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Abstract. With the increasing cost of traditional drug discovery, drug reposi-
tioning methods at low cost have attracting increasing attention. The generation
of large amounts of biomedical data also provides unprecedented opportunities
for drug repositioning research. However, how to effectively integrate different
types of data is still a challenge for drug repositioning. In this paper, we propose a
computational method using Network Consistency Projection for Drug-Disease
Association (NCPDDA) prediction. First of all, our method proposes a new method
for calculating one type of disease similarity. Moreover, since effective integration
of data from multiple sources can improve prediction performance, the NCPDDA
integrates multiple kinds of similarities. Then, considering that noise may affect
the prediction performance of the model, the NCPDDA uses the similarity net-
work fusion method to reduce the impact of noise. Finally, the network consis-
tency projection is used to predict potential drug-disease associations. NCPDDA
is compared with several classical drug repositioning methods, and the experimen-
tal results show that NCPDDA is superior to these methods. Moreover, the study
of several representative drugs proves the practicality of NCPDDA in practical
application.
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1 Introduction

In the traditional drug development, the successful development of a completely new
drug is behind the high investment of more than 800 million dollars and more than a
decade of continuous efforts of researchers [1]. Even so, usually only one in ten drugs are
approved by the FDA (Food and Drug Administration) for actual treatment each year [2].
Given these challenges, drug repositioning, which is the discovery of new indications
for existing drugs, has attracted increasing attention. Compared with traditional drug
development strategies, the computational drug repositioning methods have advantages
in terms of time, cost, and risk reduction because the repositioned drug has already
passed some preclinical trials. There are many typical examples of drug repositioning:
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for example, the sildenafil, developed for individuals with heart diseases, repositioned
for erectile dysfunction [3]. Besides, the aspirin, developed for mild or moderate pain
and repositioned for inhibit thrombosis. These successful drug repositioning cases have
further promoted the development of drug repositioning.

Recently, many methods for computational drug repositioning have been proposed,
including machine learning-based methods and network-based methods. By integrating
drug similarities and disease similarities, Gottlieb et al. proposed a machine learning
model that uses logistic regression classifiers to infer drug repositioning [4]. Liang
et al. integrated multiple types of similarities and proposed Laplacian regularized sparse
subspace learning (LRSSL) method to predict new indications for drugs [5]. Based
on the drug similarity and disease similarity, Yang et al. proposed a bounded nuclear
norm regularization (BNNR) method that is robust to the noise in the data and makes
the prediction scores of all drug-disease associations within the range of (0, 1) [6].
Adding target information into the BNNR model leads to a significant increase in the
calculation cost of BNNR. Yang et al. further proposed a method based on overlap matrix
completion [7]. Besides, based on known drug-disease associations, disease similarity
and five types of drug similarities, Zhang et al. proposed a similarity constrained matrix
factorization method to predict potential drug-disease associations [8]. Moreover, with
the advent of the era of big data and the progress of science and technology, a large
number of biological and clinical data that can be processed by computer technology
have been produced. Because the network has ability to integrate data from multiple
sources, network-based approaches are widely used in drug repositioning. Wang et al.
proposed a three-layer heterogeneous network model using an iterative algorithm to
achieve drug repositioning [9]. Martinez et al. proposed a network-based prioritization
approach to infer new relationships between drugs and diseases [ 10]. Luo et al. proposed a
drug repositioning method based on comprehensive similarity measures and Bi-Random
walk algorithm [11]. Even though the above methods have accelerated the speed of drug
repositioning, there are still some limitations. Some approaches are limited to a single
type of data, such as considering only phenotype similarity of diseases and chemical
structure similarity of drugs. Since different types of data reflect different aspects of
drugs or diseases, the mechanism of action of drugs or diseases can be understood more
clearly by integrating multi-source data. In addition, drug or disease data may contain
noise, which can reduce the accuracy of prediction.

In this work, we propose a method using network consistency projection for drug-
disease association (NCPDDA) prediction. Firstly, a method for calculating disease sim-
ilarity based on drug characteristics is proposed. Secondly, the NCPDDA uses the simi-
larity network fusion method to integrate four kinds of drug similarities and three kinds
of disease similarities respectively, because the similarity network fusion method can
effectively fuse different types of data and reduce noise. Finally, based on drug-disease
association network and the integrated drug similarity network and disease similarity
network, the network consistency projection is used to obtain the prediction scores of all
drug-disease associations. The overall framework of the NCPDDA method is depicted in
Fig. 1. The experimental results show that our method has better prediction performance
than other three classical methods. In the case studies section, the new indications for
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Fig. 1. The overall framework of the NCPDDA method.

four drugs are validated, and the experimental results further confirms the practicality
of our method.

2 Materials and Methods

2.1 Dataset

Drug-disease Associations. The LRSSL dataset including 763 drugs, 681 diseases and
3,051 known drug-disease associations is used by our method. A binary matrix ¥ € R"*"
is used to represent drug-disease associations, where m and n are the number of drugs
and diseases, respectively. If the drug 7; is associated with the disease d;, then Y(i, j) =
1, otherwise it is 0.

Similarities of Drugs. The drug data includes drug chemical structure, drug target pro-
teins domain and gene ontology (GO) term of drug targets. Based on the chemical
fingerprints extracted from PubChem database [12], the Jaccard coefficient is used to
calculate similarity, and the drug chemical structure similarity matrix CS € R™*™ is
obtained. Similarly, based on the drug target domain and drug target gene ontology term
extracted from InterPro database [13] and UniProt database [14], the drug target domain
similarity matrix 7D and the drug target GO term similarity matrix 7G are calculated.
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Similarity of Diseases. MimMiner [15] is used to calculate the similarity of diseases,
and the disease phenotype similarity matrix DP € R™*" is obtained. MimMiner quantify
the similarities between diseases according to the Medical Subject Headings (MeSH)
Vocabulary terms that appeared in the medical descriptors of diseases in the OMIM
(Online Mendelian Inheritance in Man) database.

2.2 Disease Similarity Based on Drug Characteristics

Since similar diseases are often associated with similar drugs, we calculate a type
of disease similarity based on three types of drug similarities. According to [16 and
17], we firstly obtain the drug sets r, and rp, which are related to the disease d, and
dp, respectively. Then, the similarity between disease d, and dj can be computed as
follows:

2oiny max (RS (rai. 7)) + 2joy max (RS (1. rai))

DD(dy, dp) = - o ey

Where RS(7qi, 7p) is the drug similarity of r,; and rp; belonging to r, and 7,
respectively; u and v are the number of drugs included by r, and . We use the similarity
network fusion (SNF) method [18] to integrate the above three drug similarity matrices
into the drug similarity matrix RS to calculate the disease similarity matrix DD, DD €
R™" . The flow chart for calculating disease similarity based on drug characteristics is
shown in Fig. 2. It is important to note that in the cross-validation, some diseases may not
have associated drugs, making it impossible to calculate the disease similarity matrix.
Therefore, we initialize Y’ = Y, and update the matrix Y~ as follows:

1
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Fig. 2. The flow chart for calculating disease similarity based on drug characteristics.
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Where i represents the index of disease d;, which has no associated drug in Y’; Ny,
denotes the set of k neighbor nodes of d;; Y’(i) and Y (j) represent the i-th column of Y’
and the j-th column of Y, respectively; DP(i, j) denotes the disease phenotype similarity
between disease d; and disease d;. Then, the similarity matrix DD is recalculated based
on the updated matrix Y.

2.3 Gaussian Similarity of Drugs and Diseases

Since the more the number of common diseases (or drugs), the more similar the drugs (or
diseases), the Gaussian similarity of drugs and diseases can be calculated according to
the association matrix Y. Firstly, i-th row of the association matrix Y is used to represent
the association profile of drug ;. The association profile is a binary vector, and a value
in the association profile indicates whether the drug (or disease) is association with a
certain disease (or drug). Similarly, we can obtain association profile of drug r;. Then,
the Gaussian similarity between drug r; and drug r; can be calculated as follows:

RG(ri.r)) = exp(—r 1Y () = Y. ) [1?) 3

1 m
re= 1/(,1—1 >, Iva, :>||2) @)

Where r, is responsible for controlling the bandwidth of Gaussian kernel and is the
ratio of the number of drugs to the average number of diseases associated with each
drug.

Similarly, the disease Gaussian similarity can be calculated as follows:

DG(di.d;) = exp(=rallY G D) = Y .)I?) 5)

1
ra = 1/(; > e i>||2) (©)

Where ry is computed similarly to r,. Similar to the similarity matrix DD, the
similarity matrix RG and DG need to be recalculated in the cross-validation.

2.4 Integrated Similarity for Drugs and Diseases

In this section, the similarity matrices of drugs and diseases are respectively integrated
to implement the network consistency projection algorithm. By using the similarity
network fusion (SNF) method [18], the above four drug similarity matrices are integrated
into the drug similarity matrix MR, and the above three disease similarity matrices are
integrated into the disease similarity matrix MD. SNF, which updates the similarity
network corresponding to each similarity matrix in each iteration to make it closer to
other networks, is a nonlinear method based on message passing theory. In the above way,
SNF can capture common and complementary information between different networks
and reduce noise.
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Taking the integration of three disease similarity networks as an example, the main
process of similarity network fusion is introduced. Firstly, the matrices W(", w(?
and W are used to represent three different disease similarity networks, and the
correspondingly state matrices P(/), P?) and P(®) are obtained as follows:

W) : :
) i
PG j) = { Rl g @
J =1

Where W(i, j) denotes the similarity of node i and node j.
Secondly, the correspondingly kernel matrices S/, §® and S are calculated by
using the matrices w), w2 , and W) as follows:

Waij)
w7 5,J € N:
S@,j) = { Sien, Wk ) S N N

0, otherwise

Where N; represents the set of K (empirically set to 20) neighbors of node i.
Then, the key step of the similarity network fusion approach is to iteratively update
the state matrices, and the updating process is represented as follows:

@, p®
PP 1P T
PM = s x <—’ — ) x (s0) ©)
M, p®
PO 1 p T
Pz(i)l =5? x (—’ —; ! ) X (S(z)) (10)
e
PO 1P T
PO =50 x (’T’) x (S(3)) (11)

Where Py = PO PP = P® and P = P®). Aftereachiiteration, we normalize
the state matrices. After ¢ (empirically set to 20) iterations and updates, the integrated
similarity matrix P is finally obtained by taking the mean of the state matrices as follows:

P+ PP 4 PP
B 3

(12)

2.5 Network Consistency Projection Method

Through the above section, the integrated drug similarity matrix MR and disease simi-
larity matrix MD are obtained. In this section, MR and MD are also used to represent the
integrated drug similarity network and disease similarity network, respectively. More-
over, the association matrix Y is also regarded as drug-disease association network.
We perform the network consistency projection method on the integrated drug similar-
ity network and the disease similarity network respectively, and obtain two projection
scores, namely the drug space projection score and the disease space projection score.
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The drug space projection score and the disease space projection score are combined
and normalized to obtain the final prediction score.
The projection of the drug similarity network on the drug-disease association network
is the drug space projection, which can be calculated as follows:
MR(@,:) x Y(:,J
1Y ¢ D)l
Where MR(i, :) is the i-th row of the matrix MR, representing the similarities between
drug r; and all drugs; Y(, j) is the the association profile of disease d;; 1Y(:, j)| represents
the length of the association profile Y(:, j).
Similarly, the disease space projection can be computed as follows:
Y(@,: MDC(,j
DSP(i, j) = L) x MDG.J) (14)
1Y@, )l
Where MD(:, j) represents the similarities between disease d; and all diseases.
The final prediction score of drug r; and disease d; can be calculated as follows:

NCP(. j) = RSP(i,j) + DSP(, j)
"I ZMRG, D) + IMDG, )|

15)

3 Experiments

3.1 Evaluation Metrics

To evaluate the ability of our method to predict potential drug-disease associations,
a fivefold cross-validation is performed. All known drug-disease associations in the
LRSSL data set are randomly divided into 5 roughly equal subsets, each of which is used
as the test set in turn, and the remaining subsets are used as the training set. After the
performing prediction, the prediction scores of all drug-disease associations are ranked
in descending order. If the ranking of the drug-related disease is higher than a specific
threshold, it is considered a True Positive (TP) sample; otherwise, it is considered a
False Negative (FN) sample. Moreover, if the ranking of a disease not associated with
the drug is higher than a specific threshold, it is considered a False Positive (FP) sample;
otherwise, it is considered a True Negative (TN) sample. According to different ranking
thresholds, the number of samples in each of the above four categories can be calculated
to construct receiver operating characteristic (ROC) curve and precision-recall (PR)
curve. The area under ROC curve (AUC) and the area under PR curve (AUPR) are used
to evaluate the overall performance of the prediction methods.

3.2 Parameter Analysis

Different values of the hyperparameter can produce different prediction performance, so
it is necessary to determine the optimal value of the hyperparameter to achieve the best
performance. In our method, the optimal value of hyperparameter k is determined within
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the range [0, 24]. As shown in Fig. 3, as the value of k changes, the AUC value does
not change significantly, while the AUPR value changes more significantly. In addition,
when k = 2, the AUPR value reaches the maximum and decreases gradually with the
increase of k. Therefore, we set the value of k to 2 as the optimal parameter value, and
then the AUC value and AUPR value of NCPDDA are 0.9733 and 0.4871, respectively.
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Fig. 3. The predicted results under different number neighbor nodes settings. (a) AUC values for
various settings. (b) AUPR values for various settings.

3.3 Comparison with Other Methods

To evaluate the performance of NCPDDA, we compare it with other three classical
approaches: OMC2 [7], BNNR [6], and MBiRW [11]. In order to make a fair comparison,
the best hyperparameter values of the other methods are selected according to their
publications. As depicted Fig. 4, the AUC value and AUPR value of NCPDDA are
superior to those of other methods. Specifically, NCPDDA obtain the best AUC value of
0.9733, while OMC2, BNNR and MBiRW are 0.9342, 0.9101 and 0.9122, respectively.
Moreover, NCPDDA also achieve the best AUPR value of 0.4871, which are 8.83%,
9.19% and 17.21% higher than OMC2, BNNR and MBiRW, respectively. The other three
methods only use one type of drug similarity and disease similarity, while NCPDDA
integrates four types of drug similarities and three types of similarities. The experimental
results indicate that the integration of multiple types of similarities can improve the
performance of the prediction methods.

3.4 Comparison of Different Similarity Network Fusion Methods

In the process of similarity information fusion, many methods adopt linear fusion meth-
ods (for example, mean fusion), while our proposed method uses similarity network
fusion (SNF) method. Compared with mean fusion method, SNF can integrate com-
mon information and complementary information of various types of data. Besides, the
similarities of drugs and diseases may be incomplete or noisy, and SNF can effectively
reduce noise.
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Fig. 4. The predicted results of all methods. (a) AUC values for the various methods. (b) AUPR
values for various methods.

We set up two groups of comparative experiments to illustrate the effect of similarity
network fusion method. NCPDDA_DrugMean represents that the mean fusion method
is used to integrate three types of drug similarities to calculate one type of disease
similarity, and NCPDDA_Mean represents that four kinds of drug similarities and three
kinds of disease similarities are integrated into one kind of drug similarities and disease
similarities respectively by mean fusion method. As shown in Fig. 5, the AUC values of
NCPDDA and NCPDDA_DrugMean are approximately equal, while the AUPR value
of NCPDDA is 3% higher than NCPDDA_DrugMean. Moreover, the AUC value of
NCPDDA is 2.48% higher than NCPDDA_Mean and the AUPR value of NCPDDA is
4.25% higher than NCPDDA_Mean.
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Fig. 5. The performance of different similarity fusion methods. (a) ROC curves of different
methods. (b) precision-recall curves of different methods.

3.5 Case Studies

Through the previous experiments, the excellent predictive performance of NCPDDA
has been confirmed. In this section, we further validate the ability of the NCPDDA to
predict potential associations between drugs and diseases. All known associations in
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the LRSSL dataset are treated as the training set to train the NCPDDA model, and the
trained NCPDDA is used to get the prediction score of all unknown associations. The
candidate diseases for each drug are then ranked according to the predicted scores.

The top 5 candidate diseases for four representative drugs, Levodopa, Capecitabine,
Flecainide and Amantadine, are validated by searching authoritative public databases,
such as DrugBank [19] and CTD [20]. As shown in Table 1, more than 3 new indications
are validated for each representative drug. It further suggests that NCPDDA can be used
to predict new indications for drugs in practical applications.

Table 1. The top 5 candidate diseases for the four representative drugs.

Drugs Top 5 candidate diseases Evidences

Levodopa Hyperprolactinemia CTD
Psychotic disorders
Dyskinesia, drug-induced CTD
Schizophrenia CTD
Tourette syndrome

Capecitabine | Stomach neoplasms CTD
Carcinoma, basal cell CTD
Rectal neoplasms CTD

Folic acid deficiency

Anemia, megaloblastic

Flecainide Ventricular fibrillation CTD

Tachycardia, supraventricular CTD

Ventricular premature complexes | CTD

Atrial fibrillation CTD/DrugBank

Atrial flutter CTD
Amantadine | Psychotic disorders CTD

Tourette syndrome CTD

Hyperprolactinemia

Schizophrenia CTD

Huntington disease CTD/DrugBank

Besides, our approach has also identified some novel drug-disease associations,
including: Levodopa for psychotic disorders and tourette syndrome; Capecitabine for
folic acid deficiency and anemia, megaloblastic; Amantadine for hyperprolactinemia.
Although these associations are not recorded in the database, it does not necessarily
mean that they do not exist.
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4 Conclusion

In this work, we develop a method based on the network consistency projection to achieve
drug repositioning. In order to accurately predict potential drug-disease associations, our
proposed approach effectively integrates information from multiple sources. In addition,
the similarity network fusion is used to integrate the data to reduce the influence of noise.
Compared with three classical prediction methods, our method is proved to have excellent
performance. In the case studies section, four representative drugs are studied to further
prove the effectiveness of our method.

However, although our method has achieved some results, we must acknowledge
some limitations of our method. First, our method of calculating the similarities of drugs
and diseases may not be optimal, and there may be better methods of calculating the
similarities. Second, we should integrate more types of information to further improve
prediction performance. In the future research, we will conduct further research on the
two points mentioned above.
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