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Abstract. DNA-binding proteins (DBPs) have an important role in various reg-
ulatory tasks. In recent years, with developing of deep learning, many fields like
natural language processing, computer vision and so on have achieve great suc-
cess. Some great model, for example DeepBind, brought deep learning to motif
discovery and also achieve great success in predicting DNA-transcription factor
binding, aka motif discovery. But these methods required integrating multiple fea-
tures with rawDNA sequences such as secondary structure and their performances
could be further improved. In this paper, we propose an efficient and simple neu-
ral network-based architecture, DBPCNN, integrating conservation scores and
epigenomic data to raw DNA sequences for predicting in-vitro DNA protein bind-
ing sequence. We show that conservation scores and epigenomic data for raw
DNA sequences can significantly improve the overall performance of the pro-
posed model. Moreover, the automatic extraction of the DBA-binding proteins
can enhance our understanding of the binding specificities of DBPs. We verify
the effectiveness of our model on 20 motif datasets from in-vitro protein binding
microarray data. More specifically, the average area under the receiver operator
curve (AUC) was improved by 0.58% for conservation scores, 1.29% for MeDIP-
seq, 1.20% for histone modifications respectively, and 2.19% for conservation
scores, MeDIP-seq and histonemodifications together. And the mean average pre-
cision (AP) was increased by 0.62% for conservation scores, 1.46% for MeDIP-
seq, 1.27% for histone modifications respectively, and 2.29% for conservation
scores, MeDIP-seq and histone modifications together.
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1 Introduction

DNA-binding proteins (DBPs), or transcription factors [1], play an important role in cell
biological processes including transcription, translation, repair, and replication machin-
ery [2–4]. In addition, it has also been reported that some genomic variants in TFBSs
are related to serious diseases [5]. Therefore, discovering transcription factor binding
site (TFBS), a subsequence of DNA where the binding between the DBPs and its DNA
subsequence targets take place, is crucial for further understanding of the transcriptional
regulation mechanism in gene expression. A better understanding of protein-DNA bind-
ing preferences helps to annotate and study the function of cis-regulatory elements,
and identifying in-vitro protein-DNA binding sites is the first step in understanding
protein-DNA binding preferences [6].

With the development of high-throughput sequencing technologies, especially pro-
tein binding microarrays (PBMs [7]), it provides a large amount of in-vitro binding data
to help us study in-vitro protein-DNA binding preferences. The elements in PBMs rep-
resent a probability distribution over DNA alphabet {A, C, G, and T} for each position
in motif sequence. There are many detection technologies to study protein-DNA bind-
ing preferences from raw DNA sequences based on PBMs [8]. However, these methods
assume that the nucleotides in the binding site are independently contributed to the cal-
culation of the binding preference and have nothing to do with the nucleotides in other
positions. Dependencies between nucleotides can be explicitly encoded by kmers [9,
10], and the result shows that using kmers as encoding rule is better than PBMs. But
these methods have some weak points, like having difficulty in handling large-scale
data, poor generalization performance and so on. With the rapid development of deep
learning in recent years, new computational methods such as convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs) have shown their superior ability
in predicting protein-DNA binding sites [11–20]. Also, there are some research works
by data processing [21–25]. DeepBind is the earliest attempts to apply deep learning to
the motif discovery task and has proved to be an effective model. But them only use raw
DNA sequences as input data, Various studies showed that transcription factor binding
sites are conserved among species [26–30]. Conservation scores [31] and epigenomic
data [32] could be a nice data supplement to raw DNA sequences. In other words, inte-
grating conservation scores and epigenomic data to raw DNA sequences can help us
study in-vitro protein-DNA binding preferences.

In this paper, we first focus on in-depth exploitation of deep convolution neural net-
work with application on in-vitro motif discovery task in Sect. 2. We call our model
DBPCNN, which uses CNNs extract features from input data, i.e. raw DNA sequences,
conservation scores and epigenomic data, and then train model to predict DNA-protein
binding sites. Then we will show some experiment results in Sect. 3 and discuss the pro-
motion of conservation scores and epigenomic data. At last, we have a concise summary
and future outlook for further research.

2 Materials and Methods

In this section, we first introduce the relevant in-vitro DNA protein binding dataset,
evolutionary information, epigenomic data and its data preprocessing procedure. Second,
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architecture of our deep convolution network namely eDeepCNN is presented in detail.
Third, we give a briefing of evaluation metric and training hyper-parameters in our
experiment.

2.1 Dataset and Preprocessing

2.1.1 DNA Sequence

We downloaded 20 universal protein binding microarrays (uPBMs) datasets from the
DREAM5 project [20], which comes from a variety of protein families. Each TF dataset,
consisting of ~40,000 unaligned 35-mer probe sequences, comprises a complete set of
PBM probe intensities from two distinct microarray designs named HK and ME. These
datasets have been normalized according to the total signal intensity.

2.1.2 Evolutionary Information and Epigenomic Data

The evolutionary information was obtained from (http://hgdownload.cse.ucsc.edu/gol
denpath/hg19/phyloP100way/) where we used the conservation scores of multiple align-
ments of 99 vertebrate genomes to the human genome.These scores were obtained
from the PHAST package (http://compgen.bscb.cornell.edu/phast/). The values of these
scores were scaled to 0–1. In this paper, we use two kinds of data, i.e. MeDIP-
seq and histone modifications. The information was obtained from ENCODE Epige-
netics database (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEnco
deRegMarkH3k27ac/).

2.1.3 Data Preprocessing

To accurately evaluate the performance of our proposed method, five-fold cross-
validation strategywas adopted in this paper. Five-fold cross-validation strategy repeated
five times in total. Within each time, TF dataset was randomly divided into 5 folds of
roughly equal size, and four of them were used as the training data while the rest was
used as the test data. During training, we randomly sampled 1/8 of the training set as the
validation set.

Each input RNA sequence S = (s1, s2,…, sn) was one-hot encoded. Thus, A, C,
G, T, and N were encoded as (1000), (0100), (0010), (0001), and (0000) respectively.
The length of the input sequence is n = 101nt. In addition to one-hot encoding, we
added conservation (evolutionary) information (Convs), MeDIP-seq (MDS) and histone
modifications (HMS) of each nucleotide of the input sequence. Thus, each input sequence
S with n nucleotides is encoded as n× 7 such as four channels for one-hot encoding and
the other three channels for conservation scores, MeDIP-seq and histone modifications
respectively.

2.2 Network Architecture

DeepBind [20] introduced a single layer convolution neural network followed by a max
global pooling layer to extract sequence features in motif discovery, which was proved
to be a great success.

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phyloP100way/
http://compgen.bscb.cornell.edu/phast/
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeRegMarkH3k27ac/
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The length of the transcription factor binding sites in eukaryotes ranges from 5nt
to 30nt as reported by Stewart et al. [33]. Therefore, the input length of the proposed
models is set to 101nt. Each sequence is centered on the transcription factor binding site
and the additional nucleotides were used for providing contextual information.

Fig. 1. An overview of the DBPCNNmodel. A raw DNA sequence is first encoded into a one-hot
matrix and MDS, HMS, Convs. The first convolutional layer computes a score for all potential
local motif. The second convolution layer discovers the interactions between the learned motifs
of the first convolution layer. The learned features from the convolution layers go through fully
connected layers with a softmax layer at the output for prediction.

Therefore,we proposed a deeper neural networkmodel composed of two convolution
layers accompanied by dropout and local pooling strategies, namely DBPCNN. The first
convolutional layer computes a score for all potential local motif, which is the same as
DeepBind. Andwe design the second convolutional layers, in the hope that it can capture
the interaction pattern in neighboring sequence. The second convolution layer takes the
motif score sequence computed by the first convolution layer as input and recognizes
the distribution pattern of the motif score sequence, which, in other words, takes the
interaction of the local motifs into consideration. Combining multiply convolution layer
improves the receptive field ofDBPCNNmodel and allows an overall pattern recognition
of the candidate sequence. Each convolution layer is followed by a local max pooling
layer and a dropout layer. It should be noticed that dropout strategy plays an important
role in our model, in the light of the overfitting risk accompanied by the expanding
parameter size and model complexity. A global max pooling layer is used to capture
the global context information of DNA sequences and feeds it into a two layer fully
connected neural network to obtain final prediction.
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The convolution layer is a one-dimensional convolution expressed in Eq. (1). I is the
input, o and k are the indices of the output position and the kernels, respectively, and
Wk is the weight matrix of S × N shape with S filters and N input channels.

X k
o =

∑S−1

m=0

∑N−1

n=0
Io+m,nW

k
m,n (1)

The fully connected layer is expressed in Eq. (2).

zm = wd+1 +
∑d

i=1
wi,m ∗ yi (2)

The dropout layer is added to switch off certain neurons at training time in order to
reduce overfitting. Adding dropout after fully connected layer results in Eq. (3) where
mi is sampled form Bernoulli distribution.

zm = wd+1 +
∑d

i=1
mi ∗ wi,m ∗ yi (3)

The rectified linear unit activation function was used in this design and it is given in
Eq. (4). ReLU function introduces non-linear features to DBPCNN model.

ReLU (x) =
{
0, x < 0
x, others

= max(0, x) (4)

The final layer is the softmax layer that normalizes its input vector z into a probability
distribution havingM probabilities proportional to the exponential of the input numbers,
expressed by Eq. (5).

softmax(zi) = exp(zi)∑M
m=1 exp(zm)

(5)

Figure 1 plots a graphical illustration of DBPCNN and the detailed parameter set-
tings including convolution kernel size and number of filters in each layer are listed in
Table 1. Input data is (B, 101, 7). It should be mentioned that part of our hyper-parameter
settings inherent from classic deep learning methods in motif discovery like DeepBind,
which have proved to be optimal choices, while some other parts were chosen from
hyper-parameter grid search in training procedure.

2.3 Evaluation Metric

We select positive and negative samples with the ratio 1:1. Our DBPCNN model uses
AUC (Area under the Curve of ROC) as metric evaluation. In the binary classification
problem, it is generally said that the category which is predicted positive is positive,
while the category which is predicted negative is negative. If the prediction is correct,
the result is true, and if the prediction is wrong, the result is false (True). For a two-
category prediction problem, combining the above four cases, you can get the confusion
matrix shown in Table 2. We can draw ROC curve according to confusion matrix.
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Table 1. Parameter setting of DBPCNN model in detail.

Architectures Settings Output shape

Input data – (B, 101, 7)

1st convolution layer Kernel number = 64, kernel size = 15, stride = 1,
padding = 0

(B, 87, 64)

ReLU layer – (B, 87, 64)

Max-pooling layer Kernel size = 4, stride = 4, padding = 0 (B, 21, 64)

Dropout layer ratio = 0.2 (B, 21, 64)

2nd convolution layer Kernel number = 64, kernel size = 5, stride = 1,
padding = 0

(B, 16, 64)

ReLU layer – (B, 16, 64)

Max-pooling layer Kernel size = 4, stride = 4, padding = 0 (B, 4, 64)

Dropout layer ratio = 0.2 (B, 4, 64)

1st fully connected layer Dim = 64, kernel regularizer = ‘l2’ (B, 64)

ReLU layer – (B, 64)

Dropout layer Ratio = 0.2 (B, 64)

2nd fully connected layer Dim = 1 (B, 1)

Softmax layer – (B, 1)

Table 2. Confusion matrix.

Real category

True (1) False (0)

Predicted category Positive (1) True positive sample (TP) False positive sample (FP)

Negative (0) False negative sample (FN) True negative sample (TN)

2.4 Experiment Setting

The learnable parameters (e.g. weights and bias) in neural network were initialized by
Glorot uniform initializer [34], and optimized byAdam [35] algorithmwith amini-batch-
size of 100. We implemented grid search strategy over some sensitive hyper-parameters,
i.e. dropout ratio, L2 weight decay, and momentum in SGD optimizer. An early stopping
strategy was also adopted to fight against overfitting problem in our model. Detailed
hyper-parameter setting is listed in Table 3.
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Table 3. A list of sensitive hyper-parameters and grid search space in experiment.

Hyper-parameters Settings

Dropout ratio 0.2, 0.5

Learning rate 0.001

Momentum in AdaDelta 0.999, 0.99, 0.9

Weight decay 5E-4, 1E-3, 5E-3

Early stopping tolerance 20

Mini-batch size 100

Loss function L2 loss

3 Results and Analysis

3.1 Results Display

In order to verify the effectiveness of conservation scores (Convs), MeDIP-seq (MDS)
and histone modifications (HMS), we conduct series of experiments. We use different
data as model input, i.e. raw DNA sequences, raw DNA sequences + Convs, raw DNA
sequences+MDS, rawDNA sequences+HMS, rawDNA sequences+Convs+MDS
+ HMS respectively. The result of comparison is illustrated in Fig. 2, and Fig. 3.

Fig. 2. A scatter plot comparing the achieved AUC (left) and AP (right) of the proposed model
DBPCNN using raw DNA sequences only and by integrating Convs, MDS, HMS respectively to
raw DNA sequences.

3.2 Effect of Conservation Scores (Convs), MeDIP-seq (MDS), Histone
Modifications (HMS)

In order to study the importance of adding evolutionary information, we trained the
DBPCNN model using raw DNA sequences only. For a fair comparison, we have
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Fig. 3. The comparison of the performance of DBPCNN with different input data in term of
average AUC and average AP.

searched the best hyper-parameters again in the case of using raw DNA sequences
only using similar grid search parameters as shown in Table 3. The average AUC of
using raw DNA sequence only was 88.00% while it was 88.58% integrating the conser-
vation scores, 89.29% integrating the MeDIP-seq, and 89.20% integrating the histone
modifications to raw DNA sequences respectively. On the other hand, the mean AP of
using raw DNA sequences only was 88.45%while it was 89.07% integrating the conser-
vation scores to raw DNA sequences, 89.91% integrating the MeDIP-seq, and 89.72%
integrating the histone modifications to raw DNA sequences respectively. Thus, adding
conservation scores to the raw DNA sequences improved the performance by 0.58%
and 0.62% in terms of AUC and AP respectively, MeDIP-seq by 1.29% and 1.46%,
and histone modifications by 1.20% and 1.27%. The Figs. 3 show that AUC and AP
scores of all 20 in-vitro uPBM datasets experiments were improved by integrating the
conservation scores with rawDNA sequences. Then we conduct experiments integrating
the conservation scores, MeDIP-seq, and histone modifications to raw DNA sequences,
and the average AUC was 90.19% comparing 88.00% and the average AP was 90.74%
comparing 88.45%. There was 2.19% increase to average AUC and 2.29% to average
AP.

4 Conclusion and Future Work

Motif discovery is an important process for a better studying of different biological tasks.
In this paper, we propose a simple and efficient deep convolution neural network model,
namely DBPCNN for predicting in-vitro DNA-protein binding site, integrating the con-
servation scores, MeDIP-seq, and histone modifications with raw DNA sequences. Inte-
grating three data to DNA sequences respectively can achieve the average AUC and
AP, and while including the conservation scores, MeDIP-seq, and histone modifications
together to raw DNA sequences, we can get better result comparing only any data.

Although we get outstanding result by integrating the conservation scores, MeDIP-
seq, and histone modifications to raw DNA sequences to predict in-vitro DNA-protein
binding site, there are many evidences show that shape in local DNA sequence plays an
important role in DNA-protein binding process [36–38]. And different encoding rules
also can influence results [39–43]. As we know, encoding input to embedding vector
is a commonly used data-preprocessing way, which can convert sparse vector to dense
vector to reduce dimension. Therefore, incorporating the DNA shape information into
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deep convolution neural network and using embedding method as data-preprocessing
waywould be a promisingmethod to improveDNAbinding site prediction, whichwould
be our future work direction.
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