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1 Introduction

Since its appearance in China in December 2019, the coronavirus disease 2019
(COVID-19) has been subject to intensive activities in the field of mathematical
modelling [1–5]. Modelling is done to allow a better understanding of the evolution
dynamics of the disease. Several models have been proposed, some to describe the
dynamics, other to estimate the parameters, but all aim at allowing decision makers
to take appropriate measures in dealing with the epidemic. In fact, mathematical
models play a very important role in the understanding of the spread of several
diseases. The advent of COVID-19 is so another opportunity for mathematical
modelers to translate the results of their modelling into clear terms for decision
makers. The majority of Western countries have relied on mathematical models to
predict the spread of the disease in their countries [1, 5–8]. This has allowed them to
take measures ranging from hand washing to general containment. Similarly, on the
African continent, many leaders rely on mathematical models for the management
of epidemic such as COVID-19.
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In Burkina Faso, a commitee of experts comprising various competences includ-
ing mathematicians was set up as soon as the first case of coronavirus disease was
reported in the country in March 2020. Since this date, the authorities’ concern
was to know the dynamics of the pandemic and to see how to act to eliminate it.
In doing so, several exchanges took place with public health doctors. It was at the
end of these discussions that it was decided to develop a model which highlights
the compartments of infected persons reported and not reported. Also it was a
question of putting the accent on the high-risk hospitalized and quarantine or low-
risk hospitalized. This explains the adoption of such a model study in this paper.
The model concerning this paper make it possible to do projections and especially
to see the effects of confinements, quarantines and cover fires in the country. Finally,
the parameters used in this model for the simulations are parameters specific to the
health context of Burkina Faso.

The difference between the former model (see [2]) and this one is that the new
model takes into account some concerns of hospital practitioners and health epi-
demiologists from the Burkina Faso National Health Commission against COVID-
19, people, of people hospitalized with serious health situation and death cases. We
consider that dead people can contaminate health care workers or their loved ones
when handling the bodies.

The paper is organized along 6 Sections. In the Sect. 2, we show the mathematical
model, Sect. 3 is devoted to the basic properties. We present real daily data given
by Burkina Faso National Health Commission against Coronavirus Disease 2019
(COVID-19) in Sect. 4 and we make simulations according to these data in Sect. 5.
In Sect. 6 we end by a conclusion.

2 Mathematical Model

The model built for the coronavirus disease 2019 (COVID-19) in this paper is a
SEIRD model, taking into account Susceptibles cases(S), Exposed persons (E),
Infected individual (I ), Recovered patients (R) and the Dead patients (D). Based
on the epidemiological characteristics of COVID-19, the SEIRD model and its
variants are more appropriate to study the dynamics of this disease, which is caused
by the SARS-Cov-2. The output of the mathematical model gives the following
transfer diagram (Fig. 1):

According to Fig. 1, we obtain the following system of ten differential equations
describing the dynamics of the disease.

Here, we define the variables as follow:

• S(t) (Susceptible) represents persons not infected by the disease pathogen.
• E(t) (Exposed) refers to persons who are in the incubation period after being

infected by the disease pathogen, and haves no visible clinical signs. These
individuals could infect other people but with a lower probability than people
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Hd+βDD)

Fig. 1 Transfer diagram for the mathematical model of COVID-19

in the infectious compartments. After the incubation period, these persons move
to one of the Infectious states. In this model, it can be seen has contact persons

• I (t) (Infectious) refers the number of persons who are beginning to develop
clinical signs, these persons are symptomatic infectious,

• Id(t) refers to Infectious; that is persons who can infect other people, are devel-
oping clinical signs and therefore will be detected and reported by authorities
(when arriving in the HR or the Hd compartments). After this period, the people
in this compartment are taken in charge by sanitary authorities and we classify
them as Hospitalized patients. It is the reported infectious cases.

• Iu(t) is the number of unreported symptomatic infectious individuals (i.e.,
symptomatic infectious with mild symptoms) at time t.

• Persons hospitalized or quarantined at home (but detected and reported by the
authorities) who will recover (denoted by HR): These persons are in hospital (or
quarantined at home) and can still infect other people. At the end of this state,
these persons move to the Recovered state. It is the low-risk hospitalized cases.

• Hospitalized people who are going to die (denoted by Hd ): These persons are
hospitalized and can still infect other people. At the end of this state, these
persons move to the death state. It is the high-risk hospitalized cases.
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• RIu Recovered persons from unreported infectious cases (denoted by RIu ): These
persons have survived the disease, are no longer infectious and have developed a
natural immunity to the disease pathogen.

• RId
Recovered persons from reported infectious cases (denoted by RId

): These
persons have survived the disease, are no longer infectious and have developed a
natural immunity to the disease pathogen.

• D Dead persons (denoted by D): These persons have not survived the disease.
• N is the number of people within the territory before the start of the pandemic.

The transcription of the transfer diagram gives the following mathematical
system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = −S(t)

N

(

mE(t)βEE(t) + mI (t)βI I (t) + βIumIu(t)Iu(t) + βId
mId

(t)Id(t)

)

−S(t)

N

(

βHR
mHR

(t)HR(t) + βHd
mHd

(t)Hd(t)

)

,

Ė = S(t)

N

(

mE(t)βEE(t) + mI (t)βI I (t) + βIumIu(t)Iu(t) + βId
mId

(t)Id(t)

)

+S(t)

N

(

βHR
mHR

(t)HR(t) + βHd
mHd

(t)Hd(t)

)

− αE(t),

İ = αE(t) − βI (t),

İd = β1βI (t) − θId(t),

İu = β2βI (t) − ηIu(t),

ḢR = ω1θId(t) − ρHR(t),

Ḣd = ω2θId(t) + (1 − ξ)ρHR − γHd(t) − νHd,

ṘId
= ξρHR(t) + νHd,

ṘIu = ηIu(t),

Ḋ = γHd(t).

(1)

The initial data of the system is supplemented by

S(t0) = S0 > 0, E(t0) = E0 > 0, I (t0) = I0 > 0, Id(t0) = 0 Iu(t0) ≥ 0,

(2)

HR(0) = 0, Hd(0) = 0, RIu(0) = 0, RId
(0) = 0 and D(0) = 0.



Mathematical Modelling of the Evolution Dynamics of the Coronavirus Disease. . . 83

The time t is in day, the asymptomatic infectious individuals I (t) are infectious for
an average time period of 1/α days. We suppose that the population is constant i.e
N = S(t) + E(t) + I (t) + R(t).

We notice that 8th, 9th and 10th equations of system (1) are not coupled with
the other equations. So we can solve the first seven equations of the system and
compute them after the other three equations. Thus, the system taken into account
is the following with seven equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = −S(t)

N

(

mE(t)βEE(t) + mI (t)βI I (t) + βIumIu(t)Iu(t) + βId
mId

(t)Id(t)

)

−S(t)

N

(

βHR
mHR

(t)HR(t) + βHd
mHd

(t)Hd(t)

)

,

Ė = S(t)

N

(

mE(t)βEE(t) + mI (t)βI I (t) + βIumIu(t)Iu(t) + βId
mId

(t)Id(t)

)

+S(t)

N

(

βHR
mHR

(t)HR(t) + βHd
mHd

(t)Hd(t)

)

− αE(t),

İ = αE(t) − βI (t),

İd = β1βI (t) − θId(t),

İu = β2βI (t) − ηIu(t),

ḢR = ω1θId(t) − ρHR(t),

Ḣd = ω2θId(t) + (1 − ξ)ρHR − γHd(t) − νHd.

(3)

3 Basic Properties

In this section, we prove the positivity and the boundedness of the solution of the
system (1) with initial conditions defined in (2).

For that, let us state the following lemma.

Lemma 3.1 ([9]) Suppose Ω ⊂ R × Cn is open and fi ∈ C(Ω,R), i =
1, 2 · · · , n. If fi |xi (t)=0, Xt∈Cn+0

≥ 0, Xt = (x1t , x2t , · · · , xnt ), then, φ =
(φ1, φ2, · · · , φn) ∈ C([−τ, 0],Rn

+0) is the invariant domain of the following
equations.

dxi(t)

dt
= fi(t, Xt ), t ≥ σ, i = 1, 2 · · · , n;

where Rn
+0 = {(x1, x2, · · · , xn) : xi ≥, i = 1, 2 · · · , n.
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Proposition 3.1 The system (1) is invariant in R10+ .

Proof Let us write system (1) as

dX

dt
= f (X(t)), X(0) = X0 ≥ 0,

so, note that

dS

dt
|S=0 = 0,

dE

dt
|E=0 = S

N

(

mIβI I + βIumIuIu + βId
mId

Id + βHR
mHR

HR + βHd
mHd

Hd

)

≥ 0,

dI

dt
|I=0 = αE ≥ 0,

dId

dt
|Id=0 = β1βI ≥ 0,

dIu

dt
|Iu=0 = β2βI ≥ 0,

dHR

dt
|HR=0 = ω1θId ≥ 0,

dHd

dt
|Hd=0 = ω2θId + (1 − ξ)ρHR ≥ 0, since ζ ∈]0, 1[.

From Lemma 3.1, we conclude that system (1) is invariant in R10+ .

Lemma 3.2 The solution of system (1) is bounded in the region

Ω = {(S,E, I, Id , Iu, HR,Hd,RId
, RIu ,D) ∈ R10+ |S+E+I+Id+Iu+HR+Hd+RId

+RIu+D = N}.

Proof For system (1), we observe that
Ṅ = 0, ⇒ N(t) = Cst, ∀t ≥ 0, thus all the solution of system (1) are bounded.

The only equilibrium of the model is the disease free equilibrium (DFE) defined
by EDFE = (N, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (S0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Proposition 3.2 The basic reproduction number for the model system (1) is defined
by

R0 = 1

α
mE(t)βE + 1

β
mI (t)βI + β2

η
mIu(t)βIu + β1

θ
mId

(t)βId
+ ω1β1

ρ
mHR

(t)βHR

(4)

+ β1

γ + ν
(ω2 + ω1(1 − ξ))mHd

(t)βHd
. (5)
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Proof We use the method of next generation matrix in [10] to compute the
reproduction number R0. So we get:

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

F1

F2

F3

F4

F5

F6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S(t)

N

(
mE(t)βEE(t) + mI (t)βI I (t) + mIu(t)βIuIu(t) + mId

(t)βId
Id (t)

)

+S(t)

N

(
mHR

(t)βHR
HR(t) + mHd

(t)βHd
Hd(t)

)

0

0

0

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

V1

V2

V3

V4

V5

V6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−αE(t)

αE(t) − βI (t)

β1βI (t) − θId(t)

β2βI (t) − ηIu(t)

ω1θId(t) − ρHR(t)

ω2θId(t) + (1 − ξ)ρHR(t) − γHd(t) − νHd(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We get the Jacobian matrixes of these two functions F and V as follow.

F = DF(E,I) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂F1

∂E

∂F1

∂I

∂F1

∂Iu

∂F1

∂Id

∂F1

∂HR

∂F1

∂Hd

∂F2

∂E

∂F2

∂I

∂F2

∂Iu

∂F2

∂Id

∂F2

∂HR

∂F2

∂Hd

∂F3

∂E

∂F3

∂I

∂F3

∂Iu

∂F3

∂Id

∂F3

∂HR

∂F3

∂Hd

∂F4

∂E

∂F4

∂I

∂F4

∂Iu

∂F4

∂Id

∂F4

∂HR

∂F4

∂Hd

∂F5

∂E

∂F5

∂I

∂F5

∂Iu

∂F5

∂Id

∂F5

∂HR

∂F5

∂Hd

∂F6

∂E

∂F6

∂I

∂F6

∂Iu

∂F6

∂Id

∂F6

∂HR

∂F6

∂Hd

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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and at the point EDFE , we have

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

mE(t)βE mI (t)βI mIu(t)βIu mId
(t)βId

mHR
(t)βHR

mHd
(t)βHd

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

DV(E,I) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂V1

∂E

∂V1

∂I

∂V1

∂Iu

∂V1

∂Id

∂V1

∂HR

∂V1

∂Hd

∂V2

∂E

∂V2

∂I

∂V2

∂Iu

∂V2

∂Id

∂V2

∂HR

∂V2

∂Hd

∂V3

∂E

∂V3

∂I

∂V3

∂Iu

∂V3

∂Id

∂V3

∂HR

∂V3

∂Hd

∂V4

∂E

∂V4

∂I

∂V4

∂Iu

∂V4

∂Id

∂V4

∂HR

∂V4

∂Hd

∂V5

∂E

∂V5

∂I

∂V5

∂Iu

∂V5

∂Id

∂V5

∂HR

∂V5

∂Hd

∂V6

∂E

∂V6

∂I

∂V6

∂Iu

∂V6

∂Id

∂V6

∂HR

∂V6

∂Hd

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and at the point EDFE , we have

V = DV(EDFE) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−α 0 0 0 0 0

α −β 0 0 0 0

0 β1β 0 −θ 0 0

0 β2β −η 0 0 0

0 0 0 −ω1θ −ρ 0

0 0 0 −ω2θ (1 − ξ)ρ −γ − ν

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, we obtain

−FV −1 =
(

A B

C D

)
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where

A = −
⎛

⎜
⎝

−1

α
mE(t)βE − 1

β
mI (t)βI − β2

η
mIu (t)βIu − β1

θ
mId

(t)βId
− ω1β1

ρ
mHR

(t)βHR

− β1

γ + ν
(ω2 + ω1(1 − ξ))mHd

(t)βHd

⎞

⎟
⎠ ∈ M1,1(R),

B = 01,6 ∈ M1,6(R), C = 05,1 ∈ M5,1(R) and D = 05,5 ∈ M5,5(R).

The basic reproduction number is defined as the dominant eigeinvalue of the matrix
−FV −1.

Therefore,

R0 = 1

α
mE(t)βE + 1

β
mI (t)βI + β2

η
mIu(t)βIu + β1

θ
mId

(t)βId
+ ω1β1

ρ
mHR

(t)βHR

+ β1

γ + ν
(ω2 + ω1(1 − ξ))mHd

(t)βHd

�
The basic reproduction number R0 is defined as the number of cases that

one infected person generates on average during his infectious period, within an
uninfected population and without any special control measures. This number does
not change during the spread of the disease.

The effective reproduction number Re(t) is defined as the number of cases
that one infected person generates during his infectious period. This effective
reproduction number depends on time, therefore, on public policies (it changes
during the spread of the disease). Furthermore, Re(t) = Re − R0 at t = 0 and
the spread of the disease slows when Re(t) < 1.

Without any public policies,

mE(t) = mI (t) = mIu(t) = mId
(t) = mHR

(t) = mHd
(t) = 1,

so

R0 = 1

α
βE + 1

β
βI + β2

η
(t)βIu + β1

θ
βId

+ ω1β1

ρ
βHR

+ β1

γ + ν
(ω2 +ω1(1− ξ))βHd

and, therefore,

Re(t) =
(
1

α
mE(t)βE + 1

β
mI (t)βI + β2

η
mIu(t)βIu + β1

θ
mId

(t)βId
+ ω1β1

ρ
mHR

(t)βHR

(6)

+ β1

γ + ν
(ω2 + ω1(1 − ξ))mHd

(t)βHd

)
S(t)

N
.

Using Theorem 2 in [10], the following result is established.
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Proposition 3.3 The disease free equilibrium EDFE of he model (3) is locally
asymptotically stable if R0 < 1 and unstable ifR0 > 1.

4 Data

In this part, we show real data generated by CORUS, the Burkina Faso National
Health Commission against the Coronavirus Disease 2019 (COVID-19). Recall that
the first cases were reported in Burkina Faso on March 9, 2020.

In Appendix A, Table 1 represents the daily cumulative number of reported
infected cases and Table 2 the daily cumulative reported dead cases.

5 Numerical Simulations

For the numerical simulations, we focus on the public policies represented in the
model (1) by functions mE, mI , mIu, mId

, mHR
and mHd

. From the beginning
date of the public policies, we decrease the contact rate, as a result of the various
types of measures taken by the public authorities. The effect of these measures can
be seen on the spikes of the different types of infectious cases; the spikes decrease
according to the degrees of the measures taken. The curve of the contact rate (contact
function) is represented in the Fig. 4.

γ (t) = mE(t) = mI (t) = mIu(t) = mId
(t) = mHR

(t) = mHd
(t) (7)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, 0 ≤ t < t0,

γmin0 + (γ0 − γmin0) exp(−μ1(t − t1)), t0 ≤ t < t1,

· · ·
γminq + (γq − γminq) exp(−μq(t − tq−1)), tq−1 ≤ t < ∞,

where γminq is the minimum contact rate and μq is the rate at which the contact
decreases.

Depending on the public measures taken, μi increases, so the contact rate γ (t)

decreases and it is possible to limit the number of infected persons (see Fig. 4).
μi is chosen in such a way that the simulation for the time interval aligns with
the cumulative reported case data. Also, the effective reproduction number Re(t)

is strongly dependent on the contact function which decreases exponentially by
interval as shown in Fig. 5. Thus we are able to predict the future values of
the epidemic from the early cumulative reported data. The earlier public policy
decisions are made, the better the management of the epidemic.
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For Burkina Faso, we present the model, first, without any public policy intervention
and, secondly with public policies taken by the local government. It is important
to observe that the basic reproduction number with the parameters taken for this
simulation: R0 = Re(0) = 4.5; this mean that 10 persons infect 45 persons, which
is very high. The role of public policies is to reduce this Re down to less than one,
which will ensure the extinction of the epidemic.

5.1 Situation Without Public Policies

Without any public policies, the situation of the pandemic would be dramatic for
the African countries and for Burkina Faso in particular. In fact, as shown in the
simulation (see Figs. 2 and 3), 9 millions persons would be infected by the COVID-
19 and around 850 thousand would die, that is 9% of infected persons.

5.2 Situation with Public Policies

Fortunately, in Burkina Faso, as in almost all countries in the world, from the first
cases of the disease, a succession of barrier measures were taken, ranging from
hand washing, to the closing of schools, and, places of worship and markets, and
the establishment of curfews. Consequently, in the following simulations, we have
chosen our contact function in such a way that the cumulative number of infected

Fig. 2 Cumulative Infected persons generated by the model
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Fig. 3 Cumulative dead persons generated by the model

Fig. 4 Contact function

persons (model (1)) fits the data produced by the Burkina Faso National Health
Commission against COVID-19.

Figure 5 represents the dynamic of the effective reproduction number and Fig. 4
represents the dynamic of the contact function. These two curves clearly show the
effects of three measurements according to their implementation time.
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Fig. 5 Effective reproduction number Re(t) through the time

Figure 6 presents the histogram of the daily reported infected cases and the
infected and the dead given by the model 1.

6 Conclusion

In this paper, we are proposing a model for the transmission of the coronavirus
disease 2019. We calculated the R0 which is very essential in understanding the
disease and we have showed the local stability of the disease free equilibrium
DFE. We subsequently adjusted the model to the actual data of the National Health
Commission against the coronavirus disease 2019. From this adjustment, we have
been able to draw a number of consequences for the further management of the
pandemic.

Firstly, from Fig. 5, we can say that the peak of the epidemic was reached in
Burkina Faso around April 5, 2020 (Fig. 6).

Secondly, the data collected are not sufficiently homogenous, which allow for
some reservation on the reliability of the data (Fig. 7). Nevertheless these data
constitute a basis to make prescriptions for the dynamics of the disease and
especially for removing the barrier measures. We achieved this by fitting the model
with the data in Figs. 8, 9 and 10.

Finally, we can notice that the effective reproduction number Re would be less
than 0.5 at April 15, 2020, naturally according to the data fit with the model (1).
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Fig. 6 Daily evolution of reported cases. The histogram is from real data and the curves from the
model

Fig. 7 Daily evolution of reported cases generated by the model
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Fig. 8 Cumulative reported infected cases, real data (black point) and red curve (from the model)

Fig. 9 Cumulative reported dead cases. real data (black point) and red curve (from the model)

We therefore think that one week after this date, certain barrier measures could be
reviewed, for instance to allow for the opening of markets but maintaining the rule
of distance, the opening of schools under conditions which do not allow the spread
of the disease, and authorization for many other sectors of active life to be reopen.
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Fig. 10 Cumulative reported infected and dead cases. The blacks point are generated by the real
data and the curves from the model

Appendix A. Tables of Data

Table 1 Daily cumulative reported cases data from March 9, 2020 to April 20, 2020 for
Burkina Faso by Burkina Faso National Health Commission against the Coronavirus Disease 2019
(COVID-19)

March 9 12 13 15 16 17 18 19 20 21 22 23

2 3 7 15 19 27 33 40 64 75 99 114

March 24 25 26 27 28 29 30 31

146 152 180 207 222 246 261 282

April 1 2 3 4 5 6 7 8 9 10

288 302 318 345 364 384 414 443 448 484

April 11 12 13 14 15 16 17 18 19 20

497 515 530 533 542 546 557 568 573 592
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Table 2 Daily cumulative reported dead cases data from March 9, 2020 to April 17, 2020 for
Burkina Faso by Burkina Faso National Health Commission against the Coronavirus Disease 2019
(COVID-19)

March 9 18 20 21 24 26 27 28 30 31

0 1 3 4 7 9 11 12 14 16

April 4 5 6 7 8 9 10 12 13 17

17 18 19 23 24 26 27 28 32 35
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