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Preface

What is mathematics and what do mathematicians do? Let us recall G.H Hardy’s
excellent description:

“A mathematician, like a painter or poet, is a maker of patterns. If his patterns are more
permanent than theirs, it is because they are made of ideas.”

With the unifying aesthetic principle “simple is beautiful,” and the simplest
possible things are of course imaginary.

This book The Mathematics of Patterns, Symmetries, and Beauties in Nature is in
honor of Professor John Adam and his outstanding achievements; it features recent
developments and techniques by world-renowned experts in the field of mathematics
in nature; it will contribute to re-emphasize the relevance and depth of mathematical
concepts used to decipher and understand the natural and physical world, including
mathematics’ ever expanding reach into the physical, biological, social/behavioral,
and computational sciences. The volume provides an accessible summary of a wide
range of active research topics, along with exciting new results. Topics include:
mathematical modeling of the evolution dynamics of Covid-19, simulations of
social distancing scenarios, mathematical modeling of tungiasis inflammation of
the skin, modeling of a tick-killing robot, spatial-temporal of Covid-19 progression,
Archimedean and non-Archimedean mathematical modeling.

The volume’s unique feature is to gather in a single expert book the most recent
theoretical developments as well as state-of-the-art applications.

It will certainly serve as a useful resource for both graduate students entering this
research area and more established researchers, including a wide angle snapshot
of this exciting and far-reaching research domain. It also facilitates an in-depth

Patterns, Symmetries, and Beauties in Nature.
As such the volume is an important part of the multidisciplinary STEAM-H

series (Science, Technology, Engineering, Agriculture, Mathematics and Health);
the series brings together leading researchers to present their work in the perspective
to advance their specific fields, and in a way to generate a genuine interdisciplinary
interaction transcending disciplinary boundaries. All chapters therein were carefully

v

exchange of ideas on recent advances in the various aspects of the Mathematics of
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edited and peer reviewed; they are reasonably self-contained and pedagogically
exposed for a multidisciplinary readership.

Contributions are invited only and reflect the most recent advances delivered in
a high standard and self-contained in line with the goals of the series, that is:

1. To enhance multidisciplinary understanding between the disciplines by showing
how some new advances in a particular discipline can be of interest to the other
discipline, or how different disciplines contribute to a better understanding of a
relevant issue at the interface of mathematics and the sciences.

2. To promote the spirit of inquiry so characteristic of mathematics for the advances
of the natural, physical, and behavioral sciences by featuring leading experts.

3. To encourage diversity in the readers’ background and expertise, while at
the same time structurally fostering genuine interdisciplinary interactions and
networking.

Current disciplinary boundaries do not encourage effective interactions between
scientists; researchers from different fields usually occupy different academic
buildings, publish in journals specific to their field, and attend different scientific
meetings. Existing scientific meetings usually fall into either small gatherings
specializing on specific questions, targeting specific and small group of scientists
already aware of each other’s work and potentially collaborating, or large meetings
covering a wide field and targeting a diverse group of scientists but usually not
allowing specific interactions to develop due to their large size and a crowded
program. Here contributors focus on how to make their work intelligible, accessible
to a diverse audience, which in the process enforces mastery of their own field of
expertise.

This volume strongly advocates multidisciplinarity with the goal to generate new
interdisciplinary approaches, instruments, and models including new knowledge,
transcending scientific boundaries to adopt a more holistic approach. For instance, it
should be acknowledged, following Nobel laureate and president of the UK’s Royal
Society of Chemistry, Professor Sir Harry Kroto, “that the traditional chemistry,
physics, biology departmentalised university infrastructures—which are now clearly
out-of-date and a serious hindrance to progress—must be replaced by new ones
which actively foster the synergy inherent in multidisciplinarity.” The National
Institutes of Health and the Howard Hughes Medical Institute have strongly
recommended that undergraduate biology education should incorporate mathemat-
ics, physics, chemistry, computer science, and engineering until “interdisciplinary
thinking and work become second nature.” Young physicists and chemists are
encouraged to think about the opportunities waiting for them at the interface with
the life sciences. Mathematics is playing an ever more important role in the physical
and life sciences, engineering, and technology, blurring the boundaries between
scientific disciplines.

The series, through contributed volumes such as the current one, is to be a
reference of choice for established interdisciplinary scientists and mathematicians
and a source of inspiration for a broad spectrum of researchers and research students,
graduate and postdoctoral fellows; the sheer emphasis of these carefully selected
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and refereed contributed chapters is on important methods, research directions,
and applications of analysis including within and beyond mathematics. As such
the volume implicitly promotes mathematical sciences, physical and life sciences,
engineering, and technology education, as well as interdisciplinary, industrial, and
academic genuine cooperation.

The current book, entitled The Mathematics of Patterns, symmetries, and Beau-
ties in Nature,” as a whole certainly enhances the overall objective of the series,
that is, to foster the readership interest and enthusiasm in the STEAM-H disci-
plines (Science, Technology, Engineering, Agriculture, Mathematics and Health),
stimulate graduate and undergraduate research, and generate collaboration among
researchers on a genuine interdisciplinary basis.

The STEAM-H series is hosted at Howard University, Washington DC, USA, an
area that is socially, economically, intellectually very dynamic and home to some of
the most important research centers in the USA. This series, by now well established
and published by Springer, a world-renowned publisher, is expected to become a
national and international reference in interdisciplinary education and research.

Washington, DC, USA Bourama Toni
June 2021
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Introduction: Nature and Its
Mathematics

Bourama Toni

What is mathematics? What do mathematicians do? Do they discover or do they
invent mathematics? Artificial Intelligence (AI) is permeating all realms of human
endeavors, prompting the question as to whether mathematical creativity is uniquely
human. Let recall G.H. Hardy’s excellent description:

“A mathematician, like a painter or poet, is maker of patterns. If his patterns are more
permanent than theirs, it is because they are made of ideas”

With the unifying aesthetic principle “simple is beautiful”, and the simplest
possible things are of course imaginary, some have said that mathematics and
poetry carry the same principle and quest of beauty; indeed in both beauty seems
to be generated by translation/displacement and unforeseen twists. (e.g. change of
perspective casting problems in a new light often leads to a mathematical solution).

Augustus de Morgan (1806–1871) is quoted as saying that the moving power of
mathematical invention is not reason but imagination. Abstraction is mathematics’
primary strength.

Mathematics has been and continues to be used to decipher natural phenomena
and nature itself, and to some extend the universe. This volume, titled “the
Mathematics of Patterns, Symmetries and Beauties in Nature” in Honor of Professor
John Adam aims at contributing to such endeavor: reveal and appreciate nature and
its beauty through mathematical lenses. This is truly reflected and invited by this
1857 description of Nature by the French poet Charles Baudelaire, and we quote:

B. Toni (�)
Department of Mathematics, Howard University, Washington, DC, USA
e-mail: bourama.toni@howard.edu
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2 B. Toni

La Nature est un temple où de vivants piliers
Laissent parfois sortir de confuses paroles;
L’homme y passe à travers des forêts de symboles
Qui l’observent avec des regards familiers.

Comme de longs échos qui de loin se confondent
Dans une ténébreuse et profonde unité,
Vaste comme la nuit et comme la clarté,
Les parfums, les couleurs et les sons se répondent.

Il est des parfums frais comme des chairs d’enfants,
Doux comme les hautbois, verts comme les prairies,
—Et d’autres, corrompus, riches et triomphants,

Ayant l’expansion des choses infinies,
Comme l’ambre, le musc, le benjoin et l’encens,
Qui chantent les transports de l’esprit et des sens.

Charles Baudelaire, Sonnet de 1857

Professor John Adam has contributed greatly through his work to exploring
patterns in nature, showing us how to bypass the unnecessary complexities of natural
phenomena and focus on the essentials. See for instance his book “Guesstimation:
solving the world’ problems on the back of a cocktail napkin”. John has also
published “Mathematical Modeling in Unusual Contexts: Rainbows, Halos and
Glories.” His mathematical interests in deciphering nature’s patterns, symmetries
and beauties include: snow crystals and their regularity and symmetry; ‘Why the
Sky is Blue”; The mathematical basis of a universal “law of quarter powers” for
critters, large and small; mathematical theory of waves; wound healing in bones;
mathematical theory of meteorological optics. Rays, Waves and Scattering was
the topic of his most recent book. John’s published books on the subject include,
by the Princeton University Press: “Mathematics in Nature: Modeling Patterns in
the Natural World”; “A Mathematical Nature Walk”; “X and the City: Modeling
Aspects of Urban Life” which reveals mathematics in the metropolitan landscape.

Thus everything that is not forbidden by laws of nature is decipher-
able/explainable, given the right mathematical knowledge, which encompasses
approaches grounded in the Archimedean and Non-Archimedean Principle.

In chapter “A mathematical model of thermography with application to tun-
giasis inflammation of the skin” by Ephraim Agyingi, Tamas Wiandt and Sophia
Maggelakis, the authors use the Pennes equation to model the heat transfer in
tungiasis-associated inflammation of the skin, and provide numerical simulations
for the presence of tungiasis and other bacterial co-infection.

In chapter “Application and Modeling of a Tick-Killing Robot, TickBot” by
Alexis White and Holly Gaff, the authors model mathematical tick population
dynamics, quantify risk of tick-borne disease, and identify strategies to reduce
that risk. They also explore from field studies data the use of a TickBot as a tick
management tool, leading to supporting the use of scenarios with carbon-dioxide
for greater reduction in questing tick populations.

Chapter “Mathematics of Covid-19” by Eric Choate, Agida Manizade and Yuliya
Petrova introduces the general framework of “compartment models” used to model
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epidemics as a first-order system of nonlinear ordinary differential equations in the
context of the COVID-19 pandemic. The resulting model is then adapted to account
for the rollout of a vaccination plan and its effect on the expected deaths.

In chapter “Spatio-temporal Modelling of Progression of the COVID-19 Pan-
demic” the authors Dilini Gamage, Jennifer Matthews, Norou Diawara and Huei-
wang Anna Jeng seek and present suitable statistical models (Bayesian Conditional
autoregressive (CAR), Moran measures) that can be used to predict progression
of the COVID-19, for instance, allowing to monitor the spread of the virus in the
targeted locations and time. Data on new COVID-19 cases data on four selected
countries (and neighboring countries) over time were collected via Situation Reports
published by the World Health Organization.

Chapter “Simulations of Social Distancing Scenarios and Analysis of Strategies
to Predict the Spread of Covid-19” by Fran Lobato, Gustavo Libotte, Gustavo Platt,
Regina Almeida, Renato Silva and Sandra Malta, presents a comprehensive view
of covid-19 induced social distancing measures along two different strategies for
predicting the spread of Covid-19 in the scope of computational modeling and to
analyze scenarios to describe the impact of social distancing measures.

In chapter “Mathematical modeling of the evolution dynamics of the coronavirus
disease 2019 (COVID-19) in Burkina Faso” by Aboudramane Guiro, Blaise Koné
and Stanislas Ouaro, the authors develop a compartmental model adapted from real
data of the country Burkina Faso along the categories of hospitalized, severely
hospitalized patients, and dead persons, determine condition for a locally asymp-
totically stable disease-free equilibrium. As a result they could predict the disease
dynamic to assist with national decision-making policies.

Chapter “Archimedean and Non-Archimedean Approaches to Mathematical
Modeling” by Bourama Toni, first discusses cultural approaches to mathematical
fundamental concepts, in particular the French and Russian schools of mathematics,
as well as the artificial mathematical creativity to lead to the so-called post-human
mathematics; the author then describes and illustrates the two main approaches to
mathematical modeling; the classic Archimedean methodology featuring the Jaco-
bian Feedback Loops Analysis and the most recent non-Archimedean/ultrametric/p-
adic approach.



A Mathematical Model of Thermography
with Application to Tungiasis
Inflammation of the Skin

Ephraim Agyingi, Tamas Wiandt, and Sophia Maggelakis

1 Introduction

Many body infections and inflammations usually result in higher body temperatures.
Among these is Tungiasis, an ectoparasitic infection caused by Tunga penetrans
(female sand fleas). Tungiasis begins when a female sand flea in an attempt to
reproduce, burrows entirely into the skin with its head, leaving only the posterior
end which consists of the anus for wasted disposal, the copulatory organs for eggs
dispersal, and the stigmata for respiration outside the epidermis. On entering the
host, the sand flea starting with a maximum length of 1mm develops and increases
its volume by a factor of about 2,000–3,000 through several stages (ranging from
I-V) into a pea-size white halo (of diameter up to 1 cm) spotting a black posterior
end for the outlet [1]. The parasitic lesion often dies after a period of up to 5 weeks
when all eggs have been dispensed, leaving a wound crater at the affected skin site
which may become colonized leading to other forms of skin infections.

Tunga penetrans infestation is common to humans, domesticated animals, and
many other general hosts [2]. However, pigs have been identified as the most
important reservoir for Tunga penetrans [3, 4]. Although Tungiasis is not featured
on the prominent list of neglected tropical diseases, it is prevalent in tropical
and subtropical regions of the world, including Mexico to South America, the
West Indies and Africa [5, 6]. Tungiasis is endemic where living conditions are
unhygienic and also mostly affects the poor, especially children and the elderly.
Clinical symptoms include itching, burning irritation, inflammation and ulceration

E. Agyingi · T. Wiandt · S. Maggelakis (�)
School of Mathematical Sciences, College of Science, Rochester Institute of Technology,
Rochester, NY, USA
e-mail: sxmsma@rit.edu; eoasma@rit.edu; tiwsma@rit.edu
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leading to severe pain at the infection site. Recurring multiple lesions in the feet can
lead to morbidity and consequently limited mobility. In poor communities, diagnosis
is restricted to visual inspection and treatment is often crudely effected using sharp
pointed objects (e.g. sharpened stick, needle etc.) to pry out the parasite from the
skin.

In some cases, visual inspections even when detailed, often miss diagnosing
Tungiasis infections especially those in early stages and those associated with
acute morbidity. A very heavy skin pigmentation can also hinder visual diagnosis.
Thermography as an additional tool will/may lead to effective diagnosis of Tungiasis
infection. The procedure is noninvasive and uses an infrared camera to capture
the thermal image (made up of the temperature at the surface of the skin) of
the concerned region. Thermography is an established procedure and has been
considered in screening several diseases including breast cancer [7], skin cancer
[8], veterinary medicine [9, 10], and allergy [11]. Most recently, Schuster et al.
[12] clinically considered thermography as a tool in diagnosing tungiasis-associated
inflammation of the skin. They concluded that it was a useful tool and that it may
help to diagnose hidden and atypical manifestations of tungiasis.

The general neglect given to tungiasis infections is also reflected in the math-
ematical literature where it has been given only little attention focusing on its
transmission dynamics [13–16]. Mathematical models of thermography for breast
tumors [17–21] and skin lesions [22–26] have been considered more often in
the published literature. In this paper, we consider a mathematical model of
thermography for tungiasis infection diagnosis. Following the approach in [26], we
model tungiasis as a lesion and study the temperature profile generated at the skin
surface using a variant of the Pennes equation for heat transfer. Tungiasis can lead to
other bacterial infections during its tenure or after it dies. In view of this, we study
coinfection, that is, tungiasis along with another bacteria and also the case where
there is bacterial infection of the skin region following the death of the parasite.

The paper is organized as follows: we present the mathematical model for heat
transfer in Sect. 2. The model provided here differs from that in [26] in that the
different layers of the skin have not been taken into account. For simplicity, we have
assumed a homogenous skin region. In section 3, we provide numerical simulations
of the model for different degrees of inflamatory response to tungiasis infection and
coinfection with bacterial. Closing remarks are stated in the Conclusion.

2 Mathematical Model

We present a model of heat transfer in tungiasis; we are considering a burrowed flea
located in the dermis. Following the formulation presented in [25], we construct
a mathematical model of heat transfer in a two-dimensional cross-section of the
skin. The goal is to investigate whether skin temperature is a good indicator of
the presence of tungiasis and whether the mathematical model fits the observed
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temperature differences in case of the disease. We study the effects of extra heat
production of inflammations on the surface temperature.

We assume that the burrowed fleas create spherical holes in the skin, and in
the interest of simplicity, we shall present a spatially two-dimensional model. We
consider a two-dimensional cross section of the skin tissue, containing a circularly
shaped hole containing the burrowed flea. The temperature of the cross-sectional
skin tissue is given by T (x, y), where the x coordinate is the horizontal direction
and y is the depth. The two dimensional cut is placed in the (x, y)-plane so that the
y = 0 level corresponds to the bottom layer of the skin, and y = d corresponds to
the surface. The origin is placed so that −a ≤ x ≤ a, with the center of the hole
created by the burrowed flea on the y-axis x = 0. We assume that there is a layer of
inflamed tissue around the hole created by the flea.

The heat flow in this region is described by the Pennes equation [27]

ρc̄
∂T

∂t
= ∇ · (K∇T ) + mbcb(TA − T ) + S,

where ρ is the tissue’s density, c̄ is the tissue’s specific heat,K is the tissue’s thermal
conductivity, mb is the mass flow rate of blood, cb is the blood’s specific heat, TA is
the arterial blood temperature, and S is the metabolic heat generation.

We consider the steady state temperature, where the time derivative is zero. The
equation describing the temperature Th(x, y) in the healthy region is given by

�Th = − Sh

Kh

− mbcb(TA − Th)

Kh

,

where Sh is the metabolic heat generation rate of the healthy tissue and Kh is its
thermal conductivity.

The equation is analogous for the inflamed region, with the heat generation rate
of sand flea S considerably higher.

The boundary conditions of the various parts of the domain considered are listed
below. The outer boundary conditions of the healthy region are provided by (i)−(iii).
Items (iv)−(v) provide inner boundary conditions for the healthy region and outer
boundary conditions for the region containing the flea.

(i) Th(x, 0) = Tb is the temperature of the body at the bottom layer.
(ii) At the skin surface, y = d, −K

∂Th

∂y
= λ(Th − Ta), where Ta is the ambient

temperature and λ is the surface heat transfer coefficient.
(iii) At the side boundaries x = ±a, Th(−a, y) = Th(a, y) is the temperature

distribution of healthy tissue. By assuming homogeneity of the tissue, we
reduce the problem into a one-dimensional equation of the form

�Th(x, y) = T ′′
h (y) − mbcbTh

Kh

= − Sh

Kh

− mbcbTA

Kh

,
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where y is the tissue depth, Th(0) = Tb, and T ′
h(d) = −λ(Th − Ta)/Kh. The

solution of this equation is given by

Th(y) = Tb − η + η cosh(ω y)

+
(

λ(η + Ta − Tb) − ηKhω sinh(ωd) − ηλ cosh(ωd)

λ sinh(ωd) + Khω cosh(ωd)

)
sinh(ω y),

where η = Tb − S
mbcb

− TA and ω =
√

mbcb

Kh
.

(iv) We assume that the temperature is continuous across the interface of the
healthy tissue, the inflamed region, and the burrowed flea.

(v) The heat flux is continuous across the interface of the healthy tissue, the
inflamed region, and the burrowed flea.

3 Results and Discussion

In this section, we present numerical simulations of the model presented above using
pdetool, a MATLAB finite element solver. The results are for a single sand flea
embbeded in a skin cross section. The values of the thermophysical parameter for
healthy skin tissue were chosen within the range of published data [23, 25, 26] and
are set Sh = 0.009W/cm3, Kh = 0.0042W/((cm)◦C), λ = 0.0005W/((cm2)◦C),
mb = 0.0005 g/(ml s) and cb = 4.2 J/g◦C. The value of the arterial blood
temperature was set at TA = 36◦C and the body temperature, at the level y = 0, was
set at Tb = 36◦C. Other parameters used were chosen to investigate the behavior of
the model.

By burrowing into the infection site, the parasite injure tissue cells and as a
consequence triggers an inflammatory response. We consider cases with varying
degrees of inflammatory response to the parasite. We assume that the generation
of inflammatory mediators in the vicinity of the parasite leads to an increased rate
of energy production. We therefore associate a high inflammatory response with
higher heat generation. We also assume that the inflammatory response is uniformly
distributed in the region surrounding the parasite. In all simulations, we assign the
heat generation rate of the inflamed region a value that is a multiple of the heat
generation rate of healthy tissue. Because of the rapid rate of development and
the accompanying metabolic activity, we also assign the heat generation rate of the
parasite a value that is a multiple of the heat generation rate of healthy tissue.

The results given in Fig. 1 are for the steady state temperature distribution
within the skin cross section where the heat generation rate of healthy tissue is
Sh = 0.009W/cm3 and where the parasite heat generation rate is 10Sh. The heat
generation rate of the inflammation region is set at 5Sh, 10Sh, and 20Sh as depicted
in Fig. 1a, b, c, respectively. The temperature distribution as shown in all cases is
significantly higher in the proximity of the parasite and the intensity increases with
an increase in the heat generation rate of the inflamed region. Figure 1d, simulates
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Fig. 1 Steady state temperature distribution within the skin section where the heat generating rate
of inflamatory response is: (a) 5 times that of healthy tissue; (b) 10 times that of healthy tissue;
and (c) describes 20 times that of healthy tissue. In (d) a non-viable flea is simulated
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the steady state temperature of the skin section when the parasite is in stages IV-V,
where it is no longer viable and eventually dies. Here, we maintain a heat generation
rate of 10Sh for the inflammatory response and set that of the parasite to zero since
it consist of dead cells.

A change in the steady state temperature within the skin section also results in
a change in the steady state temperature at the skin surface as illustrated in Fig. 2.
An increased temperature at the skin surface is observed for different inflammatory
responses in the presence of the parasite. The biggest increase of about 0.6◦C occurs
directly above the parasite and is associated with the highest inflammatory response.
Figure 2 also shows a decrease in the temperature at the skin surface over the dead
parasite. We remark here that every sand flea upon death leaves behind a carcass
of dead tissue at the infection site. A round depression is often formed in the outer
layer of the skin after the carcass of the sand flea is expelled and the epidermis is
reconstructed in a timely manner assuming no underlying issue such as bacterial
infection is present.

Because cases do arise in which an abscess is formed around a tungia lesion [28],
we next simulate sand flea and bacterial coinfection. In this case we also assumed
that the metabolic activity by the bacterial infection leads to a higher heat generation
rate compared to that of healthy skin tissue. Further, we supposed that inflammatory
response is directed at both the sand flea and bacteria, and is contained within the
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Fig. 2 Numerical simulation of the change in steady state temperature at the skin surface for
various degrees inflamatory response. The degree of the inflamatory response corresponds to a
multiple of the heat generating rate of healthy skin tissue
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Fig. 3 Coinfection temperature distrubution within skin cross section: (a) temperature distribution
for bacterial infection with live tungia penetran; and, (b) temperature distribution for bacterial
infection with non-viable tungia penetran

vicinity of the burrowed flea. Coinfection results are presented in Fig. 3, where the
steady state temperature of the skin section is given in Fig. 3a for a viable sand
flea, while Fig. 3b illustrates the steady state temperature of the skin section for a
non-viable (that is dead) sand flea.

Some bacterial infections are very severe leading to the formation of an abscess.
The results in Fig. 4 provide the change in the steady state temperature observed at
the skin surface for two types of coinfections: one without and the other with abscess
formation. The simulations in Fig. 4a are for a viable sand flea while that in Fig. 4b
is for a non-viable sand flea given the presence of bacterial infection. We observe
from Fig. 4a that the skin surface temperature is higher where an abscess is absent
for a viable flea. The lower temperature in the case of an abscess can be attributed to
the fact that its content is mostly made up of dead cells and as a consequence has a
lower heat generating rate. In the case of a non-viable flea, Fig. 4b, the temperature
at the skin surface decreases the most where coinfection with an abscess is present.

The results presented above clearly show that a significant increase or decrease
in temperature at a region on the skin surface is a diagnostic indication of an
internal underlying abnormality. An icreased temperature is associated with a viable
burrowed sand flea, while a decreased temperature is associated with bacterial
coinfection leading to the formation of an abscess after the death of the sand flea.
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Fig. 4 Change in skin surface steady state temperature for coinfection: (a) bacterial infection with
life tungia penetran; and, (b) bacterial infection with non-viable tungia penetran

4 Conclusion

We have presented a model of heat transfer in tungiasis-associated inflammation
of the skin based on the Pennes bio-heat equation. We used the model to simulate
the steady state temperature of a 2 dimensional cross section of the skin containing
a burrowed sand flea; with and without bacterial coinfection. We also considered
cases in which the sand flea is non-viable, representing the final stages IV-V of
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the life cycle of a borrowed flea. We associated various degrees of inflammatory
responses whether directed to the sand flea or bacteria with a multiple of the heat
generating rate of healthy skin tissue. Numerical simulations show that the steady
state temperature at the skin surface increases most with a very strong inflammatory
response for a viable sand flea and is lower for coinfection with abscess formation.
In the case of a non-viable flea, the temperature at the skin surface at the infection
site is generally lower compared to that of the surrounding region, with the largest
decrease observe for coinfection resulting in abscess formation. The latter result
provides an insight to diagnosing not only tungiasis related coinfection but also
other underlying abnormalities using thermography.
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Mathematics of COVID-19

Eric P. Choate, Agida G. Manizade, and Yuliya Petrova

1 Introduction

Severe Acute Respiratory Syndrome Corona Virus 2 is the official name of the virus
responsible for the COVID-19 pandemic. This name was announced on February
11, 2020, and was chosen because the virus is genetically related to the coronavirus
responsible for the SARS outbreak in 2003 [17]. On December 31, 2019, an
outbreak of unknown etiology in Wuhan, Hubei Province, China, was identified by
the authorities as a novel coronavirus, which has started a worldwide pandemic with
significant casualties and economic implications. In response, the world’s scientists
united their efforts to battle this newfound threat. Several research groups and teams
have made significant progress in developing and implementing vaccinations and
treatments against COVID-19.

2 Development of the Vaccine

Messenger Ribonucleic Acid (mRNA) is a molecule similar to DNA. Unlike DNA, it
is single-stranded and RNA strands have a backbone made of sugar and phosphate
groups. mRNA vaccines operate by providing human cells with a piece of Spike
protein—a protein found on the surface of the virus that causes COVID-19—that has
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been rendered harmless and delivered into the body through the upper arm muscles.
mRNA acts as instructions for the immune cells that allows them to identify and
protect against viruses that display this protein on their surface [18].

By December 2020, there were two new mRNA vaccines for COVID-19 that had
completed the required human trials. These were mRNA-1273, a vaccine developed
at the National Institute of Health (NIH) and produced byModerna Pharmaceuticals,
and Tozinameran, the vaccine developed by Pfizer-BioNTech. Other labs have
developed COVID-19 vaccines using different technologies, included but not
limited to the University of Oxford’s DNA-based vaccine, which was made in
collaboration with AstraZeneca Pharmaceuticals, the recombinant protein Sanofi
vaccine, and Sinovac’s CoronaVac vaccine [1–5]. Because the virus originated in
China, many vaccines were developed there using different platforms, although the
research data and information regarding the development of vaccines is still limited.
In this section, we will discuss the development of the vaccine and the mathematics
involved in the development process. We will be focusing primarily on the Moderna
and Pfizer mRNA vaccines.

2.1 Structure of the Virus and How It Enters Human Cells

The COVID-19 virus has a lipid membrane, on top of which there are various
proteins. One of the most important proteins is the Spike protein. The image most
commonly presented in media of the COVID-19 virus is a red ball with spikes on it.
This is a simplified image of the virus and the spikes represent the Spike protein. An
important characteristic of any virus is that it cannot multiply by itself. In order to
do so, the virus has to merge with a living cell and use the cell to create more of the
virus. However, entering a human cell is no simple task—in order for the COVID-19
virus to penetrate a human cell membrane, it must first go through multiple layers
of protection such as proteins, sugars, etc. In the case of COVID-19, the Spike
protein (located on the virus) attaches itself to an angiotensin-converting enzyme
(ACE) receptor/protein located on the outer membrane of human cells. Once the
virus attaches itself to the ACE receptor on the cell, it goes through a mechanical
process in which it lifts the membrane of the cell like a lever and merges with the
human cell. This way the mRNA of the virus is able to enter the cell where it can
multiply.

Spike protein exists on virus surfaces in two conformationally different forms:
(1) pre-fusion, which is less stable, and (2) post fusion, which is more stable. A pre-
fusion Spike protein is able to attach itself to ACE receptors on the human cell. A
post-fusion Spike protein is not able to attach itself to ACE receptors on the human
cell.

For the development of the vaccine, most researcher teams focused on the pre-
fusion Spike protein.
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2.2 Immuno-Response to the Virus

Immuno-response is the body’s ability to neutralize potentially pathogenic organ-
isms, agents, and substances, including the SARS-CoV-2 Virus.When SARS-CoV-2
infects the body, humans develop antibodies for the Spike proteins. It is important
to note that the antibodies that correspond to post-fusion Spike proteins do not
neutralize the virus, meaning they do not stop pre-fusion Spike protein from
attaching to ACE receptors on a human cell and entering the cell. The function
of antibodies is not to kill the virus, but to attach themselves to their corresponding
proteins on the surface of the virus, similar to a cork in a bottle, effectively blocking
the virus’s ability to penetrate the cell and multiply.

2.3 The Vaccine

The goal of an effective vaccine is to create a large or significant number of
antibodies that could attach themselves to the pre-fusion Spike proteins that have
entered the human body. By doing so, the human body is prepared to attack any pre-
fusion Spike proteins it may encounter in the future. This means if the human body
is exposed to the actual SARS-CoV-2 virus, which uses pre-fusion Spike proteins
as the “key” to penetrate a human cell, it will already have defensive antibodies
designed to protect itself from this specific characteristic of the virus. Therefore, the
human cells will be protected from the virus itself.

In the development of the mRNA-1273 vaccine for the COVID-19 pandemic,
the researchers coded the mRNA by studying the 3D structure of Spike protein and
identifying its nucleic acid genetic sequence that supports the protein in pre-fusion
form. Researchers at the National Institute of Health (NIH) coded, modified, and
stabilized pre-fusion Spike protein by changing only two amino acids. To deliver
the vaccine into a human body, they enclosed the newly developed nuclear acid
sequence in a saline solution enclosed within liposomes. These fatty spheres that
contain a stable, modified mRNA vaccine within them enters a human cell and
prompts the body to produce modified viral protein and, as a result of immune
response, massive amounts of antibodies specifically designed to fight pre-fusion
Spike proteins.

Both the Moderna and Pfizer vaccines used this technology to develop their
product. The difference between them is that of the temperature in which they need
to be stored and the timeline allowed for the injection. The Moderna vaccine can
be stored in a regular freezer while the Pfizer vaccine requires special freezers
with temperatures lower than −70 ◦C. This difference is due to the endurance of
these vaccines against Ribonuclease (RNase)—a type of nuclease that catalyzes the
degradation of RNA into smaller components. It is our body’s defense mechanism
against all foreign genetic code. The nucleotides in the Pfizer Vaccine are more
susceptive to RNase, whereas the nucleotides in the Moderna Vaccine are modified
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to be less susceptive to RNase and therefore more stable at reasonable temperatures.
This difference causes different requirements and challenges for the transportation
and storage of the vaccine.

AstraZeneca produced a different type of vaccine, which was developed in the
University of Oxford. The difference between this vaccine in comparison to the
Moderna Vaccine by NIH or the Pfizer Vaccine is that it is a DNA based vaccine
instead of mRNA based and uses an adeno-viral vector as the DNA delivery tool.
In this case, there is an extra step involved because in order to produce a protein
from DNA, there needs to be a transition to RNA. This requires additional time and
energy from the human cell. A big advantage of DNA-based vaccines is that it is
substantially more stable than those that are RNA-based and doesn’t require deep
freezing for storage and transportation.

Yet another approach to the development of a SARS-CoV-2 vaccine is being used
by the French pharmaceutical company, Sanofi. They are producing a protein based
vaccine, which created significant challenges with isolating the protein during its
production process. This approach is also more expensive and time-consuming. The
research team has delayed on reporting their success.

A few Chinese teams, including Sinovac and Sinopharm companies that worked
on producing a COVID-19 vaccine, chose a traditional approach for developing
a vaccine, which entails injecting samples of the dead virus into a vaccine with
the expectation that it will illicit an immune response to create antibodies that will
neutralize the virus. The problem with this approach in the case of SARS-CoV-2 is
that, based on previous research on other corona viruses, this type of vaccine would
mostly generate antibodies to the post-fusion Spike protein instead of the pre-fusion
Spike protein form, because the Spike protein on a dead virus exists in its post-fusion
form only. This means that when the live virus is introduced to a human body, the
post-fusion Spike protein antibodies present do not protect the body against the pre-
fusion proteins that are used by the virus to penetrate the cell. This hypothesis is
in agreement with recently published efficiency data for Sinovac’s vaccine clinical
trial phase 3, that was carried out in Brazil with an efficiency of 50.4% compared to
Oxford’s vaccine’s about 70% and about 95% for the two mRNA vaccines [1, 6].

3 The Basic SIR Model

Compartment models for epidemics have their origins in the work of [7]. Brief
explanations of this model and other more complicated models may be found in [8–
12]. Let N be the fixed total population of a community experiencing the outbreak.
A community can be a country, but it could also be a smaller community such as a
rural town, a school, an assisted living community, or a prison.

In the simplest compartment model, the Susceptible-Infectious-Recovered (SIR)
model, at any time t, the population of the community is split among three groups
or “compartments”:
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Fig. 1 A diagram of the two processes—infection and recovery—by which people move from one
compartment to another

• Susceptible S: People who do not have the disease and have no immunity to it.
• Infectious I: People who have an active infection that can spread to susceptible

people.
• Recovered R: People who have been infected but are no longer at risk of infecting

others and no longer susceptible to becoming infected. This group is sometimes
called “resistant” because the previous infection provides immunity, but it is also
sometimes called “removed” because it would also include people who have died
from the disease.

Starting with an initial small fraction of infected people, initially no one is
recovered, and everyone else susceptible, a dynamical system then describes how
people move from one compartment to another at different rates:

dS

dt
= −β

IS

N
, (1)

dI

dt
= β

IS

N
− γI, (2)

dR

dt
= γI. (3)

This simple model includes only two driving processes—infection and
recovery—as depicted in Fig. 1. In the original work of Kermack and McKendrick,
the rates of these two processes depend on the distribution of ages of the susceptible
or infectious populations, but in practice, most often models rely on the simplifying
assumptions that these rates are the same for all ages.

The recovery rate γ is the reciprocal of the average time required for an infected
person to recover, or equivalently, the number of people per time period who cease
to be infectious. It appears twice in the system to account for the transfer of people
from infectious to recovered: the −γI term in Eq. (2) represents the rate at which
infected people cease to be infectious, and its counterpart γI in Eq. (3) adds these
people to those who have already recovered.

The second process—infection—is more complicated to model. Recovery hap-
pens on an individual basis. Some may recover faster than others due their health
conditions prior to infection and access to available medical treatments, but the
recovery rate is assumed to be unaffected by the number of people who are either
infectious or recovered. The same is not true for the rate of new infections, which



20 E. P. Choate et al.

must be proportional to both the number of infectious people and also the number of
susceptible people because if everyone has been infected, no one is left to become
infected. Thus, we have the nonlinear term −β IS

N
in Eq. (1), which can be seen

from the susceptible perspective as the number of susceptible people S times the
transmission rate or contact rate β, which measures the number of encounters with
another person close enough to transmit an infection per time, times the probability
I
N

that a person encountered is infectious. These new cases are then added to the
infectious total by the β IS

N
term in Eq. (2).

The values of these rates are affected by biological aspects of the particular
disease pathogen, but they also depend on properties of the population prior to
the introduction of the pathogen and the response of public health officials. For
example, if the general underlying health of a population (or a certain segment
of the population, such as the elderly) was poor prior to the outbreak, γ for this
community could be lower than a generally healthy community facing an outbreak
of the same disease. Conversely, effective treatments and a robust health care system
accessible to everyone could help the infected recover faster, thereby increasing γ.
The transmission rate β is affected by whether or not the pathogen can be aerosolized
and how long it survives on surfaces, but it could be reduced if the population took
preventative measures such as mask wearing or hand washing that would reduce the
likelihood that a single encounter between an infectious person and a susceptible
person would result in a new infection. This could also change with time to reflect
a reduction in the rate at which such encounters occur, such as increased social
distancing and restrictions on the size of public gatherings.

4 R0 and Herd Immunity

If any aspect of the modeling of an epidemic appears in media written for a general
audience, such as when a deadly virus is first diagnosed in the United States [13]
or the 2011 film Contagion [14] or news articles fact-checking Contagion [15], it is
likely to be the reproduction number R0. For a general audience, it has a practical,
common-sense definition and an intuitional effect: R0 measures the average number
of new infections in a population with no immunity that can be traced to a single
infectious person. That is, if a student returns from spring break infected with a new
disease with R0 = 3, he will infect his roommate, his chemistry lab partner, and his
math professor when he makes up that test he missed leaving early for spring break.
Each of these three people will in turn infect three more people, for a total of nine
new cases at this stage of the outbreak. These nine would lead to 27 new cases in
the third generation, and so the outbreak grows rapidly.

Given this loose definition, we see three different kinds of behavior based on the
value of R0:
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• If R0 < 1, on average, an infected person recovers before infecting another person.
Thus, transmission chains are easily broken, and the outbreak will die out before
spreading rapidly throughout the population.

• If R0 = 1, the outbreak neither grows nor declines, and the number of infected
people remains a stable proportion of the population. This kind of disease is
known as endemic.

• If R0 > 1, the outbreak exhibits sustained growth, given a sufficient number of
susceptible people. This is considered the definition of an epidemic.

Estimates of R0 for COVID-19 are in the range 2-to-4 [16].
Many factors contribute to the value of R0, but they are essentially the same

as biological aspects and public health measures we discussed previously for the
transmission rate β and the recovery rate γ. It should therefore not be surprising
that we can give a more precise mathematical definition of R0 involving these
two parameters by nondimensionalizing system (1)–(3). This can make it easier
to examine the behavior of the system due to reducing the number of its parameters
to just one, R0.

The first step is to switch the unknown functions from the total people in the three
compartments S, I, and R to the proportions of the total population in each category.
That is, we want to rewrite the system as equations for s = S

N
, i = I

N
, and r = R

N
.

This removes the total population N as an explicit parameter in the system and can
be done whether or not we proceed to the next step.

The key to the reducing the number of parameters lies in carefully choosing
the timescale of the problem. Instead of measuring time in units of hours or days,
we measure time by a timescale defined by the problem itself: the reciprocal of the
recovery rate, or 1

γ
. In this case, we can define a new variable τ = γt, which functions

in the role of time but is a pure number with no units, and we think of our unknown
proportions s(τ), i(τ), and r(τ) as functions of this new nondimensional time.

The complicating factor is that we must now also think of differentiating these
with respect to this new variable τ instead of t. According to the Chain Rule, dI

dt
=

dI
dτ

dτ
dt

= γ dI
dτ
. Plugging this into Eq. (2) and dividing by N yields

γ

N

dI

dτ
= β

N

IS

N
− γ

I

N

di

dτ
= β

γ
is − i

Now, there is effectively only a single parameter in this equation, the ratio β
γ
,

which is dimensionless because it is a measure of the rate of encounters per unit of
time divided by the number of recoveries per unit of time. That is, it measures almost
exactly what we described R0 as above—the rate of new infections per resolution of
a single infection. This transforms the system (1)–(3) into
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ds

dτ
= −R0is,

di

dτ
= R0is − i,

dr

dτ
= i, (4)

where R0 = β
γ
.

We can also see that the earlier intuitive effects that come from R0 being less
than, equal to, or greater than 1 can be now predicted from this model and with
greater insight. As a proportion, we must have 0 ≤ s ≤ 1. Therefore, if R0 < 1,
the righthand side of di

dτ
= (R0s − 1) i is always negative, and so the number of

infected will decay to 0. The endemic case with R0 = 1 will also have this property,
but the decay rate will be slow enough that it may not be observed.

However, if R0 > 1, with the initial susceptible proportion s(0) > 1
R0

(which is

likely when a new disease is introduced into a population), then di
dτ

will initially
be positive leading to rapid growth phase at the beginning of the outbreak. As the
infected proportion increases, s decreases, which causes i to grow at a slower rate,
and eventually when s = 1

R0
, the infected proportion reaches its maximum value,

and the outbreak begins to recede because it becomes increasingly more difficult to
find people who still remain susceptible.

This concept is often referred to as “herd immunity.” While there are still
susceptible people in the community, their number is small enough that the
introduction of the disease will die out because it cannot sustain the chain of
transitions necessary to grow into an epidemic.

This is often seen from the recovered point of view when there are no active cases
so that r = 1− s. In this context, the herd immunity threshold is r > 1− 1

R0
. This can

be achieved through natural immunity from prior infections, but it can also give us a
target proportion of the population to build up herd immunity prior to an outbreak.
In the midst of combating an epidemic—that is, when r = 1 − s − i < 1 − s and
the context of our simulations below—it will be more appropriate to compare s to
s∗ = 1

R0
. While people will still become infected when s < s∗ , the epidemic phase

has ended and the number of infected will begin to decrease.

4.1 Numerical Solution with Euler’s Method

We approximately solve these systems with Euler’s method. While there are higher-
order methods for systems of ordinary differential equations (ODEs), we feel the
simplicity of Euler’s method allows us to make a more direct connection with the
reasoning on which the model is built. It also permits us to more easily let the
parameters be functions of time or of the values of the compartments themselves
allowing us to model dynamic changes in the response of public health efforts.

Euler’s method starts by discretizing the time variable. We give the details for
the nondimensional system (4), and so we will discretize τ, but for (1)–(3) or the
models below, the dimensional t could be used. An appropriate time step �τ is
chosen. Generally, the smaller �τ is, the better the result for an ODE system, but
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if data is only known at a given frequency such as daily reports of new confirmed
cases, deaths, or hospital capacities, it may be useful to choose that period to be
the time step. Once the step length is chosen, we define a discrete series of times
τk = k�τ at which we will estimate the values of the unknowns, which we will
denote with sk ≈ s(τk), ik ≈ i(τk), and rk ≈ r(τk).

We start with given initial conditions such as s0 = 0.999, i0 = 0.001, and r0 = 0
so that the outbreak (or perhaps more precisely, the modeling of the outbreak)
starts with 0.1% of the population infected, no one recovered, and everyone else
susceptible. Euler’s method takes one step forward in time for each compartment by
approximating the derivatives in each equation in (4). For example, if �τ is “small,”
then when τ = τk, we may we may use the definition of the derivative approximate
the equation ds

dτ
= −R0is by sk+1−sk

�τ
= −R0iksk . When k = 0, the only unknown

value is s1 since s0 and i0 are given by the initial conditions, and so we may solve
for s1. We may also do this for the other two equations and then proceed to the next
value of k, repeating this process to take the next step forward in time to get the
update equations

sk+1 = sk + �τ (−R0iksk) , (5a)

ik+1 = ik + �τ (R0iksk − ik) , (5b)

rk+1 = rk + �τik. (5c)

Figure 2 shows solutions of (5a)–(5c) for four different values of R0 > 1 and an
initial infection rate of 0.1%. All exhibit the same qualitative behavior:

• i increases to a maximum at τ ∗ when s passes through the herd immunity
threshold s∗ = 1

R0
, and then i decays to 0,

• s decreases to a stable plateau s∞
• r increases to a stable plateau r∞.

Increasing R0 steepens the initial rapid growth of i, increases the value of the
maximum infected proportion, and as shown in Fig. 3, it shortens the time τ∗ to
reach the maximum infected proportion. Figure 3 also shows that s∞ decreases as
R0 increases, and r∞ increases.

For the figures in the rest of this chapter, we will frame the problem in terms of
the number of people in each compartment, but when we solve the systems, we will
consider the systems of the proportions of the population in each compartment as
functions of the dimensional time t. When giving test values to solve the following
systems, we will pick values of γ and R0 and then define β = R0γ.
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Fig. 2 Solutions to system (5a)–(5c) with initial conditions s(0) = 0.999, i(0) = 0.001, and
r(0) = 0 for R0 = 1.5, 2, 3, and 4. The corresponding (nondimensional) times τ ∗ of the maximum
infectious proportion are 11.45, 6.825, 3.900, and 2.775. These are also the times when s passes
through the herd immunity threshold s∗ = 1

R0
. The larger R0 is, the steeper the initial increase of

the infectious proportion (red curves), the larger its maximum, and the earlier the time τ ∗ that the
maximum occurs. The dotted black lines indicate that τ ∗ also corresponds to the time at which the
susceptible proportion passes through the herd immunity threshold s∗

Fig. 3 Left: τ ∗ , the time of the maximum of i and when s = s∗ = 1
R0

, as a function of R0. Right:
The asymptotic values of s and r as functions of R0

5 Modifications of the Basic Model

The basic SIR framework (1)–(3) can be modified in many ways to account for more
complicated aspects of disease propagation and efforts to combat it. We will briefly
discuss the effect of changing the number of compartments and the connections
between them, with a focus on how the rollout of a vaccination strategy can reduce
the number of deaths from the disease.
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Fig. 4 A diagram of the SEIRD model. It differs from the SID model in Fig. 1 with the presence
of the compartments exposed E and deceased D

5.1 Susceptible-Exposed-Infectious-Recovered-Deceased
(SEIRD) Model

We begin by adding two compartments to help us better follow the natural
disease progression. First, when susceptible people contract the disease, they do
not immediately become infectious. There is a latent period first (the time until
infectiousness). To account for this, we add an exposed compartment E that people
move to before moving into the infectious compartment I. The rate at which people
move from E to I is α, which is the reciprocal of the incubation period.

The second modification is to separate out of the removed compartment the
number of people D who have died from the disease, which allows R to now
represent only the resistant, those who have been infected but who have recovered.
This expanded progression is depicted in Fig. 4, and the system of Eqs. (1)–(3) is
expanded to the system of five equations

dS

dt
= −β

IS

N
, (6a)

dE

dt
= β

IS

N
− αE, (6b)

dI

dt
= αE − γI − θI, (6c)

dR

dt
= γI, (6d)

dD

dt
= θI. (6e)

The death rate θ in Eqs. (6c) and (6e) is not the case fatality rate, which is the
proportion of infections that result in death instead of recovery which we will denote
by δ. The “recovery rate” γ from Eqs. (2) and (3) was strictly speaking the removal
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rate since it accounted for both recoveries and deaths together. We now recast that

rate as
∼
γ and use the case fatality rate to define the recovery rate as γ = (1 − δ)

∼
γ

and the death rate as θ = δ
∼
γ so that γ + θ = ∼

γ . We also now use this removal rate
to define the reproduction number R0 = β

∼
γ
. An alternative way to model deaths due

to the disease is the SEIR model, which is Eqs. (6a)–(6d) with θ = 0 and γ = ∼
γ.

The total deaths would then be δR.
The SEIR model makes the same predictions the SIR model for the long-

term values s∞ and r∞, which would imply the same total number of infections.
However, the effect of separating the pre-infectious exposed from the infectious
spreads out the infectious spike so that the maximum infectious proportion occurs
later and has a smaller value compared to the SIR model. The timing of S passing
through the herd immunity occurs slightly before the maximum of I because it
now corresponds to the time of the maximum of the sum E + I. That is, the total
proportion who have acquired the virus but have not yet recovered.

5.2 SEIRD Model with Vaccination

We now further modify this model by adding an important new pathway connecting
compartments–vaccination. We call this new model the SEIRDv model.

If we let the susceptible population be vaccinated at a rate ν, then a group of
vaccinated people νS would be transferred directly from susceptible to resistant
without passing through the exposed and infectious compartments. A diagram of
this model is in Fig. 5, and the system of Eqs. (6a)–(6e) now becomes

dS

dt
= −β

IS

N
− νS, (7a)

dE

dt
= β

IS

N
− αE, (7b)

dI

dt
= αE − γI − θI, (7c)

dR

dt
= γI + νS, (7d)

dD

dt
= θI. (7e)
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Fig. 5 A diagram of the pathway of the SEIRDv model adding the vaccination νS pathway

Fig. 6 The effect of the vaccination rate on the SEIRDv model with β = 0.3, γ = 0.097, (R0 = 3),
α = 0.333, θ = 0.003, (all have units of day−1). On the left is the model with no vaccination,
resulting in 2.8% total deaths. In the other three, vaccination rates ν = 0.0005, 0.002, and
0.005 day−1 cut the total deaths to 2.7%, 2.7%, and 1.9% respectively

Figure 6 shows solutions for four different values of ν with R0 = 3 and a
death rate of θ = 0.003 from a case fatality rate of δ = 3%. With no vaccination
plan, the long-term prediction is that 2.8% of the population would die from the
disease. However, modest increases in the vaccination rate can reduce this. When
ν = 0.0005—that is, 0.05% of the susceptible population is vaccinated per day—the
total deaths are reduced to 2.7%. More ambitious rollouts of ν = 0.002 and 0.005
reduce the total deaths to 2.6% and 1.9%, respectively, which is a reduction of deaths
by nearly one-third compared to the case without vaccination.

Figure 7 shows the effect of the vaccination rate ν on two different aspects of
the solution. On the left, we see how the total proportion of deaths decreases as
the speed of the vaccination effort increases. If 1% of the remaining susceptible
population were vaccinated each day, the prediction is that the number of deaths
would be cut in half. On the right is the time that herd immunity is reached, which is
also the time of the maximum of the sum of the exposed and infected. We see that a
slow vaccination rollout with ν less than approximately 0.0086 lengthens the time to
reach the herd immunity threshold, even though decline in the total number of deaths
is observed. For rollouts with ν > 0.0086, the time to herd immunity decreases.
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Fig. 7 Left: The proportion of total deaths as a function of ν. Right: The time of herd immunity as
a function of ν. The initial increase for very small values of ν indicates that the main driving force
in creating immunity is still active infections, but the vaccine can delay the maximum. However,
above a threshold ν, the vaccination rate is fast enough to significantly reduce the total number of
infections

5.3 SEIRDv Model with Reinfection

We have included R and D separately to give us the freedom to add another
disease pathway that cannot be otherwise modeled—reinfection. This may not play
a significant role in the overall predictions of the model, but we present it here
briefly as another example of how effects may be added to the model by connecting
compartments.

Someone who has died from the disease cannot become infected a second time.
However, some of those who recover and become “resistant” may not have perfect
immunity and may become re-infected, especially if they had experienced the
disease in a mild form during the first round of infection. Similarly, a vaccine does
not provide 100% immunity, and so some of the vaccinated in the R compartment of
the SEIRDv model may still contract the disease. For example, Moderna and Pfizer-
BioNTech reported about 95% effectiveness of the vaccine, which means that about
five percent of people who received the vaccine got sick but experienced a mild form
of the disease. The model can incorporate this effect into Eqs. (7a)–(7e) in the same
manner that the susceptible become infected with resistant transferring to exposed at
a rate of χ IR

N
added in the righthand side of Eq. (7b) and subtracted in Eq. (7d). The

reinfection transmission rate χ similar to β but have a significantly smaller value.
In this chapter we focused on exploring mathematics in the context of the

COVID-19 pandemic. We discussed the effects of the virus on human cells, the
development of the vaccines by several research teams, and mathematical models
that describe and predict the spread of the Severe Acute Respiratory Syndrome
Corona Virus 2. We introduced the general framework of “compartment models”
used to model epidemics as a first-order system of nonlinear ordinary differential
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equations in the context of the COVID-19 pandemic. We derived the simplest
version of the SIR model, we adapted this model to account for the rollout of a
vaccination plan, and examined its effect on the expected deaths from the virus. In
this chapter, we used COVID-19 as an example that foretells nature.
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Application and Modeling of a
Tick-Killing Robot, TickBot

Alexis L. White and Holly D. Gaff

1 Introduction

Effective tick management strategies are needed to reduce tick populations and
protect humans and animals from the rising number of tick-borne diseases, but a
comprehensive method has yet to be developed [6, 23]. Knowing the phenology
of the local tick species can facilitate more effective timing of treatment. Research
is needed in tick management to develop novel methods that account for varying
phenologies, the type of habitat, and the corresponding relationship with ticks and
the pathogens they carry. Additionally, many tick control technologies have the
potential for ecological consequences beyond the desired tick-control. For example,
host-targeted approaches that lure the hosts with food can potentially increase
reproductive success in food-limited species such as rodents. Similarly, broadcast
acaricides affect all invertebrates, and so are not permitted in many wetland areas.
There is a need to ensure balance between the benefits of tick control and the
ecological consequences of those interventions.

Most tick control efforts have focused on reducing blacklegged tick, Ixodes
scapularis, populations, but here we focus on the lone star tick, Amblyomma
americanum. Amblyomma americanum are aggressive hard-bodied ticks known to
spread a variety of pathogens to humans, pets, and wildlife [3]. More recently,
it has been shown that exposure to the saliva of A. americanum can trigger a
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potentially life-threatening red-meat allergy [4]. The life history of A. americanum
consists of four life stages: egg, larva, nymph, and adult. After emerging from
eggs as larvae, ticks need a complete bloodmeal from a host to progress from one
stage to the next [25]. In the Mid-Atlantic, A. americanum adults and nymphs are
active from late spring through mid-summer, while larvae are active in late summer
through autumn. Amblyomma americanum can also be found questing throughout
the day, unlike the crepuscular dynamics of I. scapularis [24]. White-tailed deer,
Odocoileus virginianus, are commonly parasitized by A. americanum. Movement
of O. virginianus and other hosts provide the means to disperse ticks to novel areas,
concomitant with a variety of pathogens. Other hosts of A. americanum include
ground-nesting birds and medium-to-large-sized mammals [22].

One of the greatest challenges with tick control is teasing apart the natural
variability of tick populations and the impact of the control measures. Intervention
programs are very expensive and labor intensive, and so mathematical models
can provide a useful tool for quickly and cheaply exploring control options.
Tick population control has been modeled through optimal control [10] and age-
structured difference equations [18, 19]. Optimal control theory is a method to find
the best set of parameters to achieve a given outcome. Gaff et al. [10] studied optimal
ways to control tick-borne diseases, but not tick populations explicitly. Mount and
Haile [18] developed a lone star tick simulation (LSTSIM) using an age-structured
difference equation model to understand the effects of integrated tick management
methods on A. americanum affecting cattle. More models are needed to study the
management of ticks for a wider variety of intervention methods.

Agent-based modeling (ABM) can be used as a tool to study the individual
behaviors of hosts and ticks so as to gain insight into management regimes. Agent-
based modeling is defined as a type of simulation where individuals’ interactions
with each other and their environment can be programmed and monitored. In
the past ten years, the use of agent-based modeling in tick research has become
popular [8, 9, 14, 20, 26–28]. TICKSIM was developed in 2011 to compare tick,
host, and disease dynamics using differential equation-based models [8]. In 2013,
TICKSIM was modified to look at the invasion of a tick species [9]. Wang et al. [26]
developed an agent-based model that examined the interaction of ticks, hosts, and
the landscape. This model was later expanded to address how the prevalence of
infected ticks changes with varying host densities in different landscapes [28].
Halsey and Miller [14] built an agent-based model based on I. scapularis population
dynamics and the efficacy of host grooming was studied. None of these agent-based
models have addressed tick management.

A recently introduced method of tick management that provides immediate
reduction of questing ticks without affecting the environment is use of the TickBot.
TickBot is a tick-killing robot created jointly by engineers at the Virginia Military
Institute and Daniel Sonenshine at Old Dominion University. It functions as a semi-
autonomous, 4-wheeled robot that kills ticks by luring them to its permethrin-treated
denim cloth. In 2013, TickBot was tested in a wildlife preserve in Portsmouth,
Virginia. The robot uses sensors to detect a magnetic field from a guide wire placed
on a given transect. In the original design, the TickBot attracted ticks with carbon
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dioxide (CO2) distributed as a gas through tubing fitted with pores and control valves
that followed the same path as the guide wire. Ticks (the majority of which were
A. americanum) were flagged in the treatment area as well as adjacent untreated
areas prior to treatment. Any ticks captured were marked and returned to the same
location. In control runs using flags without permethrin, Gaff et al. [11] found the
TickBot reduced tick numbers on the transect to undetectable levels within 1-hour of
treatment; tick densities remained zero for approximately 24 h in the treatment area.
No marked ticks were recaptured in any treated area. The control results supported
the use of CO2 and permethrin.

Since the 2013 study, other trials of TickBot and other projects have been
completed to provide initial insights and parameters needed to build a TickBot
agent-based model. With this model we explore application frequency of the
TickBot, as well as the use of CO2 on reducing questing tick populations. In this
paper, I discuss additional related studies in Sect. 2. This is followed by the model
description in Sect. 3, model results in Sect. 4, and discussion in Sect. 5.

2 Parameter Estimation Studies

A series of research projects were completed to better understand the usefulness of
the TickBot. These projects provide the initial insights and parameters needed to
build the TickBot agent-based model.

2.1 Permethrin Potency

Ticks that encounter the TickBot’s permethrin treated cloth were assumed dead in
the initial field trial because ticks in the area were not recaptured [11], but little
was known how much contact with the treated cloth was needed in order to kill a
tick. A study was completed to gather information about how often and how fast
A. americanum dies after being brushed with a permethrin treated cloth, and how
much contact, in terms of surface area of the cloth, was required. One control and
four different treatment groups were established as 2% permethrin with 2 brushes of
the cloth, 2% permethrin with 1 brush, 0.5% permethrin with 2 brushes, and 0.5%
permethrin with 1 brush. Miniature flags were created by attaching the cloth onto a
pencil, one for each permethrin concentration, and one for control ticks. The control
ticks were brushed twice with an untreated cloth.

Eleven A. americanum nymphs and 21 adults were collected from a wildlife
preserve and divided into the four treated groups and one untreated group. All ticks
in this study exposed to permethrin died within 36min of exposure. None of the
control ticks died. This supports the assumption that any ticks that come in contact
with the TickBot permethrin-treated cloth will die within an hour of exposure.
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2.2 TickBot 2016

Building from the initial 2013 study of the TickBot [11], a second year of testing
was done. In the summer of 2016, TickBot was implemented at two sites in the same
wildlife preserve as was used in 2013, and a nearby residential site in Portsmouth,
Virginia. In 2013, TickBot was applied for an hour using gaseous CO2 distributed
through an elaborate set of plastic tubing to lure ticks to the robot. The TickBot ran
on a guide wire that was laid out for each run with the tubing along the prescribed
path. The set-up process exposed the researchers to ticks while laying out the wire
and CO2 tubing. Also, the canisterized CO2, along with tubing, was cumbersome
and impractical in a field setting. To improve the set-up of the TickBot, we compared
the efficacy of the TickBot with CO2 sublimating from dry ice as an attractant versus
the original gaseous CO2 from a canister. To compare TickBot efficacy relative to
the original study, the same procedures were used: ticks were captured, marked with
nail polish, then returned to the habitat the day before treatment. After each TickBot
run, treated and untreated areas were flagged for ticks at 1 h, 4 h, next morning,
and next afternoon. Each trial location had an adjacent control transect within five
meters of the treated transect. Eight trials were completed during May-August 2016.
Efficacy of the TickBot was measured by density of ticks before and after treatment,
as well as the absence of marked ticks in treated areas. No differences in tick density
were found between the use of CO2 from a canister or dry ice as attractants. Efficacy
of the TickBot trials did not vary between the wildlife preserve and the residential
site. No marked ticks were collected in treated areas, and no ticks were found on
treated transects within 24-hours of treatment. This supports the study by Gaff et
al. [11], confirming the ability of the TickBot to reduce ticks on the treated area to
undetectable for 2 h.

2.3 Dry Ice Attraction Study

We completed a supporting study to quantify the mobility of A. americanum toward
a dry ice attractant by measuring how many ticks, from varying distances, came
within the range of the TickBot during treatment. Previous studies have been
conducted to test the movement of A. americanum toward a stationary source of
CO2 [7], but distance to a moving attractant has not been studied. The TickBot
attracts ticks through the use of a piece of dry ice in a cup (with holes) attached
to the TickBot. The dry ice sublimates as the TickBot drives along the prescribed
circuit. A total of 18 A. americanum were used during each trial experiment, with
six ticks placed into plastic tubing at 1m, 3m, and 5m from the dry ice source
(Fig. 1). All of the ticks were painted with nail polish according to the location of
initial placement. Dry ice was used as an attractant at one end of the tubing, and
the opposite end was sealed as were the holes in the tubing where the ticks were
introduced. The ticks were observed for 15min, and movement of each tick was
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Fig. 1 Study design for each trial is displayed here. Painted ticks were placed at the three distances
and movement toward the attractant was documented. The percentage of ticks that moved within
0.5m of the CO2 were considered to reach the kill zone of the TickBot

documented. The percentages of ticks that moved within 0.5m of the open end of
the tube, the presumed kill zone of the TickBot, were calculated for each distance
(Fig. 1). For example, a tick initially placed farthest away from the attractant at 5m,
would have to move at least 4.5m to be killed by the TickBot. This study found that
attraction can be coded into a model as 40% of ticks are lured from one meter away,
13.3% at three meters, 0.3% at five meters into the path of the TickBot.

2.4 TickBot 2017

In the studies of 2013 and 2016, TickBot was tested at a wildlife preserve and a
residential area; the TickBot study of 2017 was the first semi-permanent installation
of the robot. The study ran from May 9 to August 9, 2017, at NASA Langley Child
Development Center in Hampton, Virginia. The Center already utilized two forms
of tick control by maintaining the landscape through mowing, and lining the fence
with a mulch barrier; but they would still encounter ticks in the playground. The
goal of the study was to protect the fenced area of the playground by creating a tick-
free zone between the fence and the nearby long grass. The TickBot guide wire was
buried approximately 0.1m deep in the area just outside the fence of the playground
to create the TickBot’s course. During the study period, the TickBot was run on
23 occasions. For the safety of the children and facility employees, ticks were not
marked and returned as in previous studies. An untreated site was established on the
edge of the grass line adjacent to the fence to provide data on ticks that inhabit the
area. The untreated site and the area within the fence were flagged on each visit.
Staff at the Center also passively collected ticks from themselves or children during
the time of the study. All ticks collected were identified morphologically in the
laboratory. A total of 74 ticks were collected (71 by flagging, 3 found on humans).
The most abundant species of tick collected were American dog ticks, Dermacentor
variabilis (39 ticks), followed by 26 lone star ticks, A. americanum, and 3 rabbit
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Fig. 2 Results from application of the TickBot at NASA Langley. Bars represent the different tick
species collected in the untreated areas

ticks, Haemaphysalis leporispalustris. Of the 71 flagged ticks, 68 were collected
in the untreated area. Three A. americanum were collected from flagging in the
playground area. No ticks were collected in the playground area in July or August
(Fig. 2). This study supports the efficacy of the TickBot as part of an integrated tick
management program.

3 The Model

This model is based on the previously published TICKSIM [8, 9]. Data from field
and lab experiments were used to parameterize, initialize, and validate the model.
The model description follows the ODD (Overview, Design concepts, Details)
protocol [12, 13]. The ODD protocol was created to standardize agent-based model
descriptions and increase reproducibility. This protocol consists of seven major
sections: (1) Purpose, (2) Entities, state variables, and scales (3) Process overview
and scheduling, (4) Design concepts, (5) Initialization, (6) Input data, and (7)
Submodels.

3.1 Purpose

The purpose of this model is to simulate the efficacy of the TickBot as a method
of controlling lone star ticks, A. americanum, within a peridomestic setting from
May-June in southeastern Virginia. TickBot is a tick-killing robot that lures ticks
to the predetermined path of the robot and kills them using an attached permethrin
treated cloth. Frequency of application with or without an attractant of CO2 is also
explored within this model.
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3.2 Entities, State Variables, and Scales

3.2.1 Agents/Individuals

The model consists of two populations of agents, ticks and hosts. To initialize the
model 10,000 ticks agents are introduced (10% adults and 90% nymphs) [8]. Tick
agents, (Fig. 3A), are characterized by the following state variables: identification
number, sex, life stage, activity, list of hosts, and closest patch that is on the TickBot
path. Ticks were assigned sex upon birth and moved throughout the four life stages:
egg, larva, nymph, and adult. Ticks move through three different activities for each
life stage (resting, questing, feeding). Adult female ticks that have fed will complete
an additional activity of laying eggs. The tick population was not held constant and
included the phenology of A. americanum [21]. If the model included attraction of
ticks to TickBot treated patches, ticks were able to detect the closest TickBot patch
to determine if movement was possible. Beyond movement toward the TickBot,
ticks are unable to move except by host because of the spatial resolution of the
model.

To initialize the model 50 deer are introduced as generalized host agents, this
would include all natural hosts of A. americanum in a backyard forest including:
domesticated animals, ground-dwelling birds, and small and large wild mammals [2,
5, 15, 17]. Host agents (Fig. 3B), were characterized by the following state variables:
identification number, mortality rate, number of ticks of each life stage currently
feeding on the host, and the maximum number of ticks able to feed on each host of
each life stage. The host population remained constant, so if one host died another
was born into a random cell. If a host dies, all ticks on that host also die.

Fig. 3 Here NetLogo agents and the environment are described, with (a) the tick agents, (b) host
agents, and (c) the patches with dark green as forest habitat, light green as forest edge, orange as
areas treated with TickBot, and cyan as the lawn habitat
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3.2.2 Spatial Units

The model environment was a 25× 25 patch grid assumed to be 100m× 100m.
Patch colors were used to denote various habitats in a generic peridomestic habitat
(lawn, TickBot area, forest edge, and forest). At the center of the grid was the lawn
habitat designated by a 12x12 cyan square (Fig. 3C). At the edge of the lawn habitat
was a ring of orange TickBot patches, followed by a ring of forest edge lime green
patches, and the remaining patches on the edge of the model environment were
green to represent forested habitat.

3.2.3 Environment

The original environment is set up as a grid of 25× 25 patches of equal quality
with wrapping boundaries and assumed to represent approximately 100m by 100m.
Lawn colored patches were assumed to have higher mortality based on field
observations of A. americanum in residential mowed habitats (Sects. 2.2 and 2.4).

Time of year also effects tick mortality, with increased mortality during the
winter months. Each time step in the model represents one hour because the TickBot
is only used for one hour on treatment days. Each simulation was run for 5760
hourly time steps, or 8 months, to allow for the questing adults and nymphs to peak
in early summer and questing larvae to peak late summer into early fall [21].

3.3 Process Overview and Scheduling

The model proceeds in hourly time steps. Four modules happen in each time step:
set the day of the year, tick changes, host changes, and running TickBot if it is time.
Within each module, individuals are processed randomly. The sequence of processes
is detailed in Fig. 4.

3.4 Design Concepts

3.4.1 Basic Principles

Similar to [8, 9] and [20], the current model design is based on host-tick interaction
as different agents. Hosts move randomly over patches. When a tick encounters a
suitable host on a patch, the tick uses the host as a bloodmeal. Adult female ticks
will reproduce after feeding. Mortality of ticks is caused by habitat (lawn patches
are less favorable), time of year, host availability, and TickBot application. TickBot
is implemented as patches around a lawn that will kill all ticks present during the
hour of application. Ticks only move by host or through being lured to the TickBot



Application and Modeling of a Tick-Killing Robot, TickBot 39

Fig. 4 Flow diagram for
agent-based model

patches an hour before application of TickBot. By varying application frequency,
with or without attraction, the efficacy of the TickBot as a tick control method can
be studied.

3.4.2 Sensing

Ticks sense hosts within the same patch and have a probability of successful
attachment on the host (Table 1). Ticks could only attach if there was space to
feed. This is modeled using a maximum numbers of ticks per host at a particular
life stage: 100 larvae, 25 nymphs, 10 adults. These numbers have been adapted for
each life stage from previous models which have allowed 200 ticks per host [8].
Ticks did not sense other ticks, and hosts did not sense other hosts. During TickBot
treatment with CO2, ticks will sense the closest TickBot patch. If the closest patch
is one patch (or less) away, the ticks will move to the TickBot patches.

3.4.3 Interaction

As in [8, 9] and [20], ticks interact with hosts in their cell and after successful
attachment move from “questing” activity to “feeding” activity. After feeding for
three days, a tick would drop off in the patch the host was in, and the tick would
switch to “resting”. After 60 days (1,440 h), the “resting” ticks will switch life stages
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Table 1 Baseline parameters used in the model are adapted from either [8]† or [9]‡. Remaining
values are from field observation or biological understanding of the system*

Entities Parameter Category or value Reference

Environment Simulation extent 10,000m2 ‡

Number of cells 625 patches (25 x 25 Grid) ‡

Patch size 16m2 ‡

Monthly mortality (μ) 0.1 in Jan., Feb., Mar., Sept.,
Oct., Nov., and Dec.; 0.01 in
Apr., May, June, July, and Aug.

†

Lawn desiccation parameter 0.01 †

Hosts Initial host population 50 hosts *

Host movement rate 1 patch per time step †

Host mortality 0.002/24hr †

Max adults per host 10 ticks †

Max nymphs per host 25 ticks †

Max larvae per host 100 ticks †

Ticks Initial tick population 10,000 ticks (90% nymphs
10% adults)

†

Prob. successful attachment 0.003 †

Eggs laid per female 250 eggs †

Time from egg to hatching 60 days *

Molt time from larvae to
nymph

270 days †

Molt time from nymph to adult 360 days †

Maximum questing time 42 days †

Length of bloodmeal 3 days †

and begin to “quest” again. When an adult female tick successfully feeds, she will
lay 250 eggs, this is not reliant on the interaction with a male tick in this model. The
timing of phenology was adjusted from the previous models to incorporate known
phenological peaks of field collected data in Virginia.

3.4.4 Stochasticity

Stochasticity was used in this model for host movement, host mortality, tick
mortality, successful tick attachment to hosts, and the chance of a tick being lured
to the TickBot. These probabilities are included in (Table 1).

3.4.5 Observation

The following metrics were monitored throughout each time step: number of ticks
in each life stage in each habitat, number of ticks lured to the TickBot patches, and
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the number of ticks killed by the TickBot. These metrics were used to determine the
following four outputs: number of ticks killed by TickBot, maximum density of each
life stage of tick throughout the simulation in each habitat, total sum of all questing
ticks throughout the simulation of each life stage in each habitat, and total sum of
all ticks in any activity of each life stage in each habitat throughout the simulation.

3.5 Initialization

Each simulation began with a fixed landscape of habitats: lawn, TickBot area, forest
edge, and forest (Fig. 3C). Hosts and ticks were randomly distributed across all
habitat types. The simulations ran for 5760 hourly time steps, equating to May 1
to December 30 to encompass the phenological peaks of A. americanum. The initial
conditions for each simulation are outlined in Table 1, which were derived from
values in the literature or based on field observation [8, 9, 20].

3.6 Input Data

This model did not use input data.

3.7 Submodels

3.7.1 Process Passage of Time

Time steps were measured in one hour intervals based on the field tested hour
long application of the TickBot on treatment days. Time of year influences tick
mortality and activity. Each month was assumed to be 30 days, and each month had
a corresponding mortality since ticks are more likely to die in the winter months,
than in the summer (Table 1).

3.7.2 Process Tick Life Cycle

For every time step, each tick had a given probability of dying [8, 9, 20]; rates were
adjusted to be hourly for our model. Tick mortality (M) is dependent on monthly
mortality (μ), total tick population size (N ), the carrying capacity (K), and was
calculated as:

M = μ ∗ N

K
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Parameters for monthly mortality (μ) and carrying capacity (K) are found in
Table 1. N was counted after each time step to recalculate M . During each time
step, a random number between 0 and 1 was generated for each tick; if the random
number was less than M , the tick would die.

Ticks moved through three activities resting, questing, and feeding. At the
beginning of the model, ticks are resting fed nymphs and larvae, waiting to emerge
as adults and nymphs respectively. Each tick had a “time in activity” timer that
was set to allow them to switch activity to questing when the timer reached 0. Fed
nymphs that become adults, begin to quest at a random time in May or June to
reflect A. americanum adult phenology. Fed larvae that become nymphs, begin to
quest at a random time between May and mid-July to reflect the nymph phenology
of A. americanum. Questing ticks had 42 days to find a host or they die. If ticks
found a host, there was a probability of successful attachment. A random number
was selected from 0 to 1; if the number was less than the probability of successful
attachment (0.003) then the tick would switch activity to feeding. All ticks that
successfully attached to a host, would take a bloodmeal for three days and move
with the host agent across the patches. After feeding, nymphal ticks would drop-
off their host, and switch activity to resting as they remained quiescent and molted
into adults the following year. Adult male ticks die after the feeding activity. Adult
female ticks, drop-off their host and lay 250 eggs and die. Eggs hatched as new tick
agents and remain in the resting activity for 60 days before switching to questing
and becoming larval ticks. All values for the life cycle of the ticks are described in
Table 1.

Additional mortality was applied to ticks in the lawn patches. As observed in
TickBot field studies in 2016 and 2017 (Sects. 2.2 and 2.4) very few ticks are found
in lawn habitat; this increased mortality was adjusted to match numbers found in
our field studies.

3.7.3 Process Host Mortality and Movement

In each time step, each individual host had a given probability of dying. As in [20], a
random number was generated between 0 and 1; if the random number was less than
the host mortality value, then the host would die. This allowed for some population
turn over, but also allowed the host population to remain constant as each host that
died was replaced by another randomly in the environment. When hosts die, all ticks
on that host were assumed to die and were not placed on the new host.

3.7.4 Process TickBot

TickBot application frequency was varied but was assumed to begin the second
week of May and continue for four weeks. All TickBot applications were done
on treatment days at noon. Once a week application ran Mondays, twice a week
was Mondays and Wednesdays, three times a week was Mondays, Wednesdays,
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and Fridays, and daily was all seven days for the four weeks. During this time all
ticks in the questing activity on TickBot patches were killed. Ticks were also killed
if they switched into questing activity within the next 12 h of the simulation; this
additional death comes from field collected data from the TickBot in 2013 [11] and
2016 (Sect. 2.2), which supports the lack of questing ticks in a treated area for 24 h.

Within the model, all ticks within the TickBot habitat were killed. This is based
on the study in Sect. 2.1. All ticks in the model die instantly during TickBot
treatment times.

Ticks were also lured, in the model, during scenarios that included attraction
to CO2. This is based on the study described in Sect. 2.3. Within the model, ticks
could only be lured one hour before treatment time (as was done in field studies [11],
Sects. 2.2, and 2.4), during this time a random number in the model was generated
between 0 and 1 for each tick that was one patch away; if the random number was
less than 0.27 (chance of being lured) then the tick would move onto a TickBot
patch. The luring probability of 0.27 was calculated using data from Sect. 2.3. Each
patch is considered to be 4m by 4m, therefore one patch away from the TickBot
should be approximately the average of what we found at 3m (13.3%) and 1m
(40%)(Fig. 5).

The model was programmed using NetLogo version 6.0.3 [29]. This software
was written by Uri Wilensky in 1999 and is freely available. The model was run
on the Turing High Performance Computing cluster at Old Dominion University
using BehaviorSpace to run experiments “headless”, from the command line. All
statistical analyses on model results were completed in MATLAB [16].

Fig. 5 Diagram of luring
ticks to TickBot patches in
the model. Green patches are
forest edge, orange are
TickBot, and cyan are lawn
patches. Each patch is 4m by
4m and 27% of ticks were
lured from one patch away
averaging the values of 13.3%
and 40%
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3.8 Scenarios

To evaluate the use of TickBot as a tick control method for A. americanum, eight
scenarios were created by varying the frequency of when the TickBot was used and
whether or not CO2 was used to attract the ticks. The scenarios include: once a week
(1X), twice a week (2X), three times a week (3X), or daily, and each scenario ran
with and without the use of CO2 to lure nearby ticks to the treatment area. A “no
control” scenario with no treatment used was also run.

Four metrics were used to compare the efficacy of each scenario for each habitat
type: number of ticks killed by the TickBot, maximum density of questing ticks,
total number of questing ticks, and the total number of ticks. The latter three metrics
were all compared to a null scenario, where no treatment was used, to calculate a
percent reduction of ticks from the null [1]. The TickBot in the model kills 100% of
ticks on the day it runs, and the maximum number of treatment days is 10% of the
total number of simulation days. Therefore a percent reduction of more than 10%
was defined here as effective. Tick populations in some habitats such as lawn are
small and therefore percent reductions are paired with the numerical differences in
populations to reflect whether a 50% reduction is from a single tick or thousands of
ticks. An additional habitat of “yard” was created by combining lawn, TickBot, and
forest edge patches to better describe areas where the greatest risk of tick encounters
would occur.

4 Results

Agent-based modeling allows for stochasticity therefore 30 replicates of each
scenario were run to account for this variation. Replicates were then averaged
together to reflect the average output for the scenarios. In Fig. 6 the standard
deviation is shown around the mean values for the density of questing ticks for
the no control scenario. All scenarios had approximately the same level of variation
and therefore only the no control is presented. Adult questing ticks had a standard
deviation at ∼15% of the mean (Fig. 6B). Nymphs had the least variation out of
the different life stages, with standard deviation at ∼5% of the mean (Fig. 6C),
while larvae had the most variation with standard deviation at ∼30% of the mean
(Fig. 6D).

Densities of questing ticks per patch varied with the different scenarios but the
standard pattern with no control can be found in Fig. 7A. For scenarios without the
use of luring ticks (no CO2), tick density in TickBot habitat increased similarly to
the forest and forest edge, until treatment days when it would be reduced to zero
and increase as ticks began to quest in those areas (Fig. 7B). When ticks were lured
to TickBot patches before treatment, the density of questing ticks would increase in
TickBot patches and decrease in forest edge and lawn as ticks were lured from these



Application and Modeling of a Tick-Killing Robot, TickBot 45

May June July Aug. Sept. Oct. Nov. Dec. Jan.
0

20

40

60

80

100

120

140

N
um

be
r 

of
 Q

ue
st

in
g 

A
du

lts

May June July Aug. Sept. Oct. Nov. Dec. Jan.
0

100

200

300

400

500

600

700

800

N
um

be
r 

of
 Q

ue
st

in
g 

N
ym

ph
s

May June July Aug. Sept. Oct. Nov. Dec. Jan.

0

500

1000

1500

2000

2500

3000

N
um

be
r 

of
 Q

ue
st

in
g 

L
ar

va
e

May June July Aug. Sept. Oct. Nov. Dec. Jan.

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r 

of
 Q

ue
st

in
g 

T
ic

ks

a

b c d

Fig. 6 Standard deviation is presented as fine lines above and below the mean bolded line for
populations of questing ticks in the yard habitat. (a) All life stages of ticks on the same scale with
adult ticks in red, nymphs in green, and larvae in blue (b) adult ticks (c) nymphs, and (d) larvae

areas (Fig. 7C). The greatest decline in density of questing ticks was seen from daily
treatment of the TickBot with CO2 (Fig. 7D).

4.1 Number of Ticks Killed

The number of ticks killed in each scenario from the TickBot was compared in
Fig. 8 and Table 2. All ticks lured to TickBot patches, or that were currently on
TickBot patches during treatment, were assumed to all die. Scenarios with the use
of CO2 killed more ticks then just the TickBot alone. Frequency of application
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Fig. 7 Four scenarios were selected to compare the resulting tick densities (ticks per patch) for
each. Forest habitat is represented in dark green, forest edge in light green, TickBot in red, and
lawn in blue. Fig. (a) shows no control densities over the entire simulation May-December, and
(b-d) focus on the months when treatment occurred May-July

also increased the number of ticks killed. Daily treatment without CO2 and once
a week treatment with CO2 killed nearly the same number of ticks until the final
treatment (Fig. 8 and Table 2). In each scenario hundreds of ticks are killed, but
provide perspective on total risk reduction in the yard habitat the three times a
week scenarios with and without CO2 were compared with the no control scenario
(Fig. 9). Although the TickBot kills all ticks on the TickBot patches, this does not
include all ticks present in areas of human encounter, here defined as yard habitat.
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Fig. 8 The number of questing ticks killed by the TickBot per scenario is compared. TickBot
scenarios with the use of CO2 are represented by dashed lines. Colors are matched by frequency
of application: 1X in black, 2X in red, 3X in green, and daily in blue

Table 2 The number of ticks
killed in each scenario is
compared by life stage: “L”
for larvae, “N” for nymphs,
“A” for adults, “All” for all
life stages. Scenarios without
the use of TickBot are marked
with a dash (-)

Ticks killed by TickBot

Scenarios L N A All

No control – – – –

1X 19 254 41 314

2X 38 261 42 340

3X 55 262 42 358

Daily 134 212 32 378

1X with CO2 18 341 56 415

2X with CO2 38 389 64 490

3X with CO2 52 411 67 531

Daily with CO2 128 395 62 585
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Fig. 9 Density of questing ticks in yard habitat during three times a week treatment with and
without CO2 compared to the untreated no control scenario. No control is a black line, three times
in green, and three times with CO2 as dashed green line
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4.2 Maximum Density of Questing Ticks

Percent reduction of the maximum density of questing ticks was compared to the
difference in ticks in each scenario and each life stage of tick. In the lawn habitat,
the density of ticks was very low because of the high risk of desiccation. None
of the scenarios were statistically different from the control scenario, and only the
three times a week scenario without CO2 was effective (>10% reduction) for adults
(Table 3). The differences for these reductions are less than 0.03 ticks per lawn patch
(Table 3).

In the yard habitat all scenarios were effective at reducing the maximum density
of larvae, adults, and all ticks combined, but no scenario was effective in controlling
nymphs (Table 4). The effective percent reduction in maximum density of all tick
life stages combined is caused by the increased density of larvae in both habitats.
For larvae and all ticks combined only the scenarios one time with CO2, two times
with CO2, and three times with CO2 were statistically significant from the no control
scenario. For nymphs, all scenarios were significantly different from the no control
except the one a week and twice a week scenarios. All scenarios were statistically
significant from the control for adults (Table 4).

In the forest habitat, no scenario was effective or significantly different from the
no control scenario Table 5). The forest has the greatest density of ticks in the model
and the greatest difference in the mean scenario values from the no control scenario
is less than 1.11 ticks per forest patch (Table 5).

Table 3 Percent reduction and difference in maximum density of questing ticks in the lawn
habitat at each life stage for each scenario. Numbers in bold represent an effective reduction of
>10%. Italicized numbers are the densities of ticks in the scenario with no control. Life stages of
ticks are represented by “L” for larvae, “N” for nymphs, “A” for adults, “All” for all life stages.
Scenarios without the use of TickBot are marked with a dash (-). A one-way ANOVA was used to
compare the results of the scenarios. None of the scenarios are significantly different from the no
control scenario

Percent reduction Difference

Scenarios L N A All L N A All

No control – – – – 0.00 0.29 0.05 0.34

1X 0.00% −3.95% −6.70% −5.97% 0.00 −0.01 0.00 −0.02

2X 0.00% 9.77% −10.61% 5.40% 0.00 0.03 −0.01 0.02

3X 0.00% −1.97% 11.17% −0.98% 0.00 −0.01 0.01 0.00

Daily 0.00% 0.85% 2.79% 0.00% 0.00 0.00 0.00 0.00

1X with CO2 0.00% −1.22% 7.26% −1.23% 0.00 0.00 0.00 0.00

2X with CO2 0.00% −6.30% −5.59% −7.20% 0.00 −0.02 0.00 −0.02

3X with CO2 0.00% 1.69% −5.03% −0.33% 0.00 0.00 0.00 0.00

Daily with CO2 0.00% 3.01% −5.59% 0.41% 0.00 0.01 0.00 0.00
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Table 4 Percent reduction and difference in maximum density of questing ticks in the yard habitat
at each life stage for each scenario. Numbers in bold represent an effective reduction of >10%.
Italicized numbers are the densities of ticks per yard patch in the scenario with no control. Life
stages of ticks are represented by “L” for larvae, “N” for nymphs, “A” for adults, “All” for all life
stages. Scenarios without the use of TickBot are marked with a dash (-). A one-way ANOVA was
used to compare the results of the scenarios. Results significantly different from the no control
scenario are noted by an asterisk (*)

Percent reduction Difference

Scenarios L N A All L N A All

No control – – – – 10.26 3.30 0.54 10.26

1X 19.93% 0.39% 19.72%* 19.93% 2.05 0.01 0.11* 2.05
2X 19.92% −0.66% 26.43%* 19.92% 2.04 −0.02 0.14* 2.04
3X 24.61% 0.47%* 27.50%* 24.61% 2.53 0.02* 0.15* 2.53
Daily 19.99% 2.59%* 28.61%* 19.99% 2.05 0.09* 0.16* 2.05
1X with CO2 14.34% 0.65%* 26.70%* 14.34% 1.47 0.02* 0.15* 1.47
2X with CO2 26.49%* 0.22%* 32.87%* 26.49%* 2.72* 0.01* 0.18* 2.72*
3X with CO2 23.84%* 0.85%* 41.00%* 23.84%* 2.45* 0.03* 0.22* 2.45*
Daily with CO2 32.79%* 2.11%* 43.40%* 32.79%* 3.37* 0.07* 0.24* 3.37*

Table 5 Percent reduction and difference in maximum density of questing ticks in the forest
habitat at each life stage for each scenario. Numbers in bold represent an effective reduction of
>10%. Italicized numbers are the densities of ticks per forest patch in the scenario with no control.
Life stages of ticks are represented by “L” for larvae, “N” for nymphs, “A” for adults, and “All”
for all life stages combined. Scenarios without the use of TickBot are marked with a dash (-).
A one-way ANOVA was used to compare the results of the scenarios. None of the scenarios are
significantly different from the no control scenario

Percent reduction Difference

Scenarios L N A All L N A All

No control – – – – 27.50 7.17 1.21 27.50

1X 0.24% −0.08% 1.28% 0.24% 0.07 −0.01 0.02 0.07

2X −0.51% −0.06% 0.67% −0.51% −0.14 0.00 0.01 −0.14

3X 2.08% 0.37% 0.78% 2.08% 0.57 0.03 0.01 0.57

Daily −0.41% 0.60% 0.89% −0.41% −0.11 0.04 0.01 −0.11

1X with CO2 4.02% −0.14% 1.30% 4.02% 1.11 −0.01 0.02 1.11

2X with CO2 1.54% 0.73% 1.62% 1.54% 0.42 0.05 0.02 0.42

3X with CO2 3.10% 0.13% 1.20% 3.10% 0.85 0.01 0.01 0.85

Daily with CO2 −0.73% −0.21% 1.66% −0.73% −0.20 −0.01 0.02 −0.20

4.3 Sum of Questing Ticks

Percent reduction in the sum of questing ticks for each scenario are compared for
nymphs and adults combined (N+A) and all life stages, in each habitat. No scenario
was statistically significant from the no control scenario and no scenario had an
effect on the lawn or forest habitat (Tables 6 and 8). The values for the sum of
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Table 6 Percent reduction and difference of the sum of questing ticks in the lawn habitat at each
life stage for each scenario. Numbers in bold represent an effective reduction of >10%. Italicized
numbers are the sum of questing ticks in the scenario with no control. Values for “N+A”, nymphs
and adults, are the same as all life stages, “All”, in this habitat therefore only the value for “All”
is reported. Scenarios without the use of TickBot are marked with a dash (-). A one-way ANOVA
was used to compare the results of the scenarios. Results significantly different from the no control
scenario are noted by an asterisk (*)

Percent reduction Difference

Scenarios N+A All N+A All

No Control – – 92.38 92.38

1X 2.59% 2.59% 2.39 2.39

2X 7.20% 7.20% 6.65 6.65

3X 4.69% 4.69% 4.33 4.33

Daily 6.28% 6.28% 5.80 5.80

1X with CO2 4.52% 4.52% 4.18 4.18

2X with CO2 0.92% 0.92% 0.85 0.85

3X with CO2 5.88% 5.88% 5.43 5.43

Daily with CO2 9.53% 9.53% 8.80 8.80

Table 7 Percent reduction and difference of the sum of questing ticks in the yard habitat at each
life stage for each scenario. Numbers in bold represent an effective reduction of >10%. Italicized
numbers are the sum of questing ticks in the scenario with no control. Life stages of ticks are
represented by “N+A” for nymphs and adults, and “All” for all life stages. Scenarios without the
use of TickBot are marked with a dash (-). A one-way ANOVA was used to compare the results of
the scenarios. Results significantly different from the no control scenario are noted by an asterisk (*)

Percent reduction Difference

Scenarios N+A All N+A All

No Control – – 6613.87 21126.49

1X 17.18%* 21.97%* 1136.31* 4641.45*
2X 18.91%* 18.85%* 1250.80* 3981.88*
3X 20.08%* 23.58%* 1328.23* 4981.57*
Daily 21.93%* 19.21%* 1450.09* 4058.49*
1X with CO2 22.39%* 19.16%* 1481.04* 4048.12*
2X with CO2 26.60%* 26.07%* 1759.41* 5507.99*
3X with CO2 29.85%* 25.90%* 1973.99* 5471.67*
Daily with CO2 33.38%* 31.60%* 2207.96* 6674.99*

questing ticks in the lawn as nymphs and adults or all life stages are the same for
this metric because of low densities of ticks in the lawn habitat (Table 7).

All scenarios were effective in reducing the sum of questing ticks in the yard
for nymphs and adults, as well as all life stages combined and all scenarios were
significantly different from the no control scenario. The most effective scenario
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Table 8 Percent reduction and difference of the sum of questing ticks in the forest habitat at
each life stage for each scenario. Numbers in bold represent an effective reduction of >10% and
italicized numbers are the sum of questing ticks in the scenario with no control. Life stages of
ticks are represented by “N+A” for nymphs and adults, and “All” for all life stages. Scenarios
without the use of TickBot are marked with a dash (-). A one-way ANOVA was used to compare
the results of the scenarios. Results significantly different from the no control scenario are noted
by an asterisk (*)

Percent reduction Difference

Scenarios N+A All N+A All

No Control – – 14264.62 53781.14

1X 0.05% -0.20% 7.49 −108.05

2X 0.28% 2.14% 39.32 1152.35

3X -0.02% 2.95% −2.36 1588.05

Daily 0.32% 1.84% 45.00 988.79

1X with CO2 0.11% 3.51% 15.87 1886.08

2X with CO2 0.53% 3.45% 75.31 1857.56

3X with CO2 0.00% 3.17% −0.28 1703.97

Daily with CO2 -0.06% 0.01% −7.89 6.44

was daily treatment with the use of CO2 with 33.38% reduction for nymphs and
adults, and 31.60% reduction for all life stages combined. Differences in the sum of
questing ticks also showed a reduction of thousands of ticks less with daily treatment
with CO2 (Table 7).

4.4 Sum of All Ticks

Percent reduction in the sum of all ticks, in any activity, in each habitat, for nymphs
and adults combined (N+A) and all life stages, were calculated for each habitat. No
scenario was significantly different from the no control scenario and no scenario was
effective in reducing the sum of ticks in either the lawn or forest habitat (Tables 9
and 11). However, all scenarios were effective for the yard habitat and all scenarios
were significantly different than the no control scenario (Table 10). The greatest
percent reduction in the sum of all ticks resulted from daily application with the use
of CO2. Differences also support that the greatest reduction of ticks with the daily
treatment scenario and CO2 (Table 11).
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Table 9 Percent reduction and difference of the sum of ticks in the lawn habitat at each life stage
for each scenario. Numbers in bold represent an effective reduction of >10%. Italicized numbers
are the sum of ticks in the scenario with no control. Life stages of ticks are represented by “N+A”
for nymphs and adults, and “All” for all life stages. Scenarios without the use of TickBot are
marked with a dash (-). Results significantly different from the no control scenario are noted by
an asterisk (*)

Percent reduction Difference

Scenarios N+A All N+A All

No Control – – 92.38 1795.96

1X 5.67% 2.82% 16.77 50.60

2X 7.25% 2.16% 21.42 38.79

3X 5.82% 3.47% 17.21 62.41

Daily 5.99% 2.56% 17.71 45.90

1X with CO2 4.67% 1.68% 13.80 30.25

2X with CO2 4.95% 2.71% 14.63 48.67

3X with CO2 6.60% 2.60% 19.50 46.67

Daily with CO2 8.99% 4.53% 26.59 81.39

Table 10 Percent reduction and difference of the sum of ticks in the yard habitat at each life stage
for each scenario. Numbers in bold represent an effective reduction of >10%. Italicized numbers
are the sum of ticks in the scenario with no control. Life stages of ticks are represented by “N+A”
for nymphs and adults, and “All” for all life stages. Scenarios without the use of TickBot are
marked with a dash (-). Results significantly different from the no control scenario are noted by an
asterisk (*)

Percent reduction Difference

Scenarios N+A All N+A All

No Control – – 12464.65 43593.84

1X 14.44%* 15.81%* 1799.99* 6891.95*
2X 15.12%* 13.54%* 1885.03* 5901.21*
3X 17.60%* 16.96%* 2193.51* 7392.99*
Daily 18.24%* 14.29%* 2273.06* 6228.27*
1X with CO2 18.07%* 14.05%* 2252.97* 6125.32*
2X with CO2 21.54%* 19.06%* 2684.68* 8307.78*
3X with CO2 23.99%* 20.01%* 2990.36* 8725.03*
Daily with CO2 27.74%* 23.63%* 3457.27* 10302.58*

4.5 Cost of Effort

To take into account the effort required to implement the TickBot, metrics for the
yard habitat were adjusted by frequency of TickBot runs in each scenario (Tables 12,
13, and 14). Maximum density, sum of questing ticks, and sum of all ticks, were all
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Table 11 Percent reduction and difference of the sum of ticks in the forest habitat at each life stage
for each scenario. Numbers in bold represent an effective reduction of >10%. Italicized numbers
are the sum of ticks in the scenario with no control. Life stages of ticks are represented by “N+A”
for nymphs and adults, and “All” for all life stages. Scenarios without the use of TickBot are
marked with a dash (-). Results significantly different from the no control scenario are noted by
an asterisk (*)

Percent reduction Difference

Scenarios N+A All N+A All

No control – – 29295.69 113030.50

1X -0.44% 0.70% −127.48 794.52

2X -0.20% 2.25% −58.12 2540.74

3X -0.11% 3.04% −31.24 3438.88

Daily 0.31% 1.89% 90.32 2131.43

1X with CO2 -0.13% 3.35% −39.35 3783.11

2X with CO2 -0.40% 2.75% −115.99 3103.50

3X with CO2 0.77% 3.29% 225.49 3719.66

Daily with CO2 0.45% 0.74% 132.61 832.24

Table 12 Percent reduction and difference in maximum density of questing ticks in the yard
habitat adjusted by the cost of effort for each treatment. Numbers in bold represent an effective
reduction of >10%. Italicized numbers are the densities of ticks in the scenario with no control.
Life stages of ticks are represented by “L” for larvae, “N” for nymphs, “A” for adults, “All” for all
life stages. Scenarios without the TickBot are marked with a dash (-)

Percent reduction Difference

Scenarios L N A All L N A All

No Control – – – – 10.26 3.30 0.54 10.26

1X 19.93% 0.39% 19.72% 19.93% 2.05 0.01 0.11 2.05
2X 9.96% −0.33% 13.22% 9.96% 1.02 −0.01 0.07 1.02

3X 8.20% 0.16% 9.17% 8.20% 0.84 0.01 0.05 0.84

Daily 2.86% 0.37% 4.09% 2.86% 0.29 0.01 0.02 0.29

1X with CO2 14.34% 0.65% 26.70% 14.34% 1.47 0.02 0.15 1.47
2X with CO2 13.24% 0.11% 16.43% 13.24% 1.36 0.00 0.09 1.36
3X with CO2 7.95% 0.28% 13.67% 7.95% 0.82 0.01 0.07 0.82

Daily with CO2 4.68% 0.30% 6.20% 4.68% 0.48 0.01 0.03 0.48

effectively reduced by the one time a week scenario with and without CO2 scenarios.
Some efficacy was seen for various life stages with twice a week, twice a week with
CO2, and three times a week with CO2.
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Table 13 Percent reduction and difference in the sum of questing ticks of questing ticks in the
yard habitat adjusted by the cost of effort for each treatment. Numbers in bold represent an effective
reduction of >10%. Italicized numbers are the densities of ticks in the scenario with no control.
Life stages of ticks are represented by “L” for larvae, “N” for nymphs, “A” for adults, “All” for all
life stages. Scenarios without the TickBot are marked with a dash (-)

Percent reduction Difference

Scenarios N+A All N+A All

No Control – – 6613.87 21126.49

1X 17.18% 21.97% 1136.31 4641.45
2X 9.46% 9.42% 625.40 1990.94

3X 6.69% 7.86% 442.74 1660.52

Daily 3.13% 2.74% 207.16 579.78

1X with CO2 22.39% 19.16% 1481.04 4048.12
2X with CO2 13.30% 13.04% 879.71 2754.00
3X with CO2 9.95% 8.63% 658.00 1823.89

Daily with CO2 4.77% 4.51% 315.42 953.57

Table 14 Percent reduction and difference in the sum of ticks in the yard habitat adjusted by
the cost of effort for each treatment. Numbers in bold represent an effective reduction of >10%.
Italicized numbers are the densities of ticks in the scenario with no control. Life stages of ticks are
represented by “L” for larvae, “N” for nymphs, “A” for adults, “All” for all life stages. Scenarios
without the TickBot are marked with a dash (-)

Percent reduction Difference

Scenarios N+A All N+A All

No control – – 12464.65 43593.84

1X 14.44% 15.81% 1799.99 6891.95
2X 7.56% 6.77% 942.52 2950.60

3X 5.87% 5.65% 731.17 2464.33

Daily 2.61% 2.04% 324.72 889.75

1X with CO2 18.07% 14.05% 2252.97 6125.32
2X with CO2 10.77% 9.53% 1342.34 4153.89

3X with CO2 8.00% 6.67% 996.79 2908.34

Daily with CO2 3.96% 3.38% 493.90 1471.80

5 Conclusions

The overall goal in tick control is to reduce human encounters with ticks. In this
model, the yard habitat (consisting of the lawn, TickBot, and forest edge patches)
represents the area of greatest risk for humans. Using the metrics explored in this
model, there is unanimous support that the optimal scenario is daily treatment
with the TickBot and CO2. Logically, the more the TickBot is applied, the more
ticks are killed, but the cost of running the TickBot can be cumbersome and time
consuming if applied daily. When adjusted for effort the percent reduction metrics
by the number of TickBot applications a week, the results highlight once a week
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scenarios. Once a week treatments may provide some reduction in tick populations
while limiting costs, but more work is needed to identify the specific application
frequency based on cost effectiveness.

How effectiveness of a control method is measured can also change the interpre-
tation of results. The metric of maximum density of questing ticks for this model
resulted in effective population reductions of larvae and adults but not nymphs
(Tables 4 and 5). The timing of the TickBot in this model targeted the adult
phenology early in the summer. By decreasing adult populations, fewer eggs were
laid which resulted in less larvae. However, nymphs typically are active much longer
than adults in the summer, therefore the timing of TickBot would need to be adjusted
to have effective at reducing nymph abundance.

Like all models, this one depends heavily on the parameters used. Future work is
needed to complete a full sensitivity analysis of all possible parameters. Additional
information is required for application of the TickBot to a specific area with
additional host types, varying environmental conditions, etc. Finally, this model can
be extended to run over multiple years to assess the long-term impact, if any, on the
tick population.

Determining the efficacy of the TickBot at varying frequencies with or without
CO2 has several layers to deciding what scenario is best. If the focus of a control
effort is to target a specific life stage, all life stages, or provide cost effective
treatment, different answers will be required. Overall, this study found that the
TickBot should be run at least three times a week, with CO2, to have the maximum
protection for the lowest cost.
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Simulations of Social Distancing
Scenarios and Analysis of Strategies
to Predict the Spread of COVID-19
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1 Introduction

Computational models are crucial in an attempt to predict the dynamics of epi-
demics. In general, governmental policies aiming at mitigating the spread of
infectious diseases may also be based on simulations from such models. By means
of robust models, it is possible to estimate the reproduction capacity of a virus
in a given location, in order to determine actions such as closing non-essential
businesses, imposing restrictive measures in relation to the mobility of people across
borders, or even total shut down. In view of the complexity of an epidemic and all
the variables that can affect the course of the virus, creating models that incorporate
all of these characteristics may be unfeasible. Despite this, it is essential that new
strategies are continually developed in order to provide increasingly appropriate
apparatus to properly analyze an epidemic.

In the early stages of the disease outbreak, Dehning et al. [4] proposed an
approach to infer potential change points in the dynamics of spreading the virus,
in order to simulate short-term forecasts associated with different levels of social
distancing in Germany. Change points are meant to represent the moment at which

F. S. Lobato (�)
Chemical Engineering Faculty, Federal University of Uberlândia, Uberlândia, Brazil
e-mail: fslobato@ufu.br

G. B. Libotte · R. C. Almeida · R. S. Silva · S. M. C. Malta
National Laboratory for Scientific Computing, Petrópolis, Brazil
e-mail: glibotte@lncc.br; rcca@lncc.br; rssr@lncc.br; smcm@lncc.br

G. M. Platt
Graduate Program in Agroindustrial Systems and Processes, School of Chemistry and Food,
Federal University of Rio Grande, Santo Antônio da Patrulha, Brazil
e-mail: gmplatt@furg.br

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
B. Toni (ed.), The Mathematics of Patterns, Symmetries, and Beauties in Nature,
STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health,
https://doi.org/10.1007/978-3-030-84596-4_5

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84596-4_5&domain=pdf
mailto:fslobato@ufu.br
mailto:glibotte@lncc.br
mailto:rcca@lncc.br
mailto:rssr@lncc.br
mailto:smcm@lncc.br
mailto:gmplatt@furg.br
https://doi.org/10.1007/978-3-030-84596-4_5


60 F. S. Lobato et al.

governmental interventions are put into practice and change the behavior of the
population in the face of the epidemic. They assume different degrees of stringency
in relation to social distancing measures, being effectively initiated on particular
days, and analyze the impact of such variations regarding the number of infected
individuals. Following this framework, our objective is to analyze a delay observed
in COVID-19 due to the interplay between the incubation period of the disease
and testing. The delay scheme is formulated as an alternative to simulate the
influence of disease latency in infected individuals using the SIR model, and to
compare its effect to the parameter that represents the incubation period in the
SEIR model. In addition, we provide detailed descriptions of the incorporation of a
delay scheme into the statistical inference procedure and the strategy for simulating
social distancing measures. We analyze possible scenarios of the epidemic in Italy,
associating the influence of policy interventions with computer simulations and
comparing how decisions under different conditions would impact the number of
infected individuals.

Since the first cases of COVID-19 diagnosed in Italy, on January 31, 2020 [23],
the country has been one of the most affected by the pandemic. After the disease
initially spread across Asia, Italy was the first country in Europe to have an
officially identified case [18]—although there is evidence that the virus was already
circulating in the country at the end of 2019 [1]. Several measures were adopted by
the Italian government in an attempt to curb the spread of the disease. More stringent
measures, referred to as “red zone”, were initially imposed on locations in the north
of the country, affecting areas of Lombardy, Veneto, and Emilia-Romagna. In view
of the gradual and alarming spread of the disease, such measures were extended to
the entire national territory on March 9, with total lockdown. Figure 1 shows the
timeline of some important events and policy interventions in the period between
February 21 and March 22, as well as the number of new cases [6] reported on the
corresponding time point. The events listed in this work follow the comprehensive
study of Berardi et al. [2], which analyzes such policies in terms of their social
impact regarding economic and health aspects, taking into account factors such as
strictness and response time to determine interventions.

The effects of social distancing measures have been widely studied in the context
of computer simulations. Predictions and analysis on possible scenarios can provide
a basis for decision making, in addition to insights about eventual incidents. Given
the dynamics of the disease in Italy, a great deal of effort has been devoted to
analyze the effect of contingency measures and their effectiveness in mitigating
the disease. Gatto et al. [7] analyzed the effect of such interventions by modeling
in time and space the unfolding epidemic, considering mobility restrictions and
contact reduction. Mobility data between provinces were adopted, and changes in
social behavior that lead to increased social distancing were simulated taking into
account the reduction in the transmission rate. Liu et al. [14] adopted an extension of
the SEIR model, including symptomatic/asymptomatic and quarantined individuals.
The authors proposed formulations subject to exponential decay in order to evaluate
the reduction in the rate of contact and diagnostics over time, in the period in
which containment measures are adopted. Reno et al. [18] and Supino et al. [21]
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Fig. 1 Some relevant facts and policy interventions related to the spread of the SARS-COV-2 virus
in Italy, from February 21 to March 22, 2020 [2]. The values shown in red are the number of new
infections in the corresponding day [6]
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assessed the effect of social distancing measures in the context of the impact on
public health. The former analyzed the burden of hospitalizations under different
scenarios regarding social distancing and the latter proposed a strategy for predicting
the saturation of intensive care units. Traini et al. [22] combined the SEIR model
with quarantine characteristics and time-dependent contact and diagnosis rates to
estimate long-term scenarios taking into account a reproduction ratio threshold.
Other analyzes in the same context were also discussed in Refs [5, 8, 9, 13, 20].

2 Materials and Methods

Below we present details about the compartmental models used in the simulations,
as well as the description of the methodology for estimating parameters, analyzing
scenarios related to the spread of the disease considering social distancing measures,
and on the delay scheme to simulate the effect of the virus incubation period. We
also provide information about the data.

2.1 Data

We adopt data on the number of new infections in Italy per day, between February 22
and March 8, 2020. The time frame was chosen taking into account the first day that
the country had a significant number of infections, until the day before the national
lockdown (which is the event that we are mainly concerned). Data are obtained from
the COVID-19 Data Repository by the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University [6].

2.2 Models Description

The following two subsections present the compartmental models used to simulate
the spreading dynamics of infectious diseases, as well as the framework for
estimating parameters of the corresponding models.

2.2.1 Discrete-Time SIR Model

In one of the approaches to simulate the behavior of the epidemic, a discrete-time
SIR model [11] is used, following Dehning et al. [4]. In this model, the rate of
transmission per contact between susceptible (S) and infected (I ) individuals, that
is, the rate at which the disease spreads in the population, is given by β. In turn, the
rate at which individuals are removed (R), for having recovered or died from the
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disease, is given by γ . We disregard the birth rate and mortality from natural causes
because, as the focus of the work is to analyze short-term scenarios, it is reasonable
to consider that such events do not substantially affect the population. As data is
reported daily, it is plausible to take a time step �t = 1 day. With this assumption,
the description of the model is given by

�S = −β
St−1It−1

N

�I = β
St−1It−1

N
− γ It−1

�R = γ It−1 ,

(1)

where �S represents the estimate of the number of susceptible individuals in
two consecutive time steps, that is, �S = St − St−1. The same notation holds
equivalently to the other compartments. In turn, N stands for the total population
size.

A useful indicator of the transmission of infectious diseases is the basic
reproduction number, denoted by R0. In the case of the SIR model, R0 = β/γ .

2.2.2 Continuous SEIR Model

The main difference between this model and the one described in the previous
section is the explicit representation of the exposed individuals. During the early
phase after being infected, an individual may not present typical symptoms, perhaps
still not being able to transmit the disease due to the low load of the pathogen in the
organism. The latent period between the infected and infectious (once the level of
parasite is sufficiently large within the host) states is called the incubation period.
After this period, the exposed individual is moved to the infected compartment.
Thus, let E be the compartment of exposed individuals and 1/ε denote the
incubation period. The continuous SEIR model is given by

dS

dt
= −β

SI

N

dE

dt
= β

SI

N
− εE

dI

dt
= εE − γ I

dR

dt
= γ I ,

(2)
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so that the other compartments and parameters are similar to those of the SIR model
previously presented. Since this model does not explicitly include the compartment
of dead individuals, the basic reproduction number is the same as the SIR model,
R0 = β/γ .

2.3 Parameter Estimation Framework

Let y (ti , θ) denote the model responses at different times ti , for i = 1, . . . , p,
given the parameter vector θ. For now, assume that it represents an arbitrary vector
of design parameters, which will be precisely defined later on. We may refer to
the model responses simply as yi and, in our case, they specifically represent the
estimates of the number of infected individuals at time ti . Likewise, we express an
observable quantity as Di , which is equivalent to D (ti), and D = {D1, . . . , Dp}
collectively assembles the time series of the number of infected individuals.

Estimators for the design parameters are calculated using a Bayesian approach.
We are interested in obtaining the posterior probability distribution of the parameters
ppost (θ |D), that is, the distribution that reflects the updated knowledge from the
prior current knowledge pprior (θ) and the likelihood function plike (D | θ), which
in turn measures how well the model responses fit the data available, for a given
estimator. The posterior distribution is numerically obtained by using sampling
methods according to ppost (θ |D) ∝ plike (D | θ) pprior (θ). In this work we assume
a Gaussian likelihood, which is given by

plike (D | θ) = 1

σ
√
2π

exp

(
−

p∑
i = 1

(D (ti) − y (ti , θ))
2

2σ 2

)
, (3)

where σ is the scale factor and measures how far the model outcomes spread out
from the data.

2.4 Model and Parameter Setups

This section presents specific information about the parameters of the models and
the choices adopted for the Bayesian inference procedure. Details on the delay
scheme and the strategy for simulating social distancing measures are also provided.

2.4.1 Model Parameters

The parameters to be estimated considering Eq. (1) are β and γ . For both param-
eters, Dehning et al. [4] propose the use of informative priors, following some
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assumptions. In the early stages of the spread of the disease, it is reasonable to
assume that R0 > 1. Particularly in the period analyzed in this work, D’Arienzo
and Coniglio [3] estimate that R0 ≈ 3.1 in Italy. Therefore, we assume prior
distributions for such parameters given by β ∼ Lognormal (log (0.4) , 0.5) day−1

and γ ∼ Lognormal (log (1/8) , 0.2) day−1, respectively, whose medians are
consistent with the corresponding estimate of the basic reproduction number. In
the case of Eq. (2), the additional parameter to be estimated is the incubation
period which, according to McAloon et al. [15], may be modeled with ε ∼
Lognormal (1.63, 0.5) day−1.

2.4.2 Delay Scheme

The disease incubation period is artificially introduced into the SIR model through a
delay strategy, as proposed by Dehning et al. [4]. In this way, the well-known effect
of the exposed individuals, who are infected individuals but not yet infectious, is
introduced by a delay time on the reported infected individuals, denoted by D. This
new parameter is also capable of incorporating the time between an individual start
to manifest symptoms of the disease until it is effectively tested and diagnosed. To
combine an incubation period of approximately 5 days and an arbitrary choice of 3
days for the time until an individual is diagnosed, since the onset of symptoms, we
choose the prior distribution D ∼ Lognormal (log (8) , 0.2) days.

Essentially, the effect of such a delay is directly considered in the model
simulation. In general, the model is simulated for as many days as the amount of
data available, for calibration purposes. However, the delay scheme inserts the need
to simulate the model for a few more days beyond the day corresponding to the
last data available in D. To describe the implementation issues, let P be the vector
containing the model responses for ts days, considering a particular θ. In this case,
ts = p + ξ , where p is the cardinality of D and ξ is the number of supplementary
days required to evaluate the appropriate delay.

Simulating a delay D requires selecting p adjacent columns of the vector P ,
starting from column D + 1 but also considering that the maximum allowed delay
is ξ . Of note, the definition of ξ avoids including low probability D values, thereby
reducing the computational cost of the inference procedure. In order to select
such simulations that take into account the value of D, consider a ts × p binary
matrix Q. This matrix is composed only of zeros in the first D lines. In turn,
the block composed of the following p lines must be equal to the identity matrix
with corresponding dimension. If ts > D + p or, equivalently, if D < ξ , the
last ξ − D lines remaining are also composed of zeros. Calculating C = P × Q
consists of obtaining the vector composed of the p adjacent columns of P , which
are subsequent to the first D columns. Therefore, a model response (considering
a possible delay) that, in fact, is evaluated in the statistical inference procedure
is given by yi = Ci . This procedure is repeated for all samples generated in the
parameter estimation framework (see Sect. 2.3), considering different values of D
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Fig. 2 Graphical representation of the delay scheme

and the other model parameters. Figure 2 shows a graphical representation of the
delay scheme.

2.4.3 Social Distancing Scheme

Social distancing measures aim to reduce the rate of transmission of infectious
diseases, whose main indicator is the basic reproduction number. Assuming a
constant removal rate (given a relatively short period), scenarios for different levels
of social distancing can be established by varying the spreading rate. Therefore,
measures to contain the spread of the virus as a result of social distancing are
incorporated into the model considering two factors [4]: (i) level of social distancing
and; (ii) the number of days since such measures are implemented until they take
effect.

Let ω be the parameter that simulates the level of social distancing on the
population, with 0 ≤ ω < 1, that is, high values within the feasible range represent
more restrictive levels of social distancing, whereas ω = 0 represents the scenario
where there is no restriction on social distancing. In turn, let τ (t) be an expression
that relates the number of days until social distancing measures start to take effect,
that is, the number of days until the spreading rate starts to be reduced, in addition
to the time needed so that the restriction has a gradual effect until reaching the
maximum estimated effectiveness. Such expression is given by

τ (t) = min

(
max

(
0,

t − δ

�

)
, 1

)
, (4)
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Fig. 3 Progressive effect of
social distancing for different
days on which measures are
put into practice

Social distancing
under full effect
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where δ is the number of days until the transmission rate starts to decrease and �

is the time required for the measure to be gradually effective, as shown in Fig. 3.
One may notice that Eq. (4) ensures that τ (t) ∈ [0, 1], for all t . The spreading rate
considering such measures of social distancing varies with time according to

βd (t) = (1 − ω τ (t)) β . (5)

Therefore, scenarios considering measures of social distancing can be simulated
by varying the value of ω, depending on how restrictive these actions must be, and
also for different values of δ, according to the moment when the measures start to
take effect.

This framework can be incorporated into any compartmental model only by
replacing the parameter corresponding to the spreading rate of the disease (in this
work, denoted as β) by the parameter βd (t) in Eq. (5). For instance, the expression
for the number of susceptible individuals in the SIR model given by Eq. (1) would
become �S = −βd (t) St−1It−1/N , and the rest of the equations would be modified
accordingly.

2.4.4 Parameter Setting

In order to determine the initial conditions for both models, first consider the Italian
population, N = 60.4 million inhabitants [24]. In the case of the SIR model, to
reduce possible uncertainties associated with the number of individuals infected at
the beginning of the epidemic, we follow Dehning et al. [4] and estimate the value
of I (0), instead of selecting the first value in set D, corresponding to t = 0. The
prior distribution is given by I (0) ∼ HalfCauchy (100) individuals. In turn, since
R (0) → 0 at the onset of the pandemic, and N � R (0), it is reasonable to define
the initial number of susceptible individuals S (0) = N − I (0). Additionally, we
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Table 1 Variables associated with the parameters of the inference problem and corresponding
prior distributions, in appropriate units (a.u.)

Prior distribution

Variable Parameter SIR SEIR

β Spreading rate Lognormal (log (0.4) , 0.5)

γ Removal rate Lognormal (log (1/8) , 0.2)

D Simulation delay Lognormal (log (8) , 0.2) —

ε Incubation period — Lognormal (1.63, 0.5) 1/5.8

E (0) Initially exposed — HalfCauchy (100)

I (0) Initially infected HalfCauchy (100) —

σ Scale factor HalfCauchy (10)

also estimate the scale factor σ in Eq. (3) as an hyperparameter of the model, in such
a way that σ ∼ HalfCauchy (10) individuals. Therefore, the vector of variables to
be estimated in the SIR model is θ = (β, γ, D, I (0) , σ ).

Regarding the SEIR model, as the number of exposed individuals on the date
corresponding to the beginning of the simulations is not known, E (0) must be
estimated, with prior distribution given by E (0) ∼ HalfCauchy (100) individuals.
In turn, aiming to avoid parameter identification problems [12, 16, 17] in this case,
we adopt I (0) = D1. Since it also holds that R (0) = 0, the number of susceptible
individuals initially is S (0) = N − (E (0) + I (0)). For the incubation period,
we consider two possibilities: in the first, we take ε as a biological parameter
and simulate the model considering 1/ε = 5.8 days [15]; in the second, we
estimate the value of the incubation period according to the prior distribution
defined in Sect. 2.4.1. Here we also estimate the scale factor σ . Table 1 summarizes
the parameters to be estimated for each problem, as well as the associated prior
distributions.

3 Results and Discussion

The PyMC3 library [19] is employed to perform the sampling procedure and
parameter inference in all cases analyzed here. Parameter sampling is conducted by
NUTS (No-U-Turn Sampler) [10], an efficient extension of the Hamiltonian Monte
Carlo (HMC) algorithm that makes use of the function gradient information and
eliminates the need to define the number of steps for HMC. For all simulations, we
choose the number of supplementary simulations ξ = 20 days, in order to support
the choice of the prior distribution ofD. Additionally, the progressive effect of social
distancing measures is calculated using � = 7 days.
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3.1 Analysis on the Effect of Social Distancing

Initially we are interested in analyzing the effect of the social distancing scheme
shown in Sect. 2.4.3, for different levels of stringency using the SIR model.
Therefore, it is required to estimate the model parameters, so that it is possible to
carry out simulations considering different values of ω. Figure 4 shows the posterior
distribution of the parameters, as well as the maximum a posterior (MAP) value and
the 95% credible interval. The MAP value of each parameter is used to simulate
the corresponding model in all cases. For this case, note that D = 8.28, which is
consistent with the physical meaning of the parameter [4], covering approximately
five days corresponding to the virus incubation period, and three more regarding
the time from the first symptoms to diagnosis. In addition, β and γ values lead to
R0 = 2.9109, agreeing with D’Arienzo and Coniglio [3].

The effects of social distancing are analyzed considering three scenarios related
to the strictness of the measures: extensive, moderate, and mild. These scenarios are
different from each other by the particular value of ω in Eq. (4), which are taken as
0.9, 0.7, and 0.5, respectively. Of note, we do not consider the scenario in which
ω = 0 because, during an epidemic in which individuals are aware of the existence
of the virus, a portion of the population tends to adopt social distancing measures
on their own, even if they have not been imposed by health authorities. Therefore,
this scenario could be unrealistic. Figure 5 shows the simulations of the SIR model

0.30 0.35 0.40 0.45 0.50 0.55

MAP : 0.3499
95%CI: 0.3014–0.4146

0.075 0.125 0.175 0.225

MAP : 0.1202
95%CI: 0.0823–0.1718

0 50 100 150 200 250

MAP : 41.77
95%CI: 13.65–98.69
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MAP : 8.28
95%CI: 5.51–11.66

Fig. 4 Posterior distribution histograms, maximum a posterior (MAP), and credible interval of the
parameters of SIR model (in a.u.)
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Fig. 5 Scenarios related to daily new cases of COVID-19 in Italy for different levels of social
distancing. The upper frame shows the case in which extensive social distancing is adopted, in
the middle frame a moderate social distancing is adopted, and in the lower frame a mild social
distancing is adopted. We highlight three moments (dashed vertical lines) related to the timeline
shown in Fig. 1: A (Mar 01) is when the lockdown measures in some municipalities of Lombardy,
Veneto and Emilia-Romagna; B (Mar 09) indicates when it was experienced total shut down and;
C (Mar 21) corresponds to the day of the national peak of contagions. The dark blue points are
data used for calibrating the model, and the light points are plotted for comparison purposes only
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in terms of the number of daily infected individuals and considering the parameters
presented in Fig. 4, for the three scenarios analyzed. We associate three facts related
to the policies adopted in Italy with the corresponding dates (see Fig. 1), which are
indicated by the letters A to C, and we also show the data fromMarch 9, represented
by light blue dots, just for the sake of comparison.

The comparison of the two upper frames in Fig. 5, which show the simulations
considering the effect of extensive and moderate social distancing, indicates that
these adopted measures had a intermediate effect between these two thresholds, in
view of the known data. However, it is noteworthy the reduction of the credible
interval when extensive social distancing measures are implemented. In turn, the
bottom frame illustrates how mild measures can be inefficient to contain the spread
of the disease. In this case, the spread rate of the disease is greater than the effective
capacity of the social distancing measures to contain the spread of the virus. The
increase in the number of cases could persist until more restrictive measures are
adopted, or until the curve reaches saturation according to the total population size.
This obviously would have a direct effect on the number of deaths and the capacity
of the country’s health services.

Note that the simulation for extensive social distancing measures is in good
agreement with the peak of contagion in the country (marker C). In the other
considered scenarios, in addition to the number of cases being greater, the peak
of the curve is also shifted to later dates, causing the contagion to continue for a
longer time. Despite the analysis considering levels of social distancing, quantified
by ω, being equally spaced among themselves, in addition to the fact that τ (t) in
Eq. (4) has a linear relation with δ and �, milder social distancing measures do not
mean a linear increasing in the number of cases, given the exponential nature of the
contagion dynamics between individuals. Note also that social distancing measures
restricted to specific locations, as in the case of the intervention indicated by marker
A, may not be as effective as expected, given the scenario illustrated by the bottom
frame in Fig. 5.

We also analyze the effects of social distancing measures implemented on
different days. Taking the more restrictive scenario in which we consider here
(ω = 0.9), the model is simulated with δ = −5 days and δ = 5 days, that is, the
measures hypothetically start to take effect five days before or after the day when,
in fact, they have been established, respectively. Figure 6 shows the simulations for
each of these scenarios, where the dashed vertical line corresponds to the value of δ

in each frame, in relation to the day the total shut down was decreed (March 9).
Even with a difference of relatively few days, the late implementation of

social distancing measures can have a very harmful impact. This is because social
distancing has a gradual effect and until the state in which the population effectively
changes its behavior according to the proposed measures is not reached, new
infections continue to occur. The late implementation of the social distancing
measures makes the peak of the curve of daily new cases reach approximately
19,815 infections on March 28. On the other hand, the more agile decision reduces
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Fig. 6 Hypothetical scenarios related to the moment at which extensive social distancing measures
start to take effect. In the upper frame, the measures are put into practice five days after the date
when, in fact, the total shut down was decreed (March 9); in the lower frame, the measures are put
into practice five days before this date. The dashed vertical lines indicate such moments

the peak of the curve to 2,534 on March 18. In the range of days analyzed, the total
number of cases varies between 49,016 and 368,740 for such scenarios.

3.2 Comparison of Strategies to Simulate the Effect of Latency

Now we present an analysis of the scenarios proposed in this work in terms of the
levels of stringency of social distancing, using the continuous SEIR model. The pur-
pose is to assess the difference in effect caused by the incubation period parameter,
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compared to simulations conducted using the delay scheme. As mentioned before,
we consider both the cases in which the incubation period must be estimated and
being taken as a biological parameter. The inference methodology and the other
parameters of the model are the same adopted in the previous section.

First consider the problem in which ε must be estimated. Figure 7 shows the
posterior distribution of the parameters, as well as the simulations for some ω

values. By visual inspection, one may notice that the β and γ distributions are quite
similar with those shown in Fig. 4, in terms of the respective mean and standard
deviation. However, 1/ε = 3.2481 (days) is less than the delay inferred in the
previous problem (D = 8.28 days). Therefore, comparing the simulations of Figs. 5
and 7, the effect of each of the latency approaches is clear: since ε does not consider
the days from the appearance of the symptoms to the positive diagnosis, but only the
virus incubation period, the tendency is for individuals to move from the exposed
to the infected compartment more quickly. Taking into account that the spreading
and removal rates are approximately equal in both cases, simulations whose latency
is lower tend to produce flatter curves. This behavior occurs because, as the social
distancing measures affect the spreading rate (β), which, in turn, directly interferes
in the exposed (SEIR) and infected (SIR) compartments, the curves of daily new
cases tend to undergo such a change. This is in line with the spreading dynamics of
the virus, since symptomatic individuals before being positively diagnosed—when
they tend to comply with isolation measures more restrictively—are more likely to
infect other people.

In turn, consider the case where ε is taken as a biological parameter, such that
1/ε = 5.8 days [15]. In this case, the only parameters to be inferred are the
spreading and removal rates, in addition to the initial number of exposed individuals
(see Table 1). As ε is fixed, the parameter estimation procedure has to adjust the
model to the observable data, considering such effect. This is evidently reflected
in the posterior distribution of the adjustable parameters, as can be seen in Fig. 8.
The MAP values of β and γ produce R0 ≈ 6.74. Since the basic reproduction
number is greater than that inferred by D’Arienzo and Coniglio [3], social distancing
measures have to be even more strict to achieve a result similar to the previous case.
When analyzing the simulations in Fig. 8, it is clear that social distancing measures
(especially moderate and mild) do not have the expected effect in the analyzed
period. Since R0 is very large, the effect of reducing the spread rate by means of
Eq. (5) is more effective in the long run.
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Fig. 7 Effect of social distancing measures considering some levels of stringency (extensive,
moderate, and mild), simulated using the continuous SEIR model. The upper frame shows the
daily new cases in each scenario. The textures in the shaded areas are for viewing purposes of
better identifying the credible interval. In the lower frame, the posterior distribution histograms of
the estimated parameters are shown
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Fig. 8 Effect of social distancing measures considering some levels of stringency (extensive,
moderate, and mild), simulated using the continuous SEIR model. The upper frame shows the daily
new cases in each scenario. The textures in the shaded areas are for viewing purposes of better
identifying the credible interval. In the lower frame, the posterior distribution of the estimated
parameters are shown. In these simulations, the incubation period parameter is taken as a biological
parameter, such that 1/ε = 5.8 days [15]
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4 Conclusions

The strategy for simulating social distancing and delay scheme proposed by
Dehning et al. [4], applied in the analysis of scenarios regarding the epidemic in
Italy, show that both are capable of providing satisfactory prior knowledge of the
dynamics of epidemics. Both are simple techniques to be incorporated into any
simulation with compartmental models and, if associated with other more complex
models, can provide important insights for decision making policies. Particularly on
the delay scheme, its use can be upheld by the fact that it is possible to incorporate
into any compartmental model, however simple it may be, the disease latency
without having to explicitly include the compartment of exposed individuals. This
tends to make the procedure of parameter inference more simple, since it eliminates
the need to calibrate the initial condition associated with the exposed individuals.
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Mathematical Modelling of the Evolution
Dynamics of the Coronavirus Disease
2019 (COVID-19) in Burkina Faso

Aboudramane Guiro, Blaise Koné, and Stanislas Ouaro

1 Introduction

Since its appearance in China in December 2019, the coronavirus disease 2019
(COVID-19) has been subject to intensive activities in the field of mathematical
modelling [1–5]. Modelling is done to allow a better understanding of the evolution
dynamics of the disease. Several models have been proposed, some to describe the
dynamics, other to estimate the parameters, but all aim at allowing decision makers
to take appropriate measures in dealing with the epidemic. In fact, mathematical
models play a very important role in the understanding of the spread of several
diseases. The advent of COVID-19 is so another opportunity for mathematical
modelers to translate the results of their modelling into clear terms for decision
makers. The majority of Western countries have relied on mathematical models to
predict the spread of the disease in their countries [1, 5–8]. This has allowed them to
take measures ranging from hand washing to general containment. Similarly, on the
African continent, many leaders rely on mathematical models for the management
of epidemic such as COVID-19.
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In Burkina Faso, a commitee of experts comprising various competences includ-
ing mathematicians was set up as soon as the first case of coronavirus disease was
reported in the country in March 2020. Since this date, the authorities’ concern
was to know the dynamics of the pandemic and to see how to act to eliminate it.
In doing so, several exchanges took place with public health doctors. It was at the
end of these discussions that it was decided to develop a model which highlights
the compartments of infected persons reported and not reported. Also it was a
question of putting the accent on the high-risk hospitalized and quarantine or low-
risk hospitalized. This explains the adoption of such a model study in this paper.
The model concerning this paper make it possible to do projections and especially
to see the effects of confinements, quarantines and cover fires in the country. Finally,
the parameters used in this model for the simulations are parameters specific to the
health context of Burkina Faso.

The difference between the former model (see [2]) and this one is that the new
model takes into account some concerns of hospital practitioners and health epi-
demiologists from the Burkina Faso National Health Commission against COVID-
19, people, of people hospitalized with serious health situation and death cases. We
consider that dead people can contaminate health care workers or their loved ones
when handling the bodies.

The paper is organized along 6 Sections. In the Sect. 2, we show the mathematical
model, Sect. 3 is devoted to the basic properties. We present real daily data given
by Burkina Faso National Health Commission against Coronavirus Disease 2019
(COVID-19) in Sect. 4 and we make simulations according to these data in Sect. 5.
In Sect. 6 we end by a conclusion.

2 Mathematical Model

The model built for the coronavirus disease 2019 (COVID-19) in this paper is a
SEIRD model, taking into account Susceptibles cases(S), Exposed persons (E),
Infected individual (I ), Recovered patients (R) and the Dead patients (D). Based
on the epidemiological characteristics of COVID-19, the SEIRD model and its
variants are more appropriate to study the dynamics of this disease, which is caused
by the SARS-Cov-2. The output of the mathematical model gives the following
transfer diagram (Fig. 1):

According to Fig. 1, we obtain the following system of ten differential equations
describing the dynamics of the disease.

Here, we define the variables as follow:

• S(t) (Susceptible) represents persons not infected by the disease pathogen.
• E(t) (Exposed) refers to persons who are in the incubation period after being

infected by the disease pathogen, and haves no visible clinical signs. These
individuals could infect other people but with a lower probability than people
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S E I Id HR RId

Iu

Hd
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RIu

f(S,X) αE β1βI ω1θI ξρHR

β2βI ηIu

ω2θI

γ
H

d

νHd

(1−
ξ)ρ

H
R

where X = (E, I, Iu, Id, HR, HD, R, D) and

f(S, X) =
S

N
(βEE+βII+βIuIu+βIdId+βHR

HR+βHd
Hd+βDD)

Fig. 1 Transfer diagram for the mathematical model of COVID-19

in the infectious compartments. After the incubation period, these persons move
to one of the Infectious states. In this model, it can be seen has contact persons

• I (t) (Infectious) refers the number of persons who are beginning to develop
clinical signs, these persons are symptomatic infectious,

• Id(t) refers to Infectious; that is persons who can infect other people, are devel-
oping clinical signs and therefore will be detected and reported by authorities
(when arriving in the HR or the Hd compartments). After this period, the people
in this compartment are taken in charge by sanitary authorities and we classify
them as Hospitalized patients. It is the reported infectious cases.

• Iu(t) is the number of unreported symptomatic infectious individuals (i.e.,
symptomatic infectious with mild symptoms) at time t.

• Persons hospitalized or quarantined at home (but detected and reported by the
authorities) who will recover (denoted by HR): These persons are in hospital (or
quarantined at home) and can still infect other people. At the end of this state,
these persons move to the Recovered state. It is the low-risk hospitalized cases.

• Hospitalized people who are going to die (denoted by Hd ): These persons are
hospitalized and can still infect other people. At the end of this state, these
persons move to the death state. It is the high-risk hospitalized cases.
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• RIu Recovered persons from unreported infectious cases (denoted by RIu ): These
persons have survived the disease, are no longer infectious and have developed a
natural immunity to the disease pathogen.

• RId
Recovered persons from reported infectious cases (denoted by RId

): These
persons have survived the disease, are no longer infectious and have developed a
natural immunity to the disease pathogen.

• D Dead persons (denoted by D): These persons have not survived the disease.
• N is the number of people within the territory before the start of the pandemic.

The transcription of the transfer diagram gives the following mathematical
system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = −S(t)

N

(
mE(t)βEE(t) + mI (t)βI I (t) + βIumIu(t)Iu(t) + βId

mId
(t)Id(t)

)

−S(t)

N

(
βHR

mHR
(t)HR(t) + βHd

mHd
(t)Hd(t)

)
,

Ė = S(t)

N

(
mE(t)βEE(t) + mI (t)βI I (t) + βIumIu(t)Iu(t) + βId

mId
(t)Id(t)

)

+S(t)

N

(
βHR

mHR
(t)HR(t) + βHd

mHd
(t)Hd(t)

)
− αE(t),

İ = αE(t) − βI (t),

İd = β1βI (t) − θId(t),

İu = β2βI (t) − ηIu(t),

ḢR = ω1θId(t) − ρHR(t),

Ḣd = ω2θId(t) + (1 − ξ)ρHR − γHd(t) − νHd,

ṘId
= ξρHR(t) + νHd,

ṘIu = ηIu(t),

Ḋ = γHd(t).

(1)

The initial data of the system is supplemented by

S(t0) = S0 > 0, E(t0) = E0 > 0, I (t0) = I0 > 0, Id(t0) = 0 Iu(t0) ≥ 0,

(2)

HR(0) = 0, Hd(0) = 0, RIu(0) = 0, RId
(0) = 0 and D(0) = 0.
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The time t is in day, the asymptomatic infectious individuals I (t) are infectious for
an average time period of 1/α days. We suppose that the population is constant i.e
N = S(t) + E(t) + I (t) + R(t).

We notice that 8th, 9th and 10th equations of system (1) are not coupled with
the other equations. So we can solve the first seven equations of the system and
compute them after the other three equations. Thus, the system taken into account
is the following with seven equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = −S(t)

N

(
mE(t)βEE(t) + mI (t)βI I (t) + βIumIu(t)Iu(t) + βId

mId
(t)Id(t)

)

−S(t)

N

(
βHR

mHR
(t)HR(t) + βHd

mHd
(t)Hd(t)

)
,

Ė = S(t)

N

(
mE(t)βEE(t) + mI (t)βI I (t) + βIumIu(t)Iu(t) + βId

mId
(t)Id(t)

)

+S(t)

N

(
βHR

mHR
(t)HR(t) + βHd

mHd
(t)Hd(t)

)
− αE(t),

İ = αE(t) − βI (t),

İd = β1βI (t) − θId(t),

İu = β2βI (t) − ηIu(t),

ḢR = ω1θId(t) − ρHR(t),

Ḣd = ω2θId(t) + (1 − ξ)ρHR − γHd(t) − νHd.

(3)

3 Basic Properties

In this section, we prove the positivity and the boundedness of the solution of the
system (1) with initial conditions defined in (2).

For that, let us state the following lemma.

Lemma 3.1 ([9]) Suppose Ω ⊂ R × Cn is open and fi ∈ C(Ω,R), i =
1, 2 · · · , n. If fi |xi (t)=0, Xt∈Cn+0

≥ 0, Xt = (x1t , x2t , · · · , xnt ), then, φ =
(φ1, φ2, · · · , φn) ∈ C([−τ, 0],Rn

+0) is the invariant domain of the following
equations.

dxi(t)

dt
= fi(t, Xt ), t ≥ σ, i = 1, 2 · · · , n;

where Rn
+0 = {(x1, x2, · · · , xn) : xi ≥, i = 1, 2 · · · , n.
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Proposition 3.1 The system (1) is invariant in R10+ .

Proof Let us write system (1) as

dX

dt
= f (X(t)), X(0) = X0 ≥ 0,

so, note that

dS

dt
|S=0 = 0,

dE

dt
|E=0 = S

N

(
mIβI I + βIumIuIu + βId

mId
Id + βHR

mHR
HR + βHd

mHd
Hd

)
≥ 0,

dI

dt
|I=0 = αE ≥ 0,

dId

dt
|Id=0 = β1βI ≥ 0,

dIu

dt
|Iu=0 = β2βI ≥ 0,

dHR

dt
|HR=0 = ω1θId ≥ 0,

dHd

dt
|Hd=0 = ω2θId + (1 − ξ)ρHR ≥ 0, since ζ ∈]0, 1[.

From Lemma 3.1, we conclude that system (1) is invariant in R10+ .

Lemma 3.2 The solution of system (1) is bounded in the region

Ω = {(S,E, I, Id , Iu, HR,Hd,RId
, RIu ,D) ∈ R10+ |S+E+I+Id+Iu+HR+Hd+RId

+RIu+D = N}.

Proof For system (1), we observe that
Ṅ = 0, ⇒ N(t) = Cst, ∀t ≥ 0, thus all the solution of system (1) are bounded.

The only equilibrium of the model is the disease free equilibrium (DFE) defined
by EDFE = (N, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (S0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Proposition 3.2 The basic reproduction number for the model system (1) is defined
by

R0 = 1

α
mE(t)βE + 1

β
mI (t)βI + β2

η
mIu(t)βIu + β1

θ
mId

(t)βId
+ ω1β1

ρ
mHR

(t)βHR

(4)

+ β1

γ + ν
(ω2 + ω1(1 − ξ))mHd

(t)βHd
. (5)
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Proof We use the method of next generation matrix in [10] to compute the
reproduction number R0. So we get:

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1

F2

F3

F4

F5

F6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S(t)

N

(
mE(t)βEE(t) + mI (t)βI I (t) + mIu(t)βIuIu(t) + mId

(t)βId
Id (t)

)
+S(t)

N

(
mHR

(t)βHR
HR(t) + mHd

(t)βHd
Hd(t)

)
0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1

V2

V3

V4

V5

V6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−αE(t)

αE(t) − βI (t)

β1βI (t) − θId(t)

β2βI (t) − ηIu(t)

ω1θId(t) − ρHR(t)

ω2θId(t) + (1 − ξ)ρHR(t) − γHd(t) − νHd(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We get the Jacobian matrixes of these two functions F and V as follow.

F = DF(E,I) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂F1

∂E

∂F1

∂I

∂F1

∂Iu

∂F1

∂Id

∂F1

∂HR

∂F1

∂Hd

∂F2

∂E

∂F2

∂I

∂F2

∂Iu

∂F2

∂Id

∂F2

∂HR

∂F2

∂Hd

∂F3

∂E

∂F3

∂I

∂F3

∂Iu

∂F3

∂Id

∂F3

∂HR

∂F3

∂Hd

∂F4

∂E

∂F4

∂I

∂F4

∂Iu

∂F4

∂Id

∂F4

∂HR

∂F4

∂Hd

∂F5

∂E

∂F5

∂I

∂F5

∂Iu

∂F5

∂Id

∂F5

∂HR

∂F5

∂Hd

∂F6

∂E

∂F6

∂I

∂F6

∂Iu

∂F6

∂Id

∂F6

∂HR

∂F6

∂Hd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and at the point EDFE , we have

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mE(t)βE mI (t)βI mIu(t)βIu mId
(t)βId

mHR
(t)βHR

mHd
(t)βHd

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

DV(E,I) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂V1

∂E

∂V1

∂I

∂V1

∂Iu

∂V1

∂Id

∂V1

∂HR

∂V1

∂Hd

∂V2

∂E

∂V2

∂I

∂V2

∂Iu

∂V2

∂Id

∂V2

∂HR

∂V2

∂Hd

∂V3

∂E

∂V3

∂I

∂V3

∂Iu

∂V3

∂Id

∂V3

∂HR

∂V3

∂Hd

∂V4

∂E

∂V4

∂I

∂V4

∂Iu

∂V4

∂Id

∂V4

∂HR

∂V4

∂Hd

∂V5

∂E

∂V5

∂I

∂V5

∂Iu

∂V5

∂Id

∂V5

∂HR

∂V5

∂Hd

∂V6

∂E

∂V6

∂I

∂V6

∂Iu

∂V6

∂Id

∂V6

∂HR

∂V6

∂Hd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and at the point EDFE , we have

V = DV(EDFE) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α 0 0 0 0 0

α −β 0 0 0 0

0 β1β 0 −θ 0 0

0 β2β −η 0 0 0

0 0 0 −ω1θ −ρ 0

0 0 0 −ω2θ (1 − ξ)ρ −γ − ν

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, we obtain

−FV −1 =
(

A B

C D

)
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where

A = −
⎛
⎜⎝

−1

α
mE(t)βE − 1

β
mI (t)βI − β2

η
mIu (t)βIu − β1

θ
mId

(t)βId
− ω1β1

ρ
mHR

(t)βHR

− β1

γ + ν
(ω2 + ω1(1 − ξ))mHd

(t)βHd

⎞
⎟⎠ ∈ M1,1(R),

B = 01,6 ∈ M1,6(R), C = 05,1 ∈ M5,1(R) and D = 05,5 ∈ M5,5(R).

The basic reproduction number is defined as the dominant eigeinvalue of the matrix
−FV −1.

Therefore,

R0 = 1

α
mE(t)βE + 1

β
mI (t)βI + β2

η
mIu(t)βIu + β1

θ
mId

(t)βId
+ ω1β1

ρ
mHR

(t)βHR

+ β1

γ + ν
(ω2 + ω1(1 − ξ))mHd

(t)βHd

�
The basic reproduction number R0 is defined as the number of cases that

one infected person generates on average during his infectious period, within an
uninfected population and without any special control measures. This number does
not change during the spread of the disease.

The effective reproduction number Re(t) is defined as the number of cases
that one infected person generates during his infectious period. This effective
reproduction number depends on time, therefore, on public policies (it changes
during the spread of the disease). Furthermore, Re(t) = Re − R0 at t = 0 and
the spread of the disease slows when Re(t) < 1.

Without any public policies,

mE(t) = mI (t) = mIu(t) = mId
(t) = mHR

(t) = mHd
(t) = 1,

so

R0 = 1

α
βE + 1

β
βI + β2

η
(t)βIu + β1

θ
βId

+ ω1β1

ρ
βHR

+ β1

γ + ν
(ω2 +ω1(1− ξ))βHd

and, therefore,

Re(t) =
(
1

α
mE(t)βE + 1

β
mI (t)βI + β2

η
mIu(t)βIu + β1

θ
mId

(t)βId
+ ω1β1

ρ
mHR

(t)βHR

(6)

+ β1

γ + ν
(ω2 + ω1(1 − ξ))mHd

(t)βHd

)
S(t)

N
.

Using Theorem 2 in [10], the following result is established.
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Proposition 3.3 The disease free equilibrium EDFE of he model (3) is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

4 Data

In this part, we show real data generated by CORUS, the Burkina Faso National
Health Commission against the Coronavirus Disease 2019 (COVID-19). Recall that
the first cases were reported in Burkina Faso on March 9, 2020.

In Appendix A, Table 1 represents the daily cumulative number of reported
infected cases and Table 2 the daily cumulative reported dead cases.

5 Numerical Simulations

For the numerical simulations, we focus on the public policies represented in the
model (1) by functions mE, mI , mIu, mId

, mHR
and mHd

. From the beginning
date of the public policies, we decrease the contact rate, as a result of the various
types of measures taken by the public authorities. The effect of these measures can
be seen on the spikes of the different types of infectious cases; the spikes decrease
according to the degrees of the measures taken. The curve of the contact rate (contact
function) is represented in the Fig. 4.

γ (t) = mE(t) = mI (t) = mIu(t) = mId
(t) = mHR

(t) = mHd
(t) (7)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, 0 ≤ t < t0,

γmin0 + (γ0 − γmin0) exp(−μ1(t − t1)), t0 ≤ t < t1,

· · ·
γminq + (γq − γminq) exp(−μq(t − tq−1)), tq−1 ≤ t < ∞,

where γminq is the minimum contact rate and μq is the rate at which the contact
decreases.

Depending on the public measures taken, μi increases, so the contact rate γ (t)

decreases and it is possible to limit the number of infected persons (see Fig. 4).
μi is chosen in such a way that the simulation for the time interval aligns with
the cumulative reported case data. Also, the effective reproduction number Re(t)

is strongly dependent on the contact function which decreases exponentially by
interval as shown in Fig. 5. Thus we are able to predict the future values of
the epidemic from the early cumulative reported data. The earlier public policy
decisions are made, the better the management of the epidemic.
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For Burkina Faso, we present the model, first, without any public policy intervention
and, secondly with public policies taken by the local government. It is important
to observe that the basic reproduction number with the parameters taken for this
simulation: R0 = Re(0) = 4.5; this mean that 10 persons infect 45 persons, which
is very high. The role of public policies is to reduce this Re down to less than one,
which will ensure the extinction of the epidemic.

5.1 Situation Without Public Policies

Without any public policies, the situation of the pandemic would be dramatic for
the African countries and for Burkina Faso in particular. In fact, as shown in the
simulation (see Figs. 2 and 3), 9 millions persons would be infected by the COVID-
19 and around 850 thousand would die, that is 9% of infected persons.

5.2 Situation with Public Policies

Fortunately, in Burkina Faso, as in almost all countries in the world, from the first
cases of the disease, a succession of barrier measures were taken, ranging from
hand washing, to the closing of schools, and, places of worship and markets, and
the establishment of curfews. Consequently, in the following simulations, we have
chosen our contact function in such a way that the cumulative number of infected

Fig. 2 Cumulative Infected persons generated by the model
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Fig. 3 Cumulative dead persons generated by the model

Fig. 4 Contact function

persons (model (1)) fits the data produced by the Burkina Faso National Health
Commission against COVID-19.

Figure 5 represents the dynamic of the effective reproduction number and Fig. 4
represents the dynamic of the contact function. These two curves clearly show the
effects of three measurements according to their implementation time.
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Fig. 5 Effective reproduction number Re(t) through the time

Figure 6 presents the histogram of the daily reported infected cases and the
infected and the dead given by the model 1.

6 Conclusion

In this paper, we are proposing a model for the transmission of the coronavirus
disease 2019. We calculated the R0 which is very essential in understanding the
disease and we have showed the local stability of the disease free equilibrium
DFE. We subsequently adjusted the model to the actual data of the National Health
Commission against the coronavirus disease 2019. From this adjustment, we have
been able to draw a number of consequences for the further management of the
pandemic.

Firstly, from Fig. 5, we can say that the peak of the epidemic was reached in
Burkina Faso around April 5, 2020 (Fig. 6).

Secondly, the data collected are not sufficiently homogenous, which allow for
some reservation on the reliability of the data (Fig. 7). Nevertheless these data
constitute a basis to make prescriptions for the dynamics of the disease and
especially for removing the barrier measures. We achieved this by fitting the model
with the data in Figs. 8, 9 and 10.

Finally, we can notice that the effective reproduction number Re would be less
than 0.5 at April 15, 2020, naturally according to the data fit with the model (1).



Fig. 6 Daily evolution of reported cases. The histogram is from real data and the curves from the
model

Fig. 7 Daily evolution of reported cases generated by the model



Mathematical Modelling of the Evolution Dynamics of the Coronavirus Disease. . . 93

Fig. 8 Cumulative reported infected cases, real data (black point) and red curve (from the model)

Fig. 9 Cumulative reported dead cases. real data (black point) and red curve (from the model)

We therefore think that one week after this date, certain barrier measures could be
reviewed, for instance to allow for the opening of markets but maintaining the rule
of distance, the opening of schools under conditions which do not allow the spread
of the disease, and authorization for many other sectors of active life to be reopen.
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Fig. 10 Cumulative reported infected and dead cases. The blacks point are generated by the real
data and the curves from the model

Appendix A. Tables of Data

Table 1 Daily cumulative reported cases data from March 9, 2020 to April 20, 2020 for
Burkina Faso by Burkina Faso National Health Commission against the Coronavirus Disease 2019
(COVID-19)

March 9 12 13 15 16 17 18 19 20 21 22 23

2 3 7 15 19 27 33 40 64 75 99 114

March 24 25 26 27 28 29 30 31

146 152 180 207 222 246 261 282

April 1 2 3 4 5 6 7 8 9 10

288 302 318 345 364 384 414 443 448 484

April 11 12 13 14 15 16 17 18 19 20

497 515 530 533 542 546 557 568 573 592
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Table 2 Daily cumulative reported dead cases data from March 9, 2020 to April 17, 2020 for
Burkina Faso by Burkina Faso National Health Commission against the Coronavirus Disease 2019
(COVID-19)

March 9 18 20 21 24 26 27 28 30 31

0 1 3 4 7 9 11 12 14 16

April 4 5 6 7 8 9 10 12 13 17

17 18 19 23 24 26 27 28 32 35
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Spatio-Temporal Modelling
of Progression of the COVID−19
Pandemic

Dilini Gamage, Jennifer L. Matthews, Norou Diawara,
and Hueiwang Anna Jeng

1 Introduction

Coronavirus (COVID-19) is very transmissible disease and can cause estimated
fatality rates of up to 2–3% [1]. The COVID-19 has created the largest pandemic
in recent history and has affected almost all countries in the world. Although all
countries were affected, the different rate differs and some countries experienced
the higher burden of COVID-19 new cases of infection and death. Thus, given
the severity of the situation, our goal and attention has been focused on utilizing
statistical models to ascertain the spread of COVID-19. In doing so, we bring con-
sideration on important risk factors and surveillance efforts to control progression
and transmission of the disease.

The inherent nature of the COVID-19 pandemic calls for the need to use features
that are specific to locations and time. The features also account for the spatial
dependency between neighbouring or communicating countries along with the
temporal dimension of its transmission. The communicable nature of the data and
the statistical procedure used to analyze COVID-19 must account for spatial and
temporal characteristics in the process.
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As mentioned in Dallatomasina et al. [1], epidemiologic characteristics of the
outbreak using different countries are vital. McKinley et al. [2] used approximate
likelihood-based inference for epidemic models and expressed the challenges due
to the evaluation of the likelihood. Those authors proposed Markov Chain Monte
Carlo and Sequential Monte Carlo algorithms for parameter estimates. Statistical
inferences under a stochastic discrete-time based susceptible-exposed-infectious-
recovered (SEIR) epidemic and under Bayesian change point models have been
proposed by Lekone and Finkenstadt [3] and in Milletich et al. [4], respectively.
Extension of that model to the continuous time type has been developed by
McKinley et al. [2]. Those authors suggested a time point at which the transmission
parameter changes. We proposed a Bayesian modelling of the weekly count of new
COVID-19 cases and built models at two levels: in the spatial framework and in the
case where the counts are modelled over time.

The dynamic behavior of the COVID-19 pandemic has been proposed by
Dewhurst et al. [5] and Gencoglu and Gruber [6]. These authors looked at the
time series of the word used from September 2019 to April 2020 from different
languages in the Twitter 10% random sample of messages. They aggregated the
data by considering the dominant languages (24 of them) in several countries. While
such research is needed, it does not uncover or model causal relationships, and the
ability to describe cluster for public health understanding remains a quest. Our goal
of the current study is to provide a bridge by presenting the Bayesian probabilistic
models from the statistical tools that add to the understanding of COVID-19 control
and prevention.

Dealing with heterogeneous and spatial populations, the hierarchical Bayesian
model or the conditional autoregressive model (CAR), as proposed by Millar et al.
[7] or Hossain et al. [8], could serve as an attractive methodology. Millar et al. [7]
stated that the use of hierarchical Markov Chain Monte Carlo (MCMC) methods are
computationally viable methods. We propose a spatio-temporal CAR models using
the full data and then used data based on disjoint time intervals for the COVID-19
pandemic. That pandemic can be tracked by looking at the number of new cases.
As, numbers, such count data are often modelled using the Poisson distribution,
which assumes that the mean and variance are equal. However, the existence of
overdispersion is frequent in modelling count data, especially data measured over
time, and that is the case for the COVID-19 data. Ignoring overdispersion can lead
to underestimating standard errors in regression coefficients and result in biased
statistical inferences (e.g., Type I Error; Gardner et al. [9]). As recommended by
Navarro et al. [10], the negative binomial distribution can be used to model the part
of the variance, which the Poisson distribution is unable to identify. We constructed
generalized linear mixed models to model the new COVID-19 cases using Gaussian
distribution.

The goals of this paper are to use data on the recent COVID-19 pandemic to build
statistical models to understand the development of its transmission, identify time
points spread of COVID-19 as well as growth periods, and identify/detect statistical
covariates associated to the pandemic. Specifically, data on occurrences and new
COVID-19 cases were collected by the World Health Organization (WHO) [28]
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from January 27, 2020 to August 10, 2020. In this study, the models presented
included the measure of spatial correlation, Bayesian disease mapping models,
Moran’s measure of spatial correlations, and generalized linear mixed models. One
major role of the paper is to build a stochastic model in order to capture some of the
disease characteristics. Doing so, we can pointers as to how to assist public health
leaders in their efforts to manage the pandemic, as suggested in Dallatomasina et al.
[1].

The paper is organized as follows. Basic data description and preliminary anal-
yses as presented in Sect. 2. The space time-mixture of the Poisson regression with
the use of the Moran and CAR model along with the Bayesian model are described
in Sect. 3. The model formulations, estimation processes and prior distributions are
presented in that section. Next, we introduce the generalized linear mixed model
with both a Moran’s spatial correlations, under spatio-temporal framework. Section
3 also discusses the results and comparisons from all the countries and block areas.
Lastly, we end with a discussion and conclusion in Sect. 4.

2 The Dataset

Data on counts of new COVID-19 cases from January 27, 2020 to August 10,
2020 were collected via Situation Reports from the WHO’s website (http://apps.
who.int/situation-report). New cases were aggregated into weekly counts, for a
total of 29 weeks per country. The aggregate data are also available under the
US Center of Disease Controls and Prevention (US CDC). Given the association
between population size and COVID-19, data on time in weeks and area sizes
were collected as covariates. In particular, weekly counts based on a particular day
(starting Monday January 27, and every week from there) over the time period were
collected, aggregated into weeks, for a total of 29 weekly counts for each country.

2.1 Preliminary Analyses

A preliminary study shows basic information about the disease. Our goal is to
fit model of the COVID-19 evolution, with the spatial-temporal association of
locations and neighbors to obtain a physical description based on the scale of
counts that may misalign the spatial estimates and interpretations. The cluster/block
neighbors are selected targeted countries (US, Senegal, Spain, Malaysia) and the
countries surrounding each of them. The blocks are referred to as North America
Block, Africa Block, Europe Block and Asia Block. When testing for blocks, the
most collections of cases defined within spatial proximity is key. However, the
computational complexities cannot be avoided. Table 1 presents a summary of these
statistics by country and aggregated across blocks. Figure 1 presents the distribution
of number of new cases of COVID-19 aggregated across countries. The purpose of

http://apps.who.int/situation-report
http://apps.who.int/situation-report


Table 1 Descriptive Statistics of New COVID-19 Cases by Country within Block

New COVID-19 cases by countries over 29 weeks’ time period
Countries Mean SD Min Median (25%, 75%) Max

USA
Canada
Mexico

26,830
621
2540

21883.0
781.1
2883.0

0
0
0

25,870
336
1349

(3, 33,510)
(60, 966)
(12, 4410)

66,963
3793
9556

Spain
France
Portugal

1634
481
242

2046.0
635.0
221.5

0
0
0

647
288
209

(159, 2913)
(28, 556)
(92, 320)

6549
2497
792

Senegal
Guinea
Mali
Mauritania
Guinea-Bissau
Indonesia
Malaysia
Thailand

59.97
37.1
10.86
36.1
8.138
581.1
51.93
24.45

57.7
37.2
17.9
67.7
21.4
635.2
73.5
63.0

0
0
0
0
0
0
0
0

57
40
3
0
0
349
16
3

(2, 110)
(0, 64)
(0, 15)
(0, 22)
(0, 0)
(2, 862)
(5, 67)
(0, 9)

172
104
87
210
77
1893
315
310

Combined 2368.4 8984.5 0 39.5 (0, 345.8) 66,963

Note. SD standard deviation, 25% 25th percentile, 75% 75th percentile. Estimates were obtained
from weekly counts based on 29 weeks of observed data

Fig. 1 Histogram of the Number of New Cases Due to COVID-19 Aggregated Across 14
Countries
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this study is to investigate the new cases using inference under the Bayesian model
in both space and time effects.

It is increasingly observed that the data collected in the locations and time
differ. They have different patterns and behaviors as dependence is not just on the
predictors and responses, but also in the space and time. As for the COVID-19, the
interpolation across scales must be linked to the location and time. For that reason,
connecting the progression of the pandemic over space and time blends the usual
aggregation/generalization of its impacts, hence minimizing biases. The changes
that are reflected under spatial varying area problem differences are compared at
the cluster levels of contiguous areal units as in Anderson et al. [11, 12], and Lee
et al. [13]. Other variables (such as population of the countries and the population
density) were also considered, but as we analyzed them, they were removed if they
were not found significant in the models. In fact, the population density can also be
found in the country specific area size, and the time variable could underline other
variables as well. So, other covariates may be added when available.

To illustrate the approach, we apply the spatial collections with neighbourhood
countries. The time pattern of infections defines the response under the first order
conditional auto-regressive (CAR) model. The geographical precisions suggest
separate focus to build change among the set of locations and time statistical tools
in epidemiology for the spatial analysis.

Figure 1 displays the histogram of the number of cases for the 14 countries.
In Fig. 2, the data was further divided into the four area blocks. The data was
further divided into country and block. Figure 3 shows the number of new COVID-
19 cases for each country that appears to be generally decreasing over time. The
pattern shown in Fig. 1 can be also seen in Fig. 3. However, there are fluctuations
in the disease new case counts, indicative of a change in the behavior of the
disease growth. As reported by the CDC and its various offices, China was the
first place to report cases. Due to following travel restrictions on China, the
number of cased was highly related to neighbouring countries and most cases of
suspected, probable and confirmed COVID-19 cases were reported in CDC https://
www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html or even from
https://www.usaid.gov/coronavirus. Disease spread was not contained, however, and
the basic characteristics of spread associated with space and time cannot be ignored
in modelling.

The segregated analysis per block is displayed on Fig. 4. The trend cannot be
used to make any general recommendation because there is no common trend
evident among the countries and the blocks. Moreover, such descriptions do not
take into account the variability associated with counts. As we will propose later,
the Bayesian alternative offers a better understanding of the data.

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
https://www.usaid.gov/coronavirus
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Fig. 2 Histogram of New cases by blocks

3 Statistical Models and Results

Analyzing the data under Poisson model did not lead to convergence. So, the
statistical methods used is the Bayesian under normal approximation. The study
area includes a set of i = 1, . . . , I non-overlapping areal units S = {S1, . . . SI},
and data are recorded for each unit for t = 1, . . . , N consecutive time periods.
Thus, data are available for a I × N rectangular array with I rows (spatial units) and
N columns (time periods). The response data denoted by Y = (Y1, . . . ,YN)I × N,
where Yt = (Y1t, . . . ,YIt) denotes the I × 1 column vector of observations for all I
spatial units for time period t. Finally, Xit = (xit1, . . . , xitp) is a vector of p known
covariates for areal unit i and time period t, and can include factors or continuous
variables and a column of ones for the intercept term. CARBayesST can fit the
following generalized linear mixed model to these data. The model is written as:

Yit | μit ∼ f
(
yit |μit , ν

2
)

for i = 1, . . . , I, t = 1, . . . , N, (1)

g (μit ) = XT
it β + ψit ,

β ∼ N
(
μβ,�β

)
.
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Fig. 3 Line plots of new cases over time

The vector of covariate regression parameters are denoted by β = (β1, . . . ,βp),
and a multivariate Gaussian or t-distributed prior is assumed with mean μβ and
diagonal variance matrix �β that can be chosen by the user. The ψ it term is a
latent component for areal unit i and time period t about one or more sets of
spatio-temporally autocorrelated random effects, and the complete set are denoted
by ψ = (ψ1, . . . ,ψN), where ψ t = (ψ1t, . . . ,ψ It) [13]. Here, ν2 represents the
observed variance of the data.

Given that the distribution of new COVID-19 case counts is skewed (see Fig. 1),
the CAR Bayes approach allows for local smoothing of estimates over neighboring
areas, with approximation with Gaussian parameters. We use the approximation of
the Poisson data with normal as in Peccati et al. [14]. The model convergence of the
chosen distribution will be checked as it is an important part of the structure.

The software can implement Eq. (1) and the exact specification of Gaussian data
model is:

Yit ∼ N
(
μit , ν

2
)

and μit = XT
it β + ψit .
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Fig. 4 Line plots of new cases per block

3.1 Conditional Autoregressive Bayesian Disease Mapping
Models for Full Data

Based on the block locations, hypotheses about the progression of the COVID-
19 pandemic may be misaligned based one simple interpolation. A CAR model
is considered, and we assume that the adjacent countries that share a border linked.
This model will be appropriate to estimate the growth of the spatial fitted value
surface over time. The inclusion of the latent spatial effect follows then the Leroux
prior (Cramb et al. [29]). The model specification is given below [13] as:

ψit = φit , random effect in spatial location i at time t, (2)

φt | φt−1 ∼ N
(
ρT φt−1, τ

2Q(W, ρs)
−1

)
, t = 2, . . . , N,

φ1 ∼ N
(
0, τ 2Q(W, ρs)

−1
)

,

τ 2 ∼ Inverse − Gamma (a, b) ,

ρs, ρT ∼ Uniform (0, 1) .
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In this model, φt = (φ1t, . . . ,φIt) is the vector of random effects for time period
t, which change over time via a multivariate first order autoregressive process with
temporal autoregressive parameter ρT , that is indicative of the temporal autocor-
relation. Thus, temporal autocorrelation is induced via the mean ρTφt − 1, while
spatial autocorrelation is induced by the variance τ 2Q(W, ρs)−1. The corresponding
precision matrix Q(W, ρs) was proposed by Leroux et al. [30] and corresponds to
the CAR models used in the other models above. The algebraic form of this matrix
is given by:

Q (W, ρs) = ρs

[
diag (W1) − W

] + (1 − ρs)K,

where 1 is the I × 1 vector of ones while K is the I × I identity matrix. In common,
with all other models the random effects are zero-mean centered, while flat and
conjugate priors are specified for (ρs, ρT ) and τ 2 respectively, with (a= 1, b= 0.01)
being the default values for the latter. The dependence parameters (ρs, ρT ) can be
fixed at values in the unit interval [0,1] rather than being estimated in the model.

Spatial autocorrelation is controlled by a symmetric non-negative I × I neigh-
bourhood or adjacency matrix W =(wij), where wij represents the spatial closeness
between areal units (Si, Sj). Larger values represent spatial closeness between the
two areas in question, where as smaller or zero values correspond to areas that are
not spatially close. Most often W is assumed to be binary, where wij = 1 if areal
units (Si, Sj) share a common border (i.e., are spatially close) and is zero otherwise.
Additionally, wii = 0. Under this binary specification the values of (ψ it,ψ jt) for
spatially adjacent areal units (where wij = 1) are spatially autocorrelated, where
as values for non-neighbouring areal units (where wij = 0) are conditionally
independent given the remaining {ψkt} values. This binary specification ofW based
on sharing a common border is the most commonly used for areal data, but the only
requirement by CARBayesST is forW to be symmetric, non-negative, and for each
row sum to be greater than zero [13].

The Bayesian estimation model is implemented in the four spatial blocks as
described in Eq. (2). The ideas are also mentioned in Finley et al. [15], Banerjee
et al. [16], and Finley et al. [17].

3.2 Output and Results

Disease mapping models are often applied in epidemiological settings to understand
the incidence or prevalence of a specific disease. The data are counts of observed
cases within multiple regions coupled with potentially relevant background infor-
mation [18]. One popular disease mapping model is the conditional autoregressive
(CAR) model. This model gets its name from the type of random effect specified
(i.e., conditional autoregressive) used to account for the spatial dependency among
the observed data. Fitting hierarchical model using Markov Chain Monte Carlo
(MCMC) methods is possible even for overdispersion of count data.
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Table 2 North America Block

Estimate Std. error T value Pr(>|t|)
(Intercept) −1.318e+04 4.556e+03 −2.893 0.00486
Week 8.856e+02 1.927e+02 4.595 1.51e−05
Area 3.527e−03 1.116e−03 3.160 0.00219

AIC: 1925.5

Table 3 Europe Block Estimate Std. Error T value Pr(>|t|)
(Intercept) 6.151e+01 3.934e+02 0.156 0.8761
Week 1.763e+01 1.736e+01 1.016 0.3128
Area 2.875e−03 1.605e−03 1.791 0.0768

AIC: 1506.7

Bayesian statistics have gained great attention due to the computing power
available and the flexibility that the models offer. Applications can be found in many
fields and in medical disease progression [19]. Computations are commonly carried
out using R. In the present study, for the COVID-19 new cases count data, with the
characteristics as time expressed in weeks and the area, the following CAR model
is specified as,

yit = β0t + β1tweekit + β2tareait + ψit ,

for i = 1, . . , I countries, t = 1, 2, . . . , 18 weeks, and ψit ∼ CAR
(
σ 2

u

)
. Here I is

3, 3, 3, and 5, representing the number of countries in the North America, Europe,
Africa, and Asia blocks, respectively.

The CAR models were estimated in WinBUGS [20] using a Metropolis-Hastings
algorithm. Now, with R version obtained from Lee et al. [13], we will use large
iterations and a burn-in period, and thinning set to 100 to reduce the autocorrelation
in parameter draws from the posterior distribution.

Results of the CAR model show that both covariates, week (time) and area, are
significantly associated with relative new cases due to COVID-19. Tables 2, 3, 4,
and 5 show the outputs of the results for the four blocks. Specifically, the effects
are all positive indicating that an increase in time (week) and area, except for Africa
block where only time is significant. These effects are associated with higher new
cases from COVID-19. For Europe block, neither of the effects is significant. The
epidemic started at different instants in time in each country, therefore, interpretation
of coefficients is linked to the corresponding block. Parameterized as such, the
intercept represents the unadjusted relative new case rate at each week (i.e., the
beginning of the observed data) [21]. The Schengen agreement of 1985 that largely
abolished internal border checks may help explain the lack of significance for the
Europe Block.

The chains converge after 220,000 iterations with a burn-in period of 20,000.
Three chains are simulated. The trace plots of informal diagnostic for each
parameter (from multiple chains) show a stationary distribution. The Geweke
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Table 4 Africa Block

Estimate Std. error T value Pr(>|t|)
(Intercept) −7.167e+00 8.133e+00 −0.881 0.380
Week 2.870e+00 4.150e−01 6.917 1.46e−10
Area −2.570e−05 1.845e−05 −1.393 0.166

AIC: 1499.1

Table 5 Asia Block

Estimate Std. error T value Pr(>|t|)
(Intercept) −4.413e+02 8.403e+01 −5.252 1.12e−06
Week 2.204e+01 4.131e+00 5.335 7.94e−07
Area 9.329e−04 1.273e−04 7.329 1.31e−10

AIC: 1256.8

Table 6 Posterior quantities for selected parameters and DIC for North America Block

Median 2.5% 97.5% n.effective Geweke.diag

(Intercept) −3.481150e+02 −2047.1068 1.376670e+03 3658.3 0.2
Week 3.397180e+01 −88.2454 1.505980e+02 4000.0 −0.8
Area 1.000000e−04 −0.0003 5.000000e−04 4000.0 0.6
tau2 8.300000e−03 0.0022 8.150000e−02 2269.9 −0.7
nu2 1.308691e+08 91482053.7702 1.952245e+08 4000.0 −0.9
rho.S 3.678000e−01 0.0164 9.055000e−01 3822.7 −0.5
rho.T 3.029000e−01 0.0119 8.909000e−01 4000.0 0.0

DIC = 1165.661, p.d = 1.071452, LMPL = −583.7464

and Gelman-Rubin diagnostics (gelman.diag) compare the variability between and
within the chain (See Tables 6, 7, 8, and 9). If values are closed to one, there is
evidence that the chains have converged. The results show that the estimates of the
potential scale reduction factor (PSRF) or R values are close to 1. The summary for
the model parameters has the p-values of the predictors and the posterior quantiles.
The posterior probabilities change from one block to another. The variable week
(time) is significant for all Blocks, except Europe Block. Area is only significant in
Asia and North America Blocks. According to the AIC, the best model fit is reported
in Asia then followed by Africa, then Europe and North America, respectively. From
Tables 6, 7, 8, and 9, all spatial and temporal correlations are around 0.38 and 0.30,
respectively.

Further descriptive boxplots showing the temporal trends in the new cases
between week 1 and week 29 are displayed in Fig. 5. They illustrate our vision
that temporal trend must be block specific tied up with the variability of the
measurements, in contrasts with the plots suggested in Figs. 3 and 4.

Figure 6a–d reveals that the algorithms converge for the intercept and slope
parameters. Further examination reveals that the density plots (see right hand side of
Fig. 6a–d) for the intercept and slope parameters are normally distributed. However,
the density plot for the variance component is severely positively skewed as shown
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Table 7 Posterior quantities for selected parameters and DIC for Europe Block

Median 2.5% 97.5% n.effective Geweke.diag

(Intercept) −128.0889 −1027.8663 759.0198 4000.0 −1.4
Week 36.3589 −24.7818 98.4758 4000.0 0.0
Area 0.0024 −0.0013 0.0058 4277.0 1.5
tau2 0.0083 0.0021 0.0919 3304.2 1.0
nu2 2094850.3225 1451687.7198 3180953.8029 4000.0 0.4
rho.S 0.3773 0.0176 0.9215 3503.6 0.5
rho.T 0.3048 0.0129 0.8953 3821.3 −1.2

DIC = 944.4763, p.d = 3.030266, LMPL = −474.2304

Table 8 Posterior quantities for selected parameters and DIC for Africa Block

Median 2.5% 97.5% n.effective Geweke.diag

(Intercept) −12.7454 −23.6519 −1.2798 2000.0 0.0
Week 3.1331 2.1474 4.0895 2000.0 −0.1
Area 0.0000 0.0000 0.0000 2000.0 0.9
tau2 0.0083 0.0022 0.0898 1056.3 −2.0
nu2 598.6476 453.0848 819.0348 2000.0 −0.6
rho.S 0.3800 0.0155 0.9164 1790.8 −1.5
rho.T 0.3133 0.0147 0.9024 2000.0 1.5

DIC = 836.4537, p.d = 3.921353, LMPL = −420.2662

Table 9 Posterior quantities for selected parameters and DIC for Asia Block

Median 2.5% 97.5% n.effective Geweke.diag

(Intercept) −88.7806 −158.0813 −17.3196 2000.0 −0.5
Week 12.3856 6.9171 17.9507 2000.0 −0.2
Area 0.0002 0.0001 0.0003 2000.0 1.2
tau2 0.0083 0.0022 0.0979 1330.3 −1.4
nu2 12194.6086 8364.9625 18165.3167 2000.0 1.5
rho.S 0.3682 0.0163 0.9135 1770.3 0.2
rho.T 0.3038 0.0145 0.8918 2000.0 −1.6

DIC = 667.2592, p.d = 3.824253, LMPL = −334.2956

in Fig. 7a–d. When variance components are approximately zero, there are two
primary interpretations from a statistical perspective: (1) after controlling for all
other parameters in the model, there is not enough variation in the response to
attribute any variation to the random effect, and (2) despite the near zero random
effect, the random effect should be retained because it is essential to the dependent
structure in the data [22].

The different results in Fig. 8a–d different aspects of the underlying progression.
Different blocks evidence the different significant predictors. Temporal correlation
(week) was formally found significant in Africa, America and Asia. The results
indicate that the spatially CAR model with spatially varying parameter highlights
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Fig. 5 Box plots of new cases under Bayesian models for the four blocks

the discrepancies among the four clusters and the spatial varying coefficients of the
model.

The analysis also called for the investigation of the spatial autocorrelation. The
latter captures the spatial variation of the new counts for each block. The spatial
autocorrelation values indicate core areas of new cases incidences. To quantify the
presence of spatial autocorrelation in the residuals from this model, we compute
Moran’s I statistic [23] and conduct a permutation test for each week of data
separately. From Fig. 9, only negative Moran’s spatial autocorrelation values are
obtained. They then relate to the dissimilar values of cluster within a block, or
spatial heterogeneity. The targeted locations are different from their neighbors. They
imply that the data are dispersed. Also, all the blocks converge to a lower Moran’s
autocorrelation values, whereas the values are higher for the North America Block
in absolute values.

It is possible to improve the estimation and the adaptive Bayesian model by
integrating other predictors that may be more readily available. However, in such
a simple context of the COVID-19, the observed scale of the clustering suggests
infection operating processes are more localized and one single measure cannot
describe this phenomenon.



Fig. 6 (a) North America block. (b) Europe block. (c) Africa Block. (d) Asia Block. (a–d) Density
plots and kernel densities of the three parameters (intercept, week and area) for North America,
Europe, Africa and Asia Blocks



Fig. 6 (continued)



Fig. 7 (a) North America block. (b) Europe block. (c) Africa block. (d) Asia block. (a–d) Plots
of the variances for the North America, Europe, Africa and Asia Blocks
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NORTH AMERICA BLOCK

Point est. Upper C.I.

0.9999116  1.0002020

0.9997652  0.9998028

0.9999339  1.0002634

Multivariate psrf: 0.999893

AFRICA BLOCK

Point est. Upper C.I.

1.000899   1.002185

1.001561   1.003450

1.000690   1.002788

Multivariate psrf: 1.000929

EUROPE BLOCK

Point est. Upper C.I.

0.9999692   1.000431

1.0000057   1.000072

1.0001241   1.001023

Multivariate psrf: 1.00012

ASIA BLOCK

Point est. Upper C.I.

1.001177   1.003723

1.000812   1.002740

1.002007   1.003601

Multivariate psrf: 1.00162

a b

c d

Fig. 8 (a–d) Maps depicting the pattern of the COVID-19 over time in North America, Europe,
Africa and Asia Blocks
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Fig. 9 Plots of the Moran’s autocorrelation values by block

4 Discussion: Conclusion

This study sought to explore the understanding of the progression of the COVID-
19 new cases. The spatio-temporal statistical models were applied to data on new
COVID-19 cases in USA, Spain, Senegal and Malaysia over a 29-week period with
consideration of neighboring countries. The factors influencing the pandemic based
on the data available from the WHO website have been used to fit longitudinal
structure models adding the neighborhood clustering into blocks. When all the
counts were aggregated across blocks, results of a CAR model demonstrated that
both week and area had statistically significant effects on new COVID-19 cases.

Other factors, such as occupations, race, age and location, could be taken into
consideration, particularly for developing strategies and policy. In fact, the time and
area factors that were selected may also underline other covariates. The findings
enhance the understanding of the presumption that new cases are subordinate factor
in understanding this pandemic. The country specific factors (such as income,
population level of education and policy cultures) could be included along with
time. Statistical investigations will increasingly shed light on the steps needed in
minimizing the spread and the effort to control the disease.

Results of the current study demonstrate that CAR models are a viable modelling
framework for any country and area in time. The CAR models may be applied to
contact tracing to help slow down the spread of COVID-19. Also, they can enhance
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the understanding of the pandemic (see Baum et al. [24]), which will help public
health officials develop strategies and policies to slow down the spread based on
occupations (restaurants, education, hospitals), race, age, and location (ZIP code).
Nowadays, mass scale-up of testing and contact tracing are needed in order to
contain the outbreak (see Larremore et al. [25]).

As more data become available at the city-level, rather than the country-level,
CAR models and other disease mapping models can be used to identify high risk
clusters or areas where disease incidence is highest. That is, Bayesian models can
be applied to model the nested structure of the data with time nested within city,
which is nested within country. These models will help identify key covariates
at different levels (e.g., cost of delayed care, socio-economic measures, city and
country) that can ultimately help reduce the development of current and future
COVID-19 outbreaks. Such information is critical for public health and health care
professionals to take effective remediation and prevention measure to limit or stop
the spread of this disease. It helps to support prepare for potential outbreaks, and
project occurrences of new cases of COVID-19.

5 Data Availability Statement

The dataset and code for this study can be obtained upon request.
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Archimedean and Non-Archimedean
Approaches to Mathematical Modeling

Bourama Toni

1 Introduction

1.1 Cultural Approaches to Mathematics

Have you ever wondered where mathematical ideas/concepts are coming from?
Some think they are invented but others think they are actually discovered. We
briefly present here two cultural approaches to mathematical creativity.

It is known that some of the leading French mathematician (France is the country
of Descartes) held for some time a secular, rational perspective of mathematics, for
instance, initially doubting the legitimacy of infinite set. These include René Baire
(1874–1932), Henri Lebesgue (1875–1944), and Emile Borel (1875–1956). Borel
was later captivated by Cantor’s ideas. On the other hand Russian mathematician
from the Moscow school of the so-called Name-Worshipers held dear human
absolute freedom to invent mathematics, which results, among other inventions in
the descriptive set theory. These Russian mathematician include Dmitrii Egorov
(1869–1931), Nikolai Luzin (1883–1950), and their friend Pavel Florenskii (1882–
1937). Some of these French mathematician even thought that Cantor’s Alephs
might prompt some mental disturbance: Cantor’s own depression and Baire’ suicide
were linked to such concept. Indeed a particular environment, socio-economic-
cultural, could influence mathematician working on the same math problems at the
same time period but would come up with different conclusions/solutions.

One interesting example has been Set Theory, mathematical construct that
involves the concept of Infinity: indeed the cardinality aleph ℵ has been given to any
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set in bijective correspondence with the set of integers, then so-called denumerable
set. The concept was introduced by the German mathematician Georg Cantor in
1882, coining the term actual infinite as opposed to the Aristotle potential infinite
(thought of as a limit process). Cantor was inspired by Bernard Bolzano a proponent
of the “actual infinite” who actually first introduced the word “set” [1].

Mathematician have considered Philosophy as soft, not rigorous thus non-
mathematics. Emile Picard rejected Discontinuity for functions on a philosophical
ground, adding that “Nature does not make jumps (natura non facit saltus): in nature
there is no place for discontinuity”. Henri Poincaré, the French mathematician who
mostly relied on “Intuition” as opposed to ‘logic” defended by Bertrand Russel and
Giuseppe Peano, also rejected the idea of “actual infinity”. That is, the “intuitionist”
vs the “logicist” current in mathematics. The closed, centralized French educational
system made the influence of Descartes even greater on French thinkers, scientists
and mathematician; For Descartes mathematics is the universal and least biased
form of knowledge, based of the simple principle of rigorous analysis and expres-
sion. Nicolas Boileau followed up with saying that “Anything that is understood
well can be expressed clearly, and the words then come easily’ (Ce que l’on
concoit bien s’énonce clairement, Et les mots pour le dire arrivent aisément). Indeed
for French mathematician through Cartesianism and Auguste Comte’s Positivism,
philosophical and mathematical questions should be totally separated, whereas for
Russian mathematician, philosophical/religious and mathematical issues should be
integrated. Geometry as well became very important in the French mathematical
tradition due to the influence of Blaise Pascal’s there is no absolute truth just
geometrical clarity.

Religion, philosophy and mathematics were combined in the mind of the Russian
mathematician Luzin, Egorov and Florenskii, to the point of seeing ‘mathematical
concept of ’continuity” as responsible for the “ethical decline’ of the time, and of
promoting “discontinuity” as morally and religiously superior. Proponents of the
so-called Name-Worshipping, they also believe that “naming” is creating as in “let
there be light: and there was light”.

We conclude by paraphrasing Hermann Weyl [2] Mathematics is the neces-
sary instrument of natural sciences, and by its special character, certainty and
stringency, it lifts the human mind into closer proximity with the divine than is
attainable through any other medium; mathematics is the science of infinite, its
goal, the symbolic comprehension of the infinite with human/finite means. Following
the “invention” of Descriptive Set Theory by Luzin and its Moscow School of
Mathematics, Henri Lebesgue conceded in 1930 that mathematical exigencies and
philosophical exigencies are constantly associated, one can even say fused, adding
that M. Luzin examine les questions d’un point de vue philosophique et aboutit ainsi
a des résultats mathématiques: originalité sans précédent [3].

We next present a note on the expanding computer assisted mathematics.
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1.2 Artificial Mathematics

In these times of machine/deep learning and artificial intelligence, we should ask
ourselves whether mathematical creativity is uniquely human. Von Neumann in his
book The computer and the brain [4] has considered computers’ potential ability to
think, a thinking of a different nature, keeping in mind that both the computer and
the brain are “information processing centers’: the brain is perceived as slow, prone
to error, with limited memory and highly parallel, whereas the computer is very fast,
reliable, with possibly large memory, not very highly parallel.

Therefore a follow up concern is the nature of the mathematics to be created
by artificial mathematical creativity; computer/artificial intelligence is indeed quite
different from human intelligence. Nowadays computers perform heavy logical or
numerical tasks beyond human capabilities leading sometimes to rigorous proofs
such as the proof of the four-color theorem by Kenneth Appel and Wolfgang Haken.
The so-called computer verified proofs or formal proofs are more reliable than
human verified proofs. As noted by Hadamard and Poincaré, oftentimes doing
mathematics is a combinatorial task, resulting in a theorem from various pieces
put together with accepted rules of logic.

The next question is to whether there is a structure to mathematics which is
independent of the human brain, to quote David Ruelle in his work on “Post-Human
Mathematics” [5], which indeed inspired this section. We again paraphrase Ruelle
as saying There are two sides to mathematics: one is non-human logical necessity,
the other is human brain activity.

We should thus acknowledge there is a strong possibility that computer/artificial
mathematical prowess will soon surpass human mathematical creativity, providing
in the process some advanced mathematical modeling, possibly in a language
impenetrable to the human brain. Should we be concerned/worried by such an
eventuality?

1.3 Qualitative Mathematics

Interest in qualitative mathematical methods has been expanding during the last
decades, mostly due to the wide applications in biosciences, social sciences includ-
ing behavioral sciences and economics. In these mathematical models variables
define parts of the modeled system, parameters designate factors that influence
the system dynamic but are not usually influenced by it; the system dynamics
are defined as relationships among system parts and between the parts and some
extra systematic factors; the dynamics are described by the model equations which
could be in the differential or difference format. For models representing complex
systems in biological and behavioral sciences, it is usually impossible or infeasible
to determine the quantitative value or the precise functional form of most of the
interactions between system parts. However, it is often possible to determine the
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qualitative properties of these interactions; sometimes what can only be ascertained
is that there is or there is not interaction between variables, which could be translated
by yes or no, 0 or 1, e.g., in Boolean models, making qualitative modeling more
appropriate in these sciences. For example within ecology, qualitative models are
more easily ascertained in the attempt to estimate intrinsic growth rate, carrying
capacity, competition coefficients. Economists trust more the sign and direction of
interactions between major parts of the economy but doubt their functional form
can be determined more precisely. In psychology, there is little expectation for a
precise mathematical function to accurately represent human behavior as reflected
in imprecise belief states or preferences of typical real-world agents. Indeed, in
biosciences, physical-chemistry, economics and behavioral sciences, informations
about the underlying dynamics often reside in the rules of construct of the system
and not in the absolute quantitative values. The data and phenomena being studied
are essentially qualitative. Therefore, absent the precise quantitative, qualitative
modeling concerns what properties, in particular dynamical properties, can be
derived from these qualitative relations between the model variables.

Results established by qualitative models, with less commitment to details,
tend to achieve a greater generality. In addition this type of modeling allows an
understanding of phenomena less susceptible to the drawbacks of the quantitative
usual idealization methods. Simplifications are inherent to both quantitative and
qualitative models; in the former, they are realized by decreasing specificity,
whereas, in the latter, they usually involve unrealistic assumptions in order to
use some precise and tractable mathematical equations with fewer or more easily
estimable parameters, in the hope that these intentional misrepresentations will not
distort the salient features of the system. Several qualitative methods have been
proposed. See Levins, Puccia and Levins, Orzack and Sober [6, 7]. However as
claimed by Levins Scientific modeling can maximize at most two of three virtues:
generality, realism, and precision:

(1) Sacrifice generality for precise quantitative predictions about specific systems
and maximize realism by representing as many system details as possible.

(2) Sacrifice realism to make unrealistic assumptions so systems can be described
with general mathematically tractable equations producing precise quantitative
predictions.

(3) Sacrifice precision to abandon quantitative accuracy for qualitative relations
between variables for maximum generality and realism.

We present in the last section a model of qualitative mathematics based on the
Jacobian Feedback loops methodology.
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2 The Non-Archimedean or Ultrametric/p-adic Approach

2.1 p-adic Mathematical Physics

Hermann Weyl is quoted with saying in Philosophie der Mathematik und Naturwis-
senschaft 1927, p. 36: As a matter of fact, it is by no means impossible to build up a
consistent “non-Archimedean” theory of magnitudes in which the axiom of Eudoxus
(usually named after Archimedes) does not hold [8].

Indeed the Axiom of Eudoxus/Archimedes is the main difference between the
real and p-adic/ultrametric space; however the axiom is more of a physical one
which concerns the process of measurement: for instance, exchanging the real
numbers field with the p-adic number field is tantamount to exchanging axiomatics
in quantum physics.

Ultrametricity in physics means the emergence of ultrametric spaces in physical
models, as first used in the 1980s by Parisi and others in the theory of spin glasses
and by Frauenfelder and others in physics of proteins. In both cases, the space of
states of a complex system has a hierarchical structure which play a central role
in the physical behavior of the system. On the other hand, in the 1930s, Bronstein
showed that general relativity and quantummechanics imply that the uncertainty�x

of any length measurement satisfies �x ≥ LPlanck :=
√

h̄G

c3
, where LPlanck is the

Planck length (LPlanck ≈ 10−33 cm). This implies that spacetime is not an infinitely
divisible continuum. Mathematically speaking, spacetime must be a completely
disconnected topological space. The ultrametric spaces are naturally completely
disconnected. There are several possible interpretations of the Bronstein inequality.
One of them drives the loop quantum gravity. Another interpretation of Bronstein’s
inequality was given by Volovich in the 1980s. The inequality mentioned implies
that real numbers cannot be used in models at the level of Planck’s length, because
the Archimedean axiom, which appears naturally if we use real numbers, implies
that lengths can be measured with arbitrary precision. Volovich [9] proposed using
p-adic numbers in physical models at the Planck scale.

These ideas have propelled development of a very large number of areas in
mathematics and theoretical physics, which in turn has led to applications in
computer science, biology, etc. For instance, the p-adic dynamics (discrete time
flows) has been proved to be effective in a variety of areas: computer science (p-adic
matrix processors; parallel p-adic linear solver); cryptography (stream ciphers, T-
functions); automata theory and formal languages, genetics, and data mining, among
other areas, see e.g. [10].

To paraphrase Murtagh [11], ultrametricity is a pervasive property of obser-
vational data. It offers the theoretical framework and processing tools to handle
the “big data” and high dimensional data sets. One could say that “the p-adic
methodology” consists in representing/interpreting phenomena/data in ultrametric
spaces to in turn produce models that can be studied using non-Archimedean
mathematical techniques. In protein physics [12], it is regarded as one of the most
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profound ideas put forward to explain the nature of distinctive life attributes. As
a consequence of this, the stochastic processes on ultrametric spaces and their
connections with models of complex systems have received a lot of attention in
recent years, see e.g. [10], and the references therein.

On the other hand, the relevance of constructing p-adic quantum field theory
was stressed in [13] and [9]. In the last 35 years p-adic QFT has attracted a lot of
attention of physicists and mathematicians, see e.g. [14] and the references therein.

2.2 Mathematically Thinking p-adically

A noted weakness of the current trends in mathematical modeling is that the
classical mathematical framework involves mostly, if not exclusively, Archimedean
spaces (e.g. Euclidean, Banach or Hilbert spaces). These are spaces that satisfy
the Archimedean Principle in that there are all endowed with the usual/standard
Euclidean norm and its induced metric which satisfied the triangle inequality; much
of our visual and mental perception is based on the standard Euclidean space with
its perfectly straight lines and planes; we came to see and represent the physical
universe as actually Euclidean in its geometry, resulting oftentimes in biased and
not so realistic mathematic model.

Indeed the physical and natural systems, described by the so-called Evolution
Equations, are inherently non-Euclidean, with a natural geometrical ordering that
is not the usual real line, but the more adequate hierarchical generating tree.
For instance the usual geometrical Archimedean/Euclidean distance “suitable” for
measuring spatial location separation between human beings is less effective for the
genetic distance measuring the hierarchical kinship relations.

Fortunately, thanks to the pioneering work by Kurt Hensel in the late nineteenth
century, a new trend has been emerging in recent years, a differential analysis,
in Non-Archimedean or p-adic spaces, endowed with the so-called ultrametrics;
ultrametrics could be induced by p-adic absolute values |.|p, for p prime, that
satisfy a more stringent inequality than the usual triangle inequality; specifically in
a non-Archimedean space K, the ultrametric distance d (or denoted dp(x, y) when
induced by the p-adic norm |.|p) satisfies the inequality

d(x, z) ≤ max(d(x, y), d(y, z)) ∀x, y, z ∈ K. (2.1)

Recall that the set R of reals is the completion of the set Q of rationals by
the usual Euclidean infinite norm denoted |.|∞, which amounts to creating new
numbers as limits of Cauchy sequences that do not have rational limits. The same
construction replacing the norm |.|∞ by the p-adic norm |.|p yields a new complete
field, analogous to R denoted Qp, for every prime p, and called the field of p-
adic numbers. Inside this field Qp of p-adic numbers lies the ring Zp of p-adic
integers whose geometry is similar to the Cantor set. The set of rationals Q is
densely contained in every Qp as it is in the set of reals R.
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In short mathematical modelers of natural and physical have at their disposal
a toolbox of various fields in the so-called book structure with the rationals Q as
the book spine and every page represents a field in which to carry mathematical
modeling, to include R = Q∞, and Qp, for every p prime.

Non-Archimedean spaces, equivalently called p-adic spaces or ultrametric
spaces, have some peculiar and important features described as follows:

• One immediate interesting fact about p-adic integers, is that these integers are
bounded in the norm by 1; that is, |n|p ≤ 1, i.e., as the number tends to
infinity, its p-adic size remains less than one and tends to zero, in violation of
the Archimedean Principle.

• The topology has a basis of clopen sets, i.e., sets that are simultaneously open
and closed; so phrases such “open ball” and “closed balls” become meaningless

• Every point in a p-adic ball is also its center. For instance if modeled p-adically
the center of the universe could be found at the tip of the nose, as once alluded to
by the physicist Hawkins.

• Two balls are either disjoint or one within the other. This could hint towards the
notion of parallel universes.

• The p-adic spaces are totally disconnected: the connected component of every
point is the point itself. Consequently the principle of analytic continuation is
lost, as well as the Intermediate value theorem.

• The ultramatric geometry allows only isosceles triangles.
• The geometrical ordering is not along the real line but rather on a hierarchical

generating tree. Consequently the notion of time as we know seems to be a
purely statistical construct. Z3 for instance is homeomorphic to the fractal-like
Sierpinski Gasket.

• Convergence of p-adic series:
∑∞

n=1 an < ∞ if and only an → 0. (A calculus
student dream!)

• The most consequential outcome and challenge is the use of differential repre-
sentations with a p-adic time instead of the usual real time. That is, how to model
a system that evolves p-adically. This is still an hard open problem.

• Consider the following simple looking differential equations modeling so many
natural systems:

dy

dt
= ẏ = λy, (2.2)

and

d2y

dt2
+ ω2y = 0, (Harmonic Oscillator) (2.3)

Respectively the solutions are in the formAeλx, and as level curvesH−1(c) c ∈
R≥0 of a quadratic Hamiltonian H (i.e. concentric circles in the Euclidean plane
R
2).
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However the p-adic exponential function expp(x) = ∑∞
n=0

xn

n! converges only
for x ∈ B(0, r), r = p1/(1−p); that is, a very small radius of convergence in
contract of the standard exponential series that converges on the whole real line
R. Therefore the series

∑
n≥1

(λx)n

n! converges if and only if |x| < |λ|−1p1/(1−p).

• Existence of singular function or Devil’s Staircase or Cantor function: in the
classic real analysis a function differentiable with vanishing derivative is a
constant function. In contrast there exist in the p-adic space, functions that are
non-constant, continuous and differentiable with vanishing derivatives; these
functions are called pseudo-constants. They are used to describe situation in
which an object is known to move from point A to point B, but whenever it
is observed it appears to be at rest. “Spooky motion” Einstein would say!

• The next most consequential notion is that of periodicity. Indeed, periodicity, an
important concept in differential mathematical modeling, is non-existent in non-
Archimedean spaces; functions cannot be non-trivially periodic; however almost
periodicity is allowed and seems to be the norm in the p-adic world. In other
words, systems modeled do not have a time-periodic behavior in their p-adic
dynamics. For instance it has been noted (e.g., Corduneanu) that almost periodic
oscillations are much more common than the periodic ones. There has been a
tremendous amount of work in mathematical sciences involving periodicity, to
include the famous Hilbert’s 16th problem, still unsolved to this day. Therefore
all these results on periodicity are made meaningless by just changing to the non-
Archimedean/p-adic spaces. Such a realization is humbling and should be kept
in mind when drawing conclusions based on periodicity.

In non-Archimedean/ultrametric spaces, almost periodicity is defined and under-
stood in the following sense: consider a non-trivially valued complete algebraically
closed non-Archimedean field K, and a K−valued function f over an additive
semigroup G.

The function f is said to be p-adic/non-archimedean almost periodic function if
the set fG of all the translates of f is a compactoid in the K−Banach algebra B
of all bounded continuous functions G −→ K with respect to pointwise operations
and the supremum norm ||f ||∞ = supG |f (x)|.

That is, ∀ε > 0, ∃ a finite subset Fε ⊂ B such that

fG ⊂ Bε + aco(Fε) (2.4)

where aco(Fε) is the smallest absolutely convex subset containing Fε. In the classic
notion of almost periodicity the set Fε is only required to be relatively compact/pre-
compact.

In the natural sciences ultrametricity is emerging as a consequence of random-
ness and the law of large numbers; exact in the limit N −→ ∞ for systems with
a large number N of degrees of freedom, ultrametricity provides a more natural
type of organization. It has proven effective for studying Evolution Equations
describing neutral evolution of pseudogenes, stochastic branching processes in large
space, energy landscape of disordered frustrated systems (spin glasses, problems in
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engineering and biology of combinatorial optimization), and in taxonomy where
representation is given by dendrogram of hierarchy pictured in inverted tree.
Ultrametricity serves also to better model Mental spaces, and the emerging and
evolution of languages.

The richness of non-Archimedean space allows more realistic mathematical
models, e.g., for evolution equations, making it a state-of-art tool in the arsenal of
researchers; however still few math modelers have expertise in Non-Archimedean
analysis. That is, the classical, Archimedean mathematical modeling must be
redirected towards p-adic/ultrametric mathematical modeling.

2.3 p-adic Mental Spaces

The development of a mathematicall rigorous model for the real physical space
spread over three hundred years and has been based on the real continuum,
assumed to be a continuous infinitely indivisible space that is also homogeneous
(all points have equal rights in geometric representations). It has involved the
Cartesian product of real lines to embed physical objects into a mathematical space.
This model has been very successful in creating today modernity. Researchers
have been trying to find similar successful mathematical model for the life and
behavioral/cognitive sciences, including an adequate model for the mental space.
Khrennikov and his collaborators have made significant contributions to the latter;
they proposed a model of mental space that is discontinuous, hierarchical, and p-
adic. They have extended their mathematical p-adic approach to Freud’s theory
of interaction between conscious and subconscious mental domains, with the
subconscious domain described by complex dynamical systems acting as thinking
processors; this is the starting of the p-adic cognitive science, leading to the
mathematical ultrametric classification for neurotic behaviors, idées fixes, hysteria,
etc . . . [15].

3 The Archimedean or Euclidean Approach

An ordered field < F,+, ·,≤> has the Archimedean Property if, given any positive
x and y in F there is an integer n > 0 so that nx > y.

Equivalently, ∀ε ∈ F, (ε > 0 → ∃n ∈ N | 1
n

< ε). An Archimedean
algebraic structure has no pair (x, y) such that x is infinitesimal with respect to y.
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3.1 Signed Qualitative Modeling: An Example

We give here an overview of a recent and progressive methodology in qualitative
modeling to showcase how much can be achieved about the structure and behavior
of systems partially specified by using the sign of an interspecific interaction
[16]. In a series of studies we have developed an efficient tool in the qualitative
study of systems described by differential or difference equations, namely, a tool
based on the dynamical roles of Jacobian Feedback Loops. Such a tool intends to
survey the dynamical response of models simulating physico-chemical, biological
and economical systems by stressing qualitative understanding as the primary goal
rather than numerical prediction [17–22].

Dynamical systems theory is mostly based on quantitative values of the Jaco-
bian entries. But for some systems, mainly in biosciences such as biology and
biochemistry, in economics and behavioral sciences, the relevant informations are of
qualitative nature. Quantitative results are rare in studying interactions in a system
of biochemical compounds: A gene X could be shown to be an activator (or a
repressor) of the expression of a gene Y, but usually without knowing the strength of
the interaction, the concentrations and their kinetics. In a conflict resolution model
featuring the variables of Attitude (A), Behavior (B) and Contradiction (C), one
can “accurately” determine if the variables mutually influence each other positively
(+), negatively (−) or no influence (0) with no need to quantify the strength of the
influences.

The theory of Jacobian loops is therefore the analysis of the dynamics (simple
and complex) using solely the loop-pattern Jacobian matrix, that is, even when only
the signs, not the magnitudes of the Jacobian terms, are known.

Consider the autonomous differential system

ẋi (t) = dxi(t)

dt
= Fi(x, a)

x = (x1, · · · , xn) ∈ R
n, a = (a1, a2, · · · , aN) ∈ R

N,

(3.1)

describing a dynamical system with phase space in R
n, and the parameter/control

space in R
N. The component functions Fi , i = 1, 2, · · · , n of F(x, a) are assumed

to be at least C1(U), that is, differentiable along with their first partial derivatives on
U an open set of Rn. The partial order relation x ≤ y ⇐⇒ xi ≤ yi, i = 1, ..., n
defines the vector order in Rn. The Jacobian matrix at x̄ = (x̄1, . . . , x̄n) is given by

J (x̄) = DF(x̄) =
[
∂(F1, · · · , Fn)

∂(x1, · · · , xn)
(x̄)

]
=

[
∂Fi

∂xj

(x̄)

]
1≤i,j≤n

= [Jij ]1≤i,j≤n,

(3.2)

and in general depends on the state variables, except for linear systems [23].
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Remark 3.1 Actually the relation ẋi (t) = Fi(x, a) shows how the rate of change in
variable xi is dependent on changes in any given variable xj . Therefore the Jacobian
entry ∂Fi

∂xj
(x) = Jij , for 1 ≤ i, j ≤ n describes the interaction between the variables

xi and xj , as positive (respectively negative, no) interaction for Jij > 0 (respectively
Ji,j < 0, Ji,j = 0).

3.2 Jacobian Feedback Loops

Let In be the set of indices 1, · · · , n and denote by Ik = {i1, · · · , ik} an ordered
subset of k different elements of In and by Ĩk = πk(Ik) = {j1, · · · , jk}, with
πk ∈ �k a permutation of Ik. Recall Card(�k) = k!, i.e., there are k! permutations.
Every permutation πk may be factored into ν disjoint circular (cyclic) permutations
σi, i = 1, · · · , ν, that is, πk = σ1σ2 · · · σν. The signature of πk, denoted sg(πk), is
(−1)η, η the number of inversions in πk, that is, the number of pairs (jm, jn) with
jm > jn while im < in, for jm = πk(im), and jn = πk(in). The permutation πk is
even (resp. odd) for an even (resp. odd) η. There are exactly k!

2 even and exactly k!
2

odd permutations in �k. We denote �c
k (resp. �e

k , �
o
k) the subset of circular (resp.

even, odd) permutations. The set �n is the classic symmetric group of permutations
on the set of indices In.

We have the following defining concepts [19, 20].

Definition 3.2

1. The set of nonzero terms Jij , i ∈ Ik, and j ∈ Ĩk, describes a Jacobian loop
associated with the nonzero product

P(πk, J ) :=
l=k∏
l=1

Jilπk(il ) = Ji1πk(i1)Ji2πk(i2) . . . Jikπk(ik) (3.3)

called a loop product.
2. The loop is called a k−order simple Jacobian loop Lk when the permutation πk

is a k−cycle= (i1, i2, · · · , ik) with the loop product

pk = Ji1i2Ji2i3 · · · Jik−1ik Jiki1 . (3.4)

3. Its sign sgn(Lk) is that of the loop product pk = P(Lk) := P(πk, J ). Its length
or dimension l(Lk) = k is the number of loop factors Jilπk(il ) involved, as well
as the number of related system variables xi .

Remark 3.3

1. A simple Jacobian loop Lk is positive (resp. negative) for an even (resp. odd)
number of negative loop factors Jilπk(il ) in the loop product P(Lk).
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2. The loop Lk has the following representation called loop graph or interaction
graph and denoted by Lk : it consists of k distinct vertices given by the system
variables xi, i = 1, . . . , k and k edges Eij = (xi, xj , sij ) directed from j to i

where sij = sign(Jij ) denotes the nature of the interaction between the variable
xj and xi.

3. A positive (resp. negative) loop involving the variables x1, x2, . . . , xk is also
conveniently denoted L+

x1x2···xk
(resp. L−

x1x2···xk
).

4. A loop graph Lk is complete if for every i �= j there is a directed polygonal line
connecting xi to xj , that is, xixk1 , xk1xk2 , · · · , xkr xj .

Definition 3.4

1. A non-circular permutation πk yields a union of simple Jacobian loops, called
a composite loop L ν

k = ∪i=ν
i=1Li = (L1, . . . , Lν) of dimension l(L ν

k ) = k

given by the sum of the lengths of its ν simple component loops, i.e., k =∑i=ν
i=1 d(Li) = 1 + · · · + ν.

2. A proper composite loop L ν
k of resonance (ν, k) is a disjoint union of ν simple

loops of total length k, that is, the component loops do not share a vertex.

Remark 3.5 We denote P ν
k the loop product of a composite loop L ν

k . The
sign of a composite loop L ν

k is the sign of P ν
k , or equivalently, sign(L ν

k ) =∏l=ν
l=1 sign(Li) = (−1)ν− , where ν− is the number of negative simple loops in

L ν
k .

χν
k = (−1)ν+1 is the characteristic of the proper composite loop of resonance

(ν, k). Therefore a k−order proper composite loop has a negative (resp. positive)
resonance, i.e., a negative (resp. positive) characteristic for ν even (resp. odd).

Definition 3.6 A k−order Feedback Fk is defined by

Fk =
∑
allν

(−1)ν+1P ν
k , (3.5)

where P ν
k is the loop product of the proper composite loop L ν

k .

Consequently we have the following

Remark 3.7

1. A composite loop L ν
k is positive (resp. negative) for an even (resp. odd) number

of its negative simple loops.
2. A proper composite loop L ν

k with all component simple loops negative has a
negative resonance in the Feedback Fk as defined above.

Definition 3.8

1. We call qualitative matrix S a matrix consisting exclusively of the signed entries
sij ∈ {+,−, 0}, that is, S := [sij ]1≤i,j≤n. We denote S by Aq for a qualitative
matrix associated with a matrix A = [aij ], that is, sij = sign(aij ), for 1 ≤
i, j ≤ n.
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2. The loop structure (or qualitative structure), denoted LR , corresponding to the
region R in the phase space or to a sign-pattern is the set of all Jacobian loops
(simple and proper composite) along with their signs.

Remark 3.9 The Jacobian loop analysis requires first the determination of the loop
structure associated with the system in a given region of the phase space, either from
the signed entries of a Jacobian matrix evaluated at equilibria or constant at some
parameter values or solely from the qualitative evaluation of the interaction between
the variables in terms of positive, negative or zero. Determining and analyzing the
qualitative structure anywhere in the phase space, including around the steady states,
if any, yields some understanding of the local and global dynamics of the system.

3.3 Loops and Jacobian Spectrum

For a matrix A, Jacobian or otherwise, given by A = [Aij ]1≤i,j≤n the characteristic
polynomial is defined by the monic polynomial

CA(λ) = |λI − A| = λn + c1λ
n−1 + · · · + ckλ

n−k + · · · + cn−1λ + cn. (3.6)

From Linear Algebra [24] the coefficients may be expressed as

ck = coeff icient (λn−k) =
∑

(−1)kmk, k = 0, · · · , n − 1, (3.7)

where the sum extends over all kth order principal minors mk of A. For instance we
have

cn =(−1)ndet (A) = (−1)n|A|, for k = n,

c1 = −
∑

Aii = −T r(A), where Tr(A) is the trace of A.
(3.8)

From the theory of determinant and permutations we may write

mk =
∑

πk∈�k

(−1)η
∏

il∈Ik

Ailπk(il ) =
∑
allν

(−1)k−ν
i=ν∏
i=1

P(σi, A) =
∑
allν

(−1)k−νP (L ν
k ),

(3.9)

where the permutation πk ∈ �k of the indices 1 ≤ i1 < i2 < · · · < ik ≤ n

factors into the cyclic permutations (σ1, · · · , σν) yielding the proper composite
loop L ν

k = (σ1, · · · , σν) with loop product P(L ν
k ) = P ν

k as defined above.
Consequently we obtain an expression of the characteristic coefficients ck in terms
of the proper composite loops. Importantly we obtain [25].
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Lemma 3.10 The kth order Feedback Fk involving all the proper composite loops
L ν

k with ν = 1, · · · , k may be expressed in terms of the coefficients of the
characteristic polynomial by

Fk = ck =
∑
allν

(−1)ν+1P ν
k , k = 1, · · · , n (3.10)

Remark 3.11

1. First recall the zeros of the characteristic polynomial are the eigenvalues of
the matrix A, that is, they are the elements of the spectrum �A. They are of
multiplicity m if (z − λ)m factorizes CA(z). For m = 1 the corresponding
eigenvalue is said to be simple, such as when A has n distinct eigenvalues.

2. Importantly the k− order Feedback Fk being the k−order coefficient of the
characteristic polynomial entails that the loop factorsAiσ(i) defined above are the
only Jacobian entries contributing to the characteristic equation, and therefore,
influence directly the eigenvalues of the matrix, and consequently the dynamics.

3. From the standard theory of equations it is also known that the coefficients ck =
Fk are related to the eigenvalues λi in a systematic way by the following Viete
formulas: See [24].

c1 = F1 = −(λ1 + · · · + λn) = −
i=1∑
i=1

Aii .

c2 = F2 =
∑

i,j=1,i<j

λiλj =
∑

i,j=1,i<j

(AiiAjj − AijAji)

= λ1λ2 + λ1λ3 + · · · + λn−1λn.

c3 = F3 = −
∑

i,j,k=1,i<j<k

λiλjλk

= −(λ1λ2λ3 + λ1λ2λ4 + · · · + λn−2λn−1λn).

. . .

cn = Fn = (−1)nλ1λ2 · · · λn.

(3.11)

Immediate from the above definitions and the theory of determinants, [24], we
have

Lemma 3.12

det (A) = |A| =
∑

πn∈�n

sg(πn)P (πn,A)

=
∑

πe
n∈�e

n

P (πe
n,A) −

∑
πo

n∈�o
n

P (πo
n ,A).

(3.12)
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A classic result therefore leads to the following results proved in [16]:

Theorem 3.13 A necessary condition to have all eigenvalues with negative real
parts Re < 0 is that all kth order Feedback Fk must be positive.

Lemma 3.14 A proper composite loop L ν
k with all ν components simple loops neg-

ative has a negative resonance in the kth order Feedback, that is, its characteristic
χν

k is negative.

Theorem 3.15 If there is no proper composite loop Lk of dimension k ≤ n, then
the characteristic coefficient ck = 0.

Moreover at least one proper composite loop Ln of the system dimension is
necessary to have a nonsingular jacobian matrix.

Definition 3.16 We say that the qualitative equivalent class 〈A〉 or the loop
equivalence class 〉A〈 is qualitatively nondegenerate if every matrix in the class
is nonsingular in the sense |A| is nonzero.
We prove in [16].

Theorem 3.17 If the loop structure L does contains a composite loop Ln of the
dimension of the system, and all such loop Ln have the same sign, then the
corresponding Jacobian determinant |A| is nonzero.

Theorem 3.18 A positive simple loop in the loop equivalence class is a necessary
condition for the Jacobian matrix to have a positive real eigenvalue.

3.4 Qualitative existence of Multiple Equilibria

Equilibria or steady states of system (1.1) are solutions of the equations
F(x, a0) = 0 at the parameter value a0. Together with closed orbits they are
the simple dynamics or limit sets of a system, and sometimes they are “essentially”
all that can occur, e.g., for gradient systems and planar systems. Variants of the
qualitative study of the existence of multiple equilibria may also be found in other
literatures. See for instance [17, 18, 26–28].

Assume that the elements of the Jacobian matrix J are constant in a region D
(open convex) of the phase space not necessarily a neighborhood of a steady state,
and that the equivalence class 〈J 〉 is qualitatively nondegenerate. Set LR to be the
corresponding loop structure. We prove in [16].

Theorem 3.19 Assume the loop structure L in a region D contains a composite
loop Ln of the dimension n of the system, and that all such loops have the same
sign. Then there is a subregion D̄ ⊂ D where the dynamical system cannot have
more than one fixed point.
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3.5 Applications and Examples

3.5.1 Thomas Conjectures

We restate Thomas’s conjectures in the loop formalism [17, 18, 29, 30].

1. Conjecture 1 [1981] The presence of a positive feedback loop (somewhere in the
phase space) is necessary condition for multistationarity.

2. Conjecture 2 [1981] The presence of a negative feedback loop of length at least
two (somewhere in pahse space) is a necessary condition for stable periodicity.

3. Conjecture 3 [1999] Chaotic dynamics require both a positive feedback (to
allow multistationarity) and a negative feedback loop (to allow for permanent
periodicity).

Remark 3.20

1. Soulé in 2003 presented a proof of conjecture 1. Some partial results were
also given by Plahte et al (1995), Snoussi (1998), Gouzé (1998), Cinquin and
Demongeot (2002). See [27, 28, 31–33]

2. Under additional assumptions Snoussi and Gouzé also proved Conjecture 2. See
[27, 34]

3. Conjecture 3 is also included in a more general conjecture by Toni et al in 1999,
yet to be settled [20–22].

3.5.2 Eisenfeld Qualitative Stability

Eisenfeld et al also studied in [35] qualitative stability, that is, strictly from the sign
patterns. The results could be easily derived as well from the above analysis using
the qualitative equivalence terminology. For instance

Lemma 3.21 If the loop structure of the n−dimensional system contains a compos-
ite loop of length n and all such composite loops have same sign then the Jacobian
is nondegenerate, i.e., det (J ) �= 0.

See details in [35]. Lemma that entails

Theorem 3.22 (Eisenfeld stability)
Assume the loop structure has all composite n−loop of same sign. Then a

necessary and sufficient condition for a stable sign equivalence class is that the
loop structure has the following features

1. There is at least a 1−loop.
2. There are no positive 1−loops
3. There are no positive 2−loops
4. There are no k−loops with k ≥ 3.

And leads to
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Corollary 3.23 A necessary condition of the sign equivalence class to be unstable
is that its loop structure contains no more than (n − 1) negative 1−loops.

For a system to undergo a Hopf bifurcation, ensuring the existence of limit cycles,
its Jacobian must admit an exchange of stabilities. Therefore we have

Corollary 3.24 A Hopf bifurcation requires a sign equivalence class that is neither
stable nor unstable.

Remark 3.25

1. An example of a sign equivalence class neither stable nor unstable is one
associated with a loop structure containing n negative 1-loop L−

xi
, i = 1, · · · , n

i.e., at each vertex and at least one k−loop with k ≥ 3.
2. Intuitively the negative loop may be seen as stabilizing whereas the positive loop

could be seen as destabilizing.

In terms of composite loops and their sign as defined in the previous sections, we
state

Theorem 3.26 A sufficient condition for an unstable sign equivalence class (qual-
itatively unstable matrix) is that in the loop structure there is at least one integer k,
(1 ≤ k ≤ n) such that either there is no composite k− loop or they are all positive
(strong instability.)

See details and proof in [35].

3.5.3 Loop Analysis in the Plane

Consider a square matrix A of order 2 given by

A =
(

a11 a12

a21 a22

)
(3.13)

with entries constant with respect to the state variables, possibly depending on some
parameters. The above stability criteria translate into

T r(A) = a11 + a22 ≤ 0

|A| = a11a22 − a12a21.
(3.14)

We obtain the following loop interpretation. There is a parabolic boundary line at
T r(A)2 − 4|A| = 0 between real and complex eigenvalues. Complex eigenvalues,
i.e., oscillations are possible only when a12a21 < 0,which corresponds to a negative
2-loop. Crossing the boundaries of the second quadrant is the fundamental way
to lose stability, leading to the appearance of a positive feedback loop rendering
positive the real part of the eigenvalues. Thereby the stable periodicity is destabi-
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lized into a limit cycle for complex eigenvalues, or promoting multistationarity, i.e.,
saddle point for real eigenvalues.

Oscillations require the necessary condition T r(A)2 − 4|A| < 0, that is, (a11 −
a22)

2 < −4a12a21. Therefore a negative 2-loop L−
xy is necessary for any periodic

behavior (center, stable focus, or limit cycle).
For a 2-dimensional system, we also have the following results.

Theorem 3.27 Any loop structure in the plane consisting of two 1-loop L1 of
opposite signs and a negative 2-loop cannot be loop stable or loop unstable.

The proof is based on the following lemma:

Lemma 3.28 The qualitative equivalence class given by

〈〉 =
(+ −

+ −
)

, (3.15)

cannot be stable and cannot be unstable, that is, there is a matrix A ∈ 〈〉 such A is
unstable or stable.

Based on the Linear Stability Theory, we can classify the loop equivalence
classes in the plane as follows. See also [36].

Theorem 3.29

1. The loop structure consists of only a negative 2-loop L−
2 : The dynamic is that of

a linear center, that is, a family of periodic orbits surrounding the origin.
2. The loop structure L consists of a negative 2-loop L−

2 and two 1-loop of same
sign; the dynamic is that of a focus point, that is, the presence of sustained
oscillations around the origin. If the system is bounded then there exists a limit
cycle surrounding the origin.

3. The loop structure consists of only two 1-loops of opposite sign (resp. same sign).
Then the origin is a saddle point (resp. a node stable for negative 1-loops, and
unstable for positive 1-loops).

4. These loop equivalence classes are the only loop equivalence classes in the plane.

Therefore we have formally, as indicated above.

Corollary 3.30 A negative 2-loop L−
2 is a necessary condition for any periodic

behavior such as a center, a focus, or a limit cycle, i.e., an isolated periodic orbit.

3.5.4 Biochemical Application: Two-Component Oscillators

Consider a two-component network of a chemical reaction system given by

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2),
(3.16)
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possibly with some dependence of f1 and f2 on the kinetic parameters. Recall that
the Bendixon’s negative criterion claims that if the divergence div(f1, f2) is of
constant sign in a region of the plane, then there can be no periodic solution in that
region. For chemical reaction systems the diagonal entries of the Jacobian matrix
are usually negative. If both a11 and a22 are always negative, that is, the existence
of a constant negative 1−loop in the loop structure, then the trace never changes
sign, and Hopf bifurcation cannot occur in such a system. So at least one of them
must be positive, indicating autocatalysis. With the diagonal elements of opposite
sign, in order to have the determinant positive, the off-diagonal elements must also
be of opposite sign. The typical sign patterns for a Hopf bifurcation are given by the
following.

〈〉 =
(+ +

− −
)

, (3.17)

representing the so-called substrate-depletion oscillator. [Tyson]. The production of
x1 is autocatalytic, and the reaction speeds up as x1 increases, until the substrate x2
is depleted to the extend that the reaction ceases. The matrix

〈〉 =
(+ −

+ −
)

, (3.18)

corresponds to the activator-inhibitor models. Intuitively, when x2 is rare, x1
increases autocatalytically. The degradation of the x2 is inhibited with their accu-
mulation stimulated by abundant x1, which feeds back to inhibit the production of
x1. After x1 disappears, x2 is also destroyed, and then x1 can make a comeback.

Therefore a two-component biochemical reaction system can oscillate if there
exists in its loop structure at least one positive 1− loop, that is, autocatalysis along
with a negative 2− loop. Autocalysis represented by aii > 0 has a major role in
biochemical oscillations, and usually occurs when a chemical decelerates the rate
of its own destruction. aij > 0 together with aji > 0 indicates the xi activates the
production of xj and vice versa, leading to a feedback loop generating an indirect
autocatalysis. When aij aji < 0, there exist a negative 2− feedback loop indicating
that xi activates the production of xj but xj inhibits the production of xi [21].

3.5.5 Two-dimensional Model for Electrochemical Corrosion

We present how the Jacobian feedback loop methodology is applied to the electro-
chemical corrosion model initially developed by Talbot and Oriani. See also [22].
That is, a metal M is dissolving in an electrolyte solution in such a way that any
given point of the metal surface at any given time is either bare or covered with
adsorbed MOH to passivate the underlying metal. The model system reproduces the
dynamics observed during potentiostatic dissolution of copper in an acetate buffer.
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In terms of dimensionless variables the system is given by

ẋ = p(1 − y) − qx

ẏ = x(1 − y) − ye−βy
(3.19)

with the state variables confined to interval [0, 1], for the positive parameters values
p, q, and β. In the region of steady states, the Jacobian matrix is

J =
( −q −p

1 − y a22

)
, (3.20)

where a22 is a function of the parameters p, q, and β given by a22 = p(y−1)
qy

(βy2 −
βy + 1). The associated qualitative matrix is

J =
(− −

+ sign(a22

)
.

Therefore the loop structure has a negative 1-loop L−
x and a negative 2-loop L−

xy,

satisfying the necessary condition for periodic behavior. Moreover the only way to
secure a positive loop to promote multistationarity and sustained oscillations is to

get a22 > 0. This is realized for β > 4 and y ∈ [Y1, Y2]with Y1,2 = 1
2 (1∓

√
1 − 4

β
).

This implies there exists a region in the parameter space with a positive loop
necessary for multistationarity. There is also the possibility of sustained oscillations
due to the presence of the negative 2-loop L−

xy.

Therefore the loop analysis allows to predict a region of coexistence of mul-
tistationarity and sustained oscillations, actually limit cycle. See more in details
in [22]. We note that the sign of the single Jacobian term a22 was crucial for
both multistationarity and limit cycle. We were able to predict the global dynamics
without resorting to actual integration of the system.

3.5.6 A Loop Analysis of the Lorenz System

The Lorenz system [19, 37] is described by

ẋ = σ(y − x)

ẏ = ρx − y − xz

ż = −βz + xy,

(3.21)

where (x, y, z) ∈ R
3, and σ, ρ, β > 0. The Lorenz equations can also be found

in simplified models for lasers, dynamos, electric circuits, chemical reactions. The
variable x is proportional to the intensity of convective motion, y is proportional
to the temperature difference between ascending and descending currents and z is
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proportional to the distortion from linearity of the vertical temperature profile. The
Lorenz flow is dissipative, contracting volume with a negative divergence −(1+β+
σ). The Jacobian matrix at a steady state p∗ = (x∗, y∗, z∗) is

A =
⎛
⎝ −σ σ 0

ρ − z∗ −1 −x∗
y∗ x∗ −β

⎞
⎠ , (3.22)

with the corresponding qualitative Jacobian

Aq =
⎛
⎝ − + 0

sgn(ρ − z∗) − −sgn(x∗)

sgn(y∗) sgn(x∗) −

⎞
⎠ , (3.23)

The main characteristics of the Lorenz system are

1. The system is invariant under reflection in the z-axis.
2. Its equilibria are the origin O = (0, 0, 0) for all values of the parameter ρ, and

E± = (±√
β(ρ − 1),±√

β(ρ − 1), ρ − 1) appearing at ρ > 1 and symmetric
with respect to the z-axis.

A complete loop interpretation of this most celebrated system is found in [16]. First
the stability parameters given by the k-order feedback loops lead to

F1 = −(σ + β + 1) < 0

F2 = β + σ(1 + β) − σρ + σz ∗ +x∗
F3 = −σ(β(1 − ρ) + βz ∗ +x ∗ y ∗ +x∗)

(3.24)

Hence we have

1. F1 is always negative, ensuring the constant presence of at least one negative
1-loop L−

x/y/z.

2. F2 = 0 for ρ = ρc = β+σ(1+β)−σρ+σz∗+x∗
σ

. This entails F2 > 0 for ρ < ρc to
promote stability and F2 > 0 for ρ < ρc to promote instability.

3. F3 = 0 for ρ = ρ1 = σ(β(1−ρ)+βz∗+x∗y∗+x∗
σ

β

3.5.7 A Loop Analysis of the Rossler System

The Rossler system [38] is given by

ẋ = −y − z

ẏ = x + ay

ż = b + xz − cz

(3.25)
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The system has two steady states or equilibria E± located at

(x±, y±, z±) = (
c
√

c2 − 4ab

2
,−c

√
c2 − 4ab

2a
,
c
√

c2 − 4ab

2a
) (3.26)

associated with the Jacobian matrix

⎛
⎝0 −1 −1
1 a 0
z 0 −c

⎞
⎠ , (3.27)

and its qualitative equivalence class

⎛
⎝0 − −

+ + 0
+ 0 −

⎞
⎠ . (3.28)

For a wide range of the parameters a, b, c the system exhibits two unstable
equilibria of type saddle-focus periodically repulsive (resp. attractive) in a plane
while attractive (resp. repulsive) along a normal direction.

The loop structure contains two negative 2-loops L−
xy and L−

xz along with two
1-loops of opposite signs L+

y and L−
z . Note, as conjectured, the presence of two

proper 3-dimensional composite loops L 2
3 given by the negative (L+

y , L−
xz) and the

positive (L−
z , L−

xy).

A complete loop analysis as in the Lorenz case above leads to predict the chaotic
behavior of the system.

3.6 Summary

Given its fundamental qualitative nature, the methodology of Jacobian feedback
loops allows only necessary conditions, not sufficient ones. However such necessary
conditions are powerful enough to predict the effect to different structural or
parameter changes. Indeed changes in the equations leading to a violation of any
necessary conditions in terms of loops should yield the change as well in the
dynamic behavior. And changes in the equations which do not affect the feedback
loop structure of the Jacobian should preserve the dynamic behavior.

The above definitions, properties and theorems are the fundamentals of the
theory of the Jacobian Loops analysis. They show that Jacobian loops and their
combinations play an important dynamical role in a system, even when only the
signs, not the magnitudes of the Jacobian terms, are known. Using stability analysis
one can attain only the local dynamics of the system, and hence the need to use,
for instance, numerical integration in conjunction to obtain global dynamics which
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can be predicted by the feedback loop methodology, as for the Lorenz and Rossler
systems. This is a great advantage over the classical approach. Indeed it allows
one to assert whether sustained oscillations, multistationarity, or chaotic dynamics
are possible. As such this analysis is certainly an efficient tool in the qualitative
modeling of complex systems. It allows to:

1. Stress qualitative understanding as the primary goal rather than numerical
prediction.

2. Supplement the more familiar large scale quantitative methods made possible by
improved computer technology.

3. Include variables difficult or even impossible to measure, e.g., a diabetes model
should include measurable variables such as glucose, insulin and other chemicals
but also “real variables” such as anxiety or stress but any attempt to measure
stress is itself stress inducing.

In economics [39, 40], behavioral and social sciences, as well as in complex physical
sciences relevant informations about the underlying dynamics reside in the rules of
construct of the system and not in the absolute values.

The Jacobian loops technique, easy to implement, intends to quickly demarcate
both parameter and phase spaces into exciting regions (limit cycles, multiple
equilibria, chaotic behavior), non-exciting regions (single stable fixed point), and
hard-instance regions (ergodic behavior). Hence it could prove useful in surveying
dynamical response of models simulating physico-chemical, biological and bio-
chemical, and economical systems, as well as in game theory.

3.6.1 Research Directions

Here are some directions to improve the effectiveness of the qualitative analysis of
systems based on the Jacobian feedback loops. Recall a loop is determined by a set
of nonzero terms aij = ∂fi

∂xj
of the Jacobian matrix whose i (row) and j (column)

indices are in cyclic permutation. Its oriented edges (arrows) are the aij elements
considered with their signs to indicate positive, negative or no interaction. A loop
is usually symbolized by the product of its elements: for example, a 3-loop Lxyz

is given by a12a23a31. A loop is positive or negative depending on the sign of this
product, this is, depending on whether it comprises an even or an odd number of
negative elements. A positive feedback loop is destabilizing, whereas a negative
feedback loop is stabilizing. For instance a minimal requirement for oscillations is
the existence of at least one positive and a negative feedback loop, e.g. in chemical
reactions systems [41, 42].

1. We want to emphasize that qualitative modeling should consist of strictly
qualitative relations and assumptions, as opposed to studying the qualitative
structure of models consisting of some quantitative features which actually
describes the classic qualitative analysis.
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2. In qualitative modeling the rate of change ẋ should be defined as a qualitative
rate of change dx

dt
, that is, rather than just taking the sign of the entries of the

Jacobian, one should consider directly the qualitative interaction per se of the
variables x = (xi, i = 1, · · · , n).

3. A qualitative algebraic structure should be developed independently, not just by
“signing” the current algebras. The study of the qualitative and loop equivalence
classes is a first step.

4. There is a need of strong qualitative or loop stability theorem similar to the
Lyapunov’s theorem; this could be done only through a direct qualitative study,
rather than translating from the signs of quantitative values. That is, proving the
existence of a Lyapunov function using only qualitative properties and relations
of the variables and/or parameters interactions.

5. Complexity is the keyword in the evolution of systems. And its main tool of
analysis is a qualitative one, which could achieve a greater generality and realism
than does the usual quantitative idealization of most mathematical models.
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