
Verifying Pipeline Implementations in
OpenMP

Maik Wiesner(B) and Marie-Christine Jakobs(B)

Department of Computer Science, Technical University of Darmstadt,
Darmstadt, Germany

wiesner@svps.tu-darmstadt.de, jakobs@cs.tu-darmstadt.de

Abstract. OpenMP is a popular API for the development of parallel,
shared memory programs and allows programmers to easily ready their
programs to utilize modern multi-core processors. However, OpenMP-
compliant programs do not guarantee that the OpenMP paralleliza-
tion is functionally equivalent to a sequential execution of the program.
Therefore, several approaches analyze OpenMP programs. While some
approaches check functional equivalence, they are either general pur-
pose approaches, which ignore the structure of the program and the
design pattern applied for parallelization, or they focus on parallelized
for-loops. In this paper, we propose a verification approach that aims
at pipeline parallelism. To show functional equivalence, our approach
mainly computes the dependencies that a sequential execution imposes
on the pipeline stages and checks whether these dependencies are incor-
porated in the OpenMP parallelzation. We implemented our verification
approach in a prototype tool and evaluated it on some examples. Our
evaluation shows that our approach soundly detects incorrect pipeline
implementations.

Keywords: OpenMP verification · Functional equivalence · Pipeline
parallelism · Parallel design pattern

1 Introduction

For several years, the CPU frequency has stayed the same, while the number of
cores per CPU is increasing. To take full advantage of today’s hardware, we need
multi-threaded programs. However, many programs are still not multi-threaded.

OpenMP [17] is an API that allows one to easily transform sequential pro-
grams into multi-threaded ones, which are even platform independent. To par-
allelize a sequential program, one often only needs to insert OpenMP directives.

One problem of OpenMP parallelization is that not all OpenMP-compliant
programs are correct [17]. For example, an OpenMP-compliant program may
contain data races or deadlocks. Even worse, correctly applying OpenMP is

This work was funded by the Hessian LOEWE initiative within the Software-Factory
4.0 project.

c© Springer Nature Switzerland AG 2021
A. Laarman and A. Sokolova (Eds.): SPIN 2021, LNCS 12864, pp. 81–98, 2021.
https://doi.org/10.1007/978-3-030-84629-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84629-9_5&domain=pdf
http://orcid.org/0000-0001-7357-2016
http://orcid.org/0000-0002-5890-4673
https://doi.org/10.1007/978-3-030-84629-9_5

82 M. Wiesner and M.-C. Jakobs

Stage 1
Stage 2

Iteration 1 Iteration 2
Iteration 1

. . .

. . .
Iteration i
Iteration i-1

. . .

. . .
Iteration n
Iteration n-1 Iteration n

time

Fig. 1. Pipeline parallelism with a two-stage pipeline

1 void foo (i n t ∗a , i n t ∗b , i n t N)
2 {
3 # pragma omp parallel
4 {
5 # pragma omp single
6 f o r (i n t i =1; i<N; i++)
7 {
8 # pragma omp task depend (in : a[i -1]) depend (out : b [0: i +1])
9 b [i] = a [i −1] ;

10 # pragma omp task depend (in : b[i]) depend (out : a [0: i +1])
11 a [i] = b [i]−a [i] ;
12 }
13 }
14 }

Listing 1.1. An example for a parallelization that uses the pipeline pattern

difficult [5]. Therefore, we need verification methods to check whether a program
parallelized with OpenMP is correct, i.e., we want to show that every execution
of the parallelized program is functionally equivalent to a sequential execution
that ignores the OpenMP directives.

Several approaches [2–4,13,14,19,20,23,28] look into correctness threats of
OpenMP parallelizations, e.g., data races [2–4,14,23], deadlocks [14,20], etc.
However, these approaches do not guarantee functional equivalence. In contrast,
equivalence checkers like Pathg [27], CIVL [22], PEQcheck [7], or the app-
roach proposed by Abadi et al. [1] aim at proving functional equivalence. These
equivalence checkers are general purpose checkers that ignore how a program is
parallelized and, thus, regularly fail to show equivalence.

To overcome this problem, PatEC [6], AutoPar’s correctness checker [12] and
CIVL’s OpenMP simplifier [22] take the kind of parallelization into account.
However, they only support parallelizations utilizing data parallelism, e.g., par-
allelizations of loops whose iterations are independent of each other. In this
paper, we propose a verification approach that aims at pipeline parallelism.

The pipeline pattern is a parallel design pattern [15,16] that may be used for
loops whose iterations depend on each other. The idea of the pipeline pattern
is similar to a processor pipeline. The sequential loop iteration is split into a
sequence of stages such that each stage consumes data from the previous stage
and provides data to the next stage. To exploit parallelism, the execution of
consecutive loop iterations are overlapped as shown in Fig. 1.

Our verification approach assumes that the pipeline is implemented as fol-
lows. Stages are encapsulated in OpenMP tasks and depend clauses or synchro-
nization directives describe the dependencies between stages. The loop itself is
enclosed in a combination of a parallel and single OpenMP directive. Listing 1.1

Verifying Pipeline Implementations in OpenMP 83

shows an example for a pipeline with two stages. For demonstration purposes, we
assume that a and b do not overlap. Hence, we do not require an in-dependency
for a[i] in line 10. Read entry a[i] can only be modified in the same task.

Given a pipeline implementation of that form, our approach first determines
the dependencies between tasks. In our example, the first task of iteration i
depends on the second task of iteration i − 1, which declares a dependency on
the first i−1 elements of array a. Moreover, the second task of iteration i depends
on the first task of iteration i. In addition, the first (second) task in iteration i
depend on all first tasks (second) tasks generated in iterations j ă i. Next,
our approach looks at all read-after-write (RAW), write-after-read (WAR), and
write-after-write (WAW) dependencies in the sequential execution that cross
stage boundaries. In our example, we have two RAW dependencies.1 For each of
these dependencies, our approach checks whether this dependency is captured
by the task dependencies. For write-after-read dependencies, our approach also
inspects whether the parallelized program uses data-sharing attributes that allow
the read to access the value of the write. In our example, the RAW and WAR
dependency is captured by the task dependencies and variable a and b are shared,
i.e., writes to a and b are visible to all threads. Finally, our approach examines
whether all variables modified by and live at the end of the pipeline use data-
sharing attribute shared, which makes the modification visible.

As a proof-of-concept, we implemented our verification procedure in a proto-
type and evaluated it on several example programs. Our evaluation shows that
our implementation soundly detects all incorrect pipeline implementations.

2 Using OpenMP to Implement Pipelines

OpenMP [17] is a standard that programmers can use to implement parallel pro-
grams for shared-memory systems. Programmers typically only insert OpenMP
directives into the code, which the compiler considers to generate the parallel
program. In the following, we describe the important features needed to imple-
ment a parallel pipeline in OpenMP. We start with the OpenMP directives.

OpenMP Directives in Parallel Pipelines. We assume that the parallel pipelines
are realized with the following five directives:

parallel. Defines a parallel region that multiple threads execute in parallel.
single. Defines a region, typically nested inside a parallel region, that is executed

by exactly one thread.
task. Defines a code region that is executed by an arbitrary thread in parallel

with e.g., other tasks.
barrier. Introduces an explicit barrier that must be reached by all threads of

the enclosing parallel region before any thread can continue.

1 In iteration i, the second task reads memory location b[i] after it is written by the
first task. Similarly, the first task reads memory location a[i-1] in iteration i after
the second task writes to it in iteration i − 1.

84 M. Wiesner and M.-C. Jakobs

taskwait. Forces the task, single region, etc. to wait on the completion of its
generated child tasks.2

Data-Sharing Attributes. The data-sharing attribute defines the visibility of a
variable, e.g., whether it is shared among the threads or each thread uses its own
local copy, and how information is exchanged between the original variable and
its copies. Our analysis supports the following attributes, which primarily occur
in parallel pipelines.

private. Each thread has a local copy of the variable, which is uninitialized.
firstprivate. Similar to private, each thread gets its own local copy. In addition,

the variable is initialized to the value of the original variable at the point the
directive (parallel, single, task) is encountered.

shared. The variable is shared among all threads.

Data-sharing attributes can be specified explicitly by adding data-sharing
clauses to the above directives. If not specified explicitly, the data-sharing
attribute is determined implicitly via rules. For example, variables declared
inside a region are typically private. Variables declared outside the parallel
pipeline are shared and for tasks all other variables are normally firstprivate.

Depend Clauses. By default, tasks are executed independently, e.g., concurrently
or in arbitrary order. However, pipeline parallelism requires a certain partial
order on tasks. Depend clauses, which can be added to the task directive, allow
one to enforce such order constraints3. The general structure of these clauses is

depend(type : varList),

where type P {in, out, inout} and varList denotes a list of variables and array
sections as shown in Listing 1.14 The dependence type specifies how the men-
tioned variables are accessed, i.e., read (in), written (out), or both (inout).

Semantically, depend clauses specify a dependency between tasks. A task
cannot execute before all tasks that it depends on and that are generated before
it finished. The following definition formalizes the dependency between tasks.

Definition 1. Tasks T1 and T2 are dependent if there exists a depend clause
depend(t1:l1) for T1 and a depend clause depend(t2:l2) for T2 such that

– (t1, t2) ‰ (in, in) and
– there exist a1 P l1 and a2 P l2 such that a1 and a2 designate the same memory

location.

2 Note that we currently do not support taskwait directives with depend clauses.
3 In general, the constraints apply to sibling tasks only. Due to the construction of

tasks in parallel pipeline implementations that we support, all tasks are siblings.
4 The OpenMP standard also allows other variants of the depend clause but we stick

to these because they are the main ones used when realizing the pipeline pattern.
Ignoring other types is sound but can lead to false positives.

Verifying Pipeline Implementations in OpenMP 85

In our verification approach, we only look at task constructs (task directive
plus associated code region), not tasks generated for task constructs. Thus, we
may only introduce dependencies between task constructs if a dependency always
exists for all respective tasks generated by the pipeline. This property is fulfilled
for all dependencies built on scalar variables or array subscripts that are loop
invariant, i.e., whose value does not change during pipeline execution. Also, task
construct T1 depends on task construct T2 if every task of T2 depends on every
previously constructed task of T2 and each task generated for T1 depends on the
last task generated for T2. The following definition captures the first two cases
and demonstrates the latter for pipelines with incrementing loops, i.e., loops that
only change the loop counter at the end of each loop iteration and that change
increments the loop counter by one. Supporting further loops, e.g., decrementing
loop or loops with another step size, or supporting multi-dimensional arrays is
rather straightforward.

Definition 2. Task construct T1 depends on task construct T2 if there exists
a depend clause depend(t1:l1) for T1 and a depend clause depend(t2:l2) for T2

such that

– (t1, t2) ‰ (in, in) and
– there exist a1 P l1 and a2 P l2 such that either

1. a1 “ a2 and a1, a2 are scalar variables,
2. a1 “ a2, and a1, a2 are array subscripts, and the subscript expressions

are loop invariant, or
3. the pipeline uses an incrementing loop with loop counter i and there exists

an array a such that either
(a) a2 “ a[0 : i ` 1], a1 “ a[i] and T2 occurs after T1 in the loop body,
(b) a2 “ a[0 : i ` 2], a1 “ a[i] and T2 occurs after T1 in the loop body,
(c) a2 “ a[0 : i`1], a1 “ a[i−1] and T2 occurs before T1 in the loop body.

Pipeline Structure. Pipelines can be realized in different ways in OpenMP. We
assume that the pipeline is structured as shown in Listing 1.2. This is a com-
mon structure for a pipeline implementation and it is e.g., used by the auto-
parallelization tool DiscoPoP [10]. As shown in Listing 1.2, the pipeline is imple-
mented in a parallel region. Inside the parallel region, a single region

1 # pragma omp parallel
2 {
3

.

.

. // Dec l a ra t i on s
4 # pragma omp single
5 {
6

.

.

. // Dec l a ra t i on s
7 f o r /∗ or whi le ∗/ (. . .) {
8

9 //Tasks , statements , b a r r i e r s
10 }
11 }
12 }

Listing 1.2. General structure of a pipeline implementation

86 M. Wiesner and M.-C. Jakobs

Algorithm 1: Verification algorithm
Input: program - source code of program with pipeline to verify

1 dependGraph := buildDependencyGraph(program)
2 potentialViolations := checkRWDependencies(dependGraph)
3 violation := checkPotentialViolations(potentialViolations)
4 if violation = ⊥ then
5 violation := checkRemainingDependencies(dependGraph)
6 return witness

constructs the pipeline stages in a loop5. Thereby, each instance of a pipeline
stage becomes a task, which must not include tasks itself, i.e. task constructs
must not be nested. Furthermore, we allow declarations of temporary variables at
the beginning of the parallel or single region. In addition to task constructs,
the loop body may contain statements, which prepare the different stages, and
barriers (barrier or taskwait) to further order tasks. Task constructs, state-
ments, and barriers are sequentially composed, especially, task constructs and
statements must not contain task constructs or barriers.

3 Verifying Correctness of Pipeline Implementations

The goal of our verification is to determine whether a code segment parallelized
with the pipeline pattern behaves functionally equivalent to its sequential execu-
tion. Our verification algorithm shown in Algorithm 1 consists of four steps. First,
it constructs a task dependency graph (Sec. 3.1) that represents the specified con-
straints on the execution order of the tasks. Then, it inspects which of the RAW
and WAR dependencies in the sequential execution that cross task boundaries
are reflected in the task dependency graph (Sec. 3.2). Read-write conflicts (i.e.,
RAW or WAR dependencies) that are not represented in the task dependency
graph may be eliminated with barriers or proper data-sharing attributes, e.g.,
the variable can be private in both tasks. The third step checks this. Finally, the
last step (Sec. 3.3) analyzes write-after-write dependencies and ensures that the
tasks get the correct input values and make their output available. Algorithm 1
will return ⊥ if it can prove that the pipeline pattern is correctly implemented.6

Otherwise, it outputs a read-write or write-write conflict on variable v, which
may threaten functional equivalence.

3.1 Constructing Task Dependency Graphs

A task dependency graph provides information about execution constraints,
especially order constraints, on tasks. A vertex of the graph represents a task con-
struct (task directive plus associated code region) or a statement that is not part
5 Currently, we support for and while loops.
6 Note that Algorithm 1 assumes, but does not check that the checked code segment

follows the pipeline structure described in the previous section. Therefore, its result
is only reliable for those segments.

Verifying Pipeline Implementations in OpenMP 87

of a task construct but occurs in the pipeline’s single region. In the following, we
use VT :“ {t1, . . . , tn} to denote the set of task constructs and VS :“ {s1, . . . , sm}
to denote the statements. An edge (v1, v2) P (VT Y VS) ˆ (VT Y VS) describes a
dependency between v1 and v2, e.g., if v1 P VT , then a task generated for task
construct v2 (statement v2) must be executed after all previously generated tasks
for task construct v1 finished. Note that our task dependency graph does not
include dependencies from VS ˆ VS because the statements in VS are executed
by a single thread, which executes them in the same order as in the sequential
execution. Next, let us discuss how to compute the edges.

Dependency Edges from Depend Clauses. First, let us consider dependencies
between task constructs that origin from depend clauses. Remember that our
depend definition (Def. 2) captures these dependencies. In the task dependency
graph, these order constraints are represented by the depend edges.

Edepend :“ {(ti, tj) P VT ˆ VT | tj depends on ti} (1)

Dependency Edges from Barriers. Next to depend clauses, also barriers (barrier
or taskwait directives) introduce dependencies. For example, a barrier ensures
that no two tasks of the same task construct can execute in parallel. There exists
a self-dependency for all task constructs if the set of barriers B is non-empty.

Eself :“
{

H if B “ H
{(v, v) P VT ˆ VT } otherwise

(2)

1 //T1
2 # pragma omp task depend (out :a)
3 {. . . }
4

5 //T2
6 # pragma omp task depend (in :a) depend (out :b)
7 {. . . }
8

9 //#pragma omp ba r r i e r
10

11 //T3
12 # pragma omp task depend (in :b)
13 {. . . }

(a) Loop body of pipeline implementation

task T3

task T1 task T2

(b) Task dependencies

T2T1 T3

(c) Dependency edges from
depend clauses

Fig. 2. Demonstrating unsoundness of transitive dependency edges

Similarly, we use barriers to add some of the transitive edges from Edepend.
Since our graph only considers task constructs and cannot distinguish tasks gen-
erated in different iterations of the enclosing loop, not all transitive edges from
Edepend can be considered without becoming unsound.7 For example, consider
7 In contrast, leaving out some of those edges only makes our approach imprecise.

88 M. Wiesner and M.-C. Jakobs

the pipeline implementation sketched in Fig. 2a. Figure 2b shows task T3 con-
structed for task construct T3 in iteration i, tasks T1 and T2 constructed for
task constructs T1 and T2 in iteration i+1, and their dependencies. In addition,
Fig. 2c shows the task dependencies Edepend.8 We observe that the transitive
edge (T3, T1) is not present in Fig. 2b, although T3 is generated before T1.
Thus, edge (T3, T1) must not be added to the task dependency graph. When
adding transitive edges, we use that the barrier ensures that at most one task
per task construct exists at any point in time and a task belongs to either itera-
tion i (task constructs after the barrier) or iteration i+1 (task constructs before
the barrier). Thus, we can safely add transitive dependency edges between task
constructs that occur both either before or after the barrier. The transitive edges
introduced by a barrier are:

Eb
trans :“ (

(V b
before ˆ V b

before) X Edepend

)` Y (
(V b

after ˆ V b
after) X Edepend

)`
,

(3)
where V b

before Ď V and V b
after Ď V denote the sets of task constructs before and

after barrier b respectively.

In addition, a barrier introduces dependencies between tasks from VT and
statements from VS . A barrier b enforces the single thread to wait until all tasks
preceding the barrier finished. Therefore, statements after the barrier (Sb

after)
depend on the task constructs before the barrier (V b

before). Furthermore, when
the barrier was passed new tasks for task constructs before the barrier are only
constructed in the next loop iteration, i.e., all statements after the barrier have
been executed. Thus, there also exists a dependency between the statements
after the barrier and the task constructs before the barrier. These dependencies
are captured by the following set of edges.

Eb
stmts :“ (

V b
before ˆ Sb

after

) Y (
Sb
after ˆ V b

after

)
(4)

So far, we considered dependencies caused by a single barrier. When using
multiple barriers, the parallel program either runs tasks between two barriers
in parallel, which are generated in the same iteration, or we execute tasks from
before the first barrier and tasks after the last barrier concurrently. Even if we
cannot distinguish between tasks of different iterations, we know that all tasks
before a barrier and all tasks after a barrier depend on each other except when
they occur before the first and after the last barrier.9

Now, let B “ {b1, . . . , bn} be the list of barriers in the pipeline implementa-
tion such that the barriers in the list are ordered in source code order. Further-
more, let V bi

before be the statements and task constructs that occur in the pipeline
before barrier bi and V bi

after those occurring after barrier bi. We use these sets to

8 Note that Fig. 2b does not contain dependencies between tasks T2 and T1 and tasks
T2 and T3 because T3 and T1 are generated before T1.

9 The same holds for pairs of tasks and statements.

Verifying Pipeline Implementations in OpenMP 89

Algorithm 2: checkRWEdges(G “ (V,E))
Input: G - depend graph, where V “ VT Y VS

1 potentialViolations := H
2 foreach v P Vars do
3 TR :“ readIn(V, v) � returns tasks in which v is read
4 TW :“ writtenIn(V, v) � returns tasks in which v is written
5 foreach (tr, tw) P getDeps(TR, TW) \ (VS ˆ VS) do
6 if (tr, tw) /P E then
7 potentialViolations := potentialViolations Y (tr, tw, v)

8 return potentialViolations

define the dependencies discussed above.

EB
barrier :“

|B|ď

i“1

{
(vb, va), (va, vb) | vb P V bi

before \ V b1
before ∧ va P ˆV bi

after \ V bn
after

}
(5)

Summing up, the dependency edges from a set of barriers B are:

Ebarrier :“ Eself Y EB
barrier Y

ď

bPB

(
Eb

trans Y Eb
stmts

)
(6)

Now, we have everything at hand to define the task dependency graph.

Definition 3. A task dependency graph is a directed graph

G “ (VT Y VS , Edepend Y Ebarrier).

3.2 Inspecting RAW and WAR Dependencies

In this check, we inspect if the read-after-write and write-after-read dependencies
of the sequential execution are respected by the parallel pipeline, i.e., the depen-
dencies occur in the task dependency graph, or they are safely removed from the
parallel pipeline. First, we use Algorithm 2 to check which of the dependencies
are present in the task dependency graph. Thereafter, we call Algorithm 3 to
check whether all dependencies not present in the task dependency graph are
safely removed by the pipeline implementation.

To compare the program dependencies with the task dependency graph,
Algorithm 2 iterates over the variables. For each variable, it first computes
which component, i.e., task construct or statement in the pipeline, reads and
which writes the variable. Then, it calls the method getDeps to compute all
pairs (tr, tw) of reading and writing components that have a RAW or WAR con-
flict on variable v. Note that this is sufficient and we do not need to distinguish
between RAW and WAR dependencies because OpenMP and our task depen-
dency graph do not distinguish them.10 Next, Algorithm 2 checks whether all
10 While one can reflect RAW and WAR dependencies with OpenMP depend clauses,

a RAW depend specification can prevent a WAR dependency and vice versa.

90 M. Wiesner and M.-C. Jakobs

Algorithm 3: checkPotentialViolations(potentialViolations)
1 foreach (tr, tw, v) P potentialViolations do
2 dr := getDataSharingAttribute(tr, v)
3 dw := getDataSharingAtrribute(tw, v)
4 if dr = firstprivate ∧(dw ‰ shared ∨
5 dw “ shared ∧ G.existsBarrierBetween(tr, tw)) then
6 continue;
7 if firstWrite(tr, v) ă firstRead(tr, v)
8 ∧ (dr ‰ shared ∨ dw ‰ shared) then
9 continue;

10 return (tr, tw, v)

those pairs are reflected in the task dependency graph. However, it excludes all
pairs (tr, tw) from VS ˆ VS because they are executed in sequential order. If the
task dependency graph does not contain a corresponding edge (tr, tw) and the
dependency is not an intra-task dependency, a potential dependency violation is
found and stored in the set of potentialViolations.

In a second step, Algorithm 3 checks the potential violations. Under certain
conditions a parallel pipeline is still correctly implemented although it misses a
dependency. In general, the variable must not be shared, i.e., at least one of the
components uses a thread-local copy to prevent data races, and the read access
must still return the same value as a sequential execution. Currently, we support
two cases. First, the read variable is allowed to be firstprivate if the written
variable is either not shared or is shared and there exists a barrier between the
read and write accesses that ensures that the read variable is initialized with
the correct value. Second, if a component always writes to variable v before
it reads variable v, the read does not depend on other components and could
be performed on a different copy without altering the behavior. Therefore, a
dependency can be missing if the component always writes to variable v before
it reads variable v and variable v is (first)private. Note that Algorithm 3 only
checks that the read-write conflicts are eliminated, but does not check whether
the elimination affects the functional behavior. The latter is considered by the
next algorithm.

3.3 Checking WAW Dependencies and I/O Availability

In this check, we examine whether all WAW dependencies in the sequential
execution are handled appropriately, whether all read accesses in the pipeline see
the same value as a sequential execution, and whether the computation result
is available after the pipeline execution. To inspect the WAW dependencies, we
inspect all variables v and check that all pairs of pipeline components (task
constructs or statements from VS) that write to v are either ordered or at least
one component uses a thread-local copy of the variable. Thus, we ensure that
writes to the same variable cannot interfere.

Verifying Pipeline Implementations in OpenMP 91

Algorithm 4: checkRemainingDependencies(G “ (V,E))
Input: G - depend graph

1 // check write-write dependencies

2 foreach (tw1 , tw2) P ((TW ˆ TW) \ (VS ˆ VS)) do
3 if getDataSharingAttribute(tw1 , v) “ shared ∧

getDataSharingAttribute(tw2 , v) “ shared ∧ (tw1 , tw2) /P E then
4 return (tw1 , tw2 , v)

5

6 //check reads

7 foreach tr P TR do
8 dr :“ getDataSharingAttribute(tr, v)
9 if dr “ private ∧ firstWrite(tr, v) ą firstRead(tr, v) then

10 return (tr, −, v)

11

12 //check output availability

13 foreach v P GetLiveVars do
14 foreach tw P TW do
15 dw :“GetDataSharingAttribute(tw, v)
16 if dw ‰ shared then
17 return (−, tw, v)

18

19 foreach v P Vars do
20 TR :“ readIn(V, v) � returns tasks in which v is read
21 TW :“ writtenIn(V, v) � returns tasks in which v is written
22 foreach (tr, tw) P TR ˆ TW do
23 dr :“ getDataSharingAttribute(tr, v)
24 dw :“ getDataSharingAttribute(tw, v)
25 if firstWrite(tr, v) ă firstRead(tr, v) then
26 continue;
27 if dr = firstprivate ∧ dw = shared
28 ∧ !G.existsBarrierBeforeOrAfter(tr, tw) then
29 return (tr, tw, v)

30

31 return ⊥

After we checked the RAW, WAR, and WAW dependencies, we know that
reads and writes are ordered as in the sequential execution or they are performed
on local copies. To show functional equivalence between the parallel pipeline and
the sequential execution, it remains to be shown that a variable read returns the
same value in both cases and we get the same values when reading variables
after the pipeline. To ensure that the correct value can be read in the pipeline,
the algorithm checks that read variables are only private if they are defined in
a node (task construct or statement) before they are read. To allow that a write
can be propagated to a read in or after the pipeline, we check that all variables
written in the pipeline that are live have data-sharing attribute shared, i.e., we
can access the modified value. Finally, we need to check whether we read the

92 M. Wiesner and M.-C. Jakobs

correct value in the pipeline. We already know that for each read-write pair,
there either exists a dependency edge, i.e., the read and write cannot occur
concurrently, or Algorithm 3 already checked that the correct values are read.
In addition, a read variable can only be private if it is defined in the node
before it is read. The only reason why an incorrect value might be read are
firstprivate variables, which are initialized at task creation. Firstprivate
variables are unproblematic if the initialization value is irrelevant (i.e., they are
defined before read) or a barrier between reading and writing node ensures that
during task generation the same value as in a sequential execution is used for
initialization.

3.4 Handling of Loop Header

To include the statements of the loop header into our analysis we consider them
to be part of the loop body. The condition test is the first statement of the body
while increment statements are placed right at the end. All these statements
are executed by the single thread and can be treated the same way as regular
statements placed outside of tasks.

3.5 Implementation

We implemented the algorithms in a prototype tool to check pipeline paralleliza-
tions of C programs. Our prototype builds on the ROSE compiler framework [18].
Next, we describe how we implemented the predicates used in the algorithms.

readIn/writtenIn. We use ROSE’s def-use analysis to determine the variable
usages and definitions (AST nodes) in the loop. Based on the position of the
AST node in the code, we identify the corresponding node (task construct or
statement from VS) in the pipeline. Arrays are treated like scalar variables,
i.e. array indices are ignored.

getDeps(TR, TW). Based on the nodes reading or writing a variable v, our
prototype compute a coarse, but fast overapproximation of the read-write
dependencies on variable v in the sequential program, namely the Cartesian
product TR ˆ TW of nodes reading and writing variable v.

getDataSharingAttribute(t, v). We try to determine the data-sharing
attribute based on the corresponding OpenMP declarative and fallback to
the rules if it is not explicitly specified.

firstRead(t, v)/firstWrite(t, v). To compute these predicates, we take all
reads into account, but only consider write accesses that occur on every exe-
cution path, i.e., that are not part of a branch or loop body. Since our algo-
rithms only check whether there always exists a write to v before any read of
v, this approximation is sound, but imprecise. However, the approximation
allows us to use source code lines in the implementation of the predicates.
More concretely, the predicates return the source line number of the first read
access of v in t and the first write access of v in t that is considered. In case
there is no read and write access respectively, the source line number of the
end of t is returned.

Verifying Pipeline Implementations in OpenMP 93

existsBarrierBetween(tr, tw). We use code lines to decide this predicate. Note
that this is only valid because we assume that tasks, barriers, and statements
(from VS) are sequentially composed and must not be nested.
Let t.loc and b.loc be the source code line of the beginning of a node t P
VT Y VS and a barrier b. To determine the truth value of the predicate, our
implementation checks the following formula by iterating over all barriers b.

Db P B : min(tr.loc, tw.loc) ă b.loc ă max(tr.loc, tw.loc)

existsBarrierBeforeOrAfter(tr, tw). Similar to existsBarrierBetween, we
use code lines and iterate over the barriers b to decide the following formula.

Db P B : b.loc ă tr.loc ∨ b.loc ą tw.loc

getLiveVars. Our implementation returns all modified variables.11

So far, our prototype realizes a restricted implementation of the verification
technique, which was sufficient for our initial evaluation. For example, the imple-
mentation is limited to scalar variables and arrays and, as already mentioned,
arrays are handled like scalar variables, i.e. so we do not distinguish different
indices. However, the algorithm is not limited to these data types. Adding basic
struct support is simple. One could handle struct accesses similar to arrays. To
soundly support pointers one however requires a points-to analysis. Using a more
fine grained notion of variables, e.g., on the basis of memory locations, allows
one to differentiate between different array elements.

Also, recursive function calls are currently not supported. They might violate
the assumptions that tasks are not nested. Since nested task are not siblings of
all other tasks, a depend clause of a non-sibling tasks has no effect. To support
recursion, we, therefore, need to analyze which tasks are siblings and consider
this when determining the dependency edges from depend clauses.

Furthermore, the implementations of readIn, writtenIn, firstRead, and
firstWrite are intra-procedural. In our context, the current implementation
of firstWrite is sound. To soundly support function calls in readIn and
writtenIn, we could e.g., assume that called functions read and write all global
variables and passed parameters. For firstRead, we could also assume that
called functions read all global variables and associate those reads with the
called functions.

In addition, the precision of the prototype can be further improved by using
more precise implementations of the above predicates. For example, the getDeps
predicate could take the control-flow into account. The getLiveVars can be
refined by applying ROSE’s live variable analysis. Furthermore, one can use
definition-use chains to improve the predicates firstRead and firstWrite.

11 Although read-only variables are excluded, this is sufficient because Algorithm 4
only checks live and modified variables.

94 M. Wiesner and M.-C. Jakobs

Table 1. Evaluation results showing for each example, the expected and reported
result, the size of the task dependency graph, and the number of barriers B

Task Expected result Reported result |VS | ` |VT | |E| |B|
DRB072-taskdep1-orig-no.c ✓ ✓ 0+2 3 0

DRB072-taskdep2-orig-no.c ✓ ✓ 0+2 4 0

DRB072-taskdep3-orig-no.c ✓ ✓ 0+3 5 0

DRB120-barrier-orig-no.c ✓ ✓ 2+0 4 1

DRB131-taskdep4-orig-yes-omp45.c ✓ ✗ 4+3 16 1

DRB132-taskdep4-orig-no-omp45.c ✗ ✗ 4+3 25 1

DRB133-taskdep5-orig-no-omp45.c ✗ ✗ 4+3 29 1

DRB134-taskdep5-orig-yes-omp45.c ✓ ✗ 4+3 20 1

DRB135-taskdep-mutexinoutset-orig-no.c ✗ ✗ 0+6 17 0

DRB136-taskdep-mutexinoutset-orig-yes.c ✓ ✗ 0+6 9 0

DRB165-taskdep4-orig-yes-omp50.c ✓ ✗ 2+3 8 1

DRB166-taskdep4-orig-no-omp50.c ✗ ✗ 2+3 15 1

DRB167-taskdep4-orig-no-omp50.c ✗ ✗ 2+3 19 1

DRB168-taskdep5-orig-yes-omp50.c ✓ ✗ 2+3 12 1

eos-mbpt-hf-interpolate/pipeline 1:27.c ✓ ✗ 0+2 3 0

Kastors/strassen-task-dep.c ✓ ✓ 0+19 305 8

Kastors/strassen-task.c ✓ ✓ 0+19 361 1

4 Evaluation

Our goal is to demonstrate the applicability of our verification approach. Note
that we could not compare our approach to the closely related approach of
Royuela et al. [19] because we failed to find out how to run their analysis.

Benchmark Tasks. We looked at the DataRaceBench [11] and KASTORS
benchmark [25] and selected all examples that contain task parallelism and use
depend clauses. Our selection results in 14 examples from the DataRaceBench
and two from the KASTORS benchmark. To get a syntactical pipeline imple-
mentation, we added a loop to the tasks. In addition, we consider one poten-
tial pipeline implementation suggested by the auto-parallelizer DiscoPoP [10]
(eos-mbpt-hf-interpolate/pipeline 1:27.c). In total, we use 17 examples.

Environmental Setup. We run our experiments 5-times on an
Ubuntu 18.04 machine with an Intel Core i7 CPU and 32 GB of RAM.

4.1 Experimental Results

RQ 1: Is our algorithm sound and does it detect correct pipelines? Table 1 shows
for each of the 17 tasks the expected result, the reported result, the number of
nodes and edges in the task dependency graph as well as the number of barrier
statements in the pipeline implementation. Looking at Table 1, we observe that
our algorithm rejects all incorrect results. Thus, it is sound on out examples.
Also, it detects 50% of the correct pipeline implementations, but rejects the

Verifying Pipeline Implementations in OpenMP 95

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

tasks

E
x
ec
u
ti
o
n
ti
m
e
(s
)

(a) Execution time

145

150

155

160

165

tasks

M
em

o
ry

u
sa
g
e
(M

B
)

(b) Memory usage

Fig. 3. Per task, average, maximum and minimum execution time (left) and average,
maximum and minimum memory usage (right) of five executions

other half. The main reason for rejection is that the algorithm fails to detect
that inter-iteration depenendencies can be ignored for loops with one iteration.

RQ 2: How does our algorithm scale? To analyze the scalability, we consider the
size of the task dependency graph, which includes the number of tasks (|VT |)
and statements (|VS |), as well as the number of barriers in the program. The
last three columns of Table 1 provide these numbers. While our set of tasks is
too small to come to a definite conclusion, we can observe that the number
of edges increases superlinear with the number of tasks and statements (the
nodes of the task dependency graph). Furthermore, the last two rows show two
parallelizations of the same sequential program. One uses barriers and the other
depend clauses. We observe that for the two examples, barriers are more efficient.

RQ 3: How efficient is our algorithm? To evaluate the efficiency of our algorithm,
we consider the execution time and memory usage shown in Fig. 3a and 3b. For
each example, the two plots show the average of five executions together with
the maximum and minimum value. The examples are ordered as in Table 1.

We observe that the execution times and memory usage are rather low and
often similar. The reason is that for our examples the parsing dominates the
execution time and memory usage. Furthermore, we observe that for the analysis
of the larger KASTORS tasks (last two examples) we require significantly more
time and memory. We also see that the first example requires significantly less
memory than the others because it does not call library functions. Another
outlier is the DiscoPoP example (third last). The task itself contains more code
than most of the other tasks, which leads to larger memory usage. However, the
pipeline section itself is rather small. Thus, the analysis time is short.

96 M. Wiesner and M.-C. Jakobs

5 Related Work

Several static and dynamic analyses [2–4,9,13,14,19–21,23,28] for OpenMP pro-
grams exist. We focus on the static analyses [3,4,13,19,20,23,28]. Some of the
static analyses specialize on specific properties like concurrent access [13,19,28],
the absence of data races [4,23,26] or deadlocks [20]. In contrast, we examine
behavioral equivalence between the parallel and sequential execution.

Equivalence checkers like Pathg [27], CIVL [22], PEQcheck [7], or the app-
roach of Abadi et al. [1] examine equivalence, but these checkers are general pur-
pose checkers, which ignore applied parallel design patterns and the structure of
the parallelization. In contrast, PatEC [6], AutoPar’s correctness checker [12],
CIVL’s OpenMP simplifier [22], or ompVerify [3] analyze equivalence of sequen-
tial and parallelized for loops, but they do not support pipeline implementations.

The approach closest to ours is the one by Royuela et al. [19]. Like our app-
roach, they focus on tasks and analyze depend and data-sharing clauses. While
we construct a task dependency graph, they represent the task dependencies
in an extended control-flow graph. Furthermore, we explicitly check equivalence
while Royuela et al. [19] only look for common parallelization mistakes.

Finally, we would like to mention that there exist approaches [8,24] that
verify whether a sequential loop optimization that aims at a better utilization
of the processor pipeline is correct.

6 Conclusion

While the CPU frequency remains static, the number of cores per CPU increases.
To speed up a program, one must execute it on multiple CPU cores.

OpenMP is a widely used API that programmers utilize to transform their
programs into multi-threaded programs. To this end, the programmers typi-
cally only insert OpenMP directives. Unfortunately, not all OpenMP-compliant
programs are correct. Thus, programmers should analyze whether an OpenMP
parallelization is behavior preserving.

In this paper, we propose an automatic technique to support a program-
mer with this analysis task. Our technique utilizes that programmers often
consider parallel design patterns when parallelizing programs. More concretely,
we develop a specific technique to verify that a parallelization that applies the
pipeline pattern is behavior preserving. To ensure that the behavior is preserved,
our technique aims to check that a read access to a variable returns the same
value in the sequential and parallelized program. Therefore, it analyzes whether
the dependencies on variables accesses that exist in the sequential program are
properly considered in the parallelization and that data-sharing attributes do
not prevent reading the proper values.

To test our technique, we implemented it in a prototype tool and evaluated it
on 17 examples. Our technique overapproximates, and, thus, our implementation
failed to detect all correct parallelizations, i.e., it is not complete. While com-
pleteness is desirable, soundness is important. In our evaluation, our implemen-
tation behaved soundly and successfully detected all incorrect parallelizations.

Verifying Pipeline Implementations in OpenMP 97

References

1. Abadi, M., Keidar-Barner, S., Pidan, D., Veksler, T.: Verifying parallel code after
refactoring using equivalence checking. Int. J. Parallel Program. 47(1), 59–73
(2018). https://doi.org/10.1007/s10766-017-0548-4

2. Atzeni, S., et al.: ARCHER: effectively spotting data races in large OpenMP appli-
cations. In: Proceedings IPDPS, pp. 53–62. IEEE (2016). https://doi.org/10.1109/
IPDPS.2016.68

3. Basupalli, V., et al.: ompVerify: polyhedral analysis for the OpenMP programmer.
In: Proceedings IWOMP, pp. 37–53. LNCS 6665, Springer (2011). https://doi.org/
10.1007/978-3-642-21487-5 4

4. Bora, U., Das, S., Kukreja, P., Joshi, S., Upadrasta, R., Rajopadhye, S.: LLOV: a
fast static data-race checker for openMP programs. TACO 17(4) (2020). https://
doi.org/10.1145/3418597

5. Goncalves, R., Amaris, M., Okada, T.K., Bruel, P., Goldman, A.: OpenMP is not
as easy as it appears. In: Proceedings HICSS, pp. 5742–5751. IEEE (2016). https://
doi.org/10.1109/HICSS.2016.710

6. Jakobs, M.: PatEC: pattern-based equivalence checking. In: Laarman, A., Sokolova,
A. (eds.) SPIN 2021, LNCS, vol. 12864, pp. 120–139 (2021). https://doi.org/10.
1007/978-3-030-84629-9 7

7. Jakobs, M.C.: PEQcheck: localized and context-aware checking of functional equiv-
alence. In: Proceedings FormaliSE, pp. 130–140. IEEE (2021), https://doi.org/10.
1109/FormaliSE52586.2021.00019

8. Leviathan, R., Pnueli, A.: Validating software pipelining optimizations. In: Pro-
ceedings CASES, pp. 280–287. ACM (2002). https://doi.org/10.1145/581630.
581676

9. Li, J., Hei, D., Yan, L.: Correctness analysis based on testing and checking
for OpenMP Programs. In: Proceedings ChinaGrid, pp. 210–215. IEEE (2009).
https://doi.org/10.1109/ChinaGrid.2009.12

10. Li, Z., Atre, R., Huda, Z.U., Jannesari, A., Wolf, F.: Unveiling parallelization
opportunities in sequential programs. J. Syst. Softw. 282–295 (2016). https://doi.
org/10.1016/j.jss.2016.03.045

11. Liao, C., Lin, P.H., Asplund, J., Schordan, M., Karlin, I.: DataRaceBench: a bench-
mark suite for systematic evaluation of data race detection tools. Proc. SC. ACM
(2017). https://doi.org/10.1145/3126908.3126958

12. Liao, C., Quinlan, D.J., Willcock, J., Panas, T.: Extending automatic paralleliza-
tion to optimize high-level abstractions for multicore. In: Proceedings IWOMP, pp.
28–41. LNCS 5568, Springer (2009). https://doi.org/10.1007/978-3-642-02303-3 3

13. Lin, Y.: Static Nonconcurrency analysis of OpenMP programs. In: Proceedings
IWOMP, pp. 36–50. LNCS 4315, Springer (2005). https://doi.org/10.1007/978-3-
540-68555-5 4

14. Ma, H., Diersen, S., Wang, L., Liao, C., Quinlan, D., Yang, Z.: Symbolic analysis
of concurrency errors in OpenMP programs. In: Proceedings ICPP. pp. 510–516.
IEEE (2013). https://doi.org/10.1109/ICPP.2013.63

15. Mattson, T.G., Sanders, B.A., Massingill, B.L.: Patterns for parallel programming.
Addison-Wesley Professional (2013)

16. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns
for Efficient Computation. Morgan Kaufmann Publishers Inc., Burlington (2012)

17. OpenMP: OpenMP application programming interface (version 5.1). Technical
report OpenMP Architecture Review Board (2020). https://www.openmp.org/
specifications/

https://doi.org/10.1007/s10766-017-0548-4
https://doi.org/10.1109/IPDPS.2016.68
https://doi.org/10.1109/IPDPS.2016.68
https://doi.org/10.1007/978-3-642-21487-5_4
https://doi.org/10.1007/978-3-642-21487-5_4
https://doi.org/10.1145/3418597
https://doi.org/10.1145/3418597
https://doi.org/10.1109/HICSS.2016.710
https://doi.org/10.1109/HICSS.2016.710
https://doi.org/10.1007/978-3-030-84629-9_7
https://doi.org/10.1007/978-3-030-84629-9_7
https://doi.org/10.1109/FormaliSE52586.2021.00019
https://doi.org/10.1109/FormaliSE52586.2021.00019
https://doi.org/10.1145/581630.581676
https://doi.org/10.1145/581630.581676
https://doi.org/10.1109/ChinaGrid.2009.12
https://doi.org/10.1016/j.jss.2016.03.045
https://doi.org/10.1016/j.jss.2016.03.045
https://doi.org/10.1145/3126908.3126958
https://doi.org/10.1007/978-3-642-02303-3_3
https://doi.org/10.1007/978-3-540-68555-5_4
https://doi.org/10.1007/978-3-540-68555-5_4
https://doi.org/10.1109/ICPP.2013.63
https://www.openmp.org/specifications/
https://www.openmp.org/specifications/

98 M. Wiesner and M.-C. Jakobs

18. Quinlan, D., Liao, C.: The ROSE source-to-source compiler infrastructure. In:
Cetus users and compiler infrastructure workshop, in conjunction with PACT,
vol. 2011, p. 1. Citeseer (2011)

19. Royuela, S., Ferrer, R., Caballero, D., Martorell, X.: Compiler analysis for OpenMP
tasks correctness. In: Proceedings CF, pp. 11–19. ACM (2015). https://doi.org/
10.1145/2742854.2742882

20. Saillard, E., Carribault, P., Barthou, D.: Static Validation of barriers and work-
sharing constructs in openmp applications. In: Proceedings IWOMP, pp. 73–86.
LNCS 8766, Springer (2014). https://doi.org/10.1007/978-3-319-11454-5 6

21. Salamanca, J., Mattos, L., Araujo, G.: Loop-carried dependence verification in
OpenMP. In: Proceedin IWOMP, pp. 87–102. LNCS 8766, Springer (2014). https://
doi.org/10.1007/978-3-319-11454-5 7

22. Siegel, S.F., et al.: CIVL: the concurrency intermediate verification language. In:
Proceedings SC, pp. 61:1–61:12. ACM (2015). https://doi.org/10.1145/2807591.
2807635

23. Swain, B., Li, Y., Liu, P., Laguna, I., Georgakoudis, G., Huang, J.: OMPRacer:
a scalable and precise static race detector for OpenMP programs. In: Proceedings
SC. IEEE (2020). https://doi.org/10.1109/SC41405.2020.00058

24. Tristan, J., Leroy, X.: A simple, verified validator for software pipelining. In: Pro-
ceedings POPL, pp. 83–92. ACM (2010). https://doi.org/10.1145/1706299.1706311

25. Virouleau, P., Brunet, P., Broquedis, F., Furmento, N., Thibault, S., Aumage, O.,
Gautier, T.: Evaluation of OpenMP dependent tasks with the KASTORS bench-
mark suite. In: Proceedings IWOMP, pp. 16–29. LNCS 8766, Springer (2014).
https://doi.org/10.1007/978-3-319-11454-5 2

26. Ye, F., Schordan, M., Liao, C., Lin, P., Karlin, I., Sarkar, V.: Using polyhedral
analysis to verify openmp applications are data race free. In: Proceedings COR-
RECTNESS@SC, pp. 42–50. IEEE (2018). https://doi.org/10.1109/Correctness.
2018.00010

27. Yu, F., Yang, S., Wang, F., Chen, G., Chan, C.: Symbolic consistency checking
of openmp parallel programs. In: Proceedings LCTES, pp. 139–148. ACM (2012).
https://doi.org/10.1145/2248418.2248438

28. Zhang, Y., Duesterwald, E., Gao, G.R.: Concurrency analysis for shared memory
programs with textually unaligned barriers. In: Proceedings LCPC, pp. 95–109.
LNCS 5234, Springer (2007). https://doi.org/10.1007/978-3-540-85261-2 7

https://doi.org/10.1145/2742854.2742882
https://doi.org/10.1145/2742854.2742882
https://doi.org/10.1007/978-3-319-11454-5_6
https://doi.org/10.1007/978-3-319-11454-5_7
https://doi.org/10.1007/978-3-319-11454-5_7
https://doi.org/10.1145/2807591.2807635
https://doi.org/10.1145/2807591.2807635
https://doi.org/10.1109/SC41405.2020.00058
https://doi.org/10.1145/1706299.1706311
https://doi.org/10.1007/978-3-319-11454-5_2
https://doi.org/10.1109/Correctness.2018.00010
https://doi.org/10.1109/Correctness.2018.00010
https://doi.org/10.1145/2248418.2248438
https://doi.org/10.1007/978-3-540-85261-2_7

	Verifying Pipeline Implementations in OpenMP
	1 Introduction
	2 Using OpenMP to Implement Pipelines
	3 Verifying Correctness of Pipeline Implementations
	3.1 Constructing Task Dependency Graphs
	3.2 Inspecting RAW and WAR Dependencies
	3.3 Checking WAW Dependencies and I/O Availability
	3.4 Handling of Loop Header
	3.5 Implementation

	4 Evaluation
	4.1 Experimental Results

	5 Related Work
	6 Conclusion
	References

