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Abstract. Computational prediction of drug-target interaction (DTI) is very
important for the new drug discovery. Currently, graph convolutional networks
(GCNs) have been gained a lot ofmomentum, as its performance on non-Euclidean
data. Although drugs and targets are two typical non-Euclidean data, many prob-
lems are also existed when use GCNs in DTI prediction. Firstly, most state-of-
the-art GCN models are prone to the vanishing gradient problem, which is more
serious in DTI prediction, as the number of interactions is limit. Secondly, a
suitable graph is hardly defined for GCN in DTI prediction, as the relationship
between the samples is not explicitly provided. To overcome the above problems,
in this paper, a multiple output graph convolutional network (MOGCN) based
DTI prediction method is designed. MOGCN enhances its learning ability with
many new designed auxiliary classifier layers and a new designed graph calcula-
tion method. Many auxiliary classifier layers can increase the gradient signal that
gets propagated back, utilize multi-level features to train the model, and use the
features produced by the higher, middle or lower layers in a unified framework.
The graph calculationmethod can use both the label information and themanifold.
The conducted experiments validate the effectiveness of our MOGCN.

Keywords: Drug-target interactions · Graph convolutional network · Multiple
output deep learning · Auxiliary classifier layer

1 Introduction

The deep learning based DTI prediction method has recently been taken more and more
attention, which can be divided into three categories: deep neural networks (DNN) based
method, convolutional neural networks (CNN) based method, and graph convolutional
networks (GCN) based method.

Many DNN based DTI prediction methods have been proposed. Firstly, different
inputs have been designed for DNN [1, 2]. Secondly, different DNN structures have
been designed for DTI prediction [3–6]. Thirdly, some researchers used DNN together
with other methods [7, 8]. DNN can effectively improve the effect of DTI prediction.
However, a large number of parameters need to be trained. CNN is mainly composed of
convolutional layers, which can greatly reduce the parameters.
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Many CNN based DTI prediction methods have been proposed, where the main
difference is designing different inputs. Firstly, reshaped the extracted feature vector to
generate the input is a popular method [9, 10]. Secondly, the sequence of target and the
SMILES of drug are used as the input [7, 11, 12]. However, it’s may be difficult for
CNN to extract the feature from the drug and the targets, as local features are distributed
in different locations in different sequence and SMILES. GCNs have been gained a lot
of momentum in the last few years, as the limited performance of CNNs when dealing
with the non-Euclidean data. Drugs and targets are two typical non-Euclidean data, and
then GCNs could be promising for DTI prediction.

Many GCN based DTI prediction methods have been proposed. Firstly, GCNs have
been used to extract features from the drugmolecular [13–15].However, the optimization
goal of the GCN and the optimization goal of classifier are independent in Ref. [13, 15],
and the graph is constructed by atoms but not bymolecules in Ref. [14]. Secondly, GCNs
have been used for dimensionality reduction [16, 17]. However, GCN optimization goals
and classification optimization goals are also independent in these methods. Thirdly,
GCNs has been used for classification [18]. However, the GCN structure contains only
one GCN layer, and he graph used by GCN is calculated according to DDI and PPI,
which is hardly automatically predicted.

Many problems can be concluded from the above methods: Firstly, goals of GCN
optimization and classification optimization are optimized independently [13, 15–17],
and then the classification ability of GCN is not utilized. Secondly, a shallow GCN is
used for DTI prediction [18]. Thirdly, the graph could be difficult calculated in real
application in Ref. [18]. Furthermore, the graph of many methods is calculated by bonds
of drugs [13–16] but not the relationships among drug-target pairs.

To overcome the first and second problems, a multiple output graph convolutional
network (MOGCN) is designed, which contains many auxiliary classifier layers. These
auxiliary classifier layers are distributed in the low, middle and high layers. As a result,
MOGCN owns following advantages: losses in different layers can increase the gradient
signal that gets propagated back; multi classification regularizations can be used to
optimize the MOGCN; the model can be trained by multi-level features; features in
different levels can be used for classification in a unified framework. To overcome
the third and fourth problems, a DNN and k-nearest neighbor (KNN) based method is
designed to calculate the graph, where the calculated graph contains both the manifold
and the label information. To further overcome the second problem, two auto-encoders
are respectively used to learn low-level features for drugs and targets, which can make
that the MOGCN can mainly focus on learning high-level features.

2 Proposed Method

2.1 Problem Description and Notation Definition

The goal of DTI prediction is to learn a model that takes a pair of drug and target and
output the interaction. Before introducing ourmethod,many important notations adopted
in this paper are provided in Table 1.
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Table 1. Notations used in this paper.

Notations Descriptions

D, T, I, n, m D and T are drugs and targets features, I is interaction
matrix, n and m are number of drugs targets

D̂,T̂ , di, tj D̂ is output of encoder of SAE of D, T̂ is output of
encoder of SAE of T, di is i-th sample of D, tj is j-th
sample of T

X, L, XL , LL , XT , LT , u X and L are all samples and labels, XL and LL are the
training samples and labels, XT and LT are the testing
samples and labels, u is the number of samples

δ(·), ϕ(·) δ(·) is an activation function, where the sigmoid
function is used here
ϕ(·) is a loss function, where the cross entropy loss
function is used here

A, Ã, Z A is the adjacency matrix, Ã is the adjacency matrix
with add self-loop for A, Z is the graph diagonal degree
matrix

Xg, W̃ g,Og,
�

Og,
�

Wg,
�

bg, Yg, YG , G Xg is the input of g-th layer, W̃ g is the weight of the
GCN sub layer of g-th layer, Og is the output of the

GCN sub layer of g-th layer,
�

Og is the output of the

dropout sub layer,
�

Wg is the weight of linear sub layer

of g-th layer,
�

bg is the bias term of linear sub layer, and

Yg is the output of the linear sub layer of g-th layer, YG
is the output of the linear layer, G is the number of
layers of MOGCN

k, Nk(yj),ŷi k is number of nearest neighbor, Nk(yj) is the j-th k

nearest neighbor of ŷi, ŷi is i-th sample of Ŷ

2.2 Overview of Our Method

The overview of ourmethod is shown in the Fig. 1, which contains 5 steps, such as feature
extraction, low-level features extraction, feature concatenation, graph calculation, and
MOGCN. The feature extraction is used to extract the features for drugs and targets.
The low-level features extraction is used to learn the low-level features for drugs and
targets. The feature concatenation is used to generate the sample of the drug-target pair.
The graph calculation is used to calculate the adjacency matrix A for MOGCN. The
MOGCN is our newly designed deep learning framework. These steps will be described
in detail in the following subsections.
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Fig. 1. Overview of our method

2.3 Feature Extraction

Drugs features D = [d1, d2, · · · , dn]T and targets features T = [t1, t2, · · · , tm]T are
respectively calculated by PaDEL [19] and the propy tool [20]. The drug features include
797 descriptors (663 1D, 2D descriptors, and 134 3D descriptors) and 10 types of finger-
prints. The total number of the drug features is 15329. The target features include five
feature groups such as: amino acid composition, autocorrelation, composition, transition
and distribution, quasi-sequence order, pseudo-amino acid composition and so on. The
total number of the target features is 9543.

2.4 Low-Level Features Extraction and Feature Concatenation

Training GCN directly on high-dimensional drug features and target features will cause
too many parameters to be trained in the first layer. Furthermore, with the larger depth of
the network, the ability to propagate gradients back through all the layers in an effective
manner was a serious concern, which is more serious for the first few layers. This leads to
insufficient extraction of low-level features. To overcome the above problem, low-level
features are firstly extracted by the stack auto encoder (SAE). Because the goal of the
SAE is to extract the low-level features, the shallow encoder and decoder are used in this
paper. The encoder and decoder of the SAE contain two linear layers and two activation
layers, where the sigmoid function is used for the activation layer. The output of the
encoder is the low-level feature.

After training the encoder for drugs by D, the low-level features D̂ of D can be
obtained by the encoder. Similarly, the low-level features T̂ of T can be obtained by
the encoder trained by T. The u samples X = [x1, x2, · · · , xu] can be generated from
D̂ and T̂ , where xk = [d̂i, t̂j]T . The corresponding u labels L = [l1, l2, · · · , lu] can be
generated from I, where lk is the i-th row and j-th column of I.

2.5 Graph Calculation

An adjacency matrix A should be calculated for MOGCN. Many graph calculation
methods have been proposed for DTI prediction. Zhao et.al calculated A by DDI and
PPI; however, DDI and PPI are also hardly automatically predicted [18]. And many
other A are calculated by bonds of drugs [13–17], however, these graphs are only used
for extracting features. Analyzed the function of A, A should represent the relationship
between samples, especially the classification relationship between samples. However,
the labels of testing samples are unknown. As a result, to calculate the A, a DNN and
KNN based method is designed.
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Given training samples XL , corresponding label LL , testing samples XT , the DNN
and KNN based method owns 4 steps. Firstly, a two layers DNN model is trained. And
then XL and XT are projected to ŶL and ŶT by the first layer of the trained DNN model.
Thirdly, Ŷ is calculated by Ŷ = [ŶL; ŶT ]. In the last, the A can be calculated by Eq. (1).

Aij =
{
1, if ŷi ∈ Nk(ŷj) and ŷj ∈ Nk(ŷi)
0 , others

(1)

A two layers DNN model is trained here, as DNN is only used to learn a low dimen-
sional space that contains both manifold information or label information. Furthermore,
low dimensional space is obtained by the first linear sub layer but not by the second
linear sub layer, as the result of second linear sub layer is too much affected by the label
but the label of the testing sample is unknown. According to above analyze, the proposed
graph calculation method can make that Aij has a greater probability of being set to 1
when xi and xj are near with each other or xi and xj are with the same labels. As a result,
A contains both manifold and label information.

2.6 The Proposed MOGCNModel

Unlike DNN, which are able to take advantage of stacking very deep layers, GCNs suffer
from vanishing gradient, over-smoothing and over-fitting issues when going deeper [21].
These challenges are particularly serious in DTI prediction, as the number of interactions
is limited in the DTI datasets. Specifically, most interactions focus on only a few targets
or a few drugs, which makes that the training samples of most drugs and targets are not
enough. As a result, these challenges limit the representation power of GCNs on DTI
prediction. For example, Zhao et.al used a GCN structure with one GCN layer [18]. To
overcome the above problem, in this paper, a MOGCN for DTI prediction is designed.

Given the training samplesXL , the corresponding labelsLL , and the adjacencymatrix
A, theMOGCN can be shown in the Fig. 2, which contains an input layer, an output layer,
an linear layer, many hidden layers andmany auxiliary classifier layers. The hidden layer
contains a GCN sub layer, an activation sub layer and a dropout sub layer. The auxiliary
classifier layer is a new designed layer, which contains a GCN sub layer, an activation
sub layer, a linear sub layer, and a loss function.

Given Xg as the input of the g-th layer, the GCN sub layer can be defined as:

Og = Z− 1
2 ÃZ− 1

2XgW̃g (2)

Where Ã is the graph adjacency matrix with add self-loop for A, Z is the graph diagonal
degree matrix which can be calculated from A, A ∈ Ru×u is a graph adjacency matrix
that can be calculated by Algorithm 1.

The definition of the activation and dropout sub layers can be found from [22].
For an auxiliary classifier layer, a linear sub layer and a loss function are existed

here, which can be respectively defined as Eq. (3) and Eq. (4):

Yg = �

W
T

g

�

Og + �

bg (3)
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Fig. 2. Overview of MOGCN

Jg(W , b,X ,LL) = ϕ(Yg,LL) (4)

The loss function of the output layer can be defined as:

JG(W , b,X ,LL) = ϕ(YG,LL) (5)

W and b can be optimized by minimizing Eq. (6) with the Adam optimizer [25].

min
W ,b

G∑
g=1

Jg(W , b,X ,LL) (6)

Where Jg(W , b,X ,LL) = 0, if g-th layer is a hidden layer.
It can be seen from Fig. 2 and Eq. (6) that the number of layers of propagate gradients

back is smaller when g is smaller. And then the effective of Jg(W , b,X ,LL) for calculat-
ing Wi and bi is higher. Furthermore, the stronger performance of relatively shallower
networks on this task suggests that the features produced by the layers in the middle of
the network should be more discriminative. As a result, by adding these auxiliary clas-
sifiers layers connected to these intermediate layers, MOGCN would expect to increase
discrimination in the lower stages in the classifier, enhance the gradient signal used for
propagated back, and provide additional regularization.
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2.7 Architectural Parameter

Many architectural parameters are existed in the low-level features extraction, graph
calculation and MOGCN.

In the low-level features extraction, output dimensions of two encoder layers should
be set, which are set to 800 and 500. Similarly, the output dimensions of two decoder
layers are set to 500 and 800. These output dimensions have little effect on the results
in a larger range, as encoder layers is only used for low-level features extraction, so that
they are simply set to the above values.

In the graph calculation, the output dimensions of two linear layers should be set,
which are respectively set to 100, 2, where 2 is the number of the class. k used in Eq. (4)
is set to 10. These values are also have little effect on the results in a larger range, as DNN
is only used to learn low dimensional space and k is only used to define the manifold,
so that they are simply set to the above values.

In the MOGCN, the layer number G, the output dimensions of the GCN sub layer
and the linear sub layer should be set. To simplify the parameter search, the output
dimensions of all GCN sub layers are set to 300, as the ability of the MOGCN can also
be controlled by depth. The output dimensions of all linear sub layers are set to 2, as the
number of the class is 2. The layer number G is set to 1, 3, 5, which is chosen by 5-fold
cross validation.G is not chosen from a larger range, as a largerMOGCN structure could
be hardly trained when the positive examples is limited.

3 Experiments

3.1 Dataset

Nuclear receptors (NR), G protein coupled receptors (GPCR), ion channels (IC),
enzymes (E) [23] and drug bank (DB) [24] are used here. Simple statistics of them
are represented in the Table 2. The 2-th to 4-th rows respectively represents the number
of drugs, targets and interactions, which shows that the number of interactions is small
and the number of drug target pairs is far more than that of interactions.

Table 2. Simple statistics for datasets.

Type NR GPCR IC E DB

Drugs 54 223 210 445 5877

Targets 26 95 204 664 3348

Interactions 90 635 1476 2926 12674

3.2 Compared Methods

MOGCN is a GCN based method, so that it is compared with a GCN based method,
which is come from MOGCN by replacing each auxiliary classifier layer of MOGCN
with a hidden layer. MOGCN is also compared with two DNN structures [3, 5], as these
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two DNN structures may be good and both DNN and GCN belong to deep learning.
These two DNN structures are defined as DNN1 [3] and DNN2 [5].

Furthermore, SAE is used to learn the low level features in this paper. To prove that
SAE is benefit for MOGCN, low level features and the original features are respectively
inputted to the compared methods. As a result, after defining the original features as
SRC and the low level features as SAE, following methods are compared: SRC+DNN1,
SRC+DNN2, SRC+GCN, SRC+MOGCN, SAE+DNN1, SAE+DNN2, SAE+GCN and
SAE+MOGCN.

3.3 Experimental Setting

In this work, three experimental settings that are shown in the Table 3 are evaluated.
CVD and CVT and CVP respectively represent the corresponding DTI values of certain
drugs, targets and interactions in the training set are missed but existed in the test sets,
where CVD can be used for new drug development, CVT can be used to find effective
drugs from known drugs for new targets, CVP can be used to find new interactions from
known drugs and known targets.

Table 3. The information of three experimental settings.

Experimental setting Drugs Targets Interactions

CVD New Known New

CVT Known New New

CVP Known Known New

A standard 5-fold cross validation is performed. More precisely, drugs, targets and
interactions are respectively divided into 5 parts in CVD, CVT and CVP, where one part
is used for testing and other parts are used for training. Furthermore, for the training
samples, not all negative samples but five times more negative samples than positive
samples are used, as using too more negative samples will make the data imbalance
problem too prominent and using too few negative samples will result in too much
negative sample information loss. The used negative samples are randomly selected all
negative samples. The batch size is set to 128 for DNN1 and DNN2. The batch size is
set to 1 for GCN and MOGCN, as GCN based methods trained by the batched training
samples is still difficult. Furthermore, two evaluation metrics named AUC and AUPR
are used in the experiments, where AUC is the area under the ROC and AUPR is the
area under the precision-recall curve.

3.4 The CVD Experiments

CVD can be used for new drug development. The experiment results are presented in
the Fig. 3. Following concludes can be obtained from the Fig. 3:

Firstly, GCN based methods are better than DNN based methods. It can be seen
from Fig. 3 that most evaluation metrics of GCN based methods are higher than that
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of DNN based methods, and all evaluation metrics of the SRC+MOGCN and SAE +
MOGCN are higher than that of the DNN based methods. They show that using GCN
based methods to improve the DTI prediction is necessary.

Secondly, the low level features are better than the original features for GCN
based methods. It can be seen from Fig. 3 that AUCs and AUPRs of SAE+GCN and
SAE+MOGCN are higher than that of SRC+GCN and SRC+MOGCN on IC, GPCR,
E and DB, and most evaluation metrics of SAE+MOGCN are higher than that of
SRC+MOGCN on NR. They prove that using SAE to learn low level features is benefit
for GCN and MOGCN.
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Fig. 3. Results of CVD experiments

Thirdly, MOGCN is better than GCN. It can be seen from Fig. 3 that AUCs and
AUPRs of SRC+MOGCN and SAE+MOGCN are higher than that of SRC+GCN and
SAE+GCN on all datasets. It shows that using the multiple output graph convolutional
network structure can improve the effectiveness of DTI prediction.

Fourthly, SAE+MOGCN is the best. It can be seen from Fig. 3 that most evaluation
metrics of SAE+MOGCN are higher than that of the compared methods. Specially,
AUCs of SAE+MOGCN are respectively 2.56%, 1.58%, 0.75%, 1.36%, and 0.92%
higher than that of the second best methods on datasets. AUPRs of SAE+MOGCN are
respectively 3.27%, 2.14%, 0.39%, 1.25%, 1.36%, and 1.55% higher than that of the
second best methods on datasets. They show that using SAE together with MOGCN is
a good method for DTI prediction.

3.5 The CVT Experiments

CVT can be used to find effective drugs for new targets. The experiment results are
presented in the Fig. 4. Following concludes can be obtained from the Fig. 4:

Firstly, GCN based methods are better than DNN based methods. It can be seen
from Fig. 4 that nearly all evaluation metrics of GCN based methods are higher than
that of DNN based methods on IC, GPCR, E and DB, where only some evaluation
metrics of SRC+GCN lower than that of SRC+DNN2. Furthermore, it can be seen from
Fig. 4 that AUCs and AUPRs of the SAE+MOGCN are higher than that of the DNN



96 Q. Ye et al.

based methods on NR. They prove that using GCN based methods to improve the DTI
prediction is necessary.

Secondly, the low level features are better than the original features for GCN
based methods. It can be seen from Fig. 4 that AUCs and AUPRs of SAE+GCN and
SAE+MOGCN are all higher than that of SRC+GCN and SRC+MOGCN. It shows that
using SAE to learn low level features is benefit for GCN and MOGCN.
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Fig. 4. Results of CVT experiments

Thirdly, MOGCN is better than GCN. It can be seen from Fig. 4 that AUCs and
AUPRs of SRC+MOGCN and SAE+MOGCN are higher than that of SRC+GCN and
SAE+GCN. It shows that using themultiple output graph convolutional network structure
can improve the effectiveness of DTI prediction.

Fourthly, SAE+MOGCN is the best. It can be seen from Fig. 4 that most evaluation
metrics of SAE+MOGCNare higher than that of the comparedmethods. Specially,AUCs
of SAE+MOGCN are respectively 0.70%, 1.05%, 2.88%, 1.02% and 0.97% higher than
that of the second best methods. AUPRs of SAE+MOGCN are respectively 5.16%, -
0.46%, 3.20%, 0.68%, and 2.11% higher than that of the second best methods. They
prove that using SAE together with MOGCN is also a good method for DTI prediction.

3.6 The CVP Experiments

CVP can be used to find effective drugs from known drugs for new targets. The experi-
ment results of all compared methods are presented in the Fig. 5. Following concludes
can be obtained from the Fig. 5:

Firstly, the GCN based methods are better than the DNN based methods. It can be
seen from Fig. 5 that the results of all evaluation metrics of GCN based methods are
higher than that of DNN based methods. It proves that GCN based methods are better
than the DNN based methods.

Secondly, the low level features are better than the original features for GCN based
methods. It can be seen from Fig. 5 that most AUCs and AUPRs of SAE+MOGCN
are higher than that of SRC+MOGCN on all databases, and most evaluation metrics of
SAE+GCN are higher than that of SRC+GCN on IC and GPCR. They show that using
SAE to learn low level features is benefit for GCN and MOGCN.
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Thirdly, MOGCN is better than GCN. It can be seen from Fig. 5 that most evaluation
metrics of SRC+MOGCN and SAE+MOGCN are higher than that of SRC + GCN
and SAE+GCN. It proves that using the multiple output graph convolutional network
structure can improve the effectiveness of DTI prediction.

Fourthly, SAE+MOGCN is the best. It can be seen from Fig. 5 that most evaluation
metrics of SAE+MOGCNare higher than that of the comparedmethods. Specially,AUCs
of SAE+MOGCN are respectively 0.81%, 0.34%, 0.91%, 0.50% and 0.85% higher than
that of the second best methods on datasets. AUPRs of SAE+MOGCN are respectively
1.16%, 1.49%, −0.29%, 0.62% and 1.55% higher than that of the second best methods
on datasets. They prove that using SAE together with MOGCN is a good method for
DTI prediction.
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Fig. 5. Results of CVP experiments

4 Conclusion

This paper presents a MOGCN for DTI prediction. In MOGCN, SAE is used to learn
low level features, a DNN and KNN based method is used to calculate the graph, and
many auxiliary classifier layers are added to connect to the intermediate layers and the
parameters are trained by multi loss functions. SAE makes that MOGCN can mainly
focus on learning high-level features. The graph calculation method can makes that the
graph contains both the label information and themanifold. The auxiliary classifier layers
can increase discrimination in the lower stages in the classifier, enhance the gradient
signal used for propagated back, and provides additional regularization. The conducted
experiments validate that MOGCN is a competitive method compared to the previous
ones.

As one of the further work, residual network family can used to increase the width
and depth of the GCN. As another further work, a new GCN framework is used to
calculate the graph, which can minimizing the distances among samples whose drugs
and targets are with interactions and maximizing the distances among samples whose
drugs and targets are without interactions.
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