
Alfons Laarman
Ana Sokolova (Eds.)

LN
CS

 1
28

64 Model Checking
Software
27th International Symposium, SPIN 2021
Virtual Event, July 12, 2021
Proceedings

Lecture Notes in Computer Science 12864

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alfons Laarman · Ana Sokolova (Eds.)

Model Checking
Software
27th International Symposium, SPIN 2021
Virtual Event, July 12, 2021
Proceedings

Editors
Alfons Laarman
Leiden University
Leiden, The Netherlands

Ana Sokolova
University of Salzburg
Salzburg, Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-84628-2 ISBN 978-3-030-84629-9 (eBook)
https://doi.org/10.1007/978-3-030-84629-9

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2433-4174
https://orcid.org/0000-0002-8384-3438
https://doi.org/10.1007/978-3-030-84629-9

Preface

This volume contains the proceedings of the 27th International Symposium on Model
Checking Software, SPIN 2021, held online from Leiden, the Netherlands, on July 12,
2021, with a record number of upwards of 250 registered participants. SPIN is a well-
recognized periodic event started in 1995 around the model checking tool SPIN. Since
1995, the event has evolved and has been consolidated as a reference symposium in the
area of formal methods related to model checking. The previous edition of the SPIN
symposium took place in Beijing (China).

The SPIN 2021 edition requested regular papers, short papers, and tool demos in
the following areas: Formal verification techniques for automated analysis of software;
Formal analysis for modeling languages, such as UML/state charts; Formal specification
languages, temporal logic, design-by-contract; Model checking; Automated theorem
proving, including SAT and SMT; Verifying compilers; Abstraction and symbolic exe-
cution techniques; Static analysis and abstract interpretation; Combination of verifi-
cation techniques; Modular and compositional verification techniques; Verification of
timed and probabilistic systems; Automated testing using advanced analysis techniques;
Combination of static and dynamic analyses; Derivation of specifications, test cases, or
other useful material via formal analysis; Case studies of interesting systems or with
interesting results; Engineering and implementation of software verification and analysis
tools; Benchmark and comparative studies for formal verification and analysis tools;
Formal methods of education and training; Insightful surveys or historical accounts
on topics of relevance to the symposium; Relevant tools and algorithms for modern
hardware, e.g. parallel, GPU, TPU, FPGA, cloud, and quantum.

The symposium attracted 20 submissions that were rigorously reviewed by three
Program Committee (PC) members. The selection process included further online
discussion open to all PC members. As a result, eight papers were selected for
presentation at the symposium and publication in Springer’s proceedings. The program
consisted of eight regular papers and three invited talks. Two of the invited speakers
submitted an invited paper on the topic of their talk.

Wewould like to thank all the authorswho submitted papers, the SteeringCommittee,
the PC, the additional reviewers, the invited speakers, the participants, and the organizers
of the cohosted events for making SPIN 2021 a successful event. We also thank all the
sponsors that provided online facilities and financial support to make the symposium
possible.

June 2021 Alfons Laarman
Ana Sokolova

Organization

General Chairs

Alfons Laarman Leiden University, The Netherlands
Ana Sokolova University of Salzburg, Austria

Steering Committee

Dragan Bošnački (Chair) Eindhoven University of Technology, The Netherlands
Susanne Graf Verimag, France
Gerard Holzmann Nimble Research, USA
Stefan Leue University of Konstanz, Germany
Neha Rungta Amazon Web Services, USA
Jaco van de Pol Aarhus University, Denmark
Willem Visser Stellenbosch University, South Africa

Program Committee

Jiří Barnat Masaryk University, Czech Republic
Maurice H. ter Beek ISTI-CNR, Italy
Tom van Dijk University of Twente, The Netherlands
Vedran Dunjko Leiden University, The Netherlands
Stefan Edelkamp University of Koblenz, Germany
Grigory Fedyukovich Florida State University, USA
Henri Hansen Tampere University of Technology, Finland
Arnd Hartmanns University of Twente, The Netherlands
Gerard Holzmann Nimble Research, USA
Antti Hyvärinen Università della Svizzera italiana, Italy
Nils Jansen Radboud University Nijmegen, The Netherlands
Peter Gjøl Jensen Aalborg University, Denmark
Sung-Shik Jongmans Open University of the Netherlands and CWI,

The Netherlands
Jeroen Keiren Eindhoven University of Technology, The Netherlands
Igor Konnov Inria, France
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Kuldeep S. Meel National University of Singapore, Singapore
Alice Miller University of Glasgow, UK
Sergio Mover École Polytechnique, France
Rajagopal Nagarajan Middlesex University, UK
Doron Peled Bar Ilan University, Israel
Tatjana Petrov University of Konstanz, Germany

viii Organization

Jaco van de Pol Aarhus University, Denmark
Stephen F. Siegel University of Delaware, USA
Carsten Sinz Karlsruhe Institute of Technology, Germany
Jiří Srba Aalborg University, Denmark
Michael Tautschnig Amazon Web Services, USA
Yann Thierry-Mieg Sorbonne University, France
Yakir Vizel Technion, Israel
Georg Weissenbacher Vienna University of Technology, Austria
Anton Wijs Eindhoven University of Technology, The Netherlands

Additional Reviewers

Frederik M. Bønneland
Morten Konggaard Schou
Sebastian Junges
Bram Kohlen

Contents

Invited Talks

The Marriage Between Safety and Cybersecurity: Still Practicing 3
Marielle Stoelinga, Christina Kolb, Stefano M. Nicoletti,
Carlos E. Budde, and Ernst Moritz Hahn

A Hands-On Introduction to Spatial Model Checking Using VoxLogicA –
Invited Contribution . 22
Vincenzo Ciancia, Gina Belmonte, Diego Latella, and Mieke Massink

Model Checking

Accelerating the Computation of Dead and Concurrent Places Using
Reductions . 45
Nicolas Amat, Silvano Dal Zilio, and Didier Le Botlan

Spotlight Abstraction in Model Checking Real-Time Task Schedulability 63
Madoda Nxumalo, Nils Timm, and Stefan Gruner

Verifying Pipeline Implementations in OpenMP . 81
Maik Wiesner and Marie-Christine Jakobs

Tool Papers

C-SMC: A Hybrid Statistical Model Checking and Concrete Runtime
Engine for Analyzing C Programs . 101
Antoine Chenoy, Fabien Duchene, Thomas Given-Wilson, and Axel Legay

PatEC: Pattern-Based Equivalence Checking . 120
Marie-Christine Jakobs

Go2Pins: A Framework for the LTL Verification of Go Programs 140
Alexandre Kirszenberg, Antoine Martin, Hugo Moreau,
and Etienne Renault

Probabilistic Model Checking of Randomized Java Code . 157
Syyeda Zainab Fatmi, Xiang Chen, Yash Dhamija, Maeve Wildes,
Qiyi Tang, and Franck van Breugel

x Contents

Case Studies

A Model-Checked I2C Specification . 177
Lukas Humbel, Daniel Schwyn, Nora Hossle, Roni Haecki,
Melissa Licciardello, Jan Schaer, David Cock, Michael Giardino,
and Timothy Roscoe

Author Index . 195

Invited Talks

The Marriage Between Safety
and Cybersecurity: Still Practicing

Marielle Stoelinga1,2(B) , Christina Kolb1, Stefano M. Nicoletti1 ,
Carlos E. Budde3 , and Ernst Moritz Hahn1

1 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{m.i.a.stoelinga,c.kolb,s.m.nicoletti,c.e.budde,e.m.hahn}@utwente.nl

2 Department of Software Science, Radboud University, Nijmegen, The Netherlands
3 Department of Information Engineering and Computer Science,

University of Trento, Trento, Italy
carlosesteban.budde@unitn.it

Abstract. Emerging technologies, like self-driving cars, drones, and the
Internet-of-Things must not impose threats to people, neither due to
accidental failures (safety), nor due to malicious attacks (security). As
historically separated fields, safety and security are often analyzed in
isolation. They are, however, heavily intertwined: measures that increase
safety often decrease security and vice versa. Also, security vulnera-
bilities often cause safety hazards, e.g. in autonomous cars. Therefore,
for effective decision-making, safety and security must be considered in
combination.

This paper discusses three major challenges that a successful integra-
tion of safety and security faces: (1) The complex interaction between
safety and security (2) The lack of efficient algorithms to compute
system-level risk metrics (3) The lack of proper risk quantification
methods. We will point out several research directions to tackle these
challenges, exploiting novel combinations of mathematical game theory,
stochastic model checking, as well as the Bayesian, fuzzy, and Dempster-
Schafer frameworks for uncertainty reasoning. Finally, we report on early
results in these directions.

Keywords: Safety · Security · Model-based · Interaction · Fault
trees · Attack trees · Fault tree-attack tree integration

1 Introduction

New technology comes with new risks: drones may drop on to people, self-driving
cars may get hacked, medical implants may leak in people’s body. Such risks
concern both accidental failures (safety) and malicious attacks (security). Here,
security refers to the property that allows the system to perform its mission
or critical functions despite risks posed by threats [25]. Safety, in contrast, is
the absence of risk of harm due to malfunctioning behavior of technological
systems [32].

This work was partially funded by ERC Consolidator Grant 864075 (CAESAR).
c© Springer Nature Switzerland AG 2021
A. Laarman and A. Sokolova (Eds.): SPIN 2021, LNCS 12864, pp. 3–21, 2021.
https://doi.org/10.1007/978-3-030-84629-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84629-9_1&domain=pdf
http://orcid.org/0000-0001-6793-8165
http://orcid.org/0000-0001-5522-4798
http://orcid.org/0000-0001-8807-1548
http://orcid.org/0000-0002-9348-7684
https://doi.org/10.1007/978-3-030-84629-9_1

4 M. Stoelinga et al.

Safety and security are heavily intertwined. Measures that increase safety
may decrease security and vice versa: the Internet-of-Things offers ample oppor-
tunities to monitor the safety of a power plant, but their many access points are
notorious for enabling hackers to enter the system. Passwords secure patients’
medical data, but are a hindrance during emergencies. It is therefore widely
acknowledged, also by international risk standards [21,39], that safety and secu-
rity must be analyzed in combination [3,36]. The overarching challenge in safety
and security risk management is decision making: which risks are most threat-
ening, and which countermeasures are most (cost-)effective? Such decisions are
notoriously hard to take: it is well-known (e.g. from Nobel prize winner Daniel
Kahneman [24]) that people, have very poor intuitions for risks and probability.

Vision. To make effective decisions, risk management should be accountable.
1. systematic, so that no risks are overlooked;
2. transparent, so that experts can share and discuss their viewpoints;
3. objective, i.e. based on recorded facts and figures, rather than on (fallible)

intuitions.

Hurdles. Tough hurdles that have hindered the effective integration of safety
and security [1,32] are their opposite perspectives on:

H1. User intention: safety concerns unintended mishaps, while security is about
malicious attacks.

H2. Dynamics: Whereas safety analysis is often static, developing design-time
solutions; security demands constant defence against new vulnerabilities.

H3. Risk quantification: Whereas safety analysis can fruitfully exploit historic
failure data, risk quantification for security is a major open problem. With
hackers continuously changing their targets and strategies, historic data is
of little value. Therefore, security decisions are often based on subjective
estimates.

The demanding challenge in safety-security co-analysis is to overarch these dia-
metrical viewpoints.

Challenges. To overcome these hurdles above and make decision making about
safety and security less ad hoc, and more systematic, transparent, and quanti-
tative, three challenges have to be solved.

– A systematic way to map safety and security risks, identifying how failures
and vulnerabilities propagate through the system and lead to system level
disruptions.

– Effective algorithms to compute system level risk safety and security metrics,
together with diagnostic algorithms that explain how such metrics arise, and
how one could improve these.

– Novel risk quantification methods. Reliable numbers are indispensable in deci-
sion making. Since objective data is often not available, we need algorithms
that reason under uncertainty.

The Marriage Between Safety and Cybersecurity: Still Practicing 5

The ERC project CAESAR. The ERC-funded project CAESAR picks up
the challenges above, exploring three novel directions:

1. Game-theoretic methods uniting the cooperative versus malicious user inten-
tion in safety versus security (H1). Our aim is to model the attacker versus
defender as two players in a stochastic game. We will focus on a time depen-
dent game (H2) that faithfully models the complex interaction between safety
and security aspects.

2. Stochastic model checking techniques to compute safety-security risk metrics.
Metrics are pivotal to prioritize risks and select effective countermeasures, as
they clarify how failures and attacks affect system-level performance. Since
risk is defined as a combination of likelihood and severity, metrics are stochas-
tic by nature. Apart from computing numbers, we will also elucidate how these
numbers arise.

3. Risk quantification methods that handle data uncertainty. Effective decision
making requires insight in the most frequent failures and attacks. Since objec-
tive data is scarce, security decisions are often based on subjective esti-
mates. We will combine objective and subjective probabilities, exploiting three
prominent frameworks for data uncertainty: Bayesian reasoning, fuzzy logic
and Dempster-Schafer theory. These explicate the underlying assumptions
and (dis)agreements about risks.

Contributions. This paper outlines the first results and the approach taken in
CAESAR: we present findings of a literature survey, where we compare existing
formalisms for safety-security co-analysis and identify several gaps. An important
outcome of our survey is that most of these formalisms are based on various
combinations of the popular formalisms of attack trees for security analysis and
fault trees for safety analysis. One important instance of a research gap is that in
fault trees and attack trees OR-gates are interpreted in a different manner. This
difference in interpretation is not considered in current analysis algorithms. To
obtain a unified framework for safety and security building on these mechanisms,
we thus have to unify the interpretation of such gates. Afterwards, we outline how
CAESAR aims to solve such gaps. We discuss how recent results in attack tree
analysis provides results for tree-shaped attack trees and fault trees as well as a
formal semantics of DAG-shaped attack trees and fault trees. In these results,
we exploit methods based on binary decision diagrams. Throughout the paper,
we indicate current results as well a research gaps.

Organization of the Paper. Section 1 has provided an introduction to this
paper. Section 2 provides some background on the interaction between safety and
security and on the two formalisms attack trees and fault trees. Section 3 presents
an overview of formalisms of safety-security co-analysis. Section 4 provides a
comparison between attack trees and fault trees, highlighting similarities and
differences and defining metrics. Section 5 discusses analysis algorithms for attack
and fault trees. Section 6 concludes the paper.

6 M. Stoelinga et al.

2 Background

Attack Trees and Fault Trees. Attack trees and fault trees are popular
models in dependability analysis, representing respectively how low-level attacks
and failures propagate through the system and lead to system-level disruptions.
As shown in Fig. 1, these are tree-like structures that culminate in a top level
event (TLE), which models a system-level failure or attack. The TLE is thus
refined via intermediate events, equipped with gates: the AND-gate indicates
that all children must fail (be attacked) in order for the gate to fail (be attacked).
For the OR-gate to fail (be attacked), at least one of its children need to fail (be
attacked). The leaves in a FT are called basic events (BEs) and model atomic
failures; the leaves in ATs model atomic attack steps, called basic attack steps
(BASs). Despite their names, FTs and ATs are directed acyclic graphs, since
intermediate events can share children.

Fig. 1. Fault tree (left), attack tree (center) and their combination (right). These rep-
resent respectively safety, security, and combined risks. In the FT, for the intermediate
event “locked in during fire” to happen, both a fire and the door being locked have to
occur, modelled through an AND-gate. In the AT, for an attacker to breach the front
door he/she needs to either walk through an unlocked door or to force a locked door,
modeled as an OR. On the right, a possible combination of ATs and FTs in the attack
fault trees formalism [46].

FTs and ATs enable numerous analysis methods [28]: Cut set analysis
indicates which combinations of BEs or BASs lead to the TLE. The set
{Fire, Locked} is a cut set in Fig. 1. Quantitative analyses compute depend-
ability metrics, such as the system reliability, attack probabilities and costs. For
example, by equipping the BEs and BASs with probabilities, one can compute
the likelihood of a system level failure or attack to occur.

Both FTs and ATs are part of international standards [14] and have been
used to analyse numerous case studies [11,19,48]. FTs and ATs also feature some
differences: FTs often focus on probabilities, whereas ATs consider several other
attributes, like cost, effort and required skills. Further, FTs have been extended
with repairs [44], and dynamic gates [17,22]; ATs with defenses, and sequential
AND (SAND) gates [19,27].

The Marriage Between Safety and Cybersecurity: Still Practicing 7

Section 4 presents a more formal treatment of fault trees and attack trees,
and in particular their different quantitative interpretation of the OR-gate. Their
comparison is summarized in Table 3.

Safety-Security Dependencies. One of the key challenges in safety-security
co-analysis is to model their interaction. The paper [32] has identified four safety-
security dependencies:

– Conditional dependency means that fulfillment of safety requirements condi-
tions security or vice-versa.

– Mutual reinforcement means that fulfillment of safety requirements or safety
measures contributes to security, or vice-versa, thereby enabling resource opti-
mization and cost reduction.

– Antagonism arises when safety and security requirements or measures, con-
sidered jointly, lead to conflicting situations.

– Independency means that there is no interaction between safety and security
properties.

Figure 1 shows a classical example of antagonism: the door needs to be locked
in order to prevent an attacker from entering the house (security requirement),
but it has to be unlocked to allow the owner to escape during a fire (safety
requirement). In this scenario, mutual reinforcement can be achieved by intro-
ducing a fire door: this contributes to safety by limiting the spread of an even-
tual fire and to security by increasing the robustness of the door, thus making
it harder to breach. Conditional dependency is, in our view, always present: for
the lock to ensure security, it must function properly. E.g., it must not break
when locking door. Similarly, safety solutions must be secure and not be hacked:
it must not be possible to easily force the door open.

3 Formalisms for Safety-Security Co-analysis:
An Overview

3.1 The Formalisms

As a first step in the CAESAR project, we carried out a literature survey [26],
comparing the most prominent formalisms for safety-security co-analysis. Via
a systematic literature search [8], which also considered earlier surveys on this
topic [12,32,38], we have identified 10 important formalisms for model-based
safety-security co-analysis. These are summarized in Table 1.

A first remarkable result of our survey is that the majority of safety-security
formalisms combines attack trees (ATs) and fault trees (FTs). ATs and FTs are
well established formalisms, extensively used in industry and academia. As pre-
viously mentioned, they are similar nature, and model respectively how failures
and attacks propagate through a system. In that sense, combining attack trees
and fault trees is a natural step. We further divided these approaches into two
categories (plain combinations and extended combinations). A third category
comprises architectural formalisms.

8 M. Stoelinga et al.

Table 1. Overview of safety-security formalisms. Citations from Google Scholar, April
2021.

Formalism Ref. Year #Citations
Fault Tree/Attack Tree Integration (FT/AT) [18] 2009 170
Component Fault Trees (CFTs) [46] 2013 52
Attack-Fault Trees (AFTs) [33] 2017 56
State/Event Fault Trees (SEFTs) [42] 2013 25
Boolean Driven Markov Processes (BDMPs) [31] 2014 36
Attack Tree Bow-ties (ATBTs) [5] 2017 9
STAMP [20] 2017 120
SysML [40] 2011 72
Architectural Analysis and Design Language (AADL) [16] 2020 0
Bayesian Networks (BNs) [30] 2015 46

1. Plain combinations of attack trees and fault trees. These formalisms combine
attack trees and fault trees without adding additional constructs: fault tree/at-
tack trees (FT/AT) [18], which investigate how the a basic event of a FT can
be triggered by an attacker, refining these with ATs with the event in question
as goal, component fault trees (CFTs) [46] merge attack trees and fault trees
without any restrictions, Attack-Fault Trees (AFTs) [33] merge dynamic attack
trees and dynamic fault trees.

2. Extensions of attack trees-fault tree combinations. These merge attack trees,
fault trees with additional constructs: State/Event Fault Trees (SEFTs) [42]
exploit Petri nets to refine the basic attack steps in an attack tree and the
basic component failures in a fault tree. The Petri nets can for instance model
that the attack and failure behavior is different depending whether a door is
open or closed. Boolean Driven Markov Processes (BDMPs) [31] extend attack
trees and fault trees with both Petri nets and triggers. The latter model sequen-
tial behaviour, where one fault or attack triggers another one. Finally, Attack
Tree Bow-ties (ATBTs) [5], extend bowties [37] with attack trees, where bowties
themselves combine fault trees with event trees.

3. Architectural formalisms and bayesian networks. Apart from combinations of
attack trees and fault trees, we identified a third category, containing formalisms
that take as a starting point the system architecture: The Systems-Theoretic
Accident Model and Processes (STAMP) [20], is an accident causality model,
rooted in the observation that system risks do not come from component fail-
ures, but rather from inadequate control or enforcement of safety and security
constraints. Systems-Theoretic Process Analysis then systematically identifies
the consequences of incorrect control and feedback actions, e.g., when these
happen too early, in the wrong order, or were maliciously inserted.

The Marriage Between Safety and Cybersecurity: Still Practicing 9

SysML-sec [43] extend the SysML modeling framework with safety and secu-
rity requirements, which can be checked using model checkers. In particular,
SysML-sec supports the modelling of communication channels between processes
with the encryption methods and their complexity overhead.

The Architectural Analysis and Design Language (AADL) [16] enables safety
analysis, via the AADL error model, and security analysis via the AADL LAMP
extension. In this way the same AADL model can be separately analyzed to
investigate safety and security properties.

Finally, albeit somewhat artificially, we also put Bayesian Networks (BNs)
for safety-security analysis in this category [30]. This model allows to represent
probabilistic dependencies between several variables via a directed acyclic graph.
BNs are used to model safety and security dependencies. The two root nodes
represent system safety and security. BNs can analyze which nodes influence
other nodes and how (conditional independence analysis) calculate reliability
metrics.

3.2 Findings

The analysis we performed highlighted some notable findings, summarized in
Table 2. For each analyzed formalism we highlight the dependencies it captures,
its modeling constructs, the analysis types it enables, case studies that were
performed deploying this formalism and possible tools.

Table 2. Comparison of safety-security formalisms. A = Antagonism, CD =
Conditional Dependency, MR = Mutual reinforcement, I = Independence. ∗ = capable
when NOT-gate is supported. → = capable but only directional from security to safety.

Formalism Dependencies Modelling Analysis Application Tool
A CD MR I QL QT

FT/AT ∗ → x ATs refine FT leaves x x Chemical plant
CFTs ∗ x x x Merge ATs+FTs x x Cruise control
AFTs x x x x Merge dynamic ATs+FTs x x Pipeline, lock door UPPAAL
SEFTs x → x x FTs+Petri nets x x Tyre pressure, lock door ESSaRel
BDMPs x x x x Triggers, Petri nets x x Pipeline, lock door KB3, Figaro
ATBTs ∗ → x Bowties+FT/AT x x Pipeline, Stuxnet
STAMP x Process controller x Synchronous-islanding
SysML System components x Embedded systems TTool
AADL x System components+ports x Lock door Cheddar, Marzhin
BNs x x x x Conditional prob x x Pipeline MSBNx

Finding #1: The majority of approaches combine attack trees and
fault trees. As stated, six out of the ten formalisms combine attack trees and
fault trees. This is not surprising, since FTs and ATs are well established model-
based formalisms, extensively used both in industry and academia.

10 M. Stoelinga et al.

Finding #2: No novel modeling constructs are introduced. Despite the
shown combinations and extensions, existing safety-security co-analysis do not
introduce novel modeling constructs to capture safety-security interactions. They
do merge existing safety and security formalisms, however they do not add new
operators. As such, they are suited to represent safety and security features in
one model, but do not seem to appropriately capture the interaction between
them.

Finding #3: Safety-security interactions are still ill-understood. In
spite of the definitions provided in [32], we are convinced that safety-security
interactions can still be defined more thoroughly by adopting more rigour and
by focusing on requirements and events. In particular, it is not so clear to which
entities the safety-security interactions refer: do these concern safety-security
requirements, measures, or something else? Clarifying their definitions is a pre-
requisite for properly modeling safety-security interactions in a mathematical
formalism.

Finding #4: No novel metrics were proposed. Analyzed formalisms adopt
classic metrics, such as mean time to failure and attacker success probabilities.
However, none of them introduce new metrics to quantify safety-security depen-
dencies or to analyze trade-offs, e.g., through Pareto analysis. New metrics and
trade offs are paramount to understand the interaction between safety and secu-
rity aspects.

Finding #5: No large case studies were carried out. To the best of
our knowledge, no large case studies were carried out. The majority of analyzed
papers present small examples used to showcase the formalism in question. Some
notable exceptions are [31] and [33]: here, the medium-sized example of a pipeline
is presented. However for safety and security, when considered separately, large
case studies do exist [7].

Finding #6: Different formalisms model different safety-security inter-
actions. As shown in Table 2, only AFTs, BDMPs and BNs can unconditionally
model all four dependencies between safety and security. CFTs and SEFTs can
model them provided with extensions/with some limitations.

Research gaps.
• Realistic large-sized case studies concerning safety-security interactions are

still missing. Performing large-sized case study analysis would contribute
to further address additional gaps:

• It would clarify the nature of safety-security interactions, that are cur-
rently still ill-understood. Furthermore, it would help improve standard
definitions for safety-security interdependencies;

• From this understanding, novel metrics and novel modeling constructs for
safety-security co-analysis - that are still missing - could be developed.

The Marriage Between Safety and Cybersecurity: Still Practicing 11

4 Attack Trees Versus Fault Trees

We saw that most safety-security formalisms combine attack trees and fault trees.
This is a natural step, since attack trees and fault trees bear many similarities.
What is less known, is that they also feature a number of remarkable differences,
elaborated in [10]. In particular, the interpretation of the OR-gate is crucially
different in attack trees than in fault trees, and therefore their analysis should
not be mindlessly combined. Below, we present the most remarkable similarities
and differences, summarized in Table 3.

Table 3. Differences between attack and fault trees

Syntax Attack trees Fault trees
Leaves Basic attack steps (BAS) Basic events (BEs)
Non-leaves Subgoals Intermediate events (IEs)
Static gates AND, OR AND, OR, VOT
Dynamic gates SAND SPARE, FDEP, PAND
Other extensions Defenses Repairs, maintenance
Analysis
Qualitative (Minimal) attack vectors/scenarios (Minimal) cut sets
Attributes probability, cost, time, skill, impact probability
Metrics Min cost, time, skill Reliability, availability,

Max impact, probability MTTF, MTBF
Semantics
Qualitative Structure function Structure function
Stochastic

AND(a,b) pa · pb pa · pb
OR(a,b) min(pa, pa) pa + pb − pa · pb

4.1 Attack Trees Versus Fault Trees

It is no surprise that ATs and FTs are similar to each other, since ATs were
inspired by FTs. FTs were introduced in 1961 at Bell Labs to study a ballis-
tic missile [13,45,47]. Weiss introduced threat logic trees—the origin of ATs—in
1991, and its “similarity. . . to fault trees suggests that graph-based security mod-
elling has its roots in safety modelling” [28].

Attack trees and fault trees come in various variants and extensions. Follow-
ing [9], we categorize these along two axes. First, we distinguish between static
and dynamic trees. Static attack and fault trees are equipped with Boolean gates.
Dynamic trees come with additional gates to model time-dependent behavior.

12 M. Stoelinga et al.

Second, we distinguish between tree-shaped and DAG-shaped trees. Trees are rel-
atively easy to analyse via a bottom up algorithm. This algorithms works for
all quantitative attributes (cost, time, probability) as long as they constitute an
attribute domain.

4.2 The Static Case

Syntax. The basic variants, called static or standard fault and attack trees,
have the exact same syntax: trees or dags equipped with AND and OR gates.
Fault trees often contain a (k, m) voting gate, which fails if k out of the n inputs
fail; these can however be expressed in terms of AND and OR gates. We use the
word disruption tree (DT) for either an attack tree or a fault tree.

Formally, DTs are rooted dags with typed nodes, for which we consider
types T = {LEAF, OR, AND}. For Booleans we use B = {1, 0}. The edges of a
DT are given by a function ch that assigns to each node its (possibly empty)
sequence of children. We use set notation for sequences, e.g. e ∈ (e1, . . . , em)
means ∃i. ei = e, and we denote the empty sequence by ε.

Definition 1. A disruption tree is a tuple T = (N , t, ch) where:
– N is a finite set of nodes;
– t : N → T gives the type of each node;
– ch : N → N ∗ gives the sequence of children of a node.

Moreover, T satisfies the following constraints:
– (N , E) is a connected dag, where E =

{
(v, u) ∈ N 2 | u ∈ ch(v)

}
;

– T has a unique root, denoted RT : ∃!RT ∈ N . ∀v ∈ N . RT �∈ ch(v);
– leafT nodes are the leaves of T: ∀v ∈ N . t(v) = LEAF ⇔ ch(v) = ε.

4.3 Semantics

Semantics pin down the mathematical meaning for attack and fault trees. The
semantics of both fault trees and attack trees is given in terms of their structure
function, indicating which sets of leaves cause the top level events to happen.

Thus, the structure function of a disruption tree T is a function fT : Bn → B.
Technically, a status vector v = 〈v1, . . . , vn〉 indicates for each leaf i whether it
was disrupted, i.e., vi = 1 if leaf i has failed or was attacked. Then fT (v) ∈ {0, 1}
indicates whether the whole system was disrupted. This function can be defined
recursively in the nodes of T : fT (v, A) tells whether A ⊆ leaf suffices to disrupt
node v ∈ N of T , where A encodes v as usual.

Definition 2. The structure function fT : N × 2leaf → B of a disruption tree
T is given by:

fT (v,A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if t(v) = OR and ∃u ∈ ch(v).fT (u,A) = 1,

1 if t(v) = AND and ∀u ∈ ch(v).fT (u,A) = 1,

1 if t(v) = LEAF and v ∈ A,

0 otherwise.

The Marriage Between Safety and Cybersecurity: Still Practicing 13

The structure function can be used to asses suites: a disruption suite S ⊆
2leaf represents all ways in which the system can be compromised. From those,
one is interested in disruptions A ∈ S that actually represent a threat. These
correspond to (minimal) cut sets in fault trees and attack scenarios in attack
trees. To find them, we let fT (A) .= fT (RT , A) and call disruption A successful if
fT (A) = 1, i.e. it makes the top-level of T succeed (resp. be attacked or failed).
If, moreover, no proper subset of A is successful then A is a minimal disruption.

It is well known that attack trees and fault trees are coherent [4], meaning
that adding attack steps/basic events preserves success: if A is causes the TLE
to happen, then so is A ∪ {a} for any a ∈ leaf. Thus, the suite of successful
disruptions of an DT is characterised by its minimal disruptions.
Definition 3. The semantics of a static DT T is its suite of minimal disrup-
tions: �T � =

{
A ⊆ 2leaf | fT (A) ∧ A is minimal

}
.

4.4 Metrics for Attack and Fault Trees

Dependability metrics quantify key performance indicators (kpis), that quan-
tify several dependability characteristics of a system. Such metrics serve sev-
eral purposes, e.g. allowing to compare different design alternatives w.r.t. the
desired dependability features; computing the effectiveness of measures; verify-
ing whether a solution meets its dependability requirements; etc.

Metrics for attack trees focus on a wide variety of attributes, such as the
cost of an attack, its time and, success probability. These can be conveniently
summarized via an attribute domain [35]. Metrics for fault trees focus on proba-
bilistic aspects, such as the system reliability (i.e. the probability that a system
fails within its mission time T), the availability (i.e., the average percentage of
time that the system is up), mean time to failure, etc.

Attribute Metrics. We define dependability metrics for DTs in three steps:
first an attribution α enrich the leaves with attributes, assigning a value to each
a ∈ leaf, then a dependability metric α̂ assigns a value to each disruption
scenario A; and finally the metric qα assigns a value to each disruption suite.

Example 1. Consider the AT in Fig. 1b. The metric we study is the time required
to execute a successful attack. Thus, the attribution α equips each AT leaf with
its attack time, setting e.g. α(Attacker forces door) = 5, α(Door unlocked) = 0
and α(Attacker tries door) = 2. If all attack steps are executed sequentially, then
the time needed to execute an attack A = {a1, . . . an} is sum of the attack times
of the BASs:

α̂(a1, . . . an) =
n∑

i=1
α(ai)

Both for attackers and defenders of the system, it is relevant to consider the
shortest attack in an attack suite S:

qα({A1, . . . An}) = min{α̂(A1), . . . α̂(An)}

14 M. Stoelinga et al.

Other metrics give rise to other attribute definitions. For example, the success
probability of an attack is the product of the success probabilities of the BAS.
The probability of attack suite S is the probability of the most successful attack
in S. The cost of an attack is the sum of the cost of the BASs, and the cost of an
attack suite is the minimum cost of its attacks. A formal definition is as follows.

Definition 4. Given a DT and a set V of values:

1. an attribution α : leaf → V assigns an attribute value α(a), or shortly an
attribute, to each leaf a;

2. a dependability metric over disruptions is a function α̂ : AT → V that assigns
a value c to each disruption A;

3. a dependability metric over disruption suites is a function and to a function
qα : ST → V that assigns a value qα(S) to each disruption suite S.

We write qα(T) for qα(�T �), setting the metric of a DT to the metric of its minimal
disruption suites.

Remark 1. We choose the notation α̂ for metrics over disruptions, since ˆ resem-
bles �, and α̂(A) corresponds to the interpretation of the AND gate. Similarly,
qα resembles �, and corresponds to the OR gate, since qα(S) often chooses the
best disruption set among all A ∈ S.

Different Metric Interpretation of the OR-Gate. It is important to realize
that the quantitative interpretation of the OR-gate is different in attack trees
than in fault trees. Fault trees assume that all components work in parallel.
Thus, component i fails with probability pi, the fault tree OR(C1, C2) fails with
probability p1 + p2 − p1 · p2. In attack trees, the OR-gate works in parallel. The
interpretation of the attack tree OR(C1, C2) is that the attacker executes either
C1 or C2. Since the attacker maximizes their success probability, the probability
on a successful attack in the tree OR(C1, C2) equals max(p1, p2).

This distinction is completely ignored in the analysis methods for all six
attack-fault combinations/extensions [5,18,31,33,42,46]. In particular, the anal-
ysis methods for computing probabilities may not account for the different inter-
pretation of the OR-gates related to safety or security events. This could further
lead to incorrect computations of dependability metrics e.g., probability values.

5 Analysis Algorithms for Attack and Fault Trees

Numerous analysis methods for quantitative analysis of attack trees and fault
trees exist [2,6,15,23,29,41,45]. In this section, we give an overview of two com-
mon algorithms for fault trees and attack trees.

The Marriage Between Safety and Cybersecurity: Still Practicing 15

5.1 Algorithms for Tree-Shaped DTs

We first provide the algorithms for tree-structured DTs, where every node in the
graph has a single parent. These can be analyzed via a bottom-up algorithm,
propagating the values from the bottom to the root of the tree. In order for this
procedure to work for all metrics, we combine the inputs of the AND-gate using
an operator �, and the inputs of the or gate via �. Then this procedure works
whenever the algebraic structure (V , �, �) constitutes a semiring [35].

Next, we treat the computationally more complex DAG-structured DTs.
These can be analyzed by converting the DT to a binary decision diagram
(BDD). Again, this works if (V , �, �) is a semiring [9].

Input: Tree-structured DT T ,
node v from T ,
attribution α : BAST → V ,
semiring attribute domain
D = (V, �, �).

Output: Metric value α̌(T) ∈ V

from node v downwards.
1 if t(v) = OR then
2 return

�
u∈ch(v) BU(T, u, α, D)

3 else if t(v) = AND then
4 return

�
u∈ch(v) BU(T, u, α, D)

5 else // t(v) = BAS
6 return α(v)

Algorithm 1: BU for tree DTs

Input: BDD BT from static DT T ,
node w from BT ,
attribution α : BAST → V , semiring
attribute domain
D∗ = (V, �, �, 1�, 1�).

Output: Metric value α̌(T) ∈ V from node
w downwards.

1 if Lab(w) = 0 then
2 return 1�
3 else if Lab(w) = 1 then
4 return 1�
5 else // non-terminal Lab(w) = v ∈ BAST

6 return BDD(BT , Low(w), α, D∗) �(
BDD(BT , High(w), α, D∗) � α(v)

)

Algorithm 2: BDD for static DAG DTs

Fig. 2. Algorithm 1 for min. attack
time.

Example 2. We illustrate the (straightfor-
ward) bottom up algorithm via the attack
tree in Fig. 2. We compute the time required
to reach the top event, with the same
attribute values as before: Abbreviating f =
Attacker forces door, u = Door unlocked and
t = Attacker tries door, we have α(f) = 5,
α(u) = 0 and α(t) = 2. The bottom up com-
putation first computes the time required to
achieve the subgoal “Attacker walks through
door”, abbreviated as w. Since the attack
time metric interprets the AND-gate as the sum, we take � = + and obtain
the value for w as the sum of the metric values of its children “Attacker forces
door” and “Door unlocked”, abbreviated u and f respectively.

qα(w) = qα(f) � qα(u) = α(f) � α(u) = 0 + 2 = 2.

Similarly, we compute the time required for the TLA “Attacker breaches
door”, abbreviated as b. Since the attack time metric interprets the OR-gate as

16 M. Stoelinga et al.

the minimum, we take � = min and obtain the value for b as the minimum of
the metric values of its children f and w:

qα(b) = qα(f) � qα(u) = min(α(f), α(u)) = min(5, 2) = 2.

The above procedure, formalized in Algorithm 1, works whenever the struc-
ture (V , �, �) constitute an attribute domain. Note that this algorithm is linear
in the number of DT nodes.

Definition 5. Let V be a set:

1. an attribute domain over V is a tuple D = (V , �, �), whose disjunctive
operator � : V 2 → V, and conjunctive operator � : V 2 → V, are associative
and commutative;

2. the attribute domain is a semiring1 if � distributes over �, i.e. ∀ x, y, z ∈
V . � (y � z) = (x � y) � (x � z);

3. let T be a static DT and α an attribution on V . The metric for T associated
to α and D is given by:

qα(T) =
�

A∈�T�
︸ ︷︷ ︸

qα

�

a∈A
︸ ︷︷ ︸

α̂

α(a).

5.2 Algorithms for DAG-Shaped DTs

Fig. 3. DAG-shaped AT (left) and its
BDD (right).

DTs with shared subtrees cannot be
analysed via a bottom-up procedure
on their DAG structure. This is a clas-
sical result from fault tree analysis
[34]. Intuitively, the problem is that a
visit to node v in any bottom-up pro-
cedure that operates on the DT struc-
ture can only aggregate information on
its descendants.

This is illustrated by the DAG-
shaped AT in Fig. 3: We assign attack time to the leaves: α(a) = 3, α(b) = 2
and α(c) = 4. Then the bottom up algorithm yields the following results: for
the OR-gates, we take the minimum value between the children, which both
equal 2, and for the AND-gate we sum the values of the children, resulting in 4.
However, this computation does not take the sharing of b into account. In fact,
the shortest attack is to take the BAS b, which takes time 2.

As a matter of fact, computing metrics in a DAG-structured DT T is an
NP-complete problem. Various methods to analyse DAG-structured DTs have
1 Since we require � to be commutative, D is in fact a commutative semiring. Further,

rings often include a neutral element for disjunction and an absorbing element for
conjunction, but these are not needed in Definition 5.

The Marriage Between Safety and Cybersecurity: Still Practicing 17

been proposed: contributions over the last 15 years include [2,6,15,23,29]. We
now detail our recent work on binary decision diagrams (BDDs) [9].

BDD Algorithms. BDDs offer a very compact representation of Boolean func-
tions, and can therefore represent the structure function of a DT T : Each BDD
node v is labeled with a leaf a of T , and has two children: its left node vL (reached
via a dashed line) represents the structure function of T in case a has the value
0; its right child vR (reached via a solid line) represents the structure function
of T in case a evaluates to 1. The key insight in [9] is that the values of an
attribute domain can be computed recursively over this BDD, thereby avoiding
duplication of values as in Fig. 3. The idea is as follows. The value for the BDD
terminal node labeled with 0 is set to the constant 1� ∈ V ; the BDD terminal
node labeled with 1 is set to 1� ∈ V . For an internal node v with children vL

and vR, we proceed as follows: When choosing vR, i.e. the basic event a occurs,
we extend the value computed at vR with the attribute value of a. We do so via
the � operator, since taking the right child corresponds to executing both a and
all leaves needed in α(vR). If a is not executed, then we do not incur the value
of α(a), and only take qα(vL). Now, the best disruption (i.e. attack or cut set) is
obtained by choosing the best option, by deploying the � operator: either one
does not execute a, incurring qα(vL), or executes a and incurs α(a)� qα(vR). This
yields the value qα(v) = qα(vL) � (α(a) � qα(vR)). This is illustrated in (Fig. 3, in
blue). As we can see, the TLE can fail either by the failure of b in 2 time units
or by the failure of a and c but not of b, in 7 time units. Algorithm 2 shows the
pseudocode of this algorithm. The algorithm is linear in the size of the BDD,
but that the BDD size can be exponential in the size of the DT. In particular,
the BDD size heavily depends on the order for the variables. In practice good
heuristics are available, making BDD-computations efficient in practice.

5.3 Research Gaps

Research gaps.
• An overarching formalism is still missing. Since attack trees and fault

trees interpret the OR-gate in a different manner, proper combinations
must feature two variants of the OR-gate: one that coincides with the
AT-interpretation and for the FT-variant.

• Another research gap concerns proper analysis of OR-gates. Analysis
algorithms must handle both the aforementioned variants of OR-gates.
Section 5 partially solves this problem for the case of tree-structured
attack-fault trees. Efficient analysis of DAG-structured attack-fault tree
combinations remains an open problem.

18 M. Stoelinga et al.

6 Conclusions

Conclusion. Safety and security interactions have been identified as important
topics in complex systems, and multiple modeling methods have been developed
in an attempt to account for their interactions. Our preliminary results show that
most of these methods are based on extending and/or combining existing safety
and security modeling methods. No specific metrics or novel modeling constructs
are introduced. The majority of considered formalisms combine/extend attack
trees and fault trees. As a consequential next step, we performed a thorough
analysis of similarities and differences between ATs and FTs. Their static variants
- SATs and SFTs - share the same syntax: we group them under the label of
disruption trees (DTs), for which we provide shared semantics. Furthermore,
we show how to compute dependability metrics on DTs highlighting differences
between ATs and FTs when needed, e.g., the different interpretation of the OR-
gate. Finally, we propose analysis algorithms for ATs and FTs both for their
tree-shaped and DAG-shaped variants.

Future Work. While addressing some of the research gaps, this work also high-
lights future challenges. With the growing need for safety-security co-analysis,
the urge of a better understanding of safety-security interactions arises:

Open problems.
• To foster this understanding, realistic large-sized case study analysis con-

cerning safety-security interactions should be performed.
• This would clarify the nature of safety-security interactions - that are still

ill-understood - and help improve standard definitions for safety-security
interdependencies.

• As mentioned, novel metrics and novel modeling constructs for safety-
security co-analysis - that are still missing - could then be developed,
alongisde an overarching formalism.

• This overarching formalism would need to account for two different OR-
gates: one that coincides with the AT-variant and one for the FT-variant.

• Furthermore, proper analysis of OR-gates has to be performed, as analysis
algorithms must handle both the aforementioned variants of OR-gates.

References

1. Amorim, T., Schneider, D., Nguyen, V.Y., Schmittner, C., Schoitsch, E.: Five major
reasons why safety and security haven’t married (yet). ERCIM News 102, 16–17
(2015)

2. Arnold, F., Guck, D., Kumar, R., Stoelinga, M.: Sequential and parallel attack
tree modelling. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS,
vol. 9338, pp. 291–299. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24249-1_25

https://doi.org/10.1007/978-3-319-24249-1_25
https://doi.org/10.1007/978-3-319-24249-1_25

The Marriage Between Safety and Cybersecurity: Still Practicing 19

3. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Sec. Comput.
1, 11–33 (2004)

4. Barlow, R.E., Proschan, F.: Statistical Theory of Reliability and Life Testing: Prob-
ability Models. International Series in Decision Processes. Holt, Rinehart and Win-
ston, New York (1975)

5. Bernsmed, K., Frøystad, C., Meland, P.H., Nesheim, D.A., Rødseth, Ø.J.: Visu-
alizing cyber security risks with bow-tie diagrams. In: Liu, P., Mauw, S., Stølen,
K. (eds.) GraMSec 2017. LNCS, vol. 10744, pp. 38–56. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-74860-3_3

6. Bobbio, A., Egidi, L., Terruggia, R.: A methodology for qualitative/quantitative
analysis of weighted attack trees. IFAC 46(22), 133–138 (2013)

7. Bozzano, M., et al.: A model checker for AADL. In: Touili, T., Cook, B., Jackson,
P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 562–565. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14295-6_48

8. Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.: Recon-
structing the giant: on the importance of rigour in documenting the literature
search process. In: ECIS (2009)

9. Budde, C.E., Stoelinga, M.: Efficient algorithms for quantitative attack tree anal-
ysis. In: CSF, pp. 501–515. IEEE Computer Society (2021). ISSN: 2374-8303.
https://doi.org/10.1109/CSF51468.2021.00041

10. Budde, C.E., Kolb, C., Stoelinga, M.: Attack trees vs. fault trees: two sides of the
same coin from different currencies. In: QEST (to appear)

11. Byres, E.J., Franz, M., Miller, D.: The use of attack trees in assessing vulner-
abilities in SCADA systems. In: Proceedings of the International Infrastructure
Survivability Workshop, pp. 3–10. Citeseer (2004)

12. Chockalingam, S., Hadžiosmanović, D., Pieters, W., Teixeira, A., van Gelder, P.:
Integrated safety and security risk assessment methods: a survey of key characteris-
tics and applications. In: Havarneanu, G., Setola, R., Nassopoulos, H., Wolthusen,
S. (eds.) CRITIS 2016. LNCS, vol. 10242, pp. 50–62. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71368-7_5

13. Clifton, E., et al.: Fault tree analysis-a history. In: Proceedings of the 17th Inter-
national Systems Safety Conference, pp. 1–9 (1999)

14. Commission, I.E., et al.: IEC 61025: Fault tree analysis. IEC Standards (2006)
15. Dalton, G.C., Mills, R.F., Colombi, Raines, R.A.: Analyzing attack trees using

generalized stochastic Petri nets. In: 2006 IEEE Information Assurance Workshop,
pp. 116–123 (2006)

16. Dissaux, P., Singhoff, F., Lemarchand, L., Tran, H., Atchadam, I.: Combined real-
time, safety and security model analysis. In: ERTSS (2020)

17. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992)

18. Fovino, I.N., Masera, M., De Cian, A.: Integrating cyber attacks within fault trees.
Reliab. Eng. Syst. Saf. 94(9), 1394–1402 (2009)

19. Fraile, M., Ford, M., Gadyatskaya, O., Kumar, R., Stoelinga, M., Trujillo-Rasua,
R.: Using attack-defense trees to analyze threats and countermeasures in an ATM:
a case study. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP,
vol. 267, pp. 326–334. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48393-1_24

20. Friedberg, I., McLaughlin, K., Smith, P., Laverty, D., Sezer, S.: STPA-SafeSec:
Safety and security analysis for cyber-physical systems. J. Inf. Secur. Appl. 34,
183–196 (2017)

https://doi.org/10.1007/978-3-319-74860-3_3
https://doi.org/10.1007/978-3-642-14295-6_48
https://doi.org/10.1109/CSF51468.2021.00041
https://doi.org/10.1007/978-3-319-71368-7_5
https://doi.org/10.1007/978-3-319-48393-1_24
https://doi.org/10.1007/978-3-319-48393-1_24

20 M. Stoelinga et al.

21. ISO/IEC 25010:2011, S., software engineering: Systems and software quality
requirements and evaluation (square). System and software quality models (2011)

22. Junges, S., Guck, D., Katoen, J., Stoelinga, M.: Uncovering dynamic fault trees.
In: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 299–310 (2016)

23. Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter
attack trees. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp.
1036–1051. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88873-
4_8

24. Kahneman, D.: A perspective on judgment and choice: mapping bounded rational-
ity. Am. Psychol. 58(9), 697 (2003)

25. Kimelman, D., Kimelman, M., Mandelin, D., Yellin, D.M.: Bayesian approaches to
matching architectural diagrams. Trans. Software Eng. 36(2), 248–274 (2010)

26. Kolb, C., Nicoletti, S.M., Peppelman, M., Stoelinga, M.: Model-based safety and
security co-analysis: a survey. In: arXiv (2021)

27. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J. Logic
Comput. 24(1), 55–87 (2012)

28. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13–14,
1–38 (2014)

29. Kordy, B., Wideł, W.: On quantitative analysis of attack–defense trees with
repeated labels. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804, pp.
325–346. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6_14

30. Kornecki, A.J., Subramanian, N., Zalewski, J.: Studying interrelationships of safety
and security for software assurance in cyber-physical systems: approach based on
Bayesian belief networks. In: 2013 FedCSIS, pp. 1393–1399. IEEE (2013)

31. Kriaa, S., Bouissou, M., Colin, F., Halgand, Y., Pietre-Cambacedes, L.: Safety
and security interactions modeling using the BDMP Formalism: case study of a
pipeline. In: Bondavalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS,
vol. 8666, pp. 326–341. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10506-2_22

32. Kriaa, S., Pietre-Cambacedes, L., Bouissou, M., Halgand, Y.: A survey of
approaches combining safety and security for industrial control systems. Reliab.
Eng. Syst. Saf. 139, 156–178 (2015)

33. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: 2017 IEEE 18th International Symposium on High Assurance Sys-
tems Engineering (HASE), pp. 25–32 (2017)

34. Lee, W., Grosh, D., Tillman, F., Lie, C.: Fault tree analysis, methods, and appli-
cations: a review. IEEE Trans. Reliab. R-34(3), 194–203 (1985)

35. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727_17

36. Nicol, D.M., H.Sanders, W., Trivedi, K.S.: Model-based evaluation: From depend-
ability to security. IEEE Trans. Dep. Sec. Comput. 1(1), 48–65 (2004)

37. Nielsen, D.S.: The Cause/Consequence Diagram Method as a Basis for Quantita-
tive Accident Analysis. Risø National Laboratory (1971)

38. Nigam, V., Pretschner, A., Ruess, H.: Model-based safety and security engineering
(2019)

39. Organization, I.S.: ISO/dis 26262: Road vehicles, functional safety. Technical report
(2009)

https://doi.org/10.1007/978-3-540-88873-4_8
https://doi.org/10.1007/978-3-540-88873-4_8
https://doi.org/10.1007/978-3-319-89722-6_14
https://doi.org/10.1007/978-3-319-10506-2_22
https://doi.org/10.1007/978-3-319-10506-2_22
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17

The Marriage Between Safety and Cybersecurity: Still Practicing 21

40. Pedroza, G., Apvrille, L., Knorreck, D.: AVATAR: A SysML environment for the
formal verification of safety and security properties. In: 2011 NOTERE, pp. 1–10.
IEEE (2011)

41. Rauzy, A.: New algorithms for fault trees analysis. Reliab. Eng. Syst. Saf. 40(3),
203–211 (1993)

42. Roth, M., Liggesmeyer, P.: Modeling and analysis of safety-critical cyber physical
systems using state/event fault trees. In: SAFECOMP 2013 (2013)

43. Roudier, Y., Apvrille, L.: SysML-Sec: A model driven approach for designing safe
and secure systems. In: MODELSWARD

44. Ruijters, E., Guck, D., Drolenga, P., Stoelinga, M.: Fault maintenance trees: reli-
ability centered maintenance via statistical model checking. In: 2016 Annual Reli-
ability and Maintainability Symposium (RAMS), pp. 1–6 (2016)

45. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)

46. Steiner, M., Liggesmeyer, P.: Combination of safety and security analysis - finding
security problems that threaten the safety of a system (2016)

47. Watson, H.: Launch control safety study. Technical Report, Section VII, Vol. 1.
Bell Labs (1961)

48. Zampino, E.J.: Application of fault-tree analysis to troubleshooting the NASA
GRC icing research tunnel. In: Annual Reliability and Maintainability Symposium,
2001 Proceedings, pp. 16–22 (2001)

A Hands-On Introduction to Spatial
Model Checking Using VoxLogicA

– Invited Contribution

Vincenzo Ciancia1(B) , Gina Belmonte2 , Diego Latella1 ,
and Mieke Massink1

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”,
Consiglio Nazionale delle Ricerche, Pisa, Italy

{vincenzo.ciancia,diego.latella,mieke.massink}@isti.cnr.it
2 Azienda Toscana Nord Ovest, S. C. Fisica Sanitaria Nord, Lucca, Italy

gina.belmonte@uslnordovest.toscana.it

Abstract. This paper provides a tutorial-style introduction, and a
guide, to the recent advancements in spatial model checking that have
made some relevant results possible. Among these, we mention fully auto-
mated segmentation of regions of interest in medical images by short,
unambiguous spatial-logical specifications. This tutorial is aimed both
at domain experts in medical imaging who would like to learn simple
(scripting-alike) techniques for image analysis, making use of a modern,
declarative language, and at experts in Formal Methods in Computer
Science and Model Checking who would like to grasp how the theory
of Spatial Logic and Model Checking has been turned into logic-based,
dataset-oriented imaging techniques.

Keywords: Spatial logic · Model checking · Tutorial

1 Introduction

The topological approach to spatial model checking was introduced in [16,17],
as a fully automated method to verify properties of points in a spatial structure,
such as a graph, or a digital image. The theory of spatial model checking has
its roots in the spatial interpretation of modal logics dating back to Tarski (see
[9] for a thorough introduction to the subject). Spatial properties of points are
related to topological aspects such as being near to points satisfying a given
property, or being able to reach a point satisfying a certain property, passing
only through points obeying to specific constraints. The Spatial Logic of Closure
Spaces defined in [16] is quite expressive, which has been demonstrated in case

Research partially supported by the MIUR PRIN 2017FTXR7S “IT-MaTTerS”.
This tutorial is meant to complement the invited talk in the 27th International SPIN
Symposium on Model Checking of Software by Vincenzo Ciancia, therefore listed as
the first author. All the authors equally contributed to developments of the presented
research line and are primary authors of this paper.

c© Springer Nature Switzerland AG 2021
A. Laarman and A. Sokolova (Eds.): SPIN 2021, LNCS 12864, pp. 22–41, 2021.
https://doi.org/10.1007/978-3-030-84629-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84629-9_2&domain=pdf
http://orcid.org/0000-0003-1314-0574
http://orcid.org/0000-0002-7087-8914
http://orcid.org/0000-0002-3257-9059
http://orcid.org/0000-0001-5089-002X
https://doi.org/10.1007/978-3-030-84629-9_2

A Hands-On Introduction to Spatial Model Checking Using VoxLogicA 23

studies ranging from smart transportation [19] to bike sharing [18,23], to medical
image analysis [3,6–8]. The arbitrary nesting of spatial properties is the key to
obtain such strong capabilities.

In the tool VoxLogicA, presented in [8], and designed from scratch for image
analysis, logical operators can be freely mixed with a few imaging operators,
related to colour thresholding, texture analysis, or normalization. The tool is
quite fast, de to various factors: most primitives are implemented using the
state-of-the-art imaging library SimpleITK1; expressions are never recomputed
(reduction of the syntax tree to a directed acyclic graph is used as a form of
memoization); operations are implicitly parallelised on multi-core CPUs. Case
studies such as brain tumour segmentation [3,8], labelling of white and grey
matter [7], and contouring of nevi [6] have shown that simple, unambiguous and
explainable logical specifications can compete in accuracy with state-of-the-art
machine-learning based methods2.

So far, however, even if the VoxLogicA approach is meant to be domain-
expert-friendly and the tool itself is quite straightforward to use, applications
of spatial model checking have been confined to a limited group of “initiated”
collaborators. One reason for this is a conceptual gap between the theory of
topological spatial logics for discrete structures, presented in [16,17], and the
technicalities of a full case study such as that of [6], where the most relevant
keywords are dataset, overlay, ground truth, region of interest, etc.

In this paper, we attempt to fill this gap by providing a gentle, hands-on
introduction to the subject of spatial model checking for image analysis. The
intended audience of this paper is two-fold: we aim at reaching both domain
experts in image analysis (who could even be non-programmers, but are willing
to get acquainted with the benefits of declarative analysis, and learn simple
scripting-alike techniques to automatise imaging tasks, based on spatial features
of points or regions) and experts in Formal Methods in Computer Science, and
in particular in model checking, who are able to understand the technical aspects
of VoxLogicA, but need some guidance to gather insights from the ideas behind
its image analysis capabilities.

In Sect. 2, we introduce the spatial model checker VoxLogicA starting from
the practicalities: how to invoke the tool, the format of input files, visualization
of results, log files, and how to run the tool against a dataset. In Sect. 3, we
illustrate by examples the core capabilities of spatial-logical reasoning, that is,
the concepts of nearness and reachability. In Sect. 4, we introduce the use of Vox-
LogicA as a method to obtain numbers or Boolean values from whole images,
for instance in order to query datasets to find images satisfying given proper-
ties. In Sect. 5, we illustrate some slightly more advanced examples of spatial

1 See https://simpleitk.org/.
2 Indeed, it is not the intention of the research line around VoxLogicA to compete

against machine-learning based approaches. Rather, we expect that the two can be
complementary: VoxLogicA specifications can certainly be used to coordinate various
machine-learning based steps in order to obtain procedures that have a degree of
machine-learning based operation, but are still modifiable and explainable.

https://simpleitk.org/

24 V. Ciancia et al.

operators, including distance transform and filtering, via a background segmen-
tation example. Therein, we also briefly discuss a statistical texture similarity
operator. In Sect. 6, we provide a brief guide to the related literature, focusing
on recent applications of Spatial Logics in Computer Science, both based on the
Spatial Logics of Closure Spaces proposed in [16,17] and not depending upon it.
In Sect. 7, we illustrate the more recent research lines that are being pursued by
the VoxLogicA group, including the use of GPU computing to speed up spatial
model checking, the study of a dataset oriented graphical user interface for the
design of logical specifications, and a freshly designed spatial model checker for
analysing 3D meshes using the Spatial Logic of Closure Spaces.

2 Using VoxLogicA: Practicalities

In this tutorial, we will use the command line interface of VoxLogicA3. After
unpacking/installing the tool, running the executable from its full path, with no
arguments, will produce a help message listing the options. VoxLogicA specifi-
cations contain a description of the model to be analysed (essentially, a set of
images of the same size), and a list of properties to be verified. For executing
a specification, only one argument is needed, that is, the specification name, so
the model checker can be run as follows:

/path/to/VoxLogicA input.imgql

In our first examples, we will use the following image of a maze, with green exit,
white corridors, black walls, four coloured square placeholders (cyan, orange,
magenta, blue), and a pink trapdoor.

It is very important to remark that although for simplicity, in this tutorial
we encode all properties of interest as colours (and doing so can be useful in
several situations), real-world examples may require more precise annotation of
properties of pixels. In medical images, for instance, it is quite common that a
dataset contains, for each case, several separated, possibly overlapping images of
the same size, either Boolean valued, or divided into regions by the use of integer
3 We use VoxLogicA version 1.0. It can be downloaded from https://github.com/

vincenzoml/VoxLogicA. The example images and files of this paper are available at
the same web site.

https://github.com/vincenzoml/VoxLogicA
https://github.com/vincenzoml/VoxLogicA

A Hands-On Introduction to Spatial Model Checking Using VoxLogicA 25

labels. Such annotations are called regions of interest (ROIs). Indeed, VoxLogicA
can load more than one image by using several load instructions, and thus easily
work with multiple ROIs. Similarly, a dataset may contain more than one “base”
image. For example, a dataset related to brain tumours could contain acquisitions
made with different MRI modalities, which emphasize different aspects of a
patient situation. Analysis methods that can make use of multiple modalities
are called multi-modal. Again, since VoxLogicA can load multiple images in the
same specification, it can be readily used for multi-modal analysis.

2.1 The Declarative Language ImgQL

The input language of VoxLogicA, namely the Image Query Language ImgQL,
has only five commands:

– load x ="filename.{png,nii,nii.gz,jpg,bmp,...}"

loads an image in one of the supported file formats, and binds its to the
(constant) name x. Note that ImgQL is a “pure” language, with no side effects.
Therefore all names are constant, not variables (there is no assignment).

– save"filename.{png,nii,nii.gz,jpg,bmp,...}" expression

saves the result of an expression returning an image4 to a file;
– print "label" expression

prints the result of an expression returning a number, or a boolean value, to
the log file, accompanied by a given label to be easily recognisable;

– let name = expression

where name starts with a lowercase letter, declares a constant; the let con-
struct has two more variants, described below;

– let fname(x1,...,xn) = expression

where fname starts with a lowercase letter, declares a function;
– let OP(x1,...,xn) = expression

where OP consists of uppercase letters and symbols, declares an operator,
which is different from a function only by the syntax used to invoke it.
Unary operators are prefix (e.g. the not/complement operator !x); binary
operators are infix (e.g. the or/union operator x & y); if more than two
arguments are supplied, these are added in square brackets; for instance,
let OP(x,y,z,t) = ... defines the operator OP invoked as x OP[z,t] y;

– import "filename.imgql"

imports a library of let declarations; no other command than let can appear
in an imported file. The file stdlib.imgql located in the same directory as
the VoxLogicA executable is automatically imported. Files are first searched
in the same directory as the executable. If the file name contains no extension
and the file is not found, VoxLogicA also attempts to load a file with the same
name and .imgql extension.

4 A VoxLogicA expression may return either an image – which can be Boolean-valued,
number-valued, or have multiple number-valued channels – or a single value, which
can be either a number or a Boolean value. No distinction is made between integer
and floating point numbers; all numbers are treated as floating point internally.

26 V. Ciancia et al.

2.2 Loading and Saving Models

We shall first demonstrate load and save constructs. We will load our maze
image, and save an output image only containing its routes, that is, the white
area. Below, the specification is shown on the left, and the result on the right.
In white, the pixels satisfying the whole specification, which as we shall see (and
purely coincidentally, in this example) are the white pixels of the input image.

load img = "maze01.png"
let corridor = (red(img) =. 255) &

(green(img) =. 255) & (blue(img) =. 255)

save "output/example01.png" corridor

The load instruction binds to name img the image contained in the input file.
The save instruction saves to the output file the result of an expression (we have
bound the expression to the name corridor, but that would not be necessary
in principle; the expression could have directly appeared as an argument of the
save instruction). Throughout this tutorial, we save all our output files in a
directory named “output”. This is convenient, but indeed not mandatory; the
file would be saved in the current working directory if no path was supplied. If
output directories are specified, these are automatically created if not existing.

Let us analyse the definition of corridor, aimed at selecting only the white
pixels in the image. First let us look at the sub-expression red(img) =. 255.
The expression red(img) takes as parameter the image img, and returns an
image consisting in only the red component of the image (similarly, there are
functions green and blue for the other two components of the RGB colour
space). Since the input file is a 8-bits-per-channel image, the result of red(img)
is a number-valued image, having the same width and height of the original one,
containing a numeric value between 0 and 255 in each pixel. Note that the Vox-
LogicA type system does not distinguish between integers and floating points.
Internally, all numbers are 32-bits floating point in order to guarantee precision
of the analysis. The infix operator =. takes on its left a number-valued image i,
and on its right a number n. As in some scientific computation languages, the
dot in an operator is on the side of numbers, whereas “matrices” (in our case,
images) do not have a dot. The result is a Boolean-valued image, containing
in each pixel at coordinates (x, y) the value true if the value of i at the pixel
(x, y) is equal to n. Similarly, there are operators >. (greater than a value),
>=. (greater or equal than a value) and so on. The infix operator & is logi-
cal conjunction (“and”) (similarly, there is a disjunction operator | (“or”), and
negation ! (“not”)). The operator & takes as input two Boolean-valued images,
and returns a Boolean-valued images which, pixel by pixel, contains the conjunc-
tion of the corresponding values. Therefore the meaning of the whole expression
(red(img) =. 255) & (green(img) =. 255) & (blue(img) =. 255) is to

A Hands-On Introduction to Spatial Model Checking Using VoxLogicA 27

return a Boolean image that has value true only on the white pixels (all the
three components have maximum value).

Since the save instruction requires a Boolean valued image to be saved in
the png format, which only allows integer values, the truth values are encoded
as 0 for the value false and 255 for the value true. This is to ease visualisation
of the verification results, as it corresponds to using the colour black for false
and white for true, as it is clearly visible in the resulting image.

Finally, sometimes it is easier to visualise results by super-imposing them on
the original image. For this, the overlayColor function of the standard library
can be of help. It takes as arguments an “overlay” Boolean-valued image (to
be super-imposed in a colour), a “background” image (which will be rendered
“below” the super-imposed layer), and three colour components, red, green and
blue. It returns an image having the pixels coloured in the same way as “back-
ground” on the pixels where “overlay” is false, and in the colour specified by
the three colour components on the pixels where “overlay” is true. In the exam-
ple below, we super-impose in red the expression denoting corridors, on top of
our base maze image. In order to do so, we define a single-argument function
named view that shows its only argument in red, and will be reused later.

let view(x) = overlayColor(x,img,255,0,0)

save "output/example02.png" view(corridor)

2.3 Anatomy of VoxLogicA Logs

The log of our first analysis is reported below (path names have been edited).

[84ms] [info] Parsing input...
[127ms] [info] Preparing computation...
[157ms] [info] Importing file "/path/to/stdlib.imgql"
[167ms] [info] Loading file "/path/to/maze01.png"
[205ms] [warn] image maze01.png has 4 color components per voxel.

Assuming RGBA color space (CMYK is not supported).
[241ms] [info] Starting computation...
[242ms] [info] Running 10 tasks
[292ms] [warn] saving boolean image to example01.png;

value ’true’ is 255, not 1
[296ms] [info] Saving file "/path/to/output/example01.png"
[334ms] [info] ... done.

The log has three columns. The first one contains the time at which each
message has been printed (relative to the start of the program). The second

28 V. Ciancia et al.

column contains the severity level of the message, which can be “informative”,
“warning”, “failure”, or “user” for messages issued using the print instruc-
tion. The third column contains the message itself. Among the many possi-
ble messages, the number of tasks (in this case, 10) can be useful to estimate
the complexity of a formula. It is however worth emphasizing that the num-
ber of tasks that will be executed is not directly proportional to the number
of subformulas, but rather to the number of unique subformulas. The model
checking engine of VoxLogicA never computes expressions twice, so the same
number of tasks are obtained e.g., by writing f(expression1,expression1)

or let x = expression1 and then f(x,x). The number of unique expressions
depends on reduction of the given formulas to the core primitives of VoxLogicA
(which can be listed using the --ops command line option).

2.4 Working with Datasets

One of the major issues related to image analysis using declarative languages is
how much ad-hoc is resulting specification is. On the other hand, the work in
[3,6–8] has been successful in carrying out complex imaging tasks, such as brain
tumour or nevus segmentation, because “success” is measured against a reason-
ably large dataset, proving generality of the proposed specification. To the best
of our knowledge so far, declarative specifications work best against homogeneous
datasets5. So are, for instance, 3D Magnetic Resonance Images (MRI) obtained
using specific MRI modalities, such as the MRI-FLAIR6 used in [8]. Among
many common features, all MRI-FLAIR brain images have a dark background,
the cerebrospinal fluid is dark, and the tumour area is always hyper-intense.
Indeed such constraint may be relaxed, and effective analysis methodologies can
be developed on datasets that are partitioned into a number of different, but
homogeneous classes, as it happens in [6].

Currently, there is no built-in facility in VoxLogicA to work with datasets,
and extract useful information (such as, for instance, performance scores that
ought to be optimized). Specifications are meant to be run against single cases.
This could be the subject of future improvements to the tool, but currently,
it is just easier to resort to an external tool orchestrating several runs of the
model checker by replacing file names according to patterns that are defined
based on the dataset. For instance, a script for datasets of the Brain Tumour
Segmentation challenge [30] is provided in the VoxLogicA repository, and can be
readily adapted to datasets with different naming conventions.

5 In this respect, we consider our work still as the beginning of a research line, and we
cannot predict if, for instance, novel logical operators will enable the development
of very general specifications that operate on inhomogeneous domains.

6 Fluid-attenuated Inversion Recovery. See e.g. Wikipedia contributors, “Fluid-
attenuated inversion recovery,” Wikipedia, The Free Encyclopedia, https://en.
wikipedia.org/w/index.php?title=Fluid-attenuated inversion recovery.

https://en.wikipedia.org/w/index.php?title=Fluid-attenuated_inversion_recovery
https://en.wikipedia.org/w/index.php?title=Fluid-attenuated_inversion_recovery

A Hands-On Introduction to Spatial Model Checking Using VoxLogicA 29

3 Topological Properties and Reachability

We shall now expand our specification in order to illustrate the use of reachability
formulas. First of all, we declare a bunch of constants, to simplify the specifica-
tion by identifying the various coloured squares (which could be thought of as
points of interest, or as actors willing to move in the maze), the corridors, the
walls, and the exit.

let rgbcol(r,g,b) =
(red(img) =. r) & (green(img) =. g) & (blue(img) =. b)

let corridor = rgbcol(255,255,255)
let exit = rgbcol(0,255,0)
let trapdoor = rgbcol(255,128,128)

let cyan = rgbcol(0,255,255)
let orange = rgbcol(255,128,0)
let magenta = rgbcol(255,0,255)
let blueSq = rgbcol(0,0,255)

let all = cyan | orange | magenta | blueSq

For reachability properties, we will employ the operator ∼>. A pixel p satisfies
a ∼> b if there is a path starting in p and ending in a point satisfying b, such
that all points of the path satisfy a7. Let us now find the pixels belonging to the
corridors from which the exit can be reached. These are the pixels from which a
path can be drawn traversing the corridors, until a pixel which is adjacent to
the exit is found. The property of being adjacent to the exit can be expressed
using the near operator, denoted by N in ImgQL. Thus, the points from which
an exit can be reached are represented by the expression freeCorridor below.

let freeCorridor = corridor ∼> (N exit)

save "output/example04.png"
view(freeCorridor)

Additionally, we can identify the points of interest from which an exit can
be reached passing through corridors, by chaining two reachability properties8.
Indeed, only the cyan and blue squares are coloured in red.

7 This is a variant of the ρ operator used in [8], the difference being that with ρ, the
extremes of the path do not need to satisfy a.

8 The reader should now pause, and understand (even by experimenting) why actually,
two reachability properties are needed.

30 V. Ciancia et al.

let freeSquares = all ∼> N freeCorridor

save "output/example05.png"
view(freeSquares)

Now consider our maze as if it was an abstract model of an emergency sce-
nario. A person, who could be in one of the cyan, blue, or orange spots holds the
key to the pink trapdoor, and ought to go there, open the trapdoor and rescue
a person in the magenta spot, then reach the exit. Let us try to express it using
the ∼> operator. There could be more than one way of doing so. Our proposal is
a chain of nested reachability properties. Indeed, only the cyan square satisfies
the specification.

let rescuer = (cyan | blueSq | orange)
∼> N (corridor ∼>

(N (trapdoor ∼>
N (corridor ∼>

N (magenta ∼>
N ((corridor | trapdoor) ∼>

N exit))))))

4 Global Properties and Region Calculi

VoxLogicA has a number of global operators, among which those that can com-
pute the maximum and minimum of the values where a specific Boolean-value
image is true, or that can compute the volume (number of pixels) of a Boolean-
valued image. The results of such operators can be inspected using the print

instruction, having a syntax similar to that of the save instruction.
For instance, the volume of the corridors (if useful for any purpose), the

number of pixels of the whole image, and the ratio between the two, can be
computed and displayed in the log as follows (below, tt is the Boolean operator
“true”, which holds at any pixel):

print "corridors volume" volume(corridor)
print "image volume" volume(tt)
print "corridors / total volume" volume(corridor) ./. volume(tt)

[258ms] [user] image volume=1048576.0
[274ms] [user] corridors volume=786307.0
[275ms] [user] corridors/total volume=0.7498807907

Typically, such values are then collected by a script – for instance, when running
VoxLogicA against a dataset as explained in Sect. 2.4 – and eventually used for

A Hands-On Introduction to Spatial Model Checking Using VoxLogicA 31

statistical purposes. A simple application of the volume operator is to check
whether, in a given image, there exists a point having a given property, by
checking whether the volume of the pixels satisfying that property is greater
than 0. For instance, in order to check whether there are any “rescuers” in an
image of a maze, we can do as follows:

let exists(x) = volume(x) .>. 0
print "existsRescuer" exists(rescuer)

[545ms] [user] existsRescuer=true

By the above, VoxLogicA can also be used as a method to query datasets of
images in order to identify those that satisfy specific requirements. For instance,
a real-world scenario could be that of using the procedure for brain tumour
segmentation described in [8] in a dataset of patients, in order to identify cases
with particularly large brain tumours, or e.g., where the tumour is very close
to the cerebellum. Similarly, the nevus segmentation procedure of [6] could be
turned into a method to identify patients with nevi having specific characteristics
(e.g. ratio between border and surface, etc.). The position paper [5] further
elaborates on this idea.

Expanding on global operators, the paper [20] demonstrated that the classical
binary operators of the family of Region Calculi can be defined in ImgQL. More
precisely, given two regions, it is possible to check whether such regions are
disconnected, externally connected, equal, partially overlapping, or if one is a
tangential or non-tangential proper part of the other.

The operators of the region calculus have been implemented in a VoxLog-
icA library, consisting in the file RegionCalculus.imgql residing in the same
directory as the VoxLogicA executable. Users can load such library by writing:

import "RegionCalculus.imgql"

Recall that also the standard library "stdlib.imgql", which is automati-
cally imported, resides in the same directory. It can be useful for the reader to
inspect these two files, in order to learn about the pre-defined derived operators,
and how they can be defined using the basic primitives of VoxLogicA.

5 Advanced Topics: Background Removal, Distance,
Filtering, Texture Similarity

In this section, we illustrate a slightly more advanced example, making use of
reachability and the built-in border predicate to remove the background from a
coloured image. Such method is actually used in [8] to remove the background
from the dataset of brain images employed therein and identify the area con-
taining the brain. In passing, we will illustrate a kind of “filter” pattern used
to smoothen images in order to remove non-essential details, using the built-in
distance transform operator.

We will use the image on the left below, depicting three coloured plastic discs
laying on a grey surface; note that although the background is quite uniform,

32 V. Ciancia et al.

it is not just made of a single colour, due to illumination. Our example will be
aimed at “masking” the background from the image, by colouring it in green, in
order to obtain the image on the right. Note that the exercise does not require
to colour in black the parts of the background that are inside the smaller holes
of the three coloured discs, which therefore remain grey.

As a first step, the most obvious thing to do is to apply a threshold on the
red, green and blue components of the image, in order to separate the grey areas,
in which all the three components have a high value at the same time, from the
coloured areas, where some components are predominant.

We have again defined a view function, this time showing our results in green
in order to maximise contrast. Note that the threshold we have used works quite
well, but still leaves some fuzzy margin near to the lower-right corner of the image
(where the background is darker). Moreover, quite obviously, also the inner part
of the holes in the coloured discs has been selected by the threshold. Finally, we
note that there are small areas that are not captured by the threshold, mostly,
close to the border of the discs, and the purple disc also contains some noise, due
to some grey shadows in the picture. Such issues are clearly visible, for instance,
by zooming in on the relevant areas, as done below.

In order to exclude the “inner” points from our selection (inner parts of
the holes and green points in the purple disc), the built-in predicate border of
VoxLogicA can be of help. Such predicate is true only at the borders of an image.

load i = "three_coloured_items.png"

let greyish =
(red(i) >. 120) & (green(i) >. 120) &
(blue(i) >. 120)

let view(x) = overlayColor(x,i,0,255,0)
save "output/greyish.png" view(greyish)

A Hands-On Introduction to Spatial Model Checking Using VoxLogicA 33

This means the area where border is true is only 1 pixel wide, and would not
be clearly visible in a picture. So we have an excuse to illustrate the distance
transform operator, since it can be use to thicken the border and visualise it
more clearly. Later, we will use the same operator for smoothening.

The distance transform pdt(x) is an imaging primitive that, given a Boolean-
valued image x, returns a number-valued image where each pixel p contains the
numeric value of the Euclidean distance of p from the points where x is true. This
is defined as the minimum of the distance of p from any point where x is true. To
be more precise, below we use the so-called “positive” distance transform, which
is zero on the points where x is true (hence the “p” in pdt). In image formats
that have a notion of physical dimension of pixels, the distance is expressed in
millimetres; otherwise, the distance unit corresponds to the width of a pixel.

let normalise(x,v) =
(x /. max(x)) *. v

save "output/pdt.png"
normalise(pdt(border),255)

To ease visualization of the result, we defined the function normalise(x,v),
dividing the value of the image x in each pixel by the maximum value, so that
the maximum in the result is 1; then by multiplying it by v, the maximum
becomes v. When saving, we let v take the value 255 which is the maximum
representable value in an 8-bit grayscale image9. Visually, the resulting image
is dark in areas very close to the border, whereas pixels that are far from the
border are coloured in more intense shades of white. By applying a threshold on
the distance transform, we can visualize the border by “thickening it” as follows.

ngv thickBorder = pdt(border) <. 30

ucxg "output/thickBorder.png"
view(thickBorder)

9 In order to avoid issues related to overflow and low precision of 8-bit integers alto-
gether, VoxLogicA can save images in the nifti format. Such format can use floating
point values in pixels (and can also represent multi-dimensional images, for instance
3D MRI or CAT medical images). See https://nifti.nimh.nih.gov/.

https://nifti.nimh.nih.gov/

34 V. Ciancia et al.

Now that it is clear what the border predicate does, we can return to our
background segmentation specification, and identify those greyish areas that
touch the border, in order to separate them from the inside of holes and the
noisy result of the threshold operation on the purple disc-

let greyishTouchBorder =
greyish ∼> border

save "output/greyishTouchBorder.png"
view(greyishTouchBorder)

The resulting image is quite close to the result we have in mind, but not there
yet. There is noise in the result, both on the lower-right corner of the image, and
close to the border of the discs, as we already noted. In order to remove noise,
very often in imaging some form of smoothening is used, as illustrated below.

let distgeq(x,y) = x .<= pdt(y)
let distleq(x,y) = x .>= pdt(y)
let flt(x,a) = distleq(x,distgeq(x,!a))
let dualSmoothen(x,a) =

flt(x,a) | (!flt(x,!a))

let smooth =
dualSmoothen(10,greyishTouchBorder)

save "output/filtered.png" view(smooth)

We define the flt(x,a) function with two arguments, a number x and a
Boolean-valued image a. The idea is that the area where a is true is first shrunk,
by only keeping the points that lay at a distance greater or equal than x from
its complement !a, and then enlarged by taking the points that lay at a distance
less or equal than x from the “shrunk” image. The initial shrinking eliminates
areas that are smaller in radius than x, whereas enlarging the result “fills” the
resulting holes.

In previous work, the flt function is usually applied to a Boolean-valued
image, in order to remove noise in the area where the image is true. In this
example, however, both the part of greyishTouchBorder which has value true
and that having value false may be noisy. Therefore, we define the dualSmoothen
function that applies the flt function both to an image and to its complement,
and combines the two results. To aid the intuition, the reader may think that
the dualSmoothen function enlarges flt(x,a) by adding to it whatever point
p that is removed from its complement !a in the expression flt(x,!a). Tech-
nically, this is done by adding to it any point in !flt(x,!a) (which includes
both the points p in the above situation, and the points that are already in

A Hands-On Introduction to Spatial Model Checking Using VoxLogicA 35

flt(x,a)). Zooming in demonstrates the combined effect of selecting only the
part of greyish that touches the border, and of the dual smoothening. The
result is shown on the right, against the image greyish, reported on the left,
for comparison.

Finally, the remaining “holes” near to the border can be filled as follows.

let final = smooth | ((!smooth) ∼> border)

save "output/final.png" view(final)

A very similar method has been successfully employed for 3D MRI-FLAIR
dataset in the brain tumour case study of [8]. More advanced techniques can be
used, involving, for instance, the statistical texture similarity operator, presented
in [3,8]. The texture similarity operator associates to each pixel p a similarity
score between −1 and 1, relating an area with a given radius r around p to
a target region, denoted by a Boolean-valued image, by comparing the k-bins
histograms of the area around p, and of the target region, using a method called
cross-correlation. For instance, the background segmentation method employed
in [6] finds the areas of the image that have a texture similar to the area close to
the border. We refer the reader to the cited papers, and only show a similarity
map obtained using such method, where darker areas are less similar to the area
near to the border.
let similar(x,r,k) =

crossCorrelation(r,
intensity(i),intensity(i),

x,min(intensity(i)),
max(intensity(i)),k)

let simMap =
similar((pdt(border) <. 3),30,4)

save "output/texture.png"
normalise(simMap +. 1,200)

The function similar(x,r,k) computes the similarity score with respect to
a target region (Boolean valued image) x, with radius r and number of bins k.

36 V. Ciancia et al.

We report the full definition of similar for the reader to return to it, after study-
ing the topic in more detail. We just note that we use a very low number of bins
(k = 4) and a high radius (r = 30) in order to obtain a quite coarse-grained
analysis, which yields a good similarity map for background segmentation pur-
poses (the similarity map is meant to be thresholded just like we did with the
red, green and blue components of the image in the beginning). Finally, observe
that we normalise values between −1 and 1, therefore we add the value 1 to each
pixel10.

6 Related Work

As we already mentioned, the VoxLogicA approach stems from topological spa-
tial logics. The reader interested in the theoretical developments behind this
fascinating topic should consult the Handbook of Spatial Logics [1], containing
several monographic chapters on selected topics in the field.

The development of SLCS in [16] has spawned a few research lines. The work
in [4,31–33] proposes the Signal Spatio-temporal Logic (SSTL) that combines
the analysis of continuous signals through the Signal Temporal Logic with the
topological spatial operators of SLCS. In [34], SSTL has been used for specify-
ing spatio-temporal patters in the context of particle-based simulation, as part
of a statistical spatio-temporal model-checking approach, following the method
described in [18]. The results presented in [35] introduce a spatio-temporal logic
for bigraphs, inspired by [24], and use the tool topochecker presented in [15]
for verification. The recent work in [2] demonstrated that SLCS formulas can be
interpreted in a fully distributed way, for monitoring purposes across a network.
The research line started in [14] aims at providing a categorical generalisation of
modal logics with reachability, based on hyperdoctrines, covering many examples
such as fuzzy sets, algebraic structures, coalgebras, and also known cases such as
Kripke frames and probabilistic frames. The study of model-based equivalences
(such as bisimulation) and minimisation algorithms that are correct and com-
plete with respect to logical equivalence of the Spatial Logic of Closure Spaces
has been recently pursued in [21,22,27]. In [10], some of the authors of this paper
co-authored an effort towards model checking of continuous space, by re-using
the continuous semantics of SLCS given in [17] in the restricted, computation-
friendly setting of models based on polyhedral valuations, which are triangulated
to form simplicial complexes. As an application, 3D meshes can be loaded and
analysed using methods similar to those that have been illustrated in this tuto-
rial. Also the recent work in [28] interprets SLCS on simplicial complexes; the
focus therein is not on defining a notion of reachability which is compatible
with the definition of [17]; rather, the authors exploit simplicial complexes as
a description of relations between data, and the chosen accessibility relations
between simplexes reflect such choice.

10 We do not normalise the result to the maximum representable value 255, but just
to 200, to make the lighter areas grey, which is more prominent on white paper.

A Hands-On Introduction to Spatial Model Checking Using VoxLogicA 37

Furthermore, without claiming to be exhaustive, we cite a few approaches
to logic-based spatio-temporal analysis that are not directly related to SLCS.
In [25] spiral electric waves—a precursor to atrial and ventricular fibrillation—
are detected and specified using a spatial logic and model-checking tools. The
formulas of the logic are learned from the spatial patterns under investigation
and the onset of spiral waves is detected using bounded model checking. In
the logical language SpaTeL [26], space is hierarchically divided in quadrants,
and complex logic formulas, in the form of quad-trees, are built using machine
learning methods. In [29], the authors define a logic language grounded on a
chemical-based coordination model. Logic formulas are evaluated in a distributed
manner by using an inference procedure which verifies them against the current
global state of the system, checking whether the emergent global behaviour obeys
to the required properties.

7 Outlook

We hope that reading this tutorial up-to here has not only initiated the reader to
the basics of Spatial Model Checking and VoxLogicA, but has also raised some
interest in the ongoing developments that will soon become relevant additions
to the landscape of instruments devoted to spatial model checking. Currently,
the VoxLogicA group is pursuing a few major research lines.

First and foremost, the immediate interest of the group is in advancing the
healthcare related applications of Formal Methods and Spatial Model Checking
in particular. Besides identifying new promising case studies, and improving the
existing results, the integration, to some degree, of Machine Learning methods
into logical specifications is an interesting scientific challenge. This could be
used, for instance, to calibrate numeric parameters, or to accomplish some basic
imaging tasks using Machine Learning, and coordinate them using explainable
logical specifications to obtain more refined, complex results.

Very relevant for, but not limited to, the healthcare applications is the devel-
opment of a dataset-oriented user interface that can leverage studies on the cog-
nitive load on users (see e.g. [11]) in order to make logic-based analysis simpler
to develop and more effective.

The natural setting in which such a user interface can be used is that of inter-
active development of logical specifications against training datasets. Currently,
even if VoxLogicA is quite fast (often requiring no more than a few seconds
to complete the analysis of a single case), running an analysis against a whole
dataset is a batch (non-interactive) process. The progress on the implementation
of spatial model checking on GPUs [12,13] may lead to a dramatic improvement
in this respect.

Another way to reduce the computational cost of analysis is by making the
models to be analysed smaller. The study of minimization algorithms up-to
logical equivalence may be a key advancement in this direction [21,22].

Also relevant in so called “future healthcare” is the study of novel imaging
modalities based on 3D meshes (instead of pixels/voxels); in the same vein,

38 V. Ciancia et al.

artificial vision and augmented reality applications are already starting to
appear, especially in surgery. The work in [10] is the starting point of an effort
in the direction of bringing the spatial analysis capabilities of VoxLogicA to the
realm of 3D meshes. We note in passing that the applications of such meth-
ods are definitely not limited to the domain of healthcare, as 3D modelling is
pervasive in several fields of modern Computer Science and its applications.

It is not difficult to imagine that a language such as ImgQL (dubbed a
“query language” from its inception) could be useful as a true query language
for datasets of images (think e.g. of the large radiological “Picture Archiving
and Communication Systems (PACS)” that are nowadays in use in hospitals).
One may be interested, for instance, in finding all the patients having a brain
tumour of a particularly large size, or where the tumour may be too close to a
specific organ at risk. In a recent position paper [5] some preliminary ideas are
sketched in more detail.

Finally, we mention that, even though everything that was described in this
paper is based on purely spatial analysis, the VoxLogicA group already has
expertise in spatio-temporal modelling and logical specifications, through the
tool topochecker, which was in a sense a predecessor to VoxLogicA but still has
unique spatio-temporal verification capabilities (see [15,18,19,23,24]). Indeed, it
is a planned future development to add such capabilities to VoxLogicA.

Acknowledgements. The authors wish to explicitly thank the current collaborators
Nick Bezhanisvili, Giovanna Broccia, Laura Bussi, David Gabelaia, Fabio Gadducci,
Gianluca Grilletti, Erik de Vink, and the coordinator of the Formal Methods and Tools
laboratory of ISTI-CNR Maurice ter Beek, for their continuative support in turning
the early developments of Spatial Model Checking, and the more recent work on Vox-
LogicA, into a solid research line, with several promising ongoing developments. The
authors gratefully thank the Program Committee members of the 27th International
SPIN Symposium on Model Checking of Software (PC chairs Alfons Laarman and Ana
Sokolova) for giving us the opportunity to disseminate our results to such an amazing
audience.

References

1. Aiello, M., Pratt-Hartmann, I., Benthem, van, J.: Handbook of Spatial Logics.
Springer (2007). https://doi.org/10.1007/978-1-4020-5587-4

2. Audrito, G., Casadei, R., Damiani, F., Stolz, V., Viroli, M.: Adaptive distributed
monitors of spatial properties for cyber–physical systems. J. Syst. Softw. 175,
110908 (2021). https://doi.org/10.1016/j.jss.2021.110908

3. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spa-
tial logics and model checking for medical imaging. Int. J. Softw. Tools Technol.
Transfer 22(2), 195–217 (2019). https://doi.org/10.1007/s10009-019-00511-9

4. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spatially
distributed cyber-physical systems. In: 15th ACM-IEEE International Conference
on Formal Methods and Models for System Design, MEMOCODE, pp. 146–155.
ACM (2017). https://doi.org/10.1145/3127041.3127050

https://doi.org/10.1007/978-1-4020-5587-4
https://doi.org/10.1016/j.jss.2021.110908
https://doi.org/10.1007/s10009-019-00511-9
https://doi.org/10.1145/3127041.3127050

A Hands-On Introduction to Spatial Model Checking Using VoxLogicA 39

5. Belmonte, G., Broccia, G., Bussi, L., Ciancia, V., Latella, D., Massink, M.: Query-
ing medical imaging datasets using spatial logics (position paper). In: HEDA2021:
The International Health Data Workshop 2021 in conjunction with 10th Interna-
tional Conference on Model and Data Engineering (MEDI 2021). Communications
in Computer and Information Science. Springer (2021, to Appear)

6. Belmonte, G., Broccia, G., Vincenzo, C., Latella, D., Massink, M.: Feasibility of
spatial model checking for nevus segmentation. In: Proceedings of the 9th Inter-
national Conference on Formal Methods in Software Engineering (FormalieSE’21),
pp. 1–12. IEEE (2021). https://doi.org/10.1109/FormaliSE52586.2021.00007

7. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Innovating medical image
analysis via spatial logics. In: ter Beek, M.H., Fantechi, A., Semini, L. (eds.) From
Software Engineering to Formal Methods and Tools, and Back. LNCS, vol. 11865,
pp. 85–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30985-5 7

8. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA: a spatial model
checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 281–298. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17462-0 16

9. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Handbook of Spatial
Logics [1], pp. 217–298. https://doi.org/10.1007/978-1-4020-5587-4 5

10. Bezhanishvili, N., Ciancia, V., Gabelaia, D., Grilletti, G., Latella, D., Massink,
M.: Geometric model checking of continuous space (2021). https://arxiv.org/abs/
2105.06194

11. Broccia, G., Milazzo, P., Ölveczky, P.C.: Formal modeling and analysis of safety-
critical human multitasking. Innov. Syst. Softw. Eng. 15(3-4), 169–190 (2019).
https://doi.org/10.1007/s11334-019-00333-7

12. Bussi, L., Ciancia, V., Gadducci, F.: A spatial model checker in GPU (extended
version). CoRR abs/2010.07284 (2020). https://arxiv.org/abs/2010.07284

13. Bussi, L., Ciancia, V., Gadducci, F.: Towards a spatial model checker on GPU.
In: Peters, K., Willemse, T.A.C. (eds.) Formal Techniques for Distributed Objects,
Components, and Systems FORTE 2021. LNCS, vol. 12719, pp. 188–196. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-78089-0 12

14. Castelnovo, D., Miculan, M.: Closure hyperdoctrines, with paths. CoRR
abs/2007.04213 (2020). https://arxiv.org/abs/2007.04213

15. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental
spatio-temporal model checker. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9509, pp. 297–311. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-49224-6 24

16. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 222–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7 18

17. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics
for closure spaces. Logical Methods Comput. Sci. 12(4) (2016). https://doi.org/
10.2168/LMCS-12(4:2)2016

18. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 46

https://doi.org/10.1109/FormaliSE52586.2021.00007
https://doi.org/10.1007/978-3-030-30985-5_7
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/978-1-4020-5587-4_5
https://arxiv.org/abs/2105.06194
https://arxiv.org/abs/2105.06194
https://doi.org/10.1007/s11334-019-00333-7
https://arxiv.org/abs/2010.07284
https://doi.org/10.1007/978-3-030-78089-0_12
https://arxiv.org/abs/2007.04213
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/978-3-662-44602-7_18
https://doi.org/10.1007/978-3-662-44602-7_18
https://doi.org/10.2168/LMCS-12(4:2)2016
https://doi.org/10.2168/LMCS-12(4:2)2016
https://doi.org/10.1007/978-3-319-47166-2_46

40 V. Ciancia et al.

19. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems. Int.
J. Softw. Tools Technol. Transfer 20(3), 289–311 (2018). https://doi.org/10.1007/
s10009-018-0483-8

20. Ciancia, V., Latella, D., Massink, M.: Embedding RCC8D in the collective spatial
logic CSLCS. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models,
Languages, and Tools for Concurrent and Distributed Programming. LNCS, vol.
11665, pp. 260–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21485-2 15

21. Ciancia, V., Latella, D., Massink, M., de Vink, E.: Towards spatial bisimilarity for
closure models: Logical and coalgebraic characterisations. CoRR abs/2005.05578
(2020). https://arxiv.org/abs/2005.05578

22. Ciancia, V., Latella, D., Massink, M., de Vink, E.: On bisimilarities for closure
spaces - preliminary version (2021). https://arxiv.org/abs/2105.06690

23. Ciancia, V., Latella, D., Massink, M., Paškauskas, R.: Exploring spatio-temporal
properties of bike-sharing systems. In: 2015 IEEE International Conference on Self-
Adaptive and Self-Organizing Systems Workshops, SASO Workshops, pp. 74–79.
IEEE Computer Society (2015). https://doi.org/10.1109/SASOW.2015.17

24. Grilletti, G.: Spatio-temporal model checking: explicit and abstraction-based meth-
ods. Master’s thesis, University of Pisa (2016). https://etd.adm.unipi.it/t/etd-
06282016-191103/

25. Grosu, R., Smolka, S., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.:
Learning and detecting emergent behavior in networks of cardiac myocytes. Com-
mun. ACM 52(3), 97–105 (2009). https://doi.org/http://doi.acm.org/10.1145/
1467247.1467271

26. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: Spatel: A novel
spatial-temporal logic and its applications to networked systems. In: Proceedings of
the 18th International Conference on Hybrid Systems: Computation and Control,
HSCC ’15, pp. 189–198. ACM (2015). https://doi.org/10.1145/2728606.2728633

27. Linker, S., Papacchini, F., Sevegnani, M.: Analysing spatial properties on neigh-
bourhood spaces. In: 45th International Symposium on Mathematical Foundations
of Computer Science, MFCS, LIPIcs, vol. 170, pp. 66:1–66:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.MFCS.
2020.66

28. Loreti, M., Quadrini, M.: A spatial logic for a simplicial complex model (2021).
https://arxiv.org/abs/2105.08708

29. Luca De Angelis, F., Di Marzo Serugendo, G.: A logic language for run time assess-
ment of spatial properties in self-organizing systems. In: 2015 IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshops, pp. 86–91
(2015). https://doi.org/10.1109/SASOW.2015.19

30. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark
(brats). IEEE Trans. Med. Imag. 34(10), 1993–2024 (2015). https://doi.org/10.
1109/TMI.2014.2377694

31. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems. STTT
20(3), 289–311 (2018). https://doi.org/10.1007/s10009-018-0483-8

32. Nenzi, L., Bortolussi, L.: Specifying and monitoring properties of stochastic spatio-
temporal systems in signal temporal logic. In: Haviv, M., Knottenbelt, W.J., Maggi,
L., Miorandi, D. (eds.) 8th International Conference on Performance Evaluation
Methodologies and Tools, VALUETOOLS. ICST (2014). https://doi.org/10.4108/
icst.valuetools.2014.258183

https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.1007/978-3-030-21485-2_15
https://doi.org/10.1007/978-3-030-21485-2_15
https://arxiv.org/abs/2005.05578
https://arxiv.org/abs/2105.06690
https://doi.org/10.1109/SASOW.2015.17
https://etd.adm.unipi.it/t/etd-06282016-191103/
https://etd.adm.unipi.it/t/etd-06282016-191103/
https://doi.org/http://doi.acm.org/10.1145/1467247.1467271
https://doi.org/http://doi.acm.org/10.1145/1467247.1467271
https://doi.org/10.1145/2728606.2728633
https://doi.org/10.4230/LIPIcs.MFCS.2020.66
https://doi.org/10.4230/LIPIcs.MFCS.2020.66
https://arxiv.org/abs/2105.08708
https://doi.org/10.1109/SASOW.2015.19
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.4108/icst.valuetools.2014.258183
https://doi.org/10.4108/icst.valuetools.2014.258183

A Hands-On Introduction to Spatial Model Checking Using VoxLogicA 41

33. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar,
R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23820-3 2

34. Ruscheinski, A., Wolpers, A., Henning, P., Warnke, T., Haack, F., Uhrmacher,
A.M.: Pragmatic logic-based spatio-temporal pattern checking in particle-based
models. In: Winter Simulation Conference, WSC 2020, pp. 2245–2256. IEEE
(2020). https://doi.org/10.1109/WSC48552.2020.9383908

35. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Modeling and verification of evolving cyber-
physical spaces. In: Proceedings of the 11th Joint Meeting on Foundations of Soft-
ware Engineering, ESEC/FSE 2017, pp. 38–48. ACM (2017). https://doi.org/10.
1145/3106237.3106299

https://doi.org/10.1007/978-3-319-23820-3_2
https://doi.org/10.1007/978-3-319-23820-3_2
https://doi.org/10.1109/WSC48552.2020.9383908
https://doi.org/10.1145/3106237.3106299
https://doi.org/10.1145/3106237.3106299

Model Checking

Accelerating the Computation of Dead
and Concurrent Places Using Reductions

Nicolas Amat(B) , Silvano Dal Zilio , and Didier Le Botlan

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
namat@laas.fr

Abstract. We propose a new method for accelerating the computation
of a concurrency relation, that is all pairs of places in a Petri net that can
be marked together. Our approach relies on a state space abstraction,
that involves a mix between structural reductions and linear algebra,
and a new data-structure that is specifically designed for our task. Our
algorithms are implemented in a tool, called Kong, that we test on a large
collection of models used during the 2020 edition of the Model Checking
Contest. Our experiments show that the approach works well, even when
a moderate amount of reductions applies.

1 Introduction

We propose a new approach for computing the concurrency relation of a Petri
net, that is all pairs of places that can be marked together in some reachable
states. This problem has practical applications, for instance because of its use for
decomposing a Petri net into the product of concurrent processes [9,10]. It also
provides an interesting example of safety property that nicely extends the notion
of dead places. These problems raise difficult technical challenges and provide an
opportunity to test and improve new model checking techniques [11].

Naturally, it is possible to compute the concurrency relation by first com-
puting the complete state space of a system and then checking, individually,
the reachability of each pair of places. But this amounts to solving a quadratic
number of reachability properties—where the parameter is the number of places
in the net—and one would expect to find smarter solutions, even if it is only for
some specific cases. We are also interested in partial solutions, where computing
the whole state space is not feasible.

We recently became interested in this problem because we see it as a good
testbed for a new model checking technique that we are actively developing
[1,5,6]. It is an abstraction technique, based on the use of structural reduc-
tions [3], that we successfully implemented into a symbolic model checker called
Tedd. The idea is to compute reductions of the form N1 �E N2, where: N1 is
an initial Petri net (that we want to analyse); N2 is a residual net (hopefully
simpler than N1); and E is a system of linear equations. The goal is to preserve
enough information in E so that we can rebuild the reachable markings of N1

knowing only those of N2. While there are many examples of the benefits of
c© Springer Nature Switzerland AG 2021
A. Laarman and A. Sokolova (Eds.): SPIN 2021, LNCS 12864, pp. 45–62, 2021.
https://doi.org/10.1007/978-3-030-84629-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84629-9_3&domain=pdf
http://orcid.org/0000-0002-5969-7346
http://orcid.org/0000-0002-6002-2696
http://orcid.org/0000-0002-6457-2740
https://doi.org/10.1007/978-3-030-84629-9_3

46 N. Amat et al.

structural reductions when model checking Petri nets, the use of an equation
system (E) for tracing back the effect of reductions is new, and we are hopeful
that this approach can be applied to other problems. For example, we proved
recently [1] that this approach also works well when combined with SMT.

In this paper, we confirm that the same holds true when we tackle the con-
current places problem. In practice, we can often reduce a net N1 into another
net N2 with far fewer places. We show that we can reconstruct the concurrency
relation of N1 from the one of N2, using a surprising and very efficient “inverse
transform” that depends only on E and does not involve computing reachable
markings. (This is a model checking paper where no transitions are fired!) This
is useful since the number of places is a predominant parameter when computing
the concurrency relation. Note that we are not concerned with how to compute
the relation on N2, but only by how we can accelerate its calculation on N1.

Related Work. Several works address the problem of finding or characterizing
the concurrent places of a Petri net. This notion is mentioned under various
names, such as coexistency defined by markings [18], concurrency graph [27] or
concurrency relation [12,19,20,24,28]. The main motivation is that the concur-
rency relation characterizes the sub-parts, in a net, that can be simultaneously
active. Therefore it plays a useful role when decomposing a net into a collection
of independent components. This is the case in [28], where the authors draw a
connection between concurrent places and the presence of “sequential modules
(state machines)”. Another example is the decomposition of nets into unit-safe
NUPNs (Nested-Unit Petri Nets) [9,10], for which the computation of the con-
currency relation is one of the main bottlenecks.

We know only a couple of tools that support the computation of the concur-
rency relation. A recent tool is part of the Hippo platform [28], available online.
Our reference tool is cæsar.bdd, from the CADP toolbox [8,17], that uses BDD
techniques to explore the state space of a net and find concurrent places. It sup-
ports the computation of a partial relation and can output the “concurrency
matrix” of a net using a specific textual format [11]. We adopt the same format
since we use cæsar.bdd to compute the concurrency relation on the residual
net, N2, and as a yardstick in our benchmarks.

Concerning our use of structural reductions, our main result can be inter-
preted as an example of reduction theorem [22], that allows to deduce properties
of an initial model (N1) from properties of a simpler, coarser-grained version
(N2). But our notion of reduction is more complex and corresponds to the
one pioneered by Berthelot [3] (with the equations added). Several tools use
reductions for checking reachability properties but none specializes in comput-
ing the concurrency relation. We can mention TAPAAL [7], an explicit-state
model checker that combines partial-order reduction techniques and structural
reductions or, more recently, ITS Tools [26], which combines several techniques,
including structural reductions and the use of SAT and SMT solvers.

Outline and Contributions. We define the semantics of Petri nets and the notion
of concurrent places in Sect. 2. This section also introduces a simplified notion of

Computing Concurrent Places Using Reductions 47

“reachability equivalence”, called polyhedral abstraction, that gives a formal def-
inition to the relation N1 �E N2. Section 3 contains our main contributions. We
describe a new data-structure, called Token Flow Graph (TFG), that captures
the particular structure of the equation system generated with our approach.
We prove several results on TFGs that allow us to reason about the reachable
places of a net by playing a token game on this graph. We use TFGs (Sect. 4)
to define an algorithm that implements our “inverse transform” and show how
to adapt it to situations where we only have partial knowledge of the residual
concurrency relation. Our approach has been implemented and computing exper-
iments (Sect. 5) show that reductions are effective on a large set of models. We
perform our experiments on an independently managed collection of Petri nets
(588 instances) corresponding to the safe nets used during the 2020 edition of
the Model Checking Contest [2]. We observe that, even with a moderate amount
of reductions (say we can remove 25% of the places), we can compute complete
results much faster with reductions than without (often with speed-ups greater
than ×100). We also show that we perform well with incomplete relations, where
we are both faster and more accurate.

2 Petri Nets and Polyhedral Abstraction

A Petri net N is a tuple (P, T,pre,post) where P = {p1, . . . , pn} is a finite set
of places, T = {t1, . . . , tk} is a finite set of transitions (disjoint from P), and
pre : T → (P → N) and post : T → (P → N) are the pre- and post-condition
functions (also called the flow functions of N). We often simply write that p is
a place of N when p ∈ P . A state m of a net, also called a marking, is a total
mapping m : P → N which assigns a number of tokens, m(p), to each place of
N . A marked net (N,m0) is a pair composed of a net and its initial marking m0.

A transition t ∈ T is enabled at marking m ∈ N
P when m(p) � pre(t, p) for

all places p in P . (We can also simply write m � pre(t), where � stands for
the component-wise comparison of markings.) A marking m′ is reachable from a
marking m by firing transition t, denoted m

t−→ m′, if: (1) transition t is enabled
at m; and (2) m′ = m − pre(t) + post(t). When the identity of the transition
is unimportant, we simply write this relation m −→ m′. More generally, marking
m′ is reachable from m in N , denoted m −→� m′ if there is a (possibly empty)
sequence of reductions such that m −→ . . . −→ m′. We denote R(N,m0) the set of
markings reachable from m0 in N .

A marking m is k-bounded when each place has at most k tokens and a
marked Petri net (N,m0) is bounded when there is a constant k such that
all reachable markings are k-bounded. While most of our results are valid in
the general case—with nets that are not necessarily bounded and without any
restrictions on the flow functions (the weights of the arcs)—our tool and our
experiments focus on the class of 1-bounded nets, also called safe nets.

Given a marked net (N,m0), we say that places p, q of N are concurrent when
there exists a reachable marking m with both p and q marked. The Concurrent
Places problem consists in enumerating all such pairs of places.

48 N. Amat et al.

p0

p1 p2

p3

p4

p5

p6

t0

t1

t2

t3

t4

�EM t5

a2

t7p6

t6

p0

Fig. 1. An example of Petri net, M1 (left), and one of its polyhedral abstraction, M2

(right), with EM � (p5 = p4), (a1 = p1 + p2), (a2 = p3 + p4), (a1 = a2).

Definition 1 (Dead and Concurrent places). We say that a place p of
(N,m0) is not-dead if there is m in R(N,m0) such that m(p) > 0. In a simi-
lar way, we say that places p, q are concurrent, denoted p ‖ q, if there is m in
R(N,m0) such that both m(p) > 0 and m(q) > 0. By extension, we use the
notation p ‖ p when p is not-dead. We say that p, q are nonconcurrent, denoted
p # q, when they are not concurrent.

Relation with Linear Arithmetic Constraints. Many results in Petri net the-
ory are based on a relation with linear algebra and linear programming tech-
niques [23,25]. A celebrated example is that the potentially reachable markings
of a net (N,m0) are non-negative, integer solutions to the state equation prob-
lem, m = I · σ + m0, with I an integer matrix defined from the flow functions
of N and σ a vector in N

k. It is known that solutions to the system of linear
equations σT · I = 0 lead to place invariants, σT ·m = σT ·m0, that can provide
some information on the decomposition of a net into blocks of nonconcurrent
places, and therefore information on the concurrency relation.

For example, for net M1 (Fig. 1), we can compute invariant p4−p5 = 0. This is
enough to prove that places p4 and p5 are concurrent, if we can prove that at least
one of them is not-dead. Likewise, an invariant of the form p + q = 1 is enough
to prove that p and q are 1-bounded and cannot be concurrent. Unfortunately,
invariants provide only an over-approximation of the set of reachable markings,
and it may be difficult to find whether a net is part of the few known classes where
the set of reachable markings equals the set of potentially reachable ones [16].

Our approach shares some similarities with this kind of reasoning. A main
difference is that we will use equation systems to draw a relation between the
reachable markings of two nets; not to express constraints about (potentially)
reachable markings inside one net. Like with invariants, this will allow us, in
many cases, to retrieve information about the concurrency relation without “fir-
ing any transition”, that is without exploring the state space.

In the following, we will often use place names as variables, and markings
m : P → N as partial solutions to a set of linear equations. For the sake of
simplicity, all our equations will be of the form x = y1+· · ·+yl or y1+· · ·+yl = k
(with k a constant in N).

Computing Concurrent Places Using Reductions 49

Given a system of linear equations E, we denote fv(E) the set of all its
variables. We are only interested in the non-negative integer solutions of E.
Hence, in our case, a solution to E is a total mapping from variables in fv(E)
to N such that all the equations in E are satisfied. We say that E is consistent
when there is at least one such solution. Given these definitions, we say that the
mapping m : {p1, . . . , pn} → N is a (partial) solution of E if the system E ,�m� is
consistent, with �m� the sequence of equations p1 = m(p1) , . . . ,pn = m(pn). (In
some sense, we use �m� as a substitution.) For instance, places p, q are concurrent
if the system p = 1 + x , q = 1 + y , �m� is consistent, where m is a reachable
marking and x, y are some fresh (slack) variables.

Given two markings m1 : P1 → N and m2 : P2 → N, from possibly different
nets, we say that m1 and m2 are compatible, denoted m1 ≡ m2, if they have
equal marking on their shared places: m1(p) = m2(p) for all p in P1 ∩P2. This is
a necessary and sufficient condition for the system �m1� , �m2� to be consistent.

Polyhedral Abstraction. We recently defined a notion of polyhedral abstraction
based on our previous work applying structural reductions to model count-
ing [1,6]. We only need a simplified version of this notion here, which entails
an equivalence between the state space of two nets, (N1,m1) and (N2,m2), “up-
to” a system E of linear equations.

Definition 2 (E-equivalence). We say that (N1,m1) is E-equivalent to
(N2,m2), denoted (N1,m1) �E (N2,m2), if and only if:

(A1) E , �m� is consistent for all markings m in R(N1,m1) and R(N2,m2);
(A2) initial markings are compatible, meaning E , �m1� , �m2� is consistent;
(A3) assume m′

1,m
′
2 are markings of N1, N2, respectively, such that E , �m′

1� ,
�m′

2� is consistent, then m′
1 is reachable if and only if m′

2 is reachable:
m′

1 ∈ R(N1,m1) ⇐⇒ m′
2 ∈ R(N2,m2).

By definition, relation �E is symmetric. We deliberately use a symbol ori-
ented from left to right to stress the fact that N2 should be a reduced version of
N1. In particular, we expect to have less places in N2 than in N1.

Given a relation (N1,m1) �E (N2,m2), each marking m′
2 reachable in N2 can

be associated to a unique subset of markings in N1, defined from the solutions to
E ,�m′

2� (by condition A1 and A3). We can show that this gives a partition of the
reachable markings of (N1,m1) into “convex sets”—hence the name polyhedral
abstraction—each associated to a reachable marking in N2. Our approach is
particularly useful when the state space of N2 is very small compared to the one
of N1. In the extreme case, we can even find examples where N2 is the “empty”
net (a net with zero places, and therefore a unique marking), but this condition
is not a requisite in our approach.

We can illustrate this result using the two marked nets M1,M2 in Fig. 1, for
which we can prove that M1 �EM

M2. We have that m′
2 � a2 = 1 , p6 = 1 is

reachable in M2, which means that every solution to the system p0 = 0,p1+p2 =
1 ,p3 +p4 = 1 ,p4 = p5 ,p6 = 1 gives a reachable marking of M1. Moreover, every
solution such that pi � 1 and pj � 1 gives a witness that pi ‖ pj . For instance,

50 N. Amat et al.

p1, p4, p5 and p6 are certainly concurrent together. We should exploit the fact
that, under some assumptions about E, we can find all such “pairs of variables”
without the need to explicitly solve systems of the form E , �m�; just by looking
at the structure of E.

For this current work, we do not need to explain how to derive or check
that an equivalence statement is correct in order to describe our method. In
practice, we start from an initial net, (N1,m1), and derive (N2,m2) and E
using a combination of several structural reduction rules. You can find a precise
description of our set of rules in [6] and a proof that the result of these reductions
always leads to a valid E-equivalence in [1]. In most cases, the system of linear
equations obtained using this process exhibits a graph-like structure. In the
next section, we describe a set of constraints that formalizes this observation.
This is one of the contributions of this paper, since we never defined something
equivalent in our previous works. We show with our benchmarks (Sect. 5) that
these constraints are general enough to give good results on a large set of models.

3 Token Flow Graphs

We introduce a set of structural constraints on the equations occurring in an
equivalence statement (N1,m1) �E (N2,m2). The goal is to define an algorithm
that is able to easily compute information on the concurrency relation of N1,
given the concurrency relation on N2, by taking advantage of the structure of
the equations in E.

We define the Token Flow Graph (TFG) of a system E of linear equations as
a Directed Acyclic Graph (DAG) with one vertex for each variable occurring in
E. Arcs in the TFG are used to depict the relation induced by equations in E.
We consider two kinds of arcs. Arcs for redundancy equations, q→•p, to represent
equations of the form p = q (or p = q + r + . . .), expressing that the marking
of place p can be reconstructed from the marking of q, r, . . . In this case, we say
that place p is removed by arc q →• p, because the marking of q may influence
the marking of p, but not necessarily the other way round.

The second kind of arcs, a ◦→ p, is for agglomeration equations. It represents
equations of the form a = p + q, generated when we agglomerate several places
into a new one. In this case, we expect that if we can reach a marking with k
tokens in a, then we can certainly reach a marking with k1 tokens in p and k2
tokens in q when k = k1 + k2 (see property Agglomeration in Lemma 2). Hence
information flows in reverse order compared to the case of redundancy equations.
This is why, in this case, we say that places/nodes p and q are removed. We also
say that node a is inserted ; it does not appear in N1 but may appear as a new
place in N2. We can have more than two places in an agglomeration.

A TFG can also include nodes for constants, used to express invariant state-
ments on the markings of the form p + q = k. To this end, we assume that we
have a family of disjoint sets K(n) (also disjoint from place and variable names),
for each n in N, such that the “valuation” of a node v ∈ K(n) will always be n.
We use K to denote the set of all constants.

Computing Concurrent Places Using Reductions 51

Definition 3 (Token Flow Graph). A TFG with set of places P is a directed
(bi)graph (V,R,A) such that: V = P ∪ S is a set of vertices (or nodes) with
S ⊂ K a finite set of constants; R ∈ V ×V is a set of redundancy arcs, v →• v′;
and A ∈ V × V is a set of agglomeration arcs, v ◦→ v′, disjoint from R.

The main source of complexity in our approach arises from the need to man-
age interdependencies between A and R nodes, that is situations where redun-
dancies and agglomerations alternate. This is not something that can be easily
achieved by looking only at the equations in E and what motivates the need to
define a specific data-structure.

We define several notations that will be useful in the following. We use the
notation v → v′ when we have (v →• v′) in R or (v ◦→ v′) in A. We say that a
node v is a root if it is never the target of an arc. A sequence of nodes (v1, . . . , vn)
in V n is a path if we have vi → vi+1 for all i < n. We use the notation v →� v′

when there is a path from v to v′ in the graph, or when v = v′. We write v ◦→X
when X is the largest subset {v1, . . . , vk} of V such that X �= ∅ and v ◦→ vi ∈ A
for all i ∈ 1..k. Similarly, we write X →• v when X is the largest, non-empty set
of nodes {v1, . . . , vk} such that vi →• v ∈ R for all i ∈ 1..k.

We display an example of Token Flow Graphs in Fig. 2, where “black dot”
arcs model edges in R and “white dot” arcs model edges in A. The idea is that
each relation X →• v or v ◦→ X corresponds to one equation v =

∑
vi∈X vi in

E, and that all the equations in E should be reflected in the TFG. We want
to avoid situations where the same place is removed more than once, or where
some place occurs in the TFG but is never mentioned in N1, N2 or E. All these
constraints can be expressed using a suitable notion of well-formed graph.

Definition 4 (Well-Formed TFG). A TFG G = (V,R,A) for the equiva-
lence statement (N1,m1) �E (N2,m2) is well-formed when all the following
constraints are met, where P1 and P2 stand for the set of places in N1 and N2:

(T1) no unused names: V \ K = P1 ∪ P2 ∪ fv(E),
(T2) nodes in K are roots: if v ∈ V ∩ K then v is a root of G,
(T3) nodes can be removed only once: it is not possible to have p◦→q and p′ → q

with p �= p′, or to have both p →• q and p ◦→ q,
(T4) we have all and only the equations in E: we have v ◦→ X or X →• v if and

only if the equation v =
∑

vi∈X vi is in E.

Given a relation (N1,m1) �E (N2,m2), the well-formedness conditions are
enough to ensure the unicity of a TFG (up-to the choice of constant nodes) when
we set each equation to be either in A or in R. In this case, we denote this TFG
[[E]]. In practice, we use a tool called Reduce to generate the E-equivalence from
the initial net (N1,m1). This tool outputs a sequence of equations suitable to
build a TFG and, for each equation, it adds a tag indicating if it is a Redundancy
or an Agglomeration. We display in Fig. 2 the equations generated by Reduce
for the net M1 given in Fig. 1.

A consequence of condition (T3) is that a well-formed TFG is necessarily
acyclic; once a place has been removed, it cannot be used to remove a place later.

52 N. Amat et al.

R |- p5 = p4
A |- a1 = p2 + p1
A |- a2 = p4 + p3
R |- a1 = a2

p0 p6a2

a1

p3

p4

p1 p2 p5

Fig. 2. Equations generated from net M1, in Fig. 1, and associated TFG [[EM]]

Moreover, in the case of reductions generated from structural reductions, the roots
of the graph are exactly the constant nodes and the places that occur in N2 (since
they are not removed by any equation). The constraints (T1)–(T4) are not artifi-
cial or arbitrary. In practice, we compute E-equivalences using multiple steps of
structural reductions, and a TFG exactly records the constraints and information
generated during these reductions. In some sense, equations E abstract a relation
between the semantics of two nets, whereas a TFG records the structure of reduc-
tions between places during reductions.

Configurations of a Token Flow Graph. By construction, there is a strong con-
nection between “systems of reduction equations”, E, and their associated graph,
[[E]]. We show that a similar relation exists between solutions of E and “valua-
tions” of the graph (what we call configurations thereafter).

A configuration c of a TFG (V,R,A) is a partial function from V to N. We
use the notation c(v) = ⊥ when c is not defined on v and we always assume that
c(v) = n when v is a constant node in K(n).

Configuration c is total when c(v) is defined for all nodes v in V ; otherwise it
is said partial. We use the notation c|N for the configuration obtained from c by
restricting its support to the set of places in the net N . We remark that when c is
defined over all places of N then c|N can be viewed as a marking. By association
with markings, we say that two configurations c and c′ are compatible, denoted
c ≡ c′, if they have same value on the nodes where they are both defined:
c(p) = c′(p) when c(v) �= ⊥ and c′(v) �= ⊥. We also use �c� to represent the
system v1 = c(v1) , . . . , vk = c(vk) where the (vi)i∈1..k are the nodes such that
c(vi) �= ⊥. We say that a configuration c is well-defined when the valuation of
the nodes agrees with the equations associated with the A and R arcs of [[E]].

Definition 5 (Well-Defined Configurations). Configuration c is well-
defined when for all nodes p the following two conditions hold: (CBot) if v → w
then c(v) = ⊥ if and only if c(w) = ⊥; and (CEq) if c(v) �= ⊥ and v ◦→ X or
X →• v then c(v) =

∑
vi∈X c(vi).

We prove that the well-defined configurations of a TFG [[E]] are partial solu-
tions of E, and reciprocally. Therefore, because all the variables in E are nodes
in the TFG (condition T1) we have an equivalence between solutions of E and
total, well-defined configurations of [[E]].

Computing Concurrent Places Using Reductions 53

Lemma 1 (Well-defined Configurations are Solutions). Assume [[E]] is
a well-formed TFG for the equivalence (N1,m1) �E (N2,m2). If c is a well-
defined configuration of [[E]] then E , �c� is consistent. Conversely, if c is a total
configuration of [[E]] such that E , �c� is consistent then c is also well-defined.

We can prove several properties related to how the structure of a TFG
constrains possible values in well-formed configurations. These results can be
thought of as the equivalent of a “token game”, which explains how tokens can
propagate along the arcs of a TFG. This is useful in our context since we can
assess that two nodes are concurrent when we can mark them in the same con-
figuration. (A similar result holds for finding pairs of nonconcurrent nodes.)

Our first result shows that we can always propagate tokens from a node to
its children, meaning that if a node has a token, we can find one in its successors
(possibly in a different well-defined configuration). In the following, we use the
notation ↓v for the set of successors of v, meaning: ↓p �

⋃ {q ∈ V | p →� q}.
Property (Backward) states a dual result; if a child node is marked then one of
its parents must be marked.

Lemma 2 (Token Propagation). Assume [[E]] is a well-formed TFG for the
equivalence (N1,m1) �E (N2,m2) and c a well-defined configuration of [[E]].

(Forward) if p, q are nodes such that c(p) �= ⊥ and p →� q then we can find a
well-defined configuration c′ such that c′(q) � c′(p) = c(p) and c′(v) = c(v)
for every node v not in ↓p.

(Backward) if c(p) > 0 then there is a root v such that v →� p and c(v) > 0.
(Agglomeration) if p ◦→ {q1, . . . , qk} and c(p) �= ⊥ then for every sequence

(li)i∈1..k of N
k, if c(p) =

∑
i∈1..k li then we can find a well-defined configura-

tion c′ such that c′(p) = c(p), and c′(qi) = li for all i ∈ 1..k, and c′(v) = c(v)
for every node v not in ↓p.

Until this point, none of our results rely on the properties of E-equivalence.
We now prove that there is an equivalence between reachable markings and con-
figurations of [[E]]. More precisely, we prove (Theorem 1) that every reachable
marking in N1 or N2 can be extended into a well-defined configuration of [[E]].
This entails that we can reconstruct all the reachable markings of N1 by look-
ing at well-defined configurations obtained from the reachable markings of N2.
Our algorithm (see next section) will be a bit smarter since we do not need to
enumerate exhaustively all the markings of N2. Instead, we only need to know
which roots can be marked together.

Theorem 1 (Configuration Reachability). Assume [[E]] is a well-formed
TFG for the equivalence (N1,m1) �E (N2,m2). If m is a marking in R(N1,m1)
or R(N2,m2) then there exists a total, well-defined configuration c of [[E]] such
that c ≡ m. Conversely, given a total, well-defined configuration c of [[E]], if
marking c|N1 is reachable in (N1,m1) then c|N2 is reachable in (N2,m2).

Proof (sketch). Take m a marking in R(N1,m1). By property of E-abstraction,
there is a reachable marking m′

2 in R(N2,m2) such that E , �m� , �m′
2� is con-

sistent. Therefore we can find a non-negative integer solution c to the system

54 N. Amat et al.

E , �m� , �m′
2�. And c is total because of condition (T1). For the converse prop-

erty, we assume that c is a total and well-defined configuration of [[E]] and that
c|N1 is a marking of R(N1,m1). By Lemma 1, since c is well-defined, we have
that E , �c� is consistent, and therefore so is E , �c|N1� , �c|N2�. This entails c|N2

in R(N2,m2) by condition (A3), as needed. ��
In the following, we will often consider that nets are safe. This is not a

problem in practice since our reduction rules preserve safeness. Hence we do not
need to check if (N2,m2) is safe when (N1,m1) is. The fact that the nets are
safe has consequences. In particular, as a direct corollary of Theorem 1, we can
assume that, for any well-defined configuration c, if c|N2 is reachable in (N2,m2)
then c(v) ∈ {0, 1}.

By Theorem 1, if we take reachable markings in N2—meaning we fix the
values of roots in [[E]]—we can find places of N1 that are marked together by
propagating tokens from the roots to the leaves (Lemma 2). In our algorithm,
next, we show that we can compute the concurrency relation of N1 by looking at
just two cases: (1) we start with a token in a single root p, with p not dead, and
propagate this token forward until we find a configuration with two places of N1

marked together; or (2) we do the same but placing a token in two separate roots,
p1, p2, such that p1 ‖ p2. We base our approach on the fact that we can extend
the notion of concurrent places (in a marked net), to the notion of concurrent
nodes in a TFG, meaning nodes that can be marked together in a “reachable
configuration”.

4 Dimensionality Reduction Algorithm

We define an algorithm that takes as inputs a well-formed TFG [[E]] plus the
concurrency relation for the net (N2,m2), say ‖2, and outputs the concurrency
relation for (N1,m1), say ‖1. Actually, our algorithm computes a concurrency
matrix, C, that is a matrix such that C[v, w] = 1 when the nodes v, w can
be marked together in a “reachable configuration”, and 0 otherwise. We prove
(Theorem 2) that the relation induced by C matches with ‖1 on N1. For the case
of “partial relations”, we use C[v, w] = • to mean that the relation is undecided.
In this case we say that matrix C is incomplete.

The complexity of computing the concurrency relation is highly dependent
on the number of places in the net. For this reason, we say that our algorithm
performs some sort of a “dimensionality reduction”, because it allows us to solve
a problem in a high-dimension space (the number of places in N1) by solving
it first on a lower dimension space (since N2 may have far fewer places) and
then transporting back the result to the original net. In practice, we compute
the concurrency relation on (N2,m2) using the tool cæsar.bdd from the CADP
toolbox; but we can rely on any kind of “oracle” to compute this relation for us.
This step is not necessary when the initial net is fully reducible, in which case
the concurrency relation for N2 is trivial and all the roots in [[E]] are constants.

Computing Concurrent Places Using Reductions 55

Function Matrix([[E]] : TFG, ‖2 : concurrency relation on (N2,m2))
Result: the concurrency matrix C

1 C ← 0 /* the matrix is initialized with zeros */

2 foreach root v in [[E]] do
3 if v ‖2 v then
4 succs[v] ← Propagate([[E]],C, v)

5 foreach pair of roots (v, w) in [[E]] do
6 if v ‖2 w then
7 foreach (v′, w′) ∈ succs[v] × succs[w] do C[v′, w′] ← 1

8 return C

Function Propagate([[E]] : TFG, C : concurrency matrix, v : node)
Result: the successors of v in [[E]]. As a side-effect, we add to C all the

relations that stem from knowing v not-dead.

1 C[v, v] ← 1
2 succs ← {v} /* succs collects the nodes in ↓v */

3 succr ← {} /* auxiliary variable used to store ↓w when v →• w */

4 foreach w such that v ◦→ w do succs ← succs ∪ Propagate([[E]],C, w)
5 foreach w such that v →• w do
6 succr ← Propagate([[E]],C, w)
7 foreach (v′, w′) ∈ succs × succr do C[v′, w′] ← 1
8 succs ← succs ∪ succr

9 return succs

We assume that [[E]] is a well-formed TFG for the relation (N1,m1) �E

(N2,m2); that both nets are safe; and that all the roots in [[E]] are either con-
stants (in K(0) ∪ K(1)) or places in N2. We use symbol ‖2 for the concurrency
relation on (N2,m2) and ‖1 on (N1,m1). To simplify our notations, we assume
that v‖2w when v is a constant node in K(1) and w is not-dead. On the opposite,
v #2 w when v ∈ K(0) or w is dead.

Our algorithm is divided into two main functions, Matrix and Propagate.
In the main function, Matrix, we iterate over the non-dead roots of [[E]] and
recursively propagates a “token” to its successors (the call to Propagate in
line 4). After this step, we know all the live nodes in C. The call to Propagate
has two effects. First, we retrieve the list of successors of the live roots. Second, as
a side-effect, we update the concurrency matrix C by finding all the concurrent
nodes that arise from a unique root. We can prove all such cases arise from
redundancy arcs that are “under node v”. Actually, we can prove that if v → w1

and v →•w2 (with w1 �= w2) then the nodes in the set ↓v \↓w2 are concurrent to
all the nodes in ↓w2. Next, in the second foreach loop of Matrix, we compute
the concurrent nodes that arise from two distinct live roots (v, w). In this case,
we can prove that all the successors of v are concurrent with successors of w: all
the pairs in ↓v × ↓w are concurrent.

56 N. Amat et al.

We can prove that our algorithm is sound and complete using the theory
that we developed on TFGs and configurations.

Theorem 2. If C is the matrix returned by a call to Matrix([[E]], ‖2) then for
all places p, q in N1 we have p‖1 q if and only if either C[p, q] = 1 or C[q, p] = 1.

We can perform a cursory analysis of the complexity of our algorithm. By
construction, we update the matrix by following the edges of [[E]], starting from
the roots. Since a TFG is a DAG, it means that we could call function Propagate
several times on the same node. However, a call to Propagate([[E]],C, v) can only
update C by adding a 1 between nodes that are successors of v (information
only flows in the direction of →). It means that Propagate is idempotent; a
subsequent call to Propagate([[E]],C, v) will never change the values in C. As
a consequence, we can safely memoize the result of this call and we only need
to go through a node at most once. More precisely, we need to call Propagate
only on the nodes that are not-dead in [[E]]. During each call to Propagate, we
may update at most O(N2) values in C, where N is the number of nodes in [[E]],
which is also O(|C|), the size of our output. In conclusion, our algorithm has a
linear time complexity (in the number of live nodes) if we count the numbers
of function calls and a linear complexity, in the size of the output, if we count
the number of updates to C. This has to be compared with the complexity of
building then checking the state space of the net, which is PSPACE.

In practice, our algorithm is very efficient, highly parallelizable, and its exe-
cution time is often negligible when compared to the other tasks involved when
computing the concurrency relation. We give some results on our performances
in the next section.

Extensions to Incomplete Concurrency relations. With our approach, we only
ever writes 1s into the concurrency matrix C. This is enough since we know
relation ‖2 exactly and, in this case, relation ‖1 must also be complete (we can
have only 0s or 1s in C). This is made clear by the fact that C is initialized with
0s everywhere. We can extend our algorithm to support the case where we only
have a partial knowledge of ‖2. This is achieved by initializing C with the special
value • (undefined) and adding rules that let us “propagate 0s” on the TFG, in
the same way that our total algorithm only propagates 1s. For example, we know
that if C[v, w] = 0 (v, w are nonconcurrent) and v ◦→ w′ (we know that always
c(v) � c(w′) on reachable configurations) then certainly C[w′, w] = 0. Likewise,
we can prove that following rule for propagating “dead nodes” is sound: if X→•v
and C[w,w] = 0 (node w is dead) for all w ∈ X then C[v, v] = 0.

Partial knowledge on the concurrency relation can be useful. Indeed, many
use cases can deal with partial knowledge or only rely on the nonconcurrency
relation (a 0 on the concurrency matrix). This is the case, for instance, when
computing NUPN partitions, where it is always safe to replace a • with a 1.
It also means that knowing that two places are nonconcurrent is often more
valuable than knowing that they are concurrent; 0s are better than 1s.

We have implemented an extension of our algorithm for the case of incomplete
matrices using this idea and we report some results obtained with it in the

Computing Concurrent Places Using Reductions 57

next section. Unfortunately, we do not have enough space to describe the full
algorithm here. It is slightly more involved than for the complete case and is
based on a collection of six additional axioms:

– If C[v, v] = 0 then C[v, w] = 0 for all node w in [[E]].
– If v ◦→ X or X →• v and C[w,w] = 0 for all nodes w ∈ X then C[v, v] = 0.
– If v ◦→ X or X →• v and C[v, v] = 0 then C[w,w] = 0 for all nodes w ∈ X.
– If v ◦→ X or X →• v then C[w,w′] = 0 for all pairs of nodes w,w′ ∈ X such

that w �= w′.
– If v ◦→ X or X →• v and C[w, v′] = 0 for all nodes w ∈ X then C[v, v′] = 0.
– If v ◦→ X or X →• v and C[v, v′] = 0 then C[w, v′] = 0 for all nodes w in X.

While we can show that the algorithm is sound, completeness takes a different
meaning: we show that when nodes p and q are successors of roots v1 and v2
such that C[vi, vi] �= • for all i ∈ 1..2 then necessarily C[p, q] �= •.

5 Experimental Results

We have implemented our algorithm in a new tool, called Kong (for Koncur-
rent places Grinder). The tool is open-source, under the GPLv3 license, and is
freely available on GitHub (https://github.com/nicolasAmat/Kong). We have
used the extensive database of models provided by the Model Checking Contest
(MCC) [2,14] to experiment with our approach. Kong takes as inputs safe Petri
nets defined using the Petri Net Markup Language (PNML) [15]. The tool does
not compute net reductions directly but relies on another tool, called Reduce,
that is developed inside the Tina toolbox [4,21]. For our experiments, we also
need to compute the concurrency matrix of reduced nets. This is done using
the tool cæsar.bdd (version 3.4, published in August 2020), that is part of the
CADP toolbox [8,17], but we could adopt any other technology here.

Our benchmark is built from a collection of 588 instances of safe Petri nets
used in the MCC 2020 competition. Since we rely on how much reduction we
can find in nets, we computed the reduction ratio (r), obtained using Reduce,
on all the instances (see Fig. 3). The ratio is calculated as the quotient between
how many places can be removed and the number of places in the initial net. A
ratio of 100% (r = 1) means that the net is fully reduced ; the residual net has no
places and all the roots are constants. We see that there is a surprisingly high
number of models whose size is more than halved with our approach (about 25%
of the instances have a ratio r � 0.5), with approximately half of the instances
that can be reduced by a ratio of 30% or more. We consider two values for the
reduction ratio: one for reductions leading to a well-formed TFG (in dark blue),
the other for the best possible reduction with Reduce (in light orange).

We observe that we lose few opportunities to reduce a net due to our well-
formedness constraint. Actually, we mostly lose the ability to simplify some
instances of “partial” marking graphs that could be reduced using inhibitor arcs
(a feature not supported by cæsar.bdd). We evaluated the performance of Kong
on the 424 instances of safe Petri nets with a reduction ratio greater than 1%.

https://github.com/nicolasAmat/Kong

58 N. Amat et al.

Fig. 3. Distribution of reduction ratios over the safe instances in the MCC

We ran Kong and cæsar.bdd on each of those instances, in two main modes:
first with a time limit of 1 h to compare the number of totally solved instances
(when the tool compute a complete concurrency matrix); next with a timeout of
60 s to compare the number of values (the filling ratios) computed in the partial
matrices. Computation of a partial concurrency matrix with cæsar.bdd is done
in two phases: first a “BDD exploration” phase that can be stopped by the user;
then a post-processing phase that cannot be stopped. In practice this means
that the execution time is often longer (because of the post-processing phase)
when we do not use Kong: the mean computation time for cæsar.bdd alone is
about 62 s, while it is less than 21 s when we use Kong and cæsar.bdd together.
In each test, we compared the output of Kong with the values obtained on the
initial net with cæsar.bdd and achieved 100% reliability.

Results for Totally Computed Matrices. We report our results on the computa-
tion of complete matrices and a timeout of 1 h in the table below. We report
the number of computed matrices for three different categories of instances,
Low/Fair/High, associated with different ratio ranges. We observe that we
can compute more results with reductions than without (+25%). As could be
expected, the gain is greater on category High (+53%), but it is still significant
with the Fair instances (+32%).

Reduction # Test # Computed Matrices

Ratio (r) Cases Kong cæsar.bdd

Low r ∈]0, 0.25[160 90 88 ×1.02

Fair r ∈ [0.25, 0.5[112 53 40 ×1.32

High r ∈ [0.5, 1] 152 97 63 ×1.53

Total r ∈]0, 1] 424 240 191 ×1.25

To understand the impact of reductions on the computation time, we compare
cæsar.bdd alone, on the initial net, and Kong+Reduce+cæsar.bdd on the
reduced net. We display the result in a scatter plot, using a logarithmic scale
(Fig. 4, left), with one point for each instance: time using reductions on the

Computing Concurrent Places Using Reductions 59

y-axis, and without on the x-axis. We use colours to differentiate between Fair
instances (light orange) and High ones (dark blue), and fix a value of 3600 s when
one of the computation timeout. Hence the cluster of points on the right part of
the plots are when cæsar.bdd alone timeouts. We observe that the reduction
ratio has a clear impact on the speed-up and that almost all the data points are
below the diagonal, meaning reductions accelerate the computation in almost
all cases, with many test cases exhibiting speeds-up larger than ×10 or ×100
(materialized by dashed lines under the diagonal).

Results with Partial Matrices. We can also compare the “accuracy” of our app-
roach when we have incomplete results. To this end, we compute the concur-
rency relation with a timeout of 60 s on cæsar.bdd. We compare the filling
ratio obtained with and without reductions. For a net with n places, this ratio is
given by the formula 2 |C|/(n2 + n), where |C| is the number of 0s and 1s in the
matrix. We display our results using a scatter plot with linear scale, see Fig. 4
(right). Again, we observe that almost all the data points are on one side of the
diagonal, meaning in this case that reductions increase the number of computed
values, with many examples (top line of the plot) where we can compute the
complete relation in 60 s only using reductions. The graphic does not discrimi-
nate between the number of 1 s and 0 s, but we obtain similar good results when
we consider the filling ratio for only the concurrent places (the 1 s) or only the
nonconcurrent places (the 0 s).

Fig. 4. Comparing Kong (y-axis) and cæsar.bdd (x-axis) for instances with r ∈
[0.25, 0.5[(light orange) and r ∈ [0.5, 1] (dark blue). One diagram (left) compares the
computation time for complete matrices; the other (right) compares the filling ratio for
partial matrices with a timeout of 60 s.

60 N. Amat et al.

6 Conclusion and Further Work

The concurrency problem is difficult, especially when we cannot compute the
complete state space of a net. We propose a method for transporting this problem
from an initial “high-dimensionality” domain (the set of places in the net) into a
smaller one (the set of places in the residual net). Our experiments confirm our
intuition that the concurrency relation is much easier to compute after reductions
(if the net can be reduced) and we provide an easy way to map back the result
into the original net.

Our approach is based on a combination of structural reductions with linear
equations first proposed in [5,6]. Our main contribution, in the current work,
is the definition of a new data-structure that precisely captures the structure
of these linear equations, what we call the Token Flow Graph (TFG). We use
the TFGs to accelerate the computation of the concurrency relation, both in
the complete and partial cases. We have many ideas on how to apply TFGs to
other problems and how to extend them. A natural application would be for
model counting (our original goal in [5]), where the TFG could lead to new
algorithms for counting the number of (integer) solutions in the systems of lin-
ear equations that we manage. Another possible application is the max-marking
problem, which means finding the maximum of the expression

∑
p∈P m(p) over

all reachable markings. On safe nets, this amounts to finding the maximal num-
ber of places that can be marked together. We can easily adapt our algorithm
to compute this value and could even adapt it to compute the result when the
net is not safe.

We can even manage a more general problem, related to the notion of max-
concurrent sets of places. We say that the set S is concurrent if there is a
reachable m such that m(p) > 0 for all places p in S. (This subsume the case of
pairs and singleton of places.) The set S is max-concurrent if no superset S′

� S
is concurrent. Computing the max-concurrent sets of a net is interesting for
several reasons. First, it gives an alternative representation of the concurrency
relation that can sometimes be more space efficient: (1) the max-concurrent sets
provide a unique cover of the set of places of a net, and (2) we have p ‖ q if and
only if there is S max-concurrent such that {p, q} ⊂ S. Obviously, on safe nets,
the size of the biggest max-concurrent set is the answer to the max-marking
problem.

For future work, we would like to answer even more difficult questions, such
as proofs of Generalized Mutual Exclusion Constraints [13], that requires check-
ing invariants involving a weighted sums over the marking of places, of the form∑

p∈P wp.m(p). Another possible extension will be to support non-ordinary nets
(which would require adding weights on the arcs of the TFG) and nets that
are not safe (which can already be done with our current approach, but require
changing some of the “axioms” used in our algorithm). Finally, another interest-
ing direction for works would be to find reductions that preserve the concurrency
relation (but not necessarily reachable states). As you can see, there is a lot to
be done, which underlines the interest of studying TFGs.

Computing Concurrent Places Using Reductions 61

Acknowledgements. We would like to thank Pierre Bouvier and Hubert Garavel for
their insightful suggestions that helped improve the quality of this paper.

References

1. Amat, N., Berthomieu, B., Dal Zilio, S.: On the combination of polyhedral abstrac-
tion and SMT-based model checking for Petri Nets. In: Buchs, D., Carmona, J.
(eds.) PETRI NETS 2021. LNCS, vol. 12734, pp. 164–185. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-76983-3 9

2. Amparore, E., et al.: Presentation of the 9th edition of the model checking contest.
In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS,
vol. 11429, pp. 50–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17502-3 4

3. Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig,
W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 359–376. Springer,
Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2 13

4. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool TINA - Construction of
abstract state spaces for petri nets and time petri nets. Int. J. Prod. Res. 42(14),
2741–2756 (2004). https://doi.org/10.1080/00207540412331312688; https://doi.
org/10.1080/00207540412331312688

5. Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Petri net reductions for counting
markings. In: Gallardo, M.M., Merino, P. (eds.) SPIN 2018. LNCS, vol. 10869, pp.
65–84. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94111-0 4

6. Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Counting Petri net markings from
reduction equations. Int. J. Softw. Tools Technol. Transf. 22(2), 163–181 (2019).
https://doi.org/10.1007/s10009-019-00519-1

7. Bønneland, F.M., Dyhr, J., Jensen, P.G., Johannsen, M., Srba, J.: Stubborn versus
structural reductions for Petri nets. J. Logical Algebraic Methods Program. 102,
46–63 (2019). https://doi.org/10.1016/j.jlamp.2018.09.002

8. Bouvier, P., Garavel, H.: Efficient algorithms for three reachability problems in
Safe Petri nets. In: Buchs, D., Carmona, J. (eds.) PETRI NETS 2021. LNCS, vol.
12734, pp. 339–359. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
76983-3 17

9. Bouvier, P., Garavel, H., Ponce-de-León, H.: Automatic decomposition of Petri
nets into automata networks – a synthetic account. In: Janicki, R., Sidorova, N.,
Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 3–23. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-51831-8 1

10. Garavel, H.: Nested-unit Petri nets. J. Logical Algebraic Methods Program. 104,
60–85 (2019). https://doi.org/10.1016/j.jlamp.2018.11.005

11. Garavel, H.: Proposal for adding useful features to Petri-net model checkers.
Research Report 03087421, Inria Grenoble - Rhône-Alpes (2020). https://hal.inria.
fr/hal-03087421

12. Garavel, H., Serwe, W.: State space reduction for process algebra specifications. In:
Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp.
164–180. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27815-
3 16

13. Giua, A., DiCesare, F., Silva, M.: Generalized mutual exclusion contraints on nets
with uncontrollable transitions. In: IEEE International Conference on Systems,
Man, and Cybernetics. IEEE (1992). https://doi.org/10.1109/ICSMC.1992.271666

https://doi.org/10.1007/978-3-030-76983-3_9
https://doi.org/10.1007/978-3-030-17502-3_4
https://doi.org/10.1007/978-3-030-17502-3_4
https://doi.org/10.1007/978-3-540-47919-2_13
https://doi.org/10.1080/00207540412331312688
https://doi.org/10.1080/00207540412331312688
https://doi.org/10.1080/00207540412331312688
https://doi.org/10.1007/978-3-319-94111-0_4
https://doi.org/10.1007/s10009-019-00519-1
https://doi.org/10.1016/j.jlamp.2018.09.002
https://doi.org/10.1007/978-3-030-76983-3_17
https://doi.org/10.1007/978-3-030-76983-3_17
https://doi.org/10.1007/978-3-030-51831-8_1
https://doi.org/10.1016/j.jlamp.2018.11.005
https://hal.inria.fr/hal-03087421
https://hal.inria.fr/hal-03087421
https://doi.org/10.1007/978-3-540-27815-3_16
https://doi.org/10.1007/978-3-540-27815-3_16
https://doi.org/10.1109/ICSMC.1992.271666

62 N. Amat et al.

14. Hillah, L.M., Kordon, F.: Petri nets repository: a tool to benchmark and debug
Petri net tools. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS,
vol. 10258, pp. 125–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-57861-3 9

15. Hillah, L.M., Kordon, F., Petrucci, L., Trèves, N.: PNML framework: an extendable
reference implementation of the Petri net markup language. In: Lilius, J., Penczek,
W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 318–327. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13675-7 20

16. Hujsa, T., Berthomieu, B., Dal Zilio, S., Le Botlan, D.: Checking marking reacha-
bility with the state equation in Petri net subclasses, 44 p (2020). https://hal.laas.
fr/hal-02992521

17. INRIA: CADP (2020). https://cadp.inria.fr/
18. Janicki, R.: Nets, sequential components and concurrency relations. Theor. Com-

put. Sci. 29(1–2) (1984). https://doi.org/10.1016/0304-3975(84)90014-8
19. Kovalyov, A.V.: Concurrency relations and the safety problem for Petri nets. In:

Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 299–309. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55676-1 17

20. Kovalyov, A.: A polynomial algorithm to compute the concurrency relation of
a regular STG. In: Hardware Design and Petri Nets. Springer, Boston (2000).
https://doi.org/10.1007/978-1-4757-3143-9 6

21. LAAS-CNRS: Tina Toolbox (2020). http://projects.laas.fr/tina
22. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-

mun. ACM 18(12) (1975). https://doi.org/10.1145/361227.361234
23. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),

541–580 (1989). https://doi.org/10.1109/5.24143
24. Semenov, A., Yakovlev, A.: Combining partial orders and symbolic traver-

sal for efficient verification of asynchronous circuits. In: Proceedings of ASP-
DAC’95/CHDL’95/VLSI’95 with EDA Technofair (1995). https://doi.org/10.
1109/ASPDAC.1995.486371

25. Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming tech-
niques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg,
G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 19

26. Thierry-Mieg, Y.: Structural reductions revisited. In: Janicki, R., Sidorova, N.,
Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 303–323. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51831-8 15

27. Wisniewski, R., Karatkevich, A., Adamski, M., Costa, A., Gomes, L.: Prototyping
of concurrent control systems with application of Petri Nets and comparability
graphs. IEEE Trans. Control Syst. Technol. 26(2) (2018). https://doi.org/10.1109/
TCST.2017.2692204

28. Wísniewski, R., Wísniewska, M., Jarnut, M.: C-exact hypergraphs in concurrency
and sequentiality analyses of cyber-physical systems specified by safe Petri nets.
IEEE Access 7 (2019). https://doi.org/10.1109/ACCESS.2019.2893284

https://doi.org/10.1007/978-3-319-57861-3_9
https://doi.org/10.1007/978-3-319-57861-3_9
https://doi.org/10.1007/978-3-642-13675-7_20
https://hal.laas.fr/hal-02992521
https://hal.laas.fr/hal-02992521
https://cadp.inria.fr/
https://doi.org/10.1016/0304-3975(84)90014-8
https://doi.org/10.1007/3-540-55676-1_17
https://doi.org/10.1007/978-1-4757-3143-9_6
http://projects.laas.fr/tina
https://doi.org/10.1145/361227.361234
https://doi.org/10.1109/5.24143
https://doi.org/10.1109/ASPDAC.1995.486371
https://doi.org/10.1109/ASPDAC.1995.486371
https://doi.org/10.1007/3-540-65306-6_19
https://doi.org/10.1007/978-3-030-51831-8_15
https://doi.org/10.1109/TCST.2017.2692204
https://doi.org/10.1109/TCST.2017.2692204
https://doi.org/10.1109/ACCESS.2019.2893284

Spotlight Abstraction in Model Checking
Real-Time Task Schedulability

Madoda Nxumalo1,2(B), Nils Timm1, and Stefan Gruner1

1 Department of Computer Science, University of Pretoria, Pretoria, South Africa
{mnxumalo,ntimm,sg}@cs.up.ac.za

2 Department of Computer Science, University of Eswatini, Kwaluseni, Eswatini
manxumalo@uniswa.sz

Abstract. In this paper we present a new abstraction technique for the
model-checking of real-time systems with multiple tasks. Our technique
enables the automatic and efficient analysis of the schedulability of real-
time tasks for both preemptive and non-preemptive scheduling policies. It
is based on the spotlight abstraction principle, which is applied to a queue
that contains the tasks of the real-time system to be analyzed. This task-
queue is partitioned into a so-called ‘spotlight’ and a ‘shade’. Initially
the spotlight contains only a small number of tasks which appear at the
front of the queue and will be executed in the near future. The initial
shade contains the remaining tasks which will be executed only after the
spotlight tasks have been processed. On the basis of these assumptions
an abstract state space model is generated. In this model the spotlight is
considered in detail, whereas the behavior of the shade is almost entirely
abstracted away. Such an abstract model is checked iteratively as follows:
first the schedulability of the spotlight tasks is analyzed, and the result
is saved for later re-use. If this result is still inconclusive, more tasks
are brought from the shade into a now “broader” spotlight, with which
the model checker can proceed. These steps are repeated until a decisive
schedulability result is reached. In this manner we divide the entire model
checking problem into smaller sub-problems such that, in the average
case, the model checker’s run-time is still acceptably short.

Keywords: Timed automata · Model checking · Three-valued
abstraction · Schedulability · Queues

1 Introduction

Model checking is an efficient procedure for automatic software verification and
analysis of temporal logic properties of finite or infinite state systems [14]. A
model checker explores a finite state automaton which models the system under
study and then decides whether a property is satisfied or not. A major chal-
lenge in model checking is the so-called state explosion problem: The model
checker may run out of computational resources before a conclusive result can
be obtained.
c© Springer Nature Switzerland AG 2021
A. Laarman and A. Sokolova (Eds.): SPIN 2021, LNCS 12864, pp. 63–80, 2021.
https://doi.org/10.1007/978-3-030-84629-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84629-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-84629-9_4

64 M. Nxumalo et al.

Abstraction is a useful technique for mitigating the state explosion problem
by hiding some system details which are irrelevant for the checked property.
Thus, abstraction can help with obtaining conclusive results even for a large
state space model. Thus, typical software model checkers explore the state space
of an abstract model instead of the concrete system. Research on software model
checking focuses on the development of abstraction techniques that allow to
reduce the state space complexity without losing the details that are necessary
for a definite verification result.

Three-valued abstraction (3VA) [20] is a technique that replaces concrete
program variables by three-valued predicates with three possible truth values,
{true, false, unknown}, in short (t,f,u). Concrete program states are mapped to
abstract states according to their evaluations under a finite set of predicates. The
third value, u is used to model the loss of details due to abstraction. 3VA is a
generalization of Boolean predicate abstraction [5] based on three-valued Kleene
logic [12]. Under 3VA, both t and f model checking results can be transferred to
the concrete system, whereas an u result indicates that further predicates need
to be added to the abstract model.

In this paper, we present a novel abstraction technique that enables effi-
cient model checking of schedulability properties of real-time operating systems
(RTOS). Schedulability analysis determines whether or not a given set of real-
time tasks under a particular scheduling discipline can meet all of its timing
constraints. In schedulability analysis, multiple parameters such as task priority,
computation times and deadlines, synchronization, communication and prece-
dence constraints cause high complexity. Our approach can model check the
schedulability on systems that use different types of scheduling disciplines such
as the non-preemptive First In First Out (FIFO), the preemptive Round Robin,
and the priority-based and dynamic Earliest Deadline First (EDF). It is based
on three-valued spotlight abstraction which is applied to a queue data structure
that contains the real-time tasks to be executed by the RTOS.

Three-valued spotlight abstraction [20] is an extension of 3VA that allows
to reduce the state space complexity of model checking discrete-time properties
of concurrent software systems with integer variables. It divides the processes
of a system into a so-called spotlight and shade. 3VA is applied to all processes
in the spotlight while processes in the shade are collapsed and combined into a
single component that coarsely approximates their behavior by making use of
the truth value u. A verification run may return a definite result in {t, f} that
can be transferred to the concrete system. Whereas an u verification result does
not allow us to conclude whether the property holds or not, and it informs that
the current level of abstraction is too coarse. In this case, iterative abstraction
refinement is applied [22]. Under spotlight abstraction, refinement either adds
new predicates to the abstract model, or it moves processes from the shade
to the spotlight. The application of spotlight abstraction to real-time systems
with continuous variables for the purpose of schedulability analysis has not been
investigated so far.

Spotlight Abstraction in Model Checking Real-Time Task Schedulability 65

In our new model checking approach for tasks in real-time operating systems,
we verify schedulability properties formalized in timed computational tree logic,
and we adapt the spotlight abstraction principle as follows: The queue of tasks
is partitioned into a spotlight and a shade. The initial spotlight contains a small
number of tasks which are at the front of the queue and will be executed by
the processor in the near future. The maximum number of tasks in the spotlight
is defined by a constant integer. The initial shade contains the remaining tasks
to be executed at a later stage. The tasks belonging to the shade are combined
to form a single abstract task. Each task in the spotlight, each processor, and
the abstract task is modeled as a timed automaton. Timed automata are state
models of real-timed systems [2]. Timed automata use dense models of time
which are represented by a finite set of real number variables called clocks [10].
Clocks progress synchronously. The timed automata for tasks in the spotlight, an
abstract task and each processor, are then combined to generate an abstract state
space which is a parallel composition of timed automata. Based on this abstract
model, the schedulability property is checked for the tasks in the spotlight.

Given a set of tasks in the spotlight queue, the schedulability property asks
whether all tasks in the scheduler system will eventually execute within their
deadlines. If the outcome is true (false), then the property holds (is violated)
for the entire set of tasks. If the shade is not empty, then we obtain a partial
schedulability result, that is used as a condition in the next spotlight iteration. A
partial schedulability result is obtained when a portion of tasks were scheduled
within their deadlines while the schedulability of the processes in the shade is
not determined yet.

In the next iteration a number of shade tasks is moved to the spotlight, and a
new abstract state space is generated and the schedulability property is checked
again. The tasks for which a schedulability result have already been obtained are
removed from the spotlight and and they are placed in the shade as they need not
to be considered again. These steps are repeated until all tasks in the queue have
been in the spotlight and the partial schedulability results can be combined to
an overall result. In this manner, our approach divides a model checking problem
into smaller sub-problems and therefore reduces the state space complexity of
model checking.

We defined a new approach to model check the schedulability of real-time
tasks. Our approach applies spotlight abstraction to reduce the state space of
the model under verification. For example, handling multiple clocks and clock
constraints is complex, and by dividing the scheduler systems into a spotlight
and shade, our approach can handle fewer clocks at each iteration. We developed
algorithms for abstraction and model checking the schedulability of real-time
tasks. Moreover, we implemented the approach. In an experimental evaluation we
demonstrated that our new approach enables significant state space reductions.

66 M. Nxumalo et al.

2 Related Work

Our approach is motivated by several existing approaches to solve the schedu-
lability analysis problem of real-time systems using timed automata. Each app-
roach introduced a framework that extend timed automata with additional
properties. Firstly, stopwatch automata [15] have been applied in [1] for over-
approximative schedulability analyses on the basis of seeking and finding short-
est paths in an underlying graph model and allow some clocks to pause when
task preemption occurs. Similarly, our approach invokes a clock pause command
to clocks. In our case clocks are paused in model checking to allow a refinement
step. Secondly, [11] extended timed automata with a task queue data structure
to model check asynchronous processes. In this way, the model becomes fully
expressive as the automata always have complete information about all tasks in
the queue, but that information does not include clocks because they are expen-
sive to manipulate. Our approach attempts to keep each task in its original
form together with its own clocks. This model was implemented in TIME-tool
software [3] which uses the Uppaal model checker at the back-end. TIMES-tool
solves schedulability analysis problem using a single clock. Thirdly, parametric
timed automata (PTA) [9] is another framework that extends timed automata
by allowing some configurations to be unknown parameters on clock constraints
in order to reduce the state space complexity problem. IMITATOR [4] is a soft-
ware for modeling and verifying systems modeled as PTA. Analogous to PTA
our approach allows unknown clock valuations to represent tasks in a shade.

Abstraction of timed automata is mainly focused on restricting the clock
constraints into zones. Zones are convex polyhedra that represent clock con-
straints. Herbreteau et al. [16] proved the soundness and completeness for reach-
ability based on a parameterized abstraction approach that considers the lower
and upper bounds of clock constraints in timed automata. Another abstrac-
tion approach is through aggregating the union of different zones into a single
zone [13]. Roussanaly et al. [19] applied abstraction-refinement approaches for
model checking safety properties on an abstract transition system encoded with
Boolean formulas. They achieved abstraction on zones by restricting the set of
clock constraints. In their refinement step the set of clock constraints that must
be considered in the abstraction are evaluated and they excluded any found spu-
rious counterexample. The above two approaches focused on forming abstract
zones by weakening or strengthening the set of clock constraints into zones. Our
approach defines aggregated abstract clocks and abstract clock constraints over
tasks in the shade. Our approach allows for the interpretation of clock constraints
for the abstract task into zones.

Bauer et al. [6] provided a framework for parametrized three-valued inter-
pretation to hybrid automata for μ-calculus, to analyze hybrid dynamical sys-
tems that contain continuous variables on highly expressive logic. Their model
preserved both true and false formulas from the abstract model to the con-
crete model. Their framework was based on discrete bounded bi-simulation
abstractions and may/must-abstractions while our approach focuses on spot-
light abstraction.

Spotlight Abstraction in Model Checking Real-Time Task Schedulability 67

3 Encoding RTOS Scheduler Models as Timed Automata

We describe an encoding of a RTOS scheduler model as a timed automata. First,
we provide the definitions, syntax and semantics of timed automata.

Definition 1. A timed automaton is a tuple A = (L, l0, F, C,Σ, I, E) where; L
is a non-empty, finite set of locations, l0 ∈ L is an initial location, F ⊆ L is
a subset of final locations, C is a finite set of clocks, Σ is a finite alphabet of
actions, I : L → φ(C) is a clock invariant mapping to each location where φ(C)
is a set of clock constraints over C. φ(C) is a defined by the grammar g = x ∼
d|x−y ∼ d|g∧g, where x, y ∈ C, d ∈ N and ∼∈ {<,≤}. E ∈ L×φ(C)×Σ×2C×L
is a finite set of edges between locations.

Definition 2. An edge (l, g, a, r, l′) ∈ E is denoted by l
g,a,r−−−→ l′ where; g ∈ φ is

a guard, a ∈ Σ is an action and r is a reset function.

A clock valuation is a mapping v : C → R≥0. A reset function r on a clock
valuation v sets the clocks in r to zero and leaves the others unchanged.

The semantics of timed automata is given as follows. A configuration of the
automaton is a pair (l, v) consisting of a location and a clock valuation. A discrete
transition is (l, v) a−→ (l′, v′), for some (l, g, a, r, l′) ∈ E such that v satisfies g and
v′ = r(v). A time transition is (l, v) d−→ (l, v + d) for some d ∈ R≥0 such that
v + d satisfies I(l). A compound transition is a time transition followed by a

discrete transition: (l, v)
d,a−−→ (l′, v′) ≡ (l, v) d−→ (l, v + d) a−→ (l′, v′). A run of a

timed automaton starting from a configuration (l0, v0) is a finite or infinite path

ρ = (l0, v0)
d1,a1−−−→ (l1, v1)

d2,a2−−−→ (l2, v2) . . . in the transition system.

Definition 3. A parallel composition of timed automata A1||A2|| . . . ||An is the
timed automaton A = (L, l0, F, C,Σ, I, E) where Ai = (Li, l

i
0, Fi, Ci, Σi, Ii, Ei)

with all Li’s, Σi’s and Ci’s are disjoint, where; L =
∏n

i=1 Li, l0 = (l10, . . . , l
n
0),

F =
∏n

i=1 Fi, C =
⋃n

i=1 Ci. Σ =
⋃n

i=1(Σi ∪{⊥}), ⊥ is an empty symbol. A loca-
tion of A is l = (l1, . . . , ln) ∈ L and clock valuation over C are v = (v1, . . . , vn).
I(l) =

∧n
i=1 Ii(li). The set E consists of the transitions l

g,a,r−−−→ l′ whenever: (1)
there exists (α1, . . . , αn) ∈ ∏n

i=1(Σi ∪ {⊥}) such that f(α1, . . . , αn) = a, f is a
mapping function; (2) if αi = ⊥ then l′i = li; (3) if αi �= ⊥ then there exist a
transition li

gi,αi,ri−−−−−→ l′i in Ei; (4) g =
∧{gi|α �= ⊥} and r =

⋃{ri|αi �= ⊥}.
The transition system of timed automata is infinite because clocks are real

numbers, therefore, timed automata are not adequate for model checking. A
zone representation of clock constraints is one of the most used and efficient
representation of the state space for timed automata. Zones are efficiently
represented as difference bounded matrices (DBM). A zone region 〈l, Z〉 is a
pair of a location l and a DBM of a clock zone Z. Transitions of a timed
automata symbolically translated into zones as follows. We define an zone update
Z ↑= {u + d|u ∈ Z, d ∈ R+} and a zone reset r(Z) = {[r : 0]u|u ∈ Z}. Let �
denote the symbolic transition relation over symbolic states defined by the fol-
lowing rules: (1) 〈l, Z〉 � 〈l, Z ↑ ∧I(l)〉; (2) 〈l, Z〉 � 〈l′, r(Z ∧ g) ∧ I(l′)〉 if

68 M. Nxumalo et al.

l
g,a,r−−−→ l′. Rules (1) and (2) are interpretations of time and discrete transitions

of timed automata, respectively.

Initistart

ci ≥ Pi

InQi Runi

x ∧ y

Erri

T ermi

enqueuei

ci = 0, eti
= 0

{x ∧ y}acquirei

{x}
aborti

{x ∧ y}, d

preempti,j

{ci = Pi}, requestNew!

{x
∨ y},

d

ab
or

t i

{x ∧ y}, d

releasei

Fig. 1. A task model τi

Initαstart InQα P auseα

Errα

enqueueα

cα = min{ci}
acquireα

cα ≤ Dα

ab
or

tα

cα
>

D
α

Fig. 2. An abstract task model τα

Availjstart InUsej

releasej

acquirej

Fig. 3. A processor model πj

3.1 A Scheduler Model

A scheduler model is the arrival pattern of tasks for queuing in a scheduling
system. The typical states of tasks in the model are running, ready and blocked
[21]. Tasks in the ready state are contained in a queue data structure where they
wait for their turn to be executed by a processor at the running state. In a real-
time task model, a periodic and sporadic real-time task is an executable program
characterized by a triple τ = (W,D,P) where W is the worst case execution time
(WCET), D is a deadline and P is a period. RTOS task scheduler models are
represented as timed automata.

A task model is a transition system that is formed as a parallel composition
of timed automata which are derived from two types of components: tasks and
processors. Figure 1 shows a task model for an arbitrary task τi = (Wi,Di, Pi),
i ∈ N. The automaton for τi has a single clock variable ci which keeps track

Spotlight Abstraction in Model Checking Real-Time Task Schedulability 69

of the ‘lifetime’ of the task from instantiated until terminated. It also has a
variable eti

∈ R≥0 which keeps record of task’s clock execution elapse time. For
a compact representation, the real-time predicates are defined over the following
atomic predicates:

– x = (ci ≤ Di): (the clock valuation must not be greater than the deadline)
– y = (eti

≤ Wi): (the execution time must not be greater than the WCET)
– Front(q, τi): (true iff task τi is in the front of queue q)
– Available(πj): (true iff a processor automaton πj is in state availj)

The task queue, denoted by q, has a capacity |q| ∈ N. Items in q are tracked
by the variable nq ∈ N, nq ≤ |q|. The task queue has two synchronous actions
enqueuei and dequeuei to add (resp. remove) some task τi to (resp. from) q. The
operations correspond to the following guarded commands:

– enqueuei = assume(nq < |q|) : q := q ∪ {τi};nq := nq + 1;
– dequeuei = assume(Front(q, τi) ∧ nq > 0); q := q\{τi};nq := nq − 1;

Fig. 3 shows a timed automaton for an arbitrary processor, denoted πj , j ∈ N.
A processor πj is in state InUsej if there exists a task τi which has acquired
πj . It is in state Availj after τi has been released from πj . The action acquirej

corresponds to the guarded command: assume(Front(q, τi) ∧ Available(πj)).
The initial state of a task model is Initi where the task is to instantiate

and release with all the required variables initialized e.g. clocks. We assume
that each released task is schedulable. A detailed description of timed automata
for schedulable task release step is available in [3]. A schedulable task release
automaton models a representation that each task is released within its period.
An initialized task is then added to the queue q. For a queued task all constraints
x and y must always hold. An ejected task from q will either attempt to acquire
a processor, provided all constraints hold and a processor is available for use, or
it will be aborted, if any constraint is violated.

If the task model is preemptive then a task τi running on some processor πj

may be preempted to join the queue q. Moreover, the variable eti
is updated

with the delay duration di ∈ R
+. At the Runi state, the real-time invariant:

{x ∧ y} must hold throughout the task execution. If the constraints x or y are
violated at any state, a transition to an error state is taken. If the invariant
stays true and the task execution was completed after some delay d, the task is
released to a terminated state Termi. For sporadic tasks, at the Termi state a
successive task instance invocation at Initi is separated by at least the period
P time units.

3.2 The Abstract Task Models

Before a model checking algorithm commences, it is required that the queue
of tasks q is partitioned into a spotlight and a shade, q = Spot ∪ Shade. The
abstract task τα = (Wα,Dα, Pα) which is a summary of concrete tasks in the
shade is be defined as follows. We define the abstract task based on properties

70 M. Nxumalo et al.

that hold for all the tasks contained in the shade. τα is defined by proper-
ties that will maintain an invariant for all tasks in the shade. We define the
clock of τα as the minimum clock value from the clocks in the shade i.e. cα =
min{ci|τi ∈ Shade}. This clock cα advances synchronously with other clocks.
Moreover, Wα = min{Wi|τi ∈ Shade} and Pα = min{Pi|τi ∈ Shade}. For each
task τi in the shade, we calculate the difference diffτi

= {Dτi
−cτi

|τi ∈ Shade}.
Then the static deadline is defined as Dα = min{diffτi

|τi ∈ Shade}. The dead-
line clock constraint for τα becomes cα ≤ Dα. This clock constraint becomes
invariant in all locations of the timed automata of τα. Specifying the deadline
over τα helps in an EDF scheduler whereby either preempted tasks or recently
released tasks with higher priorities than τα are positioned ahead of τα in the
abstract queue. In a FIFO policy, recently released tasks are added at the back of
the abstract queue, therefore, the location of τα in the queue will not be affected.
During model checking, if the deadline constraint of τα is violated then at least
one task in the shade has missed a deadline.

Figure 2 shows an automaton corresponding to an abstract task τα. The
abstract task is initialized with task a clock cα and a deadline Dα as described
in the previous paragraph. The abstract task can be added to (resp. removed
from) a scheduler queue. An attempt to acquire a processor by task τα will not be
successful because τα is an abstract task that is a summary of multiple concrete
tasks. Therefore, the transition goes to a configuration called Pauseα, provided
the clock constraints to cα < Dα holds. The Pauseα pauses a run of a scheduler
automaton. All clocks are also paused. If cα < Dα does not holds the transition
goes into an Errα state.

Another form of task abstraction is a task denoted τβ . All tasks that have
successfully terminated in the previous abstraction steps are collapsed into a
single state abstract timed automaton and the state is Termβ .

4 An Example: Model Checking Schedulability for FIFO
RTOS Scheduler

In this section, we demonstrate the functioning of our spotlight abstraction
technique for queued tasks based on an example. Consider a FIFO sched-
uler consisting of a processor π and a queue q that contains a set of tasks
T = {τ1(2, 2, 2), τ2(1, 3, 3), τ3(2, 5, 5), τ4(1, 6, 6)} where the first value of each
triple is the worst case execution time, the second value is the deadline and the
third value is the period. The schedulability property ϕ is verified for the set T .
Based on spotlight abstraction on queues, we construct an abstract queue q′. We
assume an abstraction interval of k = 2. In the initial iteration q′ contains τ1, τ2
and τα, with τ1 and τ2 in the spotlight. Task τα represents the shade which is an
abstraction of the subset {τ3, τ4} of T . The network of timed automata (NTA)
corresponding to this abstraction is derived from the parallel composition of
timed automata of τ1, τ2, τα, and π.

Figure 4 depicts the partial branching structure in the first iteration of
abstraction with τ1 and τ2 in the spotlight. The branching structure is partial

Spotlight Abstraction in Model Checking Real-Time Task Schedulability 71

q1q2qα

0/0/0

r1q2qα

0/0/0

q2qαt1

2/2/2

r2qαt1

2/2/2

q2qαi1

0/2/2

qαt1t2

3/3/3

r2qαi1

0/2/2

pαt1t2

3/3/3

qαt2i1

0/3/3

qαt1i2

3/0/3

pαt2i1

0/3/3

qαi1i2

0/0/3

qαq1t2

0/3/3

pαi1i2

0/0/3

qαq2i1

0/0/3

qαq1i2

0/0/3

pαq2i1

0/0/3

qαq2q1

0/0/3

pαq2q1

0/0/3

pαt1i2

3/0/3

pαq1t2

0/3/3

pαq1i2

0/0/3

0, a1

2, r1 0, a2

0, rn2

1, r2

0, rn1

0, aα

0, rn1

0, rn2

0, aα

0, rn2

0, rn1

0, aα

0, e2

0, e1

0, aα

0, e1

0, aα0, aα0, aα0, aα

Fig. 4. A partial trace of model checking in the first iteration

q3q4tβaπstart

3/3

r3q4tβuπ

3/3

t3q4tβaπ

5/5

i3q4tβaπ

5/5

t3r4tβaπ

5/5

q4q3tβaπ

5/0

i3r4tβuπ

5/5

q3r4tβaπ

0/5

t4q3tβaπ

1/6

i3t4tβaπ

6/6

t3t4tβaπ

6/6

0, a3 2, r3

0, rn3

0, a4

1, r4

0, r4

0, e3

0, r4

1, r4

0, q3

0, a4

1, a4

Fig. 5. A trace of model checking in the second iteration

because there are traces from states with dotted nodes that are not captured in
the figure. This is due to page space limitations. The nodes that are filled with
blue (red) color represent an initial (a Pauseα) state. The state of the processor
is InUseπ whenever a node in the figure has a label ri, otherwise it is in the
Availπ state. Figure 5 depicts the branching structure, i.e. all possible runs of the
NTA, in the second iteration with τ3 and τ4 in the spotlight. In each node of the
figures, the labels ii, qi, ri, ti, aπ, uπ are abbreviations for the state compositions
of the NTA which are Initi, inQueuei, Runi, Termi, Availπ, InUseπ respec-
tively, where the subscript i is the task identifier. The labels above or below the
node, in the forms X1/X2/Xα or X3/X4, denote the clock valuations of tasks

72 M. Nxumalo et al.

τ1, τ2, τα or τ3, τ4 (always in this order) for all tasks in the spotlight during the
first iteration and second iteration respectively. Each edge of a run of the NTA is
associated with a transition delay d ∈ N and an action. The actions ei, ai, ri, rni

represent enqueuei, acquirei, releasei, requestNewi respectively.
In the first iteration, illustrated in Fig. 4, the model checker initializes the

run at state q1q2qαaπ of the NTA. At t = 0, task τ1 starts to run on the processor
π for a duration of d1 = 2 and then terminates. The run of τ1 is either followed
by a re-initialization of τ1 for a new period or by dequeuing τ2 to run next. At
each state of the branching structure of the NTA, the model checker verifies ϕ,
which is the property that there is no task that has missed a deadline. In this
example the property holds in all states. All runs finally converge to a state with
Pauseα. Each state with a Pauseα label saves the current information of the
model checker e.g. the location and clock values. The model checker returns the
result true on the Pauseα states because there are no tasks that has missed a
deadline.

In the subsequent iteration of abstraction, the remaining two tasks of q, which
are τ3 and τ4, are moved to q′. The already schedulable and terminated tasks τ1
and τ2 are summarized by the abstract task τβ which have an automaton with
a single state tβ . A new NTA is created from the set {τ3, τ4, τβ , π}. Since q is
now empty, there is no need for a shade. The corresponding branching structure
is shown in Fig. 5. It can be seen that the last two tasks can be executed within
their deadlines. Therefore, the final model checking result is true.

We compare the state spaces between our iterative model checking approach
against a non-iterative approach. In a non-iterative model checking approach
where the NTA is created directly from the concrete queue q = {τ1, τ2, τ3, τ4},
the abstraction step is not performed. The concrete NTA is composed of five com-
ponent timed automata that model the four tasks in q and the single processor.
Each task model has 6 states and the processor model has two states. The pos-
sible maximum number of states in a scheduler automaton is (|Si||T | × |Sj ||Π|),
where Si is the set of states of τi ∈ T . The concrete NTA has a maximum of
(64 ×21) = 2592 states. Our model checking approach applies the iterative spot-
light abstraction on the concrete queue q. In the first iteration, the abstract NTA
has 108 states. In the second iteration of abstraction, the abstract NTA has 36
states. It can be seen that the state spaces to be explored in our abstraction-
based approach are an order of magnitude smaller than the state space of the
concrete NTA. Hence, our spotlight abstraction technique enables a significant
reduction of the complexity of model checking schedulability properties.

5 Model Checking Real-Time Queues Using Spotlight
Abstraction

In this section we present our developed algorithms for abstraction (Algorithm 1)
and for model checking (Algorithm 2). The input of the abstraction algorithm is
a ready queue q that contains n ∈ N tasks and a set of processors Π. The schedu-
lability property for a task τi is given by ϕi which states that τi must execute

Spotlight Abstraction in Model Checking Real-Time Task Schedulability 73

and terminate within its deadline. The schedulability property of all tasks in
the queue is ϕ which is a conjunct formula of the schedulability properties of all
tasks in the queue q. The formula ϕ expresses the property that all queued tasks
will eventually terminate execution within their deadlines. The verification of
the schedulability property is reduced into a reachability safety property. Given
an automaton A, decide if there exists an accepting run. Based on the automata
definition in Sect. 3, a run that reaches an Erri state signals a violation of the
schedulability property ϕ.

Algorithm 1 3vSpotAbstraction
Input: k, q, Π;
1: ϕ = true;
2: visited = A = ∅;
3: while (q �= ∅) do
4: for (τi ∈ q[0, k]) do
5: p = q.pop();
6: q′.add(p);
7: end for
8: if (q �= ∅) then
9: q′.add(τα);

10: end if
11: A.add(τβ);
12: A.addAll(q′);
13: nta = buildNTA(A, Π);
14: ϕ′ = abstractProperty(A);
15: ϕ = 3vChecker(nta, ϕ′, visited);
16: if (ϕ == false) then
17: return not schedulable;
18: end if
19: end while
20: return schedulable;

Algorithm 2 3vChecker
Input: nta, ϕ′, visited
1: z = nta(〈l0, Z0〉);
2: wait = paused = ∅
3: wait.add(〈l0, Z0〉);
4: while (wait �= ∅)or(paused == ∅) do
5: z = wait.pop();
6: if (z �|= ϕ′) then
7: return false;
8: end if
9: if (Z �⊆ Z′, ∀〈l, Z′〉 ∈ visited) then

10: visited.add(z);
11: for 〈l′, Z′〉 : 〈l, D〉 � 〈l′, D′〉 do
12: if (l′ /∈ Pauseα) then
13: wait.add(z′);
14: else
15: paused.add(z);
16: end if
17: end for
18: end if
19: end while
20: return true;

5.1 The Abstraction Algorithm Commences

The first line shows that the verified property ϕ is initialized by a true value. This
means that the property is assumed to hold and the model checking algorithm
will attempts to show that the property is not violated. The set of visited states
is initialized in line 2 of Algorithm 1. In lines 4–10 the concrete queue q is
translated into an abstract queue q′: The first k tasks of q are moved to q′.
This part is considered as the spotlight. The remaining tasks τk+1 to τn are
kept in q. Additionally, an abstract task τα, that approximates the behavior of
tasks in the shade, is then added to the back of q′. Tasks τα is formed as per
the description in Sect. 3.2. An example of the concrete queue q is depicted in
Fig. 6 and a corresponding abstract queue q′ is shown in Fig. 3. The tasks in the
spotlight will be executed in the near future while the tasks in the shade will be
still idle. The spotlight tasks are the ones whose schedulability properties will
be model checked in the current iteration of abstraction.

Lines 11–12 of Algorithm 1 show the initialization of an array A that contains
all the tasks in q′ and the two abstract tasks τβ and τα. Task τβ is a summary
of all the tasks that have terminated in previous iterations and it is created
as described in Sect. 3.2. The method buildNTA(A,Π) that is called in line 13

74 M. Nxumalo et al.

builds the network timed automaton that represents a scheduler system. The
NTA is generated from the finite set of timed automata corresponding to the
tasks in the spotlight, the abstract task τα and the processors in Π. In the initial
state of the NTA each automaton corresponding to a task is in the state InQueue
and each automaton corresponding to a processor is in the state Avail. In line 14,
an abstract property ϕ′ which correspond with the the abstract NTA is defined
by invoking the method abstractProperty(A). Using all the tasks in array A, an
abstract property ϕ′ that summarizes ϕ is computed as ϕ′ = ϕα ∧ϕβ ∧(∧k

i=1ϕi).

τ1 τ2 · · · τk τk+1 · · · τn

k-tasks

Fig. 6. A queue with n tasks

τ1 τ2 τ3 · · · τk τα

k-tasks

Fig. 7. Queue from Fig. 6 in abstract
form

5.2 Calling the Reachability Analysis Algorithm

In line 15 of Algorithm 1, the model checker 3vChecker() shown in Algorithm 2
is invoked. Algorithm 2 is a modification of the typical forward symbolic reach-
ability analysis algorithm [7]. It takes the following input arguments: the NTA,
the abstract property to be verified ϕ′, and the passed states visited of the NTA.
The variables wait and paused are initially empty containers that keep track
of states waiting to be visited and states that invoke a command to pause the
checker, respectively. Initially, the abstract property ϕ′ is assumed to hold, and
the algorithm automatically checks if there exists a task in the spotlight that
violates the schedulability property. The model checker returns one of the two
truth values: true, false i.e. {t,f}.

In Algorithm 2 the abstract NTA is iteratively model checked as follows: The
wait set is initialized with the start state of the NTA. Iteratively, while in the
wait list there are states that have not been explored, a zone z is removed from
the wait list. The recently popped out zone z is added to the set of passed zones
visited. In lines 6–8, the schedulability property ϕ′ is checked for the current
zone z, see Definition 4. Between lines 9–14, a transition is taken from z to z′

on some action ai over a duration d and z′ is added to the wait list. Then an
attempt to reach to each successor state of z is made.

Definition 4. Let z be a zone and ϕ be a property under verification, the seman-
tics of z |= ϕ is as follows: 1) z �|= ϕ does not hold if z contains an Erri (error)
location for some task τi ∈ Spot, and, 2) z |= ϕ holds if all τi ∈ Spot reaches
Termi (terminate) location.

The main modification of the reachability analysis algorithm is in lines 15–
17 of Algorithm 2 where the current zone z is placed in a paused list if task τα

Spotlight Abstraction in Model Checking Real-Time Task Schedulability 75

attempts to acquire a processor. The checker goes to a successor zone z′ which
contains Pauseα. There is no definite edge for it in the partial NTA because the
task belongs to the shade. The corresponding transitions between the spotlight
tasks and the shade are unknown. In order to continue, the model checker must
pause the state space exploration for the path at z to allow the abstraction
algorithm to move additional tasks to the spotlight. Thus, the NTA moves to
the state with Pauseα and saves the partial result for later re-use. A partial
result is a run of the NTA that maintains the assumed true model checking
outcome. In the Pauseα state the following is done: Firstly, all reached zones in
visited are also saved as part of the partial result. Secondly, all clocks ci ∈ C
values that are in the abstract system are paused and saved for the next iteration.

Model checking a partial NTA that contains the abstract task τα can either
return f or t. A t result indicates that all tasks in the abstract NTA satisfy the
abstract schedulability property ϕ′. A f result is returned if at least one task in
the spotlight violates the schedulability property.

5.3 The Abstraction Algorithm Resumes

After the partial result has been saved in the list visited, the execution of
Algorithm 1 is continued. If model checking yields f , then in lines 16–18 the
algorithm terminates and additionally outputs a counterexample run of the com-
bined NTAs that shows the violation of the schedulability property. If the model
checking result is t and the queue q is not empty then the algorithm continues
with the subsequent iteration of the algorithm in line 3 and the schedulability
property is assumed to hold. The next iteration step creates a new spotlight
and shade from tasks that were previously in the shade q and tasks that were
recently released into the abstract queue q. A corresponding synchronous prod-
uct automaton NTA is built. The model checker is then resumed with the new
NTA as an input. Note that the schedulability of tasks that were in the spotlight
in the previous iteration has already been model checked. Therefore, these tasks
will be part of the τβ abstract task in the new iteration.

Refinement steps are iteratively repeated until a definite schedulability result
is obtained. The concrete queue q is now empty, as such there are no more tasks
to keep in the shade represented by τα. A definite final result, t or f exists at the
last cycle of iteration when all tasks of the concrete queue in q[0, n] have been
explored by the model checker.

Lemma 1. Algorithm 1 returns ‘schedulable’ iff all tasks in q can be executed
within their deadlines by Π and it returns ‘not schedulable’ iff there exists a task
in q that cannot be executed within its deadline by Π.

Proof. We present a proof by induction for Lemma 1. Assume a FIFO queue that
contains m tasks. The size of the concrete queue can be expressed as m = xk+y
where k, x, y ∈ N, k is a constant and 1 ≤ y ≤ k. Let ϕi be the schedulability
property for task τi. Let ϕ = ∧m

i=0(ϕi) be the schedulability property of all
tasks in the scheduler system. Let ϕα denote the schedulability property for the

76 M. Nxumalo et al.

abstract task. Let ϕt denote the schedulability property for all tasks that have
previously executed and terminated successfully. Let ϕ′ = ϕt ∧ ϕα ∧ (∧k

i=1ϕi)
be the abstract representation of the schedulability property of the scheduler
system that approximates ϕ.

Base case: The base case is such that the total number is smaller than the
size of the spotlight i.e. 1 ≤ m ≤ k then x = 0 and m = y. Algorithm 1 builds
an abstract queue q′ �= ∅ and the concrete queue becomes q = ∅. The abstract
property ϕ′ = ϕ = ∧m

i=1(ϕi). To continue with the base case we distinguish the
following two cases.

In case 1, for all the tasks in queue the each task’s property ϕi holds, we
want to show that Algorithm 1 will return schedulable. An abstract network of
timed automata NTA and the property ϕ′ becomes input to Algorithm 2 whose
return value is true. This is because Algorithm 2 will not reach a state such that
s �|= ϕ′ holds. and you should also explain in the proof why it holds. Since q = ∅
and ϕ holds, Algorithm 1 returns ’schedulable’.

In case 2, there exist at least one task in the queue with a schedulability
property that does not hold, we want to show that The NTA and the property
ϕ′ becomes input to Algorithm 2 whose return value is false. Algorithm 2 returns
false if a state is reached such that s �|= ϕ′ holds. Because ϕ does not hold,
Algorithm 1 returns ‘not schedulable’. For the base case Lemma 1 holds.

Inductive hypothesis: Assume that the Algorithm 1 works correctly for the
concrete queue with m tasks, then m = (u)k + v and u, v ∈ Z≥0 and ϕ holds.

Inductive step: We now consider the inductive step where the size of the
queue q is m + 1. Then m = (u)k + v + 1 = (u)k + z where z = v + 1. There
are two cases to distinguish, either 1 ≤ z ≤ k with m = (u)k + z or z = k + 1
with m = (u)k + (1)k + 1 = (w)k + 1, w = u + 1. The first case means that the
newly added task at location m + 1 of the queue joins the u + 1 iteration of the
Algorithm 1. The second case means that the added task in q will be excluded
from the u + 1 iteration that will have k tasks already, then the task will be
executed in a new iteration.

In the first case, the last iteration of Algorithm 1, the verified property is
ϕ′ = ϕβ ∧ (∧z

i=1ϕi) = ϕt ∧ (∧z−1
i=1 ϕi) ∧ ϕz. From the inductive hypothesis, ϕt is

known to holds for the first (u)k tasks which means that the first (u)k tasks are
schedulable. In the last iteration of Algorithm 1, the base case applies whereby
∧z−1

i=0 ϕi is known true (from the inductive hypothesis). Lastly, if model checking
ϕz is known to hold and Algorithm 1 returns ‘schedulable’ or ϕz holds and
Algorithm 1 returns ‘non schedulable’.

In the second case case where z = k + 1 then m = (w)k + 1. In the final
iteration of Algorithm 1 the verified property is ϕ′ = ϕt ∧ϕ1. From the inductive
hypothesis, ϕt holds for the first (w)k tasks, which means that the (w)k tasks
are schedulable. The last iteration of Algorithm 1 returns ’schedulable’ if the
property ϕ1 is true otherwise Algorithm 1 returns ’non schedulable’. For the
inductive step Lemma 1 holds, therefore, the Lemma holds everywhere.

Spotlight Abstraction in Model Checking Real-Time Task Schedulability 77

For priority based queues such as EDF, a concrete task may be placed at
an index that is behind that of the abstract task in the abstract queue q′. This
is due to priority based actions such as preemption. It follows that during an
iteration of 0 ≤ y ≤ k tasks in Algorithm 1, a model checking algorithm call may
be terminated while some tasks in the abstract queue were not explored. The
tasks that were not checked in an iteration are then included for verification of
another k tasks of the subsequent iteration.

6 Experimental Results

We implemented the algorithms in the Java programming language. The timed
automata transitions were transferred into symbolic zone exploration. We uti-
lized zone manipulating algorithms from [7] that are integral to the Uppaal DBM
library. We used a synthetic task set generating model from [8] to generate ran-
dom task sets.

We evaluated our algorithms on two types of queues; FIFO and EDF queues.
We show the version of the algorithms when the abstraction algorithm is applied
on the concrete queue. We also show the counter part cases when the abstraction
was not applied. Moreover, in each case we report on the number of states and
the execution times. We also counted the number of iterations employed for our
abstraction approach.

Table 1 displays the results of our experiments. The experiments were run
on an Intel i7 at 2.30 Ghz processor running on Windows. Based on the run-
times, the algorithm that employs our abstraction approach performed better
with FIFO queues than with EDF queues. Moreover, applying our approach
causes the EDF queues have many iterations than FIFO queues. In case when
the abstract task has a higher deadline priority than other tasks, the abstrac-
tion algorithm is tasked with generating more abstract queues when the EDF
policy is applied on input queue. For task sets with sizes larger than 5, we do
not present the case whereby abstraction is not applied because it is compu-
tationally expensive to manipulate large DBMs from multiple tasks with many
clocks. This shows that the most efficient timed automata contain few clocks per
iteration. Our approach attempts to breakdown the large system with multiple
clocks into smaller manageable abstract models with fewer clocks. This avoids
the state space complexity problem in model checking schedulability on the
concrete models which did not complete execution due to program heap space
exhaustion. Our abstraction-based model checking tool is available at https://
github.com/MadodaNxumalo/TVMC-On-RTOS.

https://github.com/MadodaNxumalo/TVMC-On-RTOS
https://github.com/MadodaNxumalo/TVMC-On-RTOS

78 M. Nxumalo et al.

Table 1. Results of schedulability analysis for FIFO and EDF task-sets at intervals of
4 tasks per iteration. “States/ite” stands for number of states per iteration.

With Abstraction No Abstraction

Case Tasks States/ite Iterations Time(s) Schedulable? States Time(s) Schedulable?

FIFO 5 1536 2 1.585s Yes 2304 4.125 Yes

10 1536 3 1.769 Yes * *

50 1536 14 7.062 No * *

100 1536 25 13.785 No * *

200 1536 50 29.377 No * *

500 1536 125 76.189 No * *

EDF 5 1536 2 1.127 Yes 2304 4.298 Yes

10 1536 4 1.758 No * *

50 1536 19 9.217 No * *

100 1536 34 15.931 No * *

200 1536 71 33.740 No * *

500 1536 143 78.650 No * *

7 Conclusion and Outlook

In this paper we presented a new model checking technique for verifying the
schedulability of queued real-time tasks. Our approach is based on spotlight
abstraction in which we partition a task queue into a ’spotlight’ and a ’shade’.
The spotlight contains the tasks that appear to a specified depth at the front-side
of the queue. The shade contains all other tasks in the queue: they are repre-
sented as a single ‘abstract task’ that approximates their collective behavior.
This abstraction, which is made to shrink the size of our formal models’ state
space, entails a particular loss of information.

Our formal model of such a scenario is a ‘cross-product’ of several timed
automata: one for each task in the spotlight, one for the abstract task in the
shade, and one for each each processor. Our model checking algorithm explores
this model until a definite schedulability result (t or f) is obtained. After the
result of an abstraction and model checking iteration, more tasks are moved
out of the shade into the spotlight, a modified state space model is constructed
accordingly, and the next iteration begins. Our approach divides a model check-
ing problem with a very large state space into several smaller problems which
can be tackled in a sequence of steps. Experimental results demonstrated that
the state space of a large concrete model can be reduced to smaller state spaces
that can executed by the available computer resources.

Combining clocks constraints of tasks in the shade into abstract zones where
clock valuations on zones result into values in {t, f, u} is another direction for
future work. Unknown clock valuations are evident in cases whereby the differ-
ence clock constraints, of the form x − y ∼ d where x, y ∈ C, d ∈ N, are used.
For example, clock x belongs to the spotlight and y to the shade and the result
becomes u. Furthermore, some form of optimization to the algorithms is another
future study. For example the number of the components in the spotlight could

Spotlight Abstraction in Model Checking Real-Time Task Schedulability 79

possibly be determined dynamically by suitable automated parameter tuning
techniques [17]. Future work should also look into the probabilistic nature of
many real-time queuing systems: for comparison see [18] in which three-valued
abstraction was applied to models of continuously timed Markov chains.

References

1. Abdeddäım, Y., Maler, O.: Preemptive job-shop scheduling using stopwatch
automata. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280,
pp. 113–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46002-
0 9

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: a tool for
schedulability analysis and code generation of real-time systems. In: Formal Mod-
eling and Analysis of Timed Systems: First International Workshop, FORMATS
2003, Marseille, France, 6–7 September 2003. Revised Papers, pp. 60–72 (2003)

4. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32759-9 6

5. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: Proceedings of the 2001 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), Snowbird, Utah,
USA, 20–22 June 2001, pp. 203–213 (2001)

6. Bauer, K., Gentilini, R., Schneider, K.: A uniform approach to three-valued seman-
tics for μ-calculus on abstractions of hybrid automata. Int. J. Softw. Tools Technol.
Transf. 13(3), 273–287 (2011)

7. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

8. Bertout, A., Forget, J., Olejnik, R.: Minimizing a real-time task set through task
clustering. In: Jan, M., Hedia, B.B., Goossens, J., Maiza, C. (eds.) 22nd Inter-
national Conference on Real-Time Networks and Systems, RTNS 2014, Versaille,
France, 8–10 October 2014, p. 23. ACM (2014)

9. Bini, E., Natale, M.D., Buttazzo, G.C.: Sensitivity analysis for fixed-priority real-
time systems. Real-Time Syst. 39(1–3), 5–30 (2008)

10. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Ouaknine, J., Worrell, J.:
Model checking real-time systems. In: Handbook of Model Checking, pp. 1001–1046
(2018)

11. Fersman, E., Pettersson, P., Yi, W.: Timed automata with asynchronous processes:
schedulability and decidability. In: Katoen, J., Stevens, P. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems, 8th International Conference,
TACAS 2002, Held as Part of the Joint European Conference on Theory and Prac-
tice of Software, ETAPS 2002, Grenoble, France, 8–12 April 2002, Proceedings.
Lecture Notes in Computer Science, vol. 2280, pp. 67–82. Springer (2002)

12. Fitting, M.: Kleene’s three valued logics and their children. Fundam. Inform.
20(1/2/3), 113–131 (1994)

https://doi.org/10.1007/3-540-46002-0_9
https://doi.org/10.1007/3-540-46002-0_9
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-540-27755-2_3

80 M. Nxumalo et al.

13. Govind, R., Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Revisiting local time
semantics for networks of timed automata. In: Fokkink, W.J., van Glabbeek, R.
(eds.) 30th International Conference on Concurrency Theory, CONCUR 2019, 27–
30 August 2019, Amsterdam, the Netherlands. LIPIcs, vol. 140, pp. 16:1–16:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

14. Grumberg, O.: 2-valued and 3-valued abstraction-refinement in model checking.
In: Logics and Languages for Reliability and Security, pp. 105–128 (2010)

15. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

16. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed
automata. Inf. Comput. 251, 67–90 (2016)

17. Huang, C., Li, Y., Yao, X.: A survey of automatic parameter tuning methods for
metaheuristics. IEEE Trans. Evolut. Comput. 24(2), 201–216 (2019)

18. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for
continuous-time Markov Chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 311–324. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73368-3 37

19. Roussanaly, V., Sankur, O., Markey, N.: Abstraction refinement algorithms for
timed automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
22–40. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 2

20. Schrieb, J., Wehrheim, H., Wonisch, D.: Three-valued spotlight abstractions. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 106–122.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3 8

21. Stallings, W.: Operating Systems - Internals and Design Principles, 7th edn, Pit-
man (2011)

22. Timm, N., Gruner, S.: Three-valued bounded model checking with cause-guided
abstraction refinement. Sci. Comput. Program. 175, 37–62 (2019)

https://doi.org/10.1007/978-3-540-73368-3_37
https://doi.org/10.1007/978-3-540-73368-3_37
https://doi.org/10.1007/978-3-030-25540-4_2
https://doi.org/10.1007/978-3-642-05089-3_8

Verifying Pipeline Implementations in
OpenMP

Maik Wiesner(B) and Marie-Christine Jakobs(B)

Department of Computer Science, Technical University of Darmstadt,
Darmstadt, Germany

wiesner@svps.tu-darmstadt.de, jakobs@cs.tu-darmstadt.de

Abstract. OpenMP is a popular API for the development of parallel,
shared memory programs and allows programmers to easily ready their
programs to utilize modern multi-core processors. However, OpenMP-
compliant programs do not guarantee that the OpenMP paralleliza-
tion is functionally equivalent to a sequential execution of the program.
Therefore, several approaches analyze OpenMP programs. While some
approaches check functional equivalence, they are either general pur-
pose approaches, which ignore the structure of the program and the
design pattern applied for parallelization, or they focus on parallelized
for-loops. In this paper, we propose a verification approach that aims
at pipeline parallelism. To show functional equivalence, our approach
mainly computes the dependencies that a sequential execution imposes
on the pipeline stages and checks whether these dependencies are incor-
porated in the OpenMP parallelzation. We implemented our verification
approach in a prototype tool and evaluated it on some examples. Our
evaluation shows that our approach soundly detects incorrect pipeline
implementations.

Keywords: OpenMP verification · Functional equivalence · Pipeline
parallelism · Parallel design pattern

1 Introduction

For several years, the CPU frequency has stayed the same, while the number of
cores per CPU is increasing. To take full advantage of today’s hardware, we need
multi-threaded programs. However, many programs are still not multi-threaded.

OpenMP [17] is an API that allows one to easily transform sequential pro-
grams into multi-threaded ones, which are even platform independent. To par-
allelize a sequential program, one often only needs to insert OpenMP directives.

One problem of OpenMP parallelization is that not all OpenMP-compliant
programs are correct [17]. For example, an OpenMP-compliant program may
contain data races or deadlocks. Even worse, correctly applying OpenMP is

This work was funded by the Hessian LOEWE initiative within the Software-Factory
4.0 project.

c© Springer Nature Switzerland AG 2021
A. Laarman and A. Sokolova (Eds.): SPIN 2021, LNCS 12864, pp. 81–98, 2021.
https://doi.org/10.1007/978-3-030-84629-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84629-9_5&domain=pdf
http://orcid.org/0000-0001-7357-2016
http://orcid.org/0000-0002-5890-4673
https://doi.org/10.1007/978-3-030-84629-9_5

82 M. Wiesner and M.-C. Jakobs

Stage 1
Stage 2

Iteration 1 Iteration 2
Iteration 1

. . .

. . .
Iteration i
Iteration i-1

. . .

. . .
Iteration n
Iteration n-1 Iteration n

time

Fig. 1. Pipeline parallelism with a two-stage pipeline

1 void foo (i n t ∗a , i n t ∗b , i n t N)
2 {
3 # pragma omp parallel
4 {
5 # pragma omp single
6 f o r (i n t i =1; i<N; i++)
7 {
8 # pragma omp task depend (in : a[i -1]) depend (out : b [0: i +1])
9 b [i] = a [i −1] ;

10 # pragma omp task depend (in : b[i]) depend (out : a [0: i +1])
11 a [i] = b [i]−a [i] ;
12 }
13 }
14 }

Listing 1.1. An example for a parallelization that uses the pipeline pattern

difficult [5]. Therefore, we need verification methods to check whether a program
parallelized with OpenMP is correct, i.e., we want to show that every execution
of the parallelized program is functionally equivalent to a sequential execution
that ignores the OpenMP directives.

Several approaches [2–4,13,14,19,20,23,28] look into correctness threats of
OpenMP parallelizations, e.g., data races [2–4,14,23], deadlocks [14,20], etc.
However, these approaches do not guarantee functional equivalence. In contrast,
equivalence checkers like Pathg [27], CIVL [22], PEQcheck [7], or the app-
roach proposed by Abadi et al. [1] aim at proving functional equivalence. These
equivalence checkers are general purpose checkers that ignore how a program is
parallelized and, thus, regularly fail to show equivalence.

To overcome this problem, PatEC [6], AutoPar’s correctness checker [12] and
CIVL’s OpenMP simplifier [22] take the kind of parallelization into account.
However, they only support parallelizations utilizing data parallelism, e.g., par-
allelizations of loops whose iterations are independent of each other. In this
paper, we propose a verification approach that aims at pipeline parallelism.

The pipeline pattern is a parallel design pattern [15,16] that may be used for
loops whose iterations depend on each other. The idea of the pipeline pattern
is similar to a processor pipeline. The sequential loop iteration is split into a
sequence of stages such that each stage consumes data from the previous stage
and provides data to the next stage. To exploit parallelism, the execution of
consecutive loop iterations are overlapped as shown in Fig. 1.

Our verification approach assumes that the pipeline is implemented as fol-
lows. Stages are encapsulated in OpenMP tasks and depend clauses or synchro-
nization directives describe the dependencies between stages. The loop itself is
enclosed in a combination of a parallel and single OpenMP directive. Listing 1.1

Verifying Pipeline Implementations in OpenMP 83

shows an example for a pipeline with two stages. For demonstration purposes, we
assume that a and b do not overlap. Hence, we do not require an in-dependency
for a[i] in line 10. Read entry a[i] can only be modified in the same task.

Given a pipeline implementation of that form, our approach first determines
the dependencies between tasks. In our example, the first task of iteration i
depends on the second task of iteration i − 1, which declares a dependency on
the first i−1 elements of array a. Moreover, the second task of iteration i depends
on the first task of iteration i. In addition, the first (second) task in iteration i
depend on all first tasks (second) tasks generated in iterations j ă i. Next,
our approach looks at all read-after-write (RAW), write-after-read (WAR), and
write-after-write (WAW) dependencies in the sequential execution that cross
stage boundaries. In our example, we have two RAW dependencies.1 For each of
these dependencies, our approach checks whether this dependency is captured
by the task dependencies. For write-after-read dependencies, our approach also
inspects whether the parallelized program uses data-sharing attributes that allow
the read to access the value of the write. In our example, the RAW and WAR
dependency is captured by the task dependencies and variable a and b are shared,
i.e., writes to a and b are visible to all threads. Finally, our approach examines
whether all variables modified by and live at the end of the pipeline use data-
sharing attribute shared, which makes the modification visible.

As a proof-of-concept, we implemented our verification procedure in a proto-
type and evaluated it on several example programs. Our evaluation shows that
our implementation soundly detects all incorrect pipeline implementations.

2 Using OpenMP to Implement Pipelines

OpenMP [17] is a standard that programmers can use to implement parallel pro-
grams for shared-memory systems. Programmers typically only insert OpenMP
directives into the code, which the compiler considers to generate the parallel
program. In the following, we describe the important features needed to imple-
ment a parallel pipeline in OpenMP. We start with the OpenMP directives.

OpenMP Directives in Parallel Pipelines. We assume that the parallel pipelines
are realized with the following five directives:

parallel. Defines a parallel region that multiple threads execute in parallel.
single. Defines a region, typically nested inside a parallel region, that is executed

by exactly one thread.
task. Defines a code region that is executed by an arbitrary thread in parallel

with e.g., other tasks.
barrier. Introduces an explicit barrier that must be reached by all threads of

the enclosing parallel region before any thread can continue.

1 In iteration i, the second task reads memory location b[i] after it is written by the
first task. Similarly, the first task reads memory location a[i-1] in iteration i after
the second task writes to it in iteration i − 1.

84 M. Wiesner and M.-C. Jakobs

taskwait. Forces the task, single region, etc. to wait on the completion of its
generated child tasks.2

Data-Sharing Attributes. The data-sharing attribute defines the visibility of a
variable, e.g., whether it is shared among the threads or each thread uses its own
local copy, and how information is exchanged between the original variable and
its copies. Our analysis supports the following attributes, which primarily occur
in parallel pipelines.

private. Each thread has a local copy of the variable, which is uninitialized.
firstprivate. Similar to private, each thread gets its own local copy. In addition,

the variable is initialized to the value of the original variable at the point the
directive (parallel, single, task) is encountered.

shared. The variable is shared among all threads.

Data-sharing attributes can be specified explicitly by adding data-sharing
clauses to the above directives. If not specified explicitly, the data-sharing
attribute is determined implicitly via rules. For example, variables declared
inside a region are typically private. Variables declared outside the parallel
pipeline are shared and for tasks all other variables are normally firstprivate.

Depend Clauses. By default, tasks are executed independently, e.g., concurrently
or in arbitrary order. However, pipeline parallelism requires a certain partial
order on tasks. Depend clauses, which can be added to the task directive, allow
one to enforce such order constraints3. The general structure of these clauses is

depend(type : varList),

where type P {in, out, inout} and varList denotes a list of variables and array
sections as shown in Listing 1.14 The dependence type specifies how the men-
tioned variables are accessed, i.e., read (in), written (out), or both (inout).

Semantically, depend clauses specify a dependency between tasks. A task
cannot execute before all tasks that it depends on and that are generated before
it finished. The following definition formalizes the dependency between tasks.

Definition 1. Tasks T1 and T2 are dependent if there exists a depend clause
depend(t1:l1) for T1 and a depend clause depend(t2:l2) for T2 such that

– (t1, t2) ‰ (in, in) and
– there exist a1 P l1 and a2 P l2 such that a1 and a2 designate the same memory

location.

2 Note that we currently do not support taskwait directives with depend clauses.
3 In general, the constraints apply to sibling tasks only. Due to the construction of

tasks in parallel pipeline implementations that we support, all tasks are siblings.
4 The OpenMP standard also allows other variants of the depend clause but we stick

to these because they are the main ones used when realizing the pipeline pattern.
Ignoring other types is sound but can lead to false positives.

Verifying Pipeline Implementations in OpenMP 85

In our verification approach, we only look at task constructs (task directive
plus associated code region), not tasks generated for task constructs. Thus, we
may only introduce dependencies between task constructs if a dependency always
exists for all respective tasks generated by the pipeline. This property is fulfilled
for all dependencies built on scalar variables or array subscripts that are loop
invariant, i.e., whose value does not change during pipeline execution. Also, task
construct T1 depends on task construct T2 if every task of T2 depends on every
previously constructed task of T2 and each task generated for T1 depends on the
last task generated for T2. The following definition captures the first two cases
and demonstrates the latter for pipelines with incrementing loops, i.e., loops that
only change the loop counter at the end of each loop iteration and that change
increments the loop counter by one. Supporting further loops, e.g., decrementing
loop or loops with another step size, or supporting multi-dimensional arrays is
rather straightforward.

Definition 2. Task construct T1 depends on task construct T2 if there exists
a depend clause depend(t1:l1) for T1 and a depend clause depend(t2:l2) for T2

such that

– (t1, t2) ‰ (in, in) and
– there exist a1 P l1 and a2 P l2 such that either

1. a1 “ a2 and a1, a2 are scalar variables,
2. a1 “ a2, and a1, a2 are array subscripts, and the subscript expressions

are loop invariant, or
3. the pipeline uses an incrementing loop with loop counter i and there exists

an array a such that either
(a) a2 “ a[0 : i ` 1], a1 “ a[i] and T2 occurs after T1 in the loop body,
(b) a2 “ a[0 : i ` 2], a1 “ a[i] and T2 occurs after T1 in the loop body,
(c) a2 “ a[0 : i`1], a1 “ a[i−1] and T2 occurs before T1 in the loop body.

Pipeline Structure. Pipelines can be realized in different ways in OpenMP. We
assume that the pipeline is structured as shown in Listing 1.2. This is a com-
mon structure for a pipeline implementation and it is e.g., used by the auto-
parallelization tool DiscoPoP [10]. As shown in Listing 1.2, the pipeline is imple-
mented in a parallel region. Inside the parallel region, a single region

1 # pragma omp parallel
2 {
3

.

.

. // Dec l a ra t i on s
4 # pragma omp single
5 {
6

.

.

. // Dec l a ra t i on s
7 f o r /∗ or whi le ∗/ (. . .) {
8

9 //Tasks , statements , b a r r i e r s
10 }
11 }
12 }

Listing 1.2. General structure of a pipeline implementation

86 M. Wiesner and M.-C. Jakobs

Algorithm 1: Verification algorithm
Input: program - source code of program with pipeline to verify

1 dependGraph := buildDependencyGraph(program)
2 potentialViolations := checkRWDependencies(dependGraph)
3 violation := checkPotentialViolations(potentialViolations)
4 if violation = ⊥ then
5 violation := checkRemainingDependencies(dependGraph)
6 return witness

constructs the pipeline stages in a loop5. Thereby, each instance of a pipeline
stage becomes a task, which must not include tasks itself, i.e. task constructs
must not be nested. Furthermore, we allow declarations of temporary variables at
the beginning of the parallel or single region. In addition to task constructs,
the loop body may contain statements, which prepare the different stages, and
barriers (barrier or taskwait) to further order tasks. Task constructs, state-
ments, and barriers are sequentially composed, especially, task constructs and
statements must not contain task constructs or barriers.

3 Verifying Correctness of Pipeline Implementations

The goal of our verification is to determine whether a code segment parallelized
with the pipeline pattern behaves functionally equivalent to its sequential execu-
tion. Our verification algorithm shown in Algorithm 1 consists of four steps. First,
it constructs a task dependency graph (Sec. 3.1) that represents the specified con-
straints on the execution order of the tasks. Then, it inspects which of the RAW
and WAR dependencies in the sequential execution that cross task boundaries
are reflected in the task dependency graph (Sec. 3.2). Read-write conflicts (i.e.,
RAW or WAR dependencies) that are not represented in the task dependency
graph may be eliminated with barriers or proper data-sharing attributes, e.g.,
the variable can be private in both tasks. The third step checks this. Finally, the
last step (Sec. 3.3) analyzes write-after-write dependencies and ensures that the
tasks get the correct input values and make their output available. Algorithm 1
will return ⊥ if it can prove that the pipeline pattern is correctly implemented.6

Otherwise, it outputs a read-write or write-write conflict on variable v, which
may threaten functional equivalence.

3.1 Constructing Task Dependency Graphs

A task dependency graph provides information about execution constraints,
especially order constraints, on tasks. A vertex of the graph represents a task con-
struct (task directive plus associated code region) or a statement that is not part
5 Currently, we support for and while loops.
6 Note that Algorithm 1 assumes, but does not check that the checked code segment

follows the pipeline structure described in the previous section. Therefore, its result
is only reliable for those segments.

Verifying Pipeline Implementations in OpenMP 87

of a task construct but occurs in the pipeline’s single region. In the following, we
use VT :“ {t1, . . . , tn} to denote the set of task constructs and VS :“ {s1, . . . , sm}
to denote the statements. An edge (v1, v2) P (VT Y VS) ˆ (VT Y VS) describes a
dependency between v1 and v2, e.g., if v1 P VT , then a task generated for task
construct v2 (statement v2) must be executed after all previously generated tasks
for task construct v1 finished. Note that our task dependency graph does not
include dependencies from VS ˆ VS because the statements in VS are executed
by a single thread, which executes them in the same order as in the sequential
execution. Next, let us discuss how to compute the edges.

Dependency Edges from Depend Clauses. First, let us consider dependencies
between task constructs that origin from depend clauses. Remember that our
depend definition (Def. 2) captures these dependencies. In the task dependency
graph, these order constraints are represented by the depend edges.

Edepend :“ {(ti, tj) P VT ˆ VT | tj depends on ti} (1)

Dependency Edges from Barriers. Next to depend clauses, also barriers (barrier
or taskwait directives) introduce dependencies. For example, a barrier ensures
that no two tasks of the same task construct can execute in parallel. There exists
a self-dependency for all task constructs if the set of barriers B is non-empty.

Eself :“
{

H if B “ H
{(v, v) P VT ˆ VT } otherwise

(2)

1 //T1
2 # pragma omp task depend (out :a)
3 {. . . }
4

5 //T2
6 # pragma omp task depend (in :a) depend (out :b)
7 {. . . }
8

9 //#pragma omp ba r r i e r
10

11 //T3
12 # pragma omp task depend (in :b)
13 {. . . }

(a) Loop body of pipeline implementation

task T3

task T1 task T2

(b) Task dependencies

T2T1 T3

(c) Dependency edges from
depend clauses

Fig. 2. Demonstrating unsoundness of transitive dependency edges

Similarly, we use barriers to add some of the transitive edges from Edepend.
Since our graph only considers task constructs and cannot distinguish tasks gen-
erated in different iterations of the enclosing loop, not all transitive edges from
Edepend can be considered without becoming unsound.7 For example, consider
7 In contrast, leaving out some of those edges only makes our approach imprecise.

88 M. Wiesner and M.-C. Jakobs

the pipeline implementation sketched in Fig. 2a. Figure 2b shows task T3 con-
structed for task construct T3 in iteration i, tasks T1 and T2 constructed for
task constructs T1 and T2 in iteration i+1, and their dependencies. In addition,
Fig. 2c shows the task dependencies Edepend.8 We observe that the transitive
edge (T3, T1) is not present in Fig. 2b, although T3 is generated before T1.
Thus, edge (T3, T1) must not be added to the task dependency graph. When
adding transitive edges, we use that the barrier ensures that at most one task
per task construct exists at any point in time and a task belongs to either itera-
tion i (task constructs after the barrier) or iteration i+1 (task constructs before
the barrier). Thus, we can safely add transitive dependency edges between task
constructs that occur both either before or after the barrier. The transitive edges
introduced by a barrier are:

Eb
trans :“ (

(V b
before ˆ V b

before) X Edepend

)` Y (
(V b

after ˆ V b
after) X Edepend

)`
,

(3)
where V b

before Ď V and V b
after Ď V denote the sets of task constructs before and

after barrier b respectively.

In addition, a barrier introduces dependencies between tasks from VT and
statements from VS . A barrier b enforces the single thread to wait until all tasks
preceding the barrier finished. Therefore, statements after the barrier (Sb

after)
depend on the task constructs before the barrier (V b

before). Furthermore, when
the barrier was passed new tasks for task constructs before the barrier are only
constructed in the next loop iteration, i.e., all statements after the barrier have
been executed. Thus, there also exists a dependency between the statements
after the barrier and the task constructs before the barrier. These dependencies
are captured by the following set of edges.

Eb
stmts :“ (

V b
before ˆ Sb

after

) Y (
Sb
after ˆ V b

after

)
(4)

So far, we considered dependencies caused by a single barrier. When using
multiple barriers, the parallel program either runs tasks between two barriers
in parallel, which are generated in the same iteration, or we execute tasks from
before the first barrier and tasks after the last barrier concurrently. Even if we
cannot distinguish between tasks of different iterations, we know that all tasks
before a barrier and all tasks after a barrier depend on each other except when
they occur before the first and after the last barrier.9

Now, let B “ {b1, . . . , bn} be the list of barriers in the pipeline implementa-
tion such that the barriers in the list are ordered in source code order. Further-
more, let V bi

before be the statements and task constructs that occur in the pipeline
before barrier bi and V bi

after those occurring after barrier bi. We use these sets to

8 Note that Fig. 2b does not contain dependencies between tasks T2 and T1 and tasks
T2 and T3 because T3 and T1 are generated before T1.

9 The same holds for pairs of tasks and statements.

Verifying Pipeline Implementations in OpenMP 89

Algorithm 2: checkRWEdges(G “ (V,E))
Input: G - depend graph, where V “ VT Y VS

1 potentialViolations := H
2 foreach v P Vars do
3 TR :“ readIn(V, v) � returns tasks in which v is read
4 TW :“ writtenIn(V, v) � returns tasks in which v is written
5 foreach (tr, tw) P getDeps(TR, TW) \ (VS ˆ VS) do
6 if (tr, tw) /P E then
7 potentialViolations := potentialViolations Y (tr, tw, v)

8 return potentialViolations

define the dependencies discussed above.

EB
barrier :“

|B|ď

i“1

{
(vb, va), (va, vb) | vb P V bi

before \ V b1
before ∧ va P ˆV bi

after \ V bn
after

}
(5)

Summing up, the dependency edges from a set of barriers B are:

Ebarrier :“ Eself Y EB
barrier Y

ď

bPB

(
Eb

trans Y Eb
stmts

)
(6)

Now, we have everything at hand to define the task dependency graph.

Definition 3. A task dependency graph is a directed graph

G “ (VT Y VS , Edepend Y Ebarrier).

3.2 Inspecting RAW and WAR Dependencies

In this check, we inspect if the read-after-write and write-after-read dependencies
of the sequential execution are respected by the parallel pipeline, i.e., the depen-
dencies occur in the task dependency graph, or they are safely removed from the
parallel pipeline. First, we use Algorithm 2 to check which of the dependencies
are present in the task dependency graph. Thereafter, we call Algorithm 3 to
check whether all dependencies not present in the task dependency graph are
safely removed by the pipeline implementation.

To compare the program dependencies with the task dependency graph,
Algorithm 2 iterates over the variables. For each variable, it first computes
which component, i.e., task construct or statement in the pipeline, reads and
which writes the variable. Then, it calls the method getDeps to compute all
pairs (tr, tw) of reading and writing components that have a RAW or WAR con-
flict on variable v. Note that this is sufficient and we do not need to distinguish
between RAW and WAR dependencies because OpenMP and our task depen-
dency graph do not distinguish them.10 Next, Algorithm 2 checks whether all
10 While one can reflect RAW and WAR dependencies with OpenMP depend clauses,

a RAW depend specification can prevent a WAR dependency and vice versa.

90 M. Wiesner and M.-C. Jakobs

Algorithm 3: checkPotentialViolations(potentialViolations)
1 foreach (tr, tw, v) P potentialViolations do
2 dr := getDataSharingAttribute(tr, v)
3 dw := getDataSharingAtrribute(tw, v)
4 if dr = firstprivate ∧(dw ‰ shared ∨
5 dw “ shared ∧ G.existsBarrierBetween(tr, tw)) then
6 continue;
7 if firstWrite(tr, v) ă firstRead(tr, v)
8 ∧ (dr ‰ shared ∨ dw ‰ shared) then
9 continue;

10 return (tr, tw, v)

those pairs are reflected in the task dependency graph. However, it excludes all
pairs (tr, tw) from VS ˆ VS because they are executed in sequential order. If the
task dependency graph does not contain a corresponding edge (tr, tw) and the
dependency is not an intra-task dependency, a potential dependency violation is
found and stored in the set of potentialViolations.

In a second step, Algorithm 3 checks the potential violations. Under certain
conditions a parallel pipeline is still correctly implemented although it misses a
dependency. In general, the variable must not be shared, i.e., at least one of the
components uses a thread-local copy to prevent data races, and the read access
must still return the same value as a sequential execution. Currently, we support
two cases. First, the read variable is allowed to be firstprivate if the written
variable is either not shared or is shared and there exists a barrier between the
read and write accesses that ensures that the read variable is initialized with
the correct value. Second, if a component always writes to variable v before
it reads variable v, the read does not depend on other components and could
be performed on a different copy without altering the behavior. Therefore, a
dependency can be missing if the component always writes to variable v before
it reads variable v and variable v is (first)private. Note that Algorithm 3 only
checks that the read-write conflicts are eliminated, but does not check whether
the elimination affects the functional behavior. The latter is considered by the
next algorithm.

3.3 Checking WAW Dependencies and I/O Availability

In this check, we examine whether all WAW dependencies in the sequential
execution are handled appropriately, whether all read accesses in the pipeline see
the same value as a sequential execution, and whether the computation result
is available after the pipeline execution. To inspect the WAW dependencies, we
inspect all variables v and check that all pairs of pipeline components (task
constructs or statements from VS) that write to v are either ordered or at least
one component uses a thread-local copy of the variable. Thus, we ensure that
writes to the same variable cannot interfere.

Verifying Pipeline Implementations in OpenMP 91

Algorithm 4: checkRemainingDependencies(G “ (V,E))
Input: G - depend graph

1 // check write-write dependencies

2 foreach (tw1 , tw2) P ((TW ˆ TW) \ (VS ˆ VS)) do
3 if getDataSharingAttribute(tw1 , v) “ shared ∧

getDataSharingAttribute(tw2 , v) “ shared ∧ (tw1 , tw2) /P E then
4 return (tw1 , tw2 , v)

5

6 //check reads

7 foreach tr P TR do
8 dr :“ getDataSharingAttribute(tr, v)
9 if dr “ private ∧ firstWrite(tr, v) ą firstRead(tr, v) then

10 return (tr, −, v)

11

12 //check output availability

13 foreach v P GetLiveVars do
14 foreach tw P TW do
15 dw :“GetDataSharingAttribute(tw, v)
16 if dw ‰ shared then
17 return (−, tw, v)

18

19 foreach v P Vars do
20 TR :“ readIn(V, v) � returns tasks in which v is read
21 TW :“ writtenIn(V, v) � returns tasks in which v is written
22 foreach (tr, tw) P TR ˆ TW do
23 dr :“ getDataSharingAttribute(tr, v)
24 dw :“ getDataSharingAttribute(tw, v)
25 if firstWrite(tr, v) ă firstRead(tr, v) then
26 continue;
27 if dr = firstprivate ∧ dw = shared
28 ∧ !G.existsBarrierBeforeOrAfter(tr, tw) then
29 return (tr, tw, v)

30

31 return ⊥

After we checked the RAW, WAR, and WAW dependencies, we know that
reads and writes are ordered as in the sequential execution or they are performed
on local copies. To show functional equivalence between the parallel pipeline and
the sequential execution, it remains to be shown that a variable read returns the
same value in both cases and we get the same values when reading variables
after the pipeline. To ensure that the correct value can be read in the pipeline,
the algorithm checks that read variables are only private if they are defined in
a node (task construct or statement) before they are read. To allow that a write
can be propagated to a read in or after the pipeline, we check that all variables
written in the pipeline that are live have data-sharing attribute shared, i.e., we
can access the modified value. Finally, we need to check whether we read the

92 M. Wiesner and M.-C. Jakobs

correct value in the pipeline. We already know that for each read-write pair,
there either exists a dependency edge, i.e., the read and write cannot occur
concurrently, or Algorithm 3 already checked that the correct values are read.
In addition, a read variable can only be private if it is defined in the node
before it is read. The only reason why an incorrect value might be read are
firstprivate variables, which are initialized at task creation. Firstprivate
variables are unproblematic if the initialization value is irrelevant (i.e., they are
defined before read) or a barrier between reading and writing node ensures that
during task generation the same value as in a sequential execution is used for
initialization.

3.4 Handling of Loop Header

To include the statements of the loop header into our analysis we consider them
to be part of the loop body. The condition test is the first statement of the body
while increment statements are placed right at the end. All these statements
are executed by the single thread and can be treated the same way as regular
statements placed outside of tasks.

3.5 Implementation

We implemented the algorithms in a prototype tool to check pipeline paralleliza-
tions of C programs. Our prototype builds on the ROSE compiler framework [18].
Next, we describe how we implemented the predicates used in the algorithms.

readIn/writtenIn. We use ROSE’s def-use analysis to determine the variable
usages and definitions (AST nodes) in the loop. Based on the position of the
AST node in the code, we identify the corresponding node (task construct or
statement from VS) in the pipeline. Arrays are treated like scalar variables,
i.e. array indices are ignored.

getDeps(TR, TW). Based on the nodes reading or writing a variable v, our
prototype compute a coarse, but fast overapproximation of the read-write
dependencies on variable v in the sequential program, namely the Cartesian
product TR ˆ TW of nodes reading and writing variable v.

getDataSharingAttribute(t, v). We try to determine the data-sharing
attribute based on the corresponding OpenMP declarative and fallback to
the rules if it is not explicitly specified.

firstRead(t, v)/firstWrite(t, v). To compute these predicates, we take all
reads into account, but only consider write accesses that occur on every exe-
cution path, i.e., that are not part of a branch or loop body. Since our algo-
rithms only check whether there always exists a write to v before any read of
v, this approximation is sound, but imprecise. However, the approximation
allows us to use source code lines in the implementation of the predicates.
More concretely, the predicates return the source line number of the first read
access of v in t and the first write access of v in t that is considered. In case
there is no read and write access respectively, the source line number of the
end of t is returned.

Verifying Pipeline Implementations in OpenMP 93

existsBarrierBetween(tr, tw). We use code lines to decide this predicate. Note
that this is only valid because we assume that tasks, barriers, and statements
(from VS) are sequentially composed and must not be nested.
Let t.loc and b.loc be the source code line of the beginning of a node t P
VT Y VS and a barrier b. To determine the truth value of the predicate, our
implementation checks the following formula by iterating over all barriers b.

Db P B : min(tr.loc, tw.loc) ă b.loc ă max(tr.loc, tw.loc)

existsBarrierBeforeOrAfter(tr, tw). Similar to existsBarrierBetween, we
use code lines and iterate over the barriers b to decide the following formula.

Db P B : b.loc ă tr.loc ∨ b.loc ą tw.loc

getLiveVars. Our implementation returns all modified variables.11

So far, our prototype realizes a restricted implementation of the verification
technique, which was sufficient for our initial evaluation. For example, the imple-
mentation is limited to scalar variables and arrays and, as already mentioned,
arrays are handled like scalar variables, i.e. so we do not distinguish different
indices. However, the algorithm is not limited to these data types. Adding basic
struct support is simple. One could handle struct accesses similar to arrays. To
soundly support pointers one however requires a points-to analysis. Using a more
fine grained notion of variables, e.g., on the basis of memory locations, allows
one to differentiate between different array elements.

Also, recursive function calls are currently not supported. They might violate
the assumptions that tasks are not nested. Since nested task are not siblings of
all other tasks, a depend clause of a non-sibling tasks has no effect. To support
recursion, we, therefore, need to analyze which tasks are siblings and consider
this when determining the dependency edges from depend clauses.

Furthermore, the implementations of readIn, writtenIn, firstRead, and
firstWrite are intra-procedural. In our context, the current implementation
of firstWrite is sound. To soundly support function calls in readIn and
writtenIn, we could e.g., assume that called functions read and write all global
variables and passed parameters. For firstRead, we could also assume that
called functions read all global variables and associate those reads with the
called functions.

In addition, the precision of the prototype can be further improved by using
more precise implementations of the above predicates. For example, the getDeps
predicate could take the control-flow into account. The getLiveVars can be
refined by applying ROSE’s live variable analysis. Furthermore, one can use
definition-use chains to improve the predicates firstRead and firstWrite.

11 Although read-only variables are excluded, this is sufficient because Algorithm 4
only checks live and modified variables.

94 M. Wiesner and M.-C. Jakobs

Table 1. Evaluation results showing for each example, the expected and reported
result, the size of the task dependency graph, and the number of barriers B

Task Expected result Reported result |VS | ` |VT | |E| |B|
DRB072-taskdep1-orig-no.c ✓ ✓ 0+2 3 0

DRB072-taskdep2-orig-no.c ✓ ✓ 0+2 4 0

DRB072-taskdep3-orig-no.c ✓ ✓ 0+3 5 0

DRB120-barrier-orig-no.c ✓ ✓ 2+0 4 1

DRB131-taskdep4-orig-yes-omp45.c ✓ ✗ 4+3 16 1

DRB132-taskdep4-orig-no-omp45.c ✗ ✗ 4+3 25 1

DRB133-taskdep5-orig-no-omp45.c ✗ ✗ 4+3 29 1

DRB134-taskdep5-orig-yes-omp45.c ✓ ✗ 4+3 20 1

DRB135-taskdep-mutexinoutset-orig-no.c ✗ ✗ 0+6 17 0

DRB136-taskdep-mutexinoutset-orig-yes.c ✓ ✗ 0+6 9 0

DRB165-taskdep4-orig-yes-omp50.c ✓ ✗ 2+3 8 1

DRB166-taskdep4-orig-no-omp50.c ✗ ✗ 2+3 15 1

DRB167-taskdep4-orig-no-omp50.c ✗ ✗ 2+3 19 1

DRB168-taskdep5-orig-yes-omp50.c ✓ ✗ 2+3 12 1

eos-mbpt-hf-interpolate/pipeline 1:27.c ✓ ✗ 0+2 3 0

Kastors/strassen-task-dep.c ✓ ✓ 0+19 305 8

Kastors/strassen-task.c ✓ ✓ 0+19 361 1

4 Evaluation

Our goal is to demonstrate the applicability of our verification approach. Note
that we could not compare our approach to the closely related approach of
Royuela et al. [19] because we failed to find out how to run their analysis.

Benchmark Tasks. We looked at the DataRaceBench [11] and KASTORS
benchmark [25] and selected all examples that contain task parallelism and use
depend clauses. Our selection results in 14 examples from the DataRaceBench
and two from the KASTORS benchmark. To get a syntactical pipeline imple-
mentation, we added a loop to the tasks. In addition, we consider one poten-
tial pipeline implementation suggested by the auto-parallelizer DiscoPoP [10]
(eos-mbpt-hf-interpolate/pipeline 1:27.c). In total, we use 17 examples.

Environmental Setup. We run our experiments 5-times on an
Ubuntu 18.04 machine with an Intel Core i7 CPU and 32 GB of RAM.

4.1 Experimental Results

RQ 1: Is our algorithm sound and does it detect correct pipelines? Table 1 shows
for each of the 17 tasks the expected result, the reported result, the number of
nodes and edges in the task dependency graph as well as the number of barrier
statements in the pipeline implementation. Looking at Table 1, we observe that
our algorithm rejects all incorrect results. Thus, it is sound on out examples.
Also, it detects 50% of the correct pipeline implementations, but rejects the

Verifying Pipeline Implementations in OpenMP 95

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

tasks

E
x
ec
u
ti
o
n
ti
m
e
(s
)

(a) Execution time

145

150

155

160

165

tasks

M
em

o
ry

u
sa
g
e
(M

B
)

(b) Memory usage

Fig. 3. Per task, average, maximum and minimum execution time (left) and average,
maximum and minimum memory usage (right) of five executions

other half. The main reason for rejection is that the algorithm fails to detect
that inter-iteration depenendencies can be ignored for loops with one iteration.

RQ 2: How does our algorithm scale? To analyze the scalability, we consider the
size of the task dependency graph, which includes the number of tasks (|VT |)
and statements (|VS |), as well as the number of barriers in the program. The
last three columns of Table 1 provide these numbers. While our set of tasks is
too small to come to a definite conclusion, we can observe that the number
of edges increases superlinear with the number of tasks and statements (the
nodes of the task dependency graph). Furthermore, the last two rows show two
parallelizations of the same sequential program. One uses barriers and the other
depend clauses. We observe that for the two examples, barriers are more efficient.

RQ 3: How efficient is our algorithm? To evaluate the efficiency of our algorithm,
we consider the execution time and memory usage shown in Fig. 3a and 3b. For
each example, the two plots show the average of five executions together with
the maximum and minimum value. The examples are ordered as in Table 1.

We observe that the execution times and memory usage are rather low and
often similar. The reason is that for our examples the parsing dominates the
execution time and memory usage. Furthermore, we observe that for the analysis
of the larger KASTORS tasks (last two examples) we require significantly more
time and memory. We also see that the first example requires significantly less
memory than the others because it does not call library functions. Another
outlier is the DiscoPoP example (third last). The task itself contains more code
than most of the other tasks, which leads to larger memory usage. However, the
pipeline section itself is rather small. Thus, the analysis time is short.

96 M. Wiesner and M.-C. Jakobs

5 Related Work

Several static and dynamic analyses [2–4,9,13,14,19–21,23,28] for OpenMP pro-
grams exist. We focus on the static analyses [3,4,13,19,20,23,28]. Some of the
static analyses specialize on specific properties like concurrent access [13,19,28],
the absence of data races [4,23,26] or deadlocks [20]. In contrast, we examine
behavioral equivalence between the parallel and sequential execution.

Equivalence checkers like Pathg [27], CIVL [22], PEQcheck [7], or the app-
roach of Abadi et al. [1] examine equivalence, but these checkers are general pur-
pose checkers, which ignore applied parallel design patterns and the structure of
the parallelization. In contrast, PatEC [6], AutoPar’s correctness checker [12],
CIVL’s OpenMP simplifier [22], or ompVerify [3] analyze equivalence of sequen-
tial and parallelized for loops, but they do not support pipeline implementations.

The approach closest to ours is the one by Royuela et al. [19]. Like our app-
roach, they focus on tasks and analyze depend and data-sharing clauses. While
we construct a task dependency graph, they represent the task dependencies
in an extended control-flow graph. Furthermore, we explicitly check equivalence
while Royuela et al. [19] only look for common parallelization mistakes.

Finally, we would like to mention that there exist approaches [8,24] that
verify whether a sequential loop optimization that aims at a better utilization
of the processor pipeline is correct.

6 Conclusion

While the CPU frequency remains static, the number of cores per CPU increases.
To speed up a program, one must execute it on multiple CPU cores.

OpenMP is a widely used API that programmers utilize to transform their
programs into multi-threaded programs. To this end, the programmers typi-
cally only insert OpenMP directives. Unfortunately, not all OpenMP-compliant
programs are correct. Thus, programmers should analyze whether an OpenMP
parallelization is behavior preserving.

In this paper, we propose an automatic technique to support a program-
mer with this analysis task. Our technique utilizes that programmers often
consider parallel design patterns when parallelizing programs. More concretely,
we develop a specific technique to verify that a parallelization that applies the
pipeline pattern is behavior preserving. To ensure that the behavior is preserved,
our technique aims to check that a read access to a variable returns the same
value in the sequential and parallelized program. Therefore, it analyzes whether
the dependencies on variables accesses that exist in the sequential program are
properly considered in the parallelization and that data-sharing attributes do
not prevent reading the proper values.

To test our technique, we implemented it in a prototype tool and evaluated it
on 17 examples. Our technique overapproximates, and, thus, our implementation
failed to detect all correct parallelizations, i.e., it is not complete. While com-
pleteness is desirable, soundness is important. In our evaluation, our implemen-
tation behaved soundly and successfully detected all incorrect parallelizations.

Verifying Pipeline Implementations in OpenMP 97

References

1. Abadi, M., Keidar-Barner, S., Pidan, D., Veksler, T.: Verifying parallel code after
refactoring using equivalence checking. Int. J. Parallel Program. 47(1), 59–73
(2018). https://doi.org/10.1007/s10766-017-0548-4

2. Atzeni, S., et al.: ARCHER: effectively spotting data races in large OpenMP appli-
cations. In: Proceedings IPDPS, pp. 53–62. IEEE (2016). https://doi.org/10.1109/
IPDPS.2016.68

3. Basupalli, V., et al.: ompVerify: polyhedral analysis for the OpenMP programmer.
In: Proceedings IWOMP, pp. 37–53. LNCS 6665, Springer (2011). https://doi.org/
10.1007/978-3-642-21487-5 4

4. Bora, U., Das, S., Kukreja, P., Joshi, S., Upadrasta, R., Rajopadhye, S.: LLOV: a
fast static data-race checker for openMP programs. TACO 17(4) (2020). https://
doi.org/10.1145/3418597

5. Goncalves, R., Amaris, M., Okada, T.K., Bruel, P., Goldman, A.: OpenMP is not
as easy as it appears. In: Proceedings HICSS, pp. 5742–5751. IEEE (2016). https://
doi.org/10.1109/HICSS.2016.710

6. Jakobs, M.: PatEC: pattern-based equivalence checking. In: Laarman, A., Sokolova,
A. (eds.) SPIN 2021, LNCS, vol. 12864, pp. 120–139 (2021). https://doi.org/10.
1007/978-3-030-84629-9 7

7. Jakobs, M.C.: PEQcheck: localized and context-aware checking of functional equiv-
alence. In: Proceedings FormaliSE, pp. 130–140. IEEE (2021), https://doi.org/10.
1109/FormaliSE52586.2021.00019

8. Leviathan, R., Pnueli, A.: Validating software pipelining optimizations. In: Pro-
ceedings CASES, pp. 280–287. ACM (2002). https://doi.org/10.1145/581630.
581676

9. Li, J., Hei, D., Yan, L.: Correctness analysis based on testing and checking
for OpenMP Programs. In: Proceedings ChinaGrid, pp. 210–215. IEEE (2009).
https://doi.org/10.1109/ChinaGrid.2009.12

10. Li, Z., Atre, R., Huda, Z.U., Jannesari, A., Wolf, F.: Unveiling parallelization
opportunities in sequential programs. J. Syst. Softw. 282–295 (2016). https://doi.
org/10.1016/j.jss.2016.03.045

11. Liao, C., Lin, P.H., Asplund, J., Schordan, M., Karlin, I.: DataRaceBench: a bench-
mark suite for systematic evaluation of data race detection tools. Proc. SC. ACM
(2017). https://doi.org/10.1145/3126908.3126958

12. Liao, C., Quinlan, D.J., Willcock, J., Panas, T.: Extending automatic paralleliza-
tion to optimize high-level abstractions for multicore. In: Proceedings IWOMP, pp.
28–41. LNCS 5568, Springer (2009). https://doi.org/10.1007/978-3-642-02303-3 3

13. Lin, Y.: Static Nonconcurrency analysis of OpenMP programs. In: Proceedings
IWOMP, pp. 36–50. LNCS 4315, Springer (2005). https://doi.org/10.1007/978-3-
540-68555-5 4

14. Ma, H., Diersen, S., Wang, L., Liao, C., Quinlan, D., Yang, Z.: Symbolic analysis
of concurrency errors in OpenMP programs. In: Proceedings ICPP. pp. 510–516.
IEEE (2013). https://doi.org/10.1109/ICPP.2013.63

15. Mattson, T.G., Sanders, B.A., Massingill, B.L.: Patterns for parallel programming.
Addison-Wesley Professional (2013)

16. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns
for Efficient Computation. Morgan Kaufmann Publishers Inc., Burlington (2012)

17. OpenMP: OpenMP application programming interface (version 5.1). Technical
report OpenMP Architecture Review Board (2020). https://www.openmp.org/
specifications/

https://doi.org/10.1007/s10766-017-0548-4
https://doi.org/10.1109/IPDPS.2016.68
https://doi.org/10.1109/IPDPS.2016.68
https://doi.org/10.1007/978-3-642-21487-5_4
https://doi.org/10.1007/978-3-642-21487-5_4
https://doi.org/10.1145/3418597
https://doi.org/10.1145/3418597
https://doi.org/10.1109/HICSS.2016.710
https://doi.org/10.1109/HICSS.2016.710
https://doi.org/10.1007/978-3-030-84629-9_7
https://doi.org/10.1007/978-3-030-84629-9_7
https://doi.org/10.1109/FormaliSE52586.2021.00019
https://doi.org/10.1109/FormaliSE52586.2021.00019
https://doi.org/10.1145/581630.581676
https://doi.org/10.1145/581630.581676
https://doi.org/10.1109/ChinaGrid.2009.12
https://doi.org/10.1016/j.jss.2016.03.045
https://doi.org/10.1016/j.jss.2016.03.045
https://doi.org/10.1145/3126908.3126958
https://doi.org/10.1007/978-3-642-02303-3_3
https://doi.org/10.1007/978-3-540-68555-5_4
https://doi.org/10.1007/978-3-540-68555-5_4
https://doi.org/10.1109/ICPP.2013.63
https://www.openmp.org/specifications/
https://www.openmp.org/specifications/

98 M. Wiesner and M.-C. Jakobs

18. Quinlan, D., Liao, C.: The ROSE source-to-source compiler infrastructure. In:
Cetus users and compiler infrastructure workshop, in conjunction with PACT,
vol. 2011, p. 1. Citeseer (2011)

19. Royuela, S., Ferrer, R., Caballero, D., Martorell, X.: Compiler analysis for OpenMP
tasks correctness. In: Proceedings CF, pp. 11–19. ACM (2015). https://doi.org/
10.1145/2742854.2742882

20. Saillard, E., Carribault, P., Barthou, D.: Static Validation of barriers and work-
sharing constructs in openmp applications. In: Proceedings IWOMP, pp. 73–86.
LNCS 8766, Springer (2014). https://doi.org/10.1007/978-3-319-11454-5 6

21. Salamanca, J., Mattos, L., Araujo, G.: Loop-carried dependence verification in
OpenMP. In: Proceedin IWOMP, pp. 87–102. LNCS 8766, Springer (2014). https://
doi.org/10.1007/978-3-319-11454-5 7

22. Siegel, S.F., et al.: CIVL: the concurrency intermediate verification language. In:
Proceedings SC, pp. 61:1–61:12. ACM (2015). https://doi.org/10.1145/2807591.
2807635

23. Swain, B., Li, Y., Liu, P., Laguna, I., Georgakoudis, G., Huang, J.: OMPRacer:
a scalable and precise static race detector for OpenMP programs. In: Proceedings
SC. IEEE (2020). https://doi.org/10.1109/SC41405.2020.00058

24. Tristan, J., Leroy, X.: A simple, verified validator for software pipelining. In: Pro-
ceedings POPL, pp. 83–92. ACM (2010). https://doi.org/10.1145/1706299.1706311

25. Virouleau, P., Brunet, P., Broquedis, F., Furmento, N., Thibault, S., Aumage, O.,
Gautier, T.: Evaluation of OpenMP dependent tasks with the KASTORS bench-
mark suite. In: Proceedings IWOMP, pp. 16–29. LNCS 8766, Springer (2014).
https://doi.org/10.1007/978-3-319-11454-5 2

26. Ye, F., Schordan, M., Liao, C., Lin, P., Karlin, I., Sarkar, V.: Using polyhedral
analysis to verify openmp applications are data race free. In: Proceedings COR-
RECTNESS@SC, pp. 42–50. IEEE (2018). https://doi.org/10.1109/Correctness.
2018.00010

27. Yu, F., Yang, S., Wang, F., Chen, G., Chan, C.: Symbolic consistency checking
of openmp parallel programs. In: Proceedings LCTES, pp. 139–148. ACM (2012).
https://doi.org/10.1145/2248418.2248438

28. Zhang, Y., Duesterwald, E., Gao, G.R.: Concurrency analysis for shared memory
programs with textually unaligned barriers. In: Proceedings LCPC, pp. 95–109.
LNCS 5234, Springer (2007). https://doi.org/10.1007/978-3-540-85261-2 7

https://doi.org/10.1145/2742854.2742882
https://doi.org/10.1145/2742854.2742882
https://doi.org/10.1007/978-3-319-11454-5_6
https://doi.org/10.1007/978-3-319-11454-5_7
https://doi.org/10.1007/978-3-319-11454-5_7
https://doi.org/10.1145/2807591.2807635
https://doi.org/10.1145/2807591.2807635
https://doi.org/10.1109/SC41405.2020.00058
https://doi.org/10.1145/1706299.1706311
https://doi.org/10.1007/978-3-319-11454-5_2
https://doi.org/10.1109/Correctness.2018.00010
https://doi.org/10.1109/Correctness.2018.00010
https://doi.org/10.1145/2248418.2248438
https://doi.org/10.1007/978-3-540-85261-2_7

Tool Papers

C-SMC: A Hybrid Statistical Model
Checking and Concrete Runtime Engine

for Analyzing C Programs

Antoine Chenoy, Fabien Duchene(B), Thomas Given-Wilson, and Axel Legay

UCLouvain, Louvain-La-Neuve, Belgium
antoinechenoy@outlook.be,

{fabien.duchene,thomas.given-wilson,axel.legay}@uclouvain.be

Abstract. Finding programming errors is one of the major challenges
in software development. Formal methods such as model checking have
become a popular approach to address this problem because of their
guarantees about error status. However, one of the greatest challenges is
to have correct information about complex internal details such as mem-
ory, registers, and system state. In this paper we describe the C-SMC

tool and methodology developed to find programming errors in C pro-
grams by leveraging statistical model checking and runtime information.
Our prototype shows that our approach can complement many existing
software verification tools.

1 Introduction and Motivation

The advantages of formal methods over traditional approaches, such as testing,
are formal methods’ capability to provide guarantees about results. Another
advantage is in using expressive temporal logic to elegantly express and verify
complex temporal properties. Approaches such as model checking (MC) [13] are
able to produce examples of errors (falsification of properties) or guarantee the
absence of errors, albeit at the cost of building a model and checking every
possible state.

Over past years, formal methods were restricted to the verification of system’s
abstractions such as transition systems that would directly be provided by the
user. The situation has changed with the arrival of a series of new tools that
allows us to verify C code (among others) directly. There are many tools for C
code analysis that use a variety of approaches including: heuristics [1,2,8]; model
checking [17,18,21,25,34] and variations [29,32]; other formal methods [38,39];
symbolic verification [19], and runtime analysis [11,36]. All those tools either
suffer from the state-space explosion problem or from difficulties in handling the
memory model of the system under verification.

Advances on MC such as statistical model checking (SMC) [12,30,31] provide
an efficient balance by resolving many complexity and state-space problems from
MC, albeit at the cost of certainty [15,24].

This work has been partially supported by a Cisco grant.

c© Springer Nature Switzerland AG 2021
A. Laarman and A. Sokolova (Eds.): SPIN 2021, LNCS 12864, pp. 101–119, 2021.
https://doi.org/10.1007/978-3-030-84629-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84629-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-84629-9_6

102 A. Chenoy et al.

SMC simulates multiple executions of a system and monitors them in regards
to properties. Then, SMC uses statistical algorithms to extrapolate to the global
system. While SMC can efficiently find errors and avoid complexity problems,
the trade-off is that SMC provides only a statistical likelihood of the absence
of errors and a confidence in this result, not a formal guarantee. So far, SMC
has been applied to verify safety/liveness requirements of (stochastic) models of
systems, but not security.

The application of SMC to verify specifications of high-level code is limited to
very specific reachability properties and restricted fragments of languages [36].
Consequently the verification of security properties that depends on space and
time memory failures have not yet been explored. Such failures are prominent
in popular languages such as C.

This is because one great challenge for many formal methods is how to accu-
rately model true possible values within the program and also the complex inter-
nal information related to the program being analyzed. The true possible values
of a program execution can be difficult to determine due to abstract approaches
having extremely large domains to consider (e.g. all 64-bit Integers) or com-
plex runtime relationships between values that are very hard to track. Similarly,
memory organization may extremely complex to accurately model in an abstract
manner. The choices of the compiler or of the operating system may be opaque
to a verification engine. This can lead to inaccuracies and hence to security
vulnerabilities that are difficult to define or analyze.

In this paper we develop the C Statistical Model Checker (C-SMC) approach
and tool that is able to address these challenges by combining the strengths of
SMC with a runtime engine to connect the model with the real execution of
the program. The SMC aspects allow for many executions of the program to
be handled independently and their checking results to be effectively combined
using statistics on the overall likelihood to satisfy properties. The runtime engine
allows for the model and states to gain real information that is apparent from
the execution without having to simulate and model the entire hardware and
operating system’s behaviour in the model. The advantage of the approach used
by C-SMC is that formal results are obtained for understanding the coverage
and limitations of the analysis, i.e. the advantages of SMC. Also by using a real
runtime debugging engine (here GDB [5]) to inform the analysis, the true instan-
tiations of memory and internal system hardware can be exploited to determine
concrete values and verify complex temporal properties.

The implementation of C-SMC is achieved by combining aspects of both
static and dynamic analysis. A static model of the program is constructed and
given to an SMC engine (Plasma Lab [16,33]), with information about the source
code added as tags in the model. Then when Plasma Lab is analyzing the model,
a link is made from the checker in Plasma Lab to an instance of the program
being executed (by GDB) so that Plasma Lab can have access to a dynamic exe-
cution with real information based on areas that are difficult to model (e.g. mem-
ory layout, registers, true variable values, etc.). To validate the effectiveness of
C-SMC we compare to other well regarded tools that are dedicated to the same

C-SMC: A Hybrid Statistical Model Checking 103

challenge such as CBMC [29], Coverity [1], CPPCheck [2] and PVS Studio [8]
Our results indicate that C-SMC performs extremely well at detecting errors,
particularly those that rely upon runtime information and that it is able to detect
bugs that no other evaluated tool can. These results also show that although the
SMC and runtime approach comes at a cost in terms of execution time and
resource consumption, the trade-off is the reduction of significant abstraction
both in finding good executions and avoiding complexity problems. A Virtual-
Box [7] Virtual Machine (VM) containing C-SMC, its source code and all the
examples used in this paper is available at https://c-smc.csvl.eu/C-SMC.ova.

2 Systems: From Specification to Verification

This paper offers a Statistical Model Checking (SMC) approach to verifying
safety and security properties of complex C programs. The technique works
by inferring statistic properties from the monitoring of successive executions of
a program written in C source code.

SMC applies to stochastic systems, while execution of C programs are inher-
ently sequential except for two sources. The choice of initial arguments that
may depends on users; and the governance of process interleaving. These two
sources are inherently non-deterministic to the program. This paper is restricted
to non-concurrent systems. Consequently the only source of non-determinism
is the choice of initial software parameters. In order to account for this source
of non-determinism, this work assumes the existence of a stochastic oracle that
generates initial parameters in a uniform manner. Here the uniform distribution
is the distribution with the maximal entropy.

Here a state specifies all the current information related to a C program.
In particular a state not only includes current values of program’s variables,
but also the value of others elements used by the program. This includes, e.g.,
the current program counter, memory (stack and heap), registers, etc. A given
program has one (or more) entry points which are here defined to be the ini-
tial state[s]. Such states are generated by uniformly selecting an initial value for
the input parameters. As usual, a C program moves from one state to another
via transitions that represents program’s instructions. An execution trace is a
sequence of states generated from one initial state by following a sequence of
transitions of the software. Observe that such transitions not only modify pro-
gram’s values, but also other information like the CPU flags or the instruction
pointer.

From the above, a C program can entirely be defined by the set of all of its
executions. Moreover, by definition of the stochastic oracle and the restriction
to non concurrent systems, one can define a unique probability distribution on
such set. Consequently, SMC applies to our setting.

2.1 Trace Execution Properties

Expressing properties formally is key in software verification. Based on defini-
tions from above, the properties about a program can be defined in terms of

https://c-smc.csvl.eu/C-SMC.ova

104 A. Chenoy et al.

properties over states, over individual traces, and over sets of traces. We first
focus on the first two types of properties. The last one, which corresponds to the
verification of the whole program, will be handled in the next (sub-)section.

A propositional logic can define properties about each state individually. To
be able to consider all the states of an execution trace, this propositional logic
needs to be extended. One popular extension is Linear Temporal Logic LTL [37].
LTL allows us to make hypothesis of unbounded traces via temporal operators.
As SMC restricts to finite trace executions, we consider a bounded version of
LTL, where each temporal operator is bounded the number of states to which it
applies.

Bounded Linear Temporal Logic (BLTL) is an enhancement of LTL that adds
bounds expressed in step or time units. The syntax of BLTL is as follows and
adapted from LTL:

φ, ψ ::= p | φ ∨ ψ | ¬φ | φ U≤t ψ | X≤t φ . (1)

The p is propositional variables, disjunction φ ∨ ψ and negation ¬φ are all as
in LTL. The formula Xφ is true if φ is true in the next state from the current
state. The formula φ U≤t ψ is true if both: ψ becomes true before t in the sequence
from the current state; and φ remains true in every state before the state where
ψ becomes true. For a formal definition of BLTL semantics, see [41]. A BLTL
formula is expressed with respect to a trace. It is also helpful to have conjunction
(φ∧ψ) and implication (φ ⇒ ψ) that are defined in the usual manner. Similarly
the always (G) and eventually (F) operators can be defined using the BLTL
syntax above as follows. Eventually is defined as F≤tφ = trueU≤t φ and means
that the formula φ should become true before t. Always is defined as G≤tφ =
¬F≤t¬φ and means that φ must always hold for the next t.

Let w = s0, s1, ..., sL, ... be an execution trace, and denote by wj =
sj , ..., sL, ... the portion of the trace starting from j (included). The truthful-
ness of the formulas can be decided using the rules described in Table 1.

Table 1. BLTL rules

w |= F≤tφ iff w |= true U≤tφ

w |= G≤tφ iff w |= ¬(F≤t¬φ)

w |= φU≤tψ iff ∃i, t0 ≤ ti ≤ t0 + t and wi |= ψ and ∀j, 0 ≤ j < i, wj |= φ

w |= X≤tφ iff ∃i, i = max(j|t0 ≤ tj ≤ t0 + t) and wi |= φ

w |= X≤φ iff w1 |= φ

w |= φ ∨ ψ iff w |= φ or w |= ψ

w |= φ ∧ ψ iff w |= ¬φ ∨ w |= ¬ψ

w |= φ ⇒ ψ iff w |= ¬φ ∨ ψ

w |= ¬φ iff w �|= ϕ

w |= true always

w |= false never

C-SMC: A Hybrid Statistical Model Checking 105

BLTL allows us to express reachability properties such as “the software should
eventually reach a state where variable x is equal to 1”. The logic can also be used
to express more elaborated causalities such as “always, if the software reaches
a state where x is equal to 1, it will eventually reach a state where y is equal
to 1”. This expressive power allows us to express a wide range of safety and
security properties. BLTL properties can be verified with monitoring procedures
[26]. Such procedures, inspect successive states of an execution trace until it can
decide whether the property is satisfied. Note that the BLTL is well suited to rea-
son on system’s model where states are abstracted by Boolean variables. As we
are working with C code, we will assume that such variables can be replaced by
Boolean predicates on states. Such predicates can express, e.g., Boolean prop-
erties on program’s variables or register in a given state. These concepts are
illustrated in Sect. 3.2 where the architecture of C-SMC is presented.

2.2 Probabilistic Verification

We now turn to properties defined over sets of trace executions, that is properties
defined on the whole system. We are interested in solving the probabilistic BLTL
problem, that is to compute the probability for the system to satisfy a BLTL
property φ. Such probability being defined as the probability that a random
trace of the system satisfies φ.

Statistical model checking [30] has been proposed as an efficient approach
to solve such problem. SMC statistically measures the truthfulness of properties
over a smaller number of traces. This is done by performing a fixed number of
simulations of the system and using an algorithm to estimate the probability
that the system satisfies the property. As the number of observed executions is
finite, this answer comes together with a confidence interval [30].

There is a wide range of statistics algorithms that can be used to estimate
the probability to satisfy a given property [30]. As the study of those algorithms
is not the topic of this paper, we propose to work with the most simple one that
is based on the Monte Carlo estimator. The estimator relies on the following
proportion:

γ̄ =
∑N

i=1 1(wi |= φ)
N

where 1(x) =

{
1 if x is true
0 otherwise.

(2)

where N is the number of simulation being performed. Let γ be the true prob-
ability to satisfy φ and P be a probability evaluation. Let ε (precision) and
δ (confidence) be small values. The Chernoff-Hoeffding bound [27] guarantees
that P (|γ̄ − γ| ≥ ε) ≤ δ is given by N = � ln2−lnδ

2ε2 �. Consequently, by control-
ling the number of trace executions to be verified, the user entirely controls the
preciseness of the γ̄ estimator.

2.3 Implementation: Plasma Lab

In this section, we focus on tools that implement Statistical Model Checking
algorithms. As seen in the previous section, SMC mainly depends on sub-parts

106 A. Chenoy et al.

Algorithm Checker Simulator

Controller

Request Trace

User Interface External tools

Results Results

Parameters

Distribution and
management

SMC algorithms Application
specific logics

Application
specific modeling

languages

Pl
as

m
a

C
on

tro
l

Pl
as

m
a

C
or

e
Pl

as
m

a
Pl

ug
in

s
API

Result

Fig. 1. Overview of the Plasma Lab architecture.

that include the type of execution trace property that has to be monitored and
on the statistical algorithm used to compute the stochastic guarantee. Implicitly,
SMC also depends on the type of system under verification and on the capacity
to generate an arbitrary number of execution traces from this system.

In [40], the authors proposed YMER, a tool that can be used to verify BLTL
properties of Markov Chains with an hypothesis testing procedure. That is, the
tool decides between two hypothesis rather than computing an exact probability.
In [23] Monte Carlo is applied to verify properties of Metric Temporal Logic over
stochastic timed automata. Those tools have been shown to be very efficient on
various problems. However, they are rather static in the sense that they do not
exploit the intrinsic modularity of SMC. As an example, YMER does not permit
replacing the hypothesis testing algorithm by a Monte Carlo one. None of those
tools allows replacing classical BLTL with an algorithm that would consider
debugger expression. On the top of this, none of those tools consider C code.

In [16,33], we introduced Plasma Lab a Statistical Model Checking
(SMC) [30] tool that can provide the ability to create custom statistical model
checkers. As shown in Fig. 1, Plasma Lab consists of three different layers. The
first one is the control layer. It allows us to express various type of stochas-
tic systems written in command-guarded language via a user interface. It also
permits one to plug other system descriptions such as C code via an API for
external control. The second one is the core that manages the model checking
experiments, that is the interaction between all SMC components. The third one
is the plugins that permits modularity and tool customization by introducing
new SMC subparts.

Plasma Lab supports three types of plugins: Algorithm, Checker and Simula-
tor. An Algorithm plugin manages the entire process and will begin by requesting
new traces from the Checker. This is here that one choice between algorithms

C-SMC: A Hybrid Statistical Model Checking 107

Fig. 2. C-SMC architecture with GDB as the runtime engine.

such as Monte Carlo or hypothesis testing. The user can also propose her own
statistic algorithm. The Checker will then proceed to the monitoring of the prop-
erty. To do so, the checker will ask the Simulator to initialize a new execution
trace and control the simulation by requesting new states to check properties
against. When the Checker obtains a verdict from the traces, the Algorithm is
notified, aggregates the results statistically and sends the results through the
controller API.

Several plugins provided with Plasma Lab already allow control guarded-
command languages or tools such as Matlab/Simulink. In this paper, we will
use the external tool to plug C programs. We will then use GDB as a simulator
for trace execution of such programs. Finally, we will provide a Checker that
extends Plasma’s BLT checker with debugger predicates (and hence a link with
GDB). By doing so, we will instantiate a new SMC tools to verify C code. Such
tool shall be described in the next section.

3 Architecture of C-SMC

This section describes the architecture of C-SMC that allows us to estimate
BLTL properties over C programs. Our tool builds on combining the facilities of
Plasma Lab and GDB by using the plugins system described in Sect. 2.3.

An overview of C-SMC’s architecture is shown in Fig. 2. The Algorithm
(in orange, here SMC with Monte Carlo) will request a simulation from the
Simulator (in yellow). The Simulator executes the executable instruction-by-
instruction using GDB and generates a trace. The trace is then analyzed by the
Checker (in green) that will send results back to the Algorithm. If the simulation
resulted in the property not being satisfied, the Checker will output the complete
execution trace to a file to be analyzed by the user. This cycle is executed several
times to allow the Monte Carlo algorithm to estimate the probability of the

108 A. Chenoy et al.

outcomes. When this probability has been estimated with acceptable confidence
the result is output and Plasma Lab terminates. C-SMC uses Plasma Lab’s
existing Monte Carlo Algorithm and has new Simulator and Checker plugins.

3.1 Simulator

C-SMC’s Simulator executes binaries using GDB and retrieves values from GDB
in order to build an execution trace. In addition to the usual values, C-SMC’s
simulator can also use special values by using the debugger, e.g., the processor’s
carry flag CF, overflow flag OF, or a predicate indicating stack memory edits
between execution steps. In C-SMC, the Simulator is composed of two main
components.

The Simulator Plugin can work with any kind of program interface that
supports a small API (see the VM from Sect. 1 for details) for interaction with
the execution. This plugin is able to produce an execution trace that Plasma
Lab can use, and can then provide the information required for the Checker.

C-SMC’s GDB Communication Interface is the component that links the
Simulator Plugin with GDB. Using GDB’s structured language GDB/MI [4] the
GDB Communication Interface allows the Simulator Plugin to generate traces
from GDB’s execution of an executable. The GDB Communication Interface
contains an MI message parser and generator to communicate with GDB via
I/O streams.

The leftmost part of Fig. 2 shows the workflow of the Simulator Plugin in
which GDB is controlled via the GDB Communication Interface to execute the
executable instruction-by-instruction and retrieve the values to generate a trace.
The trace is then sent to the Checker for validation.

3.2 Checker

The role of C-SMC’s Checker is to verify BLTL properties on a trace coming
from the Simulator. For doing so, we need an extension to Plasma Lab’s existing
BLTL plugin to add new expressions that relate to elements accessed by GDB.
We will thus consider BLTL properties whose atoms are extended by debug-
ger predicates, i.e., Boolean predicates on the values of variables and elements
associated to each state (see Sect. 2.1).

As an example, the existing BLTL plugin already uses variables defined in
the simulator plugin (like the line number and the program counter) with the
syntax G <= 100 line != 10. The syntax of the BLTL plugin is extended to
support debugger expression between two $ characters, allowing expression like
G <= 100 $table[5] == 15$. These expressions are evaluated directly by the
debugger and a Boolean result is returned.

C-SMC is also able to produce execution traces in XML format to provide
a insight into the simulations. An XML execution trace contains a chronological
list of all the states encountered during the execution. As illustrated in Fig. 3,
each state contains information tracked in the analysis; here the program counter

C-SMC: A Hybrid Statistical Model Checking 109

pc, line number line, variables r and x, and a property 891715540 id 0. This
provides a deep understanding of the execution flow that may lead to an error.
By default, the Checker only outputs the traces of executions that lead to a
property violation (BAD/INVALID traces), but can be configured to also output
traces for executions that lead to no properties violations (GOOD traces) and
executions that lead to a crash like a segmentation fault (CRASHED traces).

1 <state>

2 <expr name="pc" expr="$pc">9.3824992236082 E13</expr>

3 <expr name="line" expr="line">37.0</expr>

4 <expr name="r" expr="r">1.6843009 E9</expr>

5 <expr name="x" expr="x">100.0</expr>

6 <expr name="__891715540_id_0" expr="x!=100">0.0</expr>

7 </state >

Fig. 3. Example of a State.

3.3 C-SMC Configuration

C-SMC comes with 2 types of configuration files both in TOML syntax: the
model file and the requirement files.

The model file contains the configuration of the simulator inside Plasma Lab.
It allows one to specify all the needed configurations for the execution to proceed.
An example of such a file is shown in Listing 1.1. The first two lines executable
and function respectively allow the configure the executable to be executed and
the function to be monitored inside that executable. The [simulator] section
allow specifying which of Plasma Lab’s simulators is to be used. In C-SMC,
we use the gdb simulator that we created. The [simulator.options] section
contains the parameters of the simulator selected in the previous section. Our
GDB simulator supports several options such as those from the example detailed
below.

– CF: this enables the monitoring of the Carry Flag. This flag is used to indicate
when an arithmetic carry or borrow out of the most significant arithmetic
logic unit bit position.

– OF: this enables the monitoring of the Overflow Flag. This flag is used to
indicate that an arithmetic overflow happened during the last instruction.

– STACK M: the Stack Modification evaluates to true if the stack above the
one of this function has been edited since the last operation (useful to detect
buffer overflows).

– gdb path: is the path of the gdb executable on the local system.

The last section, variables allows defining the variables we want the debug-
ger to track for us (and use to verify properties). These variables are named
expressions that will be evaluated during the simulation and accessible by their

110 A. Chenoy et al.

name in the properties. These expressions need to fit in a Java double value to
be usable from the Plasma Lab interface. In Listing 1.1, the first line creates a
variable x that will contain the value of the variable x of the main function and
a variable y that contains the value of the index 5 of the array buffer.

1 executable = "../ path/to/

binary"

2 function = "main"

3 [simulator]

4 name = "gdb"

5 [simulator.options]

6 CF = true

7 OF = true

8 STACK_M = true

9 gdb_path = "/usr/bin/gdb"

10 [variables]

11 x = "x"

12 y = "(int)�buffer [5]"

Listing 1.1. Example of a model file
configuration.

1 [traces]

2 type = "one�per�file"

3 printall = "true"

4 folder = "../ path/to/results/"

5 prefix = "example_prefix"

6 [BLTL]

7 G <= #1000 x > 10 =>

8 $choosenString != NULL$

Listing 1.2. Example of a requirement
file configuration.

To specify the conditions that should be checked while running the program,
C-SMC uses requirement files as the one shown in Listing 1.2. Several require-
ment files might be specified for the same program. A requirement file starts with
the traces section. This section allows configuring the output of the generated
execution traces. The type option specifies if the trace must be output on the
standard output, in several files or in a single file. The BLTL section contains the
BLTL formula to be checked on the program. In the example from Listing 1.2, the
BLTL formula contains 3 parts. The first part G <= #1000 specifies the bound
(1000 steps in this case). The second part x > 10 uses the variable x defined in
Listing 1.1 to compare it against the value 10. The last part, $choosenString
!= NULL$ is a predicate that uses a debugger expression (see Sect. 3.2) to check
if the variable choosenString, defined inside the program, is not null.

3.4 Running C-SMC

To illustrate how to run C-SMC let us start with the simple example in List-
ing 1.3. In this example, the function contains is searching for elem in the array
arr. To do so, contains iterates over the array. When the desired value is found
contains memorizes it by storing the value 1 inside the variable found and then
stops the loop by using a break. When contains exits the loop, the value of
found is checked to verify is the value was present in the array. If so, the index
of the value is returned, otherwise the function return -1.

1 /* return the index of elem in arr , returns -1 if absent */

2 int contains(int arr[], int size , int elem) {

3 int i = 0, current = 0, found = 0;

4 for (i=0; i < size; i++) {

5 current = arr[i];

C-SMC: A Hybrid Statistical Model Checking 111

6 found = (current == elem);

7 if (found)

8 break; // BUG if replaced by continue;

9 }

10 if (found) {

11 return i;

12 } else {

13 return -1;

14 }

15 }

Listing 1.3. A simple Example.

To demonstrate the ability of C-SMC to perform an in-depth inspection of
the behavior of a program, we will configure the tool in order to monitor the
evolution of internal state of the contains function from Listing 1.3. In order
for this code to work properly, once the found value has been set to 1 it should
never go back to another value. If for some reason found goes back to another
value, the result of the function will be incorrect. This could for instance be
caused by a programming mistake where the break from line 8 is replaced by a
continue. In this case, when the value is found, the loop will continue and the
value of found will be overwritten.

To check this example with C-SMC the first step is to define the con-
figuration model described in Sect. 3.3. In this file, shown in Listing 1.4, the
executable and function will be set to the name of the binary (check array)
and the name of the function (contains) respectively. For this example, we do
not need to track the values of the flags or to look for modifications of the stack.
Thus, the next section to be configured is the variables section. In this section
we will configure C-SMC to track the values of the variables found, elem and
i during the execution of the program. To do so we create variables that tracks
the value of the variables inside the program. For the sake of clarity we keep the
same name, but we could have chosen another variable name.

1 executable = "./ check_array"

2 function = "contains"

3 [simulator]

4 name = "gdb"

5 [simulator.options]

6 CF = false

7 OF = false

8 STACK_M = false

9 gdb_path = "/usr/bin/gdb"

10 [variables]

11 found = "found"

12 elem = "elem"

13 i = "i"

Listing 1.4. Model file configuration
for the contains function.

1 [traces]

2 type = "one�per�file"

3 printall = "true"

4 folder = "../ path/results/"

5 prefix = "check_array"

6 [BLTL]

7 G <= #1000 (found = 1 =>

8 (G <= #1000 found = 1))

Listing 1.5. Requirement file for the
contains function.

Now that the variables that need to be tracked by C-SMC have been config-
ured the next step is to express the behavior that needs to be verified. This part

112 A. Chenoy et al.

is done by adding requirement files as presented in Sect. 3.3. The requirement
file for this example is shown in Listing 1.5. In the traces section we configure
the format of the execution traces. The section BLTL contains the requirement
we want to express. In this case we need to express the fact that once found
has reached the value 1 it shouldn’t change afterwards. This requirement is not
trivial to express, but as explained in Sect. 2.1 BLTL allows the expression of
elaborate causalities. With this ability, it is possible to translate “Once the value
of bound switches to 1, this value should stay to 1 in the subsequent steps of the
execution“ into G <= #1000 (found = 1 => (G <= #1000 found = 1)). Now
that the configuration is done, we can run C-SMC by launching Plasma Lab
using our plugins described in Sect. 3 to check the properties and execute the
code. For a small illustration, our oracle will search for the value 2 in the array
{1,2,3,4,5,6,7,8}, i.e. with the value 2 at the index 1.

./ plasmacli.sh launch -m model.toml:software -simulator -r req_01.

toml:software -bltl -checker -a montecarlo -A"Total samples "=10

+----------------+---------------+-----------------------+--------+

| Name | # Simulations | # Positive Simulation | Result |

+----------------+---------------+-----------------------+--------+

| req_01.toml | 10 | 10 | 1.0 |

+----------------+---------------+-----------------------+--------+

In this case, C-SMC informs us that over the 10 executions of the code,
the property held 10 times. The Result column gives us the probability of the
property holding (this value might be set to -1 when the execution crashed).
For the remainder of this example we replace the break by a continue. If we
run C-SMC again; the output will change to inform us that none of the execu-
tion succeeded (0 positive simulation). Understanding why the property didn’t
hold can be done by inspecting the executions traces to follow the flow of the
execution. For this example, the end of the trace will look like this:

<trace >

....

<state >

<expr name="pc" expr="$pc " >9.3824992235894 E13 </expr >
<expr name="elem" expr="elem ">2.0</expr >

<expr name="line" expr="line ">6.0</expr >

<expr name="i" expr="i">2.0</expr >

<expr name=" found" expr="found ">1.0</expr >

</state >

<state >

<expr name="pc" expr="$pc " >9.3824992235897 E13 </expr >
<expr name="elem" expr="elem ">2.0</expr >

<expr name="line" expr="line ">7.0</expr >

<expr name="i" expr="i">2.0</expr >

<expr name=" found" expr="found ">0.0</expr >

</state >

</trace >

This shows that between the last two states the value of found indeed changed
from 1 to 0. The trace shows that this happened while the loop was inspecting

C-SMC: A Hybrid Statistical Model Checking 113

the index 2. Because the value 2 was at the index 1, we can deduce that the loop
went too far and look at the continue statement.

4 Use Cases

This section presents three clear examples of errors that are difficult for tools to
discover. These errors rely on accurate understanding of the state of the program
that is difficult to model or approximate without expensive analysis.

1 int main(int argc ,char **argv){

2 int x = 42;

3 char buf [8];

4 memset(buf ,’\0’,sizeof(buf));

5 srand(time(NULL));

6 int r = rand() % 14;

7 printf("%d\n", r);

8 // overflow on x when r=13

9 strncpy(buf ,"ddddddddddddddd",

r);

10 if (x == 100){

11 printf("secret");

12 } else {

13 printf("%s\n", buf);

14 }

15 return 0;

16 }

Listing 1.6. Buffer Overflow Example.

1 int search(int arr[],int size ,

int elem) {

2 int l = 0;

3 int r = size; //not size -1

4 int m = 0;

5 while (r >= l) {

6 m = (l+r) / 2;

7 if (arr[m] == elem) {

8 return m;

9 } else if (arr[m] > elem) {

10 r = m - 1;

11 } else {

12 l = m + 1;

13 }

14 }

15 return -1;

16 }

Listing 1.7. Binary Search Example.

1 int main(int argc , char **argv) {

2 char ** myArray = malloc(ARRAY_SIZE*sizeof(char*));

3 fillArrayWithValues(myArray); // put values in the array

4 if ((rand() % 10) == 1) { // randomly insert null sometimes

5 myArray[rand() % ARRAY_SIZE] = NULL; // NULL at a random index

6 }

7 printf("%s\n", myArray[rand() % ARRAY_SIZE]);

8 }

Listing 1.8. Pointer-to-pointer Example.

Consider the buffer overflow in Listing 1.6. A buffer of size 8 is overflowed with
the character d (that has value 100 when converted to an integer). Because the
variable x is located next to buf on the stack, the x variable can be overwritten
by an incorrect write to buf. In this case, the x variable protects the access to
a sensitive part of the code that is not supposed to be accessed in this context.
The challenge for detecting this error relies upon determining that an overrun
of buf leads to a specific modification of x leading to the secret.

Another difficult challenge for tools is to maintain context information that
may not be local and accurately detect errors. Listing 1.7 shows an example
where the relation between function arguments is vital to correct behavior and

114 A. Chenoy et al.

detecting the error. Observe that the size should give the size of arr and is
incorrectly used to initialize r. This dependency can lead to an out of bounds
access that is very difficult to detect accurately, particularly if the search func-
tion is called with different arguments at different times. Because C is not a
reflective language, when the function receives an array (or a pointer to an
array), C has no way to determine the size of that array, hence the need for
a size parameter. Because of this limitation, most tools will consider the size
of the array to be unknown and will not be able to perform a bounds check
analysis. C-SMC is able to compare the value of m against the value of size at
runtime, without needing to approximate, making this bound check possible. To
detect this error C-SMC monitors the value of the variable m using the formula
m = 0|(0 <= m&m < size).

Listing 1.8 presents a simplified version (full version in the VM from Sect. 1)
of an error where a pointer-to-pointer is randomly set to NULL. A random value of
the array is then printed, potentially leading to a segmentation fault if the NULL
is selected. Because of the complexity incurred by replicating a memory model
supporting pointers-to-pointers and the low probability of the error happening,
this error is challenging to accurately detect. Since the probability of NULL being
inserted in the array and then being selected to be printed is very low, this
example outlines some challenges for C-SMC in term of confidence. The use of
SMC as the core execution engine makes C-SMC unable to guarantee program
correctness. SMC is able to provide a measure of confidence in the results based
on the coverage of the possible executions. To make the verdict as accurate as
possible, solutions are discussed in Sect. 6.

5 Examples and Evaluation

To evaluate C-SMC one clear source of evaluation examples and effectiveness
is to ensure that C-SMC can detect errors that other tools on the market can
detect. The following tools were used as sources for evaluation. CBMC [29] is
chosen as another C analysis engine that uses a variation of MC to find errors,
also CBMC is freely available and has examples of errors that may benefit from
runtime information. Coverity [1], a static-analysis tool that integrates with
Github [6] and Travis-CI [10] is chosen as an easy and free way for open source
projects to scan their code for errors. CPPCheck [2] is chosen as being an open
source freely available C/C++ analysis tool. PVS Studio [8] is chosen as another
static analyser tool that can be trialed on C [8].

5.1 Methodology

The methodology used for analysis here is to gather a collection of different
examples of errors that at least one of the other tools is able to detect and verify
that C-SMC is able to detect this kind of error. Examples are collected from
the documentation for each tool and also some examples from this paper (see
Sect. 4 and the VM from Sect. 1). All the tools in their default configuration are

C-SMC: A Hybrid Statistical Model Checking 115

run on all the examples to see if the errors were detected. Note that the focus
is to evaluate whether C-SMC detects all the different kinds of errors, and thus
all possible configurations for other tools were not explored (this makes direct
comparison difficult, however this is not the goal here).

To avoid having too many variations of similar errors, when multiple tools
announce support for a similar kind of error (e.g. division by 0) a “merged”
single example is created. These merged examples are identified as “Multiple”
for origin. The evaluation examples and brief descriptions are in Fig. 4 with the
source code available in the Virtual Machine from Sect. 1.

Example Origin Description

static out-of-bounds CPPCheck Hard-coded array out-of-bounds.

dynamic out-of-bounds CPPCheck
rand() valued array access that may go out-of-
bounds.

divide by zero Multiple. A hard-coded a division by 0.
buffer overflow This paper. A potential buffer overflow, see Listing 1.6.
local binary search CBMC Binary search going out-of-bounds of local array.

parameter binary search This paper.
Binary search going out-of-bounds, see List-
ing 1.7.

pointer to pointer This paper. Use of potential NULL pointer, see Listing 1.8.
read-only memory Multiple. Write into read-only memory.
integer overflow This paper. Addition resulting in an integer overflow.

Fig. 4. Evaluation Examples

CBMC Coverity CPPCheck PVS Studio C-SMC

static out-of-bounds X X X X X
random out-of-bounds X X - X X
divide by zero X X X - X
buffer overflow - X - X X
local binary search X - - - X
parameter binary search - - - - X
pointer to pointer - - - - X
read-only memory - - X X X
integer overflow X - - - X

Fig. 5. Evaluation results for tools on all source code samples with errors. Detected
represented as X and Missed by -.

The results of running a tool on an evaluation example are classified into two
possible outcomes. Detected where the tool accurately detected the error and
Missed where the tool did not detect any error (of the right kind).

116 A. Chenoy et al.

5.2 Results

The results of the evaluation are summarized in Fig. 5. If one of the other tools
was able to detect an error, then the goal was for C-SMC to also detect the error.
With that objective being met, observe that there are two examples that only
C-SMC is able to detect. The first is the parameter binary search described
in Sect. 4. It is expected that this kind of error would be hard for tools to detect
because of C not being a reflective language. When the function under inspection
receives an array (or a pointer to an array), C has no way to determine the size
of that array, hence the need for a size parameter. Because of this limitation,
most tools will consider the size of the array to be unknown and will not be
able to perform a bounds check analysis. However, C-SMC is able to compare
the value of m against the value of “size” making this bound check possible. The
second is the pointer-to-pointer error. C-SMC detects it but, as discussed
in Sect. 4, this is an example of where C-SMC may not find the error. Depending
on the probability of the pointer-to-pointer being NULL, C-SMC might have
to run many executions to find the error. If insufficient executions are run, the
error will not occur and thus C-SMC would report that the program is clean
(with some confidence) when it is not (this is discussed further in Sect. 6). For
this specific example, by running 4883 simulations, C-SMC detects the presence
of the bug and evaluate its probability to 0.75773090313% with a precision of
10−1 and a confidence of 10−5.

Performance: By design C-SMC is executing and instrumenting the binary
code of a program, this comes at a cost in term of interaction with the debugger
which is itself expensive in resources. Thus other approaches can have signif-
icantly better performance in terms of execution time and resource consump-
tion. However, the SMC approach and GDB values allow for the reduction of
significant abstraction both in finding good executions and avoiding explosion
problems. Some of the tools performing static analysis will outperform C-SMC

in terms of execution time and resources consumption. While we can’t easily
reduce this overhead, future work will optimize C-SMC for performance.

6 Conclusion and Future Work

Finding programming errors is a hard challenge, particularly when they rely on
detailed runtime information. C-SMC’s approach to combine SMC with runtime
information proves effective in finding a variety of (causality) errors that are
difficult or beyond the capabilities of many tools. This indicates that C-SMC’s
approach is useful to finding some of these specific kinds of errors, and helps in
broadening the effective tools available.

Future work can proceed in various directions. One directions is to han-
dle concurrent C programs. This would require either definition of a stochastic
semantics for such programs, or using non-deterministic SMC algorithms such
as those in [22]. In addition, this would require modifying C-SMC to support
multi-threading instructions from GDB. We would also be interested in using

C-SMC: A Hybrid Statistical Model Checking 117

debuggers with other capabilities, e.g. HP Wildebeest Debugger [3] or Radare2
[9].

Another direction is in using more efficient SMC algorithms such as those
based on guided search [14,20,28,31]. This would allows us to handle rare bugs
in a more efficient manner.

Finally, in C-SMC properties have to be expressed with BLTL properties
extended with debugger predicates. It would be worth defining a pattern-based
language to express BLTL properties in a language that can be understood by
engineers. This could be achieved by extending the work presented in [35] to
debugger predicates. It would also be worth testing further kinds of checks such
as memory allocation and freeing would be interesting to add since runtime
information could resolve many complexities related to pointer aliasing.

References

1. Coverity Scan. https://scan.coverity.com/. Accessed 18 Jan 2021
2. CPPCheck: A tool for static C/C++ code analysis. http://cppcheck.sourceforge.

net/. Accessed 18 Jan 2021
3. Debugging Dynamic Memory Usage Errors Using HP WDB. http://www.3kranger.

com/HP3000/mpeix/en-hpux/PDF/5014-0301.pdf. Accessed 21 Jan 2021
4. Debugging with GDB: GDB/MI. https://sourceware.org/gdb/onlinedocs/gdb/

GDB 002fMI.html. Accessed 21 Jan 2021
5. GDB: The GNU Project Debugger. https://www.gnu.org/software/gdb/. Accessed

14 Oct 2020
6. GitHub. https://github.com/. Accessed 18 Jan 2021
7. Oracle VM VirtualBox. https://virtualbox.org/. Accessed 20 Apr 2021
8. PVS-Studio. https://www.viva64.com/en/pvs-studio/. Accessed 18 Jan 2021
9. Radare2 - A free/libre toolchain for easing several low level tasks like forensics, soft-

ware reverse engineering, exploiting, debugging. https://rada.re/n/radare2.html.
Accessed 21 Jan 2021

10. Travis-CI. https://travis-ci.com/. Accessed 18 Jan 2021
11. Valgrind: an instrumentation framework for building dynamic analysis tools.

https://valgrind.org/. Accessed 21 Jan 2021
12. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.

Comput. Simul. 28(1), 6:1–6:39 (2018). https://doi.org/10.1145/3158668
13. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge

(2008). google-Books-ID: 5dvxCwAAQBAJ
14. Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for

statistical model checking. In: Flanagan, C., König, B. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems, pp. 331–346. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28756-5 23

15. Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A.: Statistical abstraction
and model-checking of large heterogeneous systems. Int. J. Softw. Tools Technol.
Transf. 14(1), 53–72 (2012)

16. Boyer, B., Corre, K., Legay, A., Sedwards, S.: Plasma-lab: a flexible, dis-
tributable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) Quantitative Evaluation System, pp. 160–164. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1 12

https://scan.coverity.com/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
http://www.3kranger.com/HP3000/mpeix/en-hpux/PDF/5014-0301.pdf
http://www.3kranger.com/HP3000/mpeix/en-hpux/PDF/5014-0301.pdf
https://sourceware.org/gdb/onlinedocs/gdb/GDB_002fMI.html
https://sourceware.org/gdb/onlinedocs/gdb/GDB_002fMI.html
https://www.gnu.org/software/gdb/
https://github.com/
https://virtualbox.org/
https://www.viva64.com/en/pvs-studio/
https://rada.re/n/radare2.html
https://travis-ci.com/
https://valgrind.org/
https://doi.org/10.1145/3158668
https://doi.org/10.1007/978-3-642-28756-5_23
https://doi.org/10.1007/978-3-642-40196-1_12

118 A. Chenoy et al.

17. Bradley, M., Cassez, F., Fehnker, A., Given-Wilson, T., Huuck, R.: High perfor-
mance static analysis for industry. Electron. Notes Theor. Comput. Sci. 289, 3–14
(2012)

18. Bradley, M., Cassez, F., Fehnker, A., Given-Wilson, T., Huuck, R., Junker, M.:
Goannasmt-a static analyzer with smt-based refinement (2012)

19. Cadar, C., et al.: Symbolic execution for software testing in practice: preliminary
assessment. In: Taylor, R.N., Gall, H.C., Medvidovic, N. (eds.) Proceedings of
the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu, HI, USA, 21–28 May 2011, pp. 1066–1071. ACM (2011). https://doi.
org/10.1145/1985793.1985995

20. Chockler, H., Ivrii, A., Matsliah, A., Rollini, S.F., Sharygina, N.: Using cross-
entropy for satisfiability. In: Shin, S.Y., Maldonado, J.C. (eds.) Proceedings of the
28th Annual ACM Symposium on Applied Computing, SAC 2013, Coimbra, Por-
tugal, 18–22 March 2013, pp. 1196–1203. ACM (2013). https://doi.org/10.1145/
2480362.2480588

21. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems, pp. 168–176. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24730-2 15

22. D’Argenio, P.R., Legay, A., Sedwards, S., Traonouez, L.: Smart sampling for
lightweight verification of Markov decision processes. Int. J. Softw. Tools Tech-
nol. Transf. 17(4), 469–484 (2015). https://doi.org/10.1007/s10009-015-0383-0

23. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.
org/10.1007/s10009-014-0361-y

24. David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of Herschel
revisited using statistical model checking. Int. J. Softw. Tools Technol. Transfer
17(2), 187–199 (2014). https://doi.org/10.1007/s10009-014-0331-4

25. Havelund, K., Pressburger, T.: Model checking JAVA programs using JAVA
PathFinder. Int. J. Softw. Tools Technol. Transfer (STTT) 2(4), 366–381 (2000)

26. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

27. Hoeffding, W.: Probability Inequalities for Sums of Bounded Random Variables,
pp. 409–426. Springer, New York (1994). https://doi.org/10.1007/978-1-4612-
0865-5 26

28. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) Computer Aided Veri-
fication, pp. 576–591. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39799-8 38

29. Kroening, D., Tautschnig, M.: CBMC - C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, pp. 389–391. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54862-8 26

30. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H., et al. (eds.) Runtime Verification, pp. 122–135. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16612-9 11

31. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statis-
tical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 23

https://doi.org/10.1145/1985793.1985995
https://doi.org/10.1145/1985793.1985995
https://doi.org/10.1145/2480362.2480588
https://doi.org/10.1145/2480362.2480588
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/s10009-015-0383-0
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0331-4
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23

C-SMC: A Hybrid Statistical Model Checking 119

32. Legay, A., Nowotka, D., Poulsen, D.B., Tranouez, L.-M.: Statistical model checking
of LLVM code. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.) FM
2018. LNCS, vol. 10951, pp. 542–549. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-95582-7 32

33. Legay, A., Sedwards, S., Traonouez, L.M.: Plasma lab: a modular statistical model
checking platform. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of
Formal Methods, Verification and Validation: Foundational Techniques, pp. 77–
93. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-
3-319-47166-2 6

34. Li, J., Dureja, R., Pu, G., Rozier, K.Y., Vardi, M.Y.: SimpleCAR: an efficient bug-
finding tool based on approximate reachability. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 37–44. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96142-2 5

35. Mignogna, A., Mangeruca, L., Boyer, B., Legay, A., Arnold, A.: Sos contract ver-
ification using statistical model checking. In: Larsen, K.G., Legay, A., Nyman, U.
(eds.) Proceedings 1st Workshop on Advances in Systems of Systems, AiSoS 2013,
Rome, Italy, 16th March 2013. EPTCS, vol. 133, pp. 67–83 (2013). https://doi.
org/10.4204/EPTCS.133.7

36. Ngo, V.C., Legay, A., Joloboff, V.: PSCV: a runtime verification tool for proba-
bilistic SystemC models. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9779, pp. 84–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41528-4 5

37. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (SFCS 1977), pp. 46–57. IEEE, Providence, RI, USA,
September 1977. http://ieeexplore.ieee.org/document/4567924/

38. Raad, A., Berdine, J., Dang, H.H., Dreyer, D., O’Hearn, P., Villard, J.: Local rea-
soning about the presence of bugs: Incorrectness separation logic. In: Lahiri, S.K.,
Wang, C. (eds.) Computer Aided Verification, pp. 225–252. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8 14

39. Švejda, J., Berger, P., Katoen, J.-P.: Interpretation-based violation witness valida-
tion for C: NITWIT. TACAS 2020. LNCS, vol. 12078, pp. 40–57. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45190-5 3

40. Younes, H.L.S.: Ymer: A statistical model checker. In: Etessami, K., Rajamani,
S.K. (eds.) Computer Aided Verification, 17th International Conference, CAV 2005,
Edinburgh, Scotland, UK, July 6–10, 2005, Proceedings. Lecture Notes in Com-
puter Science, vol. 3576, pp. 429–433. Springer, Cham (2005). https://doi.org/10.
1007/11513988 43

41. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to stateflow/simulink verification. Formal Methods Syst. Design 43(2),
338–367 (2013). https://doi.org/10.1007/s10703-013-0195-3

https://doi.org/10.1007/978-3-319-95582-7_32
https://doi.org/10.1007/978-3-319-95582-7_32
https://doi.org/10.1007/978-3-319-47166-2_6
https://doi.org/10.1007/978-3-319-47166-2_6
https://doi.org/10.1007/978-3-319-96142-2_5
https://doi.org/10.1007/978-3-319-96142-2_5
https://doi.org/10.4204/EPTCS.133.7
https://doi.org/10.4204/EPTCS.133.7
https://doi.org/10.1007/978-3-319-41528-4_5
https://doi.org/10.1007/978-3-319-41528-4_5
http://ieeexplore.ieee.org/document/4567924/
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1007/978-3-030-45190-5_3
https://doi.org/10.1007/11513988_43
https://doi.org/10.1007/11513988_43
https://doi.org/10.1007/s10703-013-0195-3

PatEC: Pattern-Based
Equivalence Checking

Marie-Christine Jakobs(B)

Department of Computer Science, Technical University of Darmstadt,
Darmstadt, Germany

jakobs@cs.tu-darmstadt.de

Abstract. Program parallelization is a common software engineering
task, in which parallel design patterns are applied. While the focus of
parallelization is on performance, the functional behavior should be kept
invariant, i.e., sequential and parallelized program should be functionally
equivalent. Several verification techniques exist that analyze properties
of parallel programs, but only a few approaches inspect functional equiv-
alence between a sequential program and its parallelization. Even fewer
approaches consider parallel design patterns when checking equivalence.

In this paper, we present PatEC, which checks equivalence between
sequential programs and their OpenMP parallelizations. PatEC utilizes
the knowledge about the applied parallel design pattern to split equiva-
lence checking into smaller subtasks. Our experiments show that PatEC
is effective, efficient, and often outperforms existing approaches.

1 Introduction

To efficiently use today’s computer systems, we require parallel programs. Exist-
ing, sequential programs should be parallelized. Furthermore, programmers still
often start with a sequential program and, later, parallelize it. Hence, program
parallelization is important in software engineering and can be supported by
parallel design patterns [24,25] (i.e., well-established parallelization solutions).

OpenMP [29] is an API that is widely-used in high performance computing
to realize shared-memory parallel programs. It allows programmers to easily
implement platform-independent parallelizations by adding OpenMP directives.

However, the OpenMP specification [29] states that an OpenMP-compliant
program may be incorrect. In addition, correct parallelization with OpenMP is
difficult [15] and optimistic, automatic parallelization tools like DiscoPoP [19]
may suggest incorrect parallelizations. While parallelization focuses on perfor-
mance, one must also ensure that the parallelization keeps the functional behav-
ior, i.e., that sequential and parallelized program are functionally equivalent.

Several approaches [7,11,23,35,36,39] exist that detect correctness issues of
OpenMP programs, but they do not necessarily guarantee functional equivalence.

This work was funded by the Hessian LOEWE initiative within the Software-Factory
4.0 project.

c© Springer Nature Switzerland AG 2021
A. Laarman and A. Sokolova (Eds.): SPIN 2021, LNCS 12864, pp. 120–139, 2021.
https://doi.org/10.1007/978-3-030-84629-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84629-9_7&domain=pdf
http://orcid.org/0000-0002-5890-4673
https://doi.org/10.1007/978-3-030-84629-9_7

PatEC: Pattern-Based Equivalence Checking 121

Listing 1.1. Sequential program
int f o o s (unsigned int a , int N)
{
int x = 0 ;
for (int i =0; i<N; i++)

i f (a [i]%2==1) x++;
return x ;

}

Listing 1.2. Parallelized program
int f oo p (unsigned int a , int N)
{
int x = 0 ;
#pragma omp p a r a l l e l f o r r educt ion (+: x)
for (int i =0; i<N; i++)

x+=a [i]%2;
return x ;

}

Fig. 1. An example for a parallelization that uses the Reduction pattern and also
optimizes the program’s code

In contrast, Blom et al. [9,10], Pathg [42], AutoPar [21], and CIVL’s OpenMP
simplifier component [37] check whether all executions of an OpenMP program
are equivalent to a sequential execution of the same program.

This is not sufficient to show that our example shown in Fig. 1 is correctly
parallelized. The problem is that the parallelized program uses an optimized
computation in the loop body. Thus, the sequential program and the sequential
execution of the parallelized program are not identical.

Equivalence checkers like CIVL [37], PEQcheck [17], and the one proposed
by Abadi et al. [1] support parallelizations like the one shown in Fig. 1. However,
they are general checkers that encode equivalence problems into program veri-
fication tasks and ignore design patterns applied for parallelization. Thus, they
neglect valuable knowledge about the performed parallelization and in contrast
to our approach, PEQcheck fails to verify equivalence of our example.

To overcome this problem, we propose PatEC, which checks functional
equivalence of a sequential program and its OpenMP parallelization. PatEC

relies on the applied parallel design pattern to decompose equivalence checking
into several subtasks. In case of our example in Fig. 1, in which the Reduction
pattern is applied, PatEC inspects whether the loop bodies of the sequential
and parallelized program are equivalent. Furthermore, PatEC checks that the
loop iterations of the parallelized program do not interfere with each other. Note
that this is the case because variable a is read-only and due to the reduction
clause there exist thread-local copies for variable x. Finally, PatEC checks that
the loop iterations get the correct inputs and produce the correct outputs. Since
variable a is shared, no copy of variable a is used and all parallel loop iterations
access the same value as a sequential execution. PatEC detects that variable x
is only used to perform data reduction, which can be performed out of order.
Therefore, we can perform data reduction per thread using local copies of x,
starting with the neutral element 0. At the end, the original value of x and
the final values of the thread local copies can be combined via addition (the
reduction operator). This is exactly what the reduction clause induces.

In this paper, we describe how to decompose equivalence checking for two
popular parallel design patterns. Both patterns are taught in every parallel pro-
gramming course that covers OpenMP. One of them is the Reduction pattern
used in our example. Our experiments on 91 benchmark programs demonstrate

122 M.-C. Jakobs

that PatEC is effective and efficient. Furthermore, we compare PatEC with two
competitive approaches and show that PatEC outperforms those competitors.

2 Background

We aim to prove functional equivalence of a sequential program and its paral-
lelization. We ignore termination and focus on partial functional equivalence.

Definition 1. Two programs (code segments) are partially functional equivalent
if they start in the same state and terminate, they will end in the same state.1

To determine partial functional equivalence, we must know how variables are
used in the code, in particular in code segments. We consider the three usages:

Liveness. A variable is live at a program location if there exists an execution
starting at the location that reads the variable before it is redefined (written).

Modification. A variable is modified in a code segment if there exists an exe-
cution of the code segment that writes to the variable.

Use Before Definition. Similar to uninitialized variable usage, we say that
in a code segment a variable will be used before definition if there exists an
execution of the code segment in which the variable is read before it is written.

To find out which of the three usages apply to a variable and when, we use
two static analyses: a definition-use analysis and a liveness analysis. Similar to
a reaching definition analysis [28], the definition-use analysis computes for each
variable and program statement which definitions of the variable may reach
the program statement. Additionally, it computes which variables are used in
a statement. The liveness analysis [28] (also known as live variable analysis)
determines for each program location which variables may be live.

OpenMP. In this paper, we assume that programs use OpenMP [29] to imple-
ment parallelism. OpenMP is an interface to write platform-independent par-
allelization code. Therefore, the programmer adds OpenMP directives that
instruct the compiler and the runtime system how to realize the paralleliza-
tion. To understand our approach, it is important to know the semantics of
OpenMP’s data-sharing attributes, which define whether thread-local copies are
used and how information is passed between the original variable and its copies.
In the following, we describe OpenMP’s data-sharing attributes.

Shared. The original variable is shared among the threads.
Private. Each thread has its own local copy of the variable and uses the copy

instead of the original variable. The local copy is not initialized.

1 We assume that sequential programs are deterministic. To deal with non-
determinism caused by random methods or I/O functions, one can consider those
inputs as part of the starting state.

PatEC: Pattern-Based Equivalence Checking 123

Firstprivate. An extension of private that initializes the thread-local copies to
the value of the original variable.

Lastprivate. An extension of private that causes the original variable to be
overwritten. At the end of the parallel execution, the original variable is set
to the value of the copied variable used in the sequentially last iteration of
the loop. In case of modifier conditional, the sequentially last iteration that
modified the variable is considered instead.

Reduction. Each thread has its own local copy of the variable and uses the
copy instead of the original variable. The thread-local copies are initialized
with the initializer value (the neutral element) of the respective reduction
operator. At the end of the parallel execution, the specified reduction operator
combines the value of the original variable with the values of the local copies
and updates the original variable with the combined value.

Typically, each variable is assigned one of the above data-sharing attributes.
However, variables can also be firstprivate and lastprivate. From now on, we use
the artificial data-sharing attribute firstlastprivate to describe this case.

The data-sharing attribute of a variable is either declared explicitly with a
data-sharing attribute clause or defined implicitly. The rules for implicit declara-
tions state that the loop counter of a parallelized for loop and variables declared
in the parallelized code are typically private. Except for corner cases, the vari-
ables declared outside of the parallelized code are shared.

Parallel Design Patterns. Parallel design patterns [24,25] are well-known
parallelization solutions. In this paper, we consider two parallel design patterns
for embarrassingly parallel problems. More concretely, the two patterns describe
how to parallelize (for) loops that exchange little or no information between loop
iterations. Both patterns suggest to execute the loop iterations in parallel.

The DoAll pattern is applicable to (for) loops that do not exchange informa-
tion between loop iterations, but loop iterations may write to the same memory.
During parallelization of the loop iterations, these write-write conflicts must be
resolved, e.g., by defining an appropriate data-sharing attribute in OpenMP.

The Reduction pattern can be used for loops with a particular shape of
exchange between loop iterations. Computations that perform data reduction,
e.g., compute the sum, the minimum, etc. of a set of values, are allowed to
exchange the value of the reduction variable that stores the temporary and final
result of the reduction. Additionally, two loop iterations may write to the same
memory. During parallelization of the loop iterations, the reduction computation
must be split among the threads, e.g., using an appropriate reduction clause, and
similar to the DoAll pattern the write-write conflicts must be resolved.

3 Determining Equivalence for DoAll and Reduction

Our goal is to determine whether a sequential program is equivalent to a par-
allelized program, which is derived from the former. Thereby, we assume that

124 M.-C. Jakobs

PatEC

Applicability
Check

Variable
Usage

Detection

Parallelization
Correctness

(Ppar−1 ≡ Ppar)

Independence
Check

I/O Check

Syntactic Check

Semantic Check
(PEQcheck [17])

Sequential Equivalence
(Pseg ≡ Ppar−1)

∧

Pseg ≡ Ppar /

Pseg + Ppar

Fig. 2. Overview of PatEC approach

the parallelization applies DoAll or Reduction patterns. To simplify equivalence
checking, we divide it into several subtasks. First, we inspect all parallelized code
segments individually. Our equivalence checking will succeed, if it can show that
all parallelized code segments Ppar are equivalent to their counterparts Pseg in
the sequential program. We further decompose each equivalence check of a pair of
sequential and parallelized code segment to separately reason about paralleliza-
tion and loop optimization. The sequential equivalence check examines whether
the sequential code segment Pseg is equivalent to Ppar−1 , the unparallelized ver-
sion of Ppar, which is derived from Ppar by removing the OpenMP directives. A
second check analyzes whether the unparallelized code segment Ppar−1 and the
parallelized code segment Ppar are equivalent, i.e., Ppar is correctly parallelized.
Equivalence of the sequential and parallelized code segment is then determined
based on the following formula: Pseg ≡ Ppar−1 ∧Ppar−1 ≡ Ppar =⇒ Pseg ≡ Ppar.

Figure 2 gives an overview of our PatEC approach. It contains the mentioned
sequential equivalence check and the check on correct parallelization, which use
subchecks tailored to DoAll and Reduction patterns. Additionally, PatEC uses
an applicability check that determines whether the preconditions for the other
two checks are met. PatEC will succeed if all three checks succeed. Further-
more, PatEC contains a variable usage detection component that computes the
required information for the checks. Next, all PatEC components are described.

1) Variable Usage Detection. The goal is to compute required information
on how variables are used in the code segments Pseg and Ppar, namely variable
modification, variable liveness, and use-before-definition.

Detecting Variable Modifications. We use intraprocedural definition-use anal-
yses to overapproximate the variables modified by a code segment. For all read
accesses of a variable v in the code segment, we look up v’s definitions that may
reach the access and declare variable v modified if one of the definitions belongs to
the code segment. Similarly, we detect variables modified in functions reachable

PatEC: Pattern-Based Equivalence Checking 125

from the code segment, but we only consider global variables and variables that
alias with variables of the code segment (due to parameter passing).

Detecting Variable Liveness. To detect which variables are live after the code
segment (information we require for the I/O check), we run an intraprocedural
liveness analysis [28]. Then, we declare a variable live if (1) the liveness analysis
detects that a variable is live after the loop, (2) it is a global variable, or (3) it
is a pointer passed to the function enclosing the code segment. Conditions (2)
and (3) overapproximate the interprocedural behavior. For the decomposition
into sequential equivalence and parallelized correctness to be sound, we add the
variables live after Pseg to the set of variables live after Ppar.

Detecting Use Before Definition Variable Accesses. Next, we determine which
variables may be accessed in a code segment (i.e., for loop) before the loop iter-
ation defines them. To detect such intra-segment accesses, we run an intrapro-
cedural definition-use analysis. Then, we add all variables for which a use (read)
access in the code segment exists for which (1) no definition is known, which can
e.g. happen for global variables, (2) a definition from before the code segment
reaches the use, or (3) a definition from the loop body reaches the use and the
variable is live at the beginning of the loop body. To incorporate the behavior of
functions reachable from the code segment, we add non-scalar variables passed
to a called function and all global variables accessed in those functions.2

2) Checking Applicability. PatEC aims at checking equivalence of paral-
lelizations of for loops that use the DoAll or Reduction pattern and will output
inequivalent (✗) if its applicability check detects that PatEC is not applicable
to a given pair of sequential and parallelized code segment.

The patterns require that the sequential and parallelized code segments
are for loops. In addition, the parallelized code segment must be preceded by
OpenMP directives appropriate for a DoAll or Reduction pattern. PatEC sup-
ports the most commonly used directive parallel for, the simd directive, and
a combination of the parallel directive with the for directive or the simd direc-
tive. To allow PatEC to identify reduction variables, the Reduction pattern must
be realized with data-sharing attributes (e.g., reduction), which is the simplest
and most common solution for reduction. Furthermore, PatEC currently does
not support nested pattern applications3 and, thus, disallows OpenMP directives
in the loop body or in functions reachable from the loop body.

PatEC’s equivalence check focuses on the loop bodies. Therefore, we assume
that the for loops only differ in the loop bodies.4 PatEC syntactically checks
that the sequential and the parallelized for loop only differ in their loop bodies.5

2 This is sufficient because we do not support aliasing.
3 Nested pattern applications can be checked recursively when being careful with the

data-sharing attributes, but it is inefficient and misses equivalences.
4 Note that we make the assumption because (i) it simplifies the sequential equivalence

check and (ii) most parallelizations we have seen fulfill the assumption. One can easily
get rid of this assumption by letting the sequential check inspect Pseg and Ppar−1 .

5 In our implementation, we rely on the unparse function of the AST to avoid that
formatting differences influence the check.

126 M.-C. Jakobs

Moreover, PatEC inspects several requirements on OpenMP parallelizations
of for loops with the DoAll or Reduction pattern. Since PatEC cannot inspect
external functions, it only allows external calls to a subset of the system’s library,
which contains functions that are thread-safe and pure.

Finally, we forbid to declare variables in the loop body whose name is identi-
cal to the name of the loop counter or to the name of a variable that is used, but
not declared in the loop body. Note that this is a technical limitation caused by
our decision to only use variable names and to ignore their scope when assigning
data-sharing attributes declared by OpenMP directives.

3) Checking Correctness of Parallelization. This step checks whether the
unparallelized version Ppar−1 , which is derived from Ppar by deleting all OpenMP
directives, is equivalent to the parallelized code segment Ppar. We split the check
into an independence and an I/O check. Both are explained below.

3a) Checking Independence of Loop Iterations. This task inspects whether
all loop iterations can be executed without interfering with each other, i.e., the
loop iterations are independent. To this end, the task relies on the information
about variable modifications to determine whether there exist read-write, write-
read, or write-write conflicts between variable accesses in different loop itera-
tions. Also, it considers the variables’ data-sharing attribute because a data-
sharing attribute may rule out conflicts when making a variable thread local.
Given this information, we inspect the variables occurring in the loop body.

Scalar Variables. If a scalar variable, e.g., an integer variable, is modified in
the loop body and its data-sharing attribute is shared, there might be a write-
write conflict. Thus, the independence check fails. In all other cases, the variable
does not threaten the independence of loop iterations.

Non-scalar Variables. We assume that no aliasing occurs and pointers do
not overlap. Hence, variables not modified in the loop body do not threaten the
independence between loop iterations. The same is valid for variables declared in
the loop body, which are thread-local.6 For all other variables, their independent
access must be analyzed. So far, we only support array and pointer variables.

Let us look at arrays first. We analyze array accesses when they may threaten
the independence of loop iterations, namely if the array is shared. In addition,
we analyze accesses to arrays with variable length, i.e., a length that cannot
be determined at compile time because not all compilers support non-shared
data-sharing attributes for those arrays. For each such array, our access analysis
extracts all accesses to the array occurring in the loop body 7 and then checks
whether each set of access pairs (a1, a2) ∈ accesses is independent.

6 There exists some corner cases in which those variables are not thread-local like
static variables. However, we do not support these rare cases.

7 Since it is sufficient that an array access is independent in one dimension, we only
extract the complete accesses, e.g., from x[i][j] > 0 we collect x[i][j] but not x[i].

PatEC: Pattern-Based Equivalence Checking 127

To check independence of an arbitrary access pair (a1, a2), we first check
that the accesses have the same dimension. Then, we traverse the dimensions
and report independence if and only if we find an independent dimension.

To check the independence of index expressions ia1 and ia2 in dimension i, we
translate them into SMT bitvector formulae fia1

and fia2
. Constant values are

translated to bitvector values and variables are translated to bitvector constants
with the same name. To consider that modified variables may have different
values in different iterations, we extend modified variables with the suffix @r in
fia2

. N-ary expressions are translated recursively by translating the operands and
then combining the resulting SMT formulae with the SMT operator correspond-
ing to the expression operator. After translation, we query SMT solver Z3 [27]
whether fia1

== fia2
is satisfiable. To improve the result, we inform Z3 that the

values of the loop counter are different. If the SMT solver returns unsatisfiable,
the independence check of access pair {a1, a2} will succeed. With our current
translation, this is only reliable if an evaluation of an index expression does not
cause any side-effects. Our check considers this.

To simplify the independence check of access pairs (a, a), we precede the
general check described above with a syntactical check. The difference to the
general check is that the syntactic check of index expression ia inspects whether
index expression ia is semantically equivalent to loop counter plus constant value.
Therefore, the check determines whether the loop counter occurs exactly once in
ia, all other variables accessed are not modified (i.e., they have a constant value
throughout the loop execution), and only addition or subtraction operations are
used. From experience, many index expressions meet these criteria.

Next, let us consider pointer variables. We analyze pointer access indepen-
dently of the data-sharing attribute because non-shared data-sharing attributes
might introduce aliasing. To avoid dealing with pointer arithmetic, we check that
all accesses to pointer variables look like array references (e.g., x[0]). Then, we
apply the independence check for array accesses.

3b) I/O Check: Are Same Inputs and Outputs Ensured? If all variables
are shared, iteration dependence is sufficient for a correct parallelization. How-
ever, non-shared data-sharing attributes introduce thread-local copies, which
may prohibit that required information is exchanged between loop iterations or
between the code segment and its surrounding code. The I/O check investigates
whether the used data-sharing attributes cause such input/output availability
problems and fails when it detects a problem.

I/O Check for DoAll Parallelizations. First, let us discuss the I/O check
performed when considering a DoAll pattern. For input availability, we only
check variables that are used in the loop body, but not declared in the loop
body because only those variables can cause problems. The first four rows of the
left table in Table 1 show when inputs become available for the DoAll pattern.
The shared attribute is unproblematic. If the variable is always defined in an

128 M.-C. Jakobs

Table 1. Overview on when data-sharing attributes guarantee that the required inputs
are available during a loop iteration and that the required outputs are available after
a loop iteration. Symbol ✓ (✗) means that the respective usage property must (not)
be fulfilled. Symbol ● means ✓ or ✗.

Input availability

modified used before

definition

shared ● ●

private ✓ ✗

lastprivate ✓ ✗

firstprivate/ ✗ ●

firstlastprivate ● ✗

reduction ✓ ●

Output availability

modified live after loop

shared ● ●

private/ ✗ ●

firstprivate ● ✗

lastprivate ✓ (scalar) ●

● ✗

✓ (scalar) ●

firstlastprivate ✗ ●

● ✗

reduction ● ●

iteration before it is used, even any data-sharing attribute can be used.8 Finally,
a read-only variable must use the value of the original variable. Next to shared,
also attributes firstprivate and firstlastprivate guarantee this.

For output availability, we only check variables that can be accessed after the
loop execution. The four rows of the right table in Table 1 show when outputs
are available for the DoAll pattern. The shared attribute is unproblematic. If a
variable is not live after the loop, the variable may have any value. Furthermore,
if a variable is not modified, one does not need to propagate its value, but one
may propagate the value of the copied variables if it is initialized with the original
value. For those cases, output availability is also guaranteed using attributes
private, firstprivate, or firstlastprivate. Finally, if we write the modified value
back into the original variable, the output is guaranteed. Data-sharing attributes
lastprivate and firstlastprivate trigger writing back. Since OpenMP uses the value
of the copied variable from the last iteration (modifying the variable), non-scalar
copied variables might not incorporate all modifications9. Hence, we only support
scalar variables when writing values back.

I/O Check for Reduction Parallelizations. The I/O check for a parallelization
using the Reduction pattern is an extension of the I/O check for DoAll-based
parallelizations, which also considers the data-sharing attribute reduction.

To forbid that reduction variables are misused as read-only, which is incorrect
because reduction variables are initialized with the neutral element of the reduc-
tion operator, we require that the reduction variable is modified by some loop
iterations (see last row in Table 1). However, this is not enough. Due to their ini-
tialization, reduction variables can only be safely used in reduction statements.

8 Note that our check additionally requires that a variable with attribute private or
lastprivate must be modified. Since we only check variables that occur in the loop
body, variables that are not used before must be modified.

9 Also, one must use the modifier conditional to ensure that the last write is considered.

PatEC: Pattern-Based Equivalence Checking 129

Since we only support scalar reduction variables, a reduction statement can
either be an assignment or a compound assignment, e.g., v+=x;, which assign a
reduction variable. The right-hand side of the compound statement must not use
the reduction variable. Similarly, the right-hand side of the assignment must be a
binary expression that uses the reduction operator and the reduction variable as
left (right) operand. Moreover, the right (left) operand must not use any reduc-
tion variable. In case of a reduction operation + (-), the reduction statement
can also be an increment (decrement) of the reduction variable. We inspect safe
usage of all reduction variables, but fail when the loop body calls a function and
the reduction variable is global.

4) Checking Sequential Equivalence. The goal of this check is to show
that the sequential code segment Pseg is equivalent to the unparallelized code
segment Ppar−1 . Since two code segments may only differ in their loop body, we
examine the equivalence of their loop bodies. First, a syntactic equivalence check
examines whether the loop bodies and the functions transitively called from the
loop bodies are syntactically identical.10 If the first check fails, we use a semantic
equivalence check using the existing PEQcheck approach [17], which encodes
the equivalence problem into verification tasks and verifies them.

Discussion of Soundness. Formally proving soundness, i.e., PatEC only
reports equivalence (✓) if the sequential program and its parallelization are
equivalent, is beyond the scope of this paper11. Nevertheless, let us briefly sketch
our soundness arguments under the assumption no aliasing and no pointer over-
lap occur. The independence check inspects whether the memory locations modi-
fied in a loop iteration are disjoint from the memory locations considered in other
loop iterations. Hence, this check ensures that all executions of the parallel pro-
gram starting with the same input either all terminate and compute the same
result or all do not terminate. Second, the I/O check examines whether Ppar−1

and the parallelized program Ppar behave identically when Ppar executes the
iterations sequentially. To this end, it is sufficient to check whether the data-
sharing attributes allow the required flows between write and read accesses.
Together, independence and I/O check then ensure that Ppar−1 ≡ Ppar and their
termination behavior does not differ. Third, soundness of PEQcheck guaran-
tees soundness of the semantic check. Fourth, deterministic sequential programs
are equivalent to themselves and the syntactic check inspects whether the two
sequential loop bodies are identical. Since we assume that sequential programs
are deterministic, the sequential equivalence check is therefore sound and guaran-
tees Pseg ≡ Ppar−1 . Since Ppar−1 ≡ Ppar and their termination behavior does not
differ, we get the desired property Pseg ≡ Ppar. While we may become unsound
in case of aliasing and pointer overlap, all other assumption are checked and lead
to rejection (✗).

10 Again, our implementation relies on the unparse function of the AST.
11 Especially note that all semantics we are aware of do not support all data-sharing

attributes [12] or do not cover the data aspect [3].

130 M.-C. Jakobs

Implementation. We implemented a prototype for the presented PatEC app-
roach, which supports C programs. Our prototype is integrated in the frame-
work FECheck12 and builds on Z3’s C++ API and the ROSE compiler frame-
work [33] (v0.11.33.0.1). Our implementation assumes that the start and end
of the parallelized code segment i and the sequential counterparts are marked
via pragma directives #pragma scope i and #pragma epocs i. For our exper-
iments, we added the annotations manually. Given annotated programs seq.c
and par.c, one can run our prototype with the following command13.

./FECheck -type=REDUCTION seq.c par.c
During execution, our prototype outputs for each pair of sequential and paral-
lelized code segment whether it is checked successfully or a failure reason, e.g.,
incorrect data-sharing attributes or failure to show independence for variable x.

4 Evaluation

The goals of our evaluations are twofold. First, we aim to study the effectiveness
of our PatEC approach. Second, we want to compare PatEC with existing
approaches. We choose AutoPar [21] and PEQcheck [17].

4.1 Experimental Setup

Benchmarks. In our evaluation, we utilize three benchmark sets. We use the
DataRaceBench suite [20,40] (version 1.3.2), which contains programs with and
without data races. Parallelized programs with data races cannot be equiva-
lent to their sequential version. Therefore, this suite provides us with paral-
lelized programs for which we know that they are inequivalent to their sequen-
tial version. In addition, we select the examples from the functional equivalence
suite (FEVS) [38] already considered by PEQcheck [17]. To evaluate our app-
roach on more realistic examples, we choose the MILCmk benchmark set14,
which consists of representative microkernels that are taken from the MIMD
Lattice Computation (MILC) collaboration code. From all benchmark sets, we
select the tasks that only apply DoAll or Reduction patterns for paralleliza-
tion. In total, we get 80 programs with DoAll patterns and 11 programs using
Reduction patterns. Note that in all cases the parallelized versions enhance the
sequential versions with OpenMP directives, but do not change code statements.

Environment. We execute our experiments on an Ubuntu 20.04 machine with
an Intel i7-8565U CPU (frequency of 1.8 GHz) and 32 GB RAM. As competitors,
we use AutoPar [21] in version 0.11.33.0.1 and PEQcheck [17] in a config-
uration is similar to [17], which combines the PEQcheck encoding15 (revi-
sion PatEC-SPIN2021) with the verifier CIVL [37] (version 1.20 5259), which
12 https://git.rwth-aachen.de/svpsys-sw/FECheck, revision PatEC-SPIN2021.
13 To limit PatEC’s checking to DoAll patterns, use -type=DOALL.
14 https://asc.llnl.gov/coral-benchmarks.
15 https://git.rwth-aachen.de/svpsys-sw/FECheck.

https://git.rwth-aachen.de/svpsys-sw/FECheck
https://asc.llnl.gov/coral-benchmarks
https://git.rwth-aachen.de/svpsys-sw/FECheck

PatEC: Pattern-Based Equivalence Checking 131

uses the theorem prover Z3 [27] (version 4.8.8). We restrict CIVL to two threads
and 5 min and disable division by zero and memory leakage checks.

Availability. PatEC and our experimental data are available on Zenodo [16].

4.2 Experiments

RQ 1: Does PatEC reliably detect inequivalences? To answer this
question, we look at all tasks of the DataRaceBench suite that contain data
races. As explained above, these tasks represent inequivalent parallelizations.

Table 2. Per equivalence checker number of
tasks in the DataRaceBench suite that are
correctly solved plus the total checking time

PatEC AutoPar PEQcheck

Correct equivalence 21 13 2

Correct inequivalence 38 37 4

Incorrect equivalence 0 0 0

Incorrect inequivalence 1 9 0

Unknown 2 3 56

Total time (s) 744 453 10558

Table 2 describes the results for
checking the DataRaceBench tasks
with PatEC, AutoPar, and PEQ-

check. For each checker, the table
reports the number of correctly
detected (in)equivalences, the num-
ber of incorrectly detected equiva-
lences16 and inequivalences, and the
number of inconclusive results (due
to timeout, errors, etc.). The last
row presents the total time each
approach takes to check all tasks. We observe that PatEC does not report any
incorrect equivalences, i.e., it never reports that a pair of sequential and paral-
lelized program are equivalent although they are inequivalent. Hence, PatEC’s
behavior is sound. Furthermore, PatEC detects many of the incorrectly paral-
lelized programs. PatEC reliably detects inequivalences.

RQ 2: How effective is PatEC? First, let us look at the tasks of the
DataRaceBench suite. PatEC’s results are presented in Table 2. The table shows
that PatEC detects (in)equivalence correctly for most of the tasks. It only
reports one incorrect result and two unknowns. In case of the incorrect inequiva-
lence, PatEC is conservative and assumes that the used indirect array indexing
is not iteration independent. Except for the two unknowns, which represent time
outs of about 300 s each, PatEC’s check takes only a few seconds,

Next, let us inspect the FEVS tasks. Table 3 represents the results. Incorrectly
parallelized tasks are highlighted in red. For each task, Table 3 reports the pat-
tern used for parallelization and for each of the three tools PatEC, AutoPar,
and PEQcheck, the checking time t and result s. Correct results are highlighted
in blue. Looking at PatEC’s columns, we observe that checking with PatEC

takes a few seconds. Moreover, PatEC correctly reports the inequivalence of the
two incorrect parallelizations. Also, it often correctly detects equivalence of the
correctly parallelized tasks. Only in two cases, PatEC conservatively reports
correctly parallelized programs as inequivalent. In case of gausselim, PatEC
does not detect that the accesses to an array are independent. In case of matmat,

16 An incorrectly detected equivalence is an inequivalent task reported as equivalent.

132 M.-C. Jakobs

Table 3. Results of PatEC, AutoPar, and PEQcheck on FEVS and MILCmk bench-
mark. For each tool, reports the time spent on checking equivalence and the result, i.e.,
equivalence (✓), inequivalence (✗), or failure due to an error (ERR), a timeout (TO),
or another property violation (✗mem). Correct results are shown in blue.

FEVS benchmark

PatECAutoParPEQcheck

Task Pattern t (s) s t (s) s t (s) s

adder-init DoAll 2 ✓ 2 ✓ 307 TO

adder Reduction 2 ✓ 2 ✓ 308 TO

adder-e DoAll 2 ✗ 2 ✗ 612 TO

adder-nd Reduction 2 ✓ 3 ✗ 76 ✓

adder-s Reduction 2 ✓ 2 ✗ 9 ✓

diffusion1d DoAll 2 ✓ 2 ✗ 16 ✗mem

diffusion1d-nd DoAll 2 ✓ 2 ✗ 56 ✗

factorial Reduction 2 ✓ 3 ✗ 11 ✓

gausselim DoAll 3 ✗ 2 ✗ 36 ✗mem

gausselim-e DoAll 3 ✗ 2 ✗ 11 ✗mem

integrate Reduction 3 ✓ 3 ✗ 6 ERR

laplace-init DoAll 2 ✓ 2 ✓ 7 ERR

laplace-jacobi Reduction 2 ✓ 3 ✓ 7 ERR

matmat DoAll 2 ✗ 2 ✗ 3 ERR

mean Reduction 2 ✓ 3 ✓ 77 ✓

wave1d DoAll 3 ✓ 3 ✗ 23 ✗mem

wave1d-nd DoAll 3 ✓ 3 ✗ 19 ERR

MILCmk benchmark

PatECAutoParPEQcheck

Task Pattern t (s) s t (s) s t (s) s

D3 D DoAll 16 ✓ 11 ✗ 65 ERR

D3 M DoAll 6 ✓ 9 ✗ 10 ERR

D3 r1 Reduction 6 ✓ 9 ✗ 10 ERR

D3 V veq DoAll 6 ✓ 9 ✗ 10 ERR

D3 V vmeq DoAll 6 ✓ 9 ✗ 10 ERR

D3 V vpeq DoAll 6 ✓ 9 ✗ 10 ERR

F3 D DoAll 16 ✓ 11 ✗ 65 ERR

F3 M DoAll 6 ✓ 9 ✗ 10 ERR

F3 r1 Reduction 6 ✓ 13 ✗ 10 ERR

F3 V veq DoAll 6 ✓ 9 ✗ 10 ERR

F3 V vmeq DoAll 6 ✓ 9 ✗ 10 ERR

F3 V vpeq DoAll 6 ✓ 9 ✗ 10 ERR

PatEC fails to find out that an array passed as function argument is accessed
independently in the function.

Finally, let us consider the MILCmk tasks. PatEC’s results are also shown in
Table 3. We notice that PatEC always requires a few seconds to execute. More
importantly, it reports equivalence (✓), the correct result, in all cases.

Summing up, PatEC is fast and often correctly detects (in)equivalences.

RQ 3: How does PatEC compare against state-of-the-art? We compare
PatEC with two other approaches: AutoPar and PEQcheck. AutoPar is a
parallelization tool, which has a correctness checking mode. PEQcheck is an
approach that encodes the equivalence problem into program verification tasks
and solves them with a program verifier.
1) Comparing PatEC and AutoPar. We run AutoPar in correctness checking
mode17, which reports the difference between the generated and the provided
OpenMP directives. Since a reorder of data-sharing-attribute clauses or a reorder
of variables in such clauses may cause differences, we inspect the differences and
report an inequivalence if AutoPar does not suggest an OpenMP directive or
the suggested and the existing directive differ semantically.

17 We use the following command line: autoPar -rose:unparse tokens -rose:auto

par:no aliasing -rose:autopar:enable diff -fopenmp program.c.

PatEC: Pattern-Based Equivalence Checking 133

Looking at the results for the DataRaceBench suite (Table 2), we observe that
PatEC and AutoPar are nearly equally fast when ignoring timeouts18, detect a
similar number of correct inequivalences, and never report incorrect equivalences.
However, AutoPar detects fewer equivalences because it often suggests more
strict data-sharing attributes. Furthermore, a detailed result analysis reveals
that PatEC solves all tasks correctly that AutoPar solves correctly.

For the FEVS and the MILCmk benchmarks (Table 3), the checking times
are similar, too. While PatEC detects equivalence for most of the equivalent
tasks, AutoPar only succeeds for five of the equivalent tasks. AutoPar’s main
problem is the difference in the data-sharing attributes.

Overall, PatEC and AutoPar are equally fast, but PatEC is more effective.

Table 4. Excerpt of the results
of PatEC and PEQcheck on
DataRaceBench benchmark show-
ing the tasks correctly solved by
PEQcheck.

PatEC PEQcheck

Task Pattern t (s) s t (s) s

DRB009 DoAll 2 ✗ 8 ✗
DRB010 DoAll 2 ✗ 9 ✗
DRB016 DoAll 2 ✗ 17 ✗
DRB035 DoAll 2 ✗ 21 ✗
DRB050 DoAll 2 ✓ 9 ✓
DRB059 DoAll 2 ✓ 9 ✓

2) Comparing PatEC and PEQcheck. We
start to compare PatEC’s and PEQcheck’s
results on the DataRaceBench suite. Looking
at Table 2, we observe that PEQcheck has
no incorrect results, while PatEC has one
incorrect inequivalence. Nevertheless, PatEC
detects (in)equivalence correctly more often
and PEQcheck often comes to no conclusion.
About 50% of PEQcheck’s unknowns result
from time outs. Another third is caused by
errors occurring during encoding or verifica-
tion. The remaining unknowns reflect other
property violations like invalid dereference,
out of bounds accesses detected in PEQ-

check’s verification tasks. A detailed analysis of the results reveals that all
tasks correctly solved by PEQcheck (see Table 4) are also solved by PatEC.
Considering the total times (last row of Table 2), PEQcheck requires an order
of magnitude longer. One reason is the many time outs. However, comparing
the times for those tasks that are solved by both PatEC and PEQcheck (see
Table 4), we observe that PatEC is still faster.

When looking at the FEVS tasks (Table 3), we again notice that PEQcheck

only correctly solves tasks that PatEC correctly solves. Additionally, PatEC
always reports a results while PEQcheck often fails with a time out (TO)19, an
error (ERR), or the detection of a different property violation (✗mem). Moreover,
PEQcheck’s checking is less efficient, i.e., it requires more time.

For the MILCmk benchmark (Table 3), PatEC always succeeds, while PEQ-

check always fails due to the verifier CIVL, which cannot parse the verification
tasks encoding the equivalence problem.20

18
PatEC times out twice (2*300 s) and AutoPar only once (300 s).

19 Note that the reported time for status TO in PEQcheck can differ significantly
because PEQcheck may generate multiple verification tasks and we use a time out
per task instead of one global time out for all tasks.

20 The parsing problems occur in one of the MILCmk header files.

134 M.-C. Jakobs

In summary, PatEC’s pattern-based approach outperforms PEQcheck’s
general approach.

Threats to Validity. Our evaluation uses benchmark programs. Since the
DataRaceBench set contains parallelizations with common mistakes and the
DataRaceBench as well as the MILCmk contain kernels from real applications,
we think that they represent realistic scenarios.

The benchmark set is dominated by examples for the DoAll pattern. Our
findings might not generally apply to the Reduction pattern. We do not think
this is the case. Except for the I/O check, which is extended for the Reduction
pattern, the checks are identical. Also, our experiments demonstrate that PatEC
correctly detects missing reduction clauses21 and correctly detects the equivalent
tasks which contain a program parallelized with the Reduction pattern.

All programs in our benchmark set only add OpenMP directives. Thus, we
never need the semantic check. We admit that PatEC might fail more often
to detect equivalence if the semantic check is required. Nevertheless, we expect
PatEC to still reliably detect inequivalences because theoretically the semantic
check is sound and PEQcheck uses a verifier that rarely reports false results.
Also, we still expect that PatEC performs better than AutoPar and PEQ-

check. AutoPar cannot deal with modifications of instructions and our seman-
tic check also uses PEQcheck, but on a reduced problem.

The ground truth of the benchmark programs is not always known, which
may invalidate our results. Our largest benchmark, the DataRaceBench, comes
with programs for which it is known that they contain data races or are data-
race free. Racy programs are typically not equivalent. In addition, we manually
inspected the programs and cross-checked our classification with the assessment
of the AutoParBench [26], a benchmark to evaluate the correctness of auto-
parallelization tools. We confirmed that all tasks with data races are inequivalent
and only one of the data race free tasks is inequivalent.22 Furthermore, the
MILCmk set consists of representative microkernels from a real-world problem,
for which we are confident that their parallelizations are correct.

We only compared PatEC to two other approaches. The approaches work
differently and PEQcheck works similar as other equivalence checkers [1,37].
We are confident that PatEC also compares well to other approaches.

5 Related Work

Several approaches [5,6,13,14,18,30,34,43] check functional equivalence between
two sequential programs. Often, these approaches perform equivalence checking
on the level of functions. PatEC’s sequential equivalence check combines a syn-
tactic difference check and a semantic check with PEQcheck [17].

CIVL [37], PEQcheck [17], and Abadi et al. [1] support equivalence checking
between sequential programs and programs parallelized with OpenMP. All three
21 Parallelizations without the reduction clause are classified as DoAll.
22 For our experiments, we therefore classified it inequivalent, too.

PatEC: Pattern-Based Equivalence Checking 135

encode the equivalence problem into a program verification task and are not
pattern-specific. While CIVL’s equivalence check considers whole programs, the
other two approaches check equivalence on the level of code segments.

Often, parallelization only adds OpenMP directives, but does not change
program statements. In this case, it is sufficient to check whether the executions
of the parallel program are equivalent to the sequential execution. PatEC’s
check on parallelization correctness pursues this property. Similarly, CIVL [37]
incorporates an OMP simplifier that performs such a check for array-based paral-
lel loops. The simplifier uses an array-dependence analysis and the data-sharing
attributes to determine whether dependencies between loop iterations exist. The
automatic parallelizer AutoPar [21] provides a checking mode which compares
the provided parallelization (OpenMP annotation) with AutoPar’s suggested
parallelization annotations. Like PatEC, AutoPar requires a parallelized loop
to be of a particular form, but it analyzes iteration independence based on
dependence relations between variable references. Pathg [42] searches for data
races and analyzes whether those races can cause an equivalence violation. omp-
Verify [7] aims to verify that affine loops are correctly parallelized. Its checks
are based on the polyhedra model and detect data races and variables that need
to be declared private. Blom et al. [9,10] use separation logic to prove whether
manually provided iteration contracts on for loops are valid. The validity of an
iteration contract ensures functionally equivalence for the respective for loop.

Furthermore, there exist approaches that do not check full equivalence, but
properties which may make parallelization incorrect. For example approaches
like [4,7,11,23,39] aim at detecting data races. Next to data races, the OpenMP
Analysis Toolkit (OAT) [23] also checks for deadlocks. Similarly, Saillard et
al. [36] describe an analysis checking whether an implicit or explicit barrier
may only be reached by a subset of the threads, which may cause a deadlock.
Lin [22] and Zhang et al. [44] present a static analysis that determines whether
two statements may be executed concurrently. The Mercurium compiler incor-
porates checks for task constructs [35] that detect data races and correctness
issues caused by wrong data-sharing attributes or dependence clauses.

To determine whether array accesses in different iterations overlap, PatEC
uses a constraint-based check encoded in SMT. PatEC’s SMT-based check of
array accesses is similar to the check for unbounded loops in OAT [23]. Both use
SMT solvers to check satisfiability of the constraints, but PatEC considers the
array dimensions individually, while OAT translates multi-dimensional arrays
into one-dimensional ones. Moreover, PatEC uses a constraint to state that the
loop counters are different, but in contrast to OAT it does not yet bound the
loop counters to their (symbolic) start and end values. In contrast, CIVL relies
on Omega testing [31,32] to find out whether the dependence constraints can be
fulfilled. AutoPar [21] uses a Gaussian elimination algorithm to solve the array
dependence constraints, which are a set of linear integer equations.

PatEC considers variable usage to classify which data-sharing attributes are
appropriate to guarantee correctness. Parallelization tools perform a similar task,
but also select one of the appropriate attributes. For example, AutoPar [21]

136 M.-C. Jakobs

considers the information from the live variable analysis and the dependence
analysis to assign data-sharing attributes. Furthermore, DiscoPoP [2] assigns
data-sharing attributes based on the variable type, whether a variable is written
in the parallelized code segment and which read-after-write dependencies exist
between the code segment and the code before and after the code segment.

Finally, note that PatEC is not the first pattern-specific approach that
checks equivalence between sequential and parallelized programs. For exam-
ple, Beckert et al. [8] suggest an interactive approach to prove the equivalence
between a sequential program an a parallelization with an MapReduce algo-
rithm. However, all pattern-specific approaches we are aware of do not target
OpenMP.

6 Conclusion

To tap the full potential of today’s computer systems, we require parallel pro-
grams. Nevertheless, many existing software programs are sequential and writing
a sequential program is easier than writing a parallel program. Thus, program-
mers often start with the sequential version of a parallel program. Therefore,
program parallelization is a common software engineering task.

OpenMP allows programmers to easily perform platform-independent paral-
lelizations. Often, programmer only need to extend their code with paralleliza-
tion directives. Parallel design patterns further guide the programmer during
parallelization. While parallelization aims at improving performance, it must
not alter the program’s functional behavior. Several existing approaches veri-
fy certain properties, e.g., data-race freedom, of OpenMP programs. Also, a
few approaches examine functional equivalence of a sequential program and its
OpenMP parallelization, but they are either too strict or ignore the applied par-
allel design patterns, missing out to leverage knowledge about the parallelization.

To overcome these problems, we suggest PatEC. PatEC is an approach
to check functional equivalence between a sequential program and its OpenMP
parallelization. In particular, PatEC decomposes equivalence checking into sev-
eral subtasks, which are tailored to specific parallel design patterns. Currently,
PatEC supports two commonly used patterns, the DoAll and the Reduction
pattern. Our experiments with PatEC on 91 benchmark programs show that
PatEC is reliable. It detects all inequivalent parallel programs and most of the
equivalent ones. Furthermore, a comparison with two competitive approaches
reveals that PatEC outperforms those competitors.

Extending PatEC to support more patterns is possible, but likely requires
new specific subchecks. Recently, we added support for the pipeline pattern [41].

PatEC: Pattern-Based Equivalence Checking 137

References

1. Abadi, M., Keidar-Barner, S., Pidan, D., Veksler, T.: Verifying parallel code after
refactoring using equivalence checking. International Journal Parallel Programming
47(1), 59–73 (2019). https://doi.org/10.1007/s10766-017-0548-4

2. Arab, M.N., Wolf, F., Jannesari, A.: Automatic construct selection and variable
classification in OpenMP. In: Proceedings of ICS, pp. 330–341. ACM, New York
(2019). https://doi.org/10.1145/3330345.3330375

3. Atzeni, S., Gopalakrishnan, G.: An operational semantic basis for building an
OpenMP data race checker. In: Proceedings of IPDPSW, pp. 395–404. IEEE
(2018). https://doi.org/10.1109/IPDPSW.2018.00074

4. Atzeni, S., et al.: ARCHER: effectively spotting data races in large OpenMP appli-
cations. In: Proceedings of IPDPS, pp. 53–62. IEEE (2016). https://doi.org/10.
1109/IPDPS.2016.68

5. Badihi, S., Akinotcho, F., Li, Y., Rubin, J.: ARDiff: scaling program equivalence
checking via iterative abstraction and refinement of common code. In: Proceed-
ings of FSE, pp. 13–24. ACM, New York (2020). https://doi.org/10.1145/3368089.
3409757

6. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Proc. FM. pp. 200–214. LNCS 6664, Springer, Berlin (2011), https://doi.org/
10.1007/978-3-642-21437-0 17

7. Basupalli, V., Yuki, T., Rajopadhye, S.V., Morvan, A., Derrien, S., Quinton, P.,
Wonnacott, D.: ompVerify: Polyhedral analysis for the OpenMP programmer. In:
Proc. IWOMP. pp. 37–53. LNCS 6665, Springer, Berlin (2011), https://doi.org/
10.1007/978-3-642-21487-5 4

8. Beckert, B., Bingmann, T., Kiefer, M., Sanders, P., Ulbrich, M., Weigl, A.: Rela-
tional equivalence proofs between imperative and MapReduce algorithms. In: Proc.
VSTTE. pp. 248–266. LNCS 11294, Springer, Cham (2018), https://doi.org/10.
1007/978-3-030-03592-1 14

9. Blom, S., Darabi, S., Huisman, M.: Verification of loop parallelisations. In: Proc.
FASE. pp. 202–217. LNCS 9033, Springer, Berlin (2015), https://doi.org/10.1007/
978-3-662-46675-9 14

10. Blom, S., Darabi, S., Huisman, M., Safari, M.: Correct program parallelisations.
STTT (2021). https://doi.org/10.1007/s10009-020-00601-z

11. Bora, U., Das, S., Kukreja, P., Joshi, S., Upadrasta, R., Rajopadhye, S.: LLOV:
a fast static data-race checker for OpenMP programs. TACO 17(4), 1–26 (2020)
https://doi.org/10.1145/3418597

12. Bronevetsky, G., de Supinski, B.R.: Complete formal specification of the OpenMP
memory model. International Journal of Parallel Programming 35(4), 335–392
(2007). https://doi.org/10.1007/s10766-007-0051-4

13. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: Proceedings of ASE, pp. 349–360. ACM, New York
(2014). https://doi.org/10.1145/2642937.2642987

14. Godlin, B., Strichman, O.: Regression verification. In: Proceedings of DAC, pp.
466–471. ACM, New York (2009). https://doi.org/10.1145/1629911.1630034

15. Goncalves, R., Amaris, M., Okada, T.K., Bruel, P., Goldman, A.: OpenMP is not
as easy as it appears. In: Proceedings of HICSS, pp. 5742–5751. IEEE (2016).
https://doi.org/10.1109/HICSS.2016.710

16. Jakobs, M.C.: Replication package for article ‘PatEC: pattern-based equivalence
checking’. In: SPIN 2021, Zenodo (2021). https://doi.org/10.5281/zenodo.4841071

https://doi.org/10.1007/s10766-017-0548-4
https://doi.org/10.1145/3330345.3330375
https://doi.org/10.1109/IPDPSW.2018.00074
https://doi.org/10.1109/IPDPS.2016.68
https://doi.org/10.1109/IPDPS.2016.68
https://doi.org/10.1145/3368089.3409757
https://doi.org/10.1145/3368089.3409757
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-21487-5_4
https://doi.org/10.1007/978-3-642-21487-5_4
https://doi.org/10.1007/978-3-030-03592-1_14
https://doi.org/10.1007/978-3-030-03592-1_14
https://doi.org/10.1007/978-3-662-46675-9_14
https://doi.org/10.1007/978-3-662-46675-9_14
https://doi.org/10.1007/s10009-020-00601-z
https://doi.org/10.1145/3418597
https://doi.org/10.1007/s10766-007-0051-4
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/1629911.1630034
https://doi.org/10.1109/HICSS.2016.710
https://doi.org/10.5281/zenodo.4841071

138 M.-C. Jakobs

17. Jakobs, M.C.: PEQcheck: localized and context-aware checking of functional equiv-
alence. In: Proceedings of FormaliSE, pp. 130–140. IEEE (2021). https://doi.org/
10.1109/FormaliSE52586.2021.00019

18. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: A language-
agnostic semantic diff tool for imperative programs. In: Proc. CAV. pp. 712–717.
LNCS 7358, Springer, Berlin (2012), https://doi.org/10.1007/978-3-642-31424-
7 54

19. Li, Z., Atre, R., Huda, Z.U., Jannesari, A., Wolf, F.: Unveiling parallelization
opportunities in sequential programs. Journal of Systems and Software 117, 282–
295 (2016). https://doi.org/10.1016/j.jss.2016.03.045

20. Liao, C., Lin, P., Asplund, J., Schordan, M., Karlin, I.: DataRaceBench: a bench-
mark suite for systematic evaluation of data race detection tools. In: Proceedings
of SC, pp. 11:1–11:14. ACM, New York (2017) https://doi.org/10.1145/3126908.
3126958

21. Liao, C., Quinlan, D.J., Willcock, J., Panas, T.: Extending automatic paralleliza-
tion to optimize high-level abstractions for multicore. In: Proc. IWOMP. pp. 28–41.
LNCS 5568, Springer, Berlin (2009), https://doi.org/10.1007/978-3-642-02303-3 3

22. Lin, Y.: Static nonconcurrency analysis of OpenMP programs. In: Mueller, M.S.,
Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP -2005.
LNCS, vol. 4315, pp. 36–50. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-68555-5 4

23. Ma, H., Diersen, S., Wang, L., Liao, C., Quinlan, D.J., Yang, Z.: Symbolic analysis
of concurrency errors in OpenMP programs. In: Proceedings of ICPP, pp. 510–516.
IEEE (2013). https://doi.org/10.1109/ICPP.2013.63

24. Mattson, T.G., Sanders, B.A., Massingill, B.L.: Patterns for Parallel Programming
(4th print). Addison-Wesley, Boston (2008)

25. McCool, M., Robison, A., Reinders, J.: Structured Parallel Programming: Patterns
for Efficient Computation. Elsevier, Morgan Kaufman, Amsterdam (2012)

26. Mendonca, G.S.D., Liao, C., Pereira, F.M.Q.: AutoParBench: a unified test frame-
work for OpenMP-based parallelizers. In: Proceedings of ICS, pp. 28:1–28:10.
ACM, New York (2020). https://doi.org/10.1145/3392717.3392744

27. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Proc. TACAS. pp.
337–340. LNCS 4963, Springer, Berlin (2008), https://doi.org/10.1007/978-3-540-
78800-3 24

28. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Berlin (1999). https://doi.org/10.1007/978-3-662-03811-6

29. OpenMP: OpenMP application programming interface (version 5.1). Technical
report, OpenMP Architecture Review Board (2020). https://www.openmp.org/
specifications/

30. Person, S., Dwyer, M.B., Elbaum, S.G., Pasareanu, C.S.: Differential symbolic
execution. In: Proceedings of FSE, pp. 226–237. ACM, New York (2008). https://
doi.org/10.1145/1453101.1453131

31. Pugh, W.: A practical algorithm for exact array dependence analysis. Commun.
ACM 35(8), 102–114 (1992) https://doi.org/10.1145/135226.135233

32. Pugh, W., Wonnacott, D.: Going beyond integer programming with the Omega
test to eliminate false data dependences. IEEE Trans. Parallel Distrib. Syst. 6(2),
204–211 (1995) https://doi.org/10.1109/71.342135

33. Quinlan, D., Liao, C.: The ROSE source-to-source compiler infrastructure. In:
Cetus Users and Compiler Infrastructure Workshop, vol. 2011, pp. 1–3. Citeseer
(2011)

https://doi.org/10.1109/FormaliSE52586.2021.00019
https://doi.org/10.1109/FormaliSE52586.2021.00019
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1016/j.jss.2016.03.045
https://doi.org/10.1145/3126908.3126958
https://doi.org/10.1145/3126908.3126958
https://doi.org/10.1007/978-3-642-02303-3_3
https://doi.org/10.1007/978-3-540-68555-5_4
https://doi.org/10.1007/978-3-540-68555-5_4
https://doi.org/10.1109/ICPP.2013.63
https://doi.org/10.1145/3392717.3392744
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-03811-6
https://www.openmp.org/specifications/
https://www.openmp.org/specifications/
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1145/135226.135233
https://doi.org/10.1109/71.342135

PatEC: Pattern-Based Equivalence Checking 139

34. Ramos, D.A., Engler, D.R.: Under-constrained symbolic execution: correct-
ness checking for real code. In: USENIX Security Symposium, pp. 49–64.
USENIX (2015). https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/ramos

35. Royuela, S., Ferrer, R., Caballero, D., Martorell, X.: Compiler analysis for OpenMP
tasks correctness. In: Proceedings of CF, pp. 7:1–7:8. ACM, New York (2015).
https://doi.org/10.1145/2742854.2742882

36. Saillard, E., Carribault, P., Barthou, D.: Static validation of barriers and work-
sharing constructs in OpenMP applications. In: Proc. IWOMP. pp. 73–86. LNCS
8766, Springer, Cham (2014), https://doi.org/10.1007/978-3-319-11454-5 6

37. Siegel, S.F., et al.: CIVL: the concurrency intermediate verification language. In:
Proceedings of SC, pp. 61:1–61:12. ACM, New York (2015). https://doi.org/10.
1145/2807591.2807635

38. Siegel, S.F., Zirkel, T.K.: FEVS: A functional equivalence verification suite for
high-performance scientific computing. Mathematics in Computer Science 5(4),
427–435 (2011). https://doi.org/10.1007/s11786-011-0101-6

39. Swain, B., Li, Y., Liu, P., Laguna, I., Georgakoudis, G., Huang, J.: OMPRacer: a
scalable and precise static race detector for OpenMP programs. In: Proceedings of
SC. IEEE (2020)

40. Verma, G., Shi, Y., Liao, C., Chapman, B.M., Yan, Y.: Enhancing DataRaceBench
for evaluating data race detection tools. In: Proceedings of Correctness@SC, pp.
20–30. IEEE (2020). https://doi.org/10.1109/Correctness51934.2020.00008

41. Wiesner, M., Jakobs, M.C.: Verifying pipeline implementations in OpenMP. In:
Laarman, A., Sokolova, A. (eds.) SPIN 2021. LNCS, vol. 12864, pp. 81–98. Springer,
Charm (2021). https://doi.org/10.1007/978-3-030-84629-9 5

42. Yu, F., Yang, S., Wang, F., Chen, G., Chan, C.: Symbolic consistency checking of
OpenMP parallel programs. In: Proceedings of LCTES, pp. 139–148. ACM, New
York (2012). https://doi.org/10.1145/2248418.2248438

43. Zaks, A., Pnueli, A.: CoVaC: Compiler validation by program analysis of the cross-
product. In: Proc. FM. pp. 35–51. LNCS 5014, Springer, Berlin (2008), https://
doi.org/10.1007/978-3-540-68237-0 5

44. Zhang, Y., Duesterwald, E., Gao, G.R.: Concurrency analysis for shared memory
programs with textually unaligned barriers. In: Proc. LCPC. pp. 95–109. LNCS
5234, Springer, Berlin (2007), https://doi.org/10.1007/978-3-540-85261-2 7

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos
https://doi.org/10.1145/2742854.2742882
https://doi.org/10.1007/978-3-319-11454-5_6
https://doi.org/10.1145/2807591.2807635
https://doi.org/10.1145/2807591.2807635
https://doi.org/10.1007/s11786-011-0101-6
https://doi.org/10.1109/Correctness51934.2020.00008
https://doi.org/10.1007/978-3-030-84629-9_5
https://doi.org/10.1145/2248418.2248438
https://doi.org/10.1007/978-3-540-68237-0_5
https://doi.org/10.1007/978-3-540-68237-0_5
https://doi.org/10.1007/978-3-540-85261-2_7

Go2Pins: A Framework for the LTL
Verification of Go Programs

Alexandre Kirszenberg, Antoine Martin, Hugo Moreau,
and Etienne Renault(B)

LRDE, EPITA, Kremlin-Bicêtre, France
{akirszenberg,amartin,hmoreau,renault}@lrde.epita.fr

Abstract. We introduce Go2Pins, a tool that takes a program written
in Go and links it with two model-checkers: LTSMin [19] and Spot [7].
Go2Pins is an effort to promote the integration of both formal verifica-
tion and testing inside industrial-size projects. With this goal in mind,
we introduce black-box transitions, an efficient and scalable technique for
handling the Go runtime. This approach, inspired by hardware verification
techniques, allows easy, automatic and efficient abstractions. Go2Pins also
handles basic concurrent programs through the use of a dedicated sched-
uler.

In this paper we demonstrate the usage of Go2Pins over benchmarks
inspired by industrial problems and a set of LTL formulae. Even if
Go2Pins is still at the early stages of development, our results are promis-
ing and show the benefits of using black-box transitions.

1 Introduction and Motivation

The Go programming language was designed at Google in 2009 [16] to improve
programming productivity in an era of multicore, networked machines and
large codebases. Inspired by the idea of Communicating Sequential Processes
(CSP) [17], designers focused on two principles: (1) having lightweight and easy
to create threads (called goroutines) and, (2) promoting communication across
threads by explicit messaging (through channels) rather than by shared mem-
ory. Even if other languages have also been designed to tackle similar problems
(occam and erlang), Go is probably the first large scale, widely used, indus-
trial language to integrate these distinctive CSP features.

Previously (and except for occam and erlang), mainly academic formal
languages, implementing variations around the notion of CSP, have been devel-
oped: promela, uppaal, dve, gal, cspM, etc. These languages have been built
as a support for developing verification tools and their associated theory but have
seldom been used in the industry.

The main idea defended in this paper is to consider the Go language not
only as a disruptive, efficient, industrial, statically typed, compiled programming
language but also as a good candidate for the specification and verification of
asynchronous systems. Indeed, most of the time formal languages are only used

c© Springer Nature Switzerland AG 2021
A. Laarman and A. Sokolova (Eds.): SPIN 2021, LNCS 12864, pp. 140–156, 2021.
https://doi.org/10.1007/978-3-030-84629-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84629-9_8&domain=pdf
http://orcid.org/0000-0001-9013-4413
https://doi.org/10.1007/978-3-030-84629-9_8

Go2Pins: A Framework for the LTL Verification of Go Programs 141

for modeling and verification while the actual implementation of the system is
done in another language for efficiency. This switch between languages is error-
prone. Moreover, most formal languages do not have associated compilers or
interpreters: this is annoying since the only way to test the validity of the model
is to express the desired behaviors through a temporal logic1.

This paper tackles these problems by introducing Go2Pins: a Go-based uni-
fied framework for testing, modeling, verification, and efficient implementation
of systems. This paper also introduces black-box transitions (see Sect. 4), an
efficient and scalable technique for handling the Go runtime. This approach,
inspired by hardware verification techniques, allows easy, automatic and effi-
cient abstractions. Even if this idea is not new (premises of this technique are
available the SPIN model checker), we extend it to be automatic, and then well
suited for verifying large software systems.

2 Go2Pins: Overview

This section describe our journey towards the verification of Go programs.
Figure 1 describes an overview of Go2Pins: the program to verify is processed by
Go2Pins which produces a binary called go2pins-mc. This binary can then be
used to verify any LTL formula (over the input program) using one of the two
supported backends: LTSMin [19] or Spot [7].

Figure 2 provides more details about this approach. At coarse grain, the input
program is processed by the core of our tool and then translated into the Par-
titioned Next-State Interface (PINS) [19]. This interface exposes two functions:
one for retrieving the initial state of the system, and one for computing the
successors of a state. Any program that exposes this interface is thereby com-
patible with any (explicit or symbolic) model checking solution that supports it
(for instance LTSmin or Spot). Then, Go2Pins produces a set of files that are
compiled together to build the go2pins-mc binary. We opted for this workflow
since (1) it provides more flexibility, (2) it can be easily extended and (3) our
code remains in the Go realm (useful for black-box transitions, see Sect. 4).

At fine grained level, our approach behaves like a transpiler that translates
the input Go program into an output Go program that respects the PINS inter-
face. This transformation has many advantages. First, it benefits from both the
reflexivity and the standard library of the Go language. The reflexivity lets us
avoid the development of the classic toolchain of a transpiler (scanner, parser,
AST, etc.), while the use of the standard library lets us avoid redeveloping con-
cepts such as Control Flow Graph, Call Graph, etc. The second benefit of our
approach is the ease of building abstractions (see Sect. 4).

Figure 2 shows that Go2Pins processes the input program in steps. Each one
modifies the Abstract Syntax Tree (AST) in order to desugar a specific feature.
For instance, the Arith & Assign step decomposes complex arithmetic opera-
tions into consecutive elementary ones. For instance v1 := 3 ∗ g(n) ∗ h(n) is
1 Notice that in the particular context of CSP, validity can also be checked using

refinement.

142 A. Kirszenberg et al.

le.go Go2Pins go2pins-mc

Spot

LTSmin

uses

uses

Fig. 1. Overview of Go2Pins. The input file is processed by Go2Pins which produces a
binary called go2pins-mc. This binary can then be used to verify LTL formula using
one of the two supported backends: Spot or LTSmin.

Go Go

Python C Java Fortran . . . Uppaal

le.go

Spot LTSmin

le.so

uses uses

go2pins.c go2pins.h

Make le main.go

boilerplate
Pins[?]

go2pins.hgo2pins.c

main.goMake le

desugar.go

output

Type

Checker

Unroll

Recursion

Channels

Duplicate

Gorout

Black-

box

Arith. &

Assign

Else Full

Alive

Desugar

Array

Norm.

Decl.

Func.

Def.

Routines

Assign.

Local

Var.

Format

Trans-

-form

Routines

Counter

[? ?][?] [?] [?] [?]

Go2Pins

Fig. 2. Contributions of this paper (all except gray boxes). The dashed boxes represent
the Go2Pins tool while the blue plain box represents the output directory produced
by Go2Pins. The transformation steps are denoted by double shaped red boxes. Files
grouped under the name boilerplate are copied as-is into the output directory. These
files are generic and handle communication between the desugared program and the
mandatory functions to respect the PINS interface. (Color figure online)

translated into three instructions: v1 := 3, then v1 ∗= g(n) and finally
v1 ∗= h(n). Thus, this step does not change the semantics of the original pro-
gram but simplifies it in order to be used by model-checkers.

Go2Pins: A Framework for the LTL Verification of Go Programs 143

With this workflow, it is easy to test each step. For almost all steps presented
in Fig. 2, we can just apply the step on some input, run the modified program
and check that the behavior stay unchanged.

Among the various steps in Go2Pins, some are of special interest:

1. TypeChecker. Ensures, via type deduction, that the current limitations of
Go2Pins are respected. Currently Go2Pins is limited to unbuffered channels,
Integer variables and static number of goroutines (i.e. no dynamic goroutine
creation is yet supported). Notice that these kind of restrictions are common
to most verification tools. Section 4 details how these restrictions can be by-
passed.

2. Core (Func. Def. to Transform). This is the core of Go2Pins: it trans-
lates the program into a structure that can easily be adapted to match the
PINS interface (more details in Sect. 3.1).

3. Recursion. Since Go2Pins work only with finite state space (with possibly
infinite behaviours), a specific attention must be paid to recursion. This step
unrolls each function up to a limit fixed by the user. Since the depth of re-
cursion is fixed, only bounded verification can be done on recursive programs.

4. DuplicateGoroutines. This step adds the support for goroutines, i.e. multi-
threaded programs. This is achieved by the implementation of a scheduler that
returns all the possible interleavings from a given state. More details can be
found in Sect. 3.2.

5. Black-Box. This module reduces the state space explosion problem by fusing
consecutive transitions into a single one (more details Sect. 4).

Fortuitous Behaviour of Our Approach. During the conception of our tool,
we were advised that a lot of transpilers targeting Go exist. Some of these tools
were developed by the Go Team in order to translate some parts of the Go com-
piler (originally written in C) into Go. Thus, our workflow transitively supports
model-checking these mainstream languages (details in Fig. 2 and Sect. 6).

3 Implementation Details

3.1 Core Translation: Func. Def. to Transform

The core of Go2Pins (steps Func. Def. to Transform of Fig. 2) translates the
input program into a structure that can be easily adapted to match the PINS
interface. This interface exposes two functions: one for retrieving the initial state
of the system (represented by a vector of N integer variables), and one for
computing the successors of a state2. The illustration of this transformation is
given in Listing 1.1 for an original program and Listing 1.2 and 1.3 for the
transformed program.

2 Model checkers represent the model as a Kripke structure. These two functions are
enough to provide a Kripke view of a Go program.

144 A. Kirszenberg et al.

1 func f i b o (n i n t) i n t {
2 n0 := 0
3 n1 := 1
4 f o r i := 0 ; i < n ; i++ {
5 n2 := n0 + n1
6 n0 = n1
7 n1 = n2
8 }
9 return n1

10 }
11
12 func main () {
13 f i b o (5)
14 }

Listing 1.1. Fibonacci computation
in Go

1 type s t a t e [1 5] i n t
2
3 func G2PF fibo (s s t a t e) s t a t e {
4 switch s . LabelCounter {
5 case 0 : goto l ab e l 0
6 // ...
7 case 12 : goto l ab e l 1 2
8 }
9 l ab e l 0 : // n0 := 0

10 s . f i b o . n0 = 0
11 s . LabelCounter = 1
12 s . f i b o . i s a l i v e = 1
13 return s
14 // ...
15 l abe l 1 2 : // return n1
16 s . f i b o . r e s0 = s . f i b o . n1
17 s . f i b o . FunctionCounter =
18 s . f i b o . c a l l e r
19 s . f i b o . LabelCounter =
20 s . f i b o . c a l l e r L ab e l
21 re turn s
22 }

Listing 1.2. Fibonacci translation
(1/2)

23 func G2PF main(s s t a t e) s t a t e {
24 switch s . LabelCounter {
25 case 0 : goto l ab e l 0
26 // ...
27 case 2 : goto l ab e l 2
28 }
29 l ab e l 0 :
30 s . f i b o . n = 5
31 s . f i b o . c a l l e r =
32 s . FunctionCounter
33 s . f i b o . c a l l e r L ab e l = 2
34 s . FunctionCounter = 1
35 s . LabelCounter = 0
36 return s
37 // ...
38 }

Listing 1.3. Fibonacci translation (2/2)

39 func G2PEntry (s r c s t a t e) [] s t a t e {
40 r := make ([] s ta te , 0)
41 r := append (res , G2PF main(s r c))
42 // From here it ’s the scheduler
43 // detailed Section 3.2
44 // Build all valid successors
45 f o r , g := range go rout ine s {
46 r = append (r , g . Fun(s r c))
47 }
48 // See Listing 1.6
49 return r
50 }

Listing 1.4. Dispatch in Go2Pins

51 func g e t s u c c e s s o r s (s r c s tate ,
52 cb CB /* Callback */) i n t {
53
54 // Compute all successors
55 ds t s := G2PEntry (s r c)
56
57 // Call the model checker
58 // callback for each succ
59 f o r , dst := range ds t s {
60 CB(cb , dst)
61 }
62 }

Listing 1.5. Successor computation

The first step of this translation is to build a (finite) state vector for the
program given in Listing 1.1. To build this vector, we must compute the total
number of variables that are used. Here, four variables n, n0, n1 and i are dis-
played but Go2Pins requires extra-variables:

1. The program counter indicating the line currently executed. This information
is hidden in Listing 1.1 since it is generally handled directly by the micro-
processor. For the sake of clarity we opted for a two variables representation of
this counter: a variable FunctionCounter that indicates the current function,
and a variable LabelCounter that indicates the current instruction.

Go2Pins: A Framework for the LTL Verification of Go Programs 145

2. Another piece of information that is usually tracked at the assembly level is
the return address, i.e., the position where the execution should continue after
a return statement (or the end of the function). As previously two variables
per function are used: 〈fun-name〉.caller that indicates the return function
and 〈fun-name〉.callerLabel that specifies the instruction in this function.

3. When a function returns one or multiple values, a placeholder for these values
should be available. Indeed, since these values may be used in various contexts
(assignments, comparisons, etc.), the placeholder will represent them until
their final use is detected. As a consequence, Go2Pins uses X placeholder
variables 〈fun-name〉.resX, where X denotes the Xth return value.

4. Finally, each variable in the original program must be associated to an extra
variable isalive 〈var-name〉. This is required in order to handle complex ini-
tialization such as a := f(). In this assignment the value of a is only known
after the evaluation of f(). Since the PINS interface represents the program
as a vector of integers, a default value must be fixed for all variables (here 0).
As a consequence, a model-checking procedure may fail by considering this
default value. Thus, the extra variable indicates whether or not the variable
a has already been initialized. Due to lack of space, this transformation is not
depicted here but would appear in line 14.

To respect the PINS interface, the previous variables are collapsed into a
vector of integers (line 1, Listing 1.2). Since this vector handles all values of all
variables at a given time, it can be see as a snapshot of the system. Listings 1.2
and 1.3 also detail the other modifications performed during the core transla-
tion (for the sake of clarity names are explicit, while our translation manipulates
indexes: for instance, s.fibo.res0 is then translated into s[2]):

– Each name has been changed to G2PF 〈fun-name〉 and its parameters have
been replaced by a single parameter: the state vector representing the actual
status of the execution (line 3 and 23).

– Each instruction of the original program has been extracted into a dedicated
block of code (see lines 9–12 or 14–20 for an example). This block is accessible
from a switch statement at the beginning of the function (lines 4–8 or 24–28).
This switch uses the LabelCounter to detect the instruction to execute and
then jump to the corresponding block.
This transformation in blocks relies on the computation of Basic Blocks and
Control Flow Graph (CFG). Basic Blocks are sequences of instructions with-
out jumps (conditional or not) while the Control Flow Graph is a graph that
represents all of the execution paths of the function and links each basic block
to its potential successors. For the purpose of our tool we restrict basic blocks
to contain only one instruction of the original program. As a consequence,
the CFG represents the successors of each instruction. With this CFG, each
basic block can now be augmented to update FunctionCounter and Label-
Counter. In particular, moving inside a function modifies the LabelCounter

146 A. Kirszenberg et al.

(line 11) while a call to another function modifies both variables (line 16–19
and 24–35) . For instance, line 9 details the modification of the LabelCounter
while lines 14 to 17 modifies both counters since they represents the original
return statement.

The last step of the translation aggregates all the previous transformations in
order to fit the PINS interface. With this architecture, the PINS get successors
(Listing 1.5) delegates the processing to GP2Entry (Listings 1.4) which transi-
tively3 delegates to the current function G2PF 〈fun-name〉. This strategy pre-
serves (with a minimal overhead) the structure of the original program which is
helpful for debugging or producing traces during the verification procedure.

3.2 Handling Concurrency: Goroutines and Unbuffered Channels

The previous section presents the core translation for sequential programs.
Nonetheless the main application of model checking is the verification of concur-
rent programs where bugs are hard to find and reproduce. The concurrency in
Go is provided through two elements: goroutines and channels. Goroutines are
triggered by the go instruction and spawn lightweight threads. Channels are a
communication features that avoid data races contrarily to shared variables.

In order to support goroutines, Go2Pins implements a scheduler. Indeed, at
any moment, the main thread can progress as well as any active goroutine. An
active goroutine is a goroutine that (1) has been spawned by the go keyword and,
(2) that is not yet finished. Consequently, this status is stored in the state vector
(so that the scheduler can arrange the various goroutines). Additionally, since
each goroutine needs its own recursive stack, a preprocessing phase is required
to reserve slots for each function that could be called by each goroutine. This
processing is similar to the one done for unrolling recursive functions.

Support for channels also requires to have dedicated slots in the state vec-
tor. These slots catch goroutines that are about to perform a synchronization
operation through the channel. As soon as our scheduler detects two of these
goroutines, a synchronization is triggered. In other words the scheduler ensures
a simultaneous progress of the two goroutines. Listing 1.6 details this part of the
scheduler (and finalize the code of Listing 1.4, line 48). It can be observed that
the set of successor is only composed of a set of PINS vectors.

4 Abstraction with Black-Box Transitions

4.1 Overview of Black-Box Transitions

The main problem that arises when verifying large (concurrent) software systems
is the state-space explosion problem since all of the details must be represented
3 This is achieved by building one last extra function:G2PMain (see line 42). This

function takes a state vector as a parameter and returns an initialized state vector
during the first call. Then, this function dispatches the processing of the computation
to the function under execution.

Go2Pins: A Framework for the LTL Verification of Go Programs 147

f i n a l := []

f o r , s := range r { // w a l k all s u c c e s s o r s and k e e p o n l y v a l i d o n e s

i f ∃ one channel with (at l e a s t) a pending read and a pending wr i t e {
tmp := generate a l l read /wr i t e synchron i za t i on s on t h i s channel

f i n a l = append (f i n a l , tmp)

} e l s e i f s has no pending ope ra t i on s on channe l s {
f i n a l = append (f i n a l , s)

}
}
r = f i n a l

Listing 1.6. Scheduler that synchronize operations on channels

to catch all possible behaviors. One way to tackle this problem is to use approx-
imations that remove some irrelevant details in order to reduce the size of the
state space. Two kind of approximations exist:

– over-approximations contain more behaviors than the full system. Thus,
if there is no error in an over-approximation, then there is no error in the full
system. On the other hand if an error is found in an over-approximation it
can be spurious. Over-approximations cannot prove presence of errors.
detection of errors.

– under-approximations contain less behaviors than the full system. Thus if
there is an error in an under-approximation, then this error is real error in the
full system. On the other hand, absence of errors in an under-approximation
does not imply absence of errors in the full systems. Under-approximations
cannot prove absence of errors.
correctness of properties.

1 package main

2

3 import ” fmt”

4 import ”math”

5

6 func foo (n i n t) i n t {
7 return n ∗ 2

8 }
9

10 func main () {
11 a := in t (math . Sqrt (42))

12 a = a + foo (a)

13 fmt . Pr in t ln (a)

14 }

Listing 1.7. Simple computations

In this paper, we introduce the black-
box transitions technique in order to over-
come limitations of both over and under-
approximations. The underlying idea is to
automatically build a representation of the
program that abstracts away all behaviors
irrelevant for the verification procedure while
keeping effectiveness for proving correctness
of properties or finding errors.

In order to illustrate the black-box tran-
sition technique, let us consider the example
depicted in Listing 1.7. This example only
performs arithmetical operations: it first calls
math.Sqrt (line 11) which is part of the Go

standard library and then calls foo (line 12) which is a local function. The result
is then printed line 13. Suppose now that we want to check the (correct) LTL
property FG ‘a > 1’, which express that a will end to be strictly greater than 1.

Trying to verify this property over this program is hard due to lines 11
and 13. Indeed since both of these lines are calls to functions that belong to

148 A. Kirszenberg et al.

the Go standard library, the source code of these functions is not available4.
Consequently the translation depicted in Sect. 3.1 will not work. More generally
this problem occurs with any Go program that links with an external library.
This problem is annoying since this is a common situation in a large software.

Fortunately, when checking FG ‘a > 1’, we are only interested in (1) the value
of the variable a and (2) the value returned by the math.Sqrt function. All the
details of the math.Sqrt functions are irrelevant for the verification procedure.

Black-box transitions technique exploits this particularity by calling directly
math.Sqrt. The returned value is then set in the slot corresponding to a in
the PINS vector. More generally, black-box transitions technique automatically
identifies external function calls, and directly insert these calls during the core
translation described Sect. 3.15. To achieved this some manipulation of the PINS
vector are required to fill the parameters of the function.

Thus black-box helps to reduce significantly the state-space of the program.
For instance, the state-space of the program in Listing 1.7 has only 12 states
which is low considering that the definition of both math.Sqrt and fmt.Println
function are complex and are several hundred lines of code long6.

Discussion. Black-boxes address the state space explosion problem by fusing
multiple transitions (here, external library function calls) into a single one. Thus,
black-boxes assume the correctness of these external functions calls. The verifi-
cation of these functions is then delegated to the writer of the external library
who can opt to use testing or model-checking. Consequently, the developer can
only focus on verifying its own code and on providing a high quality software.
This strategy follows the idea of Godefroid [15] who states that some part of the
software can be checked by model-checking while some part can be checked by
testing. This strategy is interesting since it can progressively be integrated into
all existing project in order to increase the quality of the project.

Remark on Go2Pins Limitations. Currently Go2Pins is limited to Integer
variables. Nonetheless black-boxes transitions can check arbitrary complex code
(for instance math.Sqrt or fmt.Prinln. Consequently, Go2Pins restrictions only
applies to user code and not imported code.

Blackbox and LTL Verification. One drawback of abstraction methods (such
as Partial Order Reductions) is the compatibility with the LTL Next operator.
Since blackbox transitions collapse successive transitions into one based only on
the observed atomic propositions, the use of the Next operator is possible without
altering the verification results. In other word this technique only removes the
noise from the verification procedure.

A Word on Side Effects. Black-box transitions are not limited to pure func-
tions and also work with functions containing side effects. For instance, call to
4 The runtime of programming language is traditionally provided as a dynamic library.
5 Notice that this technique is only possible since Go2Pins is developed in Go and

produces Go files.
6 The interested reader may look the definition of: https://golang.org/src/fmt/print.

go, https://golang.org/src/math/sqrt.go.

https://golang.org/src/fmt/print.go
https://golang.org/src/fmt/print.go
https://golang.org/src/math/sqrt.go

Go2Pins: A Framework for the LTL Verification of Go Programs 149

fmt.Println is fully supported. The only drawback of our method is that we will
observe the result of calling fmt.Println during the verification procedure.

4.2 User-Defined Black-Box Transitions

It is legitimate to ask whether the black-box transition technique could also be
applied to user code. A closer look to Listing 1.7 shows that the foo function
could also be black-boxed if we are only interested in the value of the variable a.

Go2Pins can automatically detect such functions. The computation of func-
tions that can be black-boxed is more complex than we can think at first glance.
A function can only be black-boxed if it respect the following rules:

1. None of its variable is referred during the verification process
2. It only calls functions that can be black-boxed
3. It does not manipulate global variables

A more precise definition could be stated but would require to compute all the
possible executions paths. Since this may be costly we opted for this conservative
approximation which is enough in most cases, and can be easily computed.

Once all black-boxed functions are detected, Go2Pins remove them from
the original input and put them into a dedicated package. By achieving this,
Go2Pins is back to the situation described in the previous section. Thus user
defined functions can now be black-boxed. With this approach the state space
of the program in Listing 1.7 can be reduced from 12 states to 9 states (25%
reduction).

Thus, with this approach, an automatic abstraction, restricted to only behav-
ior mandatory for the verification, is built.

Supporting Depth-1 Function Using Global Variables. There are some
situations where the aforementioned rule (3) is too restrictive (more details in
Sect. 6). Consider for example a simple function f that modifies a global variable
v. Let us now suppose that we want f to be black-boxed. A simple rewriting
system can be used to catch this situation. The function f is moved in the
blackbox package and rewritten to accept one more argument: a reference to
the actual PINS vector. Then every access to global variables is modified to
reference the correct slot in the PINS vector. This technique works well but has
a severe limitation7: we cannot have a black-box function g that will call f . In
other words, g will never be considered as black-box. This is too restrictive and
future work aims to investigate whether a solution to this problem exist.

7 Another restriction concern the use of the LTL Next operator. Indeed, if the black-
boxed function has multiple modification of one variable, only the later one will be
visible.

150 A. Kirszenberg et al.

5 Using Go2Pins on Go Programs

This section provides the necessary commands to run and play with Go2Pins8. To
download Go2Pins you can either fetch it and compile it from the git repository
using:

git clone https://gitlab.lrde.epita.fr/spot/go2pins.git && make
or you can use the package manager of Go using the following command. In this
case, the tool will be installed directly in your $GOBIN directory.

go get gitlab.lrde.epita.fr/spot/go2pins

Notice that Go2Pins have two dependencies you have to install by your own:
LTSmin9 and Spot10. Once this have been done, you can run Go2Pins on the
example of Listing 1.7 using go2pins -f listing.1.7.go
The previous command produced an out directory containing the go2pins-mc
binary. This binary can then be used for model-checking the original program.

– ./out/go2pins-mc -list-variables lists all variables you can use for LTL
model-checking. One can observe that each variable is prefixed by the package
name and the function name.

– ./out/go2pins-mc -kripke-size computes the state space of the program. You
should obtain 12 states visited as aforementioned.

– ./out/go2pins-mc -ltl ‘FG “main main a > 1”’ -backend spot -nb-threads 1
runs the command of Sect. 4 with one thread using the Spot backend.
You should observe an extra display 18, that corresponds to black-boxing
fmt.Println.

Finally, if you want to blackbox the foo function, you have to regenerate the
out directory and rerun the verification process. Go2Pins offers a shortcut to
perform both actions simultaneously

go2pins -f -blackbox-fn=“auto” listing.1.7.go ‘FG “main main a > 1”’

6 Benchmark

In order to test11 Go2Pins we opted to translate industrial-inspired problems
coming from the RERS challenge [28]. These reactive systems are represented
through huge files written in C. To test the whole workflow of our approach, we
first use C4Go [10] to translate them into Go, then apply the Go2Pins workflow.

The RERS challenge comes with a set of LTL formulae. Consequently, our
benchmark is composed of 41 models (1 909 345 LOC) and 5 064 formulae.
Among these 5 064 formulae 35% are verified and 65% are violated. Regard-
ing the hierarchy of Manna and Pnueli [24], our benchmark is splitted in 25%
8 Under GPL (v3), available at https://gitlab.lrde.epita.fr/spot/go2pins.
9 https://ltsmin.utwente.nl.

10 https://gitlab.lrde.epita.fr/spot/spot.
11 Details of our benchmark and how to reproduce it are available at https://www.

lrde.epita.fr/∼renault/benchs/SPIN-2021/results.html.

https://gitlab.lrde.epita.fr/spot/go2pins
https://ltsmin.utwente.nl
https://gitlab.lrde.epita.fr/spot/spot
https://www.lrde.epita.fr/~renault/benchs/SPIN-2021/results.html
https://www.lrde.epita.fr/~renault/benchs/SPIN-2021/results.html

Go2Pins: A Framework for the LTL Verification of Go Programs 151

pure guarantee, 44% pure safety, 2% pure obligation, 12% pure persistence, 12%
pure recurrence, and 5% pure reactivity. Finally all experiments were run with
a 4 min timeout and 200 Go memory limitation on a 24 cores Intel(R) Xeon(R)
CPUX7460@ 2.66 GHz with 256 GB of RAM.

0

50

100

150

200

250

0e+00 1e+05 2e+05 3e+05 4e+05
Line of Code

Ti
m

e
(s

ec
on

de
s)

Go2Pins compilation time:
With black−boxes

Without black−boxes

Fig. 3. Time required by Go2Pins to process
and compile an input go program according
to its number of line of code. Dots represent
one computation in the benchmark (a pair
model-formula), while lines join the mean of
each series.

Figure 3 focuses on the scalabil-
ity of Go2Pins. This figure details
the time required by Go2Pins to
translate and compile the files of
the benchmark. For each pair model-
formula a dot is displayed while
lines join the mean of each series12.
Two approaches are depicted: with
or without the use of the black-
box technique. Surprisingly, we can
first observe that the use of black-
boxes also reduce the processing
time. Since our approach decom-
poses each statement in atomic oper-
ations, the use of black-box will pro-
duce smaller files that are easily pro-
cessed by the go compiler. Thus,
with the black-box technique, our
tool process around 5000 line per
second. A closer look to these results

reveal that Go2Pins uses 60% of this time while the Go compiler uses 40% of
it. Consequently, there is a room for improvement in our tool. Finally one can
observe huge variation for some models. These models have low number of line
of code, but each line has complex operation: Go2Pins spends time to reduce
these operations to atomic operations.

Figure 4 display the time required to process the whole benchmark by both
Spot and LTSmin. In (a) and (b) it can be observed that the use of black-boxes
significantly improves both Spot and LTSmin. Figure 4(c) and (d) display the
comparison between Spot and LTSmin on this benchmark. Without black-boxes,
Spot outperform to find counterexamples while LTSmin seems better to find
empty products (the hardest ones). These difference could come either from the
type of Büchi automaton used (which differ between Spot and LTSmin default
configurations) or from the default emptiness check algorithm used [3,8]. Further
investigation could broaden the study of [2]. Finally, Fig. 4(d) show that the use
of black-boxes help Spot to resolve empty products.

Figure 5(a) and (b) displays the number of states and the number of transi-
tions with or without black-boxes when using Spot. Figure 5(c) and (d) depicts
the same information for LTSmin. In explicit model checking these metrics are
important: the runtime proportional to the number of transitions explored while

12 In our benchmarks multiples programs have the same number of line of code (LOC).
A serie is defined as all computations, i.e. one per formula, w.r.t. a specific LOC.

152 A. Kirszenberg et al.

1.0 1.0

1.0

10.0

100.0

1.0 1.0 1.0 10.0 100.0
Time 8 threads (Spot)

Ti
m

e
8

th
re

ad
s

w
ith

 b
la

ck
−b

ox
es

 (S
po

t) Verification status:
Counterexample found

No counterexample

1.0 1.0

1.0

10.0

100.0

1.0 1.0 1.0 10.0 100.0
Time 8 threads (Ltsmin)

Ti
m

e
8

th
re

ad
s

w
ith

 b
la

ck
−b

ox
es

 (L
ts

m
in

) Verification status:
Counterexample found

No counterexample

)b()a(

1.0 1.0

1.0

10.0

100.0

1.0 1.0 1.0 10.0 100.0
Time 8 threads (Spot)

Ti
m

e
8

th
re

ad
s

(L
ts

m
in

)

Verification status:
Counterexample found

No counterexample

1.0 1.0

1.0

10.0

100.0

1.0 1.0 1.0 10.0 100.0
Time 8 threads with black−boxes (Spot)

Ti
m

e
8

th
re

ad
s

w
ith

 b
la

ck
−b

ox
es

 (L
ts

m
in

)

Verification status:
Counterexample found

No counterexample

)d()c(

Fig. 4. Time comparison in log10 scale for each backend (Spot and LTSmin), with or
without black-boxes. The dark line corresponds to identity while gray lines show the
10 factor speedup/slowdown. Dashed lines represent the 4 min timeout.

the memory consumption is proportional to the number of states. For both Spot
and LTSmin, the number of states and transitions is divided by 10 to 100.

On conclusion, the black-box technique helps to reduce both preprocessing
and verification runtime.

Correctness. We also opted to test our approach using the RERS benchmark in
order to ensure correctness of our implementation. Indeed this benchmark fully
specifies 10 models through exactly 964 LTL formulae. These pairs (models, for-
mulae) describe all lines that are (or not) reachable in the input file. In addition
to the tests developed during the conception of our tool, these specific models
confirm the validity of our work-flow. One should note that most of this files are
unprocessable within the 4 min timeout restriction. For black-box transitions,
we compare all obtained results to the 5 064 original results. Also note that we
plan to translate the BEEM database, used by Spin and DiVinE2.4 in order to
increase the confidence in our tool13.

13 We also plan to translate the Promela database http://www.albertolluch.com/
research/promelamodels n Go in order to compare with other verification tools.

http://www.albertolluch.com/research/promelamodels
http://www.albertolluch.com/research/promelamodels

Go2Pins: A Framework for the LTL Verification of Go Programs 153

1000

100000

10000000

1000 100000 10000000
States 8 threads (Spot)

St
at

es
 8

 th
re

ad
s

w
ith

 b
la

ck
−b

ox
es

 (S
po

t) Verification status:
Counterexample found

No counterexample

1000

100000

10000000

1000 100000 10000000
Transitions 8 threads (Spot)

Tr
an

si
tio

ns
 8

 th
re

ad
s

w
ith

 b
la

ck
−b

ox
es

 (S
po

t)

Verification status:
Counterexample found

No counterexample

)b()a(

1000

100000

10000000

1000 100000 10000000
States 8 threads (Ltsmin)

St
at

es
 8

 th
re

ad
s

w
ith

 b
la

ck
−b

ox
es

 (L
ts

m
in

)

Verification status:
Counterexample found

No counterexample

1000

100000

10000000

1000 100000 10000000
Transitions 8 threads (Ltsmin)

Tr
an

si
tio

ns
 8

 th
re

ad
s

w
ith

 b
la

ck
−b

ox
es

 (L
ts

m
in

)

Verification status:
Counterexample found

No counterexample

)d()c(

Fig. 5. States and transitions (with and without black-boxes) comparison for both
Spot and LTSmin. The dark line corresponds to identity while gray lines show the 10
factor speedup/slowdown.

7 Related Work

The development of Go2Pins has been motivated by several empirical stud-
ies performed on the Go language [5,27,29]. Ray et al. [27] study the relation
between types of bugs and multiple programming languages. Dilley and Lange
[5] analyzed 865 Go projects in order to detect how channels are used in large
Go projects. Tu et al. [29] study 171 real-world concurrency bugs in Go.

To our knowledge, the LTL-verification of full and unmodified Go programs
has never been studied. Many studies [6,21–23,25] focus on a static analysis
of operations on channels. Liu et al. [23] developed a tool that detect statically
patterns of bugs and fix them according to some strategies. The other approaches
[6,21,22,25] focus on extracting channels operations. This extraction is then
used to to build models that are then verified for correctness. These studies
mainly focuses on concurrency problem by checking data-races, communication
patterns or deadlocks. Focusing only on channels operation helps to build small
models that are processable by verification tools. In this paper we developed
a broader approach since (1) we are able to check all LTL properties, (2) we
are not restricted to channels operations and (3) we developed a the black-box

154 A. Kirszenberg et al.

technique that helps to fight combinatorial explosion without restricting ourself
to only channels communications.

Another approach [4] aims to execute formal models by converting Uppaal
programs into Go. Similarly Giunti [14] proposed to map pi-calculus specifica-
tions of static channels into Go executable programs. Our workflow avoids such
transformations, since programs can be executed and verified as-is.

Handling the standard library is a real problem for software verification tools.
JPF [31] requires providing the source code of the standard library and relies on
a Virtual Machine. The idea of black-box transitions, that naturally handle the
standard library, has never been proposed to our knowledge. The closest idea is
the one of Spin [18] that is able to execute multiple instructions atomically (see
atomics, d steps and c code keywords). Since this approach is not automatic
and relies on a model written in Promela, it is not well suited for verifying
large software systems. One should note that approaches based on the LLVM
bytecode also exist. The first one [32] links with Spin for handling concurrency
while the second one [1] requires a program expressed in C++. In contrast to
our approach, no model can be extracted.

8 Conclusion

This paper introduces Go2Pins, the first tool developed for LTL model-checking
over Go programs. It relies on the idea that the Go language is a good candidate
for specifying, verifying and building asynchronous systems. Go2Pins uses the
PINS interface to link with an ecosystem of model-checkers and model-checking
techniques. This paper also introduces black-box transitions to tackle the com-
binatorial explosion problem. Our benchmark has proven the efficiency of this
technique by reducing by more than a factor the size of the state-spaces. More-
over, this technique provides an easy way to support features that are not yet
supported by Go2Pins.

Future work aims to support more Go features in order to analyze the struc-
ture of the state space of industrial problems (following up the static empirical
study of Dilley and Lange [5]). To handle industrial project we would like to
support Partial Order Reductions (POR) [20,26,30]. Currently only LTSmin
supports POR through the use of dependencies matrixes. We plan to compute
these matrixes directly into Go2Pins and to integrate POR into Spot. We also
would to like to study the relation between black-boxes and POR.

Additionally we would like to go deeper in the development of the black-box
technique. For huge functions that cannot be black-boxed we could nonetheless
find sequences of instructions that could be fused. Moreover we would like to
investigate whether the black-box technique could be generalized to handle any-
depth functions with global side-effects.

Finally, our tool only performs verification without fairness since both
LTSmin and Spot require fairness to be expressed in the LTL-formula. Nonethe-
less, expressing fairness directly in Go2Pins could help to reduce state-space
size.

Go2Pins: A Framework for the LTL Verification of Go Programs 155

References

1. Baranová, Z., et al.: Model checking of C and C++ with DIVINE 4. In: D’Souza,
D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 201–207.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 14

2. Blahoudek, F., Duret-Lutz, A., Rujbr, V., Strejček, J.: On refinement of Büchi
automata for explicit model checking. In: Fischer, B., Geldenhuys, J. (eds.) SPIN
2015. LNCS, vol. 9232, pp. 66–83. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23404-5 6

3. Bloemen, V., van de Pol, J.: Multi-core SCC-based LTL model checking. In: Bloem,
R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp. 18–33. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49052-6 2

4. Dekker, J., Vaandrager, F., Smetsers, R.: Generating a google go framework from
an uppaal model. Master’s thesis, Radboud University, August 2014

5. Dilley, N., Lange, J.: An empirical study of messaging passing concurrency in
go projects. In: 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER 2019), pp. 377–387 (2019)

6. Dilley, N., Lange, J.: Bounded verification of message-passing concurrency in go
using promela and spin. In: Electronic Proceedings in Theoretical Computer Sci-
ence, pp. 314:34–45, April 2020. https://doi.org/10.4204/EPTCS.314.4

7. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 — A framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

8. Evangelista, S., Laarman, A., Petrucci, L., van de Pol, J.: Improved multi-core
nested depth-first search. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012.
LNCS, pp. 269–283. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33386-6 22

9. GitHub repository. C2Go: Migrate from C to Go (2020). https://godoc.org/rsc.io/
c2go

10. GitHub repository. C4Go: Transpiling C code to Go code (2020). https://github.
com/Konstantin8105/c4go

11. GitHub repository. Transpiling fortran code to golang code (2020). https://github.
com/Konstantin8105/f4go

12. GitHub repository. Grumpy: Go running Python (2020). https://github.com/
google/grumpy

13. GitHub repository. Java2Go: Convert Java code to something like Go (2020).
https://github.com/dglo/java2go

14. Giunti, M.: GoPi: compiling linear and static channels in go. In: Bliudze, S., Bocchi,
L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 137–152. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-50029-0 9

15. Godefroid, P.: Between testing and verification: dynamic software model checking.
In: DSSE 2016, vol. 45, pp. 99–116, April 2016

16. Griesemer, R., et al.: Hey! ho! let’s go! (2009). https://opensource.googleblog.com/
2009/11/hey-ho-lets-go.html

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc., Hoboken
(1985)

18. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Boston (2003)

https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-319-23404-5_6
https://doi.org/10.1007/978-3-319-23404-5_6
https://doi.org/10.1007/978-3-319-49052-6_2
https://doi.org/10.4204/EPTCS.314.4
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-642-33386-6_22
https://doi.org/10.1007/978-3-642-33386-6_22
https://godoc.org/rsc.io/c2go
https://godoc.org/rsc.io/c2go
https://github.com/Konstantin8105/c4go
https://github.com/Konstantin8105/c4go
https://github.com/Konstantin8105/f4go
https://github.com/Konstantin8105/f4go
https://github.com/google/grumpy
https://github.com/google/grumpy
https://github.com/dglo/java2go
https://doi.org/10.1007/978-3-030-50029-0_9
https://opensource.googleblog.com/2009/11/hey-ho-lets-go.html
https://opensource.googleblog.com/2009/11/hey-ho-lets-go.html

156 A. Kirszenberg et al.

19. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: Ltsmin:
high-performance language-independent model checking. In: TACAS 2015, pp.
692–707, April 2015

20. Laarman, A., Pater, E., van de Pol, J., Hansen, H.: Guard-based partial-order
reduction. Int. J. Softw. Tools Technol. Transfer 1–22 (2014)

21. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: liveness and safety for
channel-based programming. In: POPL 2017, pp. 748–761. ACM (2017)

22. Lange, J., Ng, n., Toninho, B., Yoshida, N.: A static verification framework for
message passing in go using behavioural types. In: CSE 2018, pp. 1137–1148. ACM
(2018)

23. Liu, Z., Zhu, S., Qin, B., Chen, H., Song, L.: Automatically detecting and fixing
concurrency bugs in go software systems. In: International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
vol. 11, pp. 2227–2240 (2016)

24. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: PODC 1990, pp.
377–410. ACM (1990)

25. Ng, N., Yoshida, N.: Static deadlock detection for concurrent go by global session
graph synthesis. In CCC 2016, pp. 174–184. ACM (2016)

26. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58179-0 69

27. Ray, B., Posnett, D., Filkov, V., Devanbu, P.: A large scale study of programming
languages and code quality in github. In: SIGSOFT 2014, pp. 155–165 (2014)

28. RERS challenge. Rigorous examination of reactive systems (RERS) (2019). http://
rers-challenge.org/2019/

29. Tu, T., Liu, X., Song, L., Zhang, Y.: Understanding real-world concurrency bugs
in go. In: ASPLOS 2019, pp. 865–878 (2019)

30. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

31. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10, 203–232 (2018). https://doi.org/10.1023/A:1022920129859

32. Zaks, A., Joshi, R.: Verifying multi-threaded C programs with SPIN. In: SPIN
2008, pp. 94–107 (2008)

https://doi.org/10.1007/3-540-58179-0_69
http://rers-challenge.org/2019/
http://rers-challenge.org/2019/
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1023/A:1022920129859

Probabilistic Model Checking
of Randomized Java Code

Syyeda Zainab Fatmi1, Xiang Chen2, Yash Dhamija1, Maeve Wildes3,
Qiyi Tang4, and Franck van Breugel1(B)

1 York University, Toronto, Canada
franck@eecs.yorku.ca

2 University of Waterloo, Waterloo, Canada
3 McGill University, Montreal, Canada

4 University of Oxford, Oxford, UK

Abstract. Java PathFinder (JPF) and PRISM are the most popular
model checkers for Java code and systems that exhibit random behaviour,
respectively. Our tools make it possible to use JPF and PRISM together.
For the first time, probabilistic properties of randomized algorithms
implemented in a modern programming language can be checked. Fur-
thermore, our tools are accompanied by a large collection of randomized
algorithms that we implemented in Java. From those Java applications
and with the help of our tools, we have generated the largest collection
of realistic labelled (discrete time) Markov chains.

Keywords: (Probabilistic) model checking · Java PathFinder ·
PRISM

1 Introduction

Java PathFinder (JPF) is the most popular model checker for Java code. It
takes as input Java bytecode and a configuration file. The latter includes which
properties to check. As output, JPF produces a report that tells us, among
other things, whether any of those properties have been violated. PRISM is
the most popular probabilistic model checker. As input, it takes a model of a
system that exhibits random behaviour. The model can be expressed in a simple
language, but also as a labelled Markov chain (LMC). Furthermore, it takes a
probabilistic property specified in a logic as input. PRISM checks, among other
things, whether the model satisfies the property.

The popularity of these model checkers is reflected by the facts that JPF
has been downloaded hundreds of times every month for almost two decades
and PRISM has been downloaded more than 75,000 times1. The papers that
describe JPF [24] and PRISM [12] have each been cited more than 1,800 times.

1 www.prismmodelchecker.org/download.php.

Supported by the Natural Sciences and Engineering Research Council of Canada.

c© Springer Nature Switzerland AG 2021
A. Laarman and A. Sokolova (Eds.): SPIN 2021, LNCS 12864, pp. 157–174, 2021.
https://doi.org/10.1007/978-3-030-84629-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84629-9_9&domain=pdf
https://www.prismmodelchecker.org/download.php
https://doi.org/10.1007/978-3-030-84629-9_9

158 S. Z. Fatmi et al.

JPF is an explicit state model checker. It builds a model of the Java bytecode
on the fly. This model can be seen as a directed graph, which is known as the
state space. The vertices correspond to the states of JPF’s virtual machine and
the edges, also called transitions, represent sequences of bytecode instructions.

We have developed two extensions of JPF, jpf-label and jpf-probabilistic, that
decorate the state space in orthogonal ways. jpf-label provides an easy way to
label the states. To capture simple known facts about the states of JPF’s virtual
machine, jpf-label decorates those states with a set of atomic propositions. Our
extension supports a range of atomic propositions. For example, it allows us
to identify those states that are initial or final, those states in which a specific
boolean static field is true, those states in which a specific method returns, etc.
These atomic propositions may be used to express properties of the code. Such
properties can be formalized in logics such as linear temporal logic (LTL) [17]
and computation tree logic (CTL) [3].

Our extension jpf-probabilistic assigns probabilities to the transitions. Those
probabilities reflect the random choices in the Java code. To make it easy for
programmers to express those in Java and for our extension to detect them,
we have introduced three Java classes. The class Choice contains the method
make which takes an array of doubles, say p, as argument. The method invo-
cation Choice.make(p) returns i, where 0 ≤ i < p.length, with probability
p[i], provided that

∑
0≤i<p.length p[i] = 1.0. For convenience, we also introduced

the class Coin with the method flip. Furthermore, the method invocation
UniformChoice.make(n) returns i, where 0 ≤ i < n, with probability 1

n . By
adding probabilities to the transitions, we turn the state space into a (discrete
time) Markov chain (DTMC).

By default, JPF uses depth-first search (DFS) to traverse the state space.
It also supports breadth-first search (BFS). jpf-probabilistic contains several
search strategies that take the probabilities into account. In particular, it sup-
ports probability-first search [26], random search [26], softmax search [23], and
ε-greedy search [23]. The latter two are inspired by reinforcement learning [22].
We discuss these new search strategies in more detail in Sect. 3. Note that the
search strategies produce the same state space, provided that it can be explored
in its entirety. Otherwise, search strategies may explore different portions of the
state space. As we will see in Sect. 6, the new search strategies are much more
effective than DFS when model checking randomized Java code.

Our extensions jpf-label and jpf-probabilistic together with a converter allow
us to use JPF and PRISM in tandem. Given a randomized algorithm imple-
mented in Java and a configuration file, JPF with the help of jpf-label and
jpf-probabilistic produces an LMC, that is, a Markov chain the states of which
are labelled with atomic propositions. This chain can be graphically represented
as a directed graph where the edges are labelled with probabilities and the ver-
tices are coloured (where colours represent atomic propositions), and it can also
be converted into a format that can be fed into PRISM together with a proba-
bilistic property. This provides the first model checking tool, depicted in Fig. 1,
that can check probabilistic properties of randomized algorithms implemented
in a modern programming language.

Probabilistic Model Checking of Randomized Java Code 159

Java code

javac

Java bytecode configuration

JPFjpf-label jpf-probabilistic

labelled Markov chain
in JPF format

coloured graph

converter

labelled Markov chain
in PRISM format property

PRISM

result

Fig. 1. The diagram provides an overview of the model checking tool. The ovals are
data and the rectangles are tools. The blue ovals are input. The green ovals are output.
The red rectangles are the parts that we developed. (Colour figure online)

Instead of using our tool, one could try to model randomized algorithms in
PRISM’s input language. However, numerous details of some algorithms cannot
easily be handled directly by PRISM. Consider, for example, Frieze’s randomized
algorithm to find a Hamiltonian cycle in an undirected graph [8]. The algorithm
uses lists which are rotated and reversed. Furthermore, the probabilities associ-
ated with the choices in the algorithm depend on the size of the lists and can
be zero. Such features can easily be captured in Java but cannot be directly
captured in PRISM’s input language.

The Java implementations of sixty randomized algorithms are provided with
our extension jpf-probabilistic. To illustrate how our tool can be used, we present
three examples. In the first one, we consider the Miller-Rabin primality test
[15,18]. This is a Monte Carlo algorithm as it may incorrectly report with
small probability that the number provided as an argument is prime. This
algorithm has been implemented in the method isProbablePrime of the class
java.math.BigInteger. With our tool we can compute the probability of this
algorithm erroneously reporting that a number is prime. We have applied our
tool to several other Monte Carlo algorithms as well.

In the second example, we consider a variation of an algorithm due to Floyd
and Rivest [7]. This is a Las Vegas algorithm as it always returns the correct
result, however, the running time may vary. The algorithm selects the ith small-
est of n numbers. Hence, it can be used to determine the median, which is an

160 S. Z. Fatmi et al.

important clustering statistic (see, for example, [25]). Some steps of the algo-
rithm may fail with small probability. If that happens, those steps need to be
repeated. As a result, this algorithm gives rise to an infinite state space. Hence,
JPF will eventually run out of memory when model checking a Java implemen-
tation of this algorithm. However, as we will show, with our tool we can compute
the probability that the part of the state space that has not been fully explored
by JPF is reached when the code is run. This provides us with a lower bound on
the confidence in the verification results of JPF. For example, if JPF does not
detect any uncaught exceptions and the probability of the unexplored state space
is 0.01, then it is guaranteed that an uncaught exception does not occur with at
least probability 0.99. We have considered several other randomized algorithms
that give rise to very large or infinite state spaces.

In the third example, we show that our tool can compute other quantita-
tive properties of randomized algorithms implemented in Java. For example, we
demonstrate that our tool can compute the probability that a randomly gener-
ated graph [5] is connected.

As these examples will demonstrate, not only can PRISM provide quantita-
tive information that enriches the qualitative verification results of JPF, PRISM
can also turn a JPF out of memory error into valuable quantitative information
about JPF’s seemingly failed verification effort. Our extensions of JPF, jpf-label
and jpf-probabilistic, as well as our converter are essential in both cases.

2 JPF-Label

As we already mentioned, to express properties of Java code in terms of logics
such as LTL and CTL, we need a way to specify atomic propositions and to
label those states that satisfy them. For example, we may want to label the final
states or those states in which a specific static boolean field is true. Currently,
there is no model checker for Java code that labels states.

In the past, several extensions of JPF, all named jpf-ltl, have been developed
that supported the checking of properties expressed in LTL.2 None of these
extensions is compatible with the latest version of JPF. In [4], Cuong and Cheng
describe a tool that given a property expressed in LTL generates an extension of
JPF that checks the property. Unfortunately, an implementation of such a tool
is not available [2].

In the literature, the following categories of atomic propositions in the context
of Java code are distinguished:

– static boolean fields and local boolean variables (jpf-ltl),
– boolean expressions built from static integer fields and local integer variables

(jpf-ltl and [11]),

2 Only one version of jpf-ltl is still available. This version is based on the algo-
rithms described in [9] and can be found at the URL code.google.com/archive/p/jpf-
ltl/source. Most of the code is more than 15 years old. JPF has changed a lot in the
last 15 years, thus, this extension is incompatible with the current version of JPF.

https://code.google.com/archive/p/jpf-ltl/source
https://code.google.com/archive/p/jpf-ltl/source

Probabilistic Model Checking of Randomized Java Code 161

– method invocations (jpf-ltl and [4,11,21]),
– method returns and the values returned ([1,11]),
– thrown exceptions and the exception types ([11]), and
– AspectJ pointcuts ([21]).

Note that, apart from jpf-ltl and [4], all the above references describe verification
tools that are not model checkers.

Our extension jpf-label3 implements the following 12 different ways to label
states, including instances of all the above mentioned categories apart from the
last one.

– Initial: labels the initial state.
– End: labels the final states, also known as end states in JPF.
– BooleanStaticField: labels states with the value of a static boolean field.
– IntegerStaticField: labels states with the value of a static integer field.
– BooleanLocalVariable: labels states with the value of a local boolean vari-

able.
– IntegerLocalVariable: labels states with the value of a local integer vari-

able.
– InvokedMethod: labels those states in which a method is invoked.
– ReturnedBooleanMethod: labels those states in which a method has returned

with the boolean return value.
– ReturnedIntegerMethod: labels those states in which a method has returned

with the integer return value.
– ReturnedVoidMethod: labels those states in which a void method has

returned.
– SynchronizedStaticMethod: labels those states in which a synchronized

static method acquires or has released the lock.
– ThrownException: labels those states in which an exception has been thrown.

The field, variable, method, or exception of interest is specified in the JPF con-
figuration file. Our tool also allows users to easily implement their own state
labelling by simply extending an abstract class containing only five methods.

Any code that JPF can handle, can also be handled by jpf-label. When we
run JPF extended with jpf-label on Java code, it can generate a file that contains
the state labelling. An example is provided in Fig. 2. Furthermore, it can also
produce a graphical representation of the labelled state space as a coloured
directed graph, an example of which can be seen in Fig. 7. The probabilities on
the edges of this figure are produced by the extension jpf-probabilistic which we
discuss in detail in the next section.

Our extension jpf-label consists of 2,693 lines of Java code. More details about
the design and implementation of jpf-label can be found in [6].

3 jpf-label is available at github.com/javapathfinder/jpf-label.

https://github.com/javapathfinder/jpf-label

162 S. Z. Fatmi et al.

1 0="init" 1="true__PrimalityTest_isPrime__II__Z" 2="end"

↪→ 3="false__PrimalityTest_isPrime__II__Z"

2 -1: 0

3 2: 1

4 3: 2

5 4: 3

6 5: 2

7 6: 1

Fig. 2. The file PrimalityTest.lab contains the state labelling produced by JPF
extended with our jpf-label from the Java app PrimalityTest. Line 1 lists the labels
and their indices. The remaining lines provide the labelling for those states that have
labels. For example, line 4 specifies that state 3 is labelled "end", that is, it is a final
state.

3 JPF-Probabilistic

Our extension jpf-probabilistic4 decorates the transitions of the state space with
probabilities, turning the state space into a DTMC. jpf-probabilistic can handle
any Java code that can be model checked by JPF, which contains randomness,
but does not contain any other sources of nondeterminism, such as concurrency.
When we run JPF extended with jpf-probabilistic on randomized Java code, we
can generate a file that contains the Markov chain corresponding to the code. An
example can be found in Fig. 3. When using both jpf-label and jpf-probabilistic,
JPF can produce a graphical representation of the LMC as a directed graph
where the vertices are coloured and the edges are labelled with probabilities (see
Fig. 7).

1 788962 1347606

2 -1 0 1.000000

3 0 1 0.200000

4 0 2 0.200000

5 0 3 0.200000

6 ...

Fig. 3. The file LazySelect.tra contains the Markov chain produced by JPF extended
with our jpf-probabilistic from the Java app LazySelect. The first line specifies the
number of states and the number of transitions. The transitions and their probabilities
are described in the remaining lines. Here we only show four transitions. Each transition
is captured by its source state, its target state, and its probability. For example, line 5
specifies the transition from state 0 to state 3 with probability 0.200000.

By default, JPF uses depth-first search to traverse the state space. It also sup-
ports breadth-first search. Since our extension jpf-probabilitic associates proba-

4 jpf-probabilistic is available at github.com/javapathfinder/jpf-probabilistic.

https://github.com/javapathfinder/jpf-probabilistic

Probabilistic Model Checking of Randomized Java Code 163

bilities with the transitions, these probabilities can be used to drive the search
of the state space. Our extension provides four such search strategies.

Probability-first search (PFS), which was introduced by Zhang in [26], uses
the probabilities of the transitions to select the next state to explore. In particu-
lar, it always chooses a state whose path from the root in the search’s spanning
tree has the highest probability.

Random search (RS) [26] randomly selects a state among the states that
have been discovered, but that have not yet been fully explored. The chance of
choosing a state is proportional to the probability of the path from the root in
the search’s spanning tree. Let us make that precise. Assume that {s0, . . . , sn}
is the set of states that have been discovered but their outgoing transitions have
not all been explored yet. Then RS chooses state sj , with 0 ≤ j ≤ n, with
probability

p(sj)∑
0≤i≤n p(si)

,

where p(si) is the probability of the path from the root to si in the search’s
spanning tree.

In [23], Tang introduced two search strategies inspired by reinforcement learn-
ing [22]. The softmax search (SMS) selects the next state according to a Gibbs
distribution. Assume again that {s0, . . . , sn} is the set of states that have been
discovered but not yet fully explored. Then SMS chooses state sj , with 0 ≤ j ≤ n,
with probability

ep(sj)/τ

∑
0≤i≤n ep(si)/τ

,

where p(si) is defined as above and the constant τ is called the temperature.
This constant should be a positive real number. The ε-greedy search (EGS)
relies on a parameter ε ∈ (0, 1). It combines RS and PFS in such a way that
with probability 1 − ε it behaves like PFS and with probability ε it behaves like
RS. These different search strategies often visit the states in a different order
and, as a result, may visit different parts of the state space and, hence, detect
bugs in different parts of the code (see Sect. 6).

An earlier version of jpf-probabilistic has been discussed in [27]. Since then,
a lot has changed. For example, the search strategies SMS and EGS have been
added and the search strategies PFS and RS have been implemented more effi-
ciently. Also, the ability of jpf-probabilistic to generate a file that contains the
Markov chain and to produce a graphical representation of the LMC are both
new. Furthermore, numerous examples have been added. The current version of
jpf-probabilistic contains 14,224 lines of Java code. Only 996 lines of Java code
of the original version of jpf-probabilistic have remained and the other 573 lines
of Java code have been deleted or replaced.

4 Our Converter

The format of the transition and labelling files generated by JPF differs slightly
from PRISM’s input format. Whereas JPF numbers its states starting from −1,

164 S. Z. Fatmi et al.

PRISM starts at zero. JPF may produce multiple transitions between a given
pair of states, while PRISM allows at most one transition between any pair of
states. Furthermore, in PRISM a label may only consist of letters, digits and
the underscore character, and it can neither begin with a digit nor contain any
whitespace. Additionally, a label should not be a reserved keyword in PRISM.
PRISM also requires that the initial states of the model are labelled as such.

Therefore, we have implemented a simple converter, named JPFtoPRISM, that
renumbers the states in the transition and label files. The converter also checks
if all labels satisfy the above mentioned restrictions. Furthermore, if the initial
state of the model is not labelled, the converter adds the label "init" to the
initial state. If JPF has produced multiple transitions from a given source state
to a given target state, then the converter collapses those transitions into a
single transition between the source and target state by adding up the transition
probabilities. Moreover, if the probabilities of the outgoing transitions of each
state do not sum to one, the converter adds a labelled sink state for the remaining
probability. This ensures that if JPF has not traversed the state space completely,
for example, because it ran out of memory, then the resulting LMC’s transition
matrix is a right stochastic matrix, preventing a deadlock warning in PRISM.

Consider the labelled Markov chain represented by the labelling file and the
transition file shown in Fig. 4.

1 0="end"

2 2: 0

1 4 5

2 -1 0 1.0

3 0 1 0.25

4 0 1 0.25

5 0 2 0.25

6 2 2 1.0

Fig. 4. The labelling file is shown on the top left. Line 1 lists the labels and their
indices. In this case, there is only one label, namely "end", with index 0. Line 2 speci-
fies that state 2 is labelled "end", that is, it is a final state. The transition file is shown
on the bottom left. The first line specifies that there are four states and five transi-
tions. The five transitions and their probabilities are described in the remaining lines.
Each transition is captured by its source state, its target state, and its probability. A
graphical representation of the state space is displayed on the right.

Using our converter, the LMC described above is transformed into an LMC
in PRISM’s format, represented by the labelling file and the transition file shown
in Fig. 5. The converter renumbers the states such that the numbering begins at
0. Since the initial state of the model is not labelled, the converter adds the label
"init" to the initial state. The converter also collapses multiple transitions from
a given source state to a given target state into a single transition by adding

Probabilistic Model Checking of Randomized Java Code 165

up the transition probabilities. Finally, the converter adds a sink state for the
remaining probability of those states of which the probabilities of their outgoing
transitions do not sum to one.

1 0="end" 1="init" 2="sink"

2 0: 1

3 3: 0

4 4: 2

1 5 7

2 0 1 1.000000

3 1 2 0.500000

4 1 3 0.250000

5 1 4 0.250000

6 2 4 1.000000

7 3 3 1.000000

8 4 4 1.000000

Fig. 5. The labelling file is shown on the top left. Line 1 lists the labels and their
indices. Two labels have been added, namely "init" and "sink", to label the initial
state 0 and sink state 4, respectively. The states have been renumbered. Note that
line 3 specifies that the final state is now state 3. The transition file is shown on the
bottom left. The first line specifies that there are five states and seven transitions.
The states have been renumbered. The two transitions from state 0 to state 1 in Fig. 4
have been combined into one transition from state 1 to state 2. Transitions to the sink
state, state 4, have been added from those states that have not yet been fully explored
(state 1 and 2 in the transformed system). Note that the sink state transitions to itself
with probability 1.0. A graphical representation of the state space is displayed on the
right. (Colour figure online)

5 Monte Carlo Algorithms

Monte Carlo algorithms are randomized algorithms that may produce incorrect
results with a small probability. As we will show, JPF and our extensions jpf-
label and jpf-probabilistic together with our converter and PRISM can compute
the probability that a Monte Carlo algorithm implemented in Java gets it wrong.

A number of algorithms provided with jpf-probabilistic are Monte Carlo algo-
rithms, including the primality tests due to (1) Fermat [14], (2) Lucas, (3) Miller
and Rabin [15,18], and (4) Solovay and Strassen [20]. These algorithms deter-
mine whether a number given as input is prime. The algorithms may erroneously
report that the input number is prime. As most Monte Carlo algorithms, the
algorithms contain a main loop. The more iterations of this loop, also known
as trials, are executed, the lower the probability that the algorithms return an
incorrect result.

166 S. Z. Fatmi et al.

We have implemented the Miller-Rabin primality test in Java in a class called
MillerRabinPrimalityTest, abbreviated to PrimalityTest below. The ran-
domization in the code is captured by jpf-probabilistic’s UniformChoice.make
method. We configure JPF as specified in Fig. 6. Running JPF with this config-
uration file results in the creation of the file named PrimalityTest.dot in DOT
format. The resulting coloured graph is depicted in Fig. 7.

1 target = PrimalityTest

2 target.args = 9,2

3 classpath = <directory containing PrimalityTest.class>

4

5 @using jpf-label

6 label.class = label.Initial; label.End; label.ReturnedBooleanMethod

7 label.ReturnedBooleanMethod.method = PrimalityTest.isPrime(int,int)

8

9 @using jpf-probabilistic

10 listener = probabilistic.listener.StateSpaceDot,

↪→ probabilistic.listener.StateLabelVisitor

11 probabilistic.listener.StateSpaceDot.precision = 3

Fig. 6. This JPF configuration file specifies that the Java app named PrimalityTest

with the command line arguments 9 (the number to be tested for primality) and 2 (the
number of trials) is to be model checked by JPF. The classpath tells JPF where to
find the bytecode of the app. Line 5 and 9 specify that our extensions jpf-label and
jpf-probabilistic are used. Line 6 specifies that the initial state and the final states
(also known as end states in JPF) should be labelled, as well as those states in which
the method isPrime of the class PrimalityTest that takes two ints as arguments
(as specified in line 7) returns. Finally, line 10 specifies that JPF should generate a
graphical representation of the state space (which forms an LMC) and line 11 captures
that the probabilities of the transitions should be depicted with three digits precision.

The Miller-Rabin primality test returns true when a prime number is
provided as input. We compute the probability that the algorithm returns
the wrong result when a composite number is provided as input. We first
run JPF as described above, but using this time probabilistic.listener.
StateSpaceText and label.StateLabelText in line 10 of Fig. 6 instead.
As a result, JPF creates the file PrimalityTest.tra that contains the
transitions and their probabilities, and the file PrimalityTest.lab that
contains the state labelling. Together they specify an LMC. The label
"true__PrimalityTest_isPrime__II__Z", abbreviated below as "incorrect",
captures that the method isPrime of the class PrimalityTest, which takes two
arguments of type int and returns a value of type boolean, returns the value
true. This label captures the scenario in which the method returns true but the
input is not a prime. Note that we use name mangling similar to that used in
the Java native interface [13].

Probabilistic Model Checking of Randomized Java Code 167

Fig. 7. This coloured graph has been generated by JPF extended with jpf-label and
jpf-probabilistic. It represents the state space for the Miller-Rabin primality test run
for two trials for the input number 9. The initial state (state -1) and the final states
(states 3 and 5) are labelled, as well as those states in which the static method that
determines whether the number is prime returns true (states 2 and 6) and false (state 4).
(Colour figure online)

Subsequently, we use our converter to transform the LMC into PRISM’s for-
mat. Finally, we use PRISM’s explicit engine to compute for this LMC the prop-
erty P=? [F "incorrect"]. That is, PRISM computes the probability that
the LTL property F "incorrect" holds. This property specifies that eventually
a state labelled "incorrect", that is, a state in which the method isPrime of the
class PrimalityTest returns true, is reached. PRISM returns the probability
0.0625, which corresponds to reaching either state 2 or state 6 in Fig. 7.

6 Very Large and Infinite State Spaces

The size of the underlying LMC is often too large for JPF to explore entirely,
before running out of time or memory. In such a case, we can measure the amount
of progress made by JPF, using our extension jpf-probabilistic and our converter
together with PRISM, as we will show below.

The lazy select algorithm [7] selects the ith smallest of n numbers. Some steps
of the algorithm may fail with small probability. If that happens, those steps
need to be repeated. As a result, this algorithm gives rise to an infinite state
space. We implemented the algorithm in Java, again using jpf-probabilistic’s
UniformChoice.make method to capture randomization.

When we use JPF in combination with our extension jpf-probabilistic, to
model check the Java code to select the third smallest of five elements, JPF
runs out of its 10 GB of memory after 2 min and 9 s. In that time, JPF visits
788,962 states and does not detect any violations of properties such as uncaught
exceptions. However, since JPF does not completely traverse the infinite state
space, its verification effort provides very little, if any, useful information.

By using PRISM in combination with JPF, we can extract useful quantitative
information from a seemingly failed verification effort. This is accomplished as

168 S. Z. Fatmi et al.

follows. Instead of letting JPF run out of memory, JPF can be configured so
that it stops just before running out of memory. Our extensions jpf-label and
jpf-probabilistic generate the LMC. Subsequently, this LMC is converted into
PRISM’s format by means of our JPFtoPRISM. Since not all states have been fully
explored, the converter also adds a sink state to the LMC as well as a transition
to this sink state from all states that have not been fully explored by JPF and
also labels the sink state. Finally, we use PRISM to determine the probability
that the sink state is eventually reached by computing the property P=? [F
"sink"]. For the above mentioned LMC with 788,962 states, this property has
a value less than 0.00004. As a consequence, with more than probability 0.99996
only fully explored states are reached. Hence, if we run the Java code then with
at least probability 0.99996 we will not encounter any violation of the properties
checked by JPF. This number represents the progress made by JPF [28].

JPF provides two search strategies: DFS and BFS. As mentioned in Sect. 3,
jpf-probabilistic provides a number of other search strategies that take the proba-
bilities into account. Since different search strategies may visit states in different
orders, they may make progress at different rates. As shown in Fig. 8, this is
indeed the case for the Java implementation of lazy select. Some of the search
strategies that take the probabilities into account make more progress than BFS.
DFS, JPF’s default search strategy, makes no progress for this particular exam-
ple. Note that one can run multiple instances of JPF in parallel each using a
different search strategy and combine the results.

Fig. 8. This graph depicts results of the model checking tool applied to the Java code
implementing lazy select that selects the third smallest of five elements. The x-axis
represents time in milliseconds. The y-axis represents the progress made by JPF. The
colours represent the different search strategies: • = depth-first search, • = breadth-
first search, • = ε-greedy search, • = probability-first search, • = random search,
• = softmax search. The graph on the left zooms in on the first 100ms. The progress
of depth-first search is zero and, therefore, coincides with the x-axis. (Colour figure
online)

Probabilistic Model Checking of Randomized Java Code 169

1 target = ErdosRenyiUndirectedModel

2 target.args = 5,0.6

3 classpath = <directory containing ErdosRenyiUndirectedModel.class>

4

5 @using jpf-label

6 label.class = label.ReturnedBooleanMethod

7 label.ReturnedBooleanMethod.method =

↪→ ErdosRenyiUndirectedModel.isConnected()

8

9 @using jpf-probabilistic

10 listener = probabilistic.listener.StateSpaceText,label.StateLabelText

Fig. 9. This JPF configuration file specifies that the Java app named
ErdosRenyiUndirectedModel with the command line arguments 5 (the number of ver-
tices in the graph) and 0.6 (the probability of adding an edge between two vertices)
is to be model checked by JPF. Line 5 and 9 specify that our extensions jpf-label
and jpf-probabilistic are used. Line 6 and 7 specify that those states in which the
boolean method isConnected of the class ErdosRenyiUndirectedModel returns should
be labelled. Line 10 specifies that JPF should generate a textual representation of the
state space.

7 Other Quantitative Properties

In addition to determining the probability that a Monte Carlo algorithm returns
an incorrect result and the progress made by JPF on a large or infinite state
space, our tool can check a wide range of other quantitative properties of ran-
domized algorithms implemented in Java. The Erdös-Rényi model [5] is a model
for generating random graphs. In this model, a graph with a given number of
vertices is constructed by placing an edge between each pair of vertices with a
given probability, independent from every other edge. We implemented a ver-
sion of the algorithm to generate random undirected graphs in Java in the class
ErdosRenyiUndirectedModel. We use jpf-probabilistic’s Choice.make method
to express the random choices in the code.

Assume that we would like to determine the probability that the graph gen-
erated by the algorithm is connected. We add a boolean method to our class,
called isConnected, that returns true if the graph is connected and false other-
wise. We run JPF with the configurations specified in Fig. 9, which results in the
creation of a transition and labelling file that represent the underlying LMC.

Using our converter JPFtoPRISM, we transform the LMC produced by
JPF into PRISM’s format. We then run PRISM to compute the property
P=? [F "true__ErdosRenyiUndirectedModel_isConnected____Z"], which
captures the probability that eventually a state is reached in which the boolean
method isConnected of the class ErdosRenyiUndirectedModel returns true.
By varying the number of vertices in the random graph and the probability
of placing an edge between any two vertices, we construct the graph shown in
Fig. 10.

170 S. Z. Fatmi et al.

Fig. 10. This diagram depicts results of the model checking tool applied to the Java
code implementing the Erdös-Rényi model. The x-axis represents the probability of
adding an edge between two vertices. The y-axis represents the probability that the
generated graph is connected. The colours represent the number of vertices in the
generated graph: • = 2, • = 3, • = 4, • = 5, • = 6, • = 7 (Colour figure online)

8 Overhead

We monitored the memory and time usage of our tool on the examples provided
with our extension jpf-probabilistic. In all cases we have observed so far, the
overhead of jpf-label and jpf-probabilistic is very limited.

Consider the algorithm to determine whether an integer array given as input
has a majority element [16]. The algorithm is a Monte Carlo algorithm and may
erroneously report that the given array does not have a majority element. The
algorithm contains a main loop. The more iterations of this loop, also known
as trials, are executed the lower the probability that the algorithm returns an
incorrect result.

We have implemented this algorithm in Java in a class called
HasMajorityElement. We provide as input an integer array of size eleven. By
increasing the number of trials we can increase the size of the state space linearly.

The amount of time (in seconds) used by JPF without and with jpf-label and
jpf-probabilistic are shown in Fig. 11. jpf-probabilistic has virtually no overhead
and jpf-label increases the time used by JPF by a factor of approximately 1.2.
The amount of heap memory (in MB) used by JPF without and with jpf-label
and jpf-probabilistic are shown in Fig. 12. For both jpf-label and jpf-probabilistic,
the difference is only a few MB.

Probabilistic Model Checking of Randomized Java Code 171

Fig. 11. This graph depicts the time used by JPF applied to the Java code implement-
ing the majority element algorithm. The x-axis represents the number of iterations of
the main loop. The y-axis represents the amount of time in seconds. The colours repre-
sent the following configurations: • = JPF run without jpf-label and jpf-probabilistic,
• = JPF run with jpf-label, • = JPF run with jpf-probabilistic. (Colour figure online)

Fig. 12. This graph depicts the memory usage of JPF applied to the Java code imple-
menting the majority element algorithm. The x-axis represents the number of itera-
tions of the main loop. The y-axis represents the amount of heap memory in MB. The
colours represent the following configurations: • = JPF run without jpf-label and jpf-
probabilistic, • = JPF run with jpf-label, • = JPF run with jpf-probabilistic. (Colour
figure online)

It should be mentioned that one can easily write a Java application for which
the memory overhead caused by jpf-label is arbitrarily large (for example, see
Fig. 13). However, one does not encounter such Java applications in practice.

172 S. Z. Fatmi et al.

1 public class Example {

2 public static boolean flip = true;

3 public static void main(String[] args) {

4 int n = Integer.parseInt(args[0]);

5 for (int i = 0; i < n; i++) {

6 flip = false;

7 flip = true;

8 }

9 }

10 }

Fig. 13. Running this example without jpf-label results in a single state. Running the
code with jpf-label, while labelling the states with the value of the field flip, and
passing the value n as command-line argument results in 2n+2 states.

9 Conclusion

Our extensions of JPF, jpf-label and jpf-probabilistic, expand the functionality
of the model checker. The former provides an easy way to the label the states
and the latter assigns probabilities to the transitions and introduces new search
strategies. Both extensions have been designed in such a way that they them-
selves can be easily extended.

Our extensions together with our converter JPFtoPRISM build a bridge
between the model checkers JPF and PRISM. They allow us to use them in
tandem. For example, it is now possible to check properties expressed in logics
such as LTL [17] and PCTL [10] of randomized Java code. Furthermore, we can
use PRISM to supplement JPF’s qualitative results with quantitative informa-
tion.

To determine their performance, many probabilistic model checking algo-
rithms are run on randomly generated LMCs. Since these algorithms are applied
in practice to LMCs that are far from random, there is a pressing need for realistic
LMCs. From the Java implementations of randomized algorithms that accom-
pany jpf-probabilistic we can generate a large collection of LMCs. It almost
doubles the number of available realistic LMCs in PRISM’s collection. For all of
these examples, the overhead of jpf-label and jpf-probabilistic is very limited, as
discussed in Sect. 8.

Our tool handles any Java (byte)code acceptable by JPF (currently JPF fully
supports Java 8 and most features of Java 11) that does not contain other forms
of nondeterminism, such as concurrency, because such Java (byte)code gives rise
to a probabilistic automaton [19] instead of a DTMC. Extending the tool so that
it can handle other forms of nondeterminism is left for future research.

Probabilistic Model Checking of Randomized Java Code 173

References

1. Arcaini, P., Gargantini, A., Riccobene, E.: Online testing of LTL properties for
Java Code. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
95–111. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03077-7 7

2. Cheng, K.S.: Personal communication, October 2019
3. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons

using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

4. Cuong, N.A., Cheng, K.S.: Towards automation of LTL verification for Java
Pathfinder. In: Proceedings of the 15th National Undergraduate Reseach Oppor-
tunities Programme Congress, Singapore, March 2010. National University of Sin-
gapore (2010)

5. Erdös, P., Rényi, A.: On random graphs I. Publ. Math. 6, 290–297 (1959)
6. Fatmi, S.Z.: Probabilistic model checking of randomized Java code. Master’s thesis,

York University, Toronto, Canada, 2020
7. Floyd, R., Rivest, R.: Expected time bounds for selection. Commun. ACM 18(3),

165–172 (1975)
8. Frieze, A.M.: Finding Hamilton cycles in sparse random graphs. J. Comb. Theor.

Ser. B 44(2), 230–250 (1988)
9. Giannakopoulou, D., Lerda, F.: From states to transitions: improving translation

of LTL formulae to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE
2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-36135-9 20

10. Hansson, H., Jonsson, B.: A framework for reasoning about time and reliability.
In: Proceedings of the 10th Real-Time Systems Symposium, pp. 102–111. IEEE,
Santa Monica, CA, USA (1989)

11. Kähkönen, K., Lampinen, J., Heljanko, K., Niemelä, I.: The LIME interface speci-
fication language and runtime monitoring tool. In: Bensalem, S., Peled, D.A. (eds.)
RV 2009. LNCS, vol. 5779, pp. 93–100. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-04694-0 7

12. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

13. Liang, S.: The Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley, Reading (1999)

14. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Baco Raton (1997)

15. Miller, G.L.: Riemann’s hypothesis and tests for primality. In: Rounds, W.C., Mar-
tin, N., Carlyle, J.W., Harrison, M.A. (eds.) Proceedings of the 7th Annual ACM
Symposium on Theory of Computing, pp. 234–239. ACM, Albuquerque, NM, USA,
1975

16. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

17. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pp. 46–57. IEEE, Providence,
RI, USA (1977)

https://doi.org/10.1007/978-3-319-03077-7_7
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/3-540-36135-9_20
https://doi.org/10.1007/3-540-36135-9_20
https://doi.org/10.1007/978-3-642-04694-0_7
https://doi.org/10.1007/978-3-642-04694-0_7
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

174 S. Z. Fatmi et al.

18. Rabin, M.O.: Probabilistic algorithm for testing primality. J. Num. Theory 12(1),
128–138 (1980)

19. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1995)

20. Solovay, R.M., Strassen, V.: A fast Monte-Carlo test for primality. SIAM J. Com-
put. 6(1), 84–85 (1977)

21. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In: Barringer, H.,
Finkbeiner, B., Gurevich, Y., Sipma, H. (eds.) Proceedings of the 5th Workshop on
Runtime Verification. ENTCS, vol. 144, pp. 109–124. Elsevier, Edinburgh, Scotland
(2005)

22. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge (2018)

23. Tang, Q.: Guiding probabilistic model checkers by reinforcement learning. Master’s
thesis, University of Oxford, Oxford, UK (2013)

24. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2), 203–232 (2003)

25. Dongkuan, X., Tian, Y.: A comprehensive survey of clustering algorithms. Ann.
Data Sci. 2(2), 165–193 (2015)

26. Zhang, X.: Checking progress of model checking randomized algorithms. Master’s
thesis, York University, Toronto, Canada (2010)

27. Zhang, X., van Breugel, F.: Model checking randomized algorithms with Java
PathFinder. In: Proceedings of the 7th International Conference on the Quantita-
tive Evaluation of Systems, pp. 157–158. IEEE, Williamsburg, VA, USA, Septem-
ber 2010

28. Zhang, X., van Breugel, F.: A progress measure for explicit-state probabilistic
model-checkers. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS,
vol. 6756, pp. 283–294. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22012-8 22

https://doi.org/10.1007/978-3-642-22012-8_22
https://doi.org/10.1007/978-3-642-22012-8_22

Case Studies

A Model-Checked I2C Specification

Lukas Humbel(B), Daniel Schwyn, Nora Hossle, Roni Haecki, Melissa Licciardello,
Jan Schaer, David Cock, Michael Giardino, and Timothy Roscoe

ETH Zurich, Zurich, Switzerland
{lukas.humbel,daniel.schwyn,nora.hossle,roni.haecki,

melissa.liccardello,jan.schaer,david.cock,michael.giardino,
timothy.roscoe}@inf.ethz.ch

Abstract. I2C is a pervasive bus protocol used for querying sensors and actu-
ators, but it is plagued with incompatible devices, violating the specification at
various levels.

Interacting with partially compliant devices poses several challenges. Com-
patibility of the controller interface, as well as the driver code, must be checked
manually and potentially changed. This is a difficult process, as interactions with
other bus devices must also be considered. We propose a model checking app-
roach to quickly write high-assurance drivers and layers of the I2C stack. We do
not propose a single, true formalization of I2C, but a framework that allows rapid
modelling of non-compliant devices and verify the correct interaction with a host
driver process.

Our contribution is twofold: First, we develop a framework that allows the
specification of device and driver behavior together, and verification of their
correct interaction. Second, we provide already verified, fine-grained building
blocks, representing layers of the I2C stack that can be reused to interact with
partially-compliant devices, as well as reducing model checking complexity.

Our specifications are stated in a machine-readable, executable, and layered
DSL. From the DSL, we generate both Promela and C code. The Promela is used
to apply model checking to ensure the layer implementations follow the abstract
specifications. The C code is used to build and verify an EEPROM model and
driver running on a Raspberry Pi.

Keywords: Model checking · Serial protocol · I2C · DSL · Layering

1 Introduction

We present a layered framework1 for verifying implementations of the ubiquitous I2C
protocol and provide initial layers of the I2C stack. Each layer has an executable imple-
mentation, formal specification, and the adherence of the implementation to the speci-
fication is model checked.

I2C is a low-speed bus that is a fundamental building block of almost all mod-
ern computer systems. It is used to network most integrated circuits and other

1 Source code available http://github.com/lluki/filz.

c© Springer Nature Switzerland AG 2021
A. Laarman and A. Sokolova (Eds.): SPIN 2021, LNCS 12864, pp. 177–193, 2021.
https://doi.org/10.1007/978-3-030-84629-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84629-9_10&domain=pdf
http://github.com/lluki/filz
https://doi.org/10.1007/978-3-030-84629-9_10

178 L. Humbel et al.

devices in platforms ranging from mobile phone Systems-on-a-chip (SoCs) to server
motherboards. It is also used as a sideband protocol in HDMI connections and mem-
ory DIMMs. While typically invisible to a machine’s system software, I2C is used by
embedded Baseboard Management Controllers (BMCs) to control power and clock dis-
tribution to the rest of the computer system.

For this reason, I2C is a critical (if often overlooked [1]) component. Incorrect pro-
gramming of the I2C network (e.g. misconfiguring a voltage regulator) can cause irre-
vocable hardware damage. Moreover, I2C controllers (devices like the BMC, which
initiate transactions on the network) have almost unrestricted visibility and authority
over the hardware. To build a secure machine, board firmware (such as on the BMC)
must be trusted. For systems as complex as modern computing platforms, real trust
requires formal verification of the software stack. That, in turn, must be carried out in
relation to a faithful model of the underlying hardware.

Unfortunately, I2C is described in an ambiguous informal English-language docu-
ment [13]. While almost all significant hardware components in a modern system talk
I2C, many interpret this standard differently, or only partially implement it.

Our I2C specification is a first step in addressing this problem. Each logical layer
in the I2C protocol has a corresponding layer in the specification. At each layer, an
abstract specification given as a single Promela process captures the correct behavior
of the complete network (senders and receivers) at that layer. The lowest layer models
electrical states on the bus and relies only on minimal timing assumptions.

In addition, deterministic, executable implementation specifications at each layer,
written in a Domain Specific Language (DSL), describe end-point state machines,
which are compiled into Promela. SPIN [9] is then used to verify that the abstract spec-
ification at each layer is correctly implemented by the composition of the implemen-
tations at all underlying layers. We generate C code from the executable specification
which implements a complete, real-world I2C stack. In Sect. 5.6 we show how to use
this code to build a driver for an I2C EEPROM.

Our specification can therefore serve as the basis for several applications and direc-
tions. Hardware designers can employ it as a rigorous, machine-checkable description
of how compliant I2C devices must behave, and generate high-coverage test suites for
their designs. Firmware engineers can use it to generate functional, performant C code
for parts of their stack, and build robust I2C software implementations which can han-
dle non-compliant devices in a robust and well-defined manner. Finally, for proof engi-
neers seeking to do full-stack software verification of computer systems, we provide
an abstract hardware model that captures the complexity of I2C hardware on which to
(partially) base refinement proofs of system software.

2 Background

I2C is a de-facto standard [13] low-speed control bus used for connecting integrated
circuits on a PCB and macrocells on an SoC. Board designers appreciate its efficiency
since it uses only two shared wires, and allows much of the control sequencing of a
computer system to be implemented in software by a BMC. In addition, the same bus
can be used to both query sensors and control actuators, allowing for complex controller
to be implemented efficiently. In this section, we describe the basic I2C protocol stack
and its implementation subtleties, which have motivated our specification.

A Model-Checked I2C Specification 179

An I2C bus has two wires, clock (SCL) and data (SDA), which are pulled up to the
supply voltage. ICs may only drive the lines low, not high. I2C devices are either con-
trollers or responders2, and a bus can have multiple controllers and responders. Other
devices (e.g. multiplexers), can connect different bus segments. Each responder has a
bus-wide unique seven-bit address; some addresses are special and reserved. Commu-
nication is always initiated by a controller using the target responder’s address.

SCL
SDA

START STOP bit 0 bit 1

Fig. 1. The four I2C bus symbols

The lowest level of the protocol uses the SCL and SDA wires to encode bits (0
or 1) and the start and end of a bus transaction as shown in Fig. 1. Outside of an I2C
transaction, SCL is always high.

START/STOP conditions and the clock signal are generated by a controller. Respon-
ders signal a 0 bit by driving SDA low, a 1 bit by doing nothing. When a responder
cannot provide the required data in a timely manner, it can perform clock stretching by
driving SCL low during the clock low period, blocking the bus.

SCL
SDA

SDA:C
SDA:R

START Address: 10..... Wr ACK Byte ACK START Addr Rd ACK Byte ACK Byte NACK STOP

Write message Read message

Transaction

Fig. 2. Example I2C transaction with two messages: write one byte, then read two bytes. SDA:C
and SDA:R are SDA signals asserted by controller and responder respectively. The address and
byte transfers have been abbreviated.

Above the bit layer, I2C deals in transactions containing one or more messages, as
shown in Fig. 2. Each message begins with a START condition, and the transaction ends
with a STOP condition. After each START, the controller transmits the 7-bit responder
address and a bit indicating READ orWRITE. If a responder with that address is present
it acknowledges with a 0 bit (ACK), otherwise the controller sees a 1 bit (NACK). A
message will not continue after a NACK. After an ACK, the message payload follows.

2 In this paper, we will use the current, more precise terms ‘controller’ for ‘master’ and ‘respon-
der’ for ‘slave’.

180 L. Humbel et al.

If the controller sends a READ, the responder will respond to the controller with a
sequence of bytes. Each byte is ACKed by the controller, otherwise the responder stops
sending. Likewise, when the controller sends a WRITE, it is followed by zero or more
bytes, each of which is ACKed by the responder.

The bus is only idle when both SDA and SCL are high. Collisions (two controllers
starting to use the bus at the same time) are detected by a device seeing a 0 bit on the bus
when it intended to transmit a 1 bit. In this case, the controllers stop transmitting and
may retry the transaction later. An undefined condition [13, p. 12] occurs when START
and STOP, START and a bit, or STOP and a bit are generated by different controllers
simultaneously.

This is the complete, basic I2C protocol, and appears fairly straightforward. How-
ever, many devices deviate from this standard, making it hard to capture their behavior
formally. For example, the hardware I2C controller in the BCM2835 SoC (used in the
Raspberry Pi 1) ignores clock stretching from responder devices [1], and cannot interop-
erate with devices that do so. The workaround is to ignore the hardware and implement
the controller directly in software (known as “bit-banging”), a CPU-intensive technique.
The AS5011 Hall Sensor [3] and the CAT5259 Digital Potentiometer [14] both ignore
the READ/WRITE bit of a message and require every transaction to be a WRITE, while
the KS0127 video decoder [2] ignores the STOP condition unless the controller can
include it in a nonstandard position, and continues writing data on the bus. These exam-
ples are all violations of the informal protocol specification, but they occur at different
layers (the bit, byte, and transaction layers).

An advantage of structuring a formal specification in layers is that conformance can
be expressed up to a given layer, and then modified to accommodate the non-compliant
device as a special-case above this layer.

3 Related Work

I2C has served as a case study for many verification techniques, for example in applying
the Analytical Software Design methodology [11]. Using a model of an existing con-
troller device, the authors verify correct interaction between a driver and this model.
Similar, Bošnački et al. [6] study the concurrent interactions of a Linux I2C bus driver
with hardware and syscalls. While our work overlaps in basic I2C properties, like adher-
ence to the addressing mode, we specify and construct the controller itself. Finkbeiner et
al. [7] study the information flow in an existing unverified I2C controller using Hyper-
LTL, a logic that can reason about and quantify over the set of traces, and thus can
correlate inputs and outputs. It is complementary to our work, since our specification
could be verified against their information flow properties. In a simulation assisted ver-
ification approach [8] I2C is considered. The assumptions in this work differ from ours:
The system under verification is treated as a black-box and simulation is used to reduce
the state-space while our goal is to replace a black box with a specified, clear sys-
tem. Bos et al. [5] proposes to express the I2C controller and devices in discrete time
process algebra. Their work neither automatically verifies nor generates code. While
they mention the ability to analyze deadlocks, they do not provide any conditions a
higher-layer device must fulfill in order to guarantee deadlock freedom. In contrast

A Model-Checked I2C Specification 181

our work’s main focus is stating sufficient correctness properties for higher abstrac-
tion levels. ACCESS.bus is a standard that builds hotplug on top of I2C. Its handshake
protocol has been model checked [4]. The I2C abstraction used is on a higher level (mes-
sages) than our model (down to level changes on the bus). Our work is complementary
and could be used verify their assumptions. Other bus protocols that have been studied
using model checking include the CAN bus [15] and the AMBA on chip bus [16]. These
bus specification ensure more guarantees than I2C such as fault confinement, liveness,
priority-based fairness.

4 Approach and Tools

We will illustrate our approach with an example with three layers: electrical, bus, and
nibble layer. The BusController receives a 4-bit nibble from the NibbleController and
writes it bitwise on the electrical layer. The BusResponder receives these bits from the
electrical layer and returns the nibble to the NibbleResponder. The responder either
ACKs or NACKs the message.

An example exchange is given below, between bus and nibble layers. We denote x
receiving value y on the lower layer with x↑y, while x↓y is x sending value y on the
lower layer. c is the NibbleController and r is the NibbleResponder.

. . . , c↑ACK, c↓3, r↑3, r↓NACK, c↑NACK, . . .

We see c receiving an ACK (presumably from the address phase), sending a payload
nibble 3, which is received and NACKed by r, ending with the NACK arriving at c. The
correctness statement for this layer is that any datum written by NibbleController will
be received by NibbleResponder. We do so by ensuring that the message sequence
produced by the implementation and an abstract process are equal.

We implement BusController (Listing 1.1) and BusResponder (Listing 1.2) in our
DSL, whose semantics are based on coroutines. Coroutines can call other coroutines,
and the callee executes until yielding to the caller. The coroutine resumes at the last
yield when called, with the local state preserved.

We implement the bus logic in process El. This calls BusController and BusRe-
sponder to get their current outputs, then combines these to compute the bus state (i.e.
wired-AND—the bus is 0 if any agent drives it low).

We verify the correctness of BusController and BusResponder (see Listing 1.3)
against BusSpec, a nondeterministic process capturing permissible bus behavior, and
NibbleValid, which captures allowable event sequences from the next-highest level
(i.e. what the bus layer may assume). Figure 3 depicts this.

BusSpec prescribes how actions from the nibble layer translate into events to the
nibble layer e.g. the number 3 in the above example. NibbleValid includes all possible
actions at the Nibble layer. It non-deterministically transmits a 4-bit nibble, which is
either ACKed or NACKed (again non-deterministically). Correct delivery is guaranteed
by BusSpec.

The verifier is an additional process that polls the message channels and forwards
messages to both BusSpec and BusImpl. If both produce the same result, execution

182 L. Humbel et al.

1 proc (int) BusController(int res) {
2 int data; int data_pos; int nibble_res;
3 nibble_res = RES_ACK;
4 start:
5 data = NibbleController(nibble_res);
6 data_pos = 0;
7 while(data_pos < 4){
8 yield ((data >> (3-data_pos)) & 1); //MSB first
9 data_pos = data_pos + 1; }

10 yield (1); // this reads back the ACK bit
11 if(res == 0) {
12 nibble_res = RES_ACK; goto start;
13 } else {
14 nibble_res = RES_NACK; goto start; }
15 }

Listing 1.1. Bus Controller

1 proc (int) BusResponder(int res) {
2 int buf; int read; int ack;
3 start:
4 buf = 0; read = 0;
5 while(read < 4){
6 yield (1);
7 assert(res == 0 or res == 1);
8 buf = (buf << 1) | res;
9 read = read + 1; }

10 (ack) = NibbleResponder(buf);
11 yield (ack); goto start;
12 }

Listing 1.2. Bus Responder

continues, otherwise the verifier stalls (no transition/deadlock). Implementation correct-
ness is then checked by using SPIN to verify the absence of deadlock in the combined
process.

4.1 Programming Model, DSL, and Backends

As discussed, our DSL is based on coroutines. The language is (semantically) an exe-
cutable subset of Promela with messages restricted to the call and yield primitives,
and an acyclic call graph. These restrictions also allow for the generation of compact
C code. Unlike existing C-to-Promela converters [10], we describe stateful processes
(coroutines). Implicit state makes it convenient to express stateful protocols such as I2C.
Processes have state variables of type int or intarr (fixed-size array). No global

A Model-Checked I2C Specification 183

Fig. 3. Verification processes for verifying the Bus level. Gray processes are generated from the
DSL; blue ones are expressed in Promela

1 proctype NibbleValid(chan ci, co, ri, ro) {
2 int c_res = RES_ACK; int dat;
3 start:
4 select(dat : 0..15);
5 ci?_; co!dat;
6 ri?_;
7 if
8 :: ro!ACT_ACK; c_res = RES_ACK; goto start;
9 :: ro!ACT_NACK; c_res = RES_NACK; goto start;

10 fi }
11

12 proctype BusControllerSpec(chan ci, co, ri, ro){
13 int dat; int res = RES_ACK;
14 start:
15 co!res; ci?dat;
16 ro!dat;
17 if
18 :: ri?ACT_ACK; res = RES_ACK; goto start;
19 :: ri?ACT_NACK; res = RES_NACK; goto start;
20 fi }

Listing 1.3. Bus example verification

variables are allowed. The size of intarr is implementation-defined, but guarded
against overflow. The DSL supports while, if and goto as control flow.

The C backend translates a DSL process to a function and a process call into a
function call. The backend assembles all state in a large static struct, kept intact
between calls. To yield, a process is implemented as a large switch statement, with
execution resuming at the most recent label.

From the language subset, Promela generation is straightforward. Each process has
two channels: input and output. Call, sends arguments to the callee’s input and blocks
on the callee’s output. Processes block on input until arguments arrive. Yield sends the
result on the output channel.

Verification properties are specified directly in Promela, exploiting nondeterminism.
The complete syntax of our DSL is expressed in Listing 1.4.

184 L. Humbel et al.

Fig. 4.Workflow of the user provided files (white), intermediary files (yellow), and tools (gray)

4.2 Calculus

We verify our layered system with the following calculus: Each layer has an implemen-
tation LayerImpl i, a valid behavior LayerValid i, and a specified behavior LayerSpeci.

LayerSpeci is a state machine expressed as a function over its past result/action
trace returning the next result symbol. LayerSpeci specifies the correct behavior at
layer i.

LayerValid i is a predicate over the result/action trace that is true if the sequence is
permissible at this layer and ends with an action symbol.

LayerImpl i has the same type as LayerSpeci, except that it must be bound to a
state machine of layer i − 1, which it can query to determine its next step. We denote
the binding of this lower level state machine with ◦. LayerImpl0 is the exception, which
does not need to be bound.

As explained before, isolated specification is not possible, hence they operate on
traces that include actions and results for both controller and responder.

In this calculus, our system is verified if it fulfills

∀i.∀ωi.LayerValid i+1ωi ⇒
LayerSpeciωi = (LayerImpl i ◦ LayerImpl i−1 ◦ . . . ◦ LayerImpl0)ωi

This verification procedure is depicted in Fig. 5 as an infinite sequence of directed mes-
sages ω = e1, e2, We denote the sequence of all messages as ω, and the sequence
of messages exchanged between layer i and layer i+1 as ωi. Examples of messages are
the action to send an acknowledgement (represented by a down arrow ↓) or the receipt
of an acknowledgment message (depicted as an up arrow ↑). Even though abstractly we
deal simply with a trace of events, it is useful to denote if the message is destined for
the controller or responder. We denote this with c↑x for a result with value x destined
for the controller, and with r↑x a result x destined for the responder.

A LayerImpl i can not only be bound to other implementations, but also to a
LayerSpeci. We evaluate the verification time improvements of this in Sect. 6.

We verify this property by encoding it into Promela processes, such that a verifier
process can not make progress when a violation has been found. Adherence to the
protocol is shown by verifier always able to make progress. LayerValid i becomes a
non-deterministic process, producing all valid actions. This action is sent to verifier
which duplicates the action and sends it to both the LayerSpec and the LayerImpl . If
the LayerSpec produces a result, the verifier ensures that the LayerImpl produce the
same result. If it differs, the verifier will not make progress. We also use this message

A Model-Checked I2C Specification 185

〈file〉 ::= (〈proc〉 | 〈procCopy〉)* ‘EOF’
〈procCopy〉 ::= ‘proccopy’ 〈id〉 ‘of’ 〈id〉 (‘where’ (〈rename〉 (‘,’ 〈rename〉)*)?)? ‘;’
〈proc〉 ::= ‘proc’ ‘(’ (〈type〉 (‘,’ 〈type〉)*)? ‘)’ 〈id〉 ‘(’ (〈varDecl〉 (‘,’ 〈varDecl〉)*

)? ‘)’ ‘{’ (〈varDecl〉 ‘;’)* 〈instr〉* ‘}’
〈rename〉 ::= 〈id〉 ‘=’ 〈id〉
〈block〉 ::= ‘{’ 〈instr〉* ‘}’
〈instr〉 ::= ‘yield’ (〈aEx〉 | ‘(’ 〈aEx〉 (‘,’ 〈aEx〉)+ ‘)’) ‘;’

| 〈varRef 〉 ‘=’ 〈aEx〉 ‘;’
| 〈id〉 ‘:’
| ‘while’ ‘(’ 〈bEx〉 ‘)’ 〈block〉
| ‘if’ ‘(’ 〈bEx〉 ‘)’ 〈block〉 (‘else’ 〈block〉)?
| ‘goto’ 〈id〉 ‘;’
| ‘assert’ ‘(’ 〈bEx〉 ‘)’ ‘;’
| (〈id〉 | (‘(’ 〈id〉 (‘,’ 〈id〉)+ ‘)’)) ‘=’ 〈id〉 ‘(’ (〈aEx〉 (‘,’ 〈aEx〉)*)? ‘)’;

〈varDecl〉 ::= 〈type〉 〈id〉
〈type〉 ::= ‘intarr’ | ‘int’
〈cEx〉 ::= 〈aEx〉 (‘>=’ | ‘>’ | ‘<=’ | ‘<’ | ‘==’ | ‘!=’) 〈aEx〉
〈bEx〉 ::= ‘true’ | ‘false’ | ‘(’ 〈bEx〉 ‘)’

| 〈bEx〉 (‘and’ | ‘or’) 〈bEx〉 | 〈cEx〉
〈aEx〉 ::= ‘(’ 〈aEx〉 ‘)’ | 〈varRef 〉 | (‘-’?[‘0’-‘9’]+) | 〈uOp〉 〈aEx〉 | 〈aEx〉 〈bOp〉 〈aEx〉
〈bOp〉 ::= ‘&’ | ‘|’ | ‘*’ | ‘/’ | ‘+’ | ‘-’ | ‘<<’ | ‘>>’
〈uOp〉 ::= ‘-’ | ‘+’
〈varRef 〉 ::= 〈id〉(‘[’ 〈aEx〉 ‘]’)?
〈id〉 ::= 〈char〉 (〈char〉 | [‘0’-‘9’] | ‘_’)*
〈char〉 ::= [‘a’-‘z’] | [‘A’-‘Z’]

Listing 1.4. Complete DSL syntax

dispatch to show liveness of the system, by marking it with a SPIN progress label and
verifying the liveness check.

We currently do not verify that the layer implementation LayerImpl i adheres to
LayerValid i. Since we verify the full stack of implementations, we still do get the
correctness guarantees, but it is possible, that in the middle of the implementation stack,
the implementations rely on unspecified behavior.

5 The I2C Model

5.1 Layering of I2C

We divide our I2C stack into the layers shown in Fig. 6, and we apply the verification
principle from Sect. 4 at every layer.

The stack presented here includes two device-specific layers: World and Driver
layer. We envision this process of device modelling and verification to be done for

186 L. Humbel et al.

Fig. 5. Verification illustration, the system is verified if ωi = ω′
i

L0: El ResponderController

L1: Sym ResponderController

L2: Byte ResponderController

L3: Transaction ResponderController

L4: Driver ResponderController

L5: World ResponderController

Actions

Results

Fig. 6. Layering of the I2C model.

each device that is connected to the bus. This also gives a high level of assurance for
the device driver represented by Driver. But it is also feasible to directly interact in a
system with, for example, the transaction layer and skip the verification of the higher
layers.

5.2 Layer 0: Electrical Layer

The lowest layer, the electrical layer 0, is trusted. Hence it consists of only an imple-
mentation. It describes how two devices sending bus signals (a SCL/SDA pair, each 0
or 1) are combined into the next bus state, which is sent back to the devices. It does so
by using the I2C mandated AND combination of signals for each wire, which is a result
of the active drive low logic.

We assume a reliable delivery of bits. Like prior work [5], we observe that I2C bus
events can be discretized. We assume sampling of the bus at the Nyquist frequency of
the clock, such that two samples occur during a clock high period. This allows us to
distinguish START and STOP conditions from BIT0 and BIT1.

5.3 Layer 1: Symbol Layer

Layer interface The symbol layer connects the electrical with the byte layer. It parses a
sequence of bits into a symbol and vice-versa, turns a symbol into a bit sequence. The
results and actions are depicted in Fig. 7. In addition to the I2C symbols we define IDLE
and STRETCH, which delay the next symbol.

A Model-Checked I2C Specification 187

L1: Sym ResponderController

IDLE, START, STOP,
BIT0, BIT1, STRETCH

(SCL,SDA) ∈ {0, 1}2

Fig. 7. Interface of the symbol layer. The label describes the datatype of all the channels in this
layer.

The implementation differs for controller and responder, but they share a large part
of the code (expressed as two sub-processes SymbolReader and SdaDriver) The con-
troller is actively driving the clock (using a sub-process SclDriver). The responder is
driving the clock only in one specfic case: When it is processing a STRETCH action, it
will delay the clock rise by exactly one cycle. Both controller and responder are clock
agnostic. For example the SdaDriver will wait until the clock rises and falls again,
thus it is invariant against clock stretching. Both byte controller and byte responder are
invoked in the same clock cycle. The exception again is during a STRETCH, which will
produce an extra invocation in the next clock cycle.
The specification defines how two symbol actions are combined into a new one. In
the initial, out-of-transaction state, two IDLE commands are combined into an IDLE
result (i.e. c↓IDLE, . . . , r↓IDLE will be followed by c↑IDLE, . . . , r↑IDLE) as well as
a START and a IDLE are combined into START (i.e. c↓IDLE, . . . , r↓START will be
followed by c↑START, . . . , r↑START).

If a START result has been sent, the specification enters the in-transaction state. In
this state, the following action combinations are valid. Note they are symmetrical, thus
we skip the sender identifier as well as symmetrical cases.

– ↓BIT1, ↓BIT1 produces two ↑BIT1,
– ↓BIT0, ↓BIT1 produces two ↑BIT0,
– ↓BIT1, ↓START produces two ↑START,
– ↓BIT1, ↓STOP produces two ↑STOP, and enter out-of-transaction state.
– r↓STRETCH is immediately followed by r↑STRETCH, until r produces a non

stretch action.

The valid actions of the next higher layer follow the same in- and out-transaction states
as the specification. Outside a transaction, ByteValid either generates an IDLE pair
to remain outside a transaction or initiates a transaction by allowing the controller to
generate a START. In-transaction it generates a zero or more sequence of STRETCH,
followed by all the valid symbol combinations.

5.4 L2: Byte Layer

Layer Interface I2C is a byte-oriented protocol, where each byte is acknowledged. This
layer reads and writes symbols, turning them into bytes. START and STOP conditions

188 L. Humbel et al.

L2: Byte ResponderController

Results:
IDLE, START, STOP, FAIL
ACK,NACK, RES READ,x

Actions:
IDLE, START, STOP,
WRITE,x, READ, ACK, NACK

Fig. 8. Interface of the Byte layer. Both controller and responder have the same signature for
actions and results.

are passed through: The higher layer must send START and STOP explicitly. The inter-
face is depicted in Fig. 8.
The implementation does not distinguish between controller and responder. START and
STOP actions are passed to the symbol layer directly, WRITE,x and READ operate
bitwise (MSB first transmitted). If a written bit is not correctly transmitted, the layer
will report FAIL and remain silent for the rest of the byte.
The specification describes how actions are combined into results. Controller and
responder are not equal anymore; the controller must initiate the transaction. As in the
symbol layer specification, an IDLE pair remains outside transaction and a START/I-
DLE is used to enter the in-transaction state. Within a transaction the following combi-
nations hold

– c↓ACT WRITE, x and r↓ACT READ is followed by r↑RES READ, x,
r↓ACT (N)ACK and c↑RES (N)ACK. Note that the variable x is bound, the writ-
ten value must be the same as the read value.

– The symmetrical case of the above item where the controller reads and the responder
writes.

– ACT READ can also be combined with ACT START and ACT STOP. This is
important for the responder, who can not predict the action of the controller, then
ACT READ is a safe choice.

The valid actions follow directly from the specification. All specified combinations are
verified, with the caveat that the value of the written byte is constrained to a predefined
set of 10 choices. In Sect. 6 we show the trade-offs to verify all values (0 to 255).

5.5 L3: Transaction Layer

I2C defines the transaction format, such that a START condition must be followed by
a 7-bit address and a direction bit. Then, depending on the direction bit, the controller
reads or writes a sequence of bytes. This introduces an asymmetry: It is the controller
that initiates a transaction, and the responder acts accordingly. Figure 9 shows all the
actions and events processed at this layer. Starting from this layer, controller and respon-
der have not only distinct specifications as before, but also distinct implementations.
The responder also decodes a (currently fixed) I2C address and ignores via NACKs all
other addresses.

A Model-Checked I2C Specification 189

Responder Results:
IDLE,START,STOP,ACK,
NACK,READ, WRITE,xs

Responder Actions:
IDLE, ACK, NACK, WRITE,x

L3: Transaction ResponderController

Controller Results:
OK,xs, FAIL
NACK

Controller Actions:
IDLE,STOP
WRITE,addr,xs, READ,addr,len

Fig. 9. Interface of the Transaction layer.

The implementation of the controller is fairly straightforward: Each higher level action
is turned into a sequence of START and address byte with correct direction bit. If a
write is requested, it continues to write the data. If a read is requested, it reads the
desired number of bytes, sending an ACK for all except the last byte (per I2C standard)
which is answered with NACK that tells the responder to stop sending. If the responder
receives a NACK, it is forwarded to the next higher layer.

The responder waits for a START, which is propagated to the driver. We propagate
STARTs to the next higher layer to distinguish between two consecutive writes and a
write – restart – write sequence. After a START, the responder reads the address byte,
checks that the addresses match, and depending on the direction bit propagates either a
RES READ or a RES WRITE. Since the responder cannot know how many bytes are
read, we propagate each byte read request individually to the next level. Writes on the
other hand can be buffered, until the controller is done. Then the whole array of written
data is passed on.
The specification describes the interaction of driver layer actions. The sequence is
determined solely by the controller: If it requests a WRITE of x bytes, we expect a
RES START from the responder, followed by x times a RES READ. The responder
either ACKs x − 1 times and then the controller will receive a RES ACK, or if the
responder decides to NACK before, the controller will receive a NACK.
The valid action sequences become conceptually simple but increasingly challenging
to verify. The controller produces after a sequence of ACT IDLE any combination of
ACT READ and ACT WRITE until finally an ACT STOP brings it back to the ini-
tial, out-of-transaction state. However the data that is either read or written is potentially
infinite in length. Since we focused on the correct delivery of data at the lower layer, the
verification cases for this layer focus on increasing the length of the transaction. Hence
we show that for sequentially increasing payload of any length between 1 and 4 bytes
our implementation conforms to the specification.

Conversely, the responder is completely driven by the result it receives.
After a RES START only ACT IDLE is valid. After receiving START but
before a STOP, the following combinations are valid: RES READ followed

190 L. Humbel et al.

by ACT WRITE,x, RES WRITE followed by ACT ACK or ACT NACK,
RES STOP, and RES START must be followed by ACT IDLE.

5.6 L4: Driver

Layer interface At this layer we start implementing the protocol that is specific to our
model EEPROM, a Microchip 24XX16 [12]. The controller contains what typically is
implemented in the device driver. From the world layer, the controller receives requests
for reading or writing from the EEPROM. The responder, on the other hand, encodes the
EEPROM-specific features, for example the logic for the address buffer. The responder
forwards requests to an EEPROM implementation. The interface is shown in Fig. 10.

Responder Results:
START,WRITE,off,xs,
READ,off,len

Responder Actions:
OK,xs

L4: Driver ResponderController

Controller Results:
IDLE, OK,xs, FAIL

Controller Actions:
WRITE EEPROM,off,xs,
READ EEPROM,off,len
IDLE

Fig. 10. Interface of the Driver layer.

The implementation of the controller turns an ACT WRITE EEPROM, parametrized
by an offset and a data array, into a long write transaction. The first two bytes determine
the EEPROM write offset followed by the data to be written. The data length is not
communicated explicitly; if the data is written, the controller sends a STOP condition,
signaling to the responder that the transaction is over. Reading works similarly: The
controller issues two-byte write transaction followed by a len-long read transaction.

The responder behaves similarly. It waits for a START, then expects a write of at
least two bytes. If more bytes follow, they are interpreted as a write transaction. It
assembles the written data into a buffer and once the STOP condition arrives, passes it
on (as RES WRITE,xs) to the world layer. Read is more difficult, because by the time
the first read byte must be supplied, the read length is unknown. Hence we assume there
is a maximum read length, which we query fromWorld (by issuing a RES READ) then
sending from this buffer.
The specification becomes fairly simple at this point. A controller ACT WRITE,off,xs
is turned into a responder RES WRITE,off,xs. A controller ACT READ,off,len
becomes a RES READ,off,maxlen, followed by a responder ACT OK,xs, and a con-
troller RES OK,xs’, where xs’ is a prefix of xs with length len.
The valid action sequence is unconstrained at this point. The controller can choose
between ACT WRITE and ACT WRITE, while the responder must subsequently

A Model-Checked I2C Specification 191

receive RES READ and RES WRITE and reply with ACT OK. However, we
severely restrict the payload that is transmitted at this level by choosing one of 4 prede-
fined datasets, to keep the full implementation verification time manageable.

5.7 L5: World

Since this is the highest layer, we can not verify the behavior given a higher layer
behavior. We still provide a dummy implementation that performs a defined sequence
of actions which is what we evaluate on our hardware platform.

6 Evaluation

6.1 Verification Runtime

The verification runtimes are evaluated on an AMD Ryzen 9 3900X with 32GB of
RAM running Ubuntu 20.04 with SPIN version 6.4.9.

Verification of the Symbol layer performs a complete state space search and finishes
in 0.4 s. As mentioned in subsection 5.4, the byte layer is verified only on a small set of
payload values, hence we would like to speed up the verification time. We can do so by
replacing lower LayerImpl with LayerSpec (e.g. LayerSpecbyte = LayerImplbyte ◦
LayerSpecsym instead of LayerSpecbyte = LayerImplbyte ◦ . . . ◦ LayerImpl0).

Table 1 shows the verification times using this method. The speedup factor depends
on the layer complexity. Replacing the rather complex Symbol with SymbolSpec leads
to a speedup of 10×, replacing Byte with ByteSpec leads to 5× speedup.

Table 1. Verification time in seconds using different layers of abstraction.

Full Implementation SymbolSpec ByteSpec TransactionSpec

Symbol 0.1

Byte 9.0 0.7

Transaction 69.4 8.7 1.8

Hl 62.9 6.7 1.0 0.3

Instead of decreasing verification time, this technique can be used to increase the
search space size. For example the Byte layer can be completely verified (i.e. check-
ing all 256 values for a byte write as well as for a byte read) using SymbolSpec in
about 70 s.

192 L. Humbel et al.

6.2 Execution on a Raspberry Pi

Our DSL can generate C code for the deterministic state machines. Conceptually, the
C code can interact with any layer directly. For example, it could get output from the
transaction layer and translate it into Linux I2C API calls. However to profit most from
the verification, the whole stack (excluding the electrical layer) can be executed. This
leads to an interface that only writes and reads SDA/SCL as high/low states from the
bus. We demonstrate this using the Linux GPIO interface connected to an I2C EEP-
ROM. The boilerplate code runs in an infinite loop: reading the bus state, forwarding
it to the controller state machine, reading back the command, and outputting it on the
GPIOs. In conformance with the I2C specification we actively drive the data and clock
line low on zero. If a one is to be written, we set the pin to a high impedance state. The
process repeats after an appropriate delay accounting for the required setup and hold
time.

We currently hardcode the testcase in theWorld implementation. To expose an inter-
face, we would also replace the highest layer with boilerplate C code that would e.g. do
non-blocking reads from a UNIX pipe do receive the commands to be sent.

The total required boilerplate code consists of 128 lines of code; most of it imple-
ments interfacing with Linux’s file-based sysfs GPIO interface. The generated I2C
state machine code consists of 2678 lines and compiles to a binary of 32 KB.

7 Conclusion and Future Work

We have successfully demonstrated that our approach of creating and verifying layered
specifications for I2C is feasible, and that it can be used to express bus interactions on a
high level, to specify the expected behavior, and to verify that the specification fulfills
this property. Furthermore, the executable specification can be used to generate code,
which interacts with real physical devices.

While this work has already proven to verify desirable properties in a specific sce-
nario, we cannot yet claim full generalization. We have empirically considered partially-
conforming devices, but we did not formally model them at this stage. We expect the
specification to be extended, but no change in the methodology nor the lower layers
should be necessary. I2C features we do not yet handle include broadcast, variable
length read transactions and multi controller.

So far, we generate C code. In future work, we plan to generate synthesizable hard-
ware descriptions, producing verified FPGA or even ASIC implementations. While we
do not expect any problems with the state machine generation itself, we will also need
to generate and verify the corresponding hardware-software interface.

From a theoretical perspective, we so far assumed that our layer calculus itself is
correct, i.e. we assumed that a layer that follows the specification can be combined with
any (lower and higher) layer that also fulfills the layer contract. Given the higher order
nature of this, we think that either an embedding in an existing process calculus or a
from-scratch formalization in an interactive theorem prover would be interesting. The
second option would also open the possibility to reason about the system not only in
a model checker, but in a theorem prover. This could lift the restriction that we verify
only on a small set of payloads, at the cost of some manual proof engineering.

A Model-Checked I2C Specification 193

References

1. Raspberry Pi I2C clock-stretching bug. https://www.advamation.com/knowhow/raspberrypi/
rpi-i2c-bug.html. Accessed 01 Apr 2021

2. Video capture driver (video for linux 1/2). https://git.kernel.org/pub/scm/linux/kernel/git/
stable/linux.git/tree/drivers/media/i2c/ks0127.c?h=v5.8.3. Accessed 01 Apr 2021. Unfortu-
nately the datasheet is not public

3. AMS AG. AS5011 Low power Integrated Hall IC for human interface applications, Rev. 3.6
(2009)

4. Boigelot, B., Godefroid, P.: Model checking in practice: an analysis of the ACCESS.busTM

protocol using SPIN. In: Gaudel, M.-C., Woodcock, J. (eds.) FME 1996. LNCS, vol. 1051,
pp. 465–478. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60973-3 102

5. Bos, S.H.J., Reniers, M.A.: The I2C-bus in discrete-time process algebra. Sci. Comput. Pro-
gram. 29(1–2), 235–258 (1997)

6. Bošnački, D., Mathijssen, A., Usenko, Y.S.: Behavioural analysis of an I2C linux driver. In:
Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 205–206.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04570-7 18

7. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking HyperLTL and
HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 30–
48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 3

8. Gorai, S., Biswas, S., Bhatia, L., Tiwari, P., Mitra, R.S.: Directed-simulation assisted for-
mal verification of serial protocol and bridge. In: Proceedings of the 43rd Annual Design
Automation Conference, DAC 2006, pp. 731–736. Association for Computing Machinery,
New York, NY, USA (2006)

9. Holzmann , G.J., Lieberman, W.S.: Design and Validation of Computer Protocols, vol. 512.
Prentice hall Englewood Cliffs (1991)

10. Jiang, K., Jonsson, B.: Using spin to model check concurrent algorithms, using a transla-
tion from C to promela. In: MCC 2009, pp. 67–69. Department of Information Technology,
Uppsala University (2009)

11. Klomp, A., Roebbers, H.W., Derwig, R., Bouwmeester, L.: Designing a mathematically ver-
ified I2C device driver using ASD. In: CPA, pp. 105–116 (2009)

12. Microchip. 24XX16: 16K I2C Serial EEPROM (2019)
13. NXP Semiconductors. I2C-bus specification and user manual, Rev. 6 (2014)
14. ON Semiconductor. CAT5259 Quad DigitalPotentiometer (POT) with 256 Tapsand I2C

Interface, Rev. 11 (2013)
15. Pan, C., Guo, J., Zhu, L., Shi, J., Zhu, H., Zhou, X.: Modeling and Verification of CAN

Bus with Application Layer using UPPAAL. Electr. Not. Theoret. Comput. Sci. 309, 31–49
(2014)

16. Roychoudhury, A., Mitra, T., Karri, S.R.: Using formal techniques to debug the amba system-
on-chip bus protocol. In: 2003 Design, Automation and Test in Europe Conference and Exhi-
bition, pp. 828–833 (2003)

https://www.advamation.com/knowhow/raspberrypi/rpi-i2c-bug.html
https://www.advamation.com/knowhow/raspberrypi/rpi-i2c-bug.html
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/media/i2c/ks0127.c?h=v5.8.3
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/media/i2c/ks0127.c?h=v5.8.3
https://doi.org/10.1007/3-540-60973-3_102
https://doi.org/10.1007/978-3-642-04570-7_18
https://doi.org/10.1007/978-3-319-21690-4_3

Author Index

Amat, Nicolas 45

Belmonte, Gina 22
Budde, Carlos E. 3

Chen, Xiang 157
Chenoy, Antoine 101
Ciancia, Vincenzo 22
Cock, David 177

Dal Zilio, Silvano 45
Dhamija, Yash 157
Duchene, Fabien 101

Fatmi, Syyeda Zainab 157

Giardino, Michael 177
Given-Wilson, Thomas 101
Gruner, Stefan 63

Haecki, Roni 177
Hahn, Ernst Moritz 3
Hossle, Nora 177
Humbel, Lukas 177

Jakobs, Marie-Christine 81, 120

Kirszenberg, Alexandre 140
Kolb, Christina 3

Latella, Diego 22
Le Botlan, Didier 45
Legay, Axel 101
Licciardello, Melissa 177

Martin, Antoine 140
Massink, Mieke 22
Moreau, Hugo 140

Nicoletti, Stefano M. 3
Nxumalo, Madoda 63

Renault, Etienne 140
Roscoe, Timothy 177

Schaer, Jan 177
Schwyn, Daniel 177
Stoelinga, Marielle 3

Tang, Qiyi 157
Timm, Nils 63

van Breugel, Franck 157

Wiesner, Maik 81
Wildes, Maeve 157

	 Preface
	 Organization
	 Contents
	Invited Talks
	The Marriage Between Safety and Cybersecurity: Still Practicing
	1 Introduction
	2 Background
	3 Formalisms for Safety-Security Co-analysis: An Overview
	3.1 The Formalisms
	3.2 Findings

	4 Attack Trees Versus Fault Trees
	4.1 Attack Trees Versus Fault Trees
	4.2 The Static Case
	4.3 Semantics
	4.4 Metrics for Attack and Fault Trees

	5 Analysis Algorithms for Attack and Fault Trees
	5.1 Algorithms for Tree-Shaped DTs
	5.2 Algorithms for DAG-Shaped DTs
	5.3 Research Gaps

	6 Conclusions
	References

	A Hands-On Introduction to Spatial Model Checking Using VoxLogicA
	1 Introduction
	2 Using VoxLogicA: Practicalities
	2.1 The Declarative Language ImgQL
	2.2 Loading and Saving Models
	2.3 Anatomy of VoxLogicA Logs
	2.4 Working with Datasets

	3 Topological Properties and Reachability
	4 Global Properties and Region Calculi
	5 Advanced Topics: Background Removal, Distance, Filtering, Texture Similarity
	6 Related Work
	7 Outlook
	References

	Model Checking
	Accelerating the Computation of Dead and Concurrent Places Using Reductions
	1 Introduction
	2 Petri Nets and Polyhedral Abstraction
	3 Token Flow Graphs
	4 Dimensionality Reduction Algorithm
	5 Experimental Results
	6 Conclusion and Further Work
	References

	Spotlight Abstraction in Model Checking Real-Time Task Schedulability
	1 Introduction
	2 Related Work
	3 Encoding RTOS Scheduler Models as Timed Automata
	3.1 A Scheduler Model
	3.2 The Abstract Task Models

	4 An Example: Model Checking Schedulability for FIFO RTOS Scheduler
	5 Model Checking Real-Time Queues Using Spotlight Abstraction
	5.1 The Abstraction Algorithm Commences
	5.2 Calling the Reachability Analysis Algorithm
	5.3 The Abstraction Algorithm Resumes

	6 Experimental Results
	7 Conclusion and Outlook
	References

	Verifying Pipeline Implementations in OpenMP
	1 Introduction
	2 Using OpenMP to Implement Pipelines
	3 Verifying Correctness of Pipeline Implementations
	3.1 Constructing Task Dependency Graphs
	3.2 Inspecting RAW and WAR Dependencies
	3.3 Checking WAW Dependencies and I/O Availability
	3.4 Handling of Loop Header
	3.5 Implementation

	4 Evaluation
	4.1 Experimental Results

	5 Related Work
	6 Conclusion
	References

	Tool Papers
	C-SMC: A Hybrid Statistical Model Checking and Concrete Runtime Engine for Analyzing C Programs
	1 Introduction and Motivation
	2 Systems: From Specification to Verification
	2.1 Trace Execution Properties
	2.2 Probabilistic Verification
	2.3 Implementation: Plasma Lab

	3 Architecture of C-SMC
	3.1 Simulator
	3.2 Checker
	3.3 C-SMC Configuration
	3.4 Running C-SMC

	4 Use Cases
	5 Examples and Evaluation
	5.1 Methodology
	5.2 Results

	6 Conclusion and Future Work
	References

	PatEC: Pattern-Based Equivalence Checking
	1 Introduction
	2 Background
	3 Determining Equivalence for DoAll and Reduction
	4 Evaluation
	4.1 Experimental Setup
	4.2 Experiments

	5 Related Work
	6 Conclusion
	References

	Go2Pins: A Framework for the LTL Verification of Go Programs
	1 Introduction and Motivation
	2 Go2Pins: Overview
	3 Implementation Details
	3.1 Core Translation: Func. Def. to Transform
	3.2 Handling Concurrency: Goroutines and Unbuffered Channels

	4 Abstraction with Black-Box Transitions
	4.1 Overview of Black-Box Transitions
	4.2 User-Defined Black-Box Transitions

	5 Using Go2Pins on Go Programs
	6 Benchmark
	7 Related Work
	8 Conclusion
	References

	Probabilistic Model Checking of Randomized Java Code
	1 Introduction
	2 JPF-Label
	3 JPF-Probabilistic
	4 Our Converter
	5 Monte Carlo Algorithms
	6 Very Large and Infinite State Spaces
	7 Other Quantitative Properties
	8 Overhead
	9 Conclusion
	References

	Case Studies
	A Model-Checked I2C Specification
	1 Introduction
	2 Background
	3 Related Work
	4 Approach and Tools
	4.1 Programming Model, DSL, and Backends
	4.2 Calculus

	5 The I2C Model
	5.1 Layering of I2C
	5.2 Layer 0: Electrical Layer
	5.3 Layer 1: Symbol Layer
	5.4 L2: Byte Layer
	5.5 L3: Transaction Layer
	5.6 L4: Driver
	5.7 L5: World

	6 Evaluation
	6.1 Verification Runtime
	6.2 Execution on a Raspberry Pi

	7 Conclusion and Future Work
	References

	Author Index

