
Ensemble Learning with Resampling
for Imbalanced Data

Firuz Kamalov1(&), Ashraf Elnagar2, and Ho Hon Leung3

1 Faculty of Electrical Engineering, Canadian University Dubai, Dubai, UAE
firuz@cud.ac.ae

2 Department of Computer Science, University of Sharjah, Sharjah, UAE
ashraf@sharjah.ac.ae

3 Department of Mathematics, UAE University, Al Ain, UAE
hohon.leung@uaeu.ac.ae

Abstract. Imbalanced class distribution is an issue that appears in various
applications. In this paper, we undertake a comprehensive study of the effects of
sampling on the performance of bootstrap aggregating in the context of
imbalanced data. Concretely, we carry out a comparison of sampling methods
applied to single and ensemble classifiers. The experiments are conducted on
simulated and real-life data using a range of sampling methods. The contribu-
tions of the paper are twofold: i) demonstrate the effectiveness of ensemble
techniques based on resampled data over a single base classifier and ii) compare
the effectiveness of different resampling techniques when used during the
bagging stage for ensemble classifiers. The results reveal that ensemble methods
overwhelmingly outperform single classifiers based on resampled data. In
addition, we discover that NearMiss and random oversampling (ROS) are the
optimal sampling algorithms for ensemble learning.

Keywords: Imbalanced data � Undersampling � Oversampling � Ensemble
method � Data preprocessing sampling

1 Introduction

Imbalanced class distribution refers to a situation where one class considerably out-
numbers another class. It appears in a variety of contexts including text classification,
medical diagnostics, fraud detection and many others involving rare events. Skewed
class distribution causes bias against the minority class in learning models. In partic-
ular, the prediction accuracy is often higher on the majority class relative to the
minority class [23]. There exists a variety of approaches to deal with imbalanced data
including feature selection, cost-sensitive learning, one-class learning, and others. One
of the most popular such approaches is sampling the data to balance the class distri-
butions. However, the use of sampling alone may result in a high variance classifier. To
reduce the variance researchers have employed ensemble methods. In an ensemble
method, the data is repeatedly sampled to obtain a collection of balanced datasets
which are used to train base classifiers (weak learners). Then an ensemble rule is
applied to aggregate the predictions of the base classifiers into a single response. In a
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basic ensemble method for imbalanced class distribution, the majority class is
repeatedly undersampled to match the size of the minority data and a corresponding
decision tree is constructed based on the balanced bootstrap sample. The process is
carried multiple times depending on the user preference resulting in a collection of
decision trees. Then the predictions of the resulting ensemble method are based on the
majority or the mode of predictions of the constituent decision trees. The use of
multiple tree to make predictions reduces the variance of the classifier. Since decision
trees are very efficient algorithms ensemble methods do not experience any significant
deterioration in execution time.

Ensemble learning with sampling for imbalanced data has been an active area of
research with several authors proposing their own methods to combine ensemble and
sampling techniques to improve classification performance. The goal of this paper is to
carry out a comprehensive study of the effects of ensemble learning in regards to
sampling for imbalanced data. Concretely, for each sampling technique, we compare
classification performance between individual and ensemble tree classifiers. We con-
sider a range of undersampling and oversampling techniques including random
undersampling (RUS), NearMiss, random oversampling (ROS), synthetic minority
oversampling technique (SMOTE), and ADASYN. To obtain broadly applicable
results we carry out multiple numerical experiments using both simulated and real-life
data. The real life-data covers a range of applications including astronomy, social
science, medical diagnostics, and image recognition.

It is well known that bootstrap aggregating methods outperform single decision
trees on balanced data. However, there does not exist an extensive study on bootstrap
methods in the context of imbalanced data. The performance of a classifier on a
balanced dataset is measured by its overall accuracy rate. By aggregating the predic-
tions from a collection of classifiers an ensemble method reduces the variance of the
predictions. As a result, it achieves improved accuracy on the testing set. On the other
hand, the performance of a classifier on an imbalanced set is measured by AUC and F1-
score. It is not immediately clear that the gains obtained by an ensemble classifier in
accuracy rate will also materialize in AUC and F1-score. Therefore, a separate study is
required to investigate the effects of bootstrap aggregating on the AUC and F1-score in
the context of imbalanced data.

To fill the gap in the literature we test a range of sampling methods applied to a
collection of simulated and real-life data. The results of the experiments show that
ensemble methods consistently outperform single classifiers. In particular, we find that
ensemble classifier outperforms single classifier on all tested datasets when using
undersampling techniques. The ensemble classifier similarly produces better results
when using oversampling techniques on the simulated data and 4 out 5 real-life
datasets.

The paper is organized follows. In Sect. 2, we briefly review the current literature
on ensemble methods and imbalanced data. In Sect. 3, we discuss the methodology and
the results of the numerical experiments. Section 4 concludes the paper with a summary
of our findings.
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2 Literature Review

There exists a range of approaches in the literature to combat imbalance class distri-
bution [17]. One of the approaches is based on selecting the optimal feature subset for
identifying the minority class points [2, 3]. Another approach is based on balancing the
class distribution in the dataset. Balancing the class distribution through resampling is
arguably the most popular approach to dealing with imbalanced data. Resampling
methods can be divided into two groups: undersampling and oversampling. Under-
sampling techniques consist of selecting a subset of the majority class that is of the
same size as the minority class. The RUS algorithm is the simplest undersampling
technique whereby a subset of the majority class is selected with uniform probability.
In more intelligent approach called NearMiss the points of the majority class that are
close to the border with the minority class are more likely to be selected [20]. Over-
sampling techniques consist of creating new minority points based on the existing
minority points. A popular oversampling technique called SMOTE generates new
points by linear interpolation between the existing minority points [4, 9]. An extension
of the SMOTE algorithm called ADASYN generates new points in the same fashion as
SMOTE but with greater emphasis on the minority points that lie in regions with high
concentration of the majority class points [12]. In a more sophisticated approach, the
authors in [14] employ kernel density estimation to estimate the underlying distribution
of the existing minority points. The estimated distribution is used to generate the new
minority points. Fusion approaches that combine multiple methods have also been used
to deal with imbalanced data [25, 26]. As an alternative to resampling, other approa-
ches such as weighted misclassification penalty and features selection can be employed
to combat imbalanced data [16].

It has been widely accepted that ensemble approach reduces the variance of an
estimator by introducing randomization into its construction procedure and then
aggregating individual estimators. Ensemble methods such as bagging and random
forest have been successfully modified to fit imbalanced data [19]. Each method applies
a particular sampling technique during the bagging/boosting stage to balance the data.
The most popular approach to constructing a bagging classifier is by random under-
sampling of the majority class to obtain a balanced subset which is used to train an
estimator. An ensemble of estimators is created by repeating the sampling and training
procedure. There exists several extensions of the random undersampling ensemble
method. The authors in [10], propose a variation of the underbagging ensemble method
by ap- plying evolutionary undersampling on the majority class. According to the
proposed method new subsets of the majority class are sampled using evolutionary
approach and base classifiers are constructed. The resulting ensemble method performs
well on highly imbalanced data. Hido et al. [13] introduced Roughly Balanced Bagging
(RBB), where the numbers of instances for both classes are determined in different
ways. The number of minority points in each bootstrap set equals the size of the
minority class while the number of majority points is determined according to the
negative binomial distribution. RBB has been a popular ensemble learning tool that has
been applied to various contexts [18]. Diez-Pastor et al. [6] proposed an ensemble
method based on bootstrap sets with random class ratios. Each base classifier in the
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ensemble is trained on a dataset with arbitrarily chosen class ratio. The proposed
method aims to increase the resulting AUC. The authors in [5] propose an ensemble
learning technique based on the threshold moving technique which applies a threshold
to the continuous output of a model. The proposed method preserves the natural class
distribution of the data resulting in well-calibrated posterior probabilities. The authors
in [22] consider adjusting the existing ensemble rules to account for data imbalance. In
[24], the authors explore the relationship between the diversity of the base classifiers in
an ensemble and the performance of the final ensemble. Investigation of three ensemble
approaches based on undersampling, oversampling and SMOTE reveal a positive
relationship between the diversity and recall rates on the minority class.

In [27], the authors used one-vs-one (OVO) approach together with ensemble
methods to tackle imbalanced distribution for multi-class data. An empirical study of
various ensemble methods indicates the high effectiveness of ensemble learning with
OVO scheme in dealing with the multi-class imbalance classification problems. Con-
cretely, the authors find that decision tree-based ensemble classifier SMOTEBoost
achieves average accuracy of 0.7676 while neural network-based classifier
SMOTE + AdaBoost achieves average accuracy of 0.7915. The authors in [1], build on
the previous work by considering different base classifiers on each subset of the OVO
decomposition. Thus, a different base model is selected for each data subset in the
ensemble classifier. In addition, the authors replace the OVO strategy with Error
Correcting Output Codes. The test results show that the proposed method produces a
higher F1-score compared to the other 17 benchmark algorithms. Concretely, the
average F1-score for the proposed method is 0.7750 while the accuracy is 0.9323.

3 Sampling Techniques

In this section we present the sampling algorithms used to balance data with skewed
class distribution. There are two types of sampling methods: undersampling and over-
sampling. In undersampling, a subset of the majority class, of the same size as the
minority class, is selected (Fig. 1, top). There exists a number of undersampling
techniques in the literature. The simplest undersampling technique - the RUS algorithm
- consists of randomly selecting a subset of the majority class with or without
replacement. The main advantage of RUS is its simplicity. However, it fails to take full
advantage of the data by underutilizing the majority class subset. In a more sophisti-
cated algorithm called NearMiss, the majority class instances that are closest to the
minority class are more likely to be selected [20]. Concretely, pairwise distances
between members of the majority and minority classes are calculated. Then for each
point in the majority class p+, the average distance to the closest k points of the
minority class dpþ is calculated. The points p+ with the corresponding smallest values
of dpþ are selected as the majority class sample. The motivation for the NearMiss
algorithm is that given more points in the border region a classifier will be more likely
to separate the two classes along the border. Despite its intelligent approach to
undersampling it similar to RUS - also fails to take full advantage of the data.
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In oversampling, the existing minority class points are used to generate the new
minority points (Fig. 1, bottom). The simplest oversampling approach - the ROS
algorithm - consists of randomly selecting (with replacement) from the existing
minority points. The main advantage of ROS is its simplicity. However, it leads to
overfitting by generating several minority points in the same location. In a more
creative approach called SMOTE the new points are created synthetically by interpo-
lating between the existing minority points [4]. Concretely, for each point in the
minority class its k nearest neighbors in the minority class are determined. Given a
minority point and one of its neighbors, the difference between the two is calculated
and multiplied by a random number between 0 and 1. The new minority class instance
is obtained by adding the preceding result to the minority point:

p�new ¼ p� þ t p� � p�k
� �

; ð1Þ

where p�new denotes the new minority class point, p� is the minority point under
consideration, p�k is a kth nearest neighbor, and t is a random number between 0 and 1.
Although SMOTE generates minority points in new locations it is bound to only linear
paths between neighboring minority points which restricts the range of points that can
be generated. To combat the issue of restricted linear generation other methods
employing KDE and Gamma distribution have been proposed recently [15]. An
extension of SMOTE called Adaptive Synthetic (ADASYN) attempts to generate the
new minority points around the minority points that are harder to learn [12]. Con-
cretely, ADASYN employs the ratio of the majority to minority points in the neigh-
borhood of an existing minority point to determine the number of new minority points
to generate in that neighborhood. ADASYN is motivated by the logic that the minority
points that lie in regions of high concentration of majority points are more likely to be
ignored by a classifier.

Fig. 1. Illustration of the sampling algorithms.
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4 Numerical Experiments

In this section, we present the results of the numerical experiments that were carried out
to compare single and ensemble classifiers in the context of imbalanced class distri-
bution. In our experiments we use both simulated and real-life data. The simulated data
contains 10,000 instances with 100 features while the real-life data is comparatively
smaller.

4.1 Experimental Design

Constructing a single decision tree classifier for imbalanced data is straightforward.
First, the original imbalanced data is resampled using an appropriate sampling tech-
nique in order to obtain a balanced dataset. Then a decision tree classifier is trained on
the balanced data (Fig. 2).

The ensemble classifier construction process for imbalanced data is illustrated in
Fig. 3. To construct an ensemble classifier the original imbalanced data is resampled 50
times via an appropriate sampling technique. The resampling procedure produces a set
of balanced datasets. We train a decision tree estimator on each balanced dataset. We
obtain 50 individual decision tree estimators that are used to construct an ensemble
classifier using the majority rule. Given new data, we make predictions using the
individual estimators and select the most popular (majority) prediction as the final
output of the ensemble classifier. During the experiments the data is divided into
training and testing sets according to 75/25 ratio. The experiments are carried out in
Python using machine learning libraries sklearn [21] and imblearn [19].

Traditional measures such as accuracy and error rate do not adequately capture the
performance of a classifier on the minority class in the context of imbalanced data.
Therefore, we use the F1-score to obtain a more unbiased measure of classifier per-
formance. The F1-score is a balanced metric that combines precision and recall into a
single value. Recall represents the fraction of positive instances that were correctly
labeled as such. It is given by the equation

recall ¼ tp
tpþ fn

; ð2Þ

where tp and fn denote the number of true positives and false negatives, respec-
tively. Precision represents the fraction of truly positive instances from the total pos-
itively labeled instances,

Fig. 2. Construction of a balanced decision tree classifier.
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precision ¼ tp
tpþ fp

; ð3Þ

where fp denotes the number of false positives. The F1-score is the harmonic mean of
precision and recall. It is given by the equation

F1 ¼ 2
precision:recall
precisionþ recall

; ð4Þ

4.2 Simulated Data Experiments

We generate a random binary classification problem using the make_classification
function from sklearn library. The dataset consists of a total of 100 features of which 15
are informative, 20 are redundant, 15 are repeated and the remaining are generated as
random noise. The data is generated by placing clusters of points normally distributed
(std = 1) about vertices of a 15-dimensional hypercube with sides of length 2 and
assigning 2 clusters to each class. The redundant features are created as linear com-
binations of the informative features, while the repeated features are drawn randomly
from the in- formative and redundant features [11]. The number of samples in the
simulated dataset is 10,000. The ratio of minority to majority class points is 5/95.

We use the simulated dataset to examine the performance of ensemble and single
decision tree classifiers in the context of various sampling algorithms. In particular, we
investigate 2 undersampling and 2 oversampling algorithms: RUS, NearMiss, ROS,
and SMOTE. The simulated data is balanced according to each sampling algorithm.
We train ensemble and single decision tree classifiers on each balanced dataset. The
performance of the classifiers is measured via the F1-score, recall, precision, and
accuracy rates. As shown in Fig. 4, the ensemble classifier outperforms a single
decision tree classifier in precision but underperforms it in recall. However, on balance

Fig. 3. Construction of a balanced ensemble decision tree classifier.

570 F. Kamalov et al.



- as reflected by the F1-score - the ensemble classifier outperforms the single decision
tree classifier with all 4 sampling algorithms. We also note that the ensemble classifier
produces higher accuracy rate in almost all the tested sampling algorithms. Although
accuracy rate is not the primary measure of performance for imbalanced data, it further
supports the superiority of the ensemble approach. Observe that in the simulated data
the average accuracy of ensemble classifier is 0.9619 which is higher than the
benchmark score of 0.95 using the naive approach of classifying all instances as
positive. Finally, we note that the ensemble approach produces better results with both
undersampling (RUS, NearMiss) and oversampling (ROS, SMOTE) algorithms. The
better performance in both the F1-score and accuracy indicates that the ensemble
method is effective at identifying the minority as well as the majority class points.
Identifying the minority (positive) instances is particularly important in many appli-
cations such as medical diagnostics. Thus, given an imbalanced data with a coherent
underlying structure a sampling technique coupled with an ensemble method seems to
be an effective solution.

Fig. 4. Performance comparison of the ensemble and single decision tree classifier on simulated
data consisting of 10,000 samples with 100 features.

Table 1. Experimental datasets.

Name Repository & Target Ratio #S #F

1 ecoli UCI target: imU 8.6:1 336 7
2 spectometer UCI, target: > = 44 11:1 531 93
3 us crime UCI, target: >0.65 12:1 1,994 100
4 libras move UCI, target: 1 14:1 360 90
5 letter_img UCI, target: Z 26:1 20,000 16
6 mammography UCI, target: minority 42:1 11,183 6
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4.3 Real-Life Data Experiments

We use a number of real-life datasets to compare the performance of ensemble and single
tree classifiers in imbalanced class setting. The data is fetched through imblearn library
where it is appropriately preprocessed. Alternatively, it can be obtained directly from the
UCI repository [7]. The details of the datasets are presented in Table 1. We use a diverse
set of datasets in order to obtain comprehensive results. The datasets are chosen from a
range of fields including astronomy, image recognition, medical diagnostics, and social
science. The class ratio of the datasets ranges from 8.6:1 to 42:1, the number of samples
ranges from 336 to 20,000, and the number of features ranges from 6 to 100.

We begin our experiments with the RUS algorithm. Recall that RUS operates by
randomly selecting a subset of the majority class to balance with the minority class. We
apply RUS to balance each dataset given in Table 1. Then, we train an ensemble and
single decision tree classifiers on the balanced sets as described in Sect. 4.1. The
performance of the classifiers is measured by the F1-score, recall, precision, and
accuracy rates. The results of the experiments are presented in Fig. 5. As can be
observed from the figure, the ensemble classifier outperforms the single decision tree
classifier in F1-score, precision, and accuracy rates for all the tested datasets. Note that
the recall rate for single decision tree classifier is higher than the ensemble method.
Recall is an important metric in imbalanced data classification - especially in appli-
cations such medical diagnostics, where effective discovery of positive instances is of
great importance. Nevertheless, on balance - as reflected by the F1-score - the ensemble
method produces superior results. The ensemble classifier achieves particularly
impressive results in the letter_img dataset with the F1-score and accuracy rate near the
perfect value of 1. Similarly, the ensemble method outperforms the single tree classifier
on the mammography dataset by large margin. The strong performance on both the F1-
score and accuracy suggest that the ensemble method does well on the minority and
majority class data. Thus, if using the RUS algorithm on imbalanced data the ensemble
method appears to be the optimal approach.

Fig. 5. Performance comparison of the ensemble and single decision tree classifier on simulated
data consisting of 10,000 samples with 100 features.
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Next, we compare the classification performance using the NearMiss algorithm.
The NearMiss algorithm selects the samples of the majority class that are near the
minority class points. As shown in Fig. 6, the ensemble classifier outperforms the
single decision tree classifier on all the tested datasets. Concretely, the F1-score, pre-
cision, and accuracy of the ensemble classifier are substantially higher than a single tree
classifier for all the tested datasets. The difference in the margin of the scores is
particularly large in the case of spectrometer, letter_img, and mammography datasets.
The results for the NearMiss algorithm are consistent with the RUS sampling
algorithm.

We move on to investigate the performance of the ensemble and single tree clas-
sifiers using oversampling techniques. SMOTE is a popular oversampling algorithm
that creates new minority samples through linear interpolation between existing
minority points. As shown in Fig. 7, the ensemble classifier again outperforms the
single decision tree classifier albeit in a slightly different manner than previously. In
particular, the F1-score and accuracy of the ensemble method are higher on 5 out of 6
datasets. The results indicate that the ensemble method is effective in identifying the
minority class instances while simultaneously producing strong outcomes on majority
class data. Delving deeper into the results we see that the ensemble method produces
better precision scores in all but one dataset. Unlike the case with the oversampling
algorithms above, SMOTE-based ensemble classifier produces an even performance in
recall rates. In particular, the ensemble classifier yields higher recall scores on 2 out 6
datasets. Given the overall results, as shown in Fig. 7, we conclude that the ensemble
classifier is superior to the single decision tree classifier on SMOTE-sampled data.

Our final experiment is based on ADSYN sampled data. The ADASYN algorithm
resembles SMOTE in the way it crates the new minority points through linear inter-
polation. The main difference is that ADASYN creates the new minority points around

Fig. 6. Performance comparison of the NearMiss algorithm applied to ensemble and single
decision tree classifiers.
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the existing minority points with high concentration of the majority class points. In this
way, ADASYN tries to account for the learning difficulty on each minority point. The
performance of the ensemble and single decision tree classifier on ADASYN-sampled
data is very similar to that of SMOTE-sampled data. In particular, as shown in Fig. 8,
the ensemble classifier produces higher F1-score, precision, and accuracy rates on 5 out
of 6 tested datasets. The recall performance of the ensemble classifier is even with the
single decision tree classifier. Thus, on balance the ensemble classifier produces sig-
nificantly better results.

Fig. 7. Performance comparison of the SMOTE algorithm applied to ensemble and single
decision tree classifiers.

Fig. 8. Performance comparison of the ADASYN algorithm applied to ensemble and single
decision tree classifiers.
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Since they provide a way to reduce overfitting, bagging methods work best with
strong and complex models such as fully developed decision trees. However, other
base classifiers such as the k-nearest neighbors algorithm or logistic regression can also
be employed as base classifiers. In Table 2, we present the average accuracy for
ensemble and single classifier methods using 3 different base classifiers. The averages
are calculated based on the results over the 6 datasets given in Table 1. It can be seen
from the table that the ensemble classifiers outperform single classifiers for all 3 base
classifiers. In addition, we observe that ROS and NearMiss achieve higher accuracy
than other sampling methods in ensemble classification.

Similarly, in Table 3, we present the average F1-score for ensemble and single
classifier methods. Although the results of the F1-scores are not exactly the same as the
ac- curacy scores, they are generally consistent with our previous observations. Con-
cretely, note that ensemble classifiers are generally better than single classifiers and that
ROS and NearMiss are better sampling techniques in ensemble learning.

5 Conclusion

Imbalanced data is a widespread issue in a number of fields including medical diag-
nostics, text classification, fraud detection, and many others. Standard classifiers often
struggle with imbalanced data by favoring the majority class data. However, the
minority class data is often of more importance. For instance, it is more critical to
identify fraudulent transactions than regular ones within credit card or insurance data.

Table 2. Average accuracy using different base classifiers.

Model ROS SMOTE ADASYN RUS NearMiss

Ensemble DT 0.9582 0.9532 0.9597 0.9577 0.9621
Single DT 0.9483 0.9367 0.9383 0.8397 0.5720
Ensemble KNN 0.9546 0.9483 0.9460 0.9474 0.9479
Single KNN 0.9436 0.9322 0.9342 0.8770 0.7534
Ensemble LR 0.9536 0.9473 0.9490 0.9494 0.9469
Single LR 0.9203 0.9235 0.9077 0.8852 0.7411

Table 3. Average F1-score using different base classifiers.

Model ROS SMOTE ADASYN RUS NearMiss

Ensemble DT 0.6316 0.5770 0.6150 0.6181 0.6441
Single DT 0.6193 0.5953 0.6102 0.4204 0.2244
Ensemble KNN 0.6461 0.6303 0.6187 0.5944 0.6150
Single KNN 0.6991 0.6742 0.6635 0.4904 0.3608
Ensemble LR 0.6461 0.6303 0.6187 0.5944 0.6150
Single LR 0.5824 0.5951 0.5654 0.5041 0.3821
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One of the popular approaches to deal with imbalanced data is resampling whereby the
original data is balanced prior to training a classifier. Resampling is naturally associated
with ensemble classifiers as individual estimators of an ensemble can be trained on
different iterations of resampled data. Therefore, we postulate that given a sampling
procedure ensemble classifier would outperform single classifiers. To this end, we
compared the performance of a single decision tree classifier to the performance an
ensemble of decision trees in the context of applying a sampling procedure to imbal-
anced data. Concretely, investigated several undersampling and oversampling tech-
niques and the performance of the classifiers on sampled data.

In order to obtain comprehensive results, we used simulated and real-life data. The
simulated data (Sect. 4.2) consisted of 10,000 samples and 100 features of which only
15 were relevant. The results, as shown in Fig. 4, demonstrate the superiority of the
ensemble classifier. The ensemble classifier outperformed the single classifier with
respect to every sampling technique. In particular, the F1-score of the ensemble clas-
sifier exceeds that of the single decision tree classifier on every tested sampling
technique. The results from the simulated data suggest that ensemble classifiers per-
form well on structured data in the context of resampled data.

We also investigated the performance single and ensemble classifiers on real-life re-
sampled data. We used data from a range of applications to obtain a robust analysis.
The experimental results, as presented in Sect. 4.3, show the superiority of the
ensemble classifier. Using undersampling techniques the ensemble classifier yielded
better F1- score on all 6 tested datasets. Using oversampling techniques, the ensemble
classifier yielded better F1-score on 5 out of 6 tested datasets. Given the diversity of the
tested datasets and sampling techniques, and the consistency of the results, we con-
clude an ensemble classifier is more suitable than a single classifier in the context of
resampled data.

It is important to note that ensemble classifiers have a theoretically greater of
algorithmic complexity. However, in practice the added training time is negligible
because the underlying decision tree estimators are very efficient. Thus, in the light of
the above discussion ensemble classifiers offer significantly better performance with
little added cost.

As part of future work, our study can be extended to include multi-label imbalanced
data. Using OVO or OVA approach multi-label data can be decomposed into a set of
binary problems. Then an resampling-based ensemble approach can be applied to each
binary problem. The effects of different resampling techniques on the performance of
the corresponding ensemble methods would be interesting to study. In particular,
applying these methods on high-dimensional big data can be a valuable addition to the
existing literature.
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