0+ and the number ε > 0
be such that tn → ε+; we must derive that lim supn(ϕ(tn)) > 0. Denote
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(rn = ψ(tn), n ≥ 0); α = ψ(ε + 0).

By the imposed conditions (and ψ=increasing)

(rn) is descending and rn → α as n→∞.

In this case,

lim supn ϕ(tn) = lim supn[rn −Δ(rn)] = α − lim infn Δ(rn) > 0;

hence the claim.
(ii) The assertion follows at once from (ψ, ϕ) being a normal couple with

(ϕ=asymptotic positive), and a previous remark involving these objects.
However, for completeness reasons, we provide an argument for this.

(ii-1) Let t, s > 0 be such that

tΩs; i.e. ψ(t) ≤ Δ(ψ(s)).

As Δ is regressive,

ψ(t) < ψ(s); whence, t < s (in view of ψ=increasing);

so that, Ω is upper diagonal.
(ii-2) Suppose by contradiction that there exists a couple of strictly descending

sequences (tn) and (sn) in R0+, and a number ε > 0, with

tn → ε+, sn → ε+, and tnΩsn [i.e. ψ(tn) ≤ Δ(ψ(sn))], for each n.

From the increasing property of ψ , one has (under α := ψ(ε + 0))

(un := ψ(tn)) and (vn := ψ(sn)) are descending sequences in R, with
un → α, vn → α, as n→∞;

so, passing to lim inf as n →∞ in the relation above [i.e. un ≤ Δ(vn), ∀n],
one gets (via Δ=asymptotic regressive)

α = lim infn un ≤ lim infn Δ(vn) < α; contradiction.

Hence, our working assumption is not acceptable, and the conclusion follows.
�

In particular, when ψ and Δ are continuous, our theorem reduces to the one in
Jachymski [16].

5 Statement of the Problem

Let (X, d) be a metric space. Further, let T ∈ F (X) be a selfmap of X. In the
following, sufficient conditions are given for the existence and/or uniqueness of
elements in Fix(T ). The way of solving it is by means of local and global (metrical)
conditions involving our data.
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5-I) Let x0 be some point in X. By an x0-iterative sequence attached to T , we
mean any sequence X0 := (xn; n ≥ 0) [or, simply, X0 := (xn)] defined as (xn =
T nx0; n ≥ 0). Denote also

U0 := [X0] = {xn; n ≥ 0} (the x0-trajectory attached to X0 = (xn))
V0 := cl(U0) (the complete x0-trajectory attached to X0 = (xn)).

The following simple fact is to be noted.

Proposition 12 Under these conventions,

V0 = U0 ∪ {z}, whenever z := limn(xn) exists.

Proof Clearly, V0 ⊇ U0 ∪ {z}. Suppose that there exists v ∈ V0 that is outside
U0 ∪ {z}. By the limit definition, there exists σ > 0 such that

X(v, σ ) := {x ∈ X; d(v, x) < σ } is disjoint from U0 ∪ {z}.
In particular, this tells us that v cannot belong to cl(U0) = V0; contradiction.
Consequently, V0 ⊆ U0 ∪ {z}; and we are done. �
5-II) Given the x0-iterative sequence X0 = (xn), two alternatives occur.

Alt-1) The iterative sequence X0 = (xn) is telescopic, in the sense

(tele) there exists h ≥ 0, such that d(xh, xh+1) = 0.

By the very definition of our sequence, one derives

xh = xn, for all n ≥ h; whence, z := xh is an element of Fix(T ).

Consequently, this case is completely clarified from the fixed point perspective.

Alt-2) The iterative sequence X0 = (xn) is non-telescopic, in the sense

(n-tele) d(xn, xn+1) > 0, ∀n.

This is the effective case when the underlying problem is to be solved.
Under the precise framework, let us list the directions under which the proposed

problem is to be handled. Given the sequence (zn; n ≥ 0) in X, define the property

(zn) is full: n �→ zn is injective (i �= j implies zi �= zj ).

Then, fix some nonempty part W0 of X with V0 ⊆ W0.

po-1) We say that the non-telescopic iterative sequence X0 = (xn) is full Picard
(modulo (d; T )) when (xn) is full and d-convergent.

po-2) We say that the non-telescopic iterative sequence X0 = (xn) is strongly full
Picard (modulo (d; T )) when (xn) is full, d-convergent, and limn(xn) ∈ Fix(T ).

po-3) We say that the non-telescopic iterative sequence X0 = (xn) is W0-single
strongly full Picard (modulo (d; T )) when (xn) is full, d-convergent, limn(xn) ∈
Fix(T ), and Fix(T ) ∩W0 is an asingleton; whence, {limn(xn)} = Fix(T ) ∩W0.
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Clearly, these conventions may be viewed as a local sequential variant of the ones
in Rus [39, Ch 2, Sect 2.2].

Sufficient conditions for such properties are being founded on orbital full (in
short: (o-f)) concepts. Given the sequence (zn; n ≥ 0) in X, define the property

(zn) is T -orbital: (zn = T nx; n ≥ 0), for some x ∈ X.

Note that the iterative sequence X0 = (xn) is an orbital one, but not full in general.

reg-1) Call X, (o-f,d)-complete at X0 = (xn), provided X0= full, d-Cauchy implies
(xn) is d-convergent.

reg-2) Let us say that T is (o-f,d)-continuous at X0 = (xn), if X0= full and
limn(xn) = z implies limn(T xn) = T z. [Note that, in this case, z = T z; because
limn(T xn) = limn(xn+1) = z].

5-III) To solve our problem along the precise directions, the metrical contractive
techniques will be used; these are connected with certain Meir–Keeler conditions
[28] upon the underlying data. Denote [for x, y ∈ X]

Q1(x, y) = d(x, T x), Q2(x, y) = d(x, y),
Q3(x, y) = d(x, T y), Q4(x, y) = d(T x, y),
Q5(x, y) = d(T x, T y), Q6(x, y) = d(y, T y),
Q(x, y) = (Q1(x, y),Q2(x, y),Q3(x, y),Q4(x, y),Q5(x, y),Q6(x, y)).

Further, let us construct the family of functions [for x, y ∈ X]

P0(x, y) = Q5(x, y), P1(x, y) = (1/2)[Q3(x, y)+Q4(x, y)],
P2(x, y) = (1/2)[Q1(x, y)+Q6(x, y)],
M0(x, y) = min{Q1(x, y),Q2(x, y),Q5(x, y),Q6(x, y)},
M∗

0 (x, y) = min{Q2(x, y),Q5(x, y)},
M1(x, y) = max{Q1(x, y),Q6(x, y)},
M2(x, y) = max{Q1(x, y),Q2(x, y),Q6(x, y)},
M(x, y) = max Q(x, y) = diam{x, T x, y, T y}.

5-III-1) Having this precise, let P = P(T ) be a map in F (X × X,R+). For
example, one may take

P(x, y) = Θ(Q(x, y)), x, y ∈ X;

where Θ : R6+ → R+ is a map; but this is not the only possible choice. Let also
Y0 be a nonempty subset of X. (As usual, the case Y0 ∈ {U0, V0,W0} is considered;
but this is not essential for the moment).

We say that T is Meir–Keeler (d;P ;Y0)-contractive if

(mk-1) x, y ∈ Y0, P(x, y) > 0, imply P0(x, y) < P (x, y);
referred to as: T is strictly contractive (modulo (d;P ;Y0))

(mk-2) ∀ε > 0, ∃δ > 0, such that:
x, y ∈ Y0, ε < P (x, y) < ε + δ imply P0(x, y) ≤ ε;
referred to as: T has the Meir–Keeler property (modulo (d;P ;Y0)).
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These concepts may be viewed as an extended version of the ones introduced by
Meir and Keeler [28]; see also Matkowski [27] and Cirić [7].

Remark 3 By the former of these conditions, the Meir–Keeler property (modulo
(d;P ;Y0)) of T writes

(mk-3) ∀ε > 0, ∃δ > 0, such that:
x, y ∈ Y0, 0 < P(x, y) < ε + δ imply P0(x, y) ≤ ε.

5-III-2) A geometric version of the above concept may be given along the lines
below. Remember that the relation Ω ⊆ R0+ × R0+ is called upper diagonal,
provided

(u-diag) (t, s) ∈ Ω implies t < s;

the class of all these will be denoted as udiag(R0+). Further, let us introduce the
geometric conditions (over the class udiag(R0+))

(g-mk) Ω has the geometric Meir–Keeler property:
∀ε > 0, ∃δ > 0: tΩs, ε < s < ε + δ 7⇒ t ≤ ε.

(g-bila-sep) Ω is geometric bilateral separable:
∀β > 0, ∃γ ∈]0, β[, ∀(t, s): t, s ∈]β − γ, β + γ [ 7⇒ (t, s) /∈ Ω .

In a close connection with these, a lot of asymptotic conditions are given over the
same class of upper diagonal relations udiag(R0+):

(a-mk) Ω is asymptotic Meir–Keeler:
there are no strictly descending sequences (tn) and (sn) in R0+ and no
elements
ε in R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn → ε+, sn → ε+).

(a-bila-sep) Ω is asymptotic bilateral separable:
there are no sequences (tn; n ≥ 0) and (sn; n ≥ 0) in R0+ and no
elements
β ∈ R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn → β, sn → β).

As precise, any geometric property above is equivalent with its corresponding
asymptotic property. In addition (see above) one has

(for each upper diagonal Ω ⊆ R0+ × R0+):
Ω is geometric/asymptotic bilateral separable implies
Ω is geometric/asymptotic Meir–Keeler.

Now, given the mapping P = P(T ) : X × X → R+, the (nonempty) subset Y0
of X and the relation Ω ⊆ R0+×R0+, let us say that the self-map T is (d;P ;Y0;Ω)-
contractive, provided

(Om-contr) (P0(x, y), P (x, y)) ∈ Ω ,
for all x, y ∈ Y0 with P0(x, y), P (x, y) > 0.



960 M. Turinici

Proposition 13 Suppose that the self-map T is (d;P ;Y0;Ω)-contractive, where
the relation Ω ⊆ R0+ × R0+ is upper diagonal and geometric Meir–Keeler. Then, T
is Meir–Keeler (d;P ;Y0)-contractive.

Proof

(i) Let x, y ∈ Y0 be such that P(x, y) > 0. If P0(x, y) = 0, all is clear. Suppose
now that P0(x, y) > 0. As a consequence of this,

(t, s) ∈ Ω; where t := P0(x, y), s := P(x, y).

Combining with the upper diagonal property of Ω , one gets t < s;
i.e. P0(x, y) < P (x, y). Summing up, T is strictly contractive (modulo
(d;P ;Y0)).

(ii) Let ε > 0 be arbitrary fixed; and δ > 0 be the number assured by the geometric
Meir–Keeler property of Ω . Further, let x, y ∈ Y0 be such that ε < s :=
P(x, y) < ε + δ. As before, if P0(x, y) = 0, all is clear. Suppose now that
P0(x, y) > 0. By definition,

(t, s) ∈ Ω; where t := P0(x, y), s := P(x, y);

and this, along with ε < s < ε + δ gives (by the geometric Meir–Keeler
property of Ω), t ≤ ε; i.e. P0(x, y) ≤ ε. Putting these together, it follows that
T has the Meir–Keeler property (modulo (d;P ;Y0)). The proof is complete.

�
5-III-3) In the following, a converse result is formulated. Given the mapping P :
X × X → R+ and the subset Y0 of X, let Ω = Ω[d;P ;Y0; T ] stand for the
associated relation over R0+:

Ω = {(P0(x, y), P (x, y)); x, y ∈ Y0, P0(x, y), P (x, y) > 0}.
This, by definition, means that

(t, s) ∈ R0+ × R0+ belongs to Ω iff the subset E(t, s) of all
(x, y) ∈ Y0 × Y0 with (t = P0(x, y), s = P(x, y)) is nonempty.

Remark 4 The following sequential aspect of this representation is to be noted, in
(ZF-AC+DC). Let ((tn, sn); n ≥ 0) be a sequence in Ω[d;P ;Y0; T ]; that is

(seq-1) ((tn, sn); n ≥ 0) is a sequence in R0+ × R0+.
(seq-2) E(tn, sn) = {(x, y) ∈ Y0 × Y0; t = P0(x, y), s = P(x, y)} �= ∅, for all n.

By the Denumerable Axiom of Choice (deductible in (ZF-AC+DC)), we get a
sequence ((xn, yn); n ≥ 0) in Y0 × Y0, with the property

(seq-3) (∀n): (xn, yn) ∈ E(tn, sn); that is:
tn = P0(xn, yn) > 0, sn = P(xn, yn) > 0.

Roughly speaking, the upper diagonal and geometric Meir–Keeler properties of
the associated to T relation Ω[d;P ;Y0; T ] give, ultimately, a characterization of
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the Meir–Keeler contractive properties upon T . The following result will certify
this.

Proposition 14 Under these conventions, we have

(53-1) If T is Meir–Keeler (d;P ;Y0)-contractive, then the attached relationΩ :=
Ω[d;P ;Y0; T ] is upper diagonal and geometric Meir–Keeler.

(53-2) T is Meir–Keeler (d;P ;Y0)-contractive if and only if the attached relation
Ω := Ω[d;P ;Y0; T ] is upper diagonal and geometric Meir–Keeler.

Proof

(i) Suppose that T is Meir–Keeler (d;P ;Y0)-contractive.
(i-1) Let (t, s) ∈ R0+ × R0+ be such that (t, s) ∈ Ω; hence (by definition)

t = P0(x, y), s = P(x, y), where x, y ∈ Y0 and [P0(x, y), P (x, y) > 0].

From the strict contractive property of T , we must have P0(x, y) < P (x, y);
or, equivalently, t < s; which shows that Ω is upper diagonal.

(i-2) Let ε > 0 be arbitrary fixed; and δ > 0 be the number associated by the Meir–
Keeler property of T . Further, let (t, s) ∈ R0+ × R0+ be such that (t, s) ∈ Ω

and ε < s < ε + δ; hence (see above)

t = P0(x, y), s = P(x, y), where x, y ∈ Y0 and [P0(x, y), P (x, y) > 0];
so that (by definition):

P0(x, y) > 0, and ε < P (x, y) < ε + δ.

By the underlying Meir–Keeler-property for T , we get

P0(x, y) ≤ ε; i.e. (under our notation): t ≤ ε;

so that, Ω has the geometric Meir–Keeler property.
(ii) Suppose that the associated relation Ω = Ω[d;P ;Y0; T ] over R0+ is upper

diagonal and has the geometric Meir–Keeler property. By the very definition
of this object, T is (d;P ;Y0;Ω)-contractive. Combining with the preceding
result, one derives that T appears as Meir–Keeler (d;P ;Y0)-contractive.

�
As a consequence of this, it follows that the Meir–Keeler (d;P ;Y0)-contractive

properties of T are finally reducible to the upper diagonal and geometric Meir–
Keeler properties for the associated relation Ω[d;P ;Y0; T ]. However, there are
some other properties of this relation—like the separable ones—that exceed this
Meir–Keeler setting; but, as we will see, these come from certain functional
contractions. There are three cases to discuss.

Case I Given χ ∈ F (R0+, R), let us say that the self-map T is Boyd–Wong
(d;P ;Y0;χ)-contractive, if

P0(x, y) ≤ χ(P (x, y)), ∀x, y ∈ Y0, P0(x, y), P (x, y) > 0.
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To discuss it, we need some conditions upon this function. Let F (re)(R0+, R) stand
for the subclass of all χ ∈ F (R0+, R) with

χ is regressive: χ(t) < t , for all t > 0.

Then, call χ ∈ F (re)(R0+, R),

(mk-adm) Meir–Keeler admissible if
∀γ > 0, ∃β > 0, ∀t : γ < t < γ + β 7⇒ χ(t) ≤ γ

(bw-adm) Boyd–Wong admissible, when Λ+χ(s) < s, ∀s ∈ R0+.
(s-bw-adm) strongly Boyd–Wong admissible, if Λ±χ(s) < s, ∀s ∈ R0+.

Remark 5 We stress that the following relationships are available:

(for each χ ∈ F (re)(R0+, R)): strongly Boyd–Wong admissible 7⇒
Boyd–Wong admissible 7⇒ Meir–Keeler admissible.

The verification of these was carried out in a previous place.

Proposition 15 Suppose that T is Boyd–Wong (d;P ;Y0;χ)-contractive, where
χ ∈ F (re)(R+) is given. Then, the following assertions are true in (ZF-
AC+DC):

(54-1) the associated relation Ω[d;P ;Y0; T ] is upper diagonal.
(54-2) the associated relation Ω[d;P ;Y0; T ] is upper diagonal and geometric

Meir–Keeler (whence T is Meir–Keeler (d;P ;Y0)-contractive) whenever
χ is Meir–Keeler admissible.

(54-3) the associated relationΩ[d;P ;Y0; T ] is upper diagonal, (geometric Meir–
Keeler and) geometric bilateral separable if χ is strongly Boyd–Wong
admissible.

Proof Let Ω := Ω[χ ] be the relation over R0+ introduced as

(t, s ∈ R0+): tΩs iff t ≤ χ(s).

By definition,

T is Boyd–Wong (d;P ;Y0;χ)-contractive implies T is (d;P ;Y0;Ω)-contractive.

Moreover, by a previous fact,

(p1) Ω is upper diagonal.
(p2) Ω is geometric Meir–Keeler whenever χ is Meir–Keeler admissible.
(p3) Ω is (geometric Meir–Keeler and) geometric bilateral separable whenever χ

is strongly Boyd–Wong admissible.

This, along with Ω[d;P ;Y0; T ] ⊆ Ω yields (see above) the written conclusion.
�

Case II Given the functional couple (ψ, ϕ) over F (R0+, R), let us say that the
mapping T is Rhoades (d;P ;Y0;ψ, ϕ)-contractive, provided
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ψ(P0(x, y)) ≤ ψ(P (x, y))−ϕ(P (x, y)), for all x, y ∈ Y0 with P0(x, y), P (x, y) >

0.

To discuss it, remember that some compatible properties of the couple (ψ, ϕ) were
introduced. First, let us assume that

(norm) (ψ, ϕ) is normal:
ψ is increasing, and ϕ is strictly positive (ϕ(t) > 0, ∀t > 0).

Further, let us introduce the conditions upon the normal couple (ψ, ϕ):

(as-pos) ϕ is asymptotic positive:
for each strictly descending sequence (tn; n ≥ 0) in R0+ and each ε > 0
with tn → ε+, we must have lim supn(ϕ(tn)) > 0.

(bd-osc) (ψ, ϕ) is limit-bounded oscillating:
for each sequence (tn; n ≥ 0) in R0+ and each β > 0 with tn → β,
we have lim supn(ϕ(tn)) > ψ(β + 0)− ψ(β − 0).

Remark 6 The following relationship is available, by this definition

(ψ, ϕ) is normal and limit-bounded oscillating implies ϕ=asymptotic positive.

In fact, let the strictly descending sequence (tn) in R0+ and the number ε > 0 be
such that tn → ε+. By the limit-bounded oscillating property

lim supn(ϕ(tn)) > ψ(ε + 0)− ψ(ε − 0) ≥ 0;

and the assertion follows.

Proposition 16 Suppose that T is Rhoades (d;P ;Y0;ψ, ϕ)-contractive, where the
couple (ψ, ϕ) is normal. Then, the following inclusions are true in (ZF-AC+DC):

(55-1) the associated relation Ω[d;P ;Y0; T ] is upper diagonal.
(55-2) the associated relation Ω[d;P ;Y0; T ] is upper diagonal and

geometric Meir–Keeler (whence T is Meir–Keeler (d;P ;Y0)-contractive)
whenever ϕ is asymptotic positive.

(55-3) the associated relationΩ[d;P ;Y0; T ] is upper diagonal, (geometric Meir–
Keeler and) geometric bilateral separable if the couple (ψ, ϕ) has the is
limit-bounded oscillating property.

Proof Let Ω := Ω[ψ, ϕ] be the associated relation over R0+
(t, s ∈ R0+): tΩs iff ψ(t) ≤ ψ(s)− ϕ(s).

By definition,

T is Rhoades (d;P ;Y0;ψ, ϕ)-contractive implies T is (d;P ;Y0;Ω)-contractive.

Moreover, by a previous fact,

(q1) Ω is upper diagonal.
(q2) Ω is geometric Meir–Keeler if ϕ is asymptotic positive.
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(q3) Ω is (geometric Meir–Keeler and) geometric bilateral separable whenever
(ψ, ϕ) is limit-bounded oscillating.

This, along with Ω[d;P ;Y0; T ] ⊆ Ω yields (see above) the written conclusion. �
Case III Denote, for x, y ∈ X,

M1(x, y) = (Q1(x, y),Q6(x, y)),
M1(x, y) = max M1(x, y) = max{Q1(x, y),Q6(x, y)},
M2(x, y) = (Q1(x, y),Q2(x, y),Q6(x, y)),
M2(x, y) = max M2(x, y) = max{Q1(x, y),Q2(x, y),Q6(x, y)}.

Given the couple of maps g ∈ F (R+), H ∈ F (R3+, R+), let us say that the
mapping T is Khan (d;M2;Y0; g,H)-contractive, provided

(K-con) g(P0(x, y)) ≤ g(M2(x, y))−H(M2(x, y)), ∀x, y ∈ Y0.

The class of functions (g,H) appearing here may be described as follows. Let k ≥ 1
be a natural number. According to Khan et al. [24], we say that G ∈ F (Rk+, R+) is
an altering function, in case

(alter-1) G is increasing in each variable
(alter-2) G is reflexive sufficient: (t1 = . . . = tk = 0) iff G(t1, . . . , tk) = 0.

The class of all such functions will be denoted F (alt)(Rk+, R+). Note that, given
G ∈ F (alt)(R3+, R+), the associated function (g(t) = G(t, t, t); t ∈ R+) is an
element of F (alt)(R+). Moreover, by our previous notations,

G(M2(x, y)) ≤ g(M2(x, y)), ∀x, y ∈ X.

Proposition 17 Suppose that the mapping T is Khan (d;M2;Y0; g,H)-
contractive, where g ∈ F (alt)(R+) and H ∈ F (alt)(R3+, R+). Then, the
following inclusions are true in (ZF-AC+DC):

(56-1) The associated relation Ω[d;M2;Y0; T ] is upper diagonal and
geometric/asymptotic Meir–Keeler (whence T is Meir–Keeler (d;M2;Y0)-
contractive).

(56-2) The associated relation Ω[d;P ;Y0; T ] is, in addition,
geometric/asymptotic bilateral separable (hence, geometric/asymptotic
Meir–Keeler) whenever g is continuous.

Proof The verification consists of three stages.

(i) Assume by contradiction that the associated relation Ω[d;M2;Y0; T ] is not
upper diagonal:

there exist x, y ∈ Y0 such that P0(x, y),M2(x, y) > 0 and P0(x, y) ≥
M2(x, y).

By the contractive condition (and g=increasing),
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g(M2(x, y)) ≤ g(P0(x, y)) ≤ g(M2(x, y)) − H(M2(x, y)); so,
H(M2(x, y)) = 0.

This, along with H ∈ F (alt)(R3+, R+) yields M2(x, y) = 0; hence
M2(x, y) = 0, in contradiction with the posed hypothesis.

(ii) Assume by contradiction that the associated relation Ω[d;M2;Y0; T ] does not
have the geometric/asymptotic Meir–Keeler property: there exists ε > 0, so
that

C(δ) := {(x, y) ∈ Y0 × Y0; ε < M2(x, y) < ε + δ, P0(x, y) > ε} �= ∅, for
each δ > 0.

Taking a zero converging sequence (δn) in R0+, we get by the Denumerable
Axiom of Choice (deductible in (ZF-AC+DC)), a sequence ((xn, yn); n ≥ 0)
in Y0 × Y0, with

(∀n): (xn, yn) ∈ C(δn); that is (by definition and preceding step)
ε < P0(xn, yn) < M2(xn, yn) < ε + δn;

note that, as a direct consequence of this,

P0(xn, yn)→ ε+ and M2(xn, yn)→ ε+, as n→∞.

By the contractive condition, we get for all n,

(0 ≤)H(M2(xn, yn)) ≤ g(M2(xn, yn))− g(P0(xn, yn));

and this (via g=increasing) gives (by the above)

lim supn H(M2(xn, yn)) ≤ g(ε+0)−g(ε+0) = 0; so, limn H(M2(xn, yn))

= 0.

On the other hand, by the very construction of our sequence ((xn, yn); n ≥ 0),
there must be some index i ∈ {1, 2, 6} such that

ε < Qi(xn, yn) < ε + δn, for infinitely many n.

Without loss, one may assume that i = 1. Combining with (H=increasing in
all variables), yields

H(M2(xn, yn)) ≥ H(ε, 0, 0), for infinitely many n;
wherefrom limn H(M2(xn, yn)) ≥ H(ε, 0, 0) > 0;

in contradiction with the limit property above. Consequently, our work-
ing assumption is not acceptable; wherefrom, the associated relation
Ω[d;M2;Y0; T ] does have the geometric/asymptotic Meir–Keeler property.

(iii) Assume by contradiction that the associated relation Ω[d;M2;Y0; T ] is not
asymptotic bilateral separable: There exists a sequence ((tn, sn); n ≥ 0) in
R0+ × R0+ and an element β > 0, such that

(r1) (tn, sn) ∈ Ω[d;M2;Y0; T ], for all n,
(r2) tn → β and sn → β as n→∞.
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By a previous observation involving the underlying object, we get, in the
reduced system (ZF-AC+DC), a sequence ((xn, yn); n ≥ 0) in Y0×Y0, with

(r3) tn = P0(xn, yn) > 0, sn = M2(xn, yn) > 0, ∀n.

This, via convergence property above, gives

(r4) P0(xn, yn)→ β and M2(xn, yn)→ β as n→∞.

Moreover, taking the contractive condition into account gives

(r5) g(P0(xn, yn)) ≤ g(M2(xn, yn))−H(M2(xn, yn)), ∀n.

A simple re-arrangement of this last relation yields

(0 ≤)H(M2(xn, yn)) ≤ g(M2(xn, yn))− g(P0(xn, yn)), ∀n;

so, passing to lim sup as n→∞, we get (by the convergence properties)

lim supn H(M2(xn, yn)) ≤ g(β)− g(β) = 0; whence, limn H(M2(xn, yn))

= 0.

Let (γn) be a strictly descending sequence in ]0, β[ with limn(γn) = 0. By the
convergence property once again, there must be some index i ∈ {1, 2, 6} such
that

β − γn < Qi(xn, yn) < β + γn, for infinitely many n.

Without loss, one may assume that i = 1. Combining with (H=increasing in
all variables), yields an evaluation like

H(M2(xn, yn)) ≥ H(β − γ0, 0, 0), for infinitely many n;
wherefrom limn H(M2(xn, yn)) ≥ H(β − γ0, 0, 0) > 0;

in contradiction with the limit property above. Consequently, our work-
ing assumption is not acceptable; wherefrom, the associated relation
Ω[d;M2;Y0; T ] is asymptotic (hence, geometric) bilateral separable.

�
Note that similar conclusions may be derived for the pair (M1,M1); we do not

give further details.

6 Main Result

Let (X, d) be a metric space. Further, take some self-map T ∈ F (X), and put
Fix(T ) = {z ∈ X; z = T z}; each point of it will be referred to as fixed with respect
to T . As precise, we look for existence and uniqueness conditions involving Fix(T ).
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Let x0 be some point in X. By an x0-iterative sequence attached to T , we mean
any sequence X0 := (xn), where (xn = T nx0; n ≥ 0). In the following, we fix such
an object, with (cf. a previous discussion)

(non-tele) X0 = (xn) is non-telescopic (d(xn, xn+1) > 0, ∀n).

Denote also

• U0 := [X0] = {xn; n ≥ 0} (the x0-trajectory attached to X0 = (xn)).
• V0 := cl(U0) (the complete x0-trajectory attached to X0 = (xn)).

Let also W0 be some nonempty part of X with V0 ⊆ W0. The specific directions
under which the posed problem is to be solved were already listed; as precise,
these are based on regularity conditions involving the non-telescopic x0-iterative
sequence X0 = (xn) we just introduced. On the other hand, the metrical tools of our
investigations consist in regularity conditions upon certain associated to T relations
over R0+ constructed over the triple (U0, V0,W0) taken as before.

Precisely, let us introduce the conventions, for x, y ∈ X

Q1(x, y) = d(x, T x), Q2(x, y) = d(x, y),
Q3(x, y) = d(x, T y), Q4(x, y) = d(T x, y),
Q5(x, y) = d(T x, T y), Q6(x, y) = d(y, T y),
Q(x, y) = (Q1(x, y),Q2(x, y),Q3(x, y),Q4(x, y),Q5(x, y),Q6(x, y)).

Then, let us construct the family of functions [for x, y ∈ X]

P0(x, y) = Q5(x, y), P1(x, y) = (1/2)[Q3(x, y)+Q4(x, y)],
P2(x, y) = (1/2)[Q1(x, y)+Q6(x, y)],
M0(x, y) = min{Q1(x, y),Q2(x, y),Q5(x, y),Q6(x, y)},
M∗

0 (x, y) = min{Q2(x, y),Q5(x, y)},
M1(x, y) = max{Q1(x, y),Q6(x, y)},
M2(x, y) = max{Q1(x, y),Q2(x, y),Q6(x, y)},
M(x, y) = max Q(x, y) = diam{x, T x, y, T y}.

Further, let P : X ×X → R+ be a mapping. Usually, this object is of the form

P = Θ(Q); i.e. P(x, y) = Θ(Q(x, y)), x, y ∈ X;

where Θ : R6+ → R+ fulfills certain mild conditions. But, this is not the only choice
to be considered. Then, let the nonempty set Y0 of X be given; as a rule, we choose
it as Y0 ∈ {U0, V0,W0}. Given the relation Ω ⊆ R0+ × R0+, let us say that T is
(d;P ;Y0;Ω)-contractive, provided

(Om-contr) (P0(x, y), P (x, y)) ∈ Ω ,
for all x, y ∈ Y0 with P0(x, y), P (x, y) > 0.

An intrinsic version of this property may be stated as follows. Given the mapping
P : X×X → R+ and the subset Y0 ofX, letΩ[d;P ;Y0; T ] stand for the associated
relation over R0+:
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Ω[d;P ;Y0; T ] = {(P0(x, y), P (x, y)); x, y ∈ Y0, P0(x, y), P (x, y) > 0};
or, in other words:
(t, s) ∈ Ω[d;P ;Y0; T ] iff t = P0(x, y), s = P(x, y), where x, y ∈ Y0, and
P0(x, y), P (x, y) > 0.

It is now clear, by definition, that (with Ω as before)

T is (d;P ;Y0;Ω)-contractive iff Ω[d;P ;Y0; T ] ⊆ Ω .

This, in particular, tells us that all extra properties of Ω to be considered yield
corresponding properties of associated to T relation Ω[d;P ;Y0; T ].

As a completion of these, some specific groups of conditions upon our data will
be described.

6-I) The first group of such conditions is of starting type; and allows us obtaining
upper diagonal properties for each attached to T relation Ω[d;P ;Y0; T ]. For each
mapping K : X ×X → R+ define the concept

(posi) (Y0;P ;K) is positive: for each x, y ∈ Y0 we have
K(x, y) > 0 implies P(x, y) > 0.

The usual choices for our mapping are K ∈ {M0,M
∗
0 }.

6-II) The second group of conditions has the role of getting a d-asymptotic
property and full property for the non-telescopic x0-iterative sequence X0 = (xn) to
be considered. It may be formulated as

(o-bd) (U0;P ;M1) is orbitally bounded: P(x, T x) ≤ M1(x, T x), ∀x ∈ U0.

6-III) The third group of conditions allows us determining a d-Cauchy property for
the obtained d-asymptotic full x0-iterative sequence X0 = (xn); and writes

if X0 = (xn) is d-asymptotic full, then (X0;P) is orbitally small: for each (ε, δ)

with ε > δ > 0, there exists γ ∈]0, δ/4[ (and the attached asymptotic rank
n(γ )), such that: j ≥ 2, k ≥ n(γ ), and d(xm, xm+i ) < ε + δ/2 for (m ≥ k,
i ∈ {1, . . . , j}), imply P(xn, xn+j ) < ε + δ, whenever (n ≥ k, d(xn, xn+j+1) ≥
ε + δ/2).

Concerning this concept, the following practical criteria will be useful for us. For
each mapping K : X ×X → R+ define the concept

(Y0;P ;K) is bounded: P(x, y) ≤ K(x, y), ∀x, y ∈ Y0.

Proposition 18 Suppose that X0 = (xn) is d-asymptotic full. Then

(61-1) if (U0;P ;M) is bounded, then (X0;P) is orbitally small.
(61-2) if P1, P2 : X × X → R+ are such that (X0, P1) and (X0, P2) are orbitally

small, then (X0, P3) is orbitally small, where P3 := max{P1, P2}.
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Proof

(i) Let the d-asymptotic full x0-iterative sequence X0 = (xn) and the couple (ε, δ)
with ε > δ > 0 be given. Further, take some γ ∈]0, δ/4[; and let n(γ ) stand
for the attached asymptotic rank. We claim that

j ≥ 2, k ≥ n(γ ), and d(xm, xm+i ) < ε + δ/2 for (m ≥ k, i ∈ {1, . . . , j}),
imply P(xn, xn+j ) < ε + δ, for each n ≥ k;

and this will complete the argument. In fact, let j ≥ 2, k ≥ n(γ ) be as in
premise above; and fix some n ≥ k. By the very choice of these data

d(xn, xn+j ), d(xn+1, xn+j ), d(xn+1, xn+j+1) < ε + δ/2;
d(xn, xn+1), d(xn+j , xn+j+1) < γ < δ/4 < δ/2.

Moreover, taking the triangular inequality into account, one gets

d(xn, xn+j+1) ≤ d(xn, xn+1)+ d(xn+1, xn+j+1) < γ + ε + δ/2 < ε + δ.

Putting these together yields (by the bounded property)

P(xn, xn+j ) ≤ M(xn, xn+j ) < ε + δ;

and our claim follows.
(ii) Given the couple (ε, δ) with ε > δ > 0, let γ1 ∈]0, δ/4[ (with the associated

asymptotic rank n(γ1)) and γ2 ∈]0, δ/4[ (with the associated asymptotic rank
n(γ2)) be assured by the orbitally small property of (X0, P1) and (X0, P2),
respectively. Then, denote

γ3 = min{γ1, γ2} (hence, n(γ3) ≥ max{n(γ1), n(γ2)});
we claim that the desired property of (X0, P3) holds with respect to the
obtained pair. In fact, let j ≥ 2, k ≥ n(γ3) (hence, k ≥ n(γs), s ∈ {1, 2})
be such that

d(xm, xm+i ) < ε + δ/2 for (m ≥ k, i ∈ {1, . . . , j});
we have to establish that

P3(xn, xn+j ) < ε + δ, whenever (n ≥ k, d(xn, xn+j+1) ≥ ε + δ/2).

To verify this, note that, by the imposed hypothesis

(∀s ∈ {1, 2}): d(xm, xm+i ) < ε + δ/2 for (m ≥ k ≥ n(γs), i ∈ {1, . . . , j}).
On the other hand, letting n ≥ k be as in the premise above, we have

(∀s ∈ {1, 2}): n ≥ k ≥ n(γs) and d(xn, xn+j+1) ≥ ε + δ/2.

Putting these together gives (by the admitted properties of P1 and P2)

Ps(xn, xn+j ) < ε + δ, ∀s ∈ {1, 2}; whence, P3(xn, xn+j ) < ε + δ;

and the conclusion follows.
�
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6-IV) Finally, the fourth group of conditions has, as objective, a deduction of the
fixed point property for the full d-convergent iterative sequence X0 = (xn). It
consists of two conditions

(o-s-asy) P is orbitally singular asymptotic at X0 = (xn): whenever
limn(xn) = z and d(z, T z) > 0, we have lim infn P (xn, z) < d(z, T z).

(o-r-asy) P is orbitally regular asymptotic at X0 = (xn): whenever
limn(xn) = z and d(z, T z) > 0, we have limn P (xn, z) = d(z, T z).

Under these preliminaries, we may now state our main (fixed point) result
(referred to as Meir–Keeler sequential contractive principle; in short: (MK-s-cp)).

Theorem 4 Suppose that the self-map T , the non-telescopic x0-iterative sequence
X0 = (xn), the mapping P = P(T ) : X × X → R+, and the triple (U0, V0,W0),
where (U0 ⊆)V0 ⊆ W0 are such that

(61-i) the attached to T relation Ω[d;P ;U0; T ] is upper diagonal and
geometric/asymptotic Meir–Keeler.

(61-ii) (V0;P ;M0) is positive.
(61-iii) (U0;P ;M1) is orbitally bounded.
(61-iv) (X0;P) is orbitally small, whenever X0 is d-asymptotic and full.

In addition, let X be (o-f,d)-complete at X0. Then,

(61-a) X0 = (xn) is full Picard (modulo (d; T )).
(61-b) X0 = (xn) is strongly full Picard (modulo (d; T )) provided one of the extra
assumptions below is being fulfilled

(61-b-1) T is (o-f,d)-continuous at X0.
(61-b-2) P is orbitally singular asymptotic at X0 and the relation Ω[d;P ;V0; T ]

is upper diagonal.
(61-b-3) P is orbitally regular asymptotic at X0 and the relation Ω[d;P ;V0; T ]

is upper diagonal, (geometric/asymptotic Meir–Keeler and) geomet-
ric/asymptotic bilateral separable.

(61-c) X0 = (xn) isW0-single strongly full Picard (modulo (d; T )), if (W0;P ;M∗
0 )

is positive, (W0;P ;M) is bounded, and Ω[d;P ;W0; T ] is upper diagonal.
Proof There are some steps to be passed.

Step 1 We firstly show that, under these conditions, the non-telescopic x0-iterative
sequence X0 = (xn) is full and d-asymptotic. Denote, for simplicity,

(rn := d(xn, xn+1); n ≥ 0); hence (by hypothesis), (rn > 0, ∀n).

Let n ≥ 0 be arbitrary fixed. According to definition,

Q1(xn, xn+1) = rn > 0, Q2(xn, xn+1) = rn > 0,
Q3(xn, xn+1) = d(xn, xn+2), Q4(xn, xn+1) = 0,
Q5(xn, xn+1) = rn+1 > 0, Q6(xn, xn+1) = rn+1 > 0;
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and this yields

P0(xn, xn+1) = rn+1 > 0, M0(xn, xn+1) = min{rn, rn+1} > 0,
M1(xn, xn+1) = max{rn, rn+1}, M2(xn, xn+1) = max{rn, rn+1}.

As a consequence, one has

P(xn, xn+1) > 0 (if we remember that (V0;P ;M0) is positive).

Denote for simplicity Ω1 := Ω[d;P ;U0; T ]. By the relations above,

(Om1-contr) (P0(xn, xn+1), P (xn, xn+1)) ∈ Ω1, for all n.

Two basic consequences of this fact are to be noted.

Conseq 1 By the upper diagonal property of Ω1, one has

(s-con) rn+1 = P0(xn, xn+1) < P (xn, xn+1), ∀n.

On the other hand, as (U0;P ;M1) is orbitally bounded,

P(xn, xn+1) ≤ M1(xn, xn+1) = max{rn, rn+1}.
This, along with (s-con), gives

(s-contr) rn+1 < P(xn, xn+1) ≤ max{rn, rn+1}.
From the inequality between extremal terms, one derives

(rn+1 < rn, ∀n); i.e. (rn) is strictly descending.

Note that, as a first consequence of this,

(full-is) X0 = (xn) is full: i �= j implies xi �= xj .

For, suppose by contradiction that

there exists i, j ∈ N with i < j , xi = xj .

Then, by definition xi+1 = xj+1; so that ri = rj ; in contradiction with ri > rj ; and
the assertion follows.

Conseq 2 By the Meir–Keeler property of Ω1, we get

(asy-is) X0 = (xn) is d-asymptotic: d(xn, xn+1)→ 0 as n→∞.

In fact, by the strict decreasing property above,

r := limn rn exists in R+; with, in addition, (rn > r , ∀n).

Suppose by contradiction that r > 0; and let δ = δ(r) > 0 be the number given by
the Meir–Keeler property of Ω1. By definition, there exists m = m(δ) ≥ 1 such that

n ≥ m implies r < rn < r + δ.

Let n ≥ m be fixed in the sequel. From (s-contr),

r < rn+1 < P(xn, xn+1) ≤ rn < r + δ.
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This, along with the contractive property (Om1-contr), gives

(r <)rn+1 ≤ r; contradiction.

Hence, r = 0; and this establishes our assertion.

Step 2 As a consequence of this, the iterative sequence X0 = (xn) is full and d-
asymptotic. We now claim that X0 = (xn) is d-Cauchy. Let ε > 0 be given; and
δ > 0 be assured by the Meir–Keeler property of Ω1; clearly, without loss, one may
assume that δ < ε. Further, given the couple (ε, δ) as before, let the number γ ∈
]0, δ/4[ [and the associated asymptotic rank n(γ )] be assured via (X0;P)=orbitally
small. We now establish, via ordinary induction, that, for each i ≥ 1, the relation
below holds

(d-C;i) d(xn, xn+i ) < ε + δ/2, for each n ≥ n(γ );

wherefrom, the d-Cauchy property of X = (xn) follows. The case i ∈ {1, 2}
is evident (via d=triangular) in view of γ < δ/4 and the very definition of our
asymptotic rank n(γ ). Let j ≥ 2 be such that

relation (d-C;i) holds for all i ∈ {1, . . . , j}; that is (under the notation k = n(γ )):
d(xm, xm+i ) < ε + δ/2, for each m ≥ k and each i ∈ {1, . . . , j};

we claim that our inductive relation holds as well for i = j + 1:

(d-C;j+1) d(xn, xn+j+1) < ε + δ/2, for all n ≥ k(:= n(γ )).

Suppose by contradiction that this does not hold:

(non;d-C;j+1) C(ε, δ) := {n ≥ k; d(xn, xn+j+1) ≥ ε + δ/2} �= ∅;

and let n = minC(ε, δ) be the minimal rank in C(ε, δ). By the choice of our data

P(xn, xn+j ) < ε + δ (as (X0;P) is orbitally small).

On the other hand, by the full property of X0 = (xn) (and j ≥ 2)

d(xn, xn+j ) > 0, P0(xn, xn+j ) = d(xn+1, xn+j+1) > 0;
whence, M0(xn, xn+j ) = min{rn, rn+j , d(xn, xn+j ), d(xn+1, xn+j+1)} > 0;

and this yields

P(xn, xn+j ) > 0 (if we remember that (V0;P ;M0) is positive).

Putting these together gives (by the definition of Ω1)

(P0(xn, xn+j ), P (xn, xn+j )) ∈ Ω1;

and this, combined with the Meir–Keeler property of Ω1, yields

d(xn+1, xn+j+1) = P0(xn, xn+j ) ≤ ε.

Taking the triangular inequality into account, one derives

d(xn, xn+j+1) ≤ d(xn, xn+1)+ d(xn+1, xn+j+1) < ε + γ < ε + δ/2;
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in contradiction with the choice of n ∈ C(ε, δ). Hence, the working hypothesis
(non;d-C;j+1) does not hold; wherefrom, (xn; n ≥ 0) is d-Cauchy, as claimed.

Step 3 As X is (o-f,d)-complete at X0, xn
d−→ z, for some (uniquely determined)

z ∈ X. This, by definition, tells us thatX0 is full Picard (modulo (d; T )). In addition,
by a previous auxiliary fact, V0 = U0 ∪ {z}.

We prove that under the lot of extra conditions above, the obtained limit point is
an element of Fix(T ). Three alternatives occur.

Alter 1 Suppose that T is (o-f,d)-continuous at X0. Then, yn := T xn
d−→ T z as

n → ∞. On the other hand, (yn = xn+1; n ≥ 0) is a subsequence of (xn; n ≥ 0);

whence yn
d−→ z; and this gives (as d is separated), z = T z; proving that X0 is

strongly full Picard (modulo (d; T )).
Alter 2 Suppose that the remaining alternatives hold. Denote for simplicity Ω2 =
Ω[d;P ;V0; T ]. We claim that d(z, T z) > 0 gives a contradiction. The full property
of X0 = (xn) assures us that

E := {n ∈ N; T xn = T z} is an asingleton;

so that, the following separation property holds:

(sepa) ∃h = h(z) ≥ 0: n ≥ h 7⇒ T xn �= T z (hence, xn �= z).

As a consequence of this, we have for all n ≥ h

d(xn, z) > 0, P0(xn, z) = d(T xn, T z) > 0; whence
M0(xn, z) = min{d(xn, xn+1), d(z, T z), d(xn, z), d(T xn, T z)} > 0;

and this yields (for the same ranks)

P(xn, z) > 0 (if we remember that (V0;P ;M0) is positive).

Putting these together yields (by the imposed notations)

(Om2-contr) (P0(xn, z), P (xn, z)) ∈ Ω2, for all n ≥ h.

Two possibilities are open before us.

Alter 2-1 Suppose that P is orbitally singular asymptotic at X0 and Ω2 is upper
diagonal. For the moment,

lim infn P (xn, z) < d(z, T z) (by the accepted hypotheses upon z and P ).

On the other hand, by the upper diagonal property of Ω2 applied to (Om2-contr)

d(xn+1, T z) = P0(xn, z) < P (xn, z), ∀n ≥ h.

Passing to lim inf as n→∞ yields (by the requirement upon P(., .))

d(z, T z) = lim infn d(xn+1, T z) ≤ lim infn P (xn, z) < d(z, T z);

a contradiction. Hence, d(z, T z) = 0 (i.e. z = T z); and our assertion follows.
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Alter 2-2 Suppose that P is orbitally regular asymptotic at X0 and Ω2 is upper
diagonal, (geometric/asymptotic Meir–Keeler and) geometric/asymptotic bilateral
separable. Denote for simplicity

(an = P0(xn+h, z); n ≥ 0), (bn = P(xn+h, z); n ≥ 0).

By the above developments, we have

(an, bn) ∈ Ω2, ∀n, and an → d(z, T z), bn → d(z, T z) as n→∞.

This, however, is in contradiction with Ω2 being geometric/asymptotic bilateral
separable. Hence, d(z, T z) = 0 (i.e. z = T z); and our assertion follows.

Step 4 We prove that Fix(T ) ∩ W0 is an asingleton; and, from this, all is clear.
Denote for simplicity Ω3 = Ω[d;P ;W0; T ]. Let z1, z2 ∈ Fix(T ) ∩W0 be given;
and suppose by contradiction that z1 �= z2. Clearly,

P0(z1, z2) = d(z1, z2) > 0; whence M∗
0 (z1, z2) = d(z1, z2) > 0;

so that, P(z1, z2) > 0 (if we remember that (W0;P ;M∗
0 ) is positive).

This, by definition, yields

(P0(z1, z2), P (z1, z2)) ∈ Ω3; whence, d(z1, z2) = P0(z1, z2) < P (z1, z2);

by the upper diagonal property of Ω3. On the other hand, clearly,

P(z1, z2) ≤ M(z1, z2) = d(z1, z2) (in view of (W0;P ;M)=bounded).

The contradiction at which we arrived shows that our working assumption is not
acceptable; and then, our affirmation follows. The proof is complete.

�
Note that, further enlargements of these facts are possible, over dislocated metric

spaces taken as in Hitzler [13, Ch 1, Sect 1.2]. On the other hand, this result admits
multivalued type versions, under Nadler’s model [31]; see also Turinici [45]. Finally,
common fixed point versions of our main result are possible, under the lines in
Jachymski [14]. We will discuss all these in a separate paper.

7 Pata Fixed Point Results

In the following, a basic application of our main result is given to a class of fixed
point statements over metric spaces involving parametric contractive maps.

Let (X, d) be a metric space. Further, take some self-map T ∈ F (X), and put
Fix(T ) = {z ∈ X; z = T z}; each point of it will be referred to as fixed with respect
to T . As already precise, we look for existence and uniqueness conditions involving
points of Fix(T ).
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Let x0 be some point in X. By an x0-iterative sequence attached to T , we mean
any sequence X0 := (xn), where (xn = T nx0; n ≥ 0). Denote also

U0 := [X0] = {xn; n ≥ 0} (the x0-trajectory attached to X0 = (xn))
V0 := cl(U0) (the complete x0-trajectory attached to X0 = (xn)).

Remember that the specific directions of solving the posed problem are based
on regularity conditions involving the (non-telescopic) x0-iterative sequence
X0 = (xn). On the other hand, the metrical tools of our investigations consist in
upper diagonal and geometric/asymptotic Meir–Keeler conditions involving certain
attached to T relations. It is our aim in the following to show that, in particular, all
these are obtainable via parametric contractive conditions upon the considered data.

Let us introduce the conventions [for x, y ∈ X]

Q1(x, y) = d(x, T x), Q2(x, y) = d(x, y),
Q3(x, y) = d(x, T y), Q4(x, y) = d(T x, y),
Q5(x, y) = d(T x, T y), Q6(x, y) = d(y, T y),
Q(x, y) = (Q1(x, y),Q2(x, y),Q3(x, y),Q4(x, y),Q5(x, y),Q6(x, y)).

Then, let us construct the family of functions [for x, y ∈ X]

P0(x, y) = Q5(x, y), P1(x, y) = (1/2)[Q3(x, y)+Q4(x, y)],
P2(x, y) = (1/2)[Q1(x, y)+Q6(x, y)],
M0(x, y) = min{Q1(x, y),Q2(x, y),Q5(x, y),Q6(x, y)},
M∗

0 (x, y) = min{Q2(x, y),Q5(x, y)},
M1(x, y) = max{Q1(x, y),Q6(x, y)},
M2(x, y) = max{Q1(x, y),Q2(x, y),Q6(x, y)},
M(x, y) = max Q(x, y) = diam{x, T x, y, T y}.

Further, let P : X ×X → R+ be a map. Usually, we may take it as

P = Θ(Q); i.e. P(x, y) = Θ(Q(x, y)), x, y ∈ X;

where Θ : R6+ → R+ fulfills certain mild conditions; but this is not the only
possible choice. Remember that, given this mapping P(., .) and the subset Y0 of
X, we introduced the associated with T relation Ω := Ω[d;P ;Y0; T ] over R0+ as

Ω = {(P0(x, y), P (x, y)); x, y ∈ Y0, P0(x, y), P (x, y) > 0}; or, in other words:
(t, s) ∈ Ω iff t = P0(x, y), s = P(x, y), where x, y ∈ Y0, and
P0(x, y), P (x, y) > 0.

As we shall see, the particular cases to be considered are Y0 ∈ {U0, V0, X}. Then,
let us introduce the mappings L : X → R+ and A : X ×X → R+ as

L(x) = d(x, x0), x ∈ X; A(x, y) = 1+L(x)+L(y)+L(T x)+L(Ty), x, y ∈ X.

Further, put J = [0, 1], J0 = J \ {0} =]0, 1]. Given χ ∈ F (J, R+), define the
concept

(z-cont) χ is zero-continuous: χ(tn)→ χ(0) = 0 as tn → 0+.
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The class of all these will be denoted as F (0− cont)(J, R+).
Having these precise, let ϕ ∈ F (J, R+) and α > 0 be given. We say that T is

Pata (d;P ;ϕ;α)-contractive, provided

(Pata-con) d(T x, T y) ≤ (1− τ)P (x, y)+ ταϕ(τ)[A(x, y)]α , ∀x, y ∈ X, ∀τ ∈ J .

It is our aim to show that, under [ϕ ∈ F (0−cont)(J, R+), α ≥ 1], and certain extra
conditions upon P(., .), the Meir–Keeler sequential contractive principle (MK-s-cp)
is applicable here and solves the fixed point question we deal with.

To do this, a lot of preliminary facts is needed. The first one in this series is

Proposition 19 Suppose that the self-map T is Pata (d;P ;ϕ;α)-contractive,
where ϕ ∈ F (0− cont)(J, R+) and α ≥ 1. Then, necessarily,

(71-1) T is strictly contractive (modulo (d;P ;X)):
d(T x, T y) < P (x, y), for all x, y ∈ X with P(x, y) > 0

(71-2) the attached to T relation Ω[d;P ;X; T ] is upper diagonal.
Proof It will suffice verifying the first part. Let x, y ∈ X be such that P(x, y) > 0.
Making τ = 0 in (Pata-con), yields d(T x, T y) ≤ P(x, y). Suppose by absurd that
d(T x, T y) = P(x, y). Replacing in (Pata-con), we have (under simplification)

P(x, y) ≤ τα−1ϕ(τ)[A(x, y)]α , for all τ ∈ J0.

Taking the limit as τ → 0+, we derive 0 < P(x, y) ≤ 0; a contradiction. Hence,
d(T x, T y) < P (x, y); and our claim follows. �

We are now passing to the second auxiliary fact in this series.

Proposition 20 Suppose that the self-map T is Pata (d;P ;ϕ;α)-contractive,
where ϕ ∈ F (0− cont)(J, R+), α ≥ 1, and

(72-I) (U0;P ;M1) is orbitally bounded.
(72-II) (U0;P ;M) is bounded.

Then,

(72-1) the iterative sequence Xn = (xn) is bounded.
(72-2) the x0-trajectory U0 = {xn; n ≥ 0} and its completion V0 = cl(U0) are

bounded subsets in X.
(72-3) A(., .) is bounded over U0 × U0.
(72-4) A(., .) is bounded on V0 × V0, when X0 = (xn) is d-convergent.

Proof The case of X0 = (xn) being telescopic is clear; so, without loss, one may
assume that X0 = (xn) is non-telescopic. There are several steps to be passed.

(i) Denote for simplicity (ρn = d(xn, xn+1); n ≥ 0). By the orbitally bounded
property (and a lot of previous evaluations)

(∀n): ρn+1 < P(xn, xn+1) ≤ M1(xn, xn+1) = max{ρn, ρn+1}; whence,
ρn+1 < ρn.
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The sequence (ρn) is therefore strictly descending; so, (ρn ≤ ρ0, for all n).
Denote (cn = L(xn); n ≥ 0). By the contractive condition, we have

(con-0) d(xn+1, x1) = d(T xn, T x0) ≤ (1−τ)P (xn, x0)+ταϕ(τ)[A(xn, x0)]α ,
∀n, ∀τ ∈ J .

(ii) Let n ≥ 0 be arbitrary fixed. We are trying to evaluate the quantities of (con-0),
in terms of (ρn) and (cn). For the moment, we have

(eva) cn ≤ d(xn, xn+1)+ d(xn+1, x1)+ d(x1, x0) ≤ 2ρ0 + d(xn+1, x1).

On the other hand, by the bounded property of (U0;P ;M), we have

P(xn, x0) ≤ M(xn, x0) = diam{xn, xn+1, x0, x1}, ∀n.

But, according to definition, we have for all n

d(xn, xn+1) = ρn ≤ ρ0, d(xn, x0) = cn,
d(xn, x1) ≤ d(xn, x0)+ d(x0, x1) = cn + ρ0,
d(xn+1, x0) ≤ d(xn+1, xn)+ d(xn, x0) = ρn + cn ≤ ρ0 + cn,
d(xn+1, x1) ≤ d(xn+1, xn) + d(xn, x0) + d(x0, x1) = ρn + cn + ρ0 ≤
2ρ0 + cn, d(x0, x1) = ρ0;

and this, replacing in the preceding inequality, gives (P(xn, x0) ≤ 2ρ0 + cn,
∀n). Further, again for all n,

L(xn) = cn, L(T xn) = d(xn+1, x0) ≤ d(xn+1, xn)+ d(xn, x0) = ρn + cn ≤
ρ0 + cn, L(x0) = 0, L(T x0) = d(x1, x0) = ρ0;

and this yields (A(xn, x0) ≤ 2(1 + ρ0 + cn), ∀n). Replacing all these in the
contractive relation (con-0), one derives [by means of (eva) above]

cn ≤ 2ρ0 + (1− τ)[2ρ0 + cn] + 2αταϕ(τ)[1+ ρ0 + cn]α , ∀n, ∀τ ∈ J .

This, under the notation (gn = 2ρ0 + cn; n ≥ 0), yields the inequality

(ineq) gn ≤ 4ρ0 + (1− τ)gn + 2αταϕ(τ)(1+ gn)
α , ∀n, ∀τ ∈ J .

Suppose by contradiction that (cn) is unbounded. Without loss—passing to a
subsequence if necessary—one may take this sequence as divergent:

limn cn = ∞; that is: gn →∞, as n→∞.

Moreover, again without loss, one may assume that

gn ≥ 2+ 4ρ0(≥ 2) (whence, 1+ gn < 2gn), for all n.

By a small re-arrangement of (ineq) we then have

(ineq-1) τgn ≤ 4ρ0 + 4αϕ(τ)(τgn)α , ∀n, ∀τ ∈ J .

Let us now take the sequence (τn; n ≥ 0) in J0 as

(τn = (4ρ0 + 1)/gn; n ≥ 0); whence, τngn = 4ρ0 + 1, ∀n.
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Replacing into (ineq-1), we have

(ineq-2) 1 ≤ 4αϕ(τn)(4ρ0 + 1)α , ∀n.

Passing to limit as n → ∞ gives 1 ≤ 0; contradiction. Hence, (cn) is a
bounded sequence; and, from this, we are done.

(iii) By the preceding stage,

λ := sup{L(x); x ∈ U0} <∞.

This yields (by the triangular inequality)

d(x, y) ≤ L(x)+ L(y) ≤ 2λ, ∀x, y ∈ U0; so, diam(U0) = diam(V0) <∞.

(iv) As T (U0) ⊆ U0, we get

A(x, y) = 1+ L(x)+ L(y)+ L(T x)+ L(Ty) ≤ 1+ 4λ, ∀x, y ∈ U0;

so that, A is bounded on U0 × U0.
(v) By a previous result, V0 = U0 ∪ {z}, where z = limn(xn). In this case, under

the convention μ := max{L(z), L(T z)},
A(x, z) = 1+ L(x)+ L(z)+ L(T x)+ L(T z) ≤ 1+ 2λ+ 2μ, ∀x ∈ U0;
A(z, z) = 1+ 2[L(z)+ L(T z)] ≤ 1+ 4μ.

Putting these together yields

sup{A(x, y); x, y ∈ V0 × V0} ≤ 1+ 4(λ+ μ) <∞;

which tells us that, A is bounded on V0 × V0.
�

Given ψ ∈ F (J, R+) and α > 0, let Ω(ψ, α) be the relation over R0+
(t, s) ∈ Ω(ψ, α) iff t ≤ (1− τ)s + ταψ(τ), ∀τ ∈ J .

Some basic properties of this relation are concentrated in

Proposition 21 Suppose that ψ ∈ F (0− cont)(J, R+) and α ≥ 1. Then,

(73-1) Ω(ψ, α) is upper diagonal.
(73-2) Ω(ψ, α) is geometric/asymptotic Meir–Keeler.
(73-1) Ω(ψ, α) is geometric/asymptotic bilateral separable.

Proof

(i) Let t, s > 0 be such that (t, s) ∈ Ω(ψ, α); hence,

(psi-al) t ≤ (1− τ)s + ταψ(τ), ∀τ ∈ J .

Making τ = 0 in (psi-al) yields t ≤ s. Suppose by absurd that t = s. Replacing
in (psi-al), we have (under simplification)

s ≤ τα−1ψ(τ), for all τ ∈ J0.
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Taking the limit as τ → 0+, we derive 0 < s ≤ 0; a contradiction. Hence,
t < s; and our claim follows.

(ii) Suppose by absurd that Ω(ψ, α) is not asymptotic Meir–Keeler:

there are strictly descending sequences (tn) and (sn) in R0+ and elements
ε in R0+, with ((tn, sn) ∈ Ω(ψ, α), ∀n) and (tn → ε+, sn → ε+).

The first half of this relation means

tn ≤ (1− τ)sn + ταψ(τ), ∀n, ∀τ ∈ J ;

wherefrom, by a limit process (relative to n)

ε ≤ (1− τ)ε + ταψ(τ), ∀τ ∈ J .

This yields (under simplification)

ε ≤ τα−1ψ(τ), for all τ ∈ J0.

Taking the limit as τ → 0+, we derive 0 < ε ≤ 0; a contradiction. Hence, our
working condition cannot be accepted; and the assertion follows.

(iii) Suppose by absurd that Ω(ψ, α) is not asymptotic bilateral separable:

there are sequences (tn; n ≥ 0) and (sn; n ≥ 0) in R0+ and elements
β ∈ R0+, with ((tn, sn) ∈ Ω(ψ, α), ∀n) and (tn → β, sn → β).

The first half of this relation means

tn ≤ (1− τ)sn + ταψ(τ), ∀n, ∀τ ∈ J ;

wherefrom, by a limit process (relative to n)

β ≤ (1− τ)β + ταψ(τ), ∀τ ∈ J .

This yields (under simplification)

β ≤ τα−1ψ(τ), for all τ ∈ J0.

Taking the limit as τ → 0+, we derive 0 < β ≤ 0; a contradiction. Hence, our
working condition cannot be accepted; and conclusion follows.

�
We are now in position to give an appropriate answer to the posed question.

Remember that, for the fixed x0 ∈ X, we denoted

X0 = (xn), where (xn = T nx0; n ≥ 0);
U0 = [X0] = {xn; n ≥ 0}, V0 = cl(U0).

Fix in the following the iterative sequence X0 = (xn) and its attached subsets
(U0, V0). As precise, there is no loss in generality if we suppose that

(non-tele) X0 = (xn) is non-telescopic (d(xn, xn+1) > 0, ∀n).
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Let P : X × X → R+ be a map, ϕ ∈ F (J, R+) be a function, and α > 0 be
a number. The following statement (referred to as: Pata fixed point result in metric
spaces; in short: (P-fp-ms)) is available.

Theorem 5 Suppose that the self-map T is Pata (d;P ;ϕ;α)-contractive, where
ϕ ∈ F (0− cont)(J, R+), α ≥ 1, and

(71-i) (V0;P ;M0) is positive.
(71-ii) (U0;P ;M1) is orbitally bounded.
(71-iii) (U0;P ;M) is bounded, whenever X0 is d-asymptotic and full.

In addition, let X be (o-f,d)-complete at X0. Then,

(71-a) X0 = (xn) is full Picard (modulo (d; T )).
(71-b) X0 = (xn) is strongly full Picard (modulo (d; T )) provided one of the extra
assumptions below is being fulfilled.

(71-b-1) T is (o-f,d)-continuous at X0.
(71-b-2) P is orbitally singular asymptotic at X0.
(71-b-3) P is orbitally regular asymptotic at X0.

(71-c) X0 = (xn) is X-single strongly full Picard (modulo (d; T )), if (X;P ;M∗
0 )

is positive, and (X;P ;M) is bounded.

Proof We show that the Meir–Keeler sequential contractive principle (MK-s-cp) is
applicable to our setting. The following steps will clarify this.

(i) By a previous auxiliary fact,

λ1 := sup{A(x, y); x, y ∈ U0} <∞.

Denote for simplicity (ϕ1(t) = ϕ(t)λα1 ; t ≥ 0); clearly, ϕ1 ∈ F (0 −
cont)(J, R+). By another auxiliary fact, the relation Ω(ϕ1, α) over R0+
introduced as

(t, s) ∈ Ω(ϕ1, α) iff t ≤ (1− τ)s + ταϕ1(τ ), ∀τ ∈ J

has the properties

Ω(ϕ1, α) is upper diagonal, geometric/asymptotic Meir–Keeler,
and geometric/asymptotic bilateral separable;

and this, along with Ω[d;P ;U0; T ] ⊆ Ω(ϕ1, α) establishes that

Ω[d;P ;U0; T ] is upper diagonal, geometric/asymptotic Meir–Keeler,
and geometric/asymptotic bilateral separable.

On the other hand, by an auxiliary fact,

(X0;P) is orbitally small, whenever X0 is d-asymptotic and full.

Putting these together, it follows by (MK-s-cp) (the first part) that our first
conclusion is available; so that, in particular,
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z = limn(xn) exists; whence, V0 = U0 ∪ {z}.
(ii) According to a preceding evaluation, we have that

λ2 := sup{A(x, y); x, y ∈ V0} <∞.

Denote for simplicity (ϕ2(t) = ϕ(t)λα2 ; t ≥ 0); clearly, ϕ2 ∈ F (0 −
cont)(J, R+). By the same argument as before,

Ω(ϕ2, α) is upper diagonal, geometric/asymptotic Meir–Keeler, and
geometric/asymptotic bilateral separable;

and this, along with Ω[d;P ;V0; T ] ⊆ Ω(ϕ2, α) establishes that

Ω[d;P ;V0; T ] is upper diagonal, geometric/asymptotic Meir–Keeler, and
geometric/asymptotic bilateral separable.

(iii) Finally, by a previous auxiliary fact,

Ω[d;P ;X; T ] is upper diagonal.

Putting these together, it follows via (MK-s-cp) (the second and third part)
that the remaining conclusions in our statement follow as well.

�
Now, for an appropriate comparison of this result with the existing ones, we have

to derive sufficient conditions upon P under which the positive, orbitally bounded,
and bounded properties are holding. To do this, take the mapping P(., .) as

P(x, y) = Θ(Q(x, y)), x, y ∈ X, where Θ : R6+ → R+ is increasing.

Proposition 22 Under the precise framework, we have

(74-1) If Θ(α, α, 0, 0, α, α) > 0 for each α > 0, then (X;P ;M0) is positive.
(74-2) If Θ(β, β, 2β, 0, β, β) ≤ β, for each β ≥ 0, then (X;P ;M1) is orbitally

bounded.
(74-3) If Θ(γ, γ, γ, γ, γ, γ ) ≤ γ , for each γ ≥ 0, then (X;P ;M) is bounded.
(74-4) If Θ(0, δ, 0, 0, δ, 0) > 0, for each δ > 0, then (X;P ;M∗

0 ) is positive.

Proof

(i) Let x, y ∈ X be arbitrary fixed; and assume that α := M0(x, y) > 0. By the
increasing condition,

P(x, y) ≥ Θ(α, α, 0, 0, α, α) > 0; and conclusion follows.

(ii) Let x ∈ X be arbitrary fixed and denote β := M1(x, T x). By the increasing
condition (and triangular inequality)

P(x, T x) ≤ Θ(β, β, 2β, 0, β, β) ≤ β; hence the assertion.

(iii) Let x, y ∈ X be arbitrary fixed and denote γ := M(x, y). As Θ=increasing,

P(x, y) ≤ Θ(γ, γ, γ, γ, γ, γ ) ≤ γ ; and conclusion follows.
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(iv) Let x, y ∈ X be arbitrary fixed and assume that δ := M∗
0 (x, y) > 0. By the

increasing condition once again,

P(x, y) ≥ Θ(0, δ, 0, 0, δ, 0) > 0;

and, from this, one gets the desired fact.
�

Having these precise, we may discuss a lot of particular cases of our statement.

Case-1) Suppose that P = Q2. Then, Pata fixed point result in metric spaces (P-
fp-ms) is just the basic statement in Pata [34]. But, we must say that our methods
are different from the ones in the quoted paper.

Case-2) Suppose that P = max{Q2, P1, P2}. Then, Pata fixed point result in metric
spaces (P-fp-ms) is just the related statement in Jacob et al. [17].

Case-3) Suppose that P = max{Q2,M2}. The corresponding version of Pata fixed
point result in metric spaces (P-fp-ms) seems to be new.

Finally, it is worth noting that these techniques were applied to a variety of
domains, such as (cf. the survey paper in Choudhury et al. [5]).

Dom-1) Coincidence and common fixed points in various structures: Kadelburg
and Radenović [21].

Dom-2) Coupled and tripled fixed points: Eshaghi et al. [11], Kadelburg and
Radenović [19, 22].

Dom-3) Fixed points of multivalued mappings: Choudhury et al. [6].

Dom-4) Fixed points of cyclic contractions: Kadelburg and Radenović [20].

Dom-5) Fixed points in modular spaces: Paknazar et al. [33].
We close these developments with a methodological question. In a recent paper,

Berinde [2] claimed that the original Pata fixed point result [34] is not correct as
stated. The inconsistency of his argument was evidentiated in the survey paper by
Choudhury et al. [5] we just quoted. Moreover, as proved there, the question of some
standard contractive conditions being deductible from the Pata ones has a positive
answer. It is our aim in the following to give a small completion of these (sketched)
arguments.

Let the general framework be taken as before. Fix some x0 ∈ X and denote

L(x) = d(x, x0), x ∈ X; B(x, y) = 1+ L(x)+ L(y), x, y ∈ X.

Given the function ϕ ∈ F (J, R+) and the number α > 0, let us say that T is
standard Pata (d;ϕ;α)-contractive, provided

(Pata-st) d(T x, T y) ≤ (1− τ)d(x, y)+ ταϕ(τ)[B(x, y)]α , ∀x, y ∈ X, ∀τ ∈ J .

Clearly, by the immediate relation

B(x, y) ≤ A(x, y), x, y ∈ X

any such map is Pata (d;Q2;ϕ;α)-contractive.
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Proposition 23 Suppose that λ ∈]0, 1[ is such that

T is (Banach) (d; λ)-contractive: d(T x, T y) ≤ λd(x, y), ∀x, y ∈ X.

Then, fix γ > 0 and put

C(λ, γ ) = γ γ /[(γ + 1)γ+1(1− λ)γ ].
In this case, for each C ≥ max{1, C(λ, γ )}, one has
(Pata-B) d(T x, T y) ≤ (1− τ)d(x, y)+ Cτγ+1B(x, y), ∀x, y ∈ X, ∀τ ∈ J ;

that is, T is standard Pata (d;ϕ; 1)-contractive, where

(ϕ(τ) = Cτγ ; τ ∈ J ); hence, ϕ ∈ F (0− cont)(J, R+).

Proof Fix a couple of points x, y ∈ X; without loss, one may assume that x �= y

(hence, d(x, y) > 0). From the Banach contractive condition and

d(x, y) ≤ L(x)+ L(y) ≤ B(x, y),

a sufficient condition for the desired relation (Pata-B) to hold is

(Pata-B-1) λd(x, y) ≤ (1− τ)d(x, y)+ Cτγ+1d(x, y), for all τ ∈ J ;

or, equivalently (after simplification)

(Pata-B-2) f (τ) := τ − Cτγ+1 ≤ 1− λ for all τ ∈ J .

To discuss this relation, we start from the derivative

f ′(τ ) = 1− C(γ + 1)τ γ , τ ∈ J 0 :=]0, 1[.
The critical point of f (i.e. the zero of f ′) is

τ0 = [1/C(γ + 1)]1/γ ; hence, τ0 ∈ J 0 (as C(γ + 1) ≥ γ + 1 > 1).

In this case, the maximum of f over J is

f (τ0) = τ0[1− Cτ
γ

0 ] = τ0[γ /(γ + 1)].
Consequently, the inequality in (Pata-B-2) is equivalent with

τ0[γ /(γ + 1)] ≤ 1− λ; or, equivalently, τγ0 [γ /(γ + 1)]γ ≤ (1− λ)γ .

Combining with the relation that introduces this number yields

[1/C(γ + 1)][γ /(γ + 1)]γ ≤ (1− λ)γ ; or, equivalently,
C ≥ γ γ /[(γ + 1)γ+1(1− λ)γ ] = C(λ, γ ); evident, by the choice of C.

Summing up, (Pata-B-2) holds; and the proof is complete. �
Concerning the reverse inclusion, remember that given ϕ ∈ F (R+), we say that

T is Boyd–Wong ϕ-contractive, provided

d(T x, T y) ≤ ϕ(d(x, y)), ∀x, y ∈ X.

By an example in the survey paper by Choudhury et al. [5], it follows that there
exists self-maps T that fulfill the standard Pata condition, but not the Boyd–Wong
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one, even if ϕ is increasing continuous. Hence, the class of Pata contractions is a
strict extension of the Boyd–Wong (hence, Banach) class of contractions. Further
extensions of these results may be obtained under the lines in the survey papers by
Turinici [49, 50].
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Existence and Stability of Equilibrium
Points Under the Influence of
Poynting–Robertson and Stokes Drags in
the Restricted Three-Body Problem

Aguda Ekele Vincent and Angela E. Perdiou

Abstract In the framework of the circular restricted three-body problem, the
dynamical effects of Stokes and Poynting–Robertson (P–R) drag forces on the
existence, location, and stability of equilibrium points are investigated. It is found
that under constant effects of P–R and/or Stokes drags, collinear equilibrium points
cease to exist, but there are in the absence of the perturbing forces. The problem
admits five non-collinear equilibrium points, and it is seen that the perturbing forces
have significant effects on their positions. The linear stability of the equilibrium
points is also studied in certain cases, and it is found that the stability of some
of these points significantly depends on the perturbing forces. More precisely,
the motion of the infinitesimal body near the non-collinear equilibrium points
is unstable under the effect of both kinds of perturbing forces except from the
equilibria L4 and L5 for which is stable only for Stokes drag effect, namely,
the remaining parameter that corresponds to P–R drag is fixed to zero. We may
conclude, therefore, that the P–R effect destroys stability of the equilibrium points.

MSC 70F07; 70F15; 70K20; 70K42

1 Introduction

The circular restricted three-body problem (CR3BP) consists of two finite bodies,
known as primaries, which rotate in circular orbits around their common center
of mass and a massless body that moves in the plane of motion of the primaries
under their gravitational attraction and does not affect their motion. The CR3BP
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has been the well-known studied problem in Celestial Mechanics. It possesses
five equilibrium points, three of which lie on the x-axis and are called collinear,
while the rest two are away from this axis and are called triangular (non-collinear)
equilibria. The three collinear points are generally unstable, but the triangular ones
are generally stable for values of the mass ratio μ � 0.03850 . . . (see, e.g., [1, 2]).
The theory and applications for these equilibrium points and the related periodic
orbits emanating from them have enabled several space mission explorations, such
as ISEE-3, ACE, and PLANCK, among others [3–5], while certain operations are
still in progress.

During the past, several more complicated or even simpler modifications of
the CR3BP have been proposed in order to make it more realistic for systems of
dynamical astronomy, and many scientists and astronomers have studied them (see,
for example, [6–12], and the references therein). These modifications involve more
bodies and/or include additional forces other than the gravitational one or perturbing
forces such as radiation pressure, planetary perturbations, the Poynting–Robertson
drag, and the Stokes drag (see, e.g., [13–20]). The case of the CR3BP where at least
one of the primary bodies emits radiation is a well-known problem, and it named
in the literature as “the photogravitational problem of three bodies.” This special
case of the CR3BP was firstly studied by Radzievskii [21], and since then it has
been extensively investigated [22–26]. The significance of the effect of radiation on
natural bodies or artificial satellites has been proved, recognized, and used by many
scientists, especially with respect to the solar sail of artificial satellites as well as to
the formation of concentrations of interplanetary and interstellar dust in binary star
systems [27, 28].

The Doppler shift and absorptions as well as the subsequent re-emission of
incident radiation, namely, the Poynting–Robertson drag, are usually neglected
in many research works for the approximation of radiation force, although the
dissipative effects play a fundamental role in the dynamics of our solar system.
The P–R effect is one of the most important mechanisms of dissipation which may
be used in the investigation of the stability of zodiacal cloud, asteroidal particles,
and dust rings around planets. In this context, Chernikov [29] studied the existence
and stability of equilibrium points under the influence of radiation and the P–
R effect. He found that despite the absence of a Jacobi integral, six equilibrium
points exist at most and pointed out that the collinear points are not positioned on
the axis connecting the primaries any more, while the triangular points were not
symmetrical with respect to this axis. It was also found that the triangular points are
unstable for the P–R effect. Later, Schuerman [30] studied the triangular points of
the problem and found that the points are unstable due to the P–R effect. Ragos
and Zafiropoulos [31] extended the problem to the case that both main bodies
are radiation sources. They studied numerically the equilibrium points lying on
the orbital plane of the primaries. Murray [13] discussed the dynamical effect of
general drag (nebular drag, gas drag, and P–R drag) in the CR3BP and found that
the collinear points are not positioned on the axis joining the two masses, while the
displaced triangular points L4 and L5 are asymptotically stable for certain classes
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of drag forces. Researchers like Burns et al. [32], Singh and Simeon [33], Singh and
Amuda [34], Umar and Hussain [35], and others studied the CR3BP by taking into
account the P–R drag in different views. In a recent study, Vincent and Perdiou [20]
investigated the motion of a test particle in the field of Cen-X4 binary system
with P–R drag and oblateness together with small perturbations in the Coriolis and
centrifugal forces. They asserted that under the constant P–R drag effect, collinear
equilibrium points cease to exist numerically and of course analytically. They found
that the equilibrium points are unstable for the P–R effect against their conditional
stability in the absence of the drag force.

Additional influential perturbing force than that of the gravitational one is Stokes
drag. This effect is due to the collisions of particles with the molecules of gas nebula
during the formation of a planetary system. In this vein, Celletti et al. [16] performed
a dynamical analysis in the framework of the planar CR3BP under different kinds
of dissipation (linear, Stokes, or Poynting–Robertson drag). They found the periodic
orbit attractors for the case of linear and Stokes drags, while in the case of the P–
R effect, no other attractors were found beside the primaries, unless a fourth body
is added to counterbalance the dissipative effect. In addition, the stationary points
L4 and L5 were shown to become unstable for both kinds of dissipation. It was
shown in [14] that, in the case of Stokes drag, stationary solutions L4 and L5 appear
to be stable. Almost recently, Jain and Aggarwal [36] studied the effect of Stokes
drag force with oblateness of smaller primary on libration points in the restricted
three-body problem. It was established that collinear points cease to exist, while
the stability of non-collinear libration points L4,5 remains unstable. Later, by taking
into consideration the P–R light drag effect, Jain and Aggarwal [18] investigated
the existence and stability of equilibrium points of the problem and found that the
equilibrium points are unstable due to the effect of the drag.

However, the inclusion of P–R and Stokes drags terms changes the nature of
the problem from purely a central force to a dissipative one. In this work, we aim to
study numerically the motion of a test particle in the R3BP under the effect of Stokes
drag and Poynting–Robertson drag. As it is known [37], the orbital evolution of dust
grain in the solar system is affected by the drag forces. The P–R and Stokes drags
forces cause dust particle to lose orbital energy and angular momentum and spiral
toward the Sun. In the present work, the dissipative forces formulation described by
Murray and Dermott [38] and recently applied in the dynamics of the regularized
restricted three-body problem with dissipation by Celletti et al. [16] will be used. As
a consequence of both kinds of dissipation, the problem becomes a tri-parametric
one: a mass ratio, μ, and two constants of dissipation, ks and kpr , due to Stokes and
P–R drags, respectively. Among the different questions that this model may arise, in
the current work, we concentrate our study on the existence, locations of equilibrium
points, and the corresponding linear stability analysis.

The chapter is organized as follows: in Sect. 2, we present the governing
equations of motion for the system in the dissipative framework. In Sect. 3, we
determine the existence and locations of the equilibrium points numerically and
verify them graphically for various values of the parameters under consideration,
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while their linear stability is analyzed in Sect. 4. Finally, Sect. 5 summarizes the
discussion and conclusion of our study.

2 Equations of Motion with Dissipative Forces

The system we consider is the planar circular restricted three-body problem which
is formed by two finite bodies, P1 and P2, called the primaries (bigger primary
and smaller primary, respectively), with masses m1 = 1 − μ and m2 = μ,

correspondingly, where μ = m2/(m1 +m2) � 1/2 is the mass ratio parameter. We
assume that the motion of the three bodies takes place on the same plane under their
mutual gravity, but the mass of the third body is so small compared to the masses of
the two primaries where its influence on them can be neglected. This system is also
dimensionless, i.e., we normalize the units with the supposition such that the sum
of the masses and the separation between the primary bodies both be unity and the
unit of time is taken as the time period of the rotating frame moving with the angular
velocity n of the primaries, where n is normalized to one (for details, see [1]). In this
coordinate system, the arising dimensionless equations of motion under both kinds
of dissipation take the form [16, 18, 38]:

ẍ − 2ẏ = ∂Ω

∂x
= Ωx, ÿ + 2ẋ = ∂Ω

∂y
= Ωy, (1)

where

Ωx = ∂Ū

∂x
− ks

(

ẋ − y − 3αy

2r7/2

)

− kpr

r2
1

[

ẋ − y + x

r2
1

(xẋ + yẏ)

]

,

Ωy = ∂Ū

∂y
− ks

(

x + ẏ + 3αy

2r7/2

)

− kpr

r2
1

[

ẏ + x + y

r2
1

(xẋ + yẏ)

]

,

(2)

while the gravitational effective potential Ū is given by

Ū = 1

2
(x2 + y2)+ 1− μ

r1
+ μ

r2
, (3)

and

r2
1 = (x + μ)2 + y2, r2

2 = (x + μ− 1)2 + y2 (4)

are the distances of the massless body from the primaries. Also, ks and kpr ∈ [0,
1) designate constants of dissipation due to Stokes drag and P–R drag, respectively,
while α ∈ [0, 1) is the ratio between the gas and Keplerian velocities at a given
radius r2 = x2+y2 (see, e.g., [14]). We remark here that Stokes dissipation depends
on the parameter α.
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3 Existence and Locations of the Equilibrium Points

The equilibrium points, or the Lagrangian points for the CR3BP, are obtained when
the acceleration ẍ, ÿ and velocity ẋ, ẏ components of the infinitesimal body are
zero. Therefore, we are able to obtain the coordinates (x0, y0) of the equilibrium
points as solutions of the following non-linear algebraic equations:

x − (1− μ)(x + μ)

r3
1

− μ(x + μ− 1)

r3
2

+ ks

(

y + 3αy

2r7/2

)

+ kpry

r2
1

= 0,

y − (1− μ)y

r3
1

− μy

r3
2

− ks

(

x + 3αx

2r7/2

)

− kprx

r2
1

= 0.
(5)

It is interesting to note that when ks = kpr = 0, the classical model of the restricted
three-body problem is recovered, while for ks �= 0 and kpr �= 0 we have the
restricted three-body problem with Stokes drag and P–R drag effects as reported
in Jain and Aggarwal [18, 36], correspondingly.

It is well known that in the classical R3BP, there are five equilibrium points.
Three of them are on the x-axis and are called collinear points, while the other two
are out of the x-axis and are called equilateral equilibrium points. In the present
case, we will see that the existence and positions of the equilibria of the problem
depend on the drag forces of the primary bodies as well. As indicated by System (5),
the drag forces have some effect on the positions of the equilibrium points. On
the other hand, the equilibrium solutions (collinear and non-collinear points) under
general drag (e.g., Stokes drag, P–R drag) are only poorly studied in the literature by
analytical means (with some exception found in [13]). The equations in System (5),
containing the constant parameters ks and kpr , consist of a system of nonlinear
algebraic equations. As no simple analytic solution for x and y could be obtained
similar to the classical problem [1], we resort to a numerical study of this system.
In this study, the equilibrium points are obtained by solving Eqs. (5) simultaneously
using the well-known Newton’s method. This has also been successfully applied
by many authors for the determination of equilibrium points in different model
problems of Celestial Mechanics (see, for example, [20, 39–41] and the references
therein).

From System (5), it can be seen that the second equation is always not satisfied.
With the Stokes (ks) drag and/or the P–R (kpr) effect, the existence of ordinates
of equilibrium points L1, L2, and L3 associated with these equations can be easily
verified from the second equation of (5), since the condition y = 0 is not fulfilled for
them. We note here that the y-components of the equilibrium points L1,2,3 are close
to zero but not zero, which means that due to the y-components these points are not
collinear. This is easy to show geometrically (Fig. 1, bottom frames). The existence
of such points was earlier envisaged for the Sun–Jupiter system in [13, 31, 37].

In this case, the second equation of (5) holds and the equilibria are obtained
by solving Eqs. (5) simultaneously. In Fig. 1, we illustrate the five non-collinear
equilibrium points, Li, i = 1, 2, . . . , 5, of the problem in the xy-plane along with
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Fig. 1 Top: the five non-collinear equilibria and the positions of the primary bodies for μ =
0.01, ks = 10−5, kpr = 10−5, and α = 0.05. Bottom: zoomed images of L1,2 and L3,

respectively, with intersections of the curves

associated primaries for μ = 0.01, ks = 10−5, kpr = 10−5, and α = 0.05 for
which we have found by solving numerically the above system. We denote here that
the equilibria in the xy-plane are given by the mutual intersections of the curves,
blue line (first equation) and brown line (second equation). Here we also note that
the intersection points of these curves show the coordinates (x0, y0) of the equilibria
on the xy-plane. It is seen that under the combined effect of the parameters, there
exist five non-collinear equilibrium points for which the ordinates of L1, L2, and
L3 are close to zero but not zero. We remark that our configuration is similar to the
one shown by Murray [13, see figure 4] for the general drag force.

Next, we wish to compute numerically the effects of the perturbing forces on
the existence and locations of the equilibrium points. We note that the existence
and location of these points depend on the system parameters μ, ks , and kpr of
the problem. In this study, we will keep the value of the mass parameter fixed and
equal to μ = 0.01 for all numerical calculations. Figure 2 shows the effects of the
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Fig. 2 The positions of the five equilibrium points for (a) ks = 0, α = 0, kpr = 0 (classical case
or zero drags), (b) ks = 0, α = 0, kpr = 10−5 (P–R case), (c) ks = 10−5, α = 0.05, kpr = 0
(Stokes case), and (d) ks = 10−5, α = 0.05, kpr = 10−5 (P–R and Stokes). The value of
μ = 0.01 is fixed for all cases

perturbing forces, involved in the problem under consideration, for the classical case
and three different cases on the positions of the equilibria. In particular, Fig. 2a is
when the effects of the drag forces are neglected (conservative case or zero drag),
that is, ks = 0 = kpr , and in this case, there exist five equilibrium points, i.e., three
collinear and two triangular points. Additionally, Fig. 2b shows the effect of P–R
drag when Stokes drag is absent, while Fig. 2c shows the effect of Stokes drag when
P–R drag is absent. Finally, Fig. 2d shows the effect when both Stokes drag and
P–R drag are inaction together. In the non-conservative case, we observe that there
exist five non-collinear equilibrium points (collinear points cease to exist) and the
number of equilibrium points is seen to be independent on the strength and the kind
of the involved dissipative forces (see Fig. 2 and Tables 2, 3, 4).
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Table 1 Positions (x, y) of the five equilibrium points when the perturbing forces are neglected
for μ = 0.01

L1 L2 L3 L4,5

(0.848079, 0) (1.14677, 0) (−1.00417, 0) (0.49000,±0.866025)

Table 2 Positions (x, y) of the five non-collinear equilibrium points under the P–R drag force for
μ = 0.01 and ks = 0 = α

kpr L1 L2 L3 L4,5

10−5 (0.848079,
−2.83332×10−6)

(1.14677,
−3.83401×10−6)

(−1.00417,
0.00115581)

(0.489615, 0.866245)
(0.490385,−0.865805)

10−4 (0.848079,
−2.83332×10−5)

(1.14677,
−3.83401×10−5)

(−1.00410,
0.0115581)

(0.486123, 0.868229)
(0.493822,−0.863830)

10−3 (0.848079,
−2.83332×10−4)

(1.14677,
−3.83401×10−4)

(−0.99744,
0.115658)

(0.448571, 0.888425)
(0.525959,−0.844466)

Table 3 Positions (x, y) of the five non-collinear equilibrium points under the Stokes drag force
for μ = 0.01 and kpr = 0

ks α L1 L2 L3 L4,5

10−5 0.05 (0.848079,
−2.36470×10−6)

(1.14677,
−5.36860×10−6)

(−1.00417,
0.0012268)

(0.489585, 0.866262)
(0.490414,−0.865789)

10−4 0.10 (0.848079,
−2.64324×10−5)

(1.14677,
−5.60682×10−5)

(−1.00408,
0.0131125)

(0.485527, 0.868566)
(0.494401,−0.863495)

10−3 0.12 (0.848079,
−2.75466×10−4)

(1.14677,
−5.70212×10−4)

(−0.99504,
0.134636)

(0.440320, 0.892590)
(0.532060,−0.840601)

Table 4 Positions (x, y) of the five non-collinear equilibrium points under the Stokes drag and P–R
drag forces for μ = 0.01

ks= kpr α L1 L2 L3 L4,5

10−5 0.05 (0.848079,
−5.19802×10−6)

(1.14677,
−9.20258×10−6)

(−1.00416,
0.0023826)

(0.489200, 0.866482)
(0.490798,−0.865569)

10−4 0.10 (0.848079,
−5.47656×10−5)

(1.14677,
−9.44083×10−5)

(−1.00386,
0.0246712)

(0.481586, 0.870780)
(0.498163,−0.861310)

10−3 0.12 (0.848079,
−5.58798×10−4)

(1.14677,
−9.53612×10−4)

(−0.972092,
0.250937)

(0.390558, 0.915742)
(0.562872,−0.820118)

As we will show, the effect of the perturbing forces on the non-collinear
equilibrium points Li, i = 1, 2 . . . , 5, is to change their position considerably.
The results are shown in Tables 1, 2, 3, 4 for the four cases, namely, when the
perturbing forces are neglected, when the P–R drag is dominant, when the Stokes
drag is dominant, and when both Stokes drag and P–R drag are inaction together. We
found that unlike to the equilibrium points of the classical case, equilibrium points
in the presence of the perturbing force or both of them have finite but small y-
component for various values of the parameters. The existence of such equilibrium
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Fig. 3 Location of the non-collinear equilibrium points Li, i = 1, 2, . . . , 5, for μ = 0.01 and
various values of the P–R drag. The “•” denotes the position when kpr = 0 (classical case), while
the thick lines indicate the equivalent paths for various values of P–R (kpr )

Table 5 Absolute difference in the coordinates of equilibrium points when μ = 0.01 and kpr =
10−5. The coordinates (x, y) denote the position of an equilibrium point Li, i = 1, 2, . . . , 5,, for
the classical case, while (x(kpr ), y(kpr )) stands for the corresponding position when the P–R drag
force is included

Li x x(kpr ) |x − x(kpr )| y y(kpr ) |y − y(kpr )|
L1 0.848079 0.848079 0 0 −2.83332× 10−6 2.83332× 10−6

L2 1.14677 1.14677 0 0 −3.83401× 10−6 3.83401× 10−6

L3 −1.00417 −1.00417 0 0 0.00115581 0.00115581

L4 0.49000 0.489615 3.85× 10−4 0.866025 0.866245 2.2× 10−4

L5 0.49000 0.490385 3.85× 10−4 −0.866025 −0.865805 2.2× 10−4

points was shown in [13, 20, 37, and the references quoted therein]. We observe
that the positions of these equilibria increase or decrease in a relatively small range
with an increase in the respective parameter which already covers a big range from
the very low/weak drag coefficient case to the case of high drag coefficient. These
effects can be easily seen in the numerical results presented in Tables 2, 3, and 4
and Fig. 3. For instance, in Table 2, the coordinates of the numerically determined
non-collinear equilibrium points are shown for various values of the P–R drag. We
observe that there is a significant change (difference) in the positions (coordinates)
of the equilibrium points.

Table 5 shows the absolute difference in the coordinates of equilibrium points
when kpr = 10−5 with respect to their classical values. We observe that on the
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x-coordinate, L4 decreases by 0.039 percent while L5 increases outward by 0.039
percent, while at the same time the y-coordinate of L1, L2, L3, and L4 increases
by 0.00028, 0.00038, 0.12, and 0.022 percents, respectively, and L5 decreases
by 0.022 percent. Moreover, x-coordinates of L1, L2, and L3 are practically
unaffected. Therefore, we conclude that positions of the equilibrium points L3 and
L4 move in opposite direction toward the y-axis, L5 moves anticlockwise direction
toward m2, while L1 and L2 move outward from the x-axis in the negative direction.
In the absence of the perturbing forces, we found L4,5 to be symmetrically located
with respect to the orbital plane. However, the inclusion of the perturbing forces
in the system results in a little asymmetry in the location of such equilibria (see
Table 2).

The aforementioned discussion can be summarized in Fig. 3, where we plot the
positions of the equilibria. Apparently, the P–R drag does change the positions of the
equilibria. This can be easily seen by comparing equilibrium point positions with the
classical positions. Similar results, though not shown here, are also observed in the
absence of P–R drag (Table 3) or when both forces are inaction together (Table 4).
Evidently, the variational trend of the corresponding positions in Tables 3 and 4
is similar to the scenario with the variation of P–R drag as described previously.
However, by observing the y-coordinate of the equilibrium points L1, L3, L4, and
L5 in Tables 2 and 3, it seems that P–R drag has greater dissipative influence than
the Stokes drag. The reason can be found in the fact that the amount of light hitting
the particle is proportional to the inverse of the square of the distance from the Sun
(see System (5)). All these results are similar with Murray [13] and the references
quoted therein.

4 Stability of the Non-collinear Equilibrium Points

To study analytically the solutions in the neighborhood of the non-collinear
equilibrium points Li, i = 1, 2, . . . , 5, following Ragos and Zafiropoulos [31]
and Singh and Amuda [17], we consider small displacements ξ and η given to the
coordinates of an equilibrium point (x0, y0) such that

ξ = x − x0, η = y − y0. (6)

Then, the variational equations of motion are derived in the following form:

ξ̈ − 2η̇ = Ω
(0)
xẋ ξ̇ +Ω

(0)
xẏ η̇ +Ω

(0)
xx ξ +Ω

(0)
xy η,

η̈ + 2ξ̇ = Ω
(0)
yẋ ξ̇ +Ω

(0)
yẏ η̇ +Ω

(0)
yx ξ +Ω

(0)
yy η,

(7)

where only the linear terms in ξ and η have been kept, while dots represent deriva-
tives with respect to time t . The superscript “(0)” means that the corresponding
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derivatives have been evaluated at an equilibrium point (x0, y0). Now, we assume
solutions of the variational equations in the form:

ξ = A1e
λt , η = A2e

λt , (8)

where Ai, i = 1, 2, are arbitrary constants and λ is a complex constant. Substituting
(8) in Eqs. (7) and simplifying, we obtain

(λ2 − λΩ
(0)
xẋ −Ω

(0)
xx )A1 + (−2λ− λΩ

(0)
xẏ −Ω

(0)
xy )A2 = 0,

(2λ− λΩ
(0)
yẋ −Ω

(0)
yx )A1 + (λ2 − λΩ

(0)
yẏ −Ω

(0)
yy )A2 = 0.

(9)

For the nontrivial solution, the determinant of the coefficients matrix of system (9)
must be zero, namely,

∣
∣
∣
∣
∣
∣

λ2 − λΩ
(0)
xẋ −Ω

(0)
xx −2λ− λΩ

(0)
xẏ −Ω

(0)
xy

2λ− λΩ
(0)
yẋ −Ω

(0)
yx λ2 − λΩ

(0)
yẏ −Ω

(0)
yy

∣
∣
∣
∣
∣
∣
= 0. (10)

Simplifying Eq. (10), we obtain the characteristic polynomial corresponding to the
system (7) as

λ4 + aλ3 + bλ2 + cλ+ d = 0, (11)

where

a = −(Ω(0)
yẏ +Ω

(0)
xẋ ),

b = 4+Ω
(0)
xẋ Ω

(0)
yẏ −Ω

(0)
xx −Ω

(0)
yy − [Ω(0)

xẏ ]2,
c = Ω

(0)
xẋ Ω

(0)
yy +Ω

(0)
xx Ω

(0)
yẏ + 2Ω(0)

xy − 2Ω(0)
yx −Ω

(0)
yẋ Ω

(0)
xy −Ω

(0)
yx Ω

(0)
xẏ ,

d = Ω
(0)
xx Ω

(0)
yy −Ω

(0)
yx Ω

(0)
xy .

(12)

The obtained eigenvalues determine the stability or instability of the respective equi-
librium point. Also, the involved second-order partial derivatives of the modified
potential-like function Ω are given by

Ω(0)
xx = 1− 1− μ

r3
10

− μ

r3
20

− 2(x0 + μ)y0kpr

r4
10

+ 3(1− μ)(x0 + μ)2

r5
10

+ 3μ(x0 + μ− 1)2

r5
20

− 21ksαx0y0

4r11/2
0

,

Ω(0)
yy = 1− 1− μ

r3
10

− μ

r3
20

+ 2kprx0y0

r4
10

+ 3(1− μ)y2
0

r5
10

+ 3μy2
0

r5
20

+ 21ksαx0y0

4r11/2
0

,
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Ω(0)
xy = kpr

r2
10

− 2kpry2
0

r4
10

+ 3(1− μ)(x0 + μ)y0

r5
10

+ 3μ(x0 + μ− 1)y0

r5
20

+ ks(1− 21αy2
0

4r11/2
0

+ 3α

2r7/2
0

),

Ω(0)
yx = −kpr

r2
10

+ 2kpr(x0 + μ)x0

r4
10

+ 3(1− μ)(x0 + μ)y0

r5
10

+ 3μ(x0 + μ− 1)y0

r5
20

− ks

(

1− 21αx2
0

4r11/2
0

+ 3α

2r7/2
0

)

,

Ω
(0)
xẋ = −

[

ks + kpr

r2
10

(1+ x2
0

r2
10

)

]

,

Ω
(0)
yẏ = −

[

ks + kpr

r2
10

(1+ y2
0

r2
10

)

]

,

Ω
(0)
xẏ = −kprx0y0

r4
10

= Ω
(0)
yẋ ,

with

r2
0 = x2

0 + y2
0 , r2

10 = (x0 + μ)2 + y2
0 , r2

20 = (x0 + μ− 1)2 + y2
0 .

Since we have computed the coordinates (x0, y0) of the equilibrium points
(presented in Tables 1, 2, 3, 4), we can insert them into the characteristic equa-
tion (11) and thus derive their linear stability numerically. An equilibrium point
(x0, y0) is said to be stable in the sense of Lyapunov if all the four roots of the
characteristic polynomial equation (11) are either negative real numbers or distinct
imaginary, asymptotically stable if roots are complex with negative real parts, and
unstable, otherwise. As a particular example, we compute the characteristic roots
λi, i = 1, 2, 3, 4, which are shown in Tables 6, 7, and 8 for three cases, namely,
when the P–R drag is dominant, when the Stokes drag is dominant, and when
both forces are inaction together, correspondingly. Our analysis reveals that in all
studied cases, all the equilibria are unstable due to a positive real root or a complex
root with positive real part except for the equilibria L4 and L5 under Stokes drag
where we get complex roots with negative real parts, which means that due to the
negative real parts these points are stable. From the results, we can conclude that
the P–R effect destroys the stability of the equilibrium points (L4 and L5) known to
be conditionally stable in the classical gravitational restricted three-body problem
(see e.g., [1]) or the restricted three-body problem under the force of Stokes drag
(see [14]).
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Table 6 Stability of the five non-collinear equilibria for μ = 0.01 under P–R drag kpr = 10−5

Li (x0, y0) λ1,2 λ3,4

L1 (0.848079,−2.83332× 10−6) −2.903756, 2.903734 −0.0000093619± 2.316563i

L2 (1.146770,−3.83401× 10−6) −2.179447, 2.179432 −0.0000060981± 1.874813i

L3 (−1.00417, 0.00115581) −0.161350, 0.161379 −0.000029638± 1.0085933i

L4 (0.489615, 0.866245) −0.0000337395± 0.963376i 0.0000187889± 0.2681746i

L5 (0.490385,−0.865805) −0.0000337508± 0.963273i 0.0000188004± 0.2685114i

Table 7 Stability of the five non-collinear equilibria for μ = 0.01 under Stokes drag ks = 10−5

and α = 0.05

Li (x0, y0) λ1,2 λ3,4

L1 (0.848079,−2.3647× 10−6) −2.903749, 2.903740 −0.0000051451± 2.316563i

L2 (1.146770,−5.36857× 10−6) −2.179442, 2.1794319 −0.0000050843± 1.874813i

L3 (−1.00417, 0.0012268) −0.161366, 0.1613581 −0.0000060627± 1.008593i

L4 (0.489585, 0.866262) −0.0000063370± 0.963374i −0.0000036629± 0.268162i

L5 (0.490414,−0.865789) −0.0000063377± 0.963268i −0.0000036623± 0.268532i

Table 8 Stability of the five non-collinear equilibria for μ = 0.01 under Stokes and P–R drags
ks = 10−5, α = 0.05, and kpr = 10−5

Li (x0, y0) λ1,2 λ3,4

L1 (0.848079,−5.19802× 10−6) −2.903761, 2.903729 −0.000014507± 2.316563i

L2 (1.146770,−9.20258× 10−6) −2.179447, 2.179427 −0.000011182± 1.874813i

L3 (−1.00416, 0.0023826) −0.161569, 0.161591 −0.000035699± 1.008616i

L4 (0.489200, 0.866482) −0.0000400705± 0.963424i 0.000015119± 0.267999i

L5 (0.490798,−0.865569) −0.0000400949± 0.963219i 0.000015145± 0.268697i

5 Discussion and Conclusion

The presented work constitutes a numerical study about the effects of dissipative
forces on the equilibrium points of the restricted three-body problem. In particular,
the positions of the equilibrium points as well as their linear stability were
investigated in the framework of this classical problem under the effects of Stokes
and Poynting–Robertson drags. In general, it was found that these forces induce
considerable changes to the location of all equilibria. This comes directly by the
pertinent non-linear algebraic equations, which provide the respective positions,
since it was identified analytically that the well-known collinear equilibrium points
of the circular restricted three-body problem cease to exist, while the respective
triangular Lagrangian points do not form equilateral triangles.

More precisely, we studied the existence, location, and stability of the equilib-
rium points on the orbital plane (x, y) as the parameters kpr and ks of the P–R and
Stokes drag forces, respectively, vary. To this purpose, we examined four distinct
cases: first when the perturbing forces are neglected, second when the P–R drag is
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dominant, third when the Stokes drag is dominant, and fourth when both Stokes drag
and P–R drag are inaction together. In the case where the P–R drag and/or Stokes
drag were considered, our numerical investigation for the number and location of
the equilibria showed that five non-collinear equilibrium points exist in contrast to
the absence of the aforementioned perturbing forces, i.e., the classical case, where
five equilibrium points also exist, but three of them lie on the axis joining the
primaries, while the rest two form in the plane of motion equilateral triangles with
the primaries.

Additionally, it was observed that the involved parameters of the problem not
only affect the positions of the corresponding equilibria but also influence their
stability as well. For the determination of the stability of the infinitesimal body’s
motion around the obtained equilibria, we linearized the governing equations of
motion around them. For all the considered cases, it was found that all equilibria
are unstable due to the existence of a positive real root or a complex root with
positive real part except for the equilibria L4 and L5 in the case of Stokes drag
where we got complex roots with negative real parts, which means that these points
are stable. Therefore, we conclude that the stability of the non-collinear equilibrium
points L4 and L5 is not affected from the Stokes drag force of the primaries, and the
motion in their vicinity remains stable for the value of mass parameter considered
here. Also, contrary to the classical restricted three-body problem where the three
collinear points are generally unstable and the triangular points are linearly stable
for sufficiently small ratio of the two masses, we observed that for the problem under
consideration all the equilibrium points are unstable due to the presence of the P–R
drag effect. The instability of the equilibrium points agrees with the results existing
in the literature when the Stokes drag force is not considered.
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Nearest Neighbor Forecasting Using
Sparse Data Representation

Dimitrios Vlachos and Dimitrios Thomakos

Abstract The method of the nearest neighbors as well as its variants have proven
to be very powerful tools in the non-parametric prediction and categorization of
experimental measurements. On the other hand, the number of data available today
as well as their dimensionality and complexity is growing rapidly in many scientific
fields, such as economics, biology, chemistry, medicine, and others. Usually, the
data and their characteristics have semantic dependence and a lot of noise. At
this point, the sparse data representation that deals with these problems with
great success is involved. In this paper we present the application of these two
tried and tested techniques for prediction in various fields related to economics.
New techniques are presented as well as exhaustive tests for the evaluation of
the proposed methods. The results are encouraging to continue research into the
possibilities of sparse representation combined with good proven machine learning
techniques.

1 Introduction

In recent years, deep learning networks have made tremendous advances in machine
learning but still face obstacles when it comes to implementing more complex
applications. The usual solution to this problem is to create larger and more complex
models that in turn bring new problems such as over-fitting and the excessive need
for computing power [1, 2]. On the other hand, as is usually the case in the evolution
of machine learning algorithms, it is useful to focus on the ways in which nature and
the human brain deal with such problems. It is obvious that the human brain solves
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problems much more efficiently than a deep learning network. The brain is estimated
to require only 20 watts of power to perform a wide range of tasks, from logic to
language, processing visual and audio inputs, and performing complex behaviors.
On the contrary, today’s networks for deep Learning have huge energy requirements
and often require large amounts of data at the stage of training running on multiple
servers for many days. How is the brain so smart with such amazing performance?

One reason is that most of it is sparse. The brain stores and processes information
in the context of extremely sparse neural activity and sparse connectivity [3].
Concerning the neo-cortex, one of the most important and remarkable observations
is that throughout it, neuronal activity is sparse. Only a small percentage of neurons
send signals at any given time. Activity can range from less than one percent to
quite a few percent, but it is always extremely sparse. In addition, unlike deep
learning networks, the connection between neurons in the brain is also sparse.
Deep learning traditionally uses dense representations in which almost all neurons
are connected and most of them are constantly active. To calculate the output for
each neuron, the contribution of each connected neuron must be considered. This
calculation is usually expressed as matrix multiplication, in which each row vector
must be multiplied by each column vector. With a sparse representation, we can
create sparse versions of these networks [4–7]. In this sparse network, as a result of
both limited connectivity and limited activation, the matrix calculations required are
performed in arrays for which the majority of matrix values are zero. When these
sparse rows and columns are multiplied together, a large fraction of the products can
be eliminated. If an application is able to "skip" the calculation of zero products,
significant performance benefits can arise.

But beyond the acceleration in the calculations, the sparse representation as
we will explain in detail below, allows the conceptual transformation of the data.
Consider, for example, a trajectory of the stock price following a stock. Even if this
snapshot is identical to another, the price level compared to previous ones, the time
of day or even the day of the week can dramatically differentiate the price evolution
in both cases.

In the present work, we will develop a classification-based technique based on
the nearest neighbors to sparsely represented data. First we will give one a detailed
description of both the classical method and the methodology we follow to represent
the data. After an exhaustive experimental process we will present and comment on
the improvement that results with the proposed technique.

2 A Modification of Classical Nearest Neighbors Forecasting

The nearest neighbors (NN) approach for classification and prediction has a
venerable history and an active research present, and obviously future as well. We
sample several recent papers from across a number of fields to illustrate the use
and usefulness of the NN methods in prediction and forecasting. We emphasize
that the references that follow are far from a complete list; rather they clearly show
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the vast expanse of methods and applications to the NN approach across different
disciplines.

The original articles on NN dates back to Cover and Hart [8], Cover [9] and Hart
[10], followed by many other papers in the statistics literature, see, for example,
Devroye [11], Devroye [12], Stute [13], Bhattacharya and Mack [14], Devroye et al.
[15] and Gadat et al. [16]—all these papers dealing with various theoretical aspects
of NN specification and consistent estimation and classification in a non-parametric
regression context.

Turning to the use of NN on prediction and forecasting we start with a recent
monograph of Chen and Devavrat [17] that is entirely devoted to the use of NN in
the context of prediction—see also the many references therein. Stroup and Mulitze
[18] present results on best linear unbiased prediction using NN, and is another early
reference on the topic, Ghosh [19] discusses NN classification with adaptive choice
of the number of NN to use and Jensen and Cornelis [20] present results on fuzzy-
based NN classification and prediction. Going closer to today, we find proposals for
new uses of NN such as in Zhang et al. [21] and Talavera-Llames et al. [22, 23] on
the use of multidimensional NN approaches for prediction and forecasting, also in
the context of big data.

A number of other papers, with either new NN methods applications or both,
include the following. Nikolopoulos et al. [24] and Kück and Freitang [25] use NN
in the context of demand forecasting while Li et al. [26], Andrada-Félix et al. [27],
Zhang et al. [21], Chen and Hao [28], Cheng et al. [29] and Kyriazi and Thomakos
[30] all use NN approaches for prediction in an economics/finance context. The use
of NN is essentially everywhere, for EEG monitoring in Erla et al. [31], for RNA
prediction in Chou et al. [32], for battery life prediction in Ma et al. [33], for sand
liquefaction prediction in Huang et al. [34], while in Yesilbudak et al. [35], Pedro
and Coimbra [36], Wood [37] and Dong et al. [38] the use of NN methods is used
for prediction in various energy-related problems.

We next turn to the use of the NN methodology for this chapter, where we
consider a standard (or classical) approach to the forecasting problem with the use
of NN and offer small modification—the latter makes possible sense in the context
of “sparsity" discussed earlier in this chapter. Consider thus a bivariate time series
of interest say Zt = [Yt ,Xt ], as a (1 × 2) row vector, and assume that there are n
available observations, t = 1, 2, . . . , n. The variable Yt is the target variable and the
variable Xt is an auxiliary (or explanatory variable) to aid in the prediction of Yt .
The aim is to forecast the out-of-sample value Yn+h by the forecast Ŷn+h|n for some
h ≥ 1, the forecasting horizon.

We first construct the trajectory matrix Tm,n where m is the embedding dimen-
sion, m < n/2. This matrix, obtained by overlapping stacking of the elements of
Zt , has the following form:
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Tm,n =

⎡

⎢
⎢
⎢
⎣

Z1 Z2 . . . Zm

Z2 Z3 . . . Zm+1
...

...
...

...

Zn−m+1 Zn−m+2 . . . Zn

⎤

⎥
⎥
⎥
⎦

(1)

and naturally defines the target vector as its last row, i.e., the most recent m values
of the time series. Thus, let us define N = n − m + 1 the row dimension of the
trajectory matrix, as τN = [Zn−m+1, Zn−m+2, . . . , Zn] the (1 × m) target vector
and as TN−1,n the trajectory matrix Tm,n with its last row removed.

We can now compute the distance vector between the elements of the target
vector τN and the rows of the TN−1,n trajectory matrix as in:

dN−1,n = D
(
TN−1,n − eN ⊗ τN

)
(2)

where D is a distance function applied row-wise and where eN = [1, 1, . . . , 1]< is
the (N × 1) vector of ones. Standard distances, like the Euclidean or Manhattan,
were used in our computations. If the time series in question were binary (as in the
discussion of the sparse representation) the plain matching distance function was
also used.

The indices of the distance vector define the NN which are to be used in forming
the forecast. Suppose thus that we require a percentage of α NN to be included in
our computation. Then, if d(j)N−1,n denotes the j th ordered NN, j = 1, 2, . . . N − 1
and where higher exponents indicate lower proximity (more distance), we consider
only the set of indices satisfying:

Sα =
{
j∗|j∗ ≤ αN

}
(3)

Once this set of indices is available we then move them h-periods forward, where h
is the forecasting horizon, adjusting for the shape and positioning of the trajectory
matrix:

Sf
α =

{
j∗|j∗ = j + h+m− 1,∀j ∈ Sα

}
(4)

and the (global) NN forecast is defined as the average of the NN values for the target
variable Yt as in:

Ŷ
g

n+1|n =
1

N (Sf
α )

∑

t∈Sf
α

Yt (5)

where Sf
α ) is the cardinality of the set Sf

α (note that if it happens than an index
exceeds n this is naturally dropped from the set). It should be clear from the above
context that the use of the auxiliary variable Xt is for obtaining a, possibly more
accurate, estimate of the distances to be used in forming the final forecast.
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We next add another layer of smoothing in the computation of our NN forecast,
the idea being very simple: each NN index is in itself a sparse representation of the
original time series and therefore one could look into the neighborhood of each such
index and repeat the smoothing; now we have local smoothing before the final global
averaging. The procedure by which we do this is as follows. For each index t ∈ Sf

α

we look into a radius of size β around it, either on both sides of the index, forward
only or backward only. That is, for each t ∈ Sf

α we consider the observations in the
set:

Sct,β =
{
t∗|t − βn ≤ t∗ ≤ t + βn

}
(6)

for a symmetric (centered) neighborhood or, for example, into the set:

S
f
t,β =

{
t∗|t ≤ t∗ ≤ t + βn

}
(7)

for a forward neighborhood. Once these sets are defined for all t ∈ Sf
α we then

compute the average of averages (local) forecast as in:

Ŷ &
n+1|n =

1

N (Sf
α )

∑

t∈Sf
α

⎧
⎪⎨

⎪⎩

1

N (Sf
t,β)

∑

t∗∈Sf
t,β

Yt∗

⎫
⎪⎬

⎪⎭
(8)

3 Sparse Data Representation

One of the most important problems one faces when designing a physical model
is the representation of knowledge. There are various techniques by which we
try to represent our data, always making sure that they have a form that we can
process with the mathematical and computational tools we have in our hands. As an
example we can bring here the breakthrough brought to the area of natural language
processing by the representation of words or sentences or paragraphs in the form
of vectors with the Skip Gramm model introduced by Mikolov et al. [39]. This
problem is exacerbated by the fact that it is not always easy or obvious to represent
our data relationships in a way that computers can work. The main problem here is
that our knowledge is not limited to distinct events with well-defined relationships.
Our knowledge is limited and the relationships that arise, are too many and so
very difficult to capture in the traditional variables recognized by algorithms and
computers.

Fortunately, the human brain does not have this problem. Information in the
brain is represented by a series of neurons, among which only a small percentage
are activated. The flexibility and creativity observed by the human intelligence are
intertwined with this method of representation. Why has nature chosen this way?
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Let us start by defining as Sparse Distributed Representations or SDR a set of
bits of which only a small percentage is 1 and all the rest is 0. Each bit in an
SDR corresponds to a neuron in the brain (with the obvious correspondence , 1
corresponds to an active neuron and 0 to an inactive one). The most important
property of SDRs is that every bit makes sense. Thus, the set of active bits
in any particular representation encodes the set of semantic features of what is
represented. The meaning of the bits is not predefined but arises with the successive
transformations they undergo in a learning system. It is obvious that by determining
the overlap of bits between two SDRs (by overlap we refer to the number of active
bits in the same positions in both SDRs) we can conclude if the two expressions
are semantically similar or not (if we go back to the example we gave for the
representation of words, it means that two words are semantically close to each
other if the angle formed by the two vectors corresponding to them is small).

Based on the semantic meaning of the overlap of two SDRs, this representation
acquires enormous possibilities for encoding the concepts and relationships that are
reflected in our data. The current value of each bit in a given representation changes
depending on the context in which it is located (i.e., the combination of the other
active bits). So, for example, in a sequence of symbols, the same bit at one point in
time may indicate that the particular symbol is a vowel while at another time it may
indicate the exact opposite!

To better understand the properties of SDRs, let us look at a simple example
which is borrowed from [40]: In computers, we represent information in bytes and
words using 8, 32, or 64 bit words. The ASCII code for the letter “m” is represented
by: 01101101. Notice that the combination of all eight bits encodes the “m” and
the individual bits in this representation mean nothing by themselves. There is no
specific meaning in the second or the third bit but the combination of all eight bits
is required. Also note that such a representation is extremely vulnerable. If you
change only one bit in the ASCII code for “m” as follows: 01100101 you get the
representation for a completely different letter, “e”. An error or the presence of a
small noise bit and the meaning changes completely. Imagine the effect this can
have on a forecasting system.

Unlike an SDR, every bit makes sense. For example, representing the letters
of the alphabet using SDR, it is expected that there will be bits showing if the
letter is consonant or vowel, bits that represent how the letter sounds, bits that
represent where the letter appears in the alphabet, bits that represent how the letter
is drawn, etc. To represent a particular letter, we can, for example, select 40 bits
(characteristics that best describe this letter) in a sequence of 2 or even 3 thousand
bits. It is obvious here that even if some of these bits change for some reason
(either from 1 to 0 or vice versa) then the letter will probably remain unchanged
and can be successfully identified (we will see later the amazing tolerance of these
representations in noise).

The use of Sparse Data Representations has proved very efficient alternative in
several problems (Wielgosz et al. [41], Kirtay et al. [42], Alshammari [43], Zhou
[44], Ibrayev et al. [45], Osegi [46], Pilinszki-Nagy et al. [47], Dauletkhanuly et
al. [48], Dobric et al. [49]). A very recent theoretical paper has shown that simple
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linear sparse networks may be more resistant to adversary attacks (Guo et al. [50]).
A number of papers have shown that it is possible to effectively introduce sparsity
through pruning and retraining (Han et al. [51], Frankle et al. [52], Lee et al. [53]).
We present first a short review of the definitions and properties of Sparse Data
Representations.

3.1 The Mathematics of SDR

A detailed presentation of the Sparse Data Representation can be found in Ahmad
and Hawkins [54].
Definitions and notation:

1. A binary vector is a vector of the form bi for i = 0, 1, . . . , N − 1 with values
in {0, 1} and size N .

2. The sparsity of a binary vector is the ration of 1s.
3. The cardinality of a binary vector is the total number of 1s.
4. The overlap score of two binary vectors x, y is their inner product x · y = xiy

i .
5. The match of two binary vector given a threshold θ is x ∼θ y ⇐⇒ x · y ≥ θ .

Note here that if θ = w where w is the cardinality, then we have the case of exact
match. If θ < w we have the case of inexact match. In the case where θ > w there
is no match between the two vectors.

Now let us assume we are given a vector with size N and cardinality w. There
will be

(
N

w

)

= N !
w!(N − w)! (9)

unique representations. This number is by far smaller than the total representations
(2N ) that we can obtain with N bits but in the common case that we have 2048 bits
and cardinality 40, we can represent 2.37 × 1084 different patterns (compare this
number with the number of atoms in the universe which is ∼ 1080).

Given two patterns, the probability that they have the same SDR representation is
(
N
w

)−1
which in the previous example is almost 0. Thus, choosing a large size, even

if we keep the sparsity low, we can have an enormous amount of capacity keeping
the probability that two patterns coincide almost 0.

Let us focus now in the crucial operation in binary vectors, the matching. If we
have a vector x with cardinality wx and size N , the number of vectors with the same
size and cardinality w which have exactly b active bits in common is given by

|Ωx(N,w, b)| =
(
wx

b

)(
N − wx

w − b

)

(10)
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where the first term is the combinations of b bits among the wx active ones in the
vector x and the second term gives the combinations (selecting the wx bits and the
b active ones from the vector y) of the rest w − b active bits in y. Using this result
we can calculate both the cardinality and the threshold of matching in order to have
an efficient representation. More specifically, assuming that both vectors have the
same cardinality, by setting the threshold equal to wx , even the change of one bit
can cancel the matching. On the other hand, if we lower the threshold to wx/2, then
the representation is tolerant to a noise of 50% but the probability of false positive
(false matching of two vectors) is significant. There is a trade-off here between the
noise tolerance and false positive probability which can be easily resolved:

The probability of false positive match is given by

fpNw =
∑w

b=θ |Ωx(N,w, b)|
(
N
w

) (11)

Figure 1 illustrates the effect of the matching threshold and the SDR size on
the false positive probability. A typical selection of an SDR size of 2000 bits with
cardinality around 40 and threshold around 30 gives a probability of false positive
match in the order of 10−30.

Let us now consider the case where we want to reliably compare against a sub-
sampled version of a vector. This is the case where we want to recognize a large

Fig. 1 The probability of false matching as a function of the matching threshold and the size of
the SDR
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pattern given only a subset of the active bits in it. Let x and x′ the original and
the sub-sampled vectors with cardinalities wx′ ≤ wx . Of course, if the matching
threshold is such that θ ≤ wx′ then there be always a match. But the probability of
a false matching of the vector x and y given only the sub-sampled version x′ can be
easily calculated as

fpNwy
(θ) =

∑wx′
b=θ |Ωx′(n,wy, b)|

(
N
wy

) (12)

where the symbols are easily interpreted and Ωx′(n,wy, b) is the subset of all
representations with n bits, cardinality wy that have exactly b active bits in common
with the sub-sampled version x′. Again, with a proper selection of size and sparsity,
the probability of false positive matching is practically zero.

3.2 Classification

One of the most useful operation with SDR is their ability to classify representations.
Let X = (x1, x2, . . . , xM) be a set of M vectors. Given a vector y, we can classify
if y belongs to the set X if

y ∈ X ⇐⇒ ∃xi∈X:y ∼θ xi (13)

Let us see now how reliably can we classify a vector in the presence of noise.
The existence of noise means that there is a chance that t bits out of n (the size of
the vector) change their state from 1 to 0 and vice versa. The probability now for a
false positive classification of the vector y in the set X is given by

fpy,X(θ) = 1− (1− fpnw(θ)
)M (14)

where for practical reasons we can use the inequality

fpy,X(θ) ≤ Mfpnw(θ) (15)

You can see in Fig. 2, that while we keep the threshold ratio the same (2/3), by
increasing the size of the SDR we obtain a drastic decrease in the false positive
classification. As we will see later, this exceptional property of SDRs has led us to
design a very effective classifier that in combination with a correlative memory can
lead to a predictor based on the principle of the nearest neighbor.

Another property of SDR is their union. The union of SRDs x, y is defined as

x + y = x ∨ y (16)
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Fig. 2 The probability of false positive classification of a vector in a set as a function of the
number of vectors in the set for different values of the size and cardinality of the vectors and the
matching threshold

which means that a bit becomes active if at least one of the corresponding bits in
x and y is active. The union gives us a way to store a batch of SDRs in a single
one. Suppose that we have M vectors and we take their union. Then each one of
the initial vectors will have a match with the union, but as the number of vectors
increase, the union saturates (almost all bits become active) and the probability of a
false classification is increased.

Let us examine the case of exact match. If we have only one vector in the set X
then the probability of a bit to be zero is w/n where w is the cardinality and n the
size of the vector. In case of M vectors in the set X, the probability of a bit to be
zero is:

p0 =
(

1− w

n

)M = (1− s)M (17)

where s = w/n. The probability now of a bit to be active in the set X is 1− p0. We
can calculate now the probability of a positive matching of a random vector Y with
the set X:

fpw,M = (1− p0)
w = (1− sM)w (18)

As we can see, after a proper selection of size and cardinality, we can efficiently
classify a vector y in a set of vectors X (Fig. 3).



NN Forecasting using SDR 1013

Fig. 3 The probability of false positive classification as a function of the number of patterns in the
set X and the cardinality. In all cases, the sparsity is constant (0.1)

3.3 Encoding

The process by which we assign discrete or continuous variables to an SDR is called
encoding. For encoding to be effective, the following basic principles must apply:

1. The values of the variables corresponding to conceptually related observations
must correspond to sufficiently overlapping SDRs.

2. The same values must always correspond to the same SDRs.
3. The encoding of all values should lead to SDRs with the same dimension and

similar sparsity.

Let us look at two examples of coding: Let us first consider a continuous variable
that takes all values from 0 to 1. We also want to have an SDR with 1000 bits and
sparsity 0.05, ie 50 active bits. The obvious solution is for each SDR to have 50
consecutive active bits at some point in the representation and all other bits to be 0.
Thus, assigning 0 to

111 . . . 111000000 . . . 0000

and 1 to

0000...000001111 . . . 111
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we can calculate that we will have 1000 − 50 = 950 different SDRs and so we
will have a quantization error in the representation of the order of 10−3. Also,
if we assume that 2 SDRs match when 75% of their active bits match, then each
representation will match about 25 other ones and so values that are less than 0.025
apart will match. If we want to change that, we can double the SDR dimension and
the cardinality so, keeping the sparsity constant, we will have a half distance match.

In the second example, suppose we want to code the day of the week. Here, we
must keep in mind that the last day (Sunday) is the previous of the first (Monday).
For this reason we will adopt a circular encoding.

Let us look at the general case: Suppose we have m values that we want to encode
in an SDR and we want two adjacent values to have an overlap with ratio a (that is,
if we have cardinality equal to w then there will be a · w overlapping bits in two
adjacent representations). If the first representation started with bit 0, then, for the
last one to have the required number of overlapping bits with the first, it must start
at n− (1− a)w bit so that the remaining aw bits are located at the beginning of the
SDR. Because each consecutive representation shifts (1− a)w bits, we have:

(m− 1) ∗ (1− a)w = n− (1− a)w 7⇒
w

n
= 1

m(1− a)

where w/n is the sparsity of the representation.
One of the most important properties of SDRs is that we can combine them and

include many variables and measurements in a single representation. The obvious
way to do this is to stack the individual representations into a larger representation.
So if we have the representations (n1, w1) and (n2, w2) where n,w correspond to
size and cardinality, we can make the representation (n1 + n2, w1 + w2) simply
by placing the first representation after second. For example, we can encode in the
same SDR the day of the year (from 1 to 365), the hour of the day, the temperature,
and the wind speed. The only problem here is that the process of matching becomes
complicated. To see this, assume that we have 40 active bits for the temperature and
5 active bits for the hour of the day. Then matching two SDRs is determined almost
exclusively by the temperature.

To overcome this difficulty we introduce a different mechanism to join SDRs.
Let ai and bi two vectors (SDRs). The Kronecker product of these two vectors is

ci = (a ⊗ b)i = ai//nbbi%nb (19)

where nb is the size of the vector bi , // is the integer division and % is the
modulo. Notice now how well this coupling can lead to a conceptually compatible
representation of the information. Two representations, in order to have a match,
must have sufficient matching in both vectors from which they originate, regardless
of their cardinality. Thus, one can assume that the second variable is represented in
the context of the first (and this applies recursively if we have more variables). The
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flaw here is that every time we take the Kronecker product, the resulting vector has
length the product of lengths and sparsity the product of sparsities. In other words,
we are gradually leading to larger and more sparse representations. However, this
difficulty can be overcome with the appropriate transformations.

3.4 Transformations of SDR

Given that we want the representation of our data to be done in such a way in
an SDR, so that the various bits are rendered conceptually, we must consider
transformations of the representations that lead to this result. As mentioned before
this will be done through a learning process. We start with an initial SDR x and
create a new y as follows:

1. For each bit of the vector y we create a perception field that contains a number
of bits of x. This y-bit can only sense the bits that belong to this set.

2. Between each bit of the vector y we assume that there is a pairing with each of
the bits belonging to the field of perception. This connection may or may not be
active and this depends on the value of a parameter. If the value of this parameter
is greater than a given threshold, then we consider the connection active.

3. Each y bit adds the active bits from the perception field (taking into account only
those that have an active connection). If this sum is above a threshold, the bit is
activated.

4. To maintain a desired level of sparsity, if the bits in the vector y are more than we
want, then we get the most active, that is, those that have resulted from a larger
number of active bits of their perception fields.

5. For each bit that was activated, we increase the strength of the connections with
the active bits of the field of perception and, respectively, decrease the strength
of connections with the inactive bits.

The conceptual nature of the above transformation stems from the fact that a bit
in the vector y will only be activated when an appropriate combination of input bits
are enabled. Figure 4 shows the perception field and the active connections of an
output bit. This transformer is known as Spatial Pooler.

Let us see now how we can calculate the various parameters related to a Spatial
Pooler in order to achieve both the desired size of the representation and the sparsity.
Let us start with a representation that has length ni and sparsity si . That is, ni × si

Fig. 4 The perception field
and the active connections of
an output bit
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bits of the representation are active while all the rest are 0. Next, let us consider a bit
yj of the output and let d be the percentage of the bits of the input that belong to the
field of perception of yj . Our purpose is to calculate the threshold for the activation
of bit yj if we want the output to have no digits and sparsity so.

We select n = d ·ni bits from the input which has a mixture of K = si ·ni active
bits and ni − K = (1 − si) · ni zeros. The probability of sampling k active bits
follows the Hypergeometric distribution and its equal to:

p(x = k) =
(
K
k

)(
ni−K
n−k

)

(
ni
n

) (20)

where
(
K
k

)
is the number of ways that we can draw k active bits for the set of K total

active ones,
(
ni−K
n−k

)
is the number of ways that we can draw n− k inactive bits from

the set of ni −K total inactive ones and finally the denominator is the total number
of ways that we can draw n bits out of ni . Replacing the given values we have

p(x = k) =
(
si ·ni
k

)(
ni−si ·ni
d·ni−k

)

(
ni
d·ni
) (21)

Let now F(k) =∑k
j=0 p(x = k) be the cumulative distribution function. Then,

in order to have the desired sparsity so at the output, the probability of an output
bit to become active is so, which guide us to fix the threshold parameter θ such that
1 − F(θ) = so which means that the probability to sample more than θ active bits
from the input is so. In Fig. 5 the dependence of the output sparsity on the activation
threshold is shown.

It is obvious that output sparsity is very sensitive to the threshold. But this is not
a problem because we can always put the active bits of the output to compete with
each other and always select the desired number of active bits. This is a process that
also occurs in nature, as we know very well today that a significant percentage of
neurons act prohibitively for others, that is, when they are activated, they prevent
neighboring neurons from being activated. In this case, all we need is to select
a threshold number that is guaranteed to give at least as many active bits as we
need and then deactivate the unnecessary bits that have the least active bits in their
receptive field.

More details about Spatial Pooler (with pseudo-code include) can be found in
Hawking et al. [40], BIOLOGICAL AND MACHINE INTELLIGENCE.
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Fig. 5 The maximum threshold required to obtain a desired output sparsity. The size of the input
representation is 4000 and its sparsity is 0.04 which means that 160 bits are active. The receptive
field of each output bit is 20% of the input bits

Fig. 6 The architecture of the classifier-predictor system

3.5 Classification and Prediction Using SDR

Let us know see how by combining the aforementioned properties of SDRs, we can
create an efficient non-supervised classifier. Figure 6 shows the architecture of the
system.

The steps of the classification and prediction system are:

1. Initially, a vector x is transformed using a Spatial Pooler to a vector y.
2. The transformed vector y is compared with the stored vectors in the classifier. If

there is a match, then the output is the matched vector stored in the classifier. If
there is not a match, then the vector y is added in the classifier and becomes the
output.
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a. For each vector in the classifier there is a vector with weights, one for every
bit.

b. The weights of the bits that correspond to the active bits of the input are
increased.

c. Only the bits with the higher weights become active (in this way we can keep
the sparsity constant).

d. In order to include a “forgetting" mechanism, with each representation in the
classifier we keep a measure of its “duty cycle" which is just an exponential
moving average of the times this representation is matched. If the duty cycle
of a representation falls below a predefined threshold, the representation is
removed from the classifier.

3. The recorder is a 2-dimensional array in which rows represent the previous vector
produced by the classifier and the columns the present ones. The prediction is the
column with the higher entry in the row that corresponds to the present vector.

4. The entry in the recorder that corresponds to the previous vector and the present
one is increased. The whole row is normalized because it can be interpreted as a
probability distribution of the next vector given the present one.

The role of the classifier is to find the nearest neighbors of the present state.
A vector finds a match in the classifier only if a similar (nearest neighbor) vector
has appeared in the past. Moreover, in the classifier is stored only a representative
member of the class of vectors that give the same match and this member changes
in an adaptive manner with time in order to follow the conceptual changes of the
input class.

Let us see now how this implementation is related to the technique of the nearest
neighbor we mentioned before. Each time an SDR appears in the memory input,
there are two possibilities: in the first this SDR corresponds to an input that has not
reappeared, so the new vector enters the memory, while in the second case, there is
a pattern stored in the memory which fits quite well with the incoming SDR. In the
second case, a similarity is identified with one or more inputs that have appeared in
the past and the representative of the class of these snapshots that has appeared most
often is selected (this is the pattern that is stored in the memory). This results from
the mechanism by which the stored pattern is informed, in which the bits that appear
most often are ultimately those that are stored (here we must keep in mind that
passing the input through the Spatial Pooler, every bit of the representation acquires
a conceptual meaning). This process is perfectly compatible with the technique of
the nearest neighbor, since if a previous state that is close to the current one, has
occurred many times, this state will gain more weight as it will appear more times
in the sum that calculates the average. Of course, the difference here is that in this
implementation we do not take averages but only the winner of the comparison.
But in the end, the average exists because the pattern selected has resulted from an
averaging adaptive process as we explained earlier.

Once a pattern matching the input has been found, the prediction can be made
using the Recorder in two ways: we can see the probability distribution of the
patterns that have followed the current state and get this state that has the highest
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probability (Winner takes all) or to take as an output the probability distribution
itself. The first case can be useful if we use many such identical units in a boosted
chain of predictors while the second case is more suitable for stand-alone forecasting
systems that use only one unit.

4 Experimental Results

The aim of the experimental process is to compare the application of the modifica-
tion of classical nearest neighbors forecasting with that of sparse data representation.
The tests include:

• The modification of the classical method (NN)
• The application of the classical method but the vector of the features is an SDR

(NN-SDR)
• The application of the Classifier-Predictor system without the use of SP (NN-CP)
• The application of the Classifier-Predictor system with the use of SP (NN-CP-SP)

In addition, we will test one-dimensional and multidimensional input vectors
to study the effect of auxiliary features on conceptually compatible sparse data
representation using the Kronecker product.

For our empirical analysis we use two datasets, one financial and one economic.
The financial dataset is the monthly returns and volume changes of the exchange
traded fund (ETF) with ticker name “SPY” which tracks the temporal evolution of
the S&P500 index. For this dataset the target variable is the monthly return while
the auxiliary variable is the percent change in volume of transactions and the range
of observations is from 1993 to 2020. The economic dataset is the monthly US
unemployment rate along with two series of leading indicators. For this dataset the
target variable is the percent change in the unemployment rate and the auxiliary
variable is the percent change of one of the two leading indicators while the range
of observations is from 1959 to 2020.

The hyper-parameters of the applied methods are:

• r: The rolling window size (applies to NN and NN-SDR methods)
• p: The p-norm used for distances in the classical method
• k: The trajectory size k
• h: The forecast step
• a: The ration of nearest neighbors to keep
• steps: The sub-sampling step
• method: The method used for forecast. Can be center, forward, backward

or regress

The result of the simulations is summarized in Table 1.
The simulation was performed in a huge combination of hyper-parameters as

follows (total 2592 combinations):
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• roll: [60, 90, 120, 150]
• p: [0, 1, 2]
• k: [2, 4, 6, 8, 10, 12]
• a: [0.1, 0.5, 0.9]
• b: [0.1, 0.5, 0.9
• steps: 1
• type: [forward, center, backward, regress]

In Table 1 only the best combinations are shown. In each row, the best combination
of the first non-empty entry is shown. Summarizing some of the results:

• In almost all cases, the sparse data representation outperforms the classical
method. The reason for this is that the system is more noise-tolerant and does
not spend its resources and capabilities to learn the noise.

• The use of Spatial Pooler improves further the performance of the technique since
it codes basic relations between the input features.

• The inclusion of auxiliary variables outperforms in both techniques.
• Although the improvement of the classical technique using multivariate data is

marginal, this is not the case in the sparse representation. The reason is that, with
the use of the Kronecker product, an increase in the feature space dimension is
obtained and thus patterns can be more easily separated and identified.

5 Conclusions

According to Chen et al. [17], there are 4 main reasons that can justify the success
of the techniques based on the nearest neighbors:

1. The flexibility in choosing the metric relationship that determines the proximity
and consequently the characterization of neighbors

2. The low computational cost of these methods that makes it possible to apply them
to large problems

3. These methods are non-parametric
4. They are easy to evaluate because they provide complete data on the neighbors

on whom their conclusions are based.

The use of Sparse Data Representation contributes to both the flexibility and the
ability to handle large problems. Combined with the use of Spatial Pooler, further
increases the flexibility of the methods by significantly reducing the effect of noise
without the need of averaging techniques that dramatically reduce the variety of
information that can be extracted from the data. In addition, the computational cost
is even lower because all data can be represented in sparse arrays.

In addition, difficult-to-manage and configurable variables, which, however,
contribute significantly to the formation of a conceptual framework in which the
phenomenon we observe takes place, can be very easily integrated into the input
data. This is shown by the experiments, where the inclusions of such variables
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contribute decisively to the improvement of the predictions. In our estimation, the
significant improvement occurs exactly when the technique is enriched by this
conceptual coding of input characteristics achieved by sparse representation and
when it is combined with the effect that Spatial Pooler has on data pre-processing.
Many auxiliary variables, like the time or the season, can be easily integrated in the
presentation data and boost the performance of the method.

Finally, it is almost certain that data representation can significantly determine
the performance of a machine learning technique. Under this prism, the great
flexibility and simplicity of sparse representation needs to be further explored in
relation to well-tried techniques and algorithms.
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0 <

∫ ∞

0
f 2(x)dx <∞ and 0 <

∫ ∞

0
g2(y)dy <∞,

then we have the following Hilbert integral inequality with the best possible constant
factor π (see [1]):

∫ ∞

0

∫ ∞

0

f (x)g(y)

x + y
dxdy < π

(∫ ∞

0
f 2(x)dx

∫ ∞

0
g2(y)dy

) 1
2

, (1)

By the use of weight functions, several extensions of (1) were established in [2]
and [3]. Some Hilbert-type and Hardy-type inequalities were introduced and proved
in [4–9]. In 2017, Hong [10] also considered an equivalent condition between a
Hilbert-type inequality with homogenous kernel and a few parameters. Some other
kinds of Hilbert-type as well as Hardy-type inequalities were proved in [11–19, 30–
36]. Most of these inequalities are built on the first quadrant of the whole plane.

In 2007, Yang [20] established the following Hilbert-type integral inequality in
the whole plane:

∫ ∞

−∞

∫ ∞

−∞
f (x)g(y)

(1+ ex+y)λ
dxdy

< B

(
λ

2
,
λ

2

)(∫ ∞

−∞
e−λxf 2(x)dx

∫ ∞

−∞
e−λyg2(y)dy

) 1
2

, (2)

with the best possible constant factor B(λ2 ,
λ
2 ) (λ > 0, B(u, v) stands for the

beta function) (see [21]). He et al. [22–35] also deduced some Hilbert-type integral
inequalities in the whole plane.

In this chapter, by the use of weight functions, a few equivalent conditions
of two kinds of the Hardy-type integral inequalities with multi-parameters in the
whole plane are obtained. The constant factors related to the extended Riemann zeta
function are proved to be the best possible. In the form of applications, we deduce
a few equivalent conditions of two kinds of Hardy-type integral inequalities in the
whole plane and some particular cases.

2 An Example and Two Lemmas

Example 1 We set

h(u) := (min{|u|, 1})1−λ
|u− 1| | ln |u||β (u ∈ R).

(i) For β > 0, σ + μ = λ,μ < 1, we obtain that
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k(1)(σ ) :=
∫ 1

−1
h(u)|u|σ−1du =

∫ 1

0
(h(−u)+ h(u))uσ−1du

=
∫ 1

0
(min{u, 1})1−λ(− ln u)βuσ−1

(
1

u+ 1
+ 1

|u− 1|
)

du

=
∫ 1

0
(− ln u)β

(
1

u+ 1
+ 1

1− u

)

u−μdu

= 2
∫ 1

0
(− ln u)β

u−μ

1− u2
du = 2

∫ 1

0
(− ln u)β

∞∑

k=0

u2k−μdu.

By the Lebesgue term by term integration theorem (cf. [38]), we derive that

k(1)(σ ) = 2
∞∑

k=0

∫ 1

0
(− ln u)βu2k−μdu

= 2
∞∑

k=0

1

(2k − μ+ 1)β+1

∫ ∞

0
vβe−vdv

= Γ (β + 1)

2β
ζ

(

β + 1,
1− μ

2

)

∈ R+, (3)

where

ζ(s, a) =
∞∑

k=0

1

(k + a)s
(Res > 1; a > 0)

is the extended Riemann-zeta function (where ζ(s, 1)= ζ(s) :=∑∞
k=1

1
ks
(Res>1)

is the Riemann-zeta function) (cf. [21]).
In particular, for β > 0, σ = λ+ 1, μ = −1 (< 1), we have

k(1)(λ+ 1) =
∫ 1

−1

(min{|u|, 1})1−λ
|u− 1| | ln |u||β |u|λdu

= Γ (β + 1)

2β
ζ(β + 1) ∈ R+.

(ii) For β > 0, σ + μ = λ, σ < 1 , we also obtain that

k(2)(σ ) :=
∫

{u;|u|≥1}
h(u)|u|σ−1du =

∫ ∞

1
(h(−u)+ h(u))|u|σ−1du

=
∫ 1

−1

(min{|v|, 1})1−λ
|v − 1| | ln |v||β |v|μ−1dv
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= Γ (β + 1)

2β
ζ

(

β + 1,
1− σ

2

)

= k(1)(μ) ∈ R+, (4)

k(2)(−1) = Γ (β + 1)

2β
ζ(β + 1).

Remark 1 It is obvious that for σ + μ = λ, k(1)(σ ) <∞ if and only if μ < 1 (or
σ > λ − 1) with β > 0; k(2)(σ ) < ∞ if and only if σ < 1 (or μ > λ − 1) with
β > 0.

In the sequel, we shall always assume that p > 1, 1
p
+ 1

q
= 1, σ + μ = λ.

Lemma 1 If σ1 ∈ R, and there exists a constant M1 such that for any f (x) ≥ 0
and g(y) ≥ 0 in R the following inequality

∫ ∞

−∞
g(y)

[∫ 1
|y|

− 1
|y|

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βf (x)dx

]

dy

≤ M1

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ1)−1gq(y)dy

] 1
q

(5)

holds true, then we have σ1 = σ > λ− 1 with β > 0 and k(1)(σ ) ≤ M1.

Proof If σ1 > σ, then for

n ≥ 1

σ1 − σ
(n ∈ N),

we set

fn(x) :=
{
|x|σ+ 1

pn
−1
, 0 < |x| ≤ 1

0, |x| > 1
, gn(y) :=

{
0, 0 < |y| < 1

|y|σ1− 1
qn
−1
, y ≥ 1

,

and derive that

J1 :=
[∫ ∞

−∞
|x|p(1−σ)−1f

p
n (x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ1)−1g

q
n(y)dy

] 1
q

=
(

2
∫ 1

0
x

1
n
−1dx

) 1
p
(

2
∫ ∞

1
y−

1
n
−1dy

) 1
q = 2n.

We obtain

I1 :=
∫ ∞

−∞
gn(y)

[∫ 1
|y|

− 1
|y|

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βfn(x)dx

]

dy
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=
∫ −1

−∞

[∫ −1
y

1
y

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||β |x|σ+ 1

pn
−1
dx

]

(−y)σ1− 1
qn
−1
dy

+
∫ ∞

1

[∫ 1
y

−1
y

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||β |x|σ+ 1

pn
−1
dx

]

y
σ1− 1

qn
−1
dy

=
∫ ∞

1

[∫ 1
y

−1
y

(h(−xy)+ h(xy))|x|σ+ 1
pn
−1
dx

]

y
σ1− 1

qn
−1
dy

= 2
∫ ∞

1

[∫ 1

0
(h(−u)+ h(u))u

(σ+ 1
pn
)−1

du

]

y(σ1−σ)− 1
n
−1dy, (6)

and then by (5), it follows that

2k(1)
(

σ + 1

pn

)∫ ∞

1
y(σ1−σ)− 1

n
−1dy = I1 ≤ M1J1 = 2M1n. (7)

Since (σ1 − σ)− 1
n
≥ 0, it follows that

∫ ∞

1
y(σ1−σ)− 1

n
−1dy = ∞.

By (7), for

k(1)
(

σ + 1

pn

)

> 0,

we have

∞ ≤ 2M1n <∞,

which is a contradiction.
If σ1 < σ, then for

n ≥ 1

σ − σ1
(n ∈ N),

we set

f̃n(x) :=
{

0, 0 < |x| < 1

|x|σ− 1
pn
−1
, |x| ≥ 1

, g̃n(y) :=
{
|y|σ1+ 1

qn
−1
, 0 < |y| ≤ 1

0, |y| > 1
,

and get
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J̃1 :=
[∫ ∞

−∞
|x|p(1−σ)−1f̃

p
n (x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ1)−1g̃

q
n(y)dy

] 1
q

=
(

2
∫ ∞

1
x−

1
n
−1dx

) 1
p
(

2
∫ 1

0
y

1
n
−1dy

) 1
q

= 2n.

We obtain

Ĩ1 :=
∫ ∞

−∞
f̃n(x)

[∫ 1
|x|

− 1
|x|

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||β g̃n(y)dy

]

dx

=
∫ −1

−∞

[∫ −1
x

1
x

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||β |y|σ1+ 1

qn
−1
dy

]

(−x)σ− 1
pn
−1
dx

+
∫ ∞

1

[∫ 1
x

− 1
x

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||β |y|σ1+ 1

qn
−1
dy

]

x
σ− 1

pn
−1
dx

=
∫ ∞

1

[∫ 1
x

− 1
x

(h(−xy)+ h(xy))|y|σ1+ 1
qn
−1
dy

]

x
σ− 1

pn
−1
dx

= 2
∫ ∞

1

[∫ 1

0
(h(−u)+ h(u))u

σ1+ 1
qn
−1
du

]

x(σ−σ1)− 1
n
−1dx, (8)

and then by the Fubini theorem (cf. [38]) and (5), it follows that

2k(1)
(

σ1 + 1

qn

)∫ ∞

1
x(σ−σ1)− 1

n
−1dx

= Ĩ1 =
∫ ∞

−∞
g̃n(y)

(∫ 1
|y|

−1
|y|

h(xy)f̃n(x)dx

)

dy ≤ M1J̃1 = 2M1n. (9)

Since (σ − σ1)− 1
n
≥ 0, it follows that

∫ ∞

1
x(σ−σ1)− 1

n
−1dx = ∞.

By (9), for

k(1)
(

σ1 + 1

qn

)

> 0,

we deduce that

∞ ≤ 2M1n <∞,
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which is a contradiction.
Hence, we conclude that σ1 = σ. For σ1 = σ, we reduce (9) as follows:

k(1)
(

σ1 + 1

qn

)

=
∫ 1

0
(h(−u)+ h(u))u

σ1+ 1
qn
−1
du ≤ M1.

Since {(h(−u) + h(u))u
σ+ 1

qn
−1}∞n=1 is increasing in (0, 1), by Levi’s theorem (cf.

[38]), we obtain that

k(1)(σ ) =
∫ 1

0
lim
n→∞(h(−u)+ h(u))u

σ+ 1
qn
−1
du

= lim
n→∞

∫ 1

0
(h(−u)+ h(u))u

σ+ 1
qn
−1
du ≤ M1 <∞.

By Remark 1, it follows that σ > λ− 1 with β > 0.
This completes the proof of the lemma. �

Lemma 2 If σ1 ∈ R, and there exists a constant M2 such that for any f (x) ≥ 0
and g(y) ≥ 0 in R the following inequality

∫ ∞

−∞
g(y)

[∫

{x;|x|≥ 1
|y| }

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βf (x)dx

]

dy

≤ M2

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ1)−1gq(y)dy

] 1
q

(10)

holds true, then we have σ1 = σ < 1 with β > 0 and k(2)(σ ) ≤ M2.

Proof If σ1 < σ, then for n ≥ 1
σ−σ1

(n ∈ N), we set the functions f̃n(x) and g̃n(y)
as in Lemma 1 and obtain that

J̃1 =
[∫ ∞

−∞
|x|p(1−σ)−1f̃

p
n (x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ1)−1g̃

q
n(y)dy

] 1
q = 2n.

We get

Ĩ2 :=
∫ ∞

−∞
g̃n(y)

[∫

{x;|x|≥ 1
|y| }

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βf̃n(x)dx

]

dy

=
∫ 0

−1

[∫

{x;|x|≥−1
y
}
(min{|xy|, 1})1−λ

|xy − 1| | ln |xy||β |x|σ− 1
pn
−1
dx

]

(−y)σ1+ 1
qn
−1
dy
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+
∫ 1

0

[∫

{x;|x|≥ 1
y
}
(min{|xy|, 1})1−λ

|xy − 1| | ln |xy||β |x|σ− 1
pn
−1
dx

]

y
σ1+ 1

qn
−1
dy

=
∫ 1

0

[∫

{x;|x|≥ 1
y
}
(h(−xy)+ h(xy))|x|σ− 1

pn
−1
dx

]

y
σ1+ 1

qn
−1
dy

= 2
∫ 1

0

[∫ ∞

1
(h(−u)+ h(u))u

σ− 1
pn
−1
du

]

y(σ1−σ)+ 1
n
−1dy,

and thus by (10), we have

2k(2)
(

σ − 1

pn

)∫ 1

0
y(σ1−σ)+ 1

n
−1dy = Ĩ2 ≤ M2J̃1 = 2M2n. (11)

Since (σ1 − σ)+ 1
n
≤ 0, it follows that

∫ 1

0
y(σ1−σ)+ 1

n
−1dy = ∞.

By (11), for

k(2)
(

σ − 1

pn

)

> 0,

we have

∞ ≤ 2M2n <∞,

which is a contradiction.
If σ1 > σ, then for n ≥ 1

σ1−σ (n ∈ N), we set the functions fn(x) and gn(y) as
in Lemma 1 and deduce that

J1 =
[∫ ∞

−∞
|x|p(1−σ)−1f

p
n (x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ1)−1g

q
n(y)dy

] 1
q = 2n.

We obtain

I2 :=
∫ ∞

−∞
fn(x)

[∫

{y;|y|≥ 1
|x| }

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βgn(y)dy

]

dx

=
∫ 0

−1

[∫

{y;|y|≥−1
x
}
(min{|xy|, 1})1−λ

|xy − 1| | ln |xy||β |y|σ1− 1
qn
−1
dy

]

(−x)σ+ 1
pn
−1
dx
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+
∫ 1

0

[∫

{y;|y|≥ 1
x
}
(min{|xy|, 1})1−λ

|xy − 1| | ln |xy||β |y|σ1− 1
qn
−1
dy

]

x
σ+ 1

pn
−1
dx

=
∫ 1

0

[∫

{y;|y|≥ 1
x
}
(h(−xy)+ h(xy))|y|σ1− 1

qn
−1
dy

]

x
σ+ 1

pn
−1
dx

=
∫

{u;|u|≥1}
(h(−u)+ h(u))|u|(σ1− 1

qn
)−1

du

∫ 1

0
x(σ−σ1)+ 1

n
−1dx,

and then by the Fubini theorem (cf. [38]) and (8), we have

2k2

(

σ1 − 1

qn

)∫ 1

0
x(σ−σ1)+ 1

n
−1dx

= I2 =
∫ ∞

0
gn(y)

(∫

{x;|x|≥ 1
|y| }

h(xy)fn(x)dx

)

dy ≤ M2J1 = 2M2n. (12)

Since (σ − σ1)+ 1
n
≤ 0, it follows that

∫ 1

0
x(σ−σ1)+ 1

n
−1dx = ∞.

By (12), for

k(2)
(

σ1 − 1

qn

)

> 0,

we obtain that

∞ ≤ 2M2n <∞,

which is a contradiction.
Hence, we conclude that σ1 = σ. For σ1 = σ, we reduce (12) as follows:

k(2)
(

σ − 1

qn

)

=
∫ ∞

1
(h(−u)+ h(u))u

σ− 1
qn
−1
du ≤ M2. (13)

Since {(h(−u)+ h(u))u
σ− 1

qn
−1}∞n=1 is increasing in [1,∞), by Levi’s theorem (cf.

[38]), we obtain that

k(2)(σ ) =
∫ ∞

1
lim
n→∞(h(−u)+ h(u))u

σ− 1
qn
−1
du

= lim
n→∞

∫ ∞

1
(h(−u)+ h(u))u

σ− 1
qn
−1
du ≤ M2 <∞.
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By Remark 1, we have σ < 1 with β > 0.
This completes the proof of the lemma. �

3 Main Results and Particular Cases

Theorem 1 If σ1 ∈ R, then the following conditions are equivalent:

(i) There exists a constantM1, such that for any f (x) ≥ 0, satisfying

0 <

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx <∞,

we have the following Hardy-type integral inequality of the first kind, with the
nonhomogeneous kernel:

J :=
{∫ ∞

−∞
|y|pσ1−1

[∫ 1
|y|

−1
|y|

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βf (x)dx

]p

dy

} 1
p

< M1

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p

. (14)

(ii) There exists a constantM1, such that for any f (x), g(y) ≥ 0,

0 <

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx <∞,

and

0 <

∫ ∞

−∞
|y|q(1−σ1)−1gq(y)dy <∞,

we have the following inequality:

I :=
∫ ∞

−∞
g(y)

[∫ 1
|y|

−1
|y|

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βf (x)dx

]

dy

< M1

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ1)−1gq(y)dy

] 1
q

. (15)

(iii) σ1 = σ > λ− 1 and β > 0.
If Condition (iii) is satisfied, then the constant factor M1 = k(1)(σ )(∈ R+)
in (14) and (15) (for σ1 = σ ) is the best possible.
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Proof (i)⇒ (ii). By Hölder’s inequality (cf. [37]), we have

I =
∫ ∞

−∞

(

|y|σ1− 1
p

∫ 1
|y|

−1
|y|

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βf (x)dx

)
(
|y| 1

p
−σ1g(y)

)
dy

≤ J

[∫ ∞

−∞
|y|q(1−σ1)−1gq(y)dy

] 1
q

. (16)

Then by (14), we deduce (15).
(ii)⇒ (iii). By Lemma 1, we have σ1 = σ > λ− 1 with β > 0.
(iii)⇒ (i). We obtain the following weight function:

For y �= 0,

ω1(σ, y) := |y|σ
∫ 1

|y|
−1
|y|

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||β |x|σ−1dx

= |y|σ
∫ 0

−1
|y|
h(xy)(−x)σ−1dx + |y|σ

∫ 1
|y|

0
h(xy)xσ−1dx

= |y|σ
∫ 1

|y|

0
h(−xy)xσ−1dx + |y|σ

∫ 1
|y|

0
h(xy)xσ−1dx

= |y|σ
∫ 1

|y|

0
(h(−x|y|)+ h(x|y|)xσ−1dx

=
∫ 1

0
(h(−u)+ h(u))uσ−1du = k(1)(σ ). (17)

Then by Hölder’s inequality with weight and (17), we obtain that

[∫ 1
|y|

−1
|y|

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βf (x)dx

]p

=
{∫ 1

|y|
−1
|y|

h(xy)

[
|y|(σ−1)/p

|x|(σ−1)/q
f (x)

][
|x|(σ−1)/q

|y|(σ−1)/p

]

dx

}p

≤
∫ 1

|y|
−1
|y|

h(xy)
|y|σ−1f p(x)

|x|(σ−1)p/q
dx

[∫ 1
|y|

−1
|y|

h(xy)
|x|σ−1

|y|(σ−1)q/p
dx

]p−1

=
∫ 1

|y|
−1
|y|

h(xy)
|y|σ−1

|x|(σ−1)p/q
f p(x)dx ·

[
ω1(σ, y)|y|q(1−σ)−1

]p−1
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= (k(1)(σ ))p−1|y|−pσ+1
∫ 1

|y|
−1
|y|

h(xy)
|y|σ−1

|x|(σ−1)p/q
f p(x)dx. (18)

If (18) assumes the form of equality for a y ∈ R\{0}, then (cf. [37]) there exist
constants A and B, such that they are not all zero, and

A
|y|σ−1

|x|(σ−1)p/q
f p(x) = B

|x|σ−1

|y|(σ−1)q/p
a.e. in R.

Let us suppose that A �= 0 (otherwise B = A = 0). It follows that

|x|p(1−σ)−1f p(x) = |y|q(1−σ) B

A|x| a.e. in R,

which contradicts the fact that

0 <

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx <∞.

Hence, (18) assumes the form of strict inequality.
For σ1 = σ > λ− 1 with β > 0, by Remark 1, we have k(1)(σ ) ∈ R+. In view

of the above results and Fubini’s theorem (cf. [38]), we deduce that

J < (k(1)(σ ))
1
q

{∫ ∞

−∞

[∫ 1
|y|

−1
|y|

H(xy)
|y|σ−1

|x|(σ−1)p/q
f p(x)dx

]

dy

} 1
p

= (k(1)(σ ))
1
q

{∫ ∞

−∞

[∫ 1
|x|

−1
|x|

H(xy)
|y|σ−1

|x|(σ−1)(p−1)
dy

]

f p(x)dx

} 1
p

= (k(1)(σ ))
1
q

[∫ ∞

−∞
ω1(σ, x)|x|p(1−σ)−1f p(x)dx

] 1
p

= k(1)(σ )

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p

.

Setting M1 ≥ k(1)(σ ), we have

J < k(1)(σ )

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p ≤ M1

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p

,

namely, (14) follows.
Therefore, conditions (i), (ii) and (iii) are equivalent.
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When Condition (iii) is satisfied, if there exists a constant M1 ≤ k(1)(σ ), such
that (15) is valid, then by Lemma 1, we still have k(1)(σ ) ≤ M1. It follows that
the constant factor M1 = k(1)(σ ) in (15) is the best possible. The constant factor
M1 = k(1)(σ ) in (14) is also the best possible. Otherwise, by (16) (for σ1 = σ ),
we would conclude that the constant factor M1 = k(1)(σ ) in (15) is not the best
possible.

This completes the proof of the theorem. �
In particular, for σ = σ1 = 1

p
in Theorem 1, we have:

Corollary 1 The following conditions are equivalent:

(i) There exists a constantM1, such that for any f (x) ≥ 0, satisfying

0 <

∫ ∞

−∞
|x|p−2f p(x)dx <∞,

we have the following inequality:

{∫ ∞

−∞

[∫ 1
|y|

−1
|y|

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βf (x)dx

]p

dy

} 1
p

< M1

(∫ ∞

−∞
|x|p−2f p(x)dx

) 1
p

. (19)

(ii) There exists a constantM1, such that for any f (x), g(y) ≥ 0,

0 <

∫ ∞

−∞
|x|p−2f p(x)dx <∞,

and

0 <

∫ ∞

−∞
gq(y)dy <∞,

we have the following inequality:

∫ ∞

−∞
g(y)

[∫ 1
|y|

−1
|y|

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βf (x)dx

]

dy

< M1

(∫ ∞

−∞
|x|p−2f p(x)dx

) 1
p
(∫ ∞

−∞
gq(y)dy

) 1
q

. (20)

(iii) λ < 1
p
+ 1 and β > 0.
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If Condition (iii) is satisfied, then the constant factor M1 = k(1)( 1
p
) (∈ R+)

in (19) and (20) is the best possible.

Setting

y = 1

Y
, G(Y ) = g

(
1

Y

)
1

Y 2

in Theorem 1, and then replacing Y by y, we have

Corollary 2 If σ1 ∈ R, then the following conditions are equivalent:

(i) There exists a constantM1, such that for any f (x) ≥ 0, satisfying

0 <

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx <∞,

we have the following inequality:

{∫ ∞

−∞
|y|−pσ1−1

[∫ |y|

−|y|
(min{|x/y|, 1})1−λ

|x/y − 1| | ln |x/y||βf (x)dx
]p

dy

} 1
p

< M1

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p

. (21)

(ii) There exists a constantM1, such that for any f (x),G(y) ≥ 0,

0 <

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx <∞,

and

0 <

∫ ∞

−∞
|y|q(1+σ1)−1Gq(y)dy <∞,

we have the following inequality:

∫ ∞

−∞
G(y)

[∫ |y|

−|y|
(min{|x/y|, 1})1−λ

|x/y − 1| | ln |x/y||βf (x)dx
]

dy

< M1

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1+σ1)−1Gq(y)dy

] 1
q

. (22)

(iii) σ1 = σ > μ− 1 and β > 0.
If Condition (iii) holds, then the constant factor M1 = k(1)(σ ) (∈ R+) in (21)
and (22) (for σ1 = σ ) is the best possible.
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For g(y) = yλG(y) and μ1 = λ− σ1 in Corollary 2, we have

Corollary 3 If μ1 ∈ R, then the following conditions are equivalent:

(i) There exists a constantM1, such that for any f (x) ≥ 0, satisfying

0 <

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx <∞,

we have the following Hardy-type integral inequality of the first kind with the
homogeneous kernel:

{∫ ∞

−∞
ypμ1−1

[∫ |y|

−|y|
(min{|x|, |y|})1−λ

|x − y| | ln |x
y
||βf (x)dx

]p

dy

} 1
p

< M1

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p

. (23)

(ii) There exists a constantM1, such that for any f (x), g(y) ≥ 0,

0 <

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx <∞,

and

0 <

∫ ∞

−∞
|y|q(1−μ1)−1gq(y)dy <∞,

we have the following inequality:

∫ ∞

−∞
g(y)

[∫ |y|

−|y|
(min{|x|, |y|})1−λ

|x − y| | ln |x
y
||βf (x)dx

]

dy

< M1

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−μ1)−1gq(y)dy

] 1
q ; (24)

(iii) μ1 = μ < 1 and β > 0.
If Condition (iii) holds, then the constant factor M1 = k(1)(σ ) (∈ R+) in (23)
and (24) (for μ1 = μ) is the best possible.

In particular, for λ = 1, σ = 1
q
, μ = 1

p
< 1 in Corollary 3, we have

Corollary 4 The following conditions are equivalent:

(i) There exists a constantM1, such that for any f (x) ≥ 0, satisfying
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0 <

∫ ∞

−∞
f p(x)dx <∞,

we have the following inequality:

{∫ ∞

−∞

[∫ |y|

−|y|
| ln |x/y||β
|x − y| f (x)dx

]p

dy

} 1
p

< M1

(∫ ∞

−∞
f p(x)dx

) 1
p

.

(25)
(ii) There exists a constantM1, such that for any f (x), g(y) ≥ 0,

0 <

∫ ∞

−∞
f p(x)dx <∞,

and

0 <

∫ ∞

−∞
gq(y)dy <∞,

we have the following inequality:

∫ ∞

−∞
g(y)

[∫ |y|

−|y|
| ln |x/y||β
|x − y| f (x)dx

]

dy

< M1

(∫ ∞

−∞
f p(x)dx

) 1
p
(∫ ∞

−∞
gq(y)dy

) 1
q

. (26)

(iii) β > 0.
If Condition (iii) is satisfied, then the constant factor M1 = k(1)( 1

q
) (∈ R+)

in (25) and (26) is the best possible.

Remark 2

(i) For σ1 = σ = λ + 1 in (14), we have the following inequality with the best
possible constant factor Γ (β+1)

2β
ζ(β + 1) (β > 0) :

{∫ ∞

−∞
|y|p(λ+1)−1

[∫ 1
|y|

−1
|y|

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βf (x)dx

]p

dy

} 1
p

<
Γ (β + 1)

2β
ζ(β + 1)

[∫ ∞

−∞
|x|−pλ−1f p(x)dx

] 1
p

. (27)

(ii) For μ1 = μ = −1 in (23), we have the following inequality with the best
possible constant factor Γ (β+1)

2β
ζ(β + 1) (β > 0) :



On Two Kinds of the Hardy-Type Integral Inequalities in the Whole Plane 1041

{∫ ∞

−∞
y−p−1

[∫ |y|

−|y|
(min{|x|, |y|})1−λ

|x − y| | ln |x
y
||βf (x)dx

]p

dy

} 1
p

<
Γ (β + 1)

2β
ζ(β + 1)

[∫ ∞

−∞
|x|−pλ−1f p(x)dx

] 1
p

. (28)

(iii) For β = 1 in (25), we have the following inequality with the best possible
constant factor 1

2ζ(2,
1

2q ):

{∫ ∞

−∞

[∫ |y|

−|y|
| ln |x/y||
|x − y| f (x)dx

]p

dy

} 1
p

<
1

2
ζ

(

2,
1

2q

)(∫ ∞

−∞
f p(x)dx

) 1
p

. (29)

Similarly, in view of Lemma 2, we obtain the following weight function:
For y �= 0,

ω2(σ, y) := |y|σ
∫

{x;|x|≥ 1
|y| }

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||β |x|σ−1dx

=
∫ ∞

1
(H(−u)+H(u))uσ−1du = k(2)(σ ).

Similarly, we also have:

Theorem 2 If σ1 ∈ R, then the following conditions are equivalent:

(i) There exists a constantM2, such that for any f (x) ≥ 0, satisfying

0 <

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx <∞,

we have the following Hardy-type integral inequality of the second kind with
the nonhomogeneous kernel:

{∫ ∞

−∞
ypσ1−1

[∫

{x;|x|≥ 1
|y| }

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βf (x)dx

]p

dy

} 1
p

< M2

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p

. (30)

(ii) There exists a constantM2, such that for any f (x), g(y) ≥ 0,

0 <

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx <∞,
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and

0 <

∫ ∞

−∞
|y|q(1−σ1)−1gq(y)dy <∞,

we have the following inequality:

∫ ∞

−∞
g(y)

[∫

{x;|x|≥ 1
|y| }

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βf (x)dx

]

dy

< M2

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ1)−1gq(y)dy

] 1
q

. (31)

(iii) σ1 = σ < 1 and β > 0.
If Condition (iii) is satisfied, then the constant factorM2 = k(2)(σ ) (∈ R+)

in (30) and (31) (for σ1 = σ ) is the best possible.

In particular, for σ = σ1 = 1
p
< 1 in Theorem 2, we have the following:

Corollary 5 The following conditions are equivalent:

(i) There exists a constantM2, such that for any f (x) ≥ 0, satisfying

0 <

∫ ∞

−∞
|x|p−2f p(x)dx <∞,

we have the following inequality:

{∫ ∞

−∞

[∫

{x;|x|≥ 1
|y| }

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βf (x)dx

]p

dy

} 1
p

< M2

(∫ ∞

−∞
|x|p−2f p(x)dx

) 1
p

. (32)

(ii) There exists a constantM2, such that for any f (x), g(y) ≥ 0,

0 <

∫ ∞

−∞
|x|p−2f p(x)dx <∞,

and

0 <

∫ ∞

−∞
gq(y)dy <∞,

we have the following inequality:
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∫ ∞

−∞
g(y)

[∫

{x;|x|≥ 1
|y| }

(min{|xy|, 1})1−λ
|xy − 1| | ln |xy||βf (x)dx

]

dy

< M2

(∫ ∞

−∞
|x|p−2f p(x)dx

) 1
p
(∫ ∞

−∞
gq(y)dy

) 1
q

. (33)

(iii) β > 0.
If Condition (iii) is satisfied, then the constant factorM2 = k(2)( 1

p
) (∈ R+)

in (32) and (33) is the best possible.

Setting

y = 1

Y
, G(Y ) = g

(
1

Y

)
1

Y 2

in Theorem 2, and then replacing Y by y, we have:

Corollary 6 If σ1 ∈ R, then the following conditions are equivalent:

(i) There exists a constantM2, such that for any f (x) ≥ 0, satisfying

0 <

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx <∞,

we have the following inequality:

{∫ ∞

−∞
y−pσ1−1

[∫

{x;|x|≥|y|}
(min{|x/y|, 1})1−λ

|x/y − 1| | ln |x/y||βf (x)dx
]p

dy

} 1
p

< M2

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p

. (34)

(ii) There exists a constantM2, such that for any f (x),G(y) ≥ 0,

0 <

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx <∞,

and

0 <

∫ ∞

−∞
|y|q(1+σ1)−1Gq(y)dy <∞,

we have the following inequality:

∫ ∞

−∞
G(y)

[∫

{x;|x|≥|y|}
(min{|x/y|, 1})1−λ

|x/y − 1| | ln |x/y||βf (x)dx
]

dy
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< M2

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1+σ1)−1Gq(y)dy

] 1
q

. (35)

(iii) σ1 = σ < 1 and β > 0.
If Condition (iii) is satisfied, then the constant factor M2 = k(2)(σ ) (∈ R+)

in (34) and (35) (for σ1 = σ ) is the best possible.

For g(y) = yλG(y) and μ1 = λ− σ1 in Corollary 6, we have:

Corollary 7 If μ1 ∈ R, then the following conditions are equivalent:

(i) There exists a constantM2, such that for any f (x) ≥ 0, satisfying

0 <

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx <∞,

we have the following inequality:

{∫ ∞

−∞
ypμ1−1

[∫

{x;|x|≥|y|}
(min{|x|, |y|})1−λ

|x − y| | ln |x/y||βf (x)dx
]p

dy

} 1
p

< M2

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p

. (36)

(ii) There exists a constantM2, such that for any f (x), g(y) ≥ 0,

0 <

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx <∞,

and

0 <

∫ ∞

−∞
|y|q(1−μ1)−1gq(y)dy <∞,

we have the following inequality:

∫ ∞

−∞
g(y)

[∫

{x;|x|≥|y|}
(min{|x|, |y|})1−λ

|x − y| | ln |x/y||βf (x)dx
]

dy

< M2

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−μ1)−1gq(y)dy

] 1
q

. (37)

(iii) μ1 = μ > λ− 1 and β > 0.
If Condition (iii) holds true, then the constant factor M2 = k(2)(σ ) (∈ R+)

in (36) and (37) (for μ1 = μ) is the best possible.
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In particular, for λ = 1, σ = 1
q
(< 1), μ = 1

p
in Corollary 7, we have:

Corollary 8 The following conditions are equivalent:

(i) There exists a constantM2, such that for any f (x) ≥ 0, satisfying

0 <

∫ ∞

−∞
f p(x)dx <∞,

we have the following inequality:

{∫ ∞

−∞

[∫

{x;|x|≥|y|}
| ln |x/y||β
|x − y| f (x)dx

]p

dy

} 1
p

< M2

(∫ ∞

−∞
f p(x)dx

) 1
p

.

(38)
(ii) There exists a constantM2, such that for any f (x), g(y) ≥ 0,

0 <

∫ ∞

−∞
f p(x)dx <∞,

and

0 <

∫ ∞

−∞
gq(y)dy <∞,

we have the following inequality:

∫ ∞

−∞
g(y)

[∫

{x;|x|≥|y|}
| ln |x/y||β
|x − y| f (x)dx

]

dy

< M2

(∫ ∞

−∞
f p(x)dx

) 1
p
(∫ ∞

−∞
gq(y)dy

) 1
q

. (39)

(iii) β > 0.
If Condition (iii) holds true, then the constant factor M2 = k(2)( 1

q
) (∈ R+)

in (38) and (39) is the best possible.

Remark 3

(i) For σ1 = σ = −1 in (30), we have the following inequality with the best
possible constant factor Γ (β+1)

2β
ζ(β + 1) (β > 0):

{∫ ∞

−∞
y−p−1

[∫

{x;|x|≥ 1
|y| }

(min{|x/y|, 1})1−λ
|x/y − 1| | ln |x/y||βf (x)dx

]p

dy

} 1
p
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<
Γ (β + 1)

2β
ζ(β + 1)

[∫ ∞

−∞
|x|2p−1f p(x)dx

] 1
p

. (40)

(ii) For μ1 = μ = λ + 1 in (36), we have the following inequality with the best
possible constant factor Γ (β+1)

2β
ζ(β + 1) (β > 0):

{∫ ∞

−∞
yp(λ+1)−1

[∫

{x;|x|≥|y|}
(min{|x|, |y|})1−λ

|x − y| | ln |x/y||βf (x)dx
]p

dy

} 1
p

<
Γ (β + 1)

2β
ζ(β + 1)

[∫ ∞

−∞
|x|2p−1f p(x)dx

] 1
p

. (41)

(iii) For β = 1 in (38), we have the following inequality with the best possible
constant factor 1

2ζ(2,
1

2p ):

{∫ ∞

−∞

[∫

{x;|x|≥|y|}
| ln |x/y||
|x − y| f (x)dx

]p
dy

} 1
p

<
1

2
ζ

(

2,
1

2p

)(∫ ∞

−∞
f p(x)dx

) 1
p

. (42)

4 Conclusions

In this chapter, by the use of weight functions, a few equivalent conditions of
two kinds of Hardy-type integral inequalities with multi-parameters in the whole
plane are obtained in Theorems 1 and 2. The constant factors related to the
extended Riemann-zeta function are proved to be the best possible. In the form
of applications, a few equivalent conditions of two kinds of Hardy-type integral
inequalities in the whole plane are deduced in Corollaries 3 and 7. We also consider
some particular cases in Corollaries 1, 4, 5, 8, Remarks 2 and 3. In our investigation,
methods of real analysis are essential and play a key role for the proof of the
equivalent inequalities with the corresponding best possible constant factors. The
lemmas and theorems provide an extensive account of these types of inequalities.
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Product Formulae for Non-Autonomous
Gibbs Semigroups

Valentin A. Zagrebnov

Abstract We consider linear evolution corresponding to non-autonomous Gibbs
semigroup on a separable Hilbert space H. It is shown that evolution family
{U(t, s)}0≤s≤t≤T solving the non-autonomous Cauchy problem can be approxi-
mated in the trace-norm topology by product formulae. The rate of convergence
of product formulae approximants {Un(t, s)}{0≤s<t≤T , n≥1} to the solution operator
{U(t, s)}{0≤s<t≤T } is also established.

1 Introduction and Main Result

We study linear dynamics of a non-autonomous perturbation of Gibbs semigroups.
Recall that they are strongly continuous semigroups (that is, C0-semigroups) on a
separable Hilbert space H with values in the trace-class operators C1(H), [20].

The aim of this note is to prove the convergence of the product formulae approx-
imants to the corresponding to this dynamics solution operator {U(t, s)}{0≤s≤t},
known also as evolution family, fundamental solution, or propagator, see [1] Ch.VI,
Sec.9, in topology of the trace-class ideal C1(H).

To this end we consider a linear non-autonomous dynamics given on a separable
Hilbert space H by evolution equation of the type:

∂u(t)

∂t
=− C(t)u(t), u(s) = us, s ∈ [0, t) ⊂ R

+
0 ,

C(t) :=A+ B(t), us ∈ H,

t ∈ I := [0, T ],

(1.1)
where R

+
0 = {0} ∪ R

+ and linear operator A is generator of the Gibbs semigroup.
Note that for the autonomous Cauchy problem (ACP), when B(t) = B in (1.1), the
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outlined programme corresponds to the Trotter product formula approximation of
the Gibbs semigroup generated by a closure of operator A+ B, [20, Ch.5].

The main result of the present note concerns the non-autonomous Cauchy
problem (nACP) (1.1) under the following:

Assumptions

(A1) The operator A ≥ 1 in a separable Hilbert space H is self-adjoint, and
{B(t)}t∈I is a family of non-negative self-adjoint operators in H.

(A2) There exists α ∈ [0, 1) such that inclusion: dom(Aα) ⊆ dom(B(t)), holds
for a.a. t ∈ I. Moreover, the function t �→ B(t)A−α ∈ L(H), t ∈ I is
strongly measurable and essentially bounded in the operator norm:

Cα := ess sup
t∈I

‖B(t)A−α‖ <∞. (1.2)

(A3) The map t �→ A−αB(t)A−α ∈ L(H), t ∈ I, is Hölder continuous in the
operator norm: that is, for some β ∈ (0, 1], there is a constant Lα,β > 0
such that

‖A−α(B(t)− B(s))A−α‖ ≤ Lα,β |t − s|β, (t, s) ∈ I × I. (1.3)

(A4) The operator A is a generator of the Gibbs semigroup {G(t) = e−tA}t≥0,
which is a C0-semigroup such that G(t)|t>0 ∈ C1(H). Here C1(H) denotes
the ∗-ideal of trace-class operators of bounded operators L(H).

Remark 1.1 Assumptions (A1)–(A3) are introduced in [4] to prove the operator-
norm convergence of the product formula approximants: {Un(t, s)}0≤s≤t , to solution
operator {U(t, s)}0≤s≤t . Then they were widely used for product formula approxi-
mations in [10–15] in the context of the evolution semigroup approach to the nACP,
see [6–9].

Remark 1.2 The following main facts were established (e.g., [4, 7, 18, 19]) about
the nACP for perturbed evolution equation of the type (1.1):

(a) Because of assumptions (A1)–(A2) the operators {C(t) = A + B(t)}t∈I have
a common dom(C(t)) = dom(A) and they are generators of contraction
holomorphic semigroups. Hence, the nACP (1.1) is of parabolic type [5, 16].

(b) Since domains dom(C(t)) = dom(A) , t ≥ 0, are dense, the nACP is well-posed
with time-independent regularity subspace dom(A).

(c) Assumptions (A1)–(A3) provide the existence of evolution family solving
nACP (1.1) which we call the solution operator.

It is a strongly continuous, uniformly bounded family of operators {U(t, s)}(t,s)∈Δ,
Δ := {(t, s) ∈ I × I : 0 ≤ s ≤ t ≤ T }, such that the conditions

U(t, t) = 1 for t ∈ I,
U(t, r)U(r, s) = U(t, s), for, t, r, s ∈ I for s ≤ r ≤ t,

(1.4)
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are satisfied and u(t) = U(t, s) us for any us ∈ Hs is in a certain sense (e.g.,
classical, strict, mild) solution of the nACP (1.1).

(d) Here Hs ⊆ H is an appropriate regularity subspace of initial data. Assumptions
(A1)–(A3) provide that Hs = dom(A) and U(t, s)H ⊆ dom(A) for t > s.

In the present note we essentially focus on convergence of the product approxi-
mants {Un(t, s)}(t,s)∈Δ,n≥1 to solution operator {U(t, s)}(t,s)∈Δ. Let

s = t1 < t2 < . . . < tn−1 < tn < t, tk := s + (k − 1) t−s
n
, (1.5)

for k ∈ {1, 2, . . . , n}, n ∈ N, be partition of the interval [s, t]. Then the
corresponding approximants may be defined as follows:

W
(n)
k (t, s) :=e− t−s

n
A
e
− t−s

n
B(tk), k = 1, 2, . . . , n,

Un(t, s) :=W(n)
n (t, s)W

(n)
n−1(t, s)× · · · ×W

(n)
2 (t, s)W

(n)
1 (t, s).

(1.6)

It turns out that if the assumptions (A1)–(A3), adapted to a Banach space X, are
satisfied for α ∈ (0, 1), β ∈ (0, 1) and in addition the condition α < β holds, then
solution operator {U(t, s)}(t,s)∈Δ admits the operator-norm approximation

ess sup
(t,s)∈Δ

‖Un(t, s)− U(t, s)‖ ≤ Rβ,α

nβ−α
, n ∈ N, (1.7)

for some constant Rβ,α > 0. This result shows that convergence of the approximants
{Un(t, s)}(t,s)∈Δ,n≥1 is determined by smoothness of the perturbation B(·) in (A3)
and by the parameter of inclusion in (A2), see [13].

In [10] the Lipschitz case β = 1 was examined in Banach space X. There it was
shown that if α ∈ (1/2, 1), then one gets estimate

ess sup
t∈I

‖Un(t, s)− U(t, s)‖ ≤ R1,α

n1−α , n = 2, 3, . . . . (1.8)

For the Lipschitz case in Hilbert space H, the assumptions (A1)–(A3) yield a
stronger result [4]:

ess sup
(t,s)∈Δ

‖Un(t, s)− U(t, s)‖ ≤ R
log(n)

n
, n = 2, 3, . . . . (1.9)

Note that actually it is the best of known estimates for operator-norm rates of
convergence under conditions (A1)–(A3).

The estimate (1.7) was improved in [12] for α ∈ (1/2, 1) in a Hilbert space using
the evolution semigroup approach [2, 3, 9]. This approach is quite different from
technique used for (1.9) in [4], but it is the same as that employed in [10].
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Proposition 1.3 ([12]) Let assumptions (A1)–(A3) be satisfied for β ∈ (0, 1). If
β > 2α − 1 > 0, then estimate

ess sup
(t,s)∈Δ

‖Un(t, s)− U(t, s)‖ ≤ Rβ

nβ
(1.10)

holds for n ∈ N and for some constant Rβ > 0.

Note that the condition β > 2α−1 is weaker than β > α (1.7), but it does not cover
the Lipschitz case (1.8) because of condition β < 1.

The main result of the paper is the raising of the known operator-norm
bounds (1.7)–(1.10) (we denote them by Rα,βεα,β(n)) to estimates in the trace-norm
topology ‖ · ‖1. This is a subtle matter even for ACP, see [20] Ch.5.4:

– The first step is construction for nACP (1.1) a trace-norm continuous solution
operator {U(t, s)}(t,s)∈Δ, see Theorem 2.3 and Corollary 2.4.

– Then in Sect. 3 for assumptions (A1)–(A4) we prove (Theorem 1.4) the
corresponding trace-norm estimate Rα,β(t, s)εα,β(n) for difference ‖Un(t, s) −
U(t, s)‖1.

Theorem 1.4 Let assumptions (A1)–(A4) be satisfied. Then the trace-norm esti-
mate

‖Un(t, s)− U(t, s)‖1 ≤ Rα,β(t, s)εα,β(n) (1.11)

holds for n ∈ N and 0 ≤ s < t ≤ T for some Rα,β(t, s) > 0.

2 Preliminaries

Besides Remark 1.2(a)–(d), we also remind the following assertion, and we refer to
[16] Theorem 1, and [17] Theorem 5.2.1.

Proposition 2.1 Let assumptions (A1)–(A3) be satisfied:

(a) Then solution operator {U(t, s)}(t,s)∈Δ is a family of strongly continuously
differentiable contractions for 0 ≤ s < t ≤ T and

∂tU(t, s) = −(A+ B(t))U(t, s). (2.1)

(b) Moreover, the unique function t �→ u(t) = U(t, s) us is a classical solution of
nACP (1.1) for initial data Hs = dom(A).

Note that solution of nACP (1.1) is called classical if u(t) ∈ C([0, T ],H) ∩
C1([0, T ],H), u(t) ∈ dom(C(t)), u(s) = us , and C(t)u(t) ∈ C([0, T ],H) for
all t ≥ s, with convention that (∂tu)(s) is the right derivative, see [16] Theorem 1,
or [1] Ch.VI.9.
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Since involved into (A1), (A2) operators are non-negative and self-adjoint,
Eq. (2.1) implies that the solution operator consists of contractions:

∂t‖U(t, s)u‖2 = −2(C(t)U(t, s)u,U(t, s)u) ≤ 0, for u ∈ H. (2.2)

On account of (A1) the contraction semigroup generated by A is holomorphic.
Therefore, G(t)|t>0 = e−tA : H → dom(A), which by Remark 1.2(d) is a
regularity subspace for solution operator {U(t, s)}(t,s)∈Δ, see Proposition 2.1(b).
Then applying to (2.1) the variation of parameter arguments we obtain for
contractions U(t, s) (2.2) the integral equation:

U(t, s) = G(t − s)−
∫ t

s

dτ G(t − τ) B(τ)U(τ, s), U(s, s) = 1 . (2.3)

As a consequence the evolution family {U(t, s)}(t,s)∈Δ, which is defined by
Eq. (2.3), can be considered as a mild solution of the operator-valued nACP (2.1) for
0 ≤ s ≤ t ≤ T on the Banach space L(H) of bounded operators, cf. [1], Ch.VI.7.

Owing to assumptions (A1)–(A2) one gets for holomorphic (Gibbs) semigroup
{G(t)}t≥0 and for {B(τ)}τ∈(s, t):

‖AαG(t − s)‖ ≤ Mα

(t − s)α
and ‖B(τ)A−α‖ ≤ Cα , (2.4)

where 0 ≤ s < t ≤ T . Then (2.4) yields estimate

∥
∥
∥
∥

∫ t

s

dτ B(τ)G(t − τ)

∥
∥
∥
∥ ≤

MαCα

1− α
(t − s)1−α , α ∈ [0, 1) . (2.5)

For that reason, we can construct solution operator {U(t, s)}(t,s)∈Δ as uniformly
operator-norm convergent Dyson–Phillips series

∑∞
n=0 Sn(t, s) by iteration of the

integral formula (2.3) for t > s.
To this aim we define the recurrence relation

S0(t, s) = G(t − s),

Sn(t, s) = −
∫ t

s

ds G(t − τ) B(τ) Sn−1(τ, s), n ≥ 1.
(2.6)

Seeing that by (A2) operators Sn≥1(t, s) in (2.6) are the n-fold strongly convergent
Bochner integrals for n ≥ 1 (with convention that τ0 = s and τn+1 = t):

Sn(t, s) =
∫ t

s

dτn

∫ τn

s

dτn−1 . . .

∫ τ2

s

dτ1

G(t − τn)(−B(τn))G(τn − τn−1) · · ·G(τ2 − τ1)(−B(τ1))G(τ1 − s) ,

(2.7)
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and that semigroup {G(t)}t≥0 is contraction, by estimate (2.5) there exists interval
[s, t] such that ξ t,s(n) := Mα(n)Cα(t − s)1−α/n(1−α) < 1. On that account (2.7)
provides estimate

‖Sn(t, s)‖ ≤ ξnt,s(n) , n ≥ 1. (2.8)

Consequently, the Dyson–Phillips series
∑∞

n=0 Sn(t, s) converges in the operator-
norm topology uniformly in [μ, ν] ⊂ [s, t] and satisfies the integral equation (2.3).
Thus, we obtain bounded operator

U(t, s) =
∞∑

n=0

Sn(t, s) , (2.9)

which is the mild solution of nACP (2.1). It is operator-norm continuous for μ < ν

and strongly continuous at μ = ν. This result can be extended to any 0 ≤ s < t ≤ T

using (1.4) and to the operator-norm differentiability for s < t by making use of
condition (A3), see [16] Theorem 1, or [17] Theorem 5.2.1. Then on account of (1.4)
and (2.2) the solution operator (2.9) is contraction: ‖U(t, s)‖ ≤ 1.

For extension of this result to the trace-norm topology we need to use assumption
(A4) and the following preparatory lemma.

Lemma 2.2 Let self-adjoint positive operator A be such that e−tA ∈ C1(H) for
t > 0, and let V1, V2, . . . , Vn be bounded operators from L(H). Then

∥
∥
∥

n∏

j=1

Vje
−tjA

∥
∥
∥

1
≤

n∏

j=1

‖Vj‖‖e−(t1+t2+...+tn)A/4‖1 , (2.10)

for any set {t1, t2, . . . , tn} of positive numbers.
Proof First we prove this assertion for a set of compact operators: Vj ∈ C∞(H),
j = 1, 2, . . . , n.

Let tm := min{tj }nj=1 > 0 and T := ∑n
j=1 tj > 0. For any 1 ≤ j ≤ n,

we define an integer &j ∈ N by condition: 2&j tm ≤ tj ≤ 2&j+1tm . Then we get∑n
j=1 2&j tm > T/2 and

n∏

j=1

Vje
−tjA =

n∏

j=1

Vje
−(tj−2&j tm)A(e−tmA)&j . (2.11)

By the definition of the ‖ ·‖1-norm and by inequalities for singular values {sk(·)}k≥1
of compact operator

∥
∥
∥

n∏

j=1

Vje
−tjA

∥
∥
∥

1
=

∞∑

k=1

sk
( n∏

j=1

Vje
−(tj−2&j tm)A(e−tmA)2

&j )
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≤
∞∑

k=1

n∏

j=1

sk

(
e−(tj−2&j tm)A

) [
sk(e

−tma)
]2&j

sk(Vj )

≤
∞∑

k=1

sk(e
−tmA)

∑n
j=1 2&j

n∏

j=1

‖Vj‖ . (2.12)

Here we used that sk(e−(tj−2&j tm)A) ≤ ‖e−(tj−2&j tm)A‖ ≤ 1 and that sk(Vj ) ≤ ‖Vj‖.
Let N :=∑n

j=1 2&j and Tm := Ntm > T/2. Given that A = A∗ and e−tA ∈ C1(H)

for t > 0, we obtain, by definition of the ‖ · ‖q -norm on the von Neumann–Schatten
ideal Cq≥1(H), that

‖e−tA‖1 =
∞∑

k=1

sk(e
−tA/q)q = (‖e−tA/q‖q)q . (2.13)

Then inequality (2.12) yields for q = N :

∥
∥
∥

n∏

j=1

Vje
−tjA

∥
∥
∥

1
≤
(∥
∥e−TmA/N

∥
∥
N

)N n∏

j=1

‖Vj‖. (2.14)

Now we consider integer p ∈ N such that 2p ≤ N < 2p+1. Then, T/4 <

Tm/2 < 2pTm/N , and consequently,

(∥
∥e−TmA/N

∥
∥
N

)N =
∞∑

k=1

sNk (e
−TmA/N) (2.15)

≤
∞∑

k=1

s2p
k (e−2pTmA/2pN) ≤

∞∑

k=1

s2p
k (e−T A/2p+2

) = ‖e−T A/22‖1 ,

where we used (2.13). Therefore, the estimates (2.14), (2.15) give the bound (2.10).
Now, let Vj ∈ L(H), j = 1, 2, . . . , n, and set Ṽj := Vje

−εA for 0 < ε < tm.
Hence, Ṽj ∈ C1(H) ⊂ C∞(H) and sk(Ṽj ) ≤ ‖Ṽj‖ ≤ ‖Vj‖. If we set t̃j := tj − ε,
then

∥
∥
∥

n∏

j=1

Vje
−tjA

∥
∥
∥

1
≤

n∏

j=1

‖Vj‖‖e−(t̃1+t̃2+···+t̃n)A/4‖1 , (2.16)

by the preceding arguments for compact case. Since the semigroup {e−tA}t≥0 is
‖ · ‖1-continuous for t > 0, we can take in (2.16) the limit ε ↓ 0. This gives the
result (2.10) in general case. �
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Theorem 2.3 Let assumptions (A1)–(A4) be satisfied. Then strongly continuous
solution operator {U(t, s)}(t,s)∈Δ (2.9) yields for t > s a trace-norm continuous
mild solution of nACP (2.1) on Banach space C1(H).

Proof To this aim we again use the Dyson–Phillips series
∑∞

n=0 Sn(t, s). Then to
estimate (2.7) we define V (τj ) (cf.(2.10) by

V (τj ) := (−B(τj ))G((τj − τj−1)/2) , j = 1, 2, . . . , n , τ 0 = s . (2.17)

As a consequence, one gets for (2.7) representation

Sn(t, s) =
∫ t

s

dτn

∫ τn

s

dτn−1 . . .

∫ τ2

s

dτ1 G(t − τn) V (τn) G((τn − τn−1)/2)·

· V (τn−1) G((τn−1 − τn−2)/2) · · · G((τ2 − τ1)/2) V (τ1) G((τ1 − s)/2) .
(2.18)

Let V0 := G((t − τn)/2). Note that ‖V0‖ ≤ 1. Then on account of inequality (2.10)

‖V0G((t − τn)/2)
1∏

j=n
V (τj ) G((τj − τj−1)/2)‖1 ≤

≤
n∏

j=1

‖V (τj )‖ ‖G((t − s)/8)‖1 .

(2.19)

Because of (2.5), (2.17) and due to (2.19) we infer from representation (2.18) the
trace-norm estimate

‖Sn(t, s)‖1 ≤
{

2α Mα(n)Cα

n(1−α)
(t − s)1−α

}n
‖G((t − s)/8)‖1 , α ∈ [0, 1) ,

(2.20)
for s < t and n ≥ 1, where Mα(n) := 2

√
2πMαΓ (1− α)((1− α)

√
2πn)−1/n.

Owing to (2.20) the Dyson–Phillips series (2.9) converges for 2α ξ t,s < 1 in
the trace-norm topology uniformly in [μ, ν] ⊂ [s, t] and satisfies the integral
equation (2.3). It can be extended to any 0 ≤ s < t ≤ T using (1.4). Thus, we
obtain operator

U(t, s) =
∞∑

n=0

Sn(t, s) ∈ C1(H) , ‖U(t, s)‖1 ≤ MT ‖G((t − s)/8)‖1 , (2.21)

whereMT > 0. Family {U(t, s)}0≤s<t≤T is a mild solution of the Gibbs nACP (2.1).
This solution is trace-norm continuous for 0 ≤ s < t ≤ T and strongly continuous
at s = t . �
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Corollary 2.4 For t > s the evolution family {U(t, s)}(t,s)∈Δ (2.21) is a strict
solution of the Gibbs nACP :

∂tU(t, s) =− C(t)U(t, s), t ∈ (s, T ) and U(s, s) = 1,

C(t) :=A+ B(t),
(s, T ) ⊂ [0, T ],

(2.22)
on Banach space C1(H) and ‖U(t, s)‖ ≤ 1.

Proof Since by Remark 1.2(c),(d) the function t �→ U(t, s) for t ≥ s is strongly
continuous and since U(t, s) ∈ C1(H) for t > s, the product U(t + δ, t)U(t, s) is
continuous in the trace-norm topology for |δ| < t−s. Moreover, since {u(t)}s≤t≤T is
a classical solution of nACP (1.1), Eq. (2.1) implies thatU(t, s) has strong derivative
for any t > s. Then again by Remark 1.2(d) the trace-norm continuity of δ �→
U(t + δ, t)U(t, s) and by inclusion of ranges: ran(U(t, s)) ⊆ dom(A) for t > s,
the trace-norm derivative ∂tU(t, s) at t (> s) exists and belongs to C1(H).

Therefore, U(t, s) ∈ C((s, T ], C1(H))∩C1((s, T ], C1(H)) with U(s, s) = 1 and
U(t, s) ∈ C1(H), C(t)U(t, s) ∈ C1(H) for t > s, which means that solution U(t, s)
of (2.22) is strict, cf. [19] Definition 1.1. On account of (1.4) and (2.2) the strongly
continuous solution operator (2.21) is contraction: ‖U(t, s)‖ ≤ 1. �

We note that these results for ACP on Banach space C1(H) are well known for
Gibbs semigroups, see [20], Chapter 4.

Now, to proceed with the proof of Theorem 1.4 about trace-norm convergence of
the solution operator approximants (1.6), we need the following preparatory lemma.

3 Proof of Theorem 1.4

We follow the line of reasoning of the lifting lemma developed in [20], Ch.5.4.1:

1. By virtue of (1.4) and (1.6) we obtain for difference in (1.11) formula:

Un(t, s)− U(t, s) =
1∏

k=n
W

(n)
k (t, s)−

1∏

l=n
U(tl+1, tl). (3.1)

Let integer kn ∈ (1, n). Then (3.1) yields the representation:

Un(t, s)− U(t, s) =
(
kn+1∏

k=n
W

(n)
k (t, s)−

kn+1∏

l=n
U(tl+1, tl)

)
1∏

k=kn
W

(n)
k (t, s)

+
kn+1∏

l=n
U(tl+1, tl)

⎛

⎝
1∏

k=kn
W

(n)
k (t, s)−

1∏

l=kn
U(tl+1, tl)

⎞

⎠ ,
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which entails the trace-norm estimate

‖Un(t, s)− U(t, s)‖1 ≤
∥
∥
∥
∥
∥

kn+1∏

k=n
W

(n)
k (t, s)−

kn+1∏

l=n
U(tl+1, tl)

∥
∥
∥
∥
∥

∥
∥
∥
∥
∥
∥

1∏

k=kn
W

(n)
k (t, s)

∥
∥
∥
∥
∥
∥

1

+
∥
∥
∥
∥
∥

kn+1∏

l=n
U(tl+1, tl)

∥
∥
∥
∥
∥

1

∥
∥
∥
∥
∥
∥

1∏

k=kn
W

(n)
k (t, s)−

1∏

l=kn
U(tl+1, tl)

∥
∥
∥
∥
∥
∥
. (3.2)

2. Now we assume that limn→∞ kn/n = 1/2. Then (1.5) yields limn→∞ tkn =
(t + s)/2, limn→∞ tn = t , and uniform estimates (1.7)–(1.10) with the bound
Rα,βεα,β(n) provide

ess sup
(t,s)∈Δ

∥
∥
∥
∥
∥

kn+1∏

k=n
W

(n)
k (t, s)− U(t, (t + s)/2)

∥
∥
∥
∥
∥
≤ R

(1)
α,βεα,β(n), (3.3)

ess sup
(t,s)∈Δ

∥
∥
∥
∥
∥
∥

1∏

k=kn
W

(n)
k (t, s)− U((t + s)/2, s)

∥
∥
∥
∥
∥
∥
≤ R

(2)
α,βεα,β(n), (3.4)

for n ∈ N and for some constants R(1,2)
α,β > 0.

3. Since limn→∞ kn/n = 1/2 and t > s, by definition (1.6) and by Lemma 2.2 for

contractions {Vk = e
− t−s

n
B(tk)}nk=1, we obtain

∥
∥
∥
∥
∥
∥

1∏

k=kn
W

(n)
k (t, s)

∥
∥
∥
∥
∥
∥

1

=
∥
∥
∥
∥
∥
∥

1∏

k=kn
e
− t−s

n
A
e
− t−s

n
B(tk)

∥
∥
∥
∥
∥
∥

1

≤ ‖e− t−s
8 A‖1 . (3.5)

On account of (2.21), one gets

∥
∥
∥
∥
∥

kn+1∏

l=n
U(tl+1, tl)

∥
∥
∥
∥
∥

1

≤ MT ‖e−
t−s
16 A‖1 . (3.6)

4. Seeing that MT > 1 and ‖e− t−s
8 A ≤ ‖e− t−s

16 A‖1, for t > s, by (3.2)–(3.6), we
conclude the proof of estimate (1.11) for

Rα,β(t, s) := MT (R
(1)
α,β + R

(2)
α,β) c(t − s) , (3.7)

where c(t − s) := ‖e− t−s
16 A‖1 <∞ and 0 ≤ s < t ≤ T . �

Corollary 3.1 By virtue of Lemma 2.2, the proof of Theorem 1.4 can be carried
over almost verbatim for approximants {Ûn(t, s)}(t,s)∈Δ,n≥1 :
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Ŵ
(n)
k (t, s) :=e− t−s

n
B(tk)e

− t−s
n

A
, k = 1, 2, . . . , n,

Ûn(t, s) :=Ŵ (n)
n (t, s)Ŵ

(n)
n−1(t, s)× · · · × Ŵ

(n)
2 (t, s)Ŵ

(n)
1 (t, s),

(3.8)

as well as for self-adjoint approximants {Ũn(t, s)}(t,s)∈Δ,n≥1 :

W̃
(n)
k (t, s) :=e− t−s

n
A/2

e
− t−s

n
B(tk)e

− t−s
n

A/2
, k = 1, 2, . . . , n,

Ũn(t, s) :=W̃ (n)
n (t, s)W̃

(n)
n−1(t, s)× · · · × W̃

(n)
2 (t, s)W̃

(n)
1 (t, s).

(3.9)

For the both cases the rate of convergence εα,β(n) for approximants (3.8), (3.9) is
the same as in (1.11).

Note that extension of Theorem 1.4 to Gibbs semigroups generated by a family
of non-negative self-adjoint operators {A(t)}t∈I can be done along the arguments
outlined in Section 2 of [18]. To this end one needs to add more conditions to (A1)–
(A4) that allow to control the family {A(t)}t∈I .
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